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ABSTRACT Quantum computing can enable novel algorithms infeasible for classical computers. For
example, new material synthesis and drug optimization could benefit if quantum computers offered more
quantum bits (qubits). One obstacle for scaling up quantum computers is the connection between their
cryogenic qubits at a few (milli)kelvin and the traditional processing system on chip (SoC) at room
temperature (300 K). Through this connection, outside heat leaks to the qubits and can disrupt their state.
Hence, moving the SoC into the cryogenic part eliminates this heat leakage. However, the cooling capacity is
limited, requiring a low-power SoC, which, at the same time, has to classify qubit measurements under a
tight time constraint. In this work, we explore for the first time if an off-the-shelf SoC is a plausible option for
such a task. Our analysis starts with measurements of state-of-the-art 5 nm FinFETs at 10 K and 300 K. Then,
we calibrate a transistor compact model and create two standard cell libraries, one for each temperature. We
perform synthesis and physical layout of a RISC-V SoC at 300 K and analyze its performance at 10 K. Our
simulations show that the SoC at 10K is plausible but lacks the performance to process more than a few
thousand qubits under the time constraint.

INDEX TERMS Cryogenic CMOS, 5 nm FinFET, System on Chip, SoC, Quantum computing, Machine
learning classification, Hyperdimensional computing

l. INTRODUCTION bridge the gap between the quantum and classical domains

UANTUM computing is a pertinent avenue of resolution

for challenging computational problems that supersede
the realm of classical computing. Such problems include, but
are not limited to, new material synthesis, drug optimiza-
tion [1], and integer factorization [2]. All of these demand a
huge quantity of high fidelity quantum bits (qubits). This calls
for quantum computer up-scaling, realized through specialized
CMOS-based compute circuits. Such circuits can beneficially
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by directly processing information obtained from the qubits.
CMOS-based circuits can perform the necessary classification
to digitize the readout and many other essential tasks.

The inevitable need for cryogenic circuits: Control
circuits operating at room temperature (i.e., 300 K) pose a
considerable constraint on quantum computers, particularly
given that each qubit might require individual control [3].

This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no
longer be accessible.
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Figure 1. Our measurements from the investigated IBM Falcon quantum
processor with 27 qubits. The different colors represent measurements of the
different qubits. The black and gray larger dots represent the center of a qubit
and are obtained during a calibration phase. Each colored dot has to be
classified into 0 (black centers) or 1 (gray centers). The runtime budget of the
measurement classification is limited by the decoherence time of the IBM
Falcon quantum processor. A new quantum computation is started after
measuring the qubits. Hence, classifying the latest measurements has to be
completed within the decoherence time at the latest to not bottleneck the overall
quantum computer.

Conventionally, qubits operate at close to absolute zero (e.g.,
10 mK) since they retain their superimposed state for longer
at cryogenic temperatures. However, this conjures an input-
output bottleneck, as highlighted in a recent experiment that
shows that isolating and controlling merely 53 qubits requires
enormous structural overheads [3], [4]. This includes 200
wide-band coaxial cables, 45 microwave circulators and a
rack of electronic circuits. The isolation notwithstanding, a
heat flux leakage can occur from the control circuits to the
qubits placed within the cryogenic system. This is spurred
by a temperature gradient between 300 K and 0.1 K induced
at the two ends of each wire that can put the entire quantum
system at peril.

Moreover, the short qubit decoherence time, ranging from
ns to ms, exacerbates existing timing constraints. Notably,
the qubit is acutely sensitive to noise and heat. The timing
constraints are further stressed by huge latencies caused by
lengthy cables. Thus, to overcome the above and effectively
realize quantum computer up-scaling, CMOS circuits must
operate at cryogenic temperatures, i.e., in the vicinity of the
qubits. This ensures the unimpeded and coherent functioning
of numerous qubits.

The key challenges behind cryogenic circuits: Operating
CMOS circuits at cryogenic temperatures is riddled with a
unique set of challenges pertaining to power optimization.
This is because the circuits face power dissipation constraints
at low temperatures. If existing power constraints are unad-
dressed, the resulting heat can affect not only the state of
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the qubits but also lead to the worst-case outcome of qubit
destruction. Hence, the power constraints have the highest
priority, even higher than the achievable clock frequency.

Circuits operating at cryogenic temperatures require an
extremely tight power budget. The control circuits strictly
function within a power upper limit of only 100mW at a
temperature of 10 K, further lowering to 10 mW at 0.1 K [5].
Additionally, computations have to be fast enough to satisfy
the time constraints dictated by the short qubit coherence time.
Given these caveats, a sophisticated and reliable CMOS-based
circuit operating at cryogenic temperatures has to express
the characteristic features of processing qubit information
a) extremely rapidly and b) at ultra-low power.

The need for a cryogenic system on chip (SoC): An SoC
combines the control and readout circuitry for the manip-
ulation and measurement of qubits with a general-purpose
processor. The addition of this processor enables the execution
of arbitrary software codes, removing the dependency on
dedicated hardware for every task or connections with the
300K domain. This advantage was recently recognized by
Intel and they demonstrated the first cryogenic SoC for
quantum computing [6]. However, their focus was on the
implementation of the qubit circuitry and they did not evaluate
the capabilities of the included processor. Thus, it is unclear
what processing can be done under the strict power budget
that can be spared at cryogenic temperatures. Classification
of the quantum measurements is not the only task for the
classical processing part of the circuit. A general-purpose
processor with its high flexibility is required to enable crucial
tasks like running calibration protocols, loading the next quan-
tum computation, improve the runtime of popular quantum
computing paradigms relying on classical processing such as
dynamic circuits [7] or variational quantum algorithms [8],
[9]. Ultimately, to achieve fully error-corrected quantum
computers, complex quantum error correction protocols have
to be executed.

Dedicated hardware solutions for each of these tasks are
costly and slow to develop. In the fast-paced field of quantum
computing, the hardware could be outdated before it was even
deployed. The processor included by [6] is much more flexible,
but might miss an important instruction or be limited in the
available memory. A new cryogenic SoC would have to be
designed. Off-the-shelf SoCs, designed for room temperature
use, are available in a wide range of specifications and capa-
bilities and could quickly be swapped in and out, depending
on the requirements of the tasks. However, the question arises
if deploying such SoC is even plausible in a quantum system,
with power consumption (i.e., heat dissipation) and processing
speed being critical. Both are impacted as a CMOS transistor
at 10 K exhibits different power and timing characteristics.

The need for a cryogenic-aware transistor compact
model: State-of-the-art SPICE models do not capture the
indisputable influence of unconventionally low temperatures
on the physics of the semiconductor transistors. The under-
lying changes are marked by a decrease of leakage current
and transistor sub-threshold swing (SS), and an increase of
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Figure 2. Outline of this paper and an overview of our modeling. We cover the
whole stack, from physical transistor measurements through cell library
characterization to the physical design simulation of the full system on chip.

carrier mobility and transistor threshold voltage. Thus, SPICE
models are ill-equipped to account for the aforementioned fun-
damental processes at cryogenic temperatures, and research in
this direction is presently infantile. Without a cryogenic-aware
transistor compact model, not only correct SPICE simulations
are not possible, but standard cell library characterization
(which is indispensable for creating cryogenic-aware cell
libraries for logic synthesis) is also not possible.

Our main contributions within this work are as follows:
We are the first to explore the plausibility of deploying an off-
the-shelf SoC at cryogenic temperatures for the classification
of the quantum measurements. Fig. 2 provides an overview of
our work and serves as an outline. To enable our exploration,
we first measure the characteristics of a state-of-the-art
5Snm FinFET transistor at room temperature (300 K) and at
cryogenic temperature (10 K). Using those measurements, we
calibrate the modified cryogenic-aware BSIM-CMG transistor
compact model to reproduce the measurements. Two standard
cell libraries are characterized by employing this new compact
model. We perform logic synthesis and physical design of a
RISC-V SoC with the 300 K standard cell library as a baseline
for the off-the-shelf system. Then, we perform power and
timing analysis using the 10K library to explore the impact
of this significant change in temperature on the SoC. Finally,
we simulate the execution of two classification algorithms to
answer the question if an off-the-shelf SoC can classify the
qubit measurements under tight power and time constraints.

Il. OPERATION OF QUANTUM COMPUTERS
An n-qubit quantum computer can store, manipulate and
measure an n-qubit quantum state |¢) defined as

Wy= Y alx), (1

xe{0,1}

where |x) are basis states and o, are complex probability
amplitudes whose modulus squared sum up to one [10]. Upon
measuring |v), the bit string x, corresponding to the basis
state |x), is read with probability |a,|?. The target quantum
state must therefore be prepared and measured repeatedly to
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obtain a precise distribution of the measurement bit strings.
When using a quantum computer to solve problems such as
integer factorization [2] or the simulation of a molecule [11],
one or multiple quantum states are prepared and measured
sequentially to estimate the desired solution.

A quantum computer must typically be calibrated before it
can start manipulating and measuring quantum states. During
calibration, the quantum state manipulation primitives are fine-
tuned to the prevailing operational parameters of the quantum
computer, and a classifier is trained that maps the electrical
signal of the quantum computer’s measurement apparatus to
its corresponding bit value [12], [13]. For the IBM quantum
computers based on superconducting qubits, typically a boxcar
integrator is used to project the measurement signal onto
the IQ plane where a single-qubit measurement results in
a complex number that is represented as an in-phase and
quadrature component [12], [13]. As seen in Fig. 1, the
measurement signals of the i-th qubit are generally in close
proximity in the IQ plane if they correspond to the same
measurement outcome. The measurement classifier is trained
by the data obtained through preparing and measuring each
qubit individually in the |0) and |1) basis state while ignoring
the remaining qubits. After calibration, the quantum state
manipulation primitives and the measurement classifier are
available for quantum computations.

IBM Quantum currently offers the largest quantum com-
puter based on 127 superconducting qubits over the cloud via
their qiskit framework [14] and plans to build a quantum
computer with over four thousand qubits by 2025 [15].
The classified and also the raw IQ plane measurement data
of quantum computations are accessible through the qiskit
framework and used in this work.

lll. CRYOGENIC CMOS TRANSISTORS
Operating a CMOS transistor at cryogenic temperatures offers
multiple advantages. A smaller SS, lower leakage current,
higher mobile charge carriers’ mobility, reduction in thermal
noise, and parasitic resistances are a few to name. The smaller
SS leads to near-ideal steep switching and reduction in over-
the-barrier charge carriers’ transport results in a lower off-
state current Iopr and higher mobility due to lower carrier
scattering results in a higher on-state current Ign. These
remarkable improvements in transistor characteristics are not
new and have been an active area of research since the early
1980s [16], [17]. However, cryogenic temperature also results
in some challenges, such as a higher threshold voltage V, of
the transistor, carrier freeze-out in the substrate, and kink in
the drain current [16], [17]. Ongoing scaling of the CMOS
technology driven by Moore’s law has reduced the minimum
feature size to 5nm. These reduced dimensions result in a
higher mismatch between the electrical characteristics of
the two identical transistors fabricated on the same chip.
Mismatch in transistor characteristics and Vy, increase at
cryogenic temperature are major challenges faced by circuit
designers and affect the circuit design significantly [18].
Authors in [19], [20] showed that transistors fabricated
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using 160nm and 40nm bulk CMOS technologies result
in an almost equal amount of performance improvement.
However, the 40 nm technology with higher gate control
and improved short-channel effects outperform the older
generation technologies at both 300K and 4 K. [21], [22]
showed that FinFETs from both 14 nm and 10 nm technolo-
gies can offer a significant power reduction while operating
at cryogenic temperatures for a similar speed. Although, [21],
[22] reported the FinFETSs cryogenic characterization, these
studies were limited up to 77 K. [23] presented the 16 nm
FinFET cryogenic characterization from 2.5 K to 300 K. In
our previous work [24], we have characterized 5 nm FinFET
technology at 300K and 10 K.

A. TRANSISTOR COMPACT MODEL CALIBRATION AND
VALIDATION FOR 5nm FINFET TECHNOLOGY
As described in our previous work [24], we obtain the process-
dependent model parameters, such as doping, oxide thickness,
and gate material work function after setting the appropriate
simulation environment. The sub-threshold behavior of the
transistors is affected by interface trap charges and source-
drain coupling. Sub-threshold characteristics of the measured
FinFETs at room temperature (300 K) are captured by BSIM-
CMG [25] model parameters for work function (PHIG),
interface traps (CIT), and coupling capacitance between
source/drain and channel (CDSC). The low field mobility
U0 and field-dependent mobility degradation parameters (i.e.,
UA, UD, EU, and ETAMOB) are extracted from the transfer
characteristics (drain source current Ipg - gate voltage V)
when the transistor operates at a low Vpg and moderate
inversion (Fig. 3). Subsequently, series resistances model
parameters (RSW, RDW, RSWMIN, and RDWMIN) from
the strong-inversion regime (higher V) are also obtained.
To capture the impact of drain-induced barrier lowering,
we use the ETAO, PDIBL2, and CDSCD model parameters.
Model parameter optimization is achieved by observing the
Ips - Vg (Fig. 3) characteristics at lower and higher Vpg.
As Vpg increases, carrier velocity begins to saturate. With
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Figure 3. Transfer characteristics of p- and n-FinFET for 10K and 300K in (a)

linear (Vps =50mV) and (b) saturation (Vps =750 mV). Symbols and lines show
the data from measurement and calibrated model simulation, respectively [24].
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a further increase in Vpg, transfer (Ips - Vg) and output
characteristic (Ips - Vps) show a slight increase in drain
current. This is realized through the velocity saturation
model parameters VSAT, VSAT1, MEXP, and KSATIV. At
higher Vps and Vg, the impact of velocity saturation and
channel length modulation is captured by minimizing the
error between measurement and simulation data of Ipg - Vg
and IDS - VDS-

MOS transistor performance at cryogenic temperatures
(10K) improves with the reduction in carrier scattering [26].
Cryogenic operations result in a very small electron con-
centration in the conduction band at the same Vg because
of Fermi-Dirac statistics (probability of finding an electron
in conduction band reduces drastically with reduction in
temperature), and there are simply not enough high energy
electrons to climb the barrier, which reduces over-the-barrier
transport. This decrease results in a huge improvement in SS
and reduction of Ippg. This causes a drastic change in the
fundamental characteristics of semiconductor transistors at
cryogenic temperatures, relative to 300 K. Some dominant
effects at cryogenic temperatures are as follows: nonlinear
temperature-dependence in SS characteristics, increase in
Vi, surface roughness scattering, coulomb scattering, and
nonlinear velocity saturation effect [26]-[28]. To account for
these effects in SPICE simulations of FinFETSs, we use the
model equations presented in [26] along with the industry-
standard BSIM-CMG compact model [25]. It describes the
behavior of a transistor through the underlying physics-based
models that take carefully into account many necessary
aspects such as temperature dependency, short-channel effects,
quantum confinement, among others. This allows for an
accurate and detailed modeling with which experimental
measurements can be reproduced.

As the existing BSIM-CMG model is based on Maxwell-
Boltzmann statistics, we use it along with the modifications
presented in [26]. For electron density calculation, this
model captures the impact of Fermi-Dirac statistics from
300K to cryogenic temperatures. The effective density of
states, surface potential, and charges are highly temperature
dependent and thus we first obtain an effective temperature
at cryogenic temperatures [26]. The non-linearity in the SS
is caused by the band-tail effect [27], [28]. The impact of the
band-tail effect and traps on SS and Vy, is captured using TO,
DO, KT11, KT12, and TVTH model parameters [26].

Peak mobility is enhanced as the temperature-dependent
lattice vibration decreases at cryogenic temperatures and the
thermal velocity of the charge carriers decreases. The effective
mobility of charge carriers with lower thermal velocities
decreases at higher vertical fields due to increased surface
roughness scattering. Through an optimization of tempera-
ture coefficients for Coulomb scattering (UD1 and UD?2),
the temperature coefficients for phonon/surface roughness
scattering UA1, UA2, and EU1, the impact of Coulomb and
surface roughness scattering is accounted for in the mobility
model. Additional model parameters are used to obtain the
nonlinear temperature dependency of the velocity saturation
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highlighted in red (300 K) and blue (10 K) color. The temperature can be
adjusted as part of the operating conditions, allowing us to build libraries for
different temperature scenarios.

and pinch-off voltage. Those parameters include the effective
drain to source voltage (V4str) smoothing TMEXEP, its tem-
perature coefficients TMEXP1, TMEXP2, the temperature
coefficients for the saturation velocity (AT, AT1, and AT?2),
and KSATIVT, KSATIVTI1, and KSATIVT2 to model the
temperature dependence of the channel pinch-off effect. The
model is validated against experimental data, as shown in
Fig. 3. Intrinsic randomness of the measurements is observed
at lower Vg and is the likely cause of discrepancies between
the simulated and measured results at lower current.

IV. CRYOGENIC-AWARE STANDARD CELL LIBRARIES

Standard cell libraries bridge the gap between the modeling
of individual transistors and the design of complex digital
circuits. They are indispensable for the EDA tool flows to
perform logic synthesis. In the standard cell characterization
process, our calibrated transistor model is placed into a wide
range of standard cells and simulated using a commercial
SPICE simulator. The resulting figures of merit are then col-
lected to build standard cell libraries that are fully compatible
with the existing commercial EDA tool flows to seamlessly
perform logic synthesis, timing signoff, and power signoff.

A. THE STANDARD CELL LIBRARY CHARACTERIZATION
PROCESS

Fig. 4 depicts the design flow from transistor model extraction
up to the generation of standard cell libraries. The inputs to the
characterization flow are highlighted in blue color. Both, the
extended BSIM-CMG compact model and the calibration data
obtained in Section III, are inputs to the characterization flow
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Figure 5. The histogram shows the delays across all 200 cells in the standard
cell library. The large overlap of the histograms for 300 K and 10 K demonstrates
that the delay is only slightly increased at cryogenic temperatures. A benefit of
the low temperatures is the significant reduction of leakage power, rendering it
almost negligible (not shown).

and are vital for the SPICE simulations. Besides the transistor
model, SPICE netlists for a wide range of combinational and
sequential standard cells are provided to the characterization
flow. In this work, we obtain 200 different standard cells
from the open source ASAP7 PDK [29] including parasitic
resistances and capacitances. The cells are designed for a
7nm technology node and thus geometrically very close to
our 5 nm transistor model.

When integrated into a larger circuit, a single cell can
exhibit very different behavior based on its experienced timing
arcs, input signal slews, and output load capacitances. To
obtain an adequate model of each standard cell for a wide
range of conditions, each cell is characterized under 7 x 7
slew-load combinations for all possible timing arcs the cell
can experience. The required preprocessing steps, including
the generation of stimuli and SPICE decks, are carried
out by the commercial characterization tool flow Synopsys
PrimeLib. The subsequent SPICE simulations are performed
by Synopsys PrimeSim, collecting over 10° measurements
that are eventually gathered in the resulting standard cell
libraries. These measurements include delay and transition
times for each timing arc, pin capacitances, switching energy,
and leakage power. The resulting standard cell libraries are
generated in the industry-standard Liberty format making
them usable in most established EDA tools.

B. IMPACT OF CRYOGENIC TEMPERATURES ON THE
STANDARD CELL CHARACTERISTICS

With a transistor model calibrated for a wide temperature
range, the corresponding standard cell libraries can be gener-
ated by adjusting the temperature in the operating conditions.
In this work, we generate standard cell libraries for operation
at room temperature (300K) and cryogenic temperature
(10K). With the standard cell libraries at hand, the impact
of cryogenic temperatures can be explored at the cell and
circuit level.

Fig. 5 shows a histogram of all delays occurring in the
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standard cell libraries. The histograms span data from all cells
and conditions stored in the library, giving a holistic picture
of the technology under 300 K and 10K in red and blue bars,
respectively. Although slight differences are observable, the
histograms overlap to a large degree, indicating only minor
differences in delay when operated at cryogenic temperature.
In addition, average dynamic power is reduced slightly for
some cells and increased for others. Most importantly, leakage
power is reduced dramatically at 10 K. This behavior can be
explained by the electrical characteristics of the extracted
transistor model. While temperature merely shows an impact
on the Iy of the transistor, Iopp is reduced by multiple orders
of magnitude when operating at cryogenic temperatures as
shown in Fig. 3.

V. CRYOGENIC SOC AND APPLICATIONS

To evaluate the plausibility of a full SoC, the whole SoC
is synthesized and placed with the room temperature library.
Then, the cryogenic-aware standard cell libraries are employed
to analyze power and timing at 10 K.

A. SOC DESIGN FLOW

The employed SoC is a fully functional system, including
a RISC-V CPU core, caches, and periphery like a memory
controller. A single 5-stage in-order Rocket CPU [30] is
combined with a split L1 cache for data and instructions,
each with 16 KB and a shared L2 cache of 512KB. The
hardware description language (HDL) code is created with
the assistance of the Chipyard framework [31]. Then, a
commercial synthesis tool is employed to create a gate-level
netlist. At this stage, the previously described 300 K standard
cell library is employed. The gate-level netlist is then fed to
a commercial place and route tool in combination with the
300 K standard cell libraries.

SRAM arrays, the core building block of L1 and L2 caches
among others, are provided through the ASAP7 PDK [29] as
IP cores. However, these IP cores only include the physical
size and timing but not their power consumption. We add
the missing power values based on our previous work [24].
In [24], we have modeled SRAM cells and peripheral circuitry,
such as sense amplifiers and write drivers, based on the same
calibrated BSIM-CMG transistor compact model at 300 K
and 10K. This enables a complete power estimation for all
the SRAM utilized by the SoC. Read and write accesses as
well as hold and leakage are included. Quantum computing
specific peripheries, such as signal generators, are not included
because of their specificity to the physical implementation of
the quantum system. The focus of this work is on the impact
of a full SoC on the cooling and time budget.

B. QUANTUM MEASUREMENT CLASSIFICATION

To evaluate the dynamic power consumption accurately, two
classification algorithms are implemented in C-Code and
simulated. While more complex algorithms promise a higher
accuracy [32], they are also more computationally demanding.
To estimate a baseline, two simpler classification algorithms
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are selected in this work. First, k-nearest neighbors algorithm
(KNN) is a non-parametric clustering method [33]. The
calibration phase is performed offline and returns the center
points for each qubit, as shown in Fig. 1 and described in
Section II. After qubit measurement, the distances of the new
data point to its qubit’s centers in the IQ plane are calculated.
The label (0 or 1) of the nearest center is returned as the
result. In this work, the Euclidean distance d is computed
between a center (x¢, y¢) and the measurement (x,7, yys) with
Equation (2).

d= \/(XM —xc)* + Om —ye) (2)

After the distances to the two centers for 0 and 1 are computed,
they are compared and the closest selected as the classification
result. The computation of Equation (2) can be optimized
because the square root is a linear operation. In other words,
the radicand will be larger for a longer distance and thus com-
paring the radicands is sufficient. Hence, the computationally
expensive square root operation is unnecessary and removed.
Hyperdimensional computing (HDC) is a machine learn-
ing method based on large vectors: hypervectors [34]. The
components of the vectors can be simple bits, making its
implementation very light-weight, e.g., the bind operation
® is a binary XOR. A point P = (xp,yp) is encoded
into a hypervector with Equation (3) employing the item
hypervectors Xp and yp for its quantized x and y values.

P=%p @ 7yp (3)

Such item hypervectors are constant and generated once
during the program compilation. A size of 128 bits per
hypervector is sufficient and a total of 32 are created to cover
the x and y value range. Because each bit in a hypervector is
independent, each 128-bit HDC operation can be split into
two 64-bit instructions for the 64-bit RISC-V SoC.

For each qubit, the center points from the calibration phase
are encoded using Equation (3) into 6‘0 and C 1. After the
measurement phase, each measurement is first quantized and
encoded into M. Then, the Hamming distances to its 6’0 and
6‘1 are computed, and the closest selected as the result. The
Hamming distance is the popcount of CeM. This computation
can be partially simplified from two to one XOR operations,
as shown in Equation (4).

dy = popcount( Coy & M)
dy = popcount( 6‘0 ® Xy ® Yu) “)
dy = popcount( Xcogm D Ym)

Since these hypervectors are themselves the products of
XOR operations, their order can be rearranged. Instead of
computing the XOR of Xy, and C every time, Xcoguy 1S
pre-computed and replaces the item hypervectors for the
x component. A drawback is the doubling of the memory
consumption of the executable to store Cy @ Xy and C; @ Xy.
Because of the few item hypervectors and small dimension of
128 bits, the memory footprint is increased by only 256 bytes.
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VI. EVALUATION AND COMPARISONS

A. PROCESSOR TIMING ANALYSIS

As a baseline, the physical design of the SoC is synthesized
with the 300 K library. The clock period is set to O ns to force
the EDA tools to optimize as much as possible. The reported
critical path delay (worst-case slack) from the tools determines
the possible operating frequency. Guardbands, e.g. for process
variation, are assumed to be equal at both temperature corners,
effectively nullifying themselves in a comparison. Hence, they
are not considered in this work.

The gate-level netlist representing the physical design of the
SoC is provided to a commercial static timing analysis tool.
The timing analysis is repeated with both libraries and the
results are reported in Tab. 1. At 300 K, the critical path has a
length of 1.04 ns which corresponds to a clock frequency of
960 MHz. As shown in Fig. 5, some standard cells are slower
at 10 K, which leads to an increase in the critical path delay to
1.09 ns or 917 MHz. This represents a 4.6 % slowdown. Fig. 3
shows that the Ion of nFinFET and pFinFET transistors at
10K is similar to 300 K. Therefore, the switching delay of the
transistors is similar, thus the propagation delay of the cells,
and thus the hold times of the circuit are not impacted.

B. PROCESSOR POWER ANALYSIS

Power analysis is often done with statistical switching activ-
ities, e.g., 20 % of all cells are activated per cycle. However,
such statistical switching activities do not reflect the actual
power consumption because, for simpler tasks, such as classi-
fying a measurement, only parts of the SoC have to be engaged.
Therefore, the two classification algorithms for quantum
measurements are simulated with the gate-level netlist of the
physical design. The actual switching activity numbers are
extracted from these simulations and, in combination with the
physical design, processed by Cadence Voltus to calculate the

Table 1. The full SoC is synthesized for 300 K and 0 ns clock period. The timing
analysis is conducted with Synopsys PrimeTime for 300K and 10K. The
difference is less than 10 % because loy is only slightly affected and thus the
delay of the standard cells is similar, as discussed in Section IV-B.

Temperature  Critical path delay ~ Clock frequency
300K 1.04ns 960 MHz
10K 1.09ns 917 MHz

[0Dynamic MM Logic leakage SRAM leakage

300K

4-/203‘.6'mW reduction in leakage

Cooling capacity
T T

T T
0 50 100 150 200 250
Average total power (mW)

10K

Figure 6. Average power consumption of the KNN for quantum measurement
classification. The dynamic power at cryogenic temperatures is reduced by 10 %
from 63.5mW to 57.4 mW. However, the major contributor is the leakage from
SRAM, which is suppressed and reduced to only 0.48 mW at 10 K. This large
reduction makes the SoC feasible given a cooling capacity of 100 mW.
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average power consumption of the whole SoC.

Since the two algorithms for classification represent less
demanding workloads, the Dhrystone benchmark [35] is also
simulated to report a general average. The dynamic power
consumption at both temperatures is similar, as shown in
Fig. 6. At 300K. standard cells for logic contribute about
11 mW to the leakage power whereas the 581 KB total on-
chip SRAM contribute 193 mW. Hence, the SoC would be
infeasible for a cryogenic system given the limited cooling
capacity of 100 mW [5]. However, the significant reduction of
the leakage current of transistors when operated at cryogenic
temperatures is reflected at circuit and SoC level. At 10K,
the leakage from logic and SRAM can almost be neglected
with 0.48 mW, areduction by 99.76 %. Consequently, the SoC
becomes feasible for a cryogenic system and demonstrating
that on-chip memories can be enlarged for systems at 10 K.

C. QUANTUM MEASUREMENT CLASSIFICATION:
EXECUTION TIME ANALYSIS

The execution times of the two classification algorithms
for quantum measurements are evaluated. Tab. 2 shows the
average number of clock cycles needed for a classification
of a single measurement. Although HDC comprises simpler
binary and logical instructions, it is 3.3 x slower than the
distance computations with floating point calculations. The
main contributor is the lack of a popcount instruction in the
RISC-V instruction set architecture, which is essential for the
HDC similarity computation. Hardware support would reduce
the computation time significantly.

While the time for a single KNN classification is small,
the challenge arises from scaling up the quantum system to
thousands of qubits that have to be classified within a given
time frame. We assume here that this time frame is set by the
maximum duration of a continuous quantum computation.
Therefore, to not stall the quantum computer and let the
classification become a bottleneck, the data processing has to
be faster than the given time frame as shown in Fig. 1. This
time frame is determined by the decoherence time of the quan-
tum computer, which specifies the maximum time in which
a quantum state can retain its properties. Our experiments
on the IBM Falcon quantum processor report this time is
around 110 ps. However, typically users strive towards shorter
quantum computation durations to minimize the error from the
exponential decay due to decoherence. Hence, the numbers
given in Fig. 7 portray a best-case scenario in which the full
decoherence time is available for classification and no other
tasks have to be performed by the processing system. Such
other tasks include loading the next quantum computation,

Table 2. Average clock cycles to classify one measurement. More qubits result
in more cache misses increasing the number of clock cycles.

Method 20 qubits 400 qubits
KNN 41.5 72.8
HDC 184.8 242.4




@IEEE Transactions on,
uantumEngineering

Genssler et al.: Cryogenic Embedded System to Support Quantum Computing: From 5 nm FinFET to Full Processor

providing the confidence intervals for the different solutions,
or executing quantum error correction protocols, among others.
Thus, the SoC has to perform other tasks and cannot be fully
occupied with classifying measurement results.

VIl. PERSPECTIVE AND DISCUSSION

Currently, quantum computing is only possible at cryogenic
temperatures. Cooling any computing system to such low
temperatures is challenging and heat dissipation, i.e., power
consumption, must be limited to not overwhelm the cooling.
This work shows that it is easily possible to deploy an off-the-
shelf system developed for room temperatures at cryogenic
temperatures. The timing is impacted only marginally and
is within expected guard bands. Power consumption is even
reduced, especially through the significant reduction in leak-
age power, demonstrating the plausibility of a cryogenic SoC
for quantum measurement classification. However, scaling
to large quantum systems with thousands of qubits is still
challenging for off-the-shelf SoCs.

The evaluated RISC-V SoC becomes a bottleneck for
classifying the quantum measurements for about 1500 qubits
while consuming half of the available cooling budget. Other
hardware components, such as signal generators and analog-
to-digital converters, have to be cooled as well, opening a
new field of potential co-optimizations. On the one hand,
exceeding the cooling budget and increasing the temperature
of the quantum system increases the error rate. On the
other hand, faster processing enables more repetitions of the
same quantum computations to overcome erroneous com-
putations or more sophisticated error correction algorithms.
Furthermore, heat transfer is comparatively slow, creating the
potential for short but high-power processing bursts followed
by a low-power idle phase without impacting the qubits.
Such tradeoffs and power management strategies can be
explored and experimentally evaluated with flexible, software-
controlled SoCs more efficiently and faster than with fixed
hardware implementations. This work shows that off-the-shelf

Classification algorithm: 2€kNN ++HDC

300 - 100
E) 80 %
5 200 o
& 60 £
Q
23 40 2
£ 100 5 e
8 20 £
5 =

0 0

T T T T T T
0 200 400 600 800 1000 1200
Number of qubits

Figure 7. With an increase in the number of qubits, the time to classify all of
them through a KNN becomes more important. The maximum quantum
computation duration, i.e. the decoherence time, for the investigated IBM Falcon
quantum processor is about 110 ps. However, the SoC (clocked at 1000 MHz)
would be tasked with other workloads as well, rendering it a bottleneck for
systems with hundreds or thousands of qubits. The popcount operation for
hyperdimensional computing (HDC) requires too many cycles to be competitive.
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SoCs are plausible at cryogenic temperatures and that there
is no need for dedicated chips only to explore such tradeoffs,
error correction algorithms, and power management strategies.

Integrating a cryogenic SoC into the quantum computer
setup offers indeed a wide range of possibilities and the
flexibility to explore several improvements that can have a
huge impact on the throughput, result quality, and duration
of quantum computations. For hybrid quantum-classical
algorithms such as the quantum approximate optimization
algorithm (QAOA) or the variational quantum eigensolver
(VQE), an integrated SoC decreases the data movement and
would thus allow for more optimization steps given a specified
runtime budget leading to higher-quality results. Furthermore,
the time required for the calibration of the quantum computer
would decrease and thus increase the throughput further.
Potentially, it would also allow to include more data, e.g.,
to classify qubit measurements with a higher precision. In
the near-term, an integrated cryogenic SoC would also be
to enable to reduce the runtime requirements of dynamic
circuits [7] and also apply error mitigation algorithms on-the-
fly, further improving the throughput. In the future, a range of
quantum error correction protocols could be evaluated more
thoroughly, reducing the time required to achieve fully error-
corrected quantum computers.

This work shows that processing a large number of qubits
is not feasible with a regular processor but will require hard-
ware support. Dedicated SoCs, such as [6], already include
dedicated hardware for quantum measurement classification.
Nevertheless, this dedicated hardware is fixed after the design
and cannot be improved or replaced without a redesign of the
SoC. Hence, an SRAM-based field-programmable gate array
(FPGA) fabric could be an interesting addition to an SoC.
The SRAM’s leakage power is very low at 10 K and FPGAs
offer a large degree of flexibility yet consume comparatively
little power. Similar to the exploration of different power
management strategies and quantum error correction methods
outlined above, the FPGA fabric can be reconfigured to
select between a high-power low-latency or a low-power high-
latency classification algorithm, depending on the complexity
and error-robustness of the intended quantum computation.

VIIl. CONCLUSION

In this work, we explored for the first time how an SoC
implemented with a cutting-edge 5 nm technology at room
temperature would behave at cryogenic temperatures. Such
a general-purpose system can not only classify quantum
measurements of the qubits but support other tasks such as
quantum error correction as well. Further, by analyzing an
off-the-shelf design aimed at room temperature operations,
already existing hardware can be deployed quickly. The SoC’s
power consumption is reduced and can fit within the 100 mW
cooling capacity. We have shown that the timing of the
system is comparable to room temperature and the significant
reduction of the leakage power enables SoCs with large on-
chip memories.
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