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Abstract A novel functorial relationship in perturbative
quantum field theory is pointed out that associates Feynman
diagrams (FD) having no external line in one theory Th1

with singlet operators in another one Th2 having an addi-
tional U (N ) symmetry and is illustrated by the case where
Th1 and Th2 are respectively the rank r − 1 and the rank r
complex tensor model. The values of FD in Th1 agree with
the large N limit of the Gaussian average of those operators
in Th2. The recursive shift in rank by this FD functor con-
verts numbers into vectors, then into matrices, then into rank
3 tensors and so on. ThisFD functor can straightforwardly act
on the d dimensional tensorial quantum field theory (QFT)
counterparts as well. In the case of rank 2-rank 3 correspon-
dence, it can be combined with the geometrical pictures of
the dual of the original FD, namely, equilateral triangulations
(Grothendieck’s dessins d’enfant) to form a triality which
may be regarded as a bulk-boundary correspondence.

This letter is an attempt to describe a meaning of the new
parameter, the rank of the tensor, which can be arbitrary in
generic string theory, and which has been finally brought to
light in modern theory of tensor models. As usual with the
free parameters, the crucial point is to understand what hap-
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pens to the theory when the parameter is changed. Since so far
the tensor rank is discrete, the changes are also discrete and
imply some mapping between theories with different field
content. If one wants the rank to be a true free parameter, this
mapping should be functorial, at least w.r.t. embedding mor-
phisms, i.e. if one restricts the symmetry or the gauge content
in one theory, the same should happen to its image. Poten-
tially the intertwined morphisms should be more involved
and concern both kinematics and dynamics of the theory. In
this paper, we provide such a map, which looks quite uni-
versal and thus promising. At the moment, it is restricted
to a pure combinatorial problem of classification of states
(which is by itself quite complicated in tensor models), but it
clearly has a good potential for much more: in fact, already at
this level, it relates kinematics of one model with dynamics
of another one. To emphasize the universal meaning of this
functor, wherever possible we present a discussion in generic
terms of quantum field theory, and restrict consideration to
the simplest tensor models only at the points where sample
calculations are needed to illustrate a power of the method.
In modern quantum field theory, through functional integrals
or operator products (see [1], for example), Gaussian aver-
ages of a set of operators, invariant under a given symmetry,
can serve as a starting point of the perturbative consideration.
In the case of four spacetime dimensions, the criterion of per-
turbative renormalizability to tame UV divergences selects
the list of such operators to consist of a few ones, and we can
start full-fledged perturbation theory based on the action in
accord with the list. Physical S-matrix can be extracted by
resorting to the state/operator correspondence.
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Over the years, we have, however, occasionally seen cases
in the study of (supersymmetric) low energy effective actions
where we may even enumerate the whole set of such singlet
operators and lift our considerations to all possible vacua and
perturbation theory thereon. This phenomenon is known to
be handled by the matrix model in general [2,4,5] and the
structure of chiral ring [6] is responsible for the reduction in
the degrees of freedom from four dimensional quantum fields
to zero dimensional matrices. In this letter, we point out a
novel functorial relationship that lies in Feynman diagrams
(FD) having no external line in one theory Th1 and singlet
operators in another one Th2 having an additional U (N )

symmetry. We will refer to this as FD functor from now on.
We will present the FD functor in the rank r complex ten-

sor model which has been studied in [7,10,11,13,14]. The
symmetry group is

∏r
i=1U (Ni ) (as opposed to U (N )) and

the rank r implies r different colorings in the diagrams rep-
resenting the operators. The cases with lower r are the vector
model for r = 1, the rectangular complex matrix model for
r = 2, and the Aristotelian tensor model for r = 3, and
so on. The FD functor relates Feynman diagrams (FD) in
Th1 = T r−1 with singlet operators in Th2 = T r . Accord-
ingly, the number of entries of the former coincides with that
of the latter:

#( Feynman diagrams in T r−1)

= #(singlet operators in T r )
(1)

This equality holds at each level, i.e. the number of Feyn-
man diagrams with n propagators in T r−1 is equal to the
number of singlet operators with 2n vertices inT r . More-
over, at the large N limit, values of the Feynman diagrams
coincide with the Gaussian averages of the singlet operators.
That Eq. (1) holds in the case of r = 3 was first observed in
[15]. The purpose of this letter is to demonstrate this opera-
tor/FD correspondence fully.

Restricting ourselves to rank 2–rank 3 correspondence,
we will discuss that the above FD functor can be combined
with the geometrical pictures of the dual of the original
FD, namely, the equilateral triangulations (Grothendieck’s
dessins d’enfant) [16] to form a triality. In particular, we
will relate directly any rank 3 tensor operator with a dessin
and the map associated with it and this triality provides a
higher-rank point of view for the two different approaches to
non-critical string theory (two-dimensional system coupled
to 2d gravity), which are the continuum one based on the
direct integration over 2d metric [17] and the discretized one
given by the matrix model [18].

In Feynman diagram calculations of local quantum field
theory in d dimensions, expressions for the values take a
(somewhat trivial) factorized form of the part containing ten-
sorial structure associated with the internal symmetry and the
well-known part of the spacetime propagator. This is a con-

sequence of the theorem [19] in cases where the symmetry
of fields are reflected in the symmetry of S-matrix. We will,
in fact, see easily that the above FD functor can act on the d
dimensional QFT generalization of the tensor model as well
and this uplift should hold in a more general setup as long as
the theorem applies.

Let us now consider the T r/T r−1 correspondence. The
level n operators in the rank r model are obtained by con-
tracting all indices of n tensors Ma1a2...ar with those of n
complex conjugates M̄a1a2...ar :

K �σ (r) =
n∏

p=1

Map
1 ...a p

r
M̄a

σ1(p)
1 ...aσr (p)

r , (2)

where the contraction is specified by an r -ple of permuta-
tions �σ (r) = (σ1, . . . , σr ) ∈ S⊗r

n . The i-th index runs over
1, . . . , Ni .

On the other hand, any Feynman diagram (no external line)
withn propagators is given by the Wick contractions of a level
n operator. Let us consider the Wick contractions of a rank
r−1 operator designated K (n)

�σ (r−1) inT r−1. The corresponding
Feynman diagram is specified by a permutation σ ∈ Sn ,

FDσ

(
K �σ (r−1)

) =
n∏

p=1

Wp,σ (p)
(
K �σ (r−1)

)
, (3)

where

Wp,q(M
(p)M̄(q)) = M (p)

a1···ar M̄
b1···br
(q) =

r∏

i=1

δbiai , (4)

is the Wick contractions of the p-th M and the q-th M̄ in
K �σ (r−1) .

Now let us form an r -component vector (�σ (r−1), σ ) ∈
S⊗r
n . Recall that the operator (2) is labeled by an r -ple of

permutations and, therefore, there is always a rank r operator
labeled by (�σ (r−1), σ ).

Conversely, for any rank r operator, by interpreting the
contraction of any one of r indices as a symbol specifying the
Wick contraction pair, we can also obtain the corresponding
rank r − 1 Feynman diagram.

Hence the following correspondence is established,

FDσ

(
K �σ (r−1)

) ↔ K(�σ (r−1),σ ). (5)

This correspondence is one to one and we obtain the relation
(1).

Let Op(r) be the set of all operators in the rank r tensor
model and FD(r−1) be the set of all Feynman diagrams in
the rank r − 1 tensor model. For any operator K , we define
FDi (i = 1, . . . r) by Op(r) � K �→ FDi (K ) ∈ FD(r−1),
mapping K to the corresponding Feynman diagram. Here,
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the subscript i means that the contraction by the i-th index
ai is interpreted as the Wick contraction symbol. One may
pick any i as that does not change the nature or category of
our functor and we may denote Ni by N .

Let us consider the Gaussian average 〈K 〉 for an operator
K ∈ Op(r) at level n. The leading term in Ni is order n and
comes from the case where all of the Wick contractions of
M and M̄ are accompanied with the ai index loops:

〈K 〉 = Nn
i

∏

j �=i

N
Pj
j + O(Nn−1

i ). (6)

Here, the exponent Pj is some integer less than or equal to n.
On the other hand, FDi (K ) has the following contribution
to the Gaussian average of the rank r − 1 operator,

value {FDi (K )} =
∏

j �=i

N
Pj
j . (7)

We obtain

value {FDi (K )} = lim
Ni→∞

1

Nn
i

〈K 〉, (8)

demonstrating that the Op/FD correspondence is realized as
the relation between the Gaussian averages as well. For any
rank r − 1 operators O(r−1), there is a linear combination of
the operators O(r) in the rank r model such that

〈
O(r−1)

〉
=

∑

σ

value
{
FDσ (O(r−1))

}
FD/Op=

∑

ops

value
{
FDi (O

(r))
}

= lim
Ni→∞

1

Nn
i

∑

ops

〈
O(r)

〉
. (9)

For example, one can check the T 3/T 2 correspondence

〈
(Tr AĀ)2

〉
= value{FDblue(K2)} + value{FDblue(K

2
1 )}

= lim
Nb→∞

1

Nb
2 〈K2 + K 2

1 〉
= Nr Ng + N 2

r N
2
g . (10)

〈
Tr (AĀ)2

〉
= value{FDblue(K2)} + value{FDblue(K2)}

= lim
Nb→∞

1

Nb
2 〈K2 + K2〉

= Nr N
2
g + N 2

r Ng. (11)

See [10] for evaluating the averages. Here the rank 2 tensors
(rectangular matrices) are denoted by A and Ā and

K1 = Ma1a2a3 M̄
a1a2a3 = , (12)

K2 = , K2 = , K2 = .

(13)

Let us specifically consider the T 3/T 2 correspondence. We
will see that the correspondence in this case extends to the
triality including a relation with dessin. A dessin D is a graph
embedded into a compact orientable surface X satisfying the
following conditions:

• It is constructed by bicolored (red and green in this letter)
vertices and edges.

• Each edge connects the vertices which have the different
color.

• Multiple edges can end on a vertex.
• The complement X\D is a disjoint union of the con-

nected components which are called faces. Each face is
homeomorphic to an open disk.

The dessins are closely related to the so-called Belyi
functions. The Belyi function is a meromorphic function
β : X → CP1 unramified outside {0, 1,∞}. The pair (β, X)

is called Belyi map. It is well-known that there is one to one
correspondence between dessins and Belyi maps up to an
automorphism of X . For any dessin D, there exists a Belyi
function β on X and D = β−1([0, 1]). the concrete relations
are as follows:

• the red vertices are β−1(0).

• the green vertices are β−1(1).

• the edges are β−1([0, 1])

The number of edges ending on each vertex is equal to the
ramification index and there is only one pole on each face.

The operator/dessin correspondence is as follows: Every
operator of level n contains n blue lines. Let us choose one
of the blue lines. There are a red-blue cycle and a green-blue
cycle which share the blue line as the common boundary.
In particular, these two faces can have the same orienta-
tion. Therefore, when we paint the regions surrounded by
the red-blue (resp. green-blue) cycles in red (resp. green) for
any connected rank 3 operator, the diagram representing the
operator becomes an orientable surface painted in two colors.
The blue lines are the common boundaries of two adjacent
regions. In order to obtain the corresponding dessin, the fol-
lowing replacements should be made:

operator dessin
red face ↔ red vertex

green face ↔ green vertex
blue line ↔ edge connecting bicolored vertices

(14)
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For example,

K1 = = ↔ ↔ β(x) = x, (15)

where the function β : CP1 → CP1 is the Belyi function
associated to the dessin. Similarly,

K2 ↔ ↔ β(x) = x2, (16)

K2 ↔ ↔ β(x) = 4x(1 − x), (17)

K2 ↔ ↔ β(x) = (x + 1)2

4x
, (18)

K3 ↔ ↔ β(x) = x3, (19)

K3 ↔ ↔ β(x) = x3 + 1, (20)

K3 ↔ ↔ β(x) = (x + 1)3

2(3x2 + 1)
, (21)

K22 ↔ ↔ β(x) = 4x3 − 3x + 1

2
,

(22)

K22 ↔ ↔ β(x)= − (x + 1)2(x − 8)

27x
,

(23)

K22 ↔ ↔ β(x) = 4(x − 1)3

27x
, (24)

Fig. 1 The dessin embedded in a two-torus

K3W ↔ (25)

The dessin corresponding to K3W is non-planar and can
be embedded in a two-torus as shown in Fig. 1. The Belyi
function is given by β = 1

2 (1 + y) on X : y2 = x3 + 1,
x, y ∈ C [20].

We have checked the correspondence up to level 4.
The numbers of the connected operators at each level are
1, 3, 7, 26, . . .. Here 6 of 26 operators at level 4 correspond
to dessins on torus. The operators of genus g ≥ 2 appear
at level 5 or higher. These are, of course, in accord with the
Riemann–Hurwitz formula

2g − 2 = n − VR − VG − F, (26)

where n is the number of edges (the level of the operator), VR

and VG are the numbers of red and green vertices respectively
and F is the number of faces [21] .

The dessins and the rank two Feynman diagrams are dual
to each other, namely,

dessin Feynman diagram
center of face ↔ vertex

edge ↔ propagator
red vertex ↔ red face

green vertex ↔ green face

(27)

The centers of faces are the poles of the Belyi function and
each face contains only one pole.

For example,

(K1 ↔) = ⊗ ↔ ⊗ = Tr AĀ = N1N2,

(28)

where the center of the face is denoted by ⊗. This dessin is
embedded in a sphere and there exists, therefore, one face.
Note that the exponents of N1 and N2 are equal to the num-
bers of red and green vertices respectively. This is because
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the vertices in a dessin correspond to the faces in the corre-
sponding Feynman diagram.

The above discussion provides the following bulk-
boundary correspondence at the range (“the target space”)
of the Belyi function and its uplift to the rank 3 operators.
The vertices of each FD lie at infinity, namely, at the “bound-
ary” of the complex plane. As for the propagators, they start
and end at infinity where the vertices lie. They must also
cross the segment [0, 1] as they are dual to the edges, and,
therefore, extends over the entire complex plane. See [22] for
a similar discussion.

Finally, it is straightforward to extend the Op/FD corre-
spondence to the d dimensional field theory described by
the spacetime dependent tensors Ma1a2...(x) and M̄a1a2...(x)
. Let us consider the large N limit of the average of a singlet
operator in the rank r theory:

lim
N→∞

1

N n

∫

dx〈Or,n(x)〉, (29)

where Or,n(x) is a level n operator. Following the discussion
leading to (9), it is easy to see that (29) has the correspond-
ing Feynman diagram in the rank r − 1 d dimensional QFT.
The average (29) of level n operator includes n propagators,
each of which contains a momentum dependent factor. As
discussed above, the tensorial structure determines the cor-
responding Feynman diagram which has no external line and,
therefore, all momenta have to be integrated.

For example, the level 3 operator K3W (x) in the rank 3
theory corresponds to a non planar graph:

= dp1dp2dp3G(p1)G(p2)G(p3)NrNg

= lim
Nb

1
V N3

b

dx K3W (x) .
(30)

Here G(p) is the momentum part of the propagator.
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