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Abstract. Vacuum neutrino oscillations for three generations are considered. The influ-

ence of the leptonic CP-violating phase (similar to the quarks CP-phase) on neutrino oscil-

lations is taken into account in the matrix of leptons mixing. The dependence of probabili-

ties of a transition of one kind neutrino to another kind on three mixing angles and on the

CP-phase is obtained in a general form. It is pointed that one can reconstruct the value of

the leptonic CP-phase by measuring probabilities for a transition of one kind neutrino to

another kind averaging over all oscillations. Also it is noted that the manifestation of the

CP-phase in deviations of probabilities of forward neutrino transitions from probabilities

of backward neutrino transitions is an effect practically slipping from an observation.

1 Introduction.

It is unclear up to now in spite of great number of papers devoted to the investi-
gation of neutrino oscillations, what is the real precision of experimental values
of three mixing angles and masses of neutrino from different generations? And
consequently do neutrino really oscillate? The central values of these angles and
values of errors obtained in different papers and given in our paper change from
author to author and from paper to paper. Therefore these data are very suspi-
cious. Below in this paper we gave the value of this precision approximately be-
cause it is defined very roughly. Nevertheless the investigations of neutrino look
rather encouraging since the set of large perspective devices (K2K in Japan [1,2],
CERN-GRAND Sacco (CNGS) [3] in Europe and Fermilab-Soudan in USA) and
some small but also perspective devices in another regions of the Earth began to
work recently or will begin to work in the near future. In particular, the preci-
sion of defining of the values of ντ and νµ masses and also the values of sines
of the neutrino mixing angles will be appreciably improved in the nearest future
(in one or two years). Furthermore, we believe that attempts to obtain the value
of the CP-phase from experimental data will be made in the future in spite of
apparent present-day hopelessness.

The present work is devoted to neutrino oscillations and, in particular, to a
possible manifestation of the leptonic CP-phase in neutrino oscillations. At the
second section of this paper we consider the standard theory of the neutrino
oscillations with regard for the leptonic CP-violating phase. Then we give the
⋆ ryzhikh@heron.itep.ru

⋆⋆ termarti@heron.itep.ru



164 D.A. Ryzhikh and K.A. Ter-Martirosyan

formulas for the probabilities of the conservation of the neutrino kind and for
the probabilities of the neutrino transition to another neutrino kind with some
examples of the possible manifestation of the leptonic CP-phase using modern
experimental data. And then we investigate the difference between the να → νβ
transitions probability and the νβ → να transitions probability and the possible
influence of the leptonic CP-phase on this difference.

2 Standard theory of neutrino oscillations with regard for
leptonic CP-violating phase.

In this section we describe the standard theory of neutrino oscillations including
the leptonic CP-phase. So, neutrino (νe)L, (νµ)L, (ντ)L which were born in the
decay reactions or in collisions do not have definite masses. They are superposi-
tions of neutrino states ν1, ν2, ν3 with definite masses, and their wave functions
are:

νβ(x, t) =

3∑

k=1

(V̂l)βkνk(x, t), β = e, µ, τ; k = 1, 2, 3. (1)

Here it is supposed that νk = (ν1, ν2, ν3) are the wave functions of the neutrino
with definite masses moved in a beam along the axisOXwith not small momen-

tum |pν| ≫ mν and ultrarelativistic energy Ek =

√
p2ν +m2k ≃ |pν| +m

2
k/2pν,

k = 1, 2, 3. Thus their wave functions look like:

νk(x, t) = eipνxe−iEktνk(0) = e−i
m2

k
2pν

tνk(0) (2)

Mixing of leptons, i.e. mixing of neutrino when the mass matrix of ”elec-
trons” of three-generations is diagonal, is defined by a unitary 3 × 3 matrix V̂l =

V̂lMNS Maki–Nakagava–Sakata. This matrix depends on three mixing angles of
the leptons ϑ12, ϑ13 and ϑ23. It is similar to CKM matrix of quarks mixing and
has a well-known form:

V̂l =




c12c13 s12c13 s13e
−iδl

−s12c13 − c12s23s13e
iδl c12c23 − s12s23s13e

iδl s23c13
s12s23 − c12c23s13e

iδl −c12s23 − s12c23s13e
iδl c23c13


 (3)

Note that the V̂l can be represented in the form of the product of three matrices
of rotations (or of mixing of two generations in pairs) Ô12, Ô13(δl) and Ô23. It is
easy to verify that V̂l ≡ Ô12Ô13(δl)Ô23, where:

Ô12 =




c12 s12 0

−s12 c12 0

0 0 1


 , Ô13(δl) =




c13 0 s13e
−iδl

0 1 0

−s13e
iδl 0 c13


 ,

(4)

Ô23 =



1 0 0

0 c23 s23
0 −s23 c23


 ;
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here and in (3) δl is the leptonic CP-violating phase. Its value is not known up
to now, sometimes, for example, it is considered to be equal to 0whereas its ana-
logue – the quark CP-phase δq seems to be close to π/2 [4]. Acting by matrix (3)

on column ν̂ =



ν1
ν2
ν3


we obtain according to (1):



νe
νµ
ντ


 (t) = V̂l



ν1
ν2
ν3









νe(t) = [c12c13ν1(0) + s12c13ν2(0)e
−iϕ21

+ s13ν3(0)e
−iϕ31−iδl ]e−i

m2
1

2pν
t

νµ(t) = [−(s12c23 + c12s23s13e
iδl)ν1(0)

+ (c12c23 − s12s23s13e
iδl)ν2(0)e

−iϕ21

+ c13s23ν3(0)e
−iϕ31 ]e−i

m2
1

2pν
t

ντ(t) = [(s12s23 − c12c23s13e
iδl )ν1(0)

− (c12s23 + s12c23s13e
iδl)ν2(0)e

−iϕ21

+ c13c23ν3(0)e
−iϕ31 ]e−i

m2
1

2pν
t

(5)

where, using dependence (2) of neutrino states on the time t = L/c we have:

ϕij =
(m2i −m2j )

2pν
t = 1.27

(m2i −m2j )(eV2)

Eν(MeV)
L(m) (6)

where Eν ≃ cpν is an energy of the neutrino beam: Eν ≫ m3 > m2 > m1.
Neutrino states with definite masses are mutually orthogonal and are normalized
to unity. Using these statements we can easy obtain expressions for probabilities
of a transition in vacuum of one kind neutrino to neutrino of another kind during
the time t.

For probabilities of conservation of e, µ, τ–neutrino kind we have, respec-
tively:






P(νeνe) = |c212c
2
13 + s212c

2
13e

iϕ21 + s213e
iϕ31 |2

P(νµνµ) = ||c13s12 + c12s13s23e
iδl |2 + |c12c23 − s12s23s13e

iδl |2eiϕ21

+ c213s
2
23e

iϕ31 |2

P(ντντ) = ||s12s23 − c12c23s13e
iδl |2 + |c12s23 + s12c23s13e

iδl |2eiϕ21

+ c213c
2
23e

iϕ31 |2

(7)
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And for probabilities of transitions of να neutrino to neutrino of another kind νβ
we obtain:






P(νeνµ) = |c12c13(c13s12 + c12s23s13e
iδl )

− c13s12(c12c23 − s12s23s13e
iδl)eiϕ21

− s13c13s23e
i(δl+ϕ31)|2

P(νeντ) = |c12c13(s23s12 − c12c23s13e
iδl )

− c13s12(c12s23 + c23s12s13e
iδl)eiϕ21

+ s13c13c23e
i(δl+ϕ31)|2

P(νµντ) = |(c13s12 + c12s13s23e
iδl)(s12s23 − c12c23s13e

−iδl )

+ (c12c23 − s12s13s23e
iδ)(c12s23 + c23s12s13e

iδ)eiϕ21

− c23c
2
13s23e

iϕ31 |2

(8)

3 Probabilities of the change of the neutrino kind 1 − P(νανα)

and of neutrino να transition to neutrino νβ of another kind:
P(νανβ).

After not complicated, but cumbersome transformations of the formulas (7),(8)
we have complete expressions for the probability of the change of neutrino kind
1−P(νανα) and for the probabilities of transition of one kind neutrino to neutrino
of another kind. But these formulas are very complex for an analysis and because
of experimental peculiarities of the neutrino registration it is more convenient to
use probabilities averaging over oscillations, i.e. over phases (6) of neutrino of
the continuous spectra. Therefore we adduce these complete formulas only for
references.

1− P(νeνe) = c212 sin2(2ϑ13) sin2(ϕ31/2) + c413 sin2(2ϑ12) sin2(ϕ21/2)

+ s212 sin2(2ϑ13) sin2(ϕ32/2)

1− P(νµνµ) = {c423 sin2(2ϑ12) + s412s
2
13 sin2(2ϑ23) + s423s

4
13 sin2(2ϑ12)

+ c412s
2
13 sin2(2ϑ23) + cos δl sin(4ϑ12) sin(2ϑ23)(s13c

2
23 − s313s

2
23)

− cos2 δls213 sin2(2ϑ23) sin2(2ϑ12)} sin2(ϕ21/2)

+ {s212c
2
13 sin2(2ϑ23) + c212s

4
23 sin2(2ϑ13)

+ cos δls223c13 sin(2ϑ12) sin(2ϑ23) sin(2ϑ13)} sin2(ϕ31/2)

+ {c212c
2
13 sin2(2ϑ23) + s212s

4
23 sin2(2ϑ13)

− cos δls223c13 sin(2ϑ12) sin(2ϑ23) sin(2ϑ13)} sin2(ϕ32/2)

1− P(ντντ) = {s423 sin2(2ϑ12) + s412s
2
13 sin2(2ϑ23)

+ c423s
4
13 sin2(2ϑ12) + c412s

2
13 sin2(2ϑ23)

+ cos δl sin(4ϑ12) sin(2ϑ23)(s
3
13c

2
23 − s213s

2
23)

− cos2 δls213 sin2(2ϑ23) sin2(2ϑ12)} sin2(ϕ21/2)

+ {s212c
2
13 sin2(2ϑ23) + c212c

4
23 sin2(2ϑ13)

− cos δlc223c13 sin(2ϑ12) sin(2ϑ23) sin(2ϑ13)} sin2(ϕ31/2)

+ {c212c
2
13 sin2(2ϑ23) + s212c

4
23 sin2(2ϑ13)

+ cos δlc
2
23c13 sin(2ϑ12) sin(2ϑ23) sin(2ϑ13)} sin2(ϕ32/2)
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P(νeνµ) = 1
4
{sin2(2ϑ13)(s223 + c412s

2
23 + s412s

2
23)

+ 1
2
c13 sin(2ϑ13) sin(2ϑ23) sin(4ϑ12) cos δl)

− 2c213 sin2(2ϑ12)(c223 − s213s
2
23) cos(ϕ21)

− 2s223 sin2(2ϑ13)(c212 cos(ϕ31) + s212 cos(ϕ32))
+ c13 sin(2ϑ12) sin(2ϑ13) sin(2ϑ23)

· (s212 cos(δl +ϕ21) − c212 cos(δl −ϕ21))

+ c13 sin(2ϑ12) sin(2ϑ13) sin(2ϑ23)

· (cos(δl + ϕ32) − cos(δl −ϕ31))

+ 2c213c
2
23 sin2(2ϑ12)}

P(νeντ) = 1
4
{sin2(2ϑ13)(c223 + c412c

2
23 + s412c

2
23)

− 1
2
c13 sin(2ϑ13) sin(2ϑ23) sin(4ϑ12) cos δl)

+ 2c213 sin2(2ϑ12)(s223 − c213s
2
23) cos(ϕ21)

− 2c223 sin2(2ϑ13)(c
2
12 cos(ϕ31) + s212 cos(ϕ32))

+ c13 sin(2ϑ12) sin(2ϑ13) sin(2ϑ23)

· (c212 cos(δl −ϕ21) − s212 cos(δl +ϕ21))

+ c13 sin(2ϑ12) sin(2ϑ13) sin(2ϑ23)

· (cos(δl +ϕ31) − cos(δl +ϕ32))

+ 2c213s
2
23 sin2(2ϑ12)}

P(νµντ) = 1
4
{2s213 sin2(2ϑ12) cos2(2ϑ23)

+ (c413 + c412 + s412 + (c412 + s412)s
4
13) sin2(2ϑ23)

− [2s213(c
4
23 + s423) sin2(2ϑ12) + [2s213(c

4
12 + s412)

− (1 + s413) sin2(2ϑ12)] sin2(2ϑ23)] cos(ϕ21)

− [2c213(s
2
12 + c212s

2
13) sin2(2ϑ23)

− 1
2
c13 sin(2ϑ12) sin(2ϑ13) sin(4ϑ23) cos δl] cos(ϕ31)

+ [2c213 sin2(2ϑ23)(s212s
2
13 − c212)

− 1
2
c13 sin(2ϑ12) sin(2ϑ13) sin(4ϑ23) cos δl] cos(ϕ32)

+ 2c13 sin(2ϑ12) sin(2ϑ13) sin(2ϑ23)

· sin δl sin(ϕ21/2) cos(ϕ31 +ϕ32
2

)

+ s13 sin(4ϑ12) sin(4ϑ23) cos δl[1+ s213] sin2(ϕ21/2)
− c13 sin(2ϑ12) sin(2ϑ13) sin(2ϑ23) sin δl sin(ϕ21)

− 2s213 sin2(2ϑ12) sin2(2ϑ23) cos(2δl) sin2(ϕ21/2)}

Note that the probability of νeνe oscillations does not depend on the leptonic
CP-phase in contrast to another probabilities of the neutrino oscillations. After
averaging these formulas over all phases ϕij and taking into account 〈cos(ϕij ±
δl)〉 = 0, 〈sin2ϕij〉 = 〈cos2ϕij〉 = 1/2we have:






〈1− P(νeνe)〉 = Aee
〈1 − P(νµνµ)〉 = Aµµ + Bµµ cos δl + Cµµ cos2 δl
〈1− P(ντντ)〉 = Aττ + Bττ cos δl + Cττ cos2 δl

〈P(νeνµ)〉 = Aeµ + Beµ cos δl
〈P(νeντ)〉 = Aeτ + Beτ cos δl
〈P(νµντ)〉 = Aµτ + Bµτ cos δl + Cµτ cos(2δl)

(9)
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




Aee = 1
2
[c413 sin2(2ϑ12) + sin2(2ϑ13)]

Aµµ = 1
2
[(c213 + (c412 + s412)s

2
13) sin2(2ϑ23)

+(s413 sin2(2ϑ12) + sin2(2ϑ13))s423
+c423 sin2(2ϑ12)]

Bµµ = 1
2
(c223 − s223s

2
13)s13

· sin(2ϑ23) sin(4ϑ12)

Cµµ = −1
2
s213 sin2(2ϑ23)

· sin2(2ϑ12)

Aττ = 1
2
[(c213 + (c412 + s412)s

2
13) sin2(2ϑ23)

+(s413 sin2(2ϑ12) + sin2(2ϑ13))c423
+s423 sin2(2ϑ12)]

Bττ = −1
2
s13 sin(2ϑ23)

· (s223 − c223s
2
13) sin(4ϑ12)

Cττ = − 1
2
s213 sin2(2ϑ23)

· sin2(2ϑ12)

Aeµ = 1
4
[(1 + c412 + s412)s

2
23 sin2(2ϑ13)]

+2c213c
2
23 sin2(2ϑ12)]

Beµ = 1
8
c13 sin(2ϑ13) sin(2ϑ23)

· sin(4ϑ12)

Aeτ = 1
4
[(1+ c412 + s412)c

2
23 sin2(2ϑ13)]

+2c213s
2
23 sin2(2ϑ12)]

Beτ = −1
8
c13 sin(2ϑ13)

· sin(2ϑ23) sin(4ϑ12)

Aµτ = 1
4
[2s213 sin2(2ϑ12) cos2(2ϑ23)

+ sin2(2ϑ23){(c412 + s412)s
4
13

+c413 + c412 + s412}]

Bµτ = 1
8
(1+ s213)s13 sin(4ϑ12)

· sin(4ϑ23)

Cµτ = − 1
4
s213 sin2(2ϑ12)

· sin2(2ϑ23)
(10)

These expressions are organized in such a way for to emphasize the influence of
the leptonic CP-phase on the averaging probabilities of the neutrino oscillations.

Note that the probabilities of the change of neutrino kind and the probabil-
ities of transitions to another two neutrino states obviously obey the following
rules:

1− P(νανα) = P(νανβ) + P(νανγ), where α,β, γ = e, µ, τ.

4 Some examples of the manifestation of the leptonic CP-phase

In this section we give some examples demonstrating a possible dependence of
the probabilities (9) on CP-phase. But first, for the convenience we introduce new
designations:

bik = Bik/Aik, cik = Cik/Aik

The first set of possible values for mixing angles taken from experimental
data [5] is:
example a)

ϑ12 = (42 ± 2)◦, ϑ13 = (4.0± 0.5)◦, ϑ23 = (43.6 ± 0.5)◦ (11)

(small mixing of 1,3 generations was obtained from experimental data of nuclear
reactor CHOOZ [3]). Here and below in our paper an average error is taken from
tables adduced in papers [5,6]. These values are preliminary and are used below
for our estimations. In this case all coefficients bik, cik in formulas (9) have very
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small values, in particular because of smallness of mixing angle s13 = sinϑ13.
The table of all coefficients of formulas (9) for this case is:






Aee = 0.499;

Aµµ = 0.636, bµµ = 0.0058, cµµ = −0.0038;

Aττ = 0.613, bττ = 0.0055, cττ = −0.0040;

Aeµ = 0.261, beµ = 0.014;

Aeτ = 0.238, beτ = −0.015;

Aµτ = 0.373, bµτ = 0.0005, cµτ = −0.0032.

(12)

As we can see, the ratio of the number of the µ-neutrino to the number of the
τ-neutrino produced in the initial beam of electron neutrino νe at a large distance
from the source is:

〈P(νeνµ)〉
〈P(νeντ)〉

=
Aeµ

Aeτ
· (1+ beµ cos δl)

(1 + beτ cos δl)
≃ Aeµ

Aeτ
(1+ (beµ − beτ) cos δl) (13)

where beµ − beτ ≃ 2beµ ≃ 2.8%, (as beτ ≃ −beµ), with
Aeµ
Aeτ

≃ 1.1. Thus, the

contribution of terms containing cos δl to the ratio of probabilities 〈P(νeνµ)〉 and
〈P(νeντ)〉 is of order of 3%. Therefore an experimental observation of the CP-
violating phase manifestation is very difficult for this set of mixing angles (see
Fig.1).

The second set of possible values for mixing angles taken from experimental
data is:
example b)

ϑ12 = (42.0 ± 2.0)◦, ϑ13 = (14.0 ± 1.0)◦, ϑ23 = (43.6 ± 0.5)◦, (14)

(this example is not in a good agreement with experimental data [3] because,
although it gives appropriate values for ϑ12 and ϑ23 (11), the value of ϑ13 is rather
large here [7]).

In this case, i.e. at sin ϑ13 = 0.24, coefficients bik, cik have larger values in
comparison with the previous case. The values of these coefficients are of the
order of several percent, in particular, beµ − beτ ≃ 2beµ ≃ 8.4%. So, we have in
this case: 





Aee = 0.548;

Aµµ = 0.645, bµµ = 0.019, cµµ = −0.044;

Aττ = 0.627, bττ = 0.017, cττ = −0.045;

Aeµ = 0.283, beµ = 0.041;

Aeτ = 0.265, beτ = −0.043;

Aµτ = 0.348, bµτ = 0.0077, cµτ = −0.0409.

(15)

Since beµ − beτ ≃ 8.4%, the contribution of terms containing cos δl to the ratio
of probabilities 〈P(νeνµ)〉 and 〈P(νeντ)〉 is of order of 8.4%. The results of corre-
sponding measurements seem to be very interesting (see Fig.2).
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Fig. 1. In this figure the dependences of the probabilities averaging over neutrino oscil-

lations on the leptonic CP-phase are shown. These dependences are small and difference

between maximal and minimal values of probabilities equals approximately 0.7% in the

νµνµ and ντντ cases, 0.8% in the νeνµ and νeντ transitions and 0.03% in the νµντ tran-

sitions.

5 The difference between the να → νβ transitions probability
and the νβ → να transitions probability and leptonic
CP-phase

Let us consider να → νβ transitions in neutrino oscillations (denote them ”for-
ward” transitions) and compare them with νβ → να transitions (denote them
”backward” transitions). At δl 6= 0 the probabilities of forward transitions differ
from probabilities of backward transitions. Note right away that the probability
of the forward transition coincides with the probability of the backward transition
after averaging over all oscillations, while before averaging these probabilities are
different provided CP-violating, i.e. at δl 6= 0. And the difference between these
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Fig. 2. In this figure the dependences of the probabilities averaging over neutrino oscilla-

tions on the leptonic CP-phase are not so small as in the previous case (Fig.1.) because ϑ13
is not small and difference between maximal and minimal values of probabilities equals

approximately 4% in the νµνµ and ντντ cases, 2.5% in the νeνµ and νeντ transitions and

2.8% in the νµντ transitions. Thus the role of ϑ13 in the manifestation of leptonic CP-phase

in neutrino oscillations is very important.

probabilities is proportional to sin δl. These statements are direct consequences
of general formulas for P(νeνµ), P(νeντ) and P(νµντ) which given above. So,
on obtaining probabilities of backward transitions by replacement δl → −δl we
subtract probabilities of forward transitions from them. As a result we have:






P(νµνe) − P(νeνµ) = a0(sinϕ21 + sinϕ32 − sinϕ31) sin δl
P(ντνe) − P(νeντ) = −a0(sinϕ21 + sinϕ32 − sinϕ31) sin δl

P(ντνµ) − P(νµντ) = a0(sinϕ21 − 2 sin ϕ21

2
cos

(ϕ31 + ϕ32)
2

) sin δl

(16)
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where a0 = 1
2
c13 sin 2ϑ12 sin 2ϑ13 sin 2ϑ23. Here phases ϕ21, ϕ32, ϕ31 depend on

the time of neutrino flight in vacuum t (see (6)) or, in other words, on distance
(base-line) L between points of neutrino birth and neutrino absorption and also
on difference of squared masses ∆m2ij = m2i −m2j . For the most possible values
of neutrino masses and theirs average errors taken from experiment [5,6]:

m3 = (1/17 ± 1/50)eV, m2 = (1/175 ± 1/300)eV, m1 ≪ m2 (17)

We can see that the distance of the neutrino oscillations, i.e. the base-line for the
experimental devices must not be less 103m. The experimental definition of the
CP-phase based on the correlation (16) would be the most natural, however now
it is practically impossible because beams of different types (for example νe and
νµ) of neutrino (that is, obtained in different reactions) but with the same energy
are required for the experiment. This problem possibly will be solved in the fu-
ture, but until now all experimental data were obtained only for beams of the
neutrino with the continuous energy spectra. The cause of this problem consists,
in particular, in very small cross-sections of neutrino interactions.

In current experiments we deal only with probabilities of transitions of neu-
trino with continuous energy spectra in the initial beam, i.e. with all phases (6)
averaging over oscillations (9),(10) which also depend on the CP-violating phase
δl. The main idea of my talk consists in a suggestion to find the value of the CP-
phase using data of experiments with large base-line and formulas (9),(10).

Note that coefficient a0 defining the value of the effect of t−symmetry vio-
lating (16) is not too small in both a)− and b)−cases:

a) a0 = 0.07 b) a0 = 0.23

Moreover in b-case it is large. Therefore measurements of this effect are possible
although they are difficult.

6 Conclusions.

So, the main results of our work are the following:

• The expressions for the probabilities of neutrino oscillations were obtained in
the explicit form with regard for the leptonic CP-phase.

• The manifestation of the leptonic CP-phase in neutrino oscillations was inves-
tigated by the example of the probabilities averaging over oscillations. Using
modern experimental data the model calculations and numerical estimates
were done.

• The question of the t−symmetry violation for neutrino oscillation was ana-
lyzed. And there was established that the difference between the ”forward”
probabilities and the ”backward” probabilities was proportional to sine of the
leptonic CP-phase.
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