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Preface

This thesis represent the results of nearly five years of work with femtoscopic correlations of
particles produced in heavy-ion collisions. The thesis presents both studies of published experi-
mental results using numerical models, and analysis of recent data from the ALICE experiment
at CERN. A lot of time has been devoted to the process of fitting the data in order to extract the
femtoscopic observables. The fitting process is not only a source of statistical errors, but also
helps to fuel our understanding of the non-femtoscopic correlations which might be present and
must be accounted for. The identification and removal of such backgrounds form the majority of
the work in the experimental analysis presented.
The thesis is structured as follows:

Chapter 1 gives a general introduction to the subject of heavy-ion collisions, the history of
the field, the theory and the current status.

Chapter 2 presents in detail the ALICE experiment, introducing the experimental setup and
the many different experimental observables.

Chapter 3 is dedicated to the underlying theory of femtoscopic correlations. Formalism for
both identical and non-identical correlations is presented, along with implementation for
models and experiments. Recent results from the ALICE experiment are discussed.

Chapter 4 discusses numerical models for heavy-ion collisions. Microscopic models are
presented in detail, with both theory and current results.

Chapter 5 presents the results obtained with the QGSM model and compares them to pub-
lished data from the STAR and ALICE experiments.

Chapter 6 includes the experimental analysis of pion-kaon correlations in the ALICE ex-
periment. Particle identification is discussed, as well as the fitting procedures. The main
topic is the removal of the complicated non-femtoscopic background. Results from the
PYTHIA model is used as a reference in the study.

Chapter 7 draws the conclusions and contains the finishing remarks.

Part IT of the thesis includes published papers.
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Chapter 1

Introduction

The idea that the world consists of small indivisible components was first introduced by early
Greek and Indian philosophers. The term atom was coined by Democritus, from the Greek
“atomos” meaning indivisible. This idea was revived in the early 17th century, giving birth to
modern chemistry and later nuclear physics. In the beginning of the twentieth century the famous
Geiger-Marsden experiments were conducted under the supervision of Ernest Rutherford [1].
The experiment, in which gold foil was bombarded with a-particles, revealed the nuclear nature
of atoms. As more discoveries were made, driven by both experimental and theoretical activity,
it became clear that the atom was not indivisible and consisted of even smaller parts.

The modern theory of interactions at subatomic level is known as the Standard Model. It
includes electromagnetism, the strong nuclear force and the weak nuclear force. The elementary
particles of the theory are the quarks, leptons, gauge particles and scalar particles. Quarks interact
through all three forces of the model, and it is the lightest quarks that form the protons and
neutrons which our world is predominately made of. The gauge particles are the photons, gluons,
W and Z bosons. They are the force carriers of the theory. The Higgs boson is required by the
theory to give particles mass, but was undiscovered until very recently. Recent discoveries made
by the ATLAS and CMS collaborations shows the existence of a new particle which exhibit
properties consistent with what is known of the Higgs boson [2, 3]. Both experiments have
shown a high statistical significance for their results, and the newly discovered particle is highly
likely the elusive Higgs boson. An overview of the elementary particles in the Standard Model
can be seen in Fig. 1.1.

At small scales the strong nuclear force is dominant. The strong interaction part of the Stan-
dard Model is called Quantum Chromo Dynamics (QCD) [4], and governs the interactions of
quarks and gluons. Predictions made by QCD have helped to fuel the large interest in high
energy nuclear physics the last 30 years.

1.1 Quantum Chromo Dynamics

QCD is a quantum theory of dynamical interactions between quarks and gluons, which both
carry the strong charge. In the model the strong charge comes in three variations, which have

3
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Figure 1.1: Elementary particles and force carriers in the Standard Model. Picture taken from
(27]

been named red, blue and green. Consequently the strong charge is known as the colour charge,
and the model is named Chromo after the Greek kroma, meaning colour.

The gluons are the force carriers of QCD. The force carrier of electromagnetism, the photon,
is electrically neutral and the force carriers of the weak nuclear force, W and Z, do not carry the
weak charge. The gluons however carry a colour charge, this makes strong interactions extremely
complex as the boson force carriers can also interact with each other or the quarks.

The strength of the strong interaction is governed by the effective coupling constant ag. It has
been found through experiments to be dependent on the energy scale of the interaction as shown
in Fig. 1.2. The interaction is much stronger at low energy scales (large distances) than at high
energy scales (small distances). If we move two quarks apart the strong interaction between them
becomes stronger as the distance increases, the only way for the quarks to move freely is at high
energy scales, meaning short distances. This is known as asymptotic freedom and is the complete
opposite to the forces we are able to observe daily, gravity and electromagnetism. A direct
consequence of this is the phenomenon known as quark confinement. All observed particles are
colour neutral as a result, meaning they consist of either three quarks with three different colour
charges (baryons), or they consist of a quark anti-quark pair (mesons). Predictions have been
made of exotic particles such as pentaquarks [5] consisting of four quarks and an anti-quark, but
have never been observed.

One way to understand quark confinement is through the string picture. We can imagine that
the colour field between two or more quarks is isolated in a colour flux tube, known as a string.
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Figure 1.2: The dependence of the strong coupling constant as a function of energy scale. Picture
taken from [6]
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Figure 1.3: Illustration of the creation of new particles when attempting to separate two quarks.
Picture taken from [27]

As long as the quarks stay together they can move freely, forming a baryon of three quarks or a
meson with a quark anti-quark pair. If you try to separate them the string will stretch, and as it
stretches the strong interaction grows stronger and more and more energy is stored in it. At some
point it will become more energetically favourable to create a new quark-antiquark pair rather
than continuing to stretch the string. The new pair will couple to the existing quarks, forming
new hadrons. The attempt to separate the two quarks have ended with particle production instead.
This process is illustrated in Fig. 1.3, where a J/ W particle decays as the ¢ pair is separated and
a dd pair is created. The d-quark couple to the ¢ and vice versa, forming two D mesons.

The existence of asymptotic freedom has led to the prediction of a new phase of matter at very
high densities and temperatures. At these high energies quarks are predicted to be deconfined
and be able to move freely in a larger volume. This new form of matter, Quark Gluon Plasma
(QGP) [7] is thought to have existed at the very beginning of our universe just after the Big Bang.
The search for Quark Gluon Plasma and its properties has led to an intensive experimental effort
to reproduce the high density and temperature of the early universe. The study of QGP allows
us to understand the conditions of the early universe, and it probes extreme conditions of QCD.
The specific properties of QGP means it will have a characteristic behaviour, different from all
other forms of matter.
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1.2 Heavy-Ion Physics

Hot and dense nuclear matter can be created experimentally through ultra-relativistic heavy-ion
collisions. Ions of heavy elements such as gold or lead are accelerated and collided in huge
experimental facilities, creating highly energetic systems with large particle production. This
particle production includes the creation of the heavier quarks, c, s, ¢, b, as well as baryons and
mesons consisting of such quarks. These particles are often very short lived, decaying into more
stable configurations. After more than 50 years of experimental activity the collision energy of
heavy-ion collisions has seen a sharp rise. The Alternating Gradient Synchrotron at Brookhaven
had a centre of mass energy of \/syn ~ 5 GeV, while the CERN LHC can go up to \/syy ~
5.5TeV.

A heavy-ion collision can be subdivided into distinct stages. In the initial state, pre-collision,
the two nuclei are moving towards each other at relativistic speeds. Seen from the lab frame the
nuclei are Lorentz contracted into flat “pancake” shapes. As they collide we get a pre-equilibrium
stage of a hot and dense nuclear matter fireball. In this fireball the quark gluon plasma forms,
and will rapidly reach thermal equilibrium. As the plasma expands hydrodynamically it will cool
and the deconfined quarks will start forming hadrons. This mixed phase will end with chemical
freeze-out and the hadronic stage will continue with expansion and elastic interactions until we
get thermal freeze-out.
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During this evolution the created matter will rapidly change both temperature and density.
This means that heavy-ion collisions can be used as a tool to study the phase diagram of QCD.
It is of great interest to study the phase transition from normal matter to QGP, and specifically
whether it is a first or second order transition, and to search for a potential critical point in the
phase diagram. The path the nuclear matter takes through the phase diagram is illustrated in Fig.
1.5. This diagram is rich in information and it is of interest to study it in more detail.

Along the x-axis we have baryonic chemical potential, and along the y-axis we have temper-
ature. Vacuum is at the lower left of the diagram with zero temperature and chemical potential.
At low temperature and medium chemical potential we find normal nuclear matter. And at higher
chemical potential there exists different possible exotic states of matter such as colour supercon-
ductors and neutron stars. By increasing the temperature at low chemical potential, matter exists
as a hadronic gas, a weakly interacting system of hadrons. By increasing the temperature further
one can achieve a phase transition and form quark-gluon plasma. Somewhere along this phase
transition a critical point might exist. At this critical point the first order quark-hadron phase
transition is transformed to a second-order transition. After this point one will observe a smooth
crossover between the phases.

The path taken by a heavy-ion collision in the diagram starts at normal nuclear matter, and
quickly goes up in temperature and down in chemical potential. After the system reaches max-
imum temperature it will start cooling at a low chemical potential, and return to a hadron gas
state. As seen in the figure different collision energies causes one to probe different parts of the
phase diagram, and by using large enough collision energies the evolution of the system will
mirror that of the early universe. In order to fully explore the properties of the phase diagram,
collisions of many different energies are needed. This is the basis for the RHIC beam energy
scan program which is being undertaken at BNL [9], and more such programs are being planned
at the GSI Helmholtz Centre for Heavy Ion Research in Darmstadt and at the Joint Institute for
Nuclear Research (JINR) in Dubna. The purpose of these programs is to probe the phase diagram
at lower energies and search for the possible critical point.

In 2005 scientists at RHIC announced that they had produced a “perfect” liquid in their
collisions hot enough to produce a quark soup [10, 11, 12, 13]. This QGP acted as a perfect liquid
and not a gas, which came as a surprise, and led to an increased theoretical activity studying
the hydrodynamical properties of quark matter. The old view was that the QGP is an “ideal
gas” of weakly interacting partons. This paradigm was overturned by the successful application
of hydrodynamic models to the experimental data from RHIC [14]. In particular the results
demanded the equilibration time of the plasma to be less than 0.5 fm/c, while the equilibration
time of an ideal gas is on the order of 3.5 fm/c. The new matter created at RHIC becomes a
strongly interacting perfect liquid with viscosity close to zero, and QGP has turned into strongly
interacting Quark Gluon Plasma (sQGP).

1.3 Proton-proton collisions

The main focus for most particle physics is proton-proton collisions. The main areas of study
are the search for the Higgs boson as well as probing for possible super-symmetry. These stud-
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Figure 1.5: The phase diagram of QCD. Showing path of a Heavy-ion collision through the
diagram, as well as potential exotic states of matter.
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ies can reveal important information about elemental particle physics and the Standard Model,
but proton-proton collisions can also be an important source of information from a heavy-ion
perspective.

From a naive point of view one might think that a heavy-ion collision is nothing more than a
scaled up proton-proton collision. The existence of collective effects however makes for a much
more complicated picture. One can define the nuclear modification factor R 44 as the ratio of the
invariant yield of a nucleus-nucleus collision to the scaled yield of a proton-proton collision.

d2 NAA /dnde
Neon) [t 2oy, /dydpr

Raa(pr) = < (1.1

where (N,,;) is the average number of inelastic nucleus-nucleus collisions per event. In the
absence of collective effects we expect R44 = 1. For Rq44 < 1 we have behaviour unique for
heavy-ion collisions, such as jet quenching.

In addition there has also recently been an increased interest in measuring typical heavy-ion
signals such as flow for proton-proton collisions. This is connected with the fact that proton-
proton collisions at the LHC can reach energies far beyond what has been seen before, and these
highly energetic protons might due to a large number of sea quarks behave more like heavy-ions
and exhibit collective behaviour. In particular, event multiplicities reached in 7 TeV pp collisions
at LHC [15] are comparable to those registered in peripheral AA collisions at RHIC, providing
at interesting possibility to search for collectivity in pp interactions.

The study of such collective signals in pp collisions can reveal similarities and differences
compared to the same signals in heavy-ion collisions. Energy scan programs might also be able
to find at what energy collective behaviour starts to emerge in pp collisions.



Chapter 2

Experiments

Experimental efforts in the fields of particle and heavy-ion physics has been ongoing for over
fifty years in laboratories all over the world. Some of the leading particle colliders today include
the Large Hadron Collider (LHC) at CERN [16, 17], the Relativistic Heavy-Ion Collider (RHIC)
at the Brookhaven National Laboratory (BNL) [18] and Tevatron at the Fermi National Acceler-
ator Laboratory (Fermilab) [19]. This broad field of research is important because it allows for
double-checking of important results, and for new facilities to be build using information gained
at existing laboratories. Plans for upgrading existing facilities exist for both LHC and RHIC, as
well as the building of new colliders in places such as GSI Darmstadt [20] and JINR Dubna [21].
The building of linear electron colliders is an exiting new prospect, which allows for precision
measurement to be made of existing discoveries made with nucleus-nucleus colliding machines.
Plans for linear electron colliders exist for both CERN (CLIC [22] or ILC [23]) and BNL (eRHIC
[24]).

In this work the main focus will be to analyse proton-proton data taken at the ALICE experi-
ment at CERN LHC [25], which will be described in greater detail below. In the theoretical part
of the thesis data will also be compared with results from the STAR experiment at RHIC BNL
[26]. RHIC is the second largest heavy-ion collider in the world, and was the first machine in the
world capable of colliding beams of heavy ions. RHIC collides beams of gold ions head on at
relativistic energies of up to /s = 200 GeV'. The STAR experiment is one of four experiments
at RHIC, and specialises in tracking the thousands of particles created in heavy-ion collisions.

2.1 CERN and the Large Hadron Collider

Founded in 1954 along the Franco-Swiss border, CERN is the European Organization for Nuclear
Research (Conseil Européen pour la Recherche Nucléaire). It is a multi-national collaboration
run by 20 European member states, and whose activities also include those of numerous observer
and non-member states. Scientists from 608 institutes from around the world uses CERN’s
facilities.

Founded after the second world war in order to unite European physicists and allow them to
share the costs of nuclear physics facilities, the centre has been a pioneer for peaceful scientific

11



12 CHAPTER 2. EXPERIMENTS

cooperation between nations during the years of the cold war.

The CERN site has expanded over the years as bigger and more powerful particle accelerators
and colliders have been built in an ever growing search for answers about the fundamental nature
of matter. This has culminated in the construction of the Large Hadron Collider (LHC) which
is capable of colliding protons at an energy of up to 14 T'eV and lead ions at an energy of up to
5.5 T'eV. The LHC ring houses four experiments which have been independently designed for
different areas of study, but which also provide complementary results. The four experiments are
the two general purpose experiments ATLAS and CMS whose main purpose is the search for the
Higgs-boson and possible supersymmetries in pp collisions, LHCb which studies the nature of
anti-matter, and the dedicated heavy-ion experiment ALICE. A schematic overview of the LHC
ring can be found in Fig. 2.1. As seen in the figure a series of smaller accelerators are used to
accelerate the colliding particles before they are injected into the LHC ring.

Although experiments at the LHC uses a proton beam for a majority of the time, collisions
with heavy-ions are also performed. While the ATLAS [27], CMS [28] and LHCDb [29] experi-
ments are built and designed with proton-proton collisions in mind, and ALICE with heavy-ion
collisions, all experiments except LHCD takes data during both types of collisions. The experi-
mental focus of this thesis is to analyse proton-proton data taken by the ALICE experiment from
the viewpoint of a heavy-ion physicist.

2.1.1 The ALICE experiment

The ALICE experiment is one out of four experiments at the LHC, and the only one designed
specifically to study heavy-ion collisions. It was first suggested in [30], and it was approved of
in February 1997.

The main role of ALICE is to make measurements of high energy heavy-ion collisions, in
order to study and understand collective phenomena and macroscopic properties of dense and
energetic quarkonic matter. Specifically the study of heavy-ion collisions probes the strong in-
teractions of nuclear matter. Such studies allows a broadening understanding of the standard
model, and an understanding of the conditions of the early universe. Data taken at ALICE will
be from collisions which have by an order of magnitude higher energies than at RHIC, and will
as such be able to test the extrapolation of the results obtained there. A schematic overview of
the ALICE detector is shown in Fig. 2.2.

In addition to the study of heavy-ion physics, ALICE is also taking data during the proton-
proton runs of the LHC. The study of proton-proton collision will not only provide important
benchmarks that can be used as a reference in heavy-ion studies, such as the nuclear modifica-
tion factor R 44 and physical observables such as multiplicity, but is also interesting in its own
regard. In particular it has in later years become evident that one might also observe collective
phenomena in high energy proton-proton collisions [31, 32]. The measurements of bulk proper-
ties in proton-proton physics can make clearer the origin of such phenomena also in heavy-ion
collisions.
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Figure 2.1: A schematic overview of the CERN accelerator complex. Image taken from [17]
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Figure 2.2: A schematic overview of the ALICE experiment. Figure taken from [25].

2.1.2 Experimental observables

The study of bulk phenomena relies on many experimental observables. These observables are
often indirect effects of the phenomena that are being studied, and each observable constitutes
a field of research on their own. It is important to note that all experimental observations are of
a second hand nature. Particles in the detector are identified from the tracks they leave behind,
and physical observables are constructed from this information. Even though giving a complete
overview of is beyond the scope of this thesis some of these observables will be discussed in
greater detail below.

Particle multiplicities

The most fundamental “day-one” observable is the average charged-particle multiplicity per ra-
pidity unit: dN,,/dy. Tt is related to the energy density of the system, and therefore enters the
calculation of most other observables. The measurement of this quantity fixes the main unknowns
in the detector performance, and largely determines the accuracy with which many observables
can be measured.

There is no first-principles calculation that allows us to predict the multiplicity, this is due
to the running coupling constant in QCD. The running coupling constant g is small for “hard”
processes (large momentum transfer, (p > 1 GeV/c)), but not for “soft” processes. Therefore
for “soft” processes pertubative techniques (pQCD) doesn’t work. Even at /s = 14 TeV many
subprocesses at partonic level proceed via small momentum transfer (p < 1 GeV/c), i.e. these
processes are “soft”. As a result most theoretical predictions or extrapolations from SPS to RHIC
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overshoot the measured experimental values as seen in Fig. 2.3. The increased multiplicity
of ALICE is shown in Fig. 2.4 compared with earlier experiments, also shown is theoretical
predictions. Many models, compensating for the RHIC results, ended up underpredicting the
ALICE multiplicity.

The study of particle spectra yields information about the particles at freeze-out. This in-
formation constrains the dynamical evolution and gives indirect hints about the early stages of
the collision. Of interest is the multiplicity distribution of the charged particle pseudorapidity
and the charged particle transverse momentum. The experimentally measured pseudorapidity
distributions of the ALICE collaboration are presented in Fig. 2.5, and the measured transverse
momentum distributions are presented in Fig. 2.6.

Azimuthal correlations

The study of particle flow yields important information about the collective behaviour of the
system. The different flow observables are given as the Fourier components of the transverse
momentum distribution on the emission angle ¢ relative to the reaction plane [33, 34, 35]:

dN(b) _ 1 dN(b)
mydydmdd Y mydydimy

1 +22Un(pt,y) cos[n(qb)]) 2.1)

n=1

The first component, known as the radial flow, is isotropic and thus always present even in
central collisions. The two next components are the directed flow v; and elliptic flow vy, which
are anisotropic and arise from the asymmetries obtained in non-central collisions [36]. The

radial flow is the azimuthally symmetric flow, in central collisions we expect the main flow
Pz

component to be radial flow. The directed flow v; = \/ﬁ has been measured at high
bz TP
- ps— 1}
energies to be close to zero at mid-rapidity. The elliptic flow is given as v, = ;” n g An
Py TPy

initial anisotropy in coordinate space will cause pressure gradients that will transform into an
anisotropy in momentum space, as seen in Fig. 2.7.

The measurement of elliptic flow in heavy-ion collisions is an important indicator of col-
lective behaviour. The evolution of the elliptic flow as a function of collision energy can give
an important indication of the onset of QGP and its behaviour. Recent results from the ALICE
experiment (Fig. 2.8) show that the plasma still behaves as a perfect liquid.

Higher moments of the flow (v3, vy, v5 etc) can also be measured (Fig. 2.9) and correspond
to higher order momentum anisotropies in the system. Interest in these higher moments of the
flow has been renewed lately with the advent of using correlations in AnA¢ as a technique to
estimate the flow. These correlations give a wealth of information, including the femtoscopic
peak at Anp = A¢ = 0. The correlations for 2 < || < 5 are expanded into a Fourier series with
the coefficients v, ,, = (cos(nA¢)) corresponding to the moments of the flow (Fig 2.10), this
holds for moments of the flow larger than one [37].

There exist many different methods for measuring the flow in the system, including many
particle correlation, event plane, Lee-Yang zero and scalar methods (see [38, 39] and references
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therein). The main problems in extracting flow are finding the event plane, event-by-event fluc-
tuations and identifying non-flow contributions. Methods for removing non-flow contributions
exist, but require high multiplicities which are only found in heavy-ion collisions.

Momentum correlations

A distinguishing feature of heavy-ion collisions compared to simpler systems is the collective
behaviour of matter. Particle correlations can be used as an indication of collective behaviour
in the system. These correlations are dependent on the interactions in the medium, and the
resulting particle production. The short range interferometric correlations known as femtoscopic
correlations are the main topic of this thesis and will be discussed in detail in chapter 3.

Long-range correlations

The application of LUND type string models have successfully described the soft and semi hard
parts of high energy pp collisions. These models characterise particle production as the breaking
of colour strings. A more detailed description of string models will be given in chapter 4. In the
case of heavy-ion collisions the growing number of strings causes increased interaction between
the strings in form of string percolation [44]. Colour exchange between the endpoints of the
strings causes long-range correlations between particles due to energy-momentum conservation.
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Figure 2.8: Elliptic flow measured as a function of collision energy. Figure taken from [47].

Long-range correlation studies are made with observables from two different and separated
rapidity intervals, which are referred to as forward (F) and backward (B) rapidity windows.
Correlations are calculated between two observables, the multiplicity of charged particles (n)
and the mean transverse momenta (p;). This gives us three types of long-range correlations
between the two rapidity windows: n — n, p; — p; and p; — n. The correlations between forward
and backward parameters are found to be close to a linear function:

<nB> = a+ Bannir 2.2)

where nr and np are the charged multiplicities in the forward and backwards regions and (3,
characterises the strength of the correlations.

Fluctuations

Physical quantities measured in an experiment will always be subject to fluctuations [49]. These
fluctuations will depend on the properties of the system, and by studying them one can reveal
information about the system. One of the ways to access this information is to study event-by-
event fluctuations of a given observable. This will reveal the statistical and thermodynamical
properties of the system.

The shape of fluctuations demonstrates whether or not the system is in thermal equilibrium,
meaning the system can be described by statistical Gaussian fluctuations. Different methods are
developed to analyse quantitatively the non-Gaussian shape of the fluctuations [45, 46].
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From the point of view of statistical physics the fluctuations measure the susceptibilities of
the system, meaning the response of the system to external forces.

Event-by-event fluctuation analysis can be applied to a number of different observables. They
include: thermodynamic fluctuations, Bose-Einstein correlations, temperature fluctuations, mul-
tiplicity fluctuations, particle ratio and strangeness, conserved quantities, azimuthal anisotropy,
transverse momentum and long range correlations.

Jets

In a hadron-hadron collision a high-pr parton may be emitted from the interacting matter and
undergo a cascade of consecutive decays of less energetic partons [50, 51]. These partons are
observed as a cluster of hadrons in the detector. In proton-proton collisions we will always
observe two or more back-to-back jets due to the energy-momentum conservation in the system.
In heavy-ion collisions one or more of the original partons may be dispersed in the bulk matter
due to multiple interactions with the medium. We can then observe standalone jets whose back-
to-back partners have been swallowed in the medium, this “jet-quenching” is though to be a
signal that can be used to probe any possible formation of QGP. High-p capabilities are needed
for jet identification and reconstruction.

How to identify jets is not always clear, and depends on your definition and jet finder algo-
rithm. A jet can be defined as a group of particles in a cone of fixed radius in the plane defined
by the azimuth ¢ and pseudorapidity 1. In heavy-ion collisions the large background must be
taken into account. In order to reduce the contribution from uncorrelated particles a p, cut is
implemented. Typically pf*/ = 2 GeV/c is used, this rejects 98% of the background.

Direct photons and dileptons

The production of photons in heavy-ion collisions is especially interesting [52]. Due to the fact
that photons only interact weakly, they can pass through the hot and dense matter produced
in the collision, and carry with them information about the collision at the time the photons
where produced. The direct photons can be divided into four groups: The *prompt’ photons are
produced early in the collision, during the initial nucleus-nucleus interactions. These photons
carry information about the initial conditions of the collision. The second group consists of
photons produced during the QGP phase. These photons will escape the plasma, and carry
information about the pre-equilibrated QGP. The third group consists of photons produced by
interactions during the hadronic phase of the expansion. Finally the last group consists of photons
produced after freeze-out by resonance decays.

Direct photon can be distinguished into two p, domains. High p; photons (p; > 10 GeV/c)
are prompt photons produced in hard scattering processes in the early plasma. They can be
studied through photon-hadron or photon-photon correlations, or through photon tagged jets.
Low p, photons (p; < 10 GeV/c) include thermal photons in addition to prompt photons. The
main problem in this domain is disentangling the various contributions.

Dileptons are produced in heavy-ion collisions throughout the entire evolution of the system
in the same way as photons, and can be divided in to the same four groups as photons. They can
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be used as a tool for measuring the temperature and dynamical properties of the system. Dilepton
production is dominated by quark decays, but dileptons can also be produced from other sources
such as mesons or Z°.

Heavy quarks

One of the most famous predicted signatures of Quark Gluon Plasma is the suppression of .J /v
[53, 54]. The J/4 particle consists of a cc¢ pair, and are mostly produced during the initial
moments of the collision from hard parton scattering. Due to the J/u-particle’s need to pass
through the hot and dense medium the charm-quarks will dissociate and combine with u, d or s
quarks forming open charm mesons. The suppression of .J/v is measured through the nuclear
modification factor R4 (Eq. 1.1), which is obtained by comparing heavy-ion data with scaled
proton-proton data.

The experimental measurement of the .J/v) suppression at RHIC showed that current models
that had described the suppression at the SPS were unable to predict the new results. In Fig. 2.11
the R4 calculated from J/W suppression is shown for both the ALICE and PHENIX RHIC
experiments.

2.1.3 Detectors

The ALICE experiment is a highly complex system with a large number of subdetectors and
subsystems [45, 46].

e Inner Tracking System (ITS)

— Silicon Pixel Detector (SPD)
— Silicon Drift Detector (SDD)
— Silicon Strip Detector (SSD)

e Time-Projection Chamber (TPC)

e Transition-Radiation Detector (TRD)

e Time-Of-Flight (TOF)

e High-Momentum Particle Identification Detector (HMPID)
e PHOton Spectrometer (PHOS)

e Forward muon spectrometer

e Zero-Degree Calorimeter (ZDC)

e Photon Multiplicity Detector (PMD)

e Forward Multiplicity Detector (FMD)
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Figure 2.11: The J/W¥ R4 calculated for both the ALICE and PHENIX experiments. Figure
taken from [56]
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These detectors give a wealth of information about the collisions which can be combined
to give complete picture about the evolution of the system. Tracking is performed by the Inner
Tracking System which consist of six layers of silicon detectors and the Time-Projection Cham-
ber. Particle identification can be performed by measuring the energy loss in the tracking detec-
tors, transition radiation in the TRD, velocity versus momentum in the Time-Of-Flight detector,
Cherenkov radiation from the High-Momentum Particle Identification Detector and photons with
the PHOton Spectrometer.

In this work we will focus on the identification of pions and kaons using the Inner Tracking
System, Time-Projection Chamber and the Time-Of-Flight detectors.

Inner Tracking System

The Inner Tracking System (ITS) is composed of 6 layers of silicon detectors. The two innermost
detectors are Silicon Pixel Detectors (SPD) with a inner radius of 3.9 ¢m and a outer radius of
7.6 cm from the beam axis. The second layer are the Silicon Drift Detectors (SDD) with a radius
from 15 cm to 23.9 em. The outer detectors are the Silicon Strip Detectors (SSD) with a radius
from 38 cm to 43 cm. The covered range of the SPD is || < 2 and for the SDD and SSD it’s
In| < 0.97.

The ITS detector localises the primary vertex with a resolution of ~ 100ums. Together with
the TPC it is the main tracking detector. Using the ITS improves the overall tracking resolution.
Energy losses in ITS are used for combined particle identification and provides a decrease in
contamination from electrons in the kaon spectra. The SPD signal is also used for the minimal
bias trigger, allowing the rejection of non-interaction events.

Time Projection Chamber

The Time Projection Chamber is the main tracking detector in the ALICE central barrel. The
TPC is cylindrical in shape with an inner radius of about 85 ¢m and an outer radius of about
250 ¢m. The overall length in the beam direction is 510 em for a total volume of 88 m3. This
field cage is filled with a Ne/C'O; gas with a 90%/10% ratio. This mixture is a “cold” gas which
must be kept at a steady temperature with A7 < 0.1K. A strong uniform electric field it set up
along the beam direction in the field cage.
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Figure 2.12: A schematic overview of the TPC. Figure taken from [25]

As charged particles enters the TPC they will ionise the gas along their path. Liberated
electron will drift along the electric field and hit the readout chambers at the two end-caps of
the TPC cylinder. Charges at the readout chambers will be amplified, digitised and sent to a
specifically made chip known as the ALTRO (ALice Tpc ReadOut).

The TPC covers a phase space of pseudo-rapidity ranges |n| < 0.9 in p; up to 100 GeV/c.
It was designed for an assumed charged particle multiplicity of up to dN.,/dn = 8000. The
drift time in the field cage is about 88s. This means that the TPC is the slowest detector in
ALICE, and is a detector optimised for heavy-ion collisions. In proton-proton collisions the
main limitation is memory time due to the long drift time. The TPC is shown in Fig. 2.12.

Time Of Flight

The Time Of Flight detector is a specialised particle identification detector. It has a cylindrical
shape with an internal radius of 370 ¢m and an external radius of 399 cm. The detector covers
polar angles between 45° and 135° over the full azimuth. The base unit of the TOF system is the
Multigap Resistive Plate Chamber (MRPC). A single MRPC strip is 1220 mm long and 130 mm
wide with an active area of 1200 x 74 mm? subdivided into pads of 35 x 25 mm?.

The MRPC is a stack of resistive glass plates, with a high voltage applied to the external
surfaces of the stack. Between the glass plates are gaps filled with the detector gas Co HoFyy /i —
CyFi9/SFg, with a ratio 90%/5%/5%. As a particle passes through the stack it ionises the gas,
and the liberated electron is amplified by the high electric field through an electron avalanche.
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Figure 2.13: A schematic overview of a MRPC stack. Figure taken from [25].

The total signal is then the sum of the signal from all gaps. The efficiency of the signal depends
on the number of gaps, and the time jitter of the signal depends on the individual gap widths.
The MRPC stack is illustrated in Fig. 2.13

The TOF is designed for the general ALICE acceptance of || < 0.9 for particle identification
in the intermediate momentum range (from 0.5 to 2.5 GeV/c). It allows to measure the flight
time of the particle through the detector which along with the track gives the particle velocity
(. The detector provides a time resolution of about 40 ps, but due to uncertainties of the start
time of interaction (TO) the time of flight resolution is ~ 100 ps. A schematic view of the TOF
detector is shown in Fig. 2.14.
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Figure 2.14: A schematic overview of the TOF. Figure taken from [25]



Chapter 3

Femtoscopy

Interactions between subatomic particles happen at such a small scale that it is impossible to
observe with the naked eye. Consequently many methods have been developed to observe such
interactions through the macroscopic effects they have. Such observations have formed the basis
of modern nuclear physics, from Rutherford’s gold foil experiment to contemporary particle
colliders.

Detection of produced particles in the ALICE experiment is done through the electrical inter-
actions the particles have with the detector materials. If we want to study the size of the emitting
source we must go even one level deeper, by studying the effects the source had on the emitted
particle spectra. One method to do this is by looking at momentum correlations between the
particles. Currently such methods are referred to as femtoscopic, as they allow to study sizes at
femtometer level, but historically they have been called HBT after a similar method used earlier
in astrophysics.

R. Hanbury-Brown and R. Q. Twiss first suggested the measurement of the angular size of a
star through the use of correlations in their 1954 paper [57]. They proposed a method to measure
the angular size of a star by studying correlations of the intensity of incoming electromagnetic
waves in two photomultiplier tubes as a function of the distance between the tubes. This is known
as intensity interferometry or sometimes HBT correlations. The idea that photons could be cor-
related was thought to be controversial and Hanbury-Brown and Twiss themselves conducted an
experiment to test the validity [58]. Both Hanbury-Brown and Twiss were radio engineers and
explained their findings in classical terms, but it is also possible to explain them with quantum
mechanics.

The first test of this technique was made in [59], where they attempted to measure the angular
size of Sirius. The experimental set up consisted of two mirrors which focused the light, guided
on to the star with an optical sight. The signals from the two mirrors were then amplified and
mixed to give a correlated signal. The correlations were measured as a function of the distance
between the mirrors, and the angular size of Sirius was calculated to be 0.0063” with an estimated
error of 10%. A modern HBT measurement at Sydney Observatory ([60]) gives the angular size
as 0.00604”, which is tantalisingly close to the original Hanbury-Brown and Twiss measurement.

Momentum correlations between particles in nuclear physics were first studied by Goldhaber,
Goldhaber, Lee and Pais [61]. They observed pions emitted from pp-annihilations in a bubble
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chamber, and found that the angular distributions were narrower for same charge than for oppo-
site charge pairs. This was in stark contrast to the statistical model where no such distinctions
were made. The authors explained this through the influence of Bose-Einstein correlations for
identical pions. They also introduced the Gaussian correlation function dependent on the radius
of the interaction volume

It is possible to use momentum correlations between emitted particles to extract information
about the space-time extent of the emitting source. In both the astrophysics and particle physics
case one can obtain information about one part of the phase space by studying correlations in an-
other part of the phase-space. The main difference is that for astronomy the correlations happen
in the detector, while for particle physics the correlations happen in the emitting source.

The correlation function is defined as:

B P2(P17p2)
CF(p1,p2) = Pr(p1) Pr(pa) 3.1

where p; and p, are the momenta of the two particles, P, is the two-particle momentum dis-
tribution and P is the one-particle momentum distribution. If the correlation function is equal
to unity we have Py(p1,p2) = Pi(p1)Pi(p2) and the two particles are emitted independently.
For a correlation function not equal to unity the two-particle momentum distribution will not be
factorised and the emitted particles are correlated in momentum.

Here the particles 1 and 2 can be bosons or fermions, identical or non-identical and the
correlation effects will have different origin in each case. In this text we will take a closer look
at identical and non-identical meson particle pairs.

3.1 Identical particle correlations

We can consider two identical particles with momentum p; and p, that are emitted from two
different regions A and B of the source, with radius R4 and R, and are detected in the detector.
Since the particles are identical we can not distinguish between the cases where the particle with
momentum p; is emitted from A and the particle with momentum ps from B or where the particle
with momentum p; is emitted from B and the particle with momentum p, from A. An illustration
of this is seen in Fig. 3.1.

The wave-function of the pair must then take into account both possibilities. The wave func-
tion of a single free particle with momentum p and position x is:

Y(p, ) = exp(—ipr) (3.2)

The symmetrised two-particle wave-function is then:

1 . . . .
V(g r) = 2 [exp(—ip174 — ipaxp) + exp(—ipara — ip12B)] (3.3)
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Figure 3.1: Identical particle emission from two regions in a source. Particle 1 is either emitted
from region A as depicted with momentum p; or from region B as depicted with momentum p/.
Particle 2 is then emitted from the other region.

The correlation function is constructed from the single particle and two particle inclusive spectra:

Pi(pi) = Elj‘f\;
. (3.4)
Py(p1,p2) = E1E2m
giving:
dNyy/ (dBpydPps)
. B 3.5
(])1,]92) (le/d3pl)(dN2/d3p2) (3.5)

Here N; is the multiplicity and F; is the energy of particle ¢ with momentum p;. Nis is the
total multiplicity of particle 1 and 2. It is possible to describe the emission of particles using the
source emission function S(z, p):

dN;
Eda = /d4:B1;S1(~7J127p11)
m (3.6)
L T = /d4:B1d4LE251(1‘1>P1)51(7J2ap2) |\I/(q*,7’*)|2

The source function is understood as a generalised density function of the source, or as a prob-
ability density function. A necessary assumption here is independent particle emission from
the source, i.e. the two-particle emission function can be factorised. This gives the correlation
function [65]:

CF(p1,p2) = J d*xid 25 Sy (w1, p1) Si (w2, p2) [ ¥ (g, )|
| J d*ziSi(z1,p1) [ d*2Si(22, p2)

The correlation function can also be defined by the Koonin-Pratt equation [62, 63]:

3.7

Clg,K) = /Sg(r*,K)\\I/(q*,r*)\2d4r* (3.8)
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where S5 is the two-particle emission source function:

Sy, ) = [ d*xid xSy (21, py)Si (22, p3)d(r* — o} + x3) (3.9)
’ [ d*zid*as Sy (1, py)S1 (22, p3) '

Here r* = 2%, — x%; is the space-time separation of the pair, ¢* = p] — pj is the pair momentum
difference and K = p; + p is the total pair momentum, respectively. We see that the correlation
function can be described as an integral of the source function with the two-particle correlation
function over the space-time separation of the pair.

The general idea of femtoscopic analysis is to probe the source function through the cor-
relation function. As seen in Eq.(3.8) we can consider the two-particle wave function ¥ as a
kernel that transforms from coordinate-space basis to the relative momentum basis. So if the
particle momenta are correlated with their emission points (space-momentum correlations), the
correlation radii [7; will depend on the total momentum of the pair.

In heavy-ion collisions, space-momentum correlations arise due to the collective expansion
of the source. Pions that are produced from resonance decays will usually originate from a larger
space-time region and have low momentum. These particles may also exhibit space-momentum
correlations, therefore the correlation radii measures the size of the regions emitting particles of
a given momenta. This is important to stress, the correlation function does not describe the size
of the whole source, only the so-called “region of homogeneity” [64]. The homogeneity length
is the size of the region that contributes to the pion spectrum at a particular three-momentum p.

The term |\I'|2 is used as a weight in the numerator of the wave-function. If we assume the
two-particle wave-function is described only by the quantum statistical effect (e.g. no Coulomb
forces) we get:

1 , , . .

(g, 7)]*> = 5| exp(=ip1za = ipams) + exp(—ipsra — ip1zg)|?
1 , .

= 5 (©xp(i(p1 = p2) (@ — 7)) + expl(—ilps — p)(wa —wp) +2) 1O

=1+ cos(gr)

where ¢ = p; — py is the relative pair momenta and r» = x4 — xp is the pair separation.

From this result we can see that the Bose-Einstein correlation effect has the form of a cosine.
This means that the correlations will be maximum if the particles have either almost the same
momentum or are emitted from almost the same space-time point. The correlation effect arises
when the wave-functions of particles with small relative momenta overlap and start to interfere.

There are several assumptions that have been made to get the above results [65]. The first
assumption is that we have neglected higher order symmetrisation in the system. If there are more
than two identical particles in the system higher order symmetrisation will affect the spectra. This
is only important when the phase space density approaches unity.

The second assumption is the already mentioned requirement that the emission process is
initially uncorrelated. This allows us to write the two-particle emission probability as a function
of one particle source functions.
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The third assumption is the so called smoothness approximation. This means that the regions
of coherent emission must be small compared to the size of the system ra, 75 << |xa4 — x5
The momentum dependence of the source emission function must be sufficiently smooth:

1 1
S(z1,p)S(x2,p2) = S(21, K — 5‘1)5(37%[( + 5(1) ~ S(x1, K)S(x9, K) (3.1

The final assumption is the equal time approximation. For systems with Coulomb or strong
interactions we must neglect non-zero time component of the evolution matrix, in order to iden-
tify it with the pair rest frame.

3.1.1 Parametrisation of the correlation function

From Eq.(3.8) and Eq.(3.10) we see that the shape of the source will manifest itself in the shape
of the correlation function. We assume that the source can be described as a static 3-dimensional
Gaussian:
S(r)=N no_ 3.12
(r) = Nexp < 4R 4R? 432) ©12)

This means the correlation function will also be a Gaussian. With a Cartesian parametrisation
we get:

CF(q) =1+ Xexp(—R3q; — Ryq; — R2q2) (3.13)
Here ¢ = p; — p» is the difference in pion momenta that allows us to look at the correlations as
a function of a single momentum parameter, and the A parameter determines the strength of the
correlations. R; is the spatial size of the source for directions © = x,y, .

The correlation function in Eq.(3.13) is integrated over the total pair momentum /. Usually
the dependence on K is checked by dividing the correlation function in bins of the transverse pair
momentum Kr = |pr; + pr2|/2. We then assume that each separate K bin is approximated
by a static source.

For convenience we introduce the so called “out-side-long” coordinate system. The out-
axis is along the pair-direction for each separate pair. The long-axis is along the beam direction
and the side-axis is perpendicular to both out and long. Fig. 3.2 shows a representation of the
decomposition.

Notice that this coordinate system is not global, it is individual for each pair. We can de-
compose the three-momentum vector q into the “out-side-long” directions to get the correlation
function in the form:

CF((]) =1+A eXp(_Rzutqgut - Riideqzide - Rl20ngql20ng) (3.14)

This can be simplified by looking at the invariant correlation function. We look at the correlations
as a function of ¢;,,, = |@]. The correlation function then becomes:

CF(qimy) = 1+ Aexp(—R2,,¢2,,) (3.15)

Both the one-dimensional and the three-dimensional forms of the correlation function is em-
ployed for the analysis of experimental data.
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P

Rside

Figure 3.2: A representation of the out-side-long direction compared to the source. Figure taken
from [65]

3.1.2 Azimuthally dependent correlations

In Eq.(3.14) azimuthal symmetry has been assumed. If we disregard this assumption the corre-
lation function can be written as:

CF(q) =14 Xexp (Z —q,-q]-Rin> (3.16)
ij

Here 7, j = o, s, corresponding to “out”, “side”” and “long” directions respectively. R,, = Ry,
R, = Rgige and Ry = Rjong are the old radii. R, and R are the off diagonal components
that carry information about the anisotropy of the collision. If we assume azimuthal symmetry
the off diagonal components vanish.

It is possible however to create a correlation function dependent on the azimuthal angle ¢.
We can calculate the Fourier components R?,, = (R2(¢) cos(n¢)) and use them to estimate the
eccentricity of the source [66, 67, 68]:

2

Rs,2
=g (3.17)

Azimuthally dependent HBT has been studied at STAR [69] and is underway in ALICE [70]. It
will not be studied in more detail in this work.
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3.1.3 Spherical harmonics correlation function

It is also possible to use another parametrisation of the correlation function. The main advantage
of this spherical harmonics approach is that the full 3D information is encoded in several 1-
dimensional histograms [71, 72, 73]. The moments of the spherical harmonics decomposition
are given by:

1
CP' () = 7= / d6d(c088)C (qom, 6, )Y (6, 6) (3.18)

Here the correlations are given as a function of the Euler angles, which can be connected to the
“out-side-long” space by the relations gjong = Giny 08 0 and oy = Gine sin 0 cos ¢. Y represent
the spherical harmonics. For identical particles from collisions with symmetrical beams odd [
and odd m for even [ component vanish. The first three non-vanishing moments are C{, C9 and
C2. They capture essentially all of the 3-dimensional structures. The C{ moment is the angle-
averaged component and corresponds to the C'F(¢;,,,) correlation function. The CY component is
weighted with cos? 6, if it is non-zero it means the longitudinal and transverse sizes are different.
The C? component is weighted with cos? ¢ and measures the difference between the “out” and
“side” directions.

The use of spherical harmonics offers certain advantages compared to using Cartesian co-
ordinates. In addition to capturing all the 3-dimensional information in several 1-dimensional
histograms, spherical harmonics also avoid problems of coverage due to the kinematics of the
pair. While the spherical harmonics approach has certain advantages it will not be employed in
the main subject of this thesis, and we will not go into further details. In this thesis we have used
the Cartesian representation of the correlation function in order to make one to one comparisons
with experimental results and due to the complicated background treatment required of the 7K
correlation function in pp collisions.

3.1.4 Extracting the correlation function from experiment

In experiment the correlation function can be defined as C'F(q) = % The numerator rep-
resents the two-particle momentum distribution N(q) = P»(¢) and is measured directly. The
denominator is equal to the product of two one-particle momentum distributions and is obtained
by the so called mixing procedure. Particles from different events are used to form pairs which
are used to create an uncorrelated two-particle momentum distribution, we use this distribution
as our denominator D(q). Unfortunately this method introduces non-femtoscopic correlations at
high ¢ originating from the lack of energy-momentum conservation in the mixed events. These
correlations must be taken into account in the fitting procedure.

Particles in experiment will also interact through the Coulomb and strong nuclear forces.
These interactions will introduce correlations which also have to be taken into account in the
fitting. For charged identical bosons the Coulomb interaction dominates and fitting can be done
with the following formula [65]:

CF(q) - (1 - )‘) + AK(QMU) (1 + exp (_Rgutqzut - Riv‘,dqu{,de - R?ongq?ong)) (319)
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Here K (g;,,) is a function taking into account the Coulomb effect.

In proton-proton collisions or in peripheral heavy-ion collisions the produced multiplicity is
small and conservation laws can lead to a specific rise of the tail of CFs at large ¢;,,,,. To take into
account this effect or any other non-femtoscopic correlations the “baseline function” B(g;,,) can
be introduced in 1D or 3D equations. Particularly in the case of proton-proton collisions the
following shape of the CF can be used:

CF(Giny) = [(1 = A) + AK (Giny) (1 + exp(—R?nvqfnv))] B(qinw) (3.20)

The function B(g;,,) describes the non-femtoscopic background and must be obtained from
either experiment or a model. The baseline function will typically be obtained from a fit to a
correlation function from a model simulation without any quantum statistical effect. The model
CF will then describe only the non-femtoscopic effects of the system. After the baseline function
B(qiny) is found through a fit the fitting parameters are fixed and kept as constants during the fit
of the experimental data.

Because the choice of baseline function can have a strong impact on the final results it is
important to chose a source for the baseline which is as reliable as possible. Unfortunately it is
very difficult to extract the baseline directly from experiment, which is why a model is usually
used. It is important to keep in mind, however, that the following results are good as long as the
model is reliable.

3.1.5 Extracting the correlation function from microscopic models

In microscopic models we have the full momentum information of all particles. However the
quantum-statistical effect which is the source of our correlations is not present in current models.
N(gw)
N(q. 1)’
Here N(q,w) is the two-particle momentum distribution taken from the model weighted by a
factor w. The weight w = 1 + cos(gr) is taken from Eq. 3.10 and introduces the correlations by
accounting for the quantum statistical effect. N (g, 1) is the unweighted two-particle momentum
distribution, meaning is it uncorrelated and can be used as the background. This we will call the
“pure” correlation function.

It is also possible to simulate the experimental procedure by creating the denominator by us-
ing pairs made up of particles from different events. In this case the correlation function becomes

In order to study correlations from a model we use the correlation function C'F(q) =

CF(q) = B(?q‘;) where B(q) is the two-particle momentum distribution of particles from dif-

ferent events. This will introduce non-femtoscopic correlation into the correlation function, since
there is no energy-momentum conservation for pairs from different events. This will be called
the “mixed” correlation function.

In most microscopic models there are no Coulomb or strong final state interactions. This
means that if you want to take these effects into account it must be done in the weighting proce-
dure, but for two-pion correlations we will consider only the pure Bose-Einstein effect. Eq. 3.20
can still be used for the fitting, but with K (g;,,) = 1. The function B(g;,,) can be put to one
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for the “pure” correlation function or it can be taken in a form of a polynomial describing the
background for the “mixed” correlation function.

Unlike for experiments it is possible for model data to calculate the mixed correlation func-
tion with w = 1, in which case the correlations present are all non-femtoscopic in origin. The
baseline can be fit to these non-femtoscopic correlations and then used in the femtoscopic fit.
The reason for doing this is to reproduce the experimental analysis method as closely as possi-
ble. While in experiment a model is used to create the baseline, for a model prediction one has
complete information about the shape of the baseline.

3.2 Nonidentical particle correlations

Up to now we have only discussed correlations between identical particles. However it is also
possible to consider correlations between non-identical particles. For identical particle pairs
Final State Interactions (FSI) were considered as an effect that had to be corrected for. For
non-identical particles on the other hand there is no quantum statistical effect, and Coulomb
and strong FSI is the source of the correlations. The Coulomb effect dominates for charged
pairs, which means that whether the pairs have the same or different charge sign is important.
Particles will have negative correlations for pairs with same sign charges, and positive for pairs
with opposite sign. Furthermore the strength of the correlation depends on the length of the
interaction time of the two particles.

The main advantage of studying non-identical particle pairs, as opposed to identical pairs, is
that it allows one to probe the asymmetry of space-time emission between the two particles in
the pair. This can be achieved by using the so called “double-ratio” formalism.

3.2.1 Formalism

Symbols and conventions used in non-identical particle correlation analysis are introduced in this
section and will be used consistently throughout this work.

The laboratory frame is the rest frame of the emitting source, known as the Centre of Mass
System (CMS). In this reference frame particle ¢ is described by its four-momentum p; and
space-time position x;:

pi = (Ei, pi)

w = (1, 7) (3.21)

Here 7; can be decomposed in z, y, z, where z is along the beam direction and x, y is along the
transverse plane.

When looking at a pair we use the centre of mass rest frame of the pair, known as the Pair
Rest Frame (PRF). All values in PRF are market with an asterisk *. Since we are looking at non-
identical particles it is important to know which particle is the first in the pair. By convention we
chose the particle with the smallest mass to be first, or if they have the same mass the particle
with positive charge.
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The space-time difference of the pair is described by 7" and At:
(3.22)

The four-momentum of the two particles in the pair can be used to create two quantities describ-
ing the momentum of the pair, namely the total pair momentum A and half the relative pair
momentum k*:

K =pi+p2

L — P1 ;P2 (3.23)

The reason k* is marked with an asterisk is that it is also the momentum of the first particle in
PRF:

k* = pi = —pj (3.24)

Again we introduce the “out-side-long” parametrisation. “Out” is along the pair-momentum
K, “long” is along the beam direction z and “side” is perpendicular to both. We can decompose
r* and k* into “out-side-long” directions. First the pair must be boosted into the Longitudinal
Co-Moving System (LCMS):

« _  LCMS _ _ LCMS
kl:ng =D = "Dy (325)
Tlong = Tz — 12,2
We then boost the pair into PRF along the “out”-direction:
Kt = Dl out = —D3
*out i,out 2;01!15 (3 26)
side — P1,side = P2 side
Tout = TTout ~ "20ut (3.27)

* _ * *
Tout = rl,side - rQ,side

The relations between pair separation in CMS and PRF then become:

Tow = Y1 (Tow — BrAtLoms)
Tside = Tside
Tiong = Vz(Tlong — B=At) (3.28)
t" = yr(Atroms — Brrout)
Atpons = V(A — B.Tiong)

P Pz

z
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3.2.2 Asymmetry

We will study the asymmetry of a charged particle pair. Assuming that Coulomb forces dominate
we get:
CF(E") =A.(n)[1 4+ 2 (r*(1 + cos6%))]

Ac(n) = 2mn [exp(2mn) — 1]

Here A.(n) is the Coulomb (or Gamow) factor, = 1/(k*a), a = 1/(uz122¢?) is the Bohr radius.
0* is the angle between the relative pair momentum &* and the pair separation r*. For same-sign
pairs both the Coulomb factor and the correlation function is less than unity and the Bohr radius
is positive. The term 1+ cos 0* is always positive. We then get maximum strength of correlations
when cos* < 0. This means for 90° < 0* < 270°, the vectors k£* and r* are anti-aligned.
Conversely the correlations become weaker when £* and * are aligned, cos 6 > 0. If we look
at opposite sign pairs the Coulomb factor and the correlation function are greater than unity and
the Bohr radius is negative. We still get the strongest correlations for cos 8* < 0.

This can be explained if one realises that k* and r* anti-alignment means that the particles in
the pair are emitted moving towards each other, and will then have a longer interaction time than
if £* and r* are aligned and the particles move away from each other.

The angle 6* is not directly accessible for the experimental measurement. It is however
possible to use the momentum of the two particles to calculate the total pair momentum A and
the relative pair momentum k*. The angle between K and £* will be called . We can connect
U to #* through ¢ which is the angle between r* and K:

(3.29)

U =0"+¢ (3.30)

A representation of the momentum vectors and their angles can be found in Fig. 3.3.

We can divide our pairs into two groups. The first group has K and k* aligned (cos ¥ > 0),
the second group has K and k* anti-aligned (cos U < 0). Pairs from each group can be used to
create two correlation functions: C'F'* corresponding to group one, and C'F'~ corresponding to
group two. If these two correlation functions are different it would mean that one of the groups
has (cos 0*) < 0 which means that the other group has (cos 8*) > 0. Thus we have a correlation
between cos ¥ and cos *. We obtain from Eq.(3.30):

(cos W) = (cos(0" + ¢)) = (cos 0" cos ¢ — sin 0 sin @) (3.31)

We are interested in the signs of cos ¥, cos * and cos ¢. If we have an angle « that is on average
—90 < a < 90 then we have (cos &) > 0 and (sin ) = 0. This corresponds to the angle between
two vectors that are on average aligned. For two vectors that are on average anti-aligned we have
(cosa) < 0and (sina) = 0. If we assume the signs of (cos ¥) and (cos ¢) are correlated we
get:

sign (cos U) = sign (cos 0") sign (cos ¢) (3.32)

An easy way to see if there exists asymmetry in the system is to plot the “double-ratio”™: CF* /C'F~.
If the double-ratio is above unity it means we have (cos6*) < 0 when (cos¥) > 0 and
(cosB*) > 0 when {(cos¥) < 0. From Eq.(3.32) we can see that in both cases (cos¢) < 0.
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Figure 3.3: Momentum vectors of the pair, with the angles U, §* and ¢. Figure taken from [74]

This means that on average K and r* are anti-aligned. If the double-ratio is below unity the
opposite is true, we have {cos ¢) > 0 and K and r* are on average aligned.

It is possible to extract even more information out of the double-ratio if we consider the case

where ¢ — 0 [75]: .
g]f;:‘ ~14+2(f)/a, ¢—0 (3.33)
Here ¢ corresponds to the kinematical direction chosen when dividing into CF'™ and CF~. So
far we have considered dividing by the sign of cos ¥, which is equivalent to k,, > 0 for CF'*
and k7, < 0for C'F'~. Itis possible however to chose either i = out, i = side or i = long. This
will give us information about the asymmetry in “out”, “side” and “long” directions respectively.
However since the pair-momentum K has no “side”-component by definition the side-axis for
CF™ and C'F~ must be chosen arbitrarily, and by azimuthal asymmetry the side direction should
have CF}, /CF_, = 1. This can be a useful experimental cross-check.

The “out”-direction double ratio is the most interesting because it allows us to probe the
emission asymmetry along the pair-momentum. The existence of such an asymmetry tells us
that one particle type is emitted on average either earlier or closer to the source in the fireball.
By fitting the double ratio it is possible to extract quantitative information about this asymmetry,

which gives us dynamical information about the system.
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3.3 Femtoscopy results in the ALICE experiment

The ALICE collaboration have reported the results of femtoscopic analysis of meson and baryon
pairs measured in PbPb collisions at /s = 2.76 TeV, and in pp collisions at /s = 0.9 TeV,
Vs = 2.76 TeV and /s = 7 TeV. The main features of the femtoscopic measurements in
heavy-ion collisions where:

e The values of the correlation radii were found to be almost independent of the beam energy.
e The increase of the size of the femtoscopic radii increasing multiplicity in events.
e The decrease of the correlation radii with increasing pair transverse momentum k.

This can be understood as a manifestation of a strong collective flow. The LHC data extends
the energy range of heavy-ion collisions significantly, and the energy dependence of the femto-
scopic radii is found to scale with (N, / d'r))l/ % The ALICE “region of homogeneity” is almost
twice the size of the same region for central RHIC collisions, and is found to scale linearly with
<dN ch/ d7l>

The three-dimensional 77 femtoscopic radii in /s = 2.76 T'eV central PbPb collisions are
shown in Fig. 3.4. They are significantly larger than the radii measured in /s = 200 GeV
central AuAw in STAR [76]. Similar to the STAR data the ALICE radii show a clear dependence
on kp, with decreasing radii with increasing kr. This is characteristic for an expanding source
due to the smaller homogeneity lengths at larger k7.

By comparing results for (k7) = 0.3 GeV//c with the results from other experiments one can
get a beam energy dependence of the radii, presented in Fig. 3.5. The LHC data extends the
energy range significantly, and the radii is found to scale with (dN./ dn)l/ 2,

The size of the homogeneity region can be represented as a volume V' = Rt Rsige Riong. The
size of the ALICE “region of homogeneity” (Fig. 3.6) is almost twice as big as for central RHIC
collisions. The size of the volume scales with (d N, /dn).

The centrality dependence of the femtoscopic radii are shown in Fig. 3.7. All three radii, for
all kp grow with decreasing centrality (i.e. increasing multiplicity). This is as expected since a
system with larger initial size should also have a larger size at freeze-out. The kr dependence of
the radii is also found to hold for all centralities.

Femtoscopic studies in previous experiments have revealed a scaling in transverse mass mr.
The source sizes versus mp for different particle types (7,K,p) fall on the same line. This m-
scaling is expected to be an additional confirmation of a hydrodynamic expansion of the source.
In Fig. 3.8 the correlation radii of several different pair types are presented as a function of
transverse mass my. Correlations of both proton, kaon and pion pairs are shown to exhibit a mp
dependence.

Correlations have also been calculated for pp collisions, and it is interesting to see if it is
possible to achieve the same scaling as for PbPb collisions. It was found that while radii from
pp collisions of different energies scale (Fig. 3.9), they do not scale with radii from PbPb
collisions. The top energies of pp collisions have multiplicities comparable to lower energy
heavy-ion collisions, but still have a smaller radii.
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The system created in ultra-relativistic pp collisions at LHC energies might be similar to
the system created in non-central heavy-ion collisions because of the large energy deposited
on the overlapping region and therefore may also manifest a collective behaviour. The highly
compressed strongly interacting system is expected to undergo longitudinal and transverse ex-
pansion, which may be observed through a decrease of the correlation radii with (kr) and by the
(m7)-scaling of the radii, as is the case in PbPb collisions.

The ALICE collaboration have already studied two-pion correlation radii in pp collisions at
Vs = 900 GeV [80] and /s = 7 TeV [81], and KyKj correlation radii in pp collisions at
Vs =T7TeV [82,83].

Two-pion Bose-Einstein correlations in pp collisions at /s = 900 GeV and /s = 7 TeV
have been successfully described within the EPOS+hydro model [84, 85]. It was shown that
the hydrodynamic expansion substantially modifies the source evolution compared to the “clas-
sical” EPOS scenario with independent decay of flux-tube strings, allowing one to describe the
transverse momentum dependence of the correlation radii at high multiplicities. Our study with
the QGSM model (Chapter 5) shows that at small multiplicities the pion correlation radii can be
described by the “classical” string scenario. This observation coincides with EPOS observations.

Our experimental study of PiK correlations (Chapter 6) is performed as an additional study
of the my dependence shown in Fig. 3.10, using non-identical correlations.
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Chapter 4
Models

Theoretical models that simulate particle collisions are very useful tools that complement exper-
iments and allow us to get a deeper understanding of the underlying physics. Models can be used
in a predictive fashion and successful model predictions of data can be a powerful indication that
the physics assumptions of the model are correct. But it is just as important to perform postdic-
tions of experimental data. In such a case it is possible to tune the model parameters to explain
the data.

Theoretical models can be roughly divided into two groups. Macroscopic models deal with
collective phenomena and usually need some other model to transfer the final state of the simula-
tion into particle spectra. The second group is microscopic models which deal with the evolution
of individual particles as well as their interactions. This chapter will give a short introduction to
hydrodynamic type models, the main form of macroscopic models. More attention will be given
to string models, a form of microscopic models, and specifically the Quark Gluon String Model
(QGSM) and the Ultra relativistic Quantum Molecular Dynamics model (UrQMD).

4.1 Hydrodynamic models

As discussed in chapter 2 a relativistic heavy-ion collision goes through many stages. After the
initial collision a hot and dense matter of quarks and gluons is formed, and will rapidly equi-
librate as it expands. With the system in local thermal equilibrium pressure gradients will lead
to a dynamical evolution of the fireball. The system can be described through its macroscopic
variables, e.g. temperature, pressure, volume, etc, and is governed by the equations of hydrody-
namics. Energy-momentum, as well as other variables are conserved locally.

The energy-momentum of the fluid is described through its energy-momentum tensor:

T (z) = (e(x) + P(x))u*(z)u”(z) — ¢" P(z) 4.1)

where () is the energy density, P(x) is the pressure and u/(x) is the four-velocity of the field
at space-time point z. Conservation of energy-momentum is required:

8,T" =0 4.2)

49
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and the four-velocity of the field must be normalised:
uut =1 4.3)

The indices j, v go from 0 to 3, and following Einstein’s summation convention indices appear-
ing twice are summed over. This provides us with five equations, four from Eq. 4.2 and one from
Eq. 4.3, while we have six variables: u,, € and P. The last equation that is called the equation of
state, links the pressure to the energy density of the system:

P=c’e (4.4)

where ¢, is the speed of sound in the medium. The hydrodynamic theory of particle production
in ultra-relativistic collisions was put forward by Landau in 1953 [87]. For the sake of simplicity
Landau chose the equation of state for an ideal gas of ultrarelativistic particles, implying that
¢? = 1/3. This has later been proven to be quite close to reality. In contrast to the model of
Landau that assumed momentary stopping of the Lorentz contracted nuclei in the overlapping
volume, the Bjorken model [88] considers the case where two nuclei pass through each other
without stopping. This allows for a very elegant solution of the evolution of energy density in
the volume:

de e+ P

e . 4.5)
Here 7 = v/t? — 22 is the proper time of a fluid element.

There are some limitations to this approach. The initial pre-equilibrium stage of the early
evolution is not included, but the hydrodynamic modelling can be used to find the necessary
equilibration time of the system. Also the model can only provide the energy-momentum distri-
bution at freeze-out. In order to get particle yields some other method, such as the Cooper-Frye
prescription [89], must be employed. Once the particle yields are obtained it is possible to use a
microscopic model as an afterburner during the cascade step of the simulation, for recent devel-
opments see [90] and references therein.

The macroscopic approach to the evolution of the system has been very successful in predict-
ing and describing many experimental observables, over a large energy range. The results from
RHIC of the QGP as a perfect liquid has further increased the importance of hydrodynamic mod-
els as a method for studying heavy-ion collisions [12, 14]. In [90] the hybrid hydrokinetic model
hHKM is used along with the Cooper-Frye prescription and particle cascade with the UrQMD
microscopic model. The femtoscopic radii calculated with this approach are presented in Fig.
4.1 and v is presented in Fig. 4.2.

4.2 Microscopic models

In microscopic models the full evolution of all particles created is described. Such a model
can be based on fundamental QCD or it can be an effective model. The main advantage of
doing calculations with a microscopic model is that you have the complete information about the
collision, and in addition to calculating experimental observables it is also possible to study the
direct causes of the behaviour of the observable.
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4.2.1 String models

String models are a form of effective microscopic models where particle production is done
through the excitation and breaking of colour flux-tube strings. The string picture was first
introduced in the Lund model [91] which we will describe in more detail below. The essence
of the string picture is that the fireball is described as interactions between quarks and colour
flux-tube strings.

The Lund model is a quark-parton model. It is semi-classical in nature, but is however quan-
tum mechanically constrained. Such a constraint is Heisenberg’s uncertainty principle:

ApAx > 1 4.6)

This means we can not get both momentum p and position x with a high precision. We can
however employ the rapidity y for large energies:

Ay =Ap/E 4.7

which gives
AyAz > 1/E (4.8)

From this equation it is obvious that for large enough energies we can describe both rapidity and
position of a particle to a large precision.

Yo-yo particles

Let us look at a system of two particles in their Centre of Mass System (CMS). If the particles
are electrically charged the field lines will spread out through space. If the particles have a
colour charge however the colour field lines will not spread out, but remain in a thin tube-like
region, a colour flux tube. This is because of the gluon-gluon interaction. If we try to separate
the particles we know from asymptotic freedom in QCD that the energy in the flux tube will
increase, and eventually the tube will break by creating new gg-pairs from the vacuum.

We will consider the bound state of a massless quark and an anti-quark in 1+1 dimensions.
Since they are massless the quarks always move with the speed of light. The Hamiltonian for the
pair-system is:

H=T+V = |pi| + |p2| + Klz1 — 23] 4.9

Here the kinetic part 7" is given by the momenta of the two particles pi, po, and the potential

energy V is given by the positions 1, x5 and the string tension parameter . The Hamiltonian

. . p dH .
equation of motion — = ——— gives us:
dt dx

dpi
=4 4.10
il K (4.10)
The system is in a so-called “yo-yo mode”. Both quarks are moving away from each other with
the speed of light until they reach a maximum relative distance L. At this point p; = p, = 0 and
L = |zy — x5|. The quarks will simultaneously change direction and move towards each other
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Figure 4.3: The time evolution of the position and momentum of the quarks in the “yo-yo”-
system in the centre of mass frame. Figure taken from [91]

until they pass and reach the maximum relative distance L again. The evolution of the yo-yo
system is shown in Fig. 4.3.

In this system with two massless quarks the mass of the bound system is carried by the
colour flux tube. The mass of the system is given by the string tension and the maximum relative
distance M = kL. Since the particles move at the speed of light the period for the “yo-yo”
motion is 7" = 2L = 2M /k. The area A spanned by the motion of the quarks is proportional to
M?2:

M?

K2

A (4.11)

Up to now we have considered the quarks in the CMS frame, but we can also look at the

“yo-yo” particles from another frame, e.g. the lab frame, by a Lorentz boost 3. In the CMS
frame we have x; = 4+t and E; = +p;, we Lorentz boost and get:

t' =t — Bz;) = v(1 ¥ B)t

(4.12)
p; =7(pi — BE;) = (1 F B)pi
which show that the equation of motion is Lorentz invariant:
dp’  d
R (4.13)

v dt
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X,

Figure 4.4: Time evolution of the position of the quarks in the “yo-yo”-system in the lab frame.
Figure taken from [8§]

In the new frame the maximum distance L’ is Lorentz contracted and the period 7" is time dilated:
L'=~(1=pB)L = Lexp(—y)
T =~T = T coshy

where y is the rapidity difference between the two frames.

The first crossing point in the new frame happens at ¢t = 7"/2,x = T'/2 — L'. This gives us
the velocity v’ of the system in the new frame:

i )R2-L 1T-21-p)L L—-(1-8)L
v = T2 2 T = 7 = (4.15)

The “yo-yo”-system moves with a constant velocity  with an initial position of z:(t = 0) = 0.
Not surprising since we gave the system a boost of 3. Note that while the system (i.e. the particle)
moves with a speed [, the individual quarks still move with the speed of light. An illustration of
the “yo-yo”-system in lab frame is given in Fig. 4.4.

All momentum in the system is carried by the endpoint quarks, this is possible because the
only system where both quarks have zero momentum simultaneously is the CM frame.

(4.14)
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Figure 4.5: Particle production from string fragmentation in the “yo-yo”-model. Figure taken
from [91]

Particle production

We will now look at particle production from the breaking of the string between two quarks
moving in opposite direction.

Again we look at two quarks ¢y and gy in their CMS, moving in opposite directions. At
time ¢; and point x; the string breaks and produces a new quark pair ¢;G; moving in opposite
directions. At time ¢, and point x2 a second quark pair ¢2G> is produced moving in opposite
directions. The quarks ¢;¢» will pass each other and form a “yo-yo” system. More ¢q pairs are
produced as the original string breaks further, creating ¢;¢; “yo-yo” subsystems. This is seen in
Fig. 4.5

The hadron formed from ;g2 needs to have a proper mass m. The energy is E = x(z2 — 1)
and the momentum is x(to — ¢1). The mass is then described by:

(29 — 21)* — (ty — t1)? = m?/K? (4.16)
This is a hyperbola parametrised by:
(9 —x1,ts — 1) = %(Cosh y, sinh y) 4.17)

Here we recognise L = m/r as the maximum relative distance between the particles and L? =
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m?/k? as the area spanned by the quarks in the CMS of §,¢s. ¥ is the rapidity of the hadron in
the lab frame.

Due to the fact that the hadron is a composite object, the formation time is not well defined
in this model. One possible definition is the first time the quarks in the hadron pass, “yo-yo”
formation time. A second possibility is the time where the last quark in the hadron is formed,
“constituent” formation time. The choice of formation time is arbitrary, but must be used con-
sistently. Constituent formation time is chosen as it has been found to be in accordance with
experimental data [92].

The pair production points are casually disconnected. In quantum mechanical terms a pro-
duced particle is initially virtual before it becomes "on-shell" and becomes able to interact.

Yo-yo with heavy quarks

It is also possible to consider the case where the quarks in the “yo-yo” system are not massless.
In this case the quark motion follows hyperbola instead of the light-cone:

(x—21)* — (t —t1)? = pi? /K (4.18)

where p is the mass of the quark. The asymptotes of the hyperbola will correspond to the motion
of massless quarks. Two quarks with hyperbola centres (x1,%;) and (x2,t2) can then form a
hadron with mass m that satisfy the same conditions as for massless quarks:

(xg —x1,te — 1) = m(Cosh y,sinhy) (4.19)
K

One major difference from massless quarks is that energy-momentum conservation means that
a qq pair can not be created at a single space-time point. The quarks have to be produced with
some spatial separation. Even so the majority of the mass of the particle is still carried by the
string, so a yo-yo with heavy quarks is a complication without much gain.

4.2.2 The Quark Gluon String Model

The description of soft hadronic processes cannot be done within pertubative QCD. Therefore,
the quark-gluon string model [93] employs the so-called 1/ series expansion [94, 95] of the
amplitude for processes in QCD, where N is either number of colours N, [94] or number of
flavors N¢ [95]. In this approach the amplitude of a hadronic process is represented as a sum over
diagrams of various topologies, so the method is often called fopological expansion. 1t appears
that at high energies and small momentum transfer the arising diagrams are similar [96, 97] to
processes describing the exchange of Regge singularities in the ¢-channel. For instance, planar
diagrams correspond to the exchange of Reggeons, and cylinder diagrams correspond to reactions
without quantum number exchange in the ¢-channel, i.e., taking place via the Pomeron exchange,
where Pomeron is a composite state of the reggeised gluons. Processes with many-Pomeron or
many-Reggeon exchanges are also possible. To find the amplitude of multiparticle production
one has to cut the diagrams in the s-channel, and the physical picture of quark-gluon strings
arises. Namely, new particles are produced through the formation and break-up of quark-gluon
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Figure 4.6: Diagrams of particle production processes included in the modelling of pp interac-
tions at ultrarelativistic energies. See text for details.

strings or exited objects consisting of quarks, diquarks and their anti-states connected by a gluon
string.

Figure 4.6 shows the subprocesses with particle creation taken into account in the current
Monte Carlo version of the QGSM [98] for pp collisions at ultrarelativistic energies. The inelastic
cross section consists of three terms

oih(s) =op(s) 4+ osp(s) +opp(s) (4.20)

where op(s) is the cross section for the multi-chain processes described by the cylinder dia-
gram and diagrams with multi-Pomeron scattering [Fig. 4.6(a)], osp(s) by the single diffractive
processes with small [Fig. 4.6(b)] and large [Fig. 4.6(c)] mass excitation, corresponding to the
triple-Reggeon and triple-Pomeron limit, respectively, and opp(s) by the double diffractive di-
agram [Fig. 4.6(d)]. Other diagrams that are relevant at low and intermediate energies, such as
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undeveloped cylinder diagram or diagram with quark rearrangement [98], play a minor role here
because their cross sections rapidly drop with rising s. The statistical weight of each subprocess
is expressed in terms of the interaction cross section for the given subprocess o;(s)

wi = 0i(8)/Tine(s) . 4.21)

Then, the hadron inelastic interaction cross section g,e;(s) = 040($) — o) is split into the
cross section for single diffractive interactions osp(s) and the cross section for non-diffractive
reactions onp(s), as it is usually done in analysis of experimental data. By means of the
Abramovskii-Gribov-Kancheli (AGK) cutting rules [99] the inelastic non-diffractive interaction
cross section oy p(s) can be expressed via the sum of the cross sections for the production of
n = 1,2,... pairs of quark-gluon strings, or cut Pomerons, and the cross section of double
diffractive process

onp(s) = Z on(s) +opp(s) . (4.22)
n=1

The main interest in using this model in this work comes from its impressive predictive power.
QGSM has been used to calculate transverse momentum and pseudorapidity distributions of pp
and pp collisions for centre of mass energies /s = 200 GeV/, 546 GeV, 900 GeV, 1800 GeV,
2360 GeV and 7 TeV. These calculations have been compared with experimental data from the
UAL1, CDF, E375, ALICE and CMS collaborations. At such high energies the annihilation cross
section is almost zero and the main characteristics of particle production in pp and pp interactions
are essentially similar. Figs. 4.7 and 4.8 shows the transverse momentum and pseudorapidity
distributions respectively. One can see that QGSM offers a good description of experimental
data across almost two orders of magnitude of energies.

4.2.3 The Ultrarelativistic Quantum Molecular Dynamics model

The Ultra-Relativistic Quantum Molecular Dynamics model (UrQMD) [100, 101] is a micro-
scopic model designed for hadron-hadron, hadron-nucleus and nucleus-nucleus collisions. The
model is based on a phase-space description of the colliding system. Both hadronic and partonic
interactions happen through string formation and fragmentation. It contains 55 baryon and 32
meson states with corresponding antiparticles and isospin-projected states.

The energy range of the model is from a hundred MeV to hundreds of GeV. At low energies,
up to beam energies of 10 GeV/nucleon, the particle production is dominated by resonance
decays of mesons and baryons. At higher energies string excitation and fragmentation dominates.

The model contains many unknown parameters which have to be fixed by experimental data
or model assumptions. The elementary cross-sections are fitted to the available proton-proton,
proton-neutron and pion-proton data.

In contrast to QGSM, which is based on a colour exchange mechanism, UrQMD employs the
classical Lund picture of longitudinal excitation of the strings (Fig. 4.9). Particle production also
happens through string fragmentation. The colour string is assumed to be uniformly stretched
and produced hadrons will then be uniformly distributed in rapidity between the endpoints of the
string. Produced hadrons are propagated using the Hamiltonian equations of motion.
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Figure 4.7: Transverse momentum distributions of the invariant cross section of charged particles
in Non-Single Diffractive (NSD) pp collisions obtained in QGSM at |y| < 2.5 for all energies in
question. Experimental data are taken from [102, 103, 104, 105].
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Figure 4.8: The charged particle pseudorapidity spectra for (a) inelastic and (b) non-single
diffractive events calculated in QGSM for pp collisions at /s = 200GeV (6), 546 GeV (5),
900 GeV (4),2.36 TeV (3), 7TeV (2) and 14 TeV (1). Data are taken from [102, 105, 106].
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1) Longitudinal excitation

2) Colour exchange

47@ 47
—*
.

Initial Excited strings

Figure 4.9: Schematic illustration of string excitation mechanisms. The first example is the
longitudinal excitation employed in the Lund-based models. The second example is the colour
exchange mechanism used by among others the QGSM model. In both cases the figure shows
initially two protons moving towards each other, with the valence quarks of each proton depicted.
The strings then become longitudinally excited, with an exchange of quarks between the hadrons
in the second example.

The UrQMD model gives good agreement with experimental data, in particular it describes
the transverse mass spectra of hadrons in different rapidity intervals.



62

CHAPTER 4. MODELS



Chapter 5

mm correlations in QGSM pp collisions at
RHIC and LHC energies

Theoretical studies of high-energy particle collisions through the use of effective models give
important complementary results to experimental results. The use of such models prior to the
experiments gives predictions of results and offers proof of how good our understanding is of the
basic processes of a collision. After the experimental results have been published postdictions
from models are used to better our understanding. By changing parameters and turning on or off
processes in the model, the important contributions to the experimental results can be identified.

Two types of models, hydrodynamic and microscopic, have been described earlier in this
thesis. For this work a microscopic model, the Quark Gluon String Model (QGSM), will be
used. Simulations from the model at RHIC and low LHC energies will be used to calculate two-
pion momentum correlations and then compared with the experimental results. Since we have
the full information of what happens in the evolution of the system in the model, we can find
the important contributions to both the size of the system, and the dependence of the radius with
transverse momentum.

The complete information given to us by the model also offers the possibility to study particle
spectra at freeze-out, and use this information in conjunction with the femtoscopic data in order
to gain a more complete picture of the system.

5.1 Freeze-out study

The position and momentum of all particles at freeze-out in QGSM are readily available. This
data can be taken and plotted to show the distributions of particles at freeze-out. The distributions
are shown separately for four different particle species: m, K, p and A + ¥°. These are two
mesons and two baryons, one which is more populous for each type, and which exhibit a clear
mass hierarchy. In this way differences and similarities between particle species can be seen.
We study separately the last interaction points of the particles produced in inelastic and in
elastic collisions, as well as in resonance decays. Inelastic collisions are responsible for chemical
equilibration of the system, while elastic collisions drive the system towards thermal equilibra-

63
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tion. Resonance decays characterise mostly the individual properties of the emitted particles.

The phase-space distribution of the particles on the mass shell is a function of seven indepen-
dent variables: (7, p, t). For the sake of simplicity some variables are integrated over and different
space-time and phase-space three-dimensional distributions are studied separately. In the case
of central collisions of symmetric nuclei, where two coordinates in the transverse plane (z,y) as
well as (p,, p,) are equivalent, there are only ten different coordinate pairs: (¢, z), (t,7r), (£, p2).
(t,pr), (z,77), (2,p:), (2. pr), (rr,p2), (rr, pr) and (p., pr) [108].

The distributions that have been calculated are the longitudinal position versus time distribu-
2 2

d*N
tion —— (Fig. 5.1), the transverse mass versus time distribution ———— (Fig. 5.2), and the
dzdt , mpdmqpdt

transverse radius versus time distribution P (Fig. 5.3). These 2-dimensional distributions
rrarr
give visual information about the evolution of the system, and will be discussed in more detail

below.
In general all the freeze-out distributions show the mass hierarchy of the particles in question.
Heavier particles freeze out earlier in the evolution as heavier string become less prevalent. From

the decreasing freeze-out times we can see the relation of the masses: m, < mg < m, < my so.
2

d°N
The —— distributions are shown in Fig. 5.1. They show the freeze out time of the particles

z
on the y-axis and the freeze-out position in the beam direction on the x-axis. At time zero the
effects of the initial collision can be seen, with a large number of directly produced particles
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freezing-out early. A greater density of particles can be seen closer to the centre of the collision.
As time passes resonances are continuously produced as the two remnants of the collision are
moving in opposite directions. The heavier particles have a sharper peak. Production of pions
takes place up to ¢ ~ 18 fm/c in the central zone of the collision, whereas for kaons, protons

and lambdas these times reduce to 12, 10 and 7 fm/c respectively.
d*N
The ddl distributions are shown in Fig. 5.2. They show the freeze out time of the
mopdamyg
particles on the y-axis and the freeze-out transverse mass on the x-axis. Again the initial directly

produced particles appear at time zero. They go up to m; — mg = 2 GeV/c with the main body
of particles at lower momentum. A second peak can be seen just a few fm/c after the initial
collision, this peak comes from short lived resonances decaying. With increasing freeze-out time
we have the continuous production of particles from resonance decay, with decreasing transverse

mass.
2

The rdl distributions are shown in Fig. 5.3. They show the freeze out time of the par-
T ATy
ticles on the y-axis and the transverse radial position of the particles in the x-axis. We see the

directly produced particles at time zero, with greater concentration at smaller radius. Here the
second peak from short lived resonances is more pronounced, with a maximum r; at a later time.
Looking at the particles produced from resonance decays we can see an interesting ‘“Hubble-like”
expansion of the system as the freeze-out time increases.

Finally, the space-momentum correlations in the model are important in relation to femto-
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scopic studies. The p, — x distribution illustrates this correlation and is presented in Fig. 5.4.
Here the correlation in the sign of p, and x is clearly demonstrated. These correlations look
similar to the space-momentum correlations of hydrodynamic models, where they arise due to
transverse collective flow. In the QGSM model these correlations arise naturally from the LUND
hadronisation schema, as described in Eq. 5.1.

5.2 Momentum correlations

The main theoretical study of this thesis has been the usage of the QGSM model to calculate 77
femtoscopic correlations at 200 GeV” and 900 GeV which is RHIC and LHC energies respec-
tively. These model calculations have then been compared to published experimental data from
STAR and ALICE [76, 80]. The results of this study has been published in [107], the publication
is attached in appendix II. In this thesis we will present these results and make connections with
the freeze-out pictures presented in section 5.1 in order to put the work into a greater perspective.

As presented in section 4.2 the string length L = M,/ is dependent on the mass of the string
My and the string tension . At this point it is important to make a choice of either constituent or
yo-yo time, and in the present version of the QGSM model constituent formation time is chosen
for reasons described in section 4.2. The formation time ¢* and coordinate z* of the i-th hadron
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Figure 5.4: p, — x distributions from pp 900 GeV in QGSM

in the string centre of mass can be expressed as (for derivation see appendix A):

* 1 : 5
th=o- | Mo—2) pl
=t (5.1)
1

i
d=5 MS—QJ;E}‘

Here p7; and E7 is the longitudinal momentum and energy respectively of the j-th hadron pro-
duced by the decay of the string. We can then calculate the time ¢; in the laboratory frame and
boost the coordinates to this point.

a; = ag; + tipai/ Es
a=x,z

(5.2)

We can see from the equations that an increase in string tension will cause a reduction in for-
mation time. As the formation time is essential for the sizes calculated from the femtoscopic
method, we introduce a scaling of the string tension k£ = akg where kg = 0.88 GeV/ fm. This
is the only parameter that will be used to adjust the model.
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Figure 5.5: Calculated QGSM baseline for 900 GeV pp collisions in five K7 bins with o = 3

5.2.1 One-dimensional 77 correlations

The main theoretical background for identical particle correlations has been presented in section
3.1. In particular the methods described for extracting the correlation function from a micro-
scopic model have been used. In order to replicate experimental procedure the mixed correlation
functions were created by using particles from different events in the denominator. A test was
made calculating the correlation functions with the weight w set to unity to describe the back-
ground, and it was found that QGSM did not have any non-femtoscopic effects at low ¢;,,,, for the
first two K(p-bins. Fits using a flat background were performed and the results were compared to
the experimental findings at the STAR experiment at RHIC and the ALICE experiment at LHC.

The QGSM baseline was calculated by setting the weight w = 1 when creating the mixed
CF, this turns off the quantum statistical effect and leaves only non-femtoscopic correlations.
The baselines can be seen in Fig. 5.5. The baseline is flat at low ¢;,,,, for the two first Kp-bins
and rising at high ¢;,,, this rise is due to the lack of energy-momentum conservation when we
use particles from different events in our mixing procedure. For the higher Kr-bins a small dip
can be observed at low ¢;,,,,, indicating a non-femtoscopic effect. At high ¢;,, the effects of low
statistics can be seen, especially in the high Kr-bins. Differences in high ¢;,,,, bins may also arise
from event-by-event fluctuations. The shape of the baseline is also determined by the choice of
functional form, the second order polynomial chosen here will naturally dip or rise at high g,
if given the opportunity by statistics or fluctuations.

The correlation functions are calculated for both 200 GeV and 900 GeV with flat baselines.
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Figure 5.6: Calculated QGSM correlation functions for 200 GeV pp collisions in four K bins,
for three different values of the scaling parameter o

Using the scaling parameter o we find the best fit to the experimental data for 200 GeV using
a = 1.5 and for 900 GeV using o = 3.0. The effect of the scaling parameter on the correlation
function can be seen in Fig. 5.6 (200 GeV) and Fig. 5.7 (900 GeV).

As expected a larger scaling parameter (shorter formation time) led to a wider correlation
function (smaller source). The QGSM data with the chosen scaling parameters was then put
through a fitting procedure using Eq. 3.19 as the fitting function, disregarding the Coulomb
contribution (X' (¢in,) = 0) and using a flat baseline (B(gin,) = 1). This fitting procedure is a
reproduction of the experimental fitting procedures used in STAR and ALICE, however as seen
in the result of the fits in Figs. 5.8 and 5.9 the single Gaussian fit is unable to describe the low g;;,,,
peak in the correlation function. In order to get a better description of the correlation function in
the fit one may use the so called “double-Gaussian” fitting function [109]:

CFdouble(qqu) - [1 + )\1 eXp(_Rfyw,lq?nU) + )\2 eXp(_Rfyw,Q%‘Qnm)] D(qu)a (53)

where the parameters R, (1,2) and A1 2) describe the sizes and correlation strengths of two
different sources 1 and 2. These two sources can represent direct particles and particles produced
in resonance decays. As these two groups of particles are formed on average at very different
times and at different source sizes it makes sense to separate their contributions in the correlation
function. As seen in Figs. 5.8 and 5.9 the double Gaussian fit separates the correlation function
into a wide Gaussian representing the small size of the source of the direct particles and a narrow
Gaussian representing the large size halo of the particles produced from resonance decays, the
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Figure 5.7: Calculated QGSM correlation functions for 900 GeV pp collisions in five K bins,
for three different values of the scaling parameter o, compared with ALICE experimental data
[80]
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Figure 5.8: Single and double Gaussian fits of QGSM correlation functions for 200 GeV pp
collisions in four K7 bins with o = 1.5

two Gaussians represent two different regions of homogeneity.

The results of the fit for all K1 bins can then be plotted and compared with the experimental
results in Fig 5.10. A clear drop in source size with rising K can be seen. This is in contrast to
the reported ALICE results in [80], where the correlation radii is found to be independent of K
if a PHOJET/PYTHIA baseline is chosen. The conclusion in the ALICE paper is based on the
assumption that PHOJET and PYTHIA correctly describe the non-femtoscopic effects at low-
Ginv- One possible source for these effects are the so-called mini-jets. As these non-femtoscopic
correlations in PHOJET/PYTHIA become evident at larger K, they are the source of the Ky
independence in the ALICE analysis. However the rather successful description of the ALICE
points by QGSM suggests that there is no room for non-femtoscopic correlations at low g;;,,, up
to Ky < 0.7GeV/c.

To understand the origin of the Kp-dependence in experiment it might be helpful to study
the origin of this dependence in QGSM. As seen in Fig. 5.4 there is a strong p,, — x correlation
inherent to the QGSM model. Since only particles with close momenta (low ¢;,,,) contribute
to the correlation effect, these pairs also come from nearby space regions of the source. The
correlations measure not the size of the whole source, but the size of the regions which emit
particles of a given momenta, the region of homogeneity. Particles with high K7 have large
momenta and fly away from each other much quicker than particle pairs with small K7, so in
order to be correlated they have to be very close in coordinate space. This gives rise to the smaller
sizes at higher K.
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Figure 5.9: Single and double Gaussian fits of QGSM correlation functions for 900 GeV pp
collisions in five Kt bins with o = 3.0.

A second factor influencing the coordinate distributions is the ratio of direct pions to pions
produced from resonance decay. The fraction of pions which are direct or from resonance decay
changes with the collision energy and is presented in Table 5.1.

The three main resonance contributions in the model are p®* which is short lived, w and
K* which are long lived. Decays from these two last resonances are the main origin of the low
Qinv P2k in the correlation function, and contributes to a larger correlation radii. As seen in Fig.
5.11 the long lived resonances have a decreased relative yield at higher K, a second effect in
the model that contributes to a Kr-dependence.

Keeping in mind that the contributions from long lived resonances creates an exponential
tail in the pion emission function which translates into the non-Gaussian peak in the correlation

I* (fm) 200 GeV 900 GeV

Direct 7+ - 46.9% 37.5%
7t from pOF — 7707+ 33 37.1% 40.7%
at fromw — w7 71T 28.1 11.2% 15.9%

7t from K*F(K*0) — Kzt 8.0 42 % 5.5%

Table 5.1: The fraction of pions from decay of main resonance species in QGSM and the path
length [* of these states.
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Figure 5.10: One-dimensional 77" correlation radii as functions of K7 in pp-collisions at
Vs =200 GeV and /s = 900 GeV, compared with STAR [76] and ALICE [80] experimental
data. Both model results and experimental data are obtained from a fit using a flat baseline.
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Table 5.2: Parameters R;,, extracted from /s = 900 GeV pp collisions in QGSM by using
different fitting strategies as described above: The selected transverse momentum intervals are
0.1 < Kp <0.25GeV/c (KT1), 0.4 < Kp < 0.55GeV/c (KT3) and 0.7 < Kp < 1.0GeV/c
(KTS).

Method Rinvl(?) (fm)
KT1 KT3 KT5
1.00 0.77 0.66
1.26 0.84 0.71
1.10 0.84 0.71
1.23 081 0.71
5.04 326 1397
5 1.05 0.81 0.71
3.61 325 1383

B W =

function, it is useful to study further the effects of different fitting methods. In total five different
methods were employed to fit the same correlation function:

1. “ideal” CF is fitted to the single Gaussian with B(gin,) = 1

2. “mixed” CF is fitted to the single Gaussian with B(qn,) = 1

3. “mixed” CF is fitted to the single Gaussian with B(gin) = @ + bgine + ¢q2,,
4. “mixed” CF is fitted to the double Gaussian with B(gin,) = 1

5. “mixed” CF is fitted to the double Gaussian with B(gin,) = @ + bGiny + G2,

Here the single Gaussian refers to Eq. 3.20 and the double Gaussian refers to Eq. 5.3, in both
cases with K (gin,) = 0. The results of these fits are presented in Table 5.2. The “ideal” CF
fit gives a smaller correlation radius for all three K bins compared to the “mixed” correlation
function. The effect of using a polynomial baseline is mainly a small drop in the correlation
radius in the smallest Kp-bin. For both double Gaussian methods the separation can be seen
between one Gaussian for the direct pions and pions from short lived resonances on one hand
and another Gaussian for the pions produced from long lived resonances. It can also be seen
however that the Gaussian representing the direct pions gives a correlation radius corresponding
to the single Gaussian fit using the same baseline. The single Gaussian fit mainly represents the
direct pions and pions coming from short lived resonances, with only a small contribution from
pions produced from long lived resonances.

It is interesting to compare the results of the fits of the correlation functions with the freeze-
out pictures shown in Section 5.1. In Figs. 5.1, 5.2 and 5.3 the important role of long-lived
resonances can be seen. These resonances freeze-out much later in the expansion, and therefore
at larger distance from the centre. It is the effects of these long-lived resonances which can be
seen in the low ¢;,,, peak of the correlation function, and manifests as a large second radius in
the two Gaussian fitting approach.
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5.2.2 3-dimensional 77 correlations

Three-dimensional correlation functions have also been constructed for both /s = 200 GeV
and /s = 900 GeV. The full 3D correlation function is constructed using the same form

N(g,w)
CF(q) N 1)
in the “out-side-long” directions. We then use the fitting function in the form of Eq. 3.14, again
disregarding the Coulomb contribution K (¢;,,,,) = 0. The same QGSM data is used with the same
values of the scaling parameter for /s = 200 GeV (o = 1.5) and /s = 900 GeV (a = 3.0).
The presented figures of the 3D correlation functions in Figs. 5.12 and 5.13 are the slices in each
direction (i.e. in the “out” direction gs;qe ~ 0 and gy ~ 0).

It should be noted that the gaps that can be seen in the correlation function, especially in the
“out” direction, are present due to kinematical restrictions of the Cartesian coordinate system
employed. The difficulty of a full 3D fit should also be stressed, the full correlation function is
a three-dimensional histogram which is fitted with a 3D fitting function. Any deviation of the
correlation function from the theoretical Gaussian becomes more pronounced, and more difficult
to compensate for.

The results of these fits can be seen in Figs. 5.14 and 5.15. The model gives a fair description
of the experimental data, and especially manages to reproduce the K dependence of Ry, at
Vs = 900 GeV. The model overpredicts the R,,; value at low K, and comes closer to the
experimental value at higher K. This is the opposite behaviour of what you might expect from
looking at just Figs. 5.12 and 5.13. The model reproduces the flat behaviour of R4 over kz, but
slightly overpredicts the value. The R, dependence of the model rises incorrectly at high K
for /s = 200 GeV, but gives a very good description of the experimental data at /s = 900 GeV.
The A value of the model rises a bit too sharply for STAR energies, and rises even sharper at LHC
energies, but the absence of ALICE A values makes a comparison inconclusive.

, but with both numerator and denominator as three-dimensional histograms
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Figure 5.12: Fit of the 3D correlation function projected onto the “out-side-long” directions for
/s =200 GeV pp collisions in the QGSM model
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Figure 5.13: Fit of the 3D correlation function projected onto the “out-side-long” directions for
/s =900 GeV pp collisions in the QGSM model
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Figure 5.14: 3D correlation radii for /s = 200 GeV pp collisions in the QGSM model compared
with STAR experimental data [76].
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Figure 5.15: 3D correlation radii for /s = 900 GeV pp collisions in the QGSM model compared

PP @ 900 GeV

I o ALICE

o =QGSM
o}

. L ol [ P .

0z 03 04 05 06 07 038

(GeV/c)

©
I "o

C[.(]Jl@ u

el b L b b 1
02 03 04 05 06 0.7 08

k, (GeV/c)

with ALICE experimental data [80]

)

CHAPTER 5. mm CORRELATIONS IN QGSM

.
O ¢ © o O"O

oo b b b b b L
02 03 04 05 06 0.7 08

k, (GeV/c)

0o4/® B

02r

02 03 04 05 06 0.7

k, (GeV/c)



Chapter 6

m K correlations in ALICE proton-proton
collisions

Studies of K correlations have been performed earlier in heavy-ion collisions [110], but due to
lack of high statistics and good kaon identification it has never been possible to do it before in
proton-proton collisions. However for proton-proton collisions at LHC energies high multiplic-
ities were expected and have been observed [15]. In addition the PID capabilities of the ALICE
detector makes it ideal for the study of non-identical particle correlations. A study of 7K corre-
lations in ALICE pp collisions is therefore not just interesting in terms of physics results, but it
will also require the development of new analysis methods.

In this thesis we will focus on two areas of the analysis. First, because particle identification
is very important, two methods for pion and kaon identification using the TPC and TOF will be
introduced. Secondly, the fitting procedure of the calculated correlation functions will be looked
at in detail, with several different methods tested. Finally conclusions will be drawn regarding
the feasibility of using the different fitting methods tested.

6.1 Event selection

Analysis have been performed on pp collision data at 7 T'eV taken by the ALICE experiment in
2010. Only minimum bias events have been selected. Approximately 95M events were analysed
from runs in LHC10b and LHC10c.

The reconstruction vertex have been demanded to be within 10 c¢m of the centre of TPC along
the beam direction. The data were analysed in 3 uncorrected charged particle multiplicity bins:
(2-11), (12-22) and (23-140). The following single track selection conditions were used:

e Pseudorapidity cut: || < 1.0.

e Transverse momentum cut: 0.15 < pr < 1.2 GeV/ec.

e Accept only well reconstructed tracks: at least 70 out of maximum 159 points in the TPC.

81
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e The distance of particle trajectory to the primary vertex should be less than 0.2 ¢m in the
transverse plane and less than 0.25 ¢m in the beam direction.

e PID cuts for pions or kaons.
The following two-track selection cuts were used:
e Pairs that share more than 5% of clusters in the TPC are rejected.

e Pairs with M., < 0.01 GeV and Af,. < 0.01 rad are removed (anti y-conversion cut).

6.2 Particle identification

Good particle identification is very important for the calculation of non-identical particle corre-
lations. While pions are produced so abundantly that one can accept a lower efficiency, for kaons
efficiency is very important and for both species a high purity is essential.

The ALICE detector provides a number of possibilities for particle identification. In this
thesis we will employ data from the TPC and TOF detectors. The output from the TPC is the
dE /dx vs momentum plot (Fig. 6.1). The particle most probable energy loss per unit of path
length (dE/dx) is linked to its velocity /3 through the Bethe-Bloch formula:

dE  47N% 1 2( 2
= e I e ;

Cdr mec? @Z I

By — B - 5(5)) ©.1)

where N, is the number density of electrons in the travelled material, z is the charge of the
particle, m.c? is the rest energy of an electron, 3 is the velocity of the particle and v = —=

I is the mean excitation energy of the detector material, and 6(f) is the relativistic medium
polarisation.
The Bethe-Bloch formula can be rewritten as:
dE G 2.2 2
— ) = — (In(C! — C 6.2

where C, Cy and C} are detector specific constants. Plotting (dF/dx) versus momentum gives
us information about the mass of the particle, and therefore also its identity [46]. For low mo-
menta particles it is possible to identify particles with the TPC alone, but at higher momenta the
(dE /dz) versus p distributions for different particles overlap and we need additional information,
from e.g. the TOF.

The main information from the TOF is the velocity vs momentum plot given in Fig. 6.2. As
seen in the figure, we have separate particle lines for pions, kaons and protons. Here the overlap
occurs mostly for particles with /3 close to unity. In order to identify a particle one then has to get
both TPC and TOF information and use some method to decide whether it is close enough to the
particle lines in both diagrams. Two methods have been tried: the simple contour method and the
so-called “number of sigma” method. The first method has the advantages of being independent
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Figure 6.1: Example of a % vs momentum plot from the TPC detector.

of the accuracy of the Bethe-Bloch formula determination and has a simple visual verification. It
can be used in combination with the n-sigma method which uses information about the number

of standard deviations of the Bethe-Bloch <C(ZiE> for TPC or At for TOF from the calculated
T

values for the given type of particle.

6.2.1 Contour method

The contour method starts with the simple idea that it is possible to outline the different particle
lines in the TPC and TOF plots by hand. If one parametrises this outline it is possible to decide
whether a particle is within the particle line by comparing with the parametrisation. The outline
is created by first plotting the uncut output from the TPC and TOF detectors and recognising
the particle lines by eye. The parametrisation is then created for different momentum/velocity
ranges. This means that the limit between what is considered a pion or kaon or not is rather
arbitrary, which is why this can be considered as a rough method.

In addition to using a parametrisation of the outline one must also decide the momentum
ranges that are used for the two detectors. The results for passed pions and kaons in TPC and
TOF with the contour method are shown in Fig. 6.3. The pion and kaon lines can be restored,
but the roughness of the method means that we lose many particles. This can be seen in the sharp
top edge of the pion plot in the TPC, as well as the different cuts used for different p, ranges for
kaon in the TPC.
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Figure 6.3: Pions (upper row) and kaons (lower roe) identified with the contour method using
data from the TPC (left column) and from the TOF (right column).
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cut TOF PID not available TOF PID is available

|Norpc| <5
Kaon N, p < 0.35GeV/c |Nyrpe| < 2 p<15GeV/e |Nyror| <3
035 <p<0.6GeV/c |Nyrpo| <2 p>15GeV/c |Nyror| <2
|Norpc| <5
Pion N, p < 0.35GeV/c |Nyrpe| <5 p<1.5GeV/e |Ny,ror| <3
0.35 <p<05GeV/c |Nyrpc| <3 p>15GeV/e |Nyror| <2

p > 0.5 GGV/C |N0—7Tpc| <2

Table 6.1: Number of sigmas for TPC and TOF detectors for pions and kaons

6.2.2 Number of Sigma method

The particle most probable energy loss calculated with the Bethe-Bloch formula (Eq. 6.1) is
parametrised for the TPC with Eq. 6.2. For the analysis presented in this thesis, pions and kaons

dE
were selected by requiring the deviation of the specific <d> to be within N, standard devia-
x

tions from the pion/kaon Bethe-Bloch values calculated with Eq. 6.2. These N, values depend
on the registration conditions, the existence or non-existence of a TOF signal, and momentum
range. These conditions with N, values are listed in Table 6.1.

A time of flight measurement is the measurement of a time interval: At = t;op — tg. The
number of standard deviations are determined by:

(thit - tO) - tempected (pa m, C)

OPID,TOF

Nyror = (6.3)

where t,;; is the time measurement made by the TOF detector, and ¢, is the zero time for the event
measured by the TO detector, or estimated using the TOF detector itself. ?c,pectea 1S computed
during momentum construction using the different masses hypothesis (7, K, p).

— 2 2 2
OPID,TOF = OroF + Oty + Ut'racking

6.4)

2 2 2 - -
UTOF = U]\IRPC =+ Uelectronics + (Other CO’I’lt’f‘ZbUtZO’I’LS)

where O'Z) is equal to o7 when the TO detector is available, or can be determined using TOF
tracks. oy, can vary greatly event by event. oy,q4cring 18 the resolution of tracking.

Pions and kaons selected with the number of sigma method are shown in Fig. 6.5. This
method gives smoother pion and kaon lines compared with the contour method, and is also
better rooted in the physics of the detector. The purity of the kaons is high, except for a small
region in momentum of about 20% electron contamination, this is presented in Fig. 6.4.

The use of two different methods gives the opportunity to study the impact of the method on
the correlation functions. If for example there is a bad calibration, the Bethe-Bloch lines might
be shifted, and the simpler contour method would give a better result.
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Figure 6.4: Purity of kaons with the number of sigma method as a function of momentum.
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Figure 6.5: Pions (upper row) and kaons (lower row) identified with the number of sigma method
using data from the TPC (left column) and from the TOF (right column).

6.3 Correlation functions

The experimental correlation function is a function of the relative pair momentum k£* (Eq. 3.23)
N(k*)
D(k*)
same events and D(k*) is for particle pairs from mixed events.

The correlation functions will be created for all four 7 K pair types (7t K+, 7t K—, 7~ K™,
7~ K7), and for three multiplicity bins (M < 11, 11 < M < 22, M > 22).

and is constructed as C'F' = , where N (k*) is the k* distribution for particle pairs from

6.3.1 Correlation functions from experiment

Using the Number of Sigma method for particle identification, correlation functions have been
calculated from experimental data separately for the four possible pair combinations. The unnor-
malised “raw” correlation functions are presented in Fig. 6.6. A strong y-cut was implemented
on the PID. This cut was adjusted using Monte Carlo calculations, as explained in section 6.3.2.

Several features of the correlation functions are immediately obvious. A peak appears at
about k* = 0.3 GeV/c. This peak originates from the decay of the K* resonance into either
7T K~ or m~ Kt pairs. The position of the peak corresponds to the mass of the resonance, and
is well understood.

At low £* another peak can be seen. This peak originates mainly from the femtoscopic
correlation effect that we are interested in. The peak shows positive correlations for opposite sign
pairs, and negative correlations for same sign pairs. This is as expected as the correlations stem
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Figure 6.6: Raw 7K correlation function obtained from the ALICE experiment in minimum bias
pp collisions at /s = 7 TeV for three multiplicity bins.

mainly from Coulomb interactions. We can also see that apart from the low-k* correlation peak
and the resonance peak, the correlation functions are basically the same for all four pair types.
This is especially true for the pair types with either same or opposite charges. The similarity
of the correlation functions implies that the background is the same for all pair types. This
background has a rather complex behaviour, which needs to be taken into account in the fitting
process.

At high £* a small multiplicity effect can be seen, as the lowest multiplicity bin has slightly
larger variations and errors. Finally the normalisation of the correlation functions will be done
as a part of the fitting procedure.

6.3.2 Correlation functions from PYTHIA

Correlation functions are created both from simulated PYTHIA [111] data and from experimental
data. In PYTHIA there are no final state interactions (FSI), so any correlations appearing will be
from other origins. About 50/ PYTHIAG6 Perugia-0 event have been used. In Fig. 6.7 we can
see the calculated correlation functions from PYTHIA in three multiplicity bins.

Two interesting features can be seen from this figure. First, the K* peak is evident at k* =
0.3 GeV/c for all three multiplicities. Secondly, a peak can be seen close to k* = 0. Since
there are no FSI in PYTHIA the appearance of this peak is due to other correlations. This source
origin can be understood if we include a cut removing photons decaying into eTe~. The cut is
performed by removing particles with M, ;s .+.- < 0.01 and 0.+.- < 0.01. As seen in Fig. 6.8
the peak disappears when the cut is implemented.

The close to zero peak in Fig. 6.7 originates from either one or two misidentified electrons in
the 7/ pairs. It is clear that a strong ~y-cut is important in order to remove misidentified electrons



6.3. CORRELATION FUNCTIONS 89

044 ? ALICE pp@/s=7TeV
0.12 fp— " .
- this thesis
b oy . M < 11
0.08 =% .
0.06 [17es320Ess2ss28asssEstonsSensed 3
06 56 ota0y
o= - e
2= o T+ K-
B op e o 11 <M<22
008 iR o K- %
0.06 [FE55e: S 5
0.14 ?
0.12—
W o4
o 0.08E M > 22
0.06 %- S s SO
0.04, 0 02 03 04 05 0.6 07 08 09

k (GeVic)

Figure 6.7: mK correlation function calculated from PYTHIAG6 Perugia-0 in minimum bias pp
collisions at /s = 7 TeV for three multiplicity bins.

OMET ALICE pp@/s=TTev
01257 this thesis
L o1
o 0.08 o 909.0'
0.06 Sgeestsiiansiosese N
Lt =) T+ K
012 ;_ (e} o+ K-
w . e 11 <M< 22
0.08 %ﬁ; K- e,
0.06 ® e 2
014 —
012
W o= M 2 2
O et >
0.06 % -2203ss, -
0.04 X

0.2 0.3 * 0.4 0.5 0.6 0.7 0.8 0.9

k (GeV/c)

Figure 6.8: mK correlation function calculated from PYTHIA6 Perugia-0 in minimum bias pp
collisions at v/s = 7 TeV with a y-cut for three multiplicity bins
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Figure 6.9: Comparison of correlation functions from PYTHIA Perugia 2011 with ALICE ex-
perimental data for minimum bias pp collisions at /s = 7 TeV for three multiplicity bins.

from out pairs, and this cut will be implemented in the analysis of the experimental data.

PYTHIA Perugia 2011 [112] is a newer version which have been successfully used to de-
scribe the correlations of both 77 and K K, therefore it is a good candidate for calculating 7K
correlations as well. About 400M pp 7 T'eV minimum bias events have been calculated with
PYTHIA Perugia 2011. Since there are no FSI in PYTHIA any correlation functions calculated
will show the non-femtoscopic background only. The correlation function is calculated using the
mixing procedure described in section 3.1 for microscopic models, with a weight w = 1 for the
numerator. The calculated PYTHIA Perugia 2011 correlation functions are then compared to the
experimental data. The femtoscopic effect should only be dominant at low £*, meaning that if
PYTHIA gives a good description of the background the experimental and simulated correlation
functions should coincide at high £*. As seen in Fig. 6.9 this is not the case.

The model description is best at the highest multiplicity bin, with a large discrepancy at the
lowest bin. The difference is biggest in the £* = (0.1, 0.2) region, where the interplay between
the background and the femtoscopy effect is strongest. There are also some problems at the
smallest £* bins, probably due to low statistics. An interesting behaviour of the baseline in the
model is that it is flat at low ¢;,,,,, indicating that we should seek of a representation of the baseline
that is also flat at low ¢;;,,
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6.4 Fitting strategy

In order to extract the femtoscopic sizes of the system a fit of the correlation function is necessary.
However, first one must decide on a strategy for the fitting process. In particular it is important
to properly describe the non-femtoscopic background. We can write our fitting function as:

() = N - F(k) - B(K) ©.5)

Here N is a normalisation constant, F'(k*) is a function describing the femtoscopic effect at low
k* and B(k*) is a function describing the non-femtoscopic background. Our main interest at this
point is background extraction, so the femtoscopic effect will be described by a very approximate
function, this will exclude the Coulomb effect from consideration. The Coulomb forces can be
described using the Gamow-factor A(n) given in Eq. 3.29. However in order to introduce a
dependence on the radius the expression slightly changed:

. 2m 2m -

where )\ represents the strength of the correlation and R is the radius. We will focus first on the
background function B. In previous ALICE femtoscopic publications the background has been
described by using PYTHIA. Seeing as there are no femtoscopic effects in PYTHIA, any devia-
tions from unity in the calculated PYTHIA correlation functions were taken as non-femtoscopic.
The background function was chosen in the form of a polynomial and fitted to the PYTHIA
correlation function. The fitting parameters of the polynomial were then fixed, and the same
polynomial was used as the background when fitting to experimental data. This method was
used mainly because of the problems of extracting a pure experimental background. However,
this method introduces a model dependence into the results. Therefore it is preferable to extract
the background directly from experiment if possible.

Such a possibility exists for 7K correlations. As previously observed in Fig. 6.6 all four
pair types seem to have the same non-femtoscopic background. This gives us a hint that it
might be possible to use a simultaneous fitting procedure. In such a procedure the correlation
functions of all four pair types would be fit simultaneously, with the same fitting parameters for
the background, but with different parameters for the femtoscopic effect. Since the femtoscopic
effect is positive for opposite sign pairs and negative for same-sign pairs this should hopefully
ensure that the background and the signal are disentangled. Once the background has been
determined the correlation function can be divided on the fixed polynomial in order to obtain the
pure femtoscopic effect.

In addition the fit also needs to take into account the resonance peaks for opposite-sign pairs.
The equation that needs to be fitted then looks like:

Num(k*) = N - Den(k*) - F(k*) - B(k*) + Bpw (M) (6.7)

Here Num(k*) is the numerator of the correlation function, Den(k*) is the denominator of the
correlation function and By (M;,,) is a Breit-Wigner function that describes the resonance
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peak for opposite-sign pairs and equals to zero for same-sign pairs. The invariant mass of the
pair M;,, is calculated as:

L
V2

Miy = <= [40K)? + (e + mge)? + (ms = mic)?

1/2

VAR + (g +mg)? + (me = mg)2)? — d(mg +mi)? (me — mg)?
6.8)
The choice of background function can have great impact on the fit. A natural choice is to
use a polynomial, however due to physical restraints we want the background to have a zero
dB(k*)
dk* 0
to zero. We then have the background in the following form:

derivative at k* = 0: = 0. This can be achieved by putting the linear term equal

B(E) =1+ (k)'c; (6.9)

Here n is the order of the polynomial chosen, and ¢; is the constants used as fitting parameters.
Other possible choices include using only even order terms in the series or the square root of the
polynomial, but since there are no physical reasons to prefer one before the other the simplest
type of polynomial is chosen.

6.4.1 Fitting same-sign and opposite-sign separately

The fitting method is first tested by fitting the two same-sign pairs and the two opposite-sign
pairs separately. The correlation functions used in this test are for k%, > 0, CF,\.. Eq. 6.7 is
used for the fitting in both cases, with Bpy (M., ) equal to zero for same-sign and as a Breit
Wigner function for opposite-sign pairs. A simultaneous fit for 7™ K and 7~ K~ is performed
with polynomial background of order 4 to 7. As seen in Figs. 6.10, 6.11, 6.12 and 6.13 the fit is
reasonably good already for n = 4 and becomes better with increasing n. However if we divide
the correlation function on the obtained background (Figs. 6.14, 6.15, 6.16 and 6.17) we can see
that the results depend heavily on the choice of order of polynomial.

A comparison of the fits with different order polynomial background is displayed in Fig 6.18.
It should be noticed that the different fits give slightly different normalisations for the correlation
function. A higher order polynomial background gives a flatter background at low £*, but if the
order of the polynomial gets too high it goes over unity, which will affect the fitting parameters
for the femtoscopic effect. A comparison of the background corrected correlation functions is
presented in Fig. 6.19. Fits with higher order polynomials give narrower correlation functions.

The results of the fits are listed in Table 6.2, where the obtained femtoscopic radius R is
shown along with the error and the goodness of the fit 2 over degrees of freedom DoF'. The table
shows that we have a generally too small R with a large error. As the order of the polynomial is
increased the size of the radius increases, while the error and goodness of fit get better. Again
the choice of polynomial dominates the result of the fit, and even with large order polynomials
the results do not converge.
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Figure 6.10: Same-sign 7 K fit with 4th order polynomial background

A general problem when doing these fits is to keep separate the contributions of the femto-
scopic effect and the background. The basic idea of the fit is that the Gamow-like factor will fit
the femtoscopic effect, while the polynomial will fit the background. Unfortunately as the order
of the background polynomial increases, it gets more and more degrees of freedom and it will
interfere more and more with the femtoscopic effects. This effect will show up in the x? as a
better fit and can therefore only be seen by visually studying the obtained fitting function along
with the experimental data. In this case the visual study of the CFs seems to indicate that one
can not use a background polynomial of order higher than 6.

As a second test a simultaneous fit is performed for 77K~ and 7= K+ pairs. In this case the
Breit Wigner function is included in the fit, with M;,,, calculated from Eq. 6.8 for each k* bin.
In Fig. 6.20 we can see the values of the numerator and denominator of the CF as well as the fit

Order of polynomial background | R, fm | Error, fm | \?/DoF
4 0.38 1.28 26.00/192
5 0.33 1.10 25.97/191
6 9.51 591 15.04/190
7 0.77 0.56 11.76/189
8 0.82 0.61 10.97/188
9 0.013 0.01 9.78/187
10 9.08 591 10.04/186

Table 6.2: Results of same-sign 7 K fits with different order polynomial backgrounds.
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Figure 6.12: Same-sign 7K fit with 6th order polynomial background
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Figure 6.15: Same-sign 7K fit with the 5th order polynomial background removed
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Figure 6.16: Same-sign 7K fit with the 6th order polynomial background removed
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Figure 6.17: Same-sign 7 K fit with the 7th order polynomial background removed

to the numerator according to Eq. 6.7.
We can now calculate our Breit-Wigner corrected correlation function by the following equa-

tion:
o Num(k*) — Bpw (M)
CFBWcorrected(k ) = N % Den(;{/j‘j‘)

(6.10)

The original and the Breit-Wigner corrected correlation functions are presented in Fig. 6.21.
The red point show the original correlation function with the correlation peak. The blue points
show the correlation function with the fitted Breit-Wigner from Fig. 6.20 and the polynomial
background removed. The green line shows the polynomial describing the background with the
femto effect included.

It is again possible to divide the BW corrected CF on the background to get the pure effect
CF, however again this depends heavily on the choice of the order of polynomial.

6.4.2 Simultaneous fit of all four pair types

When fitting pairs with only same-sign or opposite-sign it is not easy to disentangle the back-
ground from the effect, and as a result we get a dependence on the order of the polynomial used
for the background. But since same-sign and opposite-sign pairs have a femtoscopic effect in
opposite directions, it should be possible to more clearly separate the effect from the background
if one fits all four pair types simultaneously. Again the fit is done with Eq. 6.7, with a Breit-
Wigner function for the opposite-sign pairs. The results of the fit using a 7th order polynomial
for the background are presented in Fig. 6.22
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Figure 6.19: Comparison of same-sign 7K fits with the polynomial background removed
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Figure 6.22: Simultaneous fit of all four pair types.

As seen in the figure the fit describes the same-sign pairs well, but is unable to fully account
for the dip in the opposite-sign correlation functions in the region between the resonance effect
and the femto effect.

6.4.3 Study of fitting techniques for same-sign pairs

In order to extract some reasonable first results from the 7K analysis, two additional methods
for fitting the same-sign pairs have been tested. The first idea is to use one of the newest tunes of
PYTHIA Perugia 2011 to simulate the background, and use it as the baseline during the fitting
process. One of the advantages of this method is that it has already been used for 77 and K K
pairs, where it gives a good description of the experimental background. The main disadvantage
is that it introduces a model dependence in the results.

The second idea is to use the FORTRAN code developed by R. Lednicky [113] that calculated
the femto contribution to the correlation function for a given source size from quantum statistics,
Coulomb and the strong interaction. The code can be run for different values of the source
size, and can be used as the femtoscopic part in a fit. The source size which provides the best
background fit can then be taken as the femtoscopic size of the source. The idea can be developed
further by letting the femtoscopic part of the fit be an interpolation between several simulated
source sizes.
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Figure 6.23: Pure theoretical 7+ K correlation functions calculated with the Lednicky code.

6.4.4 Using Lednicky’s code to simulate the femtoscopic part of the corre-
lation function

Using the FORTRAN code developed by Richard Lednicky it is possible to calculate the theo-
retical pure femtoscopic correlation functions. These CFs arise from either quantum statistics
or Coulomb or the strong interaction, all three can be turned on or off. The code also allows
for calculations for 32 different pair types, as well as different models for the Bethe-Salpeter
amplitude. The code calculates the theoretical CF for a given value of the source size.

Using this code the theoretical 7+ K+ CF was calculated for the source size values: R =
(0.1,0.5,1.0,3.0) fm as shown in Fig. 6.23. The narrowing of the CF for increasing sizes can
be seen. In addition all the CFs converge to unity for large £*, this behaviour is in stark contrast
to the complicated background seen in experimental CFs.

Using the fitting function from Eq. 6.5 we can for the function F'(k*) use a bin for bin
interpolation of the four calculated theoretical CFs in Fig. 6.23. By doing this interpolation we
can hopefully extract from the fit the average source size. To test this interpolation method the
Lednicky CF is used as the input for the fit. The test fit is performed using a flat background
and as seen in Table 6.3 it returns the radius of the input Lednicky CF with very good accuracy.
This is a strong indication that the interpolation method can work as way to extract experimental
femtoscopic sizes.

When applying this method to the experimental fit the interpolation of Lednicky CFs is as-
sumed to handle the femtoscopic part of the CF while the polynomial is assumed to fit the non-
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R for Lednicky CF | R from fit | Normalisation
0.31 fm 0.3308 fm 1.0
1.00 fm 1.00037 fm 0.9999
1.14 fm 1.1388 fm 1.0
2.50 fm 2.5407 fm 1.0

Table 6.3: Results of the interpolation fit using Lednicky CFs as input

Order of polynomial background | R, fm | Error, fm | x?/DoF
4 0.31 0.35 24.68/192
5 0.33 0.38 24.46/191
6 2.14 0.56 19.62/190
7 3.00 0.43 14.16/189

Table 6.4: Results of interpolated fits with different order polynomial backgrounds.

femtoscopic background, and should go to unity at low £*. As seen in the results of the fits in
Figs. 6.24, 6.25 and 6.26 this is not necessarily the case. One can see in the figures that the
order of the polynomial chosen still has a big impact on the results. The fit with 4th order poly-
nomial background gives a very low value of R = 0.31 fm, visual comparison of the fit also
shows that it’s off around k* = 1.0GeV/c. For the 5th order polynomial the fit gives the value
R = 0.33 fm, but visually it looks a bit better with a flatter polynomial at low £*. Unfortunately
it fails to describe the high k* background. For the 6th order polynomial background the fitted
value is R = 2.14 fm, visually one can see that the polynomial has gone above unity pulling the
CF up and giving an nonphysical value, as discussed in section 6.3.2 we can expect the baseline
to be flat at low ¢;;,,.

The results of the fits are presented in table 6.4, and we can see that the femtoscopic size
increases with the order of the polynomial, while the goodness of fit gets better. Unfortunately
the goodness of fit does not measure whether the polynomial is describing the background or the
femtoscopic effect, and from visual study of the plots the 6th and 7th order fits can be discarded
on the ground that we demand the baseline to be flat at low ¢;,,. This means that the fit with
the 5th order polynomial background provides the best results, but lack of consistency in the fits
means that the results of the fit are very unstable.

Since the choice of the description of the non-femtoscopic background has a huge impact on
the results of the fit another test was performed where the fit was only done in the first few bins,
where presumably the background is close to unity. At this range we assume a flat background,
and a polynomial is not used in the fit. The results for fitting the 10, 15 and 25 first bins of
the experimental CF to the interpolated Lednicky CFs is shown in Figs. 6.27, 6.28 and 6.29
respectively. This test was performed for all possible first number of bins between 10 and the
25, the results of these tests are listed in Table 6.5. It can be clearly seen from the figures that
using not enough bins will cause the fit to not describe the full effect, while using too many will
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Figure 6.25: 7 K interpolated fit with 5th order polynomial background
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Figure 6.26: 7K interpolated fit with 6th order polynomial background

include the non-femtoscopic background in the fit. By eye it looks as though 18 is the maximum
number of bins that can be included without fitting the background, this value also corresponds
to the lowest fitted value of the size R = 1.2 fm. By studying the goodness of the fit x? the
same trend can be seen, with the best fit for fitting with the 19 first bins. This gives the size value
of R =1.24 fm.

The assumption of a flat background at low k* is necessary for these results, but it can be
justified with the use of the calculations made with the PYTHIA models where such a flat back-
ground at low £* is observed.
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Figure 6.28: The interpolated fit performed for the 15 first bins only.
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Figure 6.29: The interpolated fit performed for the 25 first bins only.

Number of bins | R, fm | Error, fm | x?/DoF
10 2.25 0.32 39.51/16
11 2.06 0.30 41.91/18
12 1.87 0.28 43.49/20
13 1.83 0.26 43.62/22
14 1.47 0.27 52.50/24
15 1.39 0.25 53.16/26
16 1.17 0.23 56.17/28
17 1.24 0.20 56.80/30
18 1.20 0.18 60.28/32
19 1.24 0.16 62.95/34
20 1.41 0.16 72.16/36
21 1.55 0.15 81.36/38
22 1.63 0.14 86.52/40
23 1.80 0.14 115.95/42
24 1.93 0.13 147.25/44
25 2.03 0.13 188.57/46

Table 6.5: Results of the interpolation fit for only the first number of bins with a flat background



Chapter 7

Conclusions

In this work studies of femtoscopic correlations in high-energy proton-proton collisions have
been performed from the point of view of both theory and experiment. A general introduction
to the field of particle and heavy-ion physics have been made in chapter 1 and 2, both in terms
of theory and experimental facilities. The field of femtoscopy have been introduced with theo-
retical background, motivation and procedures for experimental analysis in chapter 3. The types
of theoretical models most often used in the field have been introduced in chapter 4, and the
microscopic models employed in this work have been presented in detail.

The simulations and analysis made with the Quark Gluon String Model have been presented
in chapter 5. Collisions of minimum bias /s = 200 GeV and /s = 900 GeV pp events were
simulated. Freeze-out information of coordinates and momentum of the particles in the model
is available, and allowed to create freeze-out spectra. These distributions showed the hydro-like
evolution of the system, the appearance of a resonance peak and inherent p, — x correlations
in the model. Distributions were created for 7,p,/X and A + X°, and showed the difference in
multiplicity and formation time, arising from the different masses.

Femtoscopic analysis was performed and comparisons made to experimental data published
by the STAR and ALICE experiments. Analysis procedure was done in such a way as to mimic
the procedures of the experiments as closely as possible. Both 1-dimensional and 3-dimensional
correlation functions were created, and fitting procedures extracted the femtoscopic sizes of the
system.

The scaling parameter of the string tension in the QGSM model was used to tune the model
results to the experimental. It was found that it was needed to be twice the size for the /s =
900 GeV data compared to the /s = 200 GeV data. QGSM reproduced well the k-dependence
of the radius for the 1-dimensional case. The origin of this dependence was found to be in the
relative contribution from resonances as well as a natural p, — x correlation in the model.

Pions in the QGSM model are created either directly through string fragmentation, or through
the decays of resonances. The relative contribution of pions from long lived resonances to direct
pions decrease with increasing kr, giving rise to a decrease of R;,, with k7. A two-Gaussian
fitting method was performed, and allowed to separate the contributions of the direct pions from
the contributions from pions from resonances. Similar to experiment the radii of 900 GeV is
smaller than the radii for 200 GeV'. The analysis favours a reduction of the formation time with
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increasing energy of the hadronic collision.

The full 3-dimensional correlation functions were fitted, and were found not to be perfect
Gaussian. A good correspondence to experimental data was still present.

In chapter 6 the analysis of non-identical 7K correlations from /s = 7 TeV ALICE data
was presented. Two methods for particle identification were studied, with Number of Sigma as
the preferred method. Experimental correlation functions were constructed in three multiplicity
bins. A strong correlation effect at low £* due to Coulomb final state interactions was observed.
This effect is positive for the same sign pairs 7+ K+ and 7~ K, while it was negative for the
opposite sign pairs 77 K~ and 7~ K. The K* resonance can be clearly seen from a peak in the
opposite sign correlation functions, originating from the decay of the resonance K* — 7" K~
and K* — 7~ Kt. At large k* long-range non-femtoscopic correlations are observed.

Correlation functions constructed from the PYTHIA-0 and PYTHIA-2011 models were also
introduced for comparison. Results from the models described the non-femtoscopic background
qualitatively but not quantitatively, and could therefore not be used to exclude the background.
Several fitting strategies were tried, with the main difficulty to find a stable procedure capable of
separating the background from the femtoscopic effect. For all methods the simultaneous fitting
procedure was used, employing data from different pair types.

A Gamow-like fitting function was tried, with polynomials used to simulate the background.
The results for same sign pairs were found to depend heavily on the order of the polynomial.
Opposite sign pairs were fitted using a Breit-Wigner function to separate the K * resonance peak,
and fitting for all four pair types simultaneously was tried. The fit was shown to be unable
to describe the opposite sign pair correlation functions properly. PYTHIA Perugia 2011 was
employed, but was unable to describe the background. The PYTHIA calculation did however
show that the background should be flat at low £*. A third attempt was made using the Lednicky
code to simulate the femtoscopic effect. It was found to give a realistic value of R = 1.14 fm
when the demand that the background should be flat at low £* was enforced. By performing the
same fitting procedure at only the lower bins of the correlation function, and still enforcing the
same demand of a flat background, a value of R = 1.24 fm was the result.



Appendix A

Space-time coordinates of produced
hadrons

Considering the production of particles in a Lund-type string model, as described in section 4.2.1,
from the sequential breaking of strings. At time ?; the string breaks for the th time, producing
quark pair ¢;q. Hadrons are produced from quarks from different pairs ¢;—1¢;. The energy and
momentum of hadron ¢ is:

Ei = K(Zi_l — Zi)

(A.1)
pi = K(tic1 — 1)
where z; is the initial position and ¢; is the formation time of the ith quark.
It is useful to define the light-cone variables for a hadron:
+
D = E; £p;
A2
for “constituent” formation time we get:
pi = Eit+pi=rlz — 2+t —t]
= £ [(zi, +tic1) — (20 + 13)]
_ [ no ] (A.3)
p; = Ei—pi=rlzi, + 2 —tiog + 1]
= £ [(zi, —tic1) — (2 — ti)]
_ - _ 4+
= [z, — 2]
Arranging the equations we get:
+
=z, -0
" (A4
+ D;
2 =2 T .
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using a recursive solution one can write:

k =1
- (A.5)
I~ _
q=a DD
K
E M, .
Inserting the boundary values zar =2 + 1o = and z, = 0 [91], where M, is the mass of
K

K
the string, we get the expressions for the (¢;, z;) coordinates of the produced hadrons:

i

Ll LM L s
ZZ_2[Zi Zi]_2|:/f m;pj K;pj:|

1 i
_ g
= o ]V[s*Z(pj +pj)
j=1
= i M QiE
2k ’ = ’

(A.6)
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Abstract—The main goal of this work is to employ the Monte Carlo Quark Gluon String Model (QGSM) for
description of femtoscopic characteristics in pp collisions at RHIC and LHC. It was found that experimental
data can be reasonably well described within the pure string model by increasing the string tension by a factor
of two with energy rising from Js =200 GeVto /s =900 GeV. The double-Gaussian fit reveals the contri-
butions from resonances and directly produced particles.
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1. INTRODUCTION

Experiments at RHIC have demonstrated that hot
and dense matter with partonic collectivity has been

formed in ultrarelativistic Au + Au collisions at ﬁ =
200 GeV. Proton-proton collisions are conventionally
used as a reference to compare with nuclear collisions
and to understand the observed collective effects. The
new interest to general features of pp collisions at
ultrarelativistic energies appeared after the first publi-

cation of Large Hadron Collider data at ﬁ =
900 GeVand s =7 TeV.

The system created in ultrarelativistic pp collisions
at RHIC and especially LHC energies can be similar
to the system created in non-central heavy-ion colli-
sions because of the large energy deposited in the over-
lapping region and therefore can also demonstrate the
collective behavior. The strong argument supporting
this point of view comes from the observation of the
same momentum dependence of the femtoscopic radii
in pp and Au+Au collisions by STAR experiment at
RHIC [1].

The Bose—Einstein correlations for pp collisions at

Js =900 GeV obtained in the ALICE experiment [2]
have been successfully described within the
EPOS+hydro model [3]. It was shown that the hydro-
dynamic expansion drastically modifies the space-
time behavior of the evolution compared to the “clas-
sical” EPOS scenario with independent decay of flux-
tube strings.

The quark-gluon string model based on Gribov-
Regge theory gives a good description of the collective

! The article is published in the original.

flow effects in Au+Au collisions at RHIC energies; the
tuning of QGSM for pp collisions at LHC energies
allowed authors to describe successfully the main
characteristics of pp interactions, i.e. multiplicity,
transverse momentum and (pseudo)rapidity distribu-

tions, up to top LHC energy A/g =7 TeV [4]. The aim
of the present article is to study hadronization pro-
cesses in pp collisions at ultrarelativistic energies using
momentum correlations techniques with the QGSM
model and to compare obtained results with the exper-
imental data of RHIC and LHC. We try to understand
to what extent one is able to describe the correlation
functions (CFs) in ultrarelativistic pp collisions within
the pure string model picture.

2. QGSM AND PARTICLE COORDINATES

The hadrons in QGSM are produced through the
creation and decay of resonances, strings and minijets.
The space-time evolution of the collisions starts from
the interacting partons (quark, diquark and seaquarks)
distributed randomly in the projectile-target overlap-
ping region. The strings between them are stretching
and decaying into the hadrons. Due to uncertainty
principle it takes time to create a hadron from constit-
uent quarks. It was supported by experiment that fast
particles are created the last. In string models two def-
initions of formation time are accepted: the time when
string is broken and all constituents of the hadron are
created (constituent) or the time when the trajectories
of hadron constituents (quarks) cross (“yo-yo”). In
this version of QGSM we are using the smallest forma-
tion time—constituent. The formation time #* and

coordinate z7 of i-th hadron in the string center of
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mass can be expressed thought its energy E7, its lon-

gitudinal momentum p} and the longitudinal

momenta/energies of all hadrons produced by the
decay of this string:

i-1
1
it = EE[MS—zzp;;],

! (1)

i—1
I %{[Ms—2ZEj‘j.

j=1

Then we calculate # in the laboratory frame and make the
propagation of the coordinates to this point (x;, y;, 2, 1):
a;=ay + tp,/E;, a=x,y, z. We have studied the influ-
ence of the strength of string tension k on the space-
time distributions and the corresponding correlation
functions. Note that k acts as a scaling parameter of
the particle formation time.

3. THE TWO-PION CORRELATION
FUNCTIONS

The momentum correlations are usually studied
with the help of correlation functions of two or more
particles. Particularly, the two-particle correlation
function CF(p,, p,) = A(p;, p,)/B(p;, p,) is defined as a
ratio of the two-particle distribution from the same
event A(p,, p,) to the reference one. The reference dis-
tribution is typically constructed by mixing the parti-
cles from different events of a given class. In ntrt corre-
lations in pp collisions the Coulomb correction can be
neglected.

In our simulations the weight of each particle pair
is calculated according to quantum statistics, using
particle four-momenta p; and four-coordinates x; of
the emission points: w = 1 + cos(q - Ax), where g =
P, — P, and Ax = x; — x,. The CFis defined as a ratio of
the weighted histogram of the pair kinematic variables
to the unweighted one.

The “ideal” case, CFigea(p1, P2) = APy, P2, W)/A(Py, 1),
uses unweighted pairs from the same events as the ref-
erence. A more realistic case, CF,.,igic(P1, P2) =
A(py, p2» w)/B(py, p,), uses unweighted mixed pairs
from different events as the reference. There is a differ-
ence between the ideal pair distribution A(p,, p,) and
the mixed one B(p,, p,) due to presence of momentum
conservation for the pairs from the same event and
absence of it in pairs from the mixed ones. This causes
a smooth increase of CF,igic With g,,, Which reflects
the fact that due to momentum conservation the prob-
ability of two particles emitted in the same direction is
smaller than that of two particles emitted in opposite
directions. We take this into account by using more
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complicated fitting procedure for the “realistic CF”
than for the “ideal CF”.

In both the STAR [1] and the ALICE [2] experi-
ments the correlation function is fitted to a single-
Gaussian. However the fit is unable to describe the
peak at low g;,,,. We fit the CFs by two different fitting
functions: a single-Gaussian, like in the experiment,
and a double-Gaussian (reflecting 2 sizes presented in
the data, direct m and the resonance halo):

CFnge(Giny) = (1+1exp(—Rip@in ) D(@iny),  (2)

CFaoubie(@iny) = (1+1,eXp(=Rin, 1 Giny)
+ 0eXp (~Riny 20im) ) D(Giny)

where the function D(g;,,) takes into account any non-
femtoscopic correlations. The parameters R;,,(; 5 and
A1, 2) describe the sizes of pion sources and the corre-
lation strength, respectively.

3

For the “realistic” case with mixed reference distri-
bution we first approximate the non-femtoscopic cor-

relations CF(p,, p,) = A(p, p,)/B(p,, p,) by a polyno-

mial D(g;,,) = a + bqg;,, + cqfnv. The parameters a, b, ¢
are then fixed and the full correlation function
CH(p,, p)) = A(p1, p2, w)/B(py, py) is fitted to Eq. (2) or
Eq. (3). In order to reproduce the experimental fitting
procedures we will use a flat baseline D(g;,,) = 1 for
STAR energies, while for ALICE energies we can use
either a flat or a polynomial baseline.

4. RESULTS AND CONCLUSIONS

The correlation functions of two identical charged
pions have been calculated within the QGSM models
in the mid-rapidity region. Calculations have been
done for both the “ideal” and the “realistic” cases. We
find that using the realistic case with a mixed pair ref-
erence distribution we get radii which are slightly
larger than in the ideal case.

The obtained one-dimensional CFs are fitted to
Eq. (2) and Eq. (3) in different k;-ranges in Fig. 1
(200 GeV) and Fig. 2 (900 GeV). For 200 GeV the
results are shown for both single and double-Gaussian
fitting with k = 1.32 GeV/fm. We see that the double-
Gaussian describes the shape of the CF well. For
900 GeV our results can be compared to the experi-
mental CE Unlike in the experiments our baseline
D(g;,,) is flat at low g, for all k,-bins for both 200 GeV
and 900 GeV. The reason for this is the absence of jets
in the present version of QGSM. By varying k one can
get a good agreement with experiment. Results for k =
0.88 GeV/fm and k = 2.64 GeV/fm are shown in
Fig. 2, with the latter giving best agreement with
experiment.

No.9 2011
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----------- Single gaussian fit

CF(qiny)

k7= (0.45—0.6) GeV/c

Giny» GEV/C

Fig. 1. The ntn™ CFs for pp at Js =200 GeV in four ko bins, using mixed pair reference distribution. Cuts are [n| < 0.5 and
0.12 GeV/c < p7< 0.8 GeV/c. Calculations are performed with k = 1.32 GeV/fm. Single-Gaussian and double-Gaussian fits are

shown by dotted and full lines respectively.

kr=(0.15-0.25) GeV/c

k= (0.25—0.40) GeV/c
o  ALCE experiment

— QGSM, x =2.64
=== QGSM, k =0.88

Ginv> GeV/c

Fig. 2. The same as Fig. 1 but for Js =900 GeV/c. Cuts are [n| < 0.8 and 0.15 GeV/c < py< 1.0 GeV/c. Calculations with k =
0.88 GeV/fm (dashed line) and k = 2.64 GeV/fm (full line) are compared to ALICE results [2] with multiplicity 7 < M < 11.

The obtained R,,, fitting parameters are shown in
Fig. 3. Radii from the single-Gaussian fit are close to
experimental results. In order to make a model inde-
pendent comparison, the standard single-Gaussian fit
with flat baseline was chosen similar to that in STAR
and ALICE experiments. Higher k,-bins have smaller
statistics, and larger deviation from experimental
points.

PHYSICS OF PARTICLES AND NUCLEI LETTERS  Vol. 8

The double-Gaussian fit gives us two sets of radii,
R, | which is lower than for a single-Gaussian,
whereas R;,, , is much larger. R;,, | displays the radii of
pions directly produced in the collision, while R, ,
exhibits the radii of pions produced from resonance
decays. This can be confirmed by selecting only either
direct pions or pions from resonance decays in our
simulated data. Both cuts give correlation functions

No.9 2011
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Fig. 3. The n*n* correlation radii calculated by QGSM and compared with experimental data (STAR [1] and ALICE [2], flat
baseline) at mid-rapidity in central pp collisions. We use k = 1.32 GeV/fm for 200 GeV (left plot), and k = 2.64 GeV/fm for

900 GeV (right plot).

that are well fitted to a single-Gaussian and give almost
the same results as the two-Gaussian fit. The single-
Gaussian fit, which does not include the low g;,,, reso-
nance peak, mostly describes the radii of direct pions
and pions from short-lived resonances.

In conclusion, we find that the fitting values of both
the STAR and ALICE experiments can be reproduced
reasonably well by means of single-Gaussian fit. How-
ever the two-Gaussian fitting approach reproduces the
correlation function better while retaining a physical
interpretation of the extracted parameters. At
900 GeV the shape of the obtained correlation func-
tions can be directly compared with experimental
data. Better description of the data is demonstrated for
the lower k,-bins. To match the experimental results

PHYSICS OF PARTICLES AND NUCLEI LETTERS  Vol. 8

withing the framework of independent strings one has
to increase the string tension from k = 1.32 GeV/fm at

Js =200 GeV to k = 2.64 GeV/fm at /s = 900 GeV.
This can be taken as evidence for implementation of
string-fusion processes in the model.
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The quark-gluon string model reproduces well the global characteristics of the pp collisions at energies
of \/s = 200 GeV (RHIC) and /s = 900 GeV (LHC). In present paper the quark-gluon string model is
employed for the description of femtoscopic characteristics of identical pions produced in the afore-
mentioned reactions. The study is concentrated on the low multiplicity and multiplicity averaged events,
where no collective effects are expected. The different procedures for fitting the one-dimensional

correlation functions of pions are studied and compared with the space-time distributions extracted
directly from the model. Particularly, it is shown that the double-Gaussian fit reveals the contributions
coming separately from resonances and from directly produced particles. The comparison of model results
with the experimental data favors a decrease in particle formation time with rising collision energy.

DOI: 10.1103/PhysRevD.84.054006

I. INTRODUCTION

Experiments at the Relativistic Heavy Ion Collider
(RHIC) have demonstrated that hot and dense matter
with partonic collectivity has been formed in ultrarelativ-
istic Au + Au collisions at /s = 200 AGeV [1]. Proton-
proton collisions are conventionally used as a reference to
compare with nuclear collisions and to understand the
observed collective effects. The new interest in general
features of pp collisions at ultrarelativistic energies ap-
peared after the first publications of Large Hadron Collider
(LHC) data obtained in pp interactions at \/s = 900 GeV
and 7 TeV [2,3].

The Bose-Einstein enhancement in the production of
two identical pions at low relative momenta was first
observed in pp collisions about 50 years ago [4]. Since
then, the developed correlation method, colloquially
known at present as the ‘‘femtoscopy technique,” was
successfully applied to the measurement of space-time
characteristics of the production process at the distances
of a few fermis (1 fm = 107" m) (see, e.g., [5-7] and
references therein). The space-time relative distances are
“measured” by femtoscopy studies at the points where the
particles stop to interact. This moment occurs at the very
late stage of the collision, long after the quark-gluon
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State University, RU-119899 Moscow, Russia

"Also at Department of Physics, University of Oslo, PB 1048
Blindern, N-0316 Oslo, Norway
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plasma or any other exotic state of matter has disappeared.
But signals like the geometric growth of the reaction zone
and the specific features of the collective flow, generated
by quark-gluon plasma pressure gradients, could be im-
printed in the final state as very specific space-momentum
correlations influencing particle spectra and femtoscopic
radii.

The system created in ultrarelativistic pp collisions at
RHIC and especially at LHC energies can be similar to the
system created in noncentral heavy-ion collisions because
of the large energy deposited in the overlapping region and
therefore can also demonstrate collective behavior. The
strong argument supporting this point of view comes
from the observation of the almost identical multiplicity
and momentum dependencies of the femtoscopic radii in
pp and Au + Au collisions by the STAR collaboration at
RHIC [8]. In particular, the transverse momentum depen-
dence of the radii can be linked to the collective flow
developed in the system [7]. The striking result obtained
by the ALICE collaboration from study of the Bose-
Einstein correlations in pp collisions at /s = 900 GeV
[9] is the absence of the transverse momentum depen-
dence, whereas the increase of correlation radii with rising
multiplicity is similar to that observed in relativistic heavy-
ion collisions at energies up to RHIC.

The aim of the present article is to study hadronization
processes in p p collisions at ultrarelativistic energies using
the momentum correlation technique within the
Monte Carlo quark-gluon string model (QGSM) [10,11]
and to compare results of calculations with the experimen-
tal data obtained at RHIC and LHC. This model describes

© 2011 American Physical Society
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FIG. 1 (color online). (a) The charged particle pseudorapidity
spectra and (b) their transverse momentum spectra in non-single-
diffractive events calculated in QGSM for pp collisions at /s =
200 GeV (dashed lines), 900 GeV (dash-dotted lines) and 7 TeV
(solid lines). Symbols denote the experimental data taken from
[2,3,30].

successfully the main characteristics of pp interactions,
such as multiplicity, transverse momentum and (pseudo)
rapidity distributions in a broad energy range from /s =
200 GeV up to top LHC energy /s = 7 TeV [11]. We try
to understand to what extent one is able to describe the
correlation functions (CFs) in ultrarelativistic pp colli-
sions within the pure string model picture.

The paper is organized as follows. A brief description of
the model features is presented in Sec. II. Special attention
is given to the concept of the formation time, which plays a
very important role for study of the femtoscopy correla-
tions. Section III introduces the method of correlation
functions employed by both the STAR and the ALICE
collaboration. Model results obtained for pp collisions at
s =200 GeV and /s =900 GeV are presented in
Sec. IV. Comparison with the available experimental data
is given as well. The proper choice of the baseline used in
such measurements is discussed. The ability of the double-
Gaussian fit to identify the contributions of string processes
and resonances to the correlation functions is demon-
strated. Finally, conclusions are drawn in Sec. V.

II. THE MODEL

A. Basic features

Our model is the Monte Carlo realization of the quark-
gluon string model developed in [12]. Similarly to the dual
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parton model [13], QGSM is based on Gribov’s Reggeon
field theory (GRT) [14] accomplished by a string phenome-
nology of particle production in inelastic hadron-hadron
collisions. The model incorporates the Field-Feynman
algorithm [15] of string fragmentation. It enables one to
consider emission of hadrons from both ends of the string
with equal probabilities. As independent degrees of free-
dom QGSM includes octet and decuplet baryons, octet and
nonet vector and pseudoscalar mesons, and their antiparti-
cles. Pauli blocking is taken into account by excluding
the already occupied final states from the available
phase space.

Strings in the QGSM can be produced as a result of the
color exchange mechanism or, like in diffractive scattering,
due to momentum transfer. The Pomeron, which is a pole
with an intercept ap(0) > 1 in the GRT, corresponds to the
cylinder-type diagrams. The s-channel discontinuities of the
diagrams, representing the exchange by n Pomerons, are
related to the process of 2k(k = n) string production.
If the contributions of all n-Pomeron exchanges to the for-
ward elastic scattering amplitude are known, the
Abramovskii-Gribov-Kancheli cutting rules [16] enable
one to determine the cross sections for 2k strings. The hard
gluon-gluon scattering and semihard processes with quark
and gluon interactions are also incorporated in the model via
the so-called hard Pomeron exchange [11,17], first discussed
in [18]. The hard Pomeron is nowadays a standard feature
attributed to a variety of GRT-based microscopic models,
such as the dual parton model [13,19], PHOJET [20], QGSJET
[21] and EPOS [22]. Its presence seems to be necessary to
describe the rise of multiplicity at midrapidity and pr spec-
tra of secondaries in p p interactions at LHC energies within
the QGSM [11]. Further details of the Monte Carlo version
of QGSM and its extension to A + A collisions can be found
in [10,11,23].

Figure 1 displays the pseudorapidity and transverse
momentum distributions of charged particles produced in
nonsingle diffractive pp collisions at /s = 200 GeV,
900 GeV and 7 TeV, respectively. Experimental data are
also plotted. Since the model reproduces the bulk charac-
teristics of the collisions quite well, we are encouraged to
apply the QGSM for the analysis of particle interferometry.
Note, however, that the GRT does not provide the space-
time picture of the system evolution, thus leaving room for
the assumptions concerning the femtoscopy correlations
quite open. Here one has to rely on approaches developed
within the framework of the string phenomenology.

B. QGSM and particle coordinates

The space-time evolution of the collisions starts from the
interacting partons, i.e., quarks, diquarks and sea quarks
distributed randomly in the projectile-target overlapping
region. The strings between them are stretching and sub-
sequently decaying into hadrons. Because of the uncertainty
principle it takes time to create a hadron from constituent
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quarks. Also, hadrons are composite particles, and this
circumstance makes the definition of the formation time
model dependent. In the framework of the Lund string model
[24] two definitions of the formation time or, equivalently,
formation length are eligible [25]. In the “yo-yo” case it
corresponds to the time/coordinate of the first intersection
point of the hadron constituents (“yo-yo” formation time).
In the so-called constituent case it corresponds to the time/
coordinate of the point of rupture of the string (constituent
formation time). In the present version of the QGSM the
constituent formation time is used. The string length L =
M /2 depends on its mass M and on the string tension k.
The mass of the string is not fixed. It is determined by the
generation of longitudinal and transverse momenta of va-
lence quarks at the string ends, that depend on the momenta
of colliding hadrons. The length of the string varies from the
maximum value determined by the momentum of the inci-
dent hadron to the minimum value determined by the pion
mass. Therefore, for the formation of a resonance the mass
and length of the string must be much larger than for
production of a pion.

The formation time #; and coordinate z; of ith hadron in
the string center of mass can be expressed via its energy E7,
its longitudinal momentum p7; and the longitudinal mo-
menta/energies of all hadrons produced by the decay of this
string (see Appendix)

.1 Lo
=5 (M zglpz_,-), (1

2z :ﬂ(M:—zj:ZlEj). 2)

Then we calculate ¢, in the laboratory frame and make the
propagation of the coordinates to this point (x;, y;, z; 1;):
a; = ag; + t;p,i/E;, a = x, y, z. The initial spatial distri-
bution of partons in a proton is found to be insignificant
for the pion coordinate distributions at freeze-out, which
are dominated by both the formation time of hadrons
and decay lengths of resonances. To study the possible

dN/dr,

r, (fm)

FIG. 2. The dN/dr;, r; = x (a), y (b), z (¢), t (d) distributions
of pions at freeze-out in pp collisions at /s = 900 GeV with
a = 1 (dotted line), @ = 1.5 (dashed line) and a = 3 (solid line).
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reduction of the formation time because of, e.g., increase
of the string tension with rising incident energy we intro-
duce in Egs. (1) and (2) the scaling parameter «, i.e.,
K = akg, where k, = 0.88 GeV/fm is the default value
of the string tension coefficient in the QGSM found from
comparison with experimental data at lower energies [10].
The coordinate distributions of pions at freeze-out are
shown in Fig. 2 for pp collisions at /s = 900 GeV with
a = 1, 1.5 and 3. One can see that increase of a« makes the
coordinate distributions narrower.

III. THE CORRELATION FUNCTION
REPRESENTATIONS

The momentum correlations are usually studied
with the help of correlation functions of two or more
particles. Particularly, the two-particle correlation function
CF(py, p2) = A(p1, p2)/B(py, p,) is defined as a ratio of
the two-particle distribution from the same event A(p,, p,)
to the reference one. In experimental analysis the reference
distribution is typically constructed by mixing the particles
from different events of a given class.

In our simulations the weight of each particle pair is
calculated according to quantum statistics, using particle
four-momenta p; and four-coordinates x; of the emission
points: w =1+ cos(q - Ax), where ¢ = p; — p, and Ax =
x| — Xx,. Note that the weight w used here has equally
enhanced and reduced values. In this way quantities like
the average multiplicity are not systematically affected by
the weighting. The CF is here defined as a ratio of the
weighted histogram of the pair kinematic variables to
the unweighted one. This “ideal” case, CF,gu(p1, p2) =
A(py, pa,w)/A(py, p2), uses unweighted pairs from the
same events as the reference.

In experiments one utilizes unweighted mixed pairs from
different events as the reference, namely CF,isic (P1, P2) =
A(p1, pa,w)/B(py, p2). Among other effects there is a dif-
ference between the ideal pair distribution A(p;, p,) and
the mixed one B(p,, p,) due to the presence of energy-
momentum conservation for the pairs from the same event
and absence of it in pairs from the mixed ones. This causes a
smooth increase of CF ;i With g, which reflects the fact
that due to energy-momentum conservation the probability
of two-particle emittence in the same direction is smaller
than that in opposite directions. Therefore, a more complex
fitting procedure is needed for the “realistic CF” than for
the “ideal CE”’

Generally, the correlations are measured as a function of
pair relative momentum four vector ¢g. An invariant form
of this momentum difference commonly used in the

one-dimensional correlation analysis is qim,:‘/qg— lql>.
In both the STAR [8] and the ALICE [9] experiments the
correlation function is fitted to a single-Gaussian

CF sing]e(qinv) = [1 + /\exp(iRiznvq?nv)]D(qinv): (3)
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where the function D(g;,,) takes into account any non-
femtoscopic correlations including the long-range correla-
tions due to energy-momentum conservation described
above. The parameters R;,, and A describe the size of
pion sources and the correlation strength, respectively.
Here R;,, is defined in the pair rest frame (PRF).
Concerning the fit given by Eq. (3) we have to note that
the best way to compare the model simulations with the
experimental data is the direct comparison of the correla-
tion functions. Unfortunately, the CFs are not always
available and one has to compare the results of the fit,
that is more complicated. For instance, choice of the
baseline D(gj,,) is rather arbitrary. The baseline should
describe the CF behavior at large g;,, where only the
conservation laws work, but the region of small g,
remains terra incognita. Different experiments employ
different extrapolations of the baseline to small g;,,, e.g.,
polynomial extrapolations, EMCIS-FIT [8], Monte Carlo
simulations with PYTHIA and PHOJET [9], that give some
specific behavior at small g;,, due to strong jet contribution
in these models, especially noticeable at large k,. In order
to reproduce the experimental fitting procedures in a model
independent way and make a consistent comparison of our
simulations with different experiments we will use below a
flat baseline with D(g;,,) = 1 for STAR and ALICE data.

The correlation strength parameter A can differ from
unity due to the contribution of long-lived resonances,
particle misidentification and coherence effects. The 1D
correlation functions were studied within the different
ranges of the average pair transverse momentum k; =
[pi1 + Pyi2l/2 in the midrapidity region.

If large statistics sets are available it is possible to perform
the 3D correlation analysis. Within realistic models, the
directional and velocity dependence of the correlation func-
tion can be used to get information about both the duration of
the emission and the form of the emission region, as well as
to reveal the details of the production dynamics [5-7]. For
these purposes the correlation functions can be analyzed in
terms of the out, side and logitudinal components of the
relative momentum vector q = {¢ou Gsider Giong) [26,27].
Here ¢, and ggq. denote the transverse components of
the vector q, and the direction of g, is parallel to the
transverse component of the pair three-momentum. The
corresponding correlation widths are usually parametrized
in terms of the Gaussian correlation radii R;

CF(pIr P2) =1+ /\exp(iR?mlqgul - Rsideqzide B Rlzongqlzong)'
“)

The three-dimensional analysis is performed in the longitu-
dinal comoving system (LCMS), where the pair momentum
along the beam vanishes. It is possible to compare the
radii measured in LCMS with R;,, by making a boost of
all radii from LCMS to PRE, namely, R,y prr = Y7 Rou
Rgige PRE = Riide> Riongprr = Riong and averaging these radii.
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The method used by STAR and ALICE experiments is to
create a 3D correlation function by filling a three-
dimensional histogram with the full @ = {gou Gsider Giong)
vector in different ranges of the average pair transverse
momentum ky = |py; + p;,l/2.

IV. RESULTS AND DISCUSSION

The two-pion correlation functions CF(g;,,) simulated
for pp collisions within the QGSM model with the scaling
parameters @ = 1, 2 and 3 are shown in different k; ranges
in Fig. 3 and 4 for \/s = 200 GeV and /s = 900 GeV,
respectively. The denominator of the CF was calculated
by means of the mixing procedure described in Sec. III.
As expected, smaller formation times lead to smaller
freeze-out radii of the particle sources and, therefore, to

k, = (0.15-0.25) GeV/c k, = (0.25-0.35) GeV/c

— QGSM, o=1
—— QGSM, 0=1.5
QGSM, o=3

k, = (0.45-0.6) GeV/c

0 0.5 0 0.5

q_ (GeVic)

inv

i (GeVic)

FIG. 3. The w*#* CFs for pp at /s = 200 GeV in four k;
bins obtained by mixed pair reference distribution. Cuts are
[n] <0.5 and 0.12 GeV/ci pri0.8 GeV/c, as in the STAR
experiment. Calculations are performed with o =1 (dotted
line), @ = 1.5 (solid line) and a = 3 (dashed line).

k;=(0.15-0.25) b ky=(0.25-0.40)

1 R -

k;=(0.55-0.7)

07_1 o) e ALICE experiment
— QGSM, 0=3

------ QGSM, 0=1.5
““““““ QGSM, 0=1

1

0 02040608
qa., (GeVl/c)
FIG. 4. The same as Fig. 3 but for \/s = 900 GeV/c. Cuts are
[n] <0.8 and 0.15 GeV/c i py i 1.0 GeV/c. Calculations with

a = 1 (dotted line), @ = 1.5 (dashed line) and @ = 3 (solid line)
are compared to ALICE results [9] with multiplicity M = 6.
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larger CFs in the interval 0 = g;,, = 0.5 GeV/c. In Fig. 4
the correlation functions obtained with the QGSM are
directly compared to those measured by the ALICE col-
laboration. The ALICE analysis performed for the mini-
mum bias event sample gives for the value of the average
pseudorapidity density (dN.,/dn) = 3.6, that coincides
with the results of the QGSM simulations. We compare
the QGSM low multiplicity sample with the ALICE data
at low multiplicity bin M = 6. The best description is
achieved for the scaling parameter equal to 3. In Fig. 4
one can see that the agreement between the shapes of
the correlation functions calculated within the QGSM and
measured by the ALICE is rather good till k; < 0.7 GeV/c.
In the last k7 bin 0.7 =< k; = 1.0 GeV/c the experimental
correlation function is about 15% narrower than the QGSM
one. To understand this effect better the realistic correlation
functions without quantum statistics weights, i.e.“base-
lines™, were constructed in different k; bins as displayed
in Fig. 5. The energy-momentum conservation produces the
long-range correlation effects at large ¢;,,, for which the
calculated values of the CFs lie above the unity. In Ref. [9]
a good description of the long-range correlations was
obtained within the PYTHIA and PHOJET models. In Fig. 5
the QGSM baseline D(g;,,) demonstrates complicated
behavior qualitatively similar to that of the PYTHIA/PHOJET
baselines but a bit flatter in low g, interval for large ky
bins.

Figure 6 presents the k; dependence of R;,,, obtained from
the fit to Eq. (3) with the flat baseline of the QGSM CFs,
shown in Figs. 3 and 4. The available STAR and ALICE data

| kr=(0.15-0.25) 4 1 k=(0.25-0.40)

k;=(0.55-0.7) ‘

B QGSM 0=3 baseline
baseline polynomial fit

0 05 1 15
g (GeV/c)

nv
FIG. 5. The baseline for 77" correlation functions extracted
from QGSM calculations (full circles) of pp collisions at

/5 =900 GeV in different k; intervals. Solid lines denote
the fit to polynomial D(giy,) = a@ + bginy + g2y

PHYSICAL REVIEW D 84, 054006 (2011)

points with flat baselines [8,9] are averaged over the multi-
plicity and compared with the multiplicity averaged QGSM
correlation functions. The best agreement with the STAR
data [8] was obtained for calculations with o = 1.5.

It was reported in [9] that if PHOJET/PYTHIA baselines are
chosen the correlation radii are practically independent on
ky within the studied transverse momentum range, however,
the strength of the k; dependence relies heavily on the
baseline hypothesis. The ALICE conclusion about the ab-
sence of k; dependence is based on the assumption that both
PHOJET and PYTHIA correctly describe the nonfemtoscopic
effects atlow g;,, possibly related to minijets. In this case the
enhancement at low g;,,, in the large k7 bins is misinterpreted
as Bose-Einstein enhancement. We see, however, that by
assigning Bose-Einstein weights to all pion pairs we are able
to reproduce the enhancement at low-g;,, shown in Fig. 4.
In such a case it will be improper to use the PHOJET/PYTHIA
or our own QGSM baseline to exclude the assumed non-
femtoscopy correlations at low ¢;,,. The rather successful
description of the ALICE points within such an approach
suggests that there is no room for nonfemtoscopic correla-
tions at low gy, up to ky < 0.7 GeV/c.

The ALICE and STAR data points obtained with the flat
baseline reveal a similar slope in Fig. 6, which is described
rather well by the QGSM calculations with the scaling
factors a = 1.5 and a = 3, respectively. However, the
higher k; bins have larger deviations from the experimen-
tal points.

It is helpful to understand the origin of the strong kp
dependence of the correlation radii in the QGSM model.
The Lund hadronization schema described by Egs. (1)
and (2) introduces automatically the space-momentum
correlations. The ““p-x”" correlations for the direct pions
displayed in Fig. 7 look similar to the space-momentum
correlations in hydrodynamic models, where they arise

147 o QGSM, 900 GeV
Fbe O QGSM, 200 GeV
r L] e ALICE experimental data
1.2 O E‘l_‘ [ m STAR experimental data
I T
€ 1 {' $
r o
2 r
o L
0.8 [ ¢ .
L + °
0.6 —
P N B ‘\HH\HH\{‘

P IR B
0.4 0.5 0.6 0.7 0.8
<k> (GeV/c)

0.2 0.3

FIG. 6. One-dimensional 77" 7 correlation radii as functions
of kr in pp collisions at /s = 200 GeV (squares) and /s =
900 GeV (circles). Open symbols denote STAR [8] and ALICE
[9] experimental data, full symbols present QGSM calculations
with @ = 1.5 (200 GeV) and a = 3.0 (900 GeV), respectively.
Both the model results and the data are obtained from the fit to
Eq. (3) with the flat baseline.
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FIG. 7 (color online). The space-momentum correlations of
direct pions produced in QGSM calculated pp collisions at
/s =900 GeV. Line is drawn to guide the eye.

due to transverse collective flow. Note that only the
particles with nearby velocities in their center-of-mass
system contribute to the correlation function. If the
“p-x correlations are absent, the whole source is
“seen” by the CF in any chosen k; range. Thus, there
should be no k; dependence of the correlation radii. In
the presence of the “p-x"" correlations the particles with
close momenta come from nearby space regions of the
source. Therefore, one is measuring not the real geomet-
rical size of the source, but rather the size of the regions
which emit particles of a given momenta, the so-called
regions of homogeneity [28]. Higher k; pairs should have
narrower coordinate distributions due to larger ‘“focusing
effect”. It originates from the fact that particles with large
momenta fly away from each other much quicker than
particles with small momenta, so in order to be correlated
they have to be very close in the coordinate space. In
Fig. 8(a) and 8(b) the transverse coordinate distributions
are shown in the pair rest frame together with the corre-
sponding correlation functions CF,y., for the direct pions
in three k; ranges, namely KT1 = (0.1-0.25) GeV/c;
KT3 = (0.4-0.55) GeV/c and KT5 = (0.7-1.0) GeV/c.
We see that the widths of the Xprg distributions decrease
with rising k; and the corresponding CF4., become
narrower. These widths are reproduced within error bars
by the fit of CFjy, to the Gaussian given by Eq. (3) with
D (qinv) =1

The important factor influencing the coordinate distri-
butions is the ratio of direct pions to pions from resonance
decay. Table I presents the fractions of pions from decay of
the resonances most essentially contributed to the correla-
tion functions. The path length [* =~ p,/m..I" of these states
in the c.m. frame of two identical pions at small value of
Giny 18 listed in Table I also. Here p, is the momentum of
the decay pion in the resonance rest frame [29], m , is the
pion mass and I' is the decay width. The pions from the
decays of rather long-lived resonances w and K* cause
appearance of the exponential tails in the pion emission
function, which distorts the Gaussian-like shape of the CF,
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Kt (0.7-1.0) GeV/c
- Kt (0.40-0.55) GeV/c|
Kt (0.1-0.25) GeVic|

0.5 1
q., (GeVlic)

0.5 1
q., (GeVlic)

X* (fm)

FIG. 8 (color online). (a) Coordinate distributions of the
direct pions in PRF in QGSM calculated pp collisions at
/5 =900 GeV with @ = 3. The three transverse momentum
intervals are KT1 = (0.1-0.25) GeV/c (dotted histogram),
KT3 = (0.4-0.55) GeV/c (dashed histogram) and KT5 =
(0.7-1.0) GeV/c (solid histogram). The single-Gaussian fit for
the KT5 bin is shown by the solid line. (b) CF;q, for KT1
(dotted histogram), KT2 (dashed histogram) and KT3 (solid
histogram). (c) The same as (a) but for all pions, the single
and the double-Gaussian fits are shown for KT5 bin by the solid
lines. (d) The same as (b) but for all pions, the double-Gaussian
fit is shown for KT5 bin by the solid line.

see Fig. 8(c) and 8(d). Their relative contribution decreases
with increasing k7 due to kinematical reasons, whereas the
relative contributions of direct pions and pions from p
decays increase as displayed in Fig. 9. This effect also
leads to decrease of the correlation radii with increasing
kr. The essentially non-Gaussian coordinate distributions
that include contributions from resonances cannot be fitted
well to a single Gaussian, however, the double-Gaussian fit
reproduces its shape properly, see Fig. 8(c). By fitting
the corresponding CFs to a single Gaussian one cannot
describe the narrow peak produced by pions from the
resonance decays at low gj,,. On the other hand, using
the double-Gaussian fitting procedure similar to the one
suggested in [29]

TABLE I. The fraction of pions from decay of main resonance
species in QGSM and the path length [* of these states.

I (fm) 200 GeV 900 GeV
Direct 77" : 46.9% 37.5%
7t from pOt — 707" 33 37.1% 40.7%
7t from w — 77 7t 28.1 11.2% 15.9%
7 from KT (K*%) — K7™ 8.0 42% 5.5%
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FIG. 9 (color online). The fractions of pions coming from
resonance decays and direct ones as functions of the average
pair momentum k; in QGSM calculated pp collisions at
/5 =900 GeV. The symbols denote directly produced pions
(full circles) and pions coming from the decays of p mesons
(full squares), @ mesons (open triangles) and K™ (full triangles),
respectively.

CFdoublc(qinv) = [1 + )‘l exp(iRiznv,lqiznv)
+ /\2 exp(_Riznvvzqiznv)]D(qinv)v (5)

where parameters R, 2) and A 5y describe the sizes and
the correlation strengths of the direct pion source and the
one of the pions from the resonance decays, respectively,
one gets a much better description of the CF shape at low
Ginv»> @s shown in Fig. 8(d).

In order to understand to what extent one is able to
describe the correlation functions of all particles including
the resonances by the different fitting procedures we make
a comparison of the extracted values of R;,, with the

k;=(0.25-0.4)

k;=(0.15-0.25)

1t

ky=(0.4-0.55)

T 15 By g
[T L
o ! ]

ky=(0.55-0.7)

k= (0.7-1.0) o QGSM,0=3
1.5 — Double gaussian fit
1 ccommmmmmee Single gaussian fit
05 . . . .
0.2 0.4 0.6 0.8 0.2 04 0.6 0.8
q_(GeV/c)

inv

FIG. 10. The fit of pion correlation functions, obtained in
QGSM calculated pp collisions at /s = 900 GeV with a = 3,
to single Gaussian (dotted line) and double Gaussian (solid line)
in five k; bins.
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TABLE II.  Gaussian widths o Xl of the coordinate distribu-

tions in PRF shown in Fig. 8(c) for single and double-Gaussian
fit in three transverse momentum intervals 0.1 < k; <
0.25 GeV/c (KT1), 0.4 = k; = 0.55 GeV/c (KT3) and 0.7 =
kr = 1.0 GeV/c (KT5), respectively.

o Xy (fm)

Method KT1 KT3 KT5
single-Gaussian 3.37 2.45 2.96
double-Gaussian 1.48 1.08 1.00

5.35 4.72 423

Gaussian widths of the coordinate distributions in the
pair rest frame. The comparison is presented in Fig. 8(c)
for the ideal correlation functions CF,gy., and in Fig. 10 for
the realistic CFs. The extracted parameters are listed in
Table IT and III, respectively, for three k; ranges, namely,
KT1 = (0.1-0.25) GeV/c; KT3 = (0.4-0.55) GeV/c and
KT5 = (0.7-1.0) GeV/c. Because of the sharp peak of the
correlation functions at low ¢;,, the two radii restored by
the double-Gaussian fit vary considerably. The first one is
of the order of 1 fm and has a tendency to decrease with
rising k7, whereas the second one is always larger than
3 fm and increases to 13—14 fm at high transverse mo-
menta. The second Gaussian is quite narrow thus leading to
a hair-width difference between the single-Gaussian and
double-Gaussian curves at gj,, > 0.1 GeV/c.

The ideal 3D correlation functions for /s = 200 GeV
and ﬁ = 900 GeV, constructed for the minimum bias
events and low multiplicity bin, are displayed in Fig. 11
and 12, respectively. The calculations were done with a =
1.5 and @ = 3.0, and the full 3D fit to the 3D Gaussian
given by Eq. (4) was performed. The extracted R; as

TABLE III.  Parameters Ry, extracted from Fig. 8(c) and 10 by
using different fitting strategies: /—ideal CF is fitted to the
single-Gaussian Eq. (3) with D(g;,,) = 1; 2—*realistic”” CF is
fitted to the single-Gaussian Eq. (3) with D(gy,,) = 1; 3—
realistic CF is fitted to the single-Gaussian Eq. (3) with
D(qiny) = a + bqin, + cq?; 4—realistic CF is fitted to the
double-Gaussian Eq. (5) with D(g;,,) = 1; 5—realistic CF is
fitted to the double-Gaussian Eq. (5) with D(giy,) = a + bgin, +
cq?,,- The selected transverse momentum intervals are the same
as in Table II.

Rinyi() (fm)
Method KT1 KT3 KT5
1 1.00 0.77 0.66
2 1.26 0.84 0.71
3 1.10 0.84 0.71
4 1.23 0.81 0.71
5.04 3.26 13.97
1.05 0.81 0.71
3.61 3.25 13.83
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FIG. 11. Projections of the 3D Cartesian representations of the
correlation functions onto the Gou» Gsiges and Gong axes, for the
minimum bias events from pp collisions at 200 GeV for four ky
ranges. To project onto one g component, the others are inte-
grated over the range 0 = ¢; = 0.12 GeV/c.

functions of average k; are presented in Fig. 13 and 14.
One can see that the experimental points are rather close to
the QGSM ones especially for ALICE experimental data,
see Fig. 14, where the low multiplicity bin is considered.
Note that no integration over multiplicity was done in both
cases. At 200 GeV all radii demonstrate the weak decrease
with k;, whereas at 900 GeV the radii R, and Rg g4, are
rather flat, the first point in R, is lower than the other
ones, and only Ry,,, demonstrates the decrease with rising
kr as was observed by the ALICE collaboration at low
multiplicity.

out 0QGSM |side
k; =(0.1,0.25)

5 R, — Gaussian fit
T [ A\

k;=(0.25-0.4)

long

i
S——

ky=(0.4-0.55)

1.5 Q
S IS
s |

o kT=(0.55-0.74>

St

15 M k=(0.7-1.0)
1 % N
RGN SN
0.5 1 0.5 1 0.5 1
Ay (GeV/c) e (GeVr/c) Yong (GeVrc)

FIG. 12. The same as Fig. 11 but for the low multiplicity bin
Ny, < 11 of pp collisions at 900 GeV in five k; ranges.
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FIG. 13. Three-dimensional 7" 7% correlation radii as func-
tions of k7 in pp collisions at \/s = 200 GeV for minimum bias
events. Open circles denote STAR experimental data, full
squares present QGSM calculations with a = 1.5. Both the
model results and the data are obtained from the fit to Eq. (4).
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FIG. 14. The same as Fig. 13 but for the low multiplicity bin
Ng, < 11 of pp collisions at /s = 900 GeV. QGSM calcula-
tions are with a = 3.

V. CONCLUSIONS

The following conclusions can be drawn from our study.
QGSM calculations show strong dependence of the correla-
tion radius on the transverse momentum of a pion pair.
Similar dependence has been observed by the STAR
Collaboration, while the ALICE Collaboration reported al-
most constant R;,, with increasing k. However, if the flat
baseline is employed instead of the one simulated by PYTHIA
and PHOJET, the ALICE data demonstrate the noticeable ky
dependence as well. The origin of such a dependence in the
QGSM s traced to the space-momentum correlations attrib-
uted to microscopic string models. If these correlations
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would be absent, the correlation radius R;,, would be inde-
pendent on the pair transverse momentum.

Pions in the model are produced either directly in the
processes of string fragmentation or from the decays of
resonances. The relative contribution of the long-lived
resonances to pion emission function decreases with rising
kr, while the corresponding contributions of direct pro-
cesses and short-lived resonances increase. Therefore, the
correlation radii of pions also decrease with an increase in
the pair transverse momentum. The fit of the 1D correla-
tion functions to the double Gaussian provides a good
description of the shape of the CFs at low ¢;,, range and
enables us to separate the contributions from the direct
pions and pions from the resonances.

It was expected that the size of the freeze-out region in p p
collisions should increase with rising c.m. energy from
/s =200 GeV to /s = 900 GeV due to the increase of
interaction cross section and the number of produced reso-
nances. Surprisingly, the radii measured by femtoscopy at
/s = 200 GeV are the same or even smaller than the ones at
\/E = 900 GeV, as seen in Fig. 6. The radii obtained within
the standard Lund scenario of string breaking and the con-
stituent formation time, implemented in the QGSM, appear
to be larger compared to the experimental data. Our analysis
favors reduction of the formation time with increasing en-
ergy of hadronic collision. One of the possible solutions is
the process of string-string interaction via, e.g., fusion of
strings that leads to an increase of the string tension.
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APPENDIX: SPACE-TIME COORDINATES OF
PRODUCED HADRONS

Following Refs. [24,25] let us consider 1 + 1 fragmen-
tation model of ¢g string of mass M, with massless
constituents at the ends, as displayed in Fig. 15. The
Hamiltonian of such a system is

H = |p| + |pal + klz; — z2l, (A1)

where |p,| and |p,| are the momenta of the quark and
antiquark, z; and z, are their coordinates, and « is the string
tension. The equation of motion for the constituents reads

ar _ *k, (A2)
dt
with the sign depending on the direction of motion of
the constituent. At a certain time #; the string breaks via
formation of ¢;g; pair. The final hadrons are produced
as aresult of g;_g; coalescence. Their energy and momen-
tum are
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E; = k(zi—1 — 2j), (A3)

pi = k(tioy — 1), (A4

respectively. In terms of the light cone variables p* =
E * p, z* =t * 7 one gets for the ith hadron within the
““constituent” picture of hadron formation

pi =k =) (AS)
pi =z —zi2)) (A6)
Therefore,
= _n +z0 (A7)
K
=Ly (A8)
K

Applying the recurrence procedure to Eqs. (A7) and (A8) we
arrive to

(A9)

pi + 2. (A10)

Taking into account that zj = (Eq + pg)/k = M,/k,
whereas z, = 0 we finally get expressions for the (7;, z;)
coordinates of produced hadrons

z,:le[ Z(p,+pj:| K[ ZZE]
(A1)

S L XUR] e L Y
(A12)
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Bulk observables like multiplicity, rapidity and transverse momentum
distributions of hadrons produced both in inelastic and non-diffractive pp
collisions at energies from /s = 200 GeV to 7 TeV are described within
the Monte Carlo quark-gluon string model. The short-range correlations
of particles in the strings and interplay between the multi-string processes
at ultra-relativistic energies lead to violation of Feynman scaling at midra-
pidity. Model predicts strong increase of the slope with energy in forward—
backward multiplicity dependence (np(ng)) due to long-range correlations
between particles produced in the multi-string processes. The comparison
of model results on pion—pion femtoscopic correlations with the experimen-
tal data favors significant decrease of particle formation time with rising
collision energy. The possibility to produce anisotropic flow on the initial
stages of pp reactions, both directed vy and elliptic vy, from the decay of
the strings is discussed.
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1. Introduction

One of the goals of CERN experiments at LHC is a search for signals
of the hot and dense matter created in relativistic heavy ion collisions. The
main signatures of such matter are considered to be e.g. jet quenching, strong
anisotropic flow and ridge. These effects were found in Au-+ Au collisions
at /s = 200 AGeV at RHIC. Similar effects, detected at LHC at energies
of one order of magnitude higher, /s = 2.76 ATeV, showed that the den-
sity of the matter becomes larger, the particle multiplicities and magnitude
of anisotropic flow are growing gradually but not very significantly. High

* Presented at the Conference “Strangeness in Quark Matter 20117, Krakow, Poland,
September 18-24, 2011.
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multiplicity pp data at /s = 7 TeV reveal the presence of near-side ridge
similar to that detected in Au—Au collisions at RHIC. They also show the
possible existence of radial flow in identified particle pp spectra, dependent
on mr of the particle, which was supported by femtoscopic radii of the par-
ticles. The scientists put forward the idea that hot and dense matter with
very particular properties can be created also in central pp collisions at very
high energies. For theoretical models it means that these collective effects
in pp collisions can be described by hydrodynamics, usually applied only to
nucleus—nucleus collisions, where the matter with many degrees of freedom
is formed. The question arises whether it can also be explained by initial
state effects as was suggested within the Gribov’s Reggeon Field Theory
(GRT) [1]. In the present paper, we discuss the predictions of Quark Gluon
String Model (QGSM) [2] for pp collisions at RHIC and LHC energies. The
QGSM is based on the GRT accomplished by the string phenomenology. Its
brief description is given in the next section.

2. Basic features of the model

The QGSM is based on the 1/N expansion, where N is number of colors
or flavors, of the amplitude for a QCD process. The diagrams arising in this
approach correspond to processes with the exchange of Regge singularities
in the t-channel and, therefore, can be calculated within the perturbative
GRT. The theoretically obtained statistical weights, structure functions of
hadrons and fragmentation functions of leading quarks are utilized in the
present Monte Carlo version of the QGSM |[3] to choose the subprocesses of
hadronic interactions, to calculate the mass and momentum of each string
and, finally, to simulate the string fragmentation into hadrons.

As independent degrees of freedom the QGSM includes the nonets of
vector and pseudoscalar mesons, the baryon octet and decuplet, and their
antistates. Pauli blocking of occupied final states is implemented by exclud-
ing the already occupied final states from the available phase space. Strings
in the QGSM can be produced as a result of both the momentum transfer
(diffraction) and color exchange mechanism. The Pomeron, which is a pole
with an intercept ap(0) > 1 in the GRT, corresponds to the cylinder-type
diagrams. The s-channel discontinuities of the diagrams, representing the
exchange by n-Pomerons, are related to process of 2k (k < n) string produc-
tion. If the contributions of all n-Pomeron exchanges to the forward elastic
scattering amplitude are known, the AGK cutting rules [4] enable one to de-
termine the cross sections for 2k-strings. The hard gluon—gluon scattering
and semi-hard processes with quark and gluon interactions are also incorpo-
rated in the model via the so-called hard Pomeron exchange. Its presence
seems to be necessary to describe the rise of multiplicity at midrapidity and
pr spectra of secondaries in pp interactions at LHC within the QGSM |[5].
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For the modeling of string fragmentation the Field—Feynman algo-
rithm |7] is employed. It enables one to consider emission of hadrons from
both ends of the string with equal probabilities. The break-up procedure in-
vokes the energy-momentum conservation and the preservation of the quark
numbers. Due to the uncertainty principle it takes some time to create a
hadron from constituent quarks, e.q., fast particles are created the last. In
string models two definitions of formation time are accepted [8]: the time
when the string is broken and all constituents of the hadron are created (con-
stituent) or the time when the trajectories of hadron constituents (quarks)
cross (“yo—yo”). In this version of QGSM we are using the constituent for-
mation time. Further details of the MC version of QGSM and its extension
to A+ A collisions can be found in [3,5,6].

3. Pseudorapidity and transverse momentum distributions

For the comparison with model calculations the experimental data re-
ported for pp and pp collisions in [9,10, 11,12, 13] are used. Pseudorapid-
ity distributions of charged particles obtained for inelastic and non-single
diffraction (NSD) pp interactions at energies from /s = 200 GeV to 14 TeV
are presented in Fig. 1(a) together with the available experimental data.
According to the hypothesis of Feynman scaling the density of charged par-
ticles dN°"/dn at midrapidity should be saturated at very high energies.
This scaling regime is obviously not reached yet. Moreover, at LHC energies
AN /dn lp=o demonstrates a non-linear rise with In s, as suggested by the
saturation of the Froissart bound. For pp collisions at top LHC energy /s =
14 TeV the QGSM predicts dNipel/dn|y—o = 6.1, dNnsp/dn|p=0 = 7.0,

respectively.
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Fig.1. (Color online) (a) Pseudorapidity spectra for charged particles in inelastic
and NSD pp collisions at 200 GeV < /s < 14 TeV. (b) Transverse momentum
distribution of the invariant cross section in NSD pp collisions in the same energy
range.
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Figure 1 (b) shows the transverse momentum distribution of the invari-
ant cross sections of charged particles in NSD pp events. The contribution of
hard processes increases with rising /s, therefore, the pr spectra of secon-
daries become harder, especially at pp > 2.5 GeV /c. The average transverse
momentum of the produced hadrons also increases. For the NSD pp colli-
sions at /s = 14 TeV the model predicts (pr) = 0.56 + 0.03 GeV /c.

4. Long-range and femtoscopy correlations

The term “long-range correlations” is used for correlations between
charged particles emitted in forward (F) and backward (B) hemispheres.
These correlations were first observed experimentally in [9]. The dependen-
cies (ng(nr)) of the mean charged-particle multiplicities measured in the
pseudorapidity intervals —4 <7 < 0 and 0 < 7 < 4 are shown in Fig. 2 for
pp collisions at four different energies. We see good agreement between the
model results and the available experimental data. Also, these dependencies
are quite linear

(np(np)) =a+bny, (1)

whereas the slope parameter b increases with the rising energy. Note that
hard processes do not alter the observed correlations, i.e. the strength of the
correlations is fully determined by the processes with increasing number of
soft Pomerons.
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Fig.2. (Color online) Left: Backward—forward multiplicity correlations (ng(ng))
for 0 < |n| < 4 in NSD pp interactions at /s = 200 GeV, 546 GeV, 900 GeV and
14 TeV. Open circles denote contributions of soft processes, full symbols are for
all processes, open squares represent UA5 data. Right: Three-dimensional 77+
correlation radii as functions of kt in pp collisions at /s = 900 GeV for minimum
bias events. Open circles denote ALICE experimental data, full squares present
QGSM calculations.
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The 3D femtoscopy correlation analysis can provide information about
both the form of the emitting source and the duration of the emission [14,15].
Here, the momentum correlation functions are analyzed in terms of the
out, side and longitudinal components of the relative momentum vector
q = {Gout, Gside, Glong }» Where oyt and gsige denote the transverse components
of the vector g, and the direction of gu,t is parallel to the transverse com-
ponent of the pair three-momentum. The corresponding correlation widths
are usually parametrized in terms of the Gaussian correlation radii

CF(pLPQ) =1+ A exp (_Rgutqgut - Rsideqside - R120ngc.h20ng) . (2)

The extracted R; as functions of average pair transverse momentum kp =
Ipt1 + pr2|/2 are presented in Fig. 2 (b) for the low multiplicity bin in pp
interactions at /s = 900 GeV. One can see that the QGSM points are rather
close to the ALICE experimental ones [16]. However, this implies significant
reduction of the formation time with increasing energy [17] or, equivalently,
rise of the string tension.

5. Directed and elliptic flow in pp collisions

The possible formation of anisotropic flow or rather its two first com-
ponents, directed v; and elliptic v flow, in pp collisions at LHC energies
is a very popular topic nowadays. Several scenarios have been discussed
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Fig.3. (Color online) Flow coefficients v; and vy obtained for a decay of a string
with energy /s = 40 GeV and 200 GeV and with impact parameters b = 0.5 fm
(solid lines) and b = 1.0 fm (dashed lines).
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(see e.g. [18] and references therein). In the color exchange mechanism of
string excitation, strings are stretching between constituents belonging to
different hadrons. Therefore, these strings usually have some slopes in the
transverse direction. In [19] the fragmentation of a classical relativistic string
with a certain transverse separation of the ends has been considered. It was
shown that the fragmentation process of such a string could generate both
directed and elliptic flow as displayed in Fig. 3.

This work was supported by the Norwegian Research Council (NFR)
under Contract No. 185664 /V30.
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