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Chapter 1

Introduction

1.1 Preface

One of the most challenging goals of solid state physics is to search for exotic
phases of matter which arise from the quantum nature of electrons. Earlier,
the conventional band theory of solids classified materials into three broad
categories, namely metals, insulators, and semi-conductors. However, it faced
a major surprise after the realization of topological phases of matter which
required modification of the band theory, in the sense that we learned about the
importance of geometric nature of quantum states. The birth of such a topological
phase dates back to 1980, when Klaus von Klitzing discovered the Quantum
Hall effect [1, 2]. The observation was that, electrons in two dimensions subject
to a low temperature and a strong magnetic field show step like features in the
resistance. With this major discovery and later on pioneering works by Thouless,
Haldane [3, 4] led to the establishment of a new class of materials characterized
by topological order.

The fascinating aspect of topological systems is that even though they are
insulating in bulk, there exist anomalous states at the boundaries of the system
which can conduct [5, 6]. Moreover, these boundary states are usually quantized
in number and feature robust dissipationless transport. The robustness arises
from the fact that the boundary states are symmetry protected (except in the
quantum Hall effect which belongs to class A in 1.1), meaning, unless one
breaks the bulk symmetry associated with these topological states, or closes
the bulk gap, the states do not disappear, and hence show robust topological

protection. This remarkable feature has opened up a new range of technological
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applications. Particularly, in the field of spintronics devices [7, 8] and topological
quantum computers [9—11], one can make use of this robustness feature to
counter decoherence effects.

Now that we have mentioned about the existence of such anomalous bound-
ary transport, it is also important to understand how one can characterize such
a symmetry protected topological state. As mentioned before, those boundary
modes being bulk symmetry protected (bulk-boundary correspondence princi-
ple), one can construct a number dubbed as topological invariant using the bulk
eigenstates to characterize the topology of the system. This number going from
zero to nonzero indicates a topological phase transition from a trivial insulating
phase. At first, the topological invariant may seem as a conventional Landau’s
order parameter which also changes its values during the phase transition. How-
ever, they are very different. Landau’s order parameter is used to describe a
phase transition which is associated with the spontaneous symmetry breaking
(SSB), whereas a topological phase transition does not accompany SSB.

The construction of such a fopological invariant is based on the underlying
local symmetry constraints on the bulk Hamiltonian. Local symmetries like
time-reversal (anti-unitary), particle-hole (anti-unitary), and chiral operators
(unitary) impose the following set of constraints on the Hamiltonian respectively.

OM(—ky,—ky, k)07 = H(ky, ky, k),  ©*=+1 (1.1)
EH(—ky, —ky, —k) 2 = ~H(ky, by, k),  Er=+1 (1.2)
TH (b, oy, k)T = —H (kg by, k), T2 =1 (1.3)

O, Z, and IT are the time-reversal, particle-hole and chiral operators, respec-
tively. ‘H denotes the Hamiltonian of a system which is a function of momenta
ks, ky, and k. For a concrete picture, topological insulators which are classified
based on the above three local symmetries fall in the tenfold way symmetry class
[12, 13].
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Symmetry p
AZ o? =2 1’ 1 2 3 4 5 6 . .
A 0 0 0 0 Z 0 Z 0 Z 0 Z
AIIT 0 0 1 Z 0 Z 0 7 0 Z 0
Al 1 0 0 0 0 0 Z 0 Z, Zy 7
BDI 1 1 1 V/ 0 0 0 Z 0 Zsy Zs
D 0 1 0 Zs Z 0 0 0 Z 0 Z
DIII -1 1 1 Zo Zo Z 0 0 0 7 0
0 0 0 Z
ATl ;10 0 0 Zs Zs Z
0 0 0
CII 1 -1 1 7 0 Zs Zs Z
0o -1 0 0 Z 0 Zy Zs Z 0 0
C
CI 1 -1 1 0 0 Z 0 Zs Zs Z 0

Fig. 1.1 The periodic table (Altland-Zirnbauer classification) for non-interacting
topological insulators based on three elementary local symmetries (O, =, II) of
the Hamiltonian in different spatial dimensions d. The table is periodic in nature
with d = 8, known as Bott periodicity. Systems characterized by Za group as
topological invariant indicate only two possible elements 0, 1, with 0 denoting
a trivial and 1 denoting a non-trivial topological phase. On the other hand, Z
denotes an integer number which can take any values indicating arbitrary number
of anomalous boundary modes in the case Z # 0.

However, after the discovery of topological non-trivial phases protected
by crystalline symmetries, further works have classified topological systems
[14-16] which go beyond the classification table (1.1).

Before delving into the thesis work, I would like to introduce some relevant
topics and its concepts which would set some theoretical background.
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1.2 Berry connection and Berry curvature

It is well known that electrons in a crystal under periodic potential follow Bloch’s
theorem [17, 18]. If one writes down the Schrédinger’s equation for the electrons

in a periodic crystal which reads
Ly | ) - Blw) (1.4
S T = .
2m ’

where = 1, V2, V(r), m and E are the kinetic energy term, potential energy
term, mass and energy of the electron, the solution will be the Bloch states,

(W ae(r)) = [t e(x) ) €™ (1.5)

In Eq (1.5), up x(r+a) = uy x(r) is a periodic function, defined by the period-
icity (a) of the crystal. Note that each Bloch wave has an usual plane wave part
(e™®T) multiplied with a periodic function. Moreover, each Bloch state is char-
acterized by n, k, known as band number and crystal momentum, respectively.
Here, crystal momentum k is restricted to the Brillouin zone, which is periodic
because of the lattice translation symmetry.

Earlier, it was understood that any extra phase appearing in ‘\Ifn7k(r)> does
not change any physics as the phase drops off while calculating any physically
measurable quantity. However, below we will see that the geometric nature of
such Bloch state can give rise to another interesting phase in solids, called Berry
phase [19]. Even though the discussion below will be considered for any general
quantum mechanical wavefunction | ), for periodic solids, such states will be a
function of band number (n) and crystal momentum (k).

Let us assume that we have a quantum mechanical system which exists in its
non-degenerate ground state, and the Hamiltonian of the system is changed very
slowly, so that it remains in its ground state for such a variation. This so called
slow change in the Hamiltonian is dubbed as quantum adiabatic evolution.

For a detailed description of the origin of Berry connection and Berry cur-
vature, we will closely follow the notation used in this review article [20]. We
consider a system for which the Hamiltonian is a function of some parameters
R = (R1, R2, R3...). Now the system follows H (R) |n(R)) = ¢, |n(R)), where
the initial eigenstate is denoted by |n(R)). The Hamiltonian then is adiabati-
cally evolved to time ¢ upon varying the parameters R. During the evolution,
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the initial eigenstate still remains an eigenstate of the time evolved Hamiltonian
H(R(t)) upto an arbitrary phase. The general expression for the time evolved

state can be written as follows:

W, (1)) = et a d=nRED) (R (1)) (1.6)

Eq (1.6) contains two phase factors. The second phase factor is the well
known dynamical phase which appears with the energy ¢,,. The first phase 7, ()
is the geometric phase (also known as Berry phase), which can be explicitly

determined after solving the time dependent Schrédinger’s equation

5 W () = HOR(1)) (1), (17

by putting the wavefunction |¥,,()).

The explicit expression of the geometric phase looks like 7, = [~dR -
A, (R). Notice that in order to obtain the form ~,,, one needs to perform the
integral along a closed path C' in the parameter space, when R changes along
that closed contour. The form of A,,(R) reads;

An(R) =i (n(R)] o [n(R)). (1)

In Eq (1.8), A, (R) is a vector which is called the Berry connection. % is
the partial derivative with respect to the parameter which is varied, for instance
in a periodic lattice, momentum % can be chosen as a parameter which forms a
closed Brillouin zone. Note that, Berry connection is a gauge dependent quantity
(usually resides on momentum space for periodic solids), and hence bears no
physical significance. In electrodynamics, this is similar to the vector potential
A

In electrodynamics, the magnetic field B is obtained by taking the curl of A.
Analogously, even though the Berry connection is not a physical quantity, one
can define a physical quantity in momentum space by taking its curl, known as

Berry curvature

On(R) = VR X An(R). (1.9)

In its compact form, in terms of the summation of the eigenstate Berry

curvature takes the following form:
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OH OH
(n] 50z () (0] 5 In) = (v = 1)
O (R)=i Y — O e _35/)2 . (10
n/7én n n

where ¢, ¢, are the corresponding energies of the eigenstates |n),|n’) respec-
tively.

In the context of two dimensional topological insulators, integration of the
Berry curvature over the whole Brillouin zone usually gives rise to topological

invariant called the Chern number.

1.3 Quantum Hall effect

In this section, we will go through the discovery of integer Quantum Hall effect
(IQHE) [1] which laid the foundational stone in this field of topology. For this
discovery Klaus von Klitzing was awarded the 1985 Nobel prize in physics.
He observed that electrons in two dimensions subject to a low temperature
(1.5K) and a strong magnetic field (15T) show step like (quantized) features in
the transverse conductivity. This transverse conductivity also known as Hall

conductivity reads as
2

axyzc%, Cez. (1.11)

where, e is the electron’s charge, and / is Planck’s constant, respectively.
Let us review the theory behind the origin of the quantized conductivity.

The Two dimensional free electron gas (2DEG) has a parabolic dispersion
-2

relation H = %, where p, and m are the momentum and mass of the electrons,
m

respectively. Now, in presence of a magnetic field Bz applied perpendicular to
the zy plane, the dispersion relation is modified by the canonical momentum

(known as minimal coupling method) as

_ 1 2
’H—Qm(p—i—eA) : (1.12)

In (1.12), A is the vector potential with V x A = BZ. For further calculation
let us choose the Landau gauge A = xBY¥ for the vector potential. With this
gauge choice, the Hamiltonian now can be written down as

1

1
A2 A 2
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v=1
1.0
3_
e 8
= i
g 24 0.6 g
QU J =2 —

J v=23 -0.4
&

- 0.2

5 10 1z 11 0
B(T)

Fig. 1.2 The figure depicts how transverse Hall resistivity p,, (blue line) and
longitudinal resistivity p,, (red line) vary with the applied magnetic field B.
Quantized plateaus in p,,, appear whenever p;, goes to zero. Quantized numbers
v =1,2,3,4 in the figure correspond to Chern number C' ( in our convention
(1.11)). Figure is taken from wikipedia [21].

0 2 4 6

Noticeably, as A does not contain any component with position operator
y, the corresponding momentum p, is a good quantum number, and hence
commutes with the Hamiltonian eq (1.13). This commutation allows us to write

down a simplified ansatz for the eigenstate of eq (1.13) as

Uy, (2,y) = eipyyfpy(a:). (1.14)

Note that the ansatz (1.14) contains a plane wave part ¢’”»Y coming from

the free dispersion nature along y. Further, we can simplify the Hamiltonian

by introducing the cyclotron frequency w, = 6—, and a magnetic length scale
m

[ 1 ) ) ) ) )
lp = 5 We have been working with the theorist’s convention of unit, so
e

wherever h appears, we set it to unity. On simplification, the Hamiltonian of the

system now reads
A2 2
D mw 919
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With the analogous nature of the quantum one dimensional harmonic oscilla-
tor Hamiltonian, we can note that the potential part is shifted from origin xg =0
to zg = —pylzB. But this shift does not change any physics, and hence the energy
levels emulate the harmonic oscillator energy levels;

1
En=wentg), neN (1.16)

where, the quantized energy levels are called Landau levels. Notice that, the
Landau levels are proportional to the cyclotron frequency w,., which in turn
implies that as one increases the magnetic field, the energy of the Landau level
increases. One important point to note here is that energies of the Landau levels
being not dependent on p,, they have large degeneracies.

Now the question is why we see IQHE in this 2DEG system at large magnetic
field with low temperature? Firstly, the effects of Landau levels come into picture
when the electrons which occupy them have much lower thermal energy than
the energy limit set by its cyclotron frequency, meaning kT < we.

What happens with increasing the magnetic field is that, many electrons can
occupy the Landau levels. Simple calculation dictates that the number of states
per energy level takes the form

N— eBA
2T

o
g’

(1.17)

where ¢ = 2 is called flux quantum (= 1), and @ is total flux penetrating
through the 2]%EG system with area A. So, the flux through the system is the
measure of number of filled states per Landau level. In the IQH fig (1.2), the
alternate plateau and jump in the resistance indicate that, initially the Fermi level
which was lying in between two Landau levels (plateau), now crosses one of the
levels (jump). This jump between Landau levels has a very deep consequences
on the system’s transport in terms of its edge and bulk physics.

1.3.1 Bulk-Edge picture and Chern number

In 2DEG, usually upon application of magnetic field, electrons form cyclotron
orbits inside the bulk of the sample, where as at the edges of the sample, electrons

can only complete half of circular motion, forming the so called skipping orbits.
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skipping orbits: right movers

Cne

cyclotron orbits

skipping orbits: left movers

Fig. 1.3 Formation of the cyclotron orbits in the bulk, and skipping orbits at
the edge of the system is shown. Magnetic field is applied perpendicular to the
plane, and it gives rise to an anti-clockwise motion of the electrons. It is seen
that at the upper edge of the sample, while electrons perform half of the orbital
motion in the right direction, at the bottom edge they will do the same but in
the opposite (left) direction. This happens so that the net current is conserved,
giving rise to edge current at the boundaries of the sample.

This skipping motion of electrons at the edge of the sample gives rise to a
propagating edge state in the system. The fascinating fact is, the edge modes are
quantized in number and they are very robust against any perturbation.

Until 1982, there was no theory which explained this phenomenon. Thouless,
Kohmoto, Nightingale, and Nijs (TKNN) gave the formula [3], which introduced
how to determine the number of such edge states in the system. They basically
constructed the formula for transverse Hall conductivity from the linear response

theory
_ < SﬁﬁkoQ(k) (1.18)
7Ty = 9nh Lo )

The integral is performed over a closed Brillouin zone formed by d?k in momen-
tum space. €2(k) is the Berry curvature which we have discussed in the previous

section. For reminder, it is defined as;

Q(k) = O, Ay — O, Ay (1.19)

Upon comparing with eq (1.11) and eq (1.18), we can define the so called
topological invariant dubbed as Chern number for IQHE
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_Loee o
C—Qﬂgd kQk), CeZ (1.20)

Interestingly, the Chern number reflects the count of chiral edge states present

in the system.

1.4 Quantum spin Hall effect: two dimensional (2D)

time-reversal invariant topological insulators

From the earlier section on QHE in 2DEG, we have seen that in order to realize
robust dissipationless boundary transport, one needs to apply an external mag-
netic field. However, in 1988 Haldane showed that there can exist quantized Hall
conductance even in absence of the applied magnetic field. This phenomenon
is known as Quantum anomalous Hall effect (QAHE) [4]. Essentially, what
he suggested is that, magnetic field is not the only key ingredient for realiz-
ing a topological phase. Rather, if one could break time-reversal symmetry
(TRS) without applying such a magnetic field, it can still in principle be possible
to realize nonzero Hall conductance. In Haldane’s model, the TRS breaking
perturbation was generated by the flux inside each plaquette in the hexagonal
graphene.

The importance of TRS breaking can be clearly understood by studying the
nature of Berry curvature (BC). Earlier we have seen that Chern number (C) is
obtained by integrating out the BC over the whole Brillouin zone, which gives
rise to nontrivial topology (if only C' # 0). Under TRS, BC changes its sign,

meaning it is odd.

ON(ky, ky)O ! = —Q(—ky, —ky) (1.21)

where, © (anti-unitary) is the TRS operator defined generally as ® = UK. Here,
U denotes the unitary part and K is the complex conjugation. k;,k, are the
momentum components. Naturally, BC being an odd function, the integration of
BC performed over the Brillouin zone vanishes, resulting in net zero C'. Hence,
the system cannot show any nontrivial topology unless TRS is broken.

So until now, we discussed that to realize any non-trivial topological phases,
we would need to break TRS. Although this discovery enriched the field as far as
theoretical model is concerned, it became experimentally challenging to find real
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materials which show QAHE. It is worth mentioning that the first experimental
observation of QAHE phenomena was reported recently in 2013 [22], where
thin films of chromium-doped (Bi,Sb)>Tes exhibited quantized Hall response at
zero external magnetic field.

A significant revival of interest in topology came with the discovery of quan-
tum spin Hall effect (QSHE) in Graphene (2004). In these works [23, 24], Kane
and Mele showed that a monolayer graphene can host topological properties in
presence of spin-obit coupling (SOC), which preserves TRS. Specifically, they
proposed to realize a pair of spin polarized counter-propagating edge states at
each edge of the two dimensional system. TRS maps one spin momentum locked
edge state |¥(k, 1)) to its Kramers’ partner |¥(—k,])), and they are robust to
any TRS preserving perturbation.

QSHE opened up a new avenue in terms of realizing topological insulators
in the lab as far as real materials are concerned. Graphene being made of lighter
carbon atoms, it does not have strong SOC, hence it was hard to observe QSHE
in graphene as originally proposed. Soon after, 2D-TRS invariant TI phase
was observed in CdTe/HgTe quantum wells [25-27] which have stronger SOC
driven band inversion. Remarkably, quantized spin Hall conductance of % was
observed, which is 2 times more (because of spin degeneracy) than that of the
QHE response. Since then, one of the key goals is to realize large band gap QSH
materials and significant number of discoveries has been made in this direction
experimentally [28-34].

In the rest of this section, we will discuss more about QSHE physics in the
context of graphene, and define the topological invariant which classifies the

nontrivial phase. We start with the Kane-Mele Hamiltonian which reads

M= tel ciat S itavijsigel oc;5,(1.22)
(1g)cx ((ig)),08

where the first and second term represent the usual nearest neighbor hopping

and the next nearest neighbor hopping. ¢, are the strength of those hoppings,
2
V3

(right) turn to reach to the second nearest neighbor. 611 , (?12 are the unit vectors

respectively. v;; = (&1 X az) » = 11 depending on if an electron makes a left

of the two consecutive bonds which electron traverses in going from site j to <.
The spin dependent second neighbor term is considered to take into account the

SOC, giving rise to a SOC driven topological bulk band gap. Furthermore, the
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system in the strip geometry shows helical edge states living at both edges of
the system.

ﬁz/

(a)

P I

0 k 2

Fig. 1.4 (a) Graphene with nearest and next-nearest neighbor hopping. a; =

(1,0), ag = (%, @) are the Bravais lattice vectors. Different sub-lattice(s) in the
unit cell of graphene is indicated by blue and orange colors respectively. (b)
Gapped bulk bandstructure of graphene with Kane-Mele Hamiltonian [24]. In
presence of the second nearest neighbor term, bulk Dirac cones get gapped. (c)
Bandstructure in the slab geometry is shown for W = 60 unit cells finite along
the ao-direction. Parameters taken as ¢t = 1, to = 0.15, A\, = 0.1. energy ¢, and
momentum k are measured in the unit of ¢, and 1/a; respectively. )\, is the
staggered sub-lattice potential (\,). Gapless spin-polarized helical edge states
are depicted, i.e. at each edge of the system, there is counter-propagating edge
states corresponding to spin up and spin down channel.
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1.4.1 7> topological invariant

In table 1.1, TRS symmetry protected 2D topological systems fall into the class
AlI with topological invariant defined as Zy. Let us proceed to understand how
one can define such Zs invariant. For this purpose we will very briefly review the
concept of time-reversal polarization established by Fu, Kane [35, 36], which is
at the core of defining the topological invariants in these systems (both 2D and
3D).

Following Kramers’ theorem, in presence of TRS (only for spinful fermions,®? =
—1), each state will have its Kramers’ partner with same energy but opposite
momentum —Xk, i.e., state defined as |u(k)) will be degenerate with |u(—k)).
This demands that any TRS invariant system will have even (2N) number of
bands where, N denotes the number of pairs of eigenstates.

Unlike the usual charge polarization which is defined by the sum of the
Wannier centers of all of the bands, Fu and Kane proposed (for TRS invariant
systems), it is enough to keep track of the center of one of the Kramers’ degener-
ate Wannier state by defining a quantity called partial polarization. The 2N set
of eigenstates with N pairs satisfy

‘Ul—k,a> _ _eixk7a@’ulf{{a> (1.23)
’ul—lk,a> _ eiX—k,a®’u£7a>’ (1.24)

where a = 1,..., N, and LII denote the two set(s) of eigenstate connected by
Kramers’ theorem. Yy _x are smooth functions. With this, the partial polariza-
tion corresponding to one of the sets s=I or II can be written as

S __ i g S
P /_ﬁdkA (k), (1.25)

where the quantity

A () =i (U o| Vic Ui o) (1.26)

is called the Berry connection. Notice that, partial polarization (1.25) for each
set s is not a gauge invariant quantity as it changes with integer multiple of lattice
constants under a general U (2V) gauge transformation. However, the difference
of partial polarization for two sets defines a physical quantity (only in presence

of TRS), termed as time-reversal polarization. This reads
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Py=pl—pll. (1.27)

The above quantity Fp is defined modulo an integer. If we skip some of the

algebraic steps mentioned in [35], Fu-Kane obtained the following relation

\/det[w(0)] \/det[w()]
Pflw(0)] Pflo(m)]

(-1 = (1.28)
Ineq (1.28), Pf[w] is called Pfaffian. Pfaffian of an anti-symmetric matrix
w has the property det[w] = P f[w]?. wis a U(2N) matrix. More generally, w is

called sewing matrix, which in presence of TRS reads

was (k) = (U _1a| © Ui 3) (1.29)

Proceeding further, Fu-Kane defined the Zs invariant v as

(1.30)

Notice that the product runs over four time-reversal invariant momentum (TRIM)
points (I';) in the 2D Brillouin zone (BZ), namely for (0,0), (,0), (0,7), (7, 7).
v = 1 1n this case corresponds to a 2D-QSHI phase.

The generalization of QSHI in three dimensions (3D) gives rise to so called
strong and weak topological phases. Correspondingly, the topological invariant
was further extended by Fu-Kane-Mele [37]. In this case (3D), four Zs indices
(vp;v1,12,13) classify the topological phases, with nonzero v representing
a strong topological insulating phase (STI), and the other nonzero values of
(v1,12,v3) represent weak topological insulating phase (WTI).

In 3D we have eight TRIM points which can be denoted by the reciprocal

lattice vectors by,
1
Liz(n1na,ns) = §(n1b1 +n2b2 +n3bs) (1.31)
with n; € {0,1}.

The main idea here is to define Zs index for each of the 2D surfaces in the
3D BZ. For each of this plane, we require four TRIM points to write down the
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Zo index v as

(1" = f[ 0 _ ydetlo(T)] (1.32)

Lo 0= 5]

Now, with this Fu-Kane-Mele strong and weak topological invariants read

(=) =TI 6ninoms (1.33)
anO,l
(=7=2s = ]I Oninging (1.34)

where there could only be four independent Zy invariants. Note that, 0y, 5, ny 1S
a topological number quantized to —1 or 1.

In the case of strong Zs index being nontrivial (g = 1), one expects to realize
odd number of in-gap surface states which connect the valence and conduction
band. Importantly, the observation of these states is independent of the choice of
the surface, meaning that choosing any surface termination for a real material
which is a STI will inevitably show these states. On the other hand, if the strong
invariant is trivial (vg = 1), but the weak invariant is nontrivial (v; # 0), we
expect to see even number of in-gap states in the bulk gap. These WTI states are

not robust against any lattice translational symmetry breaking perturbation.

1.5 Topological Crystalline Insulators (TCI)

From our previous discussions, we have seen that QHE required breaking of
TRS. On the other hand, QSH is only realized in TRS preserving SOC systems,
which give rise to bulk band inversion. And most of the materials showing
the nontrivial topological phases were classified using the tenfold symmetry
classification table given by Altland-Zirnbauer. However, this classification
required further modifications after Fu proposed to realize topological phases
which are protected by crystalline symmetries [38, 39]. The class of materials
showing this nontrivial phase are dubbed as topological crystalline insulators
(TCI) [40, 41]. Crystalline symmetries in lattice being ubiquitous, this opened
up a whole new platform to discover topological insulators.

In the seminal work [40], Fu predicted a 3D tight-binding model which real-
izes gapless surface states protected by a C'y rotational symmetry in combination
with TRS. Specifically, he showed that the surface (001) which preserves C

symmetry exhibits the gapless surface states. And it is in fact true with TCI sys-
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Fig. 1.5 (a) Tetragonal lattice structure with two atoms A and B in the unit cell.
(b) Bulk bandstructure for the Hamiltonian as mentioned in Eq. (2) of [40]. It
can be seen that the bulk spectrum is gapped everywhere in the BZ. (c) Slab
bandstructure for (001) surface shows the existence of topologically protected
gapless states. The gapless surface states originating from the C crystalline
symmetry are quadratic in nature.

tems, meaning only those surfaces which preserve the crystalline symmetry will
show gapless states. From this feature, one can immediately draw a distinction
between a STI and a TCI, as in the case of a STI, all surfaces will carry gapless
states unlike TCI. Soon after the proposal of Fu’s theoretical model, experimental
realizations were made for SnTe material [42, 43]. This 3D rock-salt crystal
hosts as a pair of stable gapless surface states, where the mirror invariant plane
lies. Hence, SnTe was classified as mirror symmetry protected TCI. To calculate
the invariant for a mirror TCI, one defines a so called mirror Chern number
(MCN). We briefly discuss this below.

The main idea behind defining a MCN is to decompose the Hilbert space
into the mirror invariant sectors. This is possible because a surface in the BZ
can be left invariant under mirror operation as shown in Fig 1.6, where mirror
operation M, leaves the planes k, = 0 and k, = 7 invariant [44]. Such mirror
invariant sectors are further defined by the mirror eigenvalues. For instance, a
3D spinful system with mirror eigenvalues +¢ and —¢, can be decomposed into
two mirror (£2) sub-spaces. Basically, now the Bloch Hamiltonian of the full
system can be written in block forms, where each block corresponds to mirror
eigenvalues +1, respectively. Following this, one can define a Chern number
(C4;) for each of the blocks, and then the difference in C'y; between the two
blocks gives rise to MCN, which reads

Cii—C

Cy = 5

(1.35)
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Fig. 1.6 (a) Schematic BZ for a topological crystalline insulator with mirror
symmetry M,. Due to M,, there are two planes in the surface BZ which are left
invariant, namely %, = 0, 7. (b) Schematic surface band structure (along £k, =0
cut) with two chiral edge states for each mirror invariant plane.

The topological invariant C'y; denotes the number of gapless surface states
in the system. For SnTe, C'j; = —2 corresponds to two topologically protected
Dirac cones. Discovery of TCI has impacted the field of topological insulator
immensely in terms of material search [45-48]. Very recently, there have been
significant works which classify band structure topology of all 233 space groups,
and 1651 magnetic space groups [49-51].
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1.6 This thesis

This thesis mostly deals with the realization of non-interacting topological phases
in both realistic and toy model scenarios. In particular, it focuses on exploring the
TCI phases. There have been prior theoretical works in the literature concerning
the TCIs based on layered setups [52, 53]. Along this route, the dissertation first
uncovers that one can attain such a TCI phase in stacked graphene system under
certain conditions. Furthermore, it investigates that in 3D, a naturally occurring
mineral called Jacutingaite (PtoHgSes) is expected to show both TCI and WTI
phases. Both Density Functional Theory (DFT) and minimal tight-binding
calculations are performed to capture the topological phases. In this direction,
we proposed a new tight-binding model to capture the dual topological nature of
materials. Following this, the thesis will aim at understanding the topological
phases, appearing for two cubic 3D half-Heusler materials (LiBiZn,LiSbZn)
belonging to the space group 216. In this context, higher order topology has
been explored in these systems. Finally, the thesis presents a flavor of newly
discovered topological transport phenomena, namely Magnus Hall effect in two
and three dimensional systems. Effects of strain, warping, and tilt on response

have been explored in detail.

1.6.1 Outline of the chapters

Here we present the brief outline of the rest of the chapters presented in this

thesis.

1.6.2 Chapter2

In principle the stacking of different 2D materials allows the construction of 3D
systems with entirely new electronic properties. In this chapter, we will study
how one can realize topological crystalline insulators (TCI) protected by mirror
symmetry in heterostructures consisting of graphene monolayers separated by
two-dimensional polar spacers. The polar spacers are arranged such that they can
induce an alternating doping and/or spin-orbit coupling in the adjacent graphene
sheets. When spin-orbit coupling dominates, the non-trivial phase arises due
to the fact that each graphene sheet enters a quantum spin-Hall phase. Instead,
when the graphene layers are electron and hole doped in an alternating fashion,

a uniform magnetic field leads to the formation of quantum Hall phases with
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opposite Chern numbers. Thus we realize that it has the remarkable property
that unlike previously proposed and observed TCIs, the non-trivial topology is

generated by an external time-reversal breaking perturbation.

1.6.3 Chapter3

Using two dimensional (2D) TI layers as building blocks, there have been nu-
merous works done to obtain novel topological phases. Most of these quasi-two-
dimensional systems realize weak topological phases in presence of translation
symmetry along the stacking direction of the 2D TIs. However, recently it
has been found that topological phases of electronic systems often coexist in
a material, well-known examples being systems which are both strong and
weak topological insulators. More recently, a number of materials have been
found to have the topological structure of both a weak topological phase and a
mirror-protected topological crystalline phase.

In this chapter, we first focus on the naturally occurring mineral called
Jacutingaite (Pto H gSes), and show based on density-functional calculations
that it realizes this dual topological phase and that the same conclusion holds
for PdoH gSes. What makes this layered system more interesting is the fact
that monolayer version of Jacutingaite is predicted to have a sizable band gap of
0.5eV, featuring a novel quantum spin Hall insulator.

Further, we introduce tight-binding models that capture the essential topolog-
ical properties of this dual topological phase in materials with three-fold rotation
symmetry and use these models to describe the main features of the surface
spectral density of different materials in the class.

In this work, my contribution was to come up with the tight-binding model
which captures the topological features observed in these minerals. DFT calcula-

tions were mainly performed by my collaborator Jorge Facio.

1.6.4 Chapter4

In serch of further interesting topological phases, we go beyond quasi-two-
dimensional system and, pay our attention to a 3D cubic half-Heusler system,
which realizes different topology under strain.

Half-Heusler compounds are a material class with a large potential for the
study of distinct electronic states. In this chapter, we investigate from first-
principles the possibility of hinge modes in very proximate topological phases
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tunable by moderate uniaxial strain. We consider the compounds LiSbZn and
LiBiZn. While LiSbZn has a topologically trivial band structure, the larger
spin-orbit coupling of Bi causes a band inversion in LiBiZn.

We predict the existence of topologically trivial hinge states in both cases.
The hinge modes are affected by the bulk topological phase transitions, but in
an indirect way: topological surface modes, when present, hybridize with the
hinge states and obscure their visibility. Thus, we find that the most visible
hinge modes actually occur when no band inversions are present in the material.
Our work highlights the interplay and competition between surface and hinge
modes in half-Heuslers, and may help guide the experimental search for robust
boundary signatures in these materials. In this context, we also present a minimal
tight-binding Hamiltonian which captures the topology of materials falling in
the space group (216).

Regarding this work, I mainly performed the hinge band structure calcula-
tions after obtaining the DFT based wannier tight-binding Hamiltonians from
my collaborator Jorge Facio. I also managed to come up with a minimal trun-
cated Wannier tight-binding Hamiltonian, which can be fruitfully used for these

material class with space group 216 in order to understand the topology.

1.6.5 Chapter5s

Shifting our attention slightly away from realizing the topological phases in
real materials, in this chapter we would focus on a very interesting topological
transport property, dubbed as Magnus Hall response.

Recently, time-reversal symmetric but inversion broken systems with non-
trivial Berry curvature in the presence of a built-in electric field have been
proposed to exhibit a new type of linear Hall effect in ballistic regime, namely,
the Magnus Hall effect. The transverse current here is caused by the Magnus
velocity that is proportional to the built-in electric field enabling us to examine
the Magnus responses, in particular, Magnus Hall conductivity and Magnus
Nernst conductivity, with chemical potential.

Starting with two-dimensional (2D) topological systems, we find that warp-
ing induced asymmetry in both the Fermi surface and Berry curvature can in
general enhance the Magnus response for monolayer graphene and surface states
of topological insulator. The strain alone is only responsible for Magnus valley
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responses in monolayer graphene while warping leads to finite Magnus response
there.

Interestingly, on the other hand, strain can change the Fermi surface char-
acter substantially that further results in distinct behavior of Magnus transport
coefficients as we observe in bilayer graphene. These responses there remain
almost insensitive to warping unlike the case of monolayer graphene.

And finally, going beyond 2D systems, we also investigate the Magnus
responses in three-dimensional multi-Weyl semimetals (mWSMs) to probe the
effect of tilt and anisotropic nonlinear energy dispersion. Remarkably, Magnus
responses can only survive for the WSMs with chiral tilt. In particular, our
study indicates that the chiral (achiral) tilt engenders Magnus (Magnus valley)
responses. Therefore, Magnus responses can be used as a tool to distinguish
between the untilted and tilted WSMs in experiments. In addition, we find
that the Magnus Hall responses get suppressed with increasing the nonlinearity
associated with the band touching around multi-Weyl node.






Chapter 2

Topological crystalline insulators
from stacked graphene layers

2.1 Introduction

The foundation of topology in condensed matter physics was first laid by the
experimental discovery of the integer quantum Hall effect[1] and the subsequent
theoretical work on quantized Hall conductances in two-dimensional (2D) peri-
odic potentials.[3] However, the different ways in which topology can manifest
in crystals were mostly unexplored until the prediction of the quantum spin Hall
effect in graphene,[23, 24] which was termed a Zs topological insulator (TI).
Soon after this, the quantum spin Hall effect and the associated topological phase
transition were experimentally observed in HgTe quantum wells.[25, 26] In the
following years, the study of topological phases of matter has led to numerous
rich discoveries in various condensed matter systems.[5, 6, 36]

Topological insulators are defined as having a gapped bulk, but hosting
gapless, anomalous states on their boundaries, states which are protected by the
symmetry of the system. Depending on the nature of the symmetry, topologically
non-trivial phases are characterized by different integers, called topological
invariants. A change in the value of these invariants marks a transition to a
topologically different phase, one hosting either a different number of boundary
states, or boundary states of a different chirality. A systematic classification
of which types of topological phases are possible was first carried out in the
case of fundamental symmetries: time-reversal (TRS), particle-hole, and chiral

symmetry.[14, 54] Apart from these fundamental symmetries however, spatial
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symmetries can also give rise to topological insulating phases in materials. The
latter are called weak topological insulators in the case of lattice translations,[36]
and topological crystalline insulators (TCI)[40, 42, 41] for symmetries such
as mirror, rotation, or glide. Recently, the experimental discovery of mirror
symmetry protected TClIs in the SnTe material class has made a tremendous
impact in this field of research.[43, 45, 46] There have been many works reported
in the literature, classifying TCI based on their lattice symmetries,[55, 38, 56—
60] proposing new materials which realize TCI phases,[61, 62, 48] and studying
the robustness of their boundary states.[63]

One of the main interesting challenges is to construct new types of topologi-
cal phases by exploiting the spatial symmetries of the system. In this context,
layered structures of suitable materials can be engineered to build topologically
nontrivial heterostructures.[64, 65] It has been shown that 3D TClIs can be con-
structed by stacking 2D TCI layers,[52] but also by using 2D Chern insulators
stacked in an antiferromagnetic fashion, such that the sign of the Chern number
changes in every second layer.[66] The latter model, called an ‘“‘antiferromag-
netic topological insulator”, was recently modified in order to describe 3D TClIs
protected by mirror symmetry,[53] glide symmetry,[67, 68] to show that TCIs
can occur in periodically driven systems,[69] as well as to study the newly
discovered higher-order TIs.[70-73]

From an experimental point of view, building a heterostructure of Chern insu-
lators with opposite topological invariants is hindered by an immediate practical
difficulty. To change the sign of the Chern number one must typically reverse
the direction of the applied magnetic field. While this may be achieved on suffi-
ciently long distances, a field reversal on the atomic scale of the heterostructure’s
unit cell is highly impractical. One way to overcome this difficulty would be to
use 3D materials which order anti-ferromagnetically and simultaneously realize
quantum anomalous Hall phases in the 2D limit. However, to our knowledge
such a material has not yet been reported.

In this work, we adopt an entirely different strategy, one which does not
rely on alternating magnetic fields, but on the Dirac nature of charge carriers in
graphene. It is well known that, due to the zeroth Landau level of graphene, the
velocity of the quantum Hall edge states can be switched not only by reversing
the magnetic field direction, but also under a constant field, by a small shift of the
chemical potential across the charge neutrality point.[74] As such, we consider

a heterostructure in which the graphene layers are separated by 2D insulating
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systems which are polar, as shown in Fig. 2.1. By reversing the polarization of
every second spacer layer, it is in principle possible to obtain a system in which
adjacent graphene sheets have an alternating electron and hole doping. In this
case, applying a uniform magnetic field along the stacking direction opens a
topological gap in the graphene layers, but in such a way that they carry opposite
Chern numbers.

In the following, we examine the system in two different limits, depending
on which materials are used for the spacer layers. If the latter are composed of
light elements, we can expect spin-orbit coupling (SOC) to be negligible, and the
heterostructure can be treated as an effectively spinless model. In Section 2.2, we
show that in this case an intrinsically magnetic TCI phase is realized, one which
requires an externally applied magnetic field to exist. On the other hand, when
the polar spacers contain heavy elements, they may lead to proximity-induced
SOC in the graphene layers, such that each layer forms a quantum-spin Hall
phase.[75] In Section 2.3, we show that when SOC terms are larger than the
doping, a time-reversal symmetric TCI phase can be realized. We conclude and

discuss directions for future research in Section 4.6.

2.2 Stack of Chern insulating layers of graphene

We begin by examining the first of two limits, in which the graphene sheets
experience a negligible SOC, such that the heterostructure forms an effectively
spinless system. In this limit, we show that due to the alternating electron and
hole doping of adjacent layers, applying a magnetic field parallel to the stacking
direction results in a mirror symmetry protected TCI.

In the absence of SOC, the out of plane spin component of electrons in
graphene is conserved, such that each spin sector can be treated independently.
We therefore model the heterostructure as a 3D system of spinless electrons hop-
ping on a lattice of AA-stacked honeycomb layers. The real space Hamiltonian

reads

He 3 tdon D)o e
(i7),c i,
2.1
+ Z [tz c;:aci’““ + h.c] ,
7,Q
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Fig. 2.1 Left: Three-dimensional system formed out of graphene layers (hori-
zontal lines) separated by thin insulating layers (gray boxes). The spacers are
polar, having a positively charged (+) and a negatively charged (—) side. Using
spacer layers with an alternating orientation leads to graphene sheets which
have an alternating doping (44). The unit cell of the heterostructure (bracket)
consists of two graphene layers, and the full system shows reflection symmetry
about one layer (R). By applying a uniform magnetic field along the stacking
direction, neighboring graphene layers form quantum Hall phases with opposite
Chern numbers, such that their chiral edge states propagate in opposite directions
(horizontal arrows). Right: our conventions for the graphene lattice, with Bravais
vectors €, and €. Nearest and next nearest neighbor hoppings are labeled ¢ and
to. There are two sites, denoted a and b in every unit cell (marked by a blue
contour).

where c;-f’ o (ci) creates (annihilates) fermions on site ¢ in layer  and (...)
denotes nearest neighbors (see Fig. 2.1). The first term is a nearest neighbor
hopping, which we set to t = 1 throughout the following, whereas 1 is an on-site
energy which models the alternating doping of adjacent graphene systems. As
such, there are two layers in each unit cell. The last term of Eq. (2.1) models
inter-layer coupling, with hopping to the layer below having an amplitude ¢,
and hopping to the layer above an amplitude ¢%. In practice, this term will decay
exponentially with the separation of neighboring graphene sheets, requiring the

use of very thin spacers. However, as we show in the following, a TCI phase can
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be realized even when ¢, is the smallest energy scale of the problem, provided
it does not vanish exactly. In the latter case, the system cannot be treated as
three-dimensional, since the heterostructure is composed of isolated 2D systems.

The momentum space form of Eq. (2.1) is given by
H(E) _ H—F (k337 k;gy) t; +t26_ikz
t.+tze™ H_(ky ky)
Ha (ke ky) = t[l +cos(kz) + cos(k‘y)} Te
+1 [sin(kw) + sin(ky)} Ty £

2.2)

Here, H 4 are the Hamiltonians of graphene layers experiencing a £y energy
shift, k = (ky,ky, k), ks, are the in-plane momentum components along €, ,,
(see Fig. 2.1), and k, is the momentum along the stacking direction. The Pauli
matrices 7 parameterize the a and b sublattice degree of freedom. Lastly, the 2 x 2
grading on the first line of Eq. (2.2) encodes the degree of freedom associated
to the two layers in the unit cell, which we denote in the following using Pauli
matrices 7.

Choosing a real valued inter-layer coupling, ¢, = ¢, the Hamiltonian Eq. (2.2)

obeys a spinless mirror symmetry of the form

1 0
Rk,) =7® (0 ek) , (2.3)
such that
Rk )H (s, oy, k)R (k)™ = H(k, by, — k). (2.4)

As a consequence, the terms proportional to ¢, vanish on the mirror invariant
plane of the Brillouin zone, k, = 7, and the two graphene monolayers are
effectively decoupled from each other. Further, since for k£, = 7 the mirror
operator is ‘R = 7y, electronic states in adjacent monolayers have different
mirror eigenvalues, +1 and —1. This naturally opens the possibility of stabilizing
a mirror symmetry protected TCI if the graphene sheets enter Chern insulating
phases when a magnetic field is applied.

Since we are dealing with an effective spinless model valid for each of the
two spin sectors, we introduce an orbital magnetic field through the usual Peierls
substitution. We choose a gauge in which the in-plane hopping within each unit

cell is modified as t — texp(iPn, ), where n,, is an integer labeling the unit cells
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in the €, direction (see Fig. 2.1), and ® is the Peierls phase. The latter physically
represents the number of magnetic fluxes penetrating a hexagonal plaquette with
area acy due to a perpendicular magnetic field B, such that ® = Bage/h.

Using the Kwant code,[76, 77] we compute the bandstructure of a single
graphene sheet in a ribbon geometry with zig-zag edges, translationally invariant
along €, and consisting of W' = 100 unit cells in the €, direction (see Fig. 2.1).
Note that our gauge choice for the Peierls substitution is only compatible with
translation symmetry along €,. As shown in Fig. 2.2, for a single graphene
monolayer the gapless Dirac cone spectrum becomes gapped under the addition
of the orbital field, which leads to the formation of Landau levels. Characteristic
to graphene and other hexagonal lattice systems, there exists a Landau level
at the charge neutrality point, £/ = 0. Away from this point, the system enters
quantum Hall phases with opposite Chern numbers, C' = +1 for £ > 0 and
C=—1for £ <0.

a) b)

2 v 1% 1

E | E ||
0 ko T 2 0 ko T 2

Fig. 2.2 Bandstructure of a single monolayer of spinless graphene in a ribbon
geometry (infinite along €, W = 100 unit cells along €,), using ¢ = 1 and
1= 0. In the absence of a magnetic field ( = 0, panel a), two bulk Dirac
cones are connected by dispersionless boundary states localized on the two
zig-zag edges of the ribbon. With a magnetic flux ® = 0.18 (panel b) the bulk
spectrum consists of Landau levels, and chiral edge modes appear at the two
boundaries of the ribbon. The color scale denotes the probability density of a
state integrated over half of the ribbon (unit cells indexed by 0 < n, < W/2),
such that modes localized on opposite boundaries of the ribbon are shown in
blue and red, respectively.

Given the bandstructure of Fig. 2.2b, we expect the alternating doping p
to ensure that adjacent graphene layers of the 3D system have opposite Chern
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numbers after the magnetic field is turned on, so that their chiral edge states have
opposite velocities. Moreover, since states of neighboring graphene sheets are
decoupled at £, = 7 and have opposite mirror eigenvalues, these chiral modes
remain orthogonal on the mirror invariant plane due to Eq. (2.4), leading to the
formation of surface Dirac cones. The full heterostructure then realizes a mirror
symmetric TCI phase with a mirror Chern number

-

Cm 5 , (2.5)

where C'y = %1 are the Chern numbers (computed at £, = 7) of graphene layers
experiencing a £ energy shift, such that C'y; = 1. Note that, due to Egs. (2.3)
and (2.4), on the plane k, = 0 the reflection operator is equal to the identity
matrix, R(0) = 1. The system then cannot be block-diagonalized into different
mirror eigenspaces. It could still be possible that the full Chern number at k, =0
is nonzero, but, lacking disjoint sectors with opposite mirror eigenvalue, such a
topological phase would not be protected by mirror symmetry, corresponding
instead to a stack of quantum Hall systems with co-propagating edge modes.
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Fig. 2.3 Bandstructure of the graphene heterostructure with Hamiltonian Eq.(2.2)
in an infinite slab geometry with hard wall boundary conditions in the €, direction

and a width of W = 100 unit cells. Weuset =1, ® =0.18, u=0.3,and ¢, =0.1.

The left and right panels show the bandstructures for k, = 7/2 and k, = ,
respectively. One Dirac cone appears on each surface, positioned on the mirror

invariant k, = 7 line of the surface BZ. The color scale is the same as in Fig. 2.2.

In order for the inter-layer coupling to efficiently gap out the edge modes away
from the mirror line, we have added a sublattice symmetry breaking term to the
model ps7.7,, with ug = 0.15.
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We confirm the presence of surface Dirac cones by computing the bandstruc-
ture of Eq. (2.2) in a slab geometry, infinite in the stacking direction and along
€., but containing W = 100 sites in the é’y direction. As shown in Fig. 2.3, on
each surface the chiral modes of adjacent layers cross at k, = 7, but gap out
away from this line, forming a surface Dirac cone protected by mirror symmetry.
When determining the bandstructures, we have noticed that due to the high
symmetry of 7—[(];), the inter-layer coupling ¢, does not efficiently couple the
chiral modes away from the mirror plane, leading to surface nodal lines that
wind across the surface BZ in the k, direction. The surface nodal lines are a
consequence of a spurious sublattice symmetry of the model, and occur both
for zig-zag and armchair terminations of the graphene layers. Since we are
interested in the phenomenology of TCIs protected purely by mirror, we have
lowered the symmetry of the initial Hamiltonian ’H(E) by adding a sublattice
symmetry breaking term, p57,7),, which enables the chiral edge modes to couple
away from k, = 7. This term does not break the mirror symmetry Eq. (2.3),
such that the mirror Chern number remains non-trivial, provided that z, is not
large enough to close the bulk gap.

As we have shown, the heterostructure of oppositely doped graphene layers
enters a TCI phase under an externally applied magnetic field. Unlike previously
observed TClIs, this phase is only present when time-reversal symmetry is
explicitly broken, since the spectrum is gapless in the zero field case. As
long as SOC is negligibly weak, each spin component of the graphene charge
carriers behaves according to the Hamiltonian Eq. (2.2), such that the full system
contains two surface Dirac cones, which are protected by the conservation
of the out of plane spin component. Further, the precise form of the mirror
symmetry Eq. (2.3) may be tuned by altering the materials forming the polar
spacer layers, and therefore the inter-layer coupling ¢.. If, for instance, we
choose an imaginary hopping between graphene monolayers, ¢, = —t%, then
the mirror operator would read R = 7o ® diag(1, —e*), and the surface Dirac
cones would be positioned at a different mirror invariant plane, k, = 0. Notice
however that for a generic, complex valued ¢, the heterostructure Hamiltonian
Eq. (2.2) would break both this mirror symmetry and that of Eq. (2.3). To
introduce complex inter-layer hoppings one would have to modify Eq. (2.2) such
that the phase of the hopping to the layer above is opposite to the phase of the
hopping to the layer below. For instance, replacing the off-diagonal blocks of
this Hamiltonian with |¢,|e? (1 4- ¢*+) would preserve mirror symmetry for any
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value of the complex phase 6, as evidenced by the fact that the term still vanishes
atk, = .

Finally, we note that there is no threshold value of ¢, for which a TCI phase
is realized, meaning that the inter-layer coupling can be the smallest energy
scale of the problem. Reducing the value of ¢, by increasing the thickness of the
spacer layers does not remove the topologically protected surface Dirac cones,

but simply reduces their velocity in the k, direction.

2.3 Stack of quantum spin-Hall layers of graphene

The negligibly small value of SOC in free standing graphene[78, 79] enabled us
to use a spinless model when discussing the heterostructure of Fig. 2.1, provided
that the polar spacers contain light elements. It is however known that graphene
in proximity to heavy atoms or 2D materials containing heavy atoms may lead
to large induced SOC terms.[80, 81] In Ref. [82] for instance, it was shown
that a SOC-driven quantum spin-Hall phase with a gap as large as 80 meV
may be realized in graphene sandwiched between oppositely oriented 2D layers
of BiTeX (X=Cl, Br, I). Motivated by this fact, in the following we study the
heterostructure in the limit in which SOC is larger than the alternating doping of
adjacent graphene sheets.

We describe the system using AA-stacked copies of spin—% graphene models.

The 3D real space Hamiltonian now reads

Hi= > tef g0+ Y (=1)%] oo
(i5),cx b,
+ Z Z'tQVZ'jC;aO'ZCj’a (26)
((i7)),cx
+ Z [c;r,aTzciva“ +h.c} ,
i,a0

where c;{ o= (cj a,TCl'L, o i) creates fermions with spin 1, ] on site ¢ in layer «,

(...)and ((...)) denote nearest and next nearest neighbors (see Fig. 2.1), and the
Pauli matrices o parameterize the spin degree of freedom. The first two terms, ¢

and y, have the same meaning as before, whereas the term proportional to %9 is

the usual intrinsic SOC term,[75] an imaginary next nearest neighbor hopping.

The sign v;; = =1 is positive whenever the path connecting sites ¢ and j rotates
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counter-clockwise, and negative for a clockwise rotation. Finally, 7, is a matrix
describing electron hopping between neighboring graphene layers.

As before, we begin by discussing the decoupled limit 7', = 0, when each
of the graphene layers is an independent 2D system. Since in the simple model
Eq. (2.6) the SOC term commutes with o,, we can write the Hamiltonian
separately for each spin component s = 4 and each of the two layers in a unit
cell [ == as

Hi—t s—+ =t [1 +cos(ky) + COS(k’y)} To+
t[sin(k’x) + sin(k'y)}Ty +1-pro+
s+ 2ty {sin(kx) —sin(ky)
—sin(k; — ky)} 70-

(2.7)

The heterostructure obeys a spinful time-reversal symmetry with operator
T = itonoo, K and K complex conjugation. Further, the system also obeys a
spinful mirror symmetry about one layer, which takes the form

R (k:) = (TO"Z ! k) , (2.8)

0 Tmose

where the 2 x 2 grading is in the layer degree of freedom, 7. Note that the
reflection symmetry Eq. (2.8) anti-commutes with the time-reversal symmetry
operator. In general, the commutation relation between the two operators is
gauge dependent, since it is always possible to re-define R 1= 2R1 such that the
new operator commutes with time-reversal. We choose the basis conventlonally
used in topological classification studies,[38] in which the two symmetries

anti-commute if the system is spinful.

The two spin eigenstates in each monolayer have opposite mirror eigenvalues.[83,

84] This means that under the addition of an intrinsic SOC term, ¢ > 0, each
graphene sheet simultaneously realizes a quantum spin-Hall phase as well as
a 2D TCI phase, since the different spin sectors have opposite Chern numbers
C ==+l

For the inter-layer coupling we choose a term which respects both time-
reversal as well as mirror symmetry, but mixes the two spin components, as one
can expect when the polar spacers contain heavy elements. We set T, = it0,t, in

Eq. (2.6), where the real number ¢, is the strength of the coupling, such that the
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full momentum space Hamiltonian is

Hip O 0
0 Hy A 0

F) = 2.9
3 (k) 0 AT H_, 0 (@3)

)

AT 0 0 H__

with A = it, (1 — e**2)7y. Notice that according to Eq. (2.8), even when the inter-
layer coupling is added, there are now two different planes on which a mirror
Chern number can be defined, k, = 0 and k, = 7, unlike the spinless model
discussed in the previous section. Crucially however, the mirror eigenvalues of
every second layer reverse when going from k, = 0 to k, = 7, which allows for
a different mirror Chern number on each mirror invariant plane. When k, = 0,
eigenstates of the spin-up sector (i.e. those of # ; and H_ ;) have the same
mirror eigenvalue as well as the same Chern number, both of which are opposite
to those of H _ and H_ _. As such, the 3D coupled system realizes a TCI
with mirror Chern number C'; = 2, and two surface Dirac cones are expected
to appear on the k, = 0 line of the surface BZ. On the other plane, k, = 7, the
mirror eigenvalues switch both when changing the spin sector as well as the
layer, leading to a trivial topological invariant. This is because the eigenspace
with positive mirror eigenvalue is formed by H ; and H_ _, which in total
have a vanishing Chern number.

To confirm the presence of surface Dirac cones only at k, = 0, we plot
in Fig. 2.4 the bandstructure of the system in an infinite slab geometry, with
translational invariance along the stacking direction and €,, and containing
W =100 unit cells in the €, direction. The intrinsic SOC term t = 0.5 is
now larger than the alternating doping, ;. = 0.1, such that each graphene layer
independently realizes a quantum spin-Hall phase. At k£, = 0, the mirror Chern
number C'; = 2 means that surface states with the same mirror eigenvalue
propagate in the same direction, such that they cannot be gaped out. In contrast,
at k, = m, there are surface modes with opposite velocities in each mirror
eigenspace, allowing the inter-layer coupling to produce a gapped surface.

Finally, notice that for this system the topological surface modes would
persist even in the limit of vanishing doping, = 0. In this case, the unit
cell would be halved, containing a single monolayer, and the heterostructure
would realize a weak topological insulator, protected by time-reversal symmetry
and translation along the stacking direction. However, the additional mirror
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Fig. 2.4 Bandstructure of the spinful graphene heterostructure [Eq. (2.9)] in an
infinite slab geometry (1 = 100 unit cells along ¢€,). We use t = 1, t2 = 0.5,
p=20.1,and ¢, = 0.2. Only bulk modes (shown in green) and states on one of
the two surfaces are plotted. The color of the surface modes denotes the mirror
sector of each state: red for an eigenvalue +1 and blue for —1. At k, = 0 (left),
the nonzero mirror Chern number leads to the appearance of two Dirac cones
on the surface. States having the same mirror eigenvalue propagate in the same
direction, so they are topologically protected. In contrast, for the other mirror
invariant plane k, = 7 (right), the mirror Chern number vanishes. There are both
left and right moving surface modes in each of the two mirror sectors, which are
gapped out by the inter-layer coupling term.

symmetry Eq. (2.8) leads to an increased protection of the surface Dirac cones,
allowing them to persist even as u # 0, due to the system’s non-trivial mirror

Chern number.

2.4 Conclusion

We have shown that multilayers of graphene can exhibit a topological crystalline
insulating phase protected by reflection symmetry. We considered a heterostruc-
ture formed by graphene monolayers sandwiched between oppositely oriented
2D polar spacers, such as BiTeX[82] or ultra-thin ferroelectric polymers.[85, 86]
The spacers may lead both to an alternating doping as well as to a proximity
induced SOC in the graphene sheets. Both limits were shown to lead to a mirror-
symmetry protected TCI phase, hosting two Dirac cones on each surface. When
the polar spacers are made of light elements, such that they induce a negligibly
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small SOC, the heterostructure can be treated as an effectively spinless system.
In this case, we have shown that due to the alternating electron and hole doping
of adjacent graphene layers, they form quantum Hall phases with opposite Chern
numbers under a uniform magnetic field. The resulting phase is an “intrinsically
magnetic TCI”, one which requires the breaking of time-reversal symmetry in
order to exist. In the opposite limit, when SOC is larger than the doping, the sys-
tem instead realizes a time-reversal symmetric TCI with a mirror Chern number
of 2. Similar to KHgX (X=As, Sb, B1),[47] the surface modes can be understood
as originating from two quantum spin-Hall systems which are forbidden to gap
each other out in the presence of mirror symmetry.

Our work focused only on toy models and discussed the possibility for TCI
heterostructures to exist as a proof of principle. We hope that this study will mo-
tivate future ab initio approaches to graphene heterostructures and their potential
for realizing TCIs. There are a large number of 2D materials which may be
combined in van der Waals heterostructures[87—-89] and which show a variety of
physical properties, such as polarity, magnetism, or SOC. It would be interesting
to combine machine learning algorithms with density functional theory methods
to automate the search for topologically non-trivial heterostructures.

On the experimental side, we expect that such layered systems will first
be fabricated using only a few graphene sheets, so that the system is not fully
three-dimensional. In the small thickness regime, it may be possible to gate
the sample using external electrodes, such that the doping of adjacent graphene
monolayers can be more readily controlled. Further, studying heterostructures
composed of a few layers would open the possibility of observing the so called
“even-odd effect” in TCIs. The latter was originally discussed in WTIs,[90] and
states that a system containing an even number of layers may be gapped by inter-
layer coupling, whereas one containing an odd number must host topologically
protected gapless modes on its surface. For the systems studied here, the same
criterion applies with respect to the parity of the number of graphene sheets,

both in the time-reversal symmetric and in the magnetic TCI limits.






Chapter 3

Dual topology in Jacutingaite
PtQHgSeg

3.1 Introduction

The understanding of bulk-boundary correspondence in condensed matter sys-
tems — namely, the connection between bulk topological invariants and elec-
tronic properties at the system boundary — has come a long way since the
discovery of the quantum Hall effect [3]. This path exhibits as hallmarks the gen-
eralization to systems with time-reversal symmetry, which lead to the discovery
of three-dimensional (3D) strong topological insulators (TIs) [91, 92, 37], the
subsequent understanding of the role played by crystalline symmetries, which
lead to the identification of weak topological insulators (WTIs) [37, 90] and
of topological crystalline insulators (TCIs) [40, 93], and the comprehension of
how the correspondence works in topological semimetals [94-97]. Recently, the
relation between bulk and boundary has been further extended by the discovery
of higher-order topological insulators (HOTIs) [98-114, 71, 115-121].

The identification of materials that can realize topologically nontrivial phases
is naturally important. Recently, it was predicted that a two-dimensional
(2D) monolayer of the naturally occurring mineral called Jacutingaite [122],
PtoHgSes, can realize the quantum spin Hall insulator (QSHI) state [123]. Fur-
thermore, it was argued that the competition between large spin-orbit coupling,
associated with Hg and Pt atoms, and inherent lattice instabilities towards the
breaking of inversion symmetry lead to a topological state robust at room temper-

ature and switchable by external electric fields. First experimental results on the
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QSHI state have been reported [124], and it was suggested that the monolayer
may become superconducting as well [125]. In view of these results, it is of
interest to study the topological properties of the electronic structure in the
three-dimensional compound.

In this work, we first address this issue and show that PtoHgSes3 is both
a weak topological phase and a mirror-protected topological crystalline phase.
This result places Jacutingaite in the list of materials which can host surface states
protected by different, unrelated crystalline symmetries [126—128, 103, 129, 48].
Second, we construct minimal tight-binding models that capture the essential
topological properties of this dual topological phase in materials with three-fold
rotation symmetry and compare their associated surface spectral density with
those of different materials in the class.

The rest of this work is organized as follows. In Sections 3.2 and 3.3 we
use density functional theory to determine the bulk bandstructure of PtoHgSes,
together with its topological invariants and surface states. We then introduce
tight-binding models which reproduce the topology of this material in Section
3.4, and conclude in Section 3.5. The Appendix is devoted to providing results

on PdaHgSes, as well as more details on the tight-binding models.

3.2 Topological characterization

PtoHgSes and PdoHgSes are layered compounds with space group P3m1 (164)
[122, 130]. The Hg atoms are positioned in a triangular environment delimited by
planes of Se and Pt (or Pd) and form a buckled honeycomb lattice [see Fig. 3.1a].
We performed fully relativistic density functional theory (DFT) calculations
using the generalized gradient approximation (GGA) for the exchange and
correlation functional [131],'. In the following, we base our discussion on the
Pt compound, but similar results are obtained for the Pd case (presented in
Appendix 3.6). Figure 3.1c shows the bandstructure of PtoHgSes and its density
of states, D(e), which indicates that the material is a semimetal with small
electron and hole pockets. Similar to Bi [104], the spin-orbit coupling (SOC)
opens a topological gap (~ 20meV) throughout the full Brillouin zone (BZ)
between the bands that gives rise to the electron pockets and those that host the

IWe used the FPLO code [131] version 18.55 with a tetrahedron method for numerical
integrations using 162 k-point mesh in the BZ.
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Fig. 3.1 Panel (a): Crystal structure of PtoHgSes. The three mirror planes are
shown as shaded areas (top) and as green lines (bottom). Panel (b): Bulk and
surface Brillouin zones (BZ). Time-reversal invariant points are colored blue
and points belonging to the surface BZ are indicated with an over-line. Panel
(c): Bandstructure and density of states, D(e), of PtyHgSes with (black) and
without (red) spin-orbit coupling.
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hole pockets. This allows us to characterize the topological structure of the latter

set of bands.

We first focus on the Zy time-reversal polarization invariants [35, 132].

Since the system has inversion symmetry, we use the Fu-Kane formulas based
on the parity of the occupied Bloch states at the time-reversal invariant momenta
(TRIM) in the Brillouin zone (BZ) [36]. The TRIM are sketched in Fig. 3.1b
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and the parity invariants take the values 6(X) =9(R) =1and §(I') =46(Z) =
—1. Hence, we obtain the four Zs indexes (vp;v11v2v3) = (0;001), where 1y
is the strong topological invariant and 14 5 3 are the three weak topological
invariants. This result is consistent with the idea of engineering weak topological
insulators by stacking QSHI layers along one direction, previously realized
in KHgSb [133], Bi,Se, [134] and Bi4Rh3lg [135]. Namely, if the stacking
preserves translational invariance along the stacking direction, z in our case, the
helical edge states associated with each QSHI layer form surface Dirac cones at
momenta k, = 0,7. As long as translation symmetry is preserved, the surface
Dirac cones cannot hybridize and gap out, since they occur at different k.. Note,
however, that not all materials which realize a QSHI in the single layer limit are
in a 3D weak topological phase, a counter-example being elemental Bi [136].
As such the topological invariants of the bulk compound cannot, in general, be
inferred from the behavior of a monolayer.

We also note in passing an ambiguity associated with the methodology
used for computing the parity invariants. While our calculation includes all
of the occupied Kramers pairs, ab-initio methods based on pseudo-potentials
necessarily constrain the calculation to states in a certain energy windows and
this may result in a global sign difference of the parity invariants. For instance,
when performing calculations using the VASP code [137, 138], we obtained the
opposite indexes, +1 at " and Z and -1 at the other TRIMs 2. This ambiguity is
nevertheless of little importance, since predictions regarding the surface spectral
density involve in general a product of an even number of parity invariants [139].

An alternative view of the nontrivial topology is provided by the framework
of elementary band representations (EBRs) [140, 141]. According to this view,
the nontrivial topology should be reflected in the fact that it is not possible to
decompose the occupied bands into physical EBRs. In centrosymmetric systems,
a distinctive property of physical EBRs is that the number of parity eigenvalues
equal to —1 per Kramers pair must be a multiple of 4, a fact that provides a
simple criterion to assess whether a material is topologically trivial or not [142].
We find that the number of negative parity eigenvalues modulo 4 to be 2, thus
demonstrating nontrivial topology >.

The stacking of 2D PtoHgSes layers in 3D Jacutingaite preserves symmetries

other than translation, which can lead to additional topological invariants. In

%In the VASP calculation the parity invariants are computed for states in the energy windows
[—17.5,0] eV.
3We find 64 parity eigenvalues equal to —1 at X and R and 61 at T and Z.
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particular, in this work we focus on the reflection symmetries: one mirror plane
in momentum space contains the points I', Z and X, while two additional mirrors
are obtained by 27 /3 rotations with respect to the z axis [see Fig. 3.1a and b].
Since a mirror rotates the electron spin by an angle 7, it leads to a wavefunction
of opposite sign when applied twice. Therefore, the mirror symmetry operator
satisfies M2 = —1 and, accordingly, Bloch states belonging to a mirror plane
can be labeled with a mirror eigenvalue equal to 7. This introduces a partition
of the space formed by Bloch states with momentum in the mirror plane into

two subspaces and allows to define a Chern number in each of them as
1
ct = > [ ds-ef). 3.1
o 2 o 95 2 () (3.1)

Here, n labels occupied states, dS is a differential surface element of the mirror
plane M and Q;(k) is the Berry curvature associated with the subspace of
mirror eigenvalue +i. It is computed as ;" (k) = Vi x A (k), with A (k) =
—i(u, |Ouly ) the Berry connection, and |u, ) the Hamiltonian eigenstates
within a given subspace. A nonzero mirror Chern number, Cy = (CT —C7)/2,
signals the existence of topologically protected states on surfaces that preserve
the mirror symmetry. In PtoHgSes and PdoHgSes we obtain Cyy = —2 for
each of the three mirror planes 4 which means that these materials can realize
helical HOTI phases under suitable surface perturbations, as shown in Ref. [103].
Together with the nontrivial weak topological invariant, the nonzero mirror
Chern numbers enable us to predict that PtoHgSes is in a dual topological phase,

one which is present in a naturally ocurring mineral.

3.3 Surface Dirac cones

We now present surface spectral densities computed for semi-infinite systems
obtained by cutting the crystal perpendicular to the [100] or [001] directions. In
both cases, we chose surfaces terminated by Hg atoms. For these calculations,
we built a tight-binding Hamiltonian based on Wannier functions associated
with orbitals 6s, 6p, and 5d of Hg and of Pt, and 4p of Se. The Wannier-
interpolated band-structure accurately reproduces the DFT results in the energy
range [—9eV,5eV].

4As a benchmark, we have computed the mirror Chern number for BioTes, obtaining as a
result -1, and for SnTe, obtaining as a result -2, values that agree with the literature.
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Figure 3.2a shows the momentum-resolved spectral density associated with
the [100] surface along a path connecting the surface TRIMs I, X, R, and Z
[see Fig. 3.1b]. The spectral density features two Dirac cones, one centered at X
and one at R. The connectivity of these surface states with the projection of the
bulk valence and conduction bands is consistent with the surface fermion parity
invariants, which can be computed from the bulk parity invariants as 7(A,) =
(—=1)™6(I';)6(I';) [139]. Here, I'; ; are the bulk TRIMs, whose projection
coincides with the surface TRIM A, and n;, is the number of occupied Kramers
pairs. The opposite parity invariants at T' and X makes 7(T") and 7(X) have
opposite signs. This reflects a change in the time-reversal polarization on going
from I to X and, accordingly, along a path connecting these points, surface
bands must intersect an odd number of times a generic Fermi energy lying within
the bulk topological gap, as observed. On the other hand, 7(X) = 7(R), such
that surface states along this path do not connect bulk valence and conducting
states. Lastly, the odd number of intersections should occur also along R - Z, but
on this path the bulk state projections overlap, such that the surface gap closes.

Finally, Fig. 3.2b shows the spectral density associated with the [001] surface.
While the projected bulk valence and conducting bands leads to a closing of
the surface gap, a pair of Dirac cones are visible at X, consistent with having

[Cpml = —2.

3.4 Tight-binding models

Having established that PtoHgSe3; and PdaHgSes simultaneously realize weak
and topological crystalline phases, we will now introduce tight-binding models
that capture the essential topological features of this class of materials, which
has been found to also include BisTel [126, 127], BisTeBr [128], BiTe [129]
and BiSe [103]. Specifically, we will construct systems with three-fold rotation
symmetry, which are both WTI and TCI °. Our models consist of two coupled
strong 3D TIs, a construction similar to the so called “double strong TI” of
Ref. [72]. Each strong TI is defined on a triangular lattice with Bravais vectors
a; = (1,0,0), ag = (—1/2,v/3/2,0), and ag = (0,0, 1), as shown in Fig. 3.3a.

3Strictly speaking, BisTel has a small distortion that reduces the symmetry from trigonal to
monoclinic, but this distortion is usually neglected, see Ref. [127]
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Fig. 3.2 Momentum-resolved surface spectral densities. Panel (a): [100] surface.

Dirac cones associated with the weak topological index are observed at X and
at R. The insets show a zoom in on the Dirac cones. Panel (b): [001] surface. A
pair of Dirac cones associated with the mirror Chern number are observed at X.

Its momentum space Hamiltonian takes the form:

Hri(k) ='1[p+ f(k1, k2) — cos(ks)]
+A [FQ Sin(k‘l) +F2’1 Sin(k‘z) 3.2)
—TI'g9sin(k; + ko) + Tssin(ks)].

Here, k = (k1, ko, k3) is the crystal momentum vector, where k;j =k-a;. The

matrices I'y = 7,00, I'y = 7,04, and I'3 = 7,00, where Pauli matrices 7 encode
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the degree of freedom associated with two orbitals per site, whereas Pauli
matrices o parametrize the spin degree of freedom. Further, the matrices I's ;
and I's o are obtained from I's by applying a three-fold rotation around the z
axis:

Iy =CiT2C57, Cy=ryexp (igaz) : (3.3)

The scalar function f(k1,k2) encodes the in-plane hoppings of the model, and
for Eq. 3.2 to describe a strong TI, it must be such that the system presents
band inversions at an odd number of TRIMs. In the following we consider two
specific examples of f(ky, k) that will allow us no only to describe the topology
of Jacutingaite but also to connect with other materials predicted to be both
WTI and TCI [126, 129]. The function is such that Hry has either one band
inversion at k = (0,0,0), or a total of three band inversions at (0,7,0), (,0,0),

and (7, 7,0). The resulting functions are:

]

f(r) =— COS (Cgk‘l), (3.4)
=0

f(X) —

cos (ZCgkl) [cos (C§+1k1) +cos <C§+2k1> —2], (3.5)

o0 w
[

0

J

where C3 denotes the action of a three-fold rotation on a momentum component:
Csk1 = ko and C3ko = —k1 — ka.

For both choices of f(k1, k2), the Hamiltonian Eq. (3.2) obeys an inversion
symmetry [ = 7,00, time-reversal symmetry 1" = itgo, K with K complex
conjugation, as well as the three-fold rotation symmetry C3 of Eq. (3.3):

C Hopy (K1, ko, k3)Cy = Hrp(ka, —ky — ko, k3). (3.6)

Its topological structure is determined by the values of ;¢ and \. For both f ()
and f(X), setting 1 = 3 and \ = 1, the model realizes a strong 3D TI with Zj
indices (vp;v112r3) = (1;000).

Crucially, the model Eq. (3.2) is also mirror symmetric. There exists a mirror
symmetry on the k; = —2k» plane of the BZ, M = i1yo,

M Hoy(ky, ko, ks) M, = Hoy(k1, —k1 — ko, k3), (3.7)

as well as two other mirror symmetries obtained through rotation, Ms = C5’ ar 1C5

and M3 = Cy 2M1 C’%, with mirror planes ko = —2k; and k1 = ko, respectively.
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On each mirror-invariant plane, Aty can be block-diagonalized into sectors
corresponding to mirror eigenvalues £¢. By computing the Chern number as-
sociated with each sector, Eq. (3.1), we find a mirror Chern number C'y = —1
on each of the mirror planes. As such the tight-binding model of Eq. (3.2) is
simultaneously a strong 3D TI and a TCI.

We will follow our construction of a dual WTI and TCI Hamiltonian using
the case [ = f (F)(kl, ks), for which the Hamiltonian takes the form used in
Ref. [104] and hosts a single Dirac cone on each surface of the system, positioned
at the T point of the surface BZ. Similar steps are presented in Apps. 3.7 and
3.8 for the case defined by Eq. (3.5). We consider two copies of Hpp which are
displaced relative to each other by half of a unit cell in the z direction [143]. The
full momentum space Hamiltonian is an 8 x 8 matrix having the block form

H(k) = (HTI(kLkz,kg)—l—a aA(kr, ko) ) 48)
aA(ky, k2) Hri(ki, ko, ks+7m) —e

where ¢ is a relative energy shift between the two TI blocks, A(k1,k2) is a
coupling term (to be defined later), and « is its strength.

For o = 0, the Hamiltonian Eq. (3.8) is a block-diagonal double strong TI
which obeys the same symmetries as Hty. Time-reversal, inversion, rotation,
as well as the three mirror symmetries have the same matrix structure in 7 and
o space, and are block-diagonal in the space of the two 3D TIs. There are
now, however, two band inversions in total. The upper block contributes a band
inversion at k = 0, as discussed before, whereas the lower one has inverted
bands at k = (0,0, 7), due to the extra momentum shift. As such, the parity
invariants associated with Eq. (3.8) are identical to PtoHgSes, 6(I') =0(Z) = —1,
marking it as a WTI with Zs indices (vp;v112v3) = (0;001). A [100] surface
will exhibit two surface Dirac cones, one at k, = 0 and one at k, = 7, protected
by time-reversal and translation along z.

By combining two TI blocks, we have obtained a system with a trivial strong
index, vy = 0, due to the latter’s Zs classification. Mirror Chern numbers, on
the other hand, have an integer classification, which means that the Hamiltonian
Eq. (3.8) is also a TCI with mirror Chern numbers given by the sum of the
invariants in each block. We find C'y = —2 on each of the three mirror planes,
reproducing the behavior of PtoHgSes and PdoHgSes. Due to this dual topology,
H will exhibit surface Dirac cones not only on its side surfaces, but on the top,
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Fig. 3.3 Panel (a): Triangular lattice model of Hy, Egs. (3.2) and (3.4). Sites
are shown in black, hoppings in gray, and mirror planes as shaded areas. The
blue arrows represent Bravais vectors aj 2 3. Panel (b): Bandstructure of the
model defined by Egs. (3.8) and (3.4) computed in a slab geometry. Only states
on the top surface are shown. Panel (c): Cut of the same bandstructure along the
k1 = ko mirror plane, with k,, labeling the momentum along the mirror plane.
Panel (d): Bandstructure for model defined by Egs. (3.8) and (3.5), along the
same k1 = ko mirror plane. All bandstructures are obtained in a slab geometry
with hard wall boundary conditions perpendicular to a3 and a thickness of 40
unit cells. In (b) and (c) we set u =3, A =1, o = 5, and ¢ = 0.4, whereas
€ = 0.1 in panel (d). The color scale in panels (c) and (d) denotes the integrated
probability density of wavefunctions on the top- and bottom-most 8 sites of the
slab, such that surface modes appear in red (dark gray) and bulk modes in light
green (light gray).

[001] surface as well. For o = 0, there are two surface Dirac cones positioned at
the I point of the surface BZ and at energies =+e.
As long as the two TI blocks remain uncoupled, the surface Dirac cones

are orthogonal to each other, such that a circular band crossing occurs at &/ =0
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whenever € # (. This band crossing, however, is an artifact of the block-diagonal
nature associated with the choice o = 0. For « # 0, the two TI blocks couple,
lifting the degeneracy. We choose an off-diagonal coupling term A(k;, ko) =
TeO s Z?:O sin (Cg (k1 — kg)) which preserves time-reversal, inversion, as well
as rotation and mirror symmetries. Due to this term, the circular band crossing
is lifted everywhere except on the three mirror planes. The result is that the
[001] surface now hosts a total of six Dirac cones. On each of the three mirror
planes there exists a pair of Dirac cones positioned symmetrically around I" due
to time-reversal symmetry, as shown in Fig. 3.3b for a slab geometry calculation.
Their position can be tuned with the relative energy shift of the two TI blocks, €.

Fig. 3.3c shows the bandstructure along a mirror plane in a larger energy scale.
Notice that the branches of the two £ = 0 Dirac cones positioned symmetrically
around I can intersect at the TRIM giving rise to a second pair of Dirac cones.
In a given material, details of the bulk bandstructure and of the surface potential
will dictate if all or some of these four Dirac cones are observed. For instance,
DFT calculations in BigTel [126] have highlighted Dirac cones both at I and
away from the TRIM, and similar results are found in BioTeBr [128] and in
BiTe [129]. Different to these materials, Jacutingaite has two observable surface
Dirac cones at X (see Fig. 3.2b), while the possible Dirac cones away of the
TRIMs are hidden by the projection of the bulk spectral density. This scenario
is better described by Hamiltonian Eq. 3.8 with the choice f(ki, ko) = fX).
In this case, as Fig. 3.3d depicts, the Dirac cones are positioned closer to and

symmetrically with respect to (m,,0).

3.5 Conclusion

We have shown that the naturally ocurring and recently synthesized PtoHgSe3 and
PdyHgSes belong to the class of systems that simultaneously realize weak and
topological crystalline phases. In addition, we have introduced a set of tight-
binding models that contain the essential properties of this dual topological
phase, reproducing the main features of the surface spectral densities which have
been predicted for different materials in the class.

We note that, similar to elemental bismuth [104], these topologically non-
trivial materials are not insulators, but semimetals with small electron and hole
pockets. Since they lack a bulk mobility gap, it is unlikely that they will show
surface dominated transport, due to the fact that disorder, which is unavoidable
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in any realistic setup, will scatter surface electrons into the bulk. However, the
systems we have studied have well defined topological gaps throughout their
BZ, meaning that weak and strong Z topological indices as well as mirror
Chern numbers can be meaningfully computed. These invariants necessarily
lead to surface states in the energy range defining the topological gap, shown in
Section 3.3, which may be visualized using energy and/or momentum sensitive
techniques, such as angle-resolved photo-emission spectroscopy, or scanning
tunneling spectroscopy. Thus, we hope that our work will motivate experimental
studies on Jacutingaite, aimed at probing the topology of its surface modes.

Further, we hope that the tight-binding models we have introduced will allow
for a better theoretical understanding of WTI+TCI materials. These include the
behavior of the system under various surface perturbations, for which it can
become a HOTI [103], the behavior of modes localized to step edges, which
have recently been reported in BigTel [127], as well as the effect of disorder.
Moreover, they may be used to understand the degree to which surface modes can
influence transport properties in the presence of coexisting bulk states, similar to
the studies done for 2D systems in Refs. [144, 145].
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3.6 Appendix A:Ab-initio results for Pd,HgSe;
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Fig. 3.4 Bandstructure of PdoHgSesand of PtHgSes. The inset presents a zoom
of the area enclosed by the red dotted-line square.

We performed Density Functional Theory (DFT) calculations for PdoHgSes
using the crystal structure reported in Ref. [130]. We used the same calculation
setup as in the main text of this article. The energy dispersion of PdoHgSes
and of PtoHgSe3 present the same features, as shown in Fig. 3.4. The main
difference is the smaller topological gap between valence and conducting states
observed in the Pd based compound. We obtained for PdoHgSes the same
parity invariants as for PtaHgSes3, and hence the same time reversal polarization
invariants. Namely, 6(X) =0(R) =1, (I') =6(Z) = —1 and Zy = (0;001).

We also built a tight-binding Hamiltonian for PdHgSes based on Wannier
functions associated with orbitals 6s, 6p and 5d of Hg, 5s, 5p and 4d of Pd and

4p of Se and used this Hamiltonian for computing surface spectral densities. Fig.

3.5(a) presents the spectral densities at the surface [100]. While surface Dirac
cones are visible at X and R, the projection of the bulk bands closes the surface
gap between surface time-reversal invariants momenta of different surface parity
invariant, and hence, does not allow us to analyze the connectivity between the
surface Dirac cones and bulk valence and conduction states. Fig. 3.5(b) shows
the spectral density associated with the surface [001] which, as in PtoHgSes,
features two Dirac cones at X .
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Fig. 3.5 Momentum-resolved surface spectral densities of PdoHgSes. Left: [100]
surface. Right: [001] surface. A pair of Dirac cones associated with the mirror
Chern number are observed at X .

3.7 Appendix B:Different surface Dirac cone posi-

tions

As explained in the main text, the [001] surface spectral density of PtoHgSes
presents two Dirac cones at X (and at the other TRIMs connected to X by 27 /3
rotations). Within the 8-band tight-binding models considered in this work, this
surface spectral density is better described by the model which presents band
inversions at the boundaries of the 3D BZ, such that §(X) = §(R) = —1 and
§(T") = 6(Z) = +1. These parity invariants differ in a global sign with those
computed with FPLO, but as the comparison with the VASP calculations shows,
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they coincide with the ab-initio results when the parity invariant calculation is
constrained to the energy windows [—17.5,0] eV.

In the following, we reformulate the construction presented in the main text
for this case. We follow the same strategy, namely to start with two 3D TI
blocks. However, unlike Hty of Eq. (2) in the main text, which had a single band
inversion at I', we choose a TI block which has a total of three band inversions,
positioned at the three X points of the BZ. For the TI Hamiltonian presented in
the main text, Eq. (3.2), we now focus on the case in which the function f(ky,k2)

is
Flk1 ko) = fO) (ky, ko) = g{ cos(2ka) [ — 2+ cos(ky) +cos(ki + k2) |

+ cos(2k1) [ — 2+ cos(ka) + cos(ky + kQ)]

+cos(2(k1 + k2)) [ —2+cos(k1) + cos(k:g)} }
3.9

In the next section, we detail the real-space structure of these hopping
terms. Due to the form of Eq. (3.9), Hpr obeys the same symmetries as the TI
model introduced in the main text: time-reversal, inversion, three-fold rotation,
as well as the three mirrors. Setting as before ;4 = 3 and A = 1, the model
realizes a simultaneous strong TI with Zs indices (vp;v112v3) = (1;000) and
TCI with mirror Chern numbers Cy¢ = —1 on each of the three mirror planes.
Crucially however, there are now three band inversions in the model, occurring
at (ki1, ko, k3) = (m,0,0), (0,7,0), and (7,7, 0), such that the [001] surface hosts
a total of three Dirac cones, positioned at the X points of the surface BZ. By
forming a double strong TI as in Eq. (3.8), we obtain a dual topological phase,
which is simultaneously a WTI and a TCI with Cyy = —2. Figure 3.6 shows
the bandstructure of the model in a slab geometry, infinite in both %1 and k2 and
with a thickness of 40 unit cells in the 2 direction.

3.8 Appendix C:Real-space hopping terms

The real-space structure of the Hamiltonian Hry of Eq. (3.2) together with the
function fI) of Eq. (3.4) are the same as in Ref. [103]. For the model with three
band inversions at the X points, however, the momentum-space function f (X) of

Eq. (3.9) leads to longer ranged, in-plane hoppings in real space. These hoppings,



52

Dual topology in Jacutingaite PtoHgSe3

Fig. 3.6 Bandstructure of the model obtained using Eq. (3.9) in an infinite slab
geometry, with thickness of 40 unit cells in the z direction, using ;= 3 and
A = 1. Only states which are localized on the top surface and have energies
|E| <1 are shown. To better visualize the surface Dirac cones, we set a« =& =0,
such that each Dirac cone is doubly degenerate. The hexagonal contour marks
the boundary of the surface BZ, mirror invariant lines are shown in dashed
red, and black arrows indicate the reciprocal lattice vectors of the surface by =

(v/3/2,1/2) and by = (0, —1).

which all have the same matrix structure, ['; = 7,00, are shown schematically in
Fig. 3.7. Their amplitudes are t; = —3/8, to = 3/16, and t3 = 3/32.
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Fig. 3.7 Sketch of the real-space hopping terms corresponding to the function
f (X) of Eq. (3.9). Shown is the triangular lattice describing Hp at constant z
coordinate. Starting from a site on The hopping amplitudes are t; = —3/8 (blue

dotted lines), to = 3/16 (orange dashed lines), and ¢35 = 3/32 (green solid lines).

The structure of the hoppings preserves the three-fold rotation symmetry of the
model.






Chapter 4

Hinge electronic structure of
strained half-Heuslers

4.1 Introduction

Low-dimensional boundaries of a system, such as hinges and corners, can host
interesting electronic properties as recently uncovered by the discovery of higher-
order topological insulators (HOTIs) and of higher-order quantized electric
multipole moments. [146—150, 70, 151-153]. In three dimensions, a second
order topological insulator is characterized by an insulating bulk, insulating
surfaces and metallic hinges. Elementary Bi has been found to offer a material
realization of such phase when crystals are cut preserving the bulk trigonal
symmetry [70, 154]. Classifications of symmetry-protected HOTI phases have
been performed [155—158] and the study of hinge states in a plethora of platforms
is nowadays very active [159-163].

The possibility of hinge states in gapless semimetals has also been recognized
[164-167] and the quest for specific materials where to study them is naturally
important. Ref. [166] showed the existence of hinge states in models relevant
for various candidate Dirac semimetals, such as Cd3As, and KMgBi. Ref. [168]
argued about the importance of hinge states in 5-MoTes for the interpretation
of its surface electronic structure while Ref. [169] reported evidence of hinge
states in the related compound WTes.

Recently, it has been suggessted the possibility of HOTI phases in the broad
set of half-Heusler (hH) compounds [170]. Half-Heuslers are ternary compounds
with the space group (SG) No. 216 [171-173]. They present at low energy a very
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similiar electronic structure to that of CdTe or HgTe, the latter one a reference
example of nontrivial electronic topology since the first predictions [25, 174]
and experimental confirmation [175, 176] of hosting a topological insulating
phase under strain. The richness of HgTe goes hand in hand with the simplicity
of its band structure, the hallmark of which is an inversion between the so-called
I'g and I'g bands [177]. In the cubic phase, the I's bands exhibit a fourfould
crossing at low energies which enforces a semimetallic phase. An appropriate
reduction of the symmetry opens a gap, yielding a strong topological insulator
(TT).

The additional atom in the unit cell of hHs can serve different purposes,
such as providing a knob to change the unit-cell volume, which in turn reflects
on the electronic structure, or stabilizing various long-range ordered phases
[178], making hHs an interesting platform to explore the interplay between such
diversity and topological properties of the electronic structure. This potential
naturally motivated extensive ab initio computational searches [179—181] that
yielded as a result the identification of dozens of band-inverted Hhs, namely
compounds in which the bands follow the hierarchy er, > er,, some of which
were experimentally confirmed [182, 183]. Later, the possibility of realizing
the Weyl semimetal phase in different members of the class further enriched
the prospects of non-trivial topology in hHs. This was shown in studies that
considered different mechanisms that act to reduce the cubic symmetry, including
magnetic fields [184—186] or uniaxial strain [187]. These axial perturbations
break the three-fold rotational symmetries that protect the fourfold crossing of
the I'g bands [188], opening a gap in these bands and eventually leading to the
creation of Weyl nodes.

The above-mentioned suggestion of HOTI phases in hHs is based on a study
of a four-band model reasonably accurate to desribe the I'g bands [170]. In this
work, we investigate the problem by means of density-functional theory (DFT)
calculations and of ab-initio derived tight-binding models. Our calculations show
the existence of electronic states on certain hinges of hHs with either epy > ep,
or with e, < er,. Importantly, we find these hinges states to be topologically
trivial. Further, we show that they are critically affected by the topology of the
bulk electronic structure due to trivial hybridization effects: topological surface
states, when present, hybridize with the hinge modes which, as a consequence,

avoid being exponentially localized around the hinges.
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This paper is organized as follows. In Sec. 4.2, we describe methodological
aspects of this work. In Sec. 4.3, we present the bulk and surface electronic
structure of the lithium-based half-Heusler compounds LiBiZn and LiSbZn. In
Sec. 4.4, we discuss relevant Hamiltonians that describe the low energy electronic
properties of these compounds and in Sec. 4.5 we present hinge band structure
calculations. Sec. 4.6 contains our concluding remarks. The Appendix. 4.7
provides 8-band tight-binding Hamiltonians suitable to describe LiBiZn and
LiSbZn.

4.2 Methods

Density functional theory (DFT) calculations were performed with the FPLO
code [189] version 18.57, treating the spin-orbit coupling in the fully-relativistic
four-component formalism and performing numerical Brillouin zone integrations
with the tetrahedron method using a mesh of 30 x 30 x 30 subdvisions. We re-
laxed the crystal structure by minimization of the total energy. For the simulation
of uniaxial strain, we fixed the deformation of the lattice parameter c, and relaxed
the perpendicular lattice parameters under the constraint a = b. To parametrize
the deformation, we define 6 = (co — ¢)/cp, where ¢y is the equilibrium lattice
parameter.

Starting from the DFT results, tight-binding models were obtained by con-
struction of Wannier functions with the projective method as implemented in
FPLO. Based on the analysis of the orbital-projected density of states, we con-
sider an eight band model that includes Bi-6p (or Sb-5p) and Zn-4s orbitals.
These tight-binding models were used for the study of the electronic structure
at surfaces and hinges. For the former, we considered semi-infinite slabs using
the the PYFPLO module of the FPLO code, while for the latter we solved finite
systems using own codes based on Kwant [76] (more details are presented in
Section 4.5).

4.3 Lithium half-Heuslers

The crystal structure of a hH compound of formula XY Z can be regarded as two
displaced zinc-blende lattices formed by X Z and Y Z pairs of atoms (Fig. 4.1a).
With this notation, X and Y occupy the cristallographically equivalent sites 4a
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and 4b, forming a rock salt structure, while 7 is positioned at the site 4c. We
will consider the cases X=L1i, Y=Bi or Sb and Z=Z7n.

We choose Li-based hHs because, as we will show, their simplicity facilitate
the construction of low-energy tight-binding models that accurately reproduce
the density-functional calculations with a minimum effort in terms of number
of bands. This allow us to tackle the problem of studying the hinge electronic
structure using realistic tight-binding Hamiltonians.

While both LiSbZn and LiBiZn have originally been studied in the hexagonal
phase [190, 191], the former has also been grown in the cubic phase [192] and
the latter has recently been predicted to present a cubic phase as ground state
[193]. We notice that within the same cubic space group, there are two variants
defined by the crystallographic site occupied by the Zn atoms. In particular, in
the family LiZnT (T=N, P, As), the Zn atoms are found in the Y position. On
the other hand, Ref. [192] has shown that the compound LiSbZn is different,
since Zn occupies the Z position. We have compared the total energy of these
two variants for LiBiZn and LiSbZn, obtaining that the structure with Zn in the
Z site has lower energy. We notice that for both structures the Bi and Zn atoms
— which provide the dominant contribution near the Fermi energy, as will be
shown below — form a zinc-blende lattice and therefore, both variants have
similar low-energy band structures.

We obtain for the fully relaxed compounds the lattice parameters a = 6.584 A
for LiBiZn and @ = 6.350A for LiSbZn. Figures 2 (c) and (d) show the band
structure and the orbital-projected density of states D(e) of LiBiZn and of LiS-
bZn, respectively. In both cases, Bi-6p or Sb-5p states dominate the electronic
structure in the energy windows shown and exhibit a substantial hybridization
with Zn-4s and Li-2s. The main difference between compounds is the relative po-
sition of the I'g and I'g bands, which accommodate in total four electrons per unit
cell. In LiSbZn, the energies of these bands obey ey < e, so that the I's bands
are completely filled and the compound is an insulator. In LiBiZn, the opposite
arrangement leads to half-filled I'g bands, enforcing a semimetallic state. In this
case, a clear s-p inversion is noticeable near I'. In Appendix 4.7 we present
an eight-band tight-binding model suitable to describe both compounds. An
analysis of the model parameters indicates that the main difference between com-
pounds is the larger local spin-orbit coupling in the Bi-based compound. Thus,
these compounds having er, > er, (LiBiZn) or epy < e, (LiSbZn) provide a
framework for the study of the hinge electronic structure of both band-inverted
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Fig. 4.1 (a) Crystal structure. (b) Brillouin zone. (c,d) Band structure and density
of states of LiBiZn and LiSbZn, respectively. The weight associated with Bi-6p
(or Sb-5p) is depicted in orange while that of Zn-4s, Bi-6s (or Sb-5s) and Li-2s
in blue.

and normal systems having very similar chemical and physical properties (e.g.

lattice parameters and orbital composition of low-energy bands).

The fourfold crossing present at I'g is protected by the threefold rotation
symmetries along the unit-cell diagonals [188]. Therefore, perturbations that
reduce the cubic symmetry will generically gap out this crossing. Here we

consider the case of uniaxial strain along the Z direction, either compressing
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(negative 0 in our convention) or stretching the system. Under such perturbations,
the crystal symmetry becomes 14m2 (SG 119). Figures 4.2 (a) and (b) show
the band structures of LiBiZn near " corresponding to 6 = 0,40.02. For both
signs of 9, we find that the ['g bands remain gapless in a wide range of strain
—0.04 < 6 < 0.04. For § < 0, a Dirac cone along I'Z closes the gap. For ¢ > 0,
Weyl nodes closing the gap are found in the £, = 0 plane. Similarly, in LiSbZn
strain opens a gap at the fourfold crosssing. In this case, the system remains
insulating with only a weak change in fundamental gap formed between the I'g
and I'g bands (not shown).

Lastly, we notice the existence of planes defined by three of the time-reversal
invariant momenta (more details in Section 4.4) which present for finite strain
a well defined gap in the full Brillouin zone for any sign of strain and have a
nontrivial Z, index. Thus, for finite § the electronic structure is characterized
by either Weyl or Dirac points which close the gap of the I'g bands, but which
coexist with two-dimensional planes that realize quantum spin Hall insulating
(QSHI) phases.

To conclude this Section, we briefly present how these properties influence
the surface spectral features. We focus on LiBiZn and consider the Zn-terminated
[1,-1,0] surface, which is perpendicular to the direction in which strain is applied.
Figures 4.3 (a) and (b) show results for 6 = —0.02 and 6 = 0.02, respectively.
The path chosen includes segments perpendicular (K1") or parallel (I'7) to the
direction of the strain. Surface states with Dirac cones located at the Brillouin
zone border (K and Z) are observed for both signs of strain. We notice that for
a LiBi-terminated surface, while the connectivity provided by the surface states
between the projection of the bulk valence and conducting bands is the same,
the Dirac cone at Z or K is pushed into the bulk projection (not shown). As
shown in Figures 4.3 (c) and (d), the main role of strain is observed near I': the
spectrum becomes gapped at [" and gapless at the projection of the Dirac cone
(along I'Z and § < 0) or of the Weyl nodes (along KT" and 9 > 0).

4.4 Low energy models

The salient feature of the low energy band structure of band-inverted hHs is
the seemingly quadratic touching at I', which involves four bands. A model
that describes a quadratic fermionic band touching at an isolated point and is

often invoked as relevant for hHs materials is the spin 3/2 Luttinger Hamiltonian.
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Fig. 4.2 (a) Band structure of LiBiZn under uniaxial strain 6 = —0.02. Thinner
black curves are the bands without strain. (b) Band structure for § = 0.02. The
path chosen include one of the eight Weyl nodes found in the &, = 0 plane, of
coordinates %”(0.017,0.006,0).

This model is rooted in the k - p perturbation theory [194] and has been used
for investigating, e.g., spin-Hall conductivity [195], non-Fermi-liquid topolog-
ical phases [196], light-matter interaction in Weyl semimetals [197] and also
superconducting pairing properties [198, 199]. More recently, the topological
properties of this model have been analyzed in Ref. [170], where it was found
that uniaxial strain leads to the formation of HOTI phases. Thus, it is naturally
important to understand how these results apply to hHs.
Following Ref. [170], we consider the model Hamiltonian

2
Hk)=t lein(kja)yj
iz

2
+ {—thOS(k‘ga)‘sz—FtoZ[l—COS(k‘ja)]}VB @D

j=1
Aqlcos(kaa) — cos(kra)]ys + Agsin(kia) sin(kaa)ys,

where a is the lattice constant, k = (k1, k2, k3) is the momentum vector, and ;,
1 <5 <5, are the mutually anticommuting 4 X 4 Hermitian matrices satisfying
the algebra {~;,v;} = 26;;. Theses can be represented as y; = 037, 72 = 0gT2,
Y3 = 0073, Y4 = O1T1, V5 = 0271, Where o and 7 Pauli matrices encode the spin
and orbital degrees of freedom, respectively. As shown by Ref. [170], expansion
of this model around I' can be mapped to the Luttinger Hamiltonian. The model
describes well the low energy dispersion of band-inverted hHs, with the caveat
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Fig. 4.3 (a) [1,-1,0] Zn-terminated surface spectral density structure of LiBiZn
under uniaxial strain 6 = —0.02. The panel on the right is a zoom of the white

square in the left panel. (b) Analogous results for strain 6 = 0.02. (¢),(d) Zoom
of the data in (a),(b), respectively. The path width in the zooms is 0.04 x 27 /a.

that additional crystal symmetries make the crossing not isolated in actual hHs.
Namely, within the model, the bands split in four at any momenta infinitesimally
away from ' while in the material there are lines (e.g. I'-X') where the bands
split only in pairs [see Fig. 4.1 (c, d)] L.

The term § = (—t3cosksa + m)y3 mimics the effects of strain along the
[001] direction 2. Depending on the sign of § at k3 = 0, this term leads the model
Eq. (4.1) to either a Dirac semimetal phase (t3 > m.), or to a stack of quantum
spin Hall insulating(3D) phases (t3 < m ). Interestingly, these phases support
higher-order topological modes along certain hinges [170].

ISee [188] for a demonstration that only materials in the SGs 207-214 can host fourfold
crossings whose low energy description is exactly that of spin 3/2 quasiparticles.
ZFor consistenty with our DFT results, we define § with an opposite sign to Ref. [170].
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We observe that the topological properties of the Hamiltonian Eq. (4.1) are in
general different from those of hHs we consider. First, in the case of LiBiZn, the
stack of QSHI phases is instead replaced by a Weyl semimetal phase, as shown in
Fig. 4.3(b). Second, and more fundamental, as shown in earlier studies in HgTe
[200] and also in some hHs [201], to faithfully describe not only the energy
dispersion in a given energy window but also global topological properties of the
full (occupied) band structure, a model for hHs must have at least six orbitals per
primitive unit cell [201]. This follows from the fact that the band inversion that
drives the non-trivial topology is between the quartet of bands I'g and the doublet
['g. The difference between the effects of strain on the model Eq. (4.1) and on
a model for hHs containing six (or more) bands can be appreciated noticing
that, as mentioned above for LiBiZn, band-inverted hHs have in the Brillouin
zone planes which realize a QSHI phase under finite strain of any sign. On
the contrary, in the case of the model Eq. (4.1), these planes undergo a phase
transition from a QSHI to a trivial insulator as the strain changes sign.

To illustrate the difference in topology, Figs. 4.4 (a) and (b) show the Wilson
loop computed in the k3 = 0 plane for positive or negative strain, respectively,
for the model Eq. (4.1). The different winding indicates a change in the value
of the Z, invariant for different signs of strain. On the other hand, the Z»
invariant in LiBiZn remains nontrivial independently of the sign of strain, as
indicated by the evolution of the Wannier centers shown in Figs. 4.4 (c) and
(d) for compressive and tensile strain, respectively. Therefore, the electronic
structure of both surfaces and hinges can be very different between a system
described by the model Eq. (4.1) and hHs.

4.5 Hinge electronic structure

In this section, we present hinge band structure calculations for LiBiZn and
LiSbZn. These are based on tight-binding Hamiltonians associated with Wannier
functions constructed from DFT calculations. As explained above, a six-band
model would be the minimal option to correctly capture the topology of band-
inverted hHs. However, it is problematic to obtain such a model from a Wannier-
ization processs consisting in the projection of the Khon-Sham wave functions
onto pre-defined local orbitals, essentialy because the low-energy six bands have
a strong mixture of Bi-6p and s-like orbitals (primarily from Zn but also in

smaller amount from Li and Bi as well). This makes the definition of the local
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Fig. 4.4 (a) Wilson loop in the k£, = 0 plane for the four band model Eq. 4.1 with
0 < 0. (b) Same for § > 0. (c) Wannier center evolution in the plane defined by
the TRIMs T, G /2 and G /2 for LiZnBi under compressive strain. (d) Same as
(c) in the case of tensile strain.

orbitals onto which project unknown. Therefore, at the expense of a numerically
more demanding hinge bandstructure calculation, we shall work with 8-band
models including all Bi 6p (or Sb 5p) and Zn 4s orbitals, as explained in Section
4.2.

Figure 4.5 illustrates the system we consider, which is infinite along & and
finite in the two other directions. Two of the surfaces are terminated at Bi/Sb
sites and the remaining two at Zn. There are three inequivalent hinges: one
results from the intersection of Zn planes, one from Bi (or Sb) planes and two
from the intersection of a Bi (or Sb) plane with a Zn plane. The calculations were
performed for a system of size 14 x 14. To study the real-space distribution of the
wavefunctions, we divide the system in three regions associated with the hinges
(H), the surfaces (S) and the bulk (B), as depicted in Fig.4.5. Accordingly,
we introduce the weight functions wg (kz,n), wg(kz,n) and wp(k,;,n) which
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Fig. 4.5 Schematic diagram of the column geometry (top view). Blue circles
correspond to Bi (or Sb) and orange circles correspond to Zn. Li is omitted for
clarity. Bulk, surface and hinge regions are denoted by the boxes labelled with
B, S and H respectively. Notice also that the downfolded Hamiltonian does not
contain orbitals at the Li site.

measure in each region the probability amplitude of the Bloch wavefunctions.

These are defined as

wnlkem) = 5 3 |l (k1)) 2
reR

where R is one the three regions defined above, r a vector in the yz plane, N
is the number of sites in such plane, k, the crystal momentum along  and n a

band index.
Figure 4.6(a) and (b) show the hinge band structure in the absence of strain
for LiBiZn and LiSbZn, respectively. To highlight the electronic structure near
the hinges, the points have larger size the larger wy(ky,n)/wp(ks,n) is. In
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Fig. 4.6 Hinge band structure in the absence of strain for a system having 14 x 14
unit cells along the § and Z directions and infinite along Z. (a),(b) Energy
dispersion for LiBiZn and LiSbZn, respectively. Larger point sizes indicte larger
amplitude of the wavefunction at the hinges. The color code compares the
probability amplitude of the wavefunctions at the hinges and surfaces, such that
pure red corresponds to a hinge mode, pure blue to a surface state, and white
to a state with equal probablity per site in both regions. (c),(d) Local density of
states for LiBiZn and LiSbZn, respectively, at £ = —0.35eV.

addition, the color code is taken proportionl to wg — wg, in order to directly
compare the probability amplitude of the Bloch wavefunctions at hinges and
surfaces. For LiBiZn, the gap is closed near I', while states with relatively large
amplitude at hinges can be observed near the Brillouin zone border. For these
states, however, we obtain wp ~ wg, indicating a strong hibridization with
surfaces modes. At similar energy and with rather similar k,-dispersion, LiSbZn
also exhibits states with large amplitude at the hinges. Importantly, for these
states we find wy > wg.

Figures 4.6(c) and (d) present for both compounds the local density of states
(LDOS) which could be measured, e.g., by scanning tunneling spectroscopy.
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Fig. 4.7 Change in the energy of the hinge modes at k, =0 (Aeg) and k; =7
(Agg) as a function of uniaxial strain perpendicular to the hinge.

Fixing the energy at -0.35 eV, a relatively large LDOS at the Zn-Zn hinge can be
observed in both compounds. In line with the results above, LiSbZn being both
insulating in the bulk and at surface, the found hinge modes are exponentially
localized at the hinge for all momenta and the LDOS accordingly decays very
fast away from the hinge. On the other hand, a much larger spread of the
hinge mode along the surface can be observed in LiBiZn. An analysis of the
orbital composition indicates that hinge modes have a weight of 95% on the
Zn-4s orbitals. Notice that the hinge do disperse along and have a bandwidth of
~(0.5eV.

Noteworthy, the hinge modes in LiSbZn do not close the bulk gap, as ex-
pected for a topologically trivial system. We find that uniaxial strain does not
change this fact but it can affect the energy position of the hinge modes. Changes
in the order of 10 meV are found for a 2% lattice deformation (Fig. 4.7).

4.6 Conclusions

Motivated by recent predictions of hinge modes in models for systems with

biquadratic band crossings, we have analyzed based on accurate tight-binding
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models the surface and hinge electronic structure of two half-Heusler compounds,
LiBiZn and LiSbZn. These compounds should be representative of many others
in the space group 216, the former having a band inversion and the latter being
topologically trivial. Our calculations indicate the existence of topologically
trivial hinge modes in both kinds of systems. In LiBiZn, topological surface
states can naturally hybridize with these modes, which obscures their observation.
On the contrary, the electronic structure of the topologically trivial LiSbZn is
gapped both in the bulk and at the surfaces, and the hinge modes are exponentially
localized for all momenta. Thus, our results indicate that topologically trivial
members of the half-Heusler material class are prone to exhibit cleaner (free
from hybridization with bulk or surface states) hinge modes than topological
non-trivial compounds.

In addition, we have found that uniaxial strain reducing the cubic symmetry
does not change the topology of the found hinge modes but can affect their
energy. This might provide a controllable platform to experimentally study
various problems involving electronic matter in one dimension. One relevant
open question is the stability of the hinge modes with respect to possible surface
reconstructions, known to be relevant for semiconductors within the same space
group [202]. Experimental information of the actual hinges that naturally tend
to exist in this broad material class would be of interest. Last, in view of their
relatively small bandwith, a second interesting question for future investigation
is the fate of the found hinge modes in the presence of Coulomb interactions not

considered in our tight-binding Hamiltonian description.
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4.7 Appendix: Eight band tight-binding Hamilto-
nian

In this section, we provide a tight-binding model that describes the low-energy
electronic structure of face-centered cubic half-Heuslers in space group 216.
While the tight-binding Hamiltonian obtained from the Wannier functions con-
struction naturally involves many long-range hopping parameters, we have found
that a truncated Hamiltonian, which keeps only nearest neighbor terms provides
an efficient low-energy description.

Notice that the calculations in the main text are based on the tight-binding
models involving all of the ab initio obtained matrix elements. As explained in
the main text, at least six orbitals must be considered to correctly describe the
topological properties of the electronic structure of hHs. For simplicity in the
DFT downfolding, we keep eight orbitals in the energy windows ([—6,2]eV).

We use the basis {|s 1), s 1), [py 1), [y 1102 1), [p= 1), [pe 1), [pe 1)} where s
corresponds to Zn-4s and p to either Bi-6p or Sb-5p. The lattice Bravais vectors

ai,as,az read

al 01 1\ (2
a

a| =510 1f|d]. (4.3)

as 110/ \2

where 7,7, 2 are the cartesian vectors and a = 8.79 is the magnitude of the

- = =

lattice Bravais vectors. The reciprocal lattice vectors by, ba, bg are expressed as
S 2 A A s B 2M (A B\ e 2T (A a2
by =2 —9g+2), bp=(2+7—2), bg==(—249+2).

[eV] LiBiZn LiSbZn
€5 -1.9 -1.4
& 2.1 22
Vep 0.9 0.9
Asoc 04 0.1
ts 0.1 0.2
t( 0.1 0.1
£ 0.1 0.1
tsp 0.9 ‘0.9

Table 4.1 Tight-binding parameters for LiBiZn and LiSbZn.
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Fig. 4.8 band structure for (a) LiBiZn and (b) LiSbZn is shown. Red, blue
and green colors indicate the band stuctures obtained from DFT, full wannier

tight-binding, and truncated wannier tight-binding Hamiltonian respectively.
The k-path is chosen as same in 4.1.

The resulting Hamiltonian involves diagonal energies for s (¢5) and p orbitals
(€p), a local spin-orbit coupling A, in the p shell, hoppings between s orbitals
(t5), between identical (t](gd)) or different (téOd)) p orbitals, and between s and
p orbitals (¢5,) as well as a local hybridization between s and p orbitals (vsp).
The values adopted by these parameters in LiBiZn and LiSbZn are presented in
Table 4.1. The Hamiltonian in momentum space reads

H(k)=Ho+

d (kz+ky)
( ) ‘(kx;kz)

tsphsp,Ol(l + t od) hg(y O%O 151+ t( )h(fl 10) ¢!

( p,0
(ky+kz)

(tsp sp,100+t )hg()lgo+tsls+t() 1(7% 0)62 E
od (d)7,(d) i Fu=ka) “4)

(¢l p1 USRS P hyoot )€ 2 +

(kz—km)
toh pw 1+t 1,+tDn\G0) e 2

(kz—ky)

DS )+t +tDn{)e T+
+ h.c.

where
Ho =csls+eply +vgpVip + Asocl’ 4.5)
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and matrices introduced are

Nej Ne © Ne}
X X X X
Ne el Nel Nej
o O S ™
[a\] © [\l Ne}
X X X X
[a\] O [\ e}
™ 0_ _0 0_
Il Il
w o
— —

(4.6)

00101010

00010101

100 000O0O00O0
01 000O0O0O0O0
1 000O0O0O0O
01 0000O0O0O
100 000O0O00O0
01 00O0O0O0O0

Vsp:

“.7)

0
00 O
0 0

0

0

0 0 0
0 0 0 -1
0

—1

0

—1

¢t 0 0 -1

0

1

—1

0 0 O

(4.8)
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0000 0O 0O 00
0000 0O 0O 00
00001 0 20
0000 0O —10 2

pled) 4.9

POOL 19 010 0 0 10 4.9)
0001 0 0 01
0020 —1 00
0002 0 —100
00000000
0000000 O
00100000
00010000
pla 4.10
POOL™ 10 0002000 (4.10)
00000200
0000O0O0T1O0
00000001
00 0 0 0 0 0 0
00 0 0 0 0 0 0
00 0 0 1 0 -2 0
00 0 0 0 1 0 =2

h(Od): 4.11

P00 0 =10 0 0 10 (1D
00 0 -1 0 0 0 1
00 -2 0 —-1 0 0 0
00 0 -2 0 —1 0 0

Above, we have only shown the terms which arise from independent tight-
binding parameters. The other hopping matrices can be connected by the
symmetries of the Hamiltonian. For instance, 03’111h3p70016§7 1111 = hsp.100,
C3,111h](g?g())103>_,1111 = h;(a(,){%o? OB,lllh;(o?fllocillll = h;(:ngl’ and so on.

We now explain the symmetries of this Hamiltonian. In the cubic phase,
the system has two-fold rotational symmetries with respect to the cubic edges
(e.g., C2,), three-fold rotational symmetries with respect to the cubic diago-
nals (C3,111), reflection symmetries (M, ), fourfold rotoinversion symmetries

(C4.1), and time-reversal symmetry (7). In cartesian form, the Hamiltonian
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H(ky, ky, k) satisfies:

CozH (ks ky, k) Cort = H(—ky,—ky, k2) (4.12)
Ca 111 H (ke by, k2)Cy 111 = Hkz ki, ky) (4.13)
Moy H (ke by ko) My, = H(—ky, —ka, k2) (4.14)
(CazD) kg, by k) (Cazd) ™ = H(ky, —kz, — k) (4.15)
TH (ke ky k)T = H(—ky, —ky, k) (4.16)

The above symmetry constraints translate to the following set of equations, if
the momenta are written in the basis of the reciprocal lattice vectors, coordinates

which we name (k1, ko, k3).

CoH(k1, ko, k) Oyt = H(ks, —k1 — ko — ks, k1) 4.17)
Caa11H (k1 ko, ks)Cs 11y = H(ks, k1, ka) (4.18)

Moy H (k1 ko, ks) My,! = H(ky,—ky — ko — ks, k3) (4.19)
(CuaD)H (K1, ko, k3)(Cuo D) ™F = H(—ky — ko — k3, k1, ko) (4.20)
TH (k1 ko, ks)T Y = H(—ky, —ka, —k3), 4.21)

where we have used the relations; k, = & (b2 k= 0 (kafks)  f = 4 (kathy

Finally, the representation used for the time-reversal operator in the 8-dimensional

Hilbert space is

0 -10 0 0 0 0 O
10 0 0 0 0 0 O
0 0 0-10 0 0 O
T_ 0 0 1 0 0 0 0 O K 4.22)
0 0 0 00 -120 0
0 0 0 01 0 0 O
0 0 0 0 0 0 0 -1
0o 0 0 0 0 0 1 O
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where K is the complex conjugation operator, while the representation of the
unitary symmetries are

a —a* 0 0 0 0 0
a o 0 0 0 0 0
0 0 0 0 0 0 a —aof
110 0 0 0 0 0 a of
C = — 423
S50 0 a =2 0 0 0 0 (4:23)
0 0 a o 0 0 0 0
0 0 0 0 a —a* 0 0
0 0 0 0 a o 0 0
with o =1 —1,
Cy, I = 1 X
42’ _\/5
a* 0 0 0 0 0 0 0
0 « 0 0 0 0 0 0
0 0 0 0 0 0 Oz*ﬁyz 0
0 O 0 0 0 0 0 Ozﬁyz (4.24)
0 O 0 0 —Oz*ﬁyz 0 0 0
0 O 0 0 0 —aﬁyz 0 0
0 0 —a*ﬁyz 0 0 0 0 0
0 O 0 —Ozﬁyz 0 0 0 0
where 3, = e i(ky+kz)
7 0 0 0 0 0 0 0
0 —2 0 0 0 0 0 0
0 0 —Zﬂxy 0 0 0 0 0
0 0 0 ) 0 0 0 0
Cy, = WBay (4.25)
0 0 0 0 Zﬁxy 0 0 0
0 0 0 0 0 —Zﬂxy 0 0
0 0 0 0 0 0 —Zﬂxy 0
0 0 0 0 0 0 0 Zﬂxy
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where (3, = e~ i(kz+ky) and
My = \}Q X

0 —af 0 0 0 0 0 0

a 0 0 0 0 0 0 0

0 O 0 0 0 0 0 a* Bey

0 0 0 0 0 0 — 0y 0 (4.26)
0 0 0 0 0 — " By 0 0

0 0 0 0 By 0 0 0

0 O 0 a* Bey 0 0 0 0

0 0 —afy 0 0 0 0 0







Chapter 5

Topological Magnus responses in
two and three dimensional systems

5.1 Introduction

The family of Hall effects have revolutionized the solid state physics in the
context of novel electronic states and electron dynamics [203, 204, 1]. Starting
from the Lorentz force mediated classical Hall effect and quantum Hall effect,
various new types of Hall effect such as anomalous Hall effect, spin Hall effect,
thermal Hall effect etc. have been discovered over the years [203, 204, 1, 4, 205—
211]. Among them, the Berry curvature (BC) induced Hall effects, taking place
without external magnetic field, have drawn tremendous attention to both the
theorists and experimentalists [4, 205-210, 20]. For time reversal symmetry
(TRS) broken systems, the BC takes the form Q(k) # —€2(—k) leading to a
finite total BC for the occupied states. By contrast, in TRS invariant systems, BC
follows (k) = —Q(—k) giving rise to zero total BC [20], that further causes the
intrinsic anomalous Hall effect to vanish. Interestingly, it has been theoretically
proposed and experimentally verified that unlike the linear anomalous Hall effect,
the nonlinear anomalous Hall effect can survive in TRS invariant systems with
broken inversion symmetry [212—-220]. Very recently, the same systems (TRS
invariant but inversion broken) with a built-in electric field at zero magnetic field
is found to exhibit a new type of a linear response namely, Magnus Hall effect
(MHE) [221]. The MHE is originated from the Magnus velocity of electron
that is perpendicular to the BC and the built-in electric field. Along with the
prediction of MHE, it has also been proposed that the Magnus Nernst effect
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(MNE) and Magnus thermal Hall effect can also appear in these systems in the
presence of applied thermal gradiant [222].

It has been proposed that the two-dimensional (2D) transition metal dichalco-
genides MXy (M=Mo, W and X=S, Se, Te) [223-225, 213], monolayer (ML)
graphene on hBN, bilayer (BL) graphene with applied perpendicular electric
field [226-228], heterostructures [229] and surfaces of topological insulator (TT)
[230] are the possible candidates to investigate the MHE and MNE for their
TRS invariant and inversion broken nature. The MHE has been theoretically
studied recently in graphene and transition metal dichalcogenides using the
low-energy model without warping (except bilayer graphene where trigonal
warping is considered) and strain [221, 222]. On the other hand, it has been
shown that without spin-orbit coupling and tilting of Dirac cone, the BC dipole
becomes substantially large in presence of strain and warping for graphene [228].
Motivated by the BC dipole induced nonlinear anomalous Hall effect in TRS
invariant systems, our interest here is to investigate Magnus transport in the
presence of strain and warping for the above proposed suitable candidates.

Turning to the field of three-dimensional (3D) topological systems such as,
Weyl semimetals (WSMs), considered to be a 3D analogue of graphene, have
been studied extensively for their intriguing properties and anomalous response
functions. The gap closing points, guaranteed by some crystalline symmetries,
in WSMs are referred to as Weyl nodes with topological charge n =1 [231-237].
There exists two Weyl nodes of opposite chiralities for the TRS broken WSM,
while inversion broken WSM exhibits at least four Weyl nodes [238, 239]. The
WSMs can also be classified as type-I and type-II. In the case of type-1 WSM,
Fermi surface is always point like irrespective of the tilting of the node. On
the other hand, in type-II WSM finite electron and hole pockets appear at the
Fermi level as a result of finite tilting of the energy spectra[240-242]. Moreover,
it has been recently found that n > 1 multi-WSM (mWSM) shows non-linear
band touching [243, 244]. The WSMs are shown to exhibit many intriguing
transport properties, originated by chiral anomaly, such as negative longitudinal
magnetoresistance and planar Hall effect [245-258]. Tilting of energy dispersion
and non-linearity of band touching further decorate the transport signatures [259—
263]. This motivates us to extend our investigation of MHE to 3D topological
systems considering a generic mWSM Hamiltonian.

In this work, we first capture intriguing Fermi surface phenomena in presence
of strain and warping by examining MHE and MNE in ballistic regime for 2D
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topological systems such as, ML, BL graphene and surface states of TIs. We
find that in strained ML graphene without warping, the total valley integrated
Magnus responses are zero as the contribution coming from individual valley
exactly cancels each other. The valley polarized contribution thus leads to
the Magnus valley Hall, Magnus valley Nernst effects. Interestingly, warping
induces valley integrated finite Magnus responses as the asymmetries in Fermi
surface and BC result in unequal valley polarized contributions. The magnitude

of the Magnus responses enhance with increasing the warping parameter. The

same is observed for the surface states of TI in presence of hexagonal warping.

On the other hand, for BL graphene, the Magnus transport coefficients are
substantially modified depending on the positive and negative values of strain
while warping do not affect the Magnus transport. Finally, going beyond 2D
systems, we study Magnus responses in 3D WSMs to examine the effect of tilt
and anisotropic nonlinear dispersion. We find that the MHE is identically zero
for each Weyl node without tilt. Remarkably, chiral (achiral) tilt causes finite
MH and MN conductivities to generate from individual Weyl nodes resulting
in Magnus (Magnus Valley) responses. Moreover, our study indicates that the
topological charge associated with Weyl node imprints its effect on the Magnus
transport properties.

The rest of the paper is organized as follows. In Sec. 5.2, we derive the
general expressions of MH and MN conductivities in both ballistic and diffusive
regimes. Following which, in sec. 5.3 we have calculated the Magnus transport
responses in the presence of strain and warping (tilt and non-linearity) for
different 2D (3D) topological systems, respectively. Finally, we summarize our

results and discuss possible future directions in Sec. 5.4.

5.2 Formalism of Magnus transport

In this section, we derive the general expression for MH, MN conductivities
in both diffusive and ballistic regimes using Boltzmann transport equation. To
begin with, we consider mesoscopic systems of electronic transport in a Hall bar
device without applying any external magnetic field. In this setup, the source and
the drain are kept at different electrostatic potential energy with the gate voltages
given by U and Uy, respectively. Their difference AU = Uy — U introduces a

built-in electric field Ey, = V,.U/e (—e is the electronic charge) in the device
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with a slowly varying electric potential energy U(r) along the length of the
sample.

Now in the presence of external electric field E and temperature gradient
VT applied between the source and drain, the charge current J and thermal

current Q from linear response theory, can be written as

Ja = UabEb + CVab(_vbT)
Qo = gy + /iab(_vbT% (5.1)

where a and b are spatial indices running over z, y, z. Here o, a and « different
conductivity tensors.

The phenomenological Boltzmann transport equation can be written as [264,
265]

a ;
<8t+r-Vr+k-Vk> Jrrt = Lot et} (5.2)

where the right side I.;;{ fxr+} is the collision integral which incorporates the
effects of electron correlations and impurity scattering. The electron distribution
function is denoted by fi ;- Now under the relaxation time approximation the

steady-state Boltzmann equation can be written as

Jo— fx
(k)

(F-Vetk Vi) fe= (5.3)
where 7(k) is the scattering time. Note that in this work, we ignore the momen-
tum dependence of 7(k) for simplifying the calculations and assume it to be a
constant. The equilibrium distribution function f in absence of applied electric
field E and temperature gradient V,. T is given by the Fermi function,

1
1+ eﬁ[é(kﬂ‘)—,u] ’

fo(k,’l"): (54)

where 0 =1/(kpT), e(k,r) = e, + U(r), with €§ and p are the energy disper-
sion and chemical potential, respectively. The motion of the wave packet inside
the Hall bar is described by the semiclassical equations of motion [20, 266]

= Vier+[VeU+eE] xQ (5.5)
= —V,U—-cE. (5.6)
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The first, second and third term in the right hand side of Eq. (5.5) respectively
represent the band velocity, Magnus velocity Vipagnus = VU X {2 and anoma-
lous velocity Vano = E x §2. The Magnus velocity Vipagnus can be thought of a
quantum analog of the classical Magnus effect.

Now to calculate MH and MN conductivities, we apply the electric field and
temperature gradient along x direction. Assuming the length of the sample is
along z axis, we have U(r) = U(x), e¢(k,r) = ¢ + U(z) and Ej, = %8%7;36)9?:
Since we consider U(x) is slowly varying, the electron wave packets traveling
inside the sample still have well-defined momentum k. Considering the velocity
of an incident electron (vg,v,), transit time through the electric field region
becomes ¢ = L /v, where L is device length along z-direction. For v, # 0, the
center of the wave packet receives a transverse shift (in y-direction), followed
by Magnus velocity proportional to V,U(2,, while traversing the junction due
to the built-in electric field Ei,. Now the charge and thermal currents can be

written as

[3@),Q()} = [ dk i {~e, [e(k,2) ~ ]} () 5.7)

Combining Egs. (5.3), (5.5), and (5.6) the non-equilibrium distribution func-

tion f up to linear order in the bias fields can be written as

[e(k,T) — 1]

f=fo+ver(eE+ 7

VoT)defo - (5.8)

Considering U as a slowly varying function of z, 0U/0x = AU/L, one can
obtain f to be spatially independent. To be precise, using Eq. (5.8) into the
Eq. (5.7) and comparing with Eq. (5.1), the MH conductivity ¢ is found to be

[222] 2
et AU
o— ——T/dk: 00, O, fo, (5.9)

Similarly, the MN conductivity « is given by [222]

oo 6]{}37'&
N L

/ dk Qv. (e — 1) Defo (5.10)

where we have neglected the contributions coming from the band velocity.
Interestingly, as discussed above these Magnus responses are dependent on the

built-in electric field.
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Considering the limit p > % in Eq. (5.9)-(5.10), the Wiedemann-Franz law
and Mott relation allow us to compute MN conductivity o and Magnus thermal
Hall (MTH) conductivity « alternatively [18, 267, 268]
7T2]{32BT do 7r2k%T

3e Ou’ e FE T

a=— 0. (5.11)

Having discussed above the diffusive limit, we shall now illustrate the Mag-
nus responses in the ballistic regime. Since in this regime, the mean free time
between two collisions is infinite 7 — oo i.e., essentially no collision occur in
the transport direction inside the length L along the z-direction of the Hall bar.
Therefore, the right hand side of the Boltzmann transport equation given in
Eq. (5.2) vanishes in the ballistic regime. In this setup, the carriers from the
source with only positive velocity v, > 0 are allowed in region 0 < x < L. Now

the ansatz for the non-equilibrium distribution function is the following

“Apdfo — EZUATH, fy for vy >0,
ORI I U o for (5.12)
0 for v, <0.

Comparing the Eq. (5.8) and Eq. (5.12), one can identify the scattering length
v, T with the device length L so that —eLF, = Apand AT /L = -V ,T. The
MH and MN coefficients in ballistic regime can be obtained as [221, 222]

2
o:—iAU/ dk .0, fo . (5.13)
”Uz>0

e
a_TAUADJmQA%—m&ﬁ. (5.14)

Similar to the diffusive regime, the Magnus transport coefficients in the ballistic
regime also obey the Mott relation and the Wiedemann-Franz law.

We would now like to add a few comments on Magnus responses. It is
clear from the Eqgs. (5.9)-(5.10) as well as Eqgs. (5.13)-(5.14) that the MHE and
MNE are purely determined by Fermi surface properties as they incorporate
Oe fo factor. In order to obtain finite Magnus responses, the systems should
have asymmetric Fermi surface. In addition, the system must possess finite BC.
Moreover, the condition v, > 0 happens to be very important while summing the
BC over the Brillouin zone. Combining all these, the active momentum modes

k., over the Fermi surface €;, = p, for which v, > 0 would contribute to Magnus
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transport. The remaining momentum modes k — k, become inert in this ballistic
transport and BC for these momentum modes do not determine the transport.
These transports thus allow us to scan different Fermi surfaces by tuning x and
get the idea about angular distribution of BC within a given Fermi surface.

The Magnus responses can be regarded as an effective second order transport
as the built-in electric field AU and external bias both come into calculation of
currents. However, in terms of the external bias field, it is still a linear response
phenomena. The BC dipole induced second order transport [212], given by
D;j = [dk d;; 0(eg — ) with d;j = v;(k) ;(k), is primarily different from
Magnus transport for which the tilting of Dirac cone is no longer important to
obtain a finite response. Depending upon the mirror symmetries present in the
systems, one can find symmetry permitted components of non-linear transport
coefficients where d;; becomes an even function of k [269, 216, 270]. By
contrast, quantized non-linear response namely, circular photo-galvanic effect
can be observed for mirror symmetry broken non-centrosymmetric systems
[271, 272].

Regarding the symmetry requirements to observe Magnus ballistic transport,
we note that the presence of crystalline symmetries such as in-plane C'> and
out-of-plane mirror can generate clean MH responses, nullifying other trivial
linear transverse signals [273]. Using these crystalline symmetries, it is also
possible to categorize non-linear anomalous Hall and Magnus Hall effects in
different classes of material, in which time-reversal symmetry is preserved but
inversion is broken. To be more precise, the noncentrosymmetric point groups
containing {Cs,,C4,,Cs,, S4. } symmetry operations force the BC to become
zero, and as a consequence both MH conductivity and non-linear Hall conductiv-
ity both vanish in these systems. Following the above analysis, crystallographic
point groups {C1, C1p,, C1y, Ca, Coyy, C3,Csp, C3y, D3, D3} (2D transition metal
dichalcogenides such as, WTeg, MoS») and {O,T', T}, } (particularly for 3D) al-
lowing non-zero local BC can lead to both MHE and non-linear Hall effect in
general [212, 273].

We would also like to point out that at least one symmetry between TRS
and inversion symmetry has to be broken in the system. Although the previous
studies only concentrate on TR invariant and inversion symmetry broken systems,
one can in principle get Magnus responses even in the absence of TRS as long
as the active momentum modes over the Fermi surface have finite BC. This

further motivates us to study TRS broken topological systems in addition to
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the TRS invariant topological systems. Since the strain, warping, and tilt can
modify the Fermi surface significantly as well as the BC distribution accordingly,
the Magnus responses can show interesting behavior which we discuss in next
section.

It is important to note that along with Magnus Hall current, there exists a
trivial transverse current (regular Hall current) that arises from the transverse
velocity anisotropy of the Fermi surface: [, .odk v, (k) (e, — ). However,
according to the symmetry analysis given above, in presence of certain mirror
symmetry (specifically, mirror plane perpendicular to the current direction)
combined with time reversal symmetry, the trivial transverse current can be
shown to vanish leaving a finite MH current[221, 273]. In addition to the trivial
Hall current, linear anomalous Hall current induced by the non-trivial BC can
appear simultaneously with MHE in time-reversal broken systems. However,
in contrast to MHE, linear anomalous Hall response is not a Fermi surface
phenomenon and therefore, does not depend on the derivative of the Fermi
function. These two effects can be distinguished by looking at their chemical
potential dependencies in experiments. We will discuss these issues elaborately
in Sec. 5.3.4.

5.3 Results

In this section, we discuss the effect of strain and warping on MH and MN
conductivities in inversion symmetry broken but TRS invariant 2D topological
systems, namely for ML, BL graphene and surface states of TI. We extend our
analysis in 3D topological systems WSMs, breaking either TRS or inversion
symmetry, to investigate the effect of tilt and non-linearity on MHE and MNE. At
the outset, we note that we will often refer MH and MN conductivities together

as MH responses.

5.3.1 Strained monolayer graphene

The graphene hosts gapless Dirac cones, located at the high symmetry points K
and K’ in the Brillouin zone, with vanishing BC. A finite BC is generated by
breaking the inversion symmetry that can be engineered by placing the graphene
sheet on hBN substrate[274, 275]. This actually reduces the point group of
the system from Cg, to Cs,, and opens up a gap at the Dirac nodes. Upon
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Fig. 5.1 The evolution of BC and Fermi surface in ML graphene (5.16) with
warping A = A2 = A3 = \ and strain vy # v;. Top panel: The BC (QM % (k, ¢ =
+1)) and = component of the velocity (v}%(k,( = +1)) over the Fermi surface
are shown for (a) unstrained ML graphene without warping (v = v1, A = 0),
and strained ML graphene (v = 2v1) with C'3 symmetric warping of different
strengths (b) A =10.2, (c) A=0.35, (d) A=0.5 eV-AZ. Bottom panel: (e)-(h)
depict QM (k,( = —1) and vM*(k,( = —1). The strength of Q% (k. () and
vML(k, () are represented in the color codes side by side. The parameters (in
the units of energy eV) used in the calculations are Ay = 0.06eV, v1 = 0.87eV-A.
The Fermi surface is plotted for the constant energy E=—0.28 eV.
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applying a uniform uniaxial strain along one of the two main crystallographic
directions in graphene, the massive Dirac nodes become shifted from the high
symmetry points along the k,, = 0 line due to the combination of TRS and mirror
symmetry. The application of the strain creates a difference between hopping
amplitudes along the two main crystallographic directions and therefore, changes
the corresponding Fermi velocities[276, 228].

Considering only first-order momentum-strain coupling, the low-energy

Hamiltonian of the ML strained graphene can be written as [228]

A
H' (k) = S0+ Coikaos +vakyoy, (5.15)

where v; and ve # v; are two strain-dependent Fermi velocities along x and
y directions respectively, A, is the gap (also called Semenoff mass), ¢ is the
valley index and o’s represent Pauli matrices incorporating sublattice degrees
of freedom. To introduce the warping effect in the system, we add a trigonal
warping terms, proportional to k2, in the Hamiltonian (5.15). Even though the
magnitude of the warping term is smaller compared to the leading order term in
k, it plays a crucial role in MH responses. Now the complete Hamiltonian for
the ML graphene in the presence of both uniaxial strain and trigonal warping
reads as [228];

A
HML<k) — TQO'Z—f—C’UlijO'm+U2ky0y+2<u)\3kxkyo-y (516)

+ Mk, — Xok2)or =Ny - o

with Ny = {N 1y, Nog, Nag } = {Cuiky + Ak — Aak2), vaky +20Askoky, 5}
and o = {01,09,03}. Here, A1, A2 and A3 are the warping terms. The energy

dispersion of the Hamiltonian for ( = £1 valley is given by

EML(k) = |Ng| = £/N2, + N2, + N2, (5.17)

where +(—) represents conduction (valence) band. The warping results in
non-linearity and strain causes anisotropy in the dispersion. The BC reads as

Ny _ ON
Nk‘(W: X rE)

4N [?

Qa (k) = €abc

(5.18)
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where €, is the usual Levi-Civita symbol.
Since ML graphene is a two-dimensional system, only z component of the
BC is nonzero. Using Eq. (5.18), the BC for strained ML graphene (( = £1)

given in Eq. (5.16) can be calculated as

QM (k. () =+
Ag [Cvlvg + 2]{735(/\31)1 — /\21)2) — 4C)\3()\2/€% + /\1](75)]
A(EML(k))?

(5.19)

where +(—) represents conduction (valence) band. Now the x component of the

velocity of ML graphene can be written as

2CA3kyNog + Nig(Cv1 — 2X0ky)
EML (k) :
We first consider strained ML graphene v # vy without warping i.e., \; =
A2 = A3 = 0. It is then clear from the Eq. (5.19) that the BC at two different
valleys (( = £1) become opposite of each other for both pristine as well as
strained ML graphene i.e., QM (K, ¢ = +1) = —QML (K’ ¢ = —1). Moreover,
the BC in this case is directly proportional to the bandgap of the system. On the
other hand, vM*(K ¢ = +1) = vME(K',{ = —1) as evident from Eq. (5.20).
The above discussion refers to the fact that there exists equal number of
Ek-modes for which v}% > 0 with both signs of (k) in each valley. Upon
the momentum integration followed by Egs. (5.13)-(5.14), the MH and MN
conductivities for each valley in ballistic regime can be obtained as

oML (k,¢) = +

T

(5.20)

Agez
872

Agﬂ'K%Te
1243

o¢ = C AU, CYC:C AU. (5.21)

Interestingly, the above conductivities are independent of velocities v1 and vs.

This leads to the fact that the uniaxial strain does not affect the MH responses
in ML graphene in absence of warping A1 23 = 0. Moreover, it is also clear
from Eq. (5.21) that the contributions of MH and MN conductivities for two
valleys (( = #1) are equal and opposite. Therefore, summing over the valleys
(¢ = +£1), the total MH responses vanishes in the strained ML graphene without
A’s, similar to the case of pristine ML graphene. Instead the valley polarized
transport can lead to Magnus valley Hall and Magnus valley Nernst effects where



88

Topological Magnus responses in two and three dimensional systems

the electrons with opposite valley index accumulate on the different edges of
the sample [277-279]. To be precise, consider a ML graphene system (with
A1,2,3 = 0) with chemical potential (p+dp/2), (n — dy1/2) at the ¢ = £1 valleys
respectively, the total Magnus valley Hall conductivity will be finite and takes

2
the form oyajiey = ¢ o¢ (1 +(Op1/2) ~ %. Similarly, Magnus valley
U AgnK3TeAUS
Nernst conductivity is given by araniey = Y- v (1 +(p1/2) ~ %.

We note that in order to observe the above valley polarized ballistic Magnus
response, the dimension of the system has to be smaller or comparable to the
mean free path.

We shall now discuss the effect of C3 symmetric warping in MH responses
by considering A\ = Ay = A3 = A # 0. It is clear from the Eq. (5.19) and (5.20)
that the BC and velocity of each valley are not equal and opposite compared
to unwarped case. The evolution of BC and v} for different strength of \
are depicted in Fig. 5.1 (b)-(d) and Fig. 5.1 (f)-(h) for ( =1 and ( = —1
valleys, respectively. The warping terms introduce satellite Dirac cones with
0 — 0+ 2nm/3 (with n = 1,2,3) appearing around each Dirac points [280];
here 6 = 7 (0) for valleys ( = 41 (—1). These additional satellite Dirac cones
appear with opposite chirality as compared to that of the parent Dirac cone.
The important point to note here is that the relative strength between v and v
determines the distance of satellite Dirac points from the parent Dirac point. For
example, v; > vo (v1 < v2) would cause the satellite Dirac points to move more
(less) in k; direction more (less) than k,, direction.

Following the above discussion, it is evident that each valley of ML strained
graphene in the presence of warping does not contribute to MH and MN conduc-
tivities in an equal and opposite manner that we found for strained ML graphene.
As a result, the non-zero MH responses are directly observed by summing
over the contribution for both the valleys. The warping results in non-linear
and anisotropic dispersion as shown in Eq. (5.17). As a result, BC becomes
anisotropic and exhibits rich features over the Fermi surface (see Fig. 5.1). Since
the expressions of BC and velocity of ML graphene in the presence of warping
are quite complicated, it is very difficult to calculate MH and MN conductivities
analytically. Therefore, below we have calculated Magnus responses numerically
to investigate in detail.

The valley integrated MH and MN conductivities as a function of chemical
potential (1) are shown in Fig. 5.2 (a) and (b), respectively. We find that the

magnitude of both transport coefficients enhances with the increase of warping
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Fig. 5.2 The total valley summed contributions of (a) MH conductivity o (in the
unit of 1073¢2/) and (b) MN conductivity « (in the unit of 10~°ekp/) in the
presence of strain (v = 2v7) for different warping strengths A = 0.2, 0.35 and
0.5 eV-A2are shown for ML graphene. Noticeably, the warping can enhance
the responses even after valley sum is performed, as it generates asymmetric
contributions between valleys. We consider AU = 0.01 eV and kg7 = 0.001 eV.
All other parameters are kept same as that of in Fig. 5.1. The chemical potential
1 1s chosen in the unit of eV throughout the paper.

strength for a fixed strain. The window of activated momentum modes over
the Fermi surface changes with warping strength. Moreover, band bending
imprints its signature through the Fermi surface distribution. All these lead to the
intriguing behavior of the response coefficients. We find that MH responses show
significant different behaviors for v; > vy as compared to vg > v1. This refers to
fact that the strain becomes instrumental in controlling the response in presence

of warping terms. We would like to point out that the MH and MN conductivities
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can acquire both positive and negative values. This is due to the fact that the BC
around the additional satellite Dirac points take opposite values as compared to
that of the for the parent Dirac point. These are the markedly different responses
while the warping terms are introduced in the ML strained graphene. Our study
further supports that the Mott relation can successfully describe MN conductivity
from MH conductivity even in the presence of warping.

In summary, for monolayer graphene without strain and warping, the MH
and MN conductivities for two valleys are equal and opposite, and therefore,
summing over the valleys, the total MH responses vanishes [222]. On the other
hand, we show that each valley of monolayer strained graphene in the presence
of warping does not contribute to MH and MN conductivities in an equal and
opposite manner, and hence lead to a finite valley integrated MH response. This
happens because the warping results in non-linear and anisotropic dispersion
as shown in Eq. (5.17). As a result, BC becomes anisotropic and exhibits rich
features over the Fermi surface.

5.3.2 Strained bilayer graphene

The BL graphene belongs to the D3, point group symmetry. In order to study
the BC mediated transport properties, one has to break the inversion symmetry
by applying an external electric field perpendicular to the layers. This reduces
the symmetry of the system from D34 to (3, and creates a gap A, as well as
finite BC. The application of a uniaxial strain further reduces the symmetry of
the point group to C,,. The low energy Hamiltonian for an inversion broken BL
graphene in the presence of a uniaxial strain is expressed below as [228]

A 1
HEL (k) = ngz+ (_ %(kg — k2) + Cvk, +w>am
. (5.22)
- (mk:xk;y +Cvk3y) oy,

where v denotes the Fermi velocity related to the skew hopping between the
layers, ¢ is the valley index and m represents the effective mass dependent
on the coupling between the layers. Here, the effect of strain is coming into
the Hamiltonian via w (= A3 — Ap) where A3 and Ag are pseudogauge fields.

Similar to the ML case, we add trigonal warping terms to the above Hamiltonian
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Fig. 5.3 The evolution of BC and Fermi surface in BL. graphene (5.23) with
strain w for warping A\y = Ao = A3 =)\ = 0.001eV-AZ2. Left column: The BC
QBL(k,¢ = +1) and vBY(k,( = +1) over the Fermi surface of BL graphene

(@ w=-3m,(c)w=-m, () w=0,(g) w=mand (i) w = 3m are shown.

Right column: We repeat the same set of calculations for ( = —1 valley. The
parameters (in the units of eV) used are Ay = 0.06eV, m = 0.008¢V-A2, and
v = 0.5eV-A. The Fermi surface is plotted for the constant energy £=—0.04 eV.
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to study its effect. The strained-warped BL graphene Hamiltonian takes the
following form

A 1
HO (k) = Zlo. + (— 5 (k) = k2)+ (Aakj — Aok?)
1
+ Quky + w> Og — (mkmky + Cvky — 2@3@@) oy (5.23)
= Nk O

with N = {N15, Nog, Nai } = { (A1 — 502 ) k2 + (5 — A2) k2 +Cvka +w, (2CA3 —
%)kx ky —Cuky, %}. The energy dispersion of the Hamiltonian given in Eq. (5.23)
can be obtained as

EPL(k) = |Ng| = +£/N3, + N3, + N3,.. (5.24)

Note that in Eq. (5.23), the warping terms are quadratic in momentum, and
hence could be absorbed in the already present quadratic momentum terms
which indicate interlayer coupling. In this way, the effective masses associated
with k:%, k‘§ and k. k, terms are renormalized. Therefore, we can comment at
the outset that addition of warping might not affect the system substantially as
compared to strain in the ML graphene.

Considering C'3 symmetric warping (A\; = Ay = A3 = X\ # 0), the BC for
strained BL graphene given in Eq. (5.23) can be calculated as

Ag| AN k) AN k2) + B(A ky) B(AC ky)
A(EBL(K))?

OBL(k,¢) =
(5.25)

with A(z, ky) = & — 22k, + (v, B(a,ky) = % — 2xk,. where —(+) represents
conduction (valence) band. The velocity v2%(k, ) takes the form

AN kz)Nig — B(AC, ky)Nog,

UBLU‘:vO:j: EBL(k:)

X

(5.26)

A close inspection suggests that the strain factor w does not appear in the
numerator of BC for BL graphene unlike the ML graphene where warping factors
A’s come as corrections over the strain factors v1v9. The strain factor comes in
the denominator of BC through the energy of the BL graphene. Therefore, the
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Fig. 5.4 Valley responses of (a) MH (in the unit of 102¢? /), (b) MN (in the unit of
10~ tekp /) conductivities in BL graphene with AU = 0.01 eV, and kg7 = 0.001
eV for w = —3m, 0, 3m. All other parameters are kept same as that of in
Fig. 5.3. The prominent and asymmetric valley responses in presence of strain
for BL graphene are markedly different from the symmetric responses for ML

graphene.
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evolution of BC with strain for BL graphene will be significantly different from
ML graphene.

The evolution of the Q5% (k, (), vB%(k, () and Fermi surface under strain
for valley ¢ = +1 and valley ¢ = —1 are shown in left and right column of Fig.
5.3, respectively. For w = 0, the three leg gapped Dirac cones (one along &, = 0
and the other two symmetrically placed around k, = 0 line) are observed at
0 — 0+ 27 /3 with 6 = 0 following the C'3 symmetric warping [281]. The BC
does not change its sign for the three leg gapped Dirac cones within a given
valley. This structure of BC for BL graphene is very different from the ML
graphene, where BC around satellite Dirac nodes reverses its sign as compared
to the parent Dirac node within a given valley. For w < —3m, there exist two
symmetrically placed Dirac cones around £, = 0 line, while two cones appears
on the ky, = 0 line for w > 3m. The threefold rotational symmetry is lost in the
presence of uniaxial strain. Interestingly, the Fermi surface is also deformed
for the strained case from its unstrained triangular distribution. To be precise, a
singly connected Fermi surface for the unstrained case splits into disconnected
ones for sufficiently large values of strain. The shape and orientation of the
Fermi surfaces appear to be different for larger strain in opposite valleys, which
leads to non-identical MH responses in these valleys.

We now investigate the MH and MN conductivities for the individual valleys
as shown in Fig. 5.4 (a) and (b), respectively. The unstrained case leads to
asymmetric response in the valleys which is markedly different from ML strained
graphene without warping. Upon inclusion of strain, we find that the positive MH
responses for the valley ( = 41 is more pronounced than the negative responses
for the other valley ( = —1. This is due to the fact that activated momenta over
the Fermi surface do not have exactly opposite BC in terms of their magnitudes
and sign. Moreover, the peak or dip of MHC do not appear at the same chemical
potential p. The Fermi surface distribution strongly depends on valley as well
as strain explaining the above observation for MH responses. Therefore, valley
polarized transport can in principle be possible like ML strained graphene.

The total valley integrated Magnus responses for BL graphene are shown in
Fig. 5.5 by varying strain parameter w. For negative values of strain parameter
i.e., w < 0, MH conductivity always acquires negative values and a dip appears
at a certain p value. The height of the dip increases and its position moves
toward ;o — 0 with decreasing negative strain. On the other hand, by changing

the sign of strain i.e., w > 0, the dip structure of MH conductivity gets bifurcated
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Fig. 5.5 Valley summed (a) MH (in the unit of 10e2 /), (b) MN (in the unit of
10~2ekp /) conductivities in BL graphene for w = —3m, 0, 3m. The transport
behavior changes with strain substantially. We consider the same parameters as

used in Fig. 5.4.
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Fig. 5.6 Evolution of BC and Fermi surface, calculated from Eq. (5.27), with
different warping strengths (a) A=50 eV-A3, (b) A=200 eV-A3 and (c) A=400
eV-A3 are shown. Fermi surface is plotted for £=—0.05 eV. We note that for
A=50 eV-A?’, the Fermi surface remains circular, which gradually evolves to
hexagonal shape with increasing . We consider v=1 eV-Aand Ey=0 in our
calculation.

into a dip and peak structure. The valley polarized structure of MH responses
can explain these observations. We notice qualitatively similar response in MN
conductivity.

In summary, for bilayer graphene, we find that strain enhances asymmetry be-
tween the valley polarized contribution, resulting in distinct transport signatures
for positive and negative strain as compared to the unstrained bilayer graphene.

5.3.3 Hexagonal warped topological insulator

We consider the two-dimensional surface Hamiltonian of a TRS invariant TI
namely, BisT'e3, hosting a unique Fermi surface that encloses an odd number
of Dirac cones in the surface Brillouin zone. The spin-orbit coupling that is the
linear order term in £ leads to the band inversion in this system. The minimal
two band model contains cubic terms in & in addition to the linear terms in k.
This warping can be considered as a counterpart of cubic Dresselhaus spin-orbit
coupling term. We note that hexagonal warping incorporates one order higher
momentum coupling than the trigonal warping terms. This further allows us to
investigate the non-trivial effects of this term that are not captured by the trigonal
warping terms.

Considering the threefold rotation C3 around the z axis and mirror symmetry
M: x — —x, the low-energy model around the gapless I point thus reads [230]

A
HIW (k) = Eo(k) +v(kyoy — kyoy) + §(ki +k3)o., (5.27)
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with Ey(k) = % causes the particle-hole asymmetry. Dirac velocity v can be
considered k independent without loss of generality. Here k4 = k, =ik, and A
is the strength of hexagonal warping.

The energy spectrum becomes

ETV (k) = Ey(k) £ /v2k2 + A2kS cos ¢, (5.28)

where ¢ = arctan%. Using Eq. (5.18), the BC and z-component of the velocity
for the above Hamiltonian can be obtained as

M2 (3k k2 — 2k3
QIW () = &V (Bhaky = 2ks) (5.29)
2(v2k2 4+ N2k5 cos )2

_ ke 20%ky + N2k + 602k k; cos ¢

* (5.30)
m 24/02k2 4+ N2k6 cos ¢

where +(—) represents conduction (valence) band. The band structure is sixfold
symmetric under ¢ — ¢+ 27 /6. It is clear from the Eq. (5.29) that the BC
is zero in the absence of warping. The band structure is sixfold symmetric
under ¢ — ¢+ 27/6. The BC distribution with different strength of warping
parameter is depicted in Fig. 5.6. The BC always shows a snowflake like
distribution irrespective of the strength of warping. However, the BC acquires
substantially large value around the I" point with increasing A as also suggested
from Eq. (5.29). Moreover, it reverses sign between two subsequent interval
2nm/6 — 2(n+ 1)7/6. On the other hand, the shape of the Fermi surface
changes with warping. Specifically, for small warping the Fermi surface takes
circular shape. With increasing warping strength, it becomes non-circular with
relatively sharp tips extending along high symmetry direction and curves inward
in between. Such transformation of Fermi surface from circular to snowflake
would initiate interesting transport behavior which we discuss below.

The MH and MN conductivities as a function of chemical potential for
different strengths of warping parameter are shown in Fig. 5.7 (a) and (b),
respectively. We find that the magnitude of the MH responses are increasing
as well as become more pronounced and sharp with the increase of warping
strength. In addition, the position of the dips (peaks) in MH (MN) conductivities

moves toward p = 0 with increasing A\. Moreover, the negative sign of MH
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Fig. 5.7 (a) MH (in the unit of 1072¢2/) and (b) MN (in the unit of 10~ ek /)
conductivities as a function of chemical potential for different warping strength
A =50, 200 and 400 eV-A3 are depicted. The parameters used are v=1 eV-A,
AU =0.01¢eV, and kT = 0.001 eV.
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Fig. 5.8 The distribution of the BC and the Fermi surfaces, calculated from
Eq. (5.31), in (a) [(d)] single Weyl node with n = 1, (b) [(e)] double Weyl
node with n = 2 and (c) [(f)] triple Weyl node with n = 3 for untilted case i.e.,
C4 =0 [tilted case i.e., C'; = 2.0] are shown. The Fermi surface is calculated
for F=—0.05 eV with v = 1 eV-A. The deformation of BC is clearly observed
with increasing non-linearity and anisotropy in the WSM.

conductivity appears because of the majority of negative BC over the activated

momentum modes in the Fermi surface.

5.3.4 Weyl semimetals

Going beyond the 2D systems, we will now calculate MH responses in 3D
WSMs which can be thought of as a 3D analogue of graphene [282]. The low-
energy effective Hamiltonian describing the Weyl node with topological charge
n and chirality ( is written as [243, 283-285]

Hy, = Ce(k: —¢Q)+ Cano - (ng, — Ce). (5.31)

where ¢ ==+1, k) =,/k2+ k2, ¢, =arctan(k,/k,) and e = (0,0, (). The Weyl
nodes of opposite chirality are shifted by an amount () in momentum space due
to broken TRS. C¢ indicates the tilt parameter associated with Weyl node with
chirality (. Here, o = {0, 0y,0.} and ng = {a, k" cos (n¢y), k'] sin (ney) , vk, }.
The factor v, bears the connection to the Fermi velocity. v is equivalent to the
velocity associated with z-direction. For the sake of simplicity, we consider
@ = 0 and take into account the Weyl nodes of opposite chirality separately. For
C¢ = 0, electron and hole bands touch at the Weyl point leading to a point-like

Fermi surface. When the magnitude of the tilt parameter is small enough i.e.,
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|C¢|/v < 1, the Fermi surface is still point-like, and is characterized as the type-I
Weyl node. With the increase of C, electron and hole pockets now appear at the
Fermi surface for |C¢|/v > 1 leading to a distinct phase, which is designated as
a type-II Weyl node. In this work, we consider two types of tilt configuration for
the WSM: i) chiral tilti.e., C+ = —C'_, and ii) achiral tilti.e., C = C_.

Now the energy dispersion of the multi-Weyl node with ( = +1 is given by

EVSM (K, () = Crk, £ e (5.32)

where e, = \/a2k3" +v2k2 and +(—) represents conduction (valence) band. It
is now clear that the dispersion around a Weyl node with n = 1 is isotropic in all

momentum directions. On the other hand, for n > 1, we find that the dispersion
around a double (triple) Weyl node becomes quadratic (cubic) along both k, and
k, directions whereas varies linearly with ..

Using Eq. (5.18), the explicit form of z-component BC associated with the
multi-Weyl node can be written as

}Cn%a%kﬁ"ﬂ

R S e

k.. (5.33)
It is clear from the Eq. (5.33) that, similar to energy dispersion, the BC is
isotropic in all momentum directions for single WSM whereas it becomes
anisotropic for WSMs with n > 1 i.e., for double WSM (n = 2) and triple
WSM (n = 3) due to the presence of ki”_2
Moreover, the BC reverses its sign, retaining the magnitude same, for Weyl
nodes of opposite chiralities Q"5 (k,¢ = +1) = QWM (g ¢ = —1). The
behavior of BC for both untilted (C¢ = 0) and tilted (C # 0) multi-Weyl node
with ¢ = +1 are shown in Fig. 5.8. With increasing the topological charge n, the

factor and topological charge n.

single positive and negative lobe of BC gets divided into one pair of lobes. These
lobes for n = 2 and 3 are deformed with respect to that of n = 1. The separation
between these lobes increases over the &, = 0 line. The BC changes sign with
the chirality of the Weyl node for all WSMs as indicated in Eq. (5.33). However,
the BC is identical in both tilted and untilted WSMs because the tilt does not
effect BC. On the other hand, in contrast to BC, the Fermi surface drastically
changes in tilted WSM compared to untilted WSM as shown in Fig. 5.8.
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Fig. 5.9 (a) MH (in the unit of 10¢? /) and (b) MN (in the unit of ek /) conductiv-
ities are shown for tilted and untilted Weyl nodes with ( = +1. We consider v =1
eV-A, AU =0.01 eV, and kT = 0.001 eV. We observe that the untilted Weyl
node with C'y = 0 (tilted Weyl node with C';. = 0.6) results in null (substantial)
Magnus responses. We note that MH and MN conductivities are exactly opposite
at two opposite Weyl nodes with ( = +1 and —1 owing to the anti-symmetric
nature of BC (Eq. (5.33)).

The z-component of the quasi-particle velocity associated with the multi-
Weyl node is given by

27.2n—2
_ kenag k7

€k

(5.34)

A close inspection suggests that z-component of the velocity is also independent
of the tilt parameter C (chirality () like (unlike) the BC. Therefore, the effect
of the tilt is only incorporated by the Fermi surface properties. The Fermi
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surface for n = 1 case is circular in shape that gets elongated along &, direction
with increasing n. In the k, — k, plane, Fermi surface does not close that is in
accordance with the non-point like nature of Fermi surface for tilted WSM. With
increasing topological charge n, Fermi surface gets flattened. Therefore, tilt
and non-linear dispersion imprint their signature in the transport through Fermi
surface properties.

The numerically computed MH responses for single, double and triple Weyl
node as a function of y are shown in Fig. 5.9. Interestingly, we find that both
MH and MN conductivities vanish identically for untilted Weyl node. This is
due to the fact that, for a given untilted Weyl node, the positive and negative
BC for the activated momentum modes over the Fermi surface are equal, which
results in a complete cancellation. This situation remarkably changes in the
presence of tilted Weyl node. In this case, the positive and negative BC for the
activated momentum modes over the Fermi surface are unequal, and therefore,
do not cancel each other completely.

The MH conductivity of a tilted WSM, considering the contribution from
two opposite chirality nodes, is given by o = 3¢ G(11)(C¢, where G(u) is p
dependent part of transport coefficient associated with individual Weyl node. For
a pair of Weyl nodes at same energy Fy such that G(u = Ep) = Gy, the MHE
is only finite when relative sign of the tilt parameter between them is opposite,
referring to the chiral tilt configuration (Cy = —C_). On the other hand, the
MHE vanishes in the absence of tilt (Cy = C'_ = 0), and even in the presence of
achiral tilt (C;. = C_) of the Weyl node. In other words, MH responses from
opposite Weyl node add up (cancel each other) leading to a node integrated
(polarized) Magnus (Magnus valley) response in presence of chiral (achiral)
tilt. Two Weyl nodes of opposite chirality, residing at two different energies £/
and F/_, can in principle lead to Magnus valley Hall effect while Weyl nodes
exhibit achiral tilt such that G( = E ) # G(u = E_). The MNE follows the
same behavior as MHE. This is because the sign of BC is opposite whereas the
v SM has same sign for two different nodes of opposite chirality. To shed more
light into the tilt mediated MH response, we show the systematic growth of MH
conductivity while increasing the tilt strength in Fig. 5.10.

Therefore, the MH and MN conductivities can become useful probes in
distinguishing tilted WSM from an untilted WSM in experiments. We also
notice that the responses for n = 1 single WSM is found to be most prominent

as compared to the WSMs with n > 1. This can be explained as the BC reduces
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its value for the activated momentum modes over the Fermi surface. Moreover,
the MH responses decrease as the Fermi surface becomes more flattened for
mWSMs. Another interesting feature, coming out from Eq. (5.33) and (5.34), is
that MH responses from two opposite nodes with chiral (achiral) tilt simply add
up (cancel each other) leading to a finite node integrated (polarized) transport
coefficients similar to the Magnus (Magnus valley) responses for ML graphene
in presence (absence) of warping. From low energy model, it can be shown
that the node integrated MH responses are proportional to that of a single tilted
Weyl node. All these findings together refer to very interesting Magnus transport
properties of WSM in general.

It is pertinent to discuss the anomalous Hall effect that will present alongside
with the MHE for the TRS broken WSM as far as the first order responses are
concerned. The anomalous Hall conductivity for type-I mWSM is found to be
o' o« nAk, where Ak is the separation between two Weyl nodes in momentum
space of opposite chirality [286, 263]. On the other hand, the MHE in type-I
mWSM (|C; /v| < 1) for a given chmeical potential can be analytically found
as o nA,TU. It is clear from the above expressions that the intrinsic AHE
increases with increasing the k-space separation between Weyl nodes while
remains insensitive to the tilt parameter. By contrast, the magnitude of MH
conductivity increases with increasing the built-in electric field. Using the above
expressions, one can in general find 2 o % (in an arbitrary unit) for type-I
WSM. Since this comparison is based on the low-energy model of mWSM, one
should consider the lattice model to make a correct estimate of % In addition,
we would like to point out that the intrinsic linear AHE can in principle be found
to be quantized while MHE is not expected to exhibit quantized response [287].

5.4 Conclusions

In conclusion, we first investigate the effect of strain and warping on MHE and
MNE in ballistic regime for 2D topological systems such as ML, BL graphene
and surface states of TIs. We find that in strained ML graphene system without
warping, the total Magnus responses are zero after summing over the valleys
because the contribution from the each valley cancels with each other. One
instead obtains Magnus valley Hall and Magnus valley Nernst effects from the
valley polarized contribution. Interestingly, we find that the warping leads to

finite total Magnus responses as BC contributions from each valley to Magnus



104

Topological Magnus responses in two and three dimensional systems

—— C;=0.2
1.5 C;=0.4
— C;=06
—— (C;=0.8
P p— C;=1.0
© 05
0.0\-/
-0.5
-0.5 -0.4 -0.3 -0.2 -0.1 0.0

H (eV)

Fig. 5.10 (a) MH (in the unit of 10e? /) conductivity is shown for different
strengths of the tilting parameter (C;.) for fixed n = 1. Gradual increase in the
response is observed with increasing tilt strength C'.. All other parameters are
kept same as mentioned in Fig. 5.9.

responses are unequal and do not cancel with each other for the asymmetric
nature of Fermi surface shape. The magnitude of the total Magnus responses
is found to increase with increasing the strength of warping parameter. For BL
graphene, strain enhances asymmetry between the valley polarized contribution
resulting in distinct transport signatures for positive and negative strain, while
the effect of warping remains minimal. In the case of surface states of TI, we find
that the magnitude of both MH and MN conductivities enhance with increasing
the hexagonal warping strength.

Going beyond 2D, we study Magnus responses in ballistic regime for
3D Weyl semimetals using low-energy model to probe the effect of tilt and
anisotropic nonlinear dispersion. In particular, we find that the MHE is identi-
cally zero for each Weyl node without tilt, whereas for tilted WSMs, Magnus
responses coming from the nodes acquire finite values. Notably, MH responses
from opposite Weyl node add up (cancel each other) leading to a node integrated
(polarized) Magnus (Magnus valley) response in presence of chiral (achiral) tilt.
The magnitude of both MH and MN conductivities increase with increasing
the tilt parameter of the Weyl nodes. Moreover, with increasing the topological
charge associated with Weyl node, the Magnus responses get suppressed. This
key feature can be a useful probe in distinguishing untilted (type-I), tilted (type-I
or type-1I) WSM and the non-linearity in the dispersion through experiments.
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Moreover, from the application point of view, such MH responses can pave the
way for a new generation of current rectification devices where the alternating-
current signal is converted into a direct-current signal. This is due to the fact that
linear Hall effects, the transverse MH voltage (say in y-direction) is developed
due to the Magnus velocity of the carriers having positive longitudinal velocity
(vg > 0) only.

Related to the experimental realization of MH response in 3D, we would
like to first point out that the bulk quantum Hall effect has been realized earlier
in quasi-2D systems [288-290]. Recently, 3D systems, such as ZrTes, Hf Tes,
and CdzAs2 have been shown to exhibit quantum Hall effect in experiments
[291-294]. Moreover, non-linear Hall effect has already been experimentally
observed in bilayer non-magnetic quantum material WTey [214], in few layer
of WTes [295], and in type-II WSM at room temperature [296]. In light of the
above experiments, it is in principle possible to extend the non-linear Hall effect
setup, fabricated in 2D, to 3D platforms, where MHE can be experimentally
observed. For example, 2D systems can be stacked together in order to form
quasi-2D / 3D structure over which multi-terminal Hall measurements can be
performed. In the case of MHE, the choice of suitable gate potentials, causing
the built-in electric field become very important to generate the appropriate
transverse Hall voltage.

In contrast to the linearized model we use in this work, a real mWSM may
contain Weyl nodes with different tilt with respect to one another as well as
number of pair of nodes can be greater than one. One of the interesting extensions
of this work would be to implement the MH responses calculation on a real
mWSM material using DFT or at least on a lattice model in order to directly
compare with the experiments. For this purpose, one can perform a four terminal
Landauer-Biittiker conductance calculation [297] on a lattice. Following our
theoretical analysis on mWSMs, we expect MH responses to be negligible for
materials like NbAs, TaAs, which have symmetric untilted Weyl cones. On the
other hand, type-II Weyl materials (MoTe2,WTe2) can show substantial MH
responses. Moreover, investigating MH responses in twisted BL graphene would

be an interesting direction which we leave for future study.






Chapter 6
Conclusion and Outlook

Discovery of topological insulators has immensely impacted the transport proper-
ties in solid state systems. At the interface of a topological material and vacuum,
one can find robust boundary states giving rise to dissipationless conductance.
This motivates us to explore the possible material realizations for the use of
practical purposes. In this dissertation, we have largely explored such realization
of topological materials with the help of density functional theory (DFT) and
tight-binding (TB) model calculations.

In chapter two, we discovered that multilayer graphene with alternatively
doped spacer layer can realize topological crystalline insulating phase in presence
of reflection symmetry. We investigated both scenario which arise depending on
the chemical nature of the spacer layer. Firstly, in case the spacer layer, used for
doping is made of light atoms, the stacked graphene system can show quantum
Hall nature in presence of orbital magnetic field. In this regime, presence of
reflection symmetry about a layer gives rise to Chern insulating -topological
crystalline insulators (TCI). On the other hand, when the spacer layer consists of
heavier atoms, it can substantially induce spin-orbit coupling in the graphene
layers. This brings the system into the quantum spin-Hall insulators regime. In
this limit as well, we prove the existence of gapless surface states in presence
of reflection symmetry. Graphene being one of the most studied and easily
synthesizable systems, this work motivates the realization of graphene based
TCI in the lab.

Quantum spin Hall materials with large band gap are handful in numbers.
Jacutingaite being one of them with considerably large band gap (0.5eV), in
chapter three, we had set out to explore the topological phases of its multilayer
structure. We found that multilayer system of Jacutingaite mineral can feature
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dual topology, namely by showing both weak topological (WTI) and TCI phases.
The WTI phase is protected by translational symmetry along the stacking di-
rection of the two dimensional layers. This results in even number of Dirac
cones on the side surfaces of the material. Interestingly, in addition to the side
surfaces, we found that the top surfaces can even be gapless, and show mirror
symmetry protected Dirac cones. On the top surface, three mirror planes in total
give rise to six number of gapless Dirac cones. Following our theoretical work,
these gapless Dirac cones were also found experimentally. Moreover, our work
presented a new tight-binding model which captured the dual topology in real
materials.

Following this, in chapter four, we focused on the topology of three dimen-
sional (3D) cubic half-heusler (hH) materials falling under the space group 216.
In literature, strain driven topological phases has been captured before in HgTe,
and other materials which also belong to space group 216. Very recently, theoret-
ically it has been proposed that a similar class of systems can show higher order
topological phases, i.e. (d —2) dimensional states along the boundaries of the d
dimensional system. So, we took two 3D hH materials, namely LiBiZn (band
inverted) and LiSbZn (band trivial), and showed the existence of hinge modes. In
case of LiBiZn, we found that presence of topological surface states obscure the
realization of higher order hinge modes. Whereas for the latter material, as the
surface is gapped, it showed cleaner hinge modes. From this we concluded that
the band trivial hH features promising hinge modes for transport as opposed to
the band inverted hH, as for the latter gapless surface states became the hinderers.
This work also presented a general wannier based eight bands tight-binding
model, which could be applied for the material class with space group 216.

In chapter five, we took a slightly different turn and ventured into the realm of
a topological transport called Magnus Hall effect. Berry curvature (BC) mediated
topological transport has been explored intensely in the literature. Recently, it
has been shown that time reversal symmetric, but inversion broken systems with
built-in electric field can show an interesting BC mediated non-trivial linear Hall
like response, termed as Magnus Hall response. The response here is caused by
the Magnus velocity of the electrons that is proportional to the built-in electric
field. In this work, we investigated the effect of strain and warping in case of
two dimensional monolayer and bi-layer graphene systems. Warping effect on
the Magnus response for the surface of a topological insulator was also explored.
And finally, in this work, we had extended the Magnus response to the three



109

dimensional Weyl semimetal (WSM), where we showed that tilt parameter is
important to generate finite Magnus Hall response, as untilted WSMs give null
Magnus Hall response.

Based on the work presented in this dissertation, there could be several
directions which are worthy of pursuit. Firstly, in the context of TCIs, one can
explore the robustness of the topological boundary states by incorporating the
disorder into the system. In real life, materials are prone to have defects and
impurities which may break the crystal symmetry responsible to protect the TCI
phase. So, understanding the effect of disorder on TCIs could be an interesting
direction to explore.

Search for the higher order topological materials is very active at the moment.
Following the work done on hH materials, an interesting direction would be
to search for higher order topological superconducting materials in this hH
class. Materials like YPtBi, LuPtBi, LnPtBi are already known examples of
superconducting hHs [298—-302]. However, higher order topological nature is
not yet well explored in these systems.

This dissertation touched upon Magnus Hall response in graphene and Weyl
systems. Recently, twisted bilayer graphene systems have also gained enormous
interests. A promising direction would be to study the Magnus Hall response
in twisted Weyl materials, or twisted bilayer graphene systems in presence of
strain. Strain induced nonlinear Hall effect has already been studied [303]. As
strain has an immediate anisotropic effect on the Fermi surface of the material,
it can also possibly lead to interesting Magnus Hall response.

Finally, this thesis dealt with the non-interacting time-independent topolog-
ical systems. Topology for time-dependent systems is also very rich (known
as Floquet topological insulators: FTI), and show properties which have no
counterpart in static systems. What makes it more interesting is that FT1s can
be easily manipulated in various setups such as in ultracold atoms, photonic
waveguides etc [304-308]. It would be really interesting to combine the topology
protected by crystalline symmetry with the Floquet topology, and pursue TCI

nature in FTIs.
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1.1

1.2

The periodic table (Altland-Zirnbauer classification) for
non-interacting topological insulators based on three ele-
mentary local symmetries (O, =, II) of the Hamiltonian
in different spatial dimensions d. The table is periodic in
nature with d = 8, known as Bott periodicity. Systems
characterized by Zy group as topological invariant indi-
cate only two possible elements 0,1, with 0 denoting a
trivial and 1 denoting a non-trivial topological phase. On
the other hand, Z denotes an integer number which can
take any values indicating arbitrary number of anomalous

boundary modes inthe case Z #0. . .. ... ... ..

The figure depicts how transverse Hall resistivity p,,, (blue
line) and longitudinal resistivity p,, (red line) vary with
the applied magnetic field B. Quantized plateaus in p,,
appear whenever p,, goes to zero. Quantized numbers
v =1,2,3,4 in the figure correspond to Chern number C' (

in our convention (1.11)). Figure is taken from wikipedia
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1.3

1.4

1.5

Formation of the cyclotron orbits in the bulk, and skipping
orbits at the edge of the system is shown. Magnetic field
is applied perpendicular to the plane, and it gives rise to
an anti-clockwise motion of the electrons. It is seen that
at the upper edge of the sample, while electrons perform
half of the orbital motion in the right direction, at the
bottom edge they will do the same but in the opposite
(left) direction. This happens so that the net current is
conserved, giving rise to edge current at the boundaries of
thesample. . .. ... ... ... ... ... .. ...
(a) Graphene with nearest and next-nearest neighbor hop-
ping. a1 = (1,0), a2 = (3, @) are the Bravais lattice vec-
tors. Different sub-lattice(s) in the unit cell of graphene
is indicated by blue and orange colors respectively. (b)
Gapped bulk bandstructure of graphene with Kane-Mele
Hamiltonian [24]. In presence of the second nearest neigh-
bor term, bulk Dirac cones get gapped. (c) Bandstructure
in the slab geometry is shown for W = 60 unit cells fi-
nite along the ag-direction. Parameters taken as ¢t = 1,
to = 0.15, A\, = 0.1. energy ¢, and momentum £ are mea-
sured in the unit of ¢, and 1/a; respectively. )\, is the stag-
gered sub-lattice potential (\,). Gapless spin-polarized
helical edge states are depicted, i.e. at each edge of the
system, there is counter-propagating edge states corre-
sponding to spin up and spin down channel. . . . . . . .

(a) Tetragonal lattice structure with two atoms A and B in
the unit cell. (b) Bulk bandstructure for the Hamiltonian
as mentioned in Eq. (2) of [40]. It can be seen that the
bulk spectrum is gapped everywhere in the BZ. (c) Slab
bandstructure for (001) surface shows the existence of
topologically protected gapless states. The gapless surface
states originating from the C} crystalline symmetry are

quadraticinnature. . . . . . ... .. .. ...
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1.6

2.1

(a) Schematic BZ for a topological crystalline insulator
with mirror symmetry M. Due to M, there are two
planes in the surface BZ which are left invariant, namely
ky = 0,m. (b) Schematic surface band structure (along
k, = 0 cut) with two chiral edge states for each mirror

invariantplane. . . . . ... ... ...

Left: Three-dimensional system formed out of graphene
layers (horizontal lines) separated by thin insulating lay-
ers (gray boxes). The spacers are polar, having a pos-
itively charged (+) and a negatively charged (—) side.
Using spacer layers with an alternating orientation leads
to graphene sheets which have an alternating doping (£1).
The unit cell of the heterostructure (bracket) consists of
two graphene layers, and the full system shows reflection
symmetry about one layer (R). By applying a uniform
magnetic field along the stacking direction, neighboring
graphene layers form quantum Hall phases with opposite
Chern numbers, such that their chiral edge states propa-
gate in opposite directions (horizontal arrows). Right: our
conventions for the graphene lattice, with Bravais vectors
¢; and €,. Nearest and next nearest neighbor hoppings
are labeled ¢ and to. There are two sites, denoted ¢ and b
in every unit cell (marked by a blue contour). . . . . ..
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2.2

2.3

Bandstructure of a single monolayer of spinless graphene
in a ribbon geometry (infinite along ¢, W = 100 unit
cells along €), using ¢ = 1 and p = 0. In the absence of
a magnetic field (¢ = 0, panel a), two bulk Dirac cones
are connected by dispersionless boundary states localized
on the two zig-zag edges of the ribbon. With a magnetic
flux & = 0.18 (panel b) the bulk spectrum consists of
Landau levels, and chiral edge modes appear at the two
boundaries of the ribbon. The color scale denotes the
probability density of a state integrated over half of the
ribbon (unit cells indexed by 0 < n, < I¥/2), such that
modes localized on opposite boundaries of the ribbon are

shown in blue and red, respectively. . . .. .. ... ..

Bandstructure of the graphene heterostructure with Hamil-
tonian Eq.(2.2) in an infinite slab geometry with hard wall
boundary conditions in the €, direction and a width of
W =100 unit cells. Weuset =1, & =0.18, © = 0.3, and
t, =0.1. The left and right panels show the bandstructures
for k, = 7/2 and k, = , respectively. One Dirac cone
appears on each surface, positioned on the mirror invari-
ant k, = m line of the surface BZ. The color scale is the
same as in Fig. 2.2. In order for the inter-layer coupling to
efficiently gap out the edge modes away from the mirror
line, we have added a sublattice symmetry breaking term
to the model ps7,m,, with ug =0.15. . . . .. ... ..
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2.4 Bandstructure of the spinful graphene heterostructure [Eq. (2.9)]

3.1

32

in an infinite slab geometry (W = 100 unit cells along é;).
Weuset=1,t3=0.5, u=0.1, and ¢, = 0.2. Only bulk
modes (shown in green) and states on one of the two sur-
faces are plotted. The color of the surface modes denotes
the mirror sector of each state: red for an eigenvalue +1
and blue for —1. At k, = 0 (left), the nonzero mirror
Chern number leads to the appearance of two Dirac cones
on the surface. States having the same mirror eigenvalue
propagate in the same direction, so they are topologically
protected. In contrast, for the other mirror invariant plane
k, = m (right), the mirror Chern number vanishes. There
are both left and right moving surface modes in each of the
two mirror sectors, which are gapped out by the inter-layer

couplingterm. . . ... ... .. ... .........

Panel (a): Crystal structure of PtoHgSes. The three mirror
planes are shown as shaded areas (top) and as green lines
(bottom). Panel (b): Bulk and surface Brillouin zones
(BZ). Time-reversal invariant points are colored blue and
points belonging to the surface BZ are indicated with an
over-line. Panel (c): Bandstructure and density of states,
D(¢e), of PtyHgSes with (black) and without (red) spin-
orbitcoupling. . . . . . . ... ... ...

Momentum-resolved surface spectral densities. Panel (a):
[100] surface. Dirac cones associated with the weak topo-
logical index are observed at X and at R. The insets show
a zoom in on the Dirac cones. Panel (b): [001] surface.
A pair of Dirac cones associated with the mirror Chern

number are observed at X. . . . . . .. ... ... ...
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3.3

3.4

3.5

Panel (a): Triangular lattice model of Hry, Egs. (3.2) and
(3.4). Sites are shown in black, hoppings in gray, and
mirror planes as shaded areas. The blue arrows represent
Bravais vectors aj 2 3. Panel (b): Bandstructure of the
model defined by Eqgs. (3.8) and (3.4) computed in a slab
geometry. Only states on the top surface are shown. Panel
(c): Cut of the same bandstructure along the k1 = ko
mirror plane, with &, labeling the momentum along the
mirror plane. Panel (d): Bandstructure for model defined
by Egs. (3.8) and (3.5), along the same k1 = k2 mirror
plane. All bandstructures are obtained in a slab geometry
with hard wall boundary conditions perpendicular to as
and a thickness of 40 unit cells. In (b) and (c) we set
=3, A=1, a=25, and ¢ = 0.4, whereas ¢ = 0.1 in
panel (d). The color scale in panels (c) and (d) denotes
the integrated probability density of wavefunctions on the
top- and bottom-most 8 sites of the slab, such that surface
modes appear in red (dark gray) and bulk modes in light
green (light gray). . ... ... ... ... .......

Bandstructure of PdoHgSesand of PtoHgSes. The inset
presents a zoom of the area enclosed by the red dotted-line

SQUATE. . . v v v e e e e e e e e e e e

Momentum-resolved surface spectral densities of PdoHgSes.

Left: [100] surface. Right: [001] surface. A pair of Dirac
cones associated with the mirror Chern number are ob-

served at X. . .. e
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3.6

3.7

4.1

4.2

4.3

Bandstructure of the model obtained using Eq. (3.9) in an
infinite slab geometry, with thickness of 40 unit cells in the
z direction, using ;= 3 and A = 1. Only states which are
localized on the top surface and have energies |E| < 1 are
shown. To better visualize the surface Dirac cones, we set
a = ¢ = 0, such that each Dirac cone is doubly degenerate.
The hexagonal contour marks the boundary of the surface
BZ, mirror invariant lines are shown in dashed red, and
black arrows indicate the reciprocal lattice vectors of the
surface by = (v/3/2,1/2) and by = (0,—1). . ... ..

Sketch of the real-space hopping terms corresponding to
the function f (X) of Eq. (3.9). Shown is the triangular
lattice describing Hrp at constant z coordinate. Starting
from a site on The hopping amplitudes are ¢t; = —3/8
(blue dotted lines), to = 3/16 (orange dashed lines), and
ts = 3/32 (green solid lines). The structure of the hop-

pings preserves the three-fold rotation symmetry of the

(a) Crystal structure. (b) Brillouin zone. (c,d) Band struc-
ture and density of states of LiBiZn and LiSbZn, respec-
tively. The weight associated with Bi-6p (or Sb-5p) is
depicted in orange while that of Zn-4s, Bi-6s (or Sb-5s)
and Li-2sinblue. . . . . ... ... ...

(a) Band structure of LiBiZn under uniaxial strain 6 =
—0.02. Thinner black curves are the bands without strain.
(b) Band structure for § = 0.02. The path chosen include
one of the eight Weyl nodes found in the k, = 0 plane, of
coordinates 2f(O.Ol?, 0.006,0). . . . . .. ...

(a) [1,-1,0] Zn-terminated surface spectral density struc-
ture of LiBiZn under uniaxial strain 6 = —0.02. The panel
on the right is a zoom of the white square in the left panel.
(b) Analogous results for strain § = 0.02. (c¢),(d) Zoom
of the data in (a),(b), respectively. The path width in the
zooms is 0.04x27/a. . . . . ... o

62



150

List of figures

4.4

4.5

4.6

4.7

4.8

(a) Wilson loop in the k£, = 0 plane for the four band model
Eq. 4.1 with 6 < 0. (b) Same for § > 0. (c) Wannier center
evolution in the plane defined by the TRIMs I, G 1/2 and
Gy /2 for LiZnBi under compressive strain. (d) Same as

(c) in the case of tensile strain. . . . . . . ... .. ...

Schematic diagram of the column geometry (top view).
Blue circles correspond to Bi (or Sb) and orange circles
correspond to Zn. Li is omitted for clarity. Bulk, surface
and hinge regions are denoted by the boxes labelled with
B, S and H respectively. Notice also that the downfolded
Hamiltonian does not contain orbitals at the Li site. . . .

Hinge band structure in the absence of strain for a system
having 14 x 14 unit cells along the ¢ and 2 directions and
infinite along 2. (a),(b) Energy dispersion for LiBiZn and
LiSbZn, respectively. Larger point sizes indicte larger am-
plitude of the wavefunction at the hinges. The color code
compares the probability amplitude of the wavefunctions
at the hinges and surfaces, such that pure red corresponds
to a hinge mode, pure blue to a surface state, and white
to a state with equal probablity per site in both regions.
(c),(d) Local density of states for LiBiZn and LiSbZn,
respectively, ate = —0.35eV. . . . .. ... ...

Change in the energy of the hinge modes at k,, = 0 (Aeg)
and k, = 7 (Agg) as a function of uniaxial strain perpen-

dicular to the hinge. . . . . . . .. .. ... ... ...

band structure for (a) LiBiZn and (b) LiSbZn is shown.
Red, blue and green colors indicate the band stuctures
obtained from DFT, full wannier tight-binding, and trun-
cated wannier tight-binding Hamiltonian respectively. The

k-path is chosen as same in4.1. . ... ... ......
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5.1

5.2

53

The evolution of BC and Fermi surface in ML graphene
(5.16) with warping A\; = A2 = A3 = \ and strain vy # v;.
Top panel: The BC (M (k,( = +1)) and = component
of the velocity (v} (k,( = +1)) over the Fermi surface
are shown for (a) unstrained ML graphene without warp-
ing (v2 = v1, A =0), and strained ML graphene (vy = 2v1)
with C'3 symmetric warping of different strengths (b)
A=02,(c)A=0.35(d A=0.5 eV-AZ. Bottom panel:
(e)-(h) depict QML (k,¢ = —1) and vME(k,( = —1). The
strength of QML (k, ¢) and v} L (k,() are represented in
the color codes side by side. The parameters (in the units
of energy eV) used in the calculations are A, = 0.06eV,
v1 = 0.87eV-A. The Fermi surface is plotted for the con-
stant energy £F=—0.28eV. . . ... ... ... ... ..

The total valley summed contributions of (a) MH conduc-
tivity o (in the unit of 1073¢?/) and (b) MN conductiv-
ity o (in the unit of 10 %ekp /) in the presence of strain
(v2 = 2vy) for different warping strengths A = 0.2, 0.35
and 0.5 eV-AZare shown for ML graphene. Noticeably,
the warping can enhance the responses even after valley
sum is performed, as it generates asymmetric contribu-
tions between valleys. We consider AU = 0.01 eV and
kpT = 0.001 eV. All other parameters are kept same as
that of in Fig. 5.1. The chemical potential y is chosen in
the unit of eV throughout the paper. . . . . . ... ...

The evolution of BC and Fermi surface in BL graphene
(5.23) with strain w for warping A\ = Ag = A\3 =\ =
0.001eV-A2. Left column: The BC QP (k,¢ = +1) and
vBL(k,( = +1) over the Fermi surface of BL graphene
(@) w=—-3m, (c) w=—m, (e) w=0,(g) w=m and (i)
w = 3m are shown. Right column: We repeat the same set
of calculations for ¢ = —1 valley. The parameters (in the
units of eV) used are A, = 0.06eV, m = O.OO8eV-1°§2, and
v = 0.5eV-A. The Fermi surface is plotted for the constant
energy F=—0.04eV. . . ... ... ... ...
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5.6

5.7

5.8

Valley responses of (a) MH (in the unit of 10%¢? /), (b) MN
(in the unit of 10~ 'ekp /) conductivities in BL graphene

with AU =0.01¢eV, and kT = 0.001 eV for w = —3m, 0, 3m.

All other parameters are kept same as that of in Fig. 5.3.
The prominent and asymmetric valley responses in pres-
ence of strain for BL graphene are markedly different

from the symmetric responses for ML graphene.

Valley summed (a) MH (in the unit of 10e? /), (b) MN (in
the unit of 10~2ekp /) conductivities in BL graphene for
w = —3m, 0, 3m. The transport behavior changes with
strain substantially. We consider the same parameters as
usedinFig. 54. . . . ... ... o L.

Evolution of BC and Fermi surface, calculated from Eq. (5.27),

with different warping strengths (a) A=50 eV-A3, (b) A=200
eV-A3 and (c) A=400 eV-A3 are shown. Fermi surface is
plotted for £=—0.05 eV. We note that for A=50 eV-A3, the
Fermi surface remains circular, which gradually evolves
to hexagonal shape with increasing A\. We consider v=1

eV-Aand Ep=0in our calculation. . ... ... ... ..

(a) MH (in the unit of 10~2¢2/) and (b) MN (in the unit
of 10~%ekp/) conductivities as a function of chemical
potential for different warping strength A = 50, 200 and
400 eV-A3 are depicted. The parameters used are v=1
eV-A, AU =0.01eV, and kgT =0.001eV. . . ... ..

The distribution of the BC and the Fermi surfaces, cal-
culated from Eq. (5.31), in (a) [(d)] single Weyl node
with n =1, (b) [(e)] double Weyl node with n = 2 and
(c) [(D)] triple Weyl node with n = 3 for untilted case i.e.,
Cy =0 [tilted case i.e., C; = 2.0] are shown. The Fermi
surface is calculated for E=—0.05 eV with v = 1 eV-A.
The deformation of BC is clearly observed with increasing
non-linearity and anisotropy in the WSM. . . . . . . ..
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5.10

(a) MH (in the unit of 10e?/) and (b) MN (in the unit
of ekp/) conductivities are shown for tilted and untilted
Weyl nodes with ¢ = +1. We consider v = 1 eV-A, AU =
0.01 eV, and kg1 = 0.001 eV. We observe that the untilted
Weyl node with Cy = 0 (tilted Weyl node with C'y = 0.6)
results in null (substantial) Magnus responses. We note
that MH and MN conductivities are exactly opposite at
two opposite Weyl nodes with ( = 41 and —1 owing to
the anti-symmetric nature of BC (Eq. (5.33)). . . .. ..

(a) MH (in the unit of 10e? /) conductivity is shown for
different strengths of the tilting parameter (C';) for fixed
n = 1. Gradual increase in the response is observed with
increasing tilt strength C'y. All other parameters are kept

same as mentioned in Fig. 5.9. . . . . ... ... .. ..

104






List of tables

4.1 Tight-binding parameters for LiBiZn and LiSbZn






Declaration

Hiermit versichere ich, dass ich die vorliegende Arbeit ohne unzulissige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel
angefertigt habe; die aus fremden Quellen direkt oder indirekt iibernomme-
nen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde bisher
weder im Inland noch im Ausland in gleicher oder dhnlicher Form einer
anderen Priifungsbehorde vorgelegt.

Die vorliegende Dissertation wurde vom 04.10.2017 bis 30.09.2021 am
Leibniz-Institut fur Festkorper- und Werkstoffforschung Dresden (IFW
Dresden), Institut fiir theoretische Festkorperphysik (ITF), unter der Be-
treuung von Prof. Dr. Jeroen van den Brink und Dr. Ion Cosma Fulga
angefertigt.

Es haben keine erfolglosen Promotionsverfahren in der Vergangenheit
stattgefunden. Die aktuelle Promotionsordnung der Fakultit Mathematik
und Naturwissenschaften der Technischen Universitit Dresden wird an-
erkannt.

Sanjib Kumar Das
geboren am 25.06.1993 in Kalkutta, Indien
February 2022



	Table of contents
	1 Introduction
	1.1 Preface
	1.2 Berry connection and Berry curvature
	1.3 Quantum Hall effect
	1.3.1 Bulk-Edge picture and Chern number

	1.4 Quantum spin Hall effect: two dimensional (2D) time-reversal invariant topological insulators
	1.4.1 Z2 topological invariant

	1.5 Topological Crystalline Insulators (TCI)
	1.6 This thesis
	1.6.1 Outline of the chapters
	1.6.2 Chapter2
	1.6.3 Chapter3
	1.6.4 Chapter4
	1.6.5 Chapter5


	2 Topological crystalline insulators from stacked graphene layers
	2.1 Introduction
	2.2 Stack of Chern insulating layers of graphene
	2.3 Stack of quantum spin-Hall layers of graphene
	2.4 Conclusion

	3 Dual topology in Jacutingaite Pt2HgSe3
	3.1 Introduction
	3.2 Topological characterization
	3.3 Surface Dirac cones
	3.4 Tight-binding models
	3.5 Conclusion
	3.6 Appendix A:Ab-initio results for Pd2HgSe3
	3.7 Appendix B:Different surface Dirac cone positions
	3.8 Appendix C:Real-space hopping terms

	4 Hinge electronic structure of strained half-Heuslers
	4.1 Introduction
	4.2 Methods
	4.3 Lithium half-Heuslers 
	4.4 Low energy models
	4.5 Hinge electronic structure
	4.6 Conclusions
	4.7 Appendix: Eight band tight-binding Hamiltonian

	5 Topological Magnus responses in two and three dimensional systems
	5.1 Introduction
	5.2 Formalism of Magnus transport
	5.3 Results
	5.3.1 Strained monolayer graphene
	5.3.2 Strained bilayer graphene
	5.3.3 Hexagonal warped topological insulator
	5.3.4 Weyl semimetals

	5.4 Conclusions

	6 Conclusion and Outlook
	Publications
	Acknowledgement
	Bibliography
	List of figures
	List of tables

