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Abstract

We present the next-to-leading order (O(«?)) perturbative QCD predictions for ete™
annihilation into four jets. A previous calculation omitted the O(a?) terms suppressed
by one or more powers of 1/N2, where N, is the number of colors, and the ‘light-by-glue
scattering’ contributions. We find that all such terms are uniformly small, constituting
less than 10% of the correction. For the Durham clustering algorithm, the leading and
next-to-leading logarithms in the limit of small jet resolution parameter yc,, can be
resummed. We match the resummed results to our fixed-order calculation in order to
improve the small y., prediction.
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1 Introduction

Electron-positron annihilation into jets provides an arena for studying quantum chromody-
namics (QCD) that is free of initial-state uncertainties such as parton distribution functions.
At the large center-of-mass energies achieved by SL.C, LEP, and now LEP2, e* e~ annihilation
is also relatively free of nonperturbative final-state effects, i.e. hadronization corrections. On
the other hand, perturbative QCD corrections to jet rates can be very large. For example,
the three-jet rate at the Z° pole receives a 20-30% correction [1] at order a?. These next-to-
leading-order (NLO) corrections are of course critical for obtaining a precise experimental
measurement of a; from the three-jet rate and related O(a;) observables (2, 3].

More recently, the NLO corrections to eTe™ production of four jets were computed, and
a correction of roughly 100% was found [4] for most jet algorithms (when the renormal-
ization scale was set equal to the center-of-mass energy). This computation omitted terms
suppressed by one or more powers of 1/N?, where N, is the number of colors in a general
SU(N.) gauge theory (N. = 3 for QCD). It also neglected the ‘light-by-glue scattering’
contributions — interference terms where two different flavor quarks couple to the virtual
photon or Z boson. In this article we present the complete O(a3) results, using an im-
proved version of the same numerical program, MENLO_PARC [5], which was employed
for the leading-in- V. computation. The crucial ingredients for the construction of the pro-
gram are the tree-level amplitudes for five massless final state partons, ete™ — ¢gggg and
ete™ — qqq’'7'g [6, 7], and especially the recently-computed one-loop virtual amplitudes for
ete™ — qqq’'q [8, 9] and ete™ — ¢ggg [10]. We use the formulas given in refs. [6, 9, 10].

The NLO prediction of the four-jet fraction — an observable whose expansion begins at
order a2 — makes it possible to measure M5 with the same formal level of precision (NLO)
as has previously been reserved for O(a;) observables in ete™ annihilation. However, the

theoretical uncertainty in such a measurement will still be sizeable: Because the one-loop
" corrections are so large, the renormalization-scale dependence of the NLO four-jet result is
still strong, and it is likely that uncalculated higher-order corrections are important. Also,
‘a significant four-jet rate only appears at smaller values of the jet resolution parameter ycy,
where there are large perturbative logarithms, although these can be partially resummed for
the Durham algorithm [11].

There are at least two other motivations for studying e*e™ annihilation to four jets: (1)
These events are a background to ete™ — W+W~ — 4 jets, particularly when the center-of-
mass energy is not far above the W-pair threshold, as is the case at LEP2. (2) Four-jet final
states provide QCD tests to which three-jet events are insensitive [12]. For example, the
non-abelian three-gluon vertex appears at leading order in four jet events; the same is true
for the production of hypothetical, light, colored but electrically neutral particles, such as
light gluinos [13, 14, 15, 16]. In both applications, distributions of the four jets with respect
" to energies and angles [12] are important. Such distributions can be computed at NLO using
the same numerical program, and will be the subject of a separate publication [17]; here we
briefly study the sensitivity of the total four jet rate to additional light fermions.

The remainder of the paper is organized as follows. In section 2 we describe the de-
pendence of the four-jet rate on electroweak and color factors, and outline the structure of
the numerical calculation. In section 3 we present the complete O(a?) predictions for three
different jet algorithms. We indicate the dependence of the predictions on the (unphysical)



renormalization scale p. The Geneva algorithm [18] has a relatively mild p dependence
(small NLO correction) and a relatively strong dependence on the number of light quark
flavors Ny; we discuss the extent to which Ny can be determined from the Geneva four jet
rate alone. In section 4 we present results from matching the resummed Durham jet rate
to the fixed-order O(a?) results; the improved prediction agrees quite well with preliminary
SLD data [19]. Section 5 contains our conclusions.

2 Structure of the Cross-Section and Computation

For computational reasons as well as to study the effect of varying parameters, it is useful
to decompose the leading-order (Born) and NLO contributions to the four-jet differential
cross-section with respect to both their electroweak and QCD (color) structure. To simplify
the electroweak decomposition we assume that the observable being calculated is insensi-
tive to both (1) correlations between the final-state hadrons and the electron-positron beam
direction, and (2) quark and gluon helicities. We also assume the positrons are unpolar-
ized and the electrons have a longitudinal polarization of P. (P, = +1 for a right-handed
beam). QED initial state radiation and other electroweak corrections are neglected. Then
the helicity-summed four-jet (differential) cross-section at center-of-mass energy /s may be

written
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where « is the fine structure constant, 9 is the charge of quark ¢ in units of e, and the left-
and right-handed couplings to the Z° are
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where 8y is the weak mixing angle; the two signs in vj correspond to up (+) and down (—)
type quarks. Equations (1) and (2) include both virtual photon and Z boson exchange (and



their interference); the ratio of Z and photon propagators is givén by
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where M7 and I'z are the mass and width of the Z.

" Representatives of the classes of diagrams contributing to f(), fID and fUID are de-
picted in Fig. 1 as amplitude interferences. Five-parton cuts of these graphs, shown as
dashed lines, correspond to the real part of the NLO correction; four-parton cuts, shown as
dotted lines, correspond to the virtual part. In contribution (I) a single fermion couples to
both (v, Z) vector bosons in the interference, via either a vector or axial vector coupling.
(As shown in the figure, there may be a second or even a third fermion loop in the interior
of the graph, corresponding to ‘QCD’ factors of Ny in the cross-section.) This contribution
dominates the cross-section at O(a?) and as we will see, again at O(a?).

The remaining contributions, (II) and (III), have different origins in the real and virtual
parts of the calculation. In the real part they come from the ¢gq’q’g final state when the
roles of g and ¢’ are exchanged on the opposite side of the cut; in particular, a different quark
pair couples to the (v, Z) on each side of the interference. In the virtual part they can have
the same kind of exchange origin in ¢gq’'¢’ final states, but they can also arise from either
qqgg or q4q'q graphs where a quark loop couples directly to the photon or Z (for example
the contribution Ag;s (A3¥) in ref. [9]).

Contribution (II) represents ‘light-by-glue scattering’, whereby a different fermion line
couples to each vector boson, via a vector coupling in each case. There is no such contribution
at O(a?) if only charge-blind observables are considered [20], due to Furry’s theorem — the
order a? amplitude interferences all contain fermion triangle subgraphs. Although the cross-
section is nonvanishing at O(a?), we shall see that it is still extremely small, due partly
to cancellations in the sum over quark couplings in fUD(s), and partly to approximate
cancellations in the phase-space integrations that are related to the exact cancellations at
order o?.

Contribution (III), ‘Z-by-glue’ scattering, is similar to contribution (II) except that the
quarks couple to the Z through the axial vector coupling. This contribution is nonzero at
O(a?) [21], although small for the three and four jet rates, and it remains small at O(a?).
In Eq. (2) we have already carried out the sum over the five light quark flavors, in which the
massless weak isospin doublets (u, d) and (¢, s) cancelled, leaving only the (¢, b) contribution.
The top quark contribution to (III) is purely virtual for v/s < 2m;, but it does not decouple
in the large m; limit [21]. We expand in the limit of large top quark mass, including all terms
through O(s/m?); at this order the top quark does not appear in the vector contribution
(IT) [9, 10].

Dividing the four-jet cross-section o4_je¢ by the total hadronic cross-section at O(c),
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Figure 1: Representative contributions of type (I), (II) and (III), as described in the text. The
coupling of a quark to the (v, Z) vector boson is denoted by x, with a 1 (~y5) for vector (axial vector)
coupling. Dashed lines correspond to representative five-parton cuts; dotted lines to four-parton
cuts.



Neglecting for the moment the renormalization-scale dependenAce of the calculated cross-
section we write the expansion in a, as
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Next we decompose the one-loop correction to ng) with respect to N. and Ny:
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%) correction to the four-jet rate as

Correspondingly, we write the full O(a?2

Ci=CP+ P+ 0+ o + ¢ + ¢ + i + oD, (10)
absorbing all prefactors into the definitions of the C\%). In ref. [4] we calculated C (abc),
here we add the remaining terms in Eq. (10). The subleading-color terms Ci 7 come

partly from non-planar interference graphs (not shown in Fig. 1). They include identical-
quark Pauli exchange contributions analogous to the E terms of ref. [20], as well as various
subleading-color virtual subamplitudes [9, 10], and subleading terms in the real and virtual
color sums. We find that all the additional terms are considerably smaller than Cia’b’c), at
least for the overall four-jet rate.

The Monte Carlo integrations required to numerically evaluate the Ciz) are done sepa-

- rately for each term, except that Ci and Cj (/) are combined. An advantage [4] of breaking

up the problem in this way is that the 1/N C2 suppressed integrands have significantly more
complicated analytic representations than the leading terms, and therefore take more time
_per point to evaluate (in some cases up to a factor of five longer). On the other hand, the
1/N? parametric suppression implies that far fewer numerical evaluations of the subleading
terms are required in order to achieve an absolute statistical accuracy comparable to that for
the leading-in- N, terms. Contributions (II) and (III) could have been further decomposed by
analogy to Eq. (9), but in view of their small overall contribution they were each integrated
as a single expression.

As in any NLO QCD computation, the real and virtual corrections to the cross-section
are separately divergent, but have a finite sum. In dimensional regularization with D =
4 — 2¢, the singularities of the virtual part manifest themselves as poles in € in the one-loop

amplitudes, whereas the real singularities are obtained upon phase-space integration of the
* squared tree amplitudes. We use a general version of the subtraction method [20] to extract
the singular parts of the real cross-section and combine them with the virtual poles. This
method leaves a finite integral over five-parton phase space, and another over four-parton
phase space, which are performed by adaptive Monte Carlo integration using VEGAS [22].
The particular form of the subtraction method used here is essentially that described in
ref. [23],.to which we refer the .reader for more details. No approximation of the matrix
elements or the phase-space has to be made in this method. '
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The subtraction method relies on the fact that the integral over the tree cross-section is
rendered finite by subtracting all soft and collinear limits. This means that for a phase space
point that lies very close to a singular point, the integrand is the square of the difference
of two large numbers, namely the tree amplitude and its soft or collinear limit. In order to
obtain the desired cancellation it is crucial to compute this difference in a numerically stable
way, even if a certain invariant mass becomes very small. Thus, if the phase space point
is so close to a singular point that a straightforward evaluation of the amplitude becomes
unstable, the amplitude is replaced by its (more stable) soft or collinear limit. We checked
that the error introduced by this treatment is completely negligible. We also checked that our
results are independent of the arbitrary parameters 6 and £.,; which have to be introduced
in the subtraction method [23].

Another potential numerical problem is related to spurious singularities in the one-loop
amplitudes. Besides the expected poles in the soft and collinear limits (which are avoided by
the program since they lie in the three-jet region), the one-loop amplitudes have unphysical
poles, i.e. poles with zero residue. Unfortunately, it is not possible to eliminate all these poles
analytically, as long as the amplitude is expressed in terms of logarithms and dilogarithms
multiplied by kinematic coefficients [10]; this elimination is only possible if the amplitude is
rewritten in terms of more general functions [24]. However, in the helicity formalism, one
can simplify the (di)logarithmic coefficients to greatly alleviate the spurious poles [10]. We
checked that the numerical evaluation of the matrix elements as given in refs. [9, 10] is stable,
even for points that are quite close to a spurious pole, and that the probability for hitting an
unstable point in the Monte Carlo integration is very small. Indeed, we had to evaluate close
to a million points in a test run (corresponding to sub-percent statistical accuracy on the
integral) in order to find one point that was ‘close’ to a particular spurious pole; at that one
point the value of the vanishing denominator was still about an order of magnitude larger
than where the numerical evaluation of the cross-section typically becomes unstable.

'3 Fixed-order Results

We now present results for the four-jet fraction R4 at next-to-leading order in a,. We use
N = 3 colors, Ny = 5 massless quarks, a strong coupling constant of a,(Mz) = 0.118, a top
mass of m; = 175 GeV, a Z° mass and width of M; = 91.187 GeV and I'y = 2.490 GeV,
and a weak mixing angle of sin® @y = 0.230 [25]. The numerical results given here are for
Vs = Mz, but to the extent that contributions (II) and (IIT) can be neglected, R4 depends
essentially only on N, Ny and a,(1/s). We consider the EO, Durham [26, 11] and Geneva [18]
jet algorithms. These cluster algorithms begin with a set of final-state particles (partons in
the QCD calculation) and cluster the pair {z,7} with the smallest value of a dimensionless
measure y;; into a single “proto-jet”. The procedure is repeated until all the y;; exceed the
value of the jet resolution parameter y.y, at which point the proto-jets are declared to be
jets. The-algorithms differ in the measure y;; used and/or in the rule used to assign a four-
momentum p;; to two clustered momenta p;, p;. The same value of y., in different schemes
may sample quite different classes of events. For the reader’s convenience, we collect the
definitions of the EO, Durham and Geneva schemes in Table 1.

We start the presentation of the results with the EQ scheme. Fig. 2a shows the absolute



Table 1: Jet algorithm definitions

Algorithm Yij Pij
E0 (eetp,)” (B + E5)(1, 5224)
Durham | 2 min(E?, Ez)l—ﬂl pi +pj
Geneva 8E E. }E"TSTQ)% p: + p;
Table 2: EO0 algorithm
Contribution to Ry Yeus = 0.005 Yeur = 0.01 Yeut = 0.03

Born (2.60 £+ 0.02) - 107* (1.16 +£0.01) - 10~* (1.79 £ 0.01) - 1072
a (2.43 £0.08) - 101 (1.27 £0.03) - 107! (2.42 £0.05) - 1072
b —(1.23 £0.02) - 107! | —(4.75 £ 0.04) - 1072 | —(5.57 £ 0.06) - 10~
c —(4.06 £0.02) - 107> | —(1.83 £0.01) - 1073 | —(2.93 £ 0.01) - 10~*
d+f —(1.13+0.18) - 1072 | —(1.01 £ 0.08) - 102 | —(2.42 £ 0.10) - 1073
e (1.42 £0.01) - 1072 (5.45+0.04) - 1073 (6.69 £+ 0.06) - 10~
11 (1.66 + 0.28) - 1077 (2.43 £0.32) - 1077 (1.88 +0.18) - 1077
II1 —(1.18 £ 0.01) - 10™* | —(7.563 £ 0.03) - 10~ | —(2.37 +0.02) - 1075
Full= R, (3.79 £+ 0.08) - 10! (1.88 £0.03) - 107! (3.46 £+ 0.05) - 102

value of the contributions of the different electroweak/color pieces to the four-jet fraction
at /s = My, as a function of ycu, setting the renormalization scale to u = Mz. Note
(from Table 2) that Cib) + Cic), C‘Ed) + Cif) nd C(IH) are negative. These curves are
compared to preliminary SLD data points [19] which have been corrected for detector effects
“and hadronization. Obviously the comparison would benefit from re-analysis using the full
current Z° pole data samples. As expected, the subleading-color pieces are roughly 10% of
the corresponding leading-color contributions, reflecting the 1/N? suppression. This feature
holds separately for the terms lacking and having an N; factor. The contributions (II)
and (III) are so small that we multiply them by a factor of 1000 and 10 respectively in the
figure. Table 2 presents the same results, for yc., € {0.005,0.01,0.03}, namely the coefficients
(as/2m)3 Cf)/(l + 22) at /s = M3, including the statistical uncertainties from Monte Carlo
integration. The ‘Born’ line gives the tree-level result (a,/2m)? By/(1 + £2).

Observable quantities calculated in QCD should be independent of the arbitrary renor-
malization scale y. However, the perturbative expansion is invariably truncated at a finite
" order, leading to a residual dependence of the result on p. The tree-level g dependence is
much stronger for the four-jet rate than for the three-jet rate, because the former is propor-
tional fo a? instead of a,. The full u-dependence of the NLO four-jet rate is given by

i = (S s (S fersmn()).
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Figure 2: (a) Absolute value of the contributions of the different electroweak/color pieces
to the four-jet fraction at /s = My for the EO scheme, i.e. (as/27r)3|C'£x)|/(1 + %) with
¢ € {a,b,c,d,e, f,II,111}. We also show the Born and full one-loop prediction, and data from
ref. [19]. (b) Dependence of the tree-level (dashed line) and one-loop (solid line) prediction on the
renormalization scale g for yeyy = 0.015.



Table 3: Durham algorithm

Contribution to R4 Yeus = 0.005 Yeut = 0.01 Yeus = 0.03

Born (6.78 +£0.02) - 102 (2.87 +£0.01) - 10~2 (4.1140.01) - 1073

a (6.60 +£0.13) - 1072 (3.03 4 0.06) - 10~2 (4.23 £0.07) - 1073

b —(2.68 £0.02) - 1072 | —(1.03 4 0.01) - 1072 | —(1.24 4 0.02) - 1073

c —(1.274£0.01) - 1073 | —(5.16 £ 0.02) - 107* | —(6.94 £ 0.02) - 10~°

d+f —(4.54 £0.41) - 1073 | —(2.50 £ 0.09) - 10~® | —(3.67 £ 0.45) - 10~*

e (2.93 £0.02) - 1073 (1.14 £0.01) - 1073 (1.43 £0.01) - 10~*

11 (2.28 +£0.20) - 1077 (2.22 £0.12) - 1077 (9.06 +£0.39) - 1078

11 —~(5.57+£0.03) - 107° | —(3.16 £ 0.02) - 10~° | —(7.82 +0.07) - 10~©

Full= R4 (1.04 £0.02) - 101 (4.70 £ 0.06) - 102 (6.82 4 0.08) - 1073

Table 4: Geneva algorithm
Contribution to R4 Yeus = 0.02 Yeur = 0.03 Yeus = 0.05

Born (2.63 £0.02) - 107! (1.50 £+ 0.01) - 1071 (6.33 £0.02) - 10~2

a (1.16 £ 0.05) - 107! (8.91 £0.25) - 1072 (4.90 £0.14) - 102

b —(1.37£0.02) - 10~* | —(6.99 &+ 0.09) - 10~2 | —(2.51 £ 0.03) - 102

c —(7.78 £0.12) - 1073 | —(4.32 £ 0.04) - 1073 | —(1.68 4 0.02) - 1073

d+f (6.90 +1.07) - 1072 | —(1.10 £1.88) - 10~ | —(2.55 £ 0.78) - 1073

e (1.44 £0.02) - 1072 (7.58 £0.08) - 10~ (2.83 £0.03) - 1073

II (1.72 £ 0.52) - 1077 (2.89 £0.47) - 1077 (2.53 £0.35) - 1077

I —(1.06 £0.02) - 10™* | —(7.86 £+ 0.06) - 107> | —(4.91 £0.04) - 1073

Full= R,4 (2.56 £ 0.06) - 101 (1.71 £0.03) - 107* (8.58 £ 0.15) - 102

where a;(u) is the two-loop running coupling,
w T  Po w
w = 1- M2 1n<MZ), (12)
m M

with fo = 3(5Ca — 3N;), b1 = 3(5C4 — (53Ca+ Cr)Ny), Ca = N, Cr = (N? = 1)/(2N.).
As expected, the strong renormalization-scale dependence of the tree-level result is reduced
~ by the inclusion of the next-to-leading order contribution. Fig. 2b plots the u-dependence
of R4 at tree-level and at one-loop for the EO scheme, at y., = 0.015.

The results for the Durham scheme are presented in Table 3, for the same values of ycy
as in the E0 scheme. Again, the subleading-color terms are of the expected size.

The Geneva algorithm has the feature that the leading-order results, evaluated at u = /s,
give a reasonable description of the data for large values of y.u, although the shape of
the prediction is not quite correct, especially at small ye,;. Also, the renormalization-scale
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Geneva scheme
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Figure 3: NLO prediction for the four-jet rate using the Geneva algorithm for Ny = 5 and
Ny = 8. The theoretical bands have been obtained by varying the renormalization scale from
35 < p < 2¢/s and from 1/s < p < 3/5. The data are from ref. [19].

dependence is quite flat at moderate y.u. Finally, the dependence of the prediction on the
number of light flavors Ny is reasonably large, at least in comparison with other algorithms
(see Table 4). There is some interest in experimentally constraining Ny, in particular because
a massless gluino would effectively shift the value of Ny by AN; = 43 in O(a?) four-jet
“distributions [13, 14]. (At O(a?) the effect is not simply given by AN; = +3, as is illustrated
by the structure of the O(a?) results for the total e*e~ hadronic cross-section [27].) Various
authors have suggested that the existence of a light gluino is already in doubt [14, 28, 16].
Nevertheless, we would like to ask whether one can determine Ny with sufficient accuracy
solely from the overall four-jet rate in the Geneva algorithm. In Fig. 3 we plot the NLO
Geneva prediction as a function of ycu for Ny = 5 (u,d,s,c and b quarks) and Ny = 8
(u,d, s,c and b quarks, plus a massless gluino), where the bands represent the variation of
i over the interval [%\/5,2@ and [%\/5, 34/s] respectively. These bands are compared to
preliminary SLD data [19]. The huge uncertainty for small values of y., reflects the fact
that the fixed-order prediction is not converging well for Y., < 0.02, presumably due to
" large logarithms of 1/ycy.. This breakdown happens at larger yc, for Ny = 8, since in this
particular case Cib) is the dominant contribution to the one-loop correction, and it is further
enhanced if N; is increased from 5 to 8.

As can be seen in Fig. 3 the data tend to favor N; = 5, at least for 0.03 < yeu < 0.04,
however, the uncertainties coming from uncalculated higher order terms are still too large
to permit excluding light gluinos using this observable alone.

Various angular distributions in four-jet events have been proposed to help separate the
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relatively small contributions of four-quark final states from the dominant two-quark two-
gluon final states [12]. These distributions have been studied at leading order in «; in order
to constrain Ny as well as the other color factors C4 and Cg [29, 15, 16]. The next-to-
leading-order corrections to the distributions will be discussed elsewhere [17], but they are
remarkably small, given the size of the corrections to the overall four-jet rate. Unfortunately,
in many cases the dependence on Ny is not that strong, such that a precise determination
of Ny is difficult in the face of hadronization uncertainties.

-4 Resummed Results

The four-jet fraction declines rapidly at large y.yu, and there is little data publicly available
with which to compare our predictions for ey > 0.07. On the other hand, at the kinematic
limit yeue — 0 the QCD expansion parameter becomes a,; L%, where L = In(1/ycut), and the
NLO prediction would be improved if these large logarithms could be resummed. This is
possible at leading order (LL) and next-to-leading order (NLL) in L in the Durham clustering
algorithm because the phase space factorizes appropriately [11]. The NLL four-jet rate is
then given by [11]

R = 20,QF[([ (@ 0)80)’
+ [ daTQa)A0) [ d (0,0 d)85(6) + T4)A&)] -(13)

The NLL emission probabilities are

rQo) = 2t (2 2),
(

FQ(Qaq) = “z‘géas q) (IHQ—%) ’

T g q
Is(g) = %?—% (14)

and the Sudakov factors (probability of no emission) are

Ay(Q) = exp (—/ch quq(Q,Q)> :

2@ = e (- [ dalt@a)+ )
- af@) = G (15

The Durham four-jet rate is an example of a quantity that can be resummed at leading
and next-to-leading logarithmic order, but which does not exponentiate. The NLL results
for such quantities do not include the proper renormalization-scale dependence of even the
leading-log terms [30]: Under a change of renormalization scale, a leading term o7 L?*® varies
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by ~ o™ [ = o™ [2(*+)-2 which is not contained in the NLL approximation. This is
reflected in a relatively large ‘scale uncertainty’. Thus one should not rely on the resummed
R4 alone for a determination of aMS.

Indeed at finite values of y., one should match the resummed results with the fixed-
order results. For observables that exponentiate, a number of matching schemes have
been defined [31, 3] — R-matching, In R-matching, modified R-matching and modified In R-

matching. For Ry, the following matching scheme corresponds to R-matching;:

-1

i s\ 2 s\ 3 Qs
Rf tch — R4NLL _|_ [<g> (B4 - BAI;ILL) + (g) (04 - C?LL>l (1 + ?) ) (16) ’

where the ‘overlap’ terms By and CN are defined by expanding RY™ out in powers of
as, in analogy to Eq. (7). A modified R-matching scheme could be defined by replacing
L = In(1/yeut) by In(yog —yzl, + 1) in RYL, where ymax is the maximum kinematic value of
Yeut- Lhis scheme would switch the resummed prediction over to the fixed-order prediction
more quickly as yeuy increases, and might therefore be more reliable at large yeu, but we
have not yet implemented it. One could try to define an analog of In R-matching by

B o C, (CNLL
RinR-match _ pNLL_D4 Zsl_gp 24 T4 17
4 R4 B‘I;ILL €Xp o + B4 B};ILL ) ( )

but BN vanishes for 9, ~ 0.01, so this approach fails.

We evaluate the resummed Ry using the two-loop formula (12) for the running coupling
appearing in Eq. (14). To evaluate the renormalization-scale dependence of RY™" we make
the substitution o, — a5+ BoIn(u?/s)a?/2x. In Fig. 4 we show the resummed and matched
prediction RE-™#h for the Durham algorithm, together with the tree-level and one-loop
fixed-order predictions. In arder to illustrate once more that the subleading-color terms are
small we also show the leading-color one-loop result in Fig. 4.

The agreement between theory and data is spectacularly good for the resummed and

“matched prediction. On the other hand, the ‘scale uncertainty’ in the prediction is still siz-
able. This is illustrated in Fig. 5 where the the full one-loop and the resummed and matched
results are shown as bands. These bands have been obtained by varying the renormalization
scale from $ Mz < p < 2Mz and %MZ < p < 3M7 respectively. (The large scale-dependence
at large ycut 1n the resummed and matched prediction might be improved by a modified
matching scheme.)
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Durham scheme
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1071 :
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10 Full one—loop
—:—-—-— One-—loop plus resummed
10-4 L ' ' . X
0.001 0.002 0.005 0.010 0.020 0.050
Yeut

Figure 4: The four-jet fraction for the Durham algorithm at /s = M, illustrating the improve-
ments to the Born term from adding successively the leading-color loop corrections, the subleading-
color corrections, and the resummed corrections after matching. The data are from ref. [19)].
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Durham scheme
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Figure 5: Dependence on the renormalization scale of (a) the full one-loop prediction and (b) the
resummed and matched result, for the Durham algorithm at /s = M.
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5 Conclusions

In this article we presented the complete O(a?) results for four-jet production in electron-
positron annihilation. Generally, the NLO corrections are large and improve the agree-
ment between theory and experiment considerably. The 1/NZ-suppressed correction terms
are indeed smaller than the leading-color terms by the naive factor of ten or so. For the
Durham algorithm, after the large logarithms of 1/y.,; have been resummed and the result
is matched to the fixed-order prediction, and evaluated at the renormalization scale y = /s,
theory agrees remarkably well with Z° data. Because the NLO corrections to the overall rate
- are so large, significant renormalization-scale dependence remains for both the fixed-order
and resummed predictions, suggesting that there are still ~ 10 — 20% uncertainties from
uncalculated higher-order corrections. More precise NLO predictions are possible for nor-
malized four-jet distributions, for example the angles defined in ref. [12], and will be reported
elsewhere [17].
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