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Abstract 

We present the next-to-leading order (L3(a:)) perturbative QCD predictions for e+e- 

annihilation into four jets. A previous calculation omitted the 0(az) terms suppressed 

by one or more powers of l/N:, where N, is the number of colors, and the ‘light-by-glue 

scattering’ contributions. We find that all such terms are uniformly small, constituting 

less than 10% of the correction. For the Durham clustering algorithm, the leading and 

next-to-leading logarithms in the limit of small jet resolution parameter y,-/cut can be 

resummed. We match the resummed results to our fixed-order calculation in order to 

improve the small ye/cut prediction. 
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1 Introduction 

Electron-positron annihilation into jets provides an arena for studying quantum chromody- 

namics (QCD) that is free of initial-state uncertainties such as parton distribution functions. 
At the large center-of-mass energies achieved by SLC, LEP, and now LEP2, e+e- annihilation 

is also relatively free of nonperturbative final-state effects, i.e. hadronization corrections. On 

the other hand, perturbative QCD corrections to jet rates can be very large. For example, 
the three-jet rate at the 2’ pole receives a 20-30% correction [l] at order cuz. These next-to- 
leading-order (NLO) corrections are of course critical for obtaining a precise experimental 
measurement of cu, from the three-jet rate and related O(a,) observables [2, 31. 

. 

More recently, the NLO corrections to e+e- production of four jets were computed, and 
a correction of roughly 100% was found [4] f or most jet algorithms (when the renormal- 
ization scale was set equal to the center-of-mass energy). This computation omitted terms 
suppressed by one or more powers of l/N:, where N, is the number of colors in a general 
SU(N,) gauge theory (N, = 3 for &CD). It 1 a so neglected the ‘light-by-glue scattering’ 
contributions - interference terms where two different flavor quarks couple to the virtual 
photon or 2 boson. In this article we present the complete O(az) results, using an im- 
proved version of the same numerical program, MENLO-PARC [5], which was employed 
for the leading-in-N= computation. The crucial ingredients for the construction of the pro- 
gram are the tree-level amplitudes for five massless final state partons, e+e- + @ggg and 
e+e- --+ qijq’q’g [6, 71, and especially the recently-computed one-loop virtual amplitudes for 
e+e- + qijq’q’ [8, 91 and e+e- + qijgg [lo]. W e use the formulas given in refs. [6, 9, lo]. 

The NLO prediction of the four-jet fraction - an observable whose expansion begins at 
order c$ - makes it possible to measure CX~’ with the same formal level of precision (NLO) 
as has previously been reserved for O(CY,) observables in e+e- annihilation. However, the 
theoretical uncertainty in such a measurement will still be sizeable: Because the one-loop 
corrections are so large, the.renormalization-scale dependence of the NLO four-jet result is 
still strong, and it is likely that uncalculated higher-order corrections are important. Also, 
a significant four-jet rate only appears at smaller values of the jet resolution parameter ycut, 
where there are large perturbative logarithms, although these can be partially resummed for 
the Durham algorithm [ll]. 

There are at least two other motivations for studying e+e- annihilation to four jets: (1) 
These events are a background to e+e- -+ W+W- -+ 4 jets, particularly when the center-of- 
mass energy is not far above the W-pair threshold, as is the case at LEP2. (2) Four-jet final 
states provide QCD tests to which three-jet events are insensitive [la]. For example, the 

non-abelian three-gluon vertex appears at leading order in four jet events; the same is true 
for the production of hypothetical, light, colored but electrically neutral particles, such as 

light gluinos [13, 14, 15, 161. In both applications, distributions of the four jets with respect 
to energies and angles [ 121 are important. Such distributions can be computed at NLO using 

the same numerical program, and will be the subject of a separate publication [17]; here we 
briefly ‘study the sensitivity of the total four jet rate to additional light fermions. 

The remainder of the paper is organized as follows. In section 2 we describe the de- 

pendence of the four-jet rate on electroweak and color factors, and outline the structure of 
the numerical calculation. In section 3 we present the complete O(cy:) predictions for three 

different jet algorithms. We indicate the dependence of the predictions on the (unphysical) 
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renormalization scale CL. The Geneva algorithm [18] h as a relatively mild ~1 dependence 
(small NLO correction) and a relatively strong dependence on the number of light quark 
flavors Nf; we discuss the extent to which Nf can be determined from the Geneva four jet 

rate alone. In section 4 we present results from matching the resummed Durham jet rate 
to the fixed-order O(CY~) results; the improved prediction agrees quite well with preliminary 
SLD data [19]. S ec ion 5 contains our conclusions. t 

2 Structure of the Cross-Section and Computation 

For computational reasons as well as to study the effect of varying parameters, it is useful 

to decompose the leading-order (Born) and NLO contributions to the four-jet differential 
cross-section with respect to both their electroweak and QCD (color) structure. To simplify 
the electroweak decomposition we assume that the observable being calculated is insensi- 
tive to both (1) correlations between the final-state hadrons and the electron-positron beam 
direction, and (2) quark and gluon helicities. We also assume the positrons are unpolar- 
ized and the electrons have a longitudinal polarization of P, (P, = +l for a right-handed 

beam). QED initial state radiation and other electroweak corrections are neglected. Then 
the helicity-summed four-jet (differential) cross-section at center-of-mass energy ,/Z may be 
written 

where 

g4-jet = 
!$ NC [f’z’(s) $1 + ftzz) ( s) $‘) + f(zzz) ( s) o~zzz)] , 

(1) 

f”‘(s) = c(Qq)” + ;((vE)“(i - E) + (~&)~(l+ p,,) ~((~:,” + (~;)2)IPz(s)12 . 
9 

. 
2 (gE(l - E) + v&(1 + E)) @Qq(~iq+ vk))Re%(s), -- 

f(“)(s) = (cQq)2 + $((u;)‘(l -E) + (&)l(: + C,) (x(4 + +‘&)I2 
4 

f ($,(I - E) + v&(1 + E)) (c Qq) (=I, + $J)Re%(s), -- 

f(ZZZ) (s) = 1 

8 sin2 20~ 
(($)“(l - E) + ($J2(l + b,,) IPz(:)12 ) (2) 

where Q is the fine structure constant, Qq 
and right-handed couplings to the 2’ are 

-1 + 2sin2& v;, = . 
sin28w ’ 

is the charge of quark q in units of e, and the left- 

v& = 
2 sin2 0~ 

sin2& ’ 

?I; = 
f 1 - 2Qq sin2 8~ 

v; = - 
2Qq sin2 8~ 

sin 28~ 
> 

sin28w ’ (3) 

where 19w is the weak mixing angle; the two signs in w; correspond to up (+) and down (-) 

type quarks. Equations (1) and (2) include both virtual photon and 2 boson exchange (and 
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their interference); the ratio of 2 and photon propagators is given by 

Pz(s> = 
S 

s-M;+irzM~’ 
(4) 

where Mz and I’z are the mass and width of the 2. 
Representatives of the classes of diagrams contributing to f(l), f(“) and f(“‘) are de- 

picted in Fig. 1 as amplitude interferences. Five-parton cuts of these graphs, shown as 
dashed lines, correspond to the real part of the NLO correction; four-parton cuts, shown as 
dotted lines, correspond to the virtual part. In contribution (I) a single fermion couples to 

both (y, 2) vector bosons in the interference, via either a vector or axial vector coupling. 

(As shown in the figure, there may be a second or even a third fermion loop in the interior 
of the graph, corresponding to ‘QCD’ factors of Nf in the cross-section.) This contribution 
dominates the cross-section at O(cua) and as we will see, again at O((Y~). 

. 

The remaining contributions, (II) and (III), have different origins in the real and virtual 
parts of the calculation. In the real part they come from the qtjq’tj’g final state when the 
roles of q and q’ are exchanged on the opposite side of the cut; in particular, a different quark 
pair couples to the (y, 2) on each side of the interference. In the virtual part they can have 
the same kind of exchange origin in qijq’ij’ final states, but they can also arise from either 
qijgg or qqq’if graphs where a quark loop couples directly to the photon or 2 (for example 

the contribution A6;3 (A?) in ref. [9]). 
Contribution (II) represents ‘light-by-glue scattering’, whereby a different fermion line 

couples to each vector boson, via a vector coupling in each case. There is no such contribution 
at O(az) if only charge-blind observables are considered [20], due to Furry’s theorem - the 
order CX~ amplitude interferences all contain fermion triangle subgraphs. Although the cross- 
section is nonvanishing at O($), we shall see that it is still extremely small, due partly 
to cancellations in the sum over quark couplings in f(“)(s), and partly to approximate 
cancellations in the phase-space integrations that are related to the exact cancellations at 
order oz. 

Contribution (III), ‘Z-by-glue’ scattering, is similar to contribution (II) except that the 
quarks couple to the 2 through the axial vector coupling. This contribution is nonzero at 

O(az) [al], although small for the three and four jet rates, and it remains small at O(cy:). 
In Eq. (2) we have already carried out the sum over the five light quark flavors, in which the 
massless weak isospin doublets (u, d) and (c, s) cancelled, leaving only the (t, b) contribution. 
The top quark contribution to (III) is purely virtual for fi < 2mt, but it does not decouple 
in the large mt limit [al]. W e expand in the limit of large top quark mass, including all terms 

through O(s/m,2); at th is order the top quark does not appear in the vector contribution 

(II) 19, lOI* 
Dividing the four-jet cross-section gd-jet by the total hadronic cross-section at O(LY,), 

e - otot = $$N,f(‘)(s) (1 + T) , (5) 

yields the four-jet fraction 

c4-jet .R4--= by) I( ) 
-1 

1 + 2 . 

~tot 7r (6) 
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Figure 1: Representative contributions of type (I), (II) and (III), as described in the text. The 

coupling of a quark to the (y, 2) vector boson is denoted by x, with a 1 (75) for vector (axial vector) 

coupling. Dashed lines correspond to representative five-parton cuts; dotted lines to four-parton 

cuts. 
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Neglecting for the moment the renormalization-scale dependence of the calculated cross- 

section we write the expansion in c~, as 

R4 = [(z)2B4+ (z)3c4] (1+:)-i ) (7) 

f(A) 
(A) - 

f (4 u4 
A = I, II, III, (8) 

Next we decompose the one-loop correction to ar) with respect to N, and Nf: 

C(‘) = N2( N2 - 1) Nf (b) Nr” (cl 1 (4 Nf (e) l (f) 
4 c c $’ 

-5774 +jy4 +--a4 +@74 +jq4 * 
N,” 1 (9) c 

Correspondingly, we write the full O(az) correction to the four-jet rate as 

c4 = c‘p + cib) + (y + ($1 + ($1 + cif) + ($1) + &III) 4 , (10) 

absorbing all prefactors into the definitions of the CiZ’. In ref. [4] we calculated Cia’b’c); 

here we add the remaining terms in Eq. (10). The subleading-color terms Cid’e7f) come 

partly from non-planar interference graphs (not shown in Fig. 1). They include identical- 
quark Pauli exchange contributions analogous to the E terms of ref. [20], as well as various 
subleading-color virtual subamplitudes [9, lo], and subleading terms in the real and virtual 

color sums. We find that all the additional terms are considerably smaller than Cia’b’c), at 
least for the overall four-jet rate. 

The Monte Carlo integrations required to numerically evaluate the Cp’ are done sepa- 

* rately for each term, except that Cl”’ and Cif) are combined. An advantage [4] of breaking 

up the problem in this way is that the l/N:-suppressed integrands have significantly more 
complicated analytic representations than the leading terms, and therefore take more time 

per point to evaluate (in some cases up to a factor of five longer). On the other hand, the 
l/N: parametric suppression implies that far fewer numerical evaluations of the subleading 
terms are required in order to achieve an absolute statistical accuracy comparable to that for 
the leading-in-NC terms. Contributions (II) and (III) could have been further decomposed by 

analogy to Eq. (9), b u t in view of their small overall contribution they were each integrated 

as a single expression. 
As in any NLO QCD computation, the real and virtual corrections to the cross-section 

are separately divergent, but have a finite sum. In dimensional regularization with D = 

4 - 2c, the singularities of the virtual part manifest themselves as poles in c in the one-loop 
amplitudes, whereas the real singularities are obtained upon phase-space integration of the 

squared tree amplitudes. We use a general version of the subtraction method [20] to extract 
the singular parts of the real cross-section and combine them with the virtual poles. This * - 
method leaves a finite integral over five-parton phase space, and another over four-parton 
phase space, which are performed by adaptive Monte Carlo integration using VEGAS [22]. 

The particular form of the subtraction method used here is essentially that described in 
ref. [23], .to which we refer the .reader for more details. No approximation of the matrix 

elements or the. phase-space has to be made in this method. 
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The subtraction method relies on the fact that the integral over the tree cross-section is 

rendered finite by subtracting all soft and collinear limits. This means that for a phase space 

point that lies very close to a singular point, the integrand is the square of the difference 
of two large numbers, namely the tree amplitude and its soft or collinear limit. In order to 
obtain the desired cancellation it is crucial to compute this difference in a numerically stable 
way, even if a certain invariant mass becomes very small. Thus, if the phase space point 

is so close to a singular point that a straightforward evaluation of the amplitude becomes 

unstable, the amplitude is replaced by its (more stable) soft or collinear limit. We checked 
that the error introduced by this treatment is completely negligible. We also checked that our 

- results are independent of the arbitrary parameters S and tcut which have to be introduced 
in the subtraction method [23]. 

Another potential numerical problem is related to spurious singularities in the one-loop 
amplitudes. Besides the expected poles in the soft and collinear limits (which are avoided by 
the program since they lie in the three-jet region), the one-loop amplitudes have unphysical 
poles, i.e. poles with zero residue. Unfortunately, it is not possible to eliminate all these poles 
analytically, as long as the amplitude is expressed in terms of logarithms and dilogarithms 
multiplied by kinematic coefficients [lo]; this elimination is only possible if the amplitude is 
rewritten in terms of more general functions [24]. H owever, in the helicity formalism, one 
can simplify the (di)logarithmic coefficients to greatly alleviate the spurious poles [lo]. We 
checked that the numerical evaluation of the matrix elements as given in refs. [9, lo] is stable, 
even for points that are quite close to a spurious pole, and that the probability for hitting an 
unstable point in the Monte Carlo integration is very small. Indeed, we had to evaluate close 

to a million points in a test run (corresponding to sub-percent statistical accuracy on the 
integral) in order to find one point that was ‘close’ to a particular spurious pole; at that one 
point the value of the vanishing denominator was still about an order of magnitude larger 

* than where the numerical evaluation of the cross-section typically becomes unstable. 

3 Fixed-order Results 

We now present results for the four-jet fraction R4 at next-to-leading order in (Y,. We use 
N, = 3 colors, Nf = 5 massless quarks, a strong coupling constant of cr,(Mz) = 0.118, a top 

mass of mt = 175 GeV, a 2’ mass and width of Mz = 91.187 GeV and Iz = 2.490 GeV, 
and a weak mixing angle of sin2 0~ = 0.230 [25]. Th e numerical results given here are for 
fi = A&, but to th e extent that contributions (II) and (III) can be neglected, R4 depends 
essentially only on N,, Nf and CK~( &). W e consider the EO, Durham [26, 111 and Geneva [18] 
jet algorithms. These cluster algorithms begin with a set of final-state particles (partons in 

the QCD calculation) and cluster the pair {i, j} with the smallest value of a dimensionless 
- measure y;j into a single “proto-jet”. The procedure is repeated until all the y;j exceed the 

value of the jet resolution parameter ycut, at which point the proto-jets are declared to be 
jets. The-algorithms differ in the measure y;j used and/or in the rule used to assign a four- 
momentum p;j to two clustered momenta p;, pj. The same value of ycut in different schemes 
may sample quite different classes of events. For the reader’s convenience, we collect the 

definitions of the EO,. Durham and Geneva schemes in Table 1. 

We start the presentation of the results with the EO scheme. Fig. 2a shows the absolute 
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Table 1: Jet algorithm definitions 

Table 2: EO algorithm 

Contribution to R4 ycut = 0.005 
Born 

t 

d;f 

F/I 
III 

Full z R4 

(2.60 f 0.02) . 10-i 

(2.43 f 0.08) . 10-r 
-(1.23 f 0.02) . 10-i 
-(4.06 f 0.02) . 1O-3 
-(1.13 f 0.18) . 1O-2 

(1.42 f 0.01) . 1O-2 
(1.66 f 0.28) e 1O-7 

-(1.18 f 0.01) . 1O-4 

(3.79 f 0.08) . 10-i 

ycut = 0.01 ycut = 0.03 
(1.16 f 0.01) . 10-l (1.79 f 0.01) . 1o-2 

(1.27 f 0.031 - 10-i (2.42 f 0.05j - 1O-2 
-(4.75 f 0.04) - 1O-2 -(5.57 f 0.06) . 1O-3 
-(1.83 f 0.01) . 1O-3 -(2.93 f 0.01) . 1O-4 
-(l.Ol f 0.08) . 1O-2 -(2.42 f 0.10) . 1O-3 

(5.45 f 0.04) . 1O-3 (6.69 f 0.06) . 1O-4 
(2.43 f 0.32) - 1O-7 (1.88 f 0.18) . 1O-7 

-(7.53 f 0.03) . 1O-5 -(2.37 f 0.02) . 1O-5 

(1.88 f 0.03) * 10-l (3.46 f 0.05) - 1O-2 

value of the contributions of the different electroweak/color pieces to the four-jet fraction 
at & = Mz, as a function of ycut, setting the renormalization scale to ,Y = Mz. Note 

(from Table 2) that Cib) f Cl’), Cid) + Cif’ and Cil”) are negative. These curves are 
compared to preliminary SLD data points [19] which have been corrected for detector effects 
and hadronization. Obviously the comparison would benefit from re-analysis using the full 
current 2’ pole data samples. As expected, the subleading-color pieces are roughly 10% of 
the corresponding leading-color contributions, reflecting the l/N: suppression. This feature 

holds separately for the terms lacking and having an Nf factor. The contributions (II) 
and (III) are so small that we multiply them by a factor of 1000 and 10 respectively in the 
figure. Table 2 presents the same results, for ycut E {0.005,0.01,0.03}, namely the coefficients 

(a,/2~i-)~ Ci”)/(l + “) at fi = A4 z, including the statistical uncertainties from Monte Carlo 
integration. The ‘Bzrn’ line gives the tree-level result (c~,/27r)~ B4/( 1 + 2). 

Observable quantities calculated in QCD should be independent of the arbitrary renor- 

malization scale p. However, the perturbative expansion is invariably truncated at a finite 
order, leading to a residual dependence of the result on ~1. The tree-level p dependence is 

much stronger for the four-jet rate than for the three-jet rate, because the former is propor- 
tional fo &p instead of CY’,. The full p-dependence of the NLO four-jet rate is given by 

04(y) = ($)2B4 + (%)3[C4 +2WIn($)B4], (11) 
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Figure 2: (a) Ab so u e 1 t value of the contributions of the different electroweak/color pieces 

to the four-jet fraction at 6 = Mz for the EO scheme, i.e. ((Y,/~T)~ ICp’1/(1 + a) with ?T 
2 E {a,b,c,d,e,f,IT,III}. W e a so 1 show the Born and full one-loop prediction, and data from 

ref. [19]. (b) D p d e en ence of the tree-level (dashed line) and one-loop (solid line) prediction on the 

renormalization scale p for ycut = 0.015. 



Table 3: Durham algorithm 

Contribution to Rq 

Born 

; 

C 

d+f 

lYl 

III 

Full 3 R4 

ycut = 0.005 

(6.78 f 0.02) . 1O-2 (2.87 f 0.01) . 1O-2 

(6.60 f 0.13) * 1o-2 (3.03 f 0.06) . 1O-2 
-(2.68 f 0.02) - 1O-2 -(1.03 f 0.01). 1o-2 
-(1.27 f 0.01) . 1O-3 -(5.16 f 0.02) . 1O-4 
-(4.54 f 0.41) * 1o-3 -(a.50 f 0.09) . 1O-3 

(2.93 f 0.02) * 1o-3 (1.14 f 0.01) * 1o-3 
(2.28 f 0.20) . 1O-7 (2.22 f 0.12) * 1o-7 

-(5.57 f 0.03) . 1o-5 -(3.16 f 0.02) . 1O-5 
(1.04 f 0.02) * 10-l (4.70 f 0.06) - 1O-2 

ycut = 0.01 

Table 4: Geneva algorithm 

Contribution to R4 ycut = 0.02 

Born (2.63 f 0.02) - 10-l 

; 
(1.16 f 0.05) . 10-l 

-( 1.37 f 0.02) * 10-l 

d;f 
-(7.78 f 0.12) . 1O-3 

(6.90 f 1.07) . 1O-3 

;I 
(1.44 f 0.02) * 1o-2 
(1.72 f 0.52) . 1O-7 

III -( 1.06 f 0.02) - 1O-4 
‘, Full = R4 (2.56 f 0.06) - 10-l 

ycut = 0.03 

(1.50 f 0.01) . 10-l 

(8.91 f 0.25) . 1O-2 
-(6.99 f 0.09) - 1O-2 
-(4.32 f 0.04) . 1O-3 
-(l.lO f 1.88) . 1o-3 

(7.58 III 0.08) . 1O-3 
(2.89 f 0.47) . 1O-7 

-(7.86 f 0.06) . 1O-5 

(1.71 f 0.03) . 10-i 

ycut = 0.03 

(4.11 f 0.01) . 10-a 

(4.23 f 0.07) . 1O-3 
-(1.24 f 0.02) . 1O-3 

-(6.94 f 0.02) . 1O-5 

-(3.67 f 0.45) . 1O-4 
(1.43 Zt 0.01) . 1o-4 

(9.06 f 0.39) . lo-’ 
-(7.82 f 0.07) . 1O-6 

(6.82 f 0.08) . 1O-3 

where as(p) is the two-loop running coupling, 

ycut = 0.05 

(6.33 f 0.02) - 1O-2 

(4.90 It 0.14) . 1o-2 
-(a.51 f 0.03) . 1O-2 
-(1.68 f 0.02) . 1o-3 

-(a.55 f 0.78) - 1O-3 
(2.83 f 0.03) . 1O-3 
(2.53 zt 0.35) - 1O-7 

-(4.91 f 0.04) . 1o-5 

(8.58 f 0.15) . 1O-2 

with ,& = f(yC~ - fNf), pi = $(yC; - (!CA + CF)Nf), CA = N,, CF = (NC2 - l)/(2Nc). 
As expected, the strong renormalization-scale dependence of the tree-level result is reduced 

- by the inclusion of the next-to-leading order contribution. Fig. 2b plots the p-dependence 

of R4 at tree-level and at one-loop for the EO scheme, at ycut = 0.015. 

The results for the Durham scheme are presented in Table 3, for the same values of ycut 
as in the EO scheme. Again, the subleading-color terms are of the expected size. 

The Geneva algorithm has the feature that the leading-order results, evaluated at p = fi, 
give a reasonable description of the data for large values of ycut, although the shape of 
the prediction is not quite correct, especially at small ycut. Also, the renormalization-scale 
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Geneva scheme . . . . . 
0.30 N, = 5, hi,/2 < p < 2M, 

--- N, = 5, b&/3 < /.L < 3M, 
~~~~~.~~~~~~~ N, = 6, M,/2 < p < 2M, 

N, = 6, M,/3 < p < 3&i, 

\ 
. .\ 

. .\ 

<.. 
. .\ 

.:;yq. 
. .\ 

\ 

. .\ 
\y:. ‘..\ 

1 
-I 

1 

0.02 0.03 0.04 

Yd 

0.05 0.06 0.07 

Figure 3: NLO prediction for the four-jet rate using the Geneva algorithm for Nf = 5 and 
Nf = 8. The theoretical bands have been obtained by varying the renormalization scale from 
i&<p<2fiandf rom $fi < p < 3&. The data are from ref. [19]. 

dependence is quite flat at moderate ycut. Finally, the dependence of the prediction on the - 
number of light flavors Nf is reasonably large, at least in comparison with other algorithms 

. 
(see Table 4). Th ere is some.interest in experimentally constraining Nf, in particular because 
a massless gluino would effectively shift the value of Nf by AN, = $3 in O(CY~) four-jet 
distributions [13, 141. (At O(c$) th e e ec is not simply given by AN, = $3, as is illustrated ff t 
by the structure of the O(c$) results for the total e e + - hadronic cross-section [27].) Various 
authors have suggested that the existence of a light gluino is already in doubt [14, 28, 161. 
Nevertheless, we would like to ask whether one can determine Nf with sufficient accuracy 

solely from the overall four-jet rate in the Geneva algorithm. In Fig. 3 we plot the NLO 
Geneva prediction as a function of ycut for Nf = 5 (u,d,s,c and b quarks) and Nf = 8 
(u, d, s, c and b quarks, plus a massless gluino), where the bands represent the variation of 
p over the interval [ifi, 2&l and [ifi, 3Js7 respectively. These bands are compared to 

preliminary SLD data [19]. The huge uncertainty for small values of ycut reflects the fact 
that the fixed-order prediction is not converging well for ycut 5 0.02, presumably due to 

- large logarithms of l/y,,, . This breakdown happens at larger ycut for Nf = 8, since in this 

particular case Cib) is the dominant contribution to the one-loop correction, and it is further 
enhanced-if Nf is increased from 5 to 8. 

As can be seen in Fig. 3 the data tend to favor Nf = 5, at least for 0.03 5 ycut < 0.04, 
however, the uncertainties coming from uncalculated higher order terms are still too large 

to permit excluding light gluinos using this observable alone. 
Various angular distributions in four-jet events have been proposed to help separate the 
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relatively small contributions of four-quark final states from the dominant two-quark two- 

gluon final states [la]. Th ese distributions have been studied at leading order in CY, in order 

to constrain Nf as well as the other color factors CA and CF [29, 15, 161. The next-to- 

leading-order corrections to the distributions will be discussed elsewhere [17], but they are 
remarkably small, given the size of the corrections to the overall four-jet rate. Unfortunately, 
in many cases the dependence on Nf is not that strong, such that a precise determination 

of Nf is difficult in the face of hadronization uncertainties. 

- 4 Resummed Results 

The four-jet fraction declines rapidly at large ycut, and there is little data publicly available 
with which to compare our predictions for ycut > 0.07. On the other hand, at the kinematic 

limit ycut t 0 the QCD expansion parameter becomes ctJ2, where L = ln(l/y,,,), and the 
NLO prediction would be improved if these large logarithms could be resummed. This is 
possible at leading order (LL) an d next-to-leading order (NLL) in L in the Durham clustering 

algorithm because the phase space factorizes appropriately [ll]. The NLL four-jet rate is 
then given by [l l] 

RyLL = 2 MQ)l” [ (Ly WJ,(Q, Q)Au(4))2 

The NLL emission probabilities are 

(14) 

and the Sudakov factors (probability of no emission) are 

A,(Q) = exp 

As(Q) = exp -L; 4 [WQ,a> + r,(dl 

P,(Q)l” 
A,(Q) = A,(Q) * (15) 

The Durham four-jet rate is an example of a quantity that can be resummed at leading 
and next-to-leading logarithmic order, but which does not exponentiate. The NLL results 

for such quantities do not include the proper renormalization-scale dependence of even the 

leading-log terms [30]: U n d er a change of renormalization scale, a leading term aFL2” varies 
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by w ,;+1,52” = Q.;+1L2(n++2, wh’ h ic is not contained in the NLL approximation. This is 
reflected in a relatively large ‘scale uncertainty’. Thus one should not rely on the resummed - 
Rq alone for a determination of CY~‘. 

Indeed at finite values of ycut one should match the resummed results with the fixed- 
order results. For observables that exponentiate, a number of matching schemes have 
been defined [31, 3]- R- matching, In R-matching, modified R-matching and modified In R- 

matching. For R 4, the following matching scheme corresponds to R-matching: 

RR--match = RNLL 
4 4 + 

[( u 

3 2 
27r 

B4 - By”) + (2)” (C4 - CyLL)] (I+ :)-l, (16) 

where the ‘overlap’ terms ByLL and CyLL are defined by expanding RyLL out in powers of 
oy,, in analogy to Eq. (7). A modified R-matching scheme could be defined by replacing 
L = ln( l/ycut) by ln( y,-,‘, - y,t + 1) in RyLL, where ymax is the maximum kinematic value of 
ycut. This scheme would switch the resummed prediction over to the fixed-order prediction 
more quickly as ycut increases, and might therefore be more reliable at large ycut, but we 
have not yet implemented it. One could try to define an analog of In R-matching by 

RhlR-match = RNLL 
4 

cNLL 

-2 + g - + ? 
4 4 )I (17) 

but ByLL vanishes for ycut N 0.01, so this approach fails. 
We evaluate the resummed RyLL using the two-loop formula (12) for the running coupling 

appearing in Eq. (14). T o evaluate the renormalization-scale dependence of RFLL we make 
the substitution a, + o, + pa ln(p2/s)c$/27r. In Fig. 4 we show the resummed and matched 
prediction RfmmatCh for the Durham algorithm, together with the tree-level and one-loop 

. fixed-order predictions. In order to illustrate once more that the subleading-color terms are 
small we also show the leading-color one-loop result in Fig. 4. 

The agreement between theory and data is spectacularly good for the resummed and 
matched prediction. On the other hand, the ‘scale uncertainty’ in the prediction is still siz- 
able. This is illustrated in Fig. 5 where the the full one-loop and the resummed and matched 
results are shown as bands. These bands have been obtained by varying the renormalization 

scale from f Mz < p < 2Mz and :Mz < ,Y < 3Mz respectively. (The large scale-dependence 
at large ycut in the resummed and matched prediction might be improved by a modified 
matching scheme.) 
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Figure 4: The four-jet fraction for the Durham algorithm at fi = Mz, illustrating the improve- 

ments to the Born term from adding successively the leading-color loop corrections, the subleading- 

color corrections, and the resummed corrections after matching. The data are from ref. [19]. 
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Figure 5: Dependence on the renormalization scale of (a) the full one-loop prediction and (b) the 

resummed and matched result, for the Durham algorithm at fi = Mz. 
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5 Conclusions 

In this article we presented the complete O(cr:) results for four-jet production in electron- 

positron annihilation. Generally, the NLO corrections are large and improve the agree- 

ment between theory and experiment considerably. The l/N:-suppressed correction terms 

are indeed smaller than the leading-color terms by the naive factor of ten or so. For the 
Durham algorithm, after the large logarithms of l/y,,, have been resummed and the result 
is matched to the fixed-order prediction, and evaluated at the renormalization scale p = &, 
theory agrees remarkably well with 2’ data. Because the NLO corrections to the overall rate 

- are so large, significant renormalization-scale dependence remains for both the fixed-order 

and resummed predictions, suggesting that there are still N 10 - 20% uncertainties from 
uncalculated higher-order corrections. More precise NLO predictions are possible for nor- 
malized four-jet distributions, for example the angles defined in ref. [12], and will be reported 
elsewhere [ 171. 
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