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Abstract: The understanding of the properties of multipartite systems is a long-standing

challenge in quantum theory that signals the need for new ideas and alternative frame-

works that can shed light on the intricacies of quantum behavior. In this work, we argue

that symmetric spaces provide a common language to describe two-qubit and two-mode

Gaussian systems. Our approach relies on the use of equivalence classes that are defined

by a subgroup of the maximal symmetry group of the system and involves an involution

which enables the Cartan decomposition of the group elements. We work out the symmetric

spaces of two qubits and two modes to identify classes which include an equal degree of

mixing states, product states, and X states, among others. For three qubits and three modes,

we point out how the framework can be generalized and report partial results about the

physical interpretations of the symmetric spaces.

Keywords: Lie groups quantum system; Cartan decomposition; Gaussian states; mixed

states; quantum correlations

1. Introduction

Is there a framework that can systematically classify qubits and Gaussian modes

systems? Since the second half of the 19th century, when Felix Klein initiated the so-called

Erlangen program, the development of geometry has been intertwined with algebraic

notions. The program included the proposal to study geometric structures in terms of

symmetry and groups, and suggested that physicists could benefit from the resulting

framework [1]. Modern Hamiltonian mechanics and Noether’s theorem for continuous

symmetries are two examples of the connection between geometry, groups, and physics.

At the root of Klein’s proposal is the idea that different geometries are distinguished

by a set of group invariants. For example, Euclidean geometry deals with areas and angles;

hence, rotations and translations form the appropriate group. The concept of symmetric

space (SS) is one outcome of the Erlangen program, and in this work, we use it to analyze the

properties of quantum systems. To address this challenge, we exploit the close relationship

between groups and quantum theory; examples of such a relationship are quantum states

as representations of the associated Lie algebra, observables and generators, and time

evolution modeled as a group action.

Applied to quantum mechanics, the Erlangen program is ambitious. Our work focuses

on the study of some discrete-variable and continuous-variable quantum systems, hereafter

referred to as DV and CV, respectively. Examples of the former are one or more qubits, while

the latter include one or more Gaussian modes of the electromagnetic field. A common

feature of DV and CV systems is the correlation between subsystems, as well as their type,

for example, entanglement and quantum discord. Unfortunately, they also share difficulties
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in characterizing them. In the simplest case, when considering two parties, researchers

approach entanglement using different tools; [2] uses quaternions and division algebras

to parameterize two-qubit states, while [3] follows a differential-geometric approach, and

ref. [4] recognizes hyperbolic spaces describing states of Gaussian modes. In this sense,

we point out that SS has the tools required to address both qubits and modes, and more

importantly, the formalism is general enough to be applied to systems of arbitrary dimen-

sion. The cases we present will allow the reader to identify the complexity that arises as the

dimensionality of the system increases.

Researchers have dedicated considerable efforts to characterizing quantum states.

The usual approach is the development of criteria that distinguish separable states from

entangled ones. For two qubit, for instance, the concurrence C is employed not only to

detect but also to quantify entanglement; C is a function that takes values in the range

0 ≤ C ≤ 1 and is monotonically increasing with the degree of entanglement [5]; and for

two modes, it is also possible to determine if a state is separable or not [6]. On top of

this, there exists a hierarchy of correlations whose quantitative measurements involve new

criteria and quantifiers [7]. Although researchers have not presented them as symmetric

spaces, there are publications that can be placed in this context. Thus, for example, the

authors in [8] provide a detailed discussion on the identification of non-local operations

using group decomposition, while [9] analyzes the case of Gaussian modes, establishing an

invariant criterion for squeezing. Our work overlaps with some of these studies; however,

from our standpoint, the approach of symmetric spaces enlarges the scope and provides a

description of qubits and modes using a common framework, which to our knowledge has

not been proposed. We note that, in a different context, the quantization of the symmetric

spaces themselves has been considered and also in the context of spontaneous symmetry

breaking [10,11].

The symmetry groups that we consider are SU(2n) for n qubits and the symplectic

group Sp(2n,R) for n modes. Both are part of the so-called classical Lie groups, which

share properties and treatment methods, and are well suited for our purpose. Using

for qubits N = 2n and N = 2n for modes, the respective dimensions of the symmetry

groups are N2 − 1 and N(N + 1)/2; we observe that the complexity of the analysis, in

terms of the number of parameters involved, grows rapidly. Thus, 15 (10) parameters are

required to describe the general state of two qubits (two modes). Since the group operations

transform the states, then we can use group theory to classify the operations, and as far

as the correlations are concerned, the full symmetry group involves too many parameters;

therefore, we expect the identification of a subgroup that does not produce entangled states,

i.e., a local subgroup. This is what we refer to as a physical interpretation of subgroups and

SS [12–14].

Given the symmetry group G of a system, our work is based on the use of equivalence

classes to classify states. Such classes are defined by a subgroup K ⊂ G; then, the meaning

of the coset space G/K is that a state and all those that are obtained from the application of

K are equivalent, i.e., the states are defined up to a K transformation. This sounds familiar—

for example, in the case of one qubit, the Bloch sphere S2 is the space of states and the states

are defined up to a phase. In terms of cosets, this correspond to SU(2)/U(1). Moreover, in

the same sense that divisors of integer numbers m = p/q allow the factorization p = mq,

the SS of a Lie group are special quotients, G/K, that allow decomposing of the general

element g ∈ G as a product g = KP. The cosets are special in that an involution selects a

limited list of subgroups among all the possibilities.

The subgroups we consider are those allowed by the definition of SS, which is

formulated in terms of cosets and details of which will be presented in the following

sections. There are three important advantages of using SS: (i) they have been classi-
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fied for unitary and symplectic groups; (ii) as a byproduct, it gives rise to a procedure

in building the general state of the coset; and (iii) it leads to a common treatment of

DV and CV systems. For example, for special unitary groups SU(N), there are three

types of SS which are defined in terms of the cosets SU(N)/SO(N), SU(2n)/Sp(2n) and

SU(p + q)/S(U(p)× U(q)), with p + q = N. In the case of two qubits, N = 4, and n = 2,

for the third coset, there are two options we must consider, namely, SU(4)/S(U(3)×U(1))

and SU(4)/S(U(2) × U(2)). For symplectic groups, we also consider three cosets

Sp(2n,R)/U(n), Sp(p + q,R)/Sp(p,R)× Sp(q,R) and Sp(4,R)/Sp(2,C).

Besides the subgroup, each SS involves an involution θ that separates g in even and

odd generators, θ(gi) = ± gi. The even elements l are the generators of the subgroup K

while the odd elements p generate the SS, so that we can write g = l⊕ p, with (l, p) known

as the Cartan pair of g. The Cartan pair is the basis for the Cartan decomposition (CD),

which ensures that a general group element can be written as U = KP, where K and P

are built as the exponential map of l and p, respectively. When p includes the maximal

abelian subalgebra a of g, then a further decomposition is possible U = KAK, where A
is the exponential map of a. This is referred to as the KAK decomposition, which, in fact,

coincides with Euler and Bloch–Messiah, and throughout the text, we will apply KP, PK,

and KAK decomposition.

The relevance of CD is that it leads to a unique (up to permutations) parameterization

of an arbitrary state of the coset with no redundancy in the parameters. Moreover, the

process can be iterated to the subgroup K, such that KP → K′P′P. Since the action of

the subgroup defines an equivalence class, then the invariants associated to the subgroup

portray the coset. Therefore, the characterization of the states in the SS is performed in

terms of invariants under the action of the subgroup K. This subject is addressed in the

main text where the relation to existing quantifiers, such as the purity and partial transpose

criterion [15], is discussed. However, the challenge is non-trivial due to the large number

of parameters and to the fact that subgroups are not disjoint, i.e., different cosets share

some of the properties. The mixing of states is an example—it naturally appears in the

formalism. In fact, it corresponds to the interpretation of one of the cosets, but it is not

limited to that SS. Other cosets allow for the incorporation of mixing. This is accomplished

by implementing a mechanism through the Cartan subalgebra.

Here, we present a systematic treatment of qubits and modes from which impor-

tant results previously reported, scattered in the literature, can be reproduced within the

framework of SS. Among these results we can mention, for example, the standard form

of the two-modes Gaussian states [16], and the parameters of non-separable correlations

in the two-qubits state. However, we go beyond this and obtain generalizations to higher-

dimensional systems, the non-trivial results are a standard-like form of 3-modes, and a

process of iteration is used in constructing three-qubit states. Moreover, we present cosets

that have not been extensively considered in the literature.

The paper is organized as follows: In the first part of Section 2, we introduce the

quantum states of interest and the groups involved, while the second part is used to

introduce the notation and concepts related to SS and CD. We work out details of the group

SL(2,C) since it contains relevant information of both SU(2) and Sp(2,R), so that the reader

may be familiarized with the topics. Section 3 deals with the application of the SS formalism

to qubits and Gaussian modes; it comprises three subsections dedicated to interpretation of

the SS. Each subsection includes two families that share properties; Families AIII-CI, AI-CII

and AII-CIII. In Section 4, with the help of a table, we present a summary of our findings

and discuss the extension of the analysis to higher-dimensional systems, and point out the

variety of options that open up, as well as the difficulties that arise for the interpretation. In

the last section, we present our conclusion.
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2. States and Symmetric Spaces

The theory of SS is explored across various disciplines; however, to the best of our

knowledge, it has not been widely applied in the context of quantum systems from a com-

prehensive perspective. For that reason, in this section, we set the notation and conventions

for SS following the standard reference [17]. Additionally, we extend the discussion to in-

clude pseudo-symmetric spaces (SSp) [18], which are not considered in the aforementioned

text. We start by considering the role of groups in the context of quantum systems.

2.1. Quantum States and Symmetries

A system of n qubits is described by the n-fold tensor product C2n
= C2 ⊗C2 ⊗ · · ·C2

involving 2n complex parameters, which can be organized, for pure states, as an array

of 2n complex numbers |ψ⟩ = (z1, z2 · · · z2n) and as a 2n × 2n density matrix which is

Hermitian, positive-definite, and satisfies Tr(ρ2) ≤ 1, the equality holding for pure states

and the strict inequality applying to mixed states. The group of unitary transformations

U(2n) = SU(2n)× U(1) is identified as the maximum set of symmetries of the quantum

mechanical system, maintaining the probability interpretation of quantum mechanics.

The general mixed-state density matrix, on an arbitrary basis, is obtained upon per-

forming a unitary transformation with an element of the group U(2n), i.e., ρ = Uρ0U†.

Below, we will show how to take advantage of the decomposition of the unitary transfor-

mation to perform this task.

One mode of the electromagnetic field is described in terms of one degree of freedom,

a Hermitian operator X̂ and its canonical conjugate P̂, acting in a Hilbert space H. For

n-modes, it is customary to arrange the set of Hermitian operators in a 2n-quadrature

vector χ̂ so that χ̂a = {X̂1, X̂2 · · · X̂n, P̂1, P̂2 · · · P̂n}T (Canonical basis) or the standard basis

ξ̂ = {X̂1, P̂1, · · · X̂n, P̂n}T , where T stands for transpose, and such that the commutation

relations are as follows:

[ξ̂a, ξ̂b] = iωab, ω =
n
⊕

1

(

0 1

−1 0

)

. (1)

We consider linear homogeneous transformations of ξ̂, which preserve the commutation

relation in Equation (1). These transformations can be implemented by a real 2n × 2n-

dimensional matrix S (for modes, we follow the notation and conventions of [19]):

ξ̂
′
a = Sab ξ̂b, StωS = ω. (2)

Such matrices form the group Sp(2n,R), the symmetry group of the quantum mechanical

description of n modes, which has dimension n(2n + 1), including n2 + n squeeze genera-

tors and n2 rotations. It is convenient to introduce a block form for S involving four real

n × n matrices:

S =

(

A B
C D

)

. (3)

When dealing with modes of the radiation field, it is advantageous to work with the annihila-

tion and creation operators defined as âi = (X̂i + iP̂i)/
√

2 and â†
i = (X̂i − iP̂i)/

√
2. In this case,

instead of the array ξ̂, it is convenient to introduce ζ̂ so that ζ̂a = {â1, â2 · · · ân, â†
1, â†

2 · · · â†
n}T

for which the commutation relations are [âi, â†
j ] = δij. In this case, the block form of the

transformation matrix involves complex inputs, but is still a real group. Moreover, for each

S ∈ Sp(2n,R), it is possible to construct a unitary operator U (S) acting on H such that:
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ξ̂
′
a = Sab ξ̂b = U (S)−1ξ̂a U (S) and U (S)†U (S) = 1. (4)

It is important to note that there is a degree of arbitrariness in the phase of U and in the

composition law since for S1, S2 ∈ Sp(2n,R):

U (S1)U (S2) = eiΦ(S1,S2) U (S1S2). (5)

This is reminiscent of a double-cover relation, as with SO(3) → SU(2), and indeed

can be paraphrased in these terms [19]. It goes under the name metaplectic represen-

tation of Sp(2n,R); it leads to the simplest version of the composition law Equation (5)

U (S1)U (S2) = ±U (S1S2) and its generators are all Hermitian and bilinear in the (â, â†)

operators.

The Wigner distribution (WD) is a useful tool for the description of modes. The

advantage of the WD is highlighted by the following result. For any quantum mechani-

cal operator Γ̂, in configuration space and specified in the Schrodinger representation by

⟨X|Γ̂|X′⟩, the corresponding WD is obtained by a partial Fourier transform:

W(ξ) =
1

(2π)n

∫

dnX′ ⟨X − 1

2
X′|Γ̂|X +

1

2
X′⟩ eiX′ ·P. (6)

The inverse transform makes it possible to recover the configuration space representation

of the operator:

⟨X − 1

2
X′|Γ̂|X +

1

2
X′⟩ =

∫

dnP W(
1

2
(X + X′))e−iP·(X−X′), (7)

where W(ξ) is a function on the classical phase space, with arguments (X, P), which

are classical c-numbers. The feature that makes the WD so special is that a metaplectic

transformation U (S) in the Schrodinger representation has a simple realization in terms of

the WD:

Γ̂
′ = U (S)−1

Γ̂U (S) ⇐⇒ W ′(ξ) = W(Sξ). (8)

In words, a transformation of operators (X̂, P̂) in Hilbert space, realized with the infinite-

dimensional representation U , is implemented with the corresponding, finite-dimensional,

symplectic representation in phase space (X, P). The WD of a Gaussian state is a Gaussian

function; it can be shown that the complete description of a Gaussian state is encoded in σ,

the covariance matrix (CM):

Wρ(ξ) =
e−

1
2 (ξ

Tσ ξ)

πn
√

det σ)
, (9)

where σi,j = ⟨{Xi, Xj}⟩, and all relevant quantities can be obtained from the CM, which

is symmetric and positive-definite. In particular, in its diagonal form, the CM defines the

symplectic eigenvalues νk in terms of which the purity of the state is expressed:

µρ = Tr(ρ2) =
1√

Detσ
=

1

Πk νk
. (10)

2.2. Symmetric Spaces and Cartan Decomposition

In this section, we use the simplest examples of SS to introduce the key concepts and

definitions that allow dealing with n-qubits and n-modes. We will start by looking at the

definition of the real form and the Cartan decomposition. The Lie algebras g are vector

spaces together with an extra operation called the Lie bracket, denoted [X, Y] = XY − YX,
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which is skew-symmetric and satisfies the Jacobi identity. Given elements X, Y of a real

Lie algebra and a complex structure J which satisfies J∗ = −J, J2 = −1, an element of a

complex Lie algebra is written as Z = X + J Y. This process is called complexification. If

g = g0 ⊕ Jg0, then we say that g0 is a real form of g. Then, given a complex Lie algebra g

and a real form g0, the decomposition g0 = l0 ⊕ p0 is a Cartan decomposition, if there exists

a compact real form u0 that leads to a complexification u of g and which satisfies:

u∗ ⊂ u, l0 = g0 ∩ u0, p0 = g0 ∩ (iu0). (11)

The following example illustrates the concepts introduced. SL(2,C) is the group of two-

by-two complex matrices with unit determinant. At the level of Lie algebra, this condition

implies traceless matrices, and the general element can be expressed as:

Z =

(

z1 z2

z3 −z1

)

= z1

(

1 0

0 −1

)

+ z2

(

0 1

0 0

)

+ z3

(

0 0

1 0

)

, (12)

The matrices appearing in this equation form a basis; they are usually denoted h, e, f
and satisfy the commutation relations [h, e] = 2e, [h, f ] = −2 f , [e, f ] = h. Note that

e = 1
2 (σ1 + iσ2) and f = 1

2 (σ1 − iσ2), σi being the Pauli matrices, which allows us to

conclude that Z can be expressed in a linear combination, with complex coefficients, of the

su(2) generators, i.e., su(2) is indeed a real form of sl(2,C) = su(2) + i su(2). Alternatively,

by writing X = x1h + x2e + x3 f , we conclude that sl(2,C) = sl(2,R) + i sl(2,R). Thus,

su(2) and sl(2,R) are the compact and split real forms of sl(2,C), respectively. Here,

a compact real form is defined by having a negative-definite killing form, which for

the classical families of Lie groups is given by B(X, Y) = 4Tr(X, Y). Since su(2) and

sl(2,R) ≡ sp(2,R) are of signature (0, 3) and (2, 1), the corresponding Lie groups are

compact and non-compact, respectively.

Additionally, we can verify the conditions in Equation (11) to obtain the Cartan

pair [20], taking u0 = su(2) and g0 = sl(2,R). The first part is trivial, since any element

in sl(2,C) can be written as X + iY with elements of su(2); the second condition is seen

in terms of the basis elements l0 = sl(2,R) ∩ su(2) = {e − f = iσ2}; similarly, the third

condition is p0 = sl(2,R) ∩ (isu(2)) = {h = σ3, e + f = σ1}. In this way, the Cartan

decomposition both of sp(2,R) and su(2) is obtained and can be applied to a qubit and a

Gaussian mode; however, this is not practical and for other groups, it is better to use the

following facts.

Associated to the conjugation with respect to the real form (u)∗, there is an involutive

automorphism θ of g0 called the Cartan involution, and satisfies that −Bg(Z1, (Z1)
∗) is

strictly positive-definite. Additionally, θ on g0 has the property θ2 = 1 (since (Z∗)∗ = Z),

and the eigenspaces corresponding to the eigenvalues ±1 are l0, p0. Moreover, since θ is an

automorphism of the Lie algebra, it maintains the bracket operation so that:

[l0, l0] ⊂ l0, [l0, p0] ⊂ p0, [p0, p0] ⊂ l0. (13)

It follows that, if there exists a subalgebra a ⊂ p, it must be Abelian and when it is also

maximal it is called Cartan subalgebra. In brief, Cartan involutions are related to real forms

of a complex Lie algebra, and non-equivalent involutions lead to families of SS.

A significant advantage of using SS is the existence of a general classification that

restricts the number of subgroups we have to consider. It provides a matrix representation

of involutions and, moreover, it ensures the transitivity of the group action on the coset.

According to the general classification, su(n) has three different families denoted AI,

AII, AIII that correspond to the subalgebras so(n), sp(n) and s(u(p)⊕ u(q)), p + q = n
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and whose involutions are θI(X) = X∗, θI I(X) = Jn X∗ J−1
n , and θI I I(X) = Ip,q X Ip,q,

respectively, where:

Jn =

(

0 In

−In 0

)

, Ip,q =

(

Ip 0

0 −Iq

)

, Kp.q =











Ip 0 0 0

0 −Iq 0 0

0 0 Ip 0

0 0 0 −Iq











.

We also consider three families of Sp(2n,R) [18]. Since there is no standard notation for

these cases, we will denote them as CI, CII, and CIII (Cartan involutions are stated in the

canonical basis; when using the standard one, a change of basis is necessary to obtain the

correct subgroup.). The subalgebras for the first two are u(n), and sp(2p,R)⊕ sp(2q,R) and

the involutions φI(X) = Jn(X)J−1
n , φI I(X) = Kp,q(X)Kp,q. Finally, for CIII, the subgroup

is Sp(n,C), when n = 2; this yields the double cover of the Lorentz group, i.e., the coset

corresponds to an anti-de Sitter space (general involution unknown).

The general element of the group is written in terms of the Lie algebra by using the

exponential map exp : g → G, while the Cartan decomposition [21,22] guarantees that the

map K × P → G is a diffeomorphism and allows writing G ∋ g = K · P, P · K uniquely,

with K and P expressed in terms of the Cartan pair, K = exp(l), P = exp(p). In terms of

the group G and the subgroup K, the coset P = G/K is defined as SS when G and K are

both compact groups, or when only K is compact, while the space when neither G nor K

are compact is called pseudo-symmetric (the notation G/H is commonly used to include

both SS and SSp; both are homogeneous spaces. We use G/K to refer to both of them) (SSp).

An extra decomposition is possible G = K1 · A · K2 where A = exp(a) and a is the

maximal abelian subalgebra in p. (Two points are worth remarking: (1) the decomposi-

tion is not unique, and (2) the map is not a diffeomorphism between manifolds, giving

origin to topological conditions [23]). One way to follow Klein’s philosophy is to use

Cartan decomposition to obtain a general state ρ = G†ρ0G, where ρ0 can be chosen in

different ways. For example, by using the Cartan decomposition G = KP, it follows that

ρ = P†(K†ρ0K)P. Clearly, it is advantageous that ρ0 and ρ0 = K†ρ0K are in the same

equivalence class; then, we can label the equivalence classes using the classical invariant

theory of matrices [24] and relate them to physically meaningful quantities. For qubits,

this program has been performed [25,26] and polynomial invariants of the local subgroup

have been computed. In the case of modes, the role of the state is played by the general

correlation matrix σ, which can be obtained through a symplectic transformation:

σs = Stσ0S, S ∈ Sp(2n,R), (14)

Since the symplectic relation StωS = ω implies St = ωS−1ω−1, which together with

ω−1 = −ω, leads to ωσs = S−1(ωσ)S, then we observe that ωσ transforms by conjugation.

Taking into account that Sp(2n,R) ⊂ SL(2n,R), we can use results valid for the latter group

concerning invariant quantities, namely, the coefficients of the characteristic polynomial,

and these can be computed from functions of tr(Xk) [27]. Consider the case when Σ = ωσ

is a four-by-four matrix with elements [Σi,j], i, j = 1 · · · 4. In this case, Tr(Σ) = Tr(Σ3) = 0,

whereas Tr(Σ4) ∝ Det[Σ]. Moreover, tr(Σ2) can be calculated from Tr(Σα,β) and the six

principal minors Dα,β
2 = Det[Σα,β], where Σ

α,β is a two-by-two matrix obtained form Σ

by eliminating rows and columns other than α, β. The relevance of this result will be

appreciated when discussing the physical interpretation of SSp for two modes.
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3. Qubits and Modes

In this section, we discuss the application of the SS formalism to qubits and modes.

We start by presenting details for one qubit and one mode—this will help to grasp the

ideas and methods that will be used when analyzing two qubits and two modes, and

generalizations to n-parties. In particular, we emphasize the parallelism between qubits

and Gaussian modes in terms of equivalence classes that involve mixing and correlations.

3.1. Symmetric Spaces AIII and CI

It is worth recalling the coset and involution of SS AIII. The subalgebra s(u(n − 1)⊕
u(1)) is obtained by means of the involution θI I I(X) = Ip,q X Ip,q. We start by considering

one qubit. When discussing real forms, we have seen that the conditions in Equation (11)

lead to the Cartan decomposition of SU(2); however, for practical purposes, it is better

to exploit the matrix representation of involutions. In the particular case of one qubit,

we can discuss the three involutions; however, since SU(2) ≡ Sp(2), we do not have to

consider AII, so that only two involutions are relevant and both lead to the symmetric space

SU(2)/U(1) with either l0 = {iσ2} and p0 = {iσ3, iσ1} or l0 = {iσ3} and p0 = {iσ1, iσ2}.

A qubit mixed state of purity r is described by ρm = 1
2 (I+ r⃗σ · n⃗), whence the diagonal

mixed state ρd is a linear combination of the identity matrix and a diagonal generator

ρd = 1
2 (I+ rσ3). In terms of ρd, the general mixed state is obtained using KAK decomposi-

tion with l = iσ3, and p = iσ2:

ρm = e−iσ3
φ
2 e−iσ2

θ
2 e−iσ3

χ
2 ρd eiσ3

χ
2 eiσ2

θ
2 eiσ3

φ
2 (15)

Note that ρd commutes with K, the subgroup defining the equivalence class,

e−iσ3
χ
2 ρd eiσ3

χ
2 = ρd (by convention, we keep U† at the left, to coincide with the adjoint

action of a Lie group, which is not the standard action on kets in quantum mechanics)

and the final mixed state involves the correct total number of parameters (θ, φ, r). We

summarize this by saying that the χ parameter has been traded by the mixing parameter

r. Geometrically, ρm describes a sphere of radius r (Bloch sphere) and every point on the

surface of the two-dimensional sphere of radius r describes a state.

For two qubits, the symmetry group is SU(4). In order to implement CD, a basis of

the Lie algebra is required, for our purposes, it is advantageous to take the 15 traceless

skew-Hermitian λij generalization of the Gell-Mann matrices that schematically look like:

λ =

(

su(3) z⃗
(⃗z)† u(1)

)

. (16)

Applying the involution, we obtain the subalgebra l = {λi, λ15, i = 1, 2, · · · 8}, where

the λ1,2···8 denote the four-dimensional generalization of the Gell-Mann matrices, λ15 is

a third traceless diagonal matrix, and the set p = {λi, i = 9, 10, · · · 14} contains the six

generators that can be built from the complex vector z⃗ and z⃗†. The SS is the well-known

SU(4)/S(U(3)× U(1)) = CP
3, the two-qubit generalization of the Bloch sphere. The form

of a general density matrix describing two qubits was discussed in [28,29]. Their analysis

is based on the recursive application of the CD, using that SU(2) ⊂ SU(3) ⊂ SU(4). The

bottom line of the work is that the general ρ is parameterized using twelve Euler angles

and three populations and is written ρ = U†ρd U, where ρd is diagonal:

ρd =
1

4
(I4 + f1(pi)λ3 + f2(pi)λ8 + f3(pi)λ15), (17)
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The fi = fi(p1, p2, p3) are given functions of the populations pi > 0, i = 1, 2, 3, λ3, λ8,

are the four-dimensional generalization of the Gell-Mann matrices, λ15 is the third SU(4)

diagonal matrix, and:

U = U1(α1, α2, α3, α4, α5)e
iλ10α6U2(α7, α8, α9, α10, α11α12), (18)

where the α′s are parameters. An important characteristic of this result is that both U1 and

U2 involve generators of the subgroup S(U(3)× U(1)) so that, in this decomposition, the

full operator U only involves one generator (λ10) that does not belong to S(U(3)× U(1)).

From the perspective of SS, the following observations are incorporated in the analysis: (i)
when considering the action of G on a state of the equivalence class, i.e., ρ = U†ρ0

d U where

ρ0
d and ρ′0 = K†ρ0

d K belong to the same equivalence class; therefore, the general state of this

class of equivalence is ρ = P†(βi)ρ
0
d P(βi), where the notation is intended to indicate that

P depends on six parameters βi; and (ii) the general state of this coset can be constructed

taking as the starting point a diagonal ρ0
d including a single mixing parameter. In this way,

we end up with the state of the coset P that includes mixed states and, as expected, depends

on seven parameters:

ρ = P†(β1−6)ρ
0
d(p) P(β1−6). (19)

We now turn to one mode. To this end, consider s ∈ sp(2,R), written as X =

x1s1 + x2s2 + x3s3, where:

s1 =

(

0 1

1 0

)

, s2 =

(

0 1

−1 0

)

, s3 =

(

1 0

0 −1

)

. (20)

The involution φI(X) leads to l = {s2}, p = {s1, s3} and to the coset Sp(2,R)/U(1), while

the involution φI I(X) yields l = {s3}, p = {s2, s1} and the coset Sp(2,R)/SO(1, 1) ≡
SO(2, 1)/SO(1, 1). The latter coset belongs to the CII family and its appearance here

follows from an accidental isomorphism and leads to an alternative expression for the

general state in terms of two squeezing and one rotation. Modes of the electromagnetic

field can be described in terms of Fock states {|n⟩} or Coherent states {|α⟩}, infinite-

dimensional Hilbert spaces where the symmetry group generators are unitary operators.

Alternatively, the phase space formulation in terms of the probability quasi-distribution, a

finite-dimensional representation, although not unitary, can be achieved in terms of the

creation-annihilation operators â, â†.

By analogy to the qubit case, our aim is to express the general state using group action

on the covariance matrix. Consider the set of operators:

s̃1 =
1

2
(â2 + (â†)2), s̃2 =

i
2
(â2 − (â†)2), s̃3 =

1

2
(â† â + ââ†),

They form a representation of the generators of the sp(2,R) Lie algebra. The action of the

group on the creation-annihilation operator is readily obtained, and from it, the action

on the quadratures (X, P) (comparing the matrix representation of coset P with Ŝ(ζ), the

squeezing operator, we note that the latter defines the coset space).

e−iss̃1

(

X̂
P̂

)

eiss̃1 ⇐⇒ ess1

(

X
P

)

, (21)

In this context, it is relevant to recall that the identity correlation matrix corresponds to

the vacuum state (and coherent states). The covariance matrix is symmetric and positive-

definite; therefore, it can be written as a linear combination of {I2, s3, s1}, but not s2 since it

is skew-symmetric, coincides with the symplectic matrix ω, and remains invariant under
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symplectic transformations. Starting from the vacuum state correlation matrix (σ0 = I2),

the CM for the squeezed, typical mode state of the Sp(2,R)/U(1) coset can be obtained,

either using the unitary representation or the finite-dimensional form of the generators.

Thus, using the KAK decomposition (Bloch–Messiah):

S = exp (
φ

2
s2) exp (

s
2

s3) exp (
θ

2
s2), σζ = Stσ0S. (22)

Note that K = exp(l) is the U(1) subgroup that characterizes the equivalence class,

and also in this case, we can argue that the φ parameter has been exchanged by the mixing

parameter a, so that the general mixed state of this coset is aσζ(θ, s) (see Equation (22)).

Since the parameter a determines the mixing degree, the coset Sp(2,R)/U(1) may be

interpreted as surfaces of equal mixing. In other words, U(1) is the stabilizer of the mixing

level for Gaussian states. An explicit calculation shows that σζ = x0 I2 − x1s1 − x3s3, with

x0 = a cosh (s), x1 = a sin(θ) sinh(s), x3 = a cos (θ) sinh (s), suggesting the interpretation

of the xα as coordinates and identifying states as points of a manifold (a hyperboloid) on a

space of the signature (1,2) given by |σζ | = a2 = x2
0 − x2

1 − x2
3.

For two modes n = 2, the coset to consider is sp(4,R)/U(2); as generators, we use the

10 symplectic generators (out of 16) given by Xij = si ⊗ sj, where s4 = I2:

X1 = s1 ⊗ s3 X4 = s1 ⊗ s4 X7 = s1 ⊗ s2

X2 = s3 ⊗ s3 X5 = s3 ⊗ s4 X8 = s3 ⊗ s2 X10 = s2 ⊗ s1

X3 = s4 ⊗ s3 X6 = s4 ⊗ s4 X9 = s4 ⊗ s2

,

The subalgebra spanned by {X7, X8, X9, X10} is isomorphic to u(1)⊕ su(2) = u(2) and

corresponds to the skew-symmetric matrices, while the p-space is given by the symmetric

matrices {X1−6}. Thus, in obtaining the SS Sp(4,R)/U(2), the following points are worth

making: (1) Sp(4,R) is a rank two group, and the two diagonal matrices {X1, X2} in p can

be chosen as the Cartan subalgebra. Therefore, we can implement K1 AK2 decomposition,

where each K1,2 involves four parameters and the coset depends only on six parameters.

(2) K ∈ U(2) can be further decomposed as SU(2)× U(1), K=eθ2X8 eθ1X9 eφ2X8 eφ1X7 , where X7

generates U(1) since it commutes with the remaining rotations, (3) σ0 = I4 belongs to the

equivalence class of K:

σ = Kt
2 AKt

1 I4 K1 AK2 = Kt
2 A I4 AK2. (23)

Then, for pure states, we can obtain a parametrization for the geometric representation

of two modes, by generalization of σζ in Equation (22). It is convenient to introduce

the linear combinations Xl1,2 = 1
2 (X1 ± X2) and Xl7,8 = 1

2 (X7 ± X8); they later generate

U(1)× U(1) ⊂ U(2), such that S1 = e
s1
2 Xl1 e

θ
2 Xl7 , S2 = e

s2
2 Xl2 e

φ
2 Xl8 , are transformations acting in

each mode separately and Equation (23) becomes:

σ =Rt
X8

Rt
X9
(St

1I2S1 ⊕ St
2I2S2)RX9

RX8
, (24)

where RXi is the rotation associated to generator Xi. This result shows that a pure state

of two modes can be obtained from the vacuum CM transforming each mode separately

(S1, S2) and then the rotations (RX8
, RX9

) produce the non-trivial combination of the two

modes to obtain the general state.

Alternatively, instead of Equation (23), we start from σ = Kt
2 AKt

1σ0K1 AK2 and consider

the U(1)× U(1) sitting in K1 and take into account that it acts trivially on σ0 = aI2 ⊕ bI2

where a, b are population parameters. This argument shows that the two parameters of
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the U(1) × U(1) group are exchanged by the populations a, b, while the actions of the

remaining operators are non-trivial and lead to the general ten parameters mixed state:

σ = Kt
2 ARt

X8
Rt

X9
(Rt

Xl7
aI2RXl7 ⊕ Rt

Xl8
bI2RXl8)RX9

RX8
AK2. (25)

Extension to the three-qubits and three-mode cases is direct; the involutions lead to

the subgroups S(U(7)× U(1)) and U(3), respectively. We can select a basis such that these

subgroups act trivially on ρ0
d and σ0 = I6, yielding manifolds of dimension 14 and 12 for

pure states. Also in this case, iterations of the CD on the subgroup allow exchange of the

parameters associated to the abelian subalgebra by 7 and 3 populations. Generalization

to n-parties is along the same lines. Using a different approach, the case of pure states of

qubits and modes has been separately discussed in [30,31].

3.2. Symmetric Spaces AI and CII

For two qubits, we consider the coset SU(4)/SU(2) × SU(2). We consider Xαβ =

iσα ⊗ σβ, where α, β = 0, 1, 2, 3 with σ0 = I2, and the usual Pauli matrices. Except for I4, we

use the remaining 15 Kronecker products as SU(4) generators. The involution θI(X) = X∗

identifies the subalgebra of the skew-symmetric matrices l = {X20, X12, X32, X02, X21, X23}.

It generates the group SO(4) that can be split into two sets l = l1
⋃

l2 with l1 =

{X20, X12, X32} and l2 = {X02, X21, X23}. The generators in the two sets mutually commute,

and within each set, the elements satisfy the angular momentum commutation relations.

The Cartan subalgebra of su(4) (the choice of a is not unique, a1 = {X03, X30, X33}, and

a2 = {X11, X22, X33}, are two possibilities, but these are conjugate to each other by a change

of basis) is fully contained in p = {X01, X03, X10, X30, X11, X13, X22, X31, X33} and enables

K1 AK2 decomposition. A detailed analysis of this coset is presented in [8], leading to the

identification of the subgroup K that characterizes the local transformations.

Up to this point, the 15 parameters that characterize SU(4) are encoded; six in each Ki

and three in A. A state ρ is obtained by applying the general element U of the group to an

initial state ρ0, and if we choose ρ0 as a product state, then we obtain:

ρ = K†
1 A†K†

2ρ0K2 AK1 = K†
1 A†ρ0 AK1, (26)

The simplification in the second equality follows from the fact that ρ0 and K†
2ρ0K2 be-

long to the same equivalence class; therefore, we can ignore the six parameters in K2.

Thus, this is a nine-parameters SS. When only pure states are considered, the elements in

A1 = exp(a1) are required to produce entanglement. According to [8], analysis of the

invariants yields functions of the three parameters in a, which are used to classify and

represent geometrically non-local operations. A key step is the change from the standard

basis {|00⟩ , |01⟩ , |10⟩ , |11⟩} to the Bell basis {|ψ±⟩ , |φ±⟩} using:

Q2 =
1√
2











1 0 0 i
0 i 1 0

0 i −1 0

1 0 0 −i











, Q2(so(4))Q†
2 → su(2)⊕ su(2). (27)

At this point, we highlight the value of our approach. We can consider mixtures since

the three generators in a1 are diagonal, and following the procedure used in the previous

section, the expression Aρ0 A† may be used to introduce the population parameters (see

Equation (17)). Since the population parameters introduce a hierarchy of correlations [7]

and entanglement is no longer equal to non-locality, then a more detailed analysis of

the regions of the correlations is needed. However, instead of pursuing that line, we
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describe another possibility. The SS SU(4)/S(U(2)× U(2)) belongs to family AIII with

p = q = 2, which we include here because of its close relation to the cosets of this family.

The coset has eight parameters, and the subalgebra is su(2)⊕ su(2)⊕ u(1), corresponding

to l = {X01, X02, X03, X31, X32, X33, X30}, where X30 is the generator of the U(1) subgroup

that decouples. Linear combinations of the remaining generators produce two sets of SU(2)

generators, l1,2 = 1/2{X01 ± X31, X02 ± X32, X03 ± X33}. The equivalence class associated

to this subgroup conforms to X-states [32], which are known because the correlations, in

particular the quantum discord, can be computed analytically, and in our approach, the

quantifiers can be analyzed in terms of subgroup invariants.

We now outline some perspectives regarding generalizations for this SS. To analyze the

case of 3-qubits, we consider the basis of su(8) given by

Xijk = i(σi ⊗ σj ⊗ σk) i, j, k = 0, 1, 2, 3, except the I2 ⊗ I2 ⊗ I2. The involution θ1(X) se-

lects the skew-symmetric matrices that form a basis for so(8) and the KAK decomposition

is such that each K encodes 28 parameters while the abelian subalgebra in A includes the

remaining 7 parameters. We propose that the subgroup Kps = SU(2)⊗ SU(2)⊗ SU(2)

defines the equivalence class of the product states. Due to isomorphism between su(2)
and so(3), we would expect to find a subgroup (SO(3)×)3 to be associated to Kps and

certainly there are various such subgroups in SO(8). The SS approach is of help in this task,

since by iterating the CD to the subgroups, a limited number of options are selected and

the generators are identified through the involutions. The following is the list of options

that arise from the iterations and that lead to the candidates for the (SO(3)×)3 we are

looking for:

• T1: so(8) → so(7)⊕ p1 → (so(4)⊕ so(3))⊕ p2 ⊕ p1,

• T2: so(8) → so(6)⊕ so(2)⊕ p1,

• T3: so(8) → so(5)⊕ so(3)⊕ p1 → so(4)⊕ p2 ⊕ so(3)⊕ p1,

• T4: so(8) → so(4)⊕ so(4)⊕ p1.

It is instructive to compare such options with the recognized classes of entangled states [33,34]:

|A, B, C⟩ = |ψA⟩ ⊗ |ψB⟩ ⊗ |ψC⟩ , |GHZ⟩ = 1√
2
(|000⟩+ |111⟩),

|A, BC⟩ = |ψA⟩ ⊗ |ψBC⟩ , |W⟩ = 1√
3
(|001⟩+ |010⟩+ |100⟩),

At first sight, we could establish a correspondence between the iterations and the classes of

states. For example, states of the type|A, B, C⟩ are reminiscent of the group structure T1;

however, as shown below, the group structure is not enough to establish the relation and

each case must be discussed on its own. Consider the schematic matrix representation of

the iteration T4:

so(8) =

(

so(4) p
−pt so(4)

)

, (28)

Using the generalization of Q2 → diag{Q2, Q2}, we can map so(4) ⊕ so(4) into

(su(2) ⊕ su(2)) ⊕ (su(2) ⊕ su(2)) and find that these su(2) can be arranged; for exam-

ple, {X412 + X312, X424 + X324, X432 + X332}, which are 4 × 4 block-diagonal matrices, and

it can be verified that it conforms with the equivalence class of states |A, BC⟩. The remain-

ing subgroups of this SS must be analyzed along similar lines—for example, a schematic

representation of iteration T2 is:

so(8) =







so(4) p2 p1i

−pt
2 so(3) p1j

−p1i −p1j 0






, (29)
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And there exists a 3 × 3 matrix that maps so(3) → su(2). Unfortunately, so far, we can not

make a strong statement regarding the origin of the subgroup of the local transformations

corresponding to the states |A, B, C⟩.
The coset Sp(4,R)/Sp(2,R)× Sp(2,R) conduces to the derivation of the so-called

standard form of two modes and to the local invariant quantities. The involution φI I yields

the subalgebra l = {X1, X4, X7, X2, X5, X8} and the set p = {X3, X6, X9, X10}. This is the

first case where an SSp arises in the analysis, which is evidenced by the fact that l contains 2

rotations and 4 boost (non-compact part). It is useful to introduce the linear combinations:

Xl1,2 =
1

2
(X1 ± X2), Xl4,5 =

1

2
(X4 ± X5), Xl7,8 =

1

2
(X7 ± X8). (30)

The two sets of generators, {Xl1, Xl4, Xl7}, {Xl2, Xl5, Xl8}, commute with each other

{Xl1, Xl4, Xl7}, {Xl2, Xl5, Xl8} and generate one Sp(2,R). These subgroups are identified

as local operations of each mode, which is clear from the block structure of the generators

or the group elements [16]. The salient feature of this coset is its pseudo-symmetric nature

and the fact that non-separable operations are associated with the P-subspace such that

a general state can be written in terms of the K · P decomposition. We know that σ0 = I

and σ0 = diag{a, a, b, b} belong to the equivalence classes of pure and mixed states, re-

spectively. The general form of the state in this equivalence class σs is obtained by taking

K = diag{S1, S2}, and in terms of the Xli previously introduced, is given by:

σs = Ptσ0P =

(

A C
Ct B

)

, (31)

using the local subgroup K, we are able to perform a diagonalization that brings σs through

the following procedure (σ = KtσsK): A is transformed by S1, A → St
1 AS1, recalling the

one-mode transformation Equation (22), the first rotation and the squeezing are enough to

obtain St
1 AS1 → diag{λ, λ}, and then the last rotation acts trivially. The same procedure

can be applied to B using S2, while the two free rotations are used to diagonalize C, St
1CS2

so that we end up with:

σ =

(

aI2 C′

C′t bI2

)

, C′ =

(

c1 0

0 c2

)

. (32)

For pure states a = b and c2 = −c1, while for mixtures, a ̸= b and c2 ̸= c1. The states

belonging to this equivalence class are characterized by invariants under K and, according

to the discussion in Section 2.2, the invariants are functions of traces and determinants of

Σ = ωσ. The following results will be required:

tr(Σ) = 0, tr(Σ2) = −2(a2 + b2 + 2c1c2), tr(Σ3) = 0

tr(Σ4) = ab(c2
1 + c2

2) + c1c2(a2 + b2) + 2(a2 + c1c2)
2 + 2(c1c2 + b2)2, (33)

We further note that det A, det B, and det C are invariants under K, while

∆ = det A + det B + 2 det C is a symplectic invariant, and tr(AωCωBωCtω) = ab(c2
1 + c2

2)

can be expressed in terms of tr(Σ2) and tr(Σ4). Therefore, we have shown that all the invari-

ants that characterize this coset can be obtained from the traces of powers of Σ. These results

reproduce the invariants used in the formulation of the Peres–Horodecki criterion [16],

with the advantage that our derivation can be extended to higher-dimensional systems.

We now comment on details regarding the generalization to the SSp associated with

the three-mode states. The coset is Sp(6,R)/Sp(4,R)× Sp(2,R), and applying the CD to

Sp(4,R) leads to the identification of the local subgroup K = (Sp(2,R)×)3. This subgroup
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can be given the block form Sl = diag{S1, S2, S3}, and the general form of the coset

(including mixtures) is:

σ =







A D1 D3

Dt
1 B D2

Dt
3 Dt

2 C






. (34)

The subgroup of local transformations K can be used to obtain a standard-like form to the

CM. Following the same procedure as for the two modes case, the matrices A, B, and C are

diagonalized; however, there are not enough free parameters to diagonalize the three D′s.

There is some freedom in choosing which block to diagonalize; for example, we can fix

rotations in St
1D1S2 → diag{λ1, λ2}, and we arrive to a standard-like form:

σ =







aI2 D′
1 D′

3

D′
1 bI2 D′

2

(D′
3)

t (D′
2)

t cI2






D′

1 =

(

λ1 0

0 λ2

)

. (35)

Analysis of invariants also generalizes: the determinants of each sub-matrix are local

invariants. These will be included in tr(Σ2); besides that, we have to consider now tr(Σ4)

and tr(Σ6) to look for a complete set of local invariants. While the partial transpose criterion

has no straightforward generalization, local invariant quantities can be used to formulate

new criteria; however, we leave further analysis of this topic for future work.

3.3. Symmetric Spaces AII and CIII

We attempt to find a common interpretation of these families, considering that in

both cases, the subgroup involved is of the symplectic type, Sp(2n) and Sp(2n,C), for

qubits and modes, respectively. The isomorphism Sp(4) ≡ SO(5) and Sp(2,C) ≡ SL(2,C)

allows identifing that the geometry of the cosets are the 5-dimensional sphere S5 and the

anti-de Sitter space. In the case of 2-qubits, the involution θI I(X) = JnX∗ J−1
n leads to the

subalgebra sp(4), and p = {X01, X03, X12, X22, X32}. According to the CD, the general state

is expressed as ρ = PK ρ0 K†P†, and the choice of ρ0 plays a central role. We are interested

in taking ρ0 in the Sp(4) equivalence class. We first consider pure states. In such a case, we

can choose an eigenstate of the P-operator. The parameters then correspond to S5:

ρs =













cos(r) + ix1 sin(r)
r

(ix2+x5) sin(r)
r 0

(x3−ix4) sin(r)
r

i(x2+ix5) sin(r)
r cos(r)− ix1 sin(r)

r − (x3−ix4) sin(r)
r 0

0
(x3+ix4) sin(r)

r cos(r) + ix1 sin(r)
r

i(x2+ix5) sin(r)
r

− (x3+ix4) sin(r)
r 0

(ix2+x5) sin(r)
r cos(r)− ix1 sin(r)

r













, (36)

where r2 = |(x1, x2, x3, x4, x5)|2. The eigenstates include a vanishing component; for

example, |ψ⟩ = (α, β, eiθ , 0)T with α, β ∈ C. An interpretation in terms of a 4-level system

is proposed in [12]. The other possibility is to introduce a population using the diagonal

element X1, to end up with a state given by:

ρs =

(

A C∗

C B

)

, (37)

Alternatively, an iteration is possible using the Sp(4) decomposition in terms of

K = SU(2) × SU(2), or K = U(2) and the invariants of ρ0 under K are analogous to

those of two-mode states.

The case of two modes is considered with involution φI I I(X) = H X H−1, where

H = I2 ⊗ s2 (we are unaware if matrix H generalizes to Sp(2n,R)), leads to the subalgebra

l = {X2, X3, X4, X8, X9, X10}, and to the set p = {X1, X5, X6, X7}.
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The coset is given by P = exp(z1 X1 + z5 X5 + z6 X6 + z7 X7) where the zi can be parame-

terized as z1 = z cos(θ) cosh(z), z5 = z sin(θ) cosh(z) cos(φ), z6 = z sin(θ) cosh(z) sin(φ), z7 = z sinh(z) and

z2 = |(z1, z5, z6, z7)|2, which defines a hyperboloid shape in four dimensions. In fact, this

coset is commonly studied in the context of Lorentz transformations [35]. The CM is of the

form given in Equation (31), and below, we report the form of C for this coset, since the

matrices A, B are not necessary for the argument:

C =





z6(a(z5−z7)−b(z5+z7)) sinh2(z)
z2

z6 sinh(z)((a+b)z cosh(z)+(a−b)z1 sinh(z))
z2

z6 sinh(z)((a+b)z cosh(z)+(b−a)z1 sinh(z))
z2

z6(b(z7−z5)+a(z5+z7)) sinh2(z)
z2



. (38)

Note that pCII ∩ pCII I = {X6}; therefore, z6 = 0 reduces this coset to a subset of the local

subgroup, while for z7 = 0, it reduces to a subset of coset CII.

4. Discussion

In the last section, we presented a systematic treatment of qubits and modes. Important

results scattered in the literature can be systematically reproduced starting from the concept

of SS. The table included below is an attempt to summarize the results.

Table 1. (Pseudo) Symmetric spaces considered for qubits and modes. Blank spaces indicate that

these cosets are not defined. Details of the analysis of each coset are included in Section 3.

SS n = 1 n = 2 n = 3

AIII SU(2)/S(U(1)× U(1)) SU(4)/S(U(p)× U(q)) SU(8)/S(U(p)× U(q))

CI Sp(2,R)/U(1) Sp(4,R)/U(2) Sp(6,R)/U(3)

AI SU(2)/SO(2) SU(4)/SO(4) SU(8)/SO(8)

CII Sp(2,R)/SO(1, 1) Sp(4,R)/(Sp(2,R)×)2 Sp(6,R)/Sp(p,R)× Sp(q,R)

AII SU(4)/Sp(4) SU(8)/Sp(8)
CIII Sp(4,R)/Sp(2,C)

However, the table 1 is not adequate to capture the diversity and advantages that the

symmetric space formalism brings to the analysis of quantum states. We hope that the

following points can partially address this shortcoming.

• Regardless of the number of qubits, there are only three SS denoted AI, AII, and AIII;

for modes, we consider one SS denoted CI, and two SSp, CII and CIII.

• In addition to traditional methods, the SS formalism is rich enough to include elements

that allow generalization of concepts to higher-dimensional systems, examples of

which are local invariant quantities and the standard form of CM, which may allow

design of quantum gates on the lines of [8]. In this sense, the SS formalism serves

as guidance to build states on demand with the certainty provided by the transitive

action of the group.

• The number of equivalence classes (cosets) grows with n, the number of qubits and

modes, since all possible combinations of p, q, so that p + q = n must be considered

and, besides that, possible iteration of subgroups increases the number of alternatives.

For arbitrary n, it is possible to implement an algorithm that leads to all the CDs of a

given system. The more labor-intensive part of the process is to find quantities which

are invariant under the subgroup action and to obtain its physical interpretation.

• The SS AIII and CI share interpretation since both describe equivalence classes char-

acterized by mixing parameters. This is true for an arbitrary number of qubits and

Gaussian modes. Moreover, it is possible to use the Cartan subalgebra to introduce

populations and the general states are constructed in each case.
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• The SS AI and the SSp CII also share interpretation—both of them encode information

on the non-separable correlations, while the subgroup characterizes the product states.

For two pure qubits, the SS AI reproduces the group structure found in [8], which

serves as a basis for their analysis. The formalism we propose provides guidelines

on how to generalize these results. In the main text, we discuss how to include

mixtures. We show that for three pure qubits, there are different iterations of subgroups

SO(4)× SO(4), SO(4)× SO(3), SO(6)× SO(2) , which stabilize a subspace of states;

therefore, they are considered local-like subgroups. We attempt an interpretation by

comparing these subgroups with known types of non-equivalent entangled states.

For two modes, the SS formalism identifies the subgroup of local transformations, and

the group decomposition facilitates the derivation of local invariant quantities, as well

as the separability criterion. Analogous results can be obtained for three modes, since

the iteration on the subgroup Sp(4,R)× Sp(2,R) enables the identification of local

subgroup and a standard-like form of the correlation matrix. Similar results can be

derived for n ≥ 3 modes.

• For the SS AII and the SSp CIII, the subgroup is of the symplectic-type, compact

and non-compact, respectively. Therefore, the equivalence classes can be labeled

by symplectic invariants. Possible iterations of Sp(4) allow further decomposition

analogous to those of two modes. The interpretation is elusive; however, limiting

cases (for specific values of subgroup parameters) makes evident the overlap of this

coset with CI and CII, so that this coset includes mixed and non-separable states. This

is similar to what happens in family AIII with X states for qubits.

The results obtained are motivating and in the future we plan to perform an exhaustive

analysis of three qubits and three modes as well as the case of qutrits.

5. Conclusions

The symmetric space formalism provides a unified framework for the treatment of

qubit and Gaussian mode systems, addressing positively our initial question. By exploiting

the structure of equivalence classes, symmetric spaces capture the intricacies and complex-

ities observed in quantum states. Beyond systematically reproducing the known results

of two qubits and two modes, this formalism extends naturally to higher dimensions. It

yields information on three qubits and three modes that merits further study to extract

its full interpretation. We thank one of the referees for calling to our attention that our

framework could be used to improve Gaussian-based modes quantum computing schemes

and to inspire quantum gravity models.
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