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Abstract: The understanding of the properties of multipartite systems is a long-standing
challenge in quantum theory that signals the need for new ideas and alternative frame-
works that can shed light on the intricacies of quantum behavior. In this work, we argue
that symmetric spaces provide a common language to describe two-qubit and two-mode
Gaussian systems. Our approach relies on the use of equivalence classes that are defined
by a subgroup of the maximal symmetry group of the system and involves an involution
which enables the Cartan decomposition of the group elements. We work out the symmetric
spaces of two qubits and two modes to identify classes which include an equal degree of
mixing states, product states, and X states, among others. For three qubits and three modes,
we point out how the framework can be generalized and report partial results about the
physical interpretations of the symmetric spaces.

Keywords: Lie groups quantum system; Cartan decomposition; Gaussian states; mixed
states; quantum correlations

1. Introduction

Is there a framework that can systematically classify qubits and Gaussian modes
systems? Since the second half of the 19th century, when Felix Klein initiated the so-called
Erlangen program, the development of geometry has been intertwined with algebraic
notions. The program included the proposal to study geometric structures in terms of
symmetry and groups, and suggested that physicists could benefit from the resulting
framework [1]. Modern Hamiltonian mechanics and Noether’s theorem for continuous
symmetries are two examples of the connection between geometry, groups, and physics.

At the root of Klein’s proposal is the idea that different geometries are distinguished
by a set of group invariants. For example, Euclidean geometry deals with areas and angles;
hence, rotations and translations form the appropriate group. The concept of symmetric
space (SS) is one outcome of the Erlangen program, and in this work, we use it to analyze the
properties of quantum systems. To address this challenge, we exploit the close relationship
between groups and quantum theory; examples of such a relationship are quantum states
as representations of the associated Lie algebra, observables and generators, and time
evolution modeled as a group action.

Applied to quantum mechanics, the Erlangen program is ambitious. Our work focuses
on the study of some discrete-variable and continuous-variable quantum systems, hereafter
referred to as DV and CV, respectively. Examples of the former are one or more qubits, while
the latter include one or more Gaussian modes of the electromagnetic field. A common
feature of DV and CV systems is the correlation between subsystems, as well as their type,
for example, entanglement and quantum discord. Unfortunately, they also share difficulties
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in characterizing them. In the simplest case, when considering two parties, researchers
approach entanglement using different tools; [2] uses quaternions and division algebras
to parameterize two-qubit states, while [3] follows a differential-geometric approach, and
ref. [4] recognizes hyperbolic spaces describing states of Gaussian modes. In this sense,
we point out that SS has the tools required to address both qubits and modes, and more
importantly, the formalism is general enough to be applied to systems of arbitrary dimen-
sion. The cases we present will allow the reader to identify the complexity that arises as the
dimensionality of the system increases.

Researchers have dedicated considerable efforts to characterizing quantum states.
The usual approach is the development of criteria that distinguish separable states from
entangled ones. For two qubit, for instance, the concurrence C is employed not only to
detect but also to quantify entanglement; C is a function that takes values in the range
0 < C <1 and is monotonically increasing with the degree of entanglement [5]; and for
two modes, it is also possible to determine if a state is separable or not [6]. On top of
this, there exists a hierarchy of correlations whose quantitative measurements involve new
criteria and quantifiers [7]. Although researchers have not presented them as symmetric
spaces, there are publications that can be placed in this context. Thus, for example, the
authors in [8] provide a detailed discussion on the identification of non-local operations
using group decomposition, while [9] analyzes the case of Gaussian modes, establishing an
invariant criterion for squeezing. Our work overlaps with some of these studies; however,
from our standpoint, the approach of symmetric spaces enlarges the scope and provides a
description of qubits and modes using a common framework, which to our knowledge has
not been proposed. We note that, in a different context, the quantization of the symmetric
spaces themselves has been considered and also in the context of spontaneous symmetry
breaking [10,11].

The symmetry groups that we consider are SU(2") for n qubits and the symplectic
group Sp(2n,R) for n modes. Both are part of the so-called classical Lie groups, which
share properties and treatment methods, and are well suited for our purpose. Using
for qubits N = 2" and N = 2n for modes, the respective dimensions of the symmetry
groups are N2> — 1 and N(N + 1)/2; we observe that the complexity of the analysis, in
terms of the number of parameters involved, grows rapidly. Thus, 15 (10) parameters are
required to describe the general state of two qubits (two modes). Since the group operations
transform the states, then we can use group theory to classify the operations, and as far
as the correlations are concerned, the full symmetry group involves too many parameters;
therefore, we expect the identification of a subgroup that does not produce entangled states,
i.e., alocal subgroup. This is what we refer to as a physical interpretation of subgroups and
SS [12-14].

Given the symmetry group G of a system, our work is based on the use of equivalence
classes to classify states. Such classes are defined by a subgroup K C G; then, the meaning
of the coset space G/K is that a state and all those that are obtained from the application of
K are equivalent, i.e., the states are defined up to a K transformation. This sounds familiar—
for example, in the case of one qubit, the Bloch sphere S is the space of states and the states
are defined up to a phase. In terms of cosets, this correspond to SU(2)/U(1). Moreover, in
the same sense that divisors of integer numbers m = p/q allow the factorization p = mgq,
the SS of a Lie group are special quotients, G/K, that allow decomposing of the general
element ¢ € G as a product g = KP. The cosets are special in that an involution selects a
limited list of subgroups among all the possibilities.

The subgroups we consider are those allowed by the definition of SS, which is
formulated in terms of cosets and details of which will be presented in the following
sections. There are three important advantages of using SS: (/) they have been classi-
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fied for unitary and symplectic groups; (if) as a byproduct, it gives rise to a procedure
in building the general state of the coset; and (iii) it leads to a common treatment of
DV and CV systems. For example, for special unitary groups SU(N), there are three
types of SS which are defined in terms of the cosets SU(N)/SO(N), SU(2n)/Sp(2n) and
SU(p+4q)/S(U(p) x U(q)), with p+ g = N. In the case of two qubits, N =4, and n = 2,
for the third coset, there are two options we must consider, namely, SU(4)/S(U(3) x U(1))
and SU(4)/S(U(2) x U(2)). For symplectic groups, we also consider three cosets
Sp(2n,R)/U(n), Sp(p +4,R)/Sp(p,R) x Sp(q,R) and Sp(4,R)/Sp(2,C).

Besides the subgroup, each SS involves an involution 6 that separates g in even and
odd generators, 6(g;) = £ g;. The even elements [ are the generators of the subgroup K
while the odd elements p generate the SS, so that we can write g = [ @ p, with ([, p) known
as the Cartan pair of g. The Cartan pair is the basis for the Cartan decomposition (CD),
which ensures that a general group element can be written as U = KP, where K and P
are built as the exponential map of [ and p, respectively. When p includes the maximal
abelian subalgebra a of g, then a further decomposition is possible U = KAK, where A
is the exponential map of a. This is referred to as the KAK decomposition, which, in fact,
coincides with Euler and Bloch-Messiah, and throughout the text, we will apply KP, PK,
and KAK decomposition.

The relevance of CD is that it leads to a unique (up to permutations) parameterization
of an arbitrary state of the coset with no redundancy in the parameters. Moreover, the
process can be iterated to the subgroup K, such that KP — K'P’P. Since the action of
the subgroup defines an equivalence class, then the invariants associated to the subgroup
portray the coset. Therefore, the characterization of the states in the SS is performed in
terms of invariants under the action of the subgroup K. This subject is addressed in the
main text where the relation to existing quantifiers, such as the purity and partial transpose
criterion [15], is discussed. However, the challenge is non-trivial due to the large number
of parameters and to the fact that subgroups are not disjoint, i.e., different cosets share
some of the properties. The mixing of states is an example—it naturally appears in the
formalism. In fact, it corresponds to the interpretation of one of the cosets, but it is not
limited to that SS. Other cosets allow for the incorporation of mixing. This is accomplished
by implementing a mechanism through the Cartan subalgebra.

Here, we present a systematic treatment of qubits and modes from which impor-
tant results previously reported, scattered in the literature, can be reproduced within the
framework of SS. Among these results we can mention, for example, the standard form
of the two-modes Gaussian states [16], and the parameters of non-separable correlations
in the two-qubits state. However, we go beyond this and obtain generalizations to higher-
dimensional systems, the non-trivial results are a standard-like form of 3-modes, and a
process of iteration is used in constructing three-qubit states. Moreover, we present cosets
that have not been extensively considered in the literature.

The paper is organized as follows: In the first part of Section 2, we introduce the
quantum states of interest and the groups involved, while the second part is used to
introduce the notation and concepts related to SS and CD. We work out details of the group
SL(2,C) since it contains relevant information of both SU(2) and Sp(2,R), so that the reader
may be familiarized with the topics. Section 3 deals with the application of the SS formalism
to qubits and Gaussian modes; it comprises three subsections dedicated to interpretation of
the SS. Each subsection includes two families that share properties; Families AIII-CI, AI-CII
and AII-CIIIL In Section 4, with the help of a table, we present a summary of our findings
and discuss the extension of the analysis to higher-dimensional systems, and point out the
variety of options that open up, as well as the difficulties that arise for the interpretation. In
the last section, we present our conclusion.
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2. States and Symmetric Spaces

The theory of SS is explored across various disciplines; however, to the best of our
knowledge, it has not been widely applied in the context of quantum systems from a com-
prehensive perspective. For that reason, in this section, we set the notation and conventions
for SS following the standard reference [17]. Additionally, we extend the discussion to in-
clude pseudo-symmetric spaces (SS;) [18], which are not considered in the aforementioned
text. We start by considering the role of groups in the context of quantum systems.

2.1. Quantum States and Symmetries

A system of n qubits is described by the n-fold tensor product C?' = C? @ C? ® - - - C?
involving 2" complex parameters, which can be organized, for pure states, as an array
of 2" complex numbers |P) = (z1,z2---zo) and as a 2" x 2" density matrix which is
Hermitian, positive-definite, and satisfies Tr(p?) < 1, the equality holding for pure states
and the strict inequality applying to mixed states. The group of unitary transformations
u(2") = Su(2") x U(1) is identified as the maximum set of symmetries of the quantum
mechanical system, maintaining the probability interpretation of quantum mechanics.

The general mixed-state density matrix, on an arbitrary basis, is obtained upon per-
forming a unitary transformation with an element of the group U(2"), i.e., p = UpoU".
Below, we will show how to take advantage of the decomposition of the unitary transfor-
mation to perform this task.

One mode of the electromagnetic field is described in terms of one degree of freedom,
a Hermitian operator X and its canonical conjugate P, acting in a Hilbert space H. For
n-modes, it is customary to arrange the set of Hermitian operators in a 2n-quadrature
vector X so that X, = {Xl, Xy Xy, 131, e pn}T (Canonical basis) or the standard basis
<f = {Xl, 131, Xy, pn}T/ where T stands for transpose, and such that the commutation
relations are as follows:

A , ~(0 1
[gﬂ/ Cb] = 1Wap, w = @ <_1 0) . 1)
We consider linear homogeneous transformations of ¢, which preserve the commutation
relation in Equation (1). These transformations can be implemented by a real 2n x 2n-
dimensional matrix S (for modes, we follow the notation and conventions of [19]):

&, = Suly, S'wS = w. )

Such matrices form the group Sp(2n, R), the symmetry group of the quantum mechanical
description of n modes, which has dimension 1(2n + 1), including n? + 1 squeeze genera-
tors and n? rotations. It is convenient to introduce a block form for S involving four real

A B
s:(c D). 3)

When dealing with modes of the radiation field, it is advantageous to work with the annihila-
tion and creation operators defined as &; = (X; +iP;)/+v/2and ﬁ;r = (X; —iP;)/\/2. In this case,
instead of the array (:‘, it is convenient to introduce Z so that Zu = {0y 0y, 51{, ﬁ; e an}T

n X n matrices:

for which the commutation relations are [4;, &}L] = J;j. In this case, the block form of the

transformation matrix involves complex inputs, but is still a real group. Moreover, for each
S € Sp(2n,R), it is possible to construct a unitary operator I (S) acting on # such that:
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& = Saly =U(S) & U(S) and US)tus) =1. (4)

It is important to note that there is a degree of arbitrariness in the phase of ¢/ and in the
composition law since for S1, S, € Sp(2n, R):

U(S)U(Sy) = e ®5152) 14(5,,). (5)

This is reminiscent of a double-cover relation, as with SO(3) — SU(2), and indeed
can be paraphrased in these terms [19]. It goes under the name metaplectic represen-
tation of Sp(2n,R); it leads to the simplest version of the composition law Equation (5)
U(S1)U(Sy) = £U(S1S,) and its generators are all Hermitian and bilinear in the (,a")
operators.

The Wigner distribution (WD) is a useful tool for the description of modes. The
advantage of the WD is highlighted by the following result. For any quantum mechani-
cal operator [, in configuration space and specified in the Schrodinger representation by
(X|I'|X"), the corresponding WD is obtained by a partial Fourier transform:

W(g) = (2711)” /d”X’ (X — %X’|f|x+ %X/>eiX’.P' ©)

The inverse transform makes it possible to recover the configuration space representation
of the operator:

(X XIFIX 4 3X) = [P W (x4 X )e P06, )

where W({) is a function on the classical phase space, with arguments (X, P), which
are classical c-numbers. The feature that makes the WD so special is that a metaplectic
transformation ¢/ (S) in the Schrodinger representation has a simple realization in terms of
the WD:

I =uS) " Tuls) = W\(& =Ww(se. (8)

In words, a transformation of operators (X, P) in Hilbert space, realized with the infinite-
dimensional representation I/, is implemented with the corresponding, finite-dimensional,
symplectic representation in phase space (X, P). The WD of a Gaussian state is a Gaussian
function; it can be shown that the complete description of a Gaussian state is encoded in o,
the covariance matrix (CM):

e % (C'TU ‘:)
ny/deto)’

where 0;; = ({X;, X;}), and all relevant quantities can be obtained from the CM, which

Wo(¢) = ©)

is symmetric and positive-definite. In particular, in its diagonal form, the CM defines the
symplectic eigenvalues vy in terms of which the purity of the state is expressed:

1 1
— PAR —
bo = Tr(p") = Detc Iy’

(10)

2.2. Symmetric Spaces and Cartan Decomposition

In this section, we use the simplest examples of SS to introduce the key concepts and
definitions that allow dealing with n-qubits and n-modes. We will start by looking at the
definition of the real form and the Cartan decomposition. The Lie algebras g are vector
spaces together with an extra operation called the Lie bracket, denoted [X, Y] = XY — YX,
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which is skew-symmetric and satisfies the Jacobi identity. Given elements X, Y of a real
Lie algebra and a complex structure | which satisfies [* = —J, | 2 = _1, an element of a
complex Lie algebra is written as Z = X + | Y. This process is called complexification. If
8 = 9o @ Jgo, then we say that gy is a real form of g. Then, given a complex Lie algebra g
and a real form gg, the decomposition gy = Iy @ po is a Cartan decomposition, if there exists
a compact real form uy that leads to a complexification u of g and which satisfies:

u* Cu, lo = go Nu, po = go N (iup). (11)

The following example illustrates the concepts introduced. SL(2, C) is the group of two-
by-two complex matrices with unit determinant. At the level of Lie algebra, this condition
implies traceless matrices, and the general element can be expressed as:

zZ1 2o 1 0 01 0 0
7 = = 12
<Z3 —21> Zl(o —1>+Zz<o 0>+Z3<1 0)’ (12)

The matrices appearing in this equation form a basis; they are usually denoted #, e, f
and satisfy the commutation relations [h,e] = 2¢, [h, f] = —2f, [e, f] = h. Note that
e = 3(o1 + i) and f = 1(0y —icy), 0; being the Pauli matrices, which allows us to
conclude that Z can be expressed in a linear combination, with complex coefficients, of the
su(2) generators, i.e., su(2) is indeed a real form of sI(2, C) = su(2) +isu(2). Alternatively,
by writing X = x1h + x2e + x3f, we conclude that s/(2,C) = sl(2,R) 4+ isl(2,R). Thus,
su(2) and sl(2,R) are the compact and split real forms of sl(2,C), respectively. Here,
a compact real form is defined by having a negative-definite killing form, which for
the classical families of Lie groups is given by B(X,Y) = 4Tr(X,Y). Since su(2) and
sl(2,R) = sp(2,R) are of signature (0,3) and (2,1), the corresponding Lie groups are
compact and non-compact, respectively.

Additionally, we can verify the conditions in Equation (11) to obtain the Cartan
pair [20], taking uy = su(2) and gy = sI(2,R). The first part is trivial, since any element
in sl(2,C) can be written as X + iY with elements of su(2); the second condition is seen
in terms of the basis elements [y = sI(2,R) Nsu(2) = {e — f = ioy}; similarly, the third
condition is pg = sl(2,R) N (isu(2)) = {h = o3,e+ f = 01}. In this way, the Cartan
decomposition both of sp(2, R) and su(2) is obtained and can be applied to a qubit and a
Gaussian mode; however, this is not practical and for other groups, it is better to use the
following facts.

Associated to the conjugation with respect to the real form (u)*, there is an involutive
automorphism 6 of g, called the Cartan involution, and satisfies that —Bg(Z1, (Z1)*) is
strictly positive-definite. Additionally, 6 on gy has the property 6> = 1 (since (Z2*)* = Z),
and the eigenspaces corresponding to the eigenvalues +1 are [y, pg. Moreover, since 6 is an
automorphism of the Lie algebra, it maintains the bracket operation so that:

[lo, lo] C lp, (1o, po] C po, [po, po] C lo. (13)

It follows that, if there exists a subalgebra a C p, it must be Abelian and when it is also
maximal it is called Cartan subalgebra. In brief, Cartan involutions are related to real forms
of a complex Lie algebra, and non-equivalent involutions lead to families of SS.

A significant advantage of using SS is the existence of a general classification that
restricts the number of subgroups we have to consider. It provides a matrix representation
of involutions and, moreover, it ensures the transitivity of the group action on the coset.
According to the general classification, su(n) has three different families denoted Al,
All, AIII that correspond to the subalgebras so(n), sp(n) and s(u(p) @ u(q)), p+q9 =n
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and whose involutions are 6;(X) = X*, 0;(X) = [, X* ]}, and 0;11(X) = L, X Iq,
respectively, where:

I, 0 0 0
0 Iy I, 0 0 -, 0 0
= , IL,.=1|F , K, = q
Jn <1n o) P (o 1q> P10 0 I, 0
0 0 0 —I

We also consider three families of Sp(2n, R) [18]. Since there is no standard notation for
these cases, we will denote them as CI, CII, and CIII (Cartan involutions are stated in the
canonical basis; when using the standard one, a change of basis is necessary to obtain the
correct subgroup.). The subalgebras for the first two are u(n), and sp(2p, R) @ sp(2q,R) and
the involutions ¢;(X) = Ju(X)],/}, ¢11(X) = Kp,q(X)Kp,4. Finally, for CIII, the subgroup
is Sp(n,C), when n = 2; this yields the double cover of the Lorentz group, i.e., the coset
corresponds to an anti-de Sitter space (general involution unknown).

The general element of the group is written in terms of the Lie algebra by using the
exponential map exp : g — G, while the Cartan decomposition [21,22] guarantees that the
map K x P — G is a diffeomorphism and allows writing G > ¢ = K- P, P - K uniquely,
with K and P expressed in terms of the Cartan pair, K = exp([), P = exp(p). In terms of
the group G and the subgroup K, the coset P = G/K is defined as SS when G and K are
both compact groups, or when only K is compact, while the space when neither G nor K
are compact is called pseudo-symmetric (the notation G/ H is commonly used to include
both SS and SS,; both are homogeneous spaces. We use G /K to refer to both of them) (SSp,).

An extra decomposition is possible G = Kj - A - K, where A = exp(a) and a is the
maximal abelian subalgebra in p. (Two points are worth remarking: (1) the decomposi-
tion is not unique, and (2) the map is not a diffeomorphism between manifolds, giving
origin to topological conditions [23]). One way to follow Klein’s philosophy is to use
Cartan decomposition to obtain a general state p = G'poG, where py can be chosen in
different ways. For example, by using the Cartan decomposition G = KP, it follows that
p = P'(KTpoK)P. Clearly, it is advantageous that pg and pg = K'poK are in the same
equivalence class; then, we can label the equivalence classes using the classical invariant
theory of matrices [24] and relate them to physically meaningful quantities. For qubits,
this program has been performed [25,26] and polynomial invariants of the local subgroup
have been computed. In the case of modes, the role of the state is played by the general
correlation matrix o, which can be obtained through a symplectic transformation:

os =S'opS, S € Sp(2n,R), (14)

Since the symplectic relation S‘wS = w implies S' = wS~'w™!, which together with
w™! = —w,leads to wos; = S~!(w0r)S, then we observe that wo transforms by conjugation.
Taking into account that Sp(2n, R) C SL(2n,R), we can use results valid for the latter group
concerning invariant quantities, namely, the coefficients of the characteristic polynomial,
and these can be computed from functions of tr(X*) [27]. Consider the case when ¥ = wo
is a four-by-four matrix with elements [Z; ], i,j = 1-- - 4. In this case, Tr(Z) = Tr(£?) = 0,
whereas Tr(X*) « Det[X]. Moreover, tr(X?) can be calculated from Tr(X%f) and the six
principal minors Dg’ﬁ = Det[2%F], where £%F is a two-by-two matrix obtained form X
by eliminating rows and columns other than &, 8. The relevance of this result will be
appreciated when discussing the physical interpretation of SS, for two modes.
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3. Qubits and Modes

In this section, we discuss the application of the SS formalism to qubits and modes.
We start by presenting details for one qubit and one mode—this will help to grasp the
ideas and methods that will be used when analyzing two qubits and two modes, and
generalizations to n-parties. In particular, we emphasize the parallelism between qubits
and Gaussian modes in terms of equivalence classes that involve mixing and correlations.

3.1. Symmetric Spaces Alll and CI

It is worth recalling the coset and involution of SS AIIL The subalgebra s(u(n —1) &
u(1)) is obtained by means of the involution 6;71(X) = I, 5 X I, ;. We start by considering
one qubit. When discussing real forms, we have seen that the conditions in Equation (11)
lead to the Cartan decomposition of SU(2); however, for practical purposes, it is better
to exploit the matrix representation of involutions. In the particular case of one qubit,
we can discuss the three involutions; however, since SU(2) = Sp(2), we do not have to
consider All, so that only two involutions are relevant and both lead to the symmetric space
SU(Z)/U(l) with either [j = {iO’z} and po = {iU’g, iO’l} orly = {iU’g} and po = {iU’l,i0'2}.
A qubit mixed state of purity r is described by p,, = %(]I + 10 - 1i), whence the diagonal
mixed state p; is a linear combination of the identity matrix and a diagonal generator
04 = %(]I + ro3). In terms of py, the general mixed state is obtained using KAK decomposi-
tion with [ = io3, and p = ioy:

—irnd iy ? _ign X ion X i ? o d
pm —¢ 10'326 10'226 10'32pdelt7'3zel(722611732 (15)

Note that p; commutes with K, the subgroup defining the equivalence class,
e‘i‘73%pd it = pq (by convention, we keep U' at the left, to coincide with the adjoint
action of a Lie group, which is not the standard action on kets in quantum mechanics)
and the final mixed state involves the correct total number of parameters (6, ¢,r). We
summarize this by saying that the x parameter has been traded by the mixing parameter
r. Geometrically, p,, describes a sphere of radius r (Bloch sphere) and every point on the
surface of the two-dimensional sphere of radius r describes a state.

For two qubits, the symmetry group is SU(4). In order to implement CD, a basis of
the Lie algebra is required, for our purposes, it is advantageous to take the 15 traceless
skew-Hermitian A;; generalization of the Gell-Mann matrices that schematically look like:

A= (S”;()?;) u(z1)>' (16)

Applying the involution, we obtain the subalgebra [ = {A;, A5, i = 1,2,-- -8}, where
the A;...g denote the four-dimensional generalization of the Gell-Mann matrices, Ay5 is
a third traceless diagonal matrix, and the set p = {A;, i = 9,10, -- 14} contains the six
generators that can be built from the complex vector Z and Z'. The SS is the well-known
SU(4)/S(U(3) x U(1)) = CP?, the two-qubit generalization of the Bloch sphere. The form
of a general density matrix describing two qubits was discussed in [28,29]. Their analysis
is based on the recursive application of the CD, using that SU(2) C SU(3) C SU(4). The
bottom line of the work is that the general p is parameterized using twelve Euler angles
and three populations and is written p = Utp, U, where p,; is diagonal:

pqa = 5Ly + fi(pi)As + fa(pi)As + fa(pi)Ais), (17)

N
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The f; = fi(p1, p2, p3) are given functions of the populations p; > 0, i = 1,2,3, A3, Ag,
are the four-dimensional generalization of the Gell-Mann matrices, A5 is the third SU(4)
diagonal matrix, and:

U = Uy (ag, a0, a3, g, a5)e 0% Uy (a7, ag, g, a10, 411012), (18)

where the o’s are parameters. An important characteristic of this result is that both U; and
U, involve generators of the subgroup S(U(3) x U(1)) so that, in this decomposition, the
full operator U only involves one generator (Ajg) that does not belong to S(U(3) x U(1)).
From the perspective of SS, the following observations are incorporated in the analysis: (i)
when considering the action of G on a state of the equivalence class, i.e., p = U+p2 U where
09 and p’° = K¥p K belong to the same equivalence class; therefore, the general state of this
class of equivalence is p = P¥(B;)p) P(B;), where the notation is intended to indicate that
P depends on six parameters ;; and (ii) the general state of this coset can be constructed
taking as the starting point a diagonal pJ including a single mixing parameter. In this way,
we end up with the state of the coset P that includes mixed states and, as expected, depends
on seven parameters:

p =P (B1-6)p5(p) P(B1-s)- (19)

We now turn to one mode. To this end, consider s € sp(2,R), written as X =
X151 + X252 + X353, where:

slz(g ;), 52:<_01 3), 53:(3 _01). 20)

The involution ¢ (X) leads to [ = {s2}, p = {51, 53} and to the coset Sp(2,R)/U(1), while
the involution ¢;(X) yields [ = {s3}, p = {s2,51} and the coset Sp(2,R)/SO(1,1) =
SO(2,1)/50(1,1). The latter coset belongs to the CII family and its appearance here
follows from an accidental isomorphism and leads to an alternative expression for the
general state in terms of two squeezing and one rotation. Modes of the electromagnetic
field can be described in terms of Fock states {|n)} or Coherent states {|«)}, infinite-
dimensional Hilbert spaces where the symmetry group generators are unitary operators.
Alternatively, the phase space formulation in terms of the probability quasi-distribution, a
finite-dimensional representation, although not unitary, can be achieved in terms of the
creation-annihilation operators 4, a*.
By analogy to the qubit case, our aim is to express the general state using group action
on the covariance matrix. Consider the set of operators:
1 i

@+ @), H=@-@"),  &=@ata),

They form a representation of the generators of the sp(2, R) Lie algebra. The action of the

- 1
S1 =

group on the creation-annihilation operator is readily obtained, and from it, the action
on the quadratures (X, P) (comparing the matrix representation of coset P with (), the
squeezing operator, we note that the latter defines the coset space).

—issy [ “F ) piss1 — SS1 , 21

In this context, it is relevant to recall that the identity correlation matrix corresponds to
the vacuum state (and coherent states). The covariance matrix is symmetric and positive-
definite; therefore, it can be written as a linear combination of {I, s3,s1 }, but not s, since it
is skew-symmetric, coincides with the symplectic matrix w, and remains invariant under
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symplectic transformations. Starting from the vacuum state correlation matrix (cp = I),
the CM for the squeezed, typical mode state of the Sp(2,R) /U(1) coset can be obtained,
either using the unitary representation or the finite-dimensional form of the generators.
Thus, using the KAK decomposition (Bloch-Messiah):

s 0
S =exp (%sz) exp (553) exp (ESZ)’ o7 = S'opS. (22)

Note that K = exp([) is the U(1) subgroup that characterizes the equivalence class,
and also in this case, we can argue that the ¢ parameter has been exchanged by the mixing
parameter a, so that the general mixed state of this coset is aag(Q,s) (see Equation (22)).
Since the parameter a determines the mixing degree, the coset Sp(2,R)/U(1) may be
interpreted as surfaces of equal mixing. In other words, U(1) is the stabilizer of the mixing
level for Gaussian states. An explicit calculation shows that o7 = xo I — x151 — x3s3, with
xg = acosh (s), x; = asin(f) sinh(s), x3 = acos (0) sinh (s), suggesting the interpretation
of the x, as coordinates and identifying states as points of a manifold (a hyperboloid) on a
space of the signature (1,2) given by |o7| = 4 = x§ — x} — x3.

For two modes n = 2, the coset to consider is sp(4,R) /U(2); as generators, we use the
10 symplectic generators (out of 16) given by X;; = s; ® s;, where s4 = I:

X1=51R®s3 X4=51R®s4 Xr=51®5)
Xo=53®s3 X5=530s4 Xg=53Qs2 Xjo=50s ,
X3=54R5s3 Xg=54R54 Xg=54R5p

The subalgebra spanned by { X7, Xs, X9, X190} is isomorphic to u(1) & su(2) = u(2) and
corresponds to the skew-symmetric matrices, while the p-space is given by the symmetric
matrices { X;_¢}. Thus, in obtaining the SS Sp(4,R)/U(2), the following points are worth
making: (1) Sp(4, R) is a rank two group, and the two diagonal matrices {X;, Xo} in p can
be chosen as the Cartan subalgebra. Therefore, we can implement K; AK; decomposition,
where each Kj , involves four parameters and the coset depends only on six parameters.
(2) K € U(2) can be further decomposed as SU(2) x U(1), K=e®Xsel1Xoet2Xset1X7, where X7
generates U(1) since it commutes with the remaining rotations, (3) 0y = I4 belongs to the
equivalence class of K:

o= K,AK! T, K1 AK, = KbA Ty AK,. (23)

Then, for pure states, we can obtain a parametrization for the geometric representation
of two modes, by generalization of o7 in Equation (22). It is convenient to introduce
the linear combinations X/, = %(Xl + Xp) and Xlyg = %(X7 + Xg); they later generate
U(1) x U(1) € U(2), such that §; = e3Xhe5X17, 5, — ¢3X12,5Xs | are transformations acting in
each mode separately and Equation (23) becomes:

0 =R R, (511281 @ S51585) R, Rxg, (24)

where Ry, is the rotation associated to generator X;. This result shows that a pure state
of two modes can be obtained from the vacuum CM transforming each mode separately
(51,52) and then the rotations (Rx,, Rx,) produce the non-trivial combination of the two
modes to obtain the general state.

Alternatively, instead of Equation (23), we start from o = KéAK{ 0pK1 AK;3 and consider
the U(1) x U(1) sitting in Kj and take into account that it acts trivially on oy = all, ® bll,
where a, b are population parameters. This argument shows that the two parameters of
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the U(1) x U(1) group are exchanged by the populations a,b, while the actions of the
remaining operators are non-trivial and lead to the general ten parameters mixed state:

o = Ky AR R, (R, aloRx;, @ Rg(lsbﬂzRXls)RngngKz. (25)

Extension to the three-qubits and three-mode cases is direct; the involutions lead to
the subgroups S(U(7) x U(1)) and U(3), respectively. We can select a basis such that these
subgroups act trivially on p and 0y = I, yielding manifolds of dimension 14 and 12 for
pure states. Also in this case, iterations of the CD on the subgroup allow exchange of the
parameters associated to the abelian subalgebra by 7 and 3 populations. Generalization
to n-parties is along the same lines. Using a different approach, the case of pure states of
qubits and modes has been separately discussed in [30,31].

3.2. Symmetric Spaces Al and CII

For two qubits, we consider the coset SU(4)/SU(2) x SU(2). We consider X,z =
0y ® 0, where ¢, § = 0,1, 2,3 with 0y = [, and the usual Pauli matrices. Except for 4, we
use the remaining 15 Kronecker products as SU(4) generators. The involution 6;(X) = X*
identifies the subalgebra of the skew-symmetric matrices [ = { X0, X12, X32, X02, X21, X23 }-
It generates the group SO(4) that can be split into two sets [ = [l with [; =
{X20, X12, X352} and I = {Xop, X21, X23}. The generators in the two sets mutually commute,
and within each set, the elements satisfy the angular momentum commutation relations.
The Cartan subalgebra of su(4) (the choice of a is not unique, a; = {Xo3, X30, X33}, and
ay = {X11, X2, X33}, are two possibilities, but these are conjugate to each other by a change
of basis) is fully contained in p = {Xo1, Xo3, X10, X30, X11, X13, X22, X31, X33} and enables
K1 AK; decomposition. A detailed analysis of this coset is presented in [8], leading to the
identification of the subgroup K that characterizes the local transformations.

Up to this point, the 15 parameters that characterize SU(4) are encoded; six in each K;
and three in A. A state p is obtained by applying the general element U of the group to an
initial state pg, and if we choose pp as a product state, then we obtain:

p = KIATKS poKy AKy = KT ATpg AKy, (26)

The simplification in the second equality follows from the fact that pg and KipoK, be-
long to the same equivalence class; therefore, we can ignore the six parameters in Kj.
Thus, this is a nine-parameters SS. When only pure states are considered, the elements in
Ay = exp(ay) are required to produce entanglement. According to [8], analysis of the
invariants yields functions of the three parameters in a, which are used to classify and
represent geometrically non-local operations. A key step is the change from the standard
basis {|00),[01),[10),|11)} to the Bell basis {|p*), |¢F)} using:

1 0 O i
Qz—\}i N § Qa(s0(4)Q} —+ su(2) wsu(2).  (@7)
1 0 0 —i

At this point, we highlight the value of our approach. We can consider mixtures since
the three generators in a; are diagonal, and following the procedure used in the previous
section, the expression Apg AT may be used to introduce the population parameters (see
Equation (17)). Since the population parameters introduce a hierarchy of correlations [7]
and entanglement is no longer equal to non-locality, then a more detailed analysis of
the regions of the correlations is needed. However, instead of pursuing that line, we
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describe another possibility. The SS SU(4)/S(U(2) x U(2)) belongs to family AIII with
p = q = 2, which we include here because of its close relation to the cosets of this family.
The coset has eight parameters, and the subalgebra is su(2) @ su(2) @ u(1), corresponding
to [ = {Xo1, Xo2, X03, X31, X32, X33, X30 }, where X3 is the generator of the U(1) subgroup
that decouples. Linear combinations of the remaining generators produce two sets of SU(2)
generators, [1, = 1/2{X¢1 & X31, X2 £ X32, Xo3 = X33}. The equivalence class associated
to this subgroup conforms to X-states [32], which are known because the correlations, in
particular the quantum discord, can be computed analytically, and in our approach, the
quantifiers can be analyzed in terms of subgroup invariants.

We now outline some perspectives regarding generalizations for this SS. To analyze the
case of  3-qubits, we consider the basis of su(8) given Dby
Xijk = i(o;® 0 ® 0r) 1,7,k = 0,1,2,3, except the I, ® I, ® I. The involution 6;(X) se-
lects the skew-symmetric matrices that form a basis for so(8) and the KAK decomposition
is such that each K encodes 28 parameters while the abelian subalgebra in A includes the
remaining 7 parameters. We propose that the subgroup K,s = SU(2) ® SU(2) ® SU(2)
defines the equivalence class of the product states. Due to isomorphism between su(2)
and so0(3), we would expect to find a subgroup (SO(3)x ) to be associated to Kps and
certainly there are various such subgroups in SO(8). The SS approach is of help in this task,
since by iterating the CD to the subgroups, a limited number of options are selected and
the generators are identified through the involutions. The following is the list of options
that arise from the iterations and that lead to the candidates for the (SO(3)x)? we are
looking for:

e Ti1:50(8) = s0(7) ® p1 — (so(4) ®s0(3)) B p2P p1,

e T2 50(8) — s0(6) ®so(2) D p,

*  T3:50(8) — s0(5) ®so(3) B p1 — so(4) B p2®so(3) P pi,

e T4 s0(8) — so(4) ®so(4) D p;.

It is instructive to compare such options with the recognized classes of entangled states [33,34]:
1
V2
(/001) 4 |010) + |100)),

|A,B,C) = [¢a) @ |yp) @ [¢c), [GHZ) =

_ 1
e

At first sight, we could establish a correspondence between the iterations and the classes of

(1000) + |111)),

|A,BC) = [¢4) @ [¢5c) W)

states. For example, states of the type|A, B, C) are reminiscent of the group structure T1;
however, as shown below, the group structure is not enough to establish the relation and
each case must be discussed on its own. Consider the schematic matrix representation of

the iteration T4:
so(8) = (So(ﬁ) 501(94)>' (28)

Using the generalization of Q — diag{Qz, Q2}, we can map so(4) ® so(4) into
(su(2) ®su(2)) & (su(2) @ su(2)) and find that these su(2) can be arranged; for exam-
ple, { X412 + X312, Xapa + X304, Xuazp + X332}, which are 4 x 4 block-diagonal matrices, and
it can be verified that it conforms with the equivalence class of states |A, BC). The remain-
ing subgroups of this SS must be analyzed along similar lines—for example, a schematic
representation of iteration T2 is:

so(4)  p2 pu
so(8) = | —py s0(3) pyj |, (29)
—-pi —pij 0
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And there exists a 3 x 3 matrix that maps so(3) — su(2). Unfortunately, so far, we can not
make a strong statement regarding the origin of the subgroup of the local transformations
corresponding to the states |A, B, C).

The coset Sp(4,R)/Sp(2,R) x Sp(2,R) conduces to the derivation of the so-called
standard form of two modes and to the local invariant quantities. The involution ¢;; yields
the subalgebra | = {X;, X4, X7, X5, X5, Xg} and the set p = {X3, X¢, X9, X10}. This is the
first case where an S5, arises in the analysis, which is evidenced by the fact that [ contains 2
rotations and 4 boost (non-compact part). It is useful to introduce the linear combinations:

1 1 1
Xlip = E(Xl +X5), Xlys= E(X4 +Xs5), Xlyg= §(X7 =+ Xg). (30)

The two sets of generators, {XI, Xly, XI7}, {X1p, XI5, XIg}, commute with each other
{Xly, Xly, Xl7}, { X1, XI5, XIg} and generate one Sp(2, R). These subgroups are identified
as local operations of each mode, which is clear from the block structure of the generators
or the group elements [16]. The salient feature of this coset is its pseudo-symmetric nature
and the fact that non-separable operations are associated with the P-subspace such that
a general state can be written in terms of the K - P decomposition. We know that oy =1
and oy = diag{a,a,b,b} belong to the equivalence classes of pure and mixed states, re-
spectively. The general form of the state in this equivalence class o5 is obtained by taking
K = diag{S1,S»}, and in terms of the XI; previously introduced, is given by:

A C
0y = PloyP = ( 4 B>, (31)

using the local subgroup K, we are able to perform a diagonalization that brings o5 through
the following procedure (¢ = K'03K): A is transformed by S;, A — SﬁASl, recalling the
one-mode transformation Equation (22), the first rotation and the squeezing are enough to
obtain S{ AS; — diag{A, A}, and then the last rotation acts trivially. The same procedure
can be applied to B using S;, while the two free rotations are used to diagonalize C, SﬁC Sy

a]Iz c’ ’ C1 0
= ’ C = . 32
7 <C/t b]lz) < 0 Co ( )

For pure states @ = b and ¢ = —cp, while for mixtures, a # b and ¢ # c;. The states

so that we end up with:

belonging to this equivalence class are characterized by invariants under K and, according
to the discussion in Section 2.2, the invariants are functions of traces and determinants of
Y. = wo. The following results will be required:

tr(Z) =0, tr(X?) = -2(a®> +b* +2c1c0), t(Z3) =0
tr(z4) = ab(c? + 3) + c1c2(a® + b?) 4+ 2(a* + c1c2)? 4 2(cycp + b7)?, (33)

We further note that detA, detB, and detC are invariants under K, while
A = det A + det B + 2det C is a symplectic invariant, and tr(AwCwBwC'w) = ab(c? + c3)
can be expressed in terms of t7(X?) and tr(X*). Therefore, we have shown that all the invari-
ants that characterize this coset can be obtained from the traces of powers of X.. These results
reproduce the invariants used in the formulation of the Peres—Horodecki criterion [16],
with the advantage that our derivation can be extended to higher-dimensional systems.
We now comment on details regarding the generalization to the SS, associated with
the three-mode states. The coset is Sp(6,R)/Sp(4,R) x Sp(2,R), and applying the CD to
Sp(4,R) leads to the identification of the local subgroup K = (Sp(2,R) x )3. This subgroup
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can be given the block form S; = diag{S1,S,S3}, and the general form of the coset
(including mixtures) is:

A D; D,
c=|DI B D|. (34)
Di Di C

The subgroup of local transformations K can be used to obtain a standard-like form to the
CM. Following the same procedure as for the two modes case, the matrices A, B, and C are
diagonalized; however, there are not enough free parameters to diagonalize the three D's.
There is some freedom in choosing which block to diagonalize; for example, we can fix
rotations in S! D1 S, — diag{A1, A, }, and we arrive to a standard-like form:

11]12 Di Dé

p p / Ar 0

c=| Dj bl, D, D] = < > . (35)
(D3)" (D))" I

Analysis of invariants also generalizes: the determinants of each sub-matrix are local

invariants. These will be included in tr(X?); besides that, we have to consider now tr(Z4)

and tr(X) to look for a complete set of local invariants. While the partial transpose criterion

has no straightforward generalization, local invariant quantities can be used to formulate

new criteria; however, we leave further analysis of this topic for future work.

3.3. Symmetric Spaces All and CIII

We attempt to find a common interpretation of these families, considering that in
both cases, the subgroup involved is of the symplectic type, Sp(2n) and Sp(2n,C), for
qubits and modes, respectively. The isomorphism Sp(4) = SO(5) and Sp(2,C) = SL(2,C)
allows identifing that the geometry of the cosets are the 5-dimensional sphere S° and the
anti-de Sitter space. In the case of 2-qubits, the involution 8;7(X) = J,X*J,;! leads to the
subalgebra sp(4), and p = {Xo1, Xo3, X12, X22, X32}. According to the CD, the general state
is expressed as p = PK pg KT Pt, and the choice of pg plays a central role. We are interested
in taking pg in the Sp(4) equivalence class. We first consider pure states. In such a case, we
can choose an eigenstate of the P-operator. The parameters then correspond to S°:

COS(T’) + ixq sin(r) (ixp+xs5) sin(r) 0 (x3—ixy) sin(r)
7 r r
i(xp+ixs) sin(r) ixq sin(r) (x3—ixy) sin(r)
anTis) Pl cos(r) — — 0
Ps = 6 (X3+1‘X4)Sin(77) COS(T) + yixl sin(r) i(xp+ixs) sin(r) 4 (36)
_ (X3+ix4;)sin(r) 6 (ix2+x5’;,) sin(rr) COS(T) 77 ixy syin(r)
where 2 = |(xq, %2, x3,x4,%5)|?>. The eigenstates include a vanishing component; for

example, |) = («, B,¢?,0)T with a, f € C. An interpretation in terms of a 4-level system
is proposed in [12]. The other possibility is to introduce a population using the diagonal
element X, to end up with a state given by:

A C*
Alternatively, an iteration is possible using the Sp(4) decomposition in terms of
K = SU(2) x SU(2), or K = U(2) and the invariants of pp under K are analogous to
those of two-mode states.
The case of two modes is considered with involution ¢;;;(X) = H X H™!, where
H =1, ® sp (we are unaware if matrix H generalizes to Sp(2n,R)), leads to the subalgebra
[ = {Xz, X3, X4, Xg, Xo, XlO}r and to the set p = {Xl, X5, X, X7}
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The coset is given by P =exp(z; X1 + z5 X5 + z6 X6 + 27 X7) Where the z; can be parame-
terized as z; = zcos(f) cosh(z), z5 = zsin(#) cosh(z) cos(¢), z¢ = zsin(f) cosh(z) sin(¢), z; = zsinh(z) and
22 = |(z1, 25, 26, 27)|?, which defines a hyperboloid shape in four dimensions. In fact, this
coset is commonly studied in the context of Lorentz transformations [35]. The CM is of the
form given in Equation (31), and below, we report the form of C for this coset, since the
matrices A, B are not necessary for the argument:

2¢(a(z5—27) —b(z5+27)) sinh?(2) z¢ sinh(z) ((a+b)z cosh(z)+(a—b)z; sinh(z))
C= . 2 . 2’ 2 (38)
zg sinh(z)((a+b)z coshz(Z)Jr(bfu)z] sinh(z)) Zg (b(Z7*Z5)+H(i5 +2z7)) sinh” (z)
p2 z

Note that pcy; N perr = {Xe}; therefore, zg = 0 reduces this coset to a subset of the local
subgroup, while for z; = 0, it reduces to a subset of coset CIL

4. Discussion

In the last section, we presented a systematic treatment of qubits and modes. Important
results scattered in the literature can be systematically reproduced starting from the concept
of SS. The table included below is an attempt to summarize the results.

Table 1. (Pseudo) Symmetric spaces considered for qubits and modes. Blank spaces indicate that
these cosets are not defined. Details of the analysis of each coset are included in Section 3.

SS n=1 n=2 n=3

ATl Su(2)/s(Uu(1) x u(1)) su4)/s(U(p) x U(q)) Su(8)/s(U(p) x U(q))
CI Sp(2,R)/U(1) Sp(4,R)/U(2) Sp(6,R)/U(3)

Al SU(2)/S0O(2) SU(4)/50(4) SU(8)/50(8)

CII Sp(2,R)/50(1,1) Sp(4,R)/(Sp(2,R)x)>  Sp(6,R)/Sp(p,R) x Sp(q,R)
All SU(4)/Sp(4) Su(8)/Sp(8)

CIII Sp(4,R)/Sp(2,C)

However, the table 1 is not adequate to capture the diversity and advantages that the
symmetric space formalism brings to the analysis of quantum states. We hope that the
following points can partially address this shortcoming.

*  Regardless of the number of qubits, there are only three SS denoted Al, All, and AIIl;
for modes, we consider one SS denoted CI, and two SS,, CII and CIIL

¢ Inaddition to traditional methods, the SS formalism is rich enough to include elements
that allow generalization of concepts to higher-dimensional systems, examples of
which are local invariant quantities and the standard form of CM, which may allow
design of quantum gates on the lines of [8]. In this sense, the SS formalism serves
as guidance to build states on demand with the certainty provided by the transitive
action of the group.

*  The number of equivalence classes (cosets) grows with 7, the number of qubits and
modes, since all possible combinations of p, g, so that p + g = n must be considered
and, besides that, possible iteration of subgroups increases the number of alternatives.
For arbitrary n, it is possible to implement an algorithm that leads to all the CDs of a
given system. The more labor-intensive part of the process is to find quantities which
are invariant under the subgroup action and to obtain its physical interpretation.

¢ The SS Alll and CI share interpretation since both describe equivalence classes char-
acterized by mixing parameters. This is true for an arbitrary number of qubits and
Gaussian modes. Moreover, it is possible to use the Cartan subalgebra to introduce
populations and the general states are constructed in each case.
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*  TheSS Al and the SS, ClI also share interpretation—both of them encode information
on the non-separable correlations, while the subgroup characterizes the product states.
For two pure qubits, the SS Al reproduces the group structure found in [8], which
serves as a basis for their analysis. The formalism we propose provides guidelines
on how to generalize these results. In the main text, we discuss how to include
mixtures. We show that for three pure qubits, there are different iterations of subgroups
SO(4) x SO(4), SO(4) x SO(3), SO(6) x SO(2) , which stabilize a subspace of states;
therefore, they are considered local-like subgroups. We attempt an interpretation by
comparing these subgroups with known types of non-equivalent entangled states.
For two modes, the SS formalism identifies the subgroup of local transformations, and
the group decomposition facilitates the derivation of local invariant quantities, as well
as the separability criterion. Analogous results can be obtained for three modes, since
the iteration on the subgroup Sp(4,R) x Sp(2,R) enables the identification of local
subgroup and a standard-like form of the correlation matrix. Similar results can be
derived for n > 3 modes.

*  For the SS All and the SS, CIII, the subgroup is of the symplectic-type, compact
and non-compact, respectively. Therefore, the equivalence classes can be labeled
by symplectic invariants. Possible iterations of Sp(4) allow further decomposition
analogous to those of two modes. The interpretation is elusive; however, limiting
cases (for specific values of subgroup parameters) makes evident the overlap of this
coset with CI and ClII, so that this coset includes mixed and non-separable states. This
is similar to what happens in family AIII with X states for qubits.

The results obtained are motivating and in the future we plan to perform an exhaustive
analysis of three qubits and three modes as well as the case of qutrits.

5. Conclusions

The symmetric space formalism provides a unified framework for the treatment of
qubit and Gaussian mode systems, addressing positively our initial question. By exploiting
the structure of equivalence classes, symmetric spaces capture the intricacies and complex-
ities observed in quantum states. Beyond systematically reproducing the known results
of two qubits and two modes, this formalism extends naturally to higher dimensions. It
yields information on three qubits and three modes that merits further study to extract
its full interpretation. We thank one of the referees for calling to our attention that our
framework could be used to improve Gaussian-based modes quantum computing schemes
and to inspire quantum gravity models.
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