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Introduction

The Standard Model (SM) of particle physics settled into its current form in the 1970s

and has since proved a resounding success. A large array of precision measurements

has confirmed SM predictions, in some cases to an astounding degree. For example,

the theoretical and experimental values for the anomalous magnetic dipole moment

of the electron agree to better than one part in a billion. Furthermore, with the

recent discovery of the Higgs boson at the Large Hadron Collider (LHC) at CERN,

the entire particle content of the SM has now been observed.

The guiding principles that govern the structure of the SM are the presence of a

continuous local internal symmetry, known as gauge symmetry, and renormalizability,

which guarantees that the theory will have predictive power. Together these principles

highly constrain the set of operators that may appear in the SM Lagrangian. In fact,

except for a few unresolved subtleties, these principles uniquely determine the form of

the Lagrangian, provided that the fundamental fields and their internal symmetries

are specified.

The matter content of the SM consists of three generations of up- and down-

type quarks, three generations of charged and uncharged leptons, and the Higgs

boson. Additionally, there are gauge bosons that mediate the three forces. The

gauge group of the SM is the Lie group SU(3)C × SU(2)L × U(1)Y , where SU(3)C

is the color symmetry of Quantum Chromodynamics (QCD), and SU(2)L ×U(1)Y is

the electroweak symmetry, which is spontaneously broken to a single U(1)EM by the

Higgs mechanism.

Despite the great success of the SM, it is almost certainly not the entire story.

At the very least, it must be augmented to account for nonzero neutrino masses.

1
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It has not yet been determined if neutrinos have Dirac or Majorana masses, but in

either case the adjustments to the SM are essentially cosmetic. A more substantive

modification of the SM will be necessary to account for the presence of dark matter.

Furthermore, explaining other cosmological observations like dark energy and baryon

asymmetry require additional modifications of the SM.

The SM also suffers from various internal deficiencies not rooted in experimental

measurements. For example, the Higgs mass receives large quantum corrections that

must cancel against its bare mass to very high precision. What is the reason for

this large degree of fine-tuning? Moreover, the SM does not offer an explanation for

why the θ angle in QCD should be small or zero, which it must be in order to agree

with the fact that no CP violation has been observed in pure QCD. There are many

other open questions concerning particular values of parameters in the SM. Why are

the neutrino masses so small? Why is the top quark mass so large? Do the gauge

couplings unify at some energy scale?

Answering questions like these is an important driving force in high-energy physics

research. Currently there are not many answers, but the large supply of unresolved

questions is a clear indication that the SM is not a complete theory. This last state-

ment represents the seeds of a paradigm shift that has resulted in the modern view-

point that the SM should be thought of as an effective field theory, valid up to some

energy scale Λ, above which new physics effects must be included. From this per-

spective, renormalizability is no longer considered strictly necessary because there is a

physical cutoff, Λ, that regulates any potential ultraviolet (UV) divergences. Relaxing

the renormalizability constraint opens the door for a large number of new operators

and a corresponding set of new phenomena awaiting detection.

On the other hand, there is no indication that the other main guiding principle

in the formulation of the SM — gauge symmetry — is anything but a fundamental

property of the universe. To the extent that quantum field theory is a good description

of nature, it is widely believed that any inadequacies of the SM can be resolved by

adding new particles and interactions that entirely respect the principles of gauge

symmetry. Of course, any theory of particle physics must ultimately be reconciled

with gravity and the theory of general relativity. Even still, there is no reason to
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suspect that the principles of gauge theories should be abandoned. In fact, gauge

theories play an important role in string theory, as they are intimately related to

D-brane geometry.

With this in mind, it is not surprising that the vast majority of recent research in

quantum field theory has focused on gauge theories. Happily, an enormous amount of

progress has been made across the wide spectrum of this research. Some of the most

intriguing developments have been in the study of perturbative scattering amplitudes.

A significant step forward came in 2003, when Witten discovered that a transforma-

tion of tree-level amplitudes into twistor space endows them with a simple geometrical

description. This led to the introduction of MHV diagrams and subsequently to the

Britto-Cachazo-Feng-Witten (BCFW) recursions relations, which exhibit an intricate

iterative structure between scattering amplitudes with differing numbers of external

particles.

The BCFW recursions relations are just one of several distinct types of recursion

relations, including Berends-Giele, Cachazo, Svrcek, Witten (CSW), and Risager re-

cursion relations. It has recently been argued that these various types of recursion

relations may be understood as particular consequences of a larger structure based on

the Grassmannian. In general, these recursion relations allow for extremely efficient

computations of tree-level scattering amplitudes, giving access to results that pre-

viously seemed unattainable, owing to the very large number of Feynman diagrams

required to compute them using conventional techniques.

One of the most striking features of these calculations has been the remarkable

simplicity of the final results. In certain cases, this simplicity was anticipated. For

example, the extremely compact form for maximally helicity-violating (MHV) ampli-

tudes in pure Yang-Mills,

AMHV(1
−, 2+, . . . , j−, . . . , n+) = i(2π)4 δ(4)

(
n
∑

i=1

λαi λ̃
α̇
i

)

⟨1j⟩4

⟨12⟩⟨23⟩⟨34⟩ · · · ⟨n1⟩ ,

(0.0.1)

where ⟨ij⟩ = λαi λjα, was conjectured by Parke and Taylor in 1986. Generically, the

introduction of matter fields complicates the structure of the resulting amplitudes. On
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the other hand, if the additional matter is constrained by some symmetry principles,

one might expect the results to maintain some simplicity. Indeed, as first observed by

Nair, MHV amplitudes with maximal (N = 4) supersymmetry are given by a simple

generalization of the Parke-Taylor formula,

AMHV(λ, λ̃, η) = i(2π)4
δ(4)
(∑n

i=1 λ
α
i λ̃

α̇
i

)

δ(8)
(∑n

i=1 λ
a
i η

A
i

)

⟨12⟩⟨23⟩⟨34⟩ · · · ⟨n1⟩ , (0.0.2)

where the Grassmann variables η keep track of the various constituents of the super-

amplitude.

Owing to its high degree of symmetry, N = 4 super Yang-Mills theory exhibits

many extraordinary properties. It possesses a conformal symmetry that holds even at

the quantum level. It has only two free parameters: the coupling a = g2YMNc/(32π)2

and the number of colors Nc. In the planar limit of a large number colors, in which

Nc → ∞ with a held fixed, the coupling constant is the only parameter. For large

values of the coupling, the AdS/CFT correspondence conjectures a duality to weakly-

coupled type IIB string theory on the curved background AdS5 × S5. Finally, many

lines of reasoning suggest that the theory is integrable, and that an exact solution for

the scattering matrix of the theory might be achievable, at least in the planar sector.

Another noteworthy property of N = 4 super Yang-Mills is that the BCFW re-

cursion relations may be generalized and extended to this maximally supersymmetric

setting. Remarkably, these recursion relations were solved, yielding an explicit for-

mulation for all tree-level scattering amplitudes in N = 4 super Yang-Mills. The

solution contains the solution for pure Yang-Mills theory as a special case, and has

even been extended to the less-symmetric case of QCD.

So far we have only discussed tree-level amplitudes, but there has also been sub-

stantial progress in the understanding of loop amplitudes. A key technique is the

unitarity method, which leverages the unitarity of the S matrix to express the imag-

inary part of a given loop amplitude in terms of products of lower-loop amplitudes.

Indeed, writing S = 1 + T , the condition that S†S = 1 implies that 2 ImT = T †T .

Expanding this equation perturbatively yields the desired interpretation. The imag-

inary part is understood as the discontinuity across a branch cut, which may be
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associated with any given momentum channel. By examining such “unitarity cuts”

in all possible channels, it is possible to reconstruct the amplitude, at least up to

contributions that have no branch cuts. These contributions are known as rational

terms, and they must be fixed by other means, such as with recursion relations or

d-dimensional unitarity cuts.

It is useful to generalize the unitarity method to include multi-particle cuts. Such

cuts are not necessarily in physical momentum channels, and they cannot be related

to the unitarity of the S matrix. Moreover, in order to reveal such cuts, it is necessary

to consider complex external momenta. Nevertheless, this analysis exposes more fully

the analytic properties of the scattering amplitude and can capture information to

which the traditional unitarity method is insensitive.

A particularly enlightening calculation made possible by these techniques was

the evaluation of the three-loop four-point scattering amplitude in N = 4 super

Yang-Mills. This computation revealed an iterative structure relating the three-loop

contribution to the lower-loop contributions. This observation inspired an ansatz,

known as the BDS ansatz, for the exponentiation of the full n-point MHV ampli-

tude. It is a generally true that for any gauge theory, the infrared (IR) divergences

exponentiate; the content of the ansatz is that the finite pieces also exponentiate.

This ansatz was subsequently confirmed for n < 6, but for more external particles it

requires modification,

AMHV
n = ABDS

n × exp(Rn), (0.0.3)

where the function Rn is known as the remainder function.

In constructing the integrand for the four-point amplitude at three and four loops,

it was observed that the individual integrands all obey a conformal symmetry in a

dual momentum space, whose coordinates xµ
i are related to the original momenta kµ

i

by ki = xi − xi+1. This dual conformal symmetry is completely distinct from the

conformal symmetry of N = 4 super Yang-Mills in position space. Moreover, it is

only present at the level of the integrand, since IR divergences break the symmetry.

Meanwhile, using the AdS/CFT correspondence, an analysis at strong coupling

confirmed the BDS ansatz at four points. The computation also used the change of
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variables ki = xi − xi+1, which was interpreted as a T-duality transformation on the

string world-sheet. In terms of the variables xi, the calculation proceeds in a manner

very similar to that of the expectation value of a polygonal Wilson loop with vertices

xi. This observation motivated explicit computations at weak coupling, which, quite

remarkably, supported the existence of a new duality in which n-particle scattering

amplitudes are dual to n-sided Wilson loops. The coordinates of the Wilson loop are

identified with the dual momentum variables xi, and the UV divergences generated

at the cusps of the Wilson loop correspond to the IR divergences of the amplitude.

In the Wilson loop setting, the breaking of conformal symmetry is a UV effect,

and it is governed by an anomalous Ward identity. The most general solution to the

Ward identity is given by the BDS ansatz times an arbitrary conformally invariant

function. From the amplitude perspective, the Ward identity implies the validity of

eq. (0.0.3), provided that the remainder function is dual-conformally invariant.

For the four- and five-gluon scattering amplitudes, the only dual-conformally in-

variant functions are constants, and because of this fact the BDS ansatz is exact and

the remainder function vanishes to all loop orders, R4 = R5 = 0. For six-gluon am-

plitudes, dual conformal invariance restricts the functional dependence to have the

form R6(u1, u2, u3), where the ui are the unique invariant cross ratios constructed

from distances x2
ij in the dual space:

u1 =
x2
13x

2
46

x2
14x

2
36

=
s12s45
s123s345

, u2 =
x2
24x

2
15

x2
25x

2
14

=
s23s56
s234s456

, u3 =
x2
35x

2
26

x2
36x

2
25

=
s34s61
s345s561

.

(0.0.4)

Furthermore R6(u1, u2, u3) is not entirely arbitrary since, among other conditions,

it must be totally symmetric under permutations of the ui and vanish in the collinear

limit [1, 2].

In the absence of an explicit computation, it remained a possibility that R6 = 0,

despite the fact that all known symmetries allow for a non-zero function R6(u1, u2, u3).

However, a series of calculations have since been performed and they showed defini-

tively that R6 ̸= 0.

The first evidence of a non-vanishing remainder function came from an analysis at

strong coupling, where a deviation from the BDS ansatz was found for a large number
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of gluons [3]. Shortly afterwards, a computation of the hexagonal light-like Wilson

loop at two loops indicated a breakdown of either the BDS ansatz or the Wilson

loop/amplitude duality for six gluons [4]. The multi-Regge limits of 2 → 4 gluon

scattering amplitudes at two loops suggested that it was the BDS ansatz that required

corrections [5]. Numerical evidence at specific kinematic points showed definitively

that R6 was non-zero at two loops [1,2], and an explicit calculation of R6 at two loops

for general kinematics eventually followed [6, 7].

The limit of multi-Regge kinematics (MRK) has received considerable attention

in the context of N = 4 super-Yang Mills theory [5, 8–20]. One reason for this

is that multi-leg scattering amplitudes become considerably simpler in MRK while

still maintaining a non-trivial analytic structure. Taking the multi-Regge limit at

six points, for example, essentially reduces the amplitude to a function of just two

variables, w and w∗, which are complex conjugates of each other. This latter point will

play a prominent role in chapters 1 and 2, in which we study the six-point remainder

function in MRK.

The remainder function captures all of the non-iterating structure of MHV scat-

tering amplitudes in planar N = 4 super Yang-Mills. For this reason, it has been

the subject of considerable study, both at weak and strong coupling, and in general

and specific kinematic regimes. Assuming the Wilson loop/amplitude duality, we

present a calculation of R6 at three loops for general kinematics in chapter 4 and

at four loops for general kinematics in chapter 5. Like the vast majority of Feyn-

man integrals calculated to date, the results can be expressed in terms of multiple

polylogarithms.

Multiple polylogarithms are a general class of iterated integrals and are reviewed

in appendix C.1. Ordinary logarithms, polylogarithms, Nielsen polylogarithms, and

harmonic polylogarithms are all special cases of multiple polylogarithms. It is known

that more complicated types of functions, such as elliptic functions, are necessary to

describe Feynman integrals in general, but most phenomenologically relevant quan-

tities do not require these exotic functions. In this thesis, we will be focusing on

situations where such functions do not appear, though it would of course be interest-

ing to investigate how our analysis might be generalized to include them.
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A very useful tool for classifying polylogarithmic functions is the concept of tran-

scendentality. The transcendental weight may be defined as the number of iterated

integrations in a multiple polylogarithm. For example, the logarithm is generated by

one integral over a rational function, and therefore has transcendental weight one; the

dilogarithm requires two integrations and has weight two, etc. When these functions

are evaluated at particular values, the resulting constants have the same weight as

the original function. For example, the transcendentality of iπ = log(−1) is one, and

the transcendentality of ζn = Lin(1) is n.

Every calculation so far indicates that N = 4 super Yang-Mills obeys the princi-

ple of uniform maximal transcendentality. For example, at loop order ℓ, a scattering

amplitude in N = 4 super Yang-Mills is expected to be a homogeneous combination

of transcendental functions of weight 2ℓ. This property is not obeyed by less symmet-

ric theories, like QCD, for which results contain functions of mixed transcendental

weight. In many cases, the maximal-transcendental piece of a QCD calculation is

given precisely by the N = 4 super Yang-Mills result. This can be taken as another

motivation for studying studying N = 4, since calculations might give some direct

insight into QCD.

The observation that N = 4 super Yang-Mills obeys the principle of maximal

transcendentality, together with the conjecture that the MHV sector is free of elliptic

integrals, provides a rough outline of the space of functions that might appear in a

given ℓ-loop calculation: it should be a subset of the space of all multiple polyloga-

rithms of weight 2ℓ. This space is infinitely large because we have not yet specified the

variables upon which the multiple polylogarithms can depend. On the other hand, if

we can somehow specify the variables, the space of functions will become finite and

we can use it as a basis. The entire calculation would thereby reduce to a problem

in linear algebra. The only task left is to construct a sufficiently large set of physical

and mathematical constraints so as to fix the free coefficients of the basis. This is

exactly the approach that we will pursue throughout this thesis.

We will consider two collections of computations, distinguished by the number of

independent variables upon which the resulting polylogarithmic functions depend.

In Part I, we examine functions of two variables. As argued above, in the limit
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of multi-Regge kinematics, the six-point remainder function depends on only two

relevant variables, w and w∗, which are complex conjugates of one another. Moreover,

we will argue in chapter 3 that the off-shell dual-conformal integrals also depend on

just two similarly-defined variables, z and z̄; such integrals arise in the computation

of the four-point correlation function of stress-tensor multiplets in N = 4 super Yang-

Mills.

In Part II, we consider functions of three variables. These functions are relevant

for the study of conformal six-point integrals. In particular, they are sufficient to

describe the six-point remainder function. In chapter 4, we complete the calculation

of R6 at three loops. The calculation is not direct, as it uses physical information

from the Wilson loop/amplitude duality to help fix coefficients in the basis of multiple

polylogarithms. We evaluate the function numerically on a variety of interesting one-

and two-dimensional subspaces of the full three-dimensional space of cross ratios. Re-

markably, the two- and three-loop remainder functions are quantitatively very similar

(up to an overall multiplicative rescaling) for large swaths of parameter space, and

only differ significantly in regions where the functions diverge at different rates. In

chapter 5, we extend this analysis to four loops, computing first the symbol and then

ultimately the full function. We evaluate the four-loop remainder function numeri-

cally on several one-dimensional subspaces and compare it to the functions at two-

and three-loops, and, in one case, to a result at strong coupling. In all cases there

is excellent qualitative agreement, and, up to an overall rescaling, the quantitative

agreement observed at three loops continues to four loops as well.
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Functions of two variables
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Chapter 1

Single-valued harmonic

polylogarithms and the

multi-Regge limit

1.1 Introduction

Enormous progress has taken place recently in unraveling the properties of relativistic

scattering amplitudes in four-dimensional gauge theories and gravity. Perhaps the

most intriguing developments have been in maximally supersymmetric N = 4 Yang-

Mills theory, in the planar limit of a large number of colors. Many lines of evidence

suggest that it should be possible to solve for the scattering amplitudes in this theory

to all orders in perturbation theory. There are also semi-classical results based on the

AdS/CFT duality to match to at strong coupling [21]. The scattering amplitudes in

the planar theory can be expressed in terms of a set of dual (or region) variables xµ
i ,

which are related to the usual external momentum four-vectors kµ
i by ki = xi − xi+1.

Remarkably, the planar N = 4 super-Yang-Mills amplitudes are governed by a dual

conformal symmetry acting on the xi [3, 21–26]. This symmetry can be extended to

a dual superconformal symmetry [27], which acts on supermultiplets of amplitudes

that are packaged together by using an N = 4 on-shell superfield and associated

Grassmann coordinates [28–31].

11
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Due to infrared divergences, amplitudes are not invariant under dual conformal

transformations. Rather, there is an anomaly, which was first understood in terms

of polygonal Wilson loops rather than amplitudes [26]. (For such Wilson loops the

anomaly is ultraviolet in nature.) A solution to the anomalous Ward identity for

maximally-helicity violating (MHV) amplitudes is to write them in terms of the BDS

ansatz [32],

AMHV
n = ABDS

n × exp(Rn), (1.1.1)

where Rn is the so-called remainder function [1, 2, 2], which is fully dual-conformally

invariant.

For the four- and five-gluon scattering amplitudes, the only dual-conformally in-

variant functions are constants, and because of this fact the BDS ansatz is exact and

the remainder function vanishes to all loop orders, R4 = R5 = 0. For six-gluon am-

plitudes, dual conformal invariance restricts the functional dependence to have the

form R6(u1, u2, u3), where the ui are the unique invariant cross ratios constructed

from distances x2
ij in the dual space:

u1 =
x2
13x

2
46

x2
14x

2
36

=
s12s45
s123s345

, u2 =
x2
24x

2
15

x2
25x

2
14

=
s23s56
s234s456

, u3 =
x2
35x

2
26

x2
36x

2
25

=
s34s61
s345s561

.(1.1.2)

The need for a nonzero remainder function Rn for Wilson loops was first indicated

by the strong-coupling behavior of polygonal loops corresponding to amplitudes with

a large number of gluons n [3]. At the six-point level, investigation of the multi-

Regge limits of 2 → 4 gluon scattering amplitudes led to the conclusion that R6

must be nonvanishing at two loops [5]. Numerical evidence was found soon thereafter

for a nonvanishing two-loop coefficient R(2)
6 for generic nonsingular kinematics [1, 2],

in agreement with the numerical values found simultaneously for the corresponding

hexagonal Wilson loop [2].

Based on the Wilson line representation [2], and using dual conformal invariance

to take a quasi-multi-Regge limit and simplify the integrals, an analytic result for R(2)
6

was derived [6,7,7] in terms of Goncharov’s multiple polylogarithms [33]. Making use

of properties of the symbol [34–37,147] associated with iterated integrals, the analytic
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result for R(2)
6 was then simplified to just a few lines of classical polylogarithms [36].

A powerful constraint on the structure of the remainder function at higher loop

order is provided by the operator product expansion (OPE) for polygonal Wilson

loops [38–40]. At three loops, this constraint, together with symmetries, collinear

vanishing, and an assumption about the final entry of the symbol, can be used to de-

termine the symbol of R(3)
6 up to just two constant parameters [14]. Another powerful

technique for determining the remainder function is to exploit an infinite-dimensional

Yangian invariance [41,42] which includes the dual superconformal generators. These

symmetries are anomalous at the loop level (or alternatively one can say that the

algebra has to be deformed) [43]. However, the symmetries imply a first order lin-

ear differential equation for the ℓ-loop n-point amplitude, and the anomaly dictates

the inhomogeneous term in the differential equation, in terms of an integral over an

(ℓ− 1)-loop (n+ 1)-point amplitude [44,45]. Using this differential equation, a num-

ber of interesting results were obtained in ref. [45]. In particular, the result for the

symbol of R(3)
6 found in ref. [14] was recovered and the two previously-undetermined

constants were fixed.

In principle, the method of refs. [44,45] works to arbitrary loop order. However, it

requires knowing lower-loop amplitudes with an increasing number of external legs,

for which the number of kinematic variables (the dual conformal cross ratios) steadily

increases. Although the symbol of the two-loop remainder function R(2)
n is known for

arbitrary n [46], the same is not true of the three-loop seven-point remainder function,

which would feed into the four-loop six-point remainder function — one of the subjects

of this paper.

In this article, we focus on features of the six-point kinematics that allow us to

push directly to higher loop orders for this amplitude, without having to solve for

amplitudes with more legs. In fact, most of our paper is concerned with a special limit

of the kinematics in which we can make even more progress: multi-Regge kinematics

(MRK), a limit which has already received considerable attention in the context of

N = 4 super-Yang-Mills theory [5, 8–10, 12–18]. In the MRK limit of 2 → 4 gluon

scattering, the four outgoing gluons are widely-spaced in rapidity. In other words,

two of the four gluons are emitted far forward, with almost the same energies and
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directions of the two incoming gluons. The other two outgoing gluons are also well-

separated from each other, and have smaller energies than the two far-forward gluons.

The MHV amplitude possesses a unique limit of this type. For definiteness, we

will take legs 3 and 6 to be incoming, legs 1 and 2 to be the far-forward outgoing

gluons, and legs 4 and 5 to be the other two outgoing gluons. Neglecting power-

suppressed terms, helicity must be conserved along the high-energy lines. In the

usual all-outgoing convention for labeling helicities, the helicity configuration can be

taken to be (++−++−). For generic 2 → 4 scattering in four dimensions there

are eight kinematic variables. Dual conformal invariance reduces the eight variables

down to just the three dual conformal cross ratios ui. Taking the multi-Regge limit

essentially reduces the amplitude to a function of just two variables, w and w∗, which

turn out to be the complex conjugates of each other.

We will argue that the function space relevant for this limit has been completely

characterized by Brown [47]. We call the functions single-valued harmonic polylog-

arithms (SVHPLs). They are built from the analytic functions of a single complex

variable that are known as harmonic polylogarithms (HPLs) in the physics litera-

ture [48]. These functions have branch cuts at w = 0 and w = −1. However,

bilinear combinations of HPLs in w and in w∗ can be constructed [47] to cancel the

branch cuts, so that the resulting functions are single-valued in the (w,w∗) plane.

The single-valued property matches perfectly a physical constraint on the remainder

function in the multi-Regge limit. SVHPLs, like HPLs, are equipped with an integer

transcendental weight. The required weight increases with the loop order. However,

at any given weight there is only a finite-dimensional vector space of available func-

tions. Thus, once we have identified the proper function space, the problem of solving

for the remainder function in MRK reduces simply to determining a set of rational

numbers, namely the coefficients multiplying the allowed SVHPLs at a given weight.

In order to further appreciate the simplicity of the multi-Regge limit, we recall

that for generic six-point kinematics there are nine possible choices for the entries in

the symbol for the remainder function R6(u1, u2, u3) [14, 36]:

{u1, u2, u3, 1− u1, 1− u2, 1− u3, y1, y2, y3} , (1.1.3)
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where

yi =
ui − z+
ui − z−

, (1.1.4)

z± =
−1 + u1 + u2 + u3 ±∆

2
, (1.1.5)

∆ = (1− u1 − u2 − u3)
2 − 4u1u2u3 . (1.1.6)

The first entry of the symbol is actually restricted to the set {u1, u2, u3} due to the

location of the amplitude’s branch cuts [40]; the integrability of the symbol restricts

the second entry to the set {ui, 1− ui} [14, 40]; and a “final-entry condition” [14, 46]

implies that there are only six, not nine, possibilities for the last entry. However, the

remaining entries are unrestricted. The large number of possible entries, and the fact

that the yi variables are defined in terms of square-root functions of the cross ratios

(although the ui can be written as rational functions of the yi [14]), complicates the

task of identifying the proper function space for this problem.

So in this paper we will solve a simpler problem. The MRK limit consists of taking

one of the ui, say u1, to unity, and letting the other two cross ratios vanish at the

same rate that u1 → 1: u2 ≈ x(1 − u1) and u3 ≈ y(1 − u1) for two fixed variables

x and y. To reach the Minkowski version of the MRK limit, which is relevant for

2 → 4 scattering, it is necessary to analytically continue u1 from the Euclidean region

according to u1 → e−2πi|u1|, before taking this limit [5]. Although the square-root

variables y2 and y3 remain nontrivial in the MRK limit, all of the square roots can

be rationalized by a clever choice of variables [12]. We define w and w∗ by

x ≡ 1

(1 + w)(1 + w∗)
, y ≡ ww∗

(1 + w)(1 + w∗)
. (1.1.7)

Then the MRK limit of the other variables is

u1 → 1, y1 → 1, y2 → ỹ2 =
1 + w∗

1 + w
, y3 → ỹ3 =

(1 + w)w∗

w(1 + w∗)
. (1.1.8)

Neglecting terms that vanish like powers of (1− u1), we expand the remainder func-

tion in the multi-Regge limit in terms of coefficients multiplying powers of the large
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logarithm log(1− u1) at each loop order, following the conventions of ref. [14],

R6(u1, u2, u3)|MRK = 2πi
∞
∑

ℓ=2

ℓ−1
∑

n=0

aℓ logn(1− u1)
[

g(ℓ)n (w,w∗) + 2πi h(ℓ)
n (w,w∗)

]

,

(1.1.9)

where the coupling constant for planar N = 4 super-Yang-Mills theory is a =

g2Nc/(8π2).

The remainder function R6 is a transcendental function with weight 2ℓ at loop

order ℓ. Therefore the coefficient functions g(ℓ)n and h(ℓ)
n have weight 2ℓ − n − 1 and

2ℓ − n − 2 respectively. As a consequence of eqs. (1.1.7) and (1.1.8), their symbols

have only four possible entries,

{w, 1 + w,w∗, 1 + w∗} . (1.1.10)

Furthermore, w and w∗ are independent complex variables. Hence the problem of

determining the coefficient functions factorizes into that of determining functions of

w whose symbol entries are drawn from {w, 1+w} — a special class of HPLs — and

the complex conjugate functions of w∗.

On the other hand, not every combination of HPLs in w and HPLs in w∗ will

appear. When the symbol is expressed in terms of the original variables {x, y, ỹ2, ỹ3},
the first entry must be either x or y, reflecting the branch-cut behavior and first-

entry condition for general kinematics. Also, the full function must be a single-valued

function of x and y, or equivalently a single-valued function of w and w∗. These

conditions imply that the coefficient functions belong to the class of SVHPLs defined

by Brown [47].

The MRK limit (1.1.9) is organized hierarchically into the leading-logarithmic

approximation (LLA) with n = ℓ− 1, the next-to-leading-logarithmic approximation

(NLLA) with n = ℓ−2, and in general the NkLL terms with n = ℓ−k−1. Just as the

problem of DGLAP evolution in x space is diagonalized by transforming to the space

of Mellin moments N , the MRK limit can be diagonalized by performing a Fourier-

Mellin transform from (w,w∗) to a new space labeled by (ν, n). In fact, Fadin, Lipatov

and Prygarin [12, 15] have given an all-loop-order formula for R6 in the multi-Regge
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limit, in terms of two functions of (ν, n): The eigenvalue ω(ν, n) of the BFKL kernel

in the adjoint representation, and the (regularized) MHV impact factor ΦReg(ν, n).

Each function can be expanded in a, and each successive order in a corresponds to

increasing k by one in the NkLLA. It is possible that the assumption that was made

in refs. [12, 15], of single Reggeon exchange through NLL, breaks down beyond that

order, due to Reggeon-number changing interactions or other possible effects [49]. In

this paper we will assume that it holds through N3LL (for the impact factor); the

three quantities we extract beyond NLL could be affected if this assumption is wrong.

The leading term in the impact factor is just one, while the leading BFKL eigen-

value Eν,n was found in ref. [8]. The NLL term in the impact factor was found in

ref. [12], and the NLL contribution to the BFKL eigenvalue in ref. [15].

With this information it is possible to compute the LLA functions g(ℓ)ℓ−1, NLLA

functions g(ℓ)ℓ−2 and h(ℓ)
ℓ−2, and even the real part at NNLLA, h(ℓ)

ℓ−3. All one needs to

do is perform the inverse Fourier-Mellin transform back to the (w,w∗) variables. At

the three-loop level, this was carried out at LLA for g(3)2 and h(3)
1 in ref. [12], and at

NLLA for g(3)1 and h(3)
0 in ref. [15]. Here we will use the SVHPL basis to make this step

very simple. The inverse transform contains an explicit sum over n, and an integral

over ν which can be evaluated via residues in terms of a sum over a second integer

m. For low loop orders we can perform the double sum analytically using harmonic

sums [50–55]. For high loop orders, it is more efficient to simply truncate the double

sum. In the (w,w∗) plane this truncation corresponds to truncating the power series

expansion in |w| around the origin. We know the answer is a linear combination of

a finite number of SVHPLs with rational-number coefficients. In order to determine

the coefficients, we simply compute the power series expansion of the generic linear

combination of SVHPLs and match it against the truncated double sum overm and n.

We can now perform the inverse Fourier-Mellin transform, in principle to all orders,

and in practice through weight 10, corresponding to 10 loops for LLA and 9 loops for

NLLA.

Furthermore, we can bring in additional information at fixed loop order, in or-

der to obtain more terms in the expansion of the BFKL eigenvalue and the MHV

impact factor. In ref. [15], the NLLA results for g(3)1 and h(3)
0 confirmed a previous
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prediction [14] based on an analysis of the multi-Regge limit of the symbol for R(3)
6 .

In this limit, the two free symbol parameters mentioned above dropped out. The

symbol could be integrated back up into a function, but a few more “beyond-the-

symbol” constants entered at this stage. One of the constants was fixed in ref. [15]

using the NLLA information. As noted in ref. [15], the result from ref. [14] for g(3)0

can be used to determine the NNLLA term in the impact factor. In this paper, we

will use our knowledge of the space of functions of (w,w∗) (the SVHPLs) to build

up a dictionary of the functions of (ν, n) (special types of harmonic sums) that are

the Fourier-Mellin transforms of the SVHPLs. From this dictionary and g(3)0 we will

determine the NNLLA term in the impact factor.

We can go further if we know the four-loop remainder function R(4)
6 . In separate

work [56], we have heavily constrained the symbol of R(4)
6 (u1, u2, u3) for generic kine-

matics, using exactly the same constraints used in ref. [14]: integrability of the sym-

bol, branch-cut behavior, symmetries, the final-entry condition, vanishing of collinear

limits, and the OPE constraints (which at four loops are a constraint on the triple

discontinuity). Although there are millions of possible terms before applying these

constraints, afterwards the symbol contains just 113 free constants (112 if we apply the

overall normalization for the OPE constraints). Next we construct the multi-Regge

limit of this symbol, and apply all the information we have about this limit:

• Vanishing of the super-LLA terms g(4)n and h(4)
n for n = 4, 5, 6, 7;

• LLA and NLLA predictions for g(4)n and h(4)
n for n = 2, 3;

• the NNLLA real part h(4)
1 , which is also predicted by the NLLA formula;

• a consistency condition between g(4)1 and h(4)
0 .

Remarkably, these conditions determine all but one of the symbol-level parameters

in the MRK limit. (The one remaining free parameter seems highly likely to vanish,

given the complicated way it enters various formulas, but we have not yet proven that

to be the case.)

We then extract the remaining four-loop coefficient functions, g(4)1 , h(4)
0 and g(4)0 ,

introducing some additional beyond-the-symbol parameters at this stage. We use this
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information to determine the NNLLA BFKL eigenvalue and the N3LLA MHV impact

factor, up to these parameters. Although our general dictionary of functions of (ν, n)

contains various multiple harmonic sums, we find that the key functions entering the

multi-Regge limit can all be expressed just in terms of certain rational combinations

of ν and n, together with the polygamma functions ψ, ψ′, ψ′′, etc. (derivatives of the

logarithm of the Γ function) with arguments 1± iν + |n|/2.
As a by-product, we find that the SVHPLs also describe the multi-Regge limit of

the one remaining helicity configuration for six-gluon scattering inN = 4 super-Yang-

Mills theory, namely the next-to-MHV (NMHV) configuration with three negative and

three positive gluon helicities. It was shown recently [18] that in LLA the NMHV and

MHV remainder functions are related by a simple integro-differential operator. This

operator has a natural action in terms of the SVHPLs, allowing us to easily extend

the NMHV LLA results of ref. [18] from three loops to 10 loops.

This article is organized as follows. In section 1.2 we review the structure of

the six-point MHV remainder function in the multi-Regge limit. Section 1.3 reviews

Brown’s construction of single-valued harmonic polylogarithms. In section 1.4 we

exploit the SVHPL basis to determine the functions g(ℓ)n and h(ℓ)
n at LLA through 10

loops and at NLLA through 9 loops. Section 1.5 determines the NMHV remainder

function at LLA through 10 loops. In section 1.6 we describe our construction of the

functions of (ν, n) that are the Fourier-Mellin transforms of the SVHPLs. Section 1.7

applies this knowledge, plus information from the four-loop remainder function [56],

in order to determine the NNLLA MHV impact factor and BFKL eigenvalue, and

the N3LLA MHV impact factor, in terms of a handful of (mostly) beyond-the-symbol

constants. In section 1.8 we report our conclusions and discuss directions for future

research.

We include two appendices. Appendix A.1 collects expressions for the SVHPLs

(after diagonalizing the action of a Z2 × Z2 symmetry), in terms of HPLs through

weight 5. It also gives expressions before diagonalizing one of the two Z2 factors.

Appendix A.2 gives a basis for the function space in (ν, n) through weight 5, together

with the Fourier-Mellin map to the SVHPLs. In addition, for the lengthier formulae,

we provide separate computer-readable text files as ancillary material. In particular,
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we include files (in Mathematica format) that contain the expressions for the SVHPLs

in terms of ordinary HPLs up to weight six, decomposed into an eigenbasis of the

Z2 × Z2 symmetry, as well as the analytic results up to weight ten for the imaginary

parts of the MHV remainder function at LLA and NLLA and for the NMHV remain-

der function at LLA. Furthermore, we include the expressions for the NNLL BFKL

eigenvalue and impact factor and the N3LL impact factor in terms of the building

blocks in the variables (ν, n) constructed in section 1.6, as well as a dictionary between

these building blocks and the SVHPLs up to weight five.

1.2 The six-point remainder function in the multi-

Regge limit

The principal aim of this paper is to study the six-point MHV amplitude in N = 4

super Yang-Mills theory in multi-Regge kinematics. This limit is defined by the

hierarchy of scales,

s12 ≫ s345, s456 ≫ s34, s45 , s56 ≫ s23, s61, s234 . (1.2.1)

In this limit the cross ratios (1.1.2) behave as

1− u1, u2, u3 ∼ 0 , (1.2.2)

together with the constraint that the following ratios are held fixed,

x ≡ u2

1− u1
= O(1) and y ≡ u3

1− u1
= O(1) . (1.2.3)

In the following it will be convenient [12] to parametrize the dependence on x and y

by a single complex variable w,

x ≡ 1

(1 + w)(1 + w∗)
and y ≡ ww∗

(1 + w)(1 + w∗)
. (1.2.4)
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Any function of the three cross ratios can then develop large logarithms log(1 − u1)

in the multi-Regge limit, and we can write generically,

F (u1, u2, u3) =
∑

i

logi(1− u1) fi(w,w
∗) +O(1− u1) . (1.2.5)

Let us make at this point an important observation which will be a recurrent theme in

the rest of the paper: If F (u1, u2, u3) represents a physical quantity like a scattering

amplitude, then F should only have cuts in physical channels, corresponding to branch

cuts starting at points where one of the cross ratios vanishes. Rotation around the

origin in the complex w plane, i.e. (w,w∗) → (e2πiw, e−2πiw∗), does not correspond to

crossing any branch cut. As a consequence, the functions fi(w,w∗) should not change

under this operation. More generally, the functions fi(w,w∗) must be single-valued

in the complex w plane.

Let us start by reviewing the multi-Regge limit of the MHV remainder function

R(u1, u2, u3) ≡ R6(u1, u2, u3) introduced in eq. (1.1.1). It can be shown that, while

in the Euclidean region the remainder function vanishes in the multi-Regge limit,

there is a Mandelstam cut such that we obtain a non-zero contribution in MRK after

performing the analytic continuation [5]

u1 → e−2πi |u1| . (1.2.6)

After this analytic continuation, the six-point remainder function can be expanded

into the form given in eq. (1.1.9), which we repeat here for convenience,

R|MRK = 2πi
∞
∑

ℓ=2

ℓ−1
∑

n=0

aℓ logn(1− u1)
[

g(ℓ)n (w,w∗) + 2πi h(ℓ)
n (w,w∗)

]

. (1.2.7)

The functions g(ℓ)n (w,w∗) and h(ℓ)
n (w,w∗) will in the following be referred to as the

coefficient functions for the logarithmic expansion in the MRK limit. The imagi-

nary part g(ℓ)n is associated with a single discontinuity, and the real part h(ℓ)
n with a

double discontinuity, although both functions also include information from higher

discontinuities, albeit with accompanying explicit factors of π2.
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The coefficient functions are single-valued pure transcendental functions in the

complex variable w, of weight 2ℓ − n − 1 for g(ℓ)n and weight 2ℓ − n − 2 for h(ℓ)
n .

They are left invariant by a Z2 × Z2 symmetry acting via complex conjugation and

inversion,

w ↔ w∗ and (w,w∗) ↔ (1/w, 1/w∗) . (1.2.8)

The complex conjugation symmetry arises because the MHV remainder function has a

parity symmetry, or invariance under ∆ → −∆, which inverts ỹ2 and ỹ3 in eq. (1.1.8).

The inversion symmetry is a consequence of the fact that the six-point remainder

function is a totally symmetric function of the three cross ratios u1, u2 and u3. In

particular, exchanging ỹ2 ↔ ỹ3 is the product of conjugation and inversion. The

inversion symmetry is sometimes referred to as target-projectile symmetry [10]. Fi-

nally, the vanishing of the six-point remainder function in the collinear limit implies

the vanishing of g(ℓ)n (w,w∗) and h(ℓ)
n (w,w∗) in the limit where (w,w∗) → 0. Clearly

the functions g(ℓ)n and h(ℓ)
n are already highly constrained on general grounds.

In ref. [12,15] an all-loop integral formula for the six-point amplitude in MRK was

presented1,

eR+iπδ|MRK = cos πωab

+ i
a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν |w|2iν

ν2 + n2

4

ΦReg(ν, n)

(

− 1
√
u2 u3

)ω(ν,n)

.

(1.2.9)

The first term is the Regge pole contribution, with

ωab =
1

8
γK(a) log

u3

u2
=

1

8
γK(a) log |w|2 , (1.2.10)

and γK(a) is the cusp anomalous dimension, known to all orders in perturbation

1There is a difference in conventions regarding the definition of the remainder function. What we
call R is called log(R) in refs. [12, 15]. Apart from the zeroth order term, the first place this makes
a difference is at four loops, in the real part.
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theory [57],

γK(a) =
∞
∑

ℓ=1

γ(ℓ)K aℓ = 4 a− 4 ζ2 a
2 + 22 ζ4 a

3 − (2192 ζ6 + 4 ζ23 ) a
4 + · · · . (1.2.11)

The second term in eq. (1.2.9) arises from a Regge cut and is fully determined to all

orders by the BFKL eigenvalue ω(ν, n) and the (regularized) impact factor ΦReg(ν, n).

The function δ appearing in the exponent on the left-hand side is the contribution

from a Mandelstam cut present in the BDS ansatz, and is given to all loop orders by

δ =
1

8
γK(a) log (xy) =

1

8
γK(a) log

|w|2

|1 + w|4 . (1.2.12)

In addition, we have
1

√
u2 u3

=
1

1− u1

|1 + w|2

|w| . (1.2.13)

The BFKL eigenvalue and the impact factor can be expanded perturbatively,

ω(ν, n) = −a
(

Eν,n + aE(1)
ν,n + a2 E(2)

ν,n +O(a3)
)

,

ΦReg(ν, n) = 1 + aΦ(1)
Reg(ν, n) + a2 Φ(2)

Reg(ν, n) + a3 Φ(3)
Reg(ν, n) +O(a4) .

(1.2.14)

The BFKL eigenvalue is known to the first two orders in perturbation theory [8, 15],

Eν,n = −1

2

|n|
ν2 + n2

4

+ ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

− 2ψ(1) ,(1.2.15)

E(1)
ν,n = −1

4

[

ψ′′

(

1 + iν +
|n|
2

)

+ ψ′′

(

1− iν +
|n|
2

)

− 2iν

ν2 + n2

4

(

ψ′

(

1 + iν +
|n|
2

)

− ψ′

(

1− iν +
|n|
2

))]

(1.2.16)

−ζ2 Eν,n − 3ζ3 −
1

4

|n|
(

ν2 − n2

4

)

(

ν2 + n2

4

)3 ,
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where ψ(z) = d
dz logΓ(z) is the digamma function, and ψ(1) = −γE is the Euler-

Mascheroni constant. The NLL contribution to the impact factor is given by [10]

Φ(1)
Reg(ν, n) = −1

2
E2
ν,n −

3

8

n2

(ν2 + n2

4 )
2
− ζ2 . (1.2.17)

The BFKL eigenvalues and impact factor in eqs. (1.2.15), (1.2.16) and (1.2.17) are

enough to compute the six-point remainder function in the Regge limit in the leading

and next-to-leading logarithmic approximations (LLA and NLLA). Indeed, we can

interpret the integral in eq. (1.2.9) as a contour integral in the complex ν plane and

close the contour at infinity. By summing up the residues we then obtain the analytic

expression of the remainder function in the LLA and NLLA in MRK. This procedure

will be discussed in greater detail in section 1.4. Some comments are in order about

the integral in eq. (1.2.9):

1. The contribution coming from n = 0 is ill-defined, as the integral in eq. (1.2.9)

diverges. After closing the contour at infinity, our prescription is to take only

half of the residue at ν = n = 0 into account.

2. We need to specify the Riemann sheet of the exponential factor in the right-hand

side of eq. (1.2.9). We find that the replacement

(

− 1
√
u2 u3

)ω(ν,n)

→ e−iπω(ν,n)

(
1

√
u2 u3

)ω(ν,n)

(1.2.18)

gives the correct result.

The iπ factor in the right-hand side of eq. (1.2.18) generates the real parts h(ℓ)
n in

eq. (1.2.7). It is easy to see that the g(ℓ)n and h(ℓ)
n functions are not independent, but
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they are related. For example, at LLA and NLLA we have,

h(ℓ)
ℓ−1(w,w

∗) = 0 ,

h(ℓ)
ℓ−2(w,w

∗) =
ℓ− 1

2
g(ℓ)ℓ−1(w,w

∗) +
1

16
γ(1)K g(ℓ−1)

ℓ−2 (w,w∗) log
|1 + w|4

|w|2

− 1

2

ℓ−2
∑

k=2

g(k)k−1g
(ℓ−k)
ℓ−k−1 , ℓ > 2,

(1.2.19)

where γ(1)K = 4 from eq. (1.2.11). (Note that the sum over k in the formula for h(ℓ)
ℓ−2

would not have been present if we had used the convention for R in refs. [12, 15].)

Similar relations can be derived beyond NLLA, i.e. for n < ℓ− 2.

So far we have only considered 2 → 4 scattering. In ref. [13] it was shown that if

the remainder function is analytically continued to the region corresponding to 3 → 3

scattering, then it takes a particularly simple form. The analytic continuation from

2 → 4 to 3 → 3 scattering can be obtained easily by performing the replacement

log(1− u1) → log(u1 − 1)− iπ (1.2.20)

in eq. (1.2.9). After analytic continuation the real part of the remainder function only

gets contributions from the Regge pole and is given by [13]

Re
(

eR3→3−iπδ
)

= cos πωab . (1.2.21)

It is manifest from eq. (1.2.9) that eq. (1.2.21) is automatically satisfied if the rela-

tions among the coefficient functions derivable by tracking the iπ from eq. (1.2.18)

(e.g. eq. (1.2.19)) are satisfied in 2 → 4 kinematics.

So far we have only reviewed some general properties of the six-point remainder

function in MRK, but we have not yet given explicit analytic expressions for the

coefficient functions. The two-loop contributions to eq. (1.2.9) in LLA and NLLA were

computed in refs. [10, 12], while the three-loop contributions up to the NNLLA were

found in refs. [10,14]. In all cases the results have been expressed as combinations of

classical polylogarithms in the complex variable w and its complex conjugate w∗, with
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potential branching points at w = 0 and w = −1. As discussed at the beginning of

this section, all the branch cuts in the complex w plane must cancel, i.e., the function

must be single-valued in w. The class of functions satisfying these constraints has

been studied in full generality in the mathematical literature, as will be reviewed in

the next section.

1.3 Harmonic polylogarithms and their

single-valued analogues

1.3.1 Review of harmonic polylogarithms

In this section we give a short review of the classical and harmonic polylogarithms, one

of the main themes in the rest of this paper. The simplest possible polylogarithmic

functions are the so-called classical polylogarithms, defined inside the unit circle by

a convergent power series,

Lim(z) =
∞
∑

k=1

zk

km
, |z| < 1 . (1.3.1)

They can be continued to the cut plane C\[1,∞) by an iterated integral representa-

tion,

Lim(z) =

∫ z

0

dz′
Lim−1(z′)

z′
. (1.3.2)

Form = 1, the polylogarithm reduces to the ordinary logarithm, Li1(z) = − log(1−z),

a fact that dictates the location of the branch cut for all m (along the real axis for

z > 1). It also determines the discontinuity across the cut,

∆Lim(z) = 2πi
logm−1 z

(m− 1)!
. (1.3.3)

It is possible to define more general classes of polylogarithmic functions by al-

lowing for different kernels inside the iterated integral in eq. (1.3.2). The harmonic

polylogarithms (HPLs) [48] are a special class of generalized polylogarithms whose
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properties and construction we review in the remainder of this section. To begin, let

w be a word formed from the letters x0 and x1, and let e be the empty word. Then,

for each w, define a function Hw(z) which obeys the differential equations,

∂

∂z
Hx0w(z) =

Hw(z)

z
and

∂

∂z
Hx1w(z) =

Hw(z)

1− z
, (1.3.4)

subject to the following conditions,

He(z) = 1, Hxn
0
(z) =

1

n!
logn z, and lim

z→0
Hw ̸=xn

0
(z) = 0 . (1.3.5)

There is a unique family of solutions to these equations, and it defines the HPLs.

Note that we use the term “HPL” in a restricted sense2 – we only consider poles in

the differential equations (1.3.4) at z = 0 and z = 1. (In our MRK application, we

will let z = −w, so that the poles are at w = 0 and w = −1.)

The weight of an HPL is the length of the word w, and its depth is the number

of x1’s3. HPLs of depth one are simply the classical polylogarithms, Hn(z) = Lin(z).

Like the classical polylogarithms, the HPLs can be written as iterated integrals,

Hx0w(z) =

∫ z

0

dz′
Hw(z′)

z′
and Hx1w =

∫ z

0

dz′
Hw(z′)

1− z′
. (1.3.7)

The structure of the underlying iterated integrals endows the HPLs with an important

property: they form a shuffle algebra. The shuffle relations can be written,

Hw1
(z)Hw2

(z) =
∑

w∈w1Xw2

Hw(z) , (1.3.8)

2In the mathematical literature, these functions are sometimes referred to as multiple polyloga-
rithms in one variable.

3For ease of notation, we will often impose the replacement {x0 → 0, x1 → 1} in subscripts. In
some cases, we will use the collapsed notation where a subscript m denotes m − 1 zeroes followed
by a single 1. For example, if w = x0x0x1x0x1,

Hw(z) = Hx0x0x1x0x1
(z) = H0,0,1,0,1(z) = H3,2(z) . (1.3.6)

In the collapsed notation, the weight is the sum of the indices, and the depth is the number of
nonzero indices.
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Weight Lyndon words Dimension
1 0, 1 2
2 01 1
3 001, 011 2
4 0001, 0011, 0111 3
5 00001, 00011, 00101, 00111, 01011, 01111 6

Table 1.1: All Lyndon words Lyndon(x0, x1) through weight five

where w1Xw2 is the set of mergers of the sequences w1 and w2 that preserve their

relative ordering. Equation (1.3.8) may be used to express all HPLs of a given weight

in terms of a relatively small set of basis functions and products of lower-weight

HPLs. One convenient such basis [58] of irreducible functions is the Lyndon basis,

defined by {Hw(z) : w ∈ Lyndon(x0, x1)}. The Lyndon words Lyndon(x0, x1) are

those words w such that for every decomposition into two words w = uv, the left

word is lexicographically smaller than the right, u < v. Table 1.1 gives the first few

examples of Lyndon words.

All HPLs are real whenever the argument z is less than 1, and so, in particular, the

HPLs are analytic in a neighborhood of z = 0. The Taylor expansion around z = 0

is particularly simple and involves only a special class of harmonic numbers [48, 52]

(hence the name harmonic polylogarithm),

Hm1,...,mk
(z) =

∞
∑

l=1

zl

lm1
Zm2,...,mk

(l − 1) , mi > 0 , (1.3.9)

where Zm1,...,mk
(n) denote the so-called Euler-Zagier sums [50,51], defined recursively

by

Zm1
(n) =

n
∑

l=1

1

lm1
and Zm1,...,mk

(n) =
n
∑

l=1

1

lm1
Zm2,...,mk

(l − 1) . (1.3.10)

Note that the indexing of the weight vectors m1, . . . ,mk in eqs. (1.3.9) and (1.3.10)

is in the collapsed notation.

Another important property of HPLs is that they are closed under certain transfor-

mations of the arguments [48]. In particular, using the integral representation (1.3.7),
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it is easy to show that the set of all HPLs is closed under the following transforma-

tions,

z /→ 1− z, z /→ 1/z, z /→ 1/(1− z), z /→ 1− 1/z, z /→ z/(z − 1) . (1.3.11)

If we add to these mappings the identity map z /→ z, we can identify the transforma-

tions in eq. (1.3.11) as forming a representation of the symmetric group S3. In other

words, the vector space spanned by all HPLs is endowed with a natural action of the

symmetric group S3.

Finally, it is evident from the iterated integral representation (1.3.7) that HPLs

can have branch cuts starting at z = 0 and/or z = 1, i.e., HPLs define in general

multi-valued functions on the complex plane. In the next section we will define

analogues of HPLs without any branch cuts, thus obtaining a single-valued version

of the HPLs.

1.3.2 Single-valued harmonic polylogarithms

Before reviewing the definition of single-valued harmonic polylogarithms in general,

let us first review the special case of single-valued classical polylogarithms. The

knowledge of the discontinuities of the classical polylogarithms, eq. (1.3.3), can be

leveraged to construct a sequence of real analytic functions on the punctured plane

C\{0, 1}. The idea is to consider linear combinations of (products of) classical poly-

logarithms and ordinary logarithms such that all the branch cuts cancel. Although the

space of single-valued functions is unique, the choice of basis is not unique, and there

have been several versions proposed in the literature. As an illustration, consider the

functions of Zagier [59],

Dm(z) = Rm

{
m
∑

k=1

(− log |z|)m−k

(m− k)!
Lik(z) +

logm |z|
2 m!

}

, (1.3.12)
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where Rm denotes the imaginary part for m even and the real part for m odd. The

discontinuity of the function inside the curly brackets is given by

2πi
m
∑

k=1

(− log |z|)m−k

(m− k)!

logk−1 z

(k − 1)!
= 2π

im

(m− 1)!
(arg z)m−1 . (1.3.13)

Since eq. (1.3.13) is real for even m and pure imaginary for odd m, Dm(z) is indeed

single-valued. For the special case m = 2, we reproduce the famous Bloch-Wigner

dilogarithm [60],

D2(z) = Im{Li2(z)}+ arg(1− z) log |z| . (1.3.14)

Just as there have been numerous proposals in the literature for single-valued

versions of the classical polylogarithms, there are many potential choices of bases for

single-valued HPLs. On the other hand, if we choose to demand some reasonable

properties, it turns out that a unique set of functions emerges. Following ref. [47],

we require the single-valued HPLs to be built entirely from holomorphic and anti-

holomorphic HPLs. Specifically, they should be a linear combination of terms of the

form Hw1
(z)Hw2

(z̄), where w1 and w2 are words in x0 and x1 or the empty word e.

The single-valued classical polylogarithms obey an analogous property, and it can be

understood as the condition that the single-valued functions are the proper extensions

of the original functions. The remaining requirements are simply the analogues of the

conditions used to construct the ordinary HPLs.

Define a function Lw(z), which is a linear combination of functions Hw1
(z)Hw2

(z̄)

and which obeys the differential equations

∂

∂z
Lx0w(z) =

Lw(z)

z
and

∂

∂z
Lx1w(z) =

Lw(z)

1− z
, (1.3.15)

subject to the conditions,

Le(z) = 1 , Lxn
0
(z) =

1

n!
logn |z|2 and lim

z→0
Lw ̸=xn

0
(z) = 0 . (1.3.16)

In ref. [47] Brown showed that there is a unique family of solutions to these equations

that is single-valued in the complex z plane, and it defines the single-valued HPLs
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(SVHPLs). The functions Lw(z) are linearly independent and span the space. That is

to say, every single-valued linear combination of functions of the form Hw1
(z)Hw2

(z̄)

can be written in terms of the Lw(z). In ref. [47] an algorithm was presented that

allows for the explicit construction of all SVHPLs as linear combinations of (products

of) ordinary HPLs. We present a short review of this algorithm in section 1.3.3.

The SVHPLs of ref. [47] share all the nice features of their multi-valued analogues.

First, like the ordinary HPLs, they obey shuffle relations,

Lw1
(z)Lw2

(z) =
∑

w∈w1Xw2

Lw(z), (1.3.17)

where again w1Xw2 represents the shuffles of w1 and w2. As a consequence, we may

again choose to solve eq. (1.3.17) in terms of a Lyndon basis. It follows that if we want

the full list of all SVHPLs of a given weight, it is enough to know the corresponding

Lyndon basis up to that weight.

Furthermore, the space of SVHPLs is also closed under the S3 action defined by

eq. (1.3.11). Indeed, if we extend the action to the complex conjugate variable z̄,

then the closure of the space of all ordinary HPLs implies the closure of the space

spanned by all products of the form Hw1
(z)Hw2

(z̄), and, in particular, the closure of

the subspace of SVHPLs. For the SVHPLs, it is possible to enlarge the symmetry

group to Z2 × S3, where the Z2 subgroup acts by complex conjugation, z ↔ z̄.

It turns out that the functions Lw(z) can generically be decomposed as

Lw(z) =
(

Hw(z)− (−1)|w|Hw(z̄)
)

+ [products of lower weight] , (1.3.18)

where |w| denotes the weight. As such, it is convenient to consider the even and odd

projections, i.e., the decomposition into eigenfunctions of the Z2 action,

Lw(z) =
1

2

(

Lw(z)− (−1)|w| Lw(z̄)
)

,

Lw(z) =
1

2

(

Lw(z) + (−1)|w|Lw(z̄)
)

.
(1.3.19)

The basis defined by Lw(z) was already complete, and yet here we have doubled the
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number of potential basis functions. Therefore Lw(z) and Lw(z) must be related to

one another. Writing Lw(z) = R|w|(Lw(z)), we see that it has the same parity as

Zagier’s single-valued versions of the classical polylogarithms given in eq. (1.3.12).

Therefore we might expect the Lw(z) to form a complete basis on their own. Indeed

this turns out to be the case, and the Lw(z) can be expressed as products of the

functions Lw(z),

Lw(z) = [products of lower weight Lw′(z)] . (1.3.20)

Hence we will not consider the functions Lw(z) any further and will concentrate solely

on the functions Lw(z).

The functions Lw(z) do not automatically form simple representations of the S3

symmetry. For the current application, we will mostly be concerned with the Z2 ⊂
S3 subgroup generated by inversions z ↔ 1/z. The functions Lw(z) can easily be

decomposed into eigenfunctions of this Z2, and, furthermore, these eigenfunctions

form a basis for the space of all SVHPLs. The latter follows from the observation

that,

Lw(z)− (−1)|w|+dwLw

(1

z

)

= [products of lower weight], (1.3.21)

where |w| is the weight and dw is the depth of the word w. We will denote these

eigenfunctions of Z2 × Z2 by,

L±
w(z) ≡

1

2

[

Lw(z)± Lw

(1

z

)
]

, (1.3.22)

and present most of our results in terms of this convenient basis. For low weights,

appendix A.1 gives explicit representations of these basis functions in terms of HPLs.

The expressions through weight six can be found in the ancillary files.

We have seen in the previous section that in the multi-Regge limit the six-point

amplitude is described to all loop orders by single-valued functions of a single complex

variable w satisfying certain reality and inversion properties. It turns out that the

SVHPLs we just defined are particularly well-suited to describe these multi-Regge

limits. This description will be the topic of the rest of this paper.
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1.3.3 Explicit construction

The explicit construction of the functions Lw(z) is somewhat involved so we take

a brief detour to describe the details. Let X∗ be the set of words in the alphabet

{x0, x1}, along with the empty word e. Define the Drinfel’d associator Z(x0, x1) as

the generating series,

Z(x0, x1) =
∑

w∈X∗

ζ(w)w, (1.3.23)

where ζ(w) = Hw(1) for w ̸= x1 and ζ(x1) = 0. The ζ(w) are regularized by the shuffle

algebra. Using the collapsed notation for w, these ζ(w) are the familiar multiple zeta

values.

Next, define an alphabet {y0, y1} (and a set of words Y ∗) and a map ∼ : Y ∗ → Y ∗

as the operation that reverses words. The alphabet {y0, y1} is related to the alphabet

{x0, x1} by the following relations:

y0 = x0

Z̃(y0, y1)y1Z̃(y0, y1)
−1 = Z(x0, x1)

−1x1Z(x0, x1).
(1.3.24)

The inversion operator is to be understood as a formal series expansion in the weight

|w|. Solving eq. (1.3.24) iteratively in the weight yields a series expansion for y1. The

first few terms are,

y1 = x1 − ζ3 (2x0x0x1x1 − 4x0x1x0x1 + 2x0x1x1x1 + 4x1x0x1x0

−6x1x0x1x1 − 2x1x1x0x0 + 6x1x1x0x1 − 2x1x1x1x0) + . . .
(1.3.25)

Letting φ : Y ∗ → X∗ be the map that renames y to x, i.e. φ(y0) = x0 and φ(y1) = x1,

define the generating functions

LX(z) =
∑

w∈X∗

Hw(z)w , L̃Y (z̄) =
∑

w∈Y ∗

Hφ(w)(z̄)w̃ . (1.3.26)

In the following, we use a condensed notation for the HPL arguments, in order to
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improve the readability of explicit formulas:

Hw ≡ Hw(z) and Hw ≡ Hw(z̄) . (1.3.27)

Then we can write

LX(z) = 1 +H0x0 +H1x1

+ H0,0x0x0 +H0,1x0x1 +H1,0x1x0 +H1,1x1x1

+ H0,0,0x0x0x0 +H0,0,1x0x0x1 +H0,1,0x0x1x0 +H0,1,1x0x1x1

+ H1,0,0x1x0x0 +H1,0,1x1x0x1 +H1,1,0x1x1x0 +H1,1,1x1x1x1

+ . . . ,

(1.3.28)

and

L̃Y (z̄) = 1 +H0y0 +H1y1

+ H0,0y0y0 +H0,1y1y0 +H1,0y0y1 +H1,1y1y1

+ H0,0,0y0y0y0 +H0,0,1y1y0y0 +H0,1,0y0y1y0 +H0,1,1y1y1y0

+ H1,0,0y0y0y1 +H1,0,1y1y0y1 +H1,1,0y0y1y1 +H1,1,1y1y1y1

+ . . .

= 1 +H0x0 +H1x1

+ H0,0x0x0 +H0,1x1x0 +H1,0x0x1 +H1,1x1x1

+ H0,0,0x0x0x0 +H0,0,1x1x0x0 +H0,1,0x0x1x0 +H0,1,1x1x1x0

+ H1,0,0x0x0x1 +H1,0,1x1x0x1 +H1,1,0x0x1x1 +H1,1,1x1x1x1

+ . . . .

(1.3.29)

In the last step of eq. (1.3.29) we used y0 = x0 and y1 = x1. Note that the latter

only holds through weight three, as is clear from eq. (1.3.25). Finally, we are able to

construct the SVHPLs as a generating series,

L(z) = LX(z)L̃Y (z̄) ≡
∑

w∈X∗

Lw(z)w. (1.3.30)
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Indeed, taking the product of eq. (1.3.28) with eq. (1.3.29) and keeping terms through

weight three, we obtain,

∑

w∈X∗

Lw(z)w = 1 + L0(z) x0 + L1(z) x1

+ L0,0(z) x0x0 + L0,1(z) x0x1 + L1,0(z) x1x0 + L1,1(z) x1x1

+ L0,0,0(z) x0x0x0 + L0,0,1(z) x0x0x1 + L0,1,0(z) x0x1x0 + L0,1,1(z) x0x1x1

+ L1,0,0(z) x1x0x0 + L1,0,1(z) x1x0x1 + L1,1,0(z) x1x1x0 + L1,1,1(z) x1x1x1

+ . . . ,

(1.3.31)

where the SVHPL’s of weight one are,

L0(z) = H0 +H0 , L1(z) = H1 +H1, (1.3.32)

the SVHPL’s of weight two are,

L0,0(z) = H0,0 +H0,0 +H0H0 ,

L0,1(z) = H0,1 +H1,0 +H0H1 ,

L1,0(z) = H1,0 +H0,1 +H1H0 ,

L1,1(z) = H1,1 +H1,1 +H1H1 ,

(1.3.33)



CHAPTER 1. SINGLE-VALUED HPLS AND THE MULTI-REGGE LIMIT 36

and the SVHPL’s of weight three are,

L0,0,0(z) = H0,0,0 +H0,0,0 +H0,0H0 +H0H0,0 ,

L0,0,1(z) = H0,0,1 +H1,0,0 +H0,0H1 +H0H1,0 ,

L0,1,0(z) = H0,1,0 +H0,1,0 +H0,1H0 +H0H0,1 ,

L0,1,1(z) = H0,1,1 +H1,1,0 +H0,1H1 +H0H1,1 ,

L1,0,0(z) = H1,0,0 +H0,0,1 +H1,0H0 +H1H0,0 ,

L1,0,1(z) = H1,0,1 +H1,0,1 +H1,0H1 +H1H1,0 ,

L1,1,0(z) = H1,1,0 +H0,1,1 +H1,1H0 +H1H0,1 ,

L1,1,1(z) = H1,1,1 +H1,1,1 +H1,1H1 +H1H1,1 .

(1.3.34)

The y alphabet differs from the x alphabet starting at weight four. Referring to

eq. (1.3.25), we expect the difference to generate factors of ζ3. To illustrate this

effect, we list here the subset of weight-four SVHPLs with explicit ζ terms:

L0,0,1,1(z) = H0,0,1,1 +H1,1,0,0 +H0,0,1H1 +H0H1,1,0 +H0,0H1,1 − 2ζ3 H1 ,

L0,1,0,1(z) = H0,1,0,1 +H1,0,1,0 +H0,1,0H1 +H0H1,0,1 +H0,1H1,0 + 4ζ3 H1 ,

L0,1,1,1(z) = H0,1,1,1 +H1,1,1,0 +H0,1,1H1 +H0H1,1,1 +H0,1H1,1 − 2ζ3 H1 ,

L1,0,1,0(z) = H1,0,1,0 +H0,1,0,1 +H1,0,1H0 +H1H0,1,0 +H1,0H0,1 − 4ζ3 H1 ,

L1,0,1,1(z) = H1,0,1,1 +H1,1,0,1 +H1,0,1H1 +H1H1,1,0 +H1,0H1,1 + 6ζ3 H1 ,

L1,1,0,0(z) = H1,1,0,0 +H0,0,1,1 +H1,1,0H0 +H1H0,0,1 +H1,1H0,0 + 2ζ3 H1 ,

L1,1,0,1(z) = H1,1,0,1 +H1,0,1,1 +H1,1,0H1 +H1H1,0,1 +H1,1H1,0 − 6ζ3 H1 ,

L1,1,1,0(z) = H1,1,1,0 +H0,1,1,1 +H1,1,1H0 +H1H0,1,1 +H1,1H0,1 + 2ζ3 H1 .

(1.3.35)

Finally, we remark that the generating series L(z) provides a convenient way to

represent the differential equations (1.3.15). Together with the y alphabet, it also

allows us to write down the differential equations in z̄,

∂

∂z
L(z) =

(
x0

z
+

x1

1− z

)

L(z) and
∂

∂z̄
L(z) = L(z)

(
y0
z̄

+
y1

1− z̄

)

. (1.3.36)
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These equations will be particularly useful in section 1.5 when we study the multi-

Regge limit of the ratio function of the six-point NMHV amplitude.

1.4 The six-point remainder function in LLA and

NLLA

In section 1.2, we showed that in MRK the remainder function is fully determined

by the coefficient functions g(ℓ)n (w,w∗) and h(ℓ)
n (w,w∗) in the logarithmic expansion of

its real and imaginary part in eq. (1.2.7). We further argued that these functions are

single-valued in the complex w plane, and suggested that they can be computed ex-

plicitly by interpreting the ν-integral in eq. (1.2.9) as a contour integral and summing

the residues. In this section, we describe how knowledge about the space of SVHPLs

can be used to facilitate this calculation. In particular, we present results for LLA

through ten loops and for NLLA through nine loops.

The main integral we consider is eq. (1.2.9), which we reproduce here for clarity,

rewriting the last factor to take into account eqs. (1.2.13) and (1.2.18),

eR+iπδ|MRK = cos πωab + i
a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν |w|2iν

ν2 + n2

4

ΦReg(ν, n)

× exp

[

−ω(ν, n)
(

log(1− u1) + iπ +
1

2
log

|w|2

|1 + w|4

)]

. (1.4.1)

The integrand depends on the BFKL eigenvalue and impact factor, which are known

through order a2 and are given in eqs. (1.2.15), (1.2.16) and (1.2.17). These functions

can be written as rational functions of ν and n, and polygamma functions (ψ and its

derivatives) with arguments 1± iν + |n|/2. Recalling that the polygamma functions

have poles at the non-positive integers, it is easy to see that all poles are found in

the complex ν plane at values ν = −i(m + |n|
2 ), m ∈ N, n ∈ Z. When the integral is

performed by summing residues, the result will be of the form,

∑

m,n

am,n w
m+n w∗m . (1.4.2)



CHAPTER 1. SINGLE-VALUED HPLS AND THE MULTI-REGGE LIMIT 38

Because residues of the polygamma functions are rational numbers, and because

polygamma functions evaluate to Euler-Zagier sums for positive integers, the co-

efficients am,n are combinations of

1. rational functions in m and n,

2. Euler-Zagier sums of the form Zı⃗(m), Zı⃗(n) and Zı⃗(m+ n),

3. log |w|, arising from taking residues at multiple poles.

Identifying (z, z̄) ≡ (−w,−w∗), and comparing the double sum (1.4.2) to the formal

series expansion of the HPLs around z = 0, eq. (1.3.9), we conclude that the double

sums will evaluate to linear combinations of terms of the form Hw1
(−w)Hw2

(−w∗).

Moreover, as discussed above, this combination should be single-valued. Therefore,

based on the discussion in section 1.3, we expect g(ℓ)n (w,w∗) and h(ℓ)
n (w,w∗) to belong

to the space spanned by the SVHPLs.

Furthermore, we know that g(ℓ)n (w,w∗) and h(ℓ)
n (w,w∗) are invariant under the ac-

tion of the Z2×Z2 transformations of eq. (1.2.8). In terms of SVHPLs, this symmetry

is just an (abelian) subgroup of the larger Z2×S3 symmetry, where the Z2 is complex

conjugation and the S3 action is given in eq. (1.3.11). As such, we do not expect an

arbitrary linear combination of SVHPLs, but only those that are eigenfunctions with

eigenvalue (+,+) of the Z2 × Z2 symmetry.

Putting everything together, and taking into account that scattering amplitudes in

N = 4 SYM are expected to have uniform transcendentality, we are led to conjecture

that, to all loop orders, g(ℓ)n (w,w∗) and h(ℓ)
n (w,w∗) should be expressible as a linear

combination of SVHPLs in (z, z̄) = (−w,−w∗) of uniform transcendental weight,

with eigenvalue (+,+) under the Z2 × Z2 symmetry. Inspecting eq. (1.2.7), the

weight should be 2ℓ − n − 1 for g(ℓ)n and 2ℓ − n − 2 for h(ℓ)
n . Our conjecture allows

us to predict a priori the set of functions that can appear at a given loop order, and

in practice this set turns out to be rather small. Knowledge of this set of functions

can be used to facilitate the evaluation of eq. (1.4.1). We outline two strategies to

achieve this:
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1. Evaluate the double sum (1.4.2) with the summation algorithms of ref. [61].

The result is a complicated expression involving multiple polylogarithms which

can be matched to a combination of SVHPLs and zeta values by means of the

symbol [34–37,147] and coproduct [62–64].

2. The double sum (1.4.2) should be equal to the formal series expansion of some

linear combination of SVHPLs and zeta values. The unknown coefficients of

this combination can be fixed by matching the two expressions term by term.

To see how this works, we calculate the two-loop remainder function in MRK. Ex-

panding eq. (1.4.1) to two loops, we find,

a2R(2) ≃ 2πi

{

a

[

−1

2
L+
1 +

1

4
I[1]

]

+ a2
[

log(1− u1)
1

4
I[Eν,n] +

(1

2
ζ2L

+
1 +

1

4
I[Φ(1)

Reg(ν, n)] +
1

4
L+
1 I[Eν,n]

)

+2πi
( 1

32
[L−

0 ]
2 +

1

8
[L+

1 ]
2 − 1

8
L+
1 I[1] + 1

8
I[Eν,n]

)
]}

,

(1.4.3)

where we have introduced the notation,

I[F(ν, n)] =
1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν F(ν, n) . (1.4.4)

Explicit expressions for the functions L±
w for low weights are provided in appendix A.1.

Equation (1.4.3) is consistent only if the term of order a vanishes. Indeed this is the

case,

I[1] = 1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν

= log |w|2 + 2
∞
∑

n=1

(−w)n

n
+ 2

∞
∑

n=1

(−w∗)n

n

= log |w|2 − 2 log |1 + w|2

= 2L+
1 .

(1.4.5)
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As previously mentioned, we only take half of the residue at ν = n = 0.

Moving on to the terms of order a2, we refer to eq. (1.2.7) and extract from

eq. (1.4.3) the expressions for the coefficient functions,

g(2)1 (w,w∗) =
1

4
I[Eν,n]

g(2)0 (w,w∗) =
1

2
ζ2L

+
1 +

1

4
I[Φ(1)

Reg(ν, n)] +
1

4
L+
1 I[Eν,n]

h(2)
0 (w,w∗) =

1

32
[L−

0 ]
2 +

1

8
[L+

1 ]
2 − 1

8
L+
1 I[1] + 1

8
I[Eν,n] .

(1.4.6)

Note that h(2)
1 = 0, in accordance with the general expectation that h(l)

l−1 = 0. Pro-

ceeding onwards, we have to calculate I[Eν,n],

I[Eν,n] =
1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν
{

2γE +
|n|

2(ν2 + n2

4 )

+ ψ

(

iν +
|n|
2

)

+ ψ

(

−iν +
|n|
2

)}

=
∞
∑

m=1

{

2
|w|2m

m2
− 2

(−w)m + (−w∗)m

m2

+[log |w|2 + 2Z1(m)]
(−w)m + (−w∗)m

m

}

+ 2
∞
∑

n=1

∞
∑

m=1

(−1)n

m(m+ n)

{

wm+nw∗m + wmw∗m+n} .

(1.4.7)

The single sum in the first line immediately evaluates to polylogarithms,

∞
∑

m=1

{

2
|w|2m

m2
− 2

(−w)m + (−w∗)m

m2
+ [log |w|2 + 2Z1(m)]

(−w)m + (−w∗)m

m

}

=
∞
∑

m=1

{

2
|w|2m

m2
+ [log |w|2 + 2Z1(m− 1)]

(−w)m + (−w∗)m

m

}

= log |w|2 [H1(−w) +H1(−w∗)] + 2H0,1(|w|2) + 2H1,1(−w)

+ 2H1,1(−w∗) .

(1.4.8)
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Next we transform the double sum into a nested sum by shifting the summation

variables by n = N −m,

∞
∑

n=1

∞
∑

m=1

(−1)n

m(m+ n)

{

wm+nw∗m + wmw∗m+n}

=
∞
∑

N=1

N−1
∑

m=1

{
(−w)N(−w∗)m

N m
+

(−w)m(−w∗)N

N m

}

= Li1,1(−w,−w∗) + Li1,1(−w∗,−w)

= H1(−w)H1(−w∗)−H0,1(|w|2) ,

(1.4.9)

where the last step follows from a stuffle identity among multiple polylogarithms [65].

Putting everything together, we obtain

I[Eν,n] = log |w|2 [H1(−w) +H1(−w∗)] + 2H1,1(−w) + 2H1,1(−w∗)

+ 2H1(−w)H1(−w∗)

= [L+
1 ]

2 − 1

4
[L−

0 ]
2 .

(1.4.10)

Referring to eqs. (1.4.5) and (1.4.6), we can now write down the results,

g(2)1 (w,w∗) =
1

4
[L+

1 ]
2 − 1

16
[L−

0 ]
2 ,

h(2)
0 (w,w∗) = 0 .

(1.4.11)

For higher weights the nested double sums can be more complicated, but they

are always of a form that can be performed using the algorithms of ref. [61]. These

algorithms will in general produce complicated multiple polylogarithms that, unlike

in eq. (1.4.9), cannot in general be reduced to HPLs by the simple application of

stuffle identities. In this case we can use symbols [36, 37, 147] and the coproduct on

multiple polylogarithms [62–64] to perform this reduction.

The above strategy becomes computationally taxing for high weights. For this

reason, we also employ an alternative strategy, based on matching series expansions,

which is computationally simpler. We demonstrate this method in the computation
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of g(2)0 , for which the only missing ingredient in eq. (1.4.6) is I[Φ(1)
Reg(ν, n)], where

Φ(1)
Reg(ν, n) is defined in eq. (1.2.17). To proceed, we write the ν-integral as a sum of

residues, and truncate the resulting double sum to some finite order,

I[Φ(1)
Reg(ν, n)] =

1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν |w|2iν

ν2 + n2

4

{

− ζ2 −
3

8

n2

(ν2 + n2

4 )
2

− 1

2

(

2γE +
|n|

2(ν2 + n2

4 )
+ ψ

(

iν +
|n|
2

)

+ ψ

(

−iν +
|n|
2

)
)2}

= −ζ2 log |w|2 −
(

log |w|2
)

|w|2 −
(

1 +
1

4
log |w|2

)

|w|4 + . . .

+ (w + w∗)

[

2ζ2 +

(

4− 2 log |w|2 + 1

2
log2 |w|2

)

+

(

1 +
1

2
log |w|2

)

|w|2 + . . .

]

+ (w2 + w∗2)

[

−ζ2 −
(
1

2
+

1

4
log2 |w|2

)

+

(

−1− 1

3
log |w|2

)

|w|2 + . . .

]

+ . . . .

(1.4.12)

Here we show on separate lines the contributions to the sum from n = 0, n = ±1,

and n = ±2. Next, we construct an ansatz of SVHPLs whose series expansion we

attempt to match to the above expression. We expect the result to be a weight-three

SVHPL with parity (+,+) under conjugation and inversion. Including zeta values,

there are five functions satisfying these criteria, and we can write the ansatz as,

I[Φ(1)
Reg(ν, n)] = c1 L

+
3 + c2 [L

−
0 ]

2L+
1 + c3 [L

+
1 ]

3 + c4 ζ2 L
+
1 + c5 ζ3 . (1.4.13)

Using the series expansions of the constituent HPLs (1.3.9), it is straightforward to
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produce the series expansion of this ansatz,

I[Φ(1)
Reg(ν, n)] =

( c1
12

+
c2
2
+

c3
8

)

log3 |w|2 + 1

2
c4ζ2 log |w|2 + c5 ζ3

+ 3 c3
(

log |w|2
)

|w|2 + . . .

+ (w + w∗)

[

−ζ2c4 +
(

−c1 +
1

2
c1 log |w|2

)

+

(

−c1
4
− c2 −

3c3
4

)

log2 |w|2 + . . .

]

+ . . . .

(1.4.14)

We have only listed the terms necessary to fix the undetermined constants. In practice

we generate many more terms than necessary to cross-check the result. Consistency

of eqs. (1.4.12) and (1.4.14) requires,

c1 = −4, c2 =
3

4
, c3 = −1

3
, c4 = −2, c5 = 0 , (1.4.15)

which gives,

I[Φ(1)
Reg(ν, n)] = −4L+

3 +
3

4
[L−

0 ]
2L+

1 − 1

3
[L+

1 ]
3 − 2 ζ2 L

+
1 . (1.4.16)

Finally, putting everything together in eq. (1.4.6),

g(2)0 (w,w∗) = −L+
3 +

1

6

[

L+
1

]3
+

1

8
[L−

0 ]
2 L+

1 . (1.4.17)

This completes the two-loop calculation, and we find agreement with [10,12]. Moving

on to three loops, we can proceed in exactly the same way, and we reproduce the

LLA [12] and NLLA results [14,15] for the imaginary parts of the coefficient functions,

g(3)2 (w,w∗) = −1

8
L+
3 +

1

12

[

L+
1

]3
,

g(3)1 (w,w∗) =
1

8
L−
0 L−

2,1 −
5

8
L+
1 L+

3 +
5

48
[L+

1 ]
4 +

1

16
[L−

0 ]
2 [L+

1 ]
2 − 5

768
[L−

0 ]
4

− π2

12
[L+

1 ]
2 +

π2

48
[L−

0 ]
2 +

1

4
ζ3 L

+
1 .

(1.4.18)
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(The result for g(3)1 agrees with that in ref. [14] once the constants are fixed to c = 0

and γ′ = −9/2 [15].) The real parts are given by,

h(3)
2 (w,w∗) = 0 ,

h(3)
1 (w,w∗) = −1

8
L+
3 − 1

24
[L+

1 ]
3 +

1

32
[L−

0 ]
2 L+

1 ,
(1.4.19)

in agreement with ref. [12]. Using the fact that

L+
1 =

1

2
log

|w|2

|1 + w|4 , (1.4.20)

it is easy to check that h(3)
1 (w,w∗) satisfies eq. (1.2.19) for ℓ = 3.

It is straightforward to extend these methods to higher loops. We have produced

results for all functions with weight less than or equal to 10, which is equivalent to

10 loops in the LLA, and 9 loops in the NLLA. Using the C++ symbolic computation

framework GiNaC [66], which allows for the efficient numerical evaluation of HPLs to

high precision [67], we can evaluate these functions numerically. Figures 1.1 and 1.2

show the functions plotted on the line segment for which w = w∗ and 0 < w < 1.

Here we also show the analytical results through six loops. We provide a separate

computer-readable text file, compatible with the Mathematica package HPL [68, 69],

which contains all the expressions through weight 10.

Up to six loops, we find,

g(4)3 (w,w∗) =
1

48
[L−

2 ]
2 +

1

48
[L−

0 ]
2 [L+

1 ]
2 +

7

2304
[L−

0 ]
4 +

1

48
[L+

1 ]
4 (1.4.21)

− 1

16
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0 L−

2,1 −
5

48
L+
1 L+

3 − 1

8
L+
1 ζ3 ,

g(4)2 (w,w∗) =
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4 − 3
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8
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2 (1.4.22)
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2 +
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16
L+
3 ,
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Figure 1.1: Imaginary parts g(ℓ)ℓ−1 of the MHV remainder function in MRK and LLA
through 10 loops, on the line segment with w = w∗ running from 0 to 1. The functions
have been rescaled by powers of 4 so that they are all roughly the same size.
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Figure 1.2: Imaginary parts g(ℓ)ℓ−2 of the MHV remainder function in MRK and NLLA
through 9 loops.
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We present only the imaginary parts, as the real parts are determined by eq.

(1.2.19). However, as a cross-check of our result, we computed the h(ℓ)
n explicitly and

checked that eq. (1.2.19) is satisfied. Furthermore, we checked that in the collinear

limit w → 0 our results agree with the all-loop prediction for the six-point MHV ampli-

tude in the double-leading-logarithmic (DLL) and next-to-double-leading-logarithmic

(NDLL) approximations of ref. [70],

eRDLLA = iπ a (w + w∗)
[

1− I0
(

2
√

a log |w| log(1− u1)
)]

,

Re
(

eRNDLLA
)

= 1 + π2a3/2(w + w∗)
√

log |w|
I1
(

2
√

a log |w| log(1− u1)
)

√

log(1− u1)

− π2a2 (w + w∗) log |w| I0
(

2
√

a log |w| log(1− u1)
)

,

(1.4.27)

where I0(z) and I1(z) denote modified Bessel functions.

Let us conclude this section with an observation: All the results for the six-point

remainder function that we computed only involve ordinary ζ values of depth one (ζk

for some k), despite the fact that multiple ζ values are expected to appear starting

from weight eight. In addition, the LLA results only involve odd ζ values – even ζ

values never appear.

1.5 The six-point NMHV amplitude in MRK

So far we have only discussed the multi-Regge limit of the six-point amplitude in an

MHV helicity configuration. In this section we extend the discussion to the second

independent helicity configuration for six points, the NMHV configuration. We will

see that the SVHPLs provide the natural function space for describing this case as

well.

The NMHV case was recently analyzed in the LLA [18]. It was shown that the

two-loop expression agrees with the limit of the analytic formula for the NMHV

amplitude for general kinematics [71], and the three-loop result was also obtained.

Here we will extend these results to 10 loops.

Due to helicity conservation along the high-energy line, the only difference between
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the MHV and NMHV configurations is a flip in helicity of one of the lower energy

external gluons (labeled by 4 and 5). Instead of the MHV helicity configuration

(++−++−), we consider (++−−+−). The tree amplitudes for MHV and NMHV

become identical in MRK [18]. In this limit, we can define the NMHV remainder

function RNMHV in the same way as in the MHV case (1.1.1),

ANMHV
6 |MRK = ABDS

6 × exp(RNMHV) . (1.5.1)

Recall the LLA version4 of eq. (1.2.9):

RLLA
MHV = i

a

2

∞
∑

n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )(−iν + n

2 )

[

(1− u1)
aEν,n − 1

]

. (1.5.2)

At LLA, the effect of changing the impact factor for emitting gluon 4 with positive

helicity to the one for a negative-helicity emission is simply to perform the replacement

1

−iν + n
2

→ − 1

iν + n
2

(1.5.3)

in eq. (1.5.2), obtaining [18]

RLLA
NMHV ≃ − ia

2

∞
∑

n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )

2

[

(1− u1)
aEν,n − 1

]

. (1.5.4)

The NMHV ratio function is normally defined in terms of the ratio of NMHV to MHV

superamplitudes A,

PNMHV =
ANMHV

AMHV
. (1.5.5)

However, in MRK, because the tree amplitudes become identical, it suffices to consider

the ordinary ratio, which in LLA becomes

PLLA
NMHV =

ALLA
NMHV

ALLA
MHV

= exp(RLLA
NMHV −RLLA

MHV) . (1.5.6)

4The distinction between R and exp(R) is irrelevant at LLA, because the LLA has one fewer
logarithm than the loop order, so the square of an LL term has two fewer logarithms and is NLL.
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Thus eq. (1.5.4), together with eq. (1.5.2), is sufficient to generate both the remainder

function and the ratio function in LLA.

Comparing eq. (1.5.4) to eq. (1.2.9), we see that in MRK the MHV and NMHV

remainder functions are related by

RLLA
NMHV =

∫

dw
w∗

w

∂

∂w∗
RLLA

MHV . (1.5.7)

It is convenient to write this equation slightly differently. First, define a sequence of

single-valued functions f (l)(w,w∗) in analogy with eq. (1.2.7)5

RLLA
NMHV = 2πi

∞
∑

l=2

al logl−1(1− u1)

[
1

1 + w∗
f (l)(w,w∗) +

w∗

1 + w∗
f (l)
( 1

w
,
1

w∗

)
]

.

(1.5.8)

Then eq. (1.5.7) can be used to relate f (l)(w,w∗) to g(l)l−1(w,w
∗),

∫

dw
w∗

w

∂

∂w∗
g(l)l−1(w,w

∗) =
1

1 + w∗
f (l)(w,w∗) +

w∗

1 + w∗
f (l)
( 1

w
,
1

w∗

)

. (1.5.9)

In section 1.4 we computed the MHV remainder function in the LLA in the multi-

Regge limit up to ten loops. Using these results and eq. (1.5.9), we can immediately

obtain NMHV expressions through ten loops as well. Indeed, g(l)l−1(w,w
∗) is a sum of

SVHPLs, so the differentiation ∂
∂w∗ can be performed with the aid of eq. (1.3.36). The

result is again a sum of SVHPLs with rational coefficients 1/(1+w∗) and w∗/(1+w∗).

As such, the differential equations (1.3.36) also uniquely determine the result of the w-

integral as a sum of SVHPLs, up to an undetermined function F (w∗). This function

can be at most a constant in order to preserve the single-valuedness condition. It

turns out that to respect the vanishing of the remainder function in the collinear

limit, F (w∗) must actually be zero.

To see how this works, consider the two loop case. From eq. (1.4.11),

g(2)1 (w,w∗) =
1

4
[L+

1 ]
2 − 1

16
[L−

0 ]
2 =

1

2
L1,1 +

1

4
L0,1 +

1

4
L1,0. (1.5.10)

5Ref. [18] defines a similar set of functions, fl, which are related to ours by f2 = − 1
4f

(2), f3 =
1
8f

(3), etc.
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Recalling that (w,w∗) = (−z,−z̄), first use the second eq. (1.3.36) to take the w∗

derivative, which clips off the last index in the SVHPL, with a different prefactor

depending on whether it is a ‘0’ or a ‘1’ (and with corrections due to the y alphabet

at higher weights):

w∗ ∂

∂w∗
g(2)1 (w,w∗) = −1

2

(
w∗

1 + w∗

)

L1 −
1

4

(
w∗

1 + w∗

)

L0 +
1

4
L1

=
w∗

1 + w∗

[

−1

4
L1 −

1

4
L0

]

+
1

1 + w∗

[
1

4
L1

]

.

(1.5.11)

Next, use the first eq. (1.3.36) to perform the w-integration. In practice, this amounts

to prepending a ‘0’ to the weight vector of each SVHPL,

∫

dw
w∗

w

∂

∂w∗
g(2)1 =

w∗

1 + w∗

[

−1

4
L0,1 −

1

4
L0,0

]

+
1

1 + w∗

[
1

4
L0,1

]

=
1

1 + w∗
f (2)(w,w∗) +

w∗

1 + w∗
f (2)
( 1

w
,
1

w∗

)

,

(1.5.12)

where

f (2)(w,w∗) =
1

4
L0,1

=
1

4
L2 +

1

8
L0 L1

= −1

4

(

log |w|2 log(1 + w∗)− Li2(−w) + Li2(−w∗)
)

.

(1.5.13)

This result agrees with the one presented in ref. [18]. Furthermore, we can check that

the inversion property implicit in eq. (1.5.12) is satisfied,

f (2)
( 1

w
,
1

w∗

)

= −1

4

[

− log |w|2 log
(

1 +
1

w∗

)

− Li2

(

− 1

w

)

+ Li2

(

− 1

w∗

)]

= −1

4

[
1

2
log2 |w|2 − log |w|2 log(1 + w∗) + Li2(−w)− Li2(−w∗)

]

= −1

4
L0,1 −

1

4
L0,0 .

(1.5.14)
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Moving on to three loops, we start with the MHV LLA term,

g(3)2 (w,w∗) = −1

8
L+
3 +

1

12

[

L+
1

]3

=
1

16
L0,0,1 +

1

8
L0,1,0 +

1

4
L0,1,1 +

1

16
L1,0,0 +

1

4
L1,0,1 +

1

4
L1,1,0

+
1

2
L1,1,1 .

(1.5.15)

As before, we can take derivatives and integrate using eq. (1.3.36),

∫

dw
w∗

w

∂

∂w∗
g(3)2 =

w∗

1 + w∗

[

− 1

16
L0,0,0 −

1

8
L0,0,1 −

3

16
L0,1,0 −

1

4
L0,1,1

]

+
1

1 + w∗

[
1

8
L0,0,1 +

1

16
L0,1,0 +

1

4
L0,1,1

]

,

(1.5.16)

and we find,

f (3)(w,w∗) =
1

8
L0,0,1 +

1

16
L0,1,0 +

1

4
L0,1,1

=
1

4
L2,1 +

1

8
L1 L2 +

1

16
L0 L2 +

1

32
L2
0 L1

=
1

8

[

− 2 Li3(1 + w)− 2 Li3(1 + w∗)− 1

2
log2 |w|2 log(1 + w∗)

+ log(−w)
(

log2(1 + w∗)− log2(1 + w)
)

+
1

2
log |w|2

(

Li2(−w)− Li2(−w∗)
)

− 2 log |1 + w|2 Li2(−w) + 2 ζ2 log |1 + w|2 + 4 ζ3
]

.

(1.5.17)

The last form agrees with the one given in ref. [18], up to the sign of the second line,

which we find must be +1 for the function to be single-valued.

Continuing on to higher loops, we find,

f (4)(w,w∗) = −1

8
L1 ζ3 +

1

4
L2,1,1 −

1

8
L3,1 +

1

32
L2
2 −

1

32
L4 +

1

8
L1 L2,1 (1.5.18)

− 1

96
L0 L

3
1 +

1

96
L2
0 L2 −

1

192
L0 L3 +

1

256
L3
0 L1 +

3

128
L2
0 L

2
1

+
1

16
L0 L1 L2 −

1

16
L1 L3 ,
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f (5)(w,w∗) = − 1

96
L2 ζ3 −

1

24
L0 L1 ζ3 +

1

4
L2,1,1,1 −

1

8
L2,2,1 +

1

32
L4,1 (1.5.19)

+
1

8
L1 L2,1,1 +

1

16
L0 L2,1,1 −

1

16
L1 L3,1 +

1

32
L1 L

2
2 −

1

64
L1 L4

− 1

96
L3
1 L2 +

1

192
L0 L

2
2 −

1

256
L0 L4 −

1

384
L2
0 L

3
1 +

1

1152
L3
0 L2

+
5

768
L3
0 L

2
1 +

5

18432
L4
0 L1 −

7

192
L0 L3,1 +

1

16
L0 L1 L2,1

+
1

64
L0 L

2
1 L2 +

11

768
L2
0 L1 L2 −

3

8
L3,1,1 +

1

48
L3,2 −

1

96
L2
0 L2,1

− 1

1536
L2
0 L3 −

1

48
L0 L1 L3 ,

f (6)(w,w∗) =
1

4
L2,1,1,1,1 −

1

8
L3,1,1,1 +

1

12
L3,2,1 −

1

32
L2
2,1 +

1

48
L5,1 +

1

288
L3
2 (1.5.20)

+
1

768
L6 −

1

768
L4,2 +

7

32
L4,1,1 +

1

8
L1 L2,1,1,1 −

1

16
L1 L3,1,1

+
1

24
L1 L3,2 +

1

32
L3 L2,1 −

1

32
L2 L3,1 +

1

96
L2
0 L2,1,1

− 1

128
L2
1 L

2
2 −

1

192
L0 L3,1,1 −

1

192
L1 ζ5 +

1

192
L3
1 L3

− 1

512
L0 L3,2 −

1

768
L0 L4,1 +

1

960
L0 L

5
1 −

1

2560
L2
0 L4

− 1

18432
L3
0 L3 +

1

73728
L5
0 L1 +

5

96
L2,1 ζ3 +

5

384
L1 L5

+
5

4096
L4
0 L

2
1 +

7

64
L1 L4,1 +

7

1536
L3
0 L

3
1 −

11

1536
L2
0 L3,1

+
11

184320
L4
0 L2 −

19

9216
L3
0 L2,1 +

1

16
L0 L1 L2,1,1 −

1

24
L1 L2 ζ3

− 1

32
L0 L1 L3,1 +

1

32
L0 L

2
1 L2,1 −

1

48
L0 L2,1 L2 −

1

48
L1 L3 L2

+
1

96
L2
0 L

2
1 L2 −

1

192
L0 L

3
1 L2 +

1

384
L0 L1 L

2
2 −

3

256
L2
0 L1 L2,1

− 3

512
L2
0 L1 ζ3 −

5

96
L0 L

2
1 ζ3 −

5

768
L0 L2 ζ3 −

11

1536
L0 L1 L4

− 11

2048
L2
0 L1 L3 −

19

768
L0 L

2
1 L3 +

49

18432
L3
0 L1 L2

+
1

384
L2
3 +

1

16
L2 L2,1,1 −

1

96
L3
1 L2,1 +

1

96
L3
1 ζ3 +

1

384
L3 ζ3

− 1

256
L2
0 L

4
1 +

1

7680
L0 L5 +

5

2048
L2
0 L

2
2 −

11

1536
L2 L4 .
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The remaining expressions through 10 loops can be found in computer-readable for-

mat in a separate file attached to this article.

1.6 Single-valued HPLs and Fourier-Mellin trans-

forms

1.6.1 The multi-Regge limit in (ν, n) space

So far we have only used the machinery of SVHPLs in order to obtain compact analytic

expressions for the six-point MHV amplitude in the LL and NLL approximation.

However, this was only possible because we knew a priori the BFKL eigenvalues

and the impact factor to the desired order in perturbation theory. Going beyond

NLLA requires higher-order corrections to the BFKL eigenvalues and the impact

factor which, by the same logic, can be computed if the corresponding amplitude is

known. In other words, if we are given the functions g(ℓ)n (w,w∗) up to some loop order,

we can use them to extract the corresponding impact factors and BFKL eigenvalues

by transforming the expression from (w,w∗) space back to (ν, n) space. The impact

factors and BFKL eigenvalues obtained in this way can then be used to compute the

six-point amplitude to any loop order for a given logarithmic accuracy.
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In ref. [14] the three-loop six point amplitude was computed up to next-to-next-

to-leading logarithmic accuracy (NNLLA),

g(3)0 (w,w∗) =
27

8
L+
5 +

3

4
L+
3,1,1 −

1

2
L+
3 [L+

1 ]
2 − 15

32
L+
3 [L−

0 ]
2 − 1

8
L+
1 L−

2,1 L
−
0

+
3

32
[L−

0 ]
2 [L+

1 ]
3 +

19

384
L+
1 [L−

0 ]
4 +

3

8
[L+

1 ]
2 ζ3 −

5

32
[L−

0 ]
2 ζ3

− π2

384
L+
1 [L−

0 ]
2 − π2

6
γ′′
{

L+
3 − 1

6
[L+

1 ]
3 − 1

8
[L−

0 ]
2 L+

1

}

+
1

4
d1 ζ3

{

[L+
1 ]

2 − 1

4
[L−

0 ]
2
}

− π2

3
d2 L

+
1

{

[L+
1 ]

2 − 1

4
[L−

0 ]
2
}

+
π2

96
[L+

1 ]
3 +

1

30
[L+

1 ]
5 − 3

4
ζ5 ,

h(3)
0 (w,w∗) =

3

16
L+
1 L+

3 +
1

16
L−
2,1 L

−
0 − 1

32
[L+

1 ]
4 − 1

32
[L−

0 ]
2 [L+

1 ]
2

− 5

1536
[L−

0 ]
4 +

1

8
L+
1 ζ3 ,

(1.6.1)

where d1, d2 and γ′′ are some undetermined rational numbers. (To obtain eq. (1.6.1)

from ref. [14] one also needs the value for another constant, γ′ = −9/2, or equivalently

γ′′′ = 0, which was obtained in ref. [15] using the MRK limit at NLLA.)

These functions can be used to extract the NNLLA correction to the impact

factor6. Indeed, the NNLL impact factor has already been expressed [15] as an integral

over the complex w plane,

Φ(2)
Reg(ν, n) = (−1)n

(

ν2 +
n2

4

) ∫
d2w

π
ρ(w,w∗) |w|−2iν−2

(
w∗

w

)n
2

, (1.6.2)

where the kernel ρ(w,w∗) is related to the three-loop amplitude in MRK,

ρ(w,w∗) = 2 g(3)0 (w,w∗) + log
|1 + w|2

|w|

(

ζ2 log2
|1 + w|2

|w| − 11

2
ζ4

)

+ 2 log
|1 + w|2

|w| g(3)1 (w,w∗) + 2

(

log2
|1 + w|2

|w| + π2

)

g(3)2 (w,w∗) .

(1.6.3)

6In principle we should expect the amplitude to NNLLA to depend on both the NNLL impact
factor and BFKL eigenvalue. The NNLL BFKL eigenvalue however only enters at four loops, see
section 1.7.2.
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However, no analytic expression for Φ(2)
Reg(ν, n) is yet known. Indeed, an explicit

evaluation of the integral (1.6.2) would require a detailed study of the integrand’s

branch structure, a task which, if feasible in this case, does not seem particularly

amenable to generalization.

Here we propose an alternative to evaluating the integral explicitly. The basic

idea is to write down an ansatz for the function in (ν, n) space, and then perform

the inverse transform to fix the unknown coefficients. The inverse transform is easy

performed using the methods outlined in section 1.4, so we are left only with the task

of writing down a suitable ansatz. To be precise, consider the inverse Fourier-Mellin

transform defined in eq. (1.4.4). Our goal is to find a set of linearly independent

functions {Fi} defined in (ν, n) space such that their transforms {I[Fi]}:

1. are combinations of HPLs of uniform weight,

2. are single-valued in the complex w plane,

3. have a definite parity under Z2 × Z2 transformations in (w,w∗) space,

4. span the whole space of SVHPLs.

Through weight six, we find empirically that this problem has a unique solution, the

construction of which we present in the remainder of this section. In particular, we

will be led to extend the action of the Z2 × Z2 symmetry and the notion of uniform

transcendentality to (ν, n) space.

1.6.2 Symmetries in (ν, n) space

Let us start by analyzing the Z2×Z2 symmetry in (ν, n) space. It is easy to see from

eq. (1.4.4) that

I[F(ν, n)](w∗, w) = I[F(ν,−n)](w,w∗) ,

I[F(ν, n)]

(
1

w
,
1

w∗

)

= I[F(−ν,−n)](w,w∗) .
(1.6.4)

In other words, the Z2 × Z2 of conjugation and inversion acts on the (ν, n) space via

[n ↔ −n] and [ν ↔ −ν, n ↔ −n], respectively. Hence, in order that the functions
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(w ↔ w∗, w ↔ 1/w) (ν ↔ −ν, n ↔ −n) F(ν, n)
(+,+) [+,+] 1/2 [f(ν, |n|) + f(−ν, |n|)]
(+,−) [−,+] 1/2 [f(ν, |n|)− f(−ν, |n|)]
(−,+) [−,−] 1/2 sgn(n) [f(ν, |n|)− f(−ν, |n|)]
(−,−) [+,−] 1/2 sgn(n) [f(ν, |n|) + f(−ν, |n|)]

Table 1.2: Decomposition of functions in (ν, n) space into eigenfunctions of the Z2×Z2

action. Note the use of brackets rather than parentheses to denote the parity under
(ν, n) transformations.

in (w,w∗) space have definite parity under conjugation and inversion, F(ν, n) should

have definite parity under n ↔ −n and ν ↔ −ν. Our experience shows that the

n- and ν-symmetries manifest themselves differently: the ν-symmetry appears as an

explicit symmetrization or anti-symmetrization, whereas the n-symmetry requires the

introduction of an overall factor of sgn(n). For example, suppose the target function

in (w,w∗) space is odd under conjugation, and even under inversion. This implies

that the function in (ν, n) space must be odd under n ↔ −n and odd under ν ↔ −ν.
Such a function will decompose as follows,

F(ν, n) =
1

2
sgn(n) [f(ν, |n|)− f(−ν, |n|)] , (1.6.5)

for some suitable function f . See Table 1.2 for the typical decomposition in all four

cases. Furthermore, in the cases we have studied so far, the constituents f(ν, |n|) can
always be expressed as sums of products of single-variable functions with arguments

±iν + |n|/2,
f(ν, |n|) =

∑

j

cj
∏

k

fj,k(δkiν + |n|/2), (1.6.6)

where cj are constants, δk ∈ {+1,−1}, and the fj,k(z) are single-variable functions

that we now describe.

1.6.3 General construction

The functional form of Fi(ν, n) can be further restricted by demanding that the in-

tegral (1.4.4) evaluate to a combination of HPLs. To see how, consider closing the
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ν-contour in the lower half plane and summing residues at poles with Im(ν) < 0. A

necessary condition for the result to yield HPLs is that the residues evaluate exclu-

sively to rational functions and generalized harmonic numbers, e.g., the Euler-Zagier

sums defined in eq. (1.3.10). This condition will clearly be satisfied if the fj,k(z) are

purely rational functions of z. Less obviously, it is also satisfied by polygamma func-

tions. Indeed, the polygamma functions evaluate to ordinary (depth one) harmonic

numbers at integer values,

ψ(1 + n) = −γE + Z1(n) and ψ(k)(1 + n) = (−1)k+1k! (ζk+1 − Zk+1(n)) , (1.6.7)

where ψ(1) = ψ′, ψ(2) = ψ′′, etc. Referring to eq. (1.3.9), we see that all HPLs through

weight three can be constructed using ordinary harmonic numbers7.

We therefore expect the fj,k(z) to be rational functions or polygamma functions

through weight three. Starting at weight four, however, ordinary harmonic numbers

are insufficient to cover all possible HPLs. Indeed, at weight four, the HPL

H1,2,1(z) =
∞
∑

k=1

zk

k
Z2,1(k − 1) (1.6.8)

requires a depth-two sum8, Z2,1(k − 1). A meromorphic function that generates

Z2,1(k − 1) was presented in ref. [54]. It can be written as a Mellin transform,

F4(N) = M

[(
Li2(x)

1− x

)

+

]

(N) , N ∈ C , (1.6.9)

where the Mellin transform M is defined by

M[(f(x))+](N) ≡
∫ 1

0

dx (xN − 1) f(x) . (1.6.10)

7Harmonic numbers of depth greater than one do appear at weight three; however, after applying
the stuffle algebra relations for Euler-Zagier sums, they all can be rewritten in terms of ordinary
harmonic numbers of depth one, namely Z1,1(k − 1) = 1

2 Z1(k − 1)2 − 1
2 Z2(k − 1).

8Another depth-two sum appears in H1,1,2(x) =
∑

∞

k=1
xk

k
Z1,2(k − 1) but the two are related by

a stuffle identity, Z2,1(k − 1) + Z1,2(k − 1) = Z2(k − 1)Z1(k − 1)− Z3(k − 1).
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If N is a positive integer, then F4(N) evaluates to harmonic numbers of depth two,

F4(N) = Z2,1(N) + Z3(N)− ζ2 Z1(N) , N ∈ N . (1.6.11)

Going to higher weight, new harmonic sums will be necessary to construct the full

space of HPLs, and, correspondingly, new meromorphic functions will be necessary to

give rise to those sums. The analysis of refs. [53–55] uncovers precisely the functions

we need9. They are summarized in appendix A.2. Through weight five, three new

functions are necessary: F4, F6a and F7.

There is one final special case that deserves attention. Unlike the other SVHPLs,

the pure logarithmic functions [L−
0 ]

k diverge as |w| → 0. These functions have special

behavior in (ν, n) space as well, requiring a Kronecker delta function:

I[δn,0/(iν)k] =
1

π

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν δn,0
(iν)k

=
[L−

0 ]
k+1

(k + 1)!
. (1.6.12)

Altogether, we find that the following functions of z = ±iν + |n|/2 are sufficient to

construct all the remaining SVHPLs through weight five:

fj,k(z) ∈
{

1,
1

z
,ψ(1 + z),ψ′(1 + z),ψ′′(1 + z),ψ′′′(1 + z), F4(z), F6a(z), F7(z)

}

.

(1.6.13)

However, as we will see, not all combinations of elements in the list (1.6.13) lead to

functions of (w,w∗) that are both single-valued and of definite transcendental weight.

Instead we will construct a smaller set of building blocks that do have this property.

1.6.4 Examples

Let us see how to use the elements in the list (1.6.13) to construct SVHPLs. The

simplest case is f(ν, |n|) = 1. Referring to Table 1.2, only two of the four sectors yield

non-zero choices for F . One of these, F = sgn(n), produces something proportional

9Actually, in refs. [53–55] a more general class of functions is defined. It involves generic HPLs
that are singular at x = −1 as well as at x = 0 and 1. As we never encounter these HPLs in our
present context, we do not discuss these functions any further.
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to H1 − H1, which is not single-valued. This leaves F = 1, which should produce

a function in the (+,+) sector. Closing the ν-contour in the lower half plane, and

summing up the residues at ν = −i|n|/2, we obtain the integral of eq. (1.4.5),

I[1] = 2L+
1 , (1.6.14)

indeed a function in the (+,+) sector. Including the special case L−
0 from eq. (1.6.12),

this completes the analysis at weight one.

The next simplest element is 1/z, yielding f(ν, |n|) = 1/(iν + |n|/2). It generates
two single-valued functions, one in the (+,−) sector and one in the (−,−) sector

(using the (w,w∗) labeling in the first column of Table 1.2). Symmetrizing as indicated

in Table 1.2, the two functions in (ν, n) space are F = −V and F = N/2, with the

useful shorthands

V ≡ −1

2

[

1

iν + |n|
2

− 1

−iν + |n|
2

]

=
iν

ν2 + |n|2

4

,

N ≡ sgn(n)

[

1

iν + |n|
2

+
1

−iν + |n|
2

]

=
n

ν2 + |n|2

4

.

(1.6.15)

The transforms of these functions yield two of the four SVHPLs of weight two.

I[V ] = −L−
0 L+

1 ,

I[N ] = 4L−
2 .

(1.6.16)

A third weight-two function is the pure logarithmic function [L−
0 ]

2, a special case

already considered. To find the fourth weight-two function, we turn to the next

element in the list (1.6.13), ψ(1 + z). On its own, it does not generate any single-

valued functions; however, a particular linear combination of {1, 1/z,ψ(1+z)} indeed

produces such a function. Specifically, f(ν, |n|) = 2ψ(1 + iν + |n|/2) + 2γE − 1/(iν +

|n|/2) generates the last weight-two SVHPL, which transforms in the (+,+) sector.
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The function in (ν, n) space is actually the leading-order BFKL eigenvalue, Eν,n,

F = ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

+ 2γE − sgn(n)N

2
= Eν,n , (1.6.17)

and its transform is the last SVHPL of weight two,

I[Eν,n] = [L+
1 ]

2 − 1

4
[L−

0 ]
2 . (1.6.18)

The next element in the list (1.6.13) is ψ′(1 + z). Like ψ(1 + z), ψ′(1 + z) does

not by itself generate any single-valued functions; however, there is a particular linear

combination that does, and it is given by f(ν, |n|) = 2ψ′(1+iν+|n|/2)+1/(iν+|n|/2)2.
Notice that, for the first time, the product in eq. (1.6.6) extends over more than one

term (in this case, f1,1 = f1,2 = 1/(iν+|n|/2), but in general the fj,k will be different).

The function in (ν, n) space is,

F = ψ′

(

1 + iν +
|n|
2

)

− ψ′

(

1− iν +
|n|
2

)

− sgn(n)NV = DνEν,n , (1.6.19)

where Dν ≡ −i∂ν ≡ −i ∂/∂ν. The main observation is that the basis in eq. (1.6.13)

can be modified to consistently generate single-valued functions: 1/z is replaced by

V and N , ψ is replaced by Eν,n, and ψ(k) is replaced by Dk
νEν,n.

Furthermore, as mentioned previously, the basis at weight four requires a new

function F4(z) that is outside the class of polygamma functions. Like the polygamma

functions, F4(z) does not by itself generate a single-valued function; it too requires

additional terms. We denote the resulting basis element by F̃4. It is related to the

function F4(z) in eq. (1.6.9) by,

F̃4 = sgn(n)

{

F4

(

iν +
|n|
2

)

+ F4

(

− iν +
|n|
2

)

− 1

4
D2
νEν,n −

1

8
N2Eν,n

− 1

2
V 2Eν,n +

1

2

(

ψ− + V
)

DνEν,n + ζ2Eν,n − 4 ζ3

}

+N

{
1

2
V ψ− +

1

2
ζ2

}

,

(1.6.20)
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where

ψ− ≡ ψ
(

1 + iν +
|n|
2

)

− ψ
(

1− iν +
|n|
2

)

. (1.6.21)

Appendix A.2 contains further details about the functions in (ν, n) space, including

the basis through weight five and expressions for the building blocks F̃6a and F̃7

generated by the functions F6a(z) and F7(z).

Finally, we describe a heuristic method for assembling the basis in (ν, n) space.

The idea is to start with the building blocks,

{1, N, V, Eν,n, F̃4, F̃6a, F̃7}, (1.6.22)

and piece them together with multiplication and ν-differentiation. These two opera-

tions do not always produce independent functions. For example,

DνN = 2NV and DνV =
1

4
N2 + V 2 . (1.6.23)

The building blocks have definite parity under ν ↔ −ν and n ↔ −n which helps

determine which combinations appear in which sector. Additionally, we observe that

they can be assigned a transcendental weight, which further assists in the classifi-

cation. The weight in (w,w∗) space is found by calculating the total weight of the

constituent building blocks in (ν, n) space, and then adding one (to account for the

increase in weight due to the integral transform itself). The relevant properties of the

basic building blocks are summarized in Table 1.3.

As an example, let us consider the function NDνEν,n. Referring to Table 1.3,

the transcendental weight is 1 + 1 + 1 = 3 in (ν, n) space, or 3 + 1 = 4 in (w,w∗)

space. Under [ν ↔ −ν, n ↔ −n], N has parity [+,−], Dν has parity [−,+], and Eν,n

has parity [+,+], so NDνEν,n has parity [−,−]. We therefore expect this function

to transform into a weight four function of (w,w∗), with parity (−,+) under (w ↔
w∗, w ↔ 1/w) (see Table 1.2). Indeed this turns out to be the case. A complete basis

through weight three is presented in Table 1.4.
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weight (ν ↔ −ν, n ↔ −n)

1 0 [+,+]

Dν 1 [−,+]

V 1 [−,+]

N 1 [+,−]

weight (ν ↔ −ν, n ↔ −n)

Eν,n 1 [+,+]

F̃4 3 [+,−]

F̃6a 4 [−,−]

F̃7 4 [−,+]

Table 1.3: Properties of the building blocks for the basis in (ν, n) space.

weight Z2 × Z2 (w,w∗) basis (ν, n) basis dimension

1

(+,+) L+
1 1 1

(+,−) L−
0 δn,0 1

(−,+) − − 0

(−,−) − − 0

2

(+,+) [L+
1 ]

2, [L−
0 ]

2 δn,0/(iν), Eν,n 2

(+,−) L−
0 L

+
1 V 1

(−,+) − − 0

(−,−) L−
2 N 1

3

(+,+) [L+
1 ]

3, [L−
0 ]

2L+
1 , L

+
3 V 2, N2, E2

ν,n 3

(+,−) [L−
0 ]

3, L−
0 [L

+
1 ]

2, L−
2,1 δn,0/(iν)2, V Eν,n, DνEν,n 3

(−,+) L−
0 L

−
2 V N 1

(−,−) L+
1 L

−
2 NEν,n 1

Table 1.4: Basis of SVHPLs in (w,w∗) and (ν, n) space through weight three. Note
that at each weight we can also add the product of zeta values with lower-weight
entries.

1.7 Applications in (ν, n) space: the BFKL eigen-

values and impact factor

1.7.1 The impact factor at NNLLA

In this section we report results for g(4)1 and g(4)0 and discuss how to transform these

functions to (ν, n) space using the basis constructed in the previous section. We then

give our results for the new data for the MRK logarithmic expansion: Φ(2)
Reg, Φ

(3)
Reg,
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and E(2)
ν,n.

Before discussing the case of the higher-order corrections to the BFKL eigenvalue

and the impact factor, let us review how the known results for Eν,n, E
(1)
ν,n and Φ(1)

Reg fit

into the framework for (ν, n) space that we have developed in the previous section.

First, we have already seen in section 1.6 that the LL BFKL eigenvalue is one of

our basis elements of weight one in (ν, n) space (see Table 1.3). Next, we know

that the first time the NLL impact factor Φ(1)
Reg appears is in the NLLA of the two-

loop amplitude, g(2)0 (w,w∗), which is a pure single-valued function of weight three.

Following our analysis from the previous section, it should then be possible to express

Φ(1)
Reg as a pure function of weight two in (ν, n) space with the correct symmetries.

Indeed, we can easily recast eq. (1.2.17) in terms of the basis elements shown in

Table 1.3,

Φ(1)
Reg(ν, n) = −1

2
E2
ν,n −

3

8
N2 − ζ2 . (1.7.1)

Similarly, the NLL BFKL eigenvalue can be written as a linear combination of weight

three of the basis elements in Table 1.3,

E(1)
ν,n = −1

4
D2
νEν,n +

1

2
V DνEν,n − ζ2 Eν,n − 3 ζ3 . (1.7.2)

This completes the data for the MRK logarithmic expansion that can be extracted

through two loops.

Now we proceed to three loops. By expanding eq. (1.4.1) to order a3, we obtain

the following relation for the NNLLA correction to the impact factor, Φ(2)
Reg(ν, n),

I
[

Φ(2)
Reg(ν, n)

]

= 4 g(3)2 (w,w∗)
{

[L+
1 ]

2 + π2
}

− 4 g(3)1 (w,w∗)L+
1 + 4 g(3)0 (w,w∗)

− 4π2g(2)1 (w,w∗)L+
1 +

π2

180
L+
1

{

−45 [L−
0 ]

2 + 120 [L+
1 ]

2 + 22 π2
}

.

(1.7.3)

This expression is exactly 2 ρ(w,w∗), where ρ was given in eq. (1.6.3) and in ref. [15].

(The factor of two just has to do with our normalization of the Fourier-Mellin trans-

form.)
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To invert eq. (1.7.3) and obtain Φ(2)
Reg(ν, n), we begin by observing that the right-

hand side is a pure function of weight five in (w,w∗) space. Moreover, it is an

eigenfunction with eigenvalue (+,+) under the Z2 × Z2 symmetry. Following the

analysis of section 1.6, and using the results at the end of appendix A.2, we are led

to make the following ansatz,

Φ(2)
Reg(ν, n) = α1 E

4
ν,n + α2 N

2E2
ν,n + α3 N

4 + α4 V
2 E2

ν,n + α5 N
2V 2 + α6 V

4

+ α7 Eν,n V DνEν,n + α8 [DνEν,n]
2 + α9 Eν,n D

2
νEν,n + α10 F̃4 N

+ α11 ζ2E
2
ν,n + α12 ζ2N

2 + α13 ζ2V
2 + α14 ζ3Eν,n

+ α15 ζ3 [δn,0/(iν)] + α16 ζ4 .

(1.7.4)

The αi are rational numbers that can be determined by computing the integral trans-

form to (w,w∗) space of eq. (1.7.4) (see appendix A.2) and then matching the result

to the right-hand side of eq. (1.7.3). We find

Φ(2)
Reg(ν, n) =

1

2

[

Φ(1)
Reg(ν, n)

]2

− E(1)
ν,n Eν,n +

1

8
[DνEν,n]

2 +
5π2

16
E2
ν,n

− 1

2
ζ3 Eν,n +

5

64
N4 +

5

16
N2 V 2 − 5π2

64
N2 − π2

4
V 2 +

17π4

360

+ d1 ζ3 Eν,n − d2
π2

6

[

12E2
ν,n +N2

]

+ γ′′
π2

6

[

E2
ν,n −

1

4
N2

]

.

(1.7.5)

Here d1, d2 and γ′′ are the (not yet determined) rational numbers that appear in

eq. (1.6.1). We emphasize that the expression for Φ(2)
Reg(ν, n) does not involve the

basis element N F̃4 (see eq. (A.2.52)). That is, Φ(2)
Reg(ν, n) can be written purely in

terms of ψ functions (and their derivatives).

To determine the six-point remainder function in MRK to all loop orders in the

NNLL approximation, we must apply some additional information beyond Φ(2)
Reg(ν, n).

In particular, at four loops and higher, the second-order correction to the BFKL

eigenvalue, E(2)
ν,n, is necessary. In the next section, we will show how to use information

from the symbol of the four-loop remainder function to determine E(2)
ν,n. We will also

derive the next correction to the impact factor, Φ(3)
Reg(ν, n), which enters the N3LL

approximation.
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1.7.2 The four-loop remainder function in the multi-Regge

limit

In order to compute the next term in the perturbative expansion of the BFKL eigen-

value and the impact factor, we need the analytic expressions for the four-loop six-

point remainder function in the multi-Regge limit. In an independent work, the sym-

bol of the four-loop six-point remainder function has been heavily constrained [56].

In ref. [56] the symbol of R(4)
6 is written in the form

S(R(4)
6 ) =

113
∑

i=1

αi Si , (1.7.6)

where αi are undetermined rational numbers. The Si denote integrable tensors of

weight eight satisfying the first- and final-entry conditions mentioned in the intro-

duction, such that:

0. All entries in the symbol are drawn from the set {ui, 1−ui, yi}i=1,2,3, where the

yi’s are defined in eq. (1.1.4).

1. The symbol is integrable.

2. The tensor is totally symmetric in u1, u2, u3. Note that under a permutation

ui → uσ(i), σ ∈ S3, the yi variables transform as yi → 1/yσ(i).

3. The tensor is invariant under the transformation yi → 1/yi.

4. The tensor vanishes in all simple collinear limits.

5. The tensor is in agreement with the prediction coming from the collinear OPE

of ref. [38]. We implement this condition on the leading singularity exactly as

was done at three loops [14].

In section 1.4, we presented analytic expressions for the four-loop remainder function

in the LLA and NLLA of MRK. We can use these results to obtain further constraints

on the free coefficients αi appearing in eq. (1.7.6). In order to achieve this, we first
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have to understand how to write the symbol (1.7.6) in MRK. In the following we give

very brief account of this procedure.

To begin, recall that the remainder function is non-zero in MRK only after per-

forming the analytic continuation (1.2.6), u1 → e−2πi |u1|. The function can then be

expanded as in eq. (1.2.7),

R(4)
6 |MRK = 2πi

3
∑

n=0

logn(1− u1)
[

g(4)n (w,w∗) + 2πi h(4)
n (w,w∗)

]

. (1.7.7)

The symbols of the imaginary and real parts can be extracted by taking single and

double discontinuities,

2πi
3
∑

n=0

S
[

logn(1− u1) g
(4)
n (w,w∗)

]

= S(∆u1
R(4)

6 )|MRK

= −2πi
113
∑

i=1

αi ∆u1
(Si)|MRK

(2πi)2
3
∑

n=0

S
[

logn(1− u1)h
(4)
n (w,w∗)

]

= S(∆2
u1
R(4)

6 )|MRK

= (−2πi)2
113
∑

i=1

αi ∆
2
u1
(Si)|MRK ,

(1.7.8)

where the discontinuity operator ∆ acts on symbols via,

∆u1
(a1 ⊗ a2 ⊗ . . .⊗ an) =

⎧

⎨

⎩

a2 ⊗ . . .⊗ an , if a1 = u1 ,

0 , otherwise.
(1.7.9)

∆2
u1
(a1 ⊗ a2 ⊗ . . .⊗ an) =

⎧

⎨

⎩

1
2 (a3 ⊗ . . .⊗ an) , if a1 = a2 = u1 ,

0 , otherwise.
(1.7.10)

As indicated in eq. (1.7.8), we need to evaluate the symbols Si in MRK, which we do

by taking the multi-Regge limit of each entry of the symbol. This can be achieved by

replacing u2 and u3 by the variables x and y, defined in eq. (1.2.3) (which we then

write in terms of w and w∗ using eq. (1.2.4)), while the yi’s are replaced by their
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limits in MRK [14],

y1 → 1 , y2 →
1 + w∗

1 + w
, y3 →

w∗(1 + w)

w(1 + w∗)
. (1.7.11)

Finally, we drop all terms in ∆k
u1
(Si), k = 1, 2, that have an entry corresponding to

u1, y1, 1 − u2 or 1 − u3, since these quantities approach unity in MRK. In the end,

the resulting tensors have entries drawn from the set {1 − u1, w, w∗, 1 + w, 1 + w∗}.
The 1 − u1 entries come from factors of log(1− u1) and can be shuffled out, so that

we can write eq. (1.7.8) as,

3
∑

n=0

S [logn(1− u1)]XS
[

g(4)n (w,w∗))
]

=
113
∑

i=1

7
∑

n=0

αi S [logn(1− u1)]XGi,n

3
∑

n=0

S [logn(1− u1)]XS
[

h(4)
n (w,w∗))

]

=
113
∑

i=1

6
∑

n=0

αi S [logn(1− u1)]XHi,n ,

(1.7.12)

for some suitable tensors Gi,n of weight (7− n) and Hi,n of weight (6− n). The sums

on the right-hand side of eq. (1.7.12) turn out to extend past n = 3. Because the sums

on the left-hand side do not, we immediately obtain homogeneous constraints on the

αi for the cases n = 4, 5, 6, 7. Furthermore, since the quantities on the left-hand side

of eq. (1.7.12) are known for n = 3 and n = 2, we can use this information to further

constrain the αi. Finally, there is a consistency condition which relates the real and

imaginary parts,

h(4)
1 (w,w∗) = g(4)2 (w,w∗) +

π2

12
g(2)1 (w,w∗)L+

1 − 1

2
g(3)1 (w,w∗)L+

1

− g(2)1 (w,w∗) g(2)0 (w,w∗) ,

h(4)
0 (w,w∗) =

1

2
g(4)1 (w,w∗) + π2 g(4)3 (w,w∗)− π2 g(3)2 (w,w∗)L+

1

− 1

2
g(3)0 (w,w∗)L+

1 +
π2

2
g(2)1 (w,w∗) [L+

1 ]
2 +

π2

12
g(2)0 (w,w∗)L+

1

+
π2

64
[L−

0 ]
2 [L+

1 ]
2 − π2

1536
[L−

0 ]
4 +

3

640
π4 [L−

0 ]
2 − 5

96
π2 [L+

1 ]
4

− 3

160
π4 [L+

1 ]
2 − 1

2
[g(2)0 (w,w∗)]2 .

(1.7.13)
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In total, these constraints allow us to fix all of the coefficients αi that survive in the

multi-Regge limit, except for a single parameter which we will refer to as a0.

The results of the above analysis are expressions for the symbols of the functions

g(4)1 and g(4)0 . We would like to use this information to calculate new terms in the

perturbative expansions of the BFKL eigenvalue ω(ν, n) and the MHV impact factor

ΦReg(ν, n). For this purpose, we actually need the functions g(4)1 and g(4)0 , and not just

their symbols. Thankfully, using our knowledge of the space of SVHPLs, it is easy

to integrate these symbols. We can constrain the beyond-the-symbol ambiguities by

demanding that the function vanish in the collinear limit (w,w∗) → 0, and that it

be invariant under conjugation and inversion of the w variables. Putting everything

together, we find the following expressions for g(4)1 and g(4)0 ,

g(4)1 (w,w∗) =
3

128
[L−

2 ]
2 [L−

0 ]
2 − 3

32
[L−

2 ]
2 [L+

1 ]
2 +

19

384
[L−

0 ]
2 [L+

1 ]
4

+
73

1536
[L−

0 ]
4 [L+

1 ]
2 − 17

48
L+
3 [L+

1 ]
3 +

1

4
L−
0 L−

4,1 −
3

4
L−
0 L−

2,1,1,1

+
1

96
L−
2,1 [L

−
0 ]

3 − 29

64
L+
1 L+

3 [L−
0 ]

2 − 11

30720
[L−

0 ]
6 − 1

8
[L−

2,1]
2

+
23

12
[L+

1 ]
3 ζ3 +

11

480
[L+

1 ]
6 +

5

32
[L+

3 ]
2 − 1

4
L−
4 L−

2 +
1

4
L−
2 L−

2,1,1

+
19

8
L+
5 L+

1 +
5

4
L+
1 L+

3,1,1 +
1

2
L+
1 L+

2,2,1 −
3

2
L+
1 ζ5 +

1

8
ζ23

+ a0

{

1027

2
[L−

2 ]
2 [L−

0 ]
2 +

417

8
[L−

0 ]
2 [L+

1 ]
4 +

431

24
[L−

0 ]
4 [L+

1 ]
2

+
3155

48
L−
2,1 [L

−
0 ]

3 − 709

4
L+
3 [L+

1 ]
3 +

2223

2
L+
5 L+

1 (1.7.14)

− 1581

16
L+
1 L+

3 [L−
0 ]

2 +
9823

1152
[L−

0 ]
6 − 871

4
L−
0 L−

2,1 [L
+
1 ]

2

− 157 [L−
2 ]

2 [L+
1 ]

2 − 256 [L−
2,1]

2 + 1593 [L+
1 ]

3 ζ3

+ 681 [L+
3 ]

2 − 1606L−
4 L−

2 + 512L−
2 L−

2,1,1 − 3371L−
0 L−

4,1

− 1730L−
0 L−

3,2 − 299L−
0 L−

2,1,1,1 + 2127L+
1 L+

3,1,1

+ 744L+
1 L+

2,2,1 + 5489L+
1 ζ5 + 256 ζ23

}

+ a1 π
2 g(3)1 (w,w∗) + a2 π

2 g(4)3 (w,w∗)



CHAPTER 1. SINGLE-VALUED HPLS AND THE MULTI-REGGE LIMIT 70

+ a3 π
2 [g(2)1 (w,w∗)]2 + a4 π

2 h(4)
2 (w,w∗) + a5 π

2 h(3)
0 (w,w∗)

+ a6 π
4 g(2)1 (w,w∗) + a7 ζ3 g

(2)
0 (w,w∗) + a8 ζ3 g

(3)
2 (w,w∗) ,

g(4)0 (w,w∗) =
5

64
L+
1 [L−

2 ]
2 [L−

0 ]
2 − 1

16
[L−

2 ]
2 [L+

1 ]
3 − 21

64
L+
3 [L−

0 ]
2 [L+

1 ]
2

+
7

144
[L−

0 ]
4 [L+

1 ]
3 +

1007

46080
L+
1 [L−

0 ]
6 +

1

4
L−
2 L−

2,1,1 L
+
1 − 125

8
L+
7

+
9

320
[L−

0 ]
2 [L+

1 ]
5 − 7

192
L−
2,1 L

+
1 [L−

0 ]
3 +

129

64
L+
5 [L−

0 ]
2

− 5

24
L+
3 [L−

0 ]
4 +

3

32
L+
3,1,1 [L

−
0 ]

2 − 1

16
L+
2,2,1 [L

−
0 ]

2 +
7

16
[L−

0 ]
2 ζ5

− 1

16
L−
0 L−

2,1 [L
+
1 ]

3 +
25

16
L+
5 [L+

1 ]
2 − 7

48
L+
3 [L+

1 ]
4

+
25

12
[L+

1 ]
4 ζ3 +

1

210
[L+

1 ]
7 − 1

4
L−
4 L−

2 L+
1 − 5

16
L−
2 L−

0 L+
3,1

+
1

4
L−
0 L−

4,1 L
+
1 − 1

8
L−
0 L−

2,1 L
+
3 − 1

4
L−
0 L−

2,1,1,1 L
+
1 +

3

2
L+
1 ζ

2
3

+
1

2
L+
4,1,2 +

11

4
L+
4,2,1 +

3

4
L+
3,3,1 −

1

2
L+
2,1,2,1,1 −

3

2
L+
2,2,1,1,1

+
7

8
L+
3,1,1 [L

+
1 ]

2 +
25

4
ζ7 + 5L+

5,1,1 − 4L+
3,1,1,1,1 +

1

4
L+
2,2,1 [L

+
1 ]

2 (1.7.15)

+ a0

{

− 1309

4
L+
1 [L−

2 ]
2 [L−

0 ]
2 + 1911L+

3 [L−
2 ]

2 + 63L+
3,1,1 [L

+
1 ]

2

− 8535

4
L+
3 [L−

0 ]
2 [L+

1 ]
2 +

235

4
[L−

0 ]
2 [L+

1 ]
5 +

4617

16
[L−

0 ]
4 [L+

1 ]
3

− 32027

24
L−
2,1 L

+
1 [L−

0 ]
3 − 11415

8
L+
5 [L−

0 ]
2 − 310

9
L+
1 [L−

0 ]
6

+
15225

64
L+
3 [L−

0 ]
4 +

24279

4
L+
3,1,1 [L

−
0 ]

2 − 823

2
L−
0 L−

2,1 [L
+
1 ]

3

+
2235

2
L+
5 [L+

1 ]
2 − 365

4
L+
3 [L+

1 ]
4 + 205 [L−

2 ]
2 [L+

1 ]
3

+ 2130L+
2,2,1 [L

−
0 ]

2 − 2623 [L−
0 ]

2 ζ5 + 992L+
1 [L−

2,1]
2

− 288L+
2,2,1 [L

+
1 ]

2 + 2396 [L+
1 ]

4 ζ3 + 1830L+
1 [L+

3 ]
2

+ 1344L−
2 L−

0 L+
3,1 − 520L−

2 L−
2,1,1 L

+
1 + 11839L−

0 L−
4,1 L

+
1

+ 4330L−
0 L−

3,2 L
+
1 + 3780L−

0 L−
2,1 L

+
3 + 562L−

0 L−
2,1,1,1 L

+
1

+ 2256L+
7 − 164778L+

5,1,1 − 33216L+
4,1,2 − 89088L+

4,2,1

− 33912L+
3,3,1 − 12048L+

3,2,2 − 17820L+
3,1,1,1,1 − 2928L+

2,1,2,1,1
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− 1612L−
4 L−

2 L+
1 − 8784L+

2,2,1,1,1 + 3556L+
1 ζ

2
3 − 23796 ζ7

}

+ b1 ζ2 [L
−
2 ]

2L+
1 + b2 ζ2 [L

−
0 ]

2L+
1 g

(2)
1 (w,w∗)

+ b3 ζ2 g
(2)
1 (w,w∗) g(3)2 (w,w∗) + b4 ζ2 g

(2)
0 (w,w∗) g(2)1 (w,w∗)

+ b5 ζ2 h
(4)
1 (w,w∗) + b6 ζ2 h

(5)
3 (w,w∗) + b7 ζ2 g

(3)
0 (w,w∗)

+ b8 ζ2 g
(4)
2 (w,w∗) + b9 ζ2 g

(5)
4 (w,w∗) + b10 ζ3 h

(4)
2 (w,w∗)

+ b11 ζ3 h
(3)
0 (w,w∗) + b12 ζ3 [g

(2)
1 (w,w∗)]2 + b13 ζ3 g

(4)
3 (w,w∗)

+ b14 ζ3 g
(3)
1 (w,w∗) + b15 ζ4 g

(3)
2 (w,w∗) + b16 ζ4 g

(2)
0 (w,w∗)

+ b17 ζ3 ζ2 g
(2)
1 (w,w∗) + b18 ζ5 g

(2)
1 (w,w∗) .

In these expressions, ai for i = 0, . . . , 8, and bj for j = 1, . . . , 18, denote undetermined

rational numbers. The one symbol-level parameter, a0, enters both g(4)1 and g(4)0 . We

observe that a0 enters these formulae in a complicated way, and that there is no

nonzero value of a0 that simplifies the associated large rational numbers. We therefore

suspect that a0 = 0, although we currently have no proof. The remaining parameters

account for beyond-the-symbol ambiguities. We will see in the next section that one

of these parameters, b1, is not independent of the others.

1.7.3 Analytic results for the NNLL correction to the BFKL

eigenvalue and the N3LL correction to the impact fac-

tor

Having at our disposal analytic expressions for the four-loop remainder function at

NNLLA and N3LLA, we use these results to extract the BFKL eigenvalue and the

impact factors to the same accuracy in perturbation theory. We proceed as in sec-

tion 1.7.1, i.e., we use our knowledge of the space of SVHPLs and the corresponding

functions in (ν, n) space to find a function whose inverse Fourier-Mellin transform

reproduces the four-loop results we have derived.

Let us start with the computation of the BFKL eigenvalue at NNLLA. Expanding
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eq. (1.4.1) to order a4, we can extract the following relation,

I
[

E(2)
ν,n

]

= 12
{

[L+
1 ]

2 + π2
}

g(4)3 (w,w∗)− 8L+
1 g(4)2 (w,w∗) + 4 g(4)1 (w,w∗)

− 8L+
1 π

2 g(3)2 (w,w∗) + 2 π2 g(2)1 (w,w∗) [L+
1 ]

2

− I
[

E(1)
ν,n Φ

(1)
Reg(ν, n)

]

− I
[

Eν,n Φ
(2)
Reg(ν, n)

]

.

(1.7.16)

The right-hand side of eq. (1.7.16) is completely known, up to some rational numbers

mostly parameterizing our ignorance of beyond-the-symbol terms in the three- and

four-loop coefficient functions at NNLLA. It can be written exclusively in terms of

SVHPLs of weight six with eigenvalue (+,+) under Z2 × Z2 transformations. The

results of section 1.6 then allow us to write down an ansatz for the NNLLA correc-

tion to the BFKL eigenvalue, similar to the ansatz (1.7.4) we made for the NNLLA

correction to the impact factor, but at higher weight. More precisely, we assume that

we can write E(2)
ν,n =

∑

i αi Pi, where αi denote rational numbers and Pi runs through

all possible monomials of weight five with the correct symmetry properties that we

can construct out of the building blocks given in eq. (1.6.22), i.e.,

Pi ∈
{

E5
ν,n, ζ2 V DνEν,n, Eν,n N F̃4, ζ5, . . .

}

. (1.7.17)

The rational coefficients αi can then be fixed by inserting our ansatz into eq. (1.7.16)

and performing the inverse Fourier-Mellin transform to (w,w∗) space. We find that

there is a unique solution for the αi, and the result for the NNLLA correction to the
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BFKL eigenvalue then takes the form,

E(2)
ν,n = −E(1)

ν,n Φ
(1)
Reg(ν, n)− Eν,n Φ

(2)
Reg(ν, n) +

3

8
D2
νEν,n E

2
ν,n +

3

32
N2D2

νEν,n

+
1

8
V 2 D2

νEν,n −
1

8
V D3

νEν,n +
1

8
Eν,n [DνEν,n]

2 +
5

16
Eν,n N

2 V 2

+
1

48
D4
νEν,n +

π2

12
D2
νEν,n −

3

4
DνEν,n V E2

ν,n −
5

16
DνEν,n N

2 V

− π2

4
DνEν,n V +

3

16
N2E3

ν,n +
61

4
E2
ν,n ζ3 +

1

8
E5
ν,n +

5π2

6
E3
ν,n

+
19

128
Eν,n N

4 +
3π2

16
Eν,n N

2 +
π2

4
Eν,n V

2 +
35

16
N2 ζ3 +

1

2
V 2 ζ3

+
11π2

6
ζ3 + 10 ζ5 + a0 E5 +

5
∑

i=1

ai ζ2 E3,i + a6 ζ4 E2 +
8
∑

i=7

ai ζ3 E1,i ,

(1.7.18)

where the quantities E3,i, E2, and E1,i capture the beyond-the-symbol ambiguities in

g(4)1 , and E5 corresponds to the one symbol-level ambiguity. They are given by,

E5 =
124

3
N2 D2

νEν,n +
1210

3
V 2 D2

νEν,n −
35

3
V D3

νEν,n

+
124

3
N2E3

ν,n −
140

3
V 2 E3

ν,n −
31

2
Eν,n N

4 +
10903

12
N2 ζ3 (1.7.19)

+
13960

3
V 2 ζ3 + 248Eν,n [DνEν,n]

2 − 151

2
DνEν,n N

2 V

−62D2
νEν,n E

2
ν,n + 70DνEν,n V E2

ν,n − 760DνEν,n V
3

−31

6
D4
νEν,n + 7431E2

ν,n ζ3 − 97Eν,n N
2 V 2 + 16072 ζ5 ,

E3,1 = −3

4
Eν,n N

2 −D2
νEν,n + 5E3

ν,n + 6Eν,n V
2 − 2Eν,n π

2 + 8 ζ3 , (1.7.20)

E3,2 = E3
ν,n , (1.7.21)

E3,3 =
3

4
Eν,n N

2 − 3DνEν,n V + 3E3
ν,n + 12 ζ3 , (1.7.22)

E3,4 = −1

8
D2
νEν,n +

9

4
DνEν,n V − 3

4
Eν,nN

2 − 3

2
Eν,n V

2 − 25

2
ζ3 (1.7.23)

−2E3
ν,n ,

E3,5 =
3

8
Eν,n N

2 − 3

2
E3
ν,n , (1.7.24)

E2 = 90Eν,n , (1.7.25)
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E1,7 = E2
ν,n −

1

4
N2 , (1.7.26)

E1,8 =
1

2
E2
ν,n . (1.7.27)

We observe that the most complicated piece is E5. It would be absent if our conjecture

that a0 = 0 is correct. Some further comments are in order about eq. (1.7.18):

1. In ref. [15] it was argued, based on earlier work [72–75], that the BFKL eigen-

value should vanish as (ν, n) → 0 to all orders in perturbation theory, i.e.,

ω(0, 0) = 0. While this statement depends on how one approaches the limit,

the most natural way seems to be to set the discrete variable n to 0 before

taking the limit ν → 0. Indeed in this limit Eν,n and E(1)
ν,n vanish. However, we

find that E(2)
ν,n does not vanish in this limit, but rather it approaches a constant,

lim
ν→0

E(2)
ν,0 = −1

2
π2 ζ3 . (1.7.28)

We stress that the limit is independent of any of the undetermined constants

that parameterize the beyond-the-symbol terms in the three- and four-loop co-

efficients. While we have confidence in our result for E(2)
ν,n given our assumptions

(such as the vanishing of g(ℓ)n and h(ℓ)
n as w → 0), we have so far no explanation

for this observation.

2. While the (ν, n)-space basis constructed in section 1.6 involves the new functions

F̃4, F̃6a and F̃7, we find that E(2)
ν,n is free of these functions and can be expressed

entirely in terms of ψ functions and rational functions of ν and n. Moreover,

the ψ functions arise only in the form of the LLA BFKL eigenvalue and its

derivative with respect to ν. We are therefore led to conjecture that, to all loop

orders, the BFKL eigenvalue and the impact factor can be expressed as linear

combinations of uniform weight of monomials that are even in both ν and n

and are constructed exclusively out of multiple ζ values10 and the quantities N ,

V , Eν,n and Dν defined in section 1.6.

10Note that we can not exclude the appearance of multiple ζ values at higher weights, as multiple
ζ values are reducible to ordinary ζ values until weight eight.
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We now move on and and extract the impact factor at N3LLA from the four-loop

amplitude at the same logarithmic accuracy. Equation (1.4.1) at order a4 yields the

following relation for the impact factor at N3LLA,

I
[

Φ(3)
Reg(ν, n)

]

= −4
{

[L+
1 ]

3 + 3L+
1 π

2
}

g(4)3 (w,w∗)

+ 4
{

[L+
1 ]

2 + π2
}

g(4)2 (w,w∗) − 4L+
1 g(4)1 (w,w∗)

+ 4 g(4)0 (w,w∗) + 8 π2 g(3)2 (w,w∗) [L+
1 ]

2 − 4L+
1 π

2 g(3)1 (w,w∗)

− 2 π2

{

[L+
1 ]

3 − π2

3
L+
1

}

g(2)1 (w,w∗) + 2 π2 g(2)0 (w,w∗) [L+
1 ]

2

+
π4

8
L+
1 [L−

0 ]
2 − π4

3
[L+

1 ]
3 − 73π6

1260
L+
1 − 2L+

1 ζ
2
3 .

(1.7.29)

In order to determine Φ(3)
Reg(ν, n), we proceed in the same way as we did for E(2)

ν,n,

i.e., we write down an ansatz for Φ(3)
Reg(ν, n) that has the correct transcendentality

and symmetry properties and fix the free coefficients by requiring the inverse Fourier-

Mellin transform of the ansatz to match the right-hand side of eq. (1.7.29). Building

upon our conjecture that the impact factor can be expressed purely in terms of ψ

functions and rational functions of ν and n, we construct a restricted ansatz11 that

is a linear combination just of monomials of ζ values and N , V , Dν and Eν,n. Just

like in the case of E(2)
ν,n, we find that there is a unique solution for the coefficients in

the ansatz, thus giving further support to our conjecture. Furthermore, we are forced

along the way to fix one of the beyond-the-symbol parameters appearing in g(4)0 ,

b1 = −15

8
a1 −

3

16
a2 −

3

32
a4 +

9

16
a5 +

1

64
b3 +

1

8
b4 −

3

16
b5 −

1

32
b6

+
1

4
b7 +

3

32
b8 +

3

16
.

(1.7.30)

The final result for the impact factor at N3LLA then takes the form,

Φ(3)
Reg(ν, n) =

1

3

[

Φ(1)
Reg(ν, n)

]3

− E(2)
ν,n Eν,n − Φ(2)

Reg(ν, n)E
2
ν,n −

1

24
[D2

νEν,n]
2 (1.7.31)

11We have constructed the full basis of functions in (ν, n) space through weight six and the explicit
map to (w,w∗) functions of weight seven. It is therefore not necessary for us to restrict our ansatz
in this way. It is, however, sufficient, and computationally simpler to do so.
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− 3

64
N2 [DνEν,n]

2 +
1

4
DνEν,n V D2

νEν,n −
1

24
DνEν,n D

3
νEν,n

− 3

32
Eν,n N

2D2
νEν,n +

3

16
DνEν,n Eν,n N

2 V − 1

4
DνEν,n V E3

ν,n

− 37π2

96
Eν,n D

2
νEν,n −

1

24
D2
νEν,n ζ3 +

161

12
E3
ν,n −

3

16
N2 V 4

+
11π2

24
DνEν,n Eν,n V +

9

4
DνEν,n V ζ3 +

1

16
[DνEν,n]

2 E2
ν,n

− 1

8
V 2 [DνEν,n]

2 +
3π2

32
[DνEν,n]

2 +
37

256
N4 E2

ν,n +
5

32
N2 V 2 E2

ν,n

+
1

8
D2
νEν,n E

3
ν,n −

21π2

32
V 2 E2

ν,n ζ3 +
7

48
E6
ν,n +

π2

3
E4
ν,n −

π4

72
E2
ν,n

+
7

16
Eν,n N

2 ζ3 −
13π2

2
Eν,n ζ3 −

45

1024
N6 − 41

128
N4 V 2 +

5π2

512
N4

− 5π2

128
N2 V 2 +

π4

24
N2 +

π4

8
V 2 +

5

2
ζ23 −

311π6

11340
+ 3Eν,n V

2 ζ3

− 23π2

128
N2 E2

ν,n + 10Eν,n ζ5 +
15

64
N2E4

ν,n + a0 P6 +
5
∑

i=1

ai ζ2Pa,4,i

+ a6 ζ4 Pa,2 +
8
∑

i=7

ai ζ3 Pa,3,i +
9
∑

i=2

bi ζ2 Pb,4,i +
14
∑

i=10

bi ζ3 Pb,3,i

+
16
∑

i=15

bi ζ4 Pb,2,i + b17 ζ2ζ3 Pb,1,1 + b18 ζ5 Pb,1,2 ,

where Pi,j,... parametrize the beyond-the-symbol terms in the four-loop coefficient

functions, and P6 parameterizes the one symbol-level ambiguity,

P6 =
105

2
[D2

νEν,n]
2 − 152

3
Eν,n N

2D2
νEν,n −

2690

3
Eν,n V

2 D2
νEν,n (1.7.32)

+
595

3
Eν,n V D3

νEν,n −
7

6
Eν,n D

4
νEν,n +

103

16
N4 E2

ν,n

+
13777

3
Eν,n V

2 ζ3 + 16D2
νEν,n E

3
ν,n + 6548Eν,n ζ5

−10455

2
D2
νEν,n ζ3 +

249

8
N2 [DνEν,n]

2 +
2655

2
V 2 [DνEν,n]

2

+
317

4
N2 V 2 E2

ν,n +
197

24
N2E4

ν,n +
515

6
V 2 E4

ν,n +
61793

6
Eν,n N

2 ζ3

+
111

128
N6 +

345

32
N4 V 2 − 385DνEν,n V D2

νEν,n − 30DνEν,n D
3
νEν,n
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−420DνEν,n V E3
ν,n + 7DνEν,nEν,n N

2 V − 760DνEν,n Eν,n V
3

−22606DνEν,n V ζ3 − 34 [DνEν,n]
2 E2

ν,n + 1140V 4 E2
ν,n

+15231E3
ν,n ζ3 + 46992 ζ23 ,
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Again, the undetermined function at symbol level, P6, is the most complicated term,

but it would be absent if a0 = 0.

Finally, we remark that the ν → 0 behavior of Φ(ℓ)
Reg(ν, n) is nonvanishing, and even

singular for ℓ = 2 and 3. Taking the limit after setting n = 0, as in the case of E(2)
ν,n,

we find that the constant term is given in terms of the cusp anomalous dimension,

lim
ν→0

Φ(1)
Reg(ν, 0) ∼ γ(2)K

4
+ O(ν4) , (1.7.58)
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8 ν2
+
γ(4)K

4
+ O(ν2) . (1.7.60)

This fact is presumably related to the appearance of γK(a) in the factors ωab and

δ, which carry logarithmic dependence on |w| as w → 0. It may play a role in

understanding the failure of E(2)
ν,0 to vanish as ν → 0 in eq. (1.7.28).
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1.8 Conclusions and Outlook

In this article we exposed the structure of the multi-Regge limit of six-gluon scatter-

ing in planar N = 4 super-Yang-Mills theory in terms of the single-valued harmonic

polylogarithms introduced by Brown. Given the finite basis of such functions, it is ex-

tremely simple to determine any quantity that is defined by a power series expansion

around the origin of the (w,w∗) plane. Two examples which we could evaluate with no

ambiguity are the LL and NLL terms in the multi-Regge limit of the MHV amplitude.

We could carry this exercise out through transcendental weight 10, and we presented

the analytic formulae explicitly through six loops in section 1.4. The NMHV ampli-

tudes also fit into the same mathematical framework, as we saw in section 1.5: An

integro-differential operator that generates the NMHV LLA terms from the MHV

LLA ones [18] has a very natural action on the SVHPLs, making it simple to gener-

ate NMHV LLA results to high order as well. A clear avenue for future investigation

utilizing the SVHPLs is the NMHV six-point amplitude at next-to-leading-logarithm

and beyond.

A second thrust of this article was to understand the Fourier-Mellin transform

from (w,w∗) to (ν, n) variables. In practice, we constructed this map in the reverse

direction: We built an ansatz out of various elements: harmonic sums and specific

rational combinations of ν and n. We then implemented the inverse Fourier-Mellin

transform as a truncated sum, or power series around the origin of the (w,w∗) plane,

and matched to the basis of SVHPLs. We thereby identified specific combinations of

the elements as building blocks from which to generate the full set of SVHPL Fourier-

Mellin transforms. We have executed this procedure completely through weight six in

the (ν, n) space, corresponding to weight seven in the (w,w∗) space. In generalizing

the procedure to yet higher weight, we expect the procedure to be much the same.

Beginning with a linear combination of weight (p − 2) HPLs in a single variable x,

perform a Mellin transformation to produce weight (p− 1) harmonic sums such as ψ,

F4, F6a, etc. For suitable combinations of these elements, the inverse Fourier-Mellin

transform will generate weight p SVHPLs in the complex conjugate pair (w,w∗). The

step of determining which combinations of elements correspond to the SVHPLs was
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carried out empirically in this paper. It would be interesting to investigate further

the mathematical properties of these building blocks.

Using our understanding of the Fourier-Mellin transform, we could explicitly eval-

uate the NNLL MHV impact factor Φ(2)
Reg(ν, n) which derives from a knowledge of

the three-loop remainder function in the MRK limit [14, 15]. We then went on to

four loops, using a computation of the four-loop symbol [56] in conjunction with ad-

ditional constraints from the multi-Regge limit to determine the MRK symbol up

to one free parameter a0 (which we suspect is zero). We matched this symbol to

the symbols of the SVHPLs in order to determine the complete four-loop remainder

function in MRK, up to a number of beyond-the-symbol constants. This data, in

particular g(4)1 and g(4)0 , then led to the NNLL BFKL eigenvalue E(2)
ν,n and N3LL im-

pact factor Φ(3)
Reg(ν, n). These quantities also contain the various beyond-the-symbol

constants. Clearly the higher-loop NNLL MRK terms can be determined just as we

did at LL and NLL, using the master formula (1.2.9) and the SVHPL basis. However,

it would also be worthwhile to understand what constraint can fix a0, and the host of

beyond-the-symbol constants, since they will afflict all of these terms. This task may

require backing away somewhat from the multi-Regge limit, or utilizing coproduct

information in some way.

We also remind the reader that we found that the NNLL BFKL eigenvalue E(2)
ν,n

does not vanish as ν → 0, taking the limit after setting n = 0. This behavior

is in contrast to what happens in the LL and NLL case. It also goes against the

expectations in ref. [15], and thus calls for further study.

Although the structure of QCD amplitudes in the multi-Regge limit is more com-

plicated than those of planar N = 4 super-Yang-Mills theory, one can still hope that

the understanding of the Fourier-Mellin (ν, n) space that we have developed here may

prove useful in the QCD context.

Finally, we remark that the SVHPLs are very likely to be applicable to another

current problem in N = 4 super-Yang-Mills theory, namely the determination of

correlation functions for four off-shell operators. Conformal invariance implies that

these quantities depend on two separate cross ratios. The natural arguments of the

polylogarithms that appear at low loop order, after a change of variables from the
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original cross ratios, are again a complex pair (w,w∗) (or (z, z̄)). The same single-

valued conditions apply here as well. For example, the one-loop off-shell box integral

that enters the correlation function is proportional to L−
2 (z, z̄)/(z − z̄). We expect

that the SVHPL framework will allow great progress to be made in this arena, just

as it has to the study of the multi-Regge limit.



Chapter 2

The six-point remainder function

to all loop orders in the

multi-Regge limit

2.1 Introduction

In recent years, considerable progress has been made in the study of relativistic scat-

tering amplitudes in gauge theory and gravity. A growing set of computational tools,

including unitarity [76], BCFW recursion [77–80], BCJ duality [81, 82], and symbol-

ogy [34–37, 147], has facilitated many impressive perturbative calculations at weak

coupling. The AdS/CFT correspondence has provided access to the new, previously

inaccessible frontier of strong coupling [21]. The theory that has reaped the most

benefit from these advances is, arguably, maximally supersymmetric N = 4 Yang-

Mills theory, specifically in the planar limit of a large number of colors. Indeed,

N = 4 super-Yang-Mills theory provides an excellent laboratory for the AdS/CFT

correspondence, as well as for the structure of gauge theory amplitudes in general.

One of the reasons for the relative simplicity of N = 4 super-Yang-Mills theory is

its high degree of symmetry. The extended supersymmetry puts strong constraints

on the form of scattering amplitudes, and it guarantees a conformal symmetry in

position space. Recently, an additional conformal symmetry was found in the planar

83
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theory [3, 21–26]. It acts on a set of dual variables, xi, which are related to the

external momenta kµ
i by ki = xi − xi+1. At tree level, this dual conformal symmetry

can be extended to a dual super-conformal symmetry [27] and even combined with the

original conformal symmetry into an infinite-dimensional Yangian symmetry [41]. At

loop level, the dual conformal symmetry is broken by infrared divergences. According

to the Wilson-loop/amplitude duality [21, 24, 25], these infrared divergences can be

understood as ultraviolet divergences of particular polygonal Wilson loops. In this

context, the breaking of dual conformal symmetry is governed by an anomalous Ward

identity [3,26,83]. For maximally-helicity violating (MHV) amplitudes, a solution to

the Ward identity may be written as,

AMHV
n = ABDS

n × exp(Rn), (2.1.1)

where ABDS
n is an all-loop, all-multiplicity ansatz proposed by Bern, Dixon, and

Smirnov [32], and Rn is a dual-conformally invariant function referred to as the re-

mainder function [1, 2, 2].

Dual conformal invariance provides a strong constraint on the form of Rn. For

example, it is impossible to construct a non-trivial dual-conformally invariant function

with fewer than six external momenta. As a result, R4 = R5 = 0, and, consequently,

the four- and five-point scattering amplitudes are equal to the BDS ansatz. At six

points, there are three independent invariant cross ratios built from distances x2
ij in

the dual space,

u1 =
x2
13x

2
46

x2
14x

2
36

=
s12s45
s123s345

, u2 =
x2
24x

2
15

x2
25x

2
14

=
s23s56
s234s456

, u3 =
x2
35x

2
26

x2
36x

2
25

=
s34s61
s345s561

.(2.1.2)

Dual conformal invariance restricts R6 to be a function of these variables only, i.e.

R6 = R6(u1, u2, u3). This function is not arbitrary since, among other conditions, it

must be totally symmetric under permutations of the ui and vanish in the collinear

limit [1, 2].

In the absence of an explicit computation, it remained a possibility that R6 = 0,

despite the fact that all known symmetries allow for a non-zero function R6(u1, u2, u3).
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However, a series of calculations have since been performed and they showed defini-

tively that R6 ̸= 0. The first evidence of a non-vanishing R6 came from an analysis

of the multi-Regge limits of 2 → 4 gluon scattering amplitudes at two loops [5]. Nu-

merical evidence was soon found at specific kinematic points [1, 2, 2], and an explicit

calculation for general kinematics followed shortly thereafter [6,7,7]. Interestingly, the

two-loop calculation for general kinematics was actually performed in a quasi-multi-

Regge limit; the full kinematic dependence could then be inferred because this type

of Regge limit does not modify the analytic dependence of the remainder function on

the ui.

Even beyond the two-loop remainder function, the limit of multi-Regge kinematics

(MRK) has received considerable attention in the context of N = 4 super-Yang Mills

theory [5, 8–20]. One reason for this is that multi-leg scattering amplitudes become

considerably simpler in MRK while still maintaining a non-trivial analytic structure.

Taking the multi-Regge limit at six points, for example, essentially reduces the am-

plitude to a function of just two variables, w and w∗, which are complex conjugates

of each other. This latter point has proved particularly important in describing the

relevant function space in this limit. In fact, it has been argued recently [19] that

the function space is spanned by the set of single-valued harmonic polylogarithms

(SVHPLs) introduced by Brown [47]. These functions will play a prominent role in

the remainder of this article.

The MRK limit of 2 → 4 scattering is characterized by the condition that the

outgoing particles are widely separated in rapidity while having comparable transverse

momenta. In terms of the cross ratios ui, the limit is approached by sending one of

the ui, say u1, to unity, while letting the other two cross ratios vanish at the same rate

that u1 → 1, i.e. u2 = x(1− u1) and u3 = y(1− u1) for two fixed variables x and y.

Actually, this prescription produces the Euclidean version of the MRK limit in which

the six-point remainder function vanishes [84–86]. To reach the Minkowski version,

which is relevant for 2 → 4 scattering, u1 must be analytically continued around the

origin, u1 → e−2πi|u1|, before taking the limit. The remainder function may then be

expanded around u1 = 1 and the coefficients of this expansion are functions of only

two variables, x and y. The variables w and w∗ mentioned previously are related to
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x and y by [12,13],

x ≡ 1

(1 + w)(1 + w∗)
, y ≡ ww∗

(1 + w)(1 + w∗)
. (2.1.3)

Neglecting terms that vanish like powers of 1−u1, the expansion of the remainder

function may be written as1,

RMHV
6 |MRK = 2πi

∞
∑

ℓ=2

ℓ−1
∑

n=0

aℓ logn(1− u1)
[

g(ℓ)n (w,w∗) + 2πi h(ℓ)
n (w,w∗)

]

, (2.1.4)

where the coupling constant for planar N = 4 super-Yang-Mills theory is a =

g2Nc/(8π2). This expansion is organized hierarchically into the leading-logarithmic

approximation (LLA) with n = ℓ− 1, the next-to-leading-logarithmic approximation

(NLLA) with n = ℓ − 2, and in general the NkLL terms with n = ℓ − k − 1. In this

article, we study the leading-logarithmic approximation, for which we may rewrite

eq. (2.1.4) as,

RMHV
6 |LLA =

2πi

log(1− u1)

∞
∑

ℓ=2

ηℓ g(ℓ)ℓ−1(w,w
∗) , (2.1.5)

where we have identified η = a log(1 − u1) as the relevant expansion parameter. In

LLA, the real part of R6 vanishes, so hℓℓ−1(w,w
∗) is absent in eq. (2.1.5). Expressions

for g(ℓ)ℓ−1(w,w
∗) have been given in the literature for two, three [12], and recently up

to ten [19] loops.

An all-orders integral-sum representation for RMHV
6 |LLA was presented in ref. [12]

and was generalized to the NMHV helicity configuration in ref. [18]. (The MHV case

was extended to NLLA in ref. [15].) The formula may be understood as an inverse

Fourier-Mellin transform from a space of moments labeled by (ν, n) to the space of

kinematic variables (w,w∗). In the moment space, R6|LLA(ν, n) assumes a simple fac-

torized form and may be written succinctly to all loop orders in terms of polygamma

functions. This structure is obscured in (w,w∗) space, as the inverse Fourier-Mellin

transform generates complicated combinations of polylogarithmic functions. Never-

theless, these complicated expressions should bear the mark of their simple ancestry.

1We follow the conventions of ref. [14].
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In this article, we expose this inherited structure by presenting an explicit all-orders

formula for R6|LLA directly in (w,w∗) space.

We do not present a proof of this formula, but we do test its validity using several

non-trivial consistency checks. For example, our result agrees with the integral for-

mula mentioned above through at least 14 loops. In ref. [18], Lipatov, Prygarin, and

Schnitzer give a simple differential equation linking the MHV and NMHV helicity

configurations,

w∗ ∂

∂w∗
RMHV

6 |LLA = w
∂

∂w
RNMHV

6 |LLA , (2.1.6)

which is also obeyed by our formula. In the near-collinear limit, we find agreement

with the all-orders double-leading-logarithmic approximation of Bartels, Lipatov, and

Prygarin [70].

This article is organized as follows. In section 1.2, we review the aspects of multi-

Regge kinematics relevant to six-particle scattering and recall the integral formulas

for R6|LLA in the MHV and NMHV helicity configurations. The construction and

properties of single-valued harmonic polylogarithms are reviewed in section 1.3. An

all-orders expression for R6|LLA is presented in terms of these functions in section 2.4.

After verifying several consistency conditions of this formula, we examine its near-

collinear limit in section 2.5. Section 2.6 offers some concluding remarks and prospects

for future work.

2.2 The six-point remainder function in

multi-Regge kinematics

We consider the six-gluon scattering process g3g6 → g1g5g4g2 where the momenta are

taken to be outgoing and the gluons are labeled cyclically in the clockwise direction.

The limit of multi-Regge kinematics is defined by the condition that the produced

gluons are strongly ordered in rapidity while having comparable transverse momenta,

y1 ≫ y5 ≫ y4 ≫ y2 , |p1⊥| ≃ |p5⊥| ≃ |p4⊥| ≃ |p2⊥| . (2.2.1)
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In the Euclidean region, this limit is equivalent to the hierarchy of scales,

s12 ≫ s345, s456 ≫ s34, s45 , s56 ≫ s23, s61, s234, (2.2.2)

which leads to the limiting behavior of the cross ratios (2.1.2),

1− u1, u2, u3 ∼ 0 , (2.2.3)

subject to the constraint that the following ratios are held fixed,

x ≡ u2

1− u1
= O(1) and y ≡ u3

1− u1
= O(1) . (2.2.4)

Unitarity restricts the branch cuts of physical quantities like the remainder function

R6(u1, u2, u3) to appear in physical channels. In terms of the cross ratios ui, this

requirement implies that all branch points occur when a cross ratio vanishes or ap-

proaches infinity. If we re-express the two real variables x and y by a single complex

variable w,

x ≡ 1

(1 + w)(1 + w∗)
and y ≡ ww∗

(1 + w)(1 + w∗)
, (2.2.5)

then the equivalent statement in MRK is that any function of (w,w∗) must be single-

valued in the complex w plane.

In the Euclidean region, the remainder function actually vanishes in the multi-

Regge limit. To obtain a non-vanishing result, we must consider a physical region in

which one of the cross ratios acquires a phase [5]. One such region corresponds to the

2 → 4 scattering process described above. It can be reached by flipping the signs of

s12 and s45, or, in terms of the cross ratios, by rotating u1 around the origin,

u1 → e−2πi |u1| . (2.2.6)

In the course of this analytic continuation, we pick up the discontinuity across a

Mandelstam cut [5, 10]. The six-point remainder function can then be expanded in
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the form given in eq. (2.1.4),

RMHV
6 |MRK = 2πi

∞
∑

ℓ=2

ℓ−1
∑

n=0

aℓ logn(1− u1)
[

g(ℓ)n (w,w∗) + 2πi h(ℓ)
n (w,w∗)

]

. (2.2.7)

The large logarithms log(1− u1) organize this expansion into the leading-logarithmic

approximation (LLA) with n = ℓ− 1, the next-to-leading-logarithmic approximation

(NLLA) with n = ℓ− 2, and in general the the NkLL terms with n = ℓ− k − 1.

In refs. [12, 15] an all-loop integral formula for RMHV
6 |MRK was presented for LLA

and NLLA2,

eR+iπδ|MRK = cos πωab

+ i
a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

(

− 1
√
u2 u3

)ω(ν,n)

.

(2.2.8)

Here, ω(ν, n) is the BFKL eigenvalue and ΦReg(ν, n) is the regularized impact factor.

They may be expanded perturbatively,

ω(ν, n) = −a
(

Eν,n + aE(1)
ν,n + a2 E(2)

ν,n +O(a3)
)

,

ΦReg(ν, n) = 1 + aΦ(1)
Reg(ν, n) + a2 Φ(2)

Reg(ν, n) + a3 Φ(3)
Reg(ν, n) +O(a4) .

(2.2.9)

The leading-order eigenvalue, Eν,n, was given in ref. [8] and may be written in terms

of the digamma function ψ(z) = d
dz logΓ(z),

Eν,n = −1

2

|n|
ν2 + n2

4

+ ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

− 2ψ(1) . (2.2.10)

In this article, we will only need the leading-order terms, but, remarkably, the higher-

order corrections listed in (2.2.9) may also be expressed in terms of the ψ function

and its derivatives [15, 19].

2There is a difference in conventions regarding the definition of the remainder function. What
we call R is called log(R) in refs. [12,15]. Apart from the zeroth order term, this distinction has no
effect on LLA terms. The first place it makes a difference is at four loops in NLLA, in the real part.
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Returning to (2.2.8), the remaining functions are,

ωab =
1

8
γK(a) log

u3

u2
=

1

8
γK(a) log |w|2 ,

δ =
1

8
γK(a) log (xy) =

1

8
γK(a) log

|w|2

|1 + w|4 ,
(2.2.11)

and the cusp anomalous dimension, which is known to all orders in perturbation

theory [57],

γK(a) =
∞
∑

ℓ=1

γ(ℓ)K aℓ = 4 a− 4 ζ2 a
2 + 22 ζ4 a

3 − (2192 ζ6 + 4 ζ23 ) a
4 + · · · . (2.2.12)

In addition, there is an ambiguity regarding the Riemann sheet of the exponential

factor on the right-hand side of (2.2.8). We resolve this ambiguity with the identifi-

cation,

(

− 1
√
u2 u3

)ω(ν,n)

→ e−iπω(ν,n)

(
1

1− u1

|1 + w|2

|w|

)ω(ν,n)

. (2.2.13)

The iπ factor in the right-hand side of eq. (2.2.13) generates the real parts h(ℓ)
n in

eq. (2.2.7). For example, at LLA and NLLA, the following relations [19] are satisfied3,

h(ℓ)
ℓ−1(w,w

∗) = 0 ,

h(ℓ)
ℓ−2(w,w

∗) =
ℓ− 1

2
g(ℓ)ℓ−1(w,w

∗) +
1

16
γ(1)K g(ℓ−1)

ℓ−2 (w,w∗) log
|1 + w|4

|w|2

− 1

2

ℓ−2
∑

k=2

g(k)k−1g
(ℓ−k)
ℓ−k−1 , ℓ > 2,

(2.2.14)

where γ(1)K = 4 from eq. (2.2.12). Making use of eq. (2.1.5), we present an alternate

3Note that the sum over k in the formula for h
(ℓ)
ℓ−2 would not have been present if we had used

the convention for R in refs. [12, 15].
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form of these identities which will be useful later,

Re
(

RMHV
6 |NLLA

)

=
2πi

log(1− u1)

(
1

2
η2

∂

∂η

1

η
+
γ(1)K

16
η log

|1 + w|4

|w|2

)

RMHV
6 |LLA

+
2π2

log2(1− u1)
η2g(2)1 (w,w∗)− 1

2

(

RMHV
6 |LLA

)2
.

(2.2.15)

The term proportional to g(2)1 (w,w∗) addresses the special case of ℓ = 2 in eq. (2.2.14).

In what follows, we will focus on the leading-logarithmic approximation of (2.2.8),

which takes the form,

RMHV
6 |LLA = i

a

2

∞
∑

n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )(−iν + n

2 )

[

(1− u1)
aEν,n − 1

]

. (2.2.16)

The ν-integral may be evaluated by closing the contour and summing residues4. To

perform the resulting double sums, one may apply the summation algorithms of

ref. [61], although this approach is computationally challenging for high loop orders.

Alternatively, an ansatz for the result may be expanded around |w| = 0 and matched

term-by-term to the truncated double sum. The latter method requires knowledge of

the complete set of functions that might arise in this context. In ref. [19], it was argued

that the single-valued harmonic polylogarithms (SVHPLs) completely characterize

this function space, and, using these functions, eq. (2.2.16) was evaluated through

ten loops.

So far we have only discussed the MHV helicity configuration. We now turn to the

only other independent helicity configuration at six points, the NMHV configuration.

In MRK, the MHV and NMHV tree amplitudes are equal [18, 87]. It is natural,

therefore, to define an NMHV remainder function, analogous to eq. (2.1.1),

ANMHV
6 |MRK = ABDS

6 × exp(RNMHV) . (2.2.17)

4For the special case of n = 0, our prescription is to take half the residue at ν = 0.
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In ref. [18], it was argued that the effect of changing the helicity of one of the positive-

helicity gluons5 was equivalent to changing the impact factor for that gluon by means

of the following replacement,

1

−iν + n
2

→ − 1

iν + n
2

. (2.2.18)

Referring to eq. (2.2.16), this replacement leads to an integral formula for RNMHV
6 |LLA,

RNMHV
6 |LLA = − ia

2

∞
∑

n=−∞

(−1)n
∫ +∞

−∞

dν wiν+n/2w∗iν−n/2

(iν + n
2 )

2

[

(1−u1)
aEν,n−1

]

. (2.2.19)

Following refs. [18] and [19], we can extract a simple rational prefactor and write

eq. (2.2.19) in a manifestly inversion-symmetric form,

RNMHV
6 |LLA =

2πi

log(1− u1)

∞
∑

ℓ=2

ηℓ

1 + w∗
f (ℓ)(w,w∗) +

{

(w,w∗) ↔
(
1

w
,
1

w∗

)}

,

(2.2.20)

for some single-valued functions f (ℓ)(w,w∗). It is possible to obtain expressions for

f (ℓ)(w,w∗) directly from eq. (2.2.19) by means of the truncated series approach out-

lined above, for example. A simpler method is to make use of the following differ-

ential equation, which may be deduced by comparing the two expressions (2.2.16)

and (2.2.19),

w∗ ∂

∂w∗
RMHV

6 |LLA = w
∂

∂w
RNMHV

6 |LLA . (2.2.21)

In principle, solving this equation requires the difficult step of fixing the constants of

integration in such a way that single-valuedness is preserved. As discussed in ref. [19],

this step becomes trivial when working in the space of SVHPLs, which are the subject

of the next section.
5Up to power-suppressed terms, helicity must be conserved along high-energy lines, so the helicity

flip must occur on one of the lower-energy legs, 4 or 5.
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2.3 Review of single-valued harmonic

polylogarithms

Harmonic polylogarithms (HPLs) [48] are a class of generalized polylogarithmic func-

tions that finds frequent application in multi-loop calculations. The HPLs are func-

tions of a single complex variable, z, which will be related to the kinematic variable

w by z = −w. We will continue to use z throughout this section in order to make

contact with the existing mathematical literature. In general, the HPLs have branch

cuts that originate at z = −1, z = 0, or z = 1. In the present application, we will

consider the restricted class of HPLs6 whose branch points are either z = 0 or z = 1.

To construct them, consider the set X∗ of all words w formed from the letters x0

and x1, together with e, the empty word7. Then, for each w ∈ X∗, define a function

Hw(z) which obeys the differential equations,

∂

∂z
Hx0w(z) =

Hw(z)

z
and

∂

∂z
Hx1w(z) =

Hw(z)

1− z
, (2.3.1)

subject to the following conditions,

He(z) = 1, Hxn
0
(z) =

1

n!
logn z, and lim

z→0
Hw ̸=xn

0
(z) = 0 . (2.3.2)

There is a unique family of solutions to these equations, and it defines the HPLs. For

w ̸= xn
0 , they can be written as iterated integrals,

Hx0w(z) =

∫ z

0

dz′
Hw(z′)

z′
and Hx1w =

∫ z

0

dz′
Hw(z′)

1− z′
. (2.3.3)

6In the mathematical literature, these functions are sometimes referred to as multiple polyloga-
rithms in one variable. With a small abuse of notation, we will continue to use the term “HPL” to
refer to this restricted set of functions.

7Context should distinguish the word w from the kinematic variable with the same name.



CHAPTER 2. R6 TO ALL ORDERS IN THE MULTI-REGGE LIMIT 94

The structure of the iterated integrals endows the HPLs with an important property:

they form a shuffle algebra. The shuffle relations can be written as,

Hw1
(z)Hw2

(z) =
∑

w∈w1Xw2

Hw(z) , (2.3.4)

where w1Xw2 is the set of mergers of the sequences w1 and w2 that preserve their

relative ordering. The shuffle algebra may be used to remove all zeros from the right

of an index vector in favor of some explicit logarithms. For example, it is easy to

obtain the following formula for HPLs with a single x1,

Hxn
0 x1xm

0
=

m
∑

j=0

(−1)j

(m− j)!

(
n+ j

j

)

Hm−j
x0

Hxn+j
0 x1

. (2.3.5)

After removing all right-most zeros, the Taylor expansions around z = 0 are particu-

larly simple and involve only a special class of harmonic numbers [48],

Hm1,...,mk
(z) =

∞
∑

l=1

zl

lm1
Zm2,...,mk

(l − 1) , mi > 0 , (2.3.6)

where Zm1,...,mk
(n) are Euler-Zagier sums [50,51], defined recursively by

Z(n) = 1 and Zm1,...,mk
(n) =

n
∑

l=1

1

lm1
Zm2,...,mk

(l − 1) . (2.3.7)

Note that the indexing of the weight vectors m1, . . . ,mk in eqs. (2.3.6) and (2.3.7) is

in the collapsed notation in which a subscript m denotes m − 1 zeros followed by a

single 1.

The HPLs are multi-valued functions; nevertheless, it is possible to build specific

combinations such that the branch cuts cancel and the result is single-valued. An

algorithm that explicitly constructs these combinations was presented in ref. [47] and

reviewed in ref. [19]. Here we provide a very brief description.
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The SVHPLs Lw(z) are generated by the series,

L(z) = LX(z)L̃Y (z̄) ≡
∑

w∈X∗

Lw(z)w , (2.3.8)

where,

LX(z) =
∑

w∈X∗

Hw(z)w , L̃Y (z̄) =
∑

w∈Y ∗

Hφ(w)(z̄)w̃ . (2.3.9)

Here ∼ : X∗ → X∗ is the operation that reverses words, φ : Y ∗ → X∗ is the map

that renames y to x, and Y ∗ is the set of words in {y0, y1}, which are defined by the

relations,

y0 = x0

Z̃(y0, y1)y1Z̃(y0, y1)
−1 = Z(x0, x1)

−1x1Z(x0, x1),
(2.3.10)

where Z(x0, x1) is a generating function of multiple zeta values,

Z(x0, x1) =
∑

w∈X∗

ζ(w)w. (2.3.11)

The ζ(w) are regularized by the shuffle algebra and obey ζ(w ̸= x1) = Hw(1) and

ζ(x1) = 0.

Alternatively, one may formally define these functions as solutions to simple dif-

ferential equations, i.e. the Lw(z) are the unique single-valued linear combinations of

functions Hw1
(z)Hw2

(z̄) that obey the differential equations [47],

∂

∂z
Lx0w(z) =

Lw(z)

z
and

∂

∂z
Lx1w(z) =

Lw(z)

1− z
, (2.3.12)

subject to the conditions,

Le(z) = 1 , Lxn
0
(z) =

1

n!
logn |z|2 and lim

z→0
Lw ̸=xn

0
(z) = 0 . (2.3.13)
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The SVHPLs also obey differential equations in z̄. Both sets of equations are repre-

sented nicely in terms of the generating function (2.3.8),

∂

∂z
L(z) =

(
x0

z
+

x1

1− z

)

L(z) and
∂

∂z̄
L(z) = L(z)

(
y0
z̄

+
y1

1− z̄

)

. (2.3.14)

2.4 Six-point remainder function in the

leading-logarithmic approximation of MRK

The SVHPLs introduced in the previous section provide a convenient basis of func-

tions to describe the six-point remainder function in MRK. In ref. [19], these functions

were used to express the result through ten loops in LLA and through nine loops in

NLLA. Here we use the SVHPLs to present a formula in LLA to all loop orders.

2.4.1 The all-orders formula

Recall from the previous section that we defined X∗ to be the set of all words w in

the letters x0 and x1 together with the empty word e. Let C⟨X⟩ be the complex

vector space generated by X∗ and let C⟨L⟩ be the complex vector space spanned by

the SVHPLs, Lw with w ∈ X∗. Denote by C⟨X⟩[[η]] and C⟨L⟩[[η]] the rings of formal

power series in the variable η = a log(1 − u1) with coefficients in C⟨X⟩ and C⟨L⟩,
respectively. There is a natural map, ρ, which sends words to the corresponding

SVHPLs,

ρ : C⟨X⟩[[η]] → C⟨L⟩[[η]]

w /→ Lw .
(2.4.1)

Using these ingredients, we propose the following formulas for the MHV and NMHV

remainder functions in MRK and LLA,

RMHV
6 |LLA =

2πi

log(1− u1)
ρ
(

XZMHV − 1

2
x1η
)

, (2.4.2)

RNMHV
6 |LLA =

2πi

log(1− u1)

1

1 + w∗
ρ
(

x0XZNMHV
)

+

{

(w,w∗) ↔
(
1

w
,
1

w∗

)}

,(2.4.3)
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where the formal power series X ,Z(N)MHV ∈ C⟨X⟩[[η]] are,

X = e
1
2
x0η

[

1− x1

(
ex0η − 1

x0

)]−1

,

ZMHV =
1

2

∞
∑

k=1

(

x1

k−1
∑

n=0

(−1)nxk−n−1
0

n
∑

m=0

22m−k+1

(k −m− 1)!
Z(n,m)

)

ηk ,

ZNMHV =
1

2

∞
∑

k=2

(

x1

k−2
∑

n=0

(−1)nxk−n−2
0

n
∑

m=0

22m−k+1

(k −m− 1)!
Z(n,m)

)

ηk .

(2.4.4)

Here, the Z(n,m) are particular combinations of ζ values of uniform weight n. They

are related to partial Bell polynomials, and are generated by the series,

exp

[

y
∞
∑

k=1

ζ2k+1x
2k+1

]

≡
∞
∑

n=0

∞
∑

m=0

Z(n,m) xnym . (2.4.5)

An explicit formula is,

Z(n,m) =
∑

β∈P (n,m)

∏

i

(ζ2i+1)βi

βi!
, (2.4.6)

where P (n,m) is the set of n-tuples of non-negative integers that sum to m, such

that the product of ζ values has weight n,

P (n,m) =

{

{β1, · · · , βn}
∣
∣
∣ βi ∈ N0,

n
∑

i=1

βi = m,
n
∑

i=1

(2i+ 1)βi = n

}

. (2.4.7)

Similarly, an expression for the kth term of X can be given as,

X =
∞
∑

k=0

⎛

⎝

k
∑

n=0

xk−n
0

2k−n (k − n)!

∑

α∈Q(n)

∏

j

x1x
αj−1
0

αj!

⎞

⎠ ηk , (2.4.8)
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where Q(n) is the set of integer compositions of n,

Q(n) =

{

{α1,α2, · · · ,αm}
∣
∣
∣αi ∈ Z+,

m
∑

i=1

αi = n

}

. (2.4.9)

Excluding the one-loop term in eq. (2.4.2), the arguments of the ρ functions fac-

torize into the product of a ζ-free function, X , and a ζ-containing function, Z(N)MHV.

The ζ-free function is simpler and its first few terms read,

X = 1 +

(
1

2
x0 + x1

)

η +

(
1

8
x2
0 +

1

2
x0x1 +

1

2
x1x0 + x2

1

)

η2

+

(
1

48
x3
0 +

1

8
x2
0x1 +

1

4
x0x1x0 +

1

2
x0x

2
1 +

1

6
x1x

2
0 +

1

2
x1x0x1 +

1

2
x2
1x0 + x3

1

)

η3

+ · · · .
(2.4.10)

The ζ-containing functions are slightly more complicated. Their first few terms are,

ZMHV =
1

2
x1 η +

1

4
x1x0 η

2 +
1

16
x1x

2
0 η

3 +

(
1

96
x1x

3
0 −

1

8
ζ3 x1

)

η4 + · · · ,

ZNMHV =
1

4
x1 η

2 +
1

16
x1x0 η

3 +
1

96
x1x

2
0 η

4 +

(
1

768
x1x

3
0 −

1

48
ζ3 x1

)

η5 + · · · .

(2.4.11)

Using eqs. (2.4.10) and (2.4.11), one may easily extract g(ℓ)ℓ−1 for ℓ = 1, 2, 3, 4 (cf.

eqs. (2.1.5) and (2.4.2)). The one loop term vanishes, g(1)0 = 0, and the other functions
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read,

g(2)1 =
1

4
L0,1 +

1

4
L1,0 +

1

2
L1,1 ,

g(3)2 =
1

16
L0,0,1 +

1

8
L0,1,0 +

1

4
L0,1,1 +

1

16
L1,0,0 +

1

4
L1,0,1 +

1

4
L1,1,0 +

1

2
L1,1,1 ,

g(4)3 =
1

96
L0,0,0,1 +

1

32
L0,0,1,0 +

1

16
L0,0,1,1 +

1

32
L0,1,0,0 +

1

8
L0,1,0,1 +

1

8
L0,1,1,0

+
1

4
L0,1,1,1 +

1

96
L1,0,0,0 +

1

12
L1,0,0,1 +

1

8
L1,0,1,0 +

1

4
L1,0,1,1 +

1

16
L1,1,0,0

+
1

4
L1,1,0,1 +

1

4
L1,1,1,0 +

1

2
L1,1,1,1 −

1

8
ζ3 L1 .

(2.4.12)

Similarly, one may extract the first few f (ℓ) (cf. eqs. (2.2.20) and (2.4.3)), finding

f (1) = 0 and,

f (2) =
1

4
L0,1 ,

f (3) =
1

8
L0,0,1 +

1

16
L0,1,0 +

1

4
L0,1,1 ,

f (4) =
1

32
L0,0,0,1 +

1

32
L0,0,1,0 +

1

8
L0,0,1,1 +

1

96
L0,1,0,0 +

1

8
L0,1,0,1 +

1

16
L0,1,1,0

+
1

4
L0,1,1,1 ,

f (5) =
1

192
L0,0,0,0,1 +

1

128
L0,0,0,1,0 +

1

32
L0,0,0,1,1 +

1

192
L0,0,1,0,0 +

1

16
L0,0,1,0,1

+
1

32
L0,0,1,1,0 +

1

8
L0,0,1,1,1 +

1

768
L0,1,0,0,0 +

1

24
L0,1,0,0,1 +

1

32
L0,1,0,1,0

+
1

8
L0,1,0,1,1 +

1

96
L0,1,1,0,0 +

1

8
L0,1,1,0,1 +

1

16
L0,1,1,1,0 +

1

4
L0,1,1,1,1

− 1

48
ζ3 L0,1 .

(2.4.13)

We do not offer a proof that eqs. (2.4.2) and (2.4.3) are valid to all orders in

perturbation theory. One may easily check that their expansions through low loop

orders, as determined by eqs. (2.4.12) and (2.4.13), match the known results [12,19].

It is also straightforward to extend the above calculations to ten loops and confirm
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that the results are in agreement with those of ref. [19]. Moreover, we have verified

that the truncated series expansion of eq. (2.4.2) as |w| → 0 agrees with that of

eq. (2.2.16) through 14 loops.

A comparison through such a high loop order is important in order to confirm the

absence of multiple zeta values with depth larger than one (hereafter simply “MZVs”).

To see why these MZVs should be absent, consider performing the sum of residues

in eq. (2.2.16). Transcendental constants can only arise from the evaluation the ψ

function and its derivatives at integer values. The latter are given in terms of rational

numbers (Euler-Zagier sums) and ordinary ζ values. Therefore, it is impossible for

the series expansion of eq. (2.2.16) to contain MZVs.

On the other hand, we would naively expect MZVs to appear in the series expan-

sion of eq. (2.4.2) at 12 loops and beyond. This expectation is due to the fact that, for

high weights, the y alphabet of eq. (2.3.10) contains MZVs, and, starting at weight

12, these MZVs begin appearing explicitly in the definitions of the SVHPLs. In order

for eq. (2.4.2) to agree with eq. (2.2.16), all the MZVs must conspire to cancel in

the particular linear combination of SVHPLs that appears in (2.4.2). We find that

this cancellation indeed occurs, at least through 14 loops. It would be interesting to

understand the mechanism of this cancellation, but we postpone this study to future

work.

2.4.2 Consistency of the MHV and NMHV formulas

The MHV and NMHV remainder functions are related by the differential equa-

tion (2.2.21),

w∗ ∂

∂w∗
RMHV

6 |LLA = w
∂

∂w
RNMHV

6 |LLA . (2.4.14)

Recalling that (w,w∗) = (−z,−z̄), it is straightforward to use the formulas (2.3.14)

to check that eqs. (2.4.2) and (2.4.3) obey this differential equation. To see how this

works, consider eq. (2.4.2), which we write as,

RMHV
6 |LLA =

2πi

log(1− u1)
ρ
[

g0(x0, x1)x0 + g1(x0, x1)x1

]

, (2.4.15)
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for some functions g0(x0, x1) and g1(x0, x1) which can be easily read off from eq.

(2.4.2). The w∗ derivative acts on SVHPLs by clipping off the last index and multi-

plying by 1/w∗ if that index was an x0 or by −1/(1 + w∗) if it was an x1. There are

also corrections due to the y alphabet at higher weights. Importantly, y0 = x0, so

these corrections only affect the terms with a prefactor 1/(1 +w∗). This observation

allows us to write,

w∗ ∂

∂w∗
RMHV

6 |LLA =
2πi

log(1− u1)
ρ
[

g0(x0, x1)−
w∗

1 + w∗
ĝ1(x0, x1)

]

=
2πi

log(1− u1)
ρ
[ 1

1 + w∗
g0(x0, x1)

+
1

1 + 1/w∗

(

g0(x0, x1)− ĝ1(x0, x1)
)]

.

(2.4.16)

Due to the complicated expression for y1, it is difficult to obtain an explicit formula for

ĝ1(x0, x1). Thankfully, we may employ a symmetry argument to avoid calculating it

directly. Referring to eq. (2.2.16), RMHV
6 |LLA has manifest symmetry under inversion

(w,w∗) ↔ (1/w, 1/w∗), or, equivalently, (ν, n) ↔ (−ν,−n). The differential operator

w∗ ∂w∗ flips the parity, so eq. (2.4.16) should be odd under inversion. Since the two

rational prefactors on the second line of eq. (2.4.16) map into one another under

inversion, we can infer that their coefficients must be related8,

g0

(
1

w
,
1

w∗

)

= −g0(w,w
∗) + ĝ1(w,w

∗) , (2.4.17)

where g0(w,w∗) = ρ(g0(x0, x1)) and ĝ1(w,w∗) = ρ(ĝ1(x0, x1)). It is easy to check that

this identity is satisfied for low loop orders9.

Using these symmetry properties, we can write,

w∗ ∂

∂w∗
RMHV

6 |LLA =
2πi

log(1− u1)

1

1 + w∗
ρ
[

g0(x0, x1)
]

−
{

(w,w∗) ↔
(
1

w
,
1

w∗

)}

.

(2.4.18)

8ρ does not generate any rational functions which might allow these terms to mix together.
9A general proof would be tantamount to showing that eq. (2.4.2) is symmetric under inversion.

The latter seems to require another intricate cancellation of multiple zeta values. We postpone this
investigation to future work.
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Turning to the right-hand side of eq. (2.4.14), we observe that the differential operator

w ∂w acts on eq. (2.4.3) by removing the leading x0 and flipping the sign of the second

term,

w
∂

∂w
RNMHV

6 |LLA =
2πi

log(1− u1)

1

1 + w∗
ρ
[

XZNMHV
]

−
{

(w,w∗) ↔
(
1

w
,
1

w∗

)}

.

(2.4.19)

Comparing eq. (2.4.18) and eq. (2.4.19), we see that eq. (2.4.14) is only satisfied if

g0(x0, x1) = XZNMHV. To verify that this is true, we must extract g0(x0, x1) from

RMHV
6 |LLA. To this end, collect all terms in the argument of ρ with at least one trailing

x0 and remove that x0. This procedure gives,

g0(x0, x1) =
1

2
X

∞
∑

k=2

(

x1

k−2
∑

n=0

(−1)nxk−n−2
0

n
∑

m=0

22m−k+1

(k −m− 1)!
Z(n,m)

)

ηk

= XZNMHV ,

(2.4.20)

so we conclude that eq. (2.4.14) is indeed satisfied.

2.5 Collinear limit

In the previous section, we proposed an all-orders formula for the MHV and NMHV

remainder functions in MRK. The expressions are effectively functions of two vari-

ables, w and w∗. The single-valuedness condition allows for these functions to be

expressed in a compact way, but the result is still somewhat difficult to manipulate.

In this section, we study a simpler kinematical configuration: the collinear corner

of MRK phase space. To reach this configuration, we begin in multi-Regge kinematics

and then take legs 1 and 6 to be nearly collinear. In terms of the cross ratios ui, this

limit is

1− u1, u2, u3 ∼ 0 , x ≡ u2

1− u1
= O(1) , y ≡ u3

1− u1
∼ 0 , (2.5.1)
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or, in terms of the (w,w∗) variables, it is equivalent to,

1− u1 ∼ 0 , |w| ∼ 0 , w ∼ w∗ . (2.5.2)

As we approach the collinear limit, the remainder function can be expanded in

powers of w, w∗, and log |w|. The leading power-law behavior is proportional to

(w + w∗). Neglecting terms that are suppressed by further powers of |w|, the result

is effectively a function of a single variable, ξ = η log |w| = a log(1 − u1) log |w|, and
is simple enough to be computed explicitly, as we show in the following subsections.

2.5.1 MHV

In the MHV helicity configuration, the remainder function is symmetric under conju-

gation w ↔ w∗. It also vanishes in the strict collinear limit. These conditions suggest

a convenient form for the expansion in the near-collinear limit,

RMHV
6 |LLA, coll. =

2πi

log(1− u1)
(w + w∗)

∞
∑

k=0

ηk+1 rMHV
k

(

η log |w|
)

, (2.5.3)

for some functions rMHV
k that are analytic in a neighborhood of the origin. We have

neglected further power-suppressed terms, i.e. terms quadratic or higher in w or w∗.

The index k labels the degree to which rMHV
k is subleading in log |w|. For example, the

leading logarithms are collected in rMHV
0 , the next-to-leading logarithms are collected

in rMHV
1 , etc.

Starting from eq. (2.4.2), it is possible to obtain an explicit formula for rMHV
k . To

begin, we note that it is sufficient to restrict our attention to the terms proportional

to w — the conjugation symmetry guarantees that they are equal to the terms pro-

portional to w∗. The main observation is that only a subset of terms in eq. (2.4.2)

contributes to the power series expansion at order w. It turns out that the relevant

subset is simply the set of SVHPLs with a single x1 in the weight vector. Roughly

speaking, each additional x1 implies another integration by 1/(1+w), which increases

the leading power by one.

The equivalent statement is not true for w∗, i.e. SVHPLs with an arbitrary number
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of x1’s contribute to the power series expansion at order w∗. This asymmetry can be

traced to the differences between the x and y alphabets: referring to eq. (2.3.9), the

x alphabet indexes the HPLs with argument w and the y alphabet indexes the HPLs

with argument w∗.

We are therefore led to consider the terms in eq. (2.4.2) with exactly one x1.

Eq. (2.4.4) shows that these terms may be obtained by dropping all x1’s from X ,

RMHV
6 |LLA, coll. =

2πi

log(1− u1)
ρ
(

e
1
2
x0ηZMHV − 1

2
x1η
)

. (2.5.4)

Since no ζ terms appear in SVHPLs with a single x1, it is straightforward to express

them in terms of HPLs,

Lxn
0 x1xm

0
=

n
∑

j=0

1

j!
Hj

x0
Hxm

0 x1x
n−j
0

+
m
∑

j=0

1

j!
Hxn

0 x1x
m−j
0

H
j
x0
. (2.5.5)

Here we have simplified the notation by definingHm ≡ Hm(−w) andHm = Hm(−w∗).

Next, we recall eq. (2.3.5), in which we used the shuffle algebra to expose the explicit

logarithms,

Hxn
0 x1xm

0
=

m
∑

j=0

(−1)j

(m− j)!

(
n+ j

j

)

Hm−j
x0

Hxn+j
0 x1

. (2.5.6)

Finally, eqs. (2.3.6) and (2.3.7) implies that the series expansions for small w have

leading term,

Hxk
0x1

(−w) = −w +O(w2) . (2.5.7)

Combining eqs. (2.5.4)-(2.5.7) and applying some hypergeometric function iden-

tities, we arrive at an explicit formula for rMHV
k ,

rMHV
k (x) =

1

2
δ0,k

+
k
∑

n=0

n
∑

m=0

2k−n−m
∑

j=k−m

(−2)2m+j−k−1

(m+ j − k)!
Z(n,m) xm−k+j/2 P (k−j−n,k−j−m)

j

(

0
)

Ij
(

2
√
x
)

.

(2.5.8)
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In this expression, the Ij are modified Bessel functions and the P (a,b)
j are Jacobi poly-

nomials, which can be defined for non-negative integers j by the generating function,

∞
∑

j=0

P (a,b)
j (z) tj =

2a+b
(

1− t+
√
t2 − 2tz + 1

)−a(

1 + t+
√
t2 − 2tz + 1

)−b

√
t2 − 2tz + 1

. (2.5.9)

It is easy to extract the first few terms,

rMHV
0 (x) =

1

2

[

1− I0
(

2
√
x
)]

,

rMHV
1 (x) = −1

4
I2
(

2
√
x
)

, (2.5.10)

rMHV
2 (x) =

1

4x
I2
(

2
√
x
)

− 1

16
I4
(

2
√
x
)

.

The leading term, rMHV
0 , corresponds to the double-leading-logarithmic approxima-

tion (DLLA) of ref. [70],

RMHV
6 |DLLA = iπ a (w + w∗)

[

1− I0
(

2
√

η log |w|
)]

, (2.5.11)

and is in agreement with the results of that reference.

Only for k > 2 do ζ values begin to appear in rMHV
k . Moreover, modified Bessel

functions with odd indices only appear in the ζ-containing terms. To see this, notice

that the ζ-free terms of eq. (2.5.8) arise from the boundary of the sum with n = m = 0,

in which case a = b = k − j in eq. (2.5.9). When a = b, P a,b
j (0) = 0 for odd j since

eq. (2.5.9) reduces to a function of t2 in this case. It follows that the ζ-free pieces of

rMHV
k have no modified Bessel functions with odd indices.

Equations (2.5.3) and (2.5.8) provide an explicit formula for the six-point remain-

der function in the near-collinear limit of the LL approximation of MRK. If the sum

in eq. (2.5.3) converges sufficiently quickly, then it should be possible to evaluate the

function numerically by truncating the sum at a finite value of k, kmax. A numerical

analysis indicates that for |w| < 1 and η ! 20, kmax ≃ 100 is adequate to ensure

convergence.

The numerical analysis also indicates that RMHV
6 |LLA, coll. increases exponentially
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Figure 2.1: The MHV remainder function in the near-collinear limit of the LL ap-
proximation of MRK. It has been rescaled by an exponential damping factor. See
eq. (2.5.12).

as a function of η, and that the extent of this increase depends strongly on the value

of log |w|. We find empirically that the rescaled function

R̂MHV
6 |LLA, coll. = exp

(

− η
4
√

− log |w|

)
log(1− u1)

2πi (w + w∗)
RMHV

6 |LLA, coll. (2.5.12)

attains reasonable uniformity in the region 0 < η < 10 and −40 < log |w| < 0. This

particular rescaling carries no special significance, as alternatives are possible and

may be more appropriate in different regions. In eq. (2.5.12) we have also divided by

the overall prefactor of eq. (2.5.3) so that R̂MHV
6 |LLA, coll. is truly a function of the two

variables η and log |w|. The results are displayed in fig. 2.1.
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2.5.2 NMHV

A similar analysis can be performed for the NMHV helicity configuration. The situa-

tion is slightly more complicated in this case because the NMHV remainder function

is not symmetric under conjugation w ↔ w∗. One consequence is that its expan-

sion in the collinear limit requires two sequences of functions, which we choose to

parameterize by rNMHV
k and r̃NMHV

k ,

RNMHV
6 |LLA, coll. =

2πi

log(1− u1)

[

(w + w∗)
∞
∑

k=0

ηk+2 rNMHV
k

(

η log |w|
)

+ w∗
∞
∑

k=0

ηk r̃NMHV
k

(

η log |w|
)

]

.

(2.5.13)

Contributions to the power series at order w arise from the first term of eq. (2.4.3)

(the second term has an overall factor of w∗), and, as in the MHV case, only from

the subset of SVHPLs with a single x1 in the weight vector. It is therefore possible

to reuse eqs. (2.5.5)-(2.5.7) and obtain an explicit formula for the coefficient of w,

rNMHV
k . The result is,

rNMHV
k (x) =

k
∑

n=0

n
∑

m=0

2k−n−m
∑

j=k−m

[
(−2)2m+j−k

(m+ j − k)!
Z(n,m) xm−k+(j−1)/2

× P (k−j−n−1,k−j−m−1)
j+2

(

0
)

Ij+1

(

2
√
x
)
]

.

(2.5.14)

The first few terms are

rNMHV
0 (x) = − 1

4
√
x
I1(2

√
x) ,

rNMHV
1 (x) = − 1

8
√
x
I3(2

√
x) ,

rNMHV
2 (x) =

3

16x3/2
I3(2

√
x)− 1

32
√
x
I5(2

√
x) .

(2.5.15)

As previously mentioned, it is not so straightforward to extract the coefficient of
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w∗ in this way. We can instead make progress by exploiting the differential equa-

tion (2.2.21). In terms of the functions rMHV
k , rNMHV

k , and r̃NMHV
k , the equations

read,

∂xr
MHV
k (x) = 2 rNMHV

k (x) + ∂xr
NMHV
k−1 (x)

∂xr̃
NMHV
k (x) = 2 rMHV

k (x) + 2 rNMHV
k−1 (x) .

(2.5.16)

The first of these equations is automatically satisfied and confirms the consistency of

eq. (2.5.8) and eq. (2.5.14). The second equation determines r̃NMHV
k up to a constant

of integration which can be determined by examining the n = −1 term of eq. (2.2.19).

The solution is,

r̃NMHV
k (x) = x δ0,k −

k
∑

n=0

n
∑

m=0

2k−n−m
∑

j=k−m

[
(−2)2m+j−k

(m+ j − k)!
Z(n,m) xm−k+(j+1)/2

× P (k−j−n,k−j−m)
j

(

0
)

Ij−1

(

2
√
x
)
]

.

(2.5.17)

The first few terms are

r̃NMHV
0 (x) = x−

√
x I1

(

2
√
x
)

,

r̃NMHV
1 (x) = −1

2

√
x I1

(

2
√
x
)

,

r̃NMHV
2 (x) =

1

2
√
x
I1
(

2
√
x
)

− 1

8

√
x I3

(

2
√
x
)

.

(2.5.18)

Modified Bessel functions with even indices only appear in the ζ-containing terms of

rNMHV
k and r̃NMHV

k . The explanation of this fact is the same as in the MHV case,

except that the parity is flipped due to the shifts of the indices of the modified Bessel

functions in eq. (2.5.14) and eq. (2.5.17).

2.5.3 The real part of the MHV remainder function in NLLA

As described in section 2.2, the real part of the MHV remainder function in NLLA is

related to its imaginary part in LLA. In the collinear limit, the relation (2.2.15) may
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be written as,

Re
(

RMHV
6 |NLLA, coll.

)

=
2πi

log(1− u1)

(
1

2
η2

∂

∂η

1

η
− 1

2
η log |w|

)

RMHV
6 |LLA, coll.

− π2

log2(1− u1)
η2 log |w| .

(2.5.19)

Since RMHV
6 |LLA vanishes like (w+w∗) in the strict collinear limit, the quadratic term

(RMHV
6 |LLA)2 in eq. (2.2.15) only contributes to further power-suppressed terms in

the near-collinear limit and is therefore omitted from eq. (2.5.19)10. We may write

eq. (2.5.19) as,

Re
(

RMHV
6 |NLLA, coll.

)

= − 4π2

log2(1− u1)
(w + w∗)

∞
∑

k=0

ηk+1qk
(

η log |w|
)

, (2.5.20)

where,

qk(x) =
1

4
x δ0,k +

1

2
(k − x) rMHV

k

(

x
)

+
1

2
x∂xr

MHV
k

(

x
)

. (2.5.21)

The leading term, q0, corresponds to the real part of the next-to-double-leading-

logarithmic approximation (NDLLA) of ref. [70]. Our results agree11 with that refer-

ence and read,

Re
(

RMHV
6 |NDLLA

)

=
π2 (w + w∗) η

log2(1− u1)

[

−η log |w|I0
(

2
√

η log |w|
)

+
√

η log |w| I1
(

2
√

η log |w|
)
]

.

(2.5.22)

2.6 Conclusions

In this article, we studied the six-point amplitude of planar N = 4 super-Yang-Mills

theory in the leading-logarithmic approximation of multi-Regge kinematics. In this

limit, the remainder function assumes a particularly simple form, which we exposed

10As a consequence, eq. (2.5.19) does not depend on the conventions used to define R, i.e. the
equation is equally valid if R is replaced by exp(R).

11The agreement requires a few typos to be corrected in eq. (A.16) of ref. [70].
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to all loop orders in terms of the single-valued harmonic polylogarithms introduced by

Brown. The SVHPLs provide a natural basis of functions for the remainder function in

MRK because the single-valuedness condition maps nicely onto a physical constraint

imposed by unitarity. Previously, these functions had been used to calculate the

remainder function in LLA through ten loops. In this work, we extended these results

to all loop orders.

In MRK, the tree amplitudes in the MHV and NMHV helicity configurations are

identical. This observation motivates the definition of an NMHV remainder function

in analogy with the MHV case. We examined both remainder functions in this article,

and proposed all-order formulas for each case. In fact, these formulas are related: as

described in ref. [18], the two remainder functions are linked by a simple differential

equation. We employed this differential equation to verify the consistency of our

results.

We also investigated the behavior of our formulas in the near-collinear limit of

MRK. The additional large logarithms that arise in this limit impose a hierarchical

organization of the resulting expansions. We derived explicit all-orders expressions

for the terms of this logarithmic expansion. The results are given in terms of modified

Bessel functions.

We did not provide a proof of the all-orders result, but we verified that it agrees

through 14 loops with an integral formula of Lipatov and Prygarin. The agreement

of these formulas at 12 loops and beyond requires an intricate cancellation of multiple

zeta values. It would be interesting to understand the mechanism of this cancella-

tion. There are several other potential directions for future research. For example, in

refs. [38–40], Alday, Gaiotto, Maldacena, Sever, and Vieira performed an OPE analy-

sis of hexagonal Wilson loops which in principle should provide additional cross-checks

of our results. It should also be possible to study the all-orders formula as a function

of the coupling and, in particular, to examine its strong-coupling expansion. We have

begun this study in the collinear limit and presented our initial results in fig. 2.1. A

first attempt to compare the six-point remainder function in MRK at strong and weak

coupling was made by Bartels, Kotanski, and Schomerus [11]. Further analysis of our

all-orders formula should allow for an important comparison with this string-theoretic
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calculation.



Chapter 3

Leading singularities and off-shell

conformal integrals

3.1 Introduction

The work presented in this paper is motivated by recent progress in planar N = 4

super Yang-Mills (SYM) theory in four dimensions, although the methods that we

exploit and further develop should be of much wider applicability.

N = 4 SYM theory has many striking properties due to its high degree of sym-

metry; for instance it is conformally invariant, even as a quantum theory [88], and

the spectrum of anomalous dimensions of composite operators can be found from an

integrable system [89]. Most strikingly perhaps, it is related to IIB string theory

on AdS5×S5 by the AdS/CFT correspondence [90]. This is a weak/strong coupling

duality in which the same physical system is conveniently described by the field the-

ory picture at weak coupling, while the string theory provides a way of capturing

its strong coupling regime. The strong coupling limit of scattering amplitudes in

the model has been elaborated in ref. [21] from a string perspective. The formulae

take the form of vacuum expectation values of polygonal Wilson loops with light-like

edges.

112
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This duality between amplitudes and Wilson loops remains true at weak cou-

pling [1, 2, 24, 25], extending to the finite terms in N = 4 SYM previously known re-

lations between the infrared divergences of scattering amplitudes and the ultra-violet

divergences of (light-like) Wilson lines in QCD [91]. Furthermore, it was recently

discovered that both sides of this correspondence can be generated from n-point cor-

relation functions of stress-tensor multiplets by taking a certain light-cone limit [92].

The four-point function of stress-tensor multiplets was intensely studied in the

early days of the AdS/CFT duality, in the supergravity approximation [93] as well

as at weak coupling. The one-loop [94] and two-loop [95] corrections are given by

conformal ladder integrals.

A Feynman-graph based three-loop result has never become available because of

the formidable size and complexity of multi-leg multi-loop computations. Already the

two parallel two-loop calculations [95] drew heavily upon superconformal symmetry.

However, a formulation on a maximal (‘analytic’) superspace [96,97] makes it apparent

that the loop corrections to the lowest x-space component are given by a product of a

certain polynomial with linear combinations of conformal integrals, cf. ref. [98–101].

Then in ref. [102,103], using a hidden symmetry permuting integration variables and

external variables, the problem of finding the three-loop integrand was reduced down

to just four unfixed coefficients without any calculation and further down to only one

overall coefficient after a little further analysis. This single overall coefficient can then

easily be fixed e.g. by comparing to the MHV four-point three-loop amplitude [32]

via the correlator/amplitude duality or by requiring the exponentiation of logarithms

in a double OPE limit [102].

Beyond the known ladder and the ‘tennis court’, the off-shell three-loop four-point

correlator contains two unknown integrals termed ‘Easy’ and ‘Hard’ in ref. [102].

In this work we embark on an analytic evaluation of the Easy and Hard integrals

postulating that

• the integrals are sums
∑

i Ri Fi, where Ri are rational functions and Fi are pure

functions, i.e. Q-linear combinations of logarithms and multiple polylogarithms

[104],
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• the rational functions Ri are given by the so-called leading singularities (i.e.

residues of global poles) of the integrals [105],

• the symbol of each Fi can be pinned down by appropriate constraints and then

integrated to a unique transcendental function.

The principle of uniform transcendentality, innate to the planar N = 4 SYM theory,

implies that the symbols of all the pure functions are tensors of uniform rank six.

Our strategy will be to make an ansatz for the entries that can appear in the symbols

of the pure functions and to write down the most general tensor of uniform rank

six of this form. We then impose a set of constraints on this general tensor to pin

down the symbols of the pure functions. First of all, the tensor needs to satisfy the

integrability condition, a criterion for a general tensor to correspond to the symbol

of a transcendental function. Next the symmetries of the integrals induce additional

constraints, and finally we equate with single variable expansions corresponding to

Euclidean coincidence limits. The latter were elaborated for the Easy and Hard

integrals in ref. [106, 107] using the method of asymptotic expansion of Feynman

integrals [108]. This expansion technique reduces the original higher-point integrals

to two-point integrals, albeit with high exponents of the denominator factors and

complicated numerators.

To be specific, up to three loops the off-shell four-point correlator is given by

[94,95,102]

G4(1, 2, 3, 4) = G(0)
4 +

2 (N2
c − 1)

(4π2)4
R(1, 2, 3, 4)

[

aF (1) + a2F (2) + a3F (3) +O(a4)
]

,

(3.1.1)

Here Nc denotes the number of colors and a is the ’t Hooft coupling. G(0)
4 represents

the tree-level contribution and R(1, 2, 3, 4) is a universal prefactor, in particular taking

into account the different SU(4) flavors which can appear (see ref. [102, 103] for

details). Our focus here is on the loop corrections. These can be written in the
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compact form (exposing the hidden S4+ℓ symmetry) as

F (ℓ)(x1, x2, x3, x4) =
x2
12x

2
13x

2
14x

2
23x

2
24x

2
34

ℓ! (π2)ℓ

∫

d4x5 . . . d
4x4+ℓ f̂

(ℓ)(x1, . . . , x4+ℓ) , (3.1.2)

where

f̂ (1)(x1, . . . , x5) =
1

∏

1≤i<j≤5 x
2
ij

, (3.1.3)

f̂ (2)(x1, . . . , x6) =
1
48x

2
12x

2
34x

2
56 + S6 permutations
∏

1≤i<j≤6 x
2
ij

, (3.1.4)

f̂ (3)(x1, . . . , x7) =
1
20(x

2
12)

2(x2
34x

2
45x

2
56x

2
67x

2
73) + S7 permutations

∏

1≤i<j≤7 x
2
ij

. (3.1.5)

Writing out the sum over permutations in the above expressions, these are written as

follows

F (1) = g1234 , (3.1.6)

F (2) = h12;34 + h34;12 + h23;14 + h14;23 (3.1.7)

+ h13;24 + h24;13 +
1

2
↔ x2

12x
2
34 + x2

13x
2
24 + x2

14x
2
23[ g1234]

2 ,

F (3) =
[

L12;34 + 5 perms
]

+
[

T12;34 + 11 perms
]

(3.1.8)

+
[

E12;34 + 11 perms
]

+ 1
2

[

x2
14x

2
23H12;34 + 11 perms

]

+
[

(g × h)12;34 + 5 perms
]

,

which involve the following integrals:

g1234 =
1

π2

∫
d4x5

x2
15x

2
25x

2
35x

2
45

, (3.1.9)

h12;34 =
x2
34

π4

∫
d4x5 d4x6

(x2
15x

2
35x

2
45)x

2
56(x

2
26x

2
36x

2
46)

.
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At three-loop order we encounter

(g × h)12;34 =
x2
12x

4
34

π6

∫
d4x5d4x6d4x7

(x2
15x

2
25x

2
35x

2
45)(x

2
16x

2
36x

2
46)(x

2
27x

2
37x

2
47)x

2
67

,

L12;34 =
x4
34

π6

∫
d4x5 d4x6 d4x7

(x2
15x

2
35x

2
45)x

2
56(x

2
36x

2
46)x

2
67(x

2
27x

2
37x

2
47)

,

T12;34 =
x2
34

π6

∫
d4x5d4x6d4x7 x2

17

(x2
15x

2
35)(x

2
16x

2
46)(x

2
37x

2
27x

2
47)x

2
56x

2
57x

2
67

, (3.1.10)

E12;34 =
x2
23x

2
24

π6

∫
d4x5 d4x6 d4x7 x2

16

(x2
15x

2
25x

2
35)x

2
56(x

2
26x

2
36x

2
46)x

2
67(x

2
17x

2
27x

2
47)

,

H12;34 =
x2
34

π6

∫
d4x5 d4x6 d4x7 x2

57

(x2
15x

2
25x

2
35x

2
45)x

2
56(x

2
36x

2
46)x

2
67(x

2
17x

2
27x

2
37x

2
47)

.

Here g, h, L are recognized as the one-loop, two-loop and three-loop ladder integrals,

respectively, the dual graphs of the off-shell box, double-box and triple-box integrals.

Off-shell, the ‘tennis court’ integral T can be expressed as the three-loop ladder

integral L by using the conformal flip properties1 of a two-loop ladder sub-integral [22].

The only new integrals are thus E and H (see fig. 3.1).

3

1

4

2

1

2

3

4

E12;34 H12;34

Figure 3.1: The Easy and Hard integrals contributing to the correlator of stress tensor
multiplets at three loops.

1Such identities rely on manifest conformal invariance and will be broken by the introduction of
most regulators. For instance, the equivalence of T and L is not true for the dimensionally regulated
on-shell integrals.
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Conformal four-point integrals are given by a factor carrying their conformal

weight, say, (x2
13x

2
24)

n times some function of the two cross ratios

u =
x2
12x

2
34

x2
13x

2
24

= x x̄ , v =
x2
14x

2
23

x2
13x

2
24

= (1− x)(1− x̄) . (3.1.11)

Ladder integrals are explicitly known for any number of loops, see ref. [109] where

they are very elegantly expressed as one-parameter integrals. Integration is simplified

by the change of variables from the cross-ratios (u, v) to (x, x̄) as defined in the last

equation. The unique rational prefactor, x2
13x

2
24 (x − x̄), is common to all cases and

can be computed by the leading singularity method as we illustrate shortly. This is

multiplied by pure polylogarithm functions which fit with the classification of single-

valued harmonic polylogarithms (SVHPLs) in ref. [47]. The associated symbols of

the ladder integrals are then tensors composed of the four letters {x, x̄, 1−x, 1− x̄}.
On the other hand, for generic conformal four-point integrals (of which the Easy

and Hard integrals are the first examples) there are no explicit results. Fortunately, in

recent years a formalism has been developed in the context of scattering amplitudes

to find at least the rational prefactors (i.e. the leading singularities), which are given

by the residues of the integrals [105]. There is one leading singularity for each global

pole of the integrand and it is obtained by deforming the contour of integration to lie

on a maximal torus surrounding the pole in question, i.e. by computing the residue

at the global pole. As an illustration2, let us apply this technique to the massive

one-loop box integral g1234 defined in eq. (3.1.9). Its leading singularity is obtained

by shifting the contour to encircle one of the global poles of the integrand, where

all four terms in the denominator vanish. To find this let us consider a change of

coordinates from xµ
5 to pi = x2

i5. The Jacobian for this change of variables is

J = det

(
∂pi
∂xµ

5

)

= det (−2xµ
i5) , J2 = det (4xi5 · xj5) = 16 det

(

x2
ij − x2

i5 − x2
j5

)

,

(3.1.12)

where the second identity follows by observing that det(M) =
√

det(MMT ). Using

2The massless box-integral (i.e. the same integral in the limit x2
i,i+1 → 0) is discussed in ref. [80]

in terms of twistor variables as the simplest example of a ‘Schubert problem’ in projective geometry.
The off-shell case that we discuss here was also recently discussed by S. Caron-Huot (see [110]).
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this change of variables the massive box becomes

g1234 =
1

π2

∫
d4pi

p1p2p3p4 J
. (3.1.13)

To find its leading singularity we simply compute the residue around all four poles at

pi = 0 (divided by 2πi). We obtain

g1234 → 1

4π2λ1234
, λ1234 =

√

det(x2
ij)i,j=1..4 = x2

13x
2
24 (x− x̄) (3.1.14)

in full agreement with the analytic result [109].

Note that we do not consider explicitly a contour around the branch cut associated

with the square root factor J in the denominator of (3.1.13). Because there is no pole

at infinity, the residue theorem guarantees that such a contour is equivalent to the

one we already considered. On the other hand, in higher-loop examples, Jacobians

from previous integrations cannot be discarded in this manner. In all the examples

we consider, these Jacobians always collapse to become simple poles when evaluated

on the zero loci of the other denominators and thereby contribute non-trivially to the

leading singularity.

The main results of this paper are the analytic evaluations of the Easy and Hard

integrals. Due to Jacobian poles, the Easy integral has three distinct leading sin-

gularities, out of which only two are algebraically independent, though. The Hard

integral has two distinct leading singularities, too. Armed with this information we

then attempt to find the pure polylogarithmic functions multiplying these rational

factors. Our main inputs for this are analytic expressions for the integrals in the limit

x̄ → 0 obtained from the results in [107]. Matching these asymptotic expressions with

an ansatz for the symbol of the pure functions we obtain unique answers for the pure

functions.

The pure functions contributing to the Easy integral are given by SVHPLs, cor-

responding to a symbol with entries drawn from the set {x, 1 − x, x̄, 1 − x̄}. In this

case there is a very straightforward method for obtaining the corresponding function

from its asymptotics, by essentially lifting HPLs to SVHPLs as we explain in the
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next section. However, the SVHPLs are not capable of meeting all constraints for the

pure functions contributing to the Hard integral, so that we need to enlarge the set

of letters. A natural guess is to include x − x̄ (cf. ref. [106]) since it also occurs in

the rational factors, and indeed this turns out to be correct. Ultimately, one of the

pure functions is found to have a four-letter symbol corresponding to SVHPLs, but

the symbol of the other function contains the new letter: the corresponding function

cannot be expressed through SVHPLs alone, but it belongs to a more general class

of multiple polylogarithms.

Let us stress that the analytic evaluation of the Easy and Hard integrals completes

the derivation of the three-loop four-point correlator of stress-tensor multiplets in

N = 4 SYM. The multiple polylogarithms that we find can be numerically evaluated

to very high precision, which paves the way for tests of future integrable system

predictions for the four-point function, or for instance for further analyses of the

operator product expansion.

Finally, since our set of methods has allowed to obtain the analytic result for

the Easy and Hard integrals in a relatively straightforward way (despite the fact

that these are not at all simple to evaluate by conventional techniques) we wish to

investigate whether this can be repeated to still higher orders. We examine a first

relatively simple looking, but non-trivial, four-loop example from the list of integrals

contributing to the four-point correlator at that order [103]:

I(4)14;23 =
1

π8

∫
d4x5d4x6d4x7d4x8 x2

14x
2
24x

2
34

x2
15x

2
18x

2
25x

2
26x

2
37x

2
38x

2
45x

2
46x

2
47x

2
48x

2
56x

2
67x

2
78

. (3.1.15)

The computation of its unique leading singularity follows the same lines as at three

loops. However, just as for the Hard integral, the alphabet {x, 1 − x, x̄, 1 − x̄} and

the corresponding function space are too restrictive. Interestingly, this integral is

related to the Easy integral by a differential equation of Laplace type. Solving this

equation promotes the denominator factor 1 − u of the leading singularities of the

Easy integral to a new entry in the symbol of the four-loop integral. Note that it is

at least conceivable that the letter x − x̄ arrives in the symbol of the Hard integral

due to a similar mechanism, although admittedly not every integral obeys a simple
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2

1

3

4

Figure 3.2: The four-loop integral I(4)14;23 defined in eq. (3.1.15).

differential equation.

The paper is organized as follows:

• In section 3.2, we give definitions of the concepts introduced here: symbols,

harmonic polylogarithms, SVHPLs, multiple polylogarithms and so on.

• In section 3.3, we comment on the asymptotic expansion of Feynman integrals.

• In sections 3.4 and 3.5 we derive the leading singularities, symbols and ulti-

mately the pure functions corresponding to the Easy and Hard integrals. We

also present numerical data indicating the correctness of our results.

• In section 3.7, we perform a similar calculation for the four-loop integral, I(4).

• Finally we draw some conclusions. We include several appendices collecting

some formulae for the asymptotic expansions of the integrals and alternative

ways how to derive the analytic results.
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3.2 Conformal four-point integrals and

single-valued polylogarithms

The ladder-type integrals that contribute to the correlator are known. More precisely,

if we write

g13;24 =
1

x2
13x

2
24

Φ(1)(u, v) ,

h13;24 =
1

x2
13x

2
24

Φ(2)(u, v) ,

l13;24 =
1

x2
13x

2
24

Φ(3)(u, v) ,

(3.2.1)

then the functions Φ(L)(u, v) are given by the well-known result [109],

Φ(L)(u, v) = − 1

L!(L− 1)!

∫ 1

0

dξ

v ξ2 + (1− u− v) ξ + u
logL−1 ξ

×
(

log
v

u
+ log ξ

)L−1 (

log
v

u
+ 2 log ξ

)

= − 1

x− x̄
f (L)

(
x

x− 1
,

x̄

x̄− 1

)

,

(3.2.2)

where the conformal cross ratios are given by eq. (3.1.11) and where we defined the

pure function

f (L)(x, x̄) =
L
∑

r=0

(−1)r(2L− r)!

r!(L− r)!L!
logr(xx̄) (Li2L−r(x)− Li2L−r(x̄)) . (3.2.3)

At this stage, the variables (x, x̄) are simply a convenient parameterization which ra-

tionalizes the two roots of the quadratic polynomial in the denominator of eq. (3.2.2).

We note that x and x̄ are complex conjugate to each other if we work in Euclidean

space while they are both real in Minkowski signature.

The particular combination of polylogarithms that appears in eq. (3.2.2) is not

random, but it has a particular mathematical meaning: in Euclidean space, where

x and x̄ are complex conjugate to each other, the functions Φ(L) are single-valued
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functions of the complex variable x. In other words, the combination of polyloga-

rithms that appears in the ladder integrals is such that they have no branch cuts in

the complex x plane. In order to understand the reason for this, it is useful to look

at the symbols of the ladder integrals.

3.2.1 The symbol

One possible way to define the symbol of a transcendental function is to consider its

total differential. More precisely, if F is a function whose differential satisfies

dF =
∑

i

Fi d logRi , (3.2.4)

where the Ri are rational functions, then we can define the symbol of F recursively

by [36]

S(F ) =
∑

i

S(Fi)⊗Ri . (3.2.5)

As an example, the symbols of the classical polylogarithms and the ordinary loga-

rithms are given by

S(Lin(z)) = −(1− z)⊗ z ⊗ . . .⊗ z
︸ ︷︷ ︸

(n−1) times

and S
(

1

n!
lnn z

)

= z ⊗ . . .⊗ z
︸ ︷︷ ︸

n times

. (3.2.6)

In addition the symbol satisfies the following identities,

. . .⊗ (a · b)⊗ . . . = . . .⊗ a⊗ . . .+ . . .⊗ b⊗ . . . ,

. . .⊗ (±1)⊗ . . . = 0 ,

S (F G) = S(F )⨿⨿S(G) ,

(3.2.7)

where ⨿⨿ denotes the shuffle product on tensors. Furthermore, all multiple zeta

values are mapped to zero by the symbol map. Conversely, an arbitrary tensor

∑

i1,...,in

ci1...inωi1 ⊗ . . .⊗ ωin (3.2.8)
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whose entries are rational functions is the symbol of a function only if the following

integrability condition is fulfilled,

∑

i1,...,in

ci1...in d logωik ∧ d logωik+1
ωi1 ⊗ . . .⊗ ωik−1

⊗ ωik+2
⊗ . . .⊗ ωin = 0 , (3.2.9)

for all consecutive pairs (ik, ik+1).

The symbol of a function also encodes information about the discontinuities of

the function. More precisely, the singularities (i.e. the zeroes or infinities) of the first

entries of a symbol determine the branching points of the function, and the symbol of

the discontinuity across the branch cut is obtained by dropping this first entry from

the symbol. As an example, consider a function F (x) whose symbol has the form

S(F (x)) = (a1 − x)⊗ . . .⊗ (an − x) , (3.2.10)

where the ai are independent of x. Then F (x) has a branching point at x = a1, and

the symbol of the discontinuity across the branch cut is given by

S [disca1F (x)] = 2πi (a2 − x)⊗ . . .⊗ (an − x) . (3.2.11)

If F is a Feynman integral, then the branch cuts of F are dictated by Cutkosky’s

rules. In particular, for Feynman integrals without internal masses the branch cuts

extend between points where one of the Mandelstam invariants becomes zero or in-

finity. As a consequence, the first entries of the symbol of a Feynman integral must

necessarily be Mandelstam invariants [40]. In the case of the four-point position

space integrals we are considering in this paper, the first entries of the symbol must

then be distances between two points, x2
ij for i, j = 1 . . . 4. Combined with conformal

invariance, this implies that the first entries of the symbols of conformally invariant

four-point functions can only be cross ratios. As an example, consider the symbol of

the one-loop four-point function,

S
[

f (1)(x, x̄)
]

= u⊗ 1− x

1− x̄
+ v ⊗ x̄

x
. (3.2.12)
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The first entry condition puts strong constraints on the transcendental functions

that can contribute to a conformal four-point function. In order to understand this

better let us consider a function whose symbol can be written in the form

S(F ) = u⊗ Su + v ⊗ Sv = (xx̄)⊗ Su + [(1− x)(1− x̄)]⊗ Sv , (3.2.13)

where Su and Sv are tensors of lower rank. Let us assume we work in Euclidean

space where x and x̄ are complex conjugate to each other. It then follows from the

previous discussion that F has potential branching points in the complex x plane at

x ∈ {0, 1,∞}. Let us compute for example the discontinuity of F around x = 0.

Only the first term in eq. (3.2.13) can give rise to a non-zero contribution, and x

and x̄ contribute with opposite signs. So we find

S [disc0(F )] = 2πi Su − 2πi Su = 0 . (3.2.14)

The argument for the discontinuities around x = 1 and x = ∞ is similar. We thus

conclude that F is single-valued in the whole complex x plane. This observation puts

strong constraints on the pure functions that might appear in the analytical result for

a conformal four-point function. In particular, the ladder integrals Φ(L) are related

to the single-valued analogues of the classical polylogarithms,

Dn(x) = Rn

n−1
∑

k=0

Bk2k

k!
logk |x|Lin−k(x) , (3.2.15)

where Rn denotes the real part for n odd and the imaginary part otherwise and Bk

are the Bernoulli numbers. For example, we have

f (1)(x, x̄) = 4iD2(x) . (3.2.16)

3.2.2 Single-Valued Harmonic Polylogarithms (SVHPLs)

For more general conformal four-point functions more general classes of polyloga-

rithms may appear. The simplest extension of the classical polylogarithms are the
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so-called harmonic polylogarithms (HPLs), defined by the iterated integrals3 [48]

H(a1, . . . , an; x) =

∫ x

0

dt fa1(t)H(a2, . . . , an; t) , ai ∈ {0, 1} , (3.2.17)

with

f0(x) =
1

x
and f1(x) =

1

1− x
. (3.2.18)

By definition, H(x) = 1 and in the case where all the ai are zero, we use the special

definition

H (⃗0n; x) =
1

n!
logn x . (3.2.19)

The number n of indices of a harmonic polylogarithm is called its weight. Note that

the harmonic polylogarithms contain the classical polylogarithms as special cases,

H (⃗0n−1, 1; x) = Lin(x) . (3.2.20)

In ref. [111] it was shown that infinite classes of generalized ladder integrals can be

expressed in terms of single-valued combinations of HPLs. Single-valued analogues

of HPLs were studied in detail in ref. [47], and an explicit construction valid for all

weights was presented. Here it suffices to say that for every harmonic polylogarithm

of the form H (⃗a; x) there is a function La⃗(x) with essentially the same properties

as the ordinary harmonic polylogarithms, but in addition it is single-valued in the

whole complex x plane. We will refer to these functions as single-valued harmonic

polylogarithms (SVHPLs). Explicitly, the functions La⃗(x) can be expressed as

La⃗(x) =
∑

i,j

cij H (⃗ai; x)H (⃗aj; x̄) , (3.2.21)

where the coefficients cij are polynomials of multiple ζ values such that all branch

cuts cancel.

There are two natural symmetry groups acting on the space of SVHPLs. The

first symmetry group acts by complex conjugation, i.e., it exchanges x and x̄. The

3In the following we use the word harmonic polylogarithm in a restricted sense, and only allow
for singularities at x ∈ {0, 1} inside the iterated integrals.
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conformal four-point functions we are considering are real, and thus eigenfunctions

under complex conjugation, while the SVHPLs defined in ref. [47] in general are not.

It is therefore convenient to diagonalize the action of this symmetry by defining

La⃗(x) =
1

2

[

La⃗(x)− (−1)|⃗a|La⃗(x̄)
]

,

La⃗(x) =
1

2

[

La⃗(x) + (−1)|⃗a|La⃗(x̄)
]

,
(3.2.22)

where |⃗a| denotes the weight of La⃗(x). Note that we have apparently doubled the

number of functions, so not all the functions La⃗(x) and La⃗(x) can be independent.

Indeed, one can observe that

La⃗(x) = [product of lower weight SVHPLs of the form La⃗(x) ] . (3.2.23)

The functions La⃗(x) can thus always be rewritten as linear combinations of products

of SVHPLs of lower weights. In other words, the multiplicative span of the functions

La⃗(x) and multiple zeta values spans the whole algebra of SVHPLs. As an example,

in this basis the ladder integrals take the very compact form

f (L)(x, x̄) = (−1)L+1 2L0, . . . , 0
︸ ︷︷ ︸

L−1

,0,1,0, . . . , 0
︸ ︷︷ ︸

L−1

(x) . (3.2.24)

While we present most of our result in terms of the La⃗(x), we occasionally find it

convenient to employ the La⃗(x) and the La⃗(x) to obtain more compact expressions.

The second symmetry group is the group S3 which acts via the transformations

of the argument

x → x , x → 1− x , x → 1/(1− x) , (3.2.25)

x → 1/x , x → 1− 1/x , x → x/(x− 1) .

This action of S3 permutes the three singularities {0, 1,∞} in the integral represen-

tations of the harmonic polylogarithms. In addition, this action has also a physical
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interpretation. The different cross ratios one can form out of four points xi are pa-

rameterized by the group S4/(Z2×Z2) ≃ S3. The action (3.2.25) is the representation

of this group on the cross ratios in the parameterization (3.1.11).

3.2.3 The x̄ → 0 limit of SVHPLs

We will be using knowledge of the asymptotic expansions of integrals in the limit

x̄ → 0 in order to constrain, and even determine, the integrals themselves. If the

function lives in the space of SVHPLs there is a very direct and simple way to obtain

the full function from its asymptotic expansion.

This direct procedure relies on the close relation between the series expansion of

SVHPLs around x̄ = 0 and ordinary HPLs. In the case where SVHPLs are analytic

at (x, x̄) = 0 (i.e. when the corresponding word ends in a ‘1’) then

lim
x̄→0

Lw(x) = Hw(x) . (3.2.26)

Similar results exist in the case where Lw(x) is not analytic at the origin. In that

case the limit does strictly speaking not exist, but we can, nevertheless, represent the

function in a neighborhood of the origin as a polynomial in log u, whose coefficients

are analytic functions. More precisely, using the shuffle algebra properties of SVHPLs,

we have a unique decomposition

Lw(x) =
∑

p,w′

ap,w′ logp uLw′(x) , (3.2.27)

where ap,w′ are integer numbers and Lw′(x) are analytic at the origin (x, x̄) = 0.

Conversely, if we are given a function f(x, x̄) that around x̄ = 0 admits the

asymptotic expansion

f(x, x̄) =
∑

p,w

ap,w logp uHw(x) +O(x̄) , (3.2.28)

where the ap,w are independent of (x, x̄) and w are words made out of the letters 0 and

1 ending in a 1, there is a unique function fSVHPL(x, x̄) which is a linear combination of
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products of SVHPLs that has the same asymptotic expansion around x̄ = 0 as f(x, x̄).

Moreover, this function is simply obtained by replacing the HPLs in eq. (3.2.28) by

their single-valued analogues,

fSVHPL(x, x̄) =
∑

p,w

ap,w logp uLw(x) . (3.2.29)

In other words, f(x, x̄) and fSVHPL(x, x̄) agree in the limit x̄ → 0 up to power-

suppressed terms.

It is often the case that we find simpler expressions by expanding out all products,

i.e. by not explicitly writing the powers of logarithms of u. More precisely, replacing

log u by log x + log x̄ in eq. (3.2.28) and using the shuffle product for HPLs, we can

write eq. (3.2.28) in the form

f(x, x̄) =
∑

w

aw Hw(x) + log x̄ P (x, log x̄) +O(x̄) , (3.2.30)

where P (x, log x̄) is a polynomial in log x̄ whose coefficients are HPLs in x. From the

previous discussion we know that there is a linear combination of SVHPLs that agrees

with f(x, x̄) up to power-suppressed terms. In fact, this function is independent of

the actual form of the polynomial P , and is completely determined by the first term

in the left-hand side of eq. (3.2.30),

fSVHPL(x, x̄) =
∑

w

aw Lw(x) . (3.2.31)

So far we have only described how we can always construct a linear combination of

SVHPLs that agrees with a given function in the limit x̄ → 0 up to power-suppressed

terms. The inverse is obviously not true, and we will encounter such a situation for

the Hard integral. In such a case we need to enlarge the space of functions to include

more general classes of multiple polylogarithms. Indeed, while SVHPLs have symbols

whose entries are all drawn from the set {x, x̄, 1−x, 1−x̄}, it was observed in ref. [106]

that the symbols of three-mass three-point functions (which are related to conformal

four-point functions upon sending a point to infinity) in dimensional regularization
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involve functions whose symbols also contain the entry x − x̄. Function of this type

cannot be expressed in terms of HPLs alone, but they require more general classes of

multiple polylogarithms, defined recursively by G(x) = 1 and,

G(a1, . . . , an; x) =

∫ x

0

dt

t− a1
G(a2, . . . , an; t) , G(⃗0p; x) =

logp(x)

p!
, (3.2.32)

where ai ∈ C. We will encounter such functions in later sections when constructing

the analytic results for the Easy and Hard integrals.

3.3 The short-distance limit

In this section we sketch how the method of ‘asymptotic expansion of Feynman in-

tegrals’ can deliver asymptotic series for the x̄ → 0 limit of the Easy and the Hard

integral. These expansions contain enough information about the integrals to even-

tually fix ansätze for the full expressions.

In ref. [107,112] asymptotic expansions were derived for both the Easy and Hard

integrals in the limits where one of the cross ratios, say u, tends to zero. The limit

u → 0, v → 1 can be described as a short-distance limit, x2 → x1. Let us assume

that we have got rid of the coordinate x4 by sending it to infinity and that we are

dealing with a function of three coordinates, x1, x2, x3, one of which, say x1, can be

set to zero. The short-distance limit we are interested in then corresponds to x2 → 0,

so that the coordinate x2 is small (soft) and the coordinate x3 is large (hard). This

is understood in the Euclidean sense, i.e. x2 tends to zero precisely when each of its

component tends to zero. One can formalize this by multiplying x2 by a parameter ρ

and then considering the limit ρ→ 0 upon which u ∼ ρ2, v − 1 ∼ ρ.

For a Euclidean limit in momentum space, one can apply the well-known formulae

for the corresponding asymptotic expansion written in graph-theoretical language (see

ref. [108] for a review). One can also write down similar formulae in position space.

In practice, it is often more efficient to apply the prescriptions of the strategy of

expansion by regions [108, 113] (see also chapter 9 of ref. [114] for a recent review),

which are equivalent to the graph-theoretical prescriptions in the case of Euclidean
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limits. The situation is even simpler in position space where we work with propagators

1/x2
ij . It turns out that in order to reveal all the regions contributing to the asymptotic

expansion of a position-space Feynman integral it is sufficient to consider each of the

integration coordinates xi either soft (i.e. of order x2) or hard (i.e. of order x3).

Ignoring vanishing contributions, which correspond to integrals without scale, one

obtains a set of regions relevant to the given limit. One can reveal this set of regions

automatically, using the code described in refs. [115,116].

The most complicated contributions in the expansion correspond to regions where

the internal coordinates are either all hard or soft. For the Easy and Hard inte-

grals, this gives three-loop two-point integrals with numerators. In ref. [112], these

integrals were evaluated by treating three numerators as extra propagators with neg-

ative exponents, so that the number of the indices in the given family of integrals was

increased from nine to twelve. The integrals were then reduced to master integrals us-

ing integration-by-parts (IBP) identities using the c++ version of the code FIRE [117].

While this procedure is not optimal, it turned out to be sufficient for the computa-

tion in ref. [112]. In ref. [107], a more efficient way was chosen: performing a tensor

decomposition and reducing the problem to evaluating integrals with nine indices by

the well-known MINCER program [118], which is very fast because it is based on a

hand solution of the IBP relations for this specific family of integrals. This strategy

has given the possibility to evaluate much more terms of the asymptotic expansion.

It turns out that the expansion we consider includes, within dimensional reg-

ularization, the variable u raised to powers involving an amount proportional to

ϵ = (4 − d)/2. A characteristic feature of asymptotic expansions is that individ-

ual contributions may exhibit poles. Since the conformal integrals we are dealing

with are finite in four dimensions, the poles necessarily cancel, leaving behind some

logarithms. The resulting expansions contain powers and logarithms of u times poly-

nomials in v − 1. Instead of the variable v, we turn to the variables (x, x̄) defined

in eq. (3.1.11). Note that it is easy to see that in terms of these variables the limit

u → 0, v → 1 corresponds to both x and x̄ becoming small.

In fact, we only need the leading power term with respect to u and all the terms

with respect to x. The results of ref. [107] were presented in terms of infinite sums
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involving harmonic numbers, i.e., for each inequivalent permutation of the external

points, it was shown that one can write

I(u, v) =
3
∑

k=0

logk u fk(x) +O(u) , (3.3.1)

where I(u, v) denotes either the Easy or the Hard integral, and v = 1 − x + O(x̄).

The coefficients fk(x) were expressed as combinations of terms of the form

∞
∑

s=1

xs−1

si
Sȷ⃗(s) or

∞
∑

s=1

xs−1

(1 + s)i
Sȷ⃗(s) , (3.3.2)

where Sȷ⃗(s) are nested harmonic sums [52],

Si(s) =
s
∑

n=1

1

ni
and Siȷ⃗(s) =

s
∑

n=1

Sȷ⃗(n)

ni
. (3.3.3)

To arrive at such explicit results for the coefficients fk(x) a kind of experimental

mathematics suggested in ref. [119] was applied: the evaluation of the first terms in

the expansion in x gave a hint about the possible dependence of the coefficient at the

n-th power of x. Then an ansatz in the form of a linear combination of nested sums

was constructed and the coefficients in this ansatz were fixed by the information about

the first terms. Finally, the validity of the ansatz was confirmed using information

about the next terms. The complete x-expansion was thus inferred from the leading

terms.

For the purpose of this paper, it is more convenient to work with polylogarithmic

functions in x rather than harmonic sums. Indeed, sums of the type (3.3.2) can easily

be performed in terms of harmonic polylogarithms using the algorithms described

in ref. [61]. We note, however, that during the summation process, sums of the

type (3.3.2) with i = 0 are generated. Sums of this type are strictly speaking not

covered by the algorithms of ref. [61], but we can easily reduce them to the case i ̸= 0
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using the following procedure,

∞
∑

s=1

xs−1 Siȷ⃗(s) =
1

x

∞
∑

s=1

xs
s
∑

n=1

1

ni
1

Sȷ⃗(n) =
1

x

∞
∑

s=0

xs
s
∑

n=0

1

ni
Sȷ⃗(n) , (3.3.4)

where the last step follows from Sȷ⃗(0) = 0. Reshuffling the sum by letting s = n1+n,

we obtain the following relation which is a special case of eq. (96) in ref. [119]:

∞
∑

s=1

xs−1 Siȷ⃗(s) =
1

x

∞
∑

n1=0

xn1

∞
∑

n=0

xn

ni
Sȷ⃗(n) =

1

1− x

∞
∑

s=1

xs−1

si
Sȷ⃗(s) . (3.3.5)

The last sum is now again of the type (3.3.2) and can be dealt with using the algo-

rithms of ref. [61].

Performing all the sums that appear in the results of ref. [107], we find for example

x2
13 x

2
24 E14;23 =

log u

x

(

H2,2,1 −H2,1,2 +H1,3,1 + 2H1,2,1,1 −H1,1,3 − 2H1,1,1,2 (3.3.6)

− 6ζ3H2 − 6ζ3H1,1

)

− 2

x

(

2ζ3H2,1 − 4ζ3H1,2 + 4ζ3 H1,1,1 +H3,2,1

− H3,1,2 +H2,3,1 −H2,1,3 + 2H1,4,1 + 2 H1,3,1,1 + 2H1,2,2,1 − 2H1,1,4

− 2H1,1,2,2 − 2H1,1,1,3 − 6 ζ3H3

)

+O(u) ,

x4
13 x

4
24 H12;34 =

4 log u

x2

(

H1,1,2,1 −H1,1,1,2 − 6ζ3H1,1

)

− 2

x2

(

4H2,1,2,1 − 4 H2,1,1,2(3.3.7)

+ 4H1,1,3,1 −H1,1,2,1,1 − 4H1,1,1,3 +H1,1,1,2,1 − 24ζ3H2,1 + 6ζ3H1,1,1

)

+ O(u) ,

where we used the compressed notation, e.g., H2,1,1,2 ≡ H(0, 1, 1, 1, 0, 1; x). The

results for the other orientations are rather lengthy, so we do not show them here,

but we collect them in appendix B.1. Let us however comment about the structure

of the functions fk(x) that appear in the expansions. The functions fk(x) can always

be written in the form

fk(x) =
∑

l

Rk,l(x)× [HPLs in x] , (3.3.8)
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where Rk,l(x) may represent any of the following rational functions

1

x2
,

1

x
,

1

x(1− x)
. (3.3.9)

We note that the last rational function only enters the asymptotic expansion of H13;24.

The aim of this paper is to compute the Easy and Hard integrals by writing for

each integral an ansatz of the form

∑

i

Ri(x, x̄)Pi(x, x̄) , (3.3.10)

and to fix the coefficients that appear in the ansatz by matching the limit x̄ → 0 to the

asymptotic expansions presented in this section. In the previous section we argued

that a natural space of functions for the polylogarithmic part Pi(x, x̄) are functions

that are single-valued in the complex x plane in Euclidean space. We however still

need to determine the rational prefactors Ri(x, x̄), which are not constrained by

single-valuedness.

A natural ansatz would consist in using the same rational prefactors as those

appearing in the ladder type integrals. For ladder type integrals we have

Rladder
i (x, x̄) =

1

(x− x̄)α
, α ∈ N , (3.3.11)

plus all possible transformations of this function obtained from the action of the S3

symmetry (3.2.25). Then in the limit u → 0 we obtain

lim
x̄→0

Rladder
i (x, x̄) =

1

xα
. (3.3.12)

We see that the rational prefactors that appear in the ladder-type integrals can only

give rise to rational prefactors in the asymptotic expansions with are pure powers of

x, and so they can never account for the rational function 1/(x(1−x)) that appears in

the asymptotic expansion of H13;24. We thus need to consider more general prefactors

than those appearing in the ladder-type integrals. This issue will be addressed in the

next sections.
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3.4 The Easy integral

3.4.1 Residues of the Easy integral

The Easy integral is defined as

E12;34 =
x2
23x

2
24

π6

∫
d4x5 d4x6 d4x7 x2

16

(x2
15x

2
25x

2
35)x

2
56(x

2
26x

2
36x

2
46)x

2
67(x

2
17x

2
27x

2
47)

. (3.4.1)

To find all its leading singularities we order the integrations as follows

E12;34 =
x2
23x

2
24

π6

[∫
d4x6 x2

16

x2
26x

2
36x

2
46

(∫
d4x5

x2
15x

2
25x

2
35x

2
56

)(∫
d4x7

x2
17x

2
27x

2
47x

2
67

)]

. (3.4.2)

First the x7 and x5 integrations: they are both the same as the massive box

computed in the Introduction and thus give leading singularities (see eq. (3.1.14))

± 1

4λ1236
± 1

4λ1246
, (3.4.3)

respectively. So we can move directly to the final x6 integration

1

16 π6

∫
d4x6 x2

16

x2
26x

2
36x

2
46λ1236λ1246

. (3.4.4)

Here there are five factors in the denominator and we want to take the residues

when four of them vanish to compute the leading singularity, so there are various

choices to consider. The simplest option is to cut the three propagators 1/x2
i6. Then

on this cut we have λ1236|cut = ±x2
16x

2
23 and λ1246|cut = ±x2

16x
2
24, where the vertical

line indicates the value on the cut, and the integral reduces to the massive box. This

simplification of the λ factors is similar to the phenomenon of composite leading

singularities [120]. Thus cutting either of the two λs will result in4

leading singularity #1 of E12;34 = ± 1

64 π6λ1234
. (3.4.5)

4With a slight abuse of language, in the following we use the word ‘cut’ to designate that we look
at the zeroes of a certain denominator factor.



CHAPTER 3. LEADING SINGULARITIES / CONFORMAL INTEGRALS 135

The only other possibility is cutting both λ’s. There are then three possibilities,

firstly we could cut x2
26 and x2

36 as well as the two λ′s. On this cut λ1236 reduces to

±x2
16x

2
23 and one obtains residue #1 again. Similarly in the second case where we cut

x2
26, x

2
46 and the two λs.

So finally we consider the case where we cut x2
36, x

2
46 and the two λ’s. In this

case λ1236|cut = ±(x2
16x

2
23 − x2

13x
2
26) and λ1246|cut = ±(x2

16x
2
24 − x2

14x
2
26). Notice that

setting λ1236 = λ1246 = 0 means setting x2
16 = x2

26 = 0. We then need to compute the

Jacobian associated with cutting x2
36, x

2
46,λ1236,λ1246

det

(
∂(x2

36, x
2
46,λ1236,λ1246)

∂xµ
6

)∣
∣
∣
∣
cut

= ±16 det
(

xµ
36, xµ

46, xµ
16x

2
23 − x2

13x
µ
26, xµ

16x
2
24 − x2

14x
µ
26

)∣
∣
∣
cut

= ±16 det (xµ
36, x

µ
46, x

µ
16, x

µ
26)(x

2
23x

2
14 − x2

24x
2
13)
∣
∣
cut

= ±4λ1234(x
2
23x

2
14 − x2

24x
2
13) ,

(3.4.6)

The result of the x6 integral (3.4.4) is

1

64 π6

x2
16

x2
26λ1234(x

2
23x

2
14 − x2

24x
2
13)

∣
∣
∣
∣
cut

(3.4.7)

At this point there is a subtlety, since on the cut we have simultaneously x2
16x

2
23−

x2
13x

2
26 = x2

16x
2
24 − x2

14x
2
26 = 0, i.e. x2

16 = x2
26 = 0 and so x2

16

x2
26

is undefined. More

specifically, the integral depends on whether we take x2
16x

2
23 − x2

13x
2
26 = 0 first or

x2
16x

2
24−x2

14x
2
26 = 0 first. So we get two possibilities (after multiplying by the external

factors x2
23x

2
24 in eq. (3.4.1)) :

leading singularity #2 of E12;34 = ± x2
13x

2
24

64 π6 λ1234(x2
23x

2
14 − x2

24x
2
13)

(3.4.8)

leading singularity #3 of E12;34 = ± x2
14x

2
23

64 π6 λ1234(x2
23x

2
14 − x2

24x
2
13)

. (3.4.9)
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We conclude that the Easy integral takes the ‘leading singularity times pure func-

tion’ form5

E12;34 =
1

x2
13x

2
24

[
E(a)(x, x̄)

x− x̄
+

E(b)(x, x̄)

(x− x̄)(v − 1)
+

v E(c)(x, x̄)

(x− x̄)(v − 1)

]

. (3.4.10)

We note that the x3 ↔ x4 symmetry relates E(b) and E(c). Furthermore, putting

everything over a common denominator it is easy to see that E(a) can be absorbed

into the other two functions. We conclude that there is in fact only one independent

function, and the Easy integral can be written in terms of a single pure function

E(x, x̄) as

E12;34 =
1

x2
13x

2
24 (x− x̄)(v − 1)

[

E(x, x̄) + v E

(
x

x− 1
,

x̄

x̄− 1

)]

. (3.4.11)

The function E(x, x̄) is antisymmetric under the interchange of x, x̄

E(x̄, x) = −E(x, x̄) , (3.4.12)

to ensure that E12;34 is a symmetric function of x, x̄, but it possesses no other sym-

metry.

The other two orientations of the Easy integral are then found by permuting

various points and are given by

E13;24 =
1

x2
13x

2
24 (x− x̄)(u− v)

[

uE

(
1

x
,
1

x̄

)

+ v E

(
1

1− x
,

1

1− x̄

)]

, (3.4.13)

E14;23 =
1

x2
13x

2
24 (x− x̄)(1− u)

[

E(1− x, 1− x̄) + uE

(

1− 1

x
, 1− 1

x̄

)]

. (3.4.14)

It is thus enough to have an expression for E(x, x̄) to determine all possible orienta-

tions of the Easy integral. The functional form of E(x, x̄) will be the purpose of the

rest of this section.
5A similar form of the Easy leading singularities, as well as those of the Hard integral discussed

in the next section, was independently obtained by S. Caron-Huot [121].
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3.4.2 The symbol of E(x, x̄)

In this subsection we determine the symbol of E(x, x̄), and in the next section we

describe its uplift to a function. This strategy seems over-complicated in the case at

hand, because E(x, x̄) can in fact directly be obtained in terms of SVHPLs of weight

six from its asymptotic expansion using the method described in section 3.2.3. The

two-step derivation (symbol and subsequent uplift) is included mainly for pedagogical

purposes because it equally applies to the Hard integral and our four-loop example,

where the functions are not writable in terms of SVHPLs only so that a direct method

yet has to be found.

Returning to the Easy integral, we start by writing down the most general tensor

of rank six that

• has all its entries drawn from the set {x, 1− x, x̄, 1− x̄},

• satisfies the first entry condition, i.e. the first factors in each tensor are either

xx̄ or (1− x)(1− x̄),

• is odd under an exchange of x and x̄.

This results in a tensor that depends on 2 · 45/2 = 1024 free coefficients (which we

assume to be rational numbers). Imposing the integrability condition (3.2.9) reduces

the number of free coefficients to 28, which is the number of SVHPLs of weight six

that are odd under an exchange of x and x̄. The remaining free coefficients can be

fixed by matching to the limit u → 0, v → 1, or equivalently x̄ → 0.

In order to take the limit, we drop every term in the symbol containing an entry

1 − x̄ and we replace x̄ → u/x, upon which the singularity is hidden in u. As a

result, every permutation of our ansatz yields a symbol composed of the three letters

{u, x, 1−x}. This tensor can immediately be matched to the symbol of the asymptotic
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expansion of the Easy integral discussed in section 3.3. Explicitly, the limits

x2
13x

2
24 E12;34 → − 1

x2

[

lim
x̄→0

E(x, x̄) + lim
x̄→0

E

(
x

x− 1
,

x̄

x̄− 1

)]

+
1

x
lim
x̄→0

E

(
x

x− 1
,

x̄

x̄− 1

)

(3.4.15)

x2
13x

2
24 E13;24 → −1

x
lim
x̄→0

E

(
1

1− x
,

1

1− x̄

)

(3.4.16)

x2
13x

2
24 E14;23 → 1

x
lim
x̄→0

E(1− x, 1− x̄) (3.4.17)

can be matched with the asymptotic expansions recast as HPLs. All three conditions

are consistent with our ansatz; each of them on its own suffices to determine all

remaining constants. The resulting symbol is a linear combination of 1024 tensors

with entries drawn from the set {x, 1− x, x̄, 1− x̄} and with coefficients {±1, ±2}.
Note that the uniqueness of the uplift procedure for SVHPLs given in section 3.2.3

implies that each asymptotic limit is sufficient to fix the symbol.

3.4.3 The analytic result for E(x, x̄): uplifting from the sym-

bol

In this section we determine the function E(x, x̄) defined in eq. (3.4.11) starting from

its symbol. As the symbol has all its entries drawn from the set {x, 1− x, x̄, 1− x̄},
the function E(x, x̄) can be expressed in terms of the SVHPLs classified in [47].

Additional single-valued terms6 proportional to zeta values can be fixed by again

appealing to the asymptotic expansion of the integral.

We start by writing down an ansatz for E(x, x̄) as a linear combination of weight

six of SVHPLs that is odd under exchange of x and x̄. Note that we have some

freedom w.r.t. the basis for our ansatz. In the following we choose basis elements

containing a single factor of the form La⃗(x). This ensures that all the terms are

linearly independent.

6In principle we cannot exclude at this stage more complicated functions of weight less than six
multiplied by zeta values.
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Next we fix the free coefficients in our ansatz by requiring its symbol to agree with

that of E(x, x̄) determined in the previous section. As we had started from SVHPLs

with the correct symmetries and weight, all coefficients are fixed in a unique way. We

arrive at the following expression for E(x, x̄):

E(x, x̄) = 4L2,4 − 4L4,2 − 2L1,3,2 + 2L2,1,3 − 2L3,1,2 + 4L3,2,0

− 2L2,2,1,0 + 8L3,1,0,0 + 2L3,1,1,0 − 2L2,1,1,1,0

(3.4.18)

For clarity, we suppressed the argument of the L functions and we employed the

compressed notation for HPLs, e.g., L3,2,1 ≡ L0,0,1,0,1,1(x, x̄). The asymptotic limits

of the last expression correctly reproduce the terms proportional to zeta values in

eq. (3.3.7) and the formulae in appendix B.1.

3.4.4 The analytic result for E(x, x̄): the direct approach

Here we quickly give the direct method for obtaining E(x, x̄) explicitly from its asymp-

totics via the method outlined in section 3.2.3.

The asymptotic value of the Easy integral in the permutation E12;34 is given in

appendix B.1. Comparing eq. (B.1.1) with eq. (3.4.15) and further writing log u =

log x+log x̄ and expanding out products of functions we find for the asymptotic value

of E(x, x̄):

E(x, x̄) = 4ζ3H2,1 + 2H2,4 − 2H4,2 +H1,2,3 −H1,3,2 − 2H1,4,0 +H2,1,3 −H3,1,2

+ 2H3,2,0 −H1,3,1,0 +H2,1,2,0 − 2H2,2,0,0 −H2,2,1,0 +H3,1,1,0 + 2H1,2,0,0,0

+H1,2,1,0,0 −H2,1,1,0,0 − 20ζ5H1 + 8ζ3H3 + 2ζ3H1,2

+ log x̄ P (x, log x̄) +O(x̄) ,

(3.4.19)

where P is a polynomial in log x̄ with coefficients that are HPLs in x. From the

discussion in section 3.2.3 we know that there is a unique combination of SVHPLs



CHAPTER 3. LEADING SINGULARITIES / CONFORMAL INTEGRALS 140

with this precise asymptotic behavior, and so we find a natural ansatz for E(x, x̄),

E(x, x̄) = 4ζ3L2,1 + 2L2,4 − 2L4,2 + L1,2,3 − L1,3,2 − 2L1,4,0 + L2,1,3 − L3,1,2 + 2L3,2,0

− L1,3,1,0 + L2,1,2,0 − 2L2,2,0,0 − L2,2,1,0 + L3,1,1,0 + 2L1,2,0,0,0 + L1,2,1,0,0

− L2,1,1,0,0 − 20ζ5L1 + 8ζ3L3 + 2ζ3L1,2 . (3.4.20)

We have lifted this function from its asymptotics in just one limit x̄ → 0 while we

also know two other limits of this function given in eq. (3.3.7) and appendix B.1.

Remarkably, eq. (3.4.20) is automatically consistent with these two limits, giving a

strong indication that it is indeed the right function. Furthermore, eq. (3.4.20) can

then in turn be rewritten in a way that makes the antisymmetry under exchange

of x and x̄ manifest, and we recover eq. (3.4.18). Note also that antisymmetry in

x ↔ x̄ was not input anywhere, and the fact that the resulting function is indeed

antisymmetric is a non-trivial consistency check.

As an aside we also note here that the form of E(x, x̄), expressed in the particular

basis of SVHPLs we chose to work with, is very simple, having only coefficients ±1

or ±2 for the polylogarithms of weight six. Indeed other orientations of E have even

simpler forms, for instance

E(1/x, 1/x̄) = L2,4 − L3,3 − L1,2,3 + L1,3,2 − L1,4,0 − L2,1,3 + L3,1,2 − L4,0,0 + L4,1,0

+ L1,3,0,0 + L1,3,1,0 − L2,1,2,0 + L2,2,1,0 + L3,0,0,0 − L3,1,1,0 − L1,2,1,0,0

− L2,1,0,0,0 + L2,1,1,0,0 + 8ζ3L3 − 2ζ3L1,2 − 6ζ3L2,0 − 4ζ3L2,1 ,

(3.4.21)

with all coefficients of the weight six SVHPLs being ±1, or in the manifestly anti-

symmetric form with all weight six SVHPLs with coefficient +1

E(1/x, 1/x̄) = L2,4 + L1,3,2 + L3,1,2 + L4,1,0 + L1,3,0,0 + L1,3,1,0

+ L2,2,1,0 + L3,0,0,0 + L2,1,1,0,0 + 6ζ3L3 − 2ζ3L2,1.
(3.4.22)
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3.4.5 Numerical consistency tests for E

We have determined the analytic result for the Easy integral relying on the knowledge

of its residues, symbol and asymptotic expansions. In order to check the correctness

of the result, we evaluated E14;23 numerically7 and compared it to a direct numerical

evaluation of the coordinate space integral using FIESTA [122,123].

To be specific, we evaluate the conformally-invariant function x2
13x

2
24 E14;23. Apply-

ing a conformal transformation to send x4 to infinity, the integral takes the simplified

form,

lim
x4→∞

x2
13x

2
24 E14;23 =

1

π6

∫
d4x5d4x6d4x7 x2

13x
2
16

(x2
15x

2
25)x

2
56(x

2
26x

2
36)x

2
67(x

2
17x

2
37)

, (3.4.23)

with only 8 propagators. We use the remaining freedom to fix x2
13 = 1 so that u = x2

12

and v = x2
23. Other numerical values for x2

13 are possible, of course, but we found

that this choice yields relatively stable numerics.

After Feynman parameterization, the integral is only seven-dimensional and can

be evaluated with off-the-shelf software. We generate the integrand with FIESTA and

perform the numerical integration with a stand-alone version of CIntegrate. Using

the algorithm Divonne8, we obtain roughly five digits of precision after five million

function evaluations.

In total, we checked 40 different pairs of values for the cross ratios and we found

very good agreement in all cases. A sample of the numerical checks is shown in

Table 3.1. Note that δ denotes the relative error between the analytic result and the

number obtained by FIESTA,

δ =

∣
∣
∣
∣

Nanalytic −NFIESTA

Nanalytic +NFIESTA

∣
∣
∣
∣
. (3.4.24)

7All polylogarithms appearing in this paper have been evaluated numerically using the
GiNaC [66] and HPL [68] packages.

8Experience shows that Divonne outperforms other algorithms of the Cuba library for problems
roughly this size.
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u v Analytic FIESTA δ

0.1 0.2 82.3552 82.3553 6.6e-7

0.2 0.3 57.0467 57.0468 3.2e-8

0.3 0.1 90.3540 90.3539 5.9e-8

0.4 0.5 37.1108 37.1108 1.9e-8

0.5 0.6 31.9626 31.9626 1.9e-8

0.6 0.2 54.2881 54.2881 6.9e-8

0.7 0.3 42.6519 42.6519 4.4e-8

0.8 0.9 23.0199 23.0199 1.7e-8

0.9 0.5 30.8195 30.8195 2.4e-8

Table 3.1: Numerical comparison of the analytic result for x2
13x

2
24 E14;23 against FIESTA

for several values of the conformal cross ratios.

3.5 The Hard integral

3.5.1 Residues of the Hard integral

To find all the leading singularities we consider each integration sequentially as follows

H12;34 =
x2
34

π6

{∫
d4x6

x2
16x

2
26x

2
36x

2
46

[∫
d4x5 x2

56

x2
15x

2
25x

2
35x

2
45

(∫
d4x7

x2
37x

2
47x

2
57x

2
67

)]}

. (3.5.1)

Let us start with the x7 integration,

∫
d4x7

x2
37x

2
47x

2
57x

2
67

. (3.5.2)

This is simply the off-shell box considered in section 3.1, and so its leading singularities

are (see eq. (3.1.14))

± 1

4λ3456
. (3.5.3)

Next we turn to the x5 integration, which now takes the form

∫
d4x5 x2

56

x2
15x

2
25x

2
35x

2
45λ3456

. (3.5.4)
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There are five factors in the denominator, and we want to cut four of them to com-

pute the leading singularity. The simplest option is to cut the four propagators 1/x2
i5.

Doing so would yield a new Jacobian factor 1/λ1234 (exactly as in the previous subsec-

tion) and freeze λ3456|cut = ±x2
56x

2
34. This latter factor simply cancels the numerator

and we are left with the final x6 integration being that of the box in the Introduction.

Putting everything together, the leading singularity for this choice is

leading singularity #1 of H12;34 = ± 1

64π6 λ21234
. (3.5.5)

Returning to the x5 integration, eq. (3.5.4), we must consider the possibility of

cutting λ3456 and three other propagators. Cutting x2
35 and x2

45 immediately freezes

λ3456|cut = ±x2
56x

2
34 which is canceled by the numerator. Thus it is not possible to cut

these two propagators and λ3456. However, cutting x2
15, x

2
25, x

2
35 and λ3456 is possible

(the only other possibility, i.e. cutting x2
15, x

2
25, x

2
45 and λ3456, gives the same result

by by invariance of the integral under exchange of x3 and x4). Indeed one finds that

when x2
35 = 0,

λ3456 = ±(x2
45x

2
36 − x2

56x
2
34) . (3.5.6)

To compute the leading singularity associated with this pole we need to compute the

Jacobian

J = det

(
∂(x2

15, x
2
25, x

2
35,λ3456)

∂xµ
5

)

, (3.5.7)

As in the box case, it is useful to consider the square of J (on the cut),

J2 = 16 det

⎛

⎝
x2
ij −2xi · ∂λ3456/∂x5

−2xi · ∂λ3456/∂x5 (∂λ3456/∂x5)2

⎞

⎠ . (3.5.8)

The result of the x5 integration is then simply

x2
56

Jx2
45

∣
∣
∣
∣
cut

=
x2
36

Jx2
34

∣
∣
∣
∣
cut

, (3.5.9)

where the second equality follows since x2
56 and x2

45 are to be evaluated on the cut
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(indicated by the vertical line) for which x2
45x

2
36−x2

56x
2
34 = 0. Finally we need to turn

to the remaining x6 integral. We are simply left with

1

16π6

∫
d4x6

x2
16x

2
26x

2
46J

∣
∣
∣
∣
cut

, (3.5.10)

where we note that the x2
36 propagator term has canceled with the numerator in

eq. (3.5.9). So we have no choice left for the quadruple cut as there are only four poles.

In fact on the other cut of the three propagators we find J|cut = 4(x2
14x

2
23−x2

13x
2
24)x

2
36,

and so this brings back the propagator x2
36.

Computing the Jacobian associated with this final integration thus yields the final

result for the leading singularity,

leading singularity #2 of H12;34 = ± 1

64π6 (x2
14x

2
23 − x2

13x
2
24)λ1234

. (3.5.11)

We conclude that the Hard integral can be written as these leading singularities

times pure functions, i.e. it has the form

H12;34 =
1

x4
13x

4
24

[
H(a)(x, x̄)

(x− x̄)2
+

H(b)(x, x̄)

(v − 1)(x− x̄)

]

, (3.5.12)

where H(a),(b) are pure polylogarithmic functions. The pure functions must further-

more satisfy the following properties

H(a)(x, x̄) = H(a)(x̄, x) , H(b)(x, x̄) = −H(b)(x̄, x) , (3.5.13)

H(a)(x, x̄) = H(a)(x/(x− 1), x̄/(x̄− 1)) , H(b)(x, x̄) = H(b)(x/(x− 1), x̄/(x̄− 1)) ,

in order that H12;34 be symmetric in x, x̄ and under the permutation x1 ↔ x2. Fur-

thermore we would expect that H(a)(x, x) = 0 in order to cancel the pole at x − x̄.

In fact it will turn out in this section that even without imposing this condition by

hand we will arrive at a unique result which nevertheless has this particular property.
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By swapping the points around we automatically get

H13;24 =
1

x4
13x

4
24

[
H(a)(1/x, 1/x̄)

(x− x̄)2
+

H(b)(1/x, 1/x̄)

(u− v)(x− x̄)

]

, (3.5.14)

H14;23 =
1

x4
13x

4
24

[
H(a)(1− x, 1− x̄)

(x− x̄)2
+

H(b)(1− x, 1− x̄)

(1− u)(x− x̄)

]

. (3.5.15)

3.5.2 The symbols of H(a)(x, x̄) and H(b)(x, x̄)

In order to determine the pure functions contributing to the Hard integral, we proceed

just like for the Easy integral and first determine the symbol. For the Hard integral

we have to start from two ansätze for the symbols S[H(a)(x, x̄)] and S[H(b)(x, x̄)].

While both pure functions are invariant under the exchange x1 ↔ x2, S[H(a)] must

be symmetric under the exchange of x, x̄ and S[H(b)] has to be antisymmetric, cf.

eq. (3.5.13). Going through exactly the same steps as for E we find that the single-

variable limits of the symbols cannot be matched against the data from the asymptotic

expansions using only entries from the set {x, 1−x, x̄, 1− x̄}. We thus need to enlarge

the ansatz.

Previously, the letter x − x̄ ∼ λ1234 has been encountered in ref. [106, 124] in

a similar context. We therefore consider all possible integrable symbols made from

the letters {x, 1 − x, x̄, 1 − x̄, x − x̄} which obey the initial entry condition (3.2.13).

In the case of the Easy integral, the integrability condition only implied that terms

depending on both x and x̄ come from products of single-variable functions. Here,

on the other hand, the condition is more non-trivial since, for example,

d log
x

x̄
∧ d log(x− x̄) = d log x ∧ d log x̄ ,

d log
1− x

1− x̄
∧ d log(x− x̄) = d log(1− x) ∧ d log(1− x̄) .

(3.5.16)

We summarize the dimensions of the spaces of such symbols, split according to parity

under exchange of x and x̄, in Table 3.2.

Given our ansatz for the symbols of the functions we are looking for, we then

match against the twist two asymptotics as described previously. We find a unique

solution for the symbols of both H(a) and H(b) compatible with all asymptotic limits.
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Weight Even Odd

1 2 0

2 3 1

3 6 3

4 12 9

5 28 24

6 69 65

Table 3.2: Dimensions of the spaces of integrable symbols with entries drawn from
the set {x, 1− x, x̄, 1− x̄, x− x̄} and split according to the parity under exchange of
x and x̄.

Interestingly, the limit of H13;24 leaves one undetermined parameter in S[H(a)], which

we may fix by appealing to another limit. In the resulting symbols, the letter x − x̄

occurs only in the last two entries of S[H(a)] while it is absent from S[H(b)]. Although

we did not impose this as a constraint, S[H(a)] goes to zero when x → x̄, which is

necessary since the integral cannot have a pole at x = x̄.

3.5.3 The analytic results for H(a)(x, x̄) and H(b)(x, x̄)

In this section we integrate the symbol of the Hard integral to a function, i.e. we

determine the full answers for the functions H(a)(x, x̄) and H(b)(x, x̄) that contribute

to the Hard integral H12;34.

In the previous section we already argued that the symbol of H(b)(x, x̄) has all its

entries drawn form the set {x, 1− x, x̄, 1− x̄}, and so it is reasonable to assume that

H(b)(x, x̄) can be expressed in terms of SVHPLs only. We may therefore proceed by

lifting directly from the asymptotic form as we did in section 3.4.4 for the Easy inte-

gral. By comparing the form of H13;24, eq. (3.5.14), with its asymptotic value (3.1.14)

we can read off the asymptotic form of H(1/x, 1/x̄). Writing log u as log x + log x̄,

expanding out all the functions and neglecting log x̄ terms, we can the lift directly to
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the full function by simply converting HPLs to SVHPLs. In this way we arrive at

H(b)(1/x, 1/x̄) = 2L2,4 − 2L3,3 − 2L1,1,4 − 2L1,4,0 + 2L1,4,1 − 2L2,3,1 + 2L3,1,2

− 2L4,0,0 + 2L4,1,0 + 2L1,1,1,3 + 2L1,1,3,0 + 2L1,3,0,0 − 2L1,3,1,1

− 2L2,1,1,2 + 2L2,1,2,1 + 2L3,0,0,0 − 2L3,1,1,0 − 2L1,1,1,2,1 − 2L1,1,2,1,0

+ 2L1,1,2,1,1 − 2L1,2,1,0,0 + 2L1,2,1,1,0 − 2L2,1,0,0,0 + 2L2,1,1,0,0

+ 16ζ3L3 − 16ζ3L2,1 .

(3.5.17)

Other orientations although still quite simple do not all share the property that they

only have coefficients ±2. Using the basis of SVHPLs that makes the parity under

exchange of x and x̄ explicit, we can write the last equation in the equivalent form

H(b)(x, x̄) = 16L2,4 − 16L4,2 − 8L1,3,2 − 8L1,4,1 + 8L2,1,3 − 8L2,2,2 + 8L2,3,1 − 8L3,1,2

+ 16L3,2,0 + 8L3,2,1 − 8L4,1,1 + 4L1,2,2,1 − 8L1,3,1,1 − 4L2,1,1,2 + 8L2,1,2,1

− 8L2,2,1,0 − 4L2,2,1,1 + 8L3,1,1,0 − 4L1,1,2,1,1 − 24L2,1,1,1,0 . (3.5.18)

Next, we turn to the function H(a)(x, x̄). As the symbol of H(a)(x, x̄) contains the

entry x − x̄, it cannot be expressed through SVHPLs only. Single-valued functions

whose symbols have entries drawn form the set {x, 1 − x, x̄, 1 − x̄, x − x̄} have been

studied up to weight four in ref. [106], and a basis for the corresponding space of

functions was constructed. The resulting single-valued functions are combinations

of logarithms of x and x̄ and multiple polylogarithms G(a1, . . . , an; 1), with ai ∈
{0, 1/x, 1/x̄}. Note that the harmonic polylogarithms form a subalgebra of this class

of functions, because we have, e.g.,

G

(

0,
1

x
,
1

x
; 1

)

= H(0, 1, 1; x) . (3.5.19)

This class of single-valued functions thus provides a natural extension of the SVHPLs

we have encountered so far. In the following we show how we can integrate the symbol

of H(a)(x, x̄) in terms of these functions. The basic idea is the same as for the case
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of the SVHPLs: we would like to write down the most general linear combination

of multiple polylogarithms of this type and fix their coefficients by matching to the

symbol and the asymptotic expansion of H(a)(x, x̄). Unlike the SVHPL case, however,

some of the steps are technically more involved, and we therefore discuss these points

in detail.

Let us denote by G the algebra generated by log x and log x̄ and by multiple

polylogarithms G(a1, . . . , an; 1), with ai ∈ {0, 1/x, 1/x̄}, with coefficients that are

polynomials in multiple zeta values. Note that without loss of generality we may

assume that an ̸= 0. In the following we denote by G± the linear subspaces of G of

the functions that are respectively even and odd under an exchange of x and x̄. Our

first goal will be to construct a basis for the algebra G, as well as for its even and

odd subspaces. As we know the generators of the algebra G, we automatically know

a basis for the underlying vector space for every weight. It is however often desirable

to choose a basis that “recycles” as much as possible information from lower weights,

i.e. we would like to choose a basis that explicitly includes all possible products of

lower weight basis elements. Such a basis can always easily be constructed: indeed,

a theorem by Radford [125] states that every shuffle algebra is isomorphic to the

polynomial algebra constructed out of its Lyndon words. In our case, we immediately

obtain a basis for G by taking products of log x and log x̄ and G(a1, . . . , an; 1), where

(a1, . . . , an) is a Lyndon word in the three letters {0, 1/x, 1/x̄}. Next, we can easily

construct a basis for the eigenspaces G± by decomposing each (indecomposable) basis

function into its even and odd parts. In the following we use the shorthands

G±
m1,...,mk

(x1, . . . , xk) =
1

2
G
(

0, . . . , 0
︸ ︷︷ ︸

m1−1

,
1

x1
, . . . , 0, . . . , 0

︸ ︷︷ ︸

mk−1

,
1

xk
; 1
)

± (x ↔ x̄) . (3.5.20)

In doing so we have seemingly doubled the number of basis functions, and so not all

the eigenfunctions corresponding to Lyndon words can be independent. Indeed, we

have for example

G+
1,1(x, x̄) =

1

2
G+

1 (x)
2 − 1

2
G−

1 (x)
2 . (3.5.21)
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It is easy to check this relation by computing the symbol of both sides of the equa-

tion. Similar relations can be obtained without much effort for higher weight func-

tions. The resulting linearly independent set of functions are the desired bases for

the eigenspaces. We can now immediately write down the most general linear com-

bination of elements of weight six in G+ and determine the coefficients by matching

to the symbol of H(a)(x, x̄). As we are working with a basis, all the coefficients are

fixed uniquely.

At this stage we have determined a function in G+ whose symbol matches the

symbol of H(a)(x, x̄). We have however not yet fixed the terms proportional to zeta

values. We start by parameterizing these terms by writing down all possible products

of zeta values and basis functions in G+. Some of the free parameters can immediately

be fixed by requiring the function to vanish for x = x̄ and by matching to the

asymptotic expansion. Note that our basis makes it particularly easy to compute the

leading term in the limit x̄ → 0, because

lim
x̄→0

G±
m⃗(. . . , x̄, . . .) = 0 . (3.5.22)

In other words, the small u limit can easily be approached by dropping all terms

which involve (non-trivial) basis functions that depend on x̄. The remaining terms

only depend on log x̄ and harmonic polylogarithms in x. However, unlike for SVHPLs,

matching to the asymptotic expansions does not fix uniquely the terms proportional

to zeta values. The reason for this is that, while in the SVHPL case we could rely on

our knowledge of a basis for the single-valued subspace of harmonic polylogarithms,

in the present case we have been working with a basis for the full space, and so the

function we obtain might still contain non-trivial discontinuities. In the remainder of

this section we discuss how on can fix this ambiguity.

In ref. [106] a criterion was given that allows one to determine whether a given

function is single-valued. In order to understand the criterion, let us consider the alge-

bra G generated by multiple polylogarithmsG(a1, . . . , an; an+1), with ai∈ {0, 1/x, 1/x̄}
and an+1∈{0, 1, 1/x, 1/x̄}, with coefficients that are polynomials in multiple zeta val-

ues. Note that G contains G as a subalgebra. The reason to consider the larger
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algebra G is that G carries a Hopf algebra structure9 [126], i.e. G can be equipped

with a coproduct ∆ : G → G ⊗ G. Consider now the subspace GSV of G consisting of

single-valued functions. It is easy to see that GSV is a subalgebra of G. However, it

is not a sub-Hopf algebra, but rather GSV is a G-comodule, i.e. ∆ : GSV → GSV ⊗ G.
In other words, when acting with the coproduct on a single-valued function, the first

factor in the coproduct must itself be single-valued. As a simple example, we have

∆(L2) =
1

2
L0 ⊗ log

1− x

1− x̄
+

1

2
L1 ⊗ log

x̄

x
. (3.5.23)

Note that this is a natural extension of the first entry condition discussed in sec-

tion 1.3. This criterion can now be used to recursively fix the remaining ambiguities

to obtain a single-valued function. In particular, in ref. [106] an explicit basis up to

weight four was constructed for GSV . We extended this construction and obtained a

complete basis at weight five, and we refer to ref. [106] about the construction of the

basis. All the remaining ambiguities can then easily be fixed by requiring that after

acting with the coproduct, the first factor can be decomposed into the basis of GSV

up to weight five. We then finally arrive at

H(a)(x, x̄) = H(x, x̄)− 28

3
ζ3L1,2 + 164ζ3L2,0 +

136

3
ζ3L2,1 −

160

3
L3L2,1 − 66L0L1,4

− 148

3
L0L2,3 +

64

3
L2L3,1 +

52

3
L0L3,2 + 16L1L3,2 + 36L0L4,1 + 64L1L4,1

+
70

3
L0L1,2,2 + 24L0L1,3,1 +

26

3
L1L1,3,1 − 8L2L2,1,1 + 64L0L2,1,2

− 58

3
L0L2,2,0 − 4L0L2,2,1 +

50

3
L1L2,2,1 − 12L0L3,1,0 −

88

3
L0L3,1,1

+ 18L1L3,1,1 −
32

3
L0L1,1,2,1 − 18L0L1,2,1,1 +

166

3
L0L2,1,1,0 − 8L0L2,1,1,1

+ 328ζ3L3 + 32L3
2 − 64L2L4 .

(3.5.24)

The function H(x, x̄) is a single-valued combination of multiple polylogarithms that

9Note that we consider a slightly extended version of the Hopf algebra considered in ref. [126]
that allows us to include consistently multiple zeta values of even weight, see ref. [63, 64].
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cannot be expressed through SVHPLs alone,

H(x, x̄) = −128G+
4,2̄ − 512G+

5,1̄ − 64G+
3,1,2̄ + 64G+

3,1̄,2 − 64G+
3,1̄,2̄ − 128G+

3,2̄,1̄

+ 64G+
4,1,1̄ − 64G+

4,1̄,1 − 448G+
4,1̄,1̄ + 64G+

2,1̄,2,1 + 64G+
2,1̄,2̄,1̄ + 64G+

2,2,1,1̄ + 64G+
2,2,1̄,1

− 64G+
2,2,1̄,1̄ + 128G+

2,2̄,1,1 + 128G+
2,2̄,1̄,1̄ + 256G+

3,1,1,1̄ + 128G+
3,1,1̄,1 − 128G+

3,1,1̄,1̄

+ 192G+
3,1̄,1,1 − 64G+

3,1̄,1,1̄ − 64G+
3,1̄,1̄,1 + 192G+

3,1̄,1̄,1̄ + 128H+
2,4 − 128H+

4,2

+
640

3
H+

2,1,3 −
64

3
H+

2,3,1 −
256

3
H+

3,1,2 + 64H+
2,1,1,2 − 64H+

2,2,1,1 + 64L0G
+
3,2̄ (3.5.25)

+ 256L0G
+
4,1̄ + 32L0G

+
2,1,2̄ + 64L0G

+
2,2,1̄ + 96L0G

+
3,1,1̄ + 32L0G

+
3,1̄,1 + 96L0G

+
3,1̄,1̄

− 64L0G
+
2,1,1,1̄ + 64L0G

+
2,1̄,1̄,1̄ − 32L1G

+
3,2̄ − 128L1G

+
4,1̄ − 16L1G

+
2,1,2̄

− 32L1G
+
2,2,1̄ − 80L1G

+
3,1,1̄ − 16L1G

+
3,1̄,1 − 16L1G

+
3,1̄,1̄ − 64L2G

−
2,1̄,1̄ + 64L4G

−
1,1̄

+ 32L2,2G
−
1,1̄ −

32

3
H+

2 H
+
2,2 − 64H+

2 H
+
2,1,1 − 128H+

2 H
+
4 − 64H−

1 L0G
−
2,1̄,1̄

− 32L2
0G

+
3,1̄ − 32L2

0G
+
2,1̄,1̄ + 32L2

0G
+
1,1,1,1̄ + 32L1L0G

+
3,1̄ + 16L1L0G

+
2,1,1̄

+ 16L1L0G
+
2,1̄,1̄ −

80

3
H−

1 L0L2,2 − 48H−
1 L0L2,1,1 + 12H−

1 L1L2,2 + 16L2
0H

+
2,2

+ 32L2
0H

+
2,1,1 − 64H−

1 L4L0 + 16H−
1 L1L4 + 64L3G

+
1,1,1̄ −

640

3
H−

3 H
−
2,1

+ 64(H−
2,1)

2 + 128(H−
3 )

2 + 32L0L2G
−
2,1̄ − 32L0L2G

−
1,1,1̄ − 16L1L2G

−
2,1̄

+
16

3
L0L2H

−
2,1 + 16H−

1 L2L2,1 −
112

3
H+

2 L0L2,1 − 8H+
2 L1L2,1 − 32H−

3 L0L2

− 48H−
1 L3L2 + 32H+

2 L0L3 + 16H+
2 L1L3 + 32H−

1 L
2
0G

−
2,1̄ − 16H−

1 L1L0G
−
2,1̄

+
16

3
L3
0G

+
2,1̄ +

16

3
L3
0G

+
1,1,1̄ − 8L1L

2
0G

+
2,1̄ − 8L1L

2
0G

+
1,1,1̄ +

16

3
H−

1 L
2
0H

−
2,1

− 16(H−
1 )

2L0L2,1 − 32H−
1 H

−
3 L

2
0 +

8

3
(H−

1 )
2L3L0 − 12(H−

1 )
2L1L3 + 28H+

2 L
2
2

+
368(H+

2 )
3

9
− 16L2

0L2G
−
1,1̄ − 8L0L1L2G

−
1,1̄ +

56

3
H−

1 H
+
2 L0L2 − 8H−

1 H
+
2 L1L2

+ 8(H−
1 )

2L2
2 + 8(H+

2 )
2L2

0 + 8(H+
2 )

2L0L1 +
28

3
(H−

1 )
2H+

2 L
2
0 − 4(H−

1 )
2H+

2 L0L1

− 96H−
2 (H

−
1 )

3L0 +
160

3
(H−

1 )
3L0L2 +

52

3
H−

1 L
3
0L2 + 4H−

1 L0L
2
1L2
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+ 4H−
1 L

2
0L1L2 +H+

2 L0L
3
1 +

2

3
H+

2 L
2
0L

2
1 − 8H+

2 L
3
0L1 +

148

3
(H−

1 )
4L2

0

+
10

3
(H−

1 )
2L4

0 + 5(H−
1 )

2L2
0L

2
1 −

10

3
(H−

1 )
2L3

0L1 − 128ζ3G
+
2,1̄ − 128ζ3G

+
1,1,1̄

+
16

3
ζ3(H

−
1 )

2L0 + 24ζ3(H
−
1 )

2L1 +
64

3
ζ3H

−
1 L2 ,

where we used the obvious shorthand

H±
m⃗ ≡ 1

2
Hm⃗(x)± (x ↔ x̄) . (3.5.26)

and similarly for G±
m⃗. In addition, for G±

m⃗ the position of x̄ is indicated by the bars

in the indices, e.g.,

G±
1,2̄,3̄ ≡ G±

1,2,3(x, x̄, x̄) . (3.5.27)

Note that we have expressed H(x, x̄) entirely using the basis of G+ constructed at the

beginning of this section. As a consequence, all the terms are linearly independent

and there can be no cancellations among different terms.

3.5.4 Numerical consistency checks for H

In the previous section we have determined the analytic result for the Hard inte-

gral. In order to check that our method indeed produced the correct result for the

integral, we have compared our expression numerically against FIESTA. Specifically,

we evaluate the conformally-invariant function x4
13x

4
24 H13;24. Applying a conformal

transformation to send x4 to infinity, the integral takes the simplified form,

lim
x4→∞

x4
13x

4
24 H13;24 =

1

π6

∫
d4x5d4x6d4x7 x4

13x
2
57

(x2
15x

2
25x

2
35)x

2
56(x

2
36)x

2
67(x

2
17x

2
27x

2
37)

, (3.5.28)

with 9 propagators. As we did for E14;23, we use the remaining freedom to fix x2
13 = 1

so that u = x2
12 and v = x2

23, and perform the numerical evaluation using the same

setup. We compare at 40 different values, and find excellent agreement in all cases.

A small sample of the numerical checks is shown in Table 3.3.
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u v Analytic FIESTA δ

0.1 0.2 269.239 269.236 6.4e-6

0.2 0.3 136.518 136.518 1.9e-6

0.3 0.1 204.231 204.230 1.3e-6

0.4 0.5 61.2506 61.2505 5.0e-7

0.5 0.6 46.1929 46.1928 3.5e-7

0.6 0.2 82.7081 82.7080 7.4e-7

0.7 0.3 57.5219 57.5219 4.7e-7

0.8 0.9 24.6343 24.6343 2.0e-7

0.9 0.5 34.1212 34.1212 2.6e-7

Table 3.3: Numerical comparison of the analytic result for x4
13x

4
24 H13;24 against

FIESTA for several values of the conformal cross ratios.

3.6 The analytic result for the three-loop correla-

tor

In the previous sections we computed the Easy and Hard integrals analytically. Using

eq. (3.1.8), we can therefore immediately write down the analytic answer for the three-

loop correlator of four stress tensor multiplets. We find

x2
13 x

2
24 F3 =

6

x− x̄

[

f (3)(x) + f (3)

(

1− 1

x

)

+ f (3)

(
1

1− x

)]

+
2

(x− x̄)2
f (1)(x)

[

v f (2)(x) + f (2)

(

1− 1

x

)

+ u f (2)

(
1

1− x

)] (3.6.1)

+
4

x− x̄

[
1

v − 1
E(x) +

v

v − 1
E

(
x

x− 1

)

+
1

1− u
E(1− x)

+
u

1− u
E

(

1− 1

x

)

+
u

u− v
E

(
1

x

)

+
v

u− v
E

(
1

1− x

)]

+
1

(x− x̄)2

[

(1 + v)H(a)(x) + (1 + u)H(a) (1− x) + (u+ v)H(a)

(
1

x

)]
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+
1

x− x̄

[
v + 1

v − 1
H(b)(x) +

1 + u

1− u
H(b) (1− x) +

u+ v

u− v
H(b)

(
1

x

)]

.

The pure functions appearing in the correlator are defined in eqs. (3.2.3), (3.4.18),

(3.5.17) and (3.5.24). For clarity, we suppressed the dependence of the pure functions

on x̄, i.e. we write f (L)(x) ≡ f (L)(x, x̄) and so on. All the pure functions can

be expressed in terms of SVHPLs, except for H(a) which contains functions whose

symbols involve x− x̄ as an entry. We checked that these contributions do not cancel

in the sum over all contributions to the correlator.

3.7 A four-loop example

In this section we will discuss a four-loop integral to illustrate how our techniques

can be applied at higher loops. The example we consider contributes to the four-

loop four-point function of stress-tensor multiplets in N = 4 SYM. Specifically, we

consider the Euclidean, conformal, four-loop integral,

I(4)14;23 =
1

π8

∫
d4x5d4x6d4x7d4x8x2

14x
2
24x

2
34

x2
15x

2
18x

2
25x

2
26x

2
37x

2
38x

2
45x

2
46x

2
47x

2
48x

2
56x

2
67x

2
78

=
1

x2
13x

2
24

f(u, v) , (3.7.1)

where the cross ratios u and v are defined by eq. (3.1.11). As we will demonstrate in

the following sections, this integral obeys a second-order differential equation whose

solution is uniquely specified by imposing single-valued behavior, similar to the gen-

eralized ladders considered in ref. [111].

The four-loop contribution to the stress-tensor four-point function in N = 4 SYM

contains some integrals that do not obviously obey any such differential equations,

and with the effort presented here we also wanted to learn to what extent the two-step

procedure of deriving symbols and subsequently uplifting them to functions can be

repeated for those cases. Our results are encouraging: the main technical obstacle is

obtaining sufficient data from the asymptotic expansions; we show that this step is

indeed feasible, at least for I(4), and present the results in section 3.7.1. Ultimately

we find it simpler to evaluate I(4) by solving a differential equation, and in this case
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the asymptotic expansions provide stringent consistency checks.

3.7.1 Asymptotic expansions

Let us first consider the limits of the four-loop integral (3.7.1) and its point per-

mutations for x12, x34 → 0. We derive expressions for its asymptotic expansion in

the limit where u → 0, v → 1 similar to those for the Easy and Hard integrals

obtained in section 3.3. The logarithmic terms can be fully determined, while the

non-logarithmic part of the expansion requires four-loop IBP techniques that allow

us to reach spin 15. This contains enough information to fix the ζn log
0(u) terms

(important for beyond-the-symbol contributions) while the purely rational part of

the asymptotic series remains partially undetermined. However, our experience with

Easy and Hard has shown that each of the three coincidence limits is (almost) suffi-

cient to pin down the various symbols. Inverting the integrals from one orientation to

another ties non-logarithmic terms in one expansion to logarithmic ones in another,

so that we do in fact command over much more data than it superficially seems. It

is also conceivable to take into account more than the lowest order in u.

We start by investigating the asymptotic expansion of the integral I(4)14;23 whose

coincidence limit x12, x34 → 0 diverges as log2 u. There are three contributing regions:

while in the first two regions the original integral factors into a product of two two-

loop integrals or a one-loop integral and a trivial three-loop integral, the third part

corresponds to the four-loop ‘hard’ region in which the original integral is simply

expanded in the small distances. The coefficients of the logarithmically divergent

terms in the asymptotic expansion, i.e. the coefficients of log2 u and log u, can be

worked out from the first two regions alone. It is easy to reach high powers in x and

we obtain a safe match onto harmonic series of the type (3.3.2) with i > 1. Similar

to the case of the Easy and Hard integrals discussed in section 3.3, we can sum up

the harmonic sums in terms of HPLs. Note that the absence of harmonic sums with

i = 1 implies the absence of HPLs of the form H1,...(x).

In the hard region, we have explicitly worked out the contribution from spin zero

through eight, i.e., up to and including terms of O(x8). By what has been said above
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about the form of the series, this amount of data is sufficient to pin down the terms

involving zeta values, while we cannot hope to fix the purely rational part where the

dimension of the ansatz is larger than the number of constraints we can obtain. The

linear combination displayed below was found from the limit x̄ → 0 of the symbol

of the four-loop integral derived in subsequent sections. Its expansion around x = 0

reproduces the asymptotic expansion of the integral up to O(x8). We find

x2
13 x

2
24 I

(4)
14;23 = (3.7.2)

1

2x
log2 u

[

H2,1,3−H2,3,1 +H3,1,2−H3,2,1 + 2H2,1,1,2 − 2H2,2,1,1 + ζ3(6H3 + 6H2,1)
]

+

1

x
log u

[

−4H2,1,4+4H2,4,1−3H3,1,3+3H3,3,1−3H4,1,2+3H4,2,1−4H2,1,1,3−4H2,1,2,2

+4H2,2,2,1+4H2,3,1,1−2H3,1,1,2+2H3,2,1,1+ζ3(−18H4 − 8H2,2 − 2H3,1 + 8H2,1,1)
]

+

1

x

[

10H2,1,5 + 2H2,2,4 − 2H2,3,3 − 10H2,5,1 + 8H3,1,4 − 8H3,4,1 + 6H4,1,3 − 6H4,3,1

+ 6H5,1,2−6H5,2,1+8H2,1,1,4+6H2,1,2,3+8H2,1,3,2−2H2,1,4,1+2H2,2,2,2−4H2,2,3,1

− 4H2,3,1,2−10H2,3,2,1−4H2,4,1,1+4H3,1,1,3+6H3,1,2,2−6H3,2,2,1−4H3,3,1,1+4H2,1,1,2,2

− 4H2,1,2,2,1 − 4H2,2,1,1,2 + 4H2,2,2,1,1 + ζ3(36H5 + 8H2,3 + 12H3,2 − 12H4,1 − 4H2,1,2

− 16H2,2,1 − 8H3,1,1) + ζ5(10H3 + 10H2,1)
]

+O(u) .

Next we turn to the asymptotic expansion of the orientation I(4)12;34. Here the Euclidean

coincidence limit x12, x34 → 0 is finite, and thus the only region we need to analyze

is the four-loop hard region, for which we have determined the asymptotic expansion

up to and including terms of O(x15). Just like for the non-logarithmic part in the

asymptotic expansion of I(4)14;23, eq. (3.7.2), we have fixed the terms proportional to

zeta values by matching an ansatz in terms of HPLs onto this data, and once again,

the terms not containing zeta values are taken from the relevant limit of the symbol.

We find

x2
13 x

2
24 I

(4)
12;34 = (3.7.3)
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1

x

[

4H1,3,4−4H1,5,2+2H1,1,2,4−2H1,1,4,2+2H1,2,1,4−2H1,2,3,2+2H1,3,1,3+2H1,3,3,1

−2H1,4,1,2−2H1,5,1,1+H1,1,2,1,3+H1,1,2,3,1−H1,1,3,1,2−H1,1,3,2,1 +H1,2,1,1,3 +H1,2,1,3,1

−H1,2,2,1,2 +H1,2,2,2,1−2H1,2,3,1,1 +H1,3,1,2,1−H1,3,2,1,1 +H1,2,1,1,2,1 −H1,2,1,2,1,1+

ζ3(8H1,1,3 − 8H1,2,2 + 4H1,1,2,1 − 4H1,2,1,1) + 70 ζ7H1

]

+O(u) .

The expansion around x = 0 of this expression reproduces the asymptotic expansion

of the integral up to O(x15).

The most complicated integrals appearing in the asymptotic expansion of I(4)14;23 and

I(4)12;34 are four-loop two-point dimensionally regularized (in position space) integrals

which belong to the family of integrals contributing to the evaluation of the five-loop

contribution to the Konishi anomalous dimension [112],

G(a1, . . . , a14) =

∫
ddx6ddx7ddx8ddx9

(x2
16)

a1(x2
17)

a2(x2
18)

a3(x2
19)

a4(x2
6)

a5(x2
7)

a6(x2
8)

a7

× 1

(x2
9)

a8(x2
67)

a9(x2
68)

a10(x2
69)

a11(x2
78)

a12(x2
79)

a13(x2
89)

a14
, (3.7.4)

with various integer indices a1, . . . , a14 and d = 4− 2ϵ.

The complexity of the IBP reduction to master integrals is determined, in a first

approximation, by the number of positive indices and the maximal deviation from

the corner point of a sector, which has indices equal to 0 or 1 for non-positive and

positive indices, correspondingly. This deviation can be characterized by the number
∑

i∈ν+
(ai−1)−

∑

i∈ν−
ai where ν± are sets of positive (negative) indices. So the most

complicated (for an IBP reduction) integrals appearing in the contribution of spin s

to the asymptotic expansion in the short-distance limit have nine positive indices and

the deviation from the corner point is equal to 2s− 2. It was possible to get results

up to spin 15.

As in ref. [112] the IBP reduction was performed by the c++ version of the code

FIRE [117]. The master integrals of this family either reduce, via a dual transfor-

mation, to the corresponding momentum space master integrals [127, 128] or can be

taken from ref. [112]. To arrive at contributions corresponding to higher spin values,

FIRE was combined with a recently developed alternative code to solve IBP relations
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LiteRed [129] based on the algebraic properties of IBP relations revealed in ref. [130].

(See ref. [131] where this combination was presented within the Mathematica version

of FIRE.)

3.7.2 A differential equation

We can use the magic identity [22] on the two-loop ladder subintegral

I(2)(x1, x2, x4, x7) = h14;27 =
1

π4

∫
d4x5d4x6x2

24

x2
15x

2
25x

2
26x

2
45x

2
46x

2
67x

2
56

. (3.7.5)

The magic identity reads

I(2)(x1, x2, x4, x7) = I(2)(x2, x1, x7, x4) , (3.7.6)

and using it on the four-loop integral we find

I(4)14;23 =
1

π4

∫
d4x7d4x8

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78

I(2)(x1, x2, x4, x7)

=
1

π4

∫
d4x7d4x8

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78

I(2)(x2, x1, x7, x4)

=
1

π8

∫
d4x5d4x6d4x7d4x8x2

17x
2
14x

2
34

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78x

2
25x

2
15x

2
16x

2
75x

2
76x

2
64x

2
56

. (3.7.7)

The resulting integral (3.7.7) is ‘boxable’, i.e. we may apply the Laplace operator

at the point x2. The only propagator which depends on x2 is the one connected to

the point x5 and we have

✷2
1

x2
25

= −4π2δ4(x25) . (3.7.8)

The effect of the Laplace operator is therefore to reduce the loop order by one [22].

Thus on the full integral I(4) we have

✷2I
(4)
14;23 = − 4

π6

∫
d4x6d4x7d4x8x2

17x
2
14x

2
34

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78x

2
12x

2
16x

2
72x

2
76x

2
64x

2
26

= −4
x2
14

x2
12x

2
24

E14;23 , (3.7.9)
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where we have recognized the Easy integral,

E14;23 =
1

π6

∫
d4x6d4x7d4x8x2

34x
2
24x

2
17

x2
18x

2
37x

2
38x

2
47x

2
48x

2
78x

2
16x

2
72x

2
76x

2
64x

2
26

=
1

x2
13x

2
24

fE(u, v) . (3.7.10)

The differential equation (3.7.9) becomes an equation for the function f ,

✷2
1

x2
13x

2
24

f(u, v) = −4
x2
14

x2
12x

2
13x

4
24

fE(u, v) . (3.7.11)

Applying the chain rule we obtain the following equation in terms of u and v,

∆(2)f(u, v) = −4

u
fE(u, v) , (3.7.12)

where

∆(2) = 4[2(∂u + ∂v) + u∂2u + v∂2v − (1− u− v)∂u∂v] . (3.7.13)

In terms of (x,x̄) we have

xx̄∂x∂x̄f̂(x, x̄) = −f̂E(x, x̄) , (3.7.14)

where

f̂(x, x̄) = −(x− x̄)f(u, v) (3.7.15)

and similarly for f̂E. Note that f̂(x, x̄) = −f̂(x̄, x). Now we recall that the function

fE(u, v) defined by eq. (3.7.10) in the orientation E14;23 is of the form

fE(u, v) =
1

(x− x̄)(1− xx̄)

[

E(1− x, 1− x̄) + xx̄E
(

1− 1

x
, 1− 1

x̄

)]

. (3.7.16)

Hence we find the following equation for f̂ ,

(1− xx̄)xx̄∂x∂x̄f̂(x, x̄) = −
[

E(1− x, 1− x̄) + xx̄E
(

1− 1

x
, 1− 1

x̄

)]

. (3.7.17)

Without examining the equation in great detail we can immediately make the follow-

ing observations about f̂ .
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• The function f̂ is a pure function of weight eight. From eq. (3.7.15) the only

leading singularity of the four-loop integral I(4) is therefore of the 1/(x − x̄)

type, just as for the ladders.

• The final entries of the symbol of f̂(x, x̄) can be written as functions only of

x or of x̄, but not both together. This follows because the right-hand side

of eq. (3.7.17) contains only functions of weight six, whereas there would be

a contribution of weight seven if the final entries could not be separated into

functions of x or x̄ separately.

• The factor (1 − xx̄) on the left-hand side implies that the next-to-final entries

in the symbol of f̂(x, x̄) contain the letter (1− xx̄).

In ref. [111], slightly simpler, but very similar, equations were analyzed for a class

of generalized ladder integrals. The analysis of ref. [111] can be adapted to the case

of the four-loop integral I(4) and, as in ref. [111], the solution to the equation (3.7.17)

is uniquely determined by imposing single-valued behavior on f̂ .

First of all we note that any expression of the form h(x)− h(x̄) obeys the homo-

geneous equation and antisymmetry under the exchange of x and x̄ and hence can be

added to any solution of eq. (3.7.17). However, the conditions of single-valuedness,

[discx − discx̄]f̂(x, x̄) = 0 , [disc1−x − disc1−x̄]f̂(x, x̄) = 0 , (3.7.18)

and that 0 and 1 are the only singular points, fix this ambiguity.

Let us see how the ambiguity is fixed. Imagine that we have a single-valued

solution and we try to add h(x)−h(x̄) to it so that it remains a single-valued solution.

Then the conditions (3.7.18) on the discontinuities tell us that h can have no branch

cuts at x = 0 or x = 1. Since these are the only places that the integral has any

singularities, we conclude it has no branch cuts at all. Since the only singularities

of the integral are logarithmic branch points, h has no singularities at all and the

only allowed possibility is that h is constant, which drops out of the combination

h(x)−h(x̄). Thus there is indeed a unique single-valued solution to eq. (3.7.17). The

argument we have just outlined is identical to the one used in ref. [111] to solve for
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the generalized ladders.

A direct way of obtaining the symbol of the single-valued solution to eq. (3.7.17)

is to make an ansatz of weight eight from the five letters

{x, 1− x, x̄, 1− x̄, 1− xx̄} , (3.7.19)

and impose integrability and the initial entry condition. Then imposing that the

differential equation is satisfied directly at symbol level leads to a unique answer.

3.7.3 An integral solution

Now let us look at the differential equation (3.7.17) in detail and construct the single-

valued solution. It will be convenient to organize the right-hand side of the differential

equation (3.7.17) according to symmetry under x ↔ 1/x. We define

E+(x, x̄) =
1

2

[

E(1− x, 1− x̄) + E
(

1− 1

x
, 1− 1

x̄

)]

,

E−(x, x̄) =
1

2

[

E(1− x, 1− x̄)− E
(

1− 1

x
, 1− 1

x̄

)]

. (3.7.20)

Then the differential equation reads

(1− xx̄)xx̄∂x∂x̄f̂(x, x̄) = −(1− xx̄)E−(x, x̄)− (1 + xx̄)E+(x, x̄) . (3.7.21)

We may now split the equation (3.7.21) into two parts

xx̄∂x∂x̄fa(x, x̄) = −E−(x, x̄) , (3.7.22)

(1− xx̄)xx̄∂x∂x̄fb(x, x̄) = −(1 + xx̄)E+(x, x̄) . (3.7.23)

Note that we may take both fa and fb to be antisymmetric under x ↔ 1/x.

The equation (3.7.22) is of exactly the same form as the equations considered in

ref. [111]. Following the prescription given in ref. [111], section 6.1, it is a simple
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matter to find a single-valued solution to the equation (3.7.22) in terms of single-

valued polylogarithms. We find

fa(x, x̄) =L3,4,0 − 2L4,3,0 + L5,2,0 + 2L3,2,2,0 − 2L4,1,2,0 − L4,2,0,0 − 2L4,2,1,0 + L5,0,0,0

+ 2L5,1,0,0 + 2L5,1,1,0 + 2L4,1,1,0,0 − 4ζ3
(

L̄5 − 2L̄3,2 + 2L̄4,0 + 3L̄4,1

)

(3.7.24)

We now treat the equation (3.7.23) for fb. Let us split it into two parts so that

fb(x, x̄) = f1(x, x̄) + f2(x, x̄),

(1− xx̄)xx̄∂x∂x̄f1(x, x̄) = −E+(x, x̄) ,

(1− xx̄)∂x∂x̄f2(x, x̄) = −E+(x, x̄) . (3.7.25)

We may write integral solutions

f1(x, x̄) = −
∫ x

1

dt

t

∫ x̄

1

dt̄

t̄

E+(t, t̄)

1− tt̄
(3.7.26)

and

f2(x, x̄) = −f1(1/x, 1/x̄) = −
∫ x

1

dt

∫ x̄

1

dt̄
E+(t, t̄)

1− tt̄
(3.7.27)

which obey the equations (3.7.25).

It follows that the full function f̂ is given by

f̂(x, x̄) = fa(x, x̄) + f1(x, x̄) + f2(x, x̄) + h(x)− h(x̄) (3.7.28)

for some holomorphic function h. We note that f̂(x, 1)− fa(x, 1) = h(x)− h(1).

Now we examine the function f2 in more detail. Writing,

E+(t, t̄) =
∑

i

Hwi
(t)Hw′

i
(t̄) , (3.7.29)

we find,

f2(x, x̄) =
∑

i

∫ x

1

dt

t
Hwi

(t)Iw′

i
(t, x̄) (3.7.30)
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where, for a word w made of the letters 0 and 1,

Iw(x, x̄) =

∫ x̄

1

dt̄

t̄− 1/x
Hw(t̄) = (−1)d

(

G( 1x , w; x̄)−G( 1x , w; 1)
)

. (3.7.31)

We may now calculate the symbol of f2. We note that

df2(x, x̄) = d log x
∑

i

Hwi
(x)Iw′

i
(x, x̄)− (x ↔ x̄) . (3.7.32)

The symbol of Iw is obtained recursively using

S(Iw(x, x̄)) = S(Hw(x̄))⊗
1− xx̄

1− xa0
− (−1)a0S(Iw′(x, x̄))⊗ x

1− xa0
, (3.7.33)

where w = a0w′. When w is the empty word I(x, x̄) is a logarithm,

I(x, x̄) = log
1− xx̄

1− x
. (3.7.34)

Using the relations (3.7.32,3.7.33,3.7.34) we obtain the symbol of f2(x, x̄). One finds

that the result does not obey the initial entry condition (i.e. the first letters in the

symbol are not only of the form u = xx̄ or v = (1− x)(1− x̄)). However, the initial

entry condition can be uniquely restored by adding the symbols of single-variable

functions in the form S(h2(x))−S(h2(x̄)). Inverting x ↔ 1/x we may similarly treat

f1(x, x̄) = −f2(1/x, 1/x̄). Combining everything we obtain the symbol

S(f̂(x, x̄)) = S(fa(x, x̄)+f2(x, x̄)+h2(x)−h2(x̄)−f2(1/x, 1/x̄)−h2(1/x)+h2(1/x̄)) .

(3.7.35)

The symbol obtained this way agrees with that obtained by imposing the differential

equation on an ansatz as described around eq. (3.7.19).

Given that single-valuedness uniquely determines the solution of the differential

equation (3.7.17) one might suspect that we can use this property to give an explicit

representation of the function h2(x). Indeed this is the case. The integral formula

(3.7.27) can, in principle, have discontinuities around any of the five divisors obtained

by setting a letter from the set (3.7.19) to zero.
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Let us consider the discontinuity of f2(x, x̄) at x = 1/x̄,

discx=1/x̄f2(x, x̄) =

∫ x

1/x̄

dt disct=1/x̄

∫ x̄

1

dt̄
E+(t, t̄)

1− tt̄

=

∫ x

1/x̄

dt discx̄=1/t

∫ x̄

1

dt̄
E+(t, t̄)

1− tt̄

= −
∫ x

1/x̄

dt

t
(2πi)E+(t, 1/t) . (3.7.36)

The above expression vanishes due to the symmetry of E+ under x ↔ 1/x and the

antisymmetry under x ↔ x̄. The absence of such discontinuities is the reason that

we split the original equation into two pieces, one for fa and one for fb.

Now let us consider the discontinuity around x = 1. We find

disc1−xf2(x, x̄) = −
∫ x

1

dt

t
disc1−t

∫ x̄

1

dt̄

t̄− 1/t
E+(t, t̄)

= −(2πi)

∫ x

1

dt

t
E+(t, 1/t) +

∫ x

1

dt

∫ x̄

1

dt̄
disc1−tE+(t, t̄)

1− tt̄
. (3.7.37)

The first term above again vanishes due to the symmetries of E+. The second term

will cancel against the corresponding term involving disc1−t̄E+(t, t̄) in the integrand

when we take the combination [disc1−x−disc1−x̄]f2(x, x̄). The discontinuities at x = 1

and x̄ = 1 of f2 therefore satisfy the single-valuedness conditions (3.7.18) since E+

does.

For the discontinuities at x = 0 we find

discxf2(x, x̄) =

∫ x

0

dt disct

∫ x̄

1

dt̄
E+(t, t̄)

1− tt̄
=

∫ x

0

dt

∫ x̄

1

dt̄

1− tt̄
disctE+(t, t̄) . (3.7.38)

Now writing the t̄ integral above as
∫ x̄

1 =
∫ x̄

0 −
∫ 1

0 and using [disct−disct̄]E+(t, t̄) = 0

we find

[discx − discx̄]f2(x, x̄) =

[

−
∫ x

0

dt

∫ 1

0

dt̄

1− tt̄
disctE+(t, t̄)

]

+ (x ↔ x̄)

= discx

[

−
∫ x

0

dt

∫ 1

0

dt̄

1− tt̄
E+(t, t̄)

]

+ (x ↔ x̄) (3.7.39)
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Thus f2(x, x̄) is not single-valued by itself since the above combination of discontinu-

ities (3.7.39) does not vanish. Note however that eq. (3.7.39) is of the form k(x)+k(x̄),

as necessary in order for it to be canceled by adding a term of the form h2(x)−h2(x̄)

to f2(x, x̄). We now construct such a function h2(x).

Let

h0
2(x) =

∫ x

0

dt

∫ 1

0

dt̄

1− tt̄
E+(t, t̄) . (3.7.40)

Writing E+(t, t̄) =
∑

i Hwi
(t)Hw′

i
(t̄) we find

h0
2(x) = −

∫ x

0

dt

t

∑

i

H(wi; t)

∫ 1

0

dt̄

t̄− 1/t
H(w′

i; t̄) . (3.7.41)

We can write ∫ 1

0

dt̄

t̄− 1/t
Hw′

i
(t̄) = (−1)dG(1/t, w′

i(0, 1); 1) , (3.7.42)

where we have made explicit that w′
i is a word in the letters 0 and 1 and d is the

number of 1 letters. One can always rewrite this in terms of HPLs at argument t.

Indeed we can recursively apply the formula

G(1t , a2, a3 . . . , an; 1) =

∫ t

0

dr

r − 1
G(a2r , a3, . . . , an; 1)−

∫ t

0

dr

r
G(1r , a3, . . . , an; 1) .

(3.7.43)

to achieve this. Note that ai ∈ {0, 1} in the above formula. We also need

G(1t , 0q; 1) = (−1)q+1Hq+1(t) . (3.7.44)

Once this has been done, one can use standard HPL relations to calculate the products

Hwi
(t)G(1/t, w′

i; 1) (3.7.45)

and perform the remaining integral from 0 to x w.r.t. t. We thus obtain a function

h0
2 whose discontinuity at x = 0 is minus that of the x-dependent contribution to

[discx − discx̄]f2(x, x̄).
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In ref. [111] an explicit projection operator F was introduced which removes the

discontinuity at x = 0 of a linear combination of HPLs while preserving the disconti-

nuity at x = 1. The orthogonal projector (1−F) removes the discontinuity at x = 1

while preserving that at x = 0. We define

h2(x) = (1− F)h0
2(x) . (3.7.46)

Explicitly we find

h2(x) =
151

16
ζ6H2+

15

2
ζ23H2−

3

2
ζ2ζ3H2,0−

15

4
ζ5H2,0−ζ2ζ3H2,1+

19

4
ζ4H2,2+2ζ3H2,3

−ζ2H2,4+
21

8
ζ4H2,0,0+

19

4
ζ4H2,1,0+

17

2
ζ4H2,1,1+5ζ3H2,1,2−ζ2H2,1,3−

3

2
ζ3H2,2,0

+ζ3H2,2,1−ζ2H2,2,2+
1

2
ζ2H2,3,0−ζ2H2,3,1−

3

2
ζ3H2,0,0,0−3ζ3H2,1,0,0−3ζ3H2,1,1,0

+4ζ3H2,1,1,1+ζ2H2,1,2,0−2ζ2H2,1,2,1+
1

2
H2,1,4,0+ζ2H2,2,1,0+

1

2
H2,3,2,0−

1

2
H2,4,0,0

−H2,4,1,0+
1

2
ζ2H2,1,0,0,0+ζ2H2,1,1,0,0+2ζ2H2,1,1,1,0+H2,1,1,3,0+H2,1,2,2,0−H2,1,3,0,0

+2H2,1,1,1,2,0−H2,1,3,1,0+H2,2,1,2,0−
1

2
H2,2,2,0,0−H2,2,2,1,0+

1

2
H2,3,0,0,0−H2,3,1,1,0

−H2,1,1,2,0,0+
1

2
H2,1,2,0,0,0−H2,1,2,1,0,0−2H2,1,2,1,1,0+H2,2,1,0,0,0+H2,2,1,1,0,0

+H2,1,1,1,0,0,0 . (3.7.47)

Here the H functions are all implicitly evaluated at argument x.

The contribution from f1(x, x̄) = −f2(1/x, 1/x̄) is made single-valued by inversion

on x. So we define

h(x) = h2(x)− h2(1/x) . (3.7.48)

Finally we deduce that the combination

f̂(x, x̄) = fa(x, x̄) + f1(x, x̄) + f2(x, x̄) + h(x)− h(x̄) (3.7.49)

is single-valued and obeys the differential equation (3.7.17) and hence describes the

four-loop integral I(4) defined in equation (3.7.1). The equations (3.7.27), (3.7.47),
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(3.7.48) and (3.7.49) therefore explicitly define the function f̂ .

3.7.4 Expression in terms of multiple polylogarithms

Now let us rewrite the integral form (3.7.27), (3.7.31) for f2(x, x̄) in terms of multiple

polylogarithms. We use the following generalization of relation (3.7.43),

G( 1y , a2, . . . , an; z) =
(

G(1z ; y)−G( 1
a2
; y)
)

G(a2, . . . , an; z)

+

∫ y

0

(
dt

t− 1
a2

− dt

t

)

G(1t , a3, . . . , an; z) (3.7.50)

to recursively rewrite the G(1t , . . .) appearing in the Iw′

i
(t, x̄) in eq. (3.7.27) so that

the t appears as the final argument. Note that in eq. (3.7.50), the two terms involving

an explicit appearance of 1/a2 vanish in the case a2 = 0. The recursion begins with

G( 1y ; z) = log(1− yz) = G(1z ; y) . (3.7.51)

The recursion allows us to write the products Hwi
(t)Iw′

i
(t, x̄) as a sum of multiple

polylogarithms of the form G(w; t) where the weight vectors depend on x̄. Then

we can perform the final integration dt/t to obtain an expression for f2 in terms of

multiple polylogarithms.

We may relate f1(x, x̄) directly to f2(x, x̄) since

f1(x, x̄) = −
∫ x

1

dt

t

∫ x̄

1

dt̄

t̄

E+(t, t̄)

1− tt̄
=

∫ x

1

dt

t2

∫ x̄

1

dt̄

t̄(t̄− 1/t)
E+(t, t̄)

=

∫ x

1

dt

t

[∫ x̄

1

dt̄

t̄− 1/t
E+(t, t̄)−

∫ x̄

1

dt̄

t̄
E+(t, t̄)

]

= f2(x, x̄)−
∑

i

[H0wi
(x)−H0wi

(1)][H0w′

i
(x̄)−H0w′

i
(1)] . (3.7.52)

For a practical scheme we express E+ as a sum over Hwi
(t)Hw′

i
(t̄) and do the t̄

integration. In any single term of the integrand of f2, the recursion (3.7.50) will

lead to multiple polylogarithms of the type G(. . . , 1/x̄; t). Next, we take the shuffle

product with the second polylogarithm and integrate over t.
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In this raw form our result is not manifestly antisymmetric under x ↔ x̄. Re-

markably, in the sum over all terms only G(0, 1/x̄, . . . ; x) remain. Upon rewriting

G
(

0, 1
x̄ , a1, . . . , an; x

)

= G(0; x)G
(
1
x̄ , a1, . . . , an; x

)

−
∫ x

0

dt

t− 1
x̄

G(0; t)G(a1, . . . , an; t)

(3.7.53)

we can use (3.7.50) to swap G(1/x̄, . . . ; x) for (a sum over) G(. . . , 1/x; x̄). Replacing

the original two-variable polylogarithms by 1/2 themselves and 1/2 the x, x̄ swapped

version, we can obtain a manifestly antisymmetric form. The shuffle algebra is needed

to remove zeroes from the rightmost position of the weight vectors and to bring the

letters 1/x, 1/x̄ to the left of all entries 1. Finally we rescale to argument 1.

In analogy to the notation introduced for the Hard integral let us write

G3̂,2,1 = G
(

0, 0, 1
xx̄ , 0,

1
x ,

1
x ; 1
)

(3.7.54)

etc. Collecting terms, we find

I(4)14;23(x, x̄) = (3.7.55)

− L2,2,4+2L2,3,3−L2,4,2−2L2,1,1,4+2L2,1,2,3−2L2,1,3,2+2L2,1,4,1+2L2,2,1,3−2L2,2,2,2

− 2L2,2,3,1+2L2,3,1,2+2L2,3,2,0+2L2,3,2,1−2L2,4,1,0−2L2,4,1,1−2L3,1,3,0+2L3,3,1,0

−4L2,1,1,2,2+4L2,1,2,2,1+4L2,2,1,1,2−4L2,2,2,1,0−4L2,2,2,1,1−4L3,1,1,2,0+2L3,2,1,0,0

+4L3,2,1,1,0+L0

(

−H−
1,2,4+2H−

1,3,3 −H−
1,4,2−2H−

1,1,1,4+2H−
1,1,2,3−2H−

1,1,3,2+2H−
1,1,4,1

+2H−
1,2,1,3−2H−

1,2,2,2−2H−
1,2,3,1+2H−

1,3,1,2+2H−
1,3,2,1−2H−

1,4,1,1−4H−
1,1,1,2,2+4H−

1,1,2,2,1

+4H−
1,2,1,1,2−4H−

1,2,2,1,1

)

+ 4H−
1,2,5−4H−

1,3,4−4H−
1,4,3+4H−

1,5,2+8H−
1,1,1,5−4H−

1,1,2,4

+4H−
1,1,4,2−8H−

1,1,5,1−4H−
1,2,1,4+8H−

1,2,3,2+4H−
1,2,4,1−8H−

1,3,1,3−4H−
1,4,1,2−4H−

1,4,2,1

+8H−
1,5,1,1+8H−

1,1,1,2,3+8H−
1,1,1,3,2−8H−

1,1,2,3,1−8H−
1,1,3,2,1−8H−

1,2,1,1,3+8H−
1,2,3,1,1

− 8H−
1,3,1,1,2+8H−

1,3,2,1,1 + ζ3
(

8L̄2,3−12L̄3,2−12L̄2,1,2+12L̄2,2,1−12L̄3,1,0−16L̄3,1,1

− 12L0H
−
1,1,2+12L0H

−
1,2,1 + 16H−

1,1,3−16H−
1,3,1−16H−

1,1,1,2+16H−
1,2,1,1

)

+ 2L̄3ζ5

+ ζ23
(

−24L2−72H−
2 −48H−

1,1

)

+

G+
2̂

(

−L4,2−L4,0,0−2L4,1,0−2L4,1,1−4L̄2,1ζ3+4L0ζ3H
−
2 +4L1ζ3H

−
2
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+3L̄2H
−
4 +2L̄1,1H

−
4 −4L1H

−
5 +4ζ3H

−
1,2−2L̄0,0H

−
1,3+5L0H

−
1,4−2L1H

−
1,4−12H−

1,5

+12ζ3H
−
2,1−L̄0,0H

−
2,2+2L0H

−
2,3−2L1H

−
2,3−6H−

2,4+L0H
−
3,2−2L1H

−
3,2−4L0H

−
4,1

−2L1H
−
4,1+2H−

4,2+16H−
5,1+16ζ3H

−
1,1,1−2L̄0,0H

−
1,1,2+6L0H

−
1,1,3−12H−

1,1,4−2L̄0,0H
−
1,2,1

+6L0H
−
1,2,2−8H−

1,2,3+2L0H
−
1,3,1−8H−

1,3,2+4H−
1,4,1+2L̄0,0H

−
2,1,1+2L0H

−
2,1,2−4H−

2,1,3

−2L0H
−
2,2,1−4H−

2,2,2+4H−
2,3,1−6L0H

−
3,1,1+4H−

3,1,2+12H−
3,2,1+12H−

4,1,1

+4L0H
−
1,1,1,2−8H−

1,1,1,3−8H−
1,1,2,2−4L0H

−
1,2,1,1+8H−

1,2,2,1+8H−
1,3,1,1−L2H

+
4

)

+

G+
3̂

(

2L̄3,2+4L̄3,1,0+4L̄3,1,1−8ζ3H
−
2 −6L̄2H

−
3 −2L̄0,0H

−
3 −4L̄1,1H

−
3 +8L0H

−
4

+6L1H
−
4 −20H−

5 −8ζ3H
−
1,1+8L0H

−
1,3+4L1H

−
1,3−20H−

1,4+6L0H
−
2,2+4L1H

−
2,2

−16H−
2,3+4L0H

−
3,1+4L1H

−
3,1−16H−

3,2−8H−
4,1+4L0H

−
1,1,2−16H−

1,1,3+4L0H
−
1,2,1

−16H−
1,2,2−8H−

1,3,1−4L0H
−
2,1,1−8H−

2,1,2+8H−
3,1,1−8H−

1,1,1,2+8H−
1,2,1,1+2L2H

+
3

)

+

G+
2̂,1

(

2L̄3,2−L̄4,0−2L̄4,1+2L̄3,1,0−12L2ζ3+16ζ3H
−
2 −4L̄2H

−
3

−2L̄0,0H
−
3 +8L0H

−
4 +8L1H

−
4 −20H−

5 +16ζ3H
−
1,1+4L0H

−
1,3−16H−

1,4+4L0H
−
2,2

−12H−
2,3−12H−

3,2+4L0H
−
1,1,2−8H−

1,1,3−8H−
1,2,2−4L0H

−
2,1,1+8H−

2,2,1+8H−
3,1,1

)

+

G+
4̂

(

3L0H
−
3 −12H−

4 +3L0H
−
1,2−12H−

1,3+6L0H
−
2,1−12H−

2,2−12H−
3,1+6L0H

−
1,1,1

−12H−
1,1,2−12H−

1,2,1

)

+G+
3̂,1

(

2L3,0+4L3,1−8ζ3H
−
1 +2L0H

−
3 −4L1H

−
3 −8H−

4

+4L0H
−
1,2−8H−

1,3+4L0H
−
2,1−8H−

2,2−8H−
1,1,2+8H−

2,1,1

)

+G+
2̂,2

(

L4+L3,0+4L3,1

−16ζ3H
−
1 −4L1H

−
3 +4H−

1,3+4H−
2,2+8H−

3,1−4L0H
−
1,1,1+8H−

1,2,1+8H−
2,1,1

)

+

G+
2̂,1,1

(

−2L4+2L3,0+16ζ3H
−
1 +4L0H

−
1,2−8H−

1,3−8H−
2,2

)

+

G+
5̂

(

−4H−
3 −4H−

1,2−8H−
2,1−8H−

1,1,1

)

+G+
4̂,1

(

−6L̄2,1+3L0H
−
2 +6L1H

−
2 −12H−

3

−12H−
1,2−12H−

2,1

)

+G+
3̂,2

(

−2L̄3−8L̄2,1+2L0H
−
2 +8L1H

−
2 −4H−

3 −8H−
1,2

−8H−
2,1+8H−

1,1,1

)

+G+
3̂,1,1

(

4L̄3+4L0H
−
2 −16H−

3 −8H−
1,2

)

+G+
2̂,3

(

−4L̄3−8L̄2,1

+ 2L0H
−
2 +8L1H

−
2 −4H−

1,2−8H−
2,1+8H−

1,1,1

)

+G+
2̂,2,1

(

4L̄3−8H−
3 −8H−

1,2

)

+

G+
2̂,1,2

(

4L̄3+4L̄2,1−4L1H
−
2 −4H−

3 +8H−
2,1

)

+G+
2̂,1,1,1

(

4L0H
−
2 −8H−

3

)

+
(

10G+
2̂,4

+8G+
3̂,3

+3G+
4̂,2

−8G+
2̂,1,3

−8G+
2̂,2,2

−4G+
2̂,3,1

−8G+
3̂,1,2

−8G+
3̂,2,1

−6G+
4̂,1,1

+4G+
2̂,1,1,2

−4G+
2̂,2,1,1

)

L2 +
(

−16G+
2̂,4

−12G+
3̂,3

−6G+
4̂,2

−4G+
5̂,1

+12G+
2̂,1,3
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+12G+
2̂,2,2

+8G+
2̂,3,1

+8G+
3̂,1,2

+8G+
3̂,2,1

−8G+
2̂,1,1,2

−8G+
2̂,1,2,1

−8G+
3̂,1,1,1

)

H−
2+

(

−16G+
2̂,4

−16G+
3̂,3

−12G+
4̂,2

−8G+
5̂,1

+8G+
2̂,1,3

+8G+
2̂,2,2

+8G+
3̂,1,2

)

H−
1,1+

(

20G+
2̂,5

+20G+
3̂,4

+12G+
4̂,3

+4G+
5̂,2

−16G+
2̂,1,4

−12G+
2̂,2,3

−12G+
2̂,3,2

−16G+
3̂,1,3

−16G+
3̂,2,2

−8G+
3̂,3,1

−12G+
4̂,1,2

−12G+
4̂,2,1

−8G+
5̂,1,1

+8G+
2̂,1,1,3

+8G+
2̂,1,2,2

−8G+
2̂,2,2,1

−8G+
2̂,3,1,1

+8G+
3̂,1,1,2

−8G+
3̂,2,1,1

)

H−
1+

G−
2̂,1

(

2L3,2−L4,0−2L4,1+L3,0,0+2L3,1,0−12L̄2ζ3+8ζ3H
+
2 −4L̄2H

+
3

+8L1H
+
4 −16ζ3H

+
1,1−4H+

2,3+4L0H
+
3,1−4H+

3,2−16H+
4,1−4L0H

+
1,1,2+8H+

1,1,3

+8H+
1,2,2+4L0H

+
2,1,1−8H+

2,2,1−8H+
3,1,1

)

+

G−
3̂,1

(

2L̄3,0+4L̄3,1+4L1ζ3−6L0H
+
3 −4L1H

+
3 +20H+

4 −4L0H
+
1,2+16H+

1,3

−4L0H
+
2,1+16H+

2,2+8H+
3,1+8H+

1,1,2−8H+
2,1,1

)

+G−
2̂,2

(

L̄4+L̄3,0+4L̄3,1+8L1ζ3

−2L0H
+
3 −4L1H

+
3 +4H+

4 +4H+
1,3+4H+

2,2+4L0H
+
1,1,1−8H+

1,2,1−8H+
2,1,1

)

+

G−
2̂,1,1

(

−2L̄4+2L̄3,0−8L1ζ3−4L0H
+
3 +16H+

4 −4L0H
+
1,2+8H+

1,3+8H+
2,2

)

+

G−
4̂,1

(

−3L2,0−6L2,1+3L0H
+
2 +6L1H

+
2

)

+G−
3̂,2

(

−2L3−2L2,0−8L2,1+

2L0H
+
2 +8L1H

+
2 −8H+

1,2−8H+
2,1−8H+

1,1,1

)

+G−
3̂,1,1

(

4L3−2L2,0+8H+
1,2

)

+

G−
2̂,3

(

−4L3−2L2,0−8L2,1−L0,0,0−8ζ3+2L0H
+
2 +8L1H

+
2 −12H+

1,2

−8H+
2,1−8H+

1,1,1

)

+G−
2̂,2,1

(

4L3+2L0,0,0+16ζ3+8H+
1,2

)

+G−
2̂,1,2

(

4L3+L2,0

+4L2,1+L0,0,0+8ζ3−2L0H
+
2 −4L1H

+
2 +8H+

1,2

)

+G−
2̂,1,1,1

(

−2L2,0−2L0,0,0−16ζ3
)

+

G−
5̂,1

(

4H+
2 +8H+

1,1

)

+G−
4̂,2

(

3L̄2+12H+
1,1

)

+G−
4̂,1,1

(

−6L̄2+12H+
2

)

+G−
3̂,3

(

8L̄2+2L̄0,0

−4H+
2 +16H+

1,1

)

+G−
3̂,2,1

(

−8L̄2−4L̄0,0+8H+
2

)

+G−
3̂,1,2

(

−8L̄2−2L̄0,0+8H+
2

−8H+
1,1

)

+G−
3̂,1,1,1

(

4L̄0,0+8H+
2

)

+G−
2̂,4

(

10L̄2+4L̄0,0−4H+
2 +16H+

1,1

)

+

G−
2̂,3,1

(

−4L̄2−4L̄0,0

)

+G−
2̂,2,2

(

−8L̄2−4L̄0,0+4H+
2 −8H+

1,1

)

+G−
2̂,2,1,1

(

−4L̄2+8H+
2

)

+

G−
2̂,1,3

(

−8L̄2−4L̄0,0+4H+
2 −8H+

1,1

)

+G−
2̂,1,2,1

(

4L̄0,0+8H+
2

)

+G−
2̂,1,1,2

(

4L̄2+4L̄0,0

)

+

(

−10G−
2̂,5

−8G−
3̂,4

−3G−
4̂,3

+10G−
2̂,1,4

+8G−
2̂,2,3

+8G−
2̂,3,2

+4G−
2̂,4,1

+8G−
3̂,1,3

+8G−
3̂,2,2

+8G−
3̂,3,1

+3G−
4̂,1,2

+6G−
4̂,2,1

−8G−
2̂,1,1,3

−8G−
2̂,1,2,2

−4G−
2̂,1,3,1

−4G−
2̂,2,1,2
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+4G−
2̂,3,1,1

− 8G−
3̂,1,1,2

−8G−
3̂,1,2,1

−6G−
4̂,1,1,1

+4G−
2̂,1,1,1,2

−4G−
2̂,1,2,1,1

)

L0+
(

−10G−
2̂,5

−10G−
3̂,4

−6G−
4̂,3

−2G−
5̂,2

+8G−
2̂,1,4

+6G−
2̂,2,3

+6G−
2̂,3,2

+8G−
3̂,1,3

+8G−
3̂,2,2

+4G−
3̂,3,1

+6G−
4̂,1,2

+6G−
4̂,2,1

+4G−
5̂,1,1

−4G−
2̂,1,1,3

−4G−
2̂,1,2,2

+4G−
2̂,2,2,1

+4G−
2̂,3,1,1

−4G−
3̂,1,1,2

+4G−
3̂,2,1,1

)

L1+

20G−
2̂,6

+20G−
3̂,5

+12G−
4̂,4

+4G−
5̂,3

−20G−
2̂,1,5

−16G−
2̂,2,4

−12G−
2̂,3,3

−12G−
2̂,4,2

−20G−
3̂,1,4

−16G−
3̂,2,3

−16G−
3̂,3,2

−8G−
3̂,4,1

−12G−
4̂,1,3

−12G−
4̂,2,2

−12G−
4̂,3,1

−4G−
5̂,1,2

−8G−
5̂,2,1

+16G−
2̂,1,1,4

+12G−
2̂,1,2,3

+12G−
2̂,1,3,2

+8G−
2̂,2,1,3

+8G−
2̂,2,2,2

−8G−
2̂,3,2,1

−8G−
2̂,4,1,1

+16G−
3̂,1,1,3

+16G−
3̂,1,2,2

+8G−
3̂,1,3,1

+8G−
3̂,2,1,2

−8G−
3̂,3,1,1

+12G−
4̂,1,1,2

+12G−
4̂,1,2,1

+8G−
5̂,1,1,1

−8G−
2̂,1,1,1,3

−8G−
2̂,1,1,2,2

+8G−
2̂,1,2,2,1

+8G−
2̂,1,3,1,1

−8G−
3̂,1,1,1,2

+8G−
3̂,1,2,1,1

3.7.5 Numerical consistency tests for I(4)

In order to check the correctness of the result from the previous section, we evaluated

I(4) numerically and compared it to a direct numerical evaluation of the coordinate

space integral using FIESTA. In detail, we evaluate the conformally-invariant function

f(u, v) = x2
13x

2
24 I

(4)(x1, x2, x3, x4) by first applying a conformal transformation to

send x4 to infinity, the integral takes the simplified form,

lim
x4→∞

x2
13x

2
24 I

(4)
14;23 =

1

π8

∫
d4x5d4x6d4x7d4x8 x2

13

x2
15x

2
18x

2
25x

2
26x

2
37x

2
38x

2
56x

2
67x

2
78

, (3.7.56)

and then using the remaining freedom to fix x2
13 = 1 so that u = x2

12 and v = x2
23.

In comparison with the two 3-loop integrals, the extra loop in this case yields a

moderately more cumbersome numerical evaluation. As such, we modify the setup

for the 3-loop examples slightly and only perform 5 × 105 integral evaluations. We

nevertheless obtain about 5 digits of precision, and excellent agreement with the

analytic function at 40 different points. See Table 3.4 for an illustrative sample of

points.
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u v Analytic FIESTA δ

0.1 0.2 156.733 156.733 4.9e-7

0.2 0.3 116.962 116.962 5.9e-8

0.3 0.1 110.366 110.366 2.8e-7

0.4 0.5 84.2632 84.2632 1.4e-7

0.5 0.6 75.2575 75.2575 1.4e-7

0.6 0.2 78.3720 78.3720 3.7e-8

0.7 0.3 70.7417 70.7417 6.8e-8

0.8 0.9 58.6362 58.6363 1.4e-7

0.9 0.5 60.1295 60.1295 1.1e-7

Table 3.4: Numerical comparison of the analytic result for x2
13x

2
24 I

(4)(x1, x2, x3, x4)
against FIESTA for several values of the conformal cross ratios.

3.8 Conclusions

Recent years have seen a lot of advances in the analytic computation of Feynman inte-

grals contributing to the perturbative expansion of physical observables. In particular,

a more solid understanding of the mathematics underlying the leading singularities

and the classes of functions that appear at low loop orders have opened up new ways

of evaluating multi-scale multi-loop Feynman integrals analytically.

In this paper we applied some of these new mathematical techniques to the com-

putation of the two so far unknown integrals appearing in the three-loop four-point

stress-tensor correlator in N = 4 SYM, and even a first integral occurring in the

planar four-loop contribution to the same function. The computation was made pos-

sible by postulating that these integrals can be written as a sum over all the leading

singularities (defined as the residues at the global poles of the loop integrand), each

leading singularity being multiplied by a pure transcendental function that can be

written as a Q-linear combination of single-valued multiple polylogarithms in one

complex variable. After a suitable choice was made for the entries that can appear

in the symbols of these functions, the coefficients can easily be fixed by matching

to some asymptotic expansions of the integrals in the limit where one of the cross
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ratios vanishes. In all cases we were able to integrate the symbols obtained form this

procedure to a unique polylogarithmic function, thus completing the analytic compu-

tation of the the three-loop four-point stress-tensor correlator in N = 4 SYM. While

for the Easy integral the space of polylogarithmic function is completely classified

in the mathematical literature, new classes of multiple polylogarithms appear in the

analytic results for the Hard integral and the four-loop integral we considered.

One might wonder, given that the Hard integral function H(a) involves genuine

two-variable functions, whether there could have been a similar contribution to the

Easy integral, compatible with all asymptotic limits. Indeed there does exist a symbol

of a single-valued function, not expressible in terms of SVHPLs alone, which evades

all constraints from the asymptotic limits. In other words the function is power

suppressed in all limits, possibly up to terms proportional to zeta values. However,

the evidence we have presented (in particular the numerical checks) strongly suggests

that such a contribution is absent and therefore the Easy integral is expressible in

terms of SVHPLs only.

We emphasize that the techniques we used for the computation are not limited to

the rather special setting of the N = 4 model. First, by sending a point to infinity

a conformal four-point integral becomes a near generic three-point integral. Such

integrals appear as master integrals for phenomenologically relevant processes, like

for example the quantum corrections to the decay of a heavy particle into two massive

particles. Second, the conformal integrals we calculated have the structure
∑

Ri Fi

(so residue times pure function) that is also observed for integrals contributing to on-

shell amplitudes. However, we believe that this is in fact a common feature of large

classes of Feynman integrals (if not all) and one purpose of this work is to advocate

our combination of techniques as a means of solving many other diagrams.

Further increasing the loop-order or the number of points might eventually ham-

per our prospects of success. Indeed, beyond problems of merely combinatorial nature

there are also more fundamental issues, for example to what extent multiple polylog-

arithms exhaust the function spaces. It is anticipated in ref. [132, 133] that elliptic

integrals will eventually appear in higher-point on-shell amplitudes. Via the corre-

lator/amplitude duality this observation will eventually carry over to our setting.



CHAPTER 3. LEADING SINGULARITIES / CONFORMAL INTEGRALS 174

Nevertheless, some papers [133, 134] also hint at a more direct albeit related way of

evaluating loop-integrals by casting them into a ‘d log-form’, which should have a

counterpart for off-shell correlators.
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Functions of three variables
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Chapter 4

Hexagon functions and the

three-loop remainder function

4.1 Introduction

For roughly half a century we have known that many physical properties of scattering

amplitudes in quantum field theories are encoded in different kinds of analytic behav-

ior in various regions of the kinematical phase space. The idea that the amplitudes of

a theory can be reconstructed (or ‘bootstrapped’) from basic physical principles such

as unitarity, by exploiting the link to the analytic behavior, became known as the

“Analytic S-Matrix program” (see e.g. ref. [135]). In the narrow resonance approx-

imation, crossing symmetry duality led to the Veneziano formula [136] for tree-level

scattering amplitudes in string theory.

In conformal field theories, there exists a different kind of bootstrap program,

whereby correlation functions can be determined by imposing consistency with the

operator product expansion (OPE), crossing symmetry, and unitarity [137,138]. This

program was most successful in two-dimensional conformal field theories, for which

conformal symmetry actually extends to an infinite-dimensional Virasoro symme-

try [139]. However, the basic idea can be applied in any dimension and recent progress

has been made in applying the program to conformal field theories in three and four

dimensions [140–142].
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In recent years, the scattering amplitudes of the planar N = 4 super-Yang-Mills

theory have been seen to exhibit remarkable properties. In particular, the ampli-

tudes exhibit dual conformal symmetry and a duality to light-like polygonal Wilson

loops [21, 22, 24, 25, 143]. The dual description and its associated conformal symme-

try mean that CFT techniques can be applied to calculating scattering amplitudes.

In particular, the idea of imposing consistency with the OPE applies. However,

since the dual observables are non-local Wilson loop operators, a different OPE,

involving the near-collinear limit of two sides of the light-like polygon, has to be

employed [38–40,144].

Dual conformal symmetry implies that the amplitudes involving four or five par-

ticles are fixed, because there are no invariant cross ratios that can be formed from

a five-sided light-like polygon [3, 26, 83]. The four- and five-point amplitudes are

governed by the BDS ansatz [32]. The amplitudes not determined by dual conformal

symmetry begin at six points. When the external gluons are in the maximally-helicity-

violating (MHV) configuration, such amplitudes can be expressed in terms of the BDS

ansatz, which contains all of the infrared divergences and transforms anomalously un-

der dual conformal invariance, and a so-called “remainder function” [1,2], which only

depends on dual-conformally-invariant cross ratios. In the case of non-MHV ampli-

tudes, one can define the “ratio function” [27], which depends on the cross ratios as

well as dual superconformal invariants. For six external gluons, the remainder and

ratio functions are described in terms of functions of three dual conformal cross ratios.

At low orders in perturbation theory, these latter functions can be expressed in

terms of multiple polylogarithms. In general, multiple polylogarithms are functions

of many variables that can be defined as iterated integrals over rational kernels. A

particularly useful feature of such functions is that they can be classified according

to their symbols [145–147], elements of the n-fold tensor product of the algebra of ra-

tional functions. The integer n is referred to as the transcendental weight or degree.

The symbol can be defined iteratively in terms of the total derivative of the func-

tion, or alternatively, in terms of the maximally iterated coproduct by using the Hopf

structure conjecturally satisfied by multiple polylogarithms [63, 148]. Complicated
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functional identities among polylogarithms become simple algebraic relations satis-

fied by their symbols, making the symbol a very useful tool in the study of polyloga-

rithmic functions. The symbol can miss terms in the function that are proportional

to transcendental constants (which in the present case are all multiple zeta values),

so special care must be given to account for these terms. The symbol and coproduct

have been particularly useful in recent field theory applications [14, 36, 40, 64, 71]. In

the case of N = 4 super-Yang-Mills theory, all amplitudes computed to date have

exhibited a uniform maximal transcendentality, in which the finite terms (such as

the remainder or ratio functions) always have weight n = 2L at the L loop order in

perturbation theory.

Based on the simplified form of the two-loop six-point remainder function ob-

tained in ref. [36] (which was first constructed analytically in terms of multiple poly-

logarithms [6,7]), it was conjectured [14,71] that for multi-loop six-point amplitudes,

both the MHV remainder function and the next-to-MHV (NMHV) ratio function

are described in terms of polylogarithmic functions whose symbols are made from

an alphabet of nine letters. The nine letters are related to the nine projectively-

inequivalent differences zij of projective variables zi [36], which can also be repre-

sented in terms of momentum twistors [149]. Using this conjecture, the symbol for

the three-loop six-point remainder function was obtained up to two undetermined

parameters [14], which were later fixed [45] using a dual supersymmetry “anomaly”

equation [44, 45]. The idea of ref. [14] was to start with an ansatz for the symbol,

based on the above nine-letter conjecture, and then impose various mathematical and

physical consistency conditions. For example, imposing a simple integrability condi-

tion [146, 147] guarantees that the ansatz is actually the symbol of some function,

and demanding that the amplitude has physical branch cuts leads to a condition on

the initial entries of the symbol.

Because of the duality between scattering amplitudes and Wilson loops, one can

also impose conditions on the amplitude that are more naturally expressed in terms of

the Wilson loop, such as those based on the OPE satisfied by its near-collinear limit.

In refs. [38–40, 144], the leading-discontinuity terms in the OPE were computed. In
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terms of the cross ratio variable that vanishes in the near-collinear limit, the leading-

discontinuity terms correspond to just the maximum powers of logarithms of this

variable (L−1 at L loops), although they can be arbitrarily power suppressed. These

terms require only the one-loop anomalous dimensions of the operators corresponding

to excitations of the Wilson line, or flux tube. That is, higher-loop corrections to the

anomalous dimensions and to the OPE coefficients can only generate subleading log-

arithmic terms. While the leading-discontinuity information is sufficient to determine

all terms in the symbol at two loops, more information is necessary starting at three

loops [14].

Very recently, a new approach to polygonal Wilson loops has been set forth [150,

151], which is fully nonperturbative and based on integrability. The Wilson loop is

partitioned into a number of “pentagon transitions”, which are labeled by flux tube

excitation states on either side of the transition. (If one edge of the pentagon coincides

with an edge of the Wilson loop, then the corresponding state is the flux tube vac-

uum.) The pentagon transitions obey a set of bootstrap consistency conditions. Re-

markably, they can be solved in terms of factorizable S matrices for two-dimensional

scattering of the flux tube excitations [150,151].

In principle, the pentagon transitions can be solved for arbitrary excitations, but

it is simplest to first work out the low-lying excitations, which correspond to the

leading power-suppressed terms in the near-collinear limit in the six-point case (and

similar terms in multi-near-collinear limits for more than six particles). Compared

with the earlier leading-discontinuity data, now all terms at a given power-suppressed

order can be determined (to all loop orders), not just the leading logarithms. This

information is very powerful. The first power-suppressed order in the six-point near-

collinear limit is enough to fix the two terms in the ansatz for the symbol of the three-

loop remainder function that could not be fixed using the leading discontinuity [150].

At four loops, the first power-suppressed order [150] and part of the second power-

suppressed order [152] are sufficient to fix all terms in the symbol [153]. At these

orders, the symbol becomes heavily over-constrained, providing strong cross checks

on the assumptions about the letters of the symbol, as well as on the solutions to the

pentagon transition bootstrap equations.
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In short, the application of integrability to the pentagon-transition decomposition

of Wilson loops provides, through the OPE, all-loop-order boundary-value informa-

tion for the problem of determining Wilson loops (or scattering amplitudes) at generic

nonzero (interior) values of the cross ratios. We will use this information in the six-

point case to uniquely determine the three-loop remainder function, not just at symbol

level, but at function level as well.

A second limit we study is the limit of multi-Regge kinematics (MRK), which has

provided another important guide to the perturbative structure of the six-point re-

mainder function [5,8–10,12–15], as well as higher-point remainder functions [16,17]

and NMHV amplitudes [18]. The six-point remainder function and, more gener-

ally, the hexagon functions that we define shortly have simple behavior in the multi-

Regge limit. These functions depend on three dual-conformally-invariant cross ratios,

but in the multi-Regge limit they collapse [19] into single-valued harmonic polylog-

arithms [47], which are functions of two surviving real variables, or of a complex

variable and its conjugate. The multi-Regge limit factorizes [15] after taking the

Fourier-Mellin transform of this complex variable. This factorization imposes strong

constraints on the remainder function at high loop order [15, 19, 154].

Conversely, determining the multi-loop remainder function, or just its multi-

Regge limit, allows the perturbative extraction of the two functions that enter the

factorized form of the amplitude, the BFKL eigenvalue (in the adjoint representa-

tion) and a corresponding impact factor. This approach makes use of a map be-

tween the single-valued harmonic polylogarithms and their Fourier-Mellin transforms,

which can be constructed from harmonic sums [19]. Using the three- and four-loop

remainder-function symbols, the BFKL eigenvalue has been determined to next-to-

next-to-leading-logarithmic accuracy (NNLLA), and the impact factor at NNLLA

and N3LLA [19]. However, the coefficients of certain transcendental constants in

these three quantities could not be fixed, due to the limitation of the symbol. Here

we will use the MRK limit at three loops to fix the three undetermined constants in

the NNLLA impact factor. Once the four-loop remainder function is determined, a

similar analysis will fix the undetermined constants in the NNLLA BFKL eigenvalue

and in the N3LLA impact factor.
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In general, polylogarithmic functions are not sufficient to describe scattering am-

plitudes. For example, an elliptic integral, in which the kernel is not rational but

contains a square root, enters the two-loop equal-mass sunrise graph [155], and it

has been shown that a very similar type of integral enters a particular N3MHV 10-

point scattering amplitude in planar N = 4 super-Yang-Mills theory [132]. However,

it has been argued [133], based on a novel form of the planar loop integrand, that

MHV and NMHV amplitudes can all be described in terms of multiple polyloga-

rithms alone. Similar “dlog” representations have appeared in a recent twistor-space

formulation [134,156]. Because six-particle amplitudes are either MHV (or the parity

conjugate MHV) or NMHV, we expect that multiple polylogarithms and their asso-

ciated symbols should suffice in this case. The nine letters that we assume for the

symbol then follow naturally from the fact that the kinematics can be described in

terms of dual conformally invariant combinations of six momentum twistors [149].

Having the symbol of an amplitude is not the same thing as having the function. In

order to reconstruct the function one first needs a representative, well-defined function

in the class of multiple polylogarithms which has the correct symbol. Before enough

physical constraints are imposed, there will generally be multiple functions matching

the symbol, because of the symbol-level ambiguity associated with transcendental

constants multiplying well-defined functions of lower weight. Here we will develop

techniques for building up the relevant class of functions for hexagon kinematics,

which we call hexagon functions, whose symbols are as described above, but which

are well-defined and have the proper branch cuts at the function level as well. We

will argue that the hexagon functions form the basis for a perturbative solution to

the MHV and NMHV six-point problem.

We will pursue two complementary routes toward the construction of hexagon

functions. The first route is to express them explicitly in terms of multiple poly-

logarithms. This route has the advantage of being completely explicit in terms of

functions with well-known mathematical properties, which can be evaluated numeri-

cally quite quickly, or expanded analytically in various regions. However, it also has

the disadvantages that the representations are rather lengthy, and they are specific

to particular regions of the full space of cross ratios.
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The second route we pursue is to define each weight-n hexagon function iteratively

in the weight, using the three first-order differential equations they satisfy. This

information can also be codified by the {n − 1, 1} component of the coproduct of

the function, whose elements contain weight-(n − 1) hexagon functions (the source

terms for the differential equations). The differential equations can be integrated

numerically along specific contours in the space of cross ratios. In some cases, they

can be integrated analytically, at least up to the determination of certain integration

constants.

We can carry out numerical comparisons of the two approaches in regions of

overlapping validity. We have also been able to determine the near-collinear and

multi-Regge limits of the functions analytically using both routes. As mentioned

above, these limits are how we fix all undetermined constants in the function-level

ansatz, and how we extract additional predictions for both regimes.

We have performed a complete classification of hexagon functions through weight

five. Although the three-loop remainder function is a hexagon function of weight

six, its construction is possible given the weight-five basis. There are other potential

applications of our classification, beyond the three-loop remainder function. One

example is the three-loop six-point NMHV ratio function, whose components are

expected [71] to be hexagon functions of weight six. Therefore, it should be possible

to construct the ratio function in an identical fashion to the remainder function.

Once we have fixed all undetermined constants in the three-loop remainder func-

tion, we can study its behavior in various regions, and compare it with the two-loop

function. On several lines passing through the space of cross ratios, the remainder

function collapses to simple combinations of harmonic polylogarithms of a single vari-

able. Remarkably, over vast swathes of the space of positive cross ratios, the two-

and three-loop remainder functions are strikingly similar, up to an overall constant

rescaling. This similarity is in spite of the fact that they have quite different analytic

behavior along various edges of this region. We can also compare the perturbative

remainder function with the result for strong coupling, computed using the AdS/CFT

correspondence, along the line where all three cross ratios are equal [157]. We find
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that the two-loop, three-loop and strong-coupling results all have a remarkably sim-

ilar shape when the common cross ratio is less than unity. Although we have not

attempted any kind of interpolation formula from weak to strong coupling, it seems

likely from the comparison that the nature of the interpolation will depend very

weakly on the common cross ratio in this region.

The remainder of this paper is organized as follows. In section 4.2 we recall some

properties of pure functions (iterated integrals) and their symbols, as well as a repre-

sentation of the two-loop remainder function (and its symbol) in terms of an “extra

pure” function and its cyclic images. We use this representation as motivation for

an analogous decomposition of the three-loop symbol. In section 4.3 we describe

the first route to constructing hexagon functions, via multiple polylogarithms. In

section 4.4 we describe the second route to constructing the same set of functions,

via the differential equations they satisfy. In section 4.5 we discuss how to extract

the near-collinear limits, and give results for some of the basis functions and for the

remainder function in this limit. In section 4.6 we carry out the analogous discussion

for the Minkowski multi-Regge limit. In section 4.7 we give the final result for the

three-loop remainder function, in terms of a specific integral, as well as defining it

through the {5, 1} components of its coproduct. We also present the specialization

of the remainder function onto various lines in the three-dimensional space of cross

ratios; along these lines its form simplifies dramatically. Finally, we plot the function

on several lines and two-dimensional slices. We compare it numerically to the two-

loop function in some of these regions, and to the strong-coupling result evaluated

for equal cross ratios. In section 4.8 we present our conclusions and outline avenues

for future research. We include three appendices. Appendix C.1 provides some back-

ground material on multiple polylogarithms. Appendix C.2 gives the complete set of

independent hexagon functions through weight five in terms of the {n − 1, 1} com-

ponents of their coproducts, and in appendix C.3 we provide the same description of

the extra pure weight six function Rep entering the remainder function.

In attached, computer-readable files we give the basis of hexagon functions through
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weight five, as well as the three-loop remainder function, expressed in terms of mul-

tiple polylogarithms in two different kinematic regions. We also provide the near-

collinear and multi-Regge limits of these functions.



CHAPTER 4. HEXAGON FUNCTIONS AND R(3)
6 185

4.2 Extra-pure functions and the symbol of R(3)
6

In this section, we describe the symbol of the three-loop remainder function as ob-

tained in ref. [14], which is the starting point for our reconstruction of the full function.

Motivated by an alternate representation [71] of the two-loop remainder function, we

will rearrange the three-loop symbol. In the new representation, part of the answer

will involve products of lower-weight (hence simpler) functions, and the rest of the

answer will be expressible as the sum of an extra-pure function, called Rep, plus its

two images under cyclic permutations of the cross ratios. An extra-pure function of m

variables, by definition, has a symbol with only m different final entries. For the case

of hexagon kinematics, where there are three cross ratios, the symbol of an extra-pure

function has only three final entries, instead of the potential nine. Related to this,

the three derivatives of the full function can be written in a particularly simple form,

which helps somewhat in its construction.

All the functions we consider in this paper will be pure functions. The definition

of a pure function f (n) of transcendental weight (or degree) n is that its first derivative

obeys,

df (n) =
∑

r

f (n−1)
r d lnφr , (4.2.1)

where φr are rational functions and the sum over r is finite. The only weight-zero

functions are assumed to be rational constants. The f (n−1)
r and φr are not all inde-

pendent of each other because the integrability condition d2f (n) = 0 imposes relations

among them,
∑

r

df (n−1)
r ∧ d lnφr = 0 . (4.2.2)

Functions defined by the above conditions are iterated integrals of polylogarithmic

type. Such functions have a symbol, defined recursively as an element of the n-fold

tensor product of the algebra of rational functions, following eq. (4.2.1),

S
(

f (n)
)

=
∑

r

S
(

f (n−1)
r

)

⊗ φr . (4.2.3)

In the case of the six-particle amplitudes of planar N = 4 super Yang-Mills theory,
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we are interested in pure functions depending on the three dual conformally invariant

cross ratios,

u1 = u =
x2
13x

2
46

x2
14x

2
36

, u2 = v =
x2
24x

2
51

x2
25x

2
41

, u3 = w =
x2
35x

2
62

x2
36x

2
52

. (4.2.4)

The six particle momenta kµ
i are differences of the dual coordinates xµ

i : x
µ
i −xµ

i+1 = kµ
i ,

with indices taken mod 6.

Having specified the class of functions we are interested in, we impose further [14,

71] that the entries of the symbol are drawn from the following set of nine letters,

Su = {u, v, w, 1− u, 1− v, 1− w, yu, yv, yw} . (4.2.5)

The nine letters are related to the nine projectively-inequivalent differences of six CP1

variables zi [36] via

u =
(12)(45)

(14)(25)
, 1− u =

(24)(15)

(14)(25)
, yu =

(26)(13)(45)

(46)(12)(35)
, (4.2.6)

and relations obtained by cyclically rotating the six points. The variables yu, yv and

yw can be expressed locally in terms of the cross ratios,

yu =
u− z+
u− z−

, yv =
v − z+
z − z−

, yw =
w − z+
w − z−

, (4.2.7)

where

z± =
1

2

[

−1 + u+ v + w ±
√
∆
]

, ∆ = (1− u− v − w)2 − 4uvw . (4.2.8)

Note that under the cyclic permutation zi → zi+1 we have u → v → w → u,

while the yi variables transform as yu → 1/yv → yw → 1/yu. A three-fold cyclic

rotation amounts to a space-time parity transformation, under which the parity-even

cross ratios are invariant, while the parity-odd y variables invert. Consistent with the

inversion of the y variables under parity, and eq. (4.2.7), the quantity ∆ must flip
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sign under parity, so we have altogether,

Parity : ui → ui , yi →
1

yi
,

√
∆ → −

√
∆ . (4.2.9)

The transformation of
√
∆ can also be seen from its representation in terms of the

zij variables,
√
∆ =

(12)(34)(56)− (23)(45)(61)

(14)(25)(36)
, (4.2.10)

upon letting zi → zi+3. It will prove very useful to classify hexagon functions by their

parity. The remainder function is a parity-even function, but some of its derivatives

(or more precisely coproduct components) are parity-odd, so we need to understand

both the even and odd sectors.

Since the y variables invert under parity, yu → 1/yu, etc., it is often better to

think of the y variables as fundamental and the cross ratios as parity-even functions

of them. The cross ratios can be expressed in terms of the y variables without any

square roots,

u =
yu(1− yv)(1− yw)

(1− yuyv)(1− yuyw)
, 1− u =

(1− yu)(1− yuyvyw)

(1− yuyv)(1− yuyw)
,

v =
yv(1− yw)(1− yu)

(1− yvyw)(1− yvyu)
, 1− v =

(1− yv)(1− yuyvyw)

(1− yvyw)(1− yuyv)
,

w =
yw(1− yu)(1− yv)

(1− ywyu)(1− ywyv)
, 1− w =

(1− yw)(1− yuyvyw)

(1− yuyw)(1− yvyw)
,

√
∆ =

(1− yu)(1− yv)(1− yw)(1− yuyvyw)

(1− yuyv)(1− yvyw)(1− ywyu)
,

(4.2.11)

where we have picked a particular branch of
√
∆.

Following the strategy of ref. [14], we construct all integrable symbols of the

required weight, using the letters (4.2.5), subject to certain additional physical con-

straints. In the case of the six-point MHV remainder function at L loops, we require

a weight-2L parity-even function with full S3 permutation symmetry among the cross

ratios. The initial entries in the symbol can only be the cross ratios themselves, in
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order to have physical branch cuts [40]:

first entry ∈ {u, v, w} . (4.2.12)

In addition we require that the final entries of the symbol are taken from the following

restricted set of six letters [14, 46]:

final entry ∈
{

u

1− u
,

v

1− v
,

w

1− w
, yu, yv, yw

}

. (4.2.13)

Next one can apply constraints from the collinear OPE of Wilson loops. The leading-

discontinuity constraints [38–40] can be expressed in terms of differential operators

with a simple action on the symbol [14]. At two loops, the leading (single) discon-

tinuity is the only discontinuity, and it is sufficient to determine the full remainder

function R(2)
6 (u, v, w) [39]. At three loops, the constraint on the leading (double) dis-

continuity leaves two free parameters in the symbol, α1 and α2 [14]. These parameters

were determined in refs. [45, 150], but we will leave them arbitrary here to see what

other information can fix them.

The two-loop remainder function R(2)
6 can be expressed simply in terms of classical

polylogarithms [36]. However, here we wish to recall the form found in ref. [71] in

terms of the infrared-finite double pentagon integral Ω(2), which was introduced in

ref. [79] and studied further in refs. [71, 158]:

R(2)
6 (u, v, w) =

1

4

[

Ω(2)(u, v, w)+Ω(2)(v, w, u)+Ω(2)(w, u, v)
]

+R(2)
6,rat(u, v, w) . (4.2.14)

The function R(2)
6,rat can be expressed in terms of single-variable classical polyloga-

rithms,

R(2)
6,rat = −1

2

[
1

4

(

Li2(1−1/u)+Li2(1−1/v)+Li2(1−1/w)
)2

+r(u)+r(v)+r(w)−ζ4
]

,

(4.2.15)

with

r(u) =− Li4(u)− Li4(1− u) + Li4(1− 1/u)− ln uLi3(1− 1/u)− 1

6
ln3 u ln(1− u)
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+
1

4

(

Li2(1− 1/u)
)2

+
1

12
ln4 u+ ζ2

(

Li2(1− u) + ln2 u
)

+ ζ3 ln u . (4.2.16)

We see that R(2)
6,rat decomposes into a product of simpler, lower-weight functions

Li2(1−1/ui), plus the cyclic images of the function r(u), whose symbol can be written

as,

S
(

r(u)
)

= −2 u⊗ u

1− u
⊗ u

1− u
⊗ u

1− u
+

1

2
u⊗ u

1− u
⊗ u⊗ u

1− u
. (4.2.17)

The symbol of Ω(2) can be deduced [71] from the differential equations it satis-

fies [158,159]. There are only three distinct final entries of the symbol of Ω(2)(u, v, w),

namely
{

u

1− u
,

v

1− v
, yuyv

}

. (4.2.18)

Note that three is the minimum possible number of distinct final entries we could hope

for, since Ω(2) is genuinely dependent on all three variables. As mentioned above, we

define extra-pure functions, such as Ω(2), to be those functions for which the number

of final entries in the symbol equals the number of variables on which they depend.

Another way to state the property (which also extends it from a property of symbols

to a property of functions) is that p-variable pure functions f of weight n are extra-

pure if there exist p independent commuting first-order differential operators Oi, such

that Oif are themselves all pure of weight (n− 1).

More explicitly, the symbol of Ω(2) can be written as [71],

S(Ω(2)(u, v, w)) = −1

2

[

S(Qφ)⊗ φ+ S(Qr)⊗ r + S(Φ̃6)⊗ yuyv
]

, (4.2.19)

where

φ =
uv

(1− u)(1− v)
, r =

u(1− v)

v(1− u)
. (4.2.20)

The functions Qφ and Qr will be defined below. The function Φ̃6 is the weight-

three, parity-odd one-loop six-dimensional hexagon function [159,160], whose symbol

is given by [159],

S(Φ̃6) = −S
(

Ω(1)(u, v, w)
)

⊗ yw + cyclic, (4.2.21)
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where Ω(1) is a finite, four-dimensional one-loop hexagon integral [79, 158],

Ω(1)(u, v, w) = ln u ln v + Li2(1− u) + Li2(1− v) + Li2(1− w)− 2ζ2 . (4.2.22)

Although we have written eq. (4.2.21) as an equation for the symbol of Φ̃6, secretly

it contains more information, because we have written the symbol of a full function,

Ω(1)(u, v, w) in the first two slots. Later we will codify this extra information as

corresponding to the {2, 1} component of the coproduct of Φ̃6. Another way of saying

it is that all three derivatives of the function Φ̃6, with respect to the logarithms of

the y variables, are given by −Ω(1)(u, v, w) or its permutations, including the ζ2 term

in eq. (4.2.22). Any other derivative can be obtained by the chain rule. For example,

to get the derivative with respect to u, we just need,

∂ ln yu
∂u

=
1− u− v − w

u
√
∆

,
∂ ln yv
∂u

=
1− u− v + w

(1− u)
√
∆

,
∂ ln yw
∂u

=
1− u+ v − w

(1− u)
√
∆

,

(4.2.23)

which leads to the differential equation found in ref. [159],

∂uΦ̃6 = −1− u− v − w

u
√
∆

Ω(1)(v, w, u)− 1− u− v + w

(1− u)
√
∆

Ω(1)(w, u, v)

− 1− u+ v − w

(1− u)
√
∆

Ω(1)(u, v, w) .
(4.2.24)

Hence Φ̃6 can be fully specified, up to a possible integration constant, by promoting

the first two slots of its symbol to a function in an appropriate way. In fact, the

ambiguity of adding a constant of integration is actually fixed in this case, by imposing

the property that the function Φ̃6 is parity odd.

Note that for the solution to the differential equation (4.2.24) and its cyclic images

to have physical branch cuts, the correct coefficients of the ζ2 terms in eq. (4.2.22)

are crucial. Changing the coefficients of these terms in any of the cyclic images of

Ω(1) would correspond to adding a logarithm of the y variables to Φ̃6, which would

have branch cuts in unphysical regions.

The other weight-three symbols in eq. (4.2.19) can similarly be promoted to full
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functions. To do this we employ the harmonic polylogarithms (HPLs) in one vari-

able [48], Hw⃗(u). In our case, the weight vector w⃗ contains only 0’s and 1’s. If the

weight vector is a string of n 0’s, w⃗ = 0n, then we have H0n(u) = 1
n! log

n u. The

remaining functions are defined recursively by

H0,w⃗(u) =

∫ u

0

dt

t
Hw⃗(t), H1,w⃗(u) =

∫ u

0

dt

1− t
Hw⃗(t). (4.2.25)

Such functions have symbols with only two letters, {u, 1 − u}. We would like the

point u = 1 to be a regular point for the HPLs. This can be enforced by choosing

the argument to be 1 − u, and restricting to weight vectors whose last entry is 1.

The symbol and HPL definitions have a reversed ordering, so to find an HPL with

argument 1 − u corresponding to a symbol in {u, 1 − u}, one reverses the string,

replaces u → 1 and 1−u → 0, and multiplies by (−1) for each 1 in the weight vector.

We also use a compressed notation where (k− 1) 0’s followed by a 1 is replaced by k

in the weight vector, and the argument (1− u) is replaced by the superscript u. For

example, ignoring ζ-value ambiguities we have,

u⊗ (1− u) → −H0,1(1− u) → −Hu
2 ,

u⊗ u⊗ (1− u) → H0,1,1(1− u) → Hu
2,1 ,

v ⊗ (1− v)⊗ v ⊗ (1− v) → H0,1,0,1(1− v) → Hv
2,2 . (4.2.26)

The combination

Hu
2 + 1

2 ln
2 u = −Li2(1− 1/u) (4.2.27)

occurs frequently, because it is the lowest-weight extra-pure function, with symbol

u⊗ u/(1− u).

In terms of HPLs, the functions corresponding to the weight-three, parity-even

symbols appearing in eq. (4.2.19) are given by,

Qφ = [−Hu
3 −Hu

2,1 −Hv
2 ln u− 1

2 ln
2 u ln v + (Hu

2 − ζ2) lnw + (u ↔ v)]

+ 2Hw
2,1 +Hw

2 lnw + ln u ln v lnw ,

Qr = [−Hu
3 +Hu

2,1 + (Hu
2 +Hw

2 − 2ζ2) ln u+ 1
2 ln

2 u ln v − (u ↔ v)] .

(4.2.28)
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Here we have added some ζ2 terms with respect to ref. [71], in order to match the

{3, 1} component of the coproduct of Ω(2) that we determine later.

Note that the simple form of the symbol of R(2)
6,rat in eq. (4.2.15) means that it can

be absorbed into the three cyclic images of Ω(2)(u, v, w) without ruining the extra-

purity of the latter functions. Hence R(2)
6 is the cyclic sum of an extra-pure function.

With the decomposition (4.2.14) in mind, we searched for an analogous decompo-

sition of the symbol of the three-loop remainder function [14] into extra-pure compo-

nents. In other words, we looked for a representation of S(R(3)
6 ) in terms a function

whose symbol has the same final entries (4.2.18) as Ω(2)(u, v, w), plus its cyclic rota-

tions. After removing some products of lower-weight functions we find that this is

indeed possible. Specifically, we find that,

S(R(3)
6 ) = S(Rep(u, v, w) +Rep(v, w, u) +Rep(w, u, v)) + S(P6(u, v, w)). (4.2.29)

Here P6 is the piece constructed from products of lower-weight functions,

P6(u, v, w) =− 1

4

[

Ω(2)(u, v, w) Li2(1− 1/w) + cyclic
]

− 1

16
(Φ̃6)

2

+
1

4
Li2(1− 1/u) Li2(1− 1/v) Li2(1− 1/w) . (4.2.30)

The function Rep is very analogous to Ω(2) in that it has the same (u ↔ v) symmetry,

and its symbol has the same final entries,

S (Rep(u, v, w)) = S
(

Ru
ep(u, v, w)

)

⊗ u

1− u
+ S

(

Ru
ep(v, u, w)

)

⊗ v

1− v

+ S
(

Ryu
ep(u, v, w)

)

⊗ yuyv .
(4.2.31)

In the following we will describe a systematic construction of the function Rep and

hence the three-loop remainder function. As in the case just described for Φ̃6, and

implicitly for Ω(2), the construction will involve promoting the quantities S(Ru
ep) and

S(Ryu
ep) to full functions, with the aid of the coproduct formalism. In fact, we will per-

form a complete classification of all well-defined functions corresponding to symbols

with nine letters and obeying the first entry condition (4.2.12) (but not the final entry
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condition (4.2.13)), iteratively in the weight through weight five. Knowing all such

pure functions at weight 5 will then enable us to promote the weight-five quantities

S(Ru
ep) and S(Ryu

ep) to well-defined functions, subject to ζ-valued ambiguities that we

will fix using physical criteria.
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4.3 Hexagon functions as multiple polylogarithms

The task of the next two sections is to build up an understanding of the space of

hexagon functions, using two complementary routes. In this section, we follow the

route of expressing the hexagon functions explicitly in terms of multiple polyloga-

rithms. In the next section, we will take a slightly more abstract route of defining

the functions solely through the differential equations they satisfy, which leads to

relatively compact integral representations for them.

4.3.1 Symbols

Our first task is to classify all integrable symbols at weight n with entries drawn

from the set Su in eq. (4.2.5) that also satisfy the first entry condition (4.2.12).

We do not impose the final entry condition (4.2.13) because we need to construct

quantities at intermediate weight, from which the final results will be obtained by

further integration; their final entries correspond to intermediate entries of Rep.

The integrability of a symbol may be imposed iteratively, first as a condition on

the first n− 1 slots, and then as a separate condition on the {n− 1, n} pair of slots,

as in eq. (4.2.2). Therefore, if Bn−1 is the basis of integrable symbols at weight n− 1,

then a minimal ansatz for the basis at weight n takes the form,

{b⊗ x | b ∈ Bn−1, x ∈ Su} , (4.3.1)

and Bn can be obtained simply by enforcing integrability in the last two slots. This

method for recycling lower-weight information will also guide us toward an iterative

construction of full functions, which we perform in the remainder of this section.

Integrability and the first entry condition together require the second entry to be

free of the yi. Hence the maximum number of y entries that can appear in a term in

the symbol is n− 2. In fact, the maximum number of y’s that appear in any term in

the symbol defines a natural grading for the space of functions. In table 4.1, we use

this grading to tabulate the number of irreducible functions (i.e. those functions that

cannot be written as products of lower-weight functions) through weight six. The
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majority of the functions at low weight contain no y entries.

The y entries couple together u, v, w. In their absence, the symbols with letters

{u, v, w, 1− u, 1− v, 1− w} can be factorized, so that the irreducible ones just have

the letters {u, 1−u}, plus cyclic permutations of them. The corresponding functions

are the ordinary HPLs in one variable [48] introduced in the previous section, Hu
w⃗,

with weight vectors w⃗ consisting only of 0’s and 1’s. These functions are not all

independent, owing to the existence of shuffle identities [48]. On the other hand, we

may exploit Radford’s theorem [161] to solve these identities in terms of a Lyndon

basis,

Hu =
{

Hu
lw | lw ∈ Lyndon(0, 1)\{0}

}

, (4.3.2)

where Hu
lw ≡ Hlw(1 − u), and Lyndon(0, 1) is the set of Lyndon words in the letters

0 and 1. The Lyndon words are those words w such that for every decomposition into

two words w = {u, v}, the left word u is smaller1 than the right word v, i.e. u < v.

Notice that we exclude the case lw = 0 because it corresponds to ln(1−u), which has

an unphysical branch cut. Further cuts of this type occur whenever lw has a trailing

zero, but such words are excluded from the Lyndon basis by construction.

The Lyndon basis of HPLs with proper branch cuts through weight six can be

written explicitly as,

Hu|n≤6 = {ln u, Hu
2 , Hu

3 , H
u
2,1, Hu

4 , H
u
3,1, H

u
2,1,1, Hu

5 , H
u
4,1, H

u
3,2, H

u
3,1,1, H

u
2,2,1, H

u
2,1,1,1,

Hu
6 , H

u
5,1, H

u
4,2, H

u
4,1,1, H

u
3,2,1, H

u
3,1,2, H

u
3,1,1,1, H

u
2,2,1,1, H

u
2,1,1,1,1} . (4.3.3)

Equation (4.3.3) and its two cyclic permutations, Hv and Hw, account entirely for the

y0 column of table 4.1. Although the y-containing functions are not very numerous

through weight five or so, describing them is considerably more involved.

In order to parametrize the full space of functions whose symbols can be written in

terms of the elements in the set Su, it is useful to reexpress those elements in terms of

three independent variables. The cross ratios themselves are not a convenient choice

1We take the ordering of words to be lexicographic. The ordering of the letters is specified by the
order in which they appear in the argument of “Lyndon(0, 1)”, i.e. 0 < 1. Later we will encounter
words with more letters for which this specification is less trivial.
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Weight y0 y1 y2 y3 y4

1 3 - - - -
2 3 - - - -
3 6 1 - - -
4 9 3 3 - -
5 18 4 13 6 -
6 27 4 27 29 18

Table 4.1: The dimension of the irreducible basis of hexagon functions, graded by the
maximum number of y entries in their symbols.

of variables because rewriting the yi in terms of the ui produces explicit square roots.

A better choice is to consider the yi as independent variables, in terms of which the

ui are given by eq. (4.2.11). In this representation, the symbol has letters drawn from

the ten-element set,

Sy = {yu, yv, yw, 1−yu, 1−yv, 1−yw, 1−yuyv, 1−yuyw, 1−yvyw, 1−yuyvyw} . (4.3.4)

We appear to have taken a step backward since there is an extra letter in Sy relative

to Su. Indeed, writing the symbol of a typical function in this way greatly increases

the length of its expression. Also, the first entry condition becomes more complicated

in the y variables. On the other hand, Sy contains purely rational functions of the

yi, and as such it is easy to construct the space of functions that give rise to symbol

entries of this type. We will discuss these functions in the next subsection.

4.3.2 Multiple polylogarithms

Multiple polylogarithms are a general class of multi-variable iterated integrals, of

which logarithms, polylogarithms, harmonic polylogarithms, and various other iter-

ated integrals are special cases. They are defined recursively by G(z) = 1, and,

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , G(0, . . . , 0

︸ ︷︷ ︸

p

; z) =
lnp z

p!
. (4.3.5)
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Many of their properties are reviewed in appendix C.1, including an expression for

their symbol, which is also defined recursively [162],

S
(

G(an−1, . . . , a1; an)
)

=
n−1
∑

i=1

[

S
(

G(an−1, . . . , âi, . . . , a1; an)
)

⊗ (ai − ai+1)

−S
(

G(an−1, . . . , âi, . . . , a1; an)
)

⊗ (ai − ai−1)

]

, (4.3.6)

where a0 = 0 and the hat on ai on the right-hand side indicates that this index should

be omitted.

Using eq. (4.3.6), it is straightforward to write down a set of multiple polyloga-

rithms whose symbol entries span Sy,

G =

{

G(w⃗; yu)|wi ∈ {0, 1}
}

∪
{

G(w⃗; yv)
∣
∣
∣wi ∈

{

0, 1,
1

yu

}
}

∪
{

G(w⃗; yw)
∣
∣
∣wi ∈

{

0, 1,
1

yu
,
1

yv
,

1

yuyv

}
}

,

(4.3.7)

The set G also emerges naturally from a simple procedure by which symbols are

directly promoted to polylogarithmic functions. For each letter φi(yu, yv, yw) ∈ Sy we

write ωi = d log φi(tu, tv, tw). Then following refs. [146, 163], which are in turn based

on ref. [145], we use the integration map,

φ1 ⊗ . . .⊗ φn /→
∫

γ

ωn ◦ . . . ◦ ω1 . (4.3.8)

The integration is performed iteratively along the contour γ which we choose to take

from the origin ti = 0 to the point ti = yi. The precise choice of path is irrelevant,

provided the symbol we start from is integrable [145,146]. So we may choose to take

a path which goes sequentially along the tu, tv, tw directions. Near the axes we may

find some divergent integrations of the form
∫ y

0 dt/t ◦ . . . ◦ dt/t. We regularize these

divergences in the same way as in the one-dimensional HPL case (see the text before

eq. (4.2.25)) by replacing them with 1
n! log

n y. In this way we immediately obtain an

expression in terms of the functions in G, with the three subsets corresponding to the
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Figure 4.1: Illustration of Regions I, II, III and IV. Each region lies between the
colored surface and the respective corner of the unit cube.

three segments of the contour.

The set G is larger than what is required to construct the basis of hexagon func-

tions. One reason for this is that G generates unwanted symbol entries outside of the

set Su, such as the differences yi − yj, as is easy to see from eq. (4.3.6); the cancella-

tion of such terms is an additional constraint that any valid hexagon function must

satisfy. Another reason is that multiple polylogarithms satisfy many identities, such

as the shuffle and stuffle identities (see appendix C.1 or refs. [37, 162] for a review).

While there are no relevant stuffle relations among the functions in G, there are many

relations resulting from shuffle identities. Just as for the single-variable case of HPLs,

these shuffle relations may be resolved by constructing a Lyndon basis, GL
I ⊂ G,

GL
I =

{

G(w⃗; yu)|wi ∈ Lyndon(0, 1)

}

∪
{

G(w⃗; yv)
∣
∣
∣wi ∈ Lyndon

(

0, 1,
1

yu

)
}

∪
{

G(w⃗; yw)
∣
∣
∣wi ∈ Lyndon

(

0, 1,
1

yu
,
1

yv
,

1

yuyv

)
}

.

(4.3.9)

A multiple polylogarithm G(w1, . . . , wn; z) admits a convergent series expansion

if |z| ≤ |wi| for all nonzero wi, and it is manifestly real-valued if the nonzero wi

and z are real and positive. Therefore, the set GL
I is ideally suited for describing
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configurations for which 0 < yi < 1. In terms of the original cross ratios, this region

is characterized by,

Region I :

{

∆ > 0 , 0 < ui < 1 , and u+ v + w < 1,

0 < yi < 1 .
(4.3.10)

We will construct the space of hexagon functions in Region I as a subspace of GL
I with

good branch-cut properties.

What about other regions? As we will discuss in the next subsection, multiple

polylogarithms in the y variables are poorly suited to regions where ∆ < 0; in these

regions the yi are complex. For such cases, we turn to certain integral representations

that we will describe in section 4.4. In this section, we restrict ourselves to the

subspace of the unit cube for which ∆ > 0. As shown in fig. 4.1, there are four

disconnected regions with ∆ > 0, which we refer to as Regions I, II, III, and IV.

They are the regions that extend respectively from the four points (0, 0, 0), (1, 1, 0),

(0, 1, 1), and (1, 0, 1) to the intersection with the ∆ = 0 surface. Three of the regions

(II, III and IV) are related to one another by permutations of the ui, so it suffices to

consider only one of them,

Region II :

{

∆ > 0 , 0 < ui < 1 , and u+ v − w > 1,

0 < yw < 1
yuyv

< 1
yu
, 1
yv

< 1 .
(4.3.11)

In Region II, the set GL
I includes functions G(w1, . . . , wn; z) for which |wi| < |z|

for some i. As mentioned above, such functions require an analytic continuation and

are not manifestly real-valued. On the other hand, it is straightforward to design an

alternative basis set that does not suffer from this issue,

GL
II =

{

G
(

w⃗;
1

yu

)∣
∣
∣wi ∈ Lyndon(0, 1)

}

∪
{

G
(

w⃗;
1

yv

)∣
∣
∣wi ∈ Lyndon(0, 1, yu)

}

∪
{

G(w⃗; yw)
∣
∣
∣wi ∈ Lyndon

(

0, 1,
1

yu
,
1

yv
,

1

yuyv

)
}

.

(4.3.12)
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Like GL
I , GL

II also generates symbols with the desired entries. It is therefore a good

starting point for constructing a basis of hexagon functions in Region II.

4.3.3 The coproduct bootstrap

The space of multiple polylogarithms enjoys various nice properties, many of which

are reviewed in appendix C.1. For example, it can be endowed with the additional

structure necessary to promote it to a Hopf algebra. For the current discussion, we

make use of one element of this structure, namely the coproduct. The coproduct on

multiple polylogarithms has been used in a variety of contexts [37, 64, 106, 164–166].

It serves as a powerful tool to help lift symbols to full functions and to construct

functions or identities iteratively in the weight.

Let A denote the Hopf algebra of multiple polylogarithms and An the weight-n

subspace, so that,

A =
∞
⊕

n=0

An . (4.3.13)

Then, for Gn ∈ An, the coproduct decomposes as,

∆(Gn) =
∑

p+q=n

∆p,q(Gn) , (4.3.14)

where∆p,q ∈ Ap⊗Aq. It is therefore sensible to discuss an individual {p, q} component

of the coproduct, ∆p,q. In fact, we will only need two cases, {p, q} = {n − 1, 1} and

{p, q} = {1, n − 1}, though the other components carry additional information that

may be useful in other contexts.

A simple (albeit roundabout) procedure to extract the coproduct of a generic

multiple polylogarithm, G, is reviewed in appendix C.1. One first rewrites G in the

notation of a slightly more general function, usually denoted by I in the mathematical

literature. Then one applies the main coproduct formula, eq. (C.1.15), and finally

converts back into the G notation.

Let us discuss how the coproduct can be used to construct identities between

multiple polylogarithms iteratively. Suppose we know all relevant identities up to
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weight n − 1, and we would like to establish the validity of some potential weight-n

identity, which can always be written in the form,

An = 0 , (4.3.15)

for some combination of weight-n functions, An. If this identity holds, then we may

further conclude that each component of the coproduct of An should vanish. In

particular,

∆n−1,1(An) = 0 . (4.3.16)

Since this is an equation involving functions of weight less than or equal to n− 1,

we may check it explicitly. Equation (4.3.16) does not imply eq. (4.3.15), because

∆n−1,1 has a nontrivial kernel. For our purposes, the only relevant elements of the

kernel are multiple zeta values, zeta values, iπ, and their products. Through weight

six, the elements of the kernel are the transcendental constants,

K = {iπ, ζ2, ζ3, iπ3, ζ4, iπζ3, ζ2ζ3, ζ5, iπ
5, ζ6, ζ

2
3 , iπζ5, iπ

3ζ3, . . .} . (4.3.17)

At weight two, for example, we may use this information to write,

∆1,1(A2) = 0 ⇒ A2 = c ζ2 , (4.3.18)

for some undetermined rational number c, which we can fix numerically or by looking

at special limits. Consider the following example for some real positive x ≤ 1,

A2 = −G(0, x; 1)−G

(

0,
1

x
; 1

)

+
1

2
G(0; x)2 − iπG(0; x)

= Li2

(
1

x

)

+ Li2(x) +
1

2
ln2 x− iπ ln x .

(4.3.19)

Using eq. (4.3.19) and simple identities among logarithms, it is easy to check that

∆1,1(A2) = 0 , (4.3.20)
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so we conclude that A2 = c ζ2. Specializing to x = 1, we find c = 2 and therefore

A2 = 2 ζ2. Indeed, this confirms the standard inversion relation for dilogarithms.

The above procedure may be applied systematically to generate all identities

within a given ring of multiple polylogarithms and multiple zeta values. Denote

this ring by C and its weight-n subspace by Cn. Assume that we have found all iden-

tities through weight n− 1. To find the identities at weight n, we simply look for all

solutions to the equation,

∆n−1,1

(
∑

i

ci Gi

)

=
∑

i

ci
(

∆n−1,1(Gi)
)

= 0 , (4.3.21)

whereGi ∈ Cn and the ci are rational numbers. Because we know all identities through

weight n− 1, we can write each ∆n−1,1(Gi) as a combination of linearly-independent

functions of weight n− 1. The problem is then reduced to one of linear algebra. The

nullspace encodes the set of new identities, modulo elements of the kernel K. The

latter transcendental constants can be fixed numerically, or perhaps analytically with

the aid of an integer-relation algorithm like PSLQ [167].

For the appropriate definition of C, the above procedure can generate a variety

of interesting relations. For example, we can choose C = GL
I or C = GL

II and confirm

that there are no remaining identities within these sets.

We may also use this method to express all harmonic polylogarithms with argu-

ment ui or 1 − ui in terms of multiple polylogarithms in the set GL
I or the set GL

II .

The only trick is to rewrite the HPLs as multiple polylogarithms. For example, using

the uncompressed notation for the HPLs,

Ha1,...,an(u) = (−1)w1 G(a1, . . . , an; u) = (−1)w1 G

(

a1, . . . , an;
yu(1−yv)(1−yw)

(1−yuyv)(1− yuyw)

)

,

(4.3.22)

where w1 is the number of ai equal to one. With this understanding, we can simply

take,

C = {Hw⃗(ui)} ∪ GL
I or C = {Hw⃗(ui)} ∪ GL

II , (4.3.23)

and then proceed as above to generate all identities within this expanded ring.
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In all cases, the starting point for the iterative procedure for generating identities

is the set of identities at weight one, i.e. the set of identities among logarithms. All

identities among logarithms are of course known, but in some cases they become

rather cumbersome, and one must take care to properly track various terms that

depend on the ordering of the yi. For example, consider the following identity, which

is valid for all complex yi,

ln u = ln

(
yu(1− yv)(1− yw)

(1− yuyv)(1− yuyw)

)

= ln yu + ln(1− yv) + ln(1− yw)− ln(1− yuyv)− ln(1− yuyw)

+ i

[

Arg

(
yu(1− yv)(1− yw)

(1− yuyv)(1− yuyw)

)

− Arg(yu)− Arg(1− yv)− Arg(1− yw)

+ Arg(1− yuyv) + Arg(1− yuyw)

]

,

(4.3.24)

where Arg denotes the principal value of the complex argument. In principle, this

identity can be used to seed the iterative procedure for constructing higher-weight

identities, which would also be valid for all complex yi. Unfortunately, the bookkeep-

ing quickly becomes unwieldy and it is not feasible to track the proliferation of Arg’s

for high weight.

To avoid this issue, we will choose to focus on Regions I and II, defined by

eqs. (4.3.10) and (4.3.11). In both regions, ∆ > 0, so the y variables are real, and the

Arg’s take on specific values. In Region I, for example, we may write,

ln u
Region I
= ln yu + ln(1− yv) + ln(1− yw)− ln(1− yuyv)− ln(1− yuyw)

= G(0; yu) +G (1; yv) +G (1; yw)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)

.
(4.3.25)

In the last line, we have rewritten the logarithms in terms of multiple polylogarithms

in the set GL
I , which, as we argued in the previous subsection, is the appropriate basis
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for this region. In Region II, the expression for ln u looks a bit different,

ln u
Region II

= ln

(

1− 1

yv

)

+ ln(1− yw)− ln

(

1− 1

yuyv

)

− ln(1− yuyw)

= G

(

1;
1

yv

)

+G (1; yw)−G

(

yu;
1

yv

)

−G

(
1

yu
; yw

)

.

(4.3.26)

In this case, we have rewritten the logarithms as multiple polylogarithms belonging

to the set GL
II .

We now show how to use these relations and the coproduct to deduce relations at

weight two. In particular, we will derive an expression for Hu
2 = H2(1−u) in terms of

multiple polylogarithms in the basis GL
I in Region I. A similar result holds in Region

II. First, we need one more weight-one identity,

ln(1− u)
Region I
= G (1; yu)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)

+G

(
1

yuyv
; yw

)

. (4.3.27)

Next, we take the {1, 1} component of the coproduct,

∆1,1(H
u
2 ) = − ln u⊗ ln(1− u) , (4.3.28)

and substitute eqs. (4.3.25) and (4.3.27),

∆1,1(H
u
2 ) = −

[

G(0; yu) +G (1; yv) +G (1; yw)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)]

⊗
[

G (1; yu)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)

+G

(
1

yuyv
; yw

)]

.

(4.3.29)

Finally, we ask which combination of weight-two functions in GL
I has the {1, 1} com-

ponent of its coproduct given by eq. (4.3.29). There is a unique answer, modulo
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elements in K,

Hu
2

Region I
= −G

(
1

yu
,

1

yuyv
; yw

)

+G

(

1,
1

yuyv
; yw

)

−G

(

1,
1

yu
; yw

)

−G

(

1,
1

yu
; yv

)

+G (0, 1; yu) +G

(
1

yuyv
; yw

)

G

(
1

yu
; yw

)

+G

(
1

yu
; yv

)

G

(
1

yuyv
; yw

)

−G (1; yw)G

(
1

yuyv
; yw

)

−G (1; yv)G

(
1

yuyv
; yw

)

−G (0; yu)G

(
1

yuyv
; yw

)

− 1

2
G

(
1

yu
; yw

)2

−G

(
1

yu
; yv

)

G

(
1

yu
; yw

)

+G (1; yw)G

(
1

yu
; yw

)

+G (1; yv)G

(
1

yu
; yw

)

+G (0; yu)G

(
1

yu
; yw

)

− 1

2
G

(
1

yu
; yv

)2

+G (1; yv)G

(
1

yu
; yv

)

+G (0; yu)G

(
1

yu
; yv

)

−G (0; yu)G (1; yu) + ζ2 .

(4.3.30)

We have written a specific value for the coefficient of ζ2, though at this stage it is

completely arbitrary since ∆1,1(ζ2) = 0. To verify that we have chosen the correct

value, we specialize to the surface yu = 1, on which u = 1 and Hu
2 = 0. It is

straightforward to check that the right-hand side of eq. (4.3.30) does indeed vanish

in this limit.

An alternative way to translate expressions made from HPLs of arguments ui into

expressions in terms of the y variables is as follows. Any expression in terms of HPLs

of arguments u, v, w may be thought of as the result of applying the integration map

to words made from the letters ui and 1− ui only. For example,

Hu
2 = H2(1− u) = H10(u) + ζ2 (4.3.31)

= −
∫

γ

d log(1− s1) ◦ d log s1 + ζ2 , (4.3.32)

where, to verify the final equality straightforwardly, we may choose the contour γ to

run from si = 0 to (s1 = u, s2 = v, s3 = w) sequentially along the s1, s2, s3 axes. In

the above simple example the second and third parts of the contour are irrelevant

since the form to be integrated only depends on s1 anyway. Then we can change
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variables from u, v, w to yu, yv, yw by defining

s1 =
t1(1− t2)(1− t3)

(1− t1t2)(1− t1t3)
, (4.3.33)

and similarly for s2, s3. Since the result obtained depends only on the end points

of the contour, and not the precise path taken, we may instead choose the contour

as the one which goes from the origin ti = 0 to the point t1 = yu, t2 = yv, t3 = yw

sequentially along the t1, t2, t3 axes, as in the discussion around eq. (4.3.8). Then

expression (4.3.32) yields an expression equivalent to eq. (4.3.30).

Continuing this procedure on to higher weights is straightforward, although the

expressions become increasingly complicated. For example, the expression for Hw
4,2

has 9439 terms. It is clear that GL
I is not an efficient basis, at least for representing

harmonic polylogarithms with argument ui. Despite this inefficiency, GL
I and GL

II have

the virtue of spanning the space of hexagon functions, although they still contain

many more functions than desired. In the next subsection, we describe how we

can iteratively impose constraints in order to construct a basis for just the hexagon

functions.

4.3.4 Constructing the hexagon functions

Unitarity requires the branch cuts of physical quantities to appear in physical chan-

nels. For dual conformally-invariant functions corresponding to the scattering of

massless particles, the only permissible branching points are when a cross ratio van-

ishes or approaches infinity. The location of branch points in an iterated integral is

controlled by the first entry of the symbol; hence the first entry should be one of

the cross ratios, as discussed previously. However, it is not necessary to restrict our

attention to the symbol: it was argued in ref. [64] that the condition of only having

physical branch points can be promoted to the coproduct. Then the monodromy op-

eratorMzk=z0 (which gives the phase in analytically continuing the variable zk around

the point z0) acts on the first component of the coproduct ∆ (see appendix C.1.2),

∆ ◦Mzk=z0 = (Mzk=z0 ⊗ id) ◦ ∆ . (4.3.34)
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We conclude that if Fn is a weight-n function with the proper branch-cut locations,

and

∆n−1,1(Fn) =
∑

r

F r
n−1 ⊗ d lnφr , (4.3.35)

then F r
n−1 must also be a weight-(n−1) function with the proper branch-cut locations,

for every r (which labels the possible letters in the symbol). Working in the other

direction, suppose we know the basis of hexagon functions through weight n− 1. We

may then use eq. (4.3.35) and the coproduct bootstrap of section 4.3.3 to build the

basis at weight n.

There are a few subtleties that must be taken into account before applying this

method directly. To begin with, the condition that all the F r
n−1 belong to the basis of

hexagon functions guarantees that they have symbol entries drawn from Su. However,

it does not guarantee that Fn has this property since the φr are drawn from the set

Sy, which is larger than Su. This issue is easily remedied by simply disregarding those

functions whose symbols have final entries outside of the set Su.

In pushing to higher weights, it becomes necessary to pursue a more efficient con-

struction. For this purpose, it is useful to decompose the space of hexagon functions,

which we denote by H, into its parity-even and parity-odd components,

H = H+ ⊕H− . (4.3.36)

The coproduct can be taken separately on each component,

∆n−1,1(H+
n ) ⊆

(

H+
n−1 ⊗ L+

1

)

⊕
(

H−
n−1 ⊗ L−

1

)

,

∆n−1,1(H−
n ) ⊆

(

H+
n−1 ⊗ L−

1

)

⊕
(

H−
n−1 ⊗ L+

1

)

,
(4.3.37)

where L+
1 and L−

1 are the parity-even and parity-odd functions of weight one,

L+
1 = {ln u, ln(1− u), ln v, ln(1− v), lnw, ln(1− w)} ,

L−
1 = {ln yu, ln yv, ln yw} .

(4.3.38)

To construct H±
n , we simply write down the most general ansatz for both the
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left-hand side and the right-hand side of eq. (4.3.37) and solve the linear system. The

ansatz forH±
n will be constructed from the either GL

I or GL
II , supplemented by multiple

zeta values, while a parametrization of the right-hand side is known by assumption.

For high weights, the linear system becomes prohibitively large, which is one reason

why it is useful to construct the even and odd sectors separately, since it effectively

halves the computational burden. We note that not every element on the right hand

side of eq. (4.3.37) is actually in the image of ∆n−1,1. For such cases, we will simply

find no solution to the linear equations. Finally, this parametrization of the {n−1, 1}
component of the coproduct guarantees that the symbol of any function in Hn will

have symbol entries drawn from Su.

Unfortunately, the procedure we just have outlined does not actually guarantee

proper branch cuts in all cases. The obstruction is related to the presence of weight-

(n− 1) multiple zeta values in the space H+
n−1. Such terms may become problematic

when used as in eq. (4.3.37) to build the weight-n space, because they get multiplied

by logarithms, which may contribute improper branch cuts. For example,

ζn−1 ⊗ ln(1− u) ∈ H+
n−1 ⊗ L+

1 , (4.3.39)

but the function ζn−1 ln(1 − u) has a spurious branch point at u = 1. Naively, one

might think such terms must be excluded from our ansatz, but this turns out to be

incorrect. In some cases, they are needed to cancel off the bad behavior of other,

more complicated functions.

We can exhibit this bad behavior in a simple one-variable function,

f2(u) = Li2(u) + ln u ln(1− u) ∈ H+
2 . (4.3.40)

It is easy to write down a weight-three function f3(u) that satisfies,

∆2,1(f3(u)) = f2(u)⊗ ln(1− u) . (4.3.41)
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Indeed, one may easily check that

f3(u) = H2,1(u) + Li2(u) ln(1− u) +
1

2
ln2(1− u) ln u (4.3.42)

does the job. The problem is that f3(u) ̸∈ H+
3 because it has a logarithmic branch

cut starting at u = 1. In fact, the presence of this cut is indicated by a simple pole

at u = 1 in its first derivative,

f ′
3(u)

∣
∣
u→1

→ − ζ2
1− u

. (4.3.43)

The residue of the pole is just f2(1) and can be read directly from eq. (4.3.40) with-

out ever writing down f3(u). This suggests that the problem can be remedied by

subtracting ζ2 from f2(u). Indeed, for

f̃2(u) = f2(u)− ζ2 = −Li2(1− u) , (4.3.44)

there does exist a function,

f̃3(u) = −Li3(1− u) ∈ H+
3 , (4.3.45)

for which,

∆2,1(f̃3(u)) = f̃2(u)⊗ ln(1− u) . (4.3.46)

More generally, any function whose first derivative yields a simple pole has a

logarithmic branch cut starting at the location of that pole. Therefore, the only

allowed poles in the ui-derivative are at ui = 0. In particular, the absence of poles at

ui = 1 provides additional constraints on the space H±
n .

These constraints were particularly simple to impose in the above single-variable

example, because the residue of the pole at u = 1 could be directly read off from a

single term in the coproduct, namely the one with ln(1 − u) in the last slot. In the

full multiple-variable case, the situation is slightly more complicated. The coproduct
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of any hexagon function will generically have nine terms,

∆n−1,1(F ) ≡
3
∑

i=1

[

F ui ⊗ ln ui + F 1−ui ⊗ ln(1− ui) + F yi ⊗ ln yi
]

, (4.3.47)

where F is a function of weight n and the nine functions {F ui , F 1−ui , F yi} are of

weight (n − 1) and completely specify the {n − 1, 1} component of the coproduct.

The derivative with respect to u can be evaluated using eqs. (4.2.23) and (4.3.47) and

the chain rule,

∂F

∂u

∣
∣
∣
∣
v,w

=
F u

u
− F 1−u

1− u
+
1− u− v − w

u
√
∆

F yu+
1− u− v + w

(1− u)
√
∆

F yv +
1− u+ v − w

(1− u)
√
∆

F yw .

(4.3.48)

Clearly, a pole at u = 1 can arise from F 1−u, F yv or F yw , or it can cancel between

these terms.

The condition that eq. (4.3.48) has no pole at u = 1 is a strong one, because it must

hold for any values of v and w. In fact, this condition mainly provides consistency

checks, because a much weaker set of constraints turns out to be sufficient to fix all

undetermined constants in our ansatz.

It is useful to consider the constraints in the even and odd subspaces separately.

Referring to eq. (4.2.9), parity sends
√
∆ → −

√
∆, and, therefore, any parity-odd

function must vanish when ∆ = 0. Furthermore, recalling eq. (4.2.11),

√
∆ =

(1− yu)(1− yv)(1− yw)(1− yuyvyw)

(1− yuyv)(1− yvyw)(1− ywyu)
, (4.3.49)

we see that any odd function must vanish when yi → 1 or when yuyvyw → 1. It turns

out that these conditions are sufficient to fix all undetermined constants in the odd

sector. One may then verify that there are no spurious poles in the ui-derivatives.

There are no such vanishing conditions in the even sector, and to fix all undeter-

mined constants we need to derive specific constraints from eq. (4.3.48). We found it

convenient to enforce the constraint for the particular values of v and w such that the

u → 1 limit coincides with the limit of Euclidean multi-Regge kinematics (EMRK).
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In this limit, v and w vanish at the same rate that u approaches 1,

EMRK: u → 1, v → 0, w → 0;
v

1− u
≡ x,

w

1− u
≡ y, (4.3.50)

where x and y are fixed. In the y variables, the EMRK limit takes yu → 1, while yv

and yw are held fixed, and can be related to x and y by,

x =
yv(1− yw)2

(1− yvyw)2
, y =

yw(1− yv)2

(1− yvyw)2
. (4.3.51)

This limit can also be called the (Euclidean) soft limit, in which one particle gets

soft. The final point, (u, v, w) = (1, 0, 0), also lies at the intersection of two lines

representing different collinear limits: (u, v, w) = (x, 1−x, 0) and (u, v, w) = (x, 0, 1−
x), where x ∈ [0, 1].

In the case at hand, F is an even function and so the coproduct components

F yi are odd functions of weight n − 1, and as such have already been constrained

to vanish when yi → 1. (Although the coefficients of F yv and F yw in eq. (4.3.48)

contain factors of 1/
√
∆, which diverge in the limit yu → 1, the numerator factors

1 − u ∓ (v − w) can be seen from eq. (4.3.50) to vanish in this limit, canceling the

1/
√
∆ divergence.) Therefore, the constraint that eq. (4.3.48) have no pole at u = 1

simplifies considerably:

F 1−u(yu = 1, yv, yw) = 0 . (4.3.52)

Of course, two additional constraints can be obtained by taking cyclic images. These

narrower constraints turn out to be sufficient to completely fix all free coefficients in

our ansatz in the even sector.

Finally, we are in a position to construct the functions of the hexagon basis. At

weight one, the basis simply consists of the three logarithms, ln ui. Before proceeding

to weight two, we must rewrite these functions in terms of multiple polylogarithms.

This necessitates a choice between Regions I and II, or between the bases GL
I and GL

II .

We construct the basis for both cases, but for definiteness let us work in Region I.
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Our ansatz for ∆1,1(H+
2 ) consists of the 18 tensor products,

{ln ui ⊗ x
∣
∣ x ∈ L+

1 } , (4.3.53)

which we rewrite in terms of multiple polylogarithms in GL
I . Explicit linear algebra

shows that only a nine-dimensional subspace of these tensor products can be written

as ∆1,1(G2) for G2 ∈ GL
I . Six of these weight-two functions can be written as products

of logarithms. The other three may be identified withH2(1−ui) by using the methods

of section 4.3.3. (See e.g. eq. (4.3.30).)

Our ansatz for ∆1,1(H−
2 ) consists of the nine tensor products,

{ln ui ⊗ x
∣
∣ x ∈ L−

1 } , (4.3.54)

which we again rewrite in terms of multiple polylogarithms in GL
I . In this case, it turns

out that there is no linear combination of these tensor products that can be written

as ∆1,1(G2) for G2 ∈ GL
I . This confirms the analysis at symbol level as summarized

in table 4.1, which shows three parity-even irreducible functions of weight two (which

are identified as HPLs), and no parity-odd functions.

A similar situation unfolds in the parity-even sector at weight three, namely that

the space is spanned by HPLs of a single variable. However, the parity-odd sector

reveals a new function. To find it, we write an ansatz for ∆2,1(H−
3 ) consisting of the

39 objects,

{f2 ⊗ x
∣
∣ f2 ∈ H+

2 , x ∈ L−
1 } (4.3.55)

(where H+
2 = {ζ2, ln ui ln uj, H

ui
2 }), and then look for a linear combination that can

be written as ∆2,1(G3) for G3 ∈ GL
I . After imposing the constraints that the function
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vanish when yi → 1 and when yuyvyw → 1, there is a unique solution,

Φ̃6
Region I
= −G (0; yu)G (0; yv)G (0; yw) +G (0, 1; yu)G (0; yu)−G (0, 1; yu)G (0; yv)

−G (0, 1; yu)G (0; yw)−G (0, 1; yv)G (0; yu) +G (0, 1; yv)G (0; yv)

−G (0, 1; yv)G (0; yw)−G

(

0,
1

yu
; yv

)

G (0; yu)−G

(

0,
1

yu
; yv

)

G (0; yv)

+G

(

0,
1

yu
; yv

)

G (0; yw)−G (0, 1; yw)G (0; yu)−G (0, 1; yw)G (0; yv)

+G (0, 1; yw)G (0; yw) + 2G (0, 1; yw)G

(
1

yu
; yv

)

−G

(

0,
1

yu
; yw

)

G (0; yu)

+G

(

0,
1

yu
; yw

)

G (0; yv)−G

(

0,
1

yu
; yw

)

G (0; yw)− 2G (0, 0, 1; yu)

− 2G

(

0,
1

yu
; yw

)

G (1; yv) +G

(

0,
1

yv
; yw

)

G (0; yu)− 2G (0, 0, 1; yv)

−G

(

0,
1

yv
; yw

)

G (0; yv)−G

(

0,
1

yv
; yw

)

G (0; yw)− 2G (0, 0, 1; yw)

− 2G

(

0,
1

yv
; yw

)

G (1; yu) +G

(

0,
1

yuyv
; yw

)

G (0; yu)− 2G (0, 1, 1; yu)

+G

(

0,
1

yuyv
; yw

)

G (0; yv) +G

(

0,
1

yuyv
; yw

)

G (0; yw)− 2G (0, 1, 1; yv)

+ 2G

(

0,
1

yuyv
; yw

)

G (1; yu) + 2G

(

0,
1

yuyv
; yw

)

G (1; yv)− 2G (0, 1, 1; yw)

− 2G

(

0,
1

yuyv
; yw

)

G

(
1

yu
; yv

)

− 2G

(

0, 0,
1

yuyv
; yw

)

+ 2G

(

0, 0,
1

yu
; yv

)

+ 2G

(

0, 0,
1

yu
; yw

)

+ 2G

(

0, 0,
1

yv
; yw

)

+ 2G

(

0,
1

yu
,
1

yu
; yv

)

+ 2G

(

0,
1

yu
,
1

yu
; yw

)

+ 2G

(

0,
1

yv
,
1

yv
; yw

)

+ 2G

(

0,
1

yuyv
, 1; yw

)

− 2G

(

0,
1

yuyv
,
1

yu
; yw

)

− 2G

(

0,
1

yuyv
,
1

yv
; yw

)

− ζ2 G (0; yu)− ζ2 G (0; yv)− ζ2 G (0; yw) .

(4.3.56)

The normalization can be fixed by comparing to the differential equation for Φ̃6,
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Weight y0 y1 y2 y3 y4

1 3 HPLs - - - -

2 3 HPLs - - - -

3 6 HPLs Φ̃6 - - -

4 9 HPLs 3×F1 3×Ω(2) - -

5 18 HPLs G, 3×K1 5×M1, N , O, 6×Qep 3×H1, 3×J1 -

6 27 HPLs 4 27 29 3×Rep+15

Table 4.2: Irreducible basis of hexagon functions, graded by the maximum number of y
entries in the symbol. The indicated multiplicities specify the number of independent
functions obtained by applying the S3 permutations of the cross ratios.

eq. (4.2.24). This solution is totally symmetric under the S3 permutation group of the

three cross ratios {u, v, w}, or equivalently of the three variables {yu, yv, yw}. However,
owing to our choice of basis GL

I , this symmetry is broken in the representation (4.3.56).

In principle, this procedure may be continued and used to construct a basis for

the space Hn any value of n. In practice, it becomes computationally challenging

to proceed beyond moderate weight, say n = 5. The three-loop remainder function

is a weight-six function, but, as we will see shortly, to find its full functional form

we do not need to know anything about the other weight-six functions. On the

other hand, we do need a complete basis for all functions of weight five or less. We

have constructed all such functions using the methods just described. Referring to

table 4.1, there are 69 functions with weight less than or equal to five. However, any

function with no y’s in its symbol can be written in terms of ordinary HPLs, so there

are only 30 genuinely new functions. The expressions for these functions in terms of

multiple polylogarithms are quite lengthy, so we present them in computer-readable

format in the attached files.

The 30 new functions can be obtained from the permutations of 11 basic func-

tions which we call Φ̃6, F1, Ω(2), G, H1, J1, K1, M1, N , O, and Qep. Two of these

functions, Φ̃6 and Ω(2), have appeared in other contexts, as mentioned in section 4.2.

Also, a linear combination of F1 and its cyclic image can be identified with the odd

part of the two-loop ratio function, denoted by Ṽ [71]. (The precise relation is given
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in eq. (C.2.20).) We believe that the remaining functions are new. In table 4.2, we

organize these functions by their weight and y-grading. We also indicate how many

independent functions are generated by permuting the cross ratios. For example, Φ̃6

is totally symmetric, so it generates a unique entry, while F1 and Ω(2) are symmetric

under exchange of two variables, so they sweep out a triplet of independent functions

under cyclic permutations. The function Qep has no symmetries, so under S3 per-

mutations it sweeps out six independent functions. The same would be true of M1,

except that a totally antisymmetric linear combination of its S3 images and those

of Qep are related, up to products of lower-weight functions and ordinary HPLs (see

eq. (C.2.51)). Therefore we count only five independent functions arising from the S3

permutations of M1.

We present the {n−1, 1} components of the coproduct of these 11 basis functions

in appendix C.2. This information, together with the value of the function at the

point (1, 1, 1) (which we take to be zero in all but one case), is sufficient to uniquely

define the basis of hexagon functions. We will elaborate on these ideas in the next

section.
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4.4 Integral Representations

In the previous section, we described an iterative procedure to construct the basis of

hexagon functions in terms of multiple polylogarithms in the y variables. The result is

a fully analytic, numerically efficient representation of any given basis function. While

convenient for many purposes, this representation is not without some drawbacks.

Because Sy has one more element than Su, and because the first entry condition is

fairly opaque in the y variables, the multiple polylogarithm representation is often

quite lengthy, which in turn sometimes obscures interesting properties. Furthermore,

the iterative construction and the numerical evaluation of multiple polylogarithms are

best performed when the yi are real-valued, limiting the kinematic regions in which

these methods are practically useful.

For these reasons, it is useful to develop a parallel representation of the hexagon

functions, based directly on the system of first-order differential equations they satisfy.

These differential equations can be solved in terms of (iterated) integrals over lower-

weight functions. Since most of the low weight functions are HPLs, which are easy to

evaluate, one can obtain numerical representations for the hexagon functions, even in

the kinematic regions where the yi are complex. The differential equations can also

be solved in terms of simpler functions in various limits, which will be the subject of

subsequent sections.

4.4.1 General setup

One benefit of the construction of the basis of hexagon functions in terms of multiple

polylogarithms is that we can explicitly calculate the coproduct of the basis functions.

We tabulate the {n − 1, 1} component of the coproduct for each of these functions

in appendix C.2. This data exposes how the various functions are related to one

another, and, moreover, this web of relations can be used to define a system of

differential equations that the functions obey. These differential equations, together

with the appropriate boundary conditions, provide an alternative definition of the

hexagon functions. In fact, as we will soon argue, it is actually possible to derive

these differential equations iteratively, without starting from an explicit expression
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in terms of multiple polylogarithms. It is also possible to express the differential

equations compactly in terms of a Knizhnik-Zamolodchikov equation along the lines

studied in ref. [146]. Nevertheless, the coproduct on multiple polylogarithms, in

particular the {n − 1, 1} component as given in eq. (4.3.47), is useful to frame the

discussion of the differential equations and helps make contact with section 4.3.

It will be convenient to consider not just derivatives with respect to a cross ratio, as

in eq. (4.3.48), but also derivatives with respect to the y variables. For that purpose,

we need the following derivatives, which we perform holding yv and yw constant,

∂ ln u

∂yu
=

(1− u)(1− v − w)

yu
√
∆

,
∂ ln v

∂yu
= −u(1− v)

yu
√
∆

,

∂ ln(1− u)

∂yu
= −u(1− v − w)

yu
√
∆

,
∂ ln(1− v)

∂yu
=

uv

yu
√
∆

.

(4.4.1)

We also consider the following linear combination,

∂

∂ ln(yu/yw)
≡ yu

∂

∂yu

∣
∣
∣
∣
yv ,yw

− yw
∂

∂yw

∣
∣
∣
∣
yv ,yu

. (4.4.2)

Using eqs. (4.2.23) and (4.4.1), as well as the definition (4.4.2), we obtain three

differential equations (plus their cyclic images) relating a function F to its various

coproduct components,

∂F

∂u

∣
∣
∣
∣
v,w

=
F u

u
− F 1−u

1− u
+

1− u− v − w

u
√
∆

F yu +
1− u− v + w

(1− u)
√
∆

F yv

+
1− u+ v − w

(1− u)
√
∆

F yw ,

(4.4.3)
√
∆ yu

∂F

∂yu

∣
∣
∣
∣
yv ,yw

= (1− u)(1− v − w)F u − u(1− v)F v − u(1− w)Fw

−u(1− v − w)F 1−u + uv F 1−v + uw F 1−w +
√
∆F yu ,(4.4.4)

√
∆

∂F

∂ ln(yu/yw)
= (1− u)(1− v)F u − (u− w)(1− v)F v

−(1− v)(1− w)Fw − u(1− v)F 1−u + (u− w)v F 1−v

+w(1− v)F 1−w +
√
∆F yu −

√
∆F yw . (4.4.5)
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Let us assume that we somehow know the coproduct components of F , either from

the explicit representations given in appendix C.2, or from the iterative approach

that we will discuss in the next subsection. We then know the right-hand sides of

eqs. (4.4.3)-(4.4.5), and we can integrate any of these equations along the appropriate

contour to obtain an integral representation for the function F . While eq. (4.4.3)

integrates along a very simple contour, namely a line that is constant in v and w,

this also means that the boundary condition, or initial data, must be specified over a

two-dimensional plane, as a function of v and w for some value of u. In contrast, we

will see that the other two differential equations have the convenient property that

the initial data can be specified on a single point.

Let us begin with the differential equation (4.4.4) and its cyclic images. For

definiteness, we consider the differential equation in yv. To integrate it, we must

find the contour in (u, v, w) that corresponds to varying yv, while holding yu and yw

constant. Following ref. [71], we define the three ratios,

r =
w(1− u)

u(1− w)
=

yw(1− yu)2

yu(1− yw)2
,

s =
w(1− w)u(1− u)

(1− v)2
=

yw(1− yw)2yu(1− yu)2

(1− ywyu)4
,

t =
1− v

uw
=

(1− ywyu)2(1− yuyvyw)

yw(1− yw)yu(1− yu)(1− yv)
.

(4.4.6)

Two of these ratios, r and s, are actually independent of yv, while the third, t, varies.

Therefore, we can let t parameterize the contour, and denote by (ut, vt, wt) the values

of the cross ratios along this contour at generic values of t. Since r and s are constants,

we have two constraints,

wt(1− ut)

ut(1− wt)
=

w(1− u)

u(1− w)
,

wt(1− wt)ut(1− ut)

(1− vt)2
=

w(1− w)u(1− u)

(1− v)2
.

(4.4.7)
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We can solve these equations for vt and wt, giving,

vt = 1− (1− v)ut(1− ut)

u(1− w) + (w − u)ut
, wt =

(1− u)wut

u(1− w) + (w − u)ut
. (4.4.8)

Finally, we can change variables so that ut becomes the integration variable. Calcu-

lating the Jacobian, we find,

d ln yv
dut

=
d ln yv
d ln t

d ln t

dut
=

(1− yv)(1− yuyvyw)

yv(1− ywyu)

1

ut(ut − 1)
=

√
∆t

vt ut(ut − 1)
, (4.4.9)

where∆t ≡ ∆(ut, vt, wt). There are two natural basepoints for the integration: ut = 0,

for which yv = 1 and (u, v, w) = (0, 1, 0); and ut = 1, for which yv = 1/(yuyw) and

(u, v, w) = (1, 1, 1). Both choices have the convenient property that they correspond

to a surface in terms the variables (yu, yv, yw) but only to a single point in terms of

the variables (u, v, w). This latter fact allows for the simple specification of boundary

data.

For most purposes, we choose to integrate off of the point ut = 1, in which case

we find the following solution to the differential equation,

F (u, v, w) = F (1, 1, 1) +

∫ yv

1
yuyw

d ln ŷv
∂F

∂ ln yv

(

yu, ŷv, yw
)

= F (1, 1, 1) +

∫ u

1

dut

ut(ut − 1)

√
∆t

vt

∂F

∂ ln yv
(ut, vt, wt)

= F (1, 1, 1)−
√
∆

∫ u

1

dut

vt[u(1− w) + (w − u)ut]

∂F

∂ ln yv
(ut, vt, wt) .

(4.4.10)

The last step follows from the observation that
√
∆/(1 − v) is independent of yv,

which implies √
∆t

1− vt
=

√
∆

1− v
. (4.4.11)

The integral representation (4.4.10) for F may be ill-defined if the integrand di-

verges at the lower endpoint of integration, ut = 1 or (u, v, w) = (1, 1, 1). On the

other hand, for F to be a valid hexagon function, it must be regular near this point,
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and therefore no such divergence can occur. In fact, this condition is closely related to

the constraint of good branch-cut behavior near u = 1 discussed in section 4.3.4. As

we build up integral representations for hexagon functions, we will use this condition

to help fix various undetermined constants.

Furthermore, if F is a parity-odd function, we may immediately conclude that

F (1, 1, 1) = 0, since this point corresponds to the surface yuyvyw = 1. If F is parity-

even, we are free to define the function by the condition that F (1, 1, 1) = 0. We use

this definition for all basis functions, except for Ω(2)(u, v, w), whose value at (1, 1, 1)

is specified by its correspondence to a particular Feynman integral.

While eq. (4.4.10) gives a representation that can be evaluated numerically for

most points in the unit cube of cross ratios 0 ≤ ui ≤ 1, it is poorly suited for

Region I. The problem is that the integration contour leaves the unit cube, requiring

a cumbersome analytic continuation of the integrand. One may avoid this issue by

integrating along the same contour, but instead starting at the point ut = 0 or

(u, v, w) = (0, 1, 0). The resulting representation is,

F (u, v, w) = F (0, 1, 0)−
√
∆

∫ u

0

dut

vt[u(1− w) + (w − u)ut]

∂F

∂ ln yv
(ut, vt, wt) . (4.4.12)

If F is a parity-odd function, then the boundary value F (0, 1, 0) must vanish, since

this point corresponds to the EMRK limit yv → 1. In the parity-even case, there

is no such condition, and in many cases this limit is in fact divergent. Therefore,

in contrast to eq. (4.4.10), this expression may require some regularization near the

ut = 0 endpoint in the parity-even case.

It is also possible to integrate the differential equation (4.4.5). In this case, we

look for a contour where yv and yuyw are held constant, while the ratio yu/yw is

allowed to vary. The result is a contour (ut, vt, wt) defined by,

vt =
vut(1− ut)

uw + (1− u− w)ut
, wt =

uw(1− ut)

uw + (1− u− w)ut
. (4.4.13)

Again, there are two choices for specifying the boundary data: either we set yu/yw =

yuyw for which we may take ut = 0 and (u, v, w) = (0, 0, 1); or yu/yw = 1/(yuyw), for
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which we may take ut = 1 and (u, v, w) = (1, 0, 0). We therefore obtain two different

integral representations,

F (u, v, w) = F (0, 0, 1) +

∫ u

0

dut

√
∆t

ut(1− ut)(1− vt)

∂F

∂ ln(yu/yw)
(ut, vt, wt)

= F (0, 0, 1) +
√
∆

∫ u

0

dut

(1− vt)[uw + (1− u− w)ut]

∂F

∂ ln(yu/yw)
(ut, vt, wt) ,

(4.4.14)

and,

F (u, v, w) = F (1, 0, 0) +
√
∆

∫ u

1

dut

(1− vt)[uw + (1− u− w)ut]

∂F

∂ ln(yu/yw)
(ut, vt, wt) .

(4.4.15)

Here we used the relation, √
∆t

vt
=

√
∆

v
, (4.4.16)

which follows from the observation that
√
∆/v is constant along either integration

contour. Finally, we remark that the boundary values F (1, 0, 0) and F (0, 0, 1) must

vanish for parity-odd functions, since the points (1, 0, 0) and (0, 0, 1) lie on the ∆ =

0 surface. In the parity-even case, there may be issues of regularization near the

endpoints, just as discussed for eq. (4.4.12).

Altogether, there are six different contours, corresponding to the three cyclic im-

ages of the two types of contours just described. They may be labeled by the y-

variables or their ratios that are allowed to vary along the contour: yu, yv, yw, yu/yw,

yv/yu, and yw/yv. The base points for these contours together encompass (1, 1, 1),

(0, 1, 0), (1, 0, 0) and (0, 0, 1), the four corners of a tetrahedron whose edges lie on the

intersection of the surface ∆ = 0 with the unit cube. See fig. 4.2 for an illustration

of the contours passing through the point (u, v, w) = (34 ,
1
4 ,

1
2).

4.4.2 Constructing the hexagon functions

In this subsection, we describe how to construct differential equations and integral

representations for the basis of hexagon functions. We suppose that we do not have
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Figure 4.2: The six different integration contours for the point (u, v, w) = (34 ,
1
4 ,

1
2),

labeled by the y-variables (or their ratios) that vary along the contour.

any of the function-level data that we obtained from the analysis of section 4.3;

instead, we will develop a completely independent alternative method starting from

the symbol. The two approaches are complementary and provide important cross-

checks of one another.

In section 4.3.1, we presented the construction of the basis of hexagon functions

at symbol level. Here we will promote these symbols to functions in a three-step

iterative process:

1. Use the symbol of a given weight-n function to write down an ansatz for the

{n−1, 1} component of its coproduct in terms of a function-level basis at weight

n− 1 that we assume to be known.

2. Fix the undetermined parameters in this ansatz by imposing various function-

level consistency conditions. These conditions are:

(a) Symmetry. The symmetries exhibited by the symbol should carry over to

the function.
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(b) Integrability. The ansatz should be in the image of ∆n−1,1. This condition

is equivalent to the consistency of mixed partial derivatives.

(c) Branch cuts. The only allowed branch cuts start when a cross ratio van-

ishes or approaches infinity.

3. Integrate the resulting coproduct using the methods of the previous subsection,

specifying the boundary value and thereby obtaining a well-defined function-

level member of the hexagon basis.

Let us demonstrate this procedure with some examples. Recalling the discussion

in section 4.3.1, any function whose symbol contains no y variables can be written

as products of single-variable HPLs. Therefore, the first nontrivial example occurs

at weight three. As previously mentioned, this function corresponds to the one-loop

six-dimensional hexagon integral, Φ̃6. Its symbol is given by,

S(Φ̃6) =
[

−u⊗v−v⊗u+u⊗(1−u)+v⊗(1−v)+w⊗(1−w)
]

⊗yw + cyclic . (4.4.17)

It is straightforward to identify the object in brackets as the symbol of a linear

combination of weight-two hexagon functions (which are just HPLs), allowing us to

write an ansatz for the {2, 1} component of the coproduct,

∆2,1

(

Φ̃6

)

= −
[

ln u ln v+Li2(1−u)+Li2(1− v)+Li2(1−w)+aζ2
]

⊗ ln yw + cyclic ,

(4.4.18)

for some undetermined rational number a.

The single constant, a, can be fixed by requiring that Φ̃6 have the same symmetries

as its symbol. In particular, we demand that Φ̃6 be odd under parity. As discussed

in the previous section, this implies that it must vanish in the limit that one of the yi

goes to unity. In this EMRK limit (4.3.50), the corresponding ui goes to unity while

the other two cross ratios go to zero. The right-hand side of eq. (4.4.18) vanishes in

this limit only for the choice a = −2. So we can write,

∆2,1

(

Φ̃6

)

= −Ω(1)(u, v, w)⊗ ln yw + cyclic , (4.4.19)
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where,

Ω(1)(u, v, w) = ln u ln v + Li2(1− u) + Li2(1− v) + Li2(1− w)− 2ζ2

= Hu
2 +Hv

2 +Hw
2 + ln u ln v − 2ζ2 ,

(4.4.20)

confirming the expression given in eq. (4.2.21). It is also straightforward to verify

that eq. (4.4.18) is integrable and that it does not encode improper branch cuts. We

will not say more about these conditions here, but we will elaborate on them shortly,

in the context of our next example.

Now that we have the coproduct, we can use eqs. (4.4.4) and (4.4.5) to immediately

write down the differential equations,

∂Φ̃6

∂ ln yv
= −Ω(1)(w, u, v) , (4.4.21)

∂Φ̃6

∂ ln(yu/yw)
= −Ω(1)(v, w, u) + Ω(1)(u, v, w) = ln(u/w) ln v . (4.4.22)

These derivatives lead, via eqs. (4.4.10) and (4.4.14), to the following integral repre-

sentations:

Φ̃6 =
√

∆(u, v, w)

∫ u

1

dut Ω(1)(wt, ut, vt)

vt[u(1− w) + (w − u)ut]
, (4.4.23)

with (ut, vt, wt) as in eq. (4.4.8), or

Φ̃6 =
√

∆(u, v, w)

∫ u

0

dut ln(ut/wt) ln vt
(1− vt)[uw + (1− u− w)ut]

, (4.4.24)

with (ut, vt, wt) as in eq. (4.4.13). We have set the integration constants to zero

because Φ̃6 is a parity-odd function.

We have now completed the construction of the hexagon basis through weight

three. Moving on to weight four, the symbol-level classification reveals one new

parity-even function, Ω(2)(u, v, w), and one new parity-odd function, F1(u, v, w), as

well as their cyclic images. We will discuss the parity-even function Ω(2)(u, v, w) since

it exhibits a variety of features that the parity-odd functions lack.

As discussed in section 4.2, Ω(2)(u, v, w) is an extra-pure function, and as such its
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symbol has only three distinct final entries, which were given in eq. (4.2.18),

final entry ∈
{

u

1− u
,

v

1− v
, yuyv

}

. (4.4.25)

Furthermore, the symbol is symmetric under the exchange of u with v. Taken to-

gether, these symmetry properties dictate the form of the {3, 1} component of the

coproduct,

∆3,1(Ω
(2)(u, v, w)) = Ω(2),u ⊗ ln

( u

1− u

)

+ Ω(2),u
∣
∣
∣
u↔v

⊗ ln
( v

1− v

)

+ Ω(2),yu ⊗ ln yuyv .

(4.4.26)

There are two independent functions in eq. (4.4.26), Ω(2),u and Ω(2),yu . The symbols

of these functions can be read off from the symbol of Ω(2)(u, v, w). Both functions

must be valid hexagon functions of weight three. The symbol indicates that Ω(2),u is

parity-even and Ω(2),yu is parity-odd.

The most general linear combination of parity-even hexagon functions of weight

three whose symbol is consistent with that of Ω(2),u is

Ω(2),u = Hu
3 +Hv

2,1 −Hw
2,1 −

1

2
ln(uw/v)

(

Hu
2 +Hw

2

)

+
1

2
ln(uv/w)Hv

2

+
1

2
ln u ln v ln(v/w) + a1 ζ2 ln u+ a2 ζ2 ln v + a3 ζ2 lnw + a4 ζ3 ,

(4.4.27)

for four arbitrary rational numbers ai. There is only a single parity-odd hexagon

function of weight three, so Ω(2),yu is uniquely determined from its symbol,

Ω(2),yu = −1

2
Φ̃6 . (4.4.28)

It is not necessarily the case that the right hand side of eq. (4.4.26) is actually the

{3, 1} component of the coproduct of a well-defined function for arbitrary values of

the parameters ai. This integrability condition can be formalized by the requirement

that the operator

(id⊗ d ∧ d)(∆2,1 ⊗ id) (4.4.29)

annihilate the right hand side of eq. (4.4.26). To see this, note that (∆2,1 ⊗ id) ◦
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∆3,1 = ∆2,1,1, and therefore d ∧ d acts on the the last two slots, which are just

weight-one functions (logarithms). This can be recognized as the familiar symbol-

level integrability condition, eq. (4.2.2), promoted to function-level.

Another way of thinking about the integrability condition is that it guarantees

the consistency of mixed partial derivatives. Since there are three variables, there are

three pairs of derivatives to check. To illustrate the procedure, we will examine one

pair of derivatives by verifying the equation,

√
∆

∂

∂ ln yw

[
∂Ω(2)(u, v, w)

∂ ln(yv/yu)

]

=
√
∆

∂

∂ ln(yv/yu)

[
∂Ω(2)(u, v, w)

∂ ln yw

]

. (4.4.30)

We have multiplied by an overall factor of
√
∆ for convenience. To simplify the

notation, let us define,

U ≡ Ω(2),u and V ≡ Ω(2),u|u↔v . (4.4.31)

Then, using eqs. (4.4.4) and (4.4.5), we can immediately write down an expression

for the left-hand side of eq. (4.4.30),

√
∆

∂

∂ ln yw

[
∂Ω(2)(u, v, w)

∂ ln(yv/yu)

]

=
√
∆

∂

∂ ln yw

[

−1− w√
∆

(U − V )

]

= (1− w)2(1− u− v)(V w − Uw)

+ w(1− w)(Uu + U v + U1−w − V u − V v − V 1−w)

− uw(1− w)(Uu + U1−u + U1−w − V u − V 1−u − V 1−w)

− vw(1− w)(U v + U1−v + U1−w − V v − V 1−v − V 1−w) .

(4.4.32)

The algebra leading to the second line may be simplified by using the fact that

(1 − w)/
√
∆ is independent of yw. Similarly, it is straightforward to write down an
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expression for the right-hand side of eq. (4.4.30),

√
∆

∂

∂ ln(yv/yu)

[
∂Ω(2)(u, v, w)

∂ ln yw

]

=
√
∆

∂

∂ ln(yv/yu)

[

− w√
∆
(U + V )

]

= −w(1− w)(U v − Uu + V v − V u)

− uw(1− w)(Uw + Uu + U1−u + V w + V u + V 1−u)

+ vw(1− w)(Uw + U v + U1−v + V w + V v + V 1−v)

+ w2(u− v)(U1−w + V 1−w) ,

(4.4.33)

where we have used the fact that w/
√
∆ is annihilated by ∂/∂ ln(yv/yu).

As usual, the superscripts indicate the various coproduct components. A special

feature of this example is that the functions U and V are built entirely from single-

variable HPLs, so it is straightforward to extract these coproduct components using

the definitions in appendix C.1. More generally, the functions may contain non-HPL

elements of the hexagon basis. For these cases, the coproduct components are already

known from previous steps in the iterative construction of the basis.

The nonzero coproduct components of U are,

Uu = −1

2

(

Hu
2 −Hv

2 +Hw
2 − ln v ln(v/w)

)

+ a1 ζ2 ,

U v =
1

2

(

Hu
2 +Hv

2 +Hw
2 + 2 ln u ln v − ln u lnw

)

+ a2 ζ2 ,

Uw = −1

2

(

Hu
2 +Hv

2 +Hw
2 + ln u ln v

)

+ a3 ζ2 ,

U1−u = Hu
2 +

1

2
ln u ln(uw/v) ,

U1−v = −1

2
ln v ln(u/w) ,

U1−w =
1

2
lnw ln(u/v) ,

(4.4.34)
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while those of V are related by symmetry,

V u = U v ,

V 1−u = U1−v ,

V v = Uu ,

V 1−v = U1−u ,

V w = Uw|u↔v ,

V 1−w = U1−w|u↔v .
(4.4.35)

Using eqs. (4.4.33), (4.4.34), and (4.4.35), it is straightforward to check that the

equality of mixed-partial derivatives, eq. (4.4.30), is satisfied if and only if a2 = −a3.

Continuing in this way, we can derive similar constraints from the remaining two

mixed partial derivative consistency conditions. The result is that

a2 = −1 , and a3 = 1 . (4.4.36)

Finally, we must impose good branch-cut behavior. As discussed in section 4.3.4, this

constraint can be implemented by imposing eq. (4.3.52), or, in this case,

U(1, 0, 0) = 0 , (4.4.37)

which implies that a4 = 0.

The one remaining parameter, a1, corresponds to an ambiguity that cannot be

fixed by considering mathematical consistency conditions. Indeed, it arises from a

well-defined weight-four function with all the appropriate symmetries and mathemat-

ical properties. In particular, it is the product of ζ2 with an extra-pure weight-two

hexagon function that is symmetric under u ↔ v,

−ζ2
[

Li2(1− 1/u) + Li2(1− 1/v)
]

. (4.4.38)

In general, we would resolve such an ambiguity by making an arbitrary (though

perhaps convenient) choice in order to define the new hexagon function. But because

Ω(2)(u, v, w) corresponds to a particular Feynman integral, the value of a1 is not

arbitrary, and the only way to fix it is to bring in specific data about that integral.

We are not interested in determining the value of a1 directly from the Feynman

integral since this integral has been evaluated previously [71]. Instead, we will be
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satisfied simply to verify that a consistent value of a1 exists.

From eq. (4.4.33) we have,

√
∆
∂Ω(2)(u, v, w)

∂ ln yw
= −w (U + V ) , (4.4.39)

√
∆
∂Ω(2)(u, v, w)

∂ ln(yv/yu)
= −(1− w) (U − V ) . (4.4.40)

Equation (4.4.39) is consistent with the differential equations of section 4 of ref. [71]

only if the function Qφ from that reference (and eq. (4.2.28)) is related to U and V

by,

Qφ = −(U + V ) . (4.4.41)

This equation is satisfied, provided that a1 = 1. Having fixed all ai, we have uniquely

determined the {3, 1} component of the coproduct of Ω(2)(u, v, w). Indeed, eq. (4.4.26)

is consistent with the expressions in eqs. (4.2.19) and (4.2.28), as of course it must

be.

We remark that the antisymmetric combination appearing in eq. (4.4.40) is related

to another function defined in ref. [71],

Z̃(v, w, u) = −2(U − V ) , (4.4.42)

where Z̃ appears in a derivative of the odd part of the NMHV ratio function (see

eq. (C.2.19)).

Following the discussion in section 4.4.1, the differential equation eq. (4.4.39) gives

rise to the integral representation,

Ω(2)(u, v, w) = −6ζ4 +

∫ u

1

dut
Qφ(ut, vt, wt)

ut(ut − 1)
, (4.4.43)

where,

vt =
(1− u)vut

u(1− v) + (v − u)ut
, wt = 1− (1− w)ut(1− ut)

u(1− v) + (v − u)ut
. (4.4.44)
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While our conventions for generic hexagon functions require the functions to vanish

at the boundary value (1, 1, 1), in this specific case we must specify a nonzero value

Ω(2)(1, 1, 1) = −6ζ4 in order to match a prior definition of the function.

The differential equation (4.4.40) gives rise to another integral representation for

Ω(2),

Ω(2)(u, v, w) =
1

2

∫ v

0

dvt Z̃(vt, wt, ut)

vt(1− vt)
, (4.4.45)

where,

ut =
uv(1− vt)

uv + (1− u− v)vt
, wt =

wvt(1− vt)

uv + (1− u− v)vt
. (4.4.46)

There is no constant of integration in eq. (4.4.45) because in this case Ω(2) vanishes

at the lower endpoint, Ω(2)(1, 0, 0) = 0 [71,158].

Continuing onward, we construct the remaining functions of the hexagon basis

in an iterative fashion, using the above methods. We collect the results through

weight five in appendix C.2. We present the data by the {n − 1, 1} component of

the coproduct, plus the constraint that the functions vanish at (u, v, w) = (1, 1, 1)

(except for the special case of Ω(2)). With this information, we can build an ansatz

for the three-loop remainder function, as we discuss in the next subsection.

4.4.3 Constructing the three-loop remainder function

In this subsection, we complete the construction of an ansatz for the three-loop re-

mainder function. We use the decomposition (4.2.29) of the symbol of R(3)
6 as a

template, and extend it to a definition of the function using the same steps as in sec-

tion 4.4.2:

1. From the symbol of the extra-pure function Rep(u, v, w), which depends on α1

and α2, we expand the {5, 1} components of its coproduct in terms of our weight-

five basis functions. These functions can be given as multiple polylogarithms,

as in section 4.3.4, or as integral representations, as in section 4.4.2. We also

allow for the addition of zeta values multiplying lower-weight basis functions.
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2. We fix as many undetermined parameters in this ansatz as possible by enforcing

various mathematical consistency conditions. In particular,

(a) We impose extra-purity and symmetry in the exchange of u and v as

function-level conditions on the coproduct entries, since these conditions

are satisfied at symbol level:

Rv
ep = −R1−v

ep = −R1−u
ep (u ↔ v) = Ru

ep(u ↔ v) ,

Ryv
ep = Ryu

ep , Rw
ep = R1−w

ep = Ryw
ep = 0 .

(4.4.47)

In principle, beyond-the-symbol terms do not need to obey the extra-purity

relations. At the end of section 4.5, we will relax this assumption and use

the near-collinear limits to show that the potential additional terms vanish.

(b) We demand that the ansatz be integrable. For the multiple polylogarithm

approach, this amounts to verifying that there is a weight-six function

with our ansatz as the {5, 1} component of its coproduct. For the approach

based on integral representations, we check that there are consistent mixed

partial derivatives.

(c) We require that the resulting function have the proper branch-cut struc-

ture. We impose this constraint by verifying that there are no spurious

poles in the first derivatives, just as we did in the construction of the

hexagon basis.

After imposing these constraints, there are still nine undetermined beyond-

the-symbol parameters. They correspond to well-defined extra-pure hexagon

functions of weight six, and cannot be fixed by mathematical consistency con-

ditions.

3. We integrate the resulting coproduct. This result is a weight-six function,

R(α1,α2)
ep , which depends on the symbol-level constants, α1 and α2, and nine

lower-weight functions r1, . . . , r9, which come multiplied by zeta values. The ri

may be expressed in terms of previously-determined hexagon functions, while
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R(α1,α2)
ep may be given as an integral representation or explicitly in terms of

multiple polylogarithms.

This procedure leaves us with the following ansatz for R(3)
6 :

R(3)
6 (u, v, w) =

[(

R(α1,α2)
ep (u, v, w) +

9
∑

i=1

ci ri(u, v)
)

+ cyclic
]

+ P6(u, v, w)

+ c10 ζ6 + c11 (ζ3)
2 .

(4.4.48)

where the ci are undetermined rational numbers, and

r1 = ζ4
[

Hu
2 +

1

2
ln2 u+ (u ↔ v)

]

,

r2 = ζ3
[

Hu
2,1 −

1

6
ln3 u+ (u ↔ v)

]

,

r3 = ζ3
[

Hu
3 − 2Hu

2,1 +Hu
1H

u
2 + (u ↔ v)

]

,

r4 = ζ2
[

Hu
4 +Hu

1H
u
3 − 1

2
(Hu

2 )
2 + (u ↔ v)

]

,

r5 = ζ2
[

Hu
4 − 3Hu

2,1,1 +Hu
1H

u
3 +

1

2
(Hu

1 )
2Hu

2 + (u ↔ v)
]

,

r6 = ζ2
[

Hu
3,1 − 3Hu

2,1,1 +Hu
1H

u
2,1 + (u ↔ v)

]

,

r7 = ζ2
[

Hu
2,1,1 +

1

24
(Hu

1 )
4 + (u ↔ v)

]

,

r8 = ζ2
(

Hu
2 +

1

2
ln2 u

)(

Hv
2 +

1

2
ln2 v

)

,

r9 = ζ2 Ω
(2)(u, v, w) .

(4.4.49)

In the following section we will use the collinear limits of this expression to fix α1,

α2 and the ci. After fixing these parameters, we can absorb all but the constant

terms into a redefinition of Rep. The {5, 1} component of its coproduct is given in

appendix C.3. The final integral representation for R(3)
6 , having fixed also c10 and

c11, is given in section 4.7, eq. (4.7.1). The final expression in terms of multiple

polylogarithms is quite lengthy, but it is provided in a computer-readable format in

the attached files.
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4.5 Collinear limits

In the previous section, we constructed a 13-parameter ansatz for the three-loop re-

mainder function. It has the correct symbol, proper branch structure, and total S3

symmetry in the cross ratios. In other words, the ansatz obeys all relevant math-

ematical consistency conditions. So in order to fix the undetermined constants, we

need to bring in some specific physical data.

Some of the most useful data available comes from the study of the collinear limit.

In the strict collinear limit in which two gluons are exactly collinear, the remainder

function must vanish to all loop orders. This condition fixes many, but not all, of the

parameters in our ansatz. To constrain the remaining constants, we expand in the

near-collinear limit, keeping track of the power-suppressed terms. These terms are

predicted by the OPE for flux tube excitations. In fact, the information about the

leading discontinuity terms in the OPE [38–40] was already incorporated at symbol

level and used to constrain the symbol for the three-loop remainder function up to

two undetermined parameters [14].

Here we take the same limit at function level, and compare to the recent work

of Basso, Sever and Vieira (BSV) [150], which allows us to uniquely constrain all of

the beyond-the-symbol ambiguities, as well as the two symbol-level parameters. The

two symbol-level parameters were previously fixed by using dual supersymmetry [45],

and also by studying the near-collinear limit at symbol level [150], and we agree with

both of these determinations.

4.5.1 Expanding in the near-collinear limit

In the (Euclidean) limit that two gluons become collinear, one of the cross ratios goes

to zero and the sum of the other cross ratios goes to one. For example, if we let k2

and k3 become parallel, then x2
24 ≡ (k2 + k3)2 → 0, corresponding to v → 0, and

u + w → 1. BSV [150] provide a convenient set of variables (τ, σ,φ) with which one
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can approach this collinear limit. They are related to the (ui, yi) variables by [152]:

u =
FS2

(1 + T 2)(F + FS2 + ST + F 2ST + FT 2)
,

v =
T 2

1 + T 2
,

w =
F

F + FS2 + ST + F 2ST + FT 2
,

yu =
FS + T

F (S + FT )
,

yv =
(S + FT )(1 + FST + T 2)

(FS + T )(F + ST + FT 2)
,

yw =
F + ST + FT 2

F (1 + FST + T 2)
.

(4.5.1)

where T = e−τ , S = eσ, and F = eiφ.

As T → 0 (τ → ∞) we approach the collinear limit. The parameter S controls

the partitioning of the momentum between the two collinear gluons, according to

k2/k3 ∼ S2, or k2/(k2 + k3) ∼ S2/(1 + S2). The parameter F controls the azimuthal

dependence as the two gluons are rotated around their common axis with respect

to the rest of the scattering process. This dependence is related to the angular

momentum of flux-tube excitations in the OPE interpretation.

By expanding an expression in T we can probe its behavior in the near-collinear

limit, order by order in T . Each order in T also contains a polynomial in lnT . In

general, the expansions of parity even and odd hexagon functions f even and f odd have

the form,

f even(T, F, S) =
∞
∑

m=0

N
∑

n=0

m
∑

p=0

Tm (− lnT )n cosp φ f even
m,n,p(S) , (4.5.2)

f odd(T, F, S) = 2i sinφ
∞
∑

m=1

N
∑

n=0

m−1
∑

p=0

Tm (− lnT )n cosp φ f odd
m,n,p(S) . (4.5.3)

Odd parity necessitates an extra overall factor of sin φ. The maximum degree of the

polynomial in e±iφ is m, the number of powers in the T expansion, which is related
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to the twist of a flux tube excitation in the final answer. The maximum degree N of

the polynomial in τ ≡ − lnT satisfies N = w− 2 for the non-HPL hexagon functions

with weight w in appendix C.3, although in principle it could be as large as N = w

for the m = 0 term (but only from the function lnw v), and as large as N = w − 1

when m > 0. For the final remainder function at L loops, with weight w = 2L, the

leading discontinuity terms in the OPE imply a relatively small value of N compared

to the maximum possible, namely N = L− 1 = 2L− (L + 1) for R(L)
6 , or N = 2 for

R(3)
6 .

BSV predict the full order T 1 behavior of the remainder function [150]. The part

of the T 2 behavior that is simplest for them to predict (because it is purely gluonic)

contains azimuthal variation proportional to cos2 φ, i.e. the T 2F 2 or T 2F−2 terms;

however, they can also extract the T 2F 0 behavior, which depends upon the scalar

and fermionic excitations as well [152]. To compare with this data, we must expand

our expression for R(3)
6 to this order.

The expansion of an expression is relatively straightforward when its full analytic

form is known, for example when the expression is given in terms of multiple polylog-

arithms. In this case, one merely needs to know how to take a derivative with respect

to T and how to evaluate the functions at T = 0. The derivative of a generic multiple

polylogarithm can be read off from its coproduct, which is given in appendix C.1.

Evaluating the functions at T = 0 is more involved because it requires taking yu → 1

and yw → 1 simultaneously. However, the limit of all relevant multiple polylogarithms

can be built up iteratively using the coproduct bootstrap of section 4.3.3.

If the expression is instead represented in integral form, or is defined through

differential equations, then it becomes necessary to integrate up the differential equa-

tions, iteratively in the transcendental weight, and order by order in the T expansion.

Recall that for any function in our basis we have a complete set of differential equa-

tions whose inhomogeneous terms are lower weight hexagon functions. The change of

variables (4.5.1), and its Jacobian, allows us to go from differential equations in the

ui or y variables to differential equations in (F, S, T ).

The structure of the T → 0 expansion makes most terms very straightforward to

integrate. In eqs. (4.5.2) and (4.5.3), T only appears as powers of T , whose coefficients
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are polynomials of fixed order in lnT . The variable F only appears as a polynomial

in cosφ and sinφ, i.e. as powers of F and F−1. Hence any T or F derivative can

be integrated easily, up to a constant of integration, which can depend on S. The S

derivatives require a bit of extra work. However, the differential equation in S is only

required for the T and F independent term arising in the parity-even case, f even
0,0,0(S).

This coefficient is always a pure function of the same transcendental weight as f itself,

and it can be constructed from a complete set of HPLs in the argument −S2. Thus

we can integrate the one required differential equation in S by using a simple ansatz

built out of HPLs.

There is still one overall constant of integration to determine for each parity-

even function, a term that is completely independent of T , F and S. It is a linear

combination of zeta values. (The parity-odd functions all vanish as T → 0, so they do

not have this problem.) The constant of integration can be determined at the endpoint

S = 0 or S = ∞, with the aid of a second limiting line, (u, v, w) = (u, u, 1). On this

line, all the hexagon functions are very simple, collapsing to HPLs with argument

(1 − u). In the limit u → 0 this line approaches the point (0, 0, 1), which can be

identified with the S → 0 “soft-collinear” corner of the T → 0 collinear limit in the

parametrization (4.5.1). Similarly, the S → ∞ corner of the T → 0 limit intersects

the line (1, v, v) at v = 0. Both lines (u, u, 1) and (1, v, v) pass through the point

(1, 1, 1). At this point, (most of) the hexagon functions are defined to vanish, which

fixes the integration constants on the (u, u, 1) and (1, v, v) lines. HPL identities then

give the desired values of the functions in the soft-collinear corner, which is enough to

fix the integration constant for the near-collinear limit. We will illustrate this method

with an example below.

The coefficients of the power-suppressed terms that also depend on T and F ,

namely fm,n,p(S) in eqs. (4.5.2) and (4.5.3) for m > 0, are functions of S that involve

HPLs with the same argument −S2, but they also can include prefactors to the HPLs

that are rational functions of S. The fm,n,p(S) for m > 0 generally have a mixed

transcendental weight. Mixed transcendentality is common when series expanding

generic HPLs around particular points. For example, expanding Li2(1 − x) around
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x = 0 gives

Li2(1− x) ∼ π2

6
+ x(ln x− 1) + x2

( ln x

2
− 1

4

)

+ x3
( ln x

3
− 1

9

)

+O(x4) . (4.5.4)

Using an HPL ansatz for the pure S-dependent terms, we use the differential

equations to fix any unfixed parameters and cross-check the ansatz. Repeating this

process order by order we build up the near-collinear limiting behavior of each element

of the basis of hexagon functions as a series expansion.

4.5.2 Examples

In order to illustrate the collinear expansion, it is worthwhile to present a few low-

weight examples. We begin with the simplest nontrivial example, the weight-three

parity-odd function Φ̃6. Since Φ̃6 is fully symmetric in the ui and vanishes in the

collinear limit (like any parity-odd function), its expansion is particularly simple. To

conserve space in later formulas, we adopt the notation,

s = S2 , L = lnS2 , Hw⃗ = Hw⃗(−S2) . (4.5.5)

The expansion of Φ̃6 is then

Φ̃6 =
2iT sinφ

S

[

2 lnT
(

(1 + s)H1 + sL
)

− (1 + s)
(

H2
1 + (L+ 2)H1

)

− 2sL

]

+
2iT 2 cosφ sinφ

S2

[

−2 lnT
(

(1 + s2)H1 + s(sL+ 1)
)

+ (1 + s2)(H2
1 + LH1)

+ (1 + s)2H1 + s
(

(1 + s)L+ 1
)
]

+O(T 3) .

(4.5.6)

The sign of eq. (4.5.6), and of the collinear expansions of all of the parity-odd func-

tions, depend on the values of the y variables used. This sign is appropriate to

approaching the collinear limit from Region I, with 0 < yi < 1.
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Because Ω(2) lacks the symmetries of Φ̃6, its expansion must be evaluated in mul-

tiple channels, and it is substantially lengthier. Through order T 2, we find,

Ω(2)(u, v, w) =

ln2 T
(

2(H2 + ζ2) + L2
)

+ 2 lnT
(

H3 − 2(H2,1 − ζ3)− LH2

)

+H4 − 4H3,1

+ 4H2,1,1 +
1

2

(

H2
2 + L2(H2 + ζ2)

)

− L
(

H3 − 2(H2,1 + ζ3)
)

+ 2ζ2H2 +
5

2
ζ4

+
T cosφ

S

[

−4 ln2 T s(H1 + L) + 4 lnT
(

(1 + s)H1 + s(H2
1 + L(H1 + 1))

)

+ s
(

4(H2,1 − ζ3)−
4

3
H3

1 −H1(2H2 + L2)− 2L(H2
1 + 2)− 2ζ2(2H1 + L)

)

− 2(1 + s)(H2
1 +H1(L+ 2))

]

+
T 2

S2

{

cos2 φ

[

4 ln2 T s2
(

H1 + L+
1

1 + s

)

− 2 lnT

(

2s2H1(H1 + L) +H1 + s+
s2

1 + s

(

(5 + s)H1 + (3 + s)L
)
)

+ s2
(

−4(H2,1 − ζ3) +H1(2H2 + L2 + 4ζ2) +
4

3
H3

1 + 2L(H2
1 + ζ2)

)

+H1(H1 + L) + (1 + 3s)
(

(1 + s)H1 + sL
)

+ s

+
s2

1 + s

(

(5 + s)H1(H1 + L)− s(2H2 + L2)
)

+ 2ζ2
s2(1− s)

1 + s

]

− 2 ln2 T s((2 + s)(H1 + L) + 1)

+ lnT
(

s2(2H1(H1 + L) + 3(H1 + L)) + s(4H1(H1 + L+ 1) + 2L+ 3) +H1

)

+ s(2 + s)
(

2H2,1 −H1H2 − LH2
1 −

2

3
H3

1 −
1

2
L2H1 − ζ2(2H1 + L)− 2ζ3

)

− s
(

H2 +
1

2
L2 + 2ζ2 +

3

2

)

− 1

2

(

(1 + s)(1 + 3s)H1(H1 + L) + (1 + 5s)H1

+ s(3 + 7s)(H1 + L)
)
}

+O(T 3) .

(4.5.7)

The integral Ω(2)(u, v, w) is symmetric under the exchange of u and v. This
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implies that the limiting behavior of Ω(2)(v, w, u) can be determined from that of

Ω(2)(u, v, w) by exchanging the roles of u and w in the collinear limit. At leading

order in T , this symmetry corresponds to letting S ↔ 1/S. This symmetry is broken

by the parametrization (4.5.1) at order T 2; nevertheless, the correction at order T 2

is relatively simple,

Ω(2)(v, w, u) = Ω(2)(u, v, w)
∣
∣
∣
S→ 1

S

+ 4T 2

[

ln2 T H1 − lnT H1(H1 + L)−H3 +H2,1

− 1

2

(

H1(H2−ζ2)−L(H2+H2
1 )
)

+
1

3
H3

1

]

+O(T 3) .

(4.5.8)

The last independent permutation is Ω(2)(w, u, v). It is symmetric under u ↔ w

and vanishes at order T 0, which together imply that its near-collinear expansion is

symmetric under S ↔ 1/S through order T 2, although that symmetry is not manifest

in the HPL representation,

Ω(2)(w, u, v) =
T cosφ

S
(1 + s)

(

2LH2 −H1(L
2 + 2ζ2)

)

+
T 2

S2

{

cos2 φ

[

(1 + s2)
(

−2LH2 +H1(L
2 + 2ζ2)

)

+ 2(1− s2)H2

+ s(1− s)(L2 + 2ζ2)− 2(1 + s)((1 + s)H1 + sL)

]

− 2 lnT (1 + s)((1 + s)H1 + sL)

+ (1 + s)2
[

LH2 −H1

(1

2
L2 + ζ2 − L− 3

)

+H2
1

]

+ 3s(1 + s)L

}

+O(T 3) .

(4.5.9)

We determine these expansions by integrating the differential equations in F , S, and

T , as described in the previous subsection. For parity even functions, it is necessary to

fix the constants of integration. Here we present one technique for doing so. Suppose

we set S = T in eq. (4.5.1). Then the limit T → 0 corresponds to the EMRK limit,

u = v → 0, w → 1, approached along the line (u, u, 1). As an example, let us consider
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applying this limit to the expansion of Ω(2)(u, v, w), eq. (4.5.7). We only need to keep

the T 0 terms, and among them we find that the Hw⃗ terms vanish, L → ln u, and

lnT → 1
2 ln u (since u ∼ T 2). Therefore, as u → 0 we obtain,

Ω(2)(u, u, 1) =
1

4
ln4 u+ ζ2 ln

2 u+ 4ζ3 ln u+
5

2
ζ4 +O(u) . (4.5.10)

The constant of integration, 5
2ζ4, clearly survives in this limit. So, assuming we did

not know its value, it could be fixed if we had an independent way of examining this

limit.

This independent method comes from the line (u, u, 1), on which all the hexagon

function have simple representations. This can be seen from the form of the integra-

tion contour parametrized by vt and wt in eq. (4.4.8). Setting v = u and w = 1, it

collapses to

vt = ut , wt = 1 . (4.5.11)

The integral (4.4.43) then becomes

Ω(2)(u, u, 1) = −6ζ4 −
∫ u

1

dut ωu(ut, ut, 1)

ut(ut − 1)
, (4.5.12)

where

ωu(u, u, 1) = [Ω(2),u + (u ↔ v)](u, u, 1) = 2
[

Hu
3 +Hu

2,1 + ln uHu
2 + 1

2 ln
3 u
]

. (4.5.13)

Such integrals can be computed directly using the definition (4.2.25) after a partial

fraction decomposition of the factor 1/[ut(ut − 1)]. Expressing the result in terms of

the Lyndon basis (4.3.3) gives,

Ω(2)(u, u, 1) = −2Hu
4 − 2Hu

3,1 + 6Hu
2,1,1 + 2(Hu

2 )
2 + 2 ln u(Hu

3 +Hu
2,1)

+ ln2 uHu
2 +

1

4
ln4 u− 6 ζ4 .

(4.5.14)

At the point u = 1, all the Hu
w⃗ = Hw⃗(1 − u) vanish, as does ln u = −Hu

1 , so we see
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that eq. (4.5.14) becomes

Ω(2)(1, 1, 1) = −6 ζ4 , (4.5.15)

in agreement with the explicit −6ζ4 in eq. (4.5.12). In order to take the limit u → 0,

we use HPL identities to reexpress the function in terms of HPLs with argument u

instead of (1− u):

Ω(2)(u, u, 1) =
1

4
ln4 u+H1(u) ln

3 u+
(

−2H2(u) +
1

2
(H1(u))

2 + ζ2
)

ln2 u

+
(

4(H3(u)−H2,1(u) + ζ3)−
1

3
(H1(u))

3 + 2ζ2H1(u)
)

ln u

− 6H4(u) + 2H3,1(u) + 2H2,1,1(u) + 2(H2(u))
2 +H2(u)(H1(u))

2

− 2(H3(u) +H2,1(u)− 2ζ3)H1(u)− ζ2(4H2(u) + (H1(u))
2) +

5

2
ζ4 .

(4.5.16)

In the limit u → 0, the Hw⃗(u) vanish, leaving only the zeta values and powers of ln u,

which are in complete agreement with eq. (4.5.10). In particular, the coefficient of ζ4

agrees, and this provides a generic method to determine such constants.

In this example, we inspected the (u, u, 1) line, whose u → 0 limit matches the

S → 0 limit of the T → 0 expansion. One can also use the (1, v, v) line in exactly the

same way; its v → 0 limit matches the S → ∞ limit of the T → 0 expansion.

Continuing on in this fashion, we build up the near-collinear expansions through

order T 2 for all of the functions in the hexagon basis and ultimately of R(3)
6 itself.

The expansions are rather lengthy, but we present them in a computer-readable file

attached to this document.

4.5.3 Fixing most of the parameters

In section 4.4.3 we constructed an ansatz (4.4.48) for R(3)
6 that contains 13 undeter-

mined rational parameters, after imposing mathematical consistency and extra-purity

of Rep. Two of the parameters affect the symbol: α1 and α2. (They could have been

fixed using a dual supersymmetry anomaly equation [45].) The remaining 11 param-

eters ci we refer to as “beyond-the-symbol” because they accompany functions (or
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constants) with Riemann ζ value prefactors. Even before we compare to the OPE

expansion, the requirement that R(3)
6 vanish at order T 0 in the collinear limit is al-

ready a powerful constraint. It represents 11 separate conditions when it is organized

according to powers of lnT , lnS2 and Hw⃗(−S2), as well as the Riemann ζ values.

(There is no dependence on F at the leading power-law order.) The 11 conditions

lead to two surviving free parameters. They can be chosen as α2 and c9.

Within Rep, the coefficient c9 multiplies ζ2Ω(2)(u, v, w), as seen from eq. (4.4.49).

However, after summing over permutations, imposing vanishing in the collinear limit,

and using eq. (4.2.14), c9 is found to multiply ζ2 R
(2)
6 . It is clear that c9 cannot be

fixed at this stage (vanishing at order T 0) because the two-loop remainder function

vanishes in all collinear limits. Furthermore, its leading discontinuity is of the form

Tm(lnT ), which is subleading with respect to the three-loop leading discontinuity,

terms of the form Tm(lnT )2. It is rather remarkable that there is only one other

ambiguity, α2, at this stage.

The fact that α1 can be fixed at the order T 0 stage was anticipated in ref. [14].

There the symbol multiplying α1 was extended to a full function, called f1. It was

observed that the collinear limit of f1, while vanishing at symbol level, did not vanish

at function level, and the limit contained a divergence proportional to ζ2 lnT times

a particular function of S2. It was argued that this divergence should cancel against

contributions from completing the αi-independent terms in the symbol into a function.

Now that we have performed this step, we can fix the value of α1. Indeed when we

examine the ζ2 lnT terms in the collinear limit of the full R(3)
6 ansatz, we obtain

α1 = −3/8, in agreement with refs. [45, 150].

4.5.4 Comparison to flux tube OPE results

In order to fix α2 and c9, as well as obtain many additional consistency checks, we

examine the expansion of R(3)
6 to order T and T 2, and compare with the flux tube

OPE results of BSV.

BSV formulate scattering amplitudes in planar N = 4 super-Yang-Mills theory, or

rather the associated polygonal Wilson loops, in terms of pentagon transitions. The
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pentagon transitions map flux tube excitations on one edge of a light-like pentagon,

to excitations on another, non-adjacent edge. They have found that the consistency

conditions obeyed by the pentagon transitions can be solved in terms of factorizable S

matrices for two-dimensional scattering of the flux tube excitations. These S matrices

can in turn be determined nonperturbatively for any value of the coupling, as well as

expanded in perturbation theory in order to compare with perturbative results [150,

151]. The lowest twist excitations dominate the near-collinear or OPE limit τ →
∞ or T → 0. The twist n excitations first appear at O(T n). In particular, the

O(T 1) term comes only from a gluonic twist-one excitation, whereas at O(T 2) there

can be contributions of pairs of gluons, gluonic bound states, and pairs of scalar or

fermionic excitations. As mentioned above, BSV have determined the full order T 1

behavior [150], and an unpublished analysis gives the T 2F 2 or T 2F−2 terms, plus the

expansion of the T 2F 0 terms around S = 0 through S10 [152].

BSV consider a particular ratio of Wilson loops, the basic hexagon Wilson loop,

divided by two pentagons, and then multiplied back by a box (square). The pentagons

and box combine to cancel off all of the cusp divergences of the hexagon, leading to

a finite, dual conformally invariant ratio. We compute the remainder function, which

can be expressed as the hexagon Wilson loop divided by the BDS ansatz [32] for

Wilson loops. To relate the two formulations, we need to evaluate the logarithm

of the BDS ansatz for the hexagon configuration, subtract the analogous evaluation

for the two pentagons, and add back the one for the box. The pentagon and box

kinematics are determined from the hexagon by intersecting a light-like line from a

hexagon vertex with an edge on the opposite side of the hexagon [150]. For example,

if we have lightlike momenta ki, i = 1, 2, . . . , 6 for the hexagon, then one pentagon is

found by replacing three of the momenta, say k4, k5, k6, with two light-like momenta,

say k′
4 and k′

5, having the same sum. Also, one of the new momenta has to be parallel

to one of the three replaced momenta:

k′
4 + k′

5 = k4 + k5 + k6 , k′
4 = ξ′k4 . (4.5.17)

The requirement that k′
5 is a null vector implies that ξ′ = s123/(s123 − s56), where
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sij = (ki + kj)2, sijm = (ki + kj + km)2. The five (primed) kinematic variables of the

pentagon are then given in terms of the (unprimed) hexagon variables by

s′12 = s12 , s′23 = s23 , s′34 =
s34s123

s123 − s56
, s′45 = s123 , s′51 =

s123s234 − s23s56
s123 − s56

.

(4.5.18)

The other pentagon replaces k1, k2, k3 with k′′
1 and k′′

2 and has k′
1 parallel to k1, which

leads to its kinematic variables being given by

s′′12 = s123 , s′′23 =
s123s234 − s23s56

s123 − s23
, s′′34 = s45 , s′′45 = s56 , s′′51 =

s61s123
s123 − s23

.

(4.5.19)

Finally, for the box Wilson loop one makes both replacements simultaneously; as a

result, its kinematic invariants are given by

s′′′12 = s123 , s′′′23 =
s123(s123s234 − s23s56)

(s123 − s23)(s123 − s56)
. (4.5.20)

The correction term to go between the logarithm of the BSV Wilson loop and

the six-point remainder function requires the combination of one-loop normalized

amplitudes Vn (from the BDS formula [32]),

V6 − V ′
5 − V ′′

5 + V ′′′
4 , (4.5.21)

which is finite and dual conformal invariant. There is also a prefactor proportional

to the cusp anomalous dimension, whose expansion is known to all orders [168],

γK(a) = 4a− 4ζ2a
2 + 22ζ4a

3 − 4

(
219

8
ζ6 + (ζ3)

2

)

a4 + . . . , (4.5.22)

where a = g2YMNc/(32π2) = λ/(32π2). Including the proper prefactor, we obtain the

following relation between the two observables,

ln
[

1 +Whex(a/2)
]

= R6(a) +
γK(a)

8
X(u, v, w) , (4.5.23)
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where

X(u, v, w) = −Hu
2 −Hv

2 −Hw
2 − ln

(
uv

w(1− v)

)

ln(1− v)− ln u lnw+2ζ2 . (4.5.24)

Here Whex is BSV’s observable (they use the expansion parameter g2 = λ/(16π2) =

a/2) and R6 is the remainder function.

In the near-collinear limit, the correction function X(u, v, w) becomes,

X(u, v, w) = 2T cosφ
(H1

S
+ S (H1 + L)

)

+ T 2

[

(1− 2 cos2 φ)
(H1

S2
+ S2 (H1 + L)

)

+ 2(H1 + L)

]

+ O(T 3) .

(4.5.25)

Next we apply this relation in the near-collinear limit, first at order T 1. We find

that the T 1 ln2 T terms from BSV’s formula match perfectly the ones we obtain from

our expression from R(3)
6 . The T 1 lnT terms also match, given one linear relation

between α2 and the coefficient of ζ2 R
(2)
6 . Finally, the T 1 ln0 T terms match if we fix

α2 = 7/32, which is the last constant to be fixed. The value of α2 is in agreement

with refs. [45,150]. The agreement with ref. [150] (BSV) is no surprise, because both

are based on comparing the near-collinear limit of R(3)
6 with the same OPE results,

BSV at symbol level and here at function level.

Here we give the formula for the leading, order T term in the near-collinear limit
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of R(3)
6 , after fixing all parameters as just described:

R(3)
6 =

T

S
cosφ

{

ln2 T

[
2

3
H3

1 +H2
1 (L+ 2) +H1

(1

4
L2 + 2L+

1

2
ζ2 + 3

)

−H3 +
1

2
H2(L− 1)

]

− lnT

[
1

2
H4

1 +H3
1 (L+ 2) +H2

1

(1

4
L2 + 3L+

3

2
ζ2 + 5

)

+H1

(1

2
L2 + (H2 + 2ζ2 + 5)L− ζ3 + 3ζ2 + 9

)

+
1

2
(H3 − 2H2,1)(L+ 1) +

1

2
H2(L− 1)

]

+
1

10
H5

1 +
1

4
H4

1 (L+ 2) +
1

12
H3

1 (L
2 + 12L+ 6ζ2 + 20)

+
1

4
H2

1

(

L2 + 2(H2 + 2ζ2 + 5)L− 2ζ3 + 6ζ2 + 18
)

+
1

8
H1

[

8(H4 −H3,1) + 2H2
2 + (H2 + ζ2 + 3)L2 +

(

8(H2 −H2,1) + 4ζ3

+ 16ζ2 + 36
)

L+ 2ζ2(H2 + 9)− 39ζ4 − 8ζ3 + 72
]

− 1

4
H2,1L

2 +
1

8

(

−6H4 + 8H2,1,1 +H2
2 + 2H3 − 12H2,1 + 2(ζ2 + 2)H2

)

L

+
1

8
H2

2 −
1

4
H2(2H3 + 4H2,1 + 2ζ3 + ζ2)−

1

4
(2ζ2 − 3)H3 −

1

2
(ζ2 + 1)H2,1

+
9

2
H5 +H4,1 +H3,2 + 6H3,1,1 + 2H2,2,1 +

3

4
H4 −H2,1,1

}

+
(

S → 1

S

)

+ O(T 2) .

(4.5.26)

The T 2 terms are presented in an attached, computer-readable file. The T 2 terms

match perfectly with OPE results provided to us by BSV [152], and at this order

there are no free parameters in the comparison. This provides a very nice consistency

check on two very different approaches.

Recall that we imposed an extra-pure condition on the terms in eq. (4.4.49) that

we added to the ansatz for R(3)
6 . We can ask what would happen if we relaxed this

assumption. To do so we consider adding to the solution that we found a complete set
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of beyond-the-symbol terms. Imposing total symmetry, there are 2 weight-6 constants

(ζ6 and (ζ3)2), and 2 weight-5 constants (ζ5 and ζ2ζ3) multiplying ln uvw. Multiplying

the zeta values ζ4, ζ3 and ζ2 there are respectively 3, 7 and 18 symmetric functions,

for a total of 32 free parameters. Imposing vanishing of these additional terms at

order T 0 fixes all but 5 of the 32 parameters to be zero. We used constraints from the

multi-Regge limit (see the next section) to remove 4 of the 5 remaining parameters.

Finally, the order T 1 term in the near-collinear limit fixes the last parameter to zero.

We conclude that there are no additional ambiguities in R(3)
6 associated with relaxing

the extra-purity assumption.
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4.6 Multi-Regge limits

The multi-Regge or MRK limit of n-gluon scattering is a 2 → (n − 2) scattering

process in which the (n − 2) outgoing gluons are strongly ordered in rapidity. It

generalizes the Regge limit of 2 → 2 scattering with large center-of-mass energy

at fixed momentum transfer s ≫ t. Here we are interested in the case of 2 → 4

gluon scattering, for which the MRK limit means that two of the outgoing gluons are

emitted at high energy, almost parallel to the incoming gluons. The other two gluons

are also typically emitted at small angles, but they are well-separated in rapidity from

each other and from the leading two gluons, giving them smaller energies.

The strong ordering in rapidity for the 2 → 4 process leads to the following strong

ordering of momentum invariants:

s12 ≫ s345, s123 ≫ s34, s45, s56 ≫ s23, s61, s234 . (4.6.1)

In this limit, the cross ratio u = s12s45/(s123s345) approaches one. The other two

cross ratios vanish,

u → 1, v → 0, ŵ → 0. (4.6.2)

In this section, we denote the original cross ratio w by ŵ, in order to avoid confusion

with another variable which we are about to introduce. The cross ratios v and ŵ

vanish at the same rate that u → 1, so that the ratios x and y, defined by

x ≡ v

1− u
, y ≡ ŵ

1− u
, (4.6.3)

remain fixed. The variable y in eq. (4.6.3) should not be confused with the variables

yi. In the y variables, the multi-Regge limit consists of taking yu → 1, while yv and

yw are left arbitrary. (Their values in this limit are related to x and y by eq. (4.3.51).)

It is very convenient [12] to change variables from x and y to the complex-conjugate

pair (w,w∗) defined by,

x =
1

(1 + w)(1 + w∗)
, y =

ww∗

(1 + w)(1 + w∗)
. (4.6.4)
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(Again, this variable w should not be confused with the original cross ratio called

ŵ in this section.) This change of variables rationalizes the y variables in the MRK

limit, so that

yu → 1, yv →
1 + w∗

1 + w
, yw → (1 + w)w∗

w(1 + w∗)
. (4.6.5)

As an aside, we remark here that the variables T, S, F in eq. (4.5.1), used by

BSV to describe the near-collinear limit, are closely related to the variables w,w∗

introduced for the MRK limit. To establish this correspondence, we consider (in this

paragraph only) the MRK limit u → 0, v → 0, ŵ → 1, which is related to eq. (4.6.2)

by a cyclic permutation ui → ui−1, yi → yi−1. This limit corresponds to the T → 0

limit in eq. (4.5.1) if we also send S → 0 at the same rate, so that T/S is fixed. Let’s

rewrite yu from eq. (4.5.1) as

yu =
1 + T

SF

1 + TF
S

(4.6.6)

and compare it with the limiting behavior of yv in eq. (4.6.5). (Comparing yu with

yv is required by the cyclic permutation of the ui and yi variables which we need for

the two limits to correspond.) If we let

w =
T

S
F , w∗ =

T

S

1

F
, (4.6.7)

then yv in eq. (4.6.5) correctly matches eq. (4.6.6). If we start with the variables

T, S, F in eq. (4.5.1), insert the inverse relations to eq. (4.6.7),

T = S
√
ww∗, F =

√

w

w∗
, (4.6.8)

and then let S → 0 with w,w∗ fixed, we can check that all variables approach the

values appropriate for the multi-Regge limit u → 0, v → 0, ŵ → 1. The cross-ratio ŵ

approaches unity as S vanishes, through the relation ŵ = (1+S2|1+w|2)−1. Finally,

we note that the MRK limit interpolates between three different limits: the collinear

limit v → 0, corresponding to |w| → 0; the endpoint of the line (u, u, 1) with u → 0,

corresponding to w → −1; and a second collinear limit u → 0, corresponding to

|w| → ∞.
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Now we return to the u → 1 version of the MRK limit in eq. (4.6.2). If this limiting

behavior of the cross ratios is approached directly from the Euclidean region in which

all cross ratios are positive, we call it the EMRK limit (see also eq. (4.3.50)). In

this limit, the remainder function vanishes, as it does in the Euclidean collinear limit

discussed in the previous section. However, the physical region for 2 → 4 scattering

is obtained by first analytically continuing u → e−2πiu, then taking u → 1, v, ŵ → 0

as above. The analytic continuation generates imaginary terms corresponding to the

discontinuity of the function in the u channel, which survive into the MRK limit; in

fact they can be multiplied by logarithmic singularities as u → 1.

The general form of the remainder function at L loops in the MRK limit is

R(L)
6 (1− u, w, w∗) = (2πi)

L−1
∑

r=0

lnr(1− u)
[

g(L)r (w,w∗) + 2πih(L)
r (w,w∗)

]

+O(1− u) ,

(4.6.9)

where the coefficient functions g(L)r (w,w∗) are referred to as the leading-log approx-

imation (LLA) for r = L − 1, next-to-LLA (NLLA) for r = L − 2, and so on. The

coefficient functions h(L)
r (w,w∗) can be determined simply from the g(L)r , by using a

crossing relation from the 3 → 3 channel [13, 19].

The coefficient functions in this limit are built out of HPLs with arguments −w

and −w∗. Only special combinations of such HPLs are allowed, with good branch-cut

behavior in the (w,w∗) plane, corresponding to symbols whose first entries are limited

to x and y [19]. Such functions may be called single-valued harmonic polylogarithms

(SVHPLs), and were constructed by Brown [47].

Using a Fourier-Mellin transformation, Fadin, Lipatov, and Prygarin wrote an all-

loop expression for the MRK limit in a factorized form depending on two quantities,

the BFKL eigenvalue ω(ν, n) and the impact factor ΦReg(ν, n) [15]:

eR+iπδ|MRK = cos πωab + i
a

2

∞
∑

n=−∞

(−1)n
( w

w∗

)n
2

∫ +∞

−∞

dν

ν2 + n2

4

|w|2iν ΦReg(ν, n)

×
(

− 1

1− u

|1 + w|2

|w|

)ω(ν,n)

.

(4.6.10)
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Here

ωab =
1

8
γK(a) log |w|2 , (4.6.11)

δ =
1

8
γK(a) log

|w|2

|1 + w|4 , (4.6.12)

where the cusp anomalous dimension γK(a) is given in eq. (4.5.22).

By taking the MRK limit of the symbol of the three-loop remainder function, it

was possible to determine all of the coefficient functions g(l)r and h(l)
r through three

loops, up to four undetermined rational numbers, d1, d2, γ′ and γ′′, representing

beyond-the-symbol ambiguities [14]. (Two other parameters, c and γ′′′, could be

fixed using consistency between the MRK limits in 2 → 4 kinematics and in 3 → 3

kinematics.) One of these four constants was fixed by Fadin and Lipatov [15], using

a direct calculation of the NLLA BFKL eigenvalue: γ′ = −9/2. The remaining

three undetermined constants, d1, d2 and γ′′, all appear in the NNLLA coefficient

g(3)0 (w,w∗).

In ref. [19], the coefficient functions g(3)r (w,w∗) and h(3)
r (w,w∗) that appear in the

MRK limit (4.6.9) of R(3)
6 were expressed in terms of the SVHPLs defined in ref. [47].

More specifically, they were rewritten in terms of particular linear combinations of

SVHPLs, denoted by L±
w⃗ , that have definite eigenvalues under inversion of w and

under its complex conjugation. The coefficient function g(3)0 (w,w∗) then becomes [19]:

g(3)0 (w,w∗) =
27

8
L+
5 +

3

4
L+
3,1,1 −

1

2
L+
3 [L+

1 ]
2 − 15

32
L+
3 [L−

0 ]
2 − 1

8
L+
1 L−

2,1 L
−
0

+
3

32
[L−

0 ]
2 [L+

1 ]
3 +

19

384
L+
1 [L−

0 ]
4 +

3

8
[L+

1 ]
2 ζ3 −

5

32
[L−

0 ]
2 ζ3 +

π2

96
[L+

1 ]
3

− π2

384
L+
1 [L−

0 ]
2 − 3

4
ζ5 −

π2

6
γ′′
{

L+
3 − 1

6
[L+

1 ]
3 − 1

8
[L−

0 ]
2 L+

1

}

+
1

4
d1 ζ3

{

[L+
1 ]

2 − 1

4
[L−

0 ]
2
}

− π2

3
d2 L

+
1

{

[L+
1 ]

2 − 1

4
[L−

0 ]
2
}

+
1

30
[L+

1 ]
5 .

(4.6.13)

In the remainder of this section we will describe how to extract the MRK limit

of the three-loop remainder function at the full function level. Comparing this limit
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with eq. (4.6.13) (as well as the other g(3)r and h(3)
r coefficient functions) will serve

as a check of our construction of R(3)
6 , and it will also provide for us the remaining

three-loop MRK constants, d1, d2 and γ′′.

4.6.1 Method for taking the MRK limit

Let us begin by discussing a method for taking the multi-Regge limit of hexagon

functions in general, or of R(3)
6 in particular, starting from an expression in terms of

multiple polylogarithms. The first step is to send u → e−2πiu, i.e. to extract the

monodromy around u = 0. Owing to the non-linear relationship between the ui and

the yi, eq. (4.2.11), it is not immediately clear what the discontinuity looks like in the

y variables. The correct prescription turns out simply to be to take yu around 0. To

see this, consider the ∆1,n−1 component of the coproduct, which can be written as,

∆1,n−1(F ) ≡ ln u⊗ uF + ln v ⊗ vF + lnw ⊗ wF . (4.6.14)

There are only three terms, corresponding to the three possible first entries of the

symbol.

Using the coproduct formulas in appendix C.1, it is straightforward to extract the

functions uF , vF , and wF for any given hexagon function. These functions capture

information about the discontinuities as each of the cross ratios is taken around

zero. In particular, since the monodromy operator acts on the first component of the

coproduct, we have (c.f. eq. (4.3.34)),

∆1,n−1

[

Mu=0(F )
]

=
[

Mu=0(ln u)
]

⊗ uF

= (ln u− 2πi)⊗ uF .
(4.6.15)

Equation (4.6.15) is not quite sufficient to deduce Mu=0(F ). The obstruction comes

from the fact that all higher powers of (2πi) live in the kernel of ∆1,n−1. On the other

hand, these terms can be extracted from the other components of the coproduct: the

(2πi)k terms come from the piece of ∆k,n−k(F ) with lnk u in the first slot.
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If we write eq. (4.6.14) in terms of the yi variables, we find,

∆1,n−1(F ) =
[

G(0; yu) +G (1; yv) +G (1; yw)−G

(
1

yu
; yv

)

−G

(
1

yu
; yw

)
]

⊗ uF

+
[

G(0; yv) +G (1; yu) +G (1; yw)−G

(
1

yu
; yv

)

−G

(
1

yv
; yw

)
]

⊗ vF

+
[

G(0; yw) +G (1; yu) +G (1; yv)−G

(
1

yu
; yw

)

−G

(
1

yv
; yw

)
]

⊗ wF ,

(4.6.16)

where we have now assumed that we are working in Region I. Equation (4.6.16)

indicates that uF can be extracted uniquely from the terms with G(0; yu) in the first

slot. Similarly, the elements of the full coproduct with lnk u in the first slot are given

exactly by the terms with G(0; yu)k in the first slot. Therefore the discontinuity

around u = 0 is the same as the discontinuity around yu = 0. Furthermore, because

our basis GL
I exposes all logarithms G(0; yu) (by exploiting the shuffle algebra), the

only sources of such discontinuities are powers of G(0; yu). As a result, we have a

simple shortcut to obtain the monodromy around u = 0,

Mu=0(F ) = F |G(0;yu)→G(0;yu)−2πi . (4.6.17)

The final step in obtaining the MRK limit is to take yu → 1. This limit is

trivially realized on functions in the basis GL
I because the only source of singularities

is G(1; yu); all other functions are finite as yu → 1. Writing the divergence in terms

of ξ ≡ 1− u, which approaches 0 in this limit, we take

G(1; yu)
yu→1−−−→ ln ξ +G(1; yv) +G(1; yw)−G

(
1

yv
; yw

)

, (4.6.18)

and then set yu = 1 in all other terms.

The result of this procedure will be a polynomial in ln ξ whose coefficients are

multiple polylogarithms in the variables yv and yw. On the other hand, we know

from general considerations that the coefficient functions should be SVHPLs. To

translate the multiple polylogarithms into SVHPLs, we use the coproduct bootstrap
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of section 4.3.3, seeded by the weight-one identities which follow from eq. (4.6.5) and

from combining eqs. (4.3.51), (4.6.4) and (4.6.5),

1

|1 + w|2 =
yv(1− yw)2

(1− yvyw)2
,

|w|2

|1 + w|2 =
yw(1− yv)2

(1− yvyw)2
. (4.6.19)

We obtain,

L−
0 = ln |w|2 = −G(0; yv) +G(0, yw) + 2G(1; yv)− 2G(1; yw) ,

L+
1 = ln

|w|
|1 + w|2 =

1

2
G(0; yv) +

1

2
G(0; yw) +G(1; yv) +G(1; yw)− 2G

(
1

yv
; yw

)

,

(4.6.20)

and,

ln

(
1 + w

1 + w∗

)

= −G(0; yv) and ln
( w

w∗

)

= −G(0; yv)−G(0; yw) . (4.6.21)

Alternatively, we can extract the MRK limits of the hexagon functions iteratively

in the weight, by using their definitions in terms of differential equations. This pro-

cedure is similar to that used in section 4.5 to find the collinear limits of the hexagon

functions, in that we expand the differential equations around the limiting region of

u → 1.

However, first we have to compute the discontinuities from letting u → e−2πiu in

the inhomogeneous (source) terms for the differential equations. For the lowest weight

non-HPL function, Φ̃6, the source terms are pure HPLs. For pure HPL functions we

use standard HPL identities to exchange the HPL argument (1 − u) for argument

u, and again use the Lyndon basis so that the trailing index in the weight vector w⃗

in each Hw⃗(u) is 1. In this new representation, the only discontinuities come from

explicit factors of ln u, which are simply replaced by ln u − 2πi under the analytic

continuation. After performing the analytic continuation, we take the MRK limit of

the pure HPL functions.

Once these limits are known, we can integrate up the differential equations for the

non-HPL functions in much the same fashion that we did for the collinear limits, by
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using a restricted ansatz built from powers of ln ξ and SVHPLs. The Jacobian factors

needed to transform from differential equations in (u, v, ŵ) to differential equations

in the MRK variables (ξ, w, w∗), are easily found to be:

∂F

∂ξ
= −∂F

∂u
+ x

∂F

∂v
+ y

∂F

∂w
,

∂F

∂w
=

ξ

w(1 + w)

[

−wx
∂F

∂v
+ y

∂F

∂w

]

,

∂F

∂w∗
=

ξ

w∗(1 + w∗)

[

−w∗x
∂F

∂v
+ y

∂F

∂w

]

.

(4.6.22)

We compute the derivatives on the right-hand side of these relations using the formula

for ∂F/∂ui in terms of the coproduct components, eq. (4.4.3). We also implement the

transformation u → e−2πiu on the coproduct components, as described above for the

HPLs, and iteratively in the weight for the non-HPL hexagon functions. When we

expand as ξ → 0, we drop all power-suppressed terms in ξ, keeping only polynomials

in ln ξ. (In ∂F/∂ξ, we keep the derivatives of such expressions, i.e. terms of the form

1/ξ × lnk ξ.)

In our definition of the MRK limit, we include any surviving terms from the

EMRK limit. This does not matter for the remainder function, whose EMRK limit

vanishes, but the individual parity-even hexagon functions can have nonzero, and

even singular, EMRK limits.

4.6.2 Examples

We first consider the simplest non-HPL function, Φ̃6. Starting with the expres-

sion for Φ̃6 in Region I, eq. (4.3.56), we take the monodromy around u = 0, uti-

lizing eq. (4.6.17),

Mu=0(Φ̃6) = 2πi
[

−G
(

0,
1

yuyv
; yw
)

−G
(

0,
1

yv
; yw
)

+G
(

0,
1

yu
; yw
)

+G
(

0,
1

yu
; yv
)

+G (0, 1; yw) +G (0, 1; yv)−G (0, 1; yu) +G (0; yv)G (0; yw) + ζ2
]

.

(4.6.23)
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Next, we take the limit yu → 1. There are no divergent factors, so we are free to set

yu = 1 without first applying eq. (4.6.18). The result is,

Φ̃6|MRK = 2πi
[

−2G
(

0,
1

yv
; yw
)

+2G (0, 1; yw)+2G (0, 1; yv)+G (0; yv)G (0; yw)+2ζ2
]

.

(4.6.24)

To transform this expression into the SVHPL notation of ref. [19], we use the coprod-

uct bootstrap to derive an expression for the single independent SVHPL of weight

two, the Bloch-Wigner dilogarithm, L−
2 ,

∆1,1(L
−
2 ) = ∆1,1

(

Li2(−w)− Li2(−w∗) +
1

2
ln |w|2 ln

1 + w

1 + w∗

)

=
1

2
L−
0 ⊗

[

ln

(
1 + w

1 + w∗

)

− 1

2
ln
( w

w∗

)
]

+
1

2
L+
1 ⊗ ln

( w

w∗

)

= ∆1,1

(

G

(

0,
1

yv
; yw

)

−G (0, 1; yw)−G (0, 1; yv)−
1

2
G (0; yv)G (0; yw)

)

.

(4.6.25)

In the last line we used eqs. (4.6.20) and (4.6.21). Lifting eq. (4.6.25) from coproducts

to functions introduces one undetermined rational-number constant, proportional to

ζ2. It is easily fixed by specializing to the point yv = yw = 1, yielding,

L−
2 = G

(

0,
1

yv
; yw

)

−G (0, 1; yw)−G (0, 1; yv)−
1

2
G (0; yv)G (0; yw)− ζ2 , (4.6.26)

which, when compared to eq. (4.6.24), gives,

Φ̃6|MRK = −4πi L−
2 . (4.6.27)

Let us derive this result in a different way, using the method based on differential

equations. Like all parity-odd functions, Φ̃6 vanishes in the Euclidean MRK limit;

however, it survives in the MRK limit due to discontinuities in the function Ω(1)

given in eq. (4.2.22), which appears on the right-hand side of the Φ̃6 differential

equation (4.2.24). The MRK limits of the three cyclic permutations of Ω(1) are given
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by

Ω(1)(u, v, ŵ)
∣
∣
∣
MRK

= 2πi ln |1 + w|2 ,

Ω(1)(v, ŵ, u)
∣
∣
∣
MRK

= 2πi ln ξ ,

Ω(1)(ŵ, u, v)
∣
∣
∣
MRK

= 2πi ln
|1 + w|2

|w|2 .

(4.6.28)

Inserting these values into eq. (4.2.24) for ∂Φ̃6/∂u and its cyclic permutations, and

then inserting those results into eq. (4.6.22), we find that

∂Φ̃6

∂ξ

∣
∣
∣
∣
ξ−1

= 0,

∂Φ̃6

∂w

∣
∣
∣
∣
ξ0

= 2πi

[

− ln |w|2

1 + w
+

ln |1 + w|2

w

]

,

∂Φ̃6

∂w∗

∣
∣
∣
∣
ξ0

= 2πi

[
ln |w|2

1 + w∗
− ln |1 + w|2

w∗

]

.

(4.6.29)

The first differential equation implies that there is no ln ξ term in the MRK limit of

Φ̃6. The second two differential equations imply that the MRK limit is proportional

to the Bloch-Wigner dilogarithm,

Φ̃6

∣
∣
MRK

= −4πi
[

Li2(−w)− Li2(−w∗) +
1

2
ln |w|2 ln

1 + w

1 + w∗

]

= −4πi L−
2 .

(4.6.30)

Now that we have the MRK limit of Φ̃6, we can find the limiting behavior of all the

coproduct components of Ω(2) appearing in eq. (4.4.26), and perform the analogous
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expansion of the differential equations in the MRK limit. For Ω(2)(u, v, ŵ) we obtain,

∂Ω(2)(u, v, ŵ)

∂ξ

∣
∣
∣
∣
ξ−1

=
2πi

ξ
ln |1 + w|2

[

− ln ξ +
1

2
ln |1 + w|2 − πi

]

,

∂Ω(2)(u, v, ŵ)

∂w

∣
∣
∣
∣
ξ0

=
2πi

1 + w

[

−1

2
ln2

(
ξ

|1 + w|2

)

+
1

2
ln |w|2 ln |1 + w|2 − L−

2 + ζ2

− πi ln

(
ξ

|1 + w|2

)]

,

(4.6.31)

plus the complex conjugate equation for ∂Ω(2)(u, v, ŵ)/∂w∗.

The solution to these differential equations can be expressed in terms of SVHPLs.

One can write an ansatz for the result as a linear combination of SVHPLs, and fix the

coefficients using the differential equations. One can also take the limit first at the

level of the symbol, matching to the symbols of the SVHPLs; then one only has to

fix the smaller set of beyond-the-symbol terms using the differential equations. The

result is

Ω(2)(u, v, ŵ)
∣
∣
MRK

= 2πi

[
1

4
ln2 ξ (2L+

1 − L−
0 ) +

1

8
ln ξ (2L+

1 − L−
0 )

2 +
5

48
[L−

0 ]
3

+
1

8
[L−

0 ]
2 L+

1 +
1

4
L−
0 [L+

1 ]
2 +

1

6
[L+

1 ]
3 − L+

3 − 2L−
2,1

− ζ2
2
(2L+

1 − L−
0 )− 2 ζ3

]

− (4π)2
[
1

4
ln ξ(2L+

1 − L−
0 ) +

1

16
(2L+

1 − L−
0 )

2

]

.

(4.6.32)

In this case the constant term, proportional to ζ3, can be fixed by requiring vanishing

in the collinear-MRK corner where |w|2 → 0. The last set of terms, multiplying (4π)2,

come from a double discontinuity.

The MRK limit of Ω(2)(ŵ, u, v) is related by symmetry to that of Ω(2)(u, v, ŵ):

Ω(2)(ŵ, u, v)
∣
∣
MRK

= Ω(2)(u, v, ŵ)|MRK(w → 1/w,w∗ → 1/w∗) . (4.6.33)
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The final MRK limit of Ω(2) is,

Ω(2)(v, ŵ, u)
∣
∣
MRK

=
1

4
L4
X−
(1

8
[L−

0 ]
2−ζ2

)

L2
X + 4 ζ3 LX +

1

64
[L−

0 ]
4 +

1

4
ζ2 [L

−
0 ]

2 +
5

2
ζ4

+ 2πi

[
1

3
L3
X − 2

(1

8
[L−

0 ]
2 − ζ2

)

LX +
1

2
[L−

0 ]
2 L+

1 − 2(L+
3 − ζ3)

]

,

(4.6.34)

where LX = ln ξ+L+
1 . Note that this orientation of Ω(2) has a nonvanishing (indeed,

singular) EMRK limit, i.e. even before analytically continuing into the Minkowski

region to pick up the imaginary part. On the other hand, there is no surviving

double discontinuity for this ordering of the arguments.

As our final (simple) example, we give the MRK limit of the totally symmetric,

weight five, parity-odd function G(u, v, ŵ). As was the case for Φ̃6, the limit of G is

again proportional to the Bloch-Wigner dilogarithm, but with an extra factor of ζ2

to account for the higher transcendental weight of G:

G(u, v, ŵ)
∣
∣
MRK

= 16πiζ2 L
−
2 . (4.6.35)

As usual for parity-odd functions, the EMRK limit vanishes. In this case the double

discontinuity also vanishes. In general the MRK limits of the parity-odd functions

must be odd under w ↔ w∗, which forbids any nontrivial constants of integration.

Continuing onward, we build up the MRK limits for all the remaining hexagon

functions. The results are attached to this document in a computer-readable format.

4.6.3 Fixing d1, d2, and γ′′

Using the MRK limit of all the hexagon functions appearing in eq. (4.4.48), we obtain

the MRK limit of R(3)
6 . This is a powerful check of the function, although as mentioned

above, much of it is guaranteed by the limiting behavior of the symbol. In fact,

there are only three rational parameters to fix, d1, d2 and γ′′, and they all enter the

coefficient of the NNLLA imaginary part, g(3)0 (w,w∗), given in eq. (4.6.13). Inspecting

the MRK limit of R(3)
6 , we find first of all perfect agreement with the functions
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h(L)
r (w,w∗) entering the real part. (These can be determined on general grounds using

consistency between the 2 → 4 and 3 → 3 MRK limits.) We also agree perfectly with

the imaginary part coefficients g(3)2 at LLA and g(3)1 at NLLA.

Finally, we find for the NNLLA coefficient g(3)0 ,

g(3)0 (w,w∗) =
27

8
L+
5 +

3

4
L+
3,1,1 −

1

2
L+
3 [L+

1 ]
2 − 15

32
L+
3 [L−

0 ]
2 − 1

8
L+
1 L−

2,1 L
−
0

+
3

32
[L−

0 ]
2 [L+

1 ]
3 +

19

384
L+
1 [L−

0 ]
4 +

1

30
[L+

1 ]
5 +

1

2
[L+

1 ]
2 ζ3 −

3

16
[L−

0 ]
2 ζ3

+
5π2

24
L+
3 − π2

48
L+
1 [L−

0 ]
2 − π2

18
[L+

1 ]
3 − 3

4
ζ5 .

(4.6.36)

Comparing this result with eq. (4.6.13) fixes the three previously undetermined ra-

tional parameters, d1, d2, and γ′′. We find

d1 =
1

2
, d2 =

3

32
, γ′′ = −5

4
. (4.6.37)

These three parameters were also the only ambiguities in the expression found

in ref. [19] for the two-loop (NNLLA) impact factor Φ(2)
Reg(ν, n) defined in ref. [15].

Inserting eq. (4.6.37) into that expression, we obtain,

Φ(2)
Reg(ν, n) =

1

2

[

Φ(1)
Reg(ν, n)

]2

− E(1)
ν,n Eν,n +

1

8
[DνEν,n]

2 +
5

64
N2 (N2 + 4V 2)

− ζ2
4

(

2E2
ν,n +N2 + 6V 2

)

+
17

4
ζ4 .

(4.6.38)

Here Φ(1)
Reg is the one-loop (NLLA) impact factor, and Eν,n and E(1)

ν,n are the LLA and

NLLA BFKL eigenvalues [15,19]. These functions all are combinations of polygamma

(ψ) functions and their derivatives, plus accompanying rational terms in ν and n. For

example,

Eν,n = ψ

(

1 + iν +
|n|
2

)

+ ψ

(

1− iν +
|n|
2

)

− 2ψ(1)− 1

2

|n|
ν2 + n2

4

. (4.6.39)
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Additional rational dependence on ν and n enters eq. (4.6.38) via the combinations

V ≡ iν

ν2 + |n|2

4

, N ≡ n

ν2 + |n|2

4

. (4.6.40)

We recall that the NNLLA BFKL eigenvalue E(2)
ν,n also has been determined [19],

up to nine rational parameters, ai, i = 0, 1, 2, . . . , 8. These parameters enter the

NNLLA coefficient function g(4)1 (w,w∗). If the above exercise can be repeated at four

loops, then it will be possible to fix all of these parameters in the same way, and

obtain an unambiguous result for the NNLLA approximation to the MRK limit.

Finally, we ask whether we could have determined all coefficients from the collinear

vanishing of R(3)
6 and the MRK limit alone, i.e. without using the near-collinear

information from BSV. The answer is yes, if we assume extra purity and if we also

take the value of α2 from ref. [45]. After imposing collinear vanishing, we have two

parameters left: α2 and the coefficient of ζ2 R
(2)
6 . We can fix the latter coefficient

in terms of α2 using the known NLLA coefficient g(1)3 in the MRK limit. (The LLA

coefficient g(2)3 automatically comes out correct.) Then we compare to the NNLLA

coefficient g(0)3 . We find that we can fix d2 and γ′′ to the values in eq. (4.6.37), but

that α2 is linked to d1 by the equation,

α2 =
d1
8

+
5

32
. (4.6.41)

If we do take α2 from ref. [45], then the near-collinear limit of our result for R(3)
6

provides an unambiguous test of BSV’s approach at three loops, through O(T 2).
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4.7 Final formula for R(3)
6 and its quantitative be-

havior

Now that we have used the (near) collinear limits to fix all undetermined constants in

eq. (4.4.48) for R(3)
6 , we can write an expression for the full function, either in terms

of multiple polylogarithms or integral representations. We absorb the ciri(u, v) terms

in eq. (4.4.48) into Rep. In total we have,

R(3)
6 (u, v, w) = Rep(u, v, w)+Rep(v, w, u)+Rep(w, u, v)+P6(u, v, w)+

413

24
ζ6+(ζ3)

2 .

(4.7.1)

Expressions for R(3)
6 in terms of multiple polylogarithms, valid in Regions I and II,

are too lengthy to present here, but they are attached to this document in computer-

readable format. To represent Rep as an integral, we make use of its extra purity and

similarity to Ω(2)(u, v, w), writing a formula similar to eq. (4.4.43):

Rep(u, v, w) = −
∫ u

1

dut

[Ru
ep + (u ↔ v)](ut, vt, wt)

ut(ut − 1)
, (4.7.2)

with vt and wt as defined in eq. (4.4.44). Note that the function Qφ in eq. (4.4.43) is

given, via eq. (4.4.41), as −[Ω(2),u+(u ↔ v)], the analogous combination of coproduct

components entering eq. (4.7.2). The function Ru
ep is defined in appendix C.3.

We may also define R(3)
6 via the {5, 1} component of its coproduct, which is easily

constructed from the corresponding coproducts of Rep in appendix C.3, and of the

product function P6. The general form of the {5, 1} component of the coproduct is,

∆5,1

(

R(3)
6

)

= R(3),u
6 ⊗ ln u+R(3),v

6 ⊗ ln v +R(3),w
6 ⊗ lnw

+R(3),1−u
6 ⊗ ln(1− u) +R(3),1−v

6 ⊗ ln(1− v) +R(3),1−w
6 ⊗ ln(1− w)

+R(3),yu
6 ⊗ ln yu +R(3),yv

6 ⊗ ln yv +R(3),yw
6 ⊗ ln yw .

(4.7.3)
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Many of the elements are related to each other, e.g. by the total symmetry of R(3)
6 :

R(3),1−u
6 = −R(3),u

6 , R(3),1−v
6 = −R(3),v

6 , R(3),1−w
6 = −R(3),w

6 ,

R(3),v
6 (u, v, w) = R(3),u

6 (v, w, u) , R(3),w
6 (u, v, w) = R(3),u

6 (w, u, v) ,

R(3),yv
6 (u, v, w) = R(3),yu

6 (v, w, u) , R(3),yw
6 (u, v, w) = R(3),yu

6 (w, u, v) .

(4.7.4)

The two independent functions may be written as,

R(3),yu
6 =

1

32

{

−4
(

H1(u, v, w) +H1(u, w, v)
)

− 2H1(v, u, w)

+
3

2

(

J1(u, v, w) + J1(v, w, u) + J1(w, u, v)
)

− 4
[

Hu
2 +Hv

2 +Hw
2 +

1

2

(

ln2 u+ ln2 v + ln2 w
)

− 9 ζ2
]

Φ̃6(u, v, w)

}

,

(4.7.5)

and

R(3),u
6 =

1

32

[

A(u, v, w) + A(u, w, v)
]

, (4.7.6)



CHAPTER 4. HEXAGON FUNCTIONS AND R(3)
6 264

where

A = M1(u, v, w)−M1(w, u, v) +
32

3

(

Qep(v, w, u)−Qep(v, u, w)
)

+ (4 ln u− ln v + lnw)Ω(2)(u, v, w) + (ln u+ ln v)Ω(2)(v, w, u)

+ 24Hu
5 − 14Hu

4,1 +
5

2
Hu

3,2 + 42Hu
3,1,1 +

13

2
Hu

2,2,1 − 36Hu
2,1,1,1

+Hu
2

[

−5Hu
3 +

1

2
Hu

2,1 + 7ζ3
]

+
1

2
ln2 u(Hu

3 − 12Hu
2,1 + 3ζ3) +

1

4
ln3 u (Hu

2 − ζ2)

+ ln u
[

−14(Hu
4 − ζ4) + 19Hu

3,1 −
57

2
Hu

2,1,1 +
1

4
(Hu

2 )
2 +

7

4
ζ2H

u
2

]

+ ζ2
(33

4
Hu

3 +Hu
2,1

)

− 2Hv
4,1 −

5

2
Hv

3,2 + 30Hv
3,1,1 +

19

2
Hv

2,2,1 − 12Hv
2,1,1,1

+Hv
2

(

Hv
3 − 9

2
Hv

2,1 +
9

4
ζ2 ln v − 7ζ3

)

− 1

2
ln2 v (Hv

3 + 4Hv
2,1 + 3ζ3)

+ ln v
[

2Hv
4 + 5Hv

3,1 −
15

2
Hv

2,1,1 −
5

4
(Hv

2 )
2 + 6ζ4

]

− 1

4
ln3 v (Hv

2 − ζ2)

− 1

4
ζ2 (H

v
3 − 28Hv

2,1) +
1

6

(

Hu
2 +

1

2
ln2 u

)(

−5Hv
3 − 17Hv

2,1 − 7 ln vHv
2 +

3

2
ln3 v

)

+
1

6

(

Hv
2 +

1

2
ln2 v

)(

−43Hu
3 + 41Hu

2,1 − 5 ln uHu
2 − 21

2
ln3 u

)

− 4 ln uHv
2H

w
2

+ ln u
[

16Hv
4 − 4Hv

3,1 − 5(Hv
2 )

2 − 6 ln v(2Hv
3−Hv

2,1)+3 ln2 v(Hv
2−2ζ2) + 12ζ2H

v
2

]

+
1

2
ln2 u

[

4(Hv
3 +Hv

2,1) + ln vHv
2

]

+ ln v
[

2Hu
3,1 −

1

2
(Hu

2 )
2 + 2ζ2H

u
2

]

+ lnw
[

−6Hv
3,1 −

1

2
(Hv

2 )
2 − 2 ln v(2Hv

3 −Hv
2,1) + ln2 vHv

2 − 2ζ2(3H
v
2 + ln2 v)

]

+
1

2
ln2 w (4Hv

3 − ln vHv
2 ) +

1

2

(

Hv
2 +

1

2
ln2 v

)

(8Hw
2,1 + 4 lnwHw

2 − ln3w)

+ 2 ln2 v(Hu
2,1 + ln uHu

2 )− ln u lnw
[

4Hv
3 + 2Hv

2,1 +
3

2
ln u
(

Hv
2 +

1

2
ln2 v

)]

+ ln v lnw
[

−2Hu
2,1 −

1

2
ln vHu

2 − 2 ln u
(

Hu
2 + 2Hv

2 +
3

8
ln v lnw − 6ζ2

)]

.

(4.7.7)

Since the {5, 1} component of the coproduct specifies all the first derivatives of R(3)
6 ,

eqs. (4.7.5) and (4.7.6) should be supplemented by the value of R(3)
6 at one point. For

example, the value at (u, v, w) = (1, 1, 1) will suffice (see below), or the constraint

that it vanishes in all collinear limits.
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In the remainder of this section, we use the multiple polylogarithmic and integral

representations to obtain numerical values for R(3)
6 for a variety of interesting contours

and surfaces within the positive octant of the (u, v, w) space. We also obtain compact

formulae for R(3)
6 along specific lines through the space.

4.7.1 The line (u, u, 1)

On the line (u, u, 1), the two- and three-loop remainder functions can be expressed

solely in terms of HPLs of a single argument, 1− u. The two-loop function is,

R(2)
6 (u, u, 1) = Hu

4 −Hu
3,1 + 3Hu

2,1,1 +Hu
1 (H

u
3 −Hu

2,1)−
1

2
(Hu

2 )
2 − (ζ2)

2 , (4.7.8)

while the three-loop function is,

R(3)
6 (u, u, 1) = −3Hu

6 + 2Hu
5,1 − 9Hu

4,1,1 − 2Hu
3,2,1 + 6Hu

3,1,1,1 − 15Hu
2,1,1,1,1

− 1

4
(Hu

3 )
2 − 1

2
Hu

3 H
u
2,1 +

3

4
(Hu

2,1)
2 − 5

12
(Hu

2 )
3

+
1

2
Hu

2

[

3
(

Hu
4 +Hu

2,1,1

)

+Hu
3,1

]

−Hu
1

(

3Hu
5 − 2Hu

4,1 + 9Hu
3,1,1 + 2Hu

2,2,1 − 6Hu
2,1,1,1 −Hu

2 H
u
3

)

− 1

4
(Hu

1 )
2
[

3 (Hu
4 +Hu

2,1,1)− 5Hu
3,1 +

1

2
(Hu

2 )
2
]

− ζ2
[

Hu
4 +Hu

3,1 + 3Hu
2,1,1 +Hu

1 (H
u
3 +Hu

2,1)− (Hu
1 )

2 Hu
2 − 3

2
(Hu

2 )
2
]

− ζ4
[

(Hu
1 )

2 + 2Hu
2

]

+
413

24
ζ6 + (ζ3)

2 .

(4.7.9)

Setting u = 1 in the above formula leads to

R(3)
6 (1, 1, 1) =

413

24
ζ6 + (ζ3)

2 . (4.7.10)

We remark that the four-loop cusp anomalous dimension in planar N = 4 SYM,

γ(4)K = −219

2
ζ6 − 4(ζ3)

2 , (4.7.11)
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Figure 4.3: R(3)
6 (u, u, 1) as a function of u.

has a different value for the ratio of the ζ6 coefficient to the (ζ3)2 coefficient.

The value of the two-loop remainder function at this same point is

R(2)
6 (1, 1, 1) = −(ζ2)

2 = −5

2
ζ4 . (4.7.12)

The numerical value of the three-loop to two-loop ratio at the point (1, 1, 1) is:

R(3)
6 (1, 1, 1)

R(2)
6 (1, 1, 1)

= −7.004088513718 . . . . (4.7.13)

We will see that over large swaths of the positive octant, the ratio R(3)
6 /R(2)

6 does not

stray too far from −7.

We plot the function R(3)
6 (u, u, 1) in fig. 4.3. We also give the leading term in the
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expansions of R(2)
6 (u, u, 1) and R(3)

6 (u, u, 1) around u = 0,

R(2)
6 (u, u, 1) = u

[

−1

2
ln2 u+ 2 ln u+ ζ2 − 3

]

+O(u2) ,

R(3)
6 (u, u, 1) = u

[

−1

4
ln3 u+

(

ζ2+
9

4

)

ln2 u−
(5

2
ζ2 + 9

)

ln u− 11

2
ζ4 − ζ3 +

3

2
ζ2 + 15

]

+O(u2) .

(4.7.14)

Hence the ratio R(3)
6 /R(2)

6 diverges logarithmically as u → 0 along this line:

R(3)
6 (u, u, 1)

R(2)
6 (u, u, 1)

∼ 1

2
ln u, as u → 0. (4.7.15)

This limit captures a piece of the near-collinear limit T → 0, the case in which S → 0

at the same rate, as discussed in section 4.5 near eq. (4.5.10). The fact that R(3)
6 has

one more power of ln u than does R(2)
6 is partly from its extra leading power of lnT

(the leading singularity behaves like (lnT )L−1), but also from an extra lnS2 factor in

a subleading lnT term.

As u → ∞, the leading behavior at two and three loops is,

R(2)
6 (u, u, 1) = −27

4
ζ4 +

1

u

[
1

3
ln3 u+ ln2 u+ (ζ2 + 2) ln u+ ζ2 + 2

]

+O
(

1

u2

)

,

R(3)
6 (u, u, 1) =

6097

96
ζ6 +

5

4
(ζ3)

2 +
1

u

[

− 1

10
ln5 u− 1

2
ln4 u− 1

3
(5ζ2 + 6) ln3 u

+
(1

2
ζ3 − 5ζ2 − 6

)

ln2 u−
(141

8
ζ4 − ζ3 + 10ζ2 + 12

)

ln u

− 2ζ5 + 2ζ2ζ3 −
141

8
ζ4 + ζ3 − 10ζ2 − 12

]

+O
(

1

u2

)

.

(4.7.16)

As u → ∞ along the line (u, u, 1), the two- and three-loop remainder functions, and
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Figure 4.4: R(3)
6 /R(2)

6 on the line (u, u, 1).

thus their ratio R(3)
6 /R(2)

6 , approach a constant. For the ratio it is:

R(3)
6 (u, u, 1)

R(2)
6 (u, u, 1)

∼ −
[
50

3

(ζ3)2

π4
+

871

972
π2

]

= −9.09128803107 . . . , as u → ∞.

(4.7.17)

We plot the ratio R(3)
6 /R(2)

6 on the line (u, u, 1) in fig. 4.4. The logarithmic scale for

u highlights how little the ratio varies over a broad range in u.

The line (u, u, 1) is special in that the remainder function is extra pure on it. That
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is, applying the operator u(1− u) d/du returns a pure function for L = 2, 3:

u(1− u)
dR(2)

6 (u, u, 1)

du
= Hu

2,1 −Hu
3 ,

u(1− u)
dR(3)

6 (u, u, 1)

du
= 3Hu

5 − 2Hu
4,1 + 9Hu

3,1,1 + 2Hu
2,2,1 − 6Hu

2,1,1,1 −Hu
2H

u
3

+Hu
1

[
3

2
(Hu

4 +Hu
2,1,1)−

5

2
Hu

3,1 +
1

4
(Hu

2 )
2

]

+ ζ2
[

Hu
3 +Hu

2,1 − 2Hu
1H

u
2

]

+ 2ζ4H
u
1 .

(4.7.18)

The extra-pure property is related to the fact that the asymptotic behavior as u → ∞
is merely a constant, with no ln u terms. Indeed, if one applies u(1− u) d/du to any

positive power of ln u, the result diverges at large u like u times a power of ln u, which

is not the limiting behavior of any combination of HPLs in Hu.

4.7.2 The line (1, 1, w)

We next consider the line (1, 1, w). As was the case for the line (u, u, 1), we can

express the two- and three-loop remainder functions on the line (1, 1, w) solely in

terms of HPLs of a single argument. However, in contrast to (u, u, 1), the expressions

on the line (1, 1, w) are not extra-pure functions of w.

The two-loop result is,

R(2)
6 (1, 1, w) =

1

2

[

Hw
4 −Hw

3,1 + 3Hw
2,1,1 −

1

4
(Hw

2 )
2 +Hw

1 (H
w
3 − 2Hw

2,1)

+
1

2
(Hw

2 − ζ2)(H
w
1 )

2 − 5ζ4

]

.

(4.7.19)

It is not extra pure on this line, because the quantity

w(1−w)
dR(2)

6 (1, 1, w)

dw
=

1

4
(2−w)(2Hw

2,1−Hw
1 Hw

2 )−
1

2
Hw

3 +
ζ2
2
(1−w)Hw

1 (4.7.20)
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contains explicit factors of w.

The three-loop result is,

R(3)
6 (1, 1, w) = −3

2
Hw

6 +Hw
5,1 −

9

2
Hw

4,1,1 −Hw
3,2,1 + 3Hw

3,1,1,1 −
15

2
Hw

2,1,1,1,1

− 1

8
Hw

3 (Hw
3 + 2Hw

2,1) +
3

8
(Hw

2,1)
2 +

1

2
Hw

2

(

Hw
4 +Hw

3,1 −
1

6
(Hw

2 )
2
)

− 1

2
Hw

1

[

3Hw
5 +Hw

3,2 + 6Hw
3,1,1 +Hw

2,2,1−9Hw
2,1,1,1−Hw

2 Hw
3 +

1

2
Hw

2 Hw
2,1

+
1

8
Hw

1

(

−5Hw
4 + 5Hw

3,1 − 9Hw
2,1,1 + (Hw

2 )
2 −Hw

1 (H
w
3 −Hw

2,1)
)
]

− 1

2
ζ2
[

Hw
4 +Hw

3,1 + 3Hw
2,1,1 − (Hw

2 )
2 +Hw

1

(

Hw
3 −2Hw

2,1 +
1

2
Hw

1 Hw
2

)]

+ ζ4
[

−Hw
2 +

17

8
(Hw

1 )
2
]

+
413

24
ζ6 + (ζ3)

2 .

(4.7.21)

It is easy to check that it is also not extra pure. We plot the function R(3)
6 (1, 1, w) in

fig. 4.5.

At small w, the two- and three-loop remainder functions diverge logarithmically,

R(2)
6 (1, 1, w) =

1

2
ζ3 lnw − 15

16
ζ4 +O(w) ,

R(3)
6 (1, 1, w) =

7

32
ζ4 ln2w −

(5

2
ζ5 +

3

4
ζ2 ζ3

)

lnw +
77

12
ζ6 +

1

2
(ζ3)

2 +O(w) .

(4.7.22)

At large w, they also diverge logarithmically,

R(2)
6 (1, 1, w) = − 1

96
ln4 w − 3

8
ζ2 ln2 w +

ζ3
2
lnw − 69

16
ζ4 +O

(
1

w

)

,

R(3)
6 (1, 1, w) =

1

960
ln6 w +

ζ2
12

ln4 w − ζ3
8

ln3w + 5 ζ4 ln2 w −
(13

4
ζ5 + 2 ζ2 ζ3

)

lnw

+
1197

32
ζ6 +

9

8
(ζ3)

2 +O
(
1

w

)

.

(4.7.23)

As discussed in the previous subsection, the lack of extra purity on the line (1, 1, w)
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Figure 4.5: R(3)
6 (1, 1, w) as a function of w.

is related to the logarithmic divergence in this asymptotic direction.

4.7.3 The line (u, u, u)

The symmetrical diagonal line (u, u, u) has the nice feature that the remainder func-

tion at strong coupling can be written analytically. Using AdS/CFT to map the

problem to a minimal area one, and applying integrability, Alday, Gaiotto and Mal-

dacena obtained the strong-coupling result [157],

R(∞)
6 (u, u, u) = −π

6
+
φ2

3π
+

3

8

[

ln2 u+ 2Li2(1− u)
]

− π2

12
, (4.7.24)

where φ = 3 cos−1(1/
√
4u). The extra constant term −π2/12 is needed in order for

R(∞)
6 (u, v, w) to vanish properly in the collinear limits [169].2

2We thank Pedro Vieira for providing us with this constant.
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In perturbation theory, the function R(L)
6 (u, v, w) is less simple to represent on

the line (u, u, u) than on the lines (u, u, 1) and (1, 1, w). It cannot be written solely

in terms of HPLs with argument (1 − u). At two loops, using eq. (4.2.14), the only

obstruction is the function Ω(2)(u, u, u),

R(2)
6 (u, u, u) =

3

4

[

Ω(2)(u, u, u) + 4Hu
4 − 2Hu

3,1 − 2 (Hu
2 )

2 + 2Hu
1 (2H

u
3 −Hu

2,1)

− 1

4
(Hu

1 )
4 − ζ2

(

2Hu
2 + (Hu

1 )
2
)

+
8

3
ζ4

]

.

(4.7.25)

One way to proceed is to convert the first-order partial differential equations for all

the hexagon functions of (u, v, w) into ordinary differential equations in u for the same

functions evaluated on the line (u, u, u). The differential equation for the three-loop

remainder function itself is,

dR(3)
6 (u, u, u)

du
=

3

32

{
1− u

u
√
∆

[

−10H1(u, u, u) +
9

2
J1(u, u, u)− 4Φ̃6(u, u, u)

(

3Hu
2 +

3

2
(Hu

1 )
2 − 9ζ2

)]

+
8

u(1− u)

[

−3

2
Hu

1 Ω
(2)(u, u, u) + 6Hu

5 − 4Hu
4,1 + 18Hu

3,1,1 + 4Hu
2,2,1 − 12Hu

2,1,1,1

+Hu
2 (H

u
2,1 − 3Hu

3 )−Hu
1

(

Hu
4 + 4Hu

3,1 − 9Hu
2,1,1 −

11

4
(Hu

2 )
2
)

+ (Hu
1 )

2 (Hu
2,1 − 5Hu

3 ) + (Hu
1 )

3Hu
2 +

5

8
(Hu

1 )
5

+ ζ2
(

2Hu
3 + 2Hu

2,1 − 3Hu
1H

u
2 − (Hu

1 )
3
)

− 5ζ4 H
u
1

]}

,

(4.7.26)

with similar differential equations for Ω(2)(u, u, u), H1(u, u, u) and J1(u, u, u). Inter-

estingly, the parity-even weight-five functions M1 and Qep do not enter eq. (4.7.26).

We can solve the differential equations by using series expansions around three

points: u = 0, u = 1, and u = ∞. If we take enough terms in each expansion (of

order 30–40 terms suffices), then the ranges of validity of the expansions will overlap.
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At u = 1, ∆ vanishes, and so do all the parity-odd functions, so we divide them by
√
∆ before series expanding in (u − 1). These expansions, and those of the parity-

even functions, are regular, with no logarithmic coefficients, as expected for a point

in the interior of the positive octant. (Indeed, we can perform an analogous three-

dimensional series expansion of all hexagon functions of (u, v, w) about (1, 1, 1); this

is actually a convenient way to fix the beyond-the-symbol terms in the coproducts,

by using consistency of the mixed partial derivatives.)

At u = 0, the series expansions also contain powers of lnu in their coefficients. At

u = ∞, there are two types of terms in the generic series expansion: a series expansion

in 1/u with coefficients that are powers of ln u, and a series expansion in odd powers

of 1/
√
u with an overall factor of π3, and coefficients that can contain powers of

ln u. The square-root behavior can be traced back to the appearance of factors of
√

∆(u, u, u) = (1− u)
√
1− 4u in the differential equations, such as eq. (4.7.26).

The constants of integration are easy to determine at u = 1 (where most of

the hexagon function are defined to be zero). They can be determined numerically

(and sometimes analytically) at u = 0 and u = ∞, either by evaluating the multiple

polylogarithmic expressions, or by matching the series expansions with the one around

u = 1.

At small u, the series expansions at two and three loops have the following form:

R(2)
6 (u, u, u) =

3

4
ζ2 ln2 u+

17

16
ζ4 +

3

4
u
[

ln3 u+ ln2 u+ (5 ζ2 − 2) ln u+ 3 ζ2 − 6
]

+O(u2),

R(3)
6 (u, u, u) = −63

8
ζ4 ln2 u− 1691

192
ζ6 +

1

4
(ζ3)

2

+
3

16
u
[

ln5 u+ ln4 u− 4 (3 ζ2 + 1) ln3 u+ 4 (ζ3 − 2 ζ2 − 3) ln2 u

− 2 (97 ζ4 − 4 ζ3 − 4 ζ2 − 12) lnu− 60 ζ4 − 8 ζ3 + 120
]

+O(u2),

(4.7.27)
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while the strong-coupling result is,

R(∞)
6 (u, u, u) =

(3

8
− 3

4π

)

ln2 u+
π2

24
− π

6
+ u

[(3

4
− 3

π

)

ln u− 3

4

]

+O(u2). (4.7.28)

Note that the leading term at three loops diverges logarithmically, but only as ln2 u.

Alday, Gaiotto and Maldacena [157] observed that this property holds at two loops

and at strong coupling, and predicted that it should hold to all orders.

At large u, the two- and three-loop remainder functions behave as,

R(2)
6 (u, u, u) = −5

8
ζ4 −

3 π3

4u1/2

+
1

16u

[

2 ln3 u+ 15 ln2 u+ 6 (6ζ2 + 11) ln u+ 24ζ3 + 126ζ2 + 138
]

− π3

32u3/2
+O

(
1

u2

)

,

R(3)
6 (u, u, u) = −29

48
ζ6 + ζ23 +

3 π5

4u1/2

+
1

32u

[

− 3

10
ln5 u− 15

4
ln4 u− (22ζ2 + 33) ln3 u

+ (12ζ3 − 159ζ2 − 207) ln2 u

− (747ζ4 − 48ζ3 + 690ζ2 + 846) ln u

− 96ζ5 + 72ζ2ζ3 −
4263

2
ζ4 + 96ζ3 − 1434ζ2 − 1710

]

+
π3

32u3/2
(−36 ln u+ 6ζ2 − 70) +O

(
1

u2

)

,

(4.7.29)

while the strong-coupling behavior is,

R(∞)
6 (u, u, u) = −5π2

24
+
7π

12
− 3

2u1/2
+

3

4u

[

ln u+1+
1

π

]

− 1

16u3/2
+O

(
1

u2

)

. (4.7.30)

In fig. 4.6 we plot the two- and three-loop and strong-coupling remainder func-

tions on the line (u, u, u). In order to highlight the remarkably similar shapes of the

three functions for small and moderate values of u, we rescale R(2)
6 by the constant

factor (4.7.13), so that it matches R(3)
6 at u = 1. We perform a similar rescaling of
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Figure 4.6: R(2)
6 , R(3)

6 , and the strong-coupling result on the line (u, u, u).

the strong-coupling result, multiplying it by

R(3)
6 (1, 1, 1)

R(∞)
6 (1, 1, 1)

= −63.4116164 . . . , (4.7.31)

where R(∞)
6 (1, 1, 1) = π/6 − π2/12. A necessary condition for the shapes to be so

similar is that the limiting behavior of the ratios as u → 0 is almost the same as the

ratios’ values at u = 1. From eq. (4.7.27), the three-loop to two-loop ratio as u → 0

is,
R(3)

6 (u, u, u)

R(2)
6 (u, u, u)

∼ −21

5
ζ2 = −6.908723 . . . , as u → 0, (4.7.32)

which is within 1.5% of the ratio at (1, 1, 1), eq. (4.7.13). The three-loop to strong-

coupling ratio is,

R(3)
6 (u, u, u)

R(∞)
6 (u, u, u)

∼ − 21

1− 2/π
ζ4 = −62.548224 . . . , as u → 0, (4.7.33)
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which is again within 1.5% of the corresponding ratio (4.7.33) at u = 1.

The similarity of the perturbative and strong-coupling curves for small and mod-

erate u suggests that if a smooth extrapolation of the remainder function from weak

to strong coupling can be achieved, on the line (u, u, u) it will have a form that is

almost independent of u, for u < 1.

On the other hand, the curves in fig. 4.6 diverge from each other at large u,

although they each approach a constant value as u → ∞. The three-to-two-loop

ratio at very large u, from eq. (4.7.29), eventually approaches −1.227 . . ., which is

quite different from −7. The three-to-strong-coupling ratio approaches −3.713 . . .,

which is very different from −63.4.

On the line (u, u, u), all three curves in fig. 4.6 cross zero very close to u = 1/3.

The respective zero crossing points for L = 2, 3,∞ are:

u(2)
0 = 0.33245163 . . . , u(3)

0 = 0.3342763 . . . , u(∞)
0 = 0.32737425 . . . .

(4.7.34)

Might the zero crossings in perturbation theory somehow converge to the strong-

coupling value at large L? We will return to the issue of the sign of R(L)
6 below.

Another way to examine the progression of perturbation theory, and its possible

extrapolation to strong coupling, is to use the Wilson loop ratio adopted by BSV,

which is related to the remainder function by eq. (4.5.23). This relation holds for

strong coupling as well as weak coupling, since the cusp anomalous dimension is known

exactly [168]. In the near-collinear limit, considering the Wilson loop ratio has the

advantage that the strong-coupling OPE behaves sensibly. The remainder function

differs from this ratio by the one-loop function X(u, v, w), whose near-collinear limit

does not resemble a strong-coupling OPE at all. On the other hand, the Wilson loop

ratio breaks all of the S3 permutation symmetries of the remainder function. This

is not an issue for the line (u, u, u), since none of the S3 symmetries survive on this

line. However, there is also the issue that X(u, u, u) as determined from eq. (4.5.24)

diverges logarithmically as u → 1.

In fig. 4.7 we plot the perturbative coefficients of ln[1+Whex(a/2)], as well as the

strong-coupling value, restricting ourselves to the range 0 < u < 1 where X(u, u, u)
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remains real. Now there is also a one-loop term, from multiplying X(u, u, u) by

the cusp anomalous dimension in eq. (4.5.23). We normalize the results in this case

by dividing the coefficient at a given loop order by the corresponding coefficient of

the cusp anomalous dimension, and similarly at strong coupling. Equivalently, from

eq. (4.5.23), we plot

R(L)
6 (u, u, u)

γ(L)K

+
1

8
X(u, u, u), (4.7.35)

for L = 1, 2, 3,∞.

The Wilson loop ratio diverges at both u = 0 and u = 1. The divergence at

u = 1 comes only from X and is controlled by the cusp anomalous dimension. This

forces the curves to converge in this region. The ln2 u divergence as u → 0 gets

contributions from both X and R6. The latter contributions are not proportional

to the cusp anomalous dimensions, causing all the curves to split apart at small u.

Because X(u, u, u) crosses zero at u = 0.394 . . ., which is a bit different from the

almost identical zero crossings in eq. (4.7.34) and in fig. 4.6, the addition of X in

fig. 4.7 splits the zero crossings apart a little. However, in the bulk of the range,

the perturbative coefficients do alternate in sign from one to three loops, following

the sign alternation of the cusp anomaly coefficients, and suggesting that a smooth

extrapolation from weak to strong coupling may be possible for this observable as

well.

4.7.4 Planes of constant w

Having examined the remainder function on a few one-dimensional lines, we now turn

to its behavior on various two-dimensional surfaces. We will now restrict our analysis

to the unit cube, 0 ≤ u, v, w ≤ 1. To provide a general picture of how the remainder

function behaves throughout this region, we show in fig. 4.8 the function evaluated

on planes with constant w, as a function of u and v. The plane w = 1 is in pink,

w = 3
4 in purple, w = 1

2 in dark blue, and w = 1
4 in light blue. The function goes to

zero for the collinear-EMRK corner point (u, v, w) = (0, 0, 1) (the right corner of the

pink sheaf). Except for this point, R(3)
6 (u, v, w) diverges as either u → 0 or v → 0.
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Figure 4.7: Comparison between the Wilson loop ratio at one to three loops, and the
strong coupling value, evaluated on the line (u, u, u).

While the plot might suggest that the function is monotonic in w within the unit

cube, our analytic expression for the (1, 1, w) line in section 4.7.2, and fig. 4.5, shows

that at the left corner, where u = v = 1, the function does turn over closer to w = 0.

(In fact, while it cannot be seen clearly from the plot, the w = 1
4 surface actually

intersects the w = 1
2 surface near this corner.)

4.7.5 The plane u+ v − w = 1

Next we consider the plane u + v − w = 1. Its intersection with the unit cube is

the triangle bounded by the lines (1, v, v) and (w, 1, w), which are equivalent to the

line (u, u, 1) discussed in section 4.7.1, and by the collinear limit line (u, 1− u, 0), on

which the remainder function vanishes.

In fig. 4.9 we plot the ratio R(3)
6 /R(2)

6 on this triangle. The back edges can be

identified with the u < 1 portion of fig. 4.4, although here they are plotted on a linear

scale rather than a logarithmic scale. The plot is symmetrical under u ↔ v. In the
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Figure 4.8: The remainder function R(3)
6 (u, v, w) on planes of constant w, plotted in

u and v. The top surface corresponds to w = 1, while lower surfaces correspond to
w = 3

4 , w = 1
2 and w = 1

4 , respectively.
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Figure 4.9: The ratio R(3)
6 (u, v, w)/R(2)

6 (u, v, w) on the plane u+v−w=1, as a function
of u and v.

bulk of the triangle, the ratio does not stray far from −7. The only place it deviates is

in the approach to the collinear limit, the front edge of the triangle corresponding to

T → 0 in the notation of section 4.5. Both R(2)
6 and R(3)

6 vanish like T times powers of

lnT as T → 0. However, because the leading singularity behaves like (lnT )L−1 at L

loops, R(3)
6 contains an extra power of lnT in its vanishing, and so the ratio diverges

like lnT . Otherwise, the shapes of the two functions agree remarkably well on this

triangle.

4.7.6 The plane u+ v + w = 1

The plane u + v + w = 1 intersects the unit cube along the three collinear lines. In

fig. 4.10 we give a contour plot of R(3)
6 (u, v, w) on the equilateral triangle lying between

these lines. The plot has the full S3 symmetry of the triangle under permutations

of (u, v, w). Because R(3)
6 has to vanish on the boundary, one might expect that it

should not get too large in the interior. Indeed, its furthest deviation from zero is
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Figure 4.10: Contour plot of R(3)
6 (u, v, w) on the plane u+ v + w = 1 and inside the

unit cube. The corners are labeled with their (u, v, w) values. Color indicates depth;
each color corresponds to roughly a range of 0.01. The function must vanish at the
edges, each of which corresponds to a collinear limit. Its minimum is slightly under
−0.07.

slightly under −0.07, at the center of the triangle.

From the discussion in section 4.7.3 and fig. 4.6, we know that along the line

(u, u, u) the two- and three-loop remainder functions almost always have the opposite

sign. The only place they have the same sign on this line is for a very short interval

u ∈ [0.3325, 0.3343] (see eq. (4.7.34)). This interval happens to contain the point

(1/3, 1/3, 1/3), which is the intersection of the line (u, u, u) with the plane in fig. 4.10,

right at the center of the triangle. In fact, throughout the entire unit cube, the

only region where R(2)
6 and R(3)

6 have the same sign is a very thin pouch-like region

surrounding this triangle. In other words, the zero surfaces of R(2)
6 and R(3)

6 are close

to the plane u+ v +w = 1, just slightly on opposite sides of it in the two cases. (We

do not plot R(2)
6 on the triangle here, but it is easy to verify that it is also uniformly

negative in the region of fig. 4.10. Its furthest deviation from zero is about −0.0093,

again occurring at the center of the triangle.)
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4.7.7 The plane u = v

In fig. 4.11 we plot R(3)
6 (u, v, w) on the plane u = v, as a function of u and w inside

the unit cube. This plane crosses the surface ∆ = 0 on the curve w = (1 − 2u)2,

plotted as the dashed parabola. Hence it allows us to observe that R(3)
6 is perfectly

continuous across the ∆ = 0 surface. We can also see that the function diverge as w

goes to zero, and as u and v go to zero, everywhere except for the two places that this

plane intersects the collinear limits, namely the points (u, v, w) = (1/2, 1/2, 0) and

(u, v, w) = (0, 0, 1). The line of intersection of the u = v plane and the u+ v+w = 1

plane passes through both of these points, and fig. 4.11 shows that R(3)
6 is very close

to zero on this line.

Based on considerations related to the positive Grassmannian [133], it was recently

conjectured [170] that the three-loop remainder function should have a uniform sign

in the “positive region”, or what we call Region I: the portion of the unit cube where

∆ > 0 and u+ v+w < 1, which corresponds to positive external kinematics in terms

of momentum twistors. On the surface u = v, this region lies in front of the parabola

shown in fig. 4.11. It was already checked [170] that the two-loop remainder function

has a uniform (positive) sign in Region I. Fig. 4.11 illustrates that the uniform sign

behavior (with a negative sign) is indeed true at three loops on the plane u = v. We

have checked many other points with u ̸= v in Region I, and R(3)
6 was negative for

every point we checked, so the conjecture looks solid.

Furthermore, a uniform sign behavior for R(2)
6 and R(3)

6 also holds in the other

regions of the unit cube with ∆ > 0, namely Regions II, III, and IV, which are all

equivalent under S3 transformations of the cross ratios. In these regions, the overall

signs are reversed: R(2)
6 is uniformly negative and R(3)

6 is uniformly positive. For the

plane u = v, fig. 4.11 shows the uniform positive sign of R(3)
6 in Region II, which lies

behind the parabola in the upper-left portion of the figure.

Based on the two- and three-loop data, sign flips in R(L)
6 only seem to occur where

∆ < 0, and in fact very close to u+ v + w = 1.
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Figure 4.11: Plot of R(3)
6 (u, v, w) on the plane u = v, as a function of u and w.

The region where R(3)
6 is positive is shown in pink, while the negative region is blue.

The border between these two regions almost coincides with the intersection with the
u + v + w = 1 plane, indicated with a solid line. The dashed parabola shows the
intersection with the ∆ = 0 surface; inside the parabola ∆ < 0, while in the top-left
and bottom-left corners ∆ > 0.
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Figure 4.12: R(3)
6 (u, v, w) on the plane u+ v = 1, as a function of u and w.

4.7.8 The plane u+ v = 1

In fig. 4.12 we plot R(3)
6 on the plane u + v = 1. This plane provides information

complementary to that on the plane u = v, since the two planes intersect at right

angles. Like the u = v plane, this plane shows smooth behavior over the ∆ = 0

surface, which intersects the plane u + v = 1 in the parabola w = 4u(1− u). It also

shows that the function vanishes smoothly in the w → 0 collinear limit.
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4.8 Conclusions

In this paper, we successfully applied a bootstrap, or set of consistency conditions, in

order to determine the three-loop remainder function R(3)
6 (u, v, w) directly from a few

assumed analytic properties. We bypassed altogether the problem of constructing and

integrating multi-loop integrands. This work represents the completion of a program

begun in ref. [14], in which the symbol S(R(3)
6 ) was determined via a Wilson loop

OPE and certain conditions on the final entries, up to two undetermined rational

numbers that were fixed soon thereafter [45].

In order to promote the symbol to a function, we first had to characterize the

space of globally well-defined functions of three variables with the correct analytic

properties, which we call hexagon functions. Hexagon functions are in one-to-one

correspondence with the integrable symbols whose entries are drawn from the nine

letters {ui, 1−ui, yi}, with the first entry restricted to {ui}. We specified the hexagon

functions at function level, iteratively in the transcendental weight, by using their co-

product structure. In this approach, integrability of the symbol is promoted to the

function-level constraint of consistency of mixed partial derivatives. Additional con-

straints prevent branch-cuts from appearing except at physical locations (ui = 0,∞).

These requirements fix the beyond-the-symbol terms in the {n−1, 1} coproduct com-

ponents of the hexagon functions, and hence they fix the hexagon functions themselves

(up to the arbitrary addition of lower-weight functions multiplied by zeta values). We

found explicit representations of all the hexagon functions through weight five, and

of R(3)
6 itself at weight six, in terms of multiple polylogarithms whose arguments in-

volve simple combinations of the y variables. We also used the coproduct structure

to obtain systems of coupled first-order partial differential equations, which could be

integrated numerically at generic values of the cross ratios, or solved analytically in

various limiting kinematic regions.

Using our understanding of the space of hexagon functions, we constructed an

ansatz for the function R(3)
6 containing 11 rational numbers, free parameters multiply-

ing lower-transcendentality hexagon functions. The vanishing of R(3)
6 in the collinear

limits fixed all but one of these parameters. The last parameter was fixed using the
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near-collinear limits, in particular the T 1 lnT terms which we obtained from the OPE

and integrability-based predictions of Basso, Sever and Vieira [150]. (The T 1 ln0 T

terms are also needed to fix the last symbol-level parameter [150], independently of

ref. [45].)

With all parameters fixed, we could unambiguously extract further terms in the

near-collinear limit. We find perfect agreement with Basso, Sever and Vieira’s results

through order T 2 [152]. We have also evaluated the remainder function in the the

multi-Regge limit. This limit provides additional consistency checks, and allows us

to fix three undetermined parameters in an expression [19] for the NNLLA impact

parameter Φ(2)
Reg(ν, n) in the BFKL-factorized form of the remainder function [15].

Finally, we found simpler analytic representations for R(3)
6 along particular lines

in the three-dimensional (u, v, w) space; we plotted the function along these and

other lines, and on some two-dimensional surfaces within the unit cube 0 ≤ ui ≤ 1.

Throughout much of the unit cube, and sometimes much further out from the origin,

we found the approximate numerical relation R(3)
6 ≈ −7R(2)

6 . The relation has only

been observed to break down badly in regions where the functions vanish: the collinear

limits, and very near the plane u + v + w = 1. On the diagonal line (u, u, u), we

observed that the two-loop, three-loop, and strong-coupling [157] remainder functions

are almost indistinguishable in shape for 0 < u < 1.

We have verified numerically a conjecture [170] that the remainder function should

have a uniform sign in the “positive” region {u, v, w > 0;∆ > 0; u+v+w < 1}. It also
appears to have an (opposite) uniform sign in the complementary region {u, v, w >

0;∆ > 0; u + v + w > 1}. The only zero-crossings we have found for either R(2)
6 or

R(3)
6 in the positive octant are very close to the plane u+v+w = 1, in a region where

∆ is negative.

Our work opens up a number of avenues for further research. A straightforward ap-

plication is to the NMHV ratio function. Knowledge of the complete space of hexagon

functions through weight five allowed us to construct the six-point MHV remainder

function at three loops. The components of the three-loop six-point NMHV ratio

function are also expected [71] to be weight-six hexagon functions. Therefore they

should be constructable just as R(3)
6 was, provided that enough physical information
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can be supplied to fix all the free parameters.

It is also straightforward in principle to push the remainder function to higher

loops. The symbol of the four-loop remainder function was heavily constrained [19]

by the same information used at three loops [14], but of order 100 free parameters

were left undetermined. With the knowledge of the near-collinear limits provided by

Basso, Sever and Vieira [150, 152], those parameters can now all be fixed. Indeed,

all the function-level ambiguities can be fixed as well [153]. This progress will allow

many of the numerical observations made in this paper at three loops, to be explored

at four loops in the near future. Going beyond four loops may also be feasible,

depending primarily on computational issues — and provided that no inconsistencies

arise related to failure of an underlying assumption.

It is remarkable that scattering amplitudes in planar N = 4 super-Yang-Mills —

polygonal (super) Wilson loops — are so heavily constrained by symmetries and other

analytic properties, that a full bootstrap at the integrated level is practical, at least

in perturbation theory. We have demonstrated this practicality explicitly for the six-

point MHV remainder function. The number of cross ratios increases linearly with the

number of points. More importantly, the number of letters in the symbol grows quite

rapidly, even at two loops [46], increasing the complexity of the problem. However,

with enough understanding of the relevant transcendental functions for more external

legs [171,172], it may still be possible to implement a similar procedure in these cases

as well. In the longer term, the existence of near-collinear boundary conditions,

for which there is now a fully nonperturbative bootstrap based on the OPE and

integrability [150], should inspire the search for a fully nonperturbative formulation

that also penetrates the interior of the kinematical phase space for particle scattering.



Chapter 5

The four-loop remainder function

5.1 Introduction

In the previous chapter, we introduced a set of polylogarithmic functions, which we

call hexagon functions, whose symbols are built out of the nine letters eq. (1.1.3)

and whose branch cut locations are restricted to the points where the cross ratios ui

either vanish or approach infinity. We developed a method, based on the coproduct

on multiple polylogarithms (or, equivalently, a corresponding set of first-order partial

differential equations), that allows for the construction of hexagon functions at arbi-

trary weight. Using this method, we determined the three-loop remainder function

as a particular weight-six hexagon function.

In this chapter, we extend the analysis and construct the four-loop remainder

function, which is a hexagon function of weight eight. As in the three-loop case, we

begin by constructing the symbol. Referring to the discussion in section 1.7.2, the

symbol may be written as

S(R(4)
6 ) =

113
∑

i=1

αi Si , (5.1.1)

where αi are undetermined rational numbers. The Si are drawn from the complete

set of eight-fold tensor products (i.e. symbols of weight eight) which satisfy the first

entry condition and which obey the following properties:

288



CHAPTER 5. THE FOUR-LOOP REMAINDER FUNCTION 289

0. All entries in the symbol are drawn from the set {ui, 1−ui, yi}i=1,2,3, where the

yi’s are defined in eq. (1.1.4).

1. The symbol is integrable.

2. The symbol is totally symmetric under S3 permutations of the cross ratios ui.

3. The symbol is invariant under the transformation yi → 1/yi.

4. The symbol vanishes in all simple collinear limits.

5. The symbol is in agreement with the predictions coming from the collinear OPE

of ref. [38]. We implement this condition on the leading singularity exactly as

was done at three loops [14].

6. The final entry of the symbol is drawn from the set {ui/(1− ui), yi}i=1,2,3.

Imposing the above constraints on the most general ansatz of all 98 possible words

will yield eq. (5.1.1); however, performing the linear algebra on such a large system is

challenging. Therefore, it is useful to employ the shortcuts described in section 4.3.1:

the first- and second-entry conditions reduce somewhat the size of the initial ansatz,

and applying the integrability condition iteratively softens the exponential growth of

the ansatz with the weight. Even still, the computation requires a dedicated method,

since out-of-the-box linear algebra packages cannot handle such large systems. We

implemented a batched Gaussian elimination algorithm, performing the back substi-

tution with FORM [173], similar to the method described in ref. [174].

As discussed in section 1.7.2, the factorization formula of Fadin and Lipatov in

the multi-Regge limit provides additional constraints on the 113 parameters enter-

ing eq. (5.1.1),

7. The symbol is in agreement with the prediction coming from BFKL factoriza-

tion [15].

We may also apply constraints in the near-collinear limit by matching onto the

recent predictions by Basso, Sever, and Vieira (BSV) based on the OPE for flux tube

excitations [150],
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8. The symbol is in agreement to order T 1 with the OPE prediction of the near-

collinear expansion [150].

9. The symbol is in agreement to order T 2 with the OPE prediction of the near-

collinear expansion [152].

The dimension of the ansatz after applying each of these constraints successively is

summarized in table 5.1.

Constraint Dimension

1. Integrability 5897

2. Total S3 symmetry 1224

3. Parity invariance 874

4. Collinear vanishing (T 0) 622

5. Consistency with the leading discontinuity 482

of the collinear OPE

6. Final entry 113

7. Multi-Regge limit 80

8. Near-collinear OPE (T 1) 4

9. Near-collinear OPE (T 2) 0

Table 5.1: Dimensions of the space of weight-eight symbols after applying the suc-
cessive constraints. The final result is unique, including normalization, so the vector
space of possible solutions has dimension zero.

In section 4.5, we applied the last two constraints at function-level to fully deter-

mine the three-loop remainder function. In fact, we will soon apply them at function-

level in the four-loop case as well, but first we will apply them at symbol-level in order

to determine the constants not fixed by the first seven constraints. For this purpose,

it is necessary to expand S(R(4)
6 ) in the near-collinear limit, which, in the variables

of eq. (4.5.1), is governed by T → 0. To this end, we formulate the expansion of an

arbitrary pure function in a manner that can easily be extended to the symbol. This

is not entirely trivial because the expansion will in general contain powers of lnT ,
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and some care must be given to keep track of them. Consider a pure function F (T )

for which F (0) = 0. We can immediately write,

[

F (T )
]

1
=

∫ T

0

dT1

[

F ′(T1)
]

0
(5.1.2)

where [·]i indicates the T i term of the expansion around 0. Owing to the presence of

logarithms, it is possible that in evaluating [F ′(T )]0 we might generate a pole in T .

Letting,

F ′(T ) =
f−1(T )

T
+ f0(T ) +O(T 1) (5.1.3)

we have,
[

F ′(T )
]

0
=

1

T

[

f−1(T )
]

1
+
[

f0(T )
]

0
. (5.1.4)

Notice that f−1(0) = 0 (since otherwise F (0) ̸= 0), so we can calculate [f−1(T )]1 by

again applying eqn. (5.1.2), this time with F → f−1. Therefore eq. (5.1.2) defines a

recursive procedure for extracting the first term in the expansion around T = 0. The

recursion will terminate after a finite number of steps for a pure function.

The only data necessary to execute this procedure is the ability to evaluate the

function when T = 0, and the ability to take derivatives. Since both of these opera-

tions carry over to the symbol, we can apply this method directly to S(R(4)
6 ). To be

specific, we write

S(R(4)
6 ) = A0⊗R0+A1⊗R1⊗T +A2⊗R2⊗T ⊗T +A3⊗R3⊗T ⊗T ⊗T , (5.1.5)

where Ri ̸= T is defined to have length one and the Ai have length 7 − i. This de-

composition has made use of Constraint 5, consistency with the leading discontinuity

predicted by the OPE: at ℓ loops, the OPE predicts the leading logarithm of T to

be ln(ℓ−1) T , which implies that no term in the symbol of R(4)
6 can contain more than

three T entries. We also note that although we have made explicit the T entries at

the back end of the symbol, there may be up to 3 − i other T entries hidden inside



CHAPTER 5. THE FOUR-LOOP REMAINDER FUNCTION 292

Ai. Applying eqn. (5.1.2), we obtain,

[

S(R(4)
6 )
]

1
=

∫ T

0

dT0

[R′
0(T0)

R0(T0)
A0

]

0
+

∫ T

0

dT0

∫ T0

0

dT1

T1

[R′
1(T1)

R1(T1)
A1

]

0

+

∫ T

0

dT0

∫ T0

0

dT1

T1

∫ T1

0

dT2

T2

[R′
2(T2)

R2(T2)
A2

]

0

+

∫ T

0

dT0

∫ T0

0

dT1

T1

∫ T1

0

dT2

T2

∫ T2

0

dT3

T3

[R′
3(T3)

R3(T3)
A3

]

0
.

(5.1.6)

As indicated by the brackets [.]0, the integrands should be expanded around T = 0 to

order T 0. To expand the Ai, one should first unshuffle all factors of T from the symbol,

and then identify them as logarithms. Only after performing this identification should

the integrations be performed. Notice that the integrals over T0 have no 1/T0 in the

measure, and as such they will generate terms of mixed transcendentality.

Equation (5.1.6) gives the expansion of S(R(4)
6 ) to order T 1, but it is easy to

extend this method to extract more terms in the expansion. To obtain the T n term,

we first subtract off the expansion through order T n−1 and divide by T n−1, yielding

a function that vanishes when T = 0. Then we can proceed as above and calculate

the T 1 term, which will correspond to the T n term of the original function.

Proceeding in this manner, we obtain the expansion of the symbol of R(4)
6 through

order T 2. To compare this expansion with the data from the OPE, we must first

disregard all terms containing factors of π or ζn, since these constants are not captured

by the symbol. Performing the comparison, we find that the information at order T 1

is sufficient to fix all but four of the remaining parameters. At order T 2, all four

of these constants are determined and many additional cross-checks are satisfied.

The final expression for the symbol of R(4)
6 has 1,544,205 terms and is provided in a

computer-readable file attached to this document.

We now turn to the problem of promoting the symbol to a function. In principle,

the procedure is identical to that described in chapter 4; indeed, with enough compu-

tational power we could construct the full basis of hexagon functions at weight seven

(or even eight), and replicate the analysis of chapter 4. In practice, it is difficult to

build the full basis of hexagon functions beyond weight five or six, and so we briefly
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describe a more efficient procedure that requires only a subset of the full basis.

To begin, we construct a function-level ansatz for ∆5,1,1,1(R
(4)
6 ). The ansatz is

a four-fold tensor product whose first slot is a weight-five function and whose last

three slots are logarithms. The symbol of the weight-five functions can be read off

of the symbol of R(4)
6 and identified with functions in the weight-five hexagon basis.

Therefore we can immediately write down,

∆5,1,1,1(R
(4)
6 ) =

∑

si,sj ,sk∈Su

[R(4)
6 ]si,sj ,sk ⊗ ln si ⊗ ln sj ⊗ ln sk (5.1.7)

where [R(4)
6 ]si,sj ,sk are the most general linear combinations of weight-five hexagon

functions with the correct symbol and correct parity. There will be many arbitrary

parameters associated with ζ values multiplying lower-weight functions.

Many of these parameters can be fixed by demanding that
∑

si∈Su
[R(4)

6 ]si,sj ,sk be

the {5, 1} component of the coproduct for some weight-six function for every choice of

j and k. This is simply the integrability constraint, discussed extensively in chapter 4,

applied to the first two slots of the four-fold tensor product in eq. (5.1.7). We also

require that each weight-six functions have the proper branch cut structure; again,

this constraint may be applied using the techniques discussed in chapter 4. Finally,

we must guarantee that the weight-six function have all of the symmetries exhibited

by their symbols. For example, if a particular coproduct entry vanishes at symbol-

level, we require that it vanish at function-level as well. We also demand that the

function have definite parity since the symbol-level expressions have this property.

After imposing these mathematical consistency conditions, we will have con-

structed the {5, 1} component of the coproduct for each of the weight-six functions en-

tering ∆6,1,1(R
(4)
6 ), as well as all the integration constants necessary to define the cor-

responding integral representations (see section 4.4). There are many undetermined

parameters, but they all correspond to ζ values multiplying lower-weight hexagon

functions, so they cannot be fixed at this stage.

It is also also straightforward to represent ∆6,1,1(R
(4)
6 ) directly in terms of multiple

polylogarithms in Region I. To this end, we describe how to integrate directly the

{n − 1, 1} component of the coproduct of a weight-n function in terms of multiple
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polylogarithms. The method is very similar to the integral given in eq. (4.3.8), which

maps symbols directly into multiple polylogarithms. Instead of starting from the

symbol, we start from the {n − 1, 1} coproduct component, and therefore we only

have to perform one integration, corresponding to the final iteration of the n-fold

iterated integration in eq. (4.3.8). As discussed in section 4.3, we are free to integrate

along a contour that goes from the origin ti = 0 to the point ti = yi sequentially along

the directions tu, tv and tw. The integration is over ω = d log φ with φ ∈ Sy, and

the integrand is a combination of weight-(n−1) multiple polylogarithms in Region I;

together, these two facts imply that the integral may always be evaluated trivially by

invoking the definition of multiple polylogarithms, eq. (C.1.1).

Applying this method to the case at hand, we obtain an expression for ∆6,1,1(R
(4)
6 )

in terms of multiple polylogarithms in Region I. Again, we enforce mathematical con-

sistency by requiring integrability in the first two slots, proper branch cut locations,

and well-defined parity. We then integrate the expression using the same method,

yielding an expression for ∆7,1(R
(4)
6 ). Finally, we iterate the procedure once more and

obtain a representation for R(4)
6 itself. At each stage we keep track of all the unde-

termined parameters. Any parameter that survives all the way to the weight-eight

ansatz for R(4)
6 must be associated with a ζ value multiplying a lower-weight hexagon

functions with the proper symmetries and branch cut locations. There are 68 such

functions. The counting of parameters is presented in table 5.2.

It is straightforward to expand our 68-parameter ansatz for R(4)
6 in the near-

collinear limit. Indeed, the methods discussed in section 4.5 can be applied directly

to this case. We carried out this expansion through order T 3, though even at order

T 1 the result is too lengthy to present here. The expansion is available in a computer-

readable format attached to this document.

Demanding that our ansatz vanish in the strict collinear limit fixes all but ten of

the constants, while consistency with the OPE at order T 1 fixes nine more, leaving

one constant that is fixed at order T 2. The rest of the data at order T 2 provides many

nontrivial consistency checks of the result. The final expression for R(4)
6 in terms of

multiple polylogarithms in Region I is attached to this document in a computer-

readable format.
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k MZVs of weight k Functions of weight 8− k Total parameters

2 ζ2 38 38

3 ζ3 14 14

4 ζ4 6 6

5 ζ2ζ3, ζ5 2 4

6 ζ23 , ζ6 1 2

7 ζ2ζ5, ζ3ζ4, ζ7 0 0

8 ζ2ζ23 , ζ3ζ5, ζ8, ζ5,3 1 4

68

Table 5.2: Characterization of the beyond-the-symbol ambiguities in R(4)
6 after im-

posing all mathematical consistency conditions.

5.2 Multi-Regge limit

The multi-Regge limit of the four-loop remainder function can be extracted by using

the techniques described in section 4.6. We find expressions for the two previously

undetermined functions in this limit,

g(4)1 (w,w∗) =
3

128
[L−

2 ]
2 [L−

0 ]
2 − 3

32
[L−

2 ]
2 [L+

1 ]
2 +

19

384
[L−

0 ]
2 [L+

1 ]
4

+
73

1536
[L−

0 ]
4 [L+

1 ]
2 − 17

48
L+
3 [L+

1 ]
3 +

1

4
L−
0 L−

4,1 −
3

4
L−
0 L−

2,1,1,1

+
1

96
L−
2,1 [L

−
0 ]

3 − 29

64
L+
1 L+

3 [L−
0 ]

2 − 11

30720
[L−

0 ]
6 − 1

8
[L−

2,1]
2

+
11

480
[L+

1 ]
6 +

5

32
[L+

3 ]
2 − 1

4
L−
4 L−

2 +
1

4
L−
2 L−

2,1,1 +
19

8
L+
5 L+

1

+
5

4
L+
1 L+

3,1,1 +
1

2
L+
1 L+

2,2,1 +
1

8
ζ23 −

3

2
ζ5 L

+
1 + ζ2ζ3 L

+
1

+
27

8
ζ4
(

[L+
1 ]

2 − 1

4
[L−

0 ]
2
)

+
1

8
ζ3
(

[L+
1 ]

3 − L+
3 +

15

4
L+
1 [L

−
0 ]

2
)

− 1

2
ζ2
( 11

384
[L−

0 ]
4 +

7

8
[L+

1 ]
4 +

1

2
[L+

1 ]
2[L−
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2 − 3L+
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+
3

− L−
0 L

−
2,1 +

3

4
[L−

2 ]
2
)

,

(5.2.1)
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and,

g(4)0 (w,w∗) =
5
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L+
1 [L−

2 ]
2 [L−

0 ]
2 − 1

16
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2 ]
2 [L+

1 ]
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64
L+
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0 ]
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1 ]
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7
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0 ]
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192
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(5.2.2)

These expressions match with those of eqs. (1.7.14) and (1.7.15), provided that the

constants in chapter 1 take the values,

a0 = 0, a1 = −1

6
, a2 = −5, a3 = 1, a4 =

4

3
,

a5 = −4

3
, a6 =

17

180
, a7 =

15

4
, a8 = −29 , (5.2.3)
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and

b1 =
97

1220
, b2 =

127

3660
, b3 =

1720

183
, b4 =

622

183
, b5 =

644

305
, b6 =

2328

305

b7 = −1, b8 = −554

305
, b9 = −10416

305
, b10 =

248

3
, b11 = −11

6
, b12 = 49,

b13 = −112, b14 =
83

12
, b15 = −1126

61
, b16 =

849

122
, b17 =

83

6
, b18 = −10 .

(5.2.4)

These constants, in turn, determine the NNLLA BFKL eigenvalue and N3LLA impact

factor,

E(2)
ν,n =

1

8

{
1

6
D4
νEν,n − V D3

νEν,n + (V 2 + 2ζ2)D
2
νEν,n − V (N2 + 8ζ2)DνEν,n

+ ζ3(4V
2 +N2) + 44ζ4 Eν,n + 16ζ2ζ3 + 80ζ5

}

, (5.2.5)

and,

Φ(3)
Reg = − 1

48

{

E6
ν,n +

9

4
E4
ν,nN

2 +
57

16
E2
ν,nN

4 +
189

64
N6 +

15

2
E2
ν,nN

2V 2 +
123

8
N4V 2

+ 9N2V 4 − 3
(

4E3
ν,nV + 5Eν,nN

2V
)

DνEν,n

+ 3
(

E2
ν,n +

3

4
N2 + 2V 2

)

[DνEν,n]
2 + 6Eν,n

(

E2
ν,n +

3

4
N2 + V 2

)

D2
νEν,n
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2
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4
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8
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(5.2.6)
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where V and N are as given in chapter 1,

V ≡ −1

2

[

1

iν + |n|
2

− 1

−iν + |n|
2

]

=
iν

ν2 + |n|2

4

,

N ≡ sgn(n)

[

1

iν + |n|
2

+
1

−iν + |n|
2

]

=
n

ν2 + |n|2

4

.

(5.2.7)

These data suggest an intriguing connection between the BFKL eigenvalues Eν,n, E
(1)
ν,n,

and E(2)
ν,n and the weak-coupling expansion of the energy E(u) of a gluonic excitation

of the GKP string as a function of its rapidity, given in ref. [175]. First we rewrite

the expressions for Eν,n, E
(1)
ν,n, and E(2)

ν,n explicitly in terms of ψ functions and their

derivatives,

Eν,n = ψ(ξ+) + ψ(ξ−)− 2ψ(1)− 1

2
sgn(n)N

E(1)
ν,n = −1

4

[

ψ(2)(ξ+) + ψ(2)(ξ−)− sgn(n)N
(1

4
N2 + V 2

)]

+
1

2
V
[

ψ(1)(ξ+)− ψ(1)(ξ−)
]

− ζ2Eν,n − 3ζ3

E(2)
ν,n =

1

8

{
1

6

[

ψ(4)(ξ+) + ψ(4)(ξ−)− 60 sgn(n)N
(

V 4 +
1

2
V 2N2 +

1

80
N4
)]

− V
[

ψ(3)(ξ+)− ψ(3)(ξ−)− 3 sgn(n)V N(4V 2 +N2)
]

+ (V 2 + 2ζ2)
[

ψ(2)(ξ+) + ψ(2)(ξ−)− sgn(n)N
(

3V 2 +
1

4
N2
)]

− V (N2 + 8ζ2)
[

ψ′(ξ+)− ψ′(ξ−)− sgn(n)V N
]

+ ζ3 (4V
2 +N2)

+ 44 ζ4Eν,n + 16 ζ2ζ3 + 80 ζ5

}

,

(5.2.8)
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where ξ± ≡ 1 ± iν + |n|
2 . Next, we keep only the pure ψ terms, dropping anything

with a V or an N ,

Eν,n

∣
∣
∣
ψ only

= ψ(ξ+) + ψ(ξ−)− 2ψ(1)

E(1)
ν,n

∣
∣
∣
ψ only

= −1

4

[

ψ(2)(ξ+) + ψ(2)(ξ−)
]

− ζ2
[

ψ(ξ+) + ψ(ξ−)− 2ψ(1)
]

− 3ζ3

E(2)
ν,n

∣
∣
∣
ψ only

=
1

8

{
1

6

[

ψ(4)(ξ+) + ψ(4)(ξ−)
]

+ 2 ζ2
[

ψ(2)(ξ+) + ψ(2)(ξ−)
]

+ 44 ζ4
[

ψ(ξ+) + ψ(ξ−)− 2ψ(1)
]

+ 16 ζ2ζ3 + 80 ζ5

}

.

(5.2.9)

Finally we write,

−ω(ν, n)
∣
∣
∣
ψ only

= a
(

Eν,n

∣
∣
∣
ψ only

+ aE(1)
ν,n

∣
∣
∣
ψ only

+ a2E(2)
ν,n

∣
∣
∣
ψ only

+ · · ·
)

. (5.2.10)

Now we compare this formula to equation (4.21) of ref. [175] for the energy E(u) of

a gauge field (ℓ = 1) and its bound state (ℓ > 1),

E(u) = ℓ+ Γcusp(g)
[

ψ(+)
0 (s, u)− ψ0(1)

]

− 2g4
[

ψ(+)
2 (s, u) + 6ζ3

]

+
g6

3

[

ψ(+)
4 (s, u) + 2π2ψ(+)

2 (s, u) + 24ζ3ψ
(+)
1 (s− 1, u) + 8

(

π2ζ3 + 30ζ5
)
]

+O(g8) ,

where g2 = a/2 is the loop expansion parameter, s = 1 + ℓ/2,

Γcusp(g) = 4g2
(

1− 2ζ2g
2 + 22ζ4g

4 + · · ·
)

, (5.2.11)

and,

ψ(±)
n (s, u) ≡ 1

2

[

ψ(n)(s+ iu)± ψ(n)(s− iu)
]

. (5.2.12)

Neglecting the constant offset at a0, eq. (5.2.11) matches perfectly with eq. (5.2.10)

at order a1 and a2, provided we identify,

ℓ = |n|, u = ν. (5.2.13)
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The correspondence continues to order a3 if we also drop the term 24ζ3ψ
(+)
1 (s− 1, u).

It would be very interesting to understand the origin of this correspondence, and if

there is a physical meaning to the the operation of dropping all terms with a N or a

V . We leave this question for future work and return our attention to the quantitative

behavior of the four-loop remainder function.

5.3 Quantitative behavior

5.3.1 The line (u, u, 1)

As noted in section 4.7.1, the two- and three-loop remainder functions can be ex-

pressed solely in terms of HPLs of a single argument, 1− u, on the line (u, u, 1). The

same is true at four loops, though the resulting expression is rather lengthy. To save

space, we first expand all products of HPL’s using the shuffle algebra. The result will

have weight vectors consisting entirely of 0’s and 1’s, which we can interpret as binary

numbers. Finally, we can write these binary numbers in decimal, making sure to keep

track of the length of the original weight vector, which we write as a superscript. For

example,

Hu
1H

u
2,1 = Hu

1H
u
0,1,1 = 3Hu

0,1,1,1 +Hu
1,0,1,1 → 3h[4]

7 + h[4]
11 . (5.3.1)

In this notation, R(2)
6 (u, u, 1) and R(3)

6 (u, u, 1) read,

R(2)
6 (u, u, 1) = h[4]

1 − h[4]
3 + h[4]

9 − h[4]
11 −

5

2
ζ4 , (5.3.2)

R(3)
6 (u, u, 1) = −3h[6]

1 + 5h[6]
3 +

3

2
h[6]
5 − 9

2
h[6]
7 − 1

2
h[6]
9 − 3

2
h[6]
11 − h[6]

13 −
3

2
h[6]
17

+
3

2
h[6]
19 −

1

2
h[6]
21 −

3

2
h[6]
23 − 3h[6]

33 + 5h[6]
35 +

3

2
h[6]
37 −

9

2
h[6]
39

−1

2
h[6]
41 −

3

2
h[6]
43 − h[6]

45 −
3

2
h[6]
49 +

3

2
h[6]
51 −

1

2
h[6]
53 −

3

2
h[6]
55 (5.3.3)

+ζ2
[

−h[4]
1 + 3h[4]

3 + 2h[4]
5 − h[4]

9 + 3h[4]
11 + 2h[4]

13

]

+ζ4
[

−2h[2]
1 − 2h[2]

3

]

+ ζ23 +
413

24
ζ6 ,
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and the 4-loop remainder function on the line (u, u, 1) is,

R(4)
6 (u, u, 1) = 15h[8]

1 − 41h[8]
3 − 31

2
h[8]
5 +

105

2
h[8]
7 − 7

2
h[8]
9 +

53

2
h[8]
11 + 12h[8]

13 − 42h[8]
15

+
5

2
h[8]
17 +

11

2
h[8]
19 +

9

2
h[8]
21 −

41

2
h[8]
23 + h[8]

25 − 13h[8]
27 − 7h[8]

29 − 5h[8]
31

+ 6h[8]
33 − 11h[8]

35 − 3h[8]
37 + 3h[8]

39 − 4h[8]
43 − 4h[8]

45 − 11h[8]
47 +

3

2
h[8]
49 −

3

2
h[8]
51

− 3h[8]
53 − 5h[8]

55 +
3

2
h[8]
57 −

3

2
h[8]
59 + 9h[8]

65 − 25h[8]
67 − 9h[8]

69 + 27h[8]
71 − 2h[8]

73

+ 9h[8]
75 + 2h[8]

77 − 23h[8]
79 + 2h[8]

81 − h[8]
85 − 8h[8]

87 + 2h[8]
89 − 3h[8]

91 +
5

2
h[8]
97

− 7

2
h[8]
99 −

1

2
h[8]
101 +

5

2
h[8]
103 +

1

2
h[8]
105 +

1

2
h[8]
107 +

1

2
h[8]
109 −

5

2
h[8]
111 + 15h[8]

129

− 41h[8]
131 −

31

2
h[8]
133 +

105

2
h[8]
135 −

7

2
h[8]
137 +

53

2
h[8]
139 + 12h[8]

141 − 42h[8]
143

+
5

2
h[8]
145 +

11

2
h[8]
147 +

9

2
h[8]
149 −

41

2
h[8]
151 + h[8]

153 − 13h[8]
155 − 7h[8]

157

− 5h[8]
159 + 6h[8]

161 − 11h[8]
163 − 3h[8]

165 + 3h[8]
167 − 4h[8]

171 − 4h[8]
173

− 11h[8]
175 +

3

2
h[8]
177 −

3

2
h[8]
179 − 3h[8]

181 − 5h[8]
183 +

3

2
h[8]
185 −

3

2
h[8]
187

+ 9h[8]
193 − 25h[8]

195 − 9h[8]
197 + 27h[8]

199 − 2h[8]
201 + 9h[8]

203 + 2h[8]
205 − 23h[8]

207

+ 2h[8]
209 − h[8]

213 − 8h[8]
215 + 2h[8]

217 − 3h[8]
219 +

5

2
h[8]
225 −

7

2
h[8]
227 −

1

2
h[8]
229

+
5

2
h[8]
231 +

1

2
h[8]
233 +

1

2
h[8]
235 +

1

2
h[8]
237 −

5

2
h[8]
239

+ ζ2
[

2h[6]
1 − 14h[6]

3 − 15

2
h[6]
5 +

37

2
h[6]
7 − 5

2
h[6]
9 +

25

2
h[6]
11 + 7h[6]

13 −
1

2
h[6]
17

+
5

2
h[6]
19 +

7

2
h[6]
21 +

9

2
h[6]
23 − 3h[6]

25 + 3h[6]
27 + 2h[6]

33 − 14h[6]
35 −

15

2
h[6]
37

+
37

2
h[6]
39 −

5

2
h[6]
41 +

25

2
h[6]
43 + 7h[6]

45 −
1

2
h[6]
49 +

5

2
h[6]
51 +

7

2
h[6]
53

+
9

2
h[6]
55 − 3h[6]

57 + 3h[6]
59

]

+ ζ4
[15

2
h[4]
1 − 55

2
h[4]
3 − 41

2
h[4]
5 +

15

2
h[4]
9 − 55

2
h[4]
11 −

41

2
h[4]
13

]

+
(

ζ2ζ3 −
5

2
ζ5
)[

h[3]
3 + h[3]

7

]

−
(

ζ23 −
73

4
ζ6
)[

h[2]
1 + h[2]

3

]

− 3

2
ζ2ζ

2
3 −

5

2
ζ3ζ5 −

471

4
ζ8 +

3

2
ζ5,3 .

(5.3.4)
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Figure 5.1: The successive ratios R(L)
6 /R(L−1)

6 on the line (u, u, 1).

These expressions are all extra-pure. It is easy to check this property by verifying

their symmetry under the operation,

h[n]
m → h[n]

m+2n−1 , (5.3.5)

where the lower index is taken mod 2n. This operation exchanges 0 ↔ 1 in the initial

term of the weight vectors, which corresponds to the final entry of the symbol.

Setting u = 1 in the above formulas leads to

R(2)
6 (1, 1, 1) = −(ζ2)

2 = −5

2
ζ4 = −2.705808084278 . . . ,

R(3)
6 (1, 1, 1) =

413

24
ζ6 + (ζ3)

2 = 18.95171932342 . . .

R(4)
6 (1, 1, 1) = −3

2
ζ2ζ

2
3 −

5

2
ζ3ζ5 −

471

4
ζ8 +

3

2
ζ5,3 = −124.8549111141 . . . .

(5.3.6)
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The numerical values of the L-loop to the (L− 1)-loop ratios at the point (1, 1, 1)

are remarkably close,

R(3)
6 (1, 1, 1)

R(2)
6 (1, 1, 1)

= −7.004088513718 . . . ,

R(4)
6 (1, 1, 1)

R(3)
6 (1, 1, 1)

= −6.588051932566 . . . .

(5.3.7)

In fact, the ratios are also similar away from this point, as can be seen in fig. 5.1.

The logarithmic scale for u highlights how little the ratios vary over a broad range in

u, as well as how the u-dependence differs minimally between the successive ratios.

We also give the leading term in the expansion of R(4)
6 (u, u, 1) around u = 0,

R(4)
6 (u, u, 1) = u

[

− 5

48
ln4 u+

(3

4
ζ2 +

5

3

)

ln3 u−
(27

4
ζ4 −

1

2
ζ3 + 5ζ2 +

25

2

)

ln2 u

+
(

15ζ4 − 3ζ3 + 13ζ2 + 50
)

ln u

+
219

8
ζ6 + ζ23 + 5ζ5 + ζ2ζ3 −

71

8
ζ4 + 6ζ3 − 10ζ2 −

175

2

]

+O(u2) .

(5.3.8)

We note the intriguing observation that the maximum-transcendentality piece of the

u1 ln0 u term is proportional to the four-loop cusp anomalous dimension, 219
8 ζ6+ ζ

2
3 =

−1
4γ

(4)
K . In fact, the corresponding pieces of the two- and three-loop results (eq. (5.3.8))

correspond to −1
4γ

(2)
K and −1

4γ
(3)
K .

Comparing with eq. (5.3.8), we see that the ratios R(L)
6 /R(L−1)

6 both diverge log-

arithmically as u → 0 along this line:

R(3)
6 (u, u, 1)

R(2)
6 (u, u, 1)

∼ 1

2
ln u, as u → 0 ,

R(4)
6 (u, u, 1)

R(3)
6 (u, u, 1)

∼ 5

12
ln u, as u → 0.

(5.3.9)
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The slight difference in these coefficients is reflected in the slight difference in slopes

in the region of small u in fig. 5.1.

As u → ∞, the leading behavior at four loops is,

R(4)
6 (u, u, 1) = −88345

144
ζ8 −

19

4
ζ2(ζ3)

2 − 63

4
ζ3ζ5 +

5

4
ζ5,3

+
1

u

[
1

42
ln7 u+

1

6
ln6 u+

(

1 +
4

5
ζ2
)

ln5 u−
(11

12
ζ3 − 4ζ2 − 5

)

ln4 u

+
(605

24
ζ4 −

11

3
ζ3 + 16ζ2 + 20

)

ln3 u

−
(

7ζ5 + 9ζ2ζ3 −
605

8
ζ4 + 11ζ3 − 48ζ2 − 60

)

ln2 u

+
(6257

32
ζ6 +

13

4
(ζ3)

2 − 14ζ5 − 18ζ2ζ3 +
605

4
ζ4 − 22ζ3

+ 96ζ2 + 120
)

ln u

− 13

2
ζ7 − 25ζ2ζ5 −

173

4
ζ3ζ4 +

6257

32
ζ6 +

13

4
(ζ3)

2 − 14ζ5

− 18ζ2ζ3 +
605

4
ζ4 − 22ζ3 + 96ζ2 + 120

]

+O
(

1

u2

)

.

(5.3.10)

Just like at two- and three-loops, R(4)
6 (u, u, 1) approaches a constant as u → ∞.

Comparing with eq. (4.7.17), we find

R(3)
6 (u, u, 1)

R(2)
6 (u, u, 1)

∼ −9.09128803107 . . . , as u → ∞.

R(4)
6 (u, u, 1)

R(3)
6 (u, u, 1)

∼ −9.73956178163 . . . , as u → ∞.

(5.3.11)

5.3.2 The line (u, 1, 1)

Next we consider the line (u, 1, 1), which, due to the total S3 symmetry of R6(u, v, w),

is equivalent to the line (1, 1, w) discussed in section 4.7.2. As was the case at two- and

three-loops, we can express R(4)
6 (u, 1, 1) solely in terms of HPLs of a single argument.
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Using the notation of section 5.3.1, the two-loop result is,

R(2)
6 (u, 1, 1) =

1

2
h[4]
1 +

1

4
h[4]
5 +

1

2
h[4]
9 +

1

2
h[4]
13 −

1

2
ζ2 h

[2]
3 − 5

2
ζ4 , (5.3.12)

the three-loop result is,

R(3)
6 (u, 1, 1) = −3

2
h[6]
1 +

1

2
h[6]
3 − 1

4
h[6]
5 − 3

4
h[6]
9 +

1

4
h[6]
11 −

1

4
h[6]
13 − h[6]

17

+
1

2
h[6]
19 −

1

2
h[6]
21 −

1

2
h[6]
25 +

1

2
h[6]
27 −

3

2
h[6]
33 +

1

2
h[6]
35 −

1

4
h[6]
37

− 3

4
h[6]
41 +

1

2
h[6]
43 −

5

4
h[6]
49 +

3

4
h[6]
51 −

1

4
h[6]
53 −

3

4
h[6]
57 +

3

4
h[6]
59

+ ζ2
[

−1

2
h[4]
1 +

1

2
h[4]
3 +

1

2
h[4]
5 − 1

2
h[4]
9 − 1

2
h[4]
13

]

− ζ4
[

h[2]
1 − 17

4
h[2]
3

]

+ ζ23 +
413

24
ζ6 ,

(5.3.13)
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and the four-loop result is,

R(4)
6 (u, 1, 1) =

15

2
h[8]
1 − 13

2
h[8]
3 − 3

4
h[8]
5 +

3

4
h[8]
7 +

9

4
h[8]
9 − 3

4
h[8]
11 +

1

2
h[8]
13 +

15

4
h[8]
17

− 5

2
h[8]
19 +

1

2
h[8]
21 +

5

8
h[8]
23 +

5

4
h[8]
25 −

1

2
h[8]
27 −

1

8
h[8]
29 +

9

2
h[8]
33 −

17

4
h[8]
35

− 3

8
h[8]
37 +

3

4
h[8]
39 +

11

8
h[8]
41 −

11

8
h[8]
43 −

5

8
h[8]
45 +

9

4
h[8]
49 −

9

4
h[8]
51 −

3

4
h[8]
53

+
3

4
h[8]
55 +

3

4
h[8]
57 +

21

4
h[8]
65 −

23

4
h[8]
67 −

7

8
h[8]
69 +

3

4
h[8]
71 +

11

8
h[8]
73 −

13

8
h[8]
75

− 5

8
h[8]
77 +

23

8
h[8]
81 −

25

8
h[8]
83 −

5

8
h[8]
85 +

7

8
h[8]
87 +

9

8
h[8]
89 −

3

8
h[8]
91 +

1

8
h[8]
93

+
11

4
h[8]
97 − 5h[8]

99 −
11

8
h[8]
101 +

7

8
h[8]
103 +

3

4
h[8]
105 −

5

4
h[8]
107 −

5

8
h[8]
109 +

7

8
h[8]
113

− 23

8
h[8]
115 −

9

8
h[8]
117 +

7

8
h[8]
119 +

15

2
h[8]
129 −

13

2
h[8]
131 −

3

4
h[8]
133 +

3

4
h[8]
135

+
9

4
h[8]
137 − h[8]

139 +
1

4
h[8]
141 +

15

4
h[8]
145 − 3h[8]

147 +
1

4
h[8]
149 + h[8]

151 +
5

4
h[8]
153

+
1

4
h[8]
157 +

9

2
h[8]
161 −

21

4
h[8]
163 −

7

8
h[8]
165 +

9

8
h[8]
167 +

9

8
h[8]
169 −

9

8
h[8]
171 −

1

2
h[8]
173

+ 2h[8]
177 −

11

4
h[8]
179 −

7

8
h[8]
181 +

9

8
h[8]
183 +

3

8
h[8]
185 +

3

8
h[8]
187 + 6h[8]

193 − 7h[8]
195

− 5

4
h[8]
197 +

9

8
h[8]
199 +

3

2
h[8]
201 −

3

2
h[8]
203 −

3

8
h[8]
205 +

25

8
h[8]
209 −

31

8
h[8]
211 −

1

4
h[8]
213

+
11

8
h[8]
215 + h[8]

217 +
1

4
h[8]
221 +

7

2
h[8]
225 − 7h[8]

227 −
17

8
h[8]
229 +

5

4
h[8]
231 +

5

8
h[8]
233

− 13

8
h[8]
235 −

7

8
h[8]
237 +

5

4
h[8]
241 −

19

4
h[8]
243 −

7

4
h[8]
245 +

5

4
h[8]
247

+ ζ2
[

h[6]
1 − 3h[6]

3 − 7

4
h[6]
5 +

1

4
h[6]
7 − 1

4
h[6]
9 +

1

4
h[6]
11 +

1

2
h[6]
13 +

1

4
h[6]
17 −

3

4
h[6]
19

+
1

2
h[6]
21 −

1

4
h[6]
23 −

3

4
h[6]
27 −

1

2
h[6]
29 + h[6]

33 −
5

2
h[6]
35 −

3

2
h[6]
37 −

1

2
h[6]
39

− h[6]
43 −

1

2
h[6]
45 +

3

4
h[6]
49 −

9

4
h[6]
51 −

5

4
h[6]
53 −

1

2
h[6]
55 +

3

4
h[6]
57 −

5

4
h[6]
59

]

+ ζ4
[15

4
h[4]
1 − 5h[4]

3 − 47

8
h[4]
5 +

3

2
h[4]
7 +

15

4
h[4]
9 +

3

2
h[4]
11 +

9

2
h[4]
13

]

+
(

ζ2ζ3 −
5

2
ζ5
)[3

2
h[3]
3 + h[3]

7

]

+ ζ6
[73

8
h[2]
1 − 461

16
h[2]
3

]

− 1

2
ζ23

[

h[2]
1 + h[2]

3

]

− 3

2
ζ2ζ

2
3 −

5

2
ζ3ζ5 −

471

4
ζ8 +

3

2
ζ5,3 .

(5.3.14)
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Using eq. (5.3.5), it is easy to check that none of these functions are extra-pure.

At both large and small u, these functions all diverge logarithmically. At two-

and three-loops, this can be seen from eqs. (4.7.22) and (4.7.23). At four loops, we

find at small u,

R(4)
6 (u, 1, 1) =

1

24

(7

2
ζ5 − ζ2ζ3

)

ln3 u− 639

256
ζ6 ln

2 u+
(829

64
ζ7 +

69

16
ζ3ζ4 +

39

8
ζ2ζ5

)

ln u

− 3

16
ζ2ζ

2
3 −

57

16
ζ3ζ5 −

123523

2880
ζ8 +

19

80
ζ5,3 +O(u) ,

(5.3.15)

and at large u,

R(4)
6 (u, 1, 1) = − 37

322560
ln8 u− 1

80
ζ2 ln

6 u+
7

320
ζ3 ln

5 u− 533

384
ζ4 ln

4 u

+
(47

48
ζ5 +

53

48
ζ2ζ3

)

ln3 u−
(6019

128
ζ6 +

11

16
ζ23

)

ln2 u

+
(195

8
ζ7 +

923

32
ζ3ζ4 +

33

2
ζ2ζ5

)

ln u

− 3ζ2ζ
2
3 −

25

2
ζ3ζ5 −

1488641

4608
ζ8 +

1

4
ζ5,3 +O

(
1

u

)

.

(5.3.16)

The ratios R(L)
6 (u, 1, 1)/R(L−1)

6 (u, 1, 1) also diverge in both limits,

R(3)
6 (u, 1, 1)

R(2)
6 (u, 1, 1)

∼
( 7π4

1440ζ3

)

ln u =
(

0.393921796467 . . .
)

ln u, as u → 0 ,

R(4)
6 (u, 1, 1)

R(3)
6 (u, 1, 1)

∼
(60ζ5
π4

− 20ζ3
7π2

)

ln u =
(

0.290722549640 . . .
)

ln u, as u → 0 ,

(5.3.17)

and,

R(3)
6 (u, 1, 1)

R(2)
6 (u, 1, 1)

∼ − 1

10
ln2 u, as u → ∞ ,

R(4)
6 (u, 1, 1)

R(3)
6 (u, 1, 1)

∼ − 37

336
ln2 u, as u → ∞ .

(5.3.18)
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Figure 5.2: The successive ratios R(L)
6 /R(L−1)

6 on the line (u, 1, 1).

In fig. 5.2, we plot the ratios R(L)
6 (u, 1, 1)/R(L−1)

6 (u, 1, 1) for a large range of u. The

ratios are strikingly similar throughout the entire region.

5.3.3 The line (u, u, u)

As discussed in section 4.7.3, the remainder function at strong coupling can be written

analytically on the symmetrical diagonal line (u, u, u),

R(∞)
6 (u, u, u) = −π

6
+
φ2

3π
+

3

8

[

ln2 u+ 2Li2(1− u)
]

− π2

12
, (5.3.19)

where φ = 3 cos−1(1/
√
4u). In perturbation theory, the function R(L)

6 (u, u, u) cannot

be written solely in terms of HPLs with argument (1 − u). However, it is possible

to use the coproduct structure to derive differential equations which may be solved

by using series expansions around the three points u = 0, u = 1, and u = ∞. This
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method was applied in section 4.7.3 at two and three loops, and here we extend it to

the four loop case.

The expansion around u = 0 takes the form,

R(4)
6 (u, u, u) =

(1791

32
ζ6 −

3

4
ζ23

)

ln2 u+
32605

512
ζ8 −

5

2
ζ3ζ5 −

9

8
ζ2(ζ3)

2

+ u

[
5

192
ln7 u+

5

192
ln6 u−

(19

16
ζ2 +

5

32

)

ln5 u

+
5

16

(

ζ3 − 3ζ2 −
1

2

)

ln4 u+
(1129

64
ζ4 +

5

8
ζ3 + 3ζ2 +

15

8

)

ln3 u

−
(21

8
ζ5 +

3

2
ζ2ζ3 −

669

64
ζ4 +

3

2
ζ3 − 6ζ2 −

75

8

)

ln2 u

+
(32073

128
ζ6 − 3(ζ3)

2 − 27

4
ζ5 −

3

2
ζ2ζ3 −

165

32
ζ4 −

15

4
ζ3

− 15

2
ζ2 −

75

4

)

ln u+
3

4
ζ2ζ5 −

21

16
ζ3ζ4 +

7119

128
ζ6

+
3

4
(ζ3)

2 +
27

4
ζ5 +

3

2
ζ2ζ3 +

45

32
ζ4 +

21

2
ζ3 −

15

2
ζ2 −

525

4

]

+O(u2).

(5.3.20)

The leading term at four loops diverges logarithmically, but, just like at two and

three loops, the divergence appears only as ln2 u. This is another piece of ev-

idence in support of the claim by Alday, Gaiotto and Maldacena [157] that this

property should hold to all orders in perturbation theory. Because of this fact, the

ratios R(3)
6 (u, u, u)/R(2)

6 (u, u, u) and R(4)
6 (u, u, u)/R(3)

6 (u, u, u) approach constants in

the limit u → 0,

R(3)
6 (u, u, u)

R(2)
6 (u, u, u)

∼ −7π2

10
= −6.90872308076 . . . , as u → 0 ,

R(4)
6 (u, u, u)

R(3)
6 (u, u, u)

∼ −199π2

294
+

60(ζ3)2

7π4
= −6.55330020271, as u → 0 .

(5.3.21)
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At large u, the expansion behaves as,

R(4)
6 (u, u, u) =

3

2
ζ2(ζ3)

2 − 10ζ3ζ5 +
1713

64
ζ8 −

3

4
ζ5,3 −

4π7

5u1/2

+
1

32u

[
1

56
ln7 u+

5

16
ln6 u+

(51

20
ζ2 +

33

8

)

ln5 u

−
(11

2
ζ3 −

249

8
ζ2 −

345

8

)

ln4 u

+
(1237

4
ζ4 − 50ζ3 +

547

2
ζ2 +

705

2

)

ln3 u

−
(

168ζ5 + 222ζ2ζ3 −
17607

8
ζ4 + 330ζ3 −

3441

2
ζ2 −

4275

2

)

ln2 u

+
(52347

8
ζ6 + 144(ζ3)

2 − 744ζ5 − 1032ζ2ζ3 +
38397

4
ζ4

− 1416ζ3 + 7041ζ2 + 8595
)

ln u− 360ζ7 − 2499ζ3ζ4

− 1200ζ2ζ5 +
134553

16
ζ6 + 426(ζ3)

2 − 1596ζ5 − 2292ζ2ζ3

+
80289

4
ζ4 − 2976ζ3 + 14193ζ2 + 17235

]

+
π3

32u3/2

[

3 ln3 u+
45

2
ln2 u+

(

306ζ2 + 99
)

ln u− 96ζ4 + 36ζ3

+ 671ζ2 +
469

2

]

+O
(

1

u2

)

.

(5.3.22)

The ratios R(3)
6 (u, u, u)/R(2)

6 (u, u, u) and R(4)
6 (u, u, u)/R(3)

6 (u, u, u) approach constants

in the limit u → ∞,

R(3)
6 (u, u, u)

R(2)
6 (u, u, u)

∼ −1.22742782334 . . . , as u → ∞ ,

R(4)
6 (u, u, u)

R(3)
6 (u, u, u)

∼ 21.6155002540 . . . , as u → ∞ .

(5.3.23)

In contrast to the expansions around u = 0 and u = ∞, the expansion around u = 1
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Figure 5.3: The successive ratios R(L)
6 /R(L−1)

6 on the line (u, u, u).

is regular,

R(4)
6 (u, u, u) = −3

2
ζ2ζ

2
3 −

5

2
ζ3ζ5 −

471

4
ζ8 +

3

2
ζ5,3

+
(219

8
ζ6 −

3

2
(ζ3)

2 +
45

4
ζ4 + 3ζ2 +

45

2

)

(1− u) +O
(

(1− u)2
)

.

(5.3.24)

We take 100 terms in each expansion and piece them together to obtain a numerical

representation for the function R(4)
6 (u, u, u) that is valid along the entire line. In the

regions of overlap, we find agreement to at least 15 digits. In fig. 5.3, we plot the

ratios R(L)
6 (u, u, u)/R(L−1)

6 (u, u, u) for a large range of u.

As noted in eq. (4.7.34), the two and three loop remainder functions vanish along

the line (u, u, u) near the point u = 1
3 . The same is true at four loops, and we find
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the zero-crossing point to be,

u(4)
0 = 0.33575561 . . . . (5.3.25)

As can be seen from fig. 5.3, R(4)
6 (u, u, u) actually crosses zero in a second place,

u(4)
0,2 = 5529.65453 . . . . (5.3.26)

Aside from the small region near where R(2)
6 (u, u, u) and R(3)

6 (u, u, u) vanish, the

general agreement between the two successive ratios is excellent for relatively small

u, say u < 1000. For large u, the ratios approach constant values that differ by a

factor of about −17.6 (see eq. (5.3.23)).

In fig. 5.4, we plot the two-, three-, and four-loop and strong-coupling remainder

functions on the line (u, u, u). In order to compare their relative shapes, we rescale

each function by its value at (1, 1, 1). The remarkable similarity in shape that was

noticed at two and three loops persists at four loops, particularly for the region

0 < u < 1.

As discussed in section 4.7.3, a necessary condition for the shapes to be so similar

is that the limiting behavior of the ratios as u → 0 is almost the same as the ratios’

values at u = 1. Comparing eq. (5.3.21) to eq. (5.3.7), we find,

R(3)
6 (u, u, u)

R(2)
6 (u, u, u)

/R(3)
6 (1, 1, 1)

R(2)
6 (1, 1, 1)

∼ 0.986 . . . , as u → 0 ,

R(4)
6 (u, u, u)

R(3)
6 (u, u, u)

/R(4)
6 (1, 1, 1)

R(3)
6 (1, 1, 1)

∼ 0.995 . . . , as u → 0 ,

(5.3.27)

which are indeed quite close to 1. The agreement is slightly better between the three-

and four-loop points than it is between the two- and three-loop points. We can also
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Figure 5.4: The remainder function on the line (u, u, u) plotted at two, three, and
four loops and at strong coupling. The functions have been rescaled by their values
at the point (1, 1, 1).

see how how well these points agree with strong coupling values,

R(∞)
6 (u, u, u)

R(2)
6 (u, u, u)

/R(∞)
6 (1, 1, 1)

R(2)
6 (1, 1, 1)

∼ 1 , as u → 0 ,

R(∞)
6 (u, u, u)

R(3)
6 (u, u, u)

/R(∞)
6 (1, 1, 1)

R(3)
6 (1, 1, 1)

∼ 1.014 , as u → 0 ,

R(∞)
6 (u, u, u)

R(4)
6 (u, u, u)

/R(∞)
6 (1, 1, 1)

R(4)
6 (1, 1, 1)

∼ 1.019 , as u → 0 ,

(5.3.28)

The ratio between the two-loop and strong-coupling points is exactly 1, while the

corresponding ratios for three and four loops deviate slightly from one. The deviations

increase as L increases, suggesting that the shapes of the weak-coupling curves on the
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line (u, u, u) are getting slightly further from the shape of the strong coupling curve,

at least for small L. This observation is also evident in fig. 5.4 at large u.

5.4 Conclusions

In this chapter, we presented the four-loop remainder function, which is a dual-

conformally invariant function that describes six-point MHV scattering amplitudes

in planar N = 4 super Yang-Mills theory. The result was bootstrapped from a lim-

ited set of assumptions about the analytic properties of the relevant function space.

Following the strategy of ref. [14], we constructed an ansatz for the symbol and con-

strained this ansatz using various physical and mathematical consistency conditions.

A unique expression for the symbol was obtained by applying information from the

near-collinear expansion, as generated by the OPE for flux tube excitations [150].

The symbol, in turn, was lifted to a full function, using the methods described in

chapter 4. In particular, a mathematically-consistent ansatz for the function was

obtained by applying the coproduct bootstrap of section 4.3.3. All of the function-

level parameters of this ansatz were fixed by again applying information from the

near-collinear expansion.

The final expression for the four-loop remainder function is quite lengthy, but

its functional form simplifies dramatically on various one-dimensional lines in the

three-dimensional space of cross ratios. While the analytic form for the function on

these lines is rather different at two, three, and four loops, a numerical evaluation

shows that they are in fact quite similar for large fractions of the parameter space,

at least up to an overall rescaling. On the line where all three cross ratios are equal,

an analytical result at strong coupling is available. The perturbative results show

good agreement with the strong-coupling result, particularly in the region where the

common cross ratio is less than one. This agreement suggests that an interpolation

from weak to strong coupling may depend rather weakly on the kinematic variables,

at least on this one-dimensional line.

Given the full functional form of the four-loop remainder function, it is straight-

forward to extract its limit in multi-Regge kinematics. This information allowed us to
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fix all of the previously undetermined constants in the NNLLA BFKL eigenvalue and

the N3LLA impact factor. We also observed an intriguing correspondence between

the BFKL eigenvalue and the energy of a gluonic excitation of the GKP string. It

would be very interesting to better understand this correspondence.

There are many avenues for future research. In principle, the methods of this work

could be extended to five loops and beyond. The primary limitation is computational

power and the availability of boundary data, such as the near-collinear limit, to fix the

proliferation of constants. It is remarkable that a fully nonperturbative formulation

of the near-collinear limit now exists. Ultimately, the hope is that the full analytic

structure of perturbative scattering amplitudes, as exposed here through four loops

for the the six-point case, might in some way pave the way for a nonperturbative

formulation for generic kinematics.



Appendix A

Single-valued harmonic

polylogarithms and the

multi-Regge limit

A.1 Single-valued harmonic polylogarithms

A.1.1 Expression of the L± functions in terms of ordinary

HPLs

In this appendix we present the expressions for the Z2 ×Z2 eigenfunctions L±
w(z) de-

fined in eq. (1.3.19) as linear combinations of ordinary HPLs of the formHw1
(z)Hw2

(z̄)

up to weight 5. All expressions up to weight 6 are attached as ancillary files in

computer-readable format. We give results only for the Lyndon words, as all other

cases can be reduced to the latter. In the following, we use the condensed nota-

tion (1.3.27) for the HPL arguments z and z̄ to improve the readability of the formu-

las.

316
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A.1.2 Lyndon words of weight 1

L−
0 = H0 +H0 = log |z|2 , (A.1.1)

L+
1 = H1 +H1 +

1

2
H0 +

1

2
H0 = − log |1− z|2 + 1

2
log |z|2 , (A.1.2)

A.1.3 Lyndon words of weight 2

L−
2 =

1

4

[

− 2H1,0 + 2H1,0 + 2H0 H1 − 2H0 H1 + 2H2 − 2H2

]

= Li2(z)− Li2(z̄) +
1

2
log |z|2 (log(1− z)− log(1− z̄)) ,

(A.1.3)

A.1.4 Lyndon words of weight 3

L+
3 =

1

4

[

2H0 H0,0 + 2H0 H1,0 + 2H0 H0,0 + 2H0 H1,0 + 2H1 H0,0 + 2H1 H0,0(A.1.4)

+2H0,0,0 + 2H1,0,0 + 2H0,0,0 + 2H1,0,0 + 2H3 + 2H3

]

= Li3(z) + Li3(z̄)−
1

2
log |z|2

[

Li2(z̄) + Li2(z)
]

− 1

4
log2 |z|2 log |1− z|2

+
1

12
log3 |z|2 ,

L−
2,1 =

1

4

[

H0 H1,0 +H0 H1,0 +H1 H0,0 +H1 H0,0 + 2H0 H0,0 + 2H0 H1,1 (A.1.5)

+2H0 H0,0 + 2H0 H1,1 +H1,0,0 + 2H0,0,0 + 2H2,0 + 2H2,1 + 2H1,1,0

+H1,0,0 + 2H0,0,0 + 2H2,0 + 2H2,1 + 2H1,1,0 + 2H0 H2 + 2H0 H2

+2H1 H2 + 2H1 H2 +H3 +H3 − 4 ζ3
]

= −Li3(1− z)− Li3(1− z̄)− 1

2

[

Li3(z) + Li3(z̄)
]

+
1

4
log |z|2

[

Li2(z) + Li2(z̄)
]

−1

2
log |1− z|2

[

Li2(z) + Li2(z̄)
]

− 1

8
log2 |z|2 log |1− z|2 + 1

12
log3 |z|2

−1

4
log

z

z̄

[

log2(1− z)− log2(1− z̄)] + ζ2 log |1− z|2 + ζ3 ,
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A.1.5 Lyndon words of weight 4

L+
3,1 =

1

4

[

H0 H2,0 +H0 H1,0,0 −H0 H2,0 −H0H1,0,0 −H1 H0,0,0 +H1 H0,0,0(A.1.6)

+H0,0 H2 +H0,0 H1,0 −H0,0 H2 −H0,0 H1,0 + 2H0 H1,1,0 − 2H0 H1,1,0

+2H0,0 H1,1 − 2H0,0 H1,1 +H3,0 −H2,0,0 −H1,0,0,0 + 2H3,1 − 2H1,1,0,0

+H2,0,0 +H1,0,0,0 −H3,0 − 2H3,1 + 2H1,1,0,0 −H0 H3 +H0H3 − 2H1 H3

+2H1 H3 + 4H1 ζ3 +H4 − 4H1 ζ3 −H4

]

,

L−
4 =

1

4

[

2H0 H1,0,0 − 2H0 H1,0,0 − 2H1 H0,0,0 + 2H1 H0,0,0 + 2H0,0 H1,0 (A.1.7)

−2H0,0 H1,0 − 2H1,0,0,0 + 2H1,0,0,0 + 2H4 − 2H4

]

,

L−
2,1,1 =

1

4

[

H0 H1,0,0 +H0 H1,2 +H0 H1,1,0−H0 H1,0,0−H0 H1,2−H0 H1,1,0 (A.1.8)

−H1 H0,0,0 −H1 H2,0 +H1 H0,0,0 +H1 H2,0 +H0,0 H1,0 +H0,0 H1,1

−H0,0 H1,0 −H0,0 H1,1 +H2H1,0 −H2 H1,0 + 2H0 H1,1,1 − 2H0 H1,1,1

−2H1 H2,1 + 2H1 H2,1 + 2H2 H1,1 − 2H2 H1,1 +H3,1 +H2,2

−H1,0,0,0−H1,2,0−H1,1,0,0 + 2H2,1,1−2H1,1,1,0 +H1,0,0,0 +H1,2,0 +H1,1,0,0

−H3,1 −H2,2 − 2H2,1,1 + 2H1,1,1,0 −H1 H3 +H1 H3 + 2H1 ζ3 +H4

−2H1 ζ3 −H4

]

,

A.1.6 Lyndon words of weight 5

L+
5 =

1

4

[

2H0 H0,0,0,0 + 2H0 H1,0,0,0 + 2H0 H0,0,0,0 + 2H0 H1,0,0,0 (A.1.9)

+2H1 H0,0,0,0 + 2H1 H0,0,0,0 + 2H0,0 H0,0,0 + 2H0,0 H1,0,0

+2H0,0 H0,0,0 + 2H0,0 H1,0,0 + 2H1,0 H0,0,0 + 2H1,0 H0,0,0 + 2H0,0,0,0,0

+2H1,0,0,0,0 + 2H0,0,0,0,0 + 2H1,0,0,0,0 + 2H5 + 2H5

]

,

L+
3,1,1 =

1

4

[

H5 +H5 +H4,0 +H4,0 +H4,1 +H4,1 +H3,2 +H3,2 +H3,1,0 (A.1.10)

+H2,0,0,0 +H2,0,0,0 +H2,1,0,0 +H2,1,0,0 +H1,0,0,0,0 +H1,0,0,0,0 +H1,2,0,0
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+H1,2,0,0 +H1,1,0,0,0 +H1,1,0,0,0 + 2H0,0,0,0,0 + 2H0,0,0,0,0 +H0 H4

+2H3,0,0 + 2H3,0,0 + 2H3,1,1 + 2H3,1,1 + 2H1,1,1,0,0 + 2H1,1,1,0,0 + 4 ζ5

+H0H3,1 +H0 H2,0,0 +H0 H2,1,0 +H0 H1,0,0,0 +H0 H1,2,0 +H0 H1,1,0,0

+H0 H4 +H0 H3,1 +H0 H2,0,0 +H0H2,1,0 +H0 H1,0,0,0 +H0 H1,2,0

+H0 H1,1,0,0 +H1H0,0,0,0 +H1 H4 +H1 H3,0 +H1 H0,0,0,0 +H1 H4

+H1 H3,0 +H0,0 H2,0 +H0,0 H2,1 +H0,0 H1,0,0 +H0,0 H1,2 +H3,1,0

+H0,0 H1,1,0 +H0,0 H2,0 +H0,0 H2,1 +H0,0 H1,0,0 +H0,0 H1,2 +H0,0 H1,1,0

+H2H0,0,0 +H2 H3 +H2 H0,0,0 +H2 H3 +H1,0 H0,0,0 +H1,0 H3

+H1,0 H0,0,0 +H1,0 H3 +H1,1 H0,0,0 +H1,1 H0,0,0 + 2H0 H0,0,0,0

+2H0 H3,0 + 2H0H1,1,1,0 + 2H0 H0,0,0,0 + 2H0 H3,0 + 2H0 H1,1,1,0

+2H1H3,1 + 2H1 H3,1 + 2H0,0 H0,0,0 + 2H0,0 H3 + 2H0,0 H1,1,1

+2H0,0 H0,0,0 + 2H0,0 H3 + 2H0,0 H1,1,1 − 2H2 ζ3 − 2H2 ζ3 − 2H1,0 ζ3

−2H1,0 ζ3 + 2H1,1 H3 + 2H1,1 H3 − 4H1,1 ζ3 − 4H1,1 ζ3

−2H0 H1 ζ3 − 2H0 H1 ζ3
]

,

L+
2,2,1 =

1

4

[

H5 +H5 +H4,1 +H4,1 +H2,3 +H2,3 +H1,0,0,0,0 +H1,0,0,0,0 (A.1.11)

+H1,3,0 +H1,3,0 +H1,1,0,0,0 +H1,1,0,0,0 + 2H0,0,0,0,0 + 2H0,0,0,0,0

+2H4,0 + 2H4,0 + 2H2,0,0,0 + 2H2,0,0,0 + 2H2,2,0 + 2H2,2,0

+2H2,2,1 + 2H2,2,1 + 2H1,1,2,0 + 2H1,1,2,0 − 6 ζ5 +H0 H1,0,0,0

+H0H1,3 +H0 H1,1,0,0 +H0 H1,0,0,0 +H0 H1,3 +H0 H1,1,0,0 +H1H0,0,0,0

+H1H4 +H1 H2,0,0 +H1 H0,0,0,0 +H1 H4 +H1 H2,0,0

+H0,0 H1,0,0 +H0,0 H1,1,0 +H0,0 H1,0,0 +H0,0 H1,1,0 +H2H1,0,0

+H2 H1,0,0 +H1,0 H0,0,0 +H1,0 H2,0 +H1,0 H0,0,0 +H1,0 H2,0

+H1,1 H0,0,0 +H1,1 H0,0,0 + 2H0 H0,0,0,0 + 2H0 H4 + 2H0 H2,0,0

+2H0 H4 + 2H0H2,0,0 + 2H0 H2,2 + 2H0 H1,1,2 + 2H1 H2,2

+2H1 H2,2 + 2H0 H2,2 + 2H0 H1,1,2 + 2H0 H0,0,0,0 + 2H0,0 H0,0,0
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+2H0,0 H2,0 + 2H0,0 H0,0,0 + 2H0,0 H2,0 + 2H2 H0,0,0 + 2H2 H2,0

+2H2 H1,1,0 + 2H2 ζ3 + 2H2 H0,0,0 + 2H2 H2,0 + 2H2 H1,1,0 + 2H2 ζ3

+2H1,1 H2,0 + 2H1,1 H2,0 − 4H0,0 ζ3 − 4H0,0 ζ3 + 4H1,0 ζ3 + 4H1,0 ζ3

+8H1,1 ζ3 + 8H1,1 ζ3 − 4H0 H0 ζ3 + 4H0 H1 ζ3 + 4H0 H1 ζ3
]

,

L−
4,1 =

1

4

[

H0 H2,0,0 +H0 H1,0,0,0 +H0 H2,0,0 +H0 H1,0,0,0 +H1 H0,0,0,0 (A.1.12)

+H1 H0,0,0,0 +H0,0 H2,0 +H0,0 H1,0,0 +H0,0 H2,0 +H0,0 H1,0,0

+H2H0,0,0 +H2 H0,0,0 +H1,0H0,0,0 +H1,0 H0,0,0 + 2H0H0,0,0,0

+2H0 H1,1,0,0 + 2H0 H0,0,0,0 + 2H0 H1,1,0,0 + 2H0,0 H0,0,0 + 2H0,0 H1,1,0

+2H0,0 H0,0,0 + 2H0,0 H1,1,0 + 2H1,1 H0,0,0 + 2H1,1 H0,0,0

−4H0,0 ζ3 − 4H1,0 ζ3 +H4,0 +H2,0,0,0 +H1,0,0,0,0 + 2H0,0,0,0,0 + 2H4,1

−4H0,0 ζ3 − 4H1,0 ζ3 +H4,0 +H2,0,0,0 +H1,0,0,0,0 + 2H0,0,0,0,0 + 2H4,1

+2H1,1,0,0,0 − 4H0 H0 ζ3 − 4H0 H1 ζ3 − 4H0 H1 ζ3 +H0 H4

+2H1,1,0,0,0 +H0 H4 + 2H1 H4 + 2H1H4 +H5 +H5 − 4 ζ5
]

,

L−
3,2 =

1

4

[

H0 H1,0,0,0 +H0 H1,0,0,0 +H1 H0,0,0,0 +H1 H0,0,0,0 +H0,0 H1,0,0(A.1.13)

+H0,0 H1,0,0 +H1,0 H0,0,0 +H1,0 H0,0,0 + 2H0 H0,0,0,0 + 2H0 H3,0

+2H0 H1,2,0 + 2H0H0,0,0,0 + 2H0H3,0 + 2H0 H1,2,0 + 2H1 H3,0

+2H1 H3,0 + 2H0,0 H0,0,0 + 2H0,0 H3 + 2H0,0 H1,2 + 2H0,0 H0,0,0

+2H0,0 H3 + 2H0,0 H1,2 + 2H1,0 H3 + 2H1,0 H3 + 8H0,0 ζ3

+8H1,0 ζ3 +H1,0,0,0,0 + 2H0,0,0,0,0 + 2H3,0,0 + 2H3,2 + 2H1,2,0,0

+8H0,0 ζ3 + 8H1,0 ζ3 +H1,0,0,0,0 + 2H0,0,0,0,0 + 2H3,0,0 + 2H3,2

+2H1,2,0,0 + 8H0H0 ζ3 + 8H0 H1 ζ3 + 8H0 H1 ζ3 +H5 +H5 + 16 ζ5
]

,

L−
2,1,1,1 =

1

4

[

H5 +H5 +H4,1 +H4,1 +H3,2 +H3,2 +H3,1,1 +H3,1,1 +H2,3 (A.1.14)

+H2,2,1 +H2,2,1 +H2,1,2 +H2,1,2 +H1,0,0,0,0 +H1,0,0,0,0 +H1,3,0 +H1,3,0

+H1,2,0,0 +H1,2,0,0 +H1,2,1,0 +H1,2,1,0 +H1,1,0,0,0 +H1,1,0,0,0 +H1,1,2,0

+H1,1,2,0 +H1,1,1,0,0 +H1,1,1,0,0 + 2H0,0,0,0,0 + 2H0,0,0,0,0 + 2H4,0 +H2,3
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+2H4,0 + 2H3,0,0 + 2H3,0,0 + 2H3,1,0 + 2H3,1,0 + 2H2,0,0,0 + 2H2,0,0,0

+2H2,2,0 + 2H2,2,0 + 2H2,1,0,0 + 2H2,1,0,0 + 2H2,1,1,0 + 2H2,1,1,0

+2H2,1,1,1 + 2H2,1,1,1 + 2H1,1,1,1,0 + 2H1,1,1,1,0 − 4 ζ5 +H0 H1,0,0,0

+H0H1,3 +H0 H1,2,0 +H0 H1,2,1 +H0 H1,1,0,0 +H0 H1,1,2 +H0H1,1,1,0

+H0 H1,0,0,0 +H0 H1,3 +H0 H1,2,0 +H0H1,2,1 +H0 H1,1,0,0 +H0H1,1,2

+H0 H1,1,1,0 +H1H0,0,0,0 +H1 H4 +H1 H3,0 +H1 H3,1 +H1 H2,0,0

+H1H2,2 +H1 H2,1,0 +H1 H0,0,0,0 +H1H4 +H1 H3,0 +H1 H3,1

+H1 H2,0,0 +H1 H2,2 +H1 H2,1,0 +H0,0 H1,0,0 +H0,0 H1,2 +H0,0 H1,1,0

+H0,0 H1,1,1 +H0,0 H1,0,0 +H0,0 H1,2 +H0,0 H1,1,0 +H0,0 H1,1,1

+H2H1,0,0 +H2 H1,2 +H2 H1,1,0 +H2 H1,0,0 +H2 H1,2 +H2 H1,1,0

+H1,0 H0,0,0 +H1,0 H3 +H1,0 H2,0 +H1,0 H2,1 +H1,0 H0,0,0 +H1,0 H3

+H1,0 H2,0 +H1,0 H2,1 +H1,1H0,0,0 +H1,1 H3 +H1,1 H2,0

+H1,1 H0,0,0 +H1,1 H3 +H1,1 H2,0 + 2H0 H0,0,0,0 + 2H0 H4 + 2H0 H3,0

+2H0H3,1 + 2H0 H2,0,0 + 2H0 H2,2 + 2H0 H2,1,0 + 2H0 H2,1,1

+2H0 H1,1,1,1 + 2H0 H0,0,0,0 + 2H0 H4 + 2H0 H3,0 + 2H0H3,1

+2H0 H2,0,0 + 2H0H2,2 + 2H0 H2,1,0 + 2H0 H2,1,1 + 2H0H1,1,1,1

+2H1H2,1,1 + 2H1H2,1,1 + 2H0,0 H0,0,0 + 2H0,0 H3 + 2H0,0 H2,0

+2H0,0 H2,1 + 2H0,0 H0,0,0 + 2H0,0 H3 + 2H0,0 H2,0 + 2H0,0 H2,1

+2H2H0,0,0 + 2H2 H3 + 2H2 H2,0 + 2H2 H2,1 + 2H2 H1,1,1

+2H2 H0,0,0 + 2H2H3 + 2H2 H2,0 + 2H2 H2,1 + 2H2 H1,1,1

+2H1,1 H2,1 − 2H1,1 ζ3 + 2H1,1 H2,1 − 2H1,1 ζ3
]

.
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A.1.7 Expression of Brown’s SVHPLs in terms of the L±

functions

In this appendix we present the expression of Brown’s SVHPLs corresponding to

Lyndon words in terms of the Z2 × Z2 eigenfunctions L±
w(z).

L0 = L−
0 ,

L1 = L+
1 − 1

2
L−
0 ,

L2 = L−
2 ,

L3 = L+
3 − 1

12
[L−

0 ]
3 ,

L2,1 = −1

4
L+
1 [L−

0 ]
2 +

1

2
L+
3 + L−

2,1 + ζ3 ,

L4 = L−
4 ,

L3,1 = −1

4
L−
2 [L−

0 ]
2 + L−

4 + L+
3,1 ,

L2,1,1 = −1

4
L−
2 L−

0 L+
1 +

1

2
L+
3,1 + L−

2,1,1 ,

L5 = L+
5 − 1

240
[L−

0 ]
5 ,

L4,1 =
1

48
L+
1 [L−

0 ]
4 − 1

4
L+
3 [L−

0 ]
2 +

1

2
[L−

0 ]
2 ζ3 +

3

2
L+
5 + L−

4,1 + ζ5 ,

L3,2 = − 1

16
L+
1 [L−

0 ]
4 +

1

2
L+
3 [L−

0 ]
2 − 7

2
L+
5 − [L−

0 ]
2 ζ3 + L−

3,2 − 4 ζ5 ,

L3,1,1 =
1

16
[L−

0 ]
3 [L+

1 ]
2 − 1

4
L−
2,1 [L

−
0 ]

2 +
7

960
[L−

0 ]
5 − 1

4
L−
0 L+

1 L+
3 +

1

2
L−
0 L+

1 ζ3

+ L−
4,1 + L+

3,1,1 ,

L2,2,1 = − 3

16
[L−

0 ]
3 [L+

1 ]
2 +

1

2
L−
2,1 [L

−
0 ]

2 − 13

960
[L−

0 ]
5 +

3

4
L−
0 L+

1 L+
3 − 1

2
L−
0 L+

1 ζ3

− 7

2
L−
4,1 −

1

2
L−
3,2 + L+

2,2,1 ,

L2,1,1,1 =
1

48
[L−

0 ]
2 [L+

1 ]
3 − 1

192
L+
1 [L−

0 ]
4 +

1

16
L+
3 [L−

0 ]
2 − 1

8
[L−

0 ]
2 ζ3 −

1

4
L−
0 L−

2,1 L
+
1

− 1

4
L+
5 +

1

2
L+
3,1,1 +

1

2
ζ5 + L−

2,1,1,1 ,

L6 = L−
6 ,

L5,1 = −1

4
L−
4 [L−

0 ]
2 +

1

48
L−
2 [L−

0 ]
4 + 2L−

6 + L+
5,1 ,

L4,2 =
3

4
L−
4 [L−

0 ]
2 − 1

12
L−
2 [L−

0 ]
4 − 11

2
L−
6 + L+

4,2 ,

(A.1.15)
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L4,1,1 =
1

16
L−
2 L+

1 [L−
0 ]

3− 1

4
L+
3,1 [L

−
0 ]

2− 1

4
L−
4 L−

0 L+
1 +

1

2
L−
2 L−

0 ζ3 +
3

2
L+
5,1 + L−

4,1,1 ,

L3,2,1 =− 3

16
L−
2 L+

1 [L−
0 ]

3+
1

2
L+
3,1 [L

−
0 ]

2+
3

4
L−
4 L−

0 L+
1 −

1

2
L−
2 L−

0 ζ3 −
7

2
L+
5,1 + L−

3,2,1 ,

L3,1,2 = −1

4
L−
2 L−

0 L+
3 − 3

2
L−
2 L−

0 ζ3 + L−
3,1,2 + 3L+

5,1 + L+
4,2 ,

L3,1,1,1 =
1

16
L−
2 [L−

0 ]
2 [L+

1 ]
2 +

1

4
L−
4 [L−

0 ]
2 − 5

192
L−
2 [L−

0 ]
4 − 1

4
L−
2,1,1 [L

−
0 ]

2

− 1

4
L−
0 L+

1 L+
3,1 − L−

6 + L−
4,1,1 + L+

3,1,1,1 ,

L2,2,1,1 = −1

4
L−
2 [L−

0 ]
2 [L+

1 ]
2 − 3

4
L−
4 [L−

0 ]
2 +

1

12
L−
2 [L−

0 ]
4 +

3

4
L−
2,1,1 [L

−
0 ]

2 +
11

4
L−
6

+
1

4
L−
2 L+

1 L+
3 −

1

2
L−
2 L+

1 ζ3+
3

4
L−
0 L+

1 L+
3,1−

1

2
L−
3,1,2−5L−

4,1,1−L−
3,2,1 + L+

2,2,1,1 ,

L2,1,1,1,1 = − 5

192
L−
2 L+

1 [L−
0 ]

3 +
1

16
L+
3,1 [L

−
0 ]

2 +
1

48
L−
2 L−

0 [L+
1 ]

3 +
1

8
L−
4 L−

0 L+
1

− 1

4
L−
2 L−

0 ζ3 −
1

4
L−
0 L−

2,1,1 L
+
1 − 1

4
L+
5,1 +

1

2
L+
3,1,1,1 + L−

2,1,1,1,1 .

(A.1.16)

A.2 Analytic continuation of harmonic sums

In this section we review the analytic continuation of multiple harmonic sums and the

structural relations between them, as presented by Blümlein [54]. Multiple harmonic

sums are defined by,

Sa1,··· ,an(N) =
N
∑

k1=1

k1∑

k2=1

· · ·
kn−1∑

kn=1

sgn(a1)k1

k|a1|
1

· · · sgn(an)
kn

k|an|
n

, (A.2.1)

where the ak are positive or negative integers, andN is a positive integer. For the cases

in which we are interested, they are similar to the Euler-Zagier sums (1.3.10), except

that the summation range differs slightly. They are related to Mellin transforms of

real functions or distributions f(x),

Sa1,...,an(N) =

∫ 1

0

dx xN fa1,...,an = M[fa1,...,an(x)](N) . (A.2.2)
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Typically f(x) are HPLs weighted by factors of 1/(1 ± x). To avoid singularities at

x = 1, it is often useful to consider the +-distribution,

M[(f(x))+](N) =

∫ 1

0

dx
(

xN − 1
)

f(x) . (A.2.3)

The weight |w| of the harmonic sum is given by |w| =
∑n

k=1 |ak|. The number of

harmonic sums of weight w is equal to 2 · 3|w|−1, but not all of them are independent.

For example, they obey shuffle relations [176]. It is natural to ask whether these are

the only relations they satisfy. In fact, it is known that in the special case N → ∞,

in which the sums reduce to multiple zeta values, many new relations emerge [65,174,

177,178]. In ref. [54], an analytic continuation of the harmonic sums was considered.

It is defined by the integral representation, eq. (A.2.2), where N is allowed to take

complex values. This allows for two new operations—differentiation and evaluation at

fractional arguments—which generate new structural relations among the harmonic

sums.

In the present work, harmonic sums with negative indices do not appear, so we

will assume that ak > 0. This assumption provides a considerable simplification. The

derivative relations allow for the extraction of logarithmic factors,

M[logl(x)f(x)](N) =
dl

dN l
M[f(x)](N) , (A.2.4)

which explains why the derivatives of the building blocks in section 1.6 generate

SVHPLs. In ref. [54], all available relations are imposed, and the following are the

irreducible functions through weight five:

weight 1

S1(N) = ψ(N + 1) + γE = M

[(
1

x− 1

)

+

]

(N) (A.2.5)

weight 3

F4(N) = M

[(
Li2(x)

1− x

)

+

]

(N) (A.2.6)
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weight 4

F6a(N) = M

[(
Li3(x)

1− x

)

+

]

(N)

F7(N) = M

[(
S1,2(x)

x− 1

)

+

]

(N)

(A.2.7)

weight 5

F9(N) = M

[(
Li4(x)

x− 1

)

+

]

(N)

F11(N) = M

[(
S2,2(x)

x− 1

)

+

]

(N)

F13(N) = M

[(
Li22(x)

x− 1

)

+

]

(N)

F17(N) = M

[(
S1,3(x)

x− 1

)

+

]

(N)

(A.2.8)

There are no irreducible basis functions of weight two. These functions are mero-

morphic with poles at the negative integers. To use these functions in the integral

transform (1.4.4), we need the expansions near the poles. Actually, we only need

the expansions around zero, since the expansions around any integer can be obtained
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from them using the recursion relations of ref. [54],

ψ(n)(1 + z) = ψ(n)(z) + (−1)n
n!

zn+1

F4(z) = F4(z − 1)− 1

z

[

ζ2 −
S1(z)

z

]

F6a(z) = F6a(z − 1)− ζ3
z
+

1

z2

[

ζ2 −
S1(z)

z

]

F7(z) = F7(z − 1) +
ζ3
z
− 1

2z2
[

S2
1(z) + S2(z)

]

F9(z) = F9(z − 1) +
ζ4
z
− ζ3

z2
+
ζ2
z3

− 1

z4
S1(z)

F11(z) = F11(z − 1) +
ζ4
4z

− ζ3
z2

+
1

2z3
[

S2
1(z) + S2(z)

]

F13(z) = F13(z − 1) +
ζ22
z

− 4ζ3
z2

− 2ζ2
z2

S1(z) +
2S2,1(z)

z2
+

2

z3
[

S2
1(z) + S2(z)

]

F17(z) = F17(z − 1) +
ζ4
z
− 1

6z2
[

S3
1(z) + 3S1(z)S2(z) + 2S3(z)

]

.

(A.2.9)

The expansions around zero can be obtained from the integral representations. We

find that, for δ → 0, the expansions can all be expressed simply in terms of multiple
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zeta values,

S1(δ) = −
∞
∑

n=1

(−δ)nζn+1 ,

F4(δ) =
∞
∑

n=1

(−δ)nζn+1,2 ,

F6a(δ) =
∞
∑

n=1

(−δ)nζn+1,3 ,

F7(δ) = −
∞
∑

n=1

(−δ)nζn+1,2,1 ,

F9(δ) = −
∞
∑

n=1

(−δ)nζn+1,4 ,

F11(δ) = −
∞
∑

n=1

(−δ)nζn+1,3,1 ,

F13(δ) = −
∞
∑

n=1

(−δ)n (2ζn+1,2,2 + 4ζn+1,3,1) ,

F17(δ) = −
∞
∑

n=1

(−δ)nζn+1,2,1,1 .

(A.2.10)

These single-variable functions can be assembled to form two-variable functions of ν

and n, such that their inverse Fourier-Mellin transforms produce sums of SVHPLs.

This construction is not unique, because other building blocks could be added. We
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choose to define the two-variable functions as,

F̃4 = sgn(n)

{

F4

(

iν +
|n|
2

)

+ F4

(

− iν +
|n|
2

)

− 1

4
D2
νEν,n −

1

8
N2Eν,n −

1

2
V 2Eν,n

+
1

2

(

ψ− + V
)

DνEν,n + ζ2Eν,n − 4 ζ3

}

+N

{
1

2
V ψ− +

1

2
ζ2

}

,

F̃6a = sgn(n)

{

F6a

(

iν+
|n|
2

)

−F6a

(

− iν+
|n|
2

)

− 1

12
D3
νEν,n−

3

8
N2 V Eν,n−

1

2
V 3Eν,n

+
1

4

(

ψ− + V
)

D2
νEν,n + ζ2 DνEν,n + ζ3 ψ−

}

+N

{
1

16

(

N2 + 12V 2
)

ψ− + ζ2V

}

,

F̃7 =F7

(

iν +
|n|
2

)

− F7

(

− iν +
|n|
2

)

− 1

2
F̃6a +

1

2
V F̃4

−
[1

8
(ψ−)

2 − 1

4
ψ′
+ +

1

2
ζ2
]

DνEν,n

+
[1

2
F̃4 +

1

16
N2 Eν,n +

1

4
V 2 Eν,n −

1

4
V DνEν,n +

1

8
D2
νEν,n − ζ3

]

ψ− + 5V ζ3

+ sgn(n)N

{

−1

8
V E2

ν,n −
1

2
V 3 − 3

32
V N2 −

[1

8
(ψ−)

2 − 1

4
ψ′
+ +

1

2
ζ2
]

V

}

,

(A.2.11)

where

ψ− ≡ ψ
(

1 + iν +
|n|
2

)

− ψ
(

1− iν +
|n|
2

)

,

ψ′
+ ≡ ψ′

(

1 + iν +
|n|
2

)

+ ψ′
(

1− iν +
|n|
2

)

.

(A.2.12)

A.2.1 The basis in (ν, n) space in terms of single-valued HPLs

In this appendix we present the analytic expressions for the basis of Z2 × Z2 eigen-

functions in (ν, n) space in terms of single-valued HPLs in (w,w∗) space up to weight

five. The Z2 × Z2 acts on (w,w∗) space via conjugation and inversion, while it acts

on (ν, n) space via [n ↔ −n] and [ν ↔ −ν, n ↔ −n]. The eigenvalue under Z2 × Z2

in (w,w∗) space will be referred to as parity.
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Basis of weight 1 with parity (+,+):

I [1] = 2L+
1 . (A.2.13)

Basis of weight 1 with parity (+,−):

I [δ0,n] = L−
0 . (A.2.14)

Basis of weight 2 with parity (+,+):

I [Eν,n] = [L+
1 ]

2 − 1

4
[L−

0 ]
2 , (A.2.15)

I [δ0,n/(iν)] =
1

2
[L−

0 ]
2 . (A.2.16)

Basis of weight 2 with parity (+,−):

I [V ] = −L−
0 L+

1 . (A.2.17)

Basis of weight 2 with parity (−,−):

I [N ] = 4L−
2 . (A.2.18)

Basis of weight 3 with parity (+,+):

I
[

E2
ν,n

]

=
2

3
[L+

1 ]
3 − L+

3 , (A.2.19)

I
[

N2
]

= 12L+
3 − 2L+

1 [L−
0 ]

2 , (A.2.20)

I
[

V 2
]

=
1

2
L+
1 [L−

0 ]
2 − L+

3 . (A.2.21)
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Basis of weight 3 with parity (+,−):

I [V Eν,n] =
1

6
[L−

0 ]
3 − 2L−

2,1 , (A.2.22)

I [DνEν,n] = − 1

12
[L−

0 ]
3 − L−

0 [L+
1 ]

2 + 4L−
2,1 , (A.2.23)

I
[

δ0,n/(iν)
2
]

=
1

6
[L−

0 ]
3 . (A.2.24)

Basis of weight 3 with parity (−,+):

I [N V ] = −L−
2 L−

0 . (A.2.25)

Basis of weight 3 with parity (−,−):

I [N Eν,n] = 2L−
2 L+

1 . (A.2.26)

Basis of weight 4 with parity (+,+):

I
[

E3
ν,n

]

=
1

2
[L−

2 ]
2 +

1

2
[L−

0 ]
2 [L+

1 ]
2 +

7

96
[L−

0 ]
4 +

1

2
[L+

1 ]
4 − 3

2
L−
0 L−

2,1 (A.2.27)

− 5

2
L+
1 L+

3 − 3L+
1 ζ3 ,

I
[

N2Eν,n

]

=
1

12
[L−

0 ]
4 + 2 [L−

2 ]
2 − 2L−

0 L−
2,1 + 2L+

1 L+
3 − 4L+

1 ζ3 , (A.2.28)

I
[

V 2 Eν,n

]

= −1

2
[L−

2 ]
2 − 1

4
[L−

0 ]
2 [L+

1 ]
2 − 1

12
[L−

0 ]
4 +

3

2
L−
0 L−

2,1 (A.2.29)

+
1

2
L+
1 L+

3 − L+
1 ζ3 ,

I [V DνEν,n] =
3

4
[L−

0 ]
2 [L+

1 ]
2 +

1

16
[L−

0 ]
4 + [L−

2 ]
2 − 2L−

0 L−
2,1 − 2L+

1 L+
3 (A.2.30)

+ 4L+
1 ζ3 ,

I
[

D2
νEν,n

]

= −1

2
[L−

0 ]
2 [L+

1 ]
2 − 1

24
[L−

0 ]
4 − 2 [L−

2 ]
2 + 4L+

1 L+
3 − 8L+

1 ζ3 ,(A.2.31)

I
[

δ0,n/(iν)
3
]

=
1

24
[L−

0 ]
4 . (A.2.32)
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Basis of weight 4 with parity (+,−):

I
[

V E2
ν,n

]

=
1

8
L+
1 [L−

0 ]
3 +

1

6
L−
0 [L+

1 ]
3 − L−

0 ζ3 − 2L−
2,1 L

+
1 , (A.2.33)

I
[

N2 V
]

=
1

3
L+
1 [L−

0 ]
3 − 2L−

0 L+
3 , (A.2.34)

I
[

V 3
]

=
1

2
L−
0 L+

3 − 1

6
L+
1 [L−

0 ]
3 , (A.2.35)

I [Eν,n DνEν,n] = −1

8
L+
1 [L−

0 ]
3 − 1

2
L−
0 [L+

1 ]
3 +

1

2
L−
0 L+

3 + L−
0 ζ3 (A.2.36)

+2L−
2,1 L

+
1 ,

Basis of weight 4 with parity (−,+):

I [N V Eν,n] = −2L+
3,1 , (A.2.37)

I [N DνEν,n] = 8L+
3,1 − 2L−

2 L−
0 L+

1 . (A.2.38)

Basis of weight 4 with parity (−,−):

I
[

F̃4

]

= −1

4
L−
2 [L−

0 ]
2 + L−

2 [L+
1 ]

2 + 4L−
4 − 6L−

2,1,1 , (A.2.39)

I
[

N E2
ν,n

]

=
1

2
L−
2 [L−

0 ]
2 − 6L−

4 + 8L−
2,1,1 , (A.2.40)

I
[

N3
]

= 40L−
4 − 6L−

2 [L−
0 ]

2 , (A.2.41)

I
[

N V 2
]

=
1

2
L−
2 [L−

0 ]
2 − 2L−

4 . (A.2.42)

Basis of weight 5 with parity (+,+):

I
[

E4
ν,n

]

=
17

96
L+
1 [L−

0 ]
4 − 5

4
L+
3 [L−

0 ]
2 +

2

5
[L+

1 ]
5 +

43

4
L+
5 (A.2.43)

+ [L−
0 ]

2 [L+
1 ]

3 + 4 [L−
0 ]

2 ζ3 − 4L+
3 [L+

1 ]
2 − 8 [L+

1 ]
2 ζ3

− 4L−
0 L−

2,1 L
+
1 + 12L+

3,1,1 + 8L+
2,2,1 ,

I
[

N2E2
ν,n

]

=
1

3
[L−

0 ]
2 [L+

1 ]
3 − 1

24
L+
1 [L−

0 ]
4 + 4L+

1 [L−
2 ]

2 + 3L+
3 [L−

0 ]
2 (A.2.44)

− 8 [L−
0 ]

2 ζ3 − 25L+
5 − 24L+

3,1,1 − 16L+
2,2,1 ,

I
[

N4
]

=
13

6
L+
1 [L−

0 ]
4 − 20L+

3 [L−
0 ]

2 + 140L+
5 , (A.2.45)
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I
[

V 2 E2
ν,n

]

= − 1

12
[L−

0 ]
2 [L+

1 ]
3 − 13

96
L+
1 [L−

0 ]
4 +

1

4
L+
3 [L−

0 ]
2 − 1

4
L+
5 (A.2.46)

− L+
1 [L−

2 ]
2 + 2 [L−

0 ]
2 ζ3 + 10L+

3,1,1 + 4L+
2,2,1 − 4 ζ5 ,

I
[

N2 V 2
]

= −1

8
L+
1 [L−

0 ]
4 + L+

3 [L−
0 ]

2 − 5L+
5 , (A.2.47)

I
[

V 4
]

=
5

96
L+
1 [L−

0 ]
4 − 1

4
L+
3 [L−

0 ]
2 +

3

4
L+
5 , (A.2.48)

I [V Eν,n DνEν,n] =
7

48
L+
1 [L−

0 ]
4 − 3

4
L+
3 [L−

0 ]
2 − 3

2
[L−

0 ]
2 ζ3 +

7

2
L+
5 (A.2.49)

+ L+
1 [L−

2 ]
2 + L−

0 L−
2,1 L

+
1 − 12L+

3,1,1 − 4L+
2,2,1 + 6 ζ5 ,

I
[

[DνEν,n]
2
]

=
3

2
[L−

0 ]
2 [L+

1 ]
3 − 1

3
L+
1 [L−

0 ]
4 − 2L+

1 [L−
2 ]

2 + 2L+
3 [L−

0 ]
2 (A.2.50)

+ 2 [L−
0 ]

2 ζ3 − 4L+
3 [L+

1 ]
2 + 8 [L+

1 ]
2 ζ3 − 8L−

0 L−
2,1 L

+
1 ,

− 9L+
5 + 48L+

3,1,1 + 16L+
2,2,1 − 24 ζ5

I
[

Eν,n D
2
νEν,n

]

=
1

6
L+
1 [L−

0 ]
4 − [L−

0 ]
2 [L+

1 ]
3 − L+

3 [L−
0 ]

2 + 4L+
3 [L+

1 ]
2 + 2L+

5(A.2.51)

− 8 [L+
1 ]

2 ζ3 + 4L−
0 L−

2,1 L
+
1 − 24L+

3,1,1 − 8L+
2,2,1 + 12 ζ5 ,

I
[

N F̃4

]

=
1

12
L+
1 [L−

0 ]
4 − 7

4
L+
3 [L−

0 ]
2 +

7

2
[L−

0 ]
2 ζ3 − L+

1 [L−
2 ]

2 (A.2.52)

− L−
0 L−

2,1 L
+
1 + 15L+

5 + 12L+
3,1,1 + 8L+

2,2,1 .

Basis of weight 5 with parity (+,−):

I
[

F̃7

]

=
5

8
L−
0 [L−

2 ]
2 − 11

48
[L−

0 ]
3 [L+

1 ]
2 +

1

4
L−
2,1 [L

−
0 ]

2 +
59

3840
[L−

0 ]
5 (A.2.53)

+
5

48
L−
0 [L+

1 ]
4 +

3

2
L−
0 L+

1 L+
3 − 7

2
L−
3,2 − L−

2,1 [L
+
1 ]

2

− 8L−
0 L+

1 ζ3 − 10L−
4,1 + 7L−

2,1,1,1 ,

I
[

V E3
ν,n

]

=
1

2
L−
0 [L−

2 ]
2 +

3

16
[L−

0 ]
3 [L+

1 ]
2 +

3

4
L−
2,1 [L

−
0 ]

2 − 1

192
[L−

0 ]
5 (A.2.54)

− 1

4
L−
0 L+

1 L+
3 +

9

2
L−
0 L+

1 ζ3 −
9

2
L−
3,2 − 6L−

4,1 − 12L−
2,1,1,1 ,

I
[

N2 V Eν,n

]

= −1

4
[L−

0 ]
3 [L+

1 ]
2 − 1

48
[L−

0 ]
5 + L−

2,1 [L
−
0 ]

2 + L−
0 L+

1 L+
3 (A.2.55)

− 2L−
0 L+

1 ζ3 − 8L−
4,1 − 2L−

3,2 ,

I
[

V 3Eν,n

]

=
3

16
[L−

0 ]
3 [L+

1 ]
2 − 3

4
L−
2,1 [L

−
0 ]

2 +
23

960
[L−

0 ]
5 − 3

4
L−
0 L+

1 L+
3(A.2.56)
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+
3

2
L−
0 L+

1 ζ3 +
3

2
L−
3,2 + 4L−

4,1 ,

I
[

E2
ν,n DνEν,n

]

= −1

2
L−
0 [L−

2 ]
2 − 7

24
[L−

0 ]
3 [L+

1 ]
2 − 1

48
[L−

0 ]
5 − 1

6
L−
0 [L+

1 ]
4(A.2.57)

+ L−
0 L+

1 L+
3 − 2L−

0 L+
1 ζ3 + 4L−

4,1 + 3L−
3,2 + 8L−

2,1,1,1 ,

I
[

N2DνEν,n

]

=
3

2
[L−

0 ]
3 [L+

1 ]
2 +

1

24
[L−

0 ]
5 − 2L−

0 [L−
2 ]

2 − 4L−
2,1 [L

−
0 ]

2 (A.2.58)

− 8L−
0 L+

1 L+
3 + 16L−

0 L+
1 ζ3 + 48L−

4,1 + 12L−
3,2 ,

I
[

V 2 DνEν,n

]

=
1

2
L−
0 [L−

2 ]
2 − 3

8
[L−

0 ]
3 [L+

1 ]
2 − 1

480
[L−

0 ]
5 + L−

2,1 [L
−
0 ]

2 (A.2.59)

+ 2L−
0 L+

1 L+
3 − 4L−

0 L+
1 ζ3 − 12L−

4,1 − 5L−
3,2 ,

I
[

V D2
νEν,n

]

= − 1

15
[L−

0 ]
5 − 2L−

0 [L−
2 ]

2 − 2L−
0 L+

1 L+
3 + 4L−

0 L+
1 ζ3 (A.2.60)

+ 24L−
4,1 + 12L−

3,2 ,

I
[

D3
νEν,n

]

=
1

2
[L−

0 ]
3 [L+

1 ]
2 +

7

40
[L−

0 ]
5 + 6L−

0 [L−
2 ]

2 − 48L−
4,1 (A.2.61)

− 24L−
3,2 ,

I
[

δ0,n/(iν)
4
]

=
1

120
[L−

0 ]
5 . (A.2.62)

Basis of weight 5 with parity (−,+):

I
[

F̃6a

]

=
1

12
L−
2 [L−

0 ]
3 − L−

4 L−
0 + L−

2 L−
2,1 − L+

1 L+
3,1 , (A.2.63)

I
[

V F̃4

]

=
1

48
L−
2 [L−

0 ]
3 − 1

2
L−
2 L−

0 [L+
1 ]

2 − 3

4
L−
4 L−

0 − L−
2 L−

2,1 (A.2.64)

+ 3L−
0 L−

2,1,1 + L+
1 L+

3,1 ,

I
[

N V E2
ν,n

]

= − 1

48
L−
2 [L−

0 ]
3 +

1

2
L−
2 L−

0 [L+
1 ]

2 +
3

4
L−
4 L−

0 − 2L−
0 L−

2,1,1(A.2.65)

− 2L+
1 L+

3,1 ,

I
[

N3 V
]

=
3

4
L−
2 [L−

0 ]
3 − 5L−

4 L−
0 , (A.2.66)

I
[

N V 3
]

=
3

4
L−
4 L−

0 − 7

48
L−
2 [L−

0 ]
3 , (A.2.67)

I [N Eν,n DνEν,n] = − 5

24
L−
2 [L−

0 ]
3 +

3

2
L−
4 L−

0 − L−
2 L−

0 [L+
1 ]

2 + 4L+
1 L+

3,1 . (A.2.68)
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Basis of weight 5 with parity (−,−):

I
[

N E3
ν,n

]

=
5

8
L−
2 L+

1 [L−
0 ]

2 − 15

2
L−
4 L+

1 − 1

2
L−
2 L+

3 − L−
2 [L+

1 ]
3 (A.2.69)

+ 12L−
2,1,1 L

+
1

I
[

Eν,n N
3
]

= −1

2
L−
2 L+

1 [L−
0 ]

2 + 2L−
4 L+

1 + 6L−
2 L+

3 − 16L−
2 ζ3 (A.2.70)

− 4L−
0 L+

3,1 ,

I
[

Eν,n N V 2
]

= −1

8
L−
2 L+

1 [L−
0 ]

2 +
1

2
L−
4 L+

1 − 1

2
L−
2 L+

3 + L−
0 L+

3,1 , (A.2.71)

I [N V DνEν,n] =
3

4
L−
2 L+

1 [L−
0 ]

2 − 3L−
4 L+

1 + L−
2 L+

3 + 4L−
2 ζ3 − 2L−

0 L+
3,1 ,(A.2.72)

I
[

N D2
νEν,n

]

= −L−
2 L+

1 [L−
0 ]

2 + 12L−
4 L+

1 − 4L−
2 L+

3 − 16L−
2 ζ3 , (A.2.73)

I
[

Eν,n F̃4

]

=
1

8
L−
2 L+

1 [L−
0 ]

2 +
2

3
L−
2 [L+

1 ]
3 +

1

2
L−
4 L+

1 +
1

2
L−
2 L+

3 (A.2.74)

− 1

2
L−
0 L+

3,1 − 2L−
2 ζ3 − 4L−

2,1,1 L
+
1 .



Appendix B

Leading singularities and off-shell

conformal integrals

B.1 Asymptotic expansions of the Easy and Hard

integrals

In this appendix we collect the asymptotic expansions of the different orientations

of the Easy and Hard integrals in terms of harmonic polylogarithms. The results

for E14;23 and H12;34 were already presented in section 3.3. The results for the other

orientations are given below.

x2
13x

2
24 E12;34 = log3 u

[

− 1

3x2

(

2H1,2 +H1,1,1

)

+
1

3x

(

H1,2 +H1,1,1

)]

(B.1.1)

+ log2 u
[ 2

x2

(

2H2,2 +H2,1,1 + 2H1,3 +H1,1,2

)

− 1

2x

(

− 4H2,2 − 3H2,1,1 − 4H1,3 −H1,2,1 − 4H1,1,2

)]

+ log u
[ 1

x2

(

− 16H3,2 − 8H3,1,1 − 16H2,3 − 8H2,1,2 − 8H1,4 + 4 H1,3,1

− 4H1,2,2 −H1,2,1,1 − 4H1,1,3 + 2 H1,1,2,1 −H1,1,1,2

+
1

x

(

8H3,2 + 5H3,1,1 + 8H2,3 +H2,2,1 + 6H2,1,2 + 4 H1,4 −H1,3,1

+ 5H1,2,2 +H1,2,1,1 + 4H1,1,3 − 2 H1,1,2,1 +H1,1,1,2

)]
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+
1

x2

(

4ζ3H1,2 + 2ζ3H1,1,1 + 32H4,2 + 16H4,1,1 + 32 H3,3 + 16H3,1,2

+ 16H2,4−8H2,3,1+8H2,2,2+2 H2,2,1,1+8H2,1,3−4H2,1,2,1 + 2H2,1,1,2

− 8H1,4,1+4 H1,3,2+4H1,3,1,1+4H1,2,3−2H1,2,2,1+2H1,2,1,2−4 H1,1,3,1

+ H1,1,2,1,1−H1,1,1,2,1

)

+
1

x

(

−4ζ3H2,1−6ζ3H1,2−2ζ3H1,1,1−16 H4,2

− 10H4,1,1−16H3,3 − 10H3,1,2−8H2,4 + 4H2,3,1 − 8 H2,2,2 − 2H2,2,1,1

− 6H2,1,3+4H2,1,2,1−2H2,1,1,2+2 H1,4,1−6H1,3,2−4H1,3,1,1 − 6H1,2,3

+ 2H1,2,2,1 − 2H1,2,1,2 + 4H1,1,3,1 −H1,1,2,1,1 +H1,1,1,2,1 − 8ζ3 H3

+ 20ζ5H1

)

+O(u) ,

x2
13x

2
24 E13;24 =

log u

x

(

H2,2,1 −H2,1,2 +H1,3,1−H1,2,1,1−H1,1,3+H1,1,2,1 − 6 ζ3H2

)

+
1

x

(

4ζ3H2,1−2ζ3H1,2−2H3,2,1+2H3,1,2−2H2,3,1 +H2,2,1,1 + 2H2,1,3

− 2H2,1,2,1+H2,1,1,2−4H1,4,1+3H1,3,1,1+H1,2,1,2+4H1,1,4 − 2H1,1,3,1

− H1,1,2,2 −H1,1,2,1,1 −H1,1,1,3 +H1,1,1,2,1 + 12ζ3H3

)

+O(u) , (B.1.2)

x4
13x

4
24 H13;24 = log3 u

[ 1

3x2

(

2H2,1−H1,2−H1,1,1

)

+
1

3(1−x)x

(

H2,1−H3

)]

(B.1.3)

+ log2 u
[ 1

x2

(

− 4H3,1 − 2H2,2 + 2H1,3 + 2H1,2,1 + 2H1,1,2

)

+
1

(1− x)x

(

− 2H3,1 −H2,2 −H2,1,1 −H1,3 +H1,2,1 + 4H4

)]

+ log u
[ 1

x2

(

16H3,2 + 8H3,1,1 + 8H2,3 − 8H2,2,1 − 4H1,4 − 12H1,3,1

− 4H1,2,2+2H1,2,1,1−4H1,1,3−2H1,1,1,2

)

+
1

(1−x)x

(

4H4,1+4H3,2

+ 6H3,1,1 + 4H2,3 + 2H2,1,2 + 8H1,4 − 4H1,3,1 − 2H1,2,2 − 2H1,2,1,1

− 2H1,1,3+2H1,1,2,1−20H5

)]

+
1

x2

(

32ζ3H2,1−16ζ3H1,2−16ζ3H1,1,1

+ 64H5,1−32H4,2−32H4,1,1−24H3,3+16H3,2,1−16H3,1,2−24H2,4

+ 40H2,3,1 − 4H2,2,1,1 − 8H2,1,3 + 4H2,1,1,2 + 40H1,4,1 + 4H1,3,2
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− 8H1,3,1,1 − 4H1,2,3 + 4H1,2,2,1 − 4H1,2,1,2 + 8H1,1,1,3

)

+
1

(1− x)x

(

16ζ3H2,1 − 4H4,2 − 12H4,1,1 − 4H3,3 − 12H3,2,1 − 8H3,1,2

− 12H2,4 + 4H2,3,1 + 2H2,2,1,1 − 4H2,1,2,1 + 2H2,1,1,2 − 20H1,5 + 4H1,4,1

+ 4H1,3,2+6H1,3,1,1+4H1,2,3+2H1,2,1,2+8H1,1,4−4H1,1,3,1−2H1,1,2,2

− 2H1,1,2,1,1 − 2H1,1,1,3 + 2H1,1,1,2,1 − 16ζ3H3 + 40H6

)

+O(u) ,

x4
13x

4
24 H14;23 =

log3 u

3x

[1

x

(

2H2,1 −H1,2 + 2H1,1,1

)

− 2H2,1 −H1,2 − 2H1,1,1 −H3

]

+ log2 u
[

− 2

x2

(

2H3,1 +H2,2 −H1,3 + 2H1,2,1 + 2H1,1,2

)

(B.1.4)

+
4

x

(

H3,1 +H2,2 +H1,3 +H1,2,1 +H1,1,2 +H4

)]

+ log u
[ 4

x2

(

4H3,2−4H3,1,1+2H2,3+4H2,1,2−H1,4+2H1,3,1+4H1,2,2

− 2H1,2,1,1 + 4H1,1,3 + 2H1,1,1,2

)

+
4

x

(

2H4,1 + 4H3,2 − 2H3,1,1 + 4H2,3

+ 2H2,1,2 + 5H1,4 + 2H1,3,1 + 4H1,2,2 − 2H1,2,1,1 + 4H1,1,3 + 2H1,1,1,2

+ 5H5

)]

+
8

x2

(

4ζ3H2,1−2ζ3H1,2+4ζ3H1,1,1+8H5,1−4H4,2+8H4,1,1

− 6H3,3 + 4H3,2,1 − 4H3,1,2 − 3H2,4 + 2H2,3,1 − 4H2,2,2 + 2H2,2,1,1

− 6H2,1,3 − 2H2,1,1,2 + 2H1,4,1 − 3H1,3,2 + 4H1,3,1,1 − 5H1,2,3 + 2H1,2,2,1

− 2H1,2,1,2 − 4H1,1,4 − 2H1,1,2,2 − 2H1,1,1,3

)

+
8

x

(

− 4ζ3H2,1 − 2ζ3H1,2

− 4ζ3H1,1,1 + 3H4,2 − 2H4,1,1 + 3H3,3 − 2H3,2,1 + 4H2,4 + 2H2,2,2

+ 2H2,1,3 + 5H1,5 + 3H1,3,2 − 2H1,3,1,1 + 3H1,2,3 − 2H1,2,2,1 + 4H1,1,4

+ 2H1,1,2,2 + 2H1,1,1,3 − 2ζ3H3 + 5H6

)

+O(u) ,

B.2 An integral formula for the Hard integral

We want to find an integral formula for pure functions which involve x − x̄ in the

symbol as well as x, x̄, 1− x, 1 − x̄. We are interested in single-valued functions, i.e.
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ones obeying the constraints on the discontinuities,

[discx − discx̄]f(x, x̄) = 0 , [disc1−x − disc1−x̄]f(x, x̄) = 0 . (B.2.1)

and with no other discontinuities.

It will be sufficient for us to consider functions whose symbols have final letters

drawn from a restricted set of letters,

S(F ) = S(X)⊗ x

x̄
+ S(Y )⊗ 1− x

1− x̄
+ S(Z)⊗ (x− x̄) . (B.2.2)

where X, Y, Z are single-valued functions of x, x̄.

We will suppose also that the function F obeys F (x, x) = 0, as required to remove

the poles at x = x̄ present in the leading singularities of the conformal integrals. We

therefore take Z(x, x) = 0 also. If F has a definite parity under x ↔ x̄ then X and

Y have the opposite parity while Z has the same parity.

The functions X, Y and Z are not independent of each other. Integrability (i.e.

d2F = 0) imposes the following restrictions,

dX ∧ d log
x

x̄
+ dY ∧ d log

1− x

1− x̄
+ dZ ∧ d log(x− x̄) = 0 . (B.2.3)

We may then define the derivative of F w.r.t x to be

∂xF (x, x̄) =
X

x
− Y

1− x
+

Z

x− x̄
, (B.2.4)

so that

F (x, x̄) =

∫ x

x̄

dt

[
X(t, x̄)

t
− Y (t, x̄)

1− t
+

Z(t, x̄)

t− x̄

]

. (B.2.5)

A trivial example is the Bloch-Wigner dilogarithm function, defined via,

F2(x, x̄) = log xx̄ (H1(x)−H1(x̄))− 2(H2(x)−H2(x̄)) . (B.2.6)
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It has a symbol of the form (B.2.2) where

X1 = log(1− x)(1− x̄), Y1 = − log xx̄ Z1 = 0 . (B.2.7)

Thus we can write the integral formula (B.2.5) for F2.

B.2.1 Limits

We want to be able to calculate the limits of the functions to compare with the

asymptotic expressions obtained in section 3.3. The formula (B.2.5) allows us to

calculate the limit x̄ → 0 (which means dropping any power suppressed terms in this

limit). We may commute the limit and integration

lim
x̄→0

F (x, x̄) =

∫ x

x̄

dt lim
x̄→0

[
X(t, x̄)

t
− Y (t, x̄)

1− t
+

Z(t, x̄)

t

]

. (B.2.8)

In the second and third terms one may also set the lower limit of integration to zero.

directly. In the first one should take care that contributions from X(t, x̄) which do

not vanish as t → 0 produce extra logarithms of x̄, beyond those explicitly appearing

in the limit of X, as the lower limit approaches zero.

B.2.2 First non-trivial example (weight three)

The first example of a single-valued function whose symbol involves x − x̄ is at

weight three [106]. There is exactly one such function at this weight, i.e. all single-

valued functions can be written in terms of this one and single-valued functions con-

structed from single-variable HPLs with arguments x and x̄ only. It obeys F3(x, x̄) =

−F3(x̄, x). The symbol takes the form (B.2.2) with

X2 = − log(xx̄)(H1(x) +H1(x̄)) +
1

2
(H1(x) +H1(x̄))

2 ,

Y2 = −1

2
log2(xx̄) + log(xx̄)(H1(x) +H1(x̄)) ,

Z2 = 2 log xx̄ (H1(x)−H1(x̄))− 4(H2(x)−H2(x̄)) . (B.2.9)
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Note that X2, Y2 and Z2 are single-valued and that Z2 is proportional to the Bloch-

Wigner dilogarithm (it is the only antisymmetric weight-two single-valued function

so it had to be). They obey the integrability condition (B.2.3) so we can write the

integral formula (B.2.5) to define the function F3.

We have constructed a single-valued function with a given symbol, but in fact

this function is uniquely defined since there is no antisymmetric function of weight

one which is single-valued which could be multiplied by ζ2 and added to our result.

Moreover, since it is antisymmetric in x and x̄, we cannot add a constant term

proportional to ζ3.

Looking at the limit x̄ → 0 we find, following the discussion above,

lim
x̄→0

F3(x, x̄) =
1

2
log2 x̄H1(x) + log x̄

(

H2(x) +H1,0(x)−H1,1(x)
)

− 3H3(x)−H1,2(x) +H2,0(x) +H2,1(x) +H1,0,0(x)−H1,1,0(x)

(B.2.10)

Starting from the original symbol for F3 and taking the limit x̄ → 0 we see that the

above formula indeed correctly captures the limit.

B.2.3 Weight five example

We now give an example directly analogous to the weight-three example above but

at weight five. The example we are interested in is symmetric F5(x, x̄) = F5(x̄, x). It

has a symbol of the canonical form (B.2.2) with

X4(x, x̄) = (L0,0,1,1 − L1,1,0,0 − L0,1,1,1 + L1,1,1,0) ,

Y4(x, x̄) = (L0,0,0,1 − L1,0,0,0 − L0,0,1,1 + L1,1,0,0) ,

Z4(x, x̄) = (L0,0,1,1 + L1,1,0,0 − L0,1,1,0 − L1,0,0,1) . (B.2.11)

The above functions are single-valued and obey the integrability condition and

therefore define a single-valued function of two variables of weight five via the integral

formula.
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Taking the limit x̄ → 0 we find

lim
x̄→0

F5(x, x̄) =H1,1H̄0,0,0 + (H1,1,0 −H1,1,1)H̄0,0

+ (−H3,1 +H2,1,1 +H1,1,0,0 −H1,1,1,0)H̄0

−H1,4 −H2,3 + 2H4,1 +H1,3,1 −H3,1,0 −H3,1,1

+H2,1,1,0 +H1,1,0,0,0 −H1,1,1,0,0 + 2H1,1ζ3 . (B.2.12)

This formula correctly captures the limit taken directly on the symbol of F5. This

weight-five function plays a role in the construction of the Hard integral.

B.2.4 The function H(a) from the Hard integral

The function H(a) from the Hard integral is a weight-six symmetric function obeying

the condition H(a)(x, x) = 0. The symbol of H(a) is known but is not of the form

(B.2.2). However, we can use shuffle relations to rewrite the symbol in terms of

logarithms of u and v and functions which end with our preferred set of letters. We

find the symbol can be represented by a function of the form

H(a)(1− x, 1− x̄)

=
(

2H0,0(u) + 4H0(u)H0(v) + 8H0,0(v)
)(

L0,0,1,1 + L1,1,0,0 − L0,1,1,0 − L1,0,0,1

)

− 8F5

(

H0(u) + 2H0(v)
)

+ F6 . (B.2.13)

Here F5 is the weight-five function defined in section B.2.3. The function F6 is now

one whose symbol is of the form (B.2.2), where the functions X5, Y5 and Z5 take the

form

X5 = 20L0,0,0,1,1 + 12L0,0,1,1,0 − 32L0,0,1,1,1 − 8L0,1,0,1,1 − 12L0,1,1,0,0 − 8L0,1,1,0,1

+ 16L0,1,1,1,1 − 8L1,0,0,1,1 + 8L1,0,1,1,0 − 20L1,1,0,0,0 + 8L1,1,0,0,1 + 8L1,1,0,1,0

+ 32L1,1,1,0,0 − 16L1,1,1,1,0 − 16L1,1ζ3 , (B.2.14)

Y5 = 20L0,0,0,0,1 − 32L0,0,0,1,1 − 8L0,0,1,1,0 + 16L0,0,1,1,1 − 8L0,1,0,0,1 + L0,1,1,0,0

− 20L1,0,0,0,0 + 8L1,0,0,1,0 + 16L1,0,0,1,1 + 8L1,0,1,0,0 + 32L1,1,0,0,0 − 16L1,1,0,0,1
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− 16L1,1,1,0,0 − 16L1,0ζ3 + 64L1,1ζ3 . (B.2.15)

Z5 = 32F5 . (B.2.16)

Note that the ζ3 terms have been chosen in such a way the the functions X5, Y5 and

Z5 obey the integrability condition (B.2.3). The integral formula for F6 based on the

above functions will give a single-valued function with the correct symbol, i.e. one

such that H(a) defined in eq. (B.2.13) has the correct symbol and is single-valued.

We recall that the Hard integral takes the form

H14;23 =
1

x4
13x

4
24

[
H(a)(1− x, 1− x̄)

(x− x̄)2
+

H(b)(1− x, 1− x̄)

(1− xx̄)(x− x̄)

]

. (B.2.17)

Calculating the limit x̄ → 0 we find that H(a) reproduces the terms proportional

to 1/x2 in the limit exactly, including the zeta terms. Note that in this limit the

contributions of H(a) and H(b) are distinguishable since the harmonic polylogarithms

come with different powers of x. Since there are no functions of weight four or

lower which are symmetric in x and x̄ and which vanish at x = x̄ and which vanish

in the limit x̄ → 0, we conclude that H(a) defined in eq. (B.2.13) is indeed the

function. Comparing numerically with the formula obtained in section 3.5 we indeed

find agreement to at least five significant figures.

B.3 A symbol-level solution of the four-loop dif-

ferential equation

In this appendix we sketch an alternative approach to the evaluation of the four-loop

integral. More precisely, we will show how the function I(4) can be determined using

symbols and the coproduct on multiple polylogarithms. We start from the differential

equation (3.7.17), which we recall here for convenience,

∂x∂x̄f̂(x, x̄) = − 1

(1− xx̄)xx̄
E1(x, x̄)−

1

(1− xx̄)
E2(x, x̄) , (B.3.1)
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where we used the abbreviations E1(x, x̄) = E(1 − x, 1 − x̄) and E2(x, x̄) = E(1 −
1/x, 1− 1/x̄). We now act with the symbol map S on the differential equation, and

we get

∂x∂x̄S[f̂(x, x̄)] = − 1

(1− xx̄)xx̄
S[E1(x, x̄)]−

1

(1− xx̄)
S[E2(x, x̄)] , (B.3.2)

where the differential operators act on tensors only in the last entry, e.g.,

∂x[a1 ⊗ . . .⊗ an] = [∂x log an] a1 ⊗ . . .⊗ an−1 , (B.3.3)

and similarly for ∂x̄. It is easy to see that the tensor

S1 = S[E1(x, x̄)]⊗
(

1− 1

xx̄

)

⊗ (xx̄) + S[E2(x, x̄)]⊗ (1− xx̄)⊗ (xx̄) (B.3.4)

solves the equation (B.3.2). However, S1 is not integrable in the pair of entries (6,7),

and so S1 is not yet the symbol of a solution of the differential equation. In order to

obtain an integrable solution, we need to add a solution to the homogeneous equation

associated to eq. (B.3.2). The homogeneous solution can easily be obtained by writing

down the most general tensor S2 with entries drawn from the set {x, x̄, 1−x, 1− x̄, 1−
xx̄} that has the correct symmetries and satisfies the first entry condition and

∂x∂x̄S2 = 0 . (B.3.5)

In addition, we may assume that S2 satisfies the integrability condition in all factors

of the tensor product except for the pair of entries (6, 7), because S1 satisfies this

condition as well. The symbol of the solution of the differential equation is then

given by S1 + S2, subject to the constraint that the sum is integrable. It turns out
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that there is a unique solution, which can be written in the schematic form

S[f̂(x, x̄)] = s−1 ⊗ u⊗ u+ s−2 ⊗ v ⊗ u+ s−3 ⊗ 1− x

1− x̄
⊗ x

x̄
+ s+4 ⊗ x

x̄
⊗ u

+ s+5 ⊗ u⊗ x

x̄
+ s+6 ⊗ 1− x

1− x̄
⊗ u+ s+7 ⊗ v ⊗ x

x̄
+ s−8 ⊗ x

x̄
⊗ x

x̄

+ s−9 ⊗ (1− u)⊗ u ,

(B.3.6)

where s±i are (integrable) tensor that have all their entries drawn from the set {x, x̄, 1−
x, 1− x̄} and the superscript refers to the parity under an exchange of x and x̄.

The form (B.3.6) of the symbol of f̂(x, x̄) allows us to make the following more

refined ansatz: as the s±i are symbols of SVHPLs, and using the fact that the symbol is

the maximal iteration of the coproduct, we conclude that there are linear combinations

f±
i (x, x̄) of SVHPLs of weight six (including products of zeta values and SVHPLs of

lower weight) such that S[f±
i (x, x̄)] = s±i and

∆6,1,1[f̂(x, x̄)] = f−
1 (x, x̄)⊗ log u⊗ log u+ f−

2 (x, x̄)⊗ log v ⊗ log u

+ f−
3 (x, x̄)⊗ log

1− x

1− x̄
⊗ log

x

x̄
+ f+

4 (x, x̄)⊗ log
x

x̄
⊗ log u

+ f+
5 (x, x̄)⊗ log u⊗ log

x

x̄
+ f+

6 (x, x̄)⊗ log
1− x

1− x̄
⊗ log u

+ f+
7 (x, x̄)⊗ log v ⊗ log

x

x̄
+ f−

8 (x, x̄)⊗ log
x

x̄
⊗ log

x

x̄

+ f−
9 (x, x̄)⊗ log(1− u)⊗ u .

(B.3.7)

The coefficients of the terms proportional to zeta values and SVHPLs of lower weight

(which were not captured by the symbol) can easy be fixed by appealing to the

differential equation, written in the form1

(id⊗∂x⊗∂x̄)∆6,1,1[f̂(x, x̄)] = − 1

(1− xx̄)xx̄
E1(x, x̄)⊗1⊗1− 1

(1− xx̄)
E2(x, x̄)⊗1⊗1 .

(B.3.8)

The expression (B.3.7) has the advantage that it captures more information about

the function f̂(x, x̄) than the symbol alone. In particular, we can use eq. (B.3.7) to

1We stress that differential operators act in the last factor of the coproduct, just like for the
symbol.
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derive an iterated integral representation for f̂(x, x̄) with respect to x only. To see

how this works, first note that there must be functions A±(x, x̄), that are respectively

even and odd under an exchange of x and x̄, such that

∆7,1[f̂(x, x̄)] = A−(x, x̄)⊗ log u+ A+(x, x̄)⊗ log
x

x̄
. (B.3.9)

with

∆6,1[A
−(x, x̄)] = f−

1 (x, x̄)⊗ log u+ f−
2 (x, x̄)⊗ log v + f+

4 (x, x̄)⊗ log
x

x̄

+ f+
6 (x, x̄)⊗ log

1− x

1− x̄
+ f−

9 (x, x̄)⊗ log(1− u) ,

∆6,1[A
+(x, x̄)] = f−

3 (x, x̄)⊗ log
1− x

1− x̄
+ f+

5 (x, x̄)⊗ log u

+ f+
7 (x, x̄)⊗ log v + f−

8 (x, x̄)⊗ log
x

x̄
.

(B.3.10)

The (6,1) component of the coproduct of A+(x, x̄) does not involve log(1−u), and

so it can entirely be expressed in terms of SVHPLs. We can thus easily obtain the

result for A+(x, x̄) by writing down the most general linear combination of SVHPLs

of weight seven that are even under an exchange of x and x̄ and fix the coefficients

by requiring the (6,1) component of the coproduct of the linear combination to agree

with eq. (B.3.10). In this way we can fix A+(x, x̄) up to zeta values of weight seven

(which are integration constants of the original differential equation).

The coproduct of A−(x, x̄), however, does involve log(1 − u), and so it cannot

be expressed in terms of SVHPLs alone. We can nevertheless derive a first-order

differential equation for A−(x, x̄). We find

∂xA
−(x, x̄) =

1

x

[

f−
1 (x, x̄) + f+

4 (x, x̄)
]

− 1

1− x

[

f−
2 (x, x̄) + f+

6 (x, x̄)
]

− x̄

1− xx̄
f−
9 (x, x̄)

≡ K(x, x̄) .

(B.3.11)
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The solution to this equation is

A−(x, x̄) = h(x̄) +

∫ x

x̄

dtK(t, x̄) , (B.3.12)

where h(x̄) is an arbitrary function of x̄. The integral can easily be performed in

terms of multiple polylogarithms. Antisymmetry of A−(x, x̄) under an exchange of x

and x̄ requires h(x̄) to vanish identically, because

A−(x, x̄) = h(x̄) +

∫ x

x̄

dt ∂tA
−(t, x̄) = h(x̄) +A−(x, x̄)−A−(x̄, x̄) = h(x̄) +A−(x, x̄) .

(B.3.13)

We thus obtain a unique solution for A−(x, x̄).

Having obtained the analytic expressions for A±(x, x̄) (up to the integration con-

stants in A+(x, x̄)), we can easily obtain a first-order differential equation for f̂(x, x̄),

∂xf̂(x, x̄) =
1

x
[A−(x, x̄) + A+(x, x̄)] . (B.3.14)

The solution reads

f̂(x, x̄) =

∫ x

x̄

dt

t
[A−(t, x̄) + A+(t, x̄)] . (B.3.15)

The integral can again easily be performed in terms of multiple polylogarithms and

the antisymmetry of f̂(x, x̄) under an exchange of x and x̄ again excludes any arbitrary

function of x̄ only. The solution to eq. (B.3.14) is however not yet unique, because

of the integration constants in A+(x, x̄), and we are left with three free coefficients of

the form,

(c1 ζ7 + c2 ζ5 ζ2 + c3 ζ4 ζ3) log
x

x̄
. (B.3.16)

The free coefficients can be fixed using the requirement that f̂(x, x̄) be single-valued

(see the discussion in section 3.7). Alternatively, they can be fixed by requiring that

f̂(x, x̄) be odd under inversion of (x, x̄) and vanish at x = x̄. We checked that the

resulting function agrees analytically with the result derived in section 3.7.



Appendix C

Hexagon functions and the

three-loop remainder function

C.1 Multiple polylogarithms and the coproduct

C.1.1 Multiple polylogarithms

Multiple polylogarithms are a general class of multi-variable iterated integrals, of

which logarithms, polylogarithms, harmonic polylogarithms, and various other iter-

ated integrals are special cases. They are defined recursively by G(z) = 1, and,

G(a1, . . . , an; z) =

∫ z

0

dt

t− a1
G(a2, . . . , an; t) , G(⃗0p; z) =

lnp z

p!
, (C.1.1)

where we have introduced the vector notation a⃗n = (a, . . . , a
︸ ︷︷ ︸

n

).

For special values of the weight vector (a1, . . . , an), multiple polylogarithms reduce

to simpler functions. For example, if a ̸= 0,

G(⃗0p−1, a; z) = −Lip(z/a) , G(⃗0p, a⃗q; z) = (−1)qSp,q(z/a) , (C.1.2)

347
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where Sp,q is the Nielsen polylogarithm. More generally, if ai ∈ {−1, 0, 1}, then

G(a1, . . . , an; z) = (−1)w1 Ha1,...,an(z) , (C.1.3)

where w1 is the number of ai equal to one.

Multiple polylogarithms are not all algebraically independent. One set of relations,

known as the shuffle relations, derive from the definition (C.1.1) in terms of iterated

integrals,

G(w1; z)G(w2; z) =
∑

w∈w1Xw2

G(w; z) , (C.1.4)

where w1Xw2 is the set of mergers of the sequences w1 and w2 that preserve their rel-

ative ordering. Radford’s theorem [161] allows one to solve all of the identities (C.1.4)

simultaneously in terms of a restricted subset of multiple polylogarithms {G(lw; z)},
where lw is a Lyndon word. The Lyndon words are those words w such that for every

decomposition into two words w = {u, v}, the left word is smaller (based on some

ordering) than the right, i.e. u < v.

One may choose whichever ordering is convenient; for our purposes, we choose

an ordering so that zero is smallest. In this case, no zeros appear on the right of a

weight vector, except in the special case of the logarithm, G(0; z) = ln z. Therefore,

we may adopt a Lyndon basis and assume without loss of generality that an ̸= 0 in

G(a1, . . . , an, z). Referring to eq. (C.1.1), it is then possible to rescale all integration

variables by a common factor and obtain the following identity,

G(c a1, . . . , c an; c z) = G(a1, . . . , an; z) , an ̸= 0, c ̸= 0 . (C.1.5)

Specializing to the case c = 1/z, we see that the algebra of multiple polylogarithms

is spanned by ln z and G(a1, . . . , an; 1) where an ̸= 0. This observation allows us to

establish a one-to-one correspondence between multiple polylogarithms and particular

multiple nested sums, provided those sums converge. In particular, if for |xi| < 1 we

define,

Lim1,...,mk
(x1, . . . , xk) =

∑

n1<n2<···<nk

xn1

1 xn2

2 · · · xnk

k

nm1

1 nm2

2 · · ·nmk

k

, (C.1.6)
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then,

Lim1,...,mk
(x1, . . . , xk) = (−1)k G

(

0, . . . , 0
︸ ︷︷ ︸

mk−1

,
1

xk
, . . . , 0, . . . , 0

︸ ︷︷ ︸

m1−1

,
1

x1 · · · xk
; 1
)

. (C.1.7)

Equation (C.1.7) is easily established by expanding the measure dt/(t−ai) in eq. (C.1.1)

in a series and integrating. A convergent series expansion for G(a1, . . . , an; z) exists

if |z| ≤ |ai| for all i; otherwise, the integral representation gives the proper analytic

continuation.

The relation to multiple sums endows the space of multiple polylogarithms with

some additional structure. In particular, the freedom to change summation variables

in the multiple sums allows one to establish stuffle or quasi-shuffle relations,

Lim⃗1
(x⃗)Lim⃗2

(y⃗) =
∑

n⃗

Lin⃗(z⃗) . (C.1.8)

The precise formula for n⃗ and z⃗ in terms of m⃗1, m⃗2, x⃗, and y⃗ is rather cumbersome,

but can be written explicitly; see, e.g., ref. [65]. For small depth, however, the stuffle

relations are quite simple. For example,

Lia(x)Lib(y) = Lia,b(x, y) + Lib,a(y, x) + Lia+b(xy) . (C.1.9)

Beyond the shuffle and stuffle identities, there are additional relations between mul-

tiple polylogarithms with transformed arguments and weight vectors. For example,

one such class of identities follows from Hölder convolution [65],

G(a1, . . . , an; 1) =
n
∑

k=0

(−1)k G

(

1− ak, . . . , 1− a1; 1−
1

p

)

G

(

ak+1, . . . , an;
1

p

)

,

(C.1.10)

which is valid for any nonzero p whenever a1 ̸= 1 and an ̸= 0.

One way to study identities among multiple polylogarithms is via the symbol,
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which is defined recursively as,

S
(

G(an−1, . . . , a1; an)
)

=
n−1
∑

i=1

[

S
(

G(an−1, . . . , âi, . . . , a1; an)
)

⊗ (ai − ai+1)

−S
(

G(an−1, . . . , âi, . . . , a1; an)
)

⊗ (ai − ai−1)

]

,

(C.1.11)

While the symbol has the nice property that all relations result from simple algebraic

manipulations, it has the drawback that its kernel contains all transcendental con-

stants. To obtain information about these constants, one needs some more powerful

machinery.

C.1.2 The Hopf algebra of multiple polylogarithms

When equipped with the shuffle product (C.1.4), the space of multiple polylogarithms

forms an algebra, graded by weight. In ref. [162], it was shown how to further equip

the space with a coproduct so that it forms a bialgebra, and, moreover, with an

antipode so that it forms a Hopf algebra. The weight of the multiple polylogarithms

also defines a grading on the Hopf algebra. In the following we will let A denote the

Hopf algebra and An the weight-n subspace, so that,

A =
∞
⊕

n=0

An . (C.1.12)

The coproduct is defined most naturally on a slight variant of eq. (C.1.1),

I(a0; a1, . . . , an; an+1) =

∫ an+1

a0

dt

t− an
I(a0; a1, . . . , an−1; t) . (C.1.13)

The two definitions differ only in the ordering of indices and the choice of basepoint.

However, as shown in ref. [64], it is possible to reexpress any multiple polylogarithm

with a generic basepoint as a sum of terms with basepoint zero. This manipulation
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is trivial at weight one, where we have,

I(a0; a1; a2) = I(0; a1; a2)− I(0; a1; a0) = G(a1; a2)−G(a1; a0) . (C.1.14)

To build up further such relations at higher weights, one must simply apply the

lower-weight identity to the integrand in eq. (C.1.13). In this way, it is easy to

convert between the two different notations for multiple polylogarithms.

The coproduct on multiple polylogarithms is given by [162],

∆(I(a0; a1, . . . , an; an+1)) =

∑

0<i1<···<ik=n

I(a0; ai1 , . . . , aik ; an+1)⊗
[ k
∏

p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1
)
]

.
(C.1.15)

Strictly speaking, this definition is only valid when the ai are nonzero and distinct;

otherwise, one must introduce a regulator to avoid divergent integrals. We refer the

reader to refs. [64, 162] for these technical details.

It is straightforward to check a number of important properties of the coproduct.

First, it respects the grading of A in the following sense. If Gn ∈ An, then,

∆(Gn) =
∑

p+q=n

∆p,q(Gn) , (C.1.16)

where ∆p,q ∈ Ap ⊗Aq. Next, if we extend multiplication to tensor products so that

it acts on each component separately,

(a1 ⊗ a2) · (b1 ⊗ b2) = (a1 · b1)⊗ (a2 · b2) , (C.1.17)

one can verify the compatibility of the product and the coproduct,

∆(a · b) = ∆(a) ·∆(b) . (C.1.18)
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Finally, the coproduct is coassociative,

(id⊗∆)∆ = (∆⊗ id)∆ , (C.1.19)

meaning that one may iterate the coproduct in any order and always reach a unique

result.

This last property allows one to unambiguously define components of the coprod-

uct corresponding to all integer compositions of the weight. Consider Gn ∈ An and a

particular integer composition of n, {w1, . . . , wk}, such that wi > 0 and
∑k

i=1 wi = n.

The component of the coproduct corresponding to this composition, ∆w1,...,wk
(Gn),

is defined as the unique element of the (k − 1)-fold iterated coproduct in the space

Aw1
⊗ · · · ⊗ Awk

. For our purposes it is sufficient to consider k = 2, although other

components have been useful in other contexts.

Consider the weight-n function f (n)(z1, . . . , zm) of m complex variables z1, . . . , zm

with symbol,

S(f (n)) =
∑

i1,...,in

ci1,...,inφi1 ⊗ · · ·⊗ φin . (C.1.20)

The monodromy of f (n) around the point zk = z0 is encoded by the first entry of the

symbol,

S
(

Mzk=z0f
(n)
)

=
∑

i1,...,in

Mzk=z0(lnφi1

)

ci1,...,in φi2 ⊗ · · ·⊗ φin , (C.1.21)

where Mzk=z0(lnφi1

)

is defined in eq. (4.6.15), and we have ignored higher powers of

(2πi) (see section 4.6). Similarly, derivatives act on the last entry of the symbol,

S
( ∂

∂zk
f (n)

)

=
∑

i1,...,in

ci1,...,in φi1 ⊗ · · ·⊗ φin−1

( ∂

∂zk
lnφn

)

. (C.1.22)
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In the same way, the monodromy operator acts only the first component of the co-

product and the derivative operator only on the last component,

∆
(

Mzk=z0f
(n)
)

= (Mzk=z0 ⊗ id) ∆(f (n)) ,

∆

(
∂

∂zk
f (n)

)

=

(

id⊗ ∂

∂zk

)

∆(f (n)) .
(C.1.23)

One may trivially extend the definition of the coproduct to include odd ζ values,

∆(ζ2n+1) = 1⊗ ζ2n+1 + ζ2n+1 ⊗ 1 (C.1.24)

but including even ζ values and factors of π is more subtle. It was argued in ref. [63,64]

that it is consistent to define,

∆(ζ2n) = ζ2n ⊗ 1 and ∆(π) = π ⊗ 1 . (C.1.25)

Equation (C.1.25) implies that powers of π are absent from all factors of the coproduct

except for the first one. Finally, we remark that the symbol may be recovered from

the maximally-iterated coproduct if we drop all factors of π,

S ≡ ∆1,...,1 mod π . (C.1.26)



APPENDIX C. HEXAGON FUNCTIONS AND R(3)
6 354

C.2 Complete basis of hexagon functions through

weight five

We present the basis of hexagon functions through weight five by providing their

{n− 1, 1} coproduct components. For a hexagon function F of weight n, we write,

∆n−1,1(F ) ≡
3
∑

i=1

F ui ⊗ ln ui + F 1−ui ⊗ ln(1− ui) + F yi ⊗ ln yi , (C.2.1)

where the nine functions {F ui , F 1−ui , F yi} are of weight n− 1 and completely specify

the {n−1, 1} component of the coproduct. They also specify all of the first derivatives

of F ,

∂F

∂u

∣
∣
∣
∣
v,w

=
F u

u
− F 1−u

1− u
+

1− u− v − w

u
√
∆

F yu +
1− u− v + w

(1− u)
√
∆

F yv

+
1− u+ v − w

(1− u)
√
∆

F yw ,

√
∆ yu

∂F

∂yu

∣
∣
∣
∣
yv ,yw

= (1− u)(1− v − w)F u − u(1− v)F v − u(1− w)Fw

− u(1− v − w)F 1−u + uv F 1−v + uw F 1−w +
√
∆F yu .

(C.2.2)

The other derivatives can be obtained from the cyclic images of eq. (C.2.2). These

derivatives, in turn, define integral representations for the function. Generically, we

define the function F by (see eq. (4.4.10)),

F (u, v, w) = F (1, 1, 1)−
√
∆

∫ u

1

dut

vt[u(1− w) + (w − u)ut]

∂F

∂ ln yv
(ut, vt, wt) , (C.2.3)

where,

vt = 1− (1− v)ut(1− ut)

u(1− w) + (w − u)ut
, wt =

(1− u)wut

u(1− w) + (w − u)ut
. (C.2.4)



APPENDIX C. HEXAGON FUNCTIONS AND R(3)
6 355

We choose F (1, 1, 1) = 0 for all functions except for the special case Ω(2)(1, 1, 1) =

−6ζ4. Other integral representations of the function also exist, as discussed in sec-

tion 4.4.1.

We remark that the hexagon functions Φ̃6, G, N and O are totally symmetric

under exchange of all three arguments; Ω(2) is symmetric under exchange of its first

two arguments; F1 is symmetric under exchange of its last two arguments; and H1,

J1 and K1 are symmetric under exchange of their first and third arguments.

C.2.1 Φ̃6

The only parity-odd hexagon function of weight three is Φ̃6. We may write the {2, 1}
component of its coproduct as,

∆2,1

(

Φ̃6

)

= Φ̃u
6 ⊗ ln u+ Φ̃v

6 ⊗ ln v + Φ̃w
6 ⊗ lnw

+ Φ̃1−u
6 ⊗ ln(1− u) + Φ̃1−v

6 ⊗ ln(1− v) + Φ̃1−w
6 ⊗ ln(1− w)

+ Φ̃yu
6 ⊗ ln yu + Φ̃yv

6 ⊗ ln yv + Φ̃yw
6 ⊗ ln yw ,

(C.2.5)

where

Φ̃u
6 = Φ̃v

6 = Φ̃w
6 = Φ̃1−u

6 = Φ̃1−v
6 = Φ̃1−w

6 = 0 . (C.2.6)

Furthermore, Φ̃6 is totally symmetric, which implies,

Φ̃yv
6 = Φ̃yu

6 (v, w, u) , and Φ̃yw
6 = Φ̃yu

6 (w, u, v) . (C.2.7)

The one independent function, Φ̃yu
6 , may be identified with a finite, four-dimensional

one-loop hexagon integral, Ω(1), which is parity-even and of weight two,

Φ̃yu
6 = −Ω(1)(v, w, u) = −Hu

2 −Hv
2 −Hw

2 − ln v lnw + 2 ζ2 . (C.2.8)
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C.2.2 Ω(2)

Up to cyclic permutations, the only non-HPL parity-even hexagon function of weight

three is Ω(2). We may write the {3, 1} component of its coproduct as,

∆3,1

(

Ω(2)
)

= Ω(2),u ⊗ ln u+ Ω(2),v ⊗ ln v + Ω(2),w ⊗ lnw

+ Ω(2),1−u ⊗ ln(1− u) + Ω(2),1−v ⊗ ln(1− v) + Ω(2),1−w ⊗ ln(1− w)

+ Ω(2),yu ⊗ ln yu + Ω(2),yv ⊗ ln yv + Ω(2),yw ⊗ ln yw ,

(C.2.9)

where the vanishing components are

Ω(2),w = Ω(2),1−w = Ω(2),yw = 0, (C.2.10)

and the nonvanishing components obey,

Ω(2),v = −Ω(2),1−v = −Ω(2),1−u(u ↔ v) = Ω(2),u(u ↔ v) and Ω(2),yv = Ω(2),yu .

(C.2.11)

The two independent functions are

Ω(2),yu = −1

2
Φ̃6 , (C.2.12)

and

Ω(2),u = Hu
3 +Hv

2,1 −Hw
2,1 −

1

2
ln(uw/v)

(

Hu
2 +Hw

2 − 2 ζ2
)

+
1

2
ln(uv/w)Hv

2

+
1

2
ln u ln v ln(v/w) .

(C.2.13)
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C.2.3 F1

Up to cyclic permutations, the only parity-odd function of weight four is F1. We may

write the {4, 1} component of its coproduct as,

∆3,1 (F1) = F u
1 ⊗ ln u+ F v

1 ⊗ ln v + Fw
1 ⊗ lnw

+ F 1−u
1 ⊗ ln(1− u) + F 1−v

1 ⊗ ln(1− v) + F 1−w
1 ⊗ ln(1− w)

+ F yu
1 ⊗ ln yu + F yv

1 ⊗ ln yv + F yw
1 ⊗ ln yw ,

(C.2.14)

where

F yw
1 = F yv

1 (v ↔ w) and F u
1 = F v

1 = Fw
1 = F 1−v

1 = F 1−w
1 = 0 . (C.2.15)

Of the three independent functions, one is parity odd, F 1−u
1 = Φ̃6, and two are parity

even,

F yu
1 = −2Hu

3 + 2 ζ3 (C.2.16)

and

F yv
1 = −2Hu

3 − 2Hw
2,1 + lnw

(

Hu
2 −Hv

2 −Hw
2 + 2 ζ2

)

+ 2 ζ3 . (C.2.17)

In ref. [71] the pure function entering the parity-odd part of the six-point NMHV

ratio function was determined to be

Ṽ =
1

8
(ṼX + f̃) , (C.2.18)

where ṼX + f̃ satisfied an integral of the form (4.4.10) with

∂(ṼX + f̃)

∂ ln yv
= Z̃(u, v, w)

= 2
[

Hu
3 −Hu

2,1 − ln u
(

Hu
2 +Hv

2 − 2ζ2 −
1

2
ln2 w

)]

− (u ↔ w) .

(C.2.19)

This integral can be expressed in terms of F1 and Φ̃6 as,

ṼX + f̃ = −F1(u, v, w) + F1(w, u, v) + ln(u/w) Φ̃6(u, v, w) . (C.2.20)
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C.2.4 G

The {4, 1} component of the coproduct of the parity-odd weight five function G can

be written as,

∆4,1 (G) = Gu ⊗ ln u+Gv ⊗ ln v +Gw ⊗ lnw

+G1−u ⊗ ln(1− u) +G1−v ⊗ ln(1− v) +G1−w ⊗ ln(1− w)

+Gyu ⊗ ln yu +Gyv ⊗ ln yv +Gyw ⊗ ln yw ,

(C.2.21)

where

Gu = Gv = Gw = G1−u = G1−v = G1−w = 0 . (C.2.22)

Furthermore, G is totally symmetric. In particular,

Gyv(u, v, w) = Gyu(v, w, u) , and Gyw(u, v, w) = Gyu(w, u, v) . (C.2.23)

Therefore, it suffices to specify the single independent function, Gyu ,

Gyu = −2
(

Hu
3,1 +Hv

3,1 +Hw
3,1 − lnwHv

2,1 − ln v Hw
2,1

)

+
1

2

(

Hu
2 +Hv

2 +Hw
2 + ln v lnw

)2

− 1

2
ln2 v ln2 w − 4 ζ4 .

(C.2.24)

C.2.5 H1

The function H1(u, v, w) is parity-odd and has weight five. We may write the {4, 1}
component of its coproduct as,

∆4,1 (H1(u, v, w)) = Ĥu
1 ⊗ ln u+ Ĥv

1 ⊗ ln v + Ĥw
1 ⊗ lnw

+H1−u
1 ⊗ ln(1− u) +H1−v

1 ⊗ ln(1− v) +H1−w
1 ⊗ ln(1− w)

+Hyu
1 ⊗ ln yu +Hyv

1 ⊗ ln yv +Hyw
1 ⊗ ln yw ,

(C.2.25)
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where we put a hat on Ĥu
1 , etc., to avoid confusion with the HPLs with argument

1− u. The independent functions are Ĥu
1 , Ĥ

yu
1 , and Ĥyv

1 ,

Ĥu
1 = −1

4

(

F1(u, v, w)− ln u Φ̃6

)

− (u ↔ w) ,

Ĥyu
1 =

[
1

2

(

Ω(2)(v, w, u) + Ω(2)(w, u, v)
)

+
1

2

(

Hu
4 +Hv

4

)

− 1

2

(

Hu
3,1 −Hv

3,1

)

− 3

2

(

Hu
2,1,1 +Hv

2,1,1

)

−
(

ln u+
1

2
ln(w/v)

)

Hu
3 − 1

2
ln v Hv

3 − 1

2
ln(w/v)Hu

2,1

− 1

2
ln v Hv

2,1 −
1

4

(

(Hu
2 )

2 + (Hv
2 )

2
)

+
1

4

(

ln2 u− ln2(w/v)
)

Hu
2

− 1

8
ln2 u ln2(w/v)− ζ2

(

Hu
2 +

1

2
ln2 u

)

+ 3ζ4

]

+ (u ↔ w) ,

Ĥyv
1 = Ω(2)(w, u, v) .

(C.2.26)

Of the remaining functions, two vanish, Ĥv
1 = Ĥ1−v

1 = 0, and the others are simply

related,

Ĥ1−u
1 = Ĥw

1 = −Ĥ1−w
1 = −Ĥu

1 , and Ĥyw
1 = Ĥyu

1 . (C.2.27)

C.2.6 J1

We may write the {4, 1} component of the coproduct of the parity-odd weight-five

function J1(u, v, w) as,

∆4,1 (J1(u, v, w)) = Ju
1 ⊗ ln u+ Jv

1 ⊗ ln v + Jw
1 ⊗ lnw

+ J1−u
1 ⊗ ln(1− u) + J1−v

1 ⊗ ln(1− v) + J1−w
1 ⊗ ln(1− w)

+ Jyu
1 ⊗ ln yu + Jyv

1 ⊗ ln yv + Jyw
1 ⊗ ln yw ,

(C.2.28)



APPENDIX C. HEXAGON FUNCTIONS AND R(3)
6 360

where the independent functions are Ju
1 , J

yu
1 , and Jyv

1 ,

Ju
1 =

[

− F1(u, v, w) + ln u Φ̃6

]

− (u ↔ w) ,

Jyu
1 =

[

−Ω(2)(w, u, v)−6Hu
4 +2

(

Hu
3,1−Hv

3,1+Hu
2,1,1+2

(

2 ln u−ln(w/v)
)

Hu
3

)

+
1

2

(

Hv
2

)2

+ 2 ln(w/v)Hu
2,1 − ln u

(

ln u− 2 ln(w/v)
)

Hu
2 − 1

2
ln2(u/w)Hv

2 − 1

3
ln v ln3 u

+
1

4
ln2 u ln2 w + ζ2

(

8Hu
2 + 2Hv

2 + ln2(u/w) + 4 ln u ln v
)

− 14 ζ4 + (u ↔ w)
]

− ln(u/w)
(

4Hv
2,1 + 2 ln v Hv

2 − 1

3
ln v ln2(u/w)

)

,

Jyv
1 =

[

− 4
(

Hu
4 −Hu

3,1 +Hv
3,1 +Hu

2,1,1 − ln u (Hu
3 −Hu

2,1)
)

− 2 ln2 uHu
2

+
(

Hv
2 − 2 ln u ln(u/w)

)

Hv
2 − 1

3
ln u lnw

(

ln2(u/w) +
1

2
ln u lnw

)

+ 8 ζ2
(

Hu
2 +

1

2
ln2 u

)

− 8 ζ4

]

+ (u ↔ w) .

(C.2.29)

Of the remaining functions, two vanish, Jv
1 = J1−v

1 = 0, and the others are simply

related,

J1−u
1 = Jw

1 = −J1−w
1 = −Ju

1 , and Jyw
1 = Jyu

1 (u ↔ w). (C.2.30)

C.2.7 K1

The final parity-odd function of weight five is K1(u, v, w). We may write the {4, 1}
component of its coproduct as,

∆4,1 (K1(u, v, w)) = Ku
1 ⊗ ln u+Kv

1 ⊗ ln v +Kw
1 ⊗ lnw

+K1−u
1 ⊗ ln(1− u) +K1−v

1 ⊗ ln(1− v) +K1−w
1 ⊗ ln(1− w)

+Kyu
1 ⊗ ln yu +Kyv

1 ⊗ ln yv +Kyw
1 ⊗ ln yw ,

(C.2.31)
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where the independent functions are Ku
1 , K

yu
1 , and Kyv

1 ,

Ku
1 = −F1(w, u, v) + lnw Φ̃6 ,

Kyu
1 =−2

(

Hu
3,1+Hv

3,1+Hw
3,1

)

− 2 ln(v/w)Hu
3 +2 ln uHw

3 +2 ln v Hw
2,1+2 ln(uw)Hv

2,1

+
1

2

(

Hu
2 +Hv

2 +Hw
2 − 2 ζ2

)2
+
(

ln u ln(v/w) + ln v lnw
)(

Hu
2 +Hv

2 − 2ζ2
)

−
(

ln u ln(vw)− ln v lnw
)

Hw
2 − ln u ln v ln2 w − 2 ζ3 ln(uw/v) + ζ4 ,

Kyv
1 =

[

− 4Hu
3,1 − 2 ln(u/w)Hu

3 + 2 ln(uw)Hu
2,1 + ln2 uHu

2

+ 2
(

Hu
2 +

1

2
ln2 u

)(

Hv
2 − 1

2
ln2 w − 2ζ2

)

+ 3ζ4

]

+ (u ↔ w) .

(C.2.32)

Of the remaining functions, two vanish, Kv
1 = K1−v

1 = 0, and the others are simply

related,

K1−u
1 = −Ku

1 , Kw
1 = −K1−w

1 = Ku
1 (u ↔ w) and Kyw

1 = Kyu
1 (u ↔ w) .

(C.2.33)

C.2.8 M1

The {4, 1} component of the coproduct of the parity-even weight-five function M1

can be written as,

∆4,1 (M1) = Mu
1 ⊗ ln u+M v

1 ⊗ ln v +Mw
1 ⊗ lnw

+M1−u
1 ⊗ ln(1− u) +M1−v

1 ⊗ ln(1− v) +M1−w
1 ⊗ ln(1− w)

+Myu
1 ⊗ ln yu +Myv

1 ⊗ ln yv +Myw
1 ⊗ ln yw ,

(C.2.34)

where,

M1−v
1 = −Mw

1 , and Mu
1 = M v

1 = M1−w
1 = Myu

1 = Myv
1 = 0 . (C.2.35)
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The three independent functions consist of one parity-odd function,

Myw
1 = −F1(u, v, w), (C.2.36)

and two parity even functions,

M1−u
1 =

[

−Ω(2)(u, v, w)+2 ln v
(

Hu
3 +Hu

2,1

)

+2 ln uHv
2,1

−
(

Hu
2 −

1

2
ln2 u

)(

Hv
2+

1

2
ln2 v

)

+ln u ln v
(

Hu
2 +Hv

2 +Hw
2 − 2ζ2

)

+ 2ζ3 lnw − (v ↔ w)

]

+ Ω(2)(v, w, u) + 2Hw
4

+ 2Hw
3,1 − 6Hw

2,1,1 − 2 lnw
(

Hw
3 +Hw

2,1

)

−
(

Hv
2 +

1

2
ln2 v

)(

Hw
2 +

1

2
ln2 w

)

− (Hw
2 )

2 +
(

ln2(v/w)− 4 ζ2
)

Hu
2 + 2 ζ3 ln u+ 6 ζ4 ,

(C.2.37)

and,

Mw
1 = −2

(

Hu
3,1 −Hv

3,1 −Hw
3,1 + ln(uv/w)

(

Hu
3 − ζ3

)

+ lnwHv
2,1 + ln v Hw

2,1

)

− 1

2

(

Hu
2 −Hv

2 −Hw
2 − ln v lnw + 2ζ2

)2

+
1

2
ln2 v ln2 w + 5ζ4 .

(C.2.38)

C.2.9 N

The {4, 1} component of the coproduct of the parity-even weight-five function N can

be written as,

∆4,1 (N) = Nu ⊗ ln u+N v ⊗ ln v +Nw ⊗ lnw

+N1−u ⊗ ln(1− u) +N1−v ⊗ ln(1− v) +N1−w ⊗ ln(1− w)

+N yu ⊗ ln yu +N yv ⊗ ln yv +N yw ⊗ ln yw ,

(C.2.39)
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where,

N1−u = −Nu , N1−v = −N v , N1−w = −Nw , and N yu = N yv = N yw = 0 .

(C.2.40)

Furthermore, N is totally symmetric. In particular,

N v(u, v, w) = Nu(v, w, u) , and Nw(u, v, w) = Nu(w, u, v) . (C.2.41)

Therefore, it suffices to specify the single independent function, Nu,

Nu =

[

Ω(2)(v, w, u) + 2Hv
4 + 2Hv

3,1 − 6Hv
2,1,1 − 2 ln v

(

Hv
3 +Hv

2,1

)

− (Hv
2 )

2

−
(

Hv
2 +

1

2
ln2 v

)(

Hw
2 +

1

2
ln2 w

)

+ 6 ζ4

]

+ (v ↔ w) .

(C.2.42)

C.2.10 O

The {4, 1} component of the coproduct of the parity-even weight-five function O can

be written as,

∆4,1 (O) = Ou ⊗ ln u+Ov ⊗ ln v +Ow ⊗ lnw

+O1−u ⊗ ln(1− u) +O1−v ⊗ ln(1− v) +O1−w ⊗ ln(1− w)

+Oyu ⊗ ln yu +Oyv ⊗ ln yv +Oyw ⊗ ln yw ,

(C.2.43)

where

Ou = Ov = Ow = Oyu = Oyv = Oyw = 0 . (C.2.44)

Furthermore, O is totally symmetric. In particular,

O1−v(u, v, w) = O1−u(v, w, u) , and O1−w(u, v, w) = O1−u(w, u, v) . (C.2.45)
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Therefore, it suffices to specify the single independent function, O1−u,

O1−u =

[

− Ω(2)(u, v, w) + 2Hv
3,1 + (3 ln u− 2 lnw)Hv

2,1 + 2 ln v Hu
2,1 −

1

2
(Hv

2 )
2

+ ln u ln v (Hu
2 +Hv

2 ) + ln(u/v) lnwHv
2 +

1

2
ln2 v Hu

2 − 1

2
ln2 wHv

2

+
1

4
ln2 u ln2 v + (v ↔ w)

]

+ Ω(2)(v, w, u)− 2Hv
2 H

w
2 − ln v lnwHu

2

− 1

4
ln2 v ln2 w + 2 ζ2

(

Hv
2 +Hw

2 − ln u ln(vw) + ln v lnw
)

− 6 ζ4 .

(C.2.46)

C.2.11 Qep

The {4, 1} component of the coproduct of the parity-even weight-five function Qep

can be written as,

∆4,1 (Qep) = Qu
ep ⊗ ln u+Qv

ep ⊗ ln v +Qw
ep ⊗ lnw

+Q1−u
ep ⊗ ln(1− u) +Q1−v

ep ⊗ ln(1− v) +Q1−w
ep ⊗ ln(1− w)

+Qyu
ep ⊗ ln yu +Qyv

ep ⊗ ln yv +Qyw
ep ⊗ ln yw ,

(C.2.47)

where,

Q1−v
ep = −Qv

ep , Q1−w
ep = −Qw

ep , Qyw
ep = Qyv

ep and Qu
ep = Q1−u

ep = Qyu
ep = 0 .

(C.2.48)

The three independent functions consist of one parity-odd function, Qyv
ep, which is

fairly simple,

Qyv
ep =

1

64

[

F1(u, v, w) + F1(v, w, u)− 2F1(w, u, v) + (ln u− 3 ln v)Φ̃6

]

,
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and two parity-even functions, Qv
ep and Qw

ep, which are complicated by the presence

of a large number of HPLs,

Qv
ep =

1

32
Ω(2)(u, v, w) +

1

16
Ω(2)(v, w, u) +

1

32
Hu

4 +
3

32
Hv

4 +
1

16
Hw

4 − 3

32
Hu

3,1

− 3

32
Hu

2,1,1 −
9

64
Hv

2,1,1 −
3

16
Hw

2,1,1 +
1

32
ln uHv

3 − 1

16
ln uHw

3 − 3

32
ln uHv

2,1

+
1

16
ln uHw

2,1 +
1

32
ln v Hu

3 − 3

32
ln v Hv

3 − 7

32
ln v Hu

2,1 +
1

16
ln v Hw

2,1

− 1

32
lnwHu

3 − 1

32
lnwHv

3 +
3

32
lnwHu

2,1 +
3

32
lnwHv

2,1 −
1

16
lnwHw

2,1

+
1

32
(Hu

2 )
2 − 3

128
(Hv

2 )
2 − 1

64
Hv

2 H
w
2 +

1

64
(Hw

2 )
2 +

1

64
ln2 uHu

2

+
1

64
ln2 uHw

2 − 3

32
ln u ln v Hu

2 − 3

32
ln u ln v Hv

2 − 1

32
ln u ln v Hw

2

+
1

32
ln u lnwHu

2 +
1

32
ln u lnwHw

2 − 1

16
ln2 v Hu

2 +
3

128
ln2 v Hv

2

− 1

128
ln2 v Hw

2 +
1

16
ln v lnwHu

2 +
3

32
ln v lnwHv

2 +
1

32
ln v lnwHw

2

− 1

128
ln2 wHv

2 − 1

128
ln2 u ln2 v +

1

64
ln2 u ln v lnw − 3

64
ln u ln2 v lnw

+
5

256
ln2 v ln2 w − ζ2

(1

8
Hu

2 +
11

128
Hv

2 +
1

16
Hw

2 +
1

32
ln2 u− 3

16
ln u ln v

+
1

16
ln u lnw − 3

128
ln2 v +

3

16
ln v lnw

)

+
7

32
ζ3 ln v ,

(C.2.49)
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Qw
ep = − 1

32
Ω(2)(v, w, u) +

1

32
Ω(2)(w, u, v) +

1

32
Hu

4 − 1

32
Hv

4 +
3

32
Hu

3,1 −
3

32
Hv

3,1

− 3

32
Hu

2,1,1 +
3

32
Hv

2,1,1 +
1

32
ln uHv

3 − 1

16
ln uHw

3 − 1

32
ln uHv

2,1 −
1

32
ln v Hu

3

+
1

16
ln v Hw

3 − 3

32
ln v Hu

2,1 +
1

8
ln v Hv

2,1 +
1

32
lnwHu

3 − 1

64
lnwHv

3

− 1

32
lnwHu

2,1 +
3

64
lnwHv

2,1 −
1

64
(Hu

2 )
2 +

1

64
(Hv

2 )
2 +

1

16
Hv

2 H
w
2

+
1

64
ln2 uHu

2 +
1

64
ln2 uHv

2 − 1

16
ln u ln v Hu

2 − 1

16
ln u ln v Hv

2

− 1

32
ln u lnwHv

2 +
3

64
ln2 v Hu

2 +
3

64
ln2 v Hv

2 +
1

32
ln2 v Hw

2

− 1

32
ln v lnwHu

2 +
3

64
ln v lnwHv

2 − 1

64
ln2 wHu

2 +
1

64
ln2 wHv

2

+
1

64
ln2 u ln v lnw − 1

128
ln2 u ln2 w − 3

64
ln u ln2 v lnw +

3

128
ln3 v lnw

+
1

128
ln2 v ln2 w + ζ2

( 1

16
Hu

2 − 1

16
Hv

2 +
1

128
ln2 v ln2 w − 1

16
Hw

2

− 1

32
ln2 u+

1

8
ln u ln v − 3

32
ln2 v

)

− 1

16
ζ3 lnw .

(C.2.50)

C.2.12 Relation involving M1 and Qep

There is one linear relation between the six permutations of M1 and the six per-

mutations of Qep. The linear combination involves the totally antisymmetric linear

combination of the S3 permutations of both M1 and Qep. It can be written as,

[
(

M1(u, v, w)−
64

3
Qep(u, v, w)+2 ln uΩ(2)(u, v, w)+Erat(u, v)

)

−
(

u ↔ v)

]

+cycl. = 0 ,

(C.2.51)

where Erat(u, v) is constructed purely from ordinary HPLs,

Erat(u, v) =
(

Hv
2 +

1

2
ln2 v

)(5

3
(Hu

3 +Hu
2,1) +

1

3
ln uHu

2 − 1

2
ln3 u

)

− 4Hv
2

(

2Hu
2,1 + ln uHu

2

)

− 2 ln v
(

Hu
4 + 5Hu

3,1 − 3Hu
2,1,1 −

1

2
(Hu

2 )
2 + ln u (Hu

3 −Hu
2,1) + 4ζ2 H

u
2

)

.

(C.2.52)
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Because of this relation, the images of M1 and Qep under the S3 symmetry group

together provide only 11, not 12, of the 13 non-HPL basis functions for H+
5 . The

totally symmetric functions N and O provide the remaining two basis elements.
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C.3 Coproduct of Rep

We may write the {5, 1} component of the coproduct of the parity-even weight six-

function Rep as,

∆5,1 (Rep) = Ru
ep ⊗ ln u+Rv

ep ⊗ ln v +Rw
ep ⊗ lnw

+R1−u
ep ⊗ ln(1− u) +R1−v

ep ⊗ ln(1− v) +R1−w
ep ⊗ ln(1− w)

+Ryu
ep ⊗ ln yu +Ryv

ep ⊗ ln yv +Ryw
ep ⊗ ln yw ,

(C.3.1)

where,

Rv
ep = −R1−v

ep = −R1−u
ep (u ↔ v) = Ru

ep(u ↔ v) ,

Ryv
ep = Ryu

ep , and Rw
ep = R1−w

ep = Ryw
ep = 0 .

(C.3.2)

The two independent functions may be written as,

Ryu
ep =

1

32

{

−H1(u, v, w)− 3H1(v, w, u)−H1(w, u, v)

+
3

4
(J1(u, v, w) + J1(v, w, u) + J1(w, u, v))

+
[

−4 (Hu
2 +Hv

2 )− ln2 u− ln2 v + ln2 w

+ 2
(

ln u ln v − (ln u+ ln v) lnw
)

+ 22 ζ2
]

Φ̃6

}

,

(C.3.3)

and,

Ru
ep = −1

3

(

2(Qep(u, v, w)−Qep(u, w, v)+Qep(v, w, u))+Qep(v, u, w)−3Qep(w, v, u)
)

+
1

32

[

M1(u, v, w)−M1(v, u, w) +
(

5 (ln u− ln v) + 4 lnw
)

Ω(2)(u, v, w)

− (3 ln u+ln v−2 lnw)Ω(2)(v, w, u)−(ln u+3 ln v−4 lnw)Ω(2)(w, u, v)
]

+Ru
ep, rat ,

(C.3.4)
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where,

Ru
ep, rat =

1

32

{

24Hu
5 −14(Hu

4,1−Hv
4,1)−16Hw

4,1+
5

2
Hu

3,2+
11

2
Hv

3,2−8Hw
3,2+42Hu

3,1,1

+24Hv
3,1,1+6Hw

3,1,1+
13

2
Hu

2,2,1+
15

2
Hv

2,2,1+2Hw
2,2,1−36Hu

2,1,1,1−36Hv
2,1,1,1+24Hw

2,1,1,1

+
(15

2
Hv

2,1−5Hu
3 +

1

2
Hu

2,1−
1

3
Hw

3 −
1

2
Hv

3−
31

3
Hw

2,1

)

Hu
2 +
(

−5
3
Hw

3 +
7

2
Hv

2,1−
5

3
Hw

2,1

−3Hv
3+4Hu

2,1−14Hu
3 )H

v
2+(−7

6
Hu

3 −
7

3
Hv

2,1+4Hw
3 +

5

3
Hv

3+
17

6
Hu

2,1)H
w
2

+
(

−14Hu
4 +16Hv

4+19Hu
3,1−2(Hv

3,1+Hw
3,1)−

57

2
Hu

2,1,1−24(Hv
2,1,1−Hw

2,1,1)+
1

4
(Hu

2 )
2

− 5

2
(Hv

2 )
2+

3

2
(Hw

2 )
2+6Hu

2H
v
2−

17

6
Hu

2H
w
2 −4Hv

2H
w
2

)

ln u+
(

−10Hu
4 −8(Hw

4 +Hv
4 )

−4Hu
3,1+3Hv

3,1+2Hw
3,1+6Hu

2,1,1−
3

2
Hv

2,1,1+
11

2
(Hu

2 )
2+

19

4
(Hv

2 )
2+

1

2
(Hw

2 )
2

+
17

2
Hu

2H
v
2+4Hu

2H
w
2 +

7

3
Hv

2H
w
2

)

ln v+(10(Hu
4 +Hw

4 )+8Hv
4+6Hu

3,1−8Hv
3,1+2Hw

3,1

−6(Hu
2,1,1+Hw

2,1,1)−6(Hu
2 )

2−5(Hv
2 )

2−2(Hw
2 )

2−8Hu
2H

v
2−

17

3
Hu

2H
w
2 −

1

3
Hv

2H
w
2

)

lnw

+
(1

2
Hu

3 +
3

4
Hv

3+
5

6
Hw

3 −6Hu
2,1−

21

4
Hv

2,1+
35

6
Hw

2,1

)

ln2 u+
(

−7Hu
3 +

13

2
Hv

3+
1

6
Hw

3

+4Hu
2,1+2Hv

2,1−
11

6
Hw

2,1

)

ln2 v+
(

− 7

12
Hu

3 +
11

6
Hv

3−7Hw
3 +

17

12
Hu

2,1−
1

6
Hv

2,1

)

ln2 w

+
(

6Hu
3 −14Hv

3−2Hw
3 +4Hv

2,1−2Hw
2,1

)

ln u ln v− 2
(

3Hu
3 −Hw

3 +Hv
3−Hw

2,1

)

ln u lnw

+
(

−10Hv
3+6Hw

3 −2Hu
2,1+4Hv

2,1−2Hw
2,1

)

ln v lnw+
(1

4
Hu

2 −
5

2
Hv

2+
3

4
Hw

2

)

ln3 u

+
(7

4
Hu

2 −
1

4
Hv

2+Hw
2

)

ln3v+
1

2

(

Hu
2 +Hv

2+4Hw
2

)

ln3w−
(1

2
Hw

2 +Hu
2 −

3

4
Hv

2

)

ln2u ln v

+
(9

2
Hu

2 +6Hv
2−

3

2
Hw

2

)

ln u ln2 v+
(

−5
6
Hw

2 +Hu
2 −Hv

2

)

ln2 u lnw

+
(

−11
12

Hu
2 −

1

2
Hv

2−Hw
2

)

ln u ln2 w+
(

−1
6
Hw

2 +2Hv
2

)

ln2 v lnw

+
(

−5
2
Hu

2 −3Hw
2 −

4

3
Hv

2

)

ln v ln2 w−2(Hu
2 +Hv

2−Hw
2 ) ln u ln v lnw

+
3

8
ln3 u ln2 w− 3

4
ln2 u ln3 w+ln2 u ln2 v lnw− 7

4
ln2 u ln v ln2 w− 7

4
ln u ln2 v ln2 w

+2 ln u ln v ln3 w− 5

4
ln3 u ln2 v+

7

8
ln2 u ln3 v+

1

2
ln3 v ln2 w− 3

4
ln2 v ln3 w

(C.3.5)
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+ζ2
[33

4
Hu

3 −
9

4
Hv

3+2Hw
3 +Hu

2,1−17Hv
2,1+24Hw

2,1+
(

14Hw
2 +

7

4
Hu

2 −10Hv
2

)

ln u

+
(

−6Hw
2 −18Hu

2 −
47

4
Hv

2

)

ln v+
(

8Hv
2+6Hw

2 +20Hu
2

)

lnw− 1

4
ln3 u+

1

4
ln3 v

−4 ln3 w+2 ln2 u ln v−12 ln u ln2 v−2 lnw ln2 u+2 ln u ln2 w−4 ln2 v lnw

+6 ln v ln2 w+12 ln u ln v lnw
]

+ζ3
[

7Hu
2 −5Hv

2−2Hw
2 +

3

2
ln2 u− 1

2
ln2 v−ln2w

]

+ζ4
[

14 ln u+50 ln v−44 lnw
]
}

.
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Birkhäuser, Basel, 1994, pp. 497-512.

[52] J. A. M. Vermaseren, “Harmonic sums, Mellin transforms and integrals,”

Int. J. Mod. Phys. A14 (1999) 2037 [hep-ph/9806280].
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[54] J. Blümlein, “Structural relations of harmonic sums and Mellin transforms up

to weight w = 5,” Comput. Phys. Commun. 180 (2009) 2218 [arXiv:0901.3106

[hep-ph]].
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