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Introduction

The Standard Model (SM) of particle physics settled into its current form in the 1970s
and has since proved a resounding success. A large array of precision measurements
has confirmed SM predictions, in some cases to an astounding degree. For example,
the theoretical and experimental values for the anomalous magnetic dipole moment
of the electron agree to better than one part in a billion. Furthermore, with the
recent discovery of the Higgs boson at the Large Hadron Collider (LHC) at CERN,
the entire particle content of the SM has now been observed.

The guiding principles that govern the structure of the SM are the presence of a
continuous local internal symmetry, known as gauge symmetry, and renormalizability,
which guarantees that the theory will have predictive power. Together these principles
highly constrain the set of operators that may appear in the SM Lagrangian. In fact,
except for a few unresolved subtleties, these principles uniquely determine the form of
the Lagrangian, provided that the fundamental fields and their internal symmetries
are specified.

The matter content of the SM consists of three generations of up- and down-
type quarks, three generations of charged and uncharged leptons, and the Higgs
boson. Additionally, there are gauge bosons that mediate the three forces. The
gauge group of the SM is the Lie group SU(3)c x SU(2);, x U(1)y, where SU(3)¢
is the color symmetry of Quantum Chromodynamics (QCD), and SU(2), x U(1)y is
the electroweak symmetry, which is spontaneously broken to a single U(1)gy by the
Higgs mechanism.

Despite the great success of the SM, it is almost certainly not the entire story.

At the very least, it must be augmented to account for nonzero neutrino masses.



It has not yet been determined if neutrinos have Dirac or Majorana masses, but in
either case the adjustments to the SM are essentially cosmetic. A more substantive
modification of the SM will be necessary to account for the presence of dark matter.
Furthermore, explaining other cosmological observations like dark energy and baryon
asymmetry require additional modifications of the SM.

The SM also suffers from various internal deficiencies not rooted in experimental
measurements. For example, the Higgs mass receives large quantum corrections that
must cancel against its bare mass to very high precision. What is the reason for
this large degree of fine-tuning? Moreover, the SM does not offer an explanation for
why the 6 angle in QQCD should be small or zero, which it must be in order to agree
with the fact that no CP violation has been observed in pure QCD. There are many
other open questions concerning particular values of parameters in the SM. Why are
the neutrino masses so small? Why is the top quark mass so large? Do the gauge
couplings unify at some energy scale?

Answering questions like these is an important driving force in high-energy physics
research. Currently there are not many answers, but the large supply of unresolved
questions is a clear indication that the SM is not a complete theory. This last state-
ment represents the seeds of a paradigm shift that has resulted in the modern view-
point that the SM should be thought of as an effective field theory, valid up to some
energy scale A, above which new physics effects must be included. From this per-
spective, renormalizability is no longer considered strictly necessary because there is a
physical cutoff, A, that regulates any potential ultraviolet (UV) divergences. Relaxing
the renormalizability constraint opens the door for a large number of new operators
and a corresponding set of new phenomena awaiting detection.

On the other hand, there is no indication that the other main guiding principle
in the formulation of the SM — gauge symmetry — is anything but a fundamental
property of the universe. To the extent that quantum field theory is a good description
of nature, it is widely believed that any inadequacies of the SM can be resolved by
adding new particles and interactions that entirely respect the principles of gauge
symmetry. Of course, any theory of particle physics must ultimately be reconciled

with gravity and the theory of general relativity. Even still, there is no reason to



suspect that the principles of gauge theories should be abandoned. In fact, gauge
theories play an important role in string theory, as they are intimately related to
D-brane geometry.

With this in mind, it is not surprising that the vast majority of recent research in
quantum field theory has focused on gauge theories. Happily, an enormous amount of
progress has been made across the wide spectrum of this research. Some of the most
intriguing developments have been in the study of perturbative scattering amplitudes.
A significant step forward came in 2003, when Witten discovered that a transforma-
tion of tree-level amplitudes into twistor space endows them with a simple geometrical
description. This led to the introduction of MHV diagrams and subsequently to the
Britto-Cachazo-Feng-Witten (BCFW) recursions relations, which exhibit an intricate
iterative structure between scattering amplitudes with differing numbers of external
particles.

The BCFW recursions relations are just one of several distinct types of recursion
relations, including Berends-Giele, Cachazo, Svrcek, Witten (CSW), and Risager re-
cursion relations. It has recently been argued that these various types of recursion
relations may be understood as particular consequences of a larger structure based on
the Grassmannian. In general, these recursion relations allow for extremely efficient
computations of tree-level scattering amplitudes, giving access to results that pre-
viously seemed unattainable, owing to the very large number of Feynman diagrams
required to compute them using conventional techniques.

One of the most striking features of these calculations has been the remarkable
simplicity of the final results. In certain cases, this simplicity was anticipated. For
example, the extremely compact form for maximally helicity-violating (MHV) ampli-
tudes in pure Yang-Mills,

e [ (15)*

Avav(17,27, 00,57, ...,n") =1i(2m)" 0 (Z)\Z)\Z) (12)(23) (34) () °

- (0.0.1)
where (ij) = A})j,, was conjectured by Parke and Taylor in 1986. Generically, the

introduction of matter fields complicates the structure of the resulting amplitudes. On



the other hand, if the additional matter is constrained by some symmetry principles,
one might expect the results to maintain some simplicity. Indeed, as first observed by
Nair, MHV amplitudes with maximal (N = 4) supersymmetry are given by a simple

generalization of the Parke-Taylor formula,

SO (0, AAS) 6O (1, A
(12)(23)(34) - - (n1) ’

Ay (N, A, n) = i(2m)* (0.0.2)

where the Grassmann variables 77 keep track of the various constituents of the super-
amplitude.

Owing to its high degree of symmetry, N' = 4 super Yang-Mills theory exhibits
many extraordinary properties. It possesses a conformal symmetry that holds even at
the quantum level. It has only two free parameters: the coupling a = g%, N./(327)?
and the number of colors N.. In the planar limit of a large number colors, in which
N, — oo with a held fixed, the coupling constant is the only parameter. For large
values of the coupling, the AdS/CFT correspondence conjectures a duality to weakly-
coupled type IIB string theory on the curved background AdSs x S°. Finally, many
lines of reasoning suggest that the theory is integrable, and that an exact solution for
the scattering matrix of the theory might be achievable, at least in the planar sector.

Another noteworthy property of N' = 4 super Yang-Mills is that the BCFW re-
cursion relations may be generalized and extended to this maximally supersymmetric
setting. Remarkably, these recursion relations were solved, yielding an explicit for-
mulation for all tree-level scattering amplitudes in A/ = 4 super Yang-Mills. The
solution contains the solution for pure Yang-Mills theory as a special case, and has
even been extended to the less-symmetric case of QCD.

So far we have only discussed tree-level amplitudes, but there has also been sub-
stantial progress in the understanding of loop amplitudes. A key technique is the
unitarity method, which leverages the unitarity of the S matrix to express the imag-
inary part of a given loop amplitude in terms of products of lower-loop amplitudes.
Indeed, writing S = 1 + T, the condition that STS = 1 implies that 2Im7T = T7T.
Expanding this equation perturbatively yields the desired interpretation. The imag-

inary part is understood as the discontinuity across a branch cut, which may be



associated with any given momentum channel. By examining such “unitarity cuts”
in all possible channels, it is possible to reconstruct the amplitude, at least up to
contributions that have no branch cuts. These contributions are known as rational
terms, and they must be fixed by other means, such as with recursion relations or
d-dimensional unitarity cuts.

It is useful to generalize the unitarity method to include multi-particle cuts. Such
cuts are not necessarily in physical momentum channels, and they cannot be related
to the unitarity of the S matrix. Moreover, in order to reveal such cuts, it is necessary
to consider complex external momenta. Nevertheless, this analysis exposes more fully
the analytic properties of the scattering amplitude and can capture information to
which the traditional unitarity method is insensitive.

A particularly enlightening calculation made possible by these techniques was
the evaluation of the three-loop four-point scattering amplitude in N' = 4 super
Yang-Mills. This computation revealed an iterative structure relating the three-loop
contribution to the lower-loop contributions. This observation inspired an ansatz,
known as the BDS ansatz, for the exponentiation of the full n-point MHV ampli-
tude. It is a generally true that for any gauge theory, the infrared (IR) divergences
exponentiate; the content of the ansatz is that the finite pieces also exponentiate.
This ansatz was subsequently confirmed for n < 6, but for more external particles it
requires modification,

AMEV — ABDS »exp(R,,), (0.0.3)

where the function R, is known as the remainder function.

In constructing the integrand for the four-point amplitude at three and four loops,
it was observed that the individual integrands all obey a conformal symmetry in a
dual momentum space, whose coordinates z!' are related to the original momenta k'
by k; = x; — x;11. This dual conformal symmetry is completely distinct from the
conformal symmetry of N' = 4 super Yang-Mills in position space. Moreover, it is
only present at the level of the integrand, since IR divergences break the symmetry.

Meanwhile, using the AdS/CFT correspondence, an analysis at strong coupling

confirmed the BDS ansatz at four points. The computation also used the change of



variables k; = x; — x;,1, which was interpreted as a T-duality transformation on the
string world-sheet. In terms of the variables x;, the calculation proceeds in a manner
very similar to that of the expectation value of a polygonal Wilson loop with vertices
x;. This observation motivated explicit computations at weak coupling, which, quite
remarkably, supported the existence of a new duality in which n-particle scattering
amplitudes are dual to n-sided Wilson loops. The coordinates of the Wilson loop are
identified with the dual momentum variables z;, and the UV divergences generated
at the cusps of the Wilson loop correspond to the IR divergences of the amplitude.

In the Wilson loop setting, the breaking of conformal symmetry is a UV effect,
and it is governed by an anomalous Ward identity. The most general solution to the
Ward identity is given by the BDS ansatz times an arbitrary conformally invariant
function. From the amplitude perspective, the Ward identity implies the validity of
eq. (0.0.3), provided that the remainder function is dual-conformally invariant.

For the four- and five-gluon scattering amplitudes, the only dual-conformally in-
variant functions are constants, and because of this fact the BDS ansatz is exact and
the remainder function vanishes to all loop orders, Ry = R5; = 0. For six-gluon am-
plitudes, dual conformal invariance restricts the functional dependence to have the
form Rg(uq,us,us), where the w; are the unique invariant cross ratios constructed

from distances :U?j in the dual space:

2,2 2,2 2 .2
w — L3y S12545 e — Logl1s 523556 U — L35Los 934561
1= 792 2 — ) 2= 92 . 2 — ) 33— T2 2 ‘
XT14T3¢ 51235345 XTo5T71y 52345456 T36L55 5345556(1 )
0.0.4

Furthermore Rg(u1, ug, u3) is not entirely arbitrary since, among other conditions,
it must be totally symmetric under permutations of the u; and vanish in the collinear
limit [1,2].

In the absence of an explicit computation, it remained a possibility that Rg = 0,
despite the fact that all known symmetries allow for a non-zero function Rg (w1, us, ug).
However, a series of calculations have since been performed and they showed defini-
tively that Rg # 0.

The first evidence of a non-vanishing remainder function came from an analysis at

strong coupling, where a deviation from the BDS ansatz was found for a large number



of gluons [3]. Shortly afterwards, a computation of the hexagonal light-like Wilson
loop at two loops indicated a breakdown of either the BDS ansatz or the Wilson
loop/amplitude duality for six gluons [4]. The multi-Regge limits of 2 — 4 gluon
scattering amplitudes at two loops suggested that it was the BDS ansatz that required
corrections [5]. Numerical evidence at specific kinematic points showed definitively
that Rg was non-zero at two loops [1,2], and an explicit calculation of Rg at two loops
for general kinematics eventually followed [6, 7].

The limit of multi-Regge kinematics (MRK) has received considerable attention
in the context of N' = 4 super-Yang Mills theory [5,8-20]. One reason for this
is that multi-leg scattering amplitudes become considerably simpler in MRK while
still maintaining a non-trivial analytic structure. Taking the multi-Regge limit at
six points, for example, essentially reduces the amplitude to a function of just two
variables, w and w*, which are complex conjugates of each other. This latter point will
play a prominent role in chapters 1 and 2, in which we study the six-point remainder
function in MRK.

The remainder function captures all of the non-iterating structure of MHV scat-
tering amplitudes in planar N = 4 super Yang-Mills. For this reason, it has been
the subject of considerable study, both at weak and strong coupling, and in general
and specific kinematic regimes. Assuming the Wilson loop/amplitude duality, we
present a calculation of Ry at three loops for general kinematics in chapter 4 and
at four loops for general kinematics in chapter 5. Like the vast majority of Feyn-
man integrals calculated to date, the results can be expressed in terms of multiple
polylogarithms.

Multiple polylogarithms are a general class of iterated integrals and are reviewed
in appendix C.1. Ordinary logarithms, polylogarithms, Nielsen polylogarithms, and
harmonic polylogarithms are all special cases of multiple polylogarithms. It is known
that more complicated types of functions, such as elliptic functions, are necessary to
describe Feynman integrals in general, but most phenomenologically relevant quan-
tities do not require these exotic functions. In this thesis, we will be focusing on
situations where such functions do not appear, though it would of course be interest-

ing to investigate how our analysis might be generalized to include them.



A very useful tool for classifying polylogarithmic functions is the concept of tran-
scendentality. The transcendental weight may be defined as the number of iterated
integrations in a multiple polylogarithm. For example, the logarithm is generated by
one integral over a rational function, and therefore has transcendental weight one; the
dilogarithm requires two integrations and has weight two, etc. When these functions
are evaluated at particular values, the resulting constants have the same weight as
the original function. For example, the transcendentality of im = log(—1) is one, and
the transcendentality of (, = Li, (1) is n.

Every calculation so far indicates that A' = 4 super Yang-Mills obeys the princi-
ple of uniform maximal transcendentality. For example, at loop order ¢, a scattering
amplitude in N = 4 super Yang-Mills is expected to be a homogeneous combination
of transcendental functions of weight 2¢. This property is not obeyed by less symmet-
ric theories, like QCD, for which results contain functions of mixed transcendental
weight. In many cases, the maximal-transcendental piece of a QCD calculation is
given precisely by the N’ = 4 super Yang-Mills result. This can be taken as another
motivation for studying studying N = 4, since calculations might give some direct
insight into QCD.

The observation that A" = 4 super Yang-Mills obeys the principle of maximal
transcendentality, together with the conjecture that the MHV sector is free of elliptic
integrals, provides a rough outline of the space of functions that might appear in a
given (-loop calculation: it should be a subset of the space of all multiple polyloga-
rithms of weight 2¢. This space is infinitely large because we have not yet specified the
variables upon which the multiple polylogarithms can depend. On the other hand, if
we can somehow specify the variables, the space of functions will become finite and
we can use it as a basis. The entire calculation would thereby reduce to a problem
in linear algebra. The only task left is to construct a sufficiently large set of physical
and mathematical constraints so as to fix the free coefficients of the basis. This is
exactly the approach that we will pursue throughout this thesis.

We will consider two collections of computations, distinguished by the number of
independent variables upon which the resulting polylogarithmic functions depend.

In Part I, we examine functions of two variables. As argued above, in the limit



of multi-Regge kinematics, the six-point remainder function depends on only two
relevant variables, w and w*, which are complex conjugates of one another. Moreover,
we will argue in chapter 3 that the off-shell dual-conformal integrals also depend on
just two similarly-defined variables, z and Zz; such integrals arise in the computation
of the four-point correlation function of stress-tensor multiplets in ' = 4 super Yang-
Mills.

In Part I, we consider functions of three variables. These functions are relevant
for the study of conformal six-point integrals. In particular, they are sufficient to
describe the six-point remainder function. In chapter 4, we complete the calculation
of Ry at three loops. The calculation is not direct, as it uses physical information
from the Wilson loop/amplitude duality to help fix coefficients in the basis of multiple
polylogarithms. We evaluate the function numerically on a variety of interesting one-
and two-dimensional subspaces of the full three-dimensional space of cross ratios. Re-
markably, the two- and three-loop remainder functions are quantitatively very similar
(up to an overall multiplicative rescaling) for large swaths of parameter space, and
only differ significantly in regions where the functions diverge at different rates. In
chapter 5, we extend this analysis to four loops, computing first the symbol and then
ultimately the full function. We evaluate the four-loop remainder function numeri-
cally on several one-dimensional subspaces and compare it to the functions at two-
and three-loops, and, in one case, to a result at strong coupling. In all cases there
is excellent qualitative agreement, and, up to an overall rescaling, the quantitative

agreement observed at three loops continues to four loops as well.



Part 1

Functions of two variables
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Chapter 1

Single-valued harmonic
polylogarithms and the
multi-Regge limit

1.1 Introduction

Enormous progress has taken place recently in unraveling the properties of relativistic
scattering amplitudes in four-dimensional gauge theories and gravity. Perhaps the
most intriguing developments have been in maximally supersymmetric N = 4 Yang-
Mills theory, in the planar limit of a large number of colors. Many lines of evidence
suggest that it should be possible to solve for the scattering amplitudes in this theory
to all orders in perturbation theory. There are also semi-classical results based on the
AdS/CFT duality to match to at strong coupling [21]. The scattering amplitudes in
the planar theory can be expressed in terms of a set of dual (or region) variables ¥,
which are related to the usual external momentum four-vectors kt by k; = x; — z;41.
Remarkably, the planar N' = 4 super-Yang-Mills amplitudes are governed by a dual
conformal symmetry acting on the z; [3,21-26]. This symmetry can be extended to
a dual superconformal symmetry [27], which acts on supermultiplets of amplitudes
that are packaged together by using an N = 4 on-shell superfield and associated

Grassmann coordinates [28-31].

11
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Due to infrared divergences, amplitudes are not invariant under dual conformal
transformations. Rather, there is an anomaly, which was first understood in terms
of polygonal Wilson loops rather than amplitudes [26]. (For such Wilson loops the
anomaly is ultraviolet in nature.) A solution to the anomalous Ward identity for
maximally-helicity violating (MHV) amplitudes is to write them in terms of the BDS
ansatz [32],

AMIV — ABDS » exp(R,,), (1.1.1)

where R, is the so-called remainder function [1,2,2], which is fully dual-conformally
invariant.

For the four- and five-gluon scattering amplitudes, the only dual-conformally in-
variant functions are constants, and because of this fact the BDS ansatz is exact and
the remainder function vanishes to all loop orders, Ry = R5; = 0. For six-gluon am-
plitudes, dual conformal invariance restricts the functional dependence to have the
form Rg(uq,us,us), where the w; are the unique invariant cross ratios constructed
from distances :U?j in the dual space:

_ 27323 _ S12845 Uy — 234255 _ 523556 U — 235256 534561

2 2 ) 2— "9 .2 ) 3= "5 o5 — (1.1.2)
T14T3¢ 51235345 Xo5T714 52345456 X36T55 53455561

Uy = =

The need for a nonzero remainder function R, for Wilson loops was first indicated
by the strong-coupling behavior of polygonal loops corresponding to amplitudes with
a large number of gluons n [3]. At the six-point level, investigation of the multi-
Regge limits of 2 — 4 gluon scattering amplitudes led to the conclusion that Rg
must be nonvanishing at two loops [5]. Numerical evidence was found soon thereafter
for a nonvanishing two-loop coefficient Réz) for generic nonsingular kinematics [1, 2],
in agreement with the numerical values found simultaneously for the corresponding
hexagonal Wilson loop [2].

Based on the Wilson line representation [2], and using dual conformal invariance
to take a quasi-multi-Regge limit and simplify the integrals, an analytic result for R((f)
was derived [6,7,7] in terms of Goncharov’s multiple polylogarithms [33]. Making use
of properties of the symbol [34-37,147] associated with iterated integrals, the analytic
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result for RéQ) was then simplified to just a few lines of classical polylogarithms [36].

A powerful constraint on the structure of the remainder function at higher loop
order is provided by the operator product expansion (OPE) for polygonal Wilson
loops [38-40]. At three loops, this constraint, together with symmetries, collinear
vanishing, and an assumption about the final entry of the symbol, can be used to de-
termine the symbol of Rég) up to just two constant parameters [14]. Another powerful
technique for determining the remainder function is to exploit an infinite-dimensional
Yangian invariance [41,42] which includes the dual superconformal generators. These
symmetries are anomalous at the loop level (or alternatively one can say that the
algebra has to be deformed) [43]. However, the symmetries imply a first order lin-
ear differential equation for the ¢-loop n-point amplitude, and the anomaly dictates
the inhomogeneous term in the differential equation, in terms of an integral over an
(¢ — 1)-loop (n + 1)-point amplitude [44,45]. Using this differential equation, a num-
ber of interesting results were obtained in ref. [45]. In particular, the result for the
symbol of Ré3) found in ref. [14] was recovered and the two previously-undetermined
constants were fixed.

In principle, the method of refs. [44,45] works to arbitrary loop order. However, it
requires knowing lower-loop amplitudes with an increasing number of external legs,
for which the number of kinematic variables (the dual conformal cross ratios) steadily
increases. Although the symbol of the two-loop remainder function R'? is known for
arbitrary n [46], the same is not true of the three-loop seven-point remainder function,
which would feed into the four-loop six-point remainder function — one of the subjects
of this paper.

In this article, we focus on features of the six-point kinematics that allow us to
push directly to higher loop orders for this amplitude, without having to solve for
amplitudes with more legs. In fact, most of our paper is concerned with a special limit
of the kinematics in which we can make even more progress: multi-Regge kinematics
(MRK), a limit which has already received considerable attention in the context of
N = 4 super-Yang-Mills theory [5,8-10,12-18]. In the MRK limit of 2 — 4 gluon
scattering, the four outgoing gluons are widely-spaced in rapidity. In other words,

two of the four gluons are emitted far forward, with almost the same energies and
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directions of the two incoming gluons. The other two outgoing gluons are also well-
separated from each other, and have smaller energies than the two far-forward gluons.

The MHV amplitude possesses a unique limit of this type. For definiteness, we
will take legs 3 and 6 to be incoming, legs 1 and 2 to be the far-forward outgoing
gluons, and legs 4 and 5 to be the other two outgoing gluons. Neglecting power-
suppressed terms, helicity must be conserved along the high-energy lines. In the
usual all-outgoing convention for labeling helicities, the helicity configuration can be
taken to be (++—++—). For generic 2 — 4 scattering in four dimensions there
are eight kinematic variables. Dual conformal invariance reduces the eight variables
down to just the three dual conformal cross ratios u;. Taking the multi-Regge limit
essentially reduces the amplitude to a function of just two variables, w and w*, which
turn out to be the complex conjugates of each other.

We will argue that the function space relevant for this limit has been completely
characterized by Brown [47]. We call the functions single-valued harmonic polylog-
arithms (SVHPLs). They are built from the analytic functions of a single complex
variable that are known as harmonic polylogarithms (HPLs) in the physics litera-
ture [48]. These functions have branch cuts at w = 0 and w = —1. However,
bilinear combinations of HPLs in w and in w* can be constructed [47] to cancel the
branch cuts, so that the resulting functions are single-valued in the (w,w*) plane.
The single-valued property matches perfectly a physical constraint on the remainder
function in the multi-Regge limit. SVHPLs, like HPLs, are equipped with an integer
transcendental weight. The required weight increases with the loop order. However,
at any given weight there is only a finite-dimensional vector space of available func-
tions. Thus, once we have identified the proper function space, the problem of solving
for the remainder function in MRK reduces simply to determining a set of rational
numbers, namely the coefficients multiplying the allowed SVHPLs at a given weight.

In order to further appreciate the simplicity of the multi-Regge limit, we recall
that for generic six-point kinematics there are nine possible choices for the entries in

the symbol for the remainder function Rg(uy, us, us) [14,36]:

{ur,ug,uz, 1 —uy, 1 —ug, 1 — us, y1, Y2, Y3 } (1.1.3)
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where

U; — 24

i = ; 1.1.4

y T (1.1.4)
—1 +A

b = +“1+;‘2+“3 , (1.1.5)

A = (1 — U — Uy — U3)2 — 4U1U2U3 . (].].6)

The first entry of the symbol is actually restricted to the set {uy,us,u3} due to the
location of the amplitude’s branch cuts [40]; the integrability of the symbol restricts
the second entry to the set {u;, 1 —w;} [14,40]; and a “final-entry condition” [14,46]
implies that there are only six, not nine, possibilities for the last entry. However, the
remaining entries are unrestricted. The large number of possible entries, and the fact
that the y; variables are defined in terms of square-root functions of the cross ratios
(although the u; can be written as rational functions of the y; [14]), complicates the
task of identifying the proper function space for this problem.

So in this paper we will solve a simpler problem. The MRK limit consists of taking
one of the wu;, say up, to unity, and letting the other two cross ratios vanish at the
same rate that u; — 1: ug =~ (1 —uy) and uz =~ y(1 — uy) for two fixed variables
x and y. To reach the Minkowski version of the MRK limit, which is relevant for
2 — 4 scattering, it is necessary to analytically continue u; from the Euclidean region

according to u; — e 2™

|uy|, before taking this limit [5]. Although the square-root
variables 1o and y3 remain nontrivial in the MRK limit, all of the square roots can

be rationalized by a clever choice of variables [12]. We define w and w* by

1 w w*

TToiTw) Y= . (1.1.7)

v 1+ w) (1 +w)

Then the MRK limit of the other variables is

1+ w* (1+w)w*

up — 1, y1— 1, 92—>Q2:1+w: y3—>ﬂ3:w(1+w*)'

(1.1.8)

Neglecting terms that vanish like powers of (1 — u;), we expand the remainder func-

tion in the multi-Regge limit in terms of coefficients multiplying powers of the large
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logarithm log(1 — uy) at each loop order, following the conventions of ref. [14],

oo (-1
Rg(uy, ug, ug)|lyrx = 2mi Z Zae log" (1 — uy) [gff)(w,w*) + 2mi hg)(w,w*)] :
(=2 n=0
(1.1.9)
where the coupling constant for planar N = 4 super-Yang-Mills theory is a =

g°Ne/(87).

The remainder function Rg is a transcendental function with weight 2¢ at loop
order /. Therefore the coefficient functions g,(f) and YY) have weight 2/ —n — 1 and
20 — n — 2 respectively. As a consequence of egs. (1.1.7) and (1.1.8), their symbols

have only four possible entries,
{w,1+w,w*, 1+ w*}. (1.1.10)

Furthermore, w and w* are independent complex variables. Hence the problem of
determining the coefficient functions factorizes into that of determining functions of
w whose symbol entries are drawn from {w, 1+ w} — a special class of HPLs — and
the complex conjugate functions of w*.

On the other hand, not every combination of HPLs in w and HPLs in w* will
appear. When the symbol is expressed in terms of the original variables {z, y, 7, U3},
the first entry must be either x or y, reflecting the branch-cut behavior and first-
entry condition for general kinematics. Also, the full function must be a single-valued
function of x and y, or equivalently a single-valued function of w and w*. These
conditions imply that the coefficient functions belong to the class of SVHPLs defined
by Brown [47].

The MRK limit (1.1.9) is organized hierarchically into the leading-logarithmic
approximation (LLA) with n = ¢ — 1, the next-to-leading-logarithmic approximation
(NLLA) with n = ¢—2, and in general the N*LL terms with n = £ —k—1. Just as the
problem of DGLAP evolution in x space is diagonalized by transforming to the space
of Mellin moments N, the MRK limit can be diagonalized by performing a Fourier-
Mellin transform from (w, w*) to a new space labeled by (v, n). In fact, Fadin, Lipatov

and Prygarin [12,15] have given an all-loop-order formula for Rg in the multi-Regge
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limit, in terms of two functions of (v,n): The eigenvalue w(v,n) of the BFKL kernel
in the adjoint representation, and the (regularized) MHV impact factor ®geg(v,n).
Each function can be expanded in a, and each successive order in a corresponds to
increasing & by one in the N¥LLA. It is possible that the assumption that was made
in refs. [12,15], of single Reggeon exchange through NLL, breaks down beyond that
order, due to Reggeon-number changing interactions or other possible effects [49]. In
this paper we will assume that it holds through N3LL (for the impact factor); the
three quantities we extract beyond NLL could be affected if this assumption is wrong.

The leading term in the impact factor is just one, while the leading BFKL eigen-
value E,, was found in ref. [8]. The NLL term in the impact factor was found in
ref. [12], and the NLL contribution to the BFKL eigenvalue in ref. [15].

With this information it is possible to compute the LLA functions gée_)l, NLLA
functions géé_)z and hée_)w and even the real part at NNLLA, hy_)g. All one needs to
do is perform the inverse Fourier-Mellin transform back to the (w,w*) variables. At
the three-loop level, this was carried out at LLA for gég) and th) in ref. [12], and at
NLLA for g§3) and h[()?’) in ref. [15]. Here we will use the SVHPL basis to make this step
very simple. The inverse transform contains an explicit sum over n, and an integral
over v which can be evaluated via residues in terms of a sum over a second integer
m. For low loop orders we can perform the double sum analytically using harmonic
sums [50-55]. For high loop orders, it is more efficient to simply truncate the double
sum. In the (w,w*) plane this truncation corresponds to truncating the power series
expansion in |w| around the origin. We know the answer is a linear combination of
a finite number of SVHPLs with rational-number coefficients. In order to determine
the coefficients, we simply compute the power series expansion of the generic linear
combination of SVHPLs and match it against the truncated double sum over m and n.
We can now perform the inverse Fourier-Mellin transform, in principle to all orders,
and in practice through weight 10, corresponding to 10 loops for LLA and 9 loops for
NLLA.

Furthermore, we can bring in additional information at fixed loop order, in or-
der to obtain more terms in the expansion of the BFKL eigenvalue and the MHV
impact factor. In ref. [15], the NLLA results for gf” and h(()g) confirmed a previous
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prediction [14] based on an analysis of the multi-Regge limit of the symbol for Rég).
In this limit, the two free symbol parameters mentioned above dropped out. The
symbol could be integrated back up into a function, but a few more “beyond-the-
symbol” constants entered at this stage. One of the constants was fixed in ref. [15]
using the NLLA information. As noted in ref. [15], the result from ref. [14] for g(()g)
can be used to determine the NNLLA term in the impact factor. In this paper, we
will use our knowledge of the space of functions of (w,w*) (the SVHPLSs) to build
up a dictionary of the functions of (r,n) (special types of harmonic sums) that are
the Fourier-Mellin transforms of the SVHPLs. From this dictionary and g(()S) we will
determine the NNLLA term in the impact factor.

We can go further if we know the four-loop remainder function Ré4). In separate
work [56], we have heavily constrained the symbol of RéA‘)(ul, ug, uz) for generic kine-
matics, using exactly the same constraints used in ref. [14]: integrability of the sym-
bol, branch-cut behavior, symmetries, the final-entry condition, vanishing of collinear
limits, and the OPE constraints (which at four loops are a constraint on the triple
discontinuity). Although there are millions of possible terms before applying these
constraints, afterwards the symbol contains just 113 free constants (112 if we apply the
overall normalization for the OPE constraints). Next we construct the multi-Regge

limit of this symbol, and apply all the information we have about this limit:
e Vanishing of the super-LLA terms g7(14) and A for n = 4,5,6,7;
e LLA and NLLA predictions for g7(14) and h,(f) for n = 2,3;
e the NNLLA real part h§4), which is also predicted by the NLLA formula;
e a consistency condition between g§4) and h(()4).

Remarkably, these conditions determine all but one of the symbol-level parameters
in the MRK limit. (The one remaining free parameter seems highly likely to vanish,
given the complicated way it enters various formulas, but we have not yet proven that
to be the case.)

We then extract the remaining four-loop coefficient functions, 954), hgl) and 964),

introducing some additional beyond-the-symbol parameters at this stage. We use this
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information to determine the NNLLA BFKL eigenvalue and the N3LLA MHV impact
factor, up to these parameters. Although our general dictionary of functions of (v, n)
contains various multiple harmonic sums, we find that the key functions entering the
multi-Regge limit can all be expressed just in terms of certain rational combinations
of v and n, together with the polygamma functions v, ¢', ¥, etc. (derivatives of the
logarithm of the I" function) with arguments 1 4+ iv + |n|/2.

As a by-product, we find that the SVHPLs also describe the multi-Regge limit of
the one remaining helicity configuration for six-gluon scattering in N = 4 super-Yang-
Mills theory, namely the next-to-MHV (NMHV) configuration with three negative and
three positive gluon helicities. It was shown recently [18] that in LLA the NMHV and
MHYV remainder functions are related by a simple integro-differential operator. This
operator has a natural action in terms of the SVHPLs, allowing us to easily extend
the NMHV LLA results of ref. [18] from three loops to 10 loops.

This article is organized as follows. In section 1.2 we review the structure of
the six-point MHV remainder function in the multi-Regge limit. Section 1.3 reviews
Brown’s construction of single-valued harmonic polylogarithms. In section 1.4 we
exploit the SVHPL basis to determine the functions gg) and A at LLA through 10
loops and at NLLA through 9 loops. Section 1.5 determines the NMHV remainder
function at LLA through 10 loops. In section 1.6 we describe our construction of the
functions of (v, n) that are the Fourier-Mellin transforms of the SVHPLs. Section 1.7
applies this knowledge, plus information from the four-loop remainder function [56],
in order to determine the NNLLA MHYV impact factor and BFKL eigenvalue, and
the N3LLA MHV impact factor, in terms of a handful of (mostly) beyond-the-symbol
constants. In section 1.8 we report our conclusions and discuss directions for future
research.

We include two appendices. Appendix A.1 collects expressions for the SVHPLs
(after diagonalizing the action of a Zs X Zy symmetry), in terms of HPLs through
weight 5. It also gives expressions before diagonalizing one of the two Zy factors.
Appendix A.2 gives a basis for the function space in (v, n) through weight 5, together
with the Fourier-Mellin map to the SVHPLs. In addition, for the lengthier formulae,

we provide separate computer-readable text files as ancillary material. In particular,
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we include files (in Mathematica format) that contain the expressions for the SVHPLs
in terms of ordinary HPLs up to weight six, decomposed into an eigenbasis of the
Zy X 7o symmetry, as well as the analytic results up to weight ten for the imaginary
parts of the MHV remainder function at LLA and NLLA and for the NMHV remain-
der function at LLA. Furthermore, we include the expressions for the NNLL BFKL
eigenvalue and impact factor and the N®LL impact factor in terms of the building
blocks in the variables (v, n) constructed in section 1.6, as well as a dictionary between
these building blocks and the SVHPLs up to weight five.

1.2 The six-point remainder function in the multi-
Regge limit

The principal aim of this paper is to study the six-point MHV amplitude in N' = 4
super Yang-Mills theory in multi-Regge kinematics. This limit is defined by the

hierarchy of scales,
S12 > S345, S456 > S34, S45, S56 > S23, S61, S234 - (1.2.1)
In this limit the cross ratios (1.1.2) behave as
1—uq, ug, uz ~0, (1.2.2)
together with the constraint that the following ratios are held fixed,
Ug Uus

T= o O(1) and y = o O(1). (1.2.3)

In the following it will be convenient [12] to parametrize the dependence on x and y

by a single complex variable w,

1 B ww*
Aroi+re) Y= aroarey

(1.2.4)

X
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Any function of the three cross ratios can then develop large logarithms log(1 — uy)

in the multi-Regge limit, and we can write generically,
F(uy, u,uz) = » log'(1—wy) fi(w, w*) + O(1 — uy). (1.2.5)

Let us make at this point an important observation which will be a recurrent theme in
the rest of the paper: If F'(uy,us,us) represents a physical quantity like a scattering
amplitude, then F' should only have cuts in physical channels, corresponding to branch
cuts starting at points where one of the cross ratios vanishes. Rotation around the

i, e~ *™w*), does not correspond to

origin in the complex w plane, i.e. (w,w*) — (e
crossing any branch cut. As a consequence, the functions f;(w, w*) should not change
under this operation. More generally, the functions f;(w,w*) must be single-valued
in the complex w plane.

Let us start by reviewing the multi-Regge limit of the MHV remainder function
R(uy,ug,uz) = Re(ug,us, us) introduced in eq. (1.1.1). It can be shown that, while
in the Fuclidean region the remainder function vanishes in the multi-Regge limit,
there is a Mandelstam cut such that we obtain a non-zero contribution in MRK after

performing the analytic continuation [5]

—27i

up —> e " uy. (1.2.6)

After this analytic continuation, the six-point remainder function can be expanded

into the form given in eq. (1.1.9), which we repeat here for convenience,

oo (-1
R|vrk = 27i Z Z a’ log"(1 — uy) [gT(f)(w, w*) + 2mi h%)(w,w*)] . (1.2.7)
(=2 n=0

The functions gg)(w, w*) and i) (w,w*) will in the following be referred to as the
coefficient functions for the logarithmic expansion in the MRK limit. The imagi-
nary part gff) is associated with a single discontinuity, and the real part WY with a
double discontinuity, although both functions also include information from higher

discontinuities, albeit with accompanying explicit factors of 72.
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The coefficient functions are single-valued pure transcendental functions in the
complex variable w, of weight 2¢ — n — 1 for gg) and weight 20 — n — 2 for hY.
They are left invariant by a Zs x Zo symmetry acting via complex conjugation and
inversion,

w <> w" and (w,w*) <> (1/w,1/w"). (1.2.8)

The complex conjugation symmetry arises because the MHV remainder function has a
parity symmetry, or invariance under A — —A, which inverts g, and 73 in eq. (1.1.8).
The inversion symmetry is a consequence of the fact that the six-point remainder
function is a totally symmetric function of the three cross ratios uy, us and wuz. In
particular, exchanging ¢, <> 73 is the product of conjugation and inversion. The
inversion symmetry is sometimes referred to as target-projectile symmetry [10]. Fi-
nally, the vanishing of the six-point remainder function in the collinear limit implies
the vanishing of g,(f)(w, w*) and hy) (w, w*) in the limit where (w,w*) — 0. Clearly
the functions gg) and b\ are already highly constrained on general grounds.

In ref. [12,15] an all-loop integral formula for the six-point amplitude in MRK was

presented?,

eFH™ |\ RK = COS TWap

o0 n oo 2iv w(v,n)
.a w3 dv |w| 1
CS () g (- |
+22nz_:oo( v oo V2T Res(,7) ( \/U2U3)
(1.2.9)
The first term is the Regge pole contribution, with

1 U 1

Wap = = (@) log — = = v (a) log [w]?, (1.2.10)
8 U9 8

and 7k (a) is the cusp anomalous dimension, known to all orders in perturbation

IThere is a difference in conventions regarding the definition of the remainder function. What we
call R is called log(R) in refs. [12,15]. Apart from the zeroth order term, the first place this makes
a difference is at four loops, in the real part.
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theory [57],

a) = Zy%)ae =4da—4Ga*+22¢ad® — (B2G+4E)at +--- . (1.211)

=1
The second term in eq. (1.2.9) arises from a Regge cut and is fully determined to all
orders by the BFKL eigenvalue w(v, n) and the (regularized) impact factor ®req(v, n).
The function 0 appearing in the exponent on the left-hand side is the contribution

from a Mandelstam cut present in the BDS ansatz, and is given to all loop orders by

jwl?

1 1
S= = 1 _ - 1 . 1.2.12
g (@) log (wy) = 2 vxc(a) log T+ wp ( )
In addition, we have
1 1 1 2
_ L+ (1.2.13)
Vusuz 1 —wuy  |w

The BFKL eigenvalue and the impact factor can be expanded perturbatively,

w(v,n) = —a(E,,+ aE(l) +a EVZT)L + 0(a”)) ,

" o (1.2.14)
Preg(v,n) =1+ aPp/(v,n) +a (I)Reg(l/, n)+a @Reg(y, n) + O(a").

The BFKL eigenvalue is known to the first two orders in perturbation theory [8,15],

1
E,, = —- il s+ 1+w—|—| | 1—z’u+M —2¢(1)(1.2.15)
? 2V2+n4 2
1
A= gl (e ‘)W”( )

2iy : o In] / ]
_ y2—|—721—2 (¢ (1+w+7) - (1—2 —1-7))] (1.2.16)
1 Inf (v2 1)

_C z/n_?’c__ 5
T ey’




CHAPTER 1. SINGLE-VALUED HPLS AND THE MULTI-REGGE LIMIT 24

where 1(z) = LlogI'(2) is the digamma function, and (1) = —vp is the Euler-

z

Mascheroni constant. The NLL contribution to the impact factor is given by [10]

I o 3 n?

(1) —
Preg(v,n) = =5 B0 — ¢ EEEaE

— G (1.2.17)
2 . 2

The BFKL eigenvalues and impact factor in eqs. (1.2.15), (1.2.16) and (1.2.17) are
enough to compute the six-point remainder function in the Regge limit in the leading
and next-to-leading logarithmic approximations (LLA and NLLA). Indeed, we can
interpret the integral in eq. (1.2.9) as a contour integral in the complex v plane and
close the contour at infinity. By summing up the residues we then obtain the analytic
expression of the remainder function in the LLA and NLLA in MRK. This procedure
will be discussed in greater detail in section 1.4. Some comments are in order about

the integral in eq. (1.2.9):

1. The contribution coming from n = 0 is ill-defined, as the integral in eq. (1.2.9)
diverges. After closing the contour at infinity, our prescription is to take only

half of the residue at ¥ = n = 0 into account.

2. We need to specify the Riemann sheet of the exponential factor in the right-hand
side of eq. (1.2.9). We find that the replacement

1 w(v,n) . 1 w(v,n)
<_\/W) — e im(vn) <\/W) (1.2.18)

gives the correct result.

The i factor in the right-hand side of eq. (1.2.18) generates the real parts A in
eq. (1.2.7). It is easy to see that the gT(f) and hgf ) functions are not independent, but
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they are related. For example, at LLA and NLLA we have,

W (w,w*) =0,
(-1 ¢ 1 1 /—1 |1 + w‘4
1© © () ) — 4D D) ") log ———>—
o (w, w") 5 gp_r(w,w*) + 16 /K Yi-2 (w, w”) log w|? (1.2.19)
=
k) (¢~
5 Zgl(cflgtgfkf)l’ t>2,
k=2

where 72) = 4 from eq. (1.2.11). (Note that the sum over k in the formula for héé)Q
would not have been present if we had used the convention for R in refs. [12,15].)
Similar relations can be derived beyond NLLA, i.e. for n < ¢ — 2.

So far we have only considered 2 — 4 scattering. In ref. [13] it was shown that if
the remainder function is analytically continued to the region corresponding to 3 — 3
scattering, then it takes a particularly simple form. The analytic continuation from

2 — 4 to 3 — 3 scattering can be obtained easily by performing the replacement
log(1 —uy) — log(uy — 1) —im (1.2.20)

in eq. (1.2.9). After analytic continuation the real part of the remainder function only

gets contributions from the Regge pole and is given by [13]
Re (eRf’HS’”‘S) = COS TWgp - (1.2.21)

It is manifest from eq. (1.2.9) that eq. (1.2.21) is automatically satisfied if the rela-
tions among the coefficient functions derivable by tracking the im from eq. (1.2.18)
(e.g. eq. (1.2.19)) are satisfied in 2 — 4 kinematics.

So far we have only reviewed some general properties of the six-point remainder
function in MRK, but we have not yet given explicit analytic expressions for the
coefficient functions. The two-loop contributions to eq. (1.2.9) in LLA and NLLA were
computed in refs. [10,12], while the three-loop contributions up to the NNLLA were
found in refs. [10,14]. In all cases the results have been expressed as combinations of

classical polylogarithms in the complex variable w and its complex conjugate w*, with
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potential branching points at w = 0 and w = —1. As discussed at the beginning of
this section, all the branch cuts in the complex w plane must cancel, i.e., the function
must be single-valued in w. The class of functions satisfying these constraints has
been studied in full generality in the mathematical literature, as will be reviewed in

the next section.

1.3 Harmonic polylogarithms and their

single-valued analogues

1.3.1 Review of harmonic polylogarithms

In this section we give a short review of the classical and harmonic polylogarithms, one
of the main themes in the rest of this paper. The simplest possible polylogarithmic
functions are the so-called classical polylogarithms, defined inside the unit circle by

a convergent power series,

e k
Lin(z) =Y ;—m .o <1 (1.3.1)
k=1

They can be continued to the cut plane C\[1,00) by an iterated integral representa-
tion,

Liy(2) = /0 gz Hm1 ) (1.3.2)

Z/
For m = 1, the polylogarithm reduces to the ordinary logarithm, Li; (z) = — log(1—2),
a fact that dictates the location of the branch cut for all m (along the real axis for

z > 1). It also determines the discontinuity across the cut,

m—1

log z

ALi,,(z) = 2mi =1

(1.3.3)
It is possible to define more general classes of polylogarithmic functions by al-
lowing for different kernels inside the iterated integral in eq. (1.3.2). The harmonic

polylogarithms (HPLs) [48] are a special class of generalized polylogarithms whose
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properties and construction we review in the remainder of this section. To begin, let
w be a word formed from the letters xy and x1, and let e be the empty word. Then,

for each w, define a function H,(z) which obeys the differential equations,

0 ~ Hy(2) 0 _ Hy(z)
a Hx0w<z> 5 and &Hxlw(fz) - 1_» 5 (134)
subject to the following conditions,
1 .
H.(z) =1, Hyn(2) = alog z, and ll_r}(l) Hyzan(2) = 0. (1.3.5)

There is a unique family of solutions to these equations, and it defines the HPLs.

Note that we use the term “HPL” in a restricted sense?

— we only consider poles in
the differential equations (1.3.4) at z = 0 and z = 1. (In our MRK application, we
will let z = —w, so that the poles are at w =0 and w = —1.)

The weight of an HPL is the length of the word w, and its depth is the number
of x,’s®>. HPLs of depth one are simply the classical polylogarithms, H,(z) = Li,(z).

Like the classical polylogarithms, the HPLs can be written as iterated integrals,

H, (%)

Zl

H, (%) ‘

1.3.
1— 72 ( 37)

Hzow(z):/ dz' and Hmlw:/ dz'
0 0

The structure of the underlying iterated integrals endows the HPLs with an important

property: they form a shuffie algebra. The shuffle relations can be written,

Hy,, (2) Hy(2) = > Hyl2), (1.3.8)

wew w2

2In the mathematical literature, these functions are sometimes referred to as multiple polyloga-
rithms in one variable.

3For ease of notation, we will often impose the replacement {zq — 0,2; — 1} in subscripts. In
some cases, we will use the collapsed notation where a subscript m denotes m — 1 zeroes followed
by a single 1. For example, if w = xgxoriT021,

Hy(2) = Haguwozyzoas (2) = Ho0,1,01(2) = Hz2(2) . (1.3.6)

In the collapsed notation, the weight is the sum of the indices, and the depth is the number of
nonzero indices.
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Weight Lyndon words Dimension
1 0,1 2
2 01 1
3 001, 011 2
4 0001, 0011, 0111 3
5 00001, 00011, 00101, 00111, 01011, 01111 6

Table 1.1: All Lyndon words Lyndon(zg,z1) through weight five

where wqmw, is the set of mergers of the sequences w; and w, that preserve their
relative ordering. Equation (1.3.8) may be used to express all HPLs of a given weight
in terms of a relatively small set of basis functions and products of lower-weight
HPLs. One convenient such basis [58] of irreducible functions is the Lyndon basis,
defined by {H,(z) : w € Lyndon(zg,z;)}. The Lyndon words Lyndon(zg,z;) are
those words w such that for every decomposition into two words w = uwv, the left
word is lexicographically smaller than the right, v < v. Table 1.1 gives the first few
examples of Lyndon words.

All HPLs are real whenever the argument z is less than 1, and so, in particular, the
HPLs are analytic in a neighborhood of z = 0. The Taylor expansion around z = 0
is particularly simple and involves only a special class of harmonic numbers [48, 52]

(hence the name harmonic polylogarithm),

©
z
Hpy oo (2) =) o s (L= 1), mi >0, (1.3.9)
1=1
where Z,,, . (n) denote the so-called Euler-Zagier sums [50,51], defined recursively
by
— 1 — 1
Ty () = o 80 Zy o (0) = Y 5T, (L= 1) (1.3.10)
=1 =1

Note that the indexing of the weight vectors my,...,my in egs. (1.3.9) and (1.3.10)
is in the collapsed notation.
Another important property of HPLs is that they are closed under certain transfor-

mations of the arguments [48]. In particular, using the integral representation (1.3.7),
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it is easy to show that the set of all HPLs is closed under the following transforma-

tions,
21—z, z—1/2z, z—1/1—-2), z—1-1/2, zw—2z/(z—-1). (1.3.11)

If we add to these mappings the identity map 2z + 2z, we can identify the transforma-
tions in eq. (1.3.11) as forming a representation of the symmetric group Ss. In other
words, the vector space spanned by all HPLs is endowed with a natural action of the
symmetric group Ss.

Finally, it is evident from the iterated integral representation (1.3.7) that HPLs
can have branch cuts starting at z = 0 and/or z = 1, i.e., HPLs define in general
multi-valued functions on the complex plane. In the next section we will define
analogues of HPLs without any branch cuts, thus obtaining a single-valued version
of the HPLs.

1.3.2 Single-valued harmonic polylogarithms

Before reviewing the definition of single-valued harmonic polylogarithms in general,
let us first review the special case of single-valued classical polylogarithms. The
knowledge of the discontinuities of the classical polylogarithms, eq. (1.3.3), can be
leveraged to construct a sequence of real analytic functions on the punctured plane
C\{0,1}. The idea is to consider linear combinations of (products of) classical poly-
logarithms and ordinary logarithms such that all the branch cuts cancel. Although the
space of single-valued functions is unique, the choice of basis is not unique, and there
have been several versions proposed in the literature. As an illustration, consider the

functions of Zagier [59],

S log|2| log™ [2]
{Z le(z)+ S (- (1.3.12)

1
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where R, denotes the imaginary part for m even and the real part for m odd. The
discontinuity of the function inside the curly brackets is given by

ym

log]z\ )™ klog i .
2 =2T— me 1.3.1
mz (k—l). W(m_l)!(argz) (1.3.13)

Since eq. (1.3.13) is real for even m and pure imaginary for odd m, D,,(z) is indeed
single-valued. For the special case m = 2, we reproduce the famous Bloch-Wigner
dilogarithm [60],

Dy(z) = Im{Lis(2)} + arg(1 — z) log |z| . (1.3.14)

Just as there have been numerous proposals in the literature for single-valued
versions of the classical polylogarithms, there are many potential choices of bases for
single-valued HPLs. On the other hand, if we choose to demand some reasonable
properties, it turns out that a unique set of functions emerges. Following ref. [47],
we require the single-valued HPLs to be built entirely from holomorphic and anti-
holomorphic HPLs. Specifically, they should be a linear combination of terms of the
form H,, (2)Hy,(Z), where w; and wy are words in zg and x; or the empty word e.
The single-valued classical polylogarithms obey an analogous property, and it can be
understood as the condition that the single-valued functions are the proper extensions
of the original functions. The remaining requirements are simply the analogues of the
conditions used to construct the ordinary HPLs.

Define a function £,,(z), which is a linear combination of functions H,, (2)Hy,(Z)
and which obeys the differential equations

0 L.,(2) 0 Lu(2)

& = > and &caqw(z) =

1.3.1

T, (1.3.15)
1

L.(z)=1, Lon(z) = a1og"\z|2 and  lim Lozap(2) = 0. (1.3.16)

In ref. [47] Brown showed that there is a unique family of solutions to these equations

that is single-valued in the complex z plane, and it defines the single-valued HPLs
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(SVHPLSs). The functions £, (z) are linearly independent and span the space. That is
to say, every single-valued linear combination of functions of the form H,, (2)Hy,(2)
can be written in terms of the £,(z). In ref. [47] an algorithm was presented that
allows for the explicit construction of all SVHPLs as linear combinations of (products
of) ordinary HPLs. We present a short review of this algorithm in section 1.3.3.

The SVHPLSs of ref. [47] share all the nice features of their multi-valued analogues.
First, like the ordinary HPLs, they obey shuffle relations,

Lo (2) Lun(z) = D Lu(2), (1.3.17)

wEW1 Mw3

where again wmws, represents the shuffles of w; and wy. As a consequence, we may
again choose to solve eq. (1.3.17) in terms of a Lyndon basis. It follows that if we want
the full list of all SVHPLs of a given weight, it is enough to know the corresponding
Lyndon basis up to that weight.

Furthermore, the space of SVHPLs is also closed under the S5 action defined by
eq. (1.3.11). Indeed, if we extend the action to the complex conjugate variable Zz,
then the closure of the space of all ordinary HPLs implies the closure of the space
spanned by all products of the form H,, (2)H,,(Z), and, in particular, the closure of
the subspace of SVHPLs. For the SVHPLs, it is possible to enlarge the symmetry
group to Zs X S3, where the Z, subgroup acts by complex conjugation, z <> Z.

It turns out that the functions £,(z) can generically be decomposed as
L,(z) = (Hu(z) — (—1)|w|Hw(2)) + [products of lower weight] , (1.3.18)

where |w| denotes the weight. As such, it is convenient to consider the even and odd

projections, i.e., the decomposition into eigenfunctions of the Z, action,

1
—(Ly(2) — (=) £, (2 ,

%( (2) = (-1) (2)) 13.19)
2

(Culz)+ (~)IL,(2))

The basis defined by £, (z) was already complete, and yet here we have doubled the
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number of potential basis functions. Therefore L, (z) and L,(z) must be related to
one another. Writing Ly, (2) = Ry (Lw(z)), we see that it has the same parity as
Zagier’s single-valued versions of the classical polylogarithms given in eq. (1.3.12).
Therefore we might expect the L, (z) to form a complete basis on their own. Indeed
this turns out to be the case, and the L,(z) can be expressed as products of the

functions L, (z),
L, (2) = [products of lower weight L, (z)]. (1.3.20)

Hence we will not consider the functions L,,(z) any further and will concentrate solely
on the functions L, (2).

The functions L, (z) do not automatically form simple representations of the S;
symmetry. For the current application, we will mostly be concerned with the Z, C
S3 subgroup generated by inversions z <> 1/z. The functions L,(z) can easily be
decomposed into eigenfunctions of this Z,, and, furthermore, these eigenfunctions
form a basis for the space of all SVHPLs. The latter follows from the observation
that,

Ly(2) — (=1)lwh+de, (%) = [products of lower weight|, (1.3.21)

where |w| is the weight and d,, is the depth of the word w. We will denote these

eigenfunctions of Zy x Zs by,

[E(2) = % [Lw(z) + Lw(é)] | (1.3.22)

and present most of our results in terms of this convenient basis. For low weights,
appendix A.1 gives explicit representations of these basis functions in terms of HPLs.
The expressions through weight six can be found in the ancillary files.

We have seen in the previous section that in the multi-Regge limit the six-point
amplitude is described to all loop orders by single-valued functions of a single complex
variable w satisfying certain reality and inversion properties. It turns out that the
SVHPLs we just defined are particularly well-suited to describe these multi-Regge
limits. This description will be the topic of the rest of this paper.
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1.3.3 Explicit construction

The explicit construction of the functions £,(z) is somewhat involved so we take
a brief detour to describe the details. Let X™* be the set of words in the alphabet
{zo, 1}, along with the empty word e. Define the Drinfel’d associator Z(zg,x;) as

the generating series,

Z(xg, 1) = Z C(w)w, (1.3.23)

weX*
where ((w) = H,(1) for w # x; and ((x1) = 0. The ((w) are regularized by the shuffle
algebra. Using the collapsed notation for w, these ((w) are the familiar multiple zeta
values.
Next, define an alphabet {yo, 41} (and a set of words Y*) and a map ~ : Y* — Y*
as the operation that reverses words. The alphabet {y, v} is related to the alphabet

{zo, 1} by the following relations:

=7
o= (1.3.24)

Z(yo, y)1 Z(yo, 1) = Z(wo, 21) "1 Z (20, 71).
The inversion operator is to be understood as a formal series expansion in the weight
|w|. Solving eq. (1.3.24) iteratively in the weight yields a series expansion for y;. The
first few terms are,

Y1 = 11 — (3 (230707171 — 42021021 + 220712171 + 471707170 (1.3.25)

—61’1]30[)311’1 — 21’1]31[)301’0 + 61’11‘11}01‘1 — 21’11‘11}11‘0) + ...

Letting ¢ : Y* — X* be the map that renames y to x, i.e. ¢(yo) = xo and ¢(y1) = z1,

define the generating functions

Lx(z) = Y Hy(z)w,  Ly(2) = Y Hyw)(2)0. (1.3.26)

weX* weY*

In the following, we use a condensed notation for the HPL arguments, in order to
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improve the readability of explicit formulas:
H, = H,(z) and H, = H,(%). (1.3.27)

Then we can write

Lx(Z) =1+ H(){L'O + Hlﬂfl
+ H[)705L'0$0 + H0,1$0£L‘1 + H1705E1$0 + H1711’11'1
+ Hyoroxoxo + Hoo120071 + Ho1 00170 + Ho 11207171 (1.3.28)
+ Hipor120%0 + Hip1212071 + Hy o200 + Hijg 212121

+...,

and

Ly(Z) =1+ Hoyo + Hip

+ Ho,oyoyo + Fo,ﬂhyo + FLoyoyl + mel%

+ Fo,a,oyoyoyo + FO,O,lylyoyO + Fo,l,oyoylyo + ﬁo,l,lylylyo

+ ﬁl,0,0yOyOyl + ﬁ1,o,1ylyoy1 + ﬁLLoyoyl% + ﬁl,l,lylylyl

+ ...

o (1.3.29)

=1+ Ho.ﬁl}o -+ Hll'l

+ ﬁo,oﬁo% + ﬁo,lﬂﬁxo + HLol'oilﬁ + F1,1$19€1

+ ﬁo,a,oxoxo% + ﬁo,o,ﬂ‘ﬂoxo + ﬁ0,1,0$0$11‘0 + Ho,mhxﬁo

+ Hl,o,oxoxoxl + ﬁl,o,lxlxoxl + Fl,l,oxoxlﬂil + F1,1,141715511171

+ .

In the last step of eq. (1.3.29) we used yo = zp and y; = x;. Note that the latter
only holds through weight three, as is clear from eq. (1.3.25). Finally, we are able to

construct the SVHPLs as a generating series,

L(z) = Lx(2)Ly(2) = Y Lu(2)w. (1.3.30)
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Indeed, taking the product of eq. (1.3.28) with eq. (1.3.29) and keeping terms through

weight three, we obtain,

Z Ly,(2)w = 14 Lo(z)xo+ L1(2) 21

weX*
+ Loo(2) zoxo + Lo1(2) xox1 + L1o(2) z120 + L11(2) 2121
+ Lo0,0(2) xoxoro + Lo0,1(2) Zorox1 + Lo1,0(2) Tox120 + Lo1,1(2) Tox121
+ L1,00(2) x12070 + L1,01(2) 212071 + L11,0(2) 12120 + L111(2) T12121

+ ...,
(1.3.31)

where the SVHPL’s of weight one are,
E()(Z) = Ho —|—ﬁ07 £1(Z) = H1 +ﬁ1, (1332)

the SVHPL’s of weight two are,

Loo(z) = Hopo+ ﬁo,o + HoH,,
Lo1(z) = Hopq+ ﬁl,o + HoH,y
- N (1.3.33)
Liog(2) = Hio+ Hos+ HiHy,
Li1(z) = Hys +F1,1 + HHy,
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and the SVHPL’s of weight three are,

(2) = Hoop+ Fo,o,o + Ho,oﬁo + Hoﬁo,o )
(2) = Hop1+ Hipo+ HooH1 + HoHp,
(2) = Hoao+ Hopo+ HonHo+ HoHyy
Lo11(2) = Hoaiq+ Fl,l,o + H071F1 + Hoﬁu )
N N N (1.3.34)
(2) = Hioo+ Hooa1+HioHo+ HiHop,
(2) = Hipy+Hip1+ HioHy + HHyp,
(2) = Hi10+ Ho,m + Hl,lﬁo + Hlﬁo,l ;
(2)

= Hyq11+ F1,1,1 + H1,1H1 + H1ﬁ1,1 .

The y alphabet differs from the x alphabet starting at weight four. Referring to
eq. (1.3.25), we expect the difference to generate factors of (3. To illustrate this
effect, we list here the subset of weight-four SVHPLs with explicit ¢ terms:

) = Hoou1+Hio0+ HoonHy+ HoHyy o+ HooHyy —2¢ Hy

) = Hoi01+ Hl,O,l,O + H0,170F1 + HOFI,O,I + HO,lﬁl,O + 4¢3 Hy,

) = Hoq11+ Fl,l,l,o + H0,1,1H1 + Hoﬁl,m + HO,IEI,I —2@3 Hy,

) = Hiopo+Hoon+ HioiHo+ HiHoyo+ HigHoy —4¢ Hy (13.35)
) = Hipian+Hig01+Hio1Hi+HiHyi0+ HioHig+60Hy,

) = Hii00+ Fo,o,m + H1,1,0ﬁ0 + H1ﬁo,o,1 + H1,1H0,0 +2¢3 Hy,

) = Hiio1+ Hion1+ HinoHy + HiHyoy + Hi Hyo—6¢ Hy,

)

= Hyj10+ Fo,l,l,l + H1,1,1ﬁ0 + Hlﬁo,l,l + Hl,lﬁo,l +2¢3 H,.

Finally, we remark that the generating series L£(z) provides a convenient way to
represent the differential equations (1.3.15). Together with the y alphabet, it also

allows us to write down the differential equations in Zz,

%/;(z): (?+ ! )/;(z) and %ﬁ(z):[,(z) (y—_‘)+ < ) (1.3.36)

1—z2 zZ 1—2
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These equations will be particularly useful in section 1.5 when we study the multi-

Regge limit of the ratio function of the six-point NMHV amplitude.

1.4 The six-point remainder function in LLA and

NLLA

In section 1.2, we showed that in MRK the remainder function is fully determined
by the coefficient functions gff) (w,w*) and s )(w, w*) in the logarithmic expansion of
its real and imaginary part in eq. (1.2.7). We further argued that these functions are
single-valued in the complex w plane, and suggested that they can be computed ex-
plicitly by interpreting the v-integral in eq. (1.2.9) as a contour integral and summing
the residues. In this section, we describe how knowledge about the space of SVHPLs
can be used to facilitate this calculation. In particular, we present results for LLA
through ten loops and for NLLA through nine loops.

The main integral we consider is eq. (1.2.9), which we reproduce here for clarity,

rewriting the last factor to take into account egs. (1.2.13) and (1.2.18),

© n +o00 2iv
. a w dv |w
e\ Rk = COS TWap + 1 = g (—1)" <—>2/ dv Juw ™ 7 Preg(v, 1)
2 n=—o0o w* —oo V2 %

1 2
X exp {—w(u, n) <log(1 —uy) +im+ élog |1|—l|—U|w|4)} S(1.4.1)

The integrand depends on the BFKL eigenvalue and impact factor, which are known
through order a? and are given in egs. (1.2.15), (1.2.16) and (1.2.17). These functions
can be written as rational functions of v and n, and polygamma functions (¢ and its
derivatives) with arguments 1 + iv + |n|/2. Recalling that the polygamma functions
have poles at the non-positive integers, it is easy to see that all poles are found in
the complex v plane at values v = —i(m + %), m € N, n € Z. When the integral is

performed by summing residues, the result will be of the form,

Z A W™ 0 (1.4.2)

m,n
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Because residues of the polygamma functions are rational numbers, and because
polygamma functions evaluate to Euler-Zagier sums for positive integers, the co-

efficients a,,,, are combinations of
1. rational functions in m and n,
2. Euler-Zagier sums of the form Z{m), Zz(n) and Zzm + n),
3. log |w|, arising from taking residues at multiple poles.

Identifying (z, z) = (—w, —w™*), and comparing the double sum (1.4.2) to the formal
series expansion of the HPLs around z = 0, eq. (1.3.9), we conclude that the double
sums will evaluate to linear combinations of terms of the form H,, (—w)H,,(—w*).
Moreover, as discussed above, this combination should be single-valued. Therefore,
based on the discussion in section 1.3, we expect gg) (w,w*) and Ay (w, w*) to belong
to the space spanned by the SVHPLs.

Furthermore, we know that g,(f)(w, w*) and h (w,w*) are invariant under the ac-
tion of the Zy X Zs transformations of eq. (1.2.8). In terms of SVHPLs, this symmetry
is just an (abelian) subgroup of the larger Z, x S5 symmetry, where the Z, is complex
conjugation and the S3 action is given in eq. (1.3.11). As such, we do not expect an
arbitrary linear combination of SVHPLs, but only those that are eigenfunctions with
eigenvalue (+,+) of the Zy x Z, symmetry.

Putting everything together, and taking into account that scattering amplitudes in
N =4 SYM are expected to have uniform transcendentality, we are led to conjecture
that, to all loop orders, gq(f) (w,w*) and A (w,w*) should be expressible as a linear
combination of SVHPLs in (z,2) = (—w, —w*) of uniform transcendental weight,
with eigenvalue (4,+) under the Z; x Zy symmetry. Inspecting eq. (1.2.7), the
weight should be 2¢ — n — 1 for gﬁf) and 20 —n — 2 for AY. Our conjecture allows
us to predict a priori the set of functions that can appear at a given loop order, and
in practice this set turns out to be rather small. Knowledge of this set of functions
can be used to facilitate the evaluation of eq. (1.4.1). We outline two strategies to

achieve this:
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1. Evaluate the double sum (1.4.2) with the summation algorithms of ref. [61].
The result is a complicated expression involving multiple polylogarithms which
can be matched to a combination of SVHPLs and zeta values by means of the
symbol [34-37,147] and coproduct [62-64].

2. The double sum (1.4.2) should be equal to the formal series expansion of some
linear combination of SVHPLs and zeta values. The unknown coefficients of

this combination can be fixed by matching the two expressions term by term.

To see how this works, we calculate the two-loop remainder function in MRK. Ex-

panding eq. (1.4.1) to two loops, we find,

1 1
a’R® ~ 2ri {a [—ﬁL}L + —Im]

1
2 1 | ey 1.,
+a byl—uQZIWWJ+<§@L1+ZI@MJMnH+ZL1ﬂEmD
vomi (o LGP+ 3 [LH — < LI + L 7IE,))
g ol Mgl g g Tl |
(1.4.3)
where we have introduced the notation,
e =2 Y o () T Y i e )
vn) = — — e w v, nj. 4.
’ T o= w* o U2+ 72—2 7

Explicit expressions for the functions L for low weights are provided in appendix A.1.

Equation (1.4.3) is consistent only if the term of order a vanishes. Indeed this is the

case,
1 & w\s [T dv ,
1 = — —1)" (_) / 2iv
=1 > e () e
o0 —w)™ oo —w* )"
:bgWF+2§:L7¥—+2§:L7;L (1.4.5)
n=1 n=1

= log |w|* — 21og |1 + w]|?
=2L .
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As previously mentioned, we only take half of the residue at v = n = 0.
Moving on to the terms of order a?, we refer to eq. (1.2.7) and extract from

eq. (1.4.3) the expressions for the coefficient functions,

¢ (w,w") = ~ (B,

1

g5 (w, w*) = %CQLT + iI[égﬁg( n)] + iLf T(E,] (1.4.6)
2) R 1 1 1

he (w,w*) = 32[L] +8[L1+]2 8L1+I[] g ZlEunl.

Note that th) = 0, in accordance with the general expectation that hl@l = 0. Pro-

ceeding onwards, we have to calculate Z[E, ],

ro (Z”%) o (—w+%) }
B Y i Sk e
Hlog uf? + 22,(m

12y Z s (W

n=1 m=1

The single sum in the first line immediately evaluates to polylogarithms,

Z {2|w|2m . 2(_w)m + (_w*>m + [log |’LU|2 + ZZl(m)] (_w)m + (_w*)m}

— Z { + [log |w]* +2Z;(m — 1)] ()" ;(_w*)m}
= log [w|® [H(~w) + Hy(~w")] + 2Ho 1 (Jw[*) + 2Hy 1 (~w)
+ 2H171(—U)*) .

(1.4.8)
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Next we transform the double sum into a nested sum by shifting the summation

variables by n = N — m,
n=1 m:l
N=1m
= Lh’l(—w, —w ) + Lil,l(—w*, —UJ)
= Hy(~w) H\(—=w") — Ho,(Jwf*),

w™w

(1.4.9)

Mz““
r—’H
\§
+
N
£
=| 2
3
S*
=
——

where the last step follows from a stuffle identity among multiple polylogarithms [65].
Putting everything together, we obtain

I[E,,) = log|w|® [Hi(—w) + Hi(—w*)] + 2H; 1 (—w) + 2H; 1 (—w*)

+2H, (—w) Hy(—w") (1.4.10)
= (LT~ L.

Referring to egs. (1.4.5) and (1.4.6), we can now write down the results,

2 *
9 (w,w*) =

e (w,w) =

T (1.4.11)

1
4
0

For higher weights the nested double sums can be more complicated, but they
are always of a form that can be performed using the algorithms of ref. [61]. These
algorithms will in general produce complicated multiple polylogarithms that, unlike
in eq. (1.4.9), cannot in general be reduced to HPLs by the simple application of
stuffle identities. In this case we can use symbols [36,37,147] and the coproduct on
multiple polylogarithms [62-64] to perform this reduction.

The above strategy becomes computationally taxing for high weights. For this
reason, we also employ an alternative strategy, based on matching series expansions,

which is computationally simpler. We demonstrate this method in the computation
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of g(()Q), for which the only missing ingredient in eq. (1.4.6) is I[Cbge)g(y, n)], where
@ge)g(u, n) is defined in eq. (1.2.17). To proceed, we write the v-integral as a sum of

residues, and truncate the resulting double sum to some finite order,

o0 n +o00 2iv 2
(1) 1 W [ WN\Z dv |w| 3 n
T == 30 1 ()" [ P RO s

n=—o00 4

2
1 n| - In| . In
_5 (27E+2(V2—+n%)+w(7,1/+7) +¢(—ZV+7>> }

1
= —( log |w]® — (log \w\z) lw]?* — (1 + Zlog ]w[Q) \w\4 + ...

1
+ (w+w") {2@ + (4 — 2log |w|* + B log® \w|2)
1
+ (1 + élog |w|2> lw|* + .. }

1 1
+ (w + W) [—42 — (5 + 7 log” IwF)

1
+ (—1 - glog |w|2) lw]? + .. ]

(1.4.12)

Here we show on separate lines the contributions to the sum from n = 0, n = +1,
and n = £2. Next, we construct an ansatz of SVHPLs whose series expansion we
attempt to match to the above expression. We expect the result to be a weight-three
SVHPL with parity (4,+) under conjugation and inversion. Including zeta values,

there are five functions satisfying these criteria, and we can write the ansatz as,
I[(Dge)g(y7 n)] =1 Lf + ¢ [Lo L + s [L{]P + ca G Li +¢5¢s. (1.4.13)

Using the series expansions of the constituent HPLs (1.3.9), it is straightforward to
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produce the series expansion of this ansatz,

& c c 1
Tlog, )] = (15 + 5 + 5 ) log* [uf? + SeiGo log [wf? + s G

+ 3¢5 (log [w]?) w|* + ...

1
+ (w + w") [—C204 + <—01 + 501 log |w|2) (1.4.14)

+ .

We have only listed the terms necessary to fix the undetermined constants. In practice
we generate many more terms than necessary to cross-check the result. Consistency
of egs. (1.4.12) and (1.4.14) requires,

3 1
c1 = —4, Cy — Z__L’ C3 — —g, Cyp — —2, Cy; — 0, (1415)
which gives,
(1) T e N T er +
I[P (v,n)] = =4 Ly + 1 (Lo 7Ly — 3 [L7]° —2¢ L. (1.4.16)

Finally, putting everything together in eq. (1.4.6),

1
6

1

* 3 _
9 (w,w) = —Lf + = [L1]" + S LT (1.4.17)

This completes the two-loop calculation, and we find agreement with [10,12]. Moving
on to three loops, we can proceed in exactly the same way, and we reproduce the

LLA [12] and NLLA results [14,15] for the imaginary parts of the coefficient functions,

. 1 1 3
o (w,w*) = —>Li + — [L{]” |

8 12
3 . 1 5 5 1. 5 . _
g (w.w') = gLy Loy = oLf L + L) + Lo P 1L — o [Ly]' (14.18)
w2 w2 1
- E[LT]Q + E[LO 2+ ZC?’ L.
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(The result for g@ agrees with that in ref. [14] once the constants are fixed to ¢ =0

and 7' = —9/2 [15].) The real parts are given by,

hgg)(w,w*) =0,
W (w,w') = 2 L = LT+ (Lo P LT
in agreement with ref. [12]. Using the fact that
1 |w|2
Lt =3l , 1.4.20

it is easy to check that h§3) (w, w*) satisfies eq. (1.2.19) for ¢ = 3.

It is straightforward to extend these methods to higher loops. We have produced
results for all functions with weight less than or equal to 10, which is equivalent to
10 loops in the LLA, and 9 loops in the NLLA. Using the C++ symbolic computation
framework GiNaC [66], which allows for the efficient numerical evaluation of HPLs to
high precision [67], we can evaluate these functions numerically. Figures 1.1 and 1.2
show the functions plotted on the line segment for which w = w* and 0 < w < 1.
Here we also show the analytical results through six loops. We provide a separate
computer-readable text file, compatible with the Mathematica package HPL [68,69],
which contains all the expressions through weight 10.

Up to six loops, we find,

g (w,w*) = 4—18[L5]2+%[La]2 [LT)? +ﬁ[L] +%[L+] (1.4.21)
116L Loy = 458 L+L+_%L+C3’
95" (w,w*) = 634[%] (L) +1—;8L+ Lot - 332L+[L5]2+é43 (Lo]? (1.4.22)
LGP ST - D - b b
+1—2L++2L§1,1+}1L;271—%L+[L 2 +EL
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Figure 1.1: Imaginary parts géé_)l of the MHV remainder function in MRK and LLA
through 10 loops, on the line segment with w = w* running from 0 to 1. The functions
have been rescaled by powers of 4 so that they are all roughly the same size.
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Next—to—Leading Logarithmic Approximation
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Figure 1.2: Imaginary parts géz_)Q of the MHV remainder function in MRK and NLLA
through 9 loops.
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We present only the imaginary parts, as the real parts are determined by eq.
(1.2.19). However, as a cross-check of our result, we computed the Ay explicitly and
checked that eq. (1.2.19) is satisfied. Furthermore, we checked that in the collinear
limit w — 0 our results agree with the all-loop prediction for the six-point MHV ampli-
tude in the double-leading-logarithmic (DLL) and next-to-double-leading-logarithmic
(NDLL) approximations of ref. [70],

efotia — i (w + w*) [1 — Iy (2\/(1 log [w]log(1 — ul))} 7

I (2+/alog |w|log(1 — uy)
Re (efpria) =1 + 72632 (w + w*) \/log [w] ( )
log(1 — uy)

— 72a* (w + w*) log |w]| I (2\/a log |w|log(1 — u1)> :

(1.4.27)

where [y(z) and I1(z) denote modified Bessel functions.

Let us conclude this section with an observation: All the results for the six-point
remainder function that we computed only involve ordinary ¢ values of depth one ((j
for some k), despite the fact that multiple ¢ values are expected to appear starting
from weight eight. In addition, the LLA results only involve odd ( values — even (

values never appear.

1.5 The six-point NMHYV amplitude in MRK

So far we have only discussed the multi-Regge limit of the six-point amplitude in an
MHYV helicity configuration. In this section we extend the discussion to the second
independent helicity configuration for six points, the NMHYV configuration. We will
see that the SVHPLs provide the natural function space for describing this case as
well.

The NMHV case was recently analyzed in the LLA [18]. It was shown that the
two-loop expression agrees with the limit of the analytic formula for the NMHV
amplitude for general kinematics [71], and the three-loop result was also obtained.
Here we will extend these results to 10 loops.

Due to helicity conservation along the high-energy line, the only difference between
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the MHV and NMHV configurations is a flip in helicity of one of the lower energy
external gluons (labeled by 4 and 5). Instead of the MHV helicity configuration
(++—++—), we consider (++——+—). The tree amplitudes for MHV and NMHV
become identical in MRK [18]. In this limit, we can define the NMHV remainder

function Rnypy in the same way as in the MHV case (1.1.1),
A6NMHV|MRK = AGBDS X eXp(RNMHv> . (151)

Recall the LLA version? of eq. (1.2.9):

o +oo 11, wiu+n/2 w*il/—n/Z

Rl =2 3 (-1 /_Oo e e (LS| IR

n=—0oo

At LLA, the effect of changing the impact factor for emitting gluon 4 with positive

helicity to the one for a negative-helicity emission is simply to perform the replacement

1 1
—iV + b 1w+ 5
in eq. (1.5.2), obtaining [18§]
; 0 400 ivtn/2 , kiv—n/2
LLA 1a " dvw w oE
~ Y 1 1—u) B — 1] (154

n=—oo

The NMHV ratio function is normally defined in terms of the ratio of NMHV to MHV

superamplitudes A,
Anvnav

Pryvmy = (1.5.5)

Avnv
However, in MRK, because the tree amplitudes become identical, it suffices to consider

the ordinary ratio, which in LLA becomes

ALLA
731%1%4131‘{\/ = % = eXP(R%/[AHV - Rk&%\/) . (1.5.6)
MHV

4The distinction between R and exp(R) is irrelevant at LLA, because the LLA has one fewer
logarithm than the loop order, so the square of an LL term has two fewer logarithms and is NLL.
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Thus eq. (1.5.4), together with eq. (1.5.2), is sufficient to generate both the remainder
function and the ratio function in LLA.
Comparing eq. (1.5.4) to eq. (1.2.9), we see that in MRK the MHV and NMHV
remainder functions are related by
RNy = /dw v iRkﬁfv. (1.5.7)
w Ow*

It is convenient to write this equation slightly differently. First, define a sequence of

single-valued functions f®(w,w*) in analogy with eq. (1.2.7)°

& . 1 oy W L
Rﬁlﬂ/ﬁ{v o IZZallogl 1<1 — uq) L —i—w*f(l)(w’w )+ 1 —|—w*f(l) (_7E>} .

Then eq. (1.5.7) can be used to relate fO(w,w*) to gl(i)l(w, w*),

/dw % 83* gl(l_)1<w’ w') = 1 —l—lw* 1o (w, w") + 1 fw* 1Y <%’ %) ' (1.5.9)
In section 1.4 we computed the MHV remainder function in the LLA in the multi-
Regge limit up to ten loops. Using these results and eq. (1.5.9), we can immediately
obtain NMHV expressions through ten loops as well. Indeed, gl(i)l(w, w*) is a sum of
SVHPLS, so the differentiation 3% can be performed with the aid of eq. (1.3.36). The
result is again a sum of SVHPLs with rational coefficients 1/(14w*) and w*/(1+w*).
As such, the differential equations (1.3.36) also uniquely determine the result of the w-
integral as a sum of SVHPLSs, up to an undetermined function F(w*). This function
can be at most a constant in order to preserve the single-valuedness condition. It
turns out that to respect the vanishing of the remainder function in the collinear
limit, F(w*) must actually be zero.

To see how this works, consider the two loop case. From eq. (1.4.11),

O wt) = 2t Lo le Ll L 1p 1.5.10
gl (w7w) 4[ 1] 16[ U} 2 171+4 0:1+4 1:0' ( ° )
Ref. [18] defines a similar set of functions, f;, which are related to ours by fo = —i fP fo =

%f(?’), etc.
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Recalling that (w,w*) = (—z,—2), first use the second eq. (1.3.36) to take the w*
derivative, which clips off the last index in the SVHPL, with a different prefactor
depending on whether it is a ‘0" or a ‘1’ (and with corrections due to the y alphabet

at higher weights):

(1.5.11)

w* 1 1 1 1
SN SV O B 9

Next, use the first eq. (1.3.36) to perform the w-integration. In practice, this amounts

to prepending a ‘0’ to the weight vector of each SVHPL,

w* 0 w*
/d gf):—*{——ﬁm— ﬁoo]

1
w Ow* I+w 1+w [Z } (1.5.12)
. b.

1 1
_ 2) ) (2)(_ _>
1+w*f (w, w?) 1+w*f w’ w*

where

1
f(Q)(UJ, UJ*) = Z 50,1

1 1
=_L — Lo L 1.5.13
1 2+8 0 L1 ( )

1
=1 (log |w|*log(1 + w*) — Lis(—w) + Lix(—w")) .

This result agrees with the one presented in ref. [18]. Furthermore, we can check that

the inversion property implicit in eq. (1.5.12) is satisfied,

1 1 1 1 . 1 . 1

111
= {5 log? |w|* — log |w|?log(1 4+ w*) + Liy(—w) — Lig(—w*)}

1 1
= _Z L"O,l - Z['(],O .
(1.5.14)
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Moving on to three loops, we start with the MHV LLA term,

3 . 1 1
95" (w,w") = —§L++E (i)

1 1 1 1
_ 1, 1e ir ~r L y 1.5.15
16001 + g01.0 + g0 + 16100 + gho + Flaatty ( )

1
L )
+ 5111

As before, we can take derivatives and integrate using eq. (1.3.36),

w9 w1 1 3 1
duw = — — = Lo00— 5Lo001 — =Loso— 7L
/ w w 811}*92 1 £ w* |i 16 0,0,0 0,0,1 0,1,0 A 0,1,1

} (1.5.16)

1 1
1+ w [8£001+1—6£010+ ﬁon} ,

and we find,

1 1 1
f(g)(wa w*) = 3 Loo1 + — £0,1,0 + = 50,1,1
1 1 1 1
=_T L L — Lo L L L
1 21+8 1 2+16 0 2+32 1

1[ . . 20,12
= — | —2Li3(1 +w) — 2 Lig(1 + w* ——log w|”log(1 + w*
[ 200w =2 ) - Sl ol ost +ut)

+ log(—w)<1og2(1 +w*) — log?(1 + w))
1
+ 5 log uf* <Li2(—w) - Lig(—w*))
— 2log |1 + w|? Liz(—w) + 2 G log |1 + w|® + 43 ] :
The last form agrees with the one given in ref. [18], up to the sign of the second line,

which we find must be +1 for the function to be single-valued.

Continuing on to higher loops, we find,

1 1 1 1 1 1
Dlww') = —< L Lotii—~1L 2 —L,+-I,L 1.5.1
f 9 (w,w”) 1C3+4 211 7 g 31—1—32 27 39 4+8 1 L2 (1.5.18)
1 1 1 1
Ltz e Lo 3oz
96 96 192 256 128

1 1
+1_6L0L1L2_EL1L3’
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1 1 1 1 1
96 2C3_ﬂLOLlcii‘i‘4L2111—§L221+3—2L41 (1519)
1 1 1 1 1
+8L1L211+1—6L0L211—1—6L1L31+32L1L§ 64L1L4
1 1 1 1 1
— 3L Lol — — LoLy— — L33+ — L3 L
T g 1t gy ot T gpg loba s Mo bt g B ke
5 5 7 1
o L3+ —— L3 L, — LoLsy+—LoLy Ly

768 18432 192 16
3 1 1

1 11
+ —LoLi Lo+ ——L3LiLy— L3 1+ —L3o— — L3 Ly,
64 768 8 48 96

1
L2L L L
S 1536 07 48 0T
O (w w*)zlL 1y vl — 2t +—Lsy +— ! L3 (1.5.20)
) g e — g dsnn oo e — oo bay g s oog 0.
1 1 7 1 1
— Lg — — L — L — L L —— 1L
+768 6~ 763 42—1‘32 411+8 thot i = gp £1 ks
1 1 1 1
+ﬁL1L32+32L3L21 32L2L3’1+96L Loy
1 1 1 1
— L3~ —LyL — L
C o128t 1oz Folsin = 15 I G+ 155
1

1 1 1
— L L — Lo L Lo L3 —
T 51p Mo te2 T g bkt gay Lo 2560
1 1 5 5
SR L)L L — I, L
18432 <018 T grag ot g 21g3+384 Lo

5 7 7
— A2+ — L, L R — Y §
* 1006 “o 1 T gy Mt g o 1536 031
11 19
LA L 3

9 — ——

FO(w,w*) =

1

L? Ly

—— L5 Ly

+

1 1

L — LoLiLoiq— — L L

184320 70 9916 otz t g o lafana = op b 2Gs
1 1 1 1

— — Ly L — LoLiLyy — —LoLy1 Ly — — L1 L3 L
39 011 31—1‘32 0 2.1 13 0L Lo 1R 1 L3 Lo

1 1 1 3
96 — L3 L Ly — Too — Ly L3 Ly + — 381 LoLy L3 — 256 —— L3 Ly Ly,

5?2 Ly Ly G5 — 956L0L%C3_%L0L2C3 %LOZQIML
—% ngLS—%LOLng—l—1844932L3L1L2
+ﬁL2+%L2L211 916L3L21+916L§g3+;

2;6 Lo+ 7680 L0L5+20548 LoLs - 1;36 Lo Ls.

Ls 3
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The remaining expressions through 10 loops can be found in computer-readable for-

mat in a separate file attached to this article.

1.6 Single-valued HPLs and Fourier-Mellin trans-

forms

1.6.1 The multi-Regge limit in (v,n) space

So far we have only used the machinery of SVHPLs in order to obtain compact analytic
expressions for the six-point MHV amplitude in the LL and NLL approximation.
However, this was only possible because we knew a priori the BFKL eigenvalues
and the impact factor to the desired order in perturbation theory. Going beyond
NLLA requires higher-order corrections to the BFKL eigenvalues and the impact
factor which, by the same logic, can be computed if the corresponding amplitude is
known. In other words, if we are given the functions gﬁf) (w, w*) up to some loop order,
we can use them to extract the corresponding impact factors and BFKL eigenvalues
by transforming the expression from (w,w*) space back to (v,n) space. The impact
factors and BFKL eigenvalues obtained in this way can then be used to compute the

six-point amplitude to any loop order for a given logarithmic accuracy.
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In ref. [14] the three-loop six point amplitude was computed up to next-to-next-

to-leading logarithmic accuracy (NNLLA),

9(()3)( w*) = 287L++iL311 ;L:—f [Lﬂ ;2 L+ [Lo ] —éLTLE,lLE
b LGP LT + o I LT+ S 1P G = 25 (517G
- ;@ 1 - T - gl - gl Lt )
e dlcg{[ - gl }—%@Lr{[m?—iwof} (16.1)
PP (T - 26,
h? (w,w*) = 136 L Lf + 116 Ly, Ly — 312 L) - 312 (Lo P (L2
) 1

~ 1536 [L5]4+§LTC3,
where dy, dy and 7" are some undetermined rational numbers. (To obtain eq. (1.6.1)
from ref. [14] one also needs the value for another constant, v/ = —9/2, or equivalently
" =0, which was obtained in ref. [15] using the MRK limit at NLLA.)
These functions can be used to extract the NNLLA correction to the impact
factor®. Indeed, the NNLL impact factor has already been expressed [15] as an integral

over the complex w plane,

o) = 0 (245 ) [ ) a2 (‘“—) (1.6.2)

w

where the kernel p(w, w*) is related to the three-loop amplitude in MRK,

. . 1+ w L+w? 11
plaw) = 2487 wyw) +10g - (g 1o HERE 2L

|w
1+ wf? ' 2 |1 +w]’ '
+ 2 log ) g (w, w) +2 ( log? ) + 72 ) g (w,w*).

6In principle we should expect the amplitude to NNLLA to depend on both the NNLL impact
factor and BFKL eigenvalue. The NNLL BFKL eigenvalue however only enters at four loops, see
section 1.7.2.

(1.6.3)
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(2)

Reg (¥, 1) i yet known. Indeed, an explicit

However, no analytic expression for &
evaluation of the integral (1.6.2) would require a detailed study of the integrand’s
branch structure, a task which, if feasible in this case, does not seem particularly
amenable to generalization.

Here we propose an alternative to evaluating the integral explicitly. The basic
idea is to write down an ansatz for the function in (v,n) space, and then perform
the inverse transform to fix the unknown coefficients. The inverse transform is easy
performed using the methods outlined in section 1.4, so we are left only with the task
of writing down a suitable ansatz. To be precise, consider the inverse Fourier-Mellin
transform defined in eq. (1.4.4). Our goal is to find a set of linearly independent

functions {F;} defined in (v, n) space such that their transforms {Z[F;]}:

1. are combinations of HPLs of uniform weight,
2. are single-valued in the complex w plane,
3. have a definite parity under Zy X Z, transformations in (w,w*) space,

4. span the whole space of SVHPLs.

Through weight six, we find empirically that this problem has a unique solution, the
construction of which we present in the remainder of this section. In particular, we
will be led to extend the action of the Zs X Zs symmetry and the notion of uniform

transcendentality to (v, n) space.

1.6.2 Symmetries in (v,n) space

Let us start by analyzing the Zy X Zs symmetry in (v, n) space. It is easy to see from
eq. (1.4.4) that

11 ) (1.6.4)

In other words, the Zs X Zs of conjugation and inversion acts on the (v, n) space via

[n <> —n] and [v > —v, n <> —n], respectively. Hence, in order that the functions
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o7

(w <+ w5 w < 1/w) | (v —v,n <+ —n) F(v,n)
(+,+) [+, +] 1/2 [f(v,n]) + f(=v, |n|)]
(+7_) [_7+] 1/2 [f(y, |n|) _f(_yv |TL|)]
<_7 +) [_7 _] 1/2 Sgn(”) [f(y, |n|) - f(—y7 |”|)}
(=) [+, ] 1/2 sgu(n) [f (v, |n]) + f(=v,|n|)]

Table 1.2: Decomposition of functions in (v, n) space into eigenfunctions of the Zg x Zs
action. Note the use of brackets rather than parentheses to denote the parity under
(v,n) transformations.

in (w,w*) space have definite parity under conjugation and inversion, F (v, n) should
have definite parity under n <> —n and v < —v. Our experience shows that the
n- and v-symmetries manifest themselves differently: the v-symmetry appears as an
explicit symmetrization or anti-symmetrization, whereas the n-symmetry requires the
introduction of an overall factor of sgn(n). For example, suppose the target function
in (w,w*) space is odd under conjugation, and even under inversion. This implies
that the function in (v, n) space must be odd under n <» —n and odd under v <> —v.
Such a function will decompose as follows,

Fv,m) = 5 sn(n) (£ nl) — F(v[n])] (165)

for some suitable function f. See Table 1.2 for the typical decomposition in all four
cases. Furthermore, in the cases we have studied so far, the constituents f(v, |n|) can
always be expressed as sums of products of single-variable functions with arguments
+iv + |n|/2,

(1.6.6)

J

fwdnl) =Y e [T fin(Oniv + Inl/2),

where ¢; are constants, d; € {+1,—1}, and the f;x(z) are single-variable functions

that we now describe.

1.6.3 General construction

The functional form of F;(v,n) can be further restricted by demanding that the in-

tegral (1.4.4) evaluate to a combination of HPLs. To see how, consider closing the
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v-contour in the lower half plane and summing residues at poles with Im(r) < 0. A
necessary condition for the result to yield HPLs is that the residues evaluate exclu-
sively to rational functions and generalized harmonic numbers, e.g., the Euler-Zagier
sums defined in eq. (1.3.10). This condition will clearly be satisfied if the f;(z) are
purely rational functions of z. Less obviously, it is also satisfied by polygamma func-
tions. Indeed, the polygamma functions evaluate to ordinary (depth one) harmonic

numbers at integer values,

(1 +n)=—yp+ Zi(n) and B (1 +n) = (1)K (Gyr = Zia(n), (1.6.7)

where () = o/, () = 4" etc. Referring to eq. (1.3.9), we see that all HPLs through
weight three can be constructed using ordinary harmonic numbers’.

We therefore expect the f;x(z) to be rational functions or polygamma functions
through weight three. Starting at weight four, however, ordinary harmonic numbers

are insufficient to cover all possible HPLs. Indeed, at weight four, the HPL

Hig( Z % —1) (1.6.8)

requires a depth-two sum®, Z,;(k — 1). A meromorphic function that generates

Za1(k — 1) was presented in ref. [54]. It can be written as a Mellin transform,

l1—=x

Fw) = ( H (N), Nec, (1.6.9

where the Mellin transform M is defined by

M{(f ()] (N) = / dr (¥ — 1) f(z) (1.6.10)

"Harmonic numbers of depth greater than one do appear at weight three; however, after applying
the stuffle algebra relations for Euler-Zagier sums, they all can be rewritten in terms of ordinary
harmonic numbers of depth one, namely Z; 1(k —1) = 2 Z;(k — 1)? — 1 Zy(k — 1).

8 Another depth-two sum appears in Hy 1 2(x) = > poy % Z3,2(k — 1) but the two are related by
a stuffle identity, Z271(k — 1) + ZLQ(]C — 1) = ZQ(k — 1) Zl(k — 1) — Zg(k — 1)
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If N is a positive integer, then Fj(/N) evaluates to harmonic numbers of depth two,
Fy(N)=Zy1(N)+ Z3(N) — ( Z1(N), N eN. (1.6.11)

Going to higher weight, new harmonic sums will be necessary to construct the full
space of HPLs, and, correspondingly, new meromorphic functions will be necessary to
give rise to those sums. The analysis of refs. [53-55] uncovers precisely the functions
we need”. They are summarized in appendix A.2. Through weight five, three new
functions are necessary: Fj, Fg, and Fr.

There is one final special case that deserves attention. Unlike the other SVHPLs,
the pure logarithmic functions [Ly|* diverge as [w| — 0. These functions have special

behavior in (v, n) space as well, requiring a Kronecker delta function:

Tibna/ )] = £ 3 (-1 ()7 [ 7S et - oEC

n=—00 4

Altogether, we find that the following functions of z = +iv + |n|/2 are sufficient to
construct all the remaining SVHPLs through weight five:

Fin(e) € {1200+ 200 2,070+ 2,070 4 2B, Fulo), o)
(1.6.13)
However, as we will see, not all combinations of elements in the list (1.6.13) lead to
functions of (w,w*) that are both single-valued and of definite transcendental weight.

Instead we will construct a smaller set of building blocks that do have this property.

1.6.4 Examples

Let us see how to use the elements in the list (1.6.13) to construct SVHPLs. The
simplest case is f(v, |n]) = 1. Referring to Table 1.2, only two of the four sectors yield

non-zero choices for F. One of these, F = sgn(n), produces something proportional

9 Actually, in refs. [53-55] a more general class of functions is defined. It involves generic HPLs
that are singular at x = —1 as well as at z = 0 and 1. As we never encounter these HPLs in our
present context, we do not discuss these functions any further.
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to Hy — Hy, which is not single-valued. This leaves F = 1, which should produce
a function in the (4, +) sector. Closing the v-contour in the lower half plane, and

summing up the residues at v = —i|n|/2, we obtain the integral of eq. (1.4.5),
I[1] = 2L, (1.6.14)

indeed a function in the (4, +) sector. Including the special case L, from eq. (1.6.12),
this completes the analysis at weight one.

The next simplest element is 1/z, yielding f(v, |n|) = 1/(iv + |n|/2). It generates
two single-valued functions, one in the (4, —) sector and one in the (—, —) sector
(using the (w, w*) labeling in the first column of Table 1.2). Symmetrizing as indicated
in Table 1.2, the two functions in (v,n) space are F = —V and F = N/2, with the

useful shorthands

1 1 1 )
V=g Tm 7| =5
v+ 2 v+ 2 2+ B
2 2 4 (1.6.15)
1 1 n
N =sgn(n) |- T | = 5T
w5 Wty vi+ ==

The transforms of these functions yield two of the four SVHPLs of weight two.

IlV] = =Ly L,

(1.6.16)
I[N] =41; .

A third weight-two function is the pure logarithmic function [L;]?, a special case
already considered. To find the fourth weight-two function, we turn to the next
element in the list (1.6.13), /(1 + z). On its own, it does not generate any single-
valued functions; however, a particular linear combination of {1,1/z,¢(1+2)} indeed
produces such a function. Specifically, f(v, |n|) = 2¢(1+iv + |n|/2) + 2y — 1/(iv +
In|/2) generates the last weight-two SVHPL, which transforms in the (+,+) sector.
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The function in (v, n) space is actually the leading-order BFKL eigenvalue, £, ,,,

N
]::1/)(1%—1'1/—1—@)+¢(1—iu+|%|>+27g—%:Em, (1.6.17)
and its transform is the last SVHPL of weight two,
1
T(E,a] = (7]~ 3 (LT (1.6.18)

The next element in the list (1.6.13) is ¢/(1 + z). Like (1 + 2), ¥/(1 + z) does
not by itself generate any single-valued functions; however, there is a particular linear
combination that does, and it is given by f (v, |n|) = 2¢/(1+iv+|n|/2)+1/(iv+|n|/2)2.
Notice that, for the first time, the product in eq. (1.6.6) extends over more than one
term (in this case, fi1 = fi2 = 1/(iv+|n|/2), but in general the f;; will be different).
The function in (v,n) space is,

F=q (1 + v+ %) — (1 —iv+ @) —sgn(n)NV = D,E,,,,  (1.6.19)
where D, = —i0, = —id/0v. The main observation is that the basis in eq. (1.6.13)
can be modified to consistently generate single-valued functions: 1/z is replaced by
V and N, 9 is replaced by E, ,, and ) is replaced by DFE, .

Furthermore, as mentioned previously, the basis at weight four requires a new
function F;(z) that is outside the class of polygamma functions. Like the polygamma
functions, Fy(z) does not by itself generate a single-valued function; it too requires
additional terms. We denote the resulting basis element by Fj. It is related to the
function Fy(z) in eq. (1.6.9) by,

- 1 1
F, = sgn(n) < Fy <z’y + M) + F4< — v+ m) -~ -D?E,, — =N*E,,
2 2 4 ’ 8 ’
1 1
~ VBt (zp, + v) DyBy, + GEyy — 4@,} (1.6.20)

1 1
+N{§V¢_+§C2} ,
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where

¢_5¢(1+w+@>—¢<1—w+@>. (1.6.21)
Appendix A.2 contains further details about the functions in (v,n) space, including
the basis through weight five and expressions for the building blocks Fy, and Fy
generated by the functions Fg,(z) and Fr(2).

Finally, we describe a heuristic method for assembling the basis in (v,n) space.

The idea is to start with the building blocks,
{17N7 V7 Eu,n7F47F6a7F7}7 (1622)

and piece them together with multiplication and v-differentiation. These two opera-

tions do not always produce independent functions. For example,

1
D,N =2NV and D,V = ZN2 + V2. (1.6.23)

The building blocks have definite parity under v <» —vr and n <> —n which helps
determine which combinations appear in which sector. Additionally, we observe that
they can be assigned a transcendental weight, which further assists in the classifi-
cation. The weight in (w,w*) space is found by calculating the total weight of the
constituent building blocks in (v, n) space, and then adding one (to account for the
increase in weight due to the integral transform itself). The relevant properties of the
basic building blocks are summarized in Table 1.3.

As an example, let us consider the function ND,E,,. Referring to Table 1.3,
the transcendental weight is 1+ 1+ 1 = 3 in (v,n) space, or 3+ 1 = 4 in (w,w")
space. Under [v <> —v,n <> —n|, N has parity [+, —|, D, has parity [—, +], and E,,,
has parity [+, +], so ND,E,, has parity [—,—]. We therefore expect this function
to transform into a weight four function of (w,w*), with parity (—,+) under (w <>
w*, w <> 1/w) (see Table 1.2). Indeed this turns out to be the case. A complete basis
through weight three is presented in Table 1.4.
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weight | (v <> —v,n <> —n) weight | (v <> —v,n <> —n)
1 0 [+, +] E,.| 1 [+, +]
D, | 1 [—, +] Ey 3 [+, -]
1% 1 [—, +] Fy, 4 [—, —]
N 1 [+, -] Fy 4 [—, +]

Table 1.3: Properties of the building blocks for the basis in (v, n) space.

weight | Zg X Zs (w, w*) basis (v,n) basis dimension
(+,+) Ly 1 1
1 (+. ) Ly On,0 1
(= +) - - 0
(=) - = 0
(+,+) [L{]?, [Lo]? Ono/ (1), Eyn 2
5 (+,-) Lo L{ v 1
(_7 _'_) - - 0
(——) Ly N 1
() | [P [LoPLy, Ly VE N® ED, 3
o | b)) [ Lol Lo [EAT? Loy | Ono/ (i), VEyn, DyEyn 3
(= +) LyLy VN 1
(——) LL; NE, ., 1

Table 1.4: Basis of SVHPLs in (w,w*) and (v,n) space through weight three. Note
that at each weight we can also add the product of zeta values with lower-weight
entries.

1.7 Applications in (v,n) space: the BFKL eigen-

values and impact factor

1.7.1 The impact factor at NNLLA

In this section we report results for g§4) and g(()A‘) and discuss how to transform these

functions to (v, n) space using the basis constructed in the previous section. We then

give our results for the new data for the MRK logarithmic expansion: @ge)g, <I>§2g,
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and El(,Z%

Before discussing the case of the higher-order corrections to the BFKL eigenvalue
and the impact factor, let us review how the known results for E, ,,, E,SIT)L and @ge)g fit
into the framework for (v,n) space that we have developed in the previous section.
First, we have already seen in section 1.6 that the LL BFKL eigenvalue is one of
our basis elements of weight one in (v,n) space (see Table 1.3). Next, we know
that the first time the NLL impact factor @ggg appears is in the NLLA of the two-
loop amplitude, g(()2)(w, w*), which is a pure single-valued function of weight three.
Following our analysis from the previous section, it should then be possible to express
@ge)g as a pure function of weight two in (v,n) space with the correct symmetries.
Indeed, we can easily recast eq. (1.2.17) in terms of the basis elements shown in
Table 1.3,

1

1
q)%gg(l/a n) =75

9 3
2 v,n

- gN2 — (o (1.7.1)
Similarly, the NLL BFKL eigenvalue can be written as a linear combination of weight

three of the basis elements in Table 1.3,

1 1
Ez(/,l'r)L - _Z Dz%El/,n + 5 V DVEV,n - CQ Ey,n - 3(3 . (172)

This completes the data for the MRK logarithmic expansion that can be extracted
through two loops.
Now we proceed to three loops. By expanding eq. (1.4.1) to order a®, we obtain

the following relation for the NNLLA correction to the impact factor, (I)ge)g(l/, n),

[0 ()| =468 (w,w) {[L{ + 72} = 4907 (w,0") L} + 448 (w, w")

2
— 4729 (w, w*) LT + %Lf {—45[L5) + 120 [L1]? + 2272} .

(1.7.3)

This expression is exactly 2 p(w, w*), where p was given in eq. (1.6.3) and in ref. [15].

(The factor of two just has to do with our normalization of the Fourier-Mellin trans-

form.)
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To invert eq. (1.7.3) and obtain @ggg(u, n), we begin by observing that the right-
hand side is a pure function of weight five in (w,w*) space. Moreover, it is an
eigenfunction with eigenvalue (+,+) under the Z, X Z; symmetry. Following the
analysis of section 1.6, and using the results at the end of appendix A.2, we are led

to make the following ansatz,

(I)ge)g@a n)=a1 B, +a; N’E. +asN* + a, V*E,, + a5 N°V? + ag V*
+ az Eu,n VDVEV,n + Qs [DVEV,n]2 + Qg El/,n DEEu,n + o ﬁ4 N (1 7 4)
+ aq; CzEs,n + 12 GN? 4+ a13 GV + a1y GE,

+ 15 G [0n,0/ (iv)] + 16 Ca -
The «; are rational numbers that can be determined by computing the integral trans-

form to (w,w*) space of eq. (1.7.4) (see appendix A.2) and then matching the result
to the right-hand side of eq. (1.7.3). We find

@) Lo 2 1 L
(I)RegO/’ n) = 5 [q)Reg(V7 n>i| - El/,n El/ﬂl + g [DVEV,'IZ] + 1_6 Eu,n
1 5 5% 52 2 1774
——GE,,+—N*+ - N2V2___N2___V? 1.7.5
5 8 Fun + 51 N+ 35 64 7V T (7D
2 2 1
+d G E,, —ds T [12E2, + N?] ++" 5 [E2n —1 NQ] .

Here dy, dy and «” are the (not yet determined) rational numbers that appear in
eq. (1.6.1). We emphasize that the expression for @ge)g(u, n) does not involve the
basis element N F} (see eq. (A.2.52)). That is, @ge)g(y, n) can be written purely in
terms of ¢ functions (and their derivatives).

To determine the six-point remainder function in MRK to all loop orders in the
NNLL approximation, we must apply some additional information beyond @ggg(y, n).
In particular, at four loops and higher, the second-order correction to the BFKL
eigenvalue, El(,%zb, is necessary. In the next section, we will show how to use information
from the symbol of the four-loop remainder function to determine El(,%% We will also
derive the next correction to the impact factor, @g’e)g(u, n), which enters the N3LL

approximation.
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1.7.2 The four-loop remainder function in the multi-Regge
limit

In order to compute the next term in the perturbative expansion of the BFKL eigen-

value and the impact factor, we need the analytic expressions for the four-loop six-

point remainder function in the multi-Regge limit. In an independent work, the sym-

bol of the four-loop six-point remainder function has been heavily constrained [56].

In ref. [56] the symbol of R is written in the form

113
SR =" S, (1.7.6)
=1

where «a; are undetermined rational numbers. The S; denote integrable tensors of
weight eight satisfying the first- and final-entry conditions mentioned in the intro-

duction, such that:

0. All entries in the symbol are drawn from the set {u;, 1 —u;, ¥; }i=1.23, where the

y;’s are defined in eq. (1.1.4).
1. The symbol is integrable.

2. The tensor is totally symmetric in wu;, us, uz. Note that under a permutation

U; = Uo(s), 0 € S3, the y; variables transform as y; — 1/yo().
3. The tensor is invariant under the transformation y; — 1/y;.
4. The tensor vanishes in all simple collinear limits.

5. The tensor is in agreement with the prediction coming from the collinear OPE
of ref. [38]. We implement this condition on the leading singularity exactly as

was done at three loops [14].

In section 1.4, we presented analytic expressions for the four-loop remainder function
in the LLA and NLLA of MRK. We can use these results to obtain further constraints

on the free coefficients «; appearing in eq. (1.7.6). In order to achieve this, we first
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have to understand how to write the symbol (1.7.6) in MRK. In the following we give
very brief account of this procedure.

To begin, recall that the remainder function is non-zero in MRK only after per-
forming the analytic continuation (1.2.6), u; — e~ *™ |uy|. The function can then be

expanded as in eq. (1.2.7),

3
R r = 27 Y log™(1 — ua) [g8 (w, w*) + 2mi B (w, w*)] . (1.7.7)

n=0
The symbols of the imaginary and real parts can be extracted by taking single and

double discontinuities,

3
2mi Y S [log"(1 — ) g (w,w*)] = S(Au, Ry”)urx

n=0
113

— 9 Zai Ay, (Si) Imrk
=1

5 (1.7.8)
(2mi)* > S [log™(1 — ug) B (w,w*)] = S(A2 R{")|urk
n=0
113
= (—271'2)2 Z Qa; A?Ll (Sz)|MRK s
i=1
where the discontinuity operator A acts on symbols via,
a2®...®an, ifalzul,
Ap(a®a®...0a,) = (1.7.9)
0, otherwise.
Lagye.. . ®a,), ifag=ay =1y,
A2 (y®ay®...Qa,) = 3 (03 ) P (70)

0, otherwise.

As indicated in eq. (1.7.8), we need to evaluate the symbols S; in MRK, which we do
by taking the multi-Regge limit of each entry of the symbol. This can be achieved by
replacing uy and uz by the variables x and y, defined in eq. (1.2.3) (which we then

write in terms of w and w* using eq. (1.2.4)), while the y;’s are replaced by their
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limits in MRK [14],

1+ w* _)w*(1+w)
l+w’ vs w(l 4+ w*)

Y1 — 1, Yo — (1711)
. . k o .
Finally, we drop all terms in A} (S;), k = 1,2, that have an entry corresponding to
Uy, Y1, 1 — us or 1 — ug, since these quantities approach unity in MRK. In the end,
the resulting tensors have entries drawn from the set {1 — uy, w,w*, 1+ w,1 4+ w*}.
The 1 — u; entries come from factors of log(1 — u;) and can be shuffled out, so that

we can write eq. (1.7.8) as

ZS [log" (1 — uq)] mS [ ) (w,w )] = Z ZO[Z [log"(1 — uy)| Gy,
" o (1.7.12)
> S log™(1 — uy)| mS [h{) (w,w*))] = ZZ@Z log™(1 — uy)| mH,

for some suitable tensors G, of weight (7 —n) and H;,, of weight (6 —n). The sums
on the right-hand side of eq. (1.7.12) turn out to extend past n = 3. Because the sums
on the left-hand side do not, we immediately obtain homogeneous constraints on the
«; for the cases n = 4,5,6,7. Furthermore, since the quantities on the left-hand side
of eq. (1.7.12) are known for n = 3 and n = 2, we can use this information to further
constrain the «;. Finally, there is a consistency condition which relates the real and
imaginary parts,
h(4)(w w) = (4)(w w*) + 7r_2 (2)(w w*) Lf — 1 (3)( w*) L}
1 ) 92 ) 12 91 ) 175 91 ’ 1
=97 (w,w) g7 (w,w),

. 1
B! (w,w") = 503" (w,w") + 7 g (w,w0) — 7% 6,7 (w, w) L

Loy, s T @ 2, ™o , (1713)
— 5% (w7w)L1 + =9 (w, )[L ] 5 9% (ww)L

2 2 12

w2 w2 3 5

TR 4 arp-12 _ 2 24
+64[ ol (L] 1536[ 0] +_6407T [Lo] 967 [L7]

3, 1.
_ 2 A2 2t 2

1607T [ 1] 2[90( )]
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In total, these constraints allow us to fix all of the coefficients «; that survive in the
multi-Regge limit, except for a single parameter which we will refer to as ay.

The results of the above analysis are expressions for the symbols of the functions

4 4
g§ ) and g(() ).

perturbative expansions of the BFKL eigenvalue w(v,n) and the MHV impact factor

Preg (v, ). For this purpose, we actually need the functions g§4) and g(()4), and not just

We would like to use this information to calculate new terms in the

their symbols. Thankfully, using our knowledge of the space of SVHPLs, it is easy
to integrate these symbols. We can constrain the beyond-the-symbol ambiguities by
demanding that the function vanish in the collinear limit (w,w*) — 0, and that it
be invariant under conjugation and inversion of the w Variables. Putting everything

together, we find the following expressions for g ) and 90 ,

19

60w u) = L3P LT — (L (L1 + oo (L TP 4T
b o (LGP [ — L [T+ L Ly — 2 L Taaa
¥ o L L) - 2—3L+ I 16 = 5o 41° — & a1
+ ZLIP G+ g L1+ o (147 — T L + 5 s L
+§L+L++ZL+L§11+ ;L+L221 SLTC5+%C§
+ ao{lg—” L3 )7 (Lo ) + 4;7 [Lo)? (L1 + 42341 [Lo]" [L{T?
% Ly, [Ly]? — ? Ly [L]? + 222£ Ly LT (1.7.14)
- %ﬁﬁ [Lg]? +%[L0]6 811 Ly Ly, [L{]®

— 157 [Ly ) [LT])* — 256 [szl] + 1593 (L] G
+681[L3]* — 1606 Ly Ly +512Ly Ly, — 3371 Ly Ly,

+T44 LT L3, + 5489 LT (5 + 256 gg}

+ay w2 g (w,w*) + ag 72 g (w, w*)
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+asT [gg )( w*))? + ay 7 h§4)(w, w*) + as 7 hé?’) (w, w*)
+agmt g1 (w, w*) + ar G g8 (w, w*) + ag G g8 (w, w*) |

4 . 5 _ | 21
9" (w,w") = = LT (L3P ILg 1P = 46 L P ILT)° = o L (Lo (L)
7 1007 1 125
— LML P+ —— Ly [Lg]®+ = Ly Loy, LY — — L
g Lo 1 LT+ Jeagq B [Lo)° + 3 Lo Loy L — =

9 7 129
o5 L (L = o Ly LT LG+ 7 LE 5

64
5 4 3 4 —12 - —12
24L [L] +§L311[L0] _1_6L2,2,1[L0] + =

2% ., T
— —Li[L}
o b Wl = g L]

1 1

o 5
12[ ]C3+m[L1] —ZL4L2L1—1—6L2L0L?{1
1 1 1 3
—"_ZLO L4,1LT_§LO L2,1L;_ZLO LQ,l,l,lLii_—"_éLi_gg

1 11 3 1 3
+ QLI,LQ + ZLizl + ZL:J{M - §L§L,1,2,1,1 - 5[5,271,1,1
7 1
+ 5 L [T +—€7+5L511 4Lty

+

- Ly Ly LT+

25
_|_

L3y, L% (1.7.15)

4

8535 235 4617
— Ly [L LT Lo [LTP + —
S L LR LT + 22 LG (L +

32()27 11415 _ 310
e L LE LG - =2 L (L - 5 L (L5 )°
24279

9
15225 B 823
61 —— LI [Ly]* + 1 L§1,1 (Lo — > Ly Ly, [L{]?
2235 365

+ =L LI [LT)? - - L3 Ly [LT)* 4205 [Ly ) [L1]?

+ 2130 L3, [Lg]? — 2623 [Lg]* ¢ + 992 LT [La4]?

— 288 L3, [LT]? +2396 [L{]" 3 + 1830 L [L3)?

+1344 Ly Ly L3, — 520 Ly Ly, 4 L + 11839 Ly Ly, LT
+4330 Ly Ly, LT + 3780 Ly Ly, L +562 Ly Ly, 1, L

+ 2256 Lf — 164778 L, | — 33216 L}, , — 89088 L, ,

— 33912 L3, — 12048 Ly, — 17820 L3 1, — 2928 L3, 514

1309
+a0{_—L+[L ] [L5]2+1911L;[L ] +63L311[Lﬂ2

Lo )" (L7
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— 1612 Ly Ly L{ — 8T84 L5, 1, + 3556 L (2 — 23796 <7}

+01 G [Ly LY + b2 G [Lo LT g1 (w, w*)

+ b3 G g1 (w, w) g7 (w, >+b4<2go H(w, w*) g (w, w*)
+b5Ch 54 (w, w* )+b652 ( *)—|—b7§2983)(w,w*)
+bs o 987 (w, w*) + by G g5 (w, w*) + bio G hSY (w, w*)

+ 011 G B (w,w*) + bia G [917 (w, w*))2 + bs G 957 (w, w*)
+ b1a ng ( ,w*) + by C4g§3)(w7w>k)+b16 C49(()2)(walU*)
+ b17 (3 (2 912)(w, w*) + bis G5 9%2)(% w*).

In these expressions, a; fori = 0,...,8, and b; for j = 1,..., 18, denote undetermined
rational numbers. The one symbol-level parameter, ag, enters both 9(4) and g(()4). We
observe that ag enters these formulae in a complicated way, and that there is no
nonzero value of ag that simplifies the associated large rational numbers. We therefore
suspect that ag = 0, although we currently have no proof. The remaining parameters
account for beyond-the-symbol ambiguities. We will see in the next section that one

of these parameters, by, is not independent of the others.

1.7.3 Analytic results for the NNLL correction to the BFKL
eigenvalue and the N3LL correction to the impact fac-

tor

Having at our disposal analytic expressions for the four-loop remainder function at
NNLLA and N3LLA, we use these results to extract the BFKL eigenvalue and the
impact factors to the same accuracy in perturbation theory. We proceed as in sec-
tion 1.7.1, i.e., we use our knowledge of the space of SVHPLs and the corresponding
functions in (v,n) space to find a function whose inverse Fourier-Mellin transform
reproduces the four-loop results we have derived.

Let us start with the computation of the BFKL eigenvalue at NNLLA. Expanding
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eq. (1.4.1) to order a*, we can extract the following relation,

T[E®)] =12 {[L{P? + 72} 65 (w,w*) — 8 Li g8 (w,w*) + 4 ¢\" (w, w*)

v,n

— 8 LT 72 g (w, w*) + 272 ¢\P (w, w*) [LT)? (1.7.16)

~ T [EQ 0| — T [Bun @, (v,m)]

The right-hand side of eq. (1.7.16) is completely known, up to some rational numbers
mostly parameterizing our ignorance of beyond-the-symbol terms in the three- and
four-loop coefficient functions at NNLLA. It can be written exclusively in terms of
SVHPLs of weight six with eigenvalue (+,4) under Zy x Z, transformations. The
results of section 1.6 then allow us to write down an ansatz for the NNLLA correc-
tion to the BFKL eigenvalue, similar to the ansatz (1.7.4) we made for the NNLLA
correction to the impact factor, but at higher weight. More precisely, we assume that
we can write Eﬁ% = > . a; P;, where o; denote rational numbers and P, runs through
all possible monomials of weight five with the correct symmetry properties that we
can construct out of the building blocks given in eq. (1.6.22), i.e.,

P e {E5 GV DyEys Byn N 4, Gs, .. } . (1.7.17)

v,n

The rational coefficients «; can then be fixed by inserting our ansatz into eq. (1.7.16)
and performing the inverse Fourier-Mellin transform to (w,w*) space. We find that

there is a unique solution for the a;, and the result for the NNLLA correction to the
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BFKL eigenvalue then takes the form,

3 3
E® = BN L) (v,n) — B,, 8% (v,n) + < D’E,, B2, + — N*D?E,,

v,n Reg Reg 39
+ivepeg,, —tvpie, 41k [D,E ]2+EE N2V
8 vH=rmn 8 vH=r,n 8 v,n vivn 16 v,n
v lpe T e 3pp v 5 pE zy
48 v—rvn 12 v—rv,n 4 v+=vrvn v,n ]_6 v+=vrvn
w2 3 61 1 572 (1.7.18)
- ~—D,E,, — N?E3 4+ — E? - F5 4+ F3
4 s v + 16 vn + 4 v,n C3 + ] v,n + 6 v,n
19 372 72 35 1
Ao unN4 _EunN2 _Elzn 2 _N2 _V2
+ o 6 T ’V+16 C3+2 G
1172

5 8
C3+10C5+a055+Z%C253,i+a6C452+ZaiC351,i,

i=1 =7

MG

where the quantities &5, &, and &;; capture the beyond-the-symbol ambiguities in

954), and & corresponds to the one symbol-level ambiguity. They are given by,

124 121
85 = ? N2 DI%EZ/,TL + TO V2 DzEu,n - 335 VDiEu,n
124 140 31 10903
— N*E3 - ——V?E3 ——_FE,,N'+ ——N? 1.7.1
3 v,n 3 V v,n 2 5T + 12 C3 ( 7 9)
1 151
+$ V2(3+248E,, [D,E,.])* — % D,E,, N>V
—62D.E,, E,, +70D,E,,V E., —160D,E,,V®
31
~ DLE,, + 431 E2, (3 — 9T E,, N*V? + 16072 (s,
3 2 2 3 2 2
Ey1 = - EyyN? = D.E,n+5E, , +6E,,V?—2E,, " +8(3,(1.7.20)
Esp = B, (1.7.21)
3
E33 = 1 E,wN*—=3D,E,,V +3E,, +12(;, (1.7.22)
1 9 3 3 25
&4 = —-D?E,,+-D,E,,V—--FE,,N°--FE,, V- — 1.7.23
o g vty : 4 2" 5 @ )
—2E3,,
E35 = gEy,n N? — gE?’n (1.7.24)

& = 90E,,, (1.7.25)
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1

Er = Ein—ZNQ, (1.7.26)
1

iz = §Ein. (1.7.27)

We observe that the most complicated piece is &. It would be absent if our conjecture

that ag = 0 is correct. Some further comments are in order about eq. (1.7.18):

1. In ref. [15] it was argued, based on earlier work [72-75|, that the BFKL eigen-
value should vanish as (v,n) — 0 to all orders in perturbation theory, i.e.,
w(0,0) = 0. While this statement depends on how one approaches the limit,
the most natural way seems to be to set the discrete variable n to 0 before
taking the limit ¥ — 0. Indeed in this limit £, ,, and El(}% vanish. However, we

find that E,SQ% does not vanish in this limit, but rather it approaches a constant,

1
lim BC) = —=72 ¢y 1.7,
lim BS = —27 G (1.7.28)
We stress that the limit is independent of any of the undetermined constants
that parameterize the beyond-the-symbol terms in the three- and four-loop co-
efficients. While we have confidence in our result for E,(,ng, given our assumptions
(such as the vanishing of gq(f) and h% ) asw — 0), we have so far no explanation

for this observation.

2. While the (v, n)-space basis constructed in section 1.6 involves the new functions
Fy, Fs, and Fr, we find that El(,QT)L is free of these functions and can be expressed
entirely in terms of ¢ functions and rational functions of ¥ and n. Moreover,
the v functions arise only in the form of the LLA BFKL eigenvalue and its
derivative with respect to v. We are therefore led to conjecture that, to all loop
orders, the BFKL eigenvalue and the impact factor can be expressed as linear
combinations of uniform weight of monomials that are even in both v and n
and are constructed exclusively out of multiple ¢ values'® and the quantities N,
V, E,, and D, defined in section 1.6.

10Note that we can not exclude the appearance of multiple ¢ values at higher weights, as multiple
¢ values are reducible to ordinary ¢ values until weight eight.
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We now move on and and extract the impact factor at N3LLA from the four-loop
amplitude at the same logarithmic accuracy. Equation (1.4.1) at order a* yields the
following relation for the impact factor at N3LLA,

T o)

foevim)| = =4 {ILFF + 3 Lf 7} 6" (w, ")

+4{[L + 7Y g (w,w") — 4 LT g™ (w, w?)

g (w, ") + 877 0 (w,w) [LTT = ALY 7 0w w) () 2o

7T2 * *
—2mt { (2P - T2t off o w) + 20 o w0 21
1 B m 73"

T 4712 13 _

L —2L7¢.

3)
Reg

i.e., we write down an ansatz for @g’e)g(y, n) that has the correct transcendentality

(2)

In order to determine ®y/ (v,m), we proceed in the same way as we did for Epp,

and symmetry properties and fix the free coefficients by requiring the inverse Fourier-
Mellin transform of the ansatz to match the right-hand side of eq. (1.7.29). Building
upon our conjecture that the impact factor can be expressed purely in terms of v
functions and rational functions of v and n, we construct a restricted ansatz'' that
is a linear combination just of monomials of ¢ values and N, V', D, and E,,. Just
like in the case of El(,%)l, we find that there is a unique solution for the coefficients in
the ansatz, thus giving further support to our conjecture. Furthermore, we are forced

along the way to fix one of the beyond-the-symbol parameters appearing in 964),

b——Ea—ia—ia +2a +ib +1b—ib—ib
g™ 6™ 21 Tes 2Tt 160 3200
: 5 ; (1.7.30)
‘|‘Z—lb7—|—§bg+1—6.

The final result for the impact factor at N3LLA then takes the form,

1
3
(I)&e)goja TL) = g

1
57 [DvBual” (17:31)

v,n

3
[q)ge)g(ya n)] - K 2 El/,n - (I)ge)goja TL) Es,n -

'We have constructed the full basis of functions in (1, n) space through weight six and the explicit
map to (w,w*) functions of weight seven. It is therefore not necessary for us to restrict our ansatz
in this way. It is, however, sufficient, and computationally simpler to do so.
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3 1 1
__N2 DVEVn2 _DVEVn D2E1/n__DVE1/nD3EVn
64 [ ol +4 aV DBy, 24 T

1
2 v N> D’E,,, + 3 D,E,,E,, N*V — DBV E3,

32 16
3772 1 161 . 3
-~—F,,D*E,,— — D’FE — F — = N2V*
9 vn YyLun o4 v v,n CS + 12 v,n 16 4

1172 9 1
-— D, E “D,E —[D,E,.]* E?
+ 24 viivn yn V + 4 viivn VCS + 16 [ v V,n] v,n
1 372 37 5
— —V?[DE, ) + o5 (DB, + = N'E,, + = N°V? E]
8 [ ’]+32[ ’]+256 ”7"+32 v,

1 2172 7 2 i
-D?E,,E3 ———V?E? — ES + —F* - __F?
+ 8 v ) v,n 32 v,n C3 + 48 v,n + 3 v,n 72 v,n
7 1372 45 41 52

— B, N?( — E,nCG——- N — —— N*'VZ24 — N*
BT G 2 n 63 1024 128 D)
572

4 4 5 31176
A Veh ve SRR VeI Vo SIS S I U N Ve
128 Tty +2<3 3L VG

11340
237> 15

5
— " _N?E? +10E,, — N?*E? i G2 P,
128 V,n+ , C5 + 64 vn +a0P6 +;a CQP 4,

8 9 14
+ ag G4 Pap + Z a; (3 Pasi + Z bi G2 Ppoayi + Z bi (3 Pp.3.i
=7 =2 =10
16
+ Z bi Ca P o + b17 (23 Pri1 + bis G5 Pra2

=15

where P; ;

gooe

functions, and Pg parameterizes the one symbol-level ambiguity,

105 152 2690

76

parametrize the beyond-the-symbol terms in the four-loop coefficient

Po = 5 |DiE) — 5 Bon N*D}Ey — == B,V DiE,,  (17.32)

2

3
595 7 103
+= BV DiE,, — & Bon DIE,, + T N*E?

13777
+—— Eun V?(3+16 DLE,, E; + 6548 E,,, (5

104 24 2
_g DEEZ/,TL C3 + ?9 N2 [DVEu,n]Z + % V2 [DVEu,n]2
317 197 515 61793
+—— N?V?E? + —N?’E! +—V?*E! + —"F,,N*G
4 ) 24 ) 6 ’ 6 :
111 4
+155 N® + % N*V?-385D,E,,V D?E,, —30D,E,, D}E,,

v,n
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Again, the undetermined function at symbol level, Pg, is the most complicated term,

but it would be absent if ag = 0.

Finally, we remark that the v — 0 behavior of @ggg(y, n) is nonvanishing, and even

singular for £ = 2 and 3. Taking the limit after setting n = 0, as in the case of El(,Z,)L,

we find that the constant term is given in terms of the cusp anomalous dimension,

: (1)

llg% Preg(1,0)
: (2)

lim @, (v,0)
; (3)

ll_r)% Pog (1, 0)

This fact is presumably related to

~ % + O, (1.7.58)
i ’Yg) 2
~ oIz + v + O(v?), (1.7.59)
4 g) )
~ —W + T + O(V ) (1760)

the appearance of v (a) in the factors w,, and

9, which carry logarithmic dependence on |w| as w — 0. It may play a role in

understanding the failure of E% to

vanish as v — 0 in eq. (1.7.28).
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1.8 Conclusions and Outlook

In this article we exposed the structure of the multi-Regge limit of six-gluon scatter-
ing in planar N/ = 4 super-Yang-Mills theory in terms of the single-valued harmonic
polylogarithms introduced by Brown. Given the finite basis of such functions, it is ex-
tremely simple to determine any quantity that is defined by a power series expansion
around the origin of the (w, w*) plane. Two examples which we could evaluate with no
ambiguity are the LL and NLL terms in the multi-Regge limit of the MHV amplitude.
We could carry this exercise out through transcendental weight 10, and we presented
the analytic formulae explicitly through six loops in section 1.4. The NMHV ampli-
tudes also fit into the same mathematical framework, as we saw in section 1.5: An
integro-differential operator that generates the NMHV LLA terms from the MHV
LLA ones [18] has a very natural action on the SVHPLSs, making it simple to gener-
ate NMHV LLA results to high order as well. A clear avenue for future investigation
utilizing the SVHPLs is the NMHYV six-point amplitude at next-to-leading-logarithm
and beyond.

A second thrust of this article was to understand the Fourier-Mellin transform
from (w,w*) to (v,n) variables. In practice, we constructed this map in the reverse
direction: We built an ansatz out of various elements: harmonic sums and specific
rational combinations of v and n. We then implemented the inverse Fourier-Mellin
transform as a truncated sum, or power series around the origin of the (w,w*) plane,
and matched to the basis of SVHPLs. We thereby identified specific combinations of
the elements as building blocks from which to generate the full set of SVHPL Fourier-
Mellin transforms. We have executed this procedure completely through weight six in
the (v,n) space, corresponding to weight seven in the (w,w*) space. In generalizing
the procedure to yet higher weight, we expect the procedure to be much the same.
Beginning with a linear combination of weight (p — 2) HPLs in a single variable z,
perform a Mellin transformation to produce weight (p — 1) harmonic sums such as 9,
Fy, Fg,, etc. For suitable combinations of these elements, the inverse Fourier-Mellin
transform will generate weight p SVHPLs in the complex conjugate pair (w,w*). The

step of determining which combinations of elements correspond to the SVHPLs was
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carried out empirically in this paper. It would be interesting to investigate further
the mathematical properties of these building blocks.

Using our understanding of the Fourier-Mellin transform, we could explicitly eval-
uate the NNLL MHV impact factor qﬁ}g(u, n) which derives from a knowledge of
the three-loop remainder function in the MRK limit [14, 15]. We then went on to
four loops, using a computation of the four-loop symbol [56] in conjunction with ad-
ditional constraints from the multi-Regge limit to determine the MRK symbol up
to one free parameter ag (which we suspect is zero). We matched this symbol to
the symbols of the SVHPLs in order to determine the complete four-loop remainder

function in MRK, up to a number of beyond-the-symbol constants. This data, in
particular ¢ and ¢{*), then led to the NNLL BFKL eigenvalue E's and N3LL im-
pact factor @g’e)g(y, n). These quantities also contain the various beyond-the-symbol
constants. Clearly the higher-loop NNLL MRK terms can be determined just as we
did at LL and NLL, using the master formula (1.2.9) and the SVHPL basis. However,
it would also be worthwhile to understand what constraint can fix ag, and the host of
beyond-the-symbol constants, since they will afflict all of these terms. This task may
require backing away somewhat from the multi-Regge limit, or utilizing coproduct
information in some way.

We also remind the reader that we found that the NNLL BFKL eigenvalue E,EQQL
does not vanish as v — 0, taking the limit after setting n = 0. This behavior
is in contrast to what happens in the LL and NLL case. It also goes against the
expectations in ref. [15], and thus calls for further study.

Although the structure of QCD amplitudes in the multi-Regge limit is more com-
plicated than those of planar N' = 4 super-Yang-Mills theory, one can still hope that
the understanding of the Fourier-Mellin (v, n) space that we have developed here may
prove useful in the QCD context.

Finally, we remark that the SVHPLs are very likely to be applicable to another
current problem in N/ = 4 super-Yang-Mills theory, namely the determination of
correlation functions for four off-shell operators. Conformal invariance implies that
these quantities depend on two separate cross ratios. The natural arguments of the

polylogarithms that appear at low loop order, after a change of variables from the
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original cross ratios, are again a complex pair (w,w*) (or (z,Z)). The same single-
valued conditions apply here as well. For example, the one-loop off-shell box integral
that enters the correlation function is proportional to Ly (z,2)/(z — Z). We expect
that the SVHPL framework will allow great progress to be made in this arena, just

as it has to the study of the multi-Regge limit.



Chapter 2

The six-point remainder function
to all loop orders in the

multi-Regge limit

2.1 Introduction

In recent years, considerable progress has been made in the study of relativistic scat-
tering amplitudes in gauge theory and gravity. A growing set of computational tools,
including unitarity [76], BCFW recursion [77-80], BCJ duality [81,82], and symbol-
ogy [34-37,147], has facilitated many impressive perturbative calculations at weak
coupling. The AdS/CFT correspondence has provided access to the new, previously
inaccessible frontier of strong coupling [21]. The theory that has reaped the most
benefit from these advances is, arguably, maximally supersymmetric N' = 4 Yang-
Mills theory, specifically in the planar limit of a large number of colors. Indeed,
N = 4 super-Yang-Mills theory provides an excellent laboratory for the AdS/CFT
correspondence, as well as for the structure of gauge theory amplitudes in general.
One of the reasons for the relative simplicity of NV = 4 super-Yang-Mills theory is
its high degree of symmetry. The extended supersymmetry puts strong constraints
on the form of scattering amplitudes, and it guarantees a conformal symmetry in

position space. Recently, an additional conformal symmetry was found in the planar

83
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theory [3,21-26]. It acts on a set of dual variables, x;, which are related to the
external momenta k!’ by k; = x; — ;1. At tree level, this dual conformal symmetry
can be extended to a dual super-conformal symmetry [27] and even combined with the
original conformal symmetry into an infinite-dimensional Yangian symmetry [41]. At
loop level, the dual conformal symmetry is broken by infrared divergences. According
to the Wilson-loop/amplitude duality [21,24, 25], these infrared divergences can be
understood as ultraviolet divergences of particular polygonal Wilson loops. In this
context, the breaking of dual conformal symmetry is governed by an anomalous Ward
identity [3,26,83]. For maximally-helicity violating (MHV) amplitudes, a solution to
the Ward identity may be written as,

AMBV — ABDS » exp(R,,), (2.1.1)

where ABDS is an all-loop, all-multiplicity ansatz proposed by Bern, Dixon, and
Smirnov [32], and R, is a dual-conformally invariant function referred to as the re-
mainder function [1,2,2].

Dual conformal invariance provides a strong constraint on the form of R,,. For
example, it is impossible to construct a non-trivial dual-conformally invariant function
with fewer than six external momenta. As a result, Ry = R5 = 0, and, consequently,

the four- and five-point scattering amplitudes are equal to the BDS ansatz. At six

points, there are three independent invariant cross ratios built from distances xfj in
the dual space,
2 ,.2 2 .2 2,2
L1346 512545 L2415 523556 35726 534561
Uy = 5 o5 — s U = 5 o5 — , Uz = 5 o5 — (212)
T14L36 51235345 To5T14 52345456 T36Lo5 53455561

Dual conformal invariance restricts Rg to be a function of these variables only, i.e.
Rs = Rg(uq,us,u3). This function is not arbitrary since, among other conditions, it
must be totally symmetric under permutations of the u; and vanish in the collinear
limit [1,2)].

In the absence of an explicit computation, it remained a possibility that Rg = 0,

despite the fact that all known symmetries allow for a non-zero function Rg(uy, us, us).



CHAPTER 2. Rg TO ALL ORDERS IN THE MULTI-REGGE LIMIT 85

However, a series of calculations have since been performed and they showed defini-
tively that Rg # 0. The first evidence of a non-vanishing Rg came from an analysis
of the multi-Regge limits of 2 — 4 gluon scattering amplitudes at two loops [5]. Nu-
merical evidence was soon found at specific kinematic points [1,2,2], and an explicit
calculation for general kinematics followed shortly thereafter [6,7,7]. Interestingly, the
two-loop calculation for general kinematics was actually performed in a quasi-multi-
Regge limit; the full kinematic dependence could then be inferred because this type
of Regge limit does not modify the analytic dependence of the remainder function on
the u;.

Even beyond the two-loop remainder function, the limit of multi-Regge kinematics
(MRK) has received considerable attention in the context of N' = 4 super-Yang Mills
theory [5,8-20]. One reason for this is that multi-leg scattering amplitudes become
considerably simpler in MRK while still maintaining a non-trivial analytic structure.
Taking the multi-Regge limit at six points, for example, essentially reduces the am-
plitude to a function of just two variables, w and w*, which are complex conjugates
of each other. This latter point has proved particularly important in describing the
relevant function space in this limit. In fact, it has been argued recently [19] that
the function space is spanned by the set of single-valued harmonic polylogarithms
(SVHPLs) introduced by Brown [47]. These functions will play a prominent role in
the remainder of this article.

The MRK limit of 2 — 4 scattering is characterized by the condition that the
outgoing particles are widely separated in rapidity while having comparable transverse
momenta. In terms of the cross ratios u;, the limit is approached by sending one of
the u;, say uq, to unity, while letting the other two cross ratios vanish at the same rate
that u; — 1, i.e. ug = 2(1 —uy) and ug = y(1 — uy) for two fixed variables x and y.
Actually, this prescription produces the Euclidean version of the MRK limit in which
the six-point remainder function vanishes [84-86]. To reach the Minkowski version,
which is relevant for 2 — 4 scattering, u; must be analytically continued around the

~2mily, |, before taking the limit. The remainder function may then be

origin, u; — e
expanded around u; = 1 and the coefficients of this expansion are functions of only

two variables, x and y. The variables w and w* mentioned previously are related to
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x and y by [12,13],

1 ww*

(1+w)(14w*)’ y= 1+ w)(1+w) (2.1.3)

X

Neglecting terms that vanish like powers of 1 —uq, the expansion of the remainder

function may be written as!,

oo (-1
R{™ vk = 2mi Z Zaz log" (1 — uy) [g,(f)(w, w*) + 271 h%)(w,w*)} . (2.1.4)
(=2 n=0

where the coupling constant for planar N' = 4 super-Yang-Mills theory is a =
g*N./(87?). This expansion is organized hierarchically into the leading-logarithmic
approximation (LLA) with n = ¢ — 1, the next-to-leading-logarithmic approximation
(NLLA) with n = £ — 2, and in general the N*LL terms with n = ¢ — k — 1. In this
article, we study the leading-logarithmic approximation, for which we may rewrite
eq. (2.1.4) as

RYMV A = log Zn g(Z (w,w* (2.1.5)

where we have identified n = alog(1l — uy) as the relevant expansion parameter. In
LLA, the real part of Rg vanishes, so hy_,(w,w*) is absent in eq. (2.1.5). Expressions
for géf)l(w, w*) have been given in the literature for two, three [12], and recently up
to ten [19] loops.

An all-orders integral-sum representation for RV ;14 was presented in ref. [12]
and was generalized to the NMHV helicity configuration in ref. [18]. (The MHV case
was extended to NLLA in ref. [15].) The formula may be understood as an inverse
Fourier-Mellin transform from a space of moments labeled by (v,n) to the space of
kinematic variables (w,w*). In the moment space, Rg|ra (v, n) assumes a simple fac-
torized form and may be written succinctly to all loop orders in terms of polygamma
functions. This structure is obscured in (w,w*) space, as the inverse Fourier-Mellin
transform generates complicated combinations of polylogarithmic functions. Never-

theless, these complicated expressions should bear the mark of their simple ancestry.

'We follow the conventions of ref. [14].
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In this article, we expose this inherited structure by presenting an explicit all-orders
formula for Rg|ppa directly in (w,w*) space.

We do not present a proof of this formula, but we do test its validity using several
non-trivial consistency checks. For example, our result agrees with the integral for-
mula mentioned above through at least 14 loops. In ref. [18], Lipatov, Prygarin, and
Schnitzer give a simple differential equation linking the MHV and NMHYV helicity
configurations, 5

0
Ry"™|La = w— RV LA (2.1.6)

ow* ow

which is also obeyed by our formula. In the near-collinear limit, we find agreement

w*

with the all-orders double-leading-logarithmic approximation of Bartels, Lipatov, and
Prygarin [70].

This article is organized as follows. In section 1.2, we review the aspects of multi-
Regge kinematics relevant to six-particle scattering and recall the integral formulas
for Rg|pra in the MHV and NMHV helicity configurations. The construction and
properties of single-valued harmonic polylogarithms are reviewed in section 1.3. An
all-orders expression for Rg|ppa is presented in terms of these functions in section 2.4.
After verifying several consistency conditions of this formula, we examine its near-
collinear limit in section 2.5. Section 2.6 offers some concluding remarks and prospects

for future work.

2.2 The six-point remainder function in

multi-Regge kinematics

We consider the six-gluon scattering process gsgs — 91959492 Where the momenta are
taken to be outgoing and the gluons are labeled cyclically in the clockwise direction.
The limit of multi-Regge kinematics is defined by the condition that the produced

gluons are strongly ordered in rapidity while having comparable transverse momenta,

Y1 > Ys > Ys > Yo, Ip1e| = psi| = |par| = [pad]. (2.2.1)
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In the Euclidean region, this limit is equivalent to the hierarchy of scales,
S12 > S345, S456 > S34, S45, S56 > S23, S61, 5234, (2.2.2)
which leads to the limiting behavior of the cross ratios (2.1.2),
1 — g, ug, uz ~ 0, (2.2.3)

subject to the constraint that the following ratios are held fixed,

U9 us

=0O(1) and y= =0(1). (2.2.4)

1—U1

T= T "
Unitarity restricts the branch cuts of physical quantities like the remainder function
Rg(uq,us,u3) to appear in physical channels. In terms of the cross ratios u;, this
requirement implies that all branch points occur when a cross ratio vanishes or ap-
proaches infinity. If we re-express the two real variables x and y by a single complex

variable w,
1 ww*

T o)+ w) dyE(1+w)(1+w*)’

(2.2.5)

then the equivalent statement in MRK is that any function of (w,w*) must be single-
valued in the complex w plane.

In the Euclidean region, the remainder function actually vanishes in the multi-
Regge limit. To obtain a non-vanishing result, we must consider a physical region in
which one of the cross ratios acquires a phase [5]. One such region corresponds to the
2 — 4 scattering process described above. It can be reached by flipping the signs of

s12 and sy5, or, in terms of the cross ratios, by rotating u; around the origin,

—2m

up — e ug . (2.2.6)

In the course of this analytic continuation, we pick up the discontinuity across a

Mandelstam cut [5,10]. The six-point remainder function can then be expanded in
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the form given in eq. (2.1.4),

co (-1

RV |\ri = 2mi Z Z a’ log"(1 — uy) [gff) (w,w*) + 2mi h,(f)(w,w*)] (227
(=2 n=0

The large logarithms log(1 — ;) organize this expansion into the leading-logarithmic
approximation (LLA) with n = ¢ — 1, the next-to-leading-logarithmic approximation
(NLLA) with n = ¢ — 2, and in general the the N*LL terms with n = ¢ — k — 1.

In refs. [12,15] an all-loop integral formula for RYMV|yrk was presented for LLA
and NLLAZ,

€R+1W6|MRK = COS TTWgp

n +oo w(v,n)
a W\ o dv » 1
+1i= —1"(—) / — | w]*" Preq (v, (— ) )
PO S o Bnn) (e
(2.2.8)

Here, w(v, n) is the BFKL eigenvalue and ®gee (v, n) is the regularized impact factor.

They may be expanded perturbatively,

w(v,n) = —a (Em +a El(,lr)L + a2 El(,QT)L + (’)(a3)) , (2.2.9)
Preg(v,n) = 1+ a®,(v,n) + a? O, (v,n) +a* O, (v,n) + Oa®).

The leading-order eigenvalue, E, ,,, was given in ref. [§] and may be written in terms

of the digamma function ¥(z) = & log I'(2),

z

1
Eu,n = 3 |n| 2
212 4+ ”Z

i i

+ 1 (1+z’u+ 7) + 1 (1 — v+ 7) —2¢(1).  (2.2.10)

In this article, we will only need the leading-order terms, but, remarkably, the higher-
order corrections listed in (2.2.9) may also be expressed in terms of the ¢ function
and its derivatives [15,19].

2There is a difference in conventions regarding the definition of the remainder function. What
we call R is called log(R) in refs. [12,15]. Apart from the zeroth order term, this distinction has no
effect on LLA terms. The first place it makes a difference is at four loops in NLLA, in the real part.
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Returning to (2.2.8), the remaining functions are,

1 U 1
Wap = gVK(a) 10gu—3 = gVK(a) log |w|?,
? ) (2.2.11)
5 (a) log (z3) = 2 7 (a) log 1
= —7k(a) log(zy) = <k (a
YK g\Ty S’YK g 1+ wf’

and the cusp anomalous dimension, which is known to all orders in perturbation
theory [57],

vr(a) = Z’y%)ae =4a—-4Ga*+22¢ad’ — (B2G+4@)at+-- . (22.12)

(=1

In addition, there is an ambiguity regarding the Riemann sheet of the exponential
factor on the right-hand side of (2.2.8). We resolve this ambiguity with the identifi-

cation,

1 W(V7n) —imu v.,n 1 |1 + w‘2 w(y7n)
(— uzug) s eTimw(vm) (1_u1 ol ) . (2.2.13)

The im factor in the right-hand side of eq. (2.2.13) generates the real parts hY in
eq. (2.2.7). For example, at LLA and NLLA, the following relations [19] are satisfied?,

hy_)l(w,w*) =0,
/1 1 |1+w|4
¢ 1 /—1
hg)Q(ww):Tgé)( )+1—67§<)9§2)( w’) log B (2.2.14)

-2

1
22 1£k17 t>2,

k=

where vﬁ(l) = 4 from eq. (2.2.12). Making use of eq. (2.1.5), we present an alternate

3Note that the sum over k in the formula for hy_)Q would not have been present if we had used

the convention for R in refs. [12,15].
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form of these identities which will be useful later,

270 1,01 A 11+ wl*
R RMHV _ -2 Y - K 1 RMHV
e (Bg™ Inwra) log(1 — uy) (2’7 onn 16 TR Tup o A

272

(2)
_l’_ -
log?(1 — uy)

* 2
o (ww') = 5 (Bg"V i)

N | —

(2.2.15)

The term proportional to g§2)(w, w*) addresses the special case of { = 2 in eq. (2.2.14).
In what follows, we will focus on the leading-logarithmic approximation of (2.2.8),

which takes the form,

oo ; i
400 dl/wzu+n/2 w* n/2 l(

MHV _ @ 1\
T DV I e

n=—oo

The v-integral may be evaluated by closing the contour and summing residues*. To
perform the resulting double sums, one may apply the summation algorithms of
ref. [61], although this approach is computationally challenging for high loop orders.
Alternatively, an ansatz for the result may be expanded around |w| = 0 and matched
term-by-term to the truncated double sum. The latter method requires knowledge of
the complete set of functions that might arise in this context. In ref. [19], it was argued
that the single-valued harmonic polylogarithms (SVHPLs) completely characterize
this function space, and, using these functions, eq. (2.2.16) was evaluated through
ten loops.

So far we have only discussed the MHV helicity configuration. We now turn to the
only other independent helicity configuration at six points, the NMHV configuration.
In MRK, the MHV and NMHV tree amplitudes are equal [18,87]. It is natural,

therefore, to define an NMHYV remainder function, analogous to eq. (2.1.1),

A6NMHV|MRK = AGBDS X eXp(RNMHv> . (2217)

4For the special case of n = 0, our prescription is to take half the residue at v = 0.
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In ref. [18], it was argued that the effect of changing the helicity of one of the positive-
helicity gluons® was equivalent to changing the impact factor for that gluon by means

of the following replacement,

1 1
— (2.2.18)
—w+ 3 w+ 5
Referring to eq. (2.2.16), this replacement leads to an integral formula for RYMUV|;p 4|

+oo dv wiu+n/2 w*il/fn/Q

RYMIV oA = —%“ i (—1)" /_Oo Ok [(1—u1)“E”*"—1] . (2.2.19)

n=—oo

Following refs. [18] and [19], we can extract a simple rational prefactor and write

eq. (2.2.19) in a manifestly inversion-symmetric form,

271 n' 1 1
RNMHV } : @) * *) & _

(2.2.20)
for some single-valued functions f®) (w,w*). It is possible to obtain expressions for
O (w, w*) directly from eq. (2.2.19) by means of the truncated series approach out-
lined above, for example. A simpler method is to make use of the following differ-
ential equation, which may be deduced by comparing the two expressions (2.2.16)
and (2.2.19),

w2 RY™Viiia = wiRﬁNMHVmA. (2.2.21)

ow* ow

In principle, solving this equation requires the difficult step of fixing the constants of

integration in such a way that single-valuedness is preserved. As discussed in ref. [19],
this step becomes trivial when working in the space of SVHPLs, which are the subject

of the next section.

5Up to power-suppressed terms, helicity must be conserved along high-energy lines, so the helicity
flip must occur on one of the lower-energy legs, 4 or 5.
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2.3 Review of single-valued harmonic
polylogarithms

Harmonic polylogarithms (HPLs) [48] are a class of generalized polylogarithmic func-
tions that finds frequent application in multi-loop calculations. The HPLs are func-
tions of a single complex variable, z, which will be related to the kinematic variable
w by z = —w. We will continue to use z throughout this section in order to make
contact with the existing mathematical literature. In general, the HPLs have branch
cuts that originate at z = —1, 2z = 0, or z = 1. In the present application, we will
consider the restricted class of HPLs® whose branch points are either z = 0 or z = 1.
To construct them, consider the set X* of all words w formed from the letters zq
and z;, together with e, the empty word”. Then, for each w € X*, define a function

H,,(z) which obeys the differential equations,

0 ~ Hy(2) 0 ~ Hy(2)
5 How(2) . and nglw(z) =1 (2.3.1)
subject to the following conditions,
1. .
H.(z) =1, Hyn(2) = alog z, and ll_)l% Hyzan(2) = 0. (2.3.2)

There is a unique family of solutions to these equations, and it defines the HPLs. For

w # x{}, they can be written as iterated integrals,

H,(2")

Z/

H, (%)
1—2z

(2.3.3)

Ho(2) :/ dz' and Hmw:/ dz'
0 0

6In the mathematical literature, these functions are sometimes referred to as multiple polyloga-
rithms in one variable. With a small abuse of notation, we will continue to use the term “HPL” to
refer to this restricted set of functions.

"Context should distinguish the word w from the kinematic variable with the same name.
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The structure of the iterated integrals endows the HPLs with an important property:

they form a shuffle algebra. The shuffie relations can be written as,

Hy,, (2) Huy(2) = Y Hyl(2), (2.3.4)

wew Mwg

where wiimwy is the set of mergers of the sequences w; and ws that preserve their
relative ordering. The shuffle algebra may be used to remove all zeros from the right
of an index vector in favor of some explicit logarithms. For example, it is easy to

obtain the following formula for HPLs with a single x1,

H:chmcg” — ];0 W j on ngJrjxl . (235)

After removing all right-most zeros, the Taylor expansions around z = 0 are particu-

larly simple and involve only a special class of harmonic numbers [48],

© 1
Z
Hypy o oom (2) = Z l_lzm2 ..... m (L —1), m; >0, (2.3.6)
=1
where Z,,,, . m,(n) are Euler-Zagier sums [50,51], defined recursively by
~ 1
Zn)=1 and Z,,  m,(n)= — Zmgomy, (L — 1) (2.3.7)

Note that the indexing of the weight vectors my, ..., my in egs. (2.3.6) and (2.3.7) is
in the collapsed notation in which a subscript m denotes m — 1 zeros followed by a
single 1.

The HPLs are multi-valued functions; nevertheless, it is possible to build specific
combinations such that the branch cuts cancel and the result is single-valued. An
algorithm that explicitly constructs these combinations was presented in ref. [47] and

reviewed in ref. [19]. Here we provide a very brief description.
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The SVHPLs L, (z) are generated by the series,

L(z)=Lx(2)Ly(2) = > Lu(2)w, (2.3.8)

where,

Lx(z) = Y Hy(z)w,  Ly(s) = Y Hyw)(2)d. (2.3.9)

weX* wey*
Here ~ : X* — X* is the operation that reverses words, ¢ : Y* — X* is the map
that renames y to x, and Y* is the set of words in {yo, 1}, which are defined by the

relations,

=z
o (2.3.10)

Z(o, y)nZ (Yo, y1) " = Z(wo, 1) w1 Z (w0, 31),

where Z(xg,x1) is a generating function of multiple zeta values,

Z(xo,11) = Y C(w)w, (2.3.11)

weX*
The ((w) are regularized by the shuffle algebra and obey ((w # x1) = H, (1) and
Alternatively, one may formally define these functions as solutions to simple dif-

ferential equations, i.e. the £,(z) are the unique single-valued linear combinations of

functions H.,, (2)H,,(Z) that obey the differential equations [47],

and —Low(z) =

(2.3.12)

1
L(z)=1, Lon(2) = I log" |z|? and lgl}) Lozen(2) =0. (2.3.13)
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The SVHPLs also obey differential equations in z. Both sets of equations are repre-

sented nicely in terms of the generating function (2.3.8),

%/j(z): (@+ o1 >,C(z) and %E(z)zﬁ(z) (y—_°+ & ) (2.3.14)

z 11—z z 1—7%

2.4 Six-point remainder function in the

leading-logarithmic approximation of MRK

The SVHPLs introduced in the previous section provide a convenient basis of func-
tions to describe the six-point remainder function in MRK. In ref. [19], these functions
were used to express the result through ten loops in LLA and through nine loops in
NLLA. Here we use the SVHPLs to present a formula in LLA to all loop orders.

2.4.1 The all-orders formula

Recall from the previous section that we defined X* to be the set of all words w in
the letters xy and x; together with the empty word e. Let C(X) be the complex
vector space generated by X* and let C(L) be the complex vector space spanned by
the SVHPLs, £,, with w € X*. Denote by C(X)[[n]] and C(L)[[n]] the rings of formal
power series in the variable n = alog(l — uy) with coefficients in C(X) and C(L),
respectively. There is a natural map, p, which sends words to the corresponding
SVHPLs,

p: CX) )] — CL) [l

w = L.

(2.4.1)

Using these ingredients, we propose the following formulas for the MHV and NMHV
remainder functions in MRK and LLA,
M 2me

1
RMHV = — <XZMHV - = ) 2.4.2
6 |LLA log(l _ul) P 2510177 ) ( )

211 1 1 1
RNMHV _ ( X ZNMHV) % 1 1
6 ‘LLA 10g(1 _ Ul) 1+ w* Pl To + <w7 w ) A w7 w* ( 3)
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where the formal power series X', ZNMEV ¢ C(X)[[n]] are,

1 ron — 1 -t
X = efmn{l——$1<e )] )
To

ZMHV _ li - k_l(_l)n bne1 % 22—k 3 k

k=1 n=0 m=0
[e'S) k—2 n m—
ZNMHV _ 12 T (_1)nxlgfn72 Z &3(7z m) 77k~
2 k=2 n=0 m=0 (k —m —1)!

Here, the 3(n,m) are particular combinations of ¢ values of uniform weight n. They

are related to partial Bell polynomials, and are generated by the series,

exp [y Z Q%H:c%“] = Z Z 3(n,m)z"y™. (2.4.5)
k=1

n=0 m=0

An explicit formula is,

= Y J[>55— CQ’“ : (2.4.6)

BEP(n,m) 1

where P(n,m) is the set of n-tuples of non-negative integers that sum to m, such

that the product of  values has weight n,

P(n,m) = {{51,“' 7Bn}‘ﬁi € No, Zﬁi =m, Z(?i%—l)ﬁi :n} . (247)

Similarly, an expression for the kth term of X can be given as,

o0 k a;—1

=Y (s Y e (248)

k=0 \ n=0 aGQ J
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where (n) is the set of integer compositions of n,

Q(n) = {{al,ag,--- ,am}’@i €z, Zai = n} : (2.4.9)

Excluding the one-loop term in eq. (2.4.2), the arguments of the p functions fac-

torize into the product of a (-free function, X', and a (-containing function, Z(MNMHV

The (-free function is simpler and its first few terms read,

1 1 1 1
X =1+ <§$0+3€1)77+ (§$g+§$0$1+§$1$0+l’%> iR

1

I 5 15 1 9 1 o 1 L, 3\ .3
+ | 2y + 2o + — Tor1T0 + < Xox] + < T1TH + 5 T1Tox1 + 5 rixo+ 27| N

48 8 4 2 6

+ P
(2.4.10)

The (-containing functions are slightly more complicated. Their first few terms are,

1 1 1 1 1
ZMEV. — —$177+Zx1130U2+1—6$15537]3+ <%l’1ﬂfg_§§3$1> NS

2
1 1 1 1 1
ZNMHV Z—lxln2+1—6x1xon3+%x1x§n4+ (ﬁxlxg—éﬁ(gml) 775—1—... .

(2.4.11)

Using egs. (2.4.10) and (2.4.11), one may easily extract gée_)l for ¢ = 1,2,3,4 (cf.

egs. (2.1.5) and (2.4.2)). The one loop term vanishes, g(()l) = 0, and the other functions
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read,
@ _ 1, 1, 1,
g1 s + 1 =10 + 5 B
(3):i£ 15 15 iﬁ 1/; lﬁ lﬁ
92 16 ~001 + g oo + 1 FoL + T + 1 Frol + 1 FLo + 5 1Lt
W _ 1, 1, 1, 1, lr 1e
gs 9g ~000.1 + 35 00,10 + 16 FooLt + 35 F0.1,0.0 + g FoLo + g F0.110
+1£ +1£ +1£ —l—lﬁ +1£ —f-l/J
4 Fon e bro00 5 Aoor T g bono T Ao+ qe A0
+ L L + L L + L L ! GL
g Furor b T b = oG b

(2.4.12)

Similarly, one may extract the first few f (cf. eqs. (2.2.20) and (2.4.3)), finding
fM =0 and,

O = Lo,

f(g) = é»CO,O,l + % Lo+ i Lo,

FAREE 3% Loo01+ 3% Loo10+ éﬁo,o,m + % Lo100+ %&),1,0,1 + % Lo1,1,0
+ iﬁo,l,m )

f(5) = é Lo,0,001 + % Lo0,01,0+ 3% Loo01,1 + ﬁ Lo0,1,00 + % Lo0,1,01
+ 3—12 Loo,1,1,0 + éﬁo,o,l,l,l + % L1000 + 2—14 Lo1001 + % Lo,1,0,1,0
+ %5071,0,1,1 + % Lo1,1,00 + é Loi101+ 1_16 Loiii0+ }Lﬁo,m,m
- Gl

(2.4.13)

We do not offer a proof that egs. (2.4.2) and (2.4.3) are valid to all orders in
perturbation theory. One may easily check that their expansions through low loop
orders, as determined by eqgs. (2.4.12) and (2.4.13), match the known results [12,19].

It is also straightforward to extend the above calculations to ten loops and confirm
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that the results are in agreement with those of ref. [19]. Moreover, we have verified
that the truncated series expansion of eq. (2.4.2) as |w| — 0 agrees with that of
eq. (2.2.16) through 14 loops.

A comparison through such a high loop order is important in order to confirm the
absence of multiple zeta values with depth larger than one (hereafter simply “MZVs”).
To see why these MZVs should be absent, consider performing the sum of residues
in eq. (2.2.16). Transcendental constants can only arise from the evaluation the 1)
function and its derivatives at integer values. The latter are given in terms of rational
numbers (Euler-Zagier sums) and ordinary ¢ values. Therefore, it is impossible for
the series expansion of eq. (2.2.16) to contain MZVs.

On the other hand, we would naively expect MZVs to appear in the series expan-
sion of eq. (2.4.2) at 12 loops and beyond. This expectation is due to the fact that, for
high weights, the y alphabet of eq. (2.3.10) contains MZVs, and, starting at weight
12, these MZVs begin appearing explicitly in the definitions of the SVHPLs. In order
for eq. (2.4.2) to agree with eq. (2.2.16), all the MZVs must conspire to cancel in
the particular linear combination of SVHPLs that appears in (2.4.2). We find that
this cancellation indeed occurs, at least through 14 loops. It would be interesting to
understand the mechanism of this cancellation, but we postpone this study to future

work.

2.4.2 Consistency of the MHV and NMHYV formulas

The MHV and NMHV remainder functions are related by the differential equa-

tion (2.2.21),
0 0

Ee Rg™ s = wa_wRﬁNMHV|LLA - (2.4.14)
Recalling that (w,w*) = (—z, —2), it is straightforward to use the formulas (2.3.14)

to check that eqs. (2.4.2) and (2.4.3) obey this differential equation. To see how this

w*

works, consider eq. (2.4.2), which we write as,

6 |LLA = ﬁp 90($0,$1)$0 +91(930,351)5U1] ) (2-4-15)
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for some functions go(xg,z1) and g;(zo,x1) which can be easily read off from eq.
(2.4.2). The w* derivative acts on SVHPLs by clipping off the last index and multi-
plying by 1/w* if that index was an z or by —1/(1 + w*) if it was an ;. There are
also corrections due to the y alphabet at higher weights. Importantly, yo = xo, so
these corrections only affect the terms with a prefactor 1/(1 + w*). This observation

allows us to write,

*

0 271 w
* RMHV [ ~ ]
v ow* ™ ° L log(1 — ) (%0, 21) 1+ w* (%0, 71)
= el p[ ! ( ) (2.4.16)
= To, X 4.
log(l —ul) l—i—w*go 01

+ 7 (leo.m) = i)

Due to the complicated expression for yy, it is difficult to obtain an explicit formula for
G1(xo, x1). Thankfully, we may employ a symmetry argument to avoid calculating it
directly. Referring to eq. (2.2.16), RY™V|; o has manifest symmetry under inversion
(w,w*) <> (1/w, 1/w*), or, equivalently, (v,n) <> (—v, —n). The differential operator
w* O+ flips the parity, so eq. (2.4.16) should be odd under inversion. Since the two
rational prefactors on the second line of eq. (2.4.16) map into one another under

inversion, we can infer that their coefficients must be related®,

o () = —alow) + o), (2.4.17)

w’ w*
where go(w, w*) = p(go(zo, 1)) and ¢ (w, w*) = p(g1 (o, x1)). It is easy to check that
this identity is satisfied for low loop orders®.

Using these symmetry properties, we can write,

L0 v, 2mi 1 ) 11
v 8w*R6 a = log(1 —up) 1 +w*p[gg(x0,x1)] (w,w?) & w’ w* '

(2.4.18)

8p does not generate any rational functions which might allow these terms to mix together.

9A general proof would be tantamount to showing that eq. (2.4.2) is symmetric under inversion.
The latter seems to require another intricate cancellation of multiple zeta values. We postpone this
investigation to future work.
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Turning to the right-hand side of eq. (2.4.14), we observe that the differential operator
w 0y, acts on eq. (2.4.3) by removing the leading xy and flipping the sign of the second

term,

9 Nvmv 2mi 1 NMHV L1
— = XZ } - - —, — :
wawai |LLA lOg(l—Ul) 1+w*p|: (U},U} ) A 'LU”LU*
(2.4.19)

Comparing eq. (2.4.18) and eq. (2.4.19), we see that eq. (2.4.14) is only satisfied if

go(wo, 21) = XZNMHV_ To verify that this is true, we must extract go(xg, ;) from
RY™V|1pa. To this end, collect all terms in the argument of p with at least one trailing

xo and remove that xg. This procedure gives,

& k—2 L 92m—k+1 i
golwo, 1) = 5*; 7 Z()(_l)n%_n_ Z_O T —monromm ) (2.4.20)

— XZNMHV

so we conclude that eq. (2.4.14) is indeed satisfied.

2.5 Collinear limit

In the previous section, we proposed an all-orders formula for the MHV and NMHV
remainder functions in MRK. The expressions are effectively functions of two vari-
ables, w and w*. The single-valuedness condition allows for these functions to be
expressed in a compact way, but the result is still somewhat difficult to manipulate.

In this section, we study a simpler kinematical configuration: the collinear corner
of MRK phase space. To reach this configuration, we begin in multi-Regge kinematics
and then take legs 1 and 6 to be nearly collinear. In terms of the cross ratios w;, this
limit is

us

~0, (2.5.1)

1 —uq, ug, uz ~ 0, x = =0(1), yzl -
—u
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or, in terms of the (w,w*) variables, it is equivalent to,
1—u;~ 0, |w| ~ 0, w e~ w*. (2.5.2)

As we approach the collinear limit, the remainder function can be expanded in
powers of w, w*, and log|w|. The leading power-law behavior is proportional to
(w + w*). Neglecting terms that are suppressed by further powers of |w|, the result
is effectively a function of a single variable, £ = nlog|w| = alog(1l — u;) log |w|, and

is simple enough to be computed explicitly, as we show in the following subsections.

2.5.1 MHV

In the MHV helicity configuration, the remainder function is symmetric under conju-
gation w <> w*. It also vanishes in the strict collinear limit. These conditions suggest

a convenient form for the expansion in the near-collinear limit,

271 it
RMHV ol = § k+1 MHV 1 2.5.3
6 " |LLA, coll log(1 — ) (w+ w” 2 Ui 77 0g |w]) ( )

for some functions ¥V that are analytic in a neighborhood of the origin. We have
neglected further power-suppressed terms, i.e. terms quadratic or higher in w or w*.
The index k labels the degree to which ¥V is subleading in log |w|. For example, the
leading logarithms are collected in r)™V the next-to-leading logarithms are collected
in rMEV ete.

Starting from eq. (2.4.2), it is possible to obtain an explicit formula for r}HV. To
begin, we note that it is sufficient to restrict our attention to the terms proportional
to w — the conjugation symmetry guarantees that they are equal to the terms pro-
portional to w*. The main observation is that only a subset of terms in eq. (2.4.2)
contributes to the power series expansion at order w. It turns out that the relevant
subset is simply the set of SVHPLs with a single x; in the weight vector. Roughly
speaking, each additional x; implies another integration by 1/(14w), which increases
the leading power by one.

The equivalent statement is not true for w*, i.e. SVHPLs with an arbitrary number
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of x1’s contribute to the power series expansion at order w*. This asymmetry can be
traced to the differences between the = and y alphabets: referring to eq. (2.3.9), the
x alphabet indexes the HPLs with argument w and the y alphabet indexes the HPLs
with argument w*.

We are therefore led to consider the terms in eq. (2.4.2) with exactly one ;.

Eq. (2.4.4) shows that these terms may be obtained by dropping all x;’s from X',

2mi ) 1
RV A o, = (5%VZMHV—-— ). 2.5.4
6 |LLA, 1. 10g(1 —u1) p\€E 296‘17] ( )
Since no ¢ terms appear in SVHPLs with a single z1, it is straightforward to express
them in terms of HPLs,

" L m 4 _
Exgxlxgl - ZO ﬁH;onglmlxg*j + ZO ﬁHazga:lxg“j Hzo : (255)
j= j=

Here we have simplified the notation by defining H,, = H,,(—w) and H,, = H,,(—w").
Next, we recall eq. (2.3.5), in which we used the shuffle algebra to expose the explicit
logarithms,
~ (=17 (et
H$“I1£Em = = ., Hm JH n j . 256
01T ; (m _ ])! j + ( )
Finally, egs. (2.3.6) and (2.3.7) implies that the series expansions for small w have
leading term,

Hr, (—w) = —w + O(w?) . (2.5.7)

z5T1

Combining egs. (2.5.4)-(2.5.7) and applying some hypergeometric function iden-

tities, we arrive at an explicit formula for ™V,

1
MHV _
T (x)—§50k
k n 2k—n—m 2m+] k—1

D2 Z m—i-j— (m+j—k)" 3(n,m) "2 pEITEIT (0) 1 (2v/)

n=0 m=0 j=k—m

(2.5.8)
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(a,b)

In this expression, the I; are modified Bessel functions and the ;™ are Jacobi poly-

nomials, which can be defined for non-negative integers j by the generating function,

Ca —b
o 2a+b(1—t—|—\/t2—2tz+1> <1+t+\/t2—2tz+1>
PO

— V2 =2tz +1

J

. (2.5.9)

It is easy to extract the first few terms,

AV = 5 [1- 1 (2va)]
() = i (2vx) , (2.5.10)

AMV() = B (2VE) — 1o 1 (2V3)

The leading term, 7)™V corresponds to the double-leading-logarithmic approxima-

tion (DLLA) of ref. [70],
REAHV|DLLA = iTa (w + w*) [1 — ]() <2 7710g |w|>} s (2511)

and is in agreement with the results of that reference.

Only for k& > 2 do ¢ values begin to appear in "IV, Moreover, modified Bessel
functions with odd indices only appear in the (-containing terms. To see this, notice
that the (-free terms of eq. (2.5.8) arise from the boundary of the sum with n = m = 0,
in which case a = b =k — j in eq. (2.5.9). When a = b, Pf’b(O) = 0 for odd j since
eq. (2.5.9) reduces to a function of ¢* in this case. It follows that the (-free pieces of
¥V have no modified Bessel functions with odd indices.

Equations (2.5.3) and (2.5.8) provide an explicit formula for the six-point remain-
der function in the near-collinear limit of the LL approximation of MRK. If the sum
in eq. (2.5.3) converges sufficiently quickly, then it should be possible to evaluate the
function numerically by truncating the sum at a finite value of k, k.. A numerical
analysis indicates that for |w| < 1 and n < 20, kpax =~ 100 is adequate to ensure
convergence.

The numerical analysis also indicates that R?HV\LLAy coll. Increases exponentially
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10}

HDMHV
RG |LLA, coll. 0

Figure 2.1: The MHV remainder function in the near-collinear limit of the LL ap-
proximation of MRK. It has been rescaled by an exponential damping factor. See
eq. (2.5.12).

as a function of 7, and that the extent of this increase depends strongly on the value

of log |w|. We find empirically that the rescaled function

Ui ) log(1 —u)
(l/m 27 (w + w*)

attains reasonable uniformity in the region 0 < n < 10 and —40 < log |w| < 0. This

RY™V |1 LA, coll. = €xp (— Rg"™ |tra, con (2.5.12)

particular rescaling carries no special significance, as alternatives are possible and
may be more appropriate in different regions. In eq. (2.5.12) we have also divided by
the overall prefactor of eq. (2.5.3) so that }A%lgdHV\LLA, coll. 18 truly a function of the two

variables ) and log |w|. The results are displayed in fig. 2.1.
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2.5.2 NMHV

A similar analysis can be performed for the NMHV helicity configuration. The situa-
tion is slightly more complicated in this case because the NMHV remainder function
is not symmetric under conjugation w <> w*. One consequence is that its expan-

sion in the collinear limit requires two sequences of functions, which we choose to

parameterize by rAMHV and FNMHV
RGNMHV|LLA coll. = L (w + W*) Z 77k+2 T/TMH\/(?? log |w|)
i log(1 — uy)

F=0 (2.5.13)
+ w* an NMHV nlog ’w|)

Contributions to the power series at order w arise from the first term of eq. (2.4.3)
(the second term has an overall factor of w*), and, as in the MHV case, only from
the subset of SVHPLs with a single x; in the weight vector. It is therefore possible
to reuse eqs. (2.5.5)-(2.5.7) and obtain an explicit formula for the coefficient of w,

rAMHV The result is,

n 2k—n—m o2m+i—k
[ (—2)m 3(n, m) 2™ kG2

(m 7 = k)! (2.5.14)

< PITHSIN (0) 1 (217

The first few terms are

ANV () = — fh(2f of

I
&F3

ANV () = T2V -

(2Vr), (2.5.15)

BV,

As previously mentioned, it is not so straightforward to extract the coefficient of
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w* in this way. We can instead make progress by exploiting the differential equa-

tion (2.2.21). In terms of the functions rMHV  pNMHV = and FNMHV the equations
read,
o T’MHV(J}) — 2TNMHV( )+ o T,NMHV(J;) (2 . 16)
O FNMIY () = 9 pMHV () 4 9 pNMHV (g o

The first of these equations is automatically satisfied and confirms the consistency of

eq. (2.5.8) and eq. (2.5.14). The second equation determines 7y ™HY

up to a constant
of integration which can be determined by examining the n = —1 term of eq. (2.2.19).

The solution is,

n 2k—n—m 2m+] k
|: 3(71, m) :L‘m_k+(j+1)/2

AV ) =3T3 > oaim

n=0 m=0 j=—k— (2.5.17)

I OVANCN
The first few terms are

MY (z) = 2 - Vol (2V7)
FNMIV () _ _1\/5[1 (2v7) | (2.5.18)

FIMIV 2y — 2\/_ I (2vx) — —\/_13 (2vz) .

Modified Bessel functions with even indices only appear in the (-containing terms of

raMHV and FRMHV The explanation of this fact is the same as in the MHV case,

except that the parity is flipped due to the shifts of the indices of the modified Bessel
functions in eq. (2.5.14) and eq. (2.5.17).

2.5.3 The real part of the MHYV remainder function in NLLA

As described in section 2.2, the real part of the MHV remainder function in NLLA is
related to its imaginary part in LLA. In the collinear limit, the relation (2.2.15) may
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be written as,

Re (R§"™Y |NLLa, con) =

i 1,01 1 MY
— (P - Sl R o
7T2

2
e wra—— lo .
10g2(1 —Ul) glwl

(2.5.19)

Since RY™V|p1a vanishes like (w+w*) in the strict collinear limit, the quadratic term
(RMV]114)? in eq. (2.2.15) only contributes to further power-suppressed terms in
the near-collinear limit and is therefore omitted from eq. (2.5.19)!°. We may write
eq. (2.5.19) as,

42 o
Re (RIGVIHV|NLLA, Coll.) = —m(w + w") Z g, (17 log |w|) , (2.5.20)
Bt k=0
where, . . .
qr(z) = 1 x 6ok + 3 (k —z)r™V(z) + 3 x,rY(2) . (2.5.21)

The leading term, ¢, corresponds to the real part of the next-to-double-leading-
logarithmic approximation (NDLLA) of ref. [70]. Our results agree'’ with that refer-

ence and read,

72 (w4 w*)n

Re (RY™|xpria) = To2(1— )

{—nlog\w\fo (2 nlog!wl)

+ /nlog|w| I (2 nlog|w|>} :

(2.5.22)

2.6 Conclusions

In this article, we studied the six-point amplitude of planar ' = 4 super-Yang-Mills
theory in the leading-logarithmic approximation of multi-Regge kinematics. In this

limit, the remainder function assumes a particularly simple form, which we exposed

0As a consequence, eq. (2.5.19) does not depend on the conventions used to define R, i.e. the
equation is equally valid if R is replaced by exp(R).
"The agreement requires a few typos to be corrected in eq. (A.16) of ref. [70].
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to all loop orders in terms of the single-valued harmonic polylogarithms introduced by
Brown. The SVHPLs provide a natural basis of functions for the remainder function in
MRK because the single-valuedness condition maps nicely onto a physical constraint
imposed by unitarity. Previously, these functions had been used to calculate the
remainder function in LLA through ten loops. In this work, we extended these results
to all loop orders.

In MRK, the tree amplitudes in the MHV and NMHYV helicity configurations are
identical. This observation motivates the definition of an NMHV remainder function
in analogy with the MHV case. We examined both remainder functions in this article,
and proposed all-order formulas for each case. In fact, these formulas are related: as
described in ref. [18], the two remainder functions are linked by a simple differential
equation. We employed this differential equation to verify the consistency of our
results.

We also investigated the behavior of our formulas in the near-collinear limit of
MRK. The additional large logarithms that arise in this limit impose a hierarchical
organization of the resulting expansions. We derived explicit all-orders expressions
for the terms of this logarithmic expansion. The results are given in terms of modified
Bessel functions.

We did not provide a proof of the all-orders result, but we verified that it agrees
through 14 loops with an integral formula of Lipatov and Prygarin. The agreement
of these formulas at 12 loops and beyond requires an intricate cancellation of multiple
zeta values. It would be interesting to understand the mechanism of this cancella-
tion. There are several other potential directions for future research. For example, in
refs. [38-40], Alday, Gaiotto, Maldacena, Sever, and Vieira performed an OPE analy-
sis of hexagonal Wilson loops which in principle should provide additional cross-checks
of our results. It should also be possible to study the all-orders formula as a function
of the coupling and, in particular, to examine its strong-coupling expansion. We have
begun this study in the collinear limit and presented our initial results in fig. 2.1. A
first attempt to compare the six-point remainder function in MRK at strong and weak
coupling was made by Bartels, Kotanski, and Schomerus [11]. Further analysis of our

all-orders formula should allow for an important comparison with this string-theoretic
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calculation.



Chapter 3

Leading singularities and off-shell

conformal integrals

3.1 Introduction

The work presented in this paper is motivated by recent progress in planar N = 4
super Yang-Mills (SYM) theory in four dimensions, although the methods that we
exploit and further develop should be of much wider applicability.

N =4 SYM theory has many striking properties due to its high degree of sym-
metry; for instance it is conformally invariant, even as a quantum theory [88], and
the spectrum of anomalous dimensions of composite operators can be found from an
integrable system [89]. Most strikingly perhaps, it is related to IIB string theory
on AdS;xS° by the AdS/CFT correspondence [90]. This is a weak/strong coupling
duality in which the same physical system is conveniently described by the field the-
ory picture at weak coupling, while the string theory provides a way of capturing
its strong coupling regime. The strong coupling limit of scattering amplitudes in
the model has been elaborated in ref. [21] from a string perspective. The formulae
take the form of vacuum expectation values of polygonal Wilson loops with light-like

edges.

112
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This duality between amplitudes and Wilson loops remains true at weak cou-
pling [1,2,24,25], extending to the finite terms in A’ = 4 SYM previously known re-
lations between the infrared divergences of scattering amplitudes and the ultra-violet
divergences of (light-like) Wilson lines in QCD [91]. Furthermore, it was recently
discovered that both sides of this correspondence can be generated from n-point cor-
relation functions of stress-tensor multiplets by taking a certain light-cone limit [92].

The four-point function of stress-tensor multiplets was intensely studied in the
early days of the AdS/CFT duality, in the supergravity approximation [93] as well
as at weak coupling. The one-loop [94] and two-loop [95] corrections are given by
conformal ladder integrals.

A Feynman-graph based three-loop result has never become available because of
the formidable size and complexity of multi-leg multi-loop computations. Already the
two parallel two-loop calculations [95] drew heavily upon superconformal symmetry.
However, a formulation on a maximal (‘analytic’) superspace [96,97] makes it apparent
that the loop corrections to the lowest x-space component are given by a product of a
certain polynomial with linear combinations of conformal integrals, cf. ref. [98-101].
Then in ref. [102,103], using a hidden symmetry permuting integration variables and
external variables, the problem of finding the three-loop integrand was reduced down
to just four unfixed coefficients without any calculation and further down to only one
overall coefficient after a little further analysis. This single overall coefficient can then
easily be fixed e.g. by comparing to the MHV four-point three-loop amplitude [32]
via the correlator/amplitude duality or by requiring the exponentiation of logarithms
in a double OPE limit [102].

Beyond the known ladder and the ‘tennis court’, the off-shell three-loop four-point
correlator contains two unknown integrals termed ‘Easy’ and ‘Hard’ in ref. [102].
In this work we embark on an analytic evaluation of the Easy and Hard integrals

postulating that

e the integrals are sums ) . R; F;, where R; are rational functions and F; are pure

functions, i.e. Q-linear combinations of logarithms and multiple polylogarithms
[104],
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e the rational functions R; are given by the so-called leading singularities (i.e.

residues of global poles) of the integrals [105],

e the symbol of each F; can be pinned down by appropriate constraints and then

integrated to a unique transcendental function.

The principle of uniform transcendentality, innate to the planar N' =4 SYM theory,
implies that the symbols of all the pure functions are tensors of uniform rank six.
Our strategy will be to make an ansatz for the entries that can appear in the symbols
of the pure functions and to write down the most general tensor of uniform rank
six of this form. We then impose a set of constraints on this general tensor to pin
down the symbols of the pure functions. First of all, the tensor needs to satisfy the
integrability condition, a criterion for a general tensor to correspond to the symbol
of a transcendental function. Next the symmetries of the integrals induce additional
constraints, and finally we equate with single variable expansions corresponding to
Euclidean coincidence limits. The latter were elaborated for the Easy and Hard
integrals in ref. [106, 107] using the method of asymptotic expansion of Feynman
integrals [108]. This expansion technique reduces the original higher-point integrals
to two-point integrals, albeit with high exponents of the denominator factors and
complicated numerators.

To be specific, up to three loops the off-shell four-point correlator is given by
(94,95, 102]

2 (N2 — 1)

G4<17 27 374) = G‘(JLO) + (47'('2)4

R(1,2,3,4) [aFV +a®F® +a*F® 4 0(a")],

(3.1.1)

Here N, denotes the number of colors and a is the 't Hooft coupling. Gflo) represents
the tree-level contribution and R(1, 2, 3,4) is a universal prefactor, in particular taking
into account the different SU(4) flavors which can appear (see ref. [102, 103] for

details). Our focus here is on the loop corrections. These can be written in the
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compact form (exposing the hidden Sy, symmetry) as

2.9 .2 .92 .9 2
Lo 3Ly Lo3Lo4 L3y

F(é)(.%l, T2, T3, .2134) = /d4$5 C d4l‘4+g fA(é)(.l'l, c ,$4+g) s (312)

0 (m2)t
where
. 1
fO(zy, ... 25) = m (3.1.3)
PO ) = s xdads + Se peQrmutations | (3.1.4)
H1§i<j§6 Lij
FO (2, z) = 55 (01)? (vhu 05036 05:0%) +2 S7 permutations . (3.1.5)

H1§i<j§7 Lij

Writing out the sum over permutations in the above expressions, these are written as

follows

FU = g1, (3.1.6)

@ = hi234 + haai2 + hogiaa + hiaos (3.1.7)
+ higea + hosus + % & 23,15, + iywy, + 21,755 91034 %,

F® — [L12;34 + 5 perms } + [T12;34 + 11 perms } (3.1.8)
+ [E12;34 + 11 perms } + %[$%4.21:§3H12;34 + 11 perms }

+ [(9 X h)12.:314 + 5 perms ] ,

which involve the following integrals:

1 d4l’5
G124 = = | 55 5 3 > (3.1.9)
™ T15L55L35L 45
2 4 4
Higs = Ty / d*xs d*zg
B34 = 4 22 .2\.2 (2.2 .2 "
™ (%5535%5)%6(9526%6%6)
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At three-loop order we encounter

2 4 4. 4. 74
(g % 1) _ TiaTyy / d*zsd*zed 7
12:34 6 2.2 .2 .2 2 .2 2 2.2 . 9\.2
™ (215755735715 ) (16736716 ) (5,035,057 ) Ty
I Ty d*zs d*xe d*aq
12;3 = —o
; 6 2.2 .2N\.2 (.2 . 2\.2 (.2 .2 .2\
™ (215035755 ) w36 (136056 ) L7 (V5723727
x3, d*zsdizediaor 13,
Tizza = —5 2 2 N\( 2 2 \(2 2 2\ 2 2 3 (3.1.10)
T (215735) (016756) (237037057 ) 3603, 57
2 2 4 4 4 2
; = 6 2.2 2.2 7.2 .2 92\ 2 (22 .2 .2\
™ (%5%5%5)%6(%6%6%6)9567(95179527%7)
" a3y dzs d*ve daxy 12,
1234 = —=

w0 (‘7:%5'1'%5'77%5374215)1%6<x§6x4216)x%?(x%7x%7x§7$4217) '

Here g, h, L are recognized as the one-loop, two-loop and three-loop ladder integrals,
respectively, the dual graphs of the off-shell box, double-box and triple-box integrals.
Off-shell, the ‘tennis court’ integral T can be expressed as the three-loop ladder

integral L by using the conformal flip properties! of a two-loop ladder sub-integral [22].

The only new integrals are thus £ and H (see fig. 3.1).
o1l

E12;34 H12;34

Figure 3.1: The Easy and Hard integrals contributing to the correlator of stress tensor
multiplets at three loops.

!Such identities rely on manifest conformal invariance and will be broken by the introduction of
most regulators. For instance, the equivalence of 7" and L is not true for the dimensionally regulated
on-shell integrals.
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Conformal four-point integrals are given by a factor carrying their conformal

weight, say, (x3;x3,)" times some function of the two cross ratios

2 .2 2 .2
u = $;217?2,4 T v — I;4$§3 _ (1 —:L’)(l _q_:). (3'1.11)
L13%24 L13L24

Ladder integrals are explicitly known for any number of loops, see ref. [109] where
they are very elegantly expressed as one-parameter integrals. Integration is simplified
by the change of variables from the cross-ratios (u,v) to (z,z) as defined in the last
equation. The unique rational prefactor, x3;23, (x — Z), is common to all cases and
can be computed by the leading singularity method as we illustrate shortly. This is
multiplied by pure polylogarithm functions which fit with the classification of single-
valued harmonic polylogarithms (SVHPLs) in ref. [47]. The associated symbols of
the ladder integrals are then tensors composed of the four letters {z, z, 1 —z, 1 —Z}.

On the other hand, for generic conformal four-point integrals (of which the FEasy
and Hard integrals are the first examples) there are no explicit results. Fortunately, in
recent years a formalism has been developed in the context of scattering amplitudes
to find at least the rational prefactors (i.e. the leading singularities), which are given
by the residues of the integrals [105]. There is one leading singularity for each global
pole of the integrand and it is obtained by deforming the contour of integration to lie
on a maximal torus surrounding the pole in question, i.e. by computing the residue
at the global pole. As an illustration?, let us apply this technique to the massive
one-loop box integral gio34 defined in eq. (3.1.9). Its leading singularity is obtained
by shifting the contour to encircle one of the global poles of the integrand, where
all four terms in the denominator vanish. To find this let us consider a change of

coordinates from £ to p; = 2. The Jacobian for this change of variables is

Ipi
J = det (85§) =det (—2a%) , J? = det (dais - xj5) = 16det (27, — a35 — %)
(3.1.12)
where the second identity follows by observing that det(M) = /det(MM7T). Using

*The massless box-integral (i.e. the same integral in the limit z7,,, — 0) is discussed in ref. [80]
in terms of twistor variables as the simplest example of a ‘Schubert problem’ in projective geometry.
The off-shell case that we discuss here was also recently discussed by S. Caron-Huot (see [110]).
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this change of variables the massive box becomes

1 d'p;
= — [ ——. 3.1.13
Jrast us p1p2pspa J ( )

To find its leading singularity we simply compute the residue around all four poles at
pi = 0 (divided by 27i). We obtain

1

FEES W Mggs = y/det(22)ijo1.4 = 23523, (v — T) (3.1.14)

91234 —
in full agreement with the analytic result [109].

Note that we do not consider explicitly a contour around the branch cut associated
with the square root factor J in the denominator of (3.1.13). Because there is no pole
at infinity, the residue theorem guarantees that such a contour is equivalent to the
one we already considered. On the other hand, in higher-loop examples, Jacobians
from previous integrations cannot be discarded in this manner. In all the examples
we consider, these Jacobians always collapse to become simple poles when evaluated
on the zero loci of the other denominators and thereby contribute non-trivially to the
leading singularity.

The main results of this paper are the analytic evaluations of the Easy and Hard
integrals. Due to Jacobian poles, the FEasy integral has three distinct leading sin-
gularities, out of which only two are algebraically independent, though. The Hard
integral has two distinct leading singularities, too. Armed with this information we
then attempt to find the pure polylogarithmic functions multiplying these rational
factors. Our main inputs for this are analytic expressions for the integrals in the limit
T — 0 obtained from the results in [107]. Matching these asymptotic expressions with
an ansatz for the symbol of the pure functions we obtain unique answers for the pure
functions.

The pure functions contributing to the Easy integral are given by SVHPLs, cor-
responding to a symbol with entries drawn from the set {x,1 — z,z,1 — z}. In this
case there is a very straightforward method for obtaining the corresponding function

from its asymptotics, by essentially lifting HPLs to SVHPLs as we explain in the
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next section. However, the SVHPLs are not capable of meeting all constraints for the
pure functions contributing to the Hard integral, so that we need to enlarge the set
of letters. A natural guess is to include © — Z (cf. ref. [106]) since it also occurs in
the rational factors, and indeed this turns out to be correct. Ultimately, one of the
pure functions is found to have a four-letter symbol corresponding to SVHPLs, but
the symbol of the other function contains the new letter: the corresponding function
cannot be expressed through SVHPLs alone, but it belongs to a more general class
of multiple polylogarithms.

Let us stress that the analytic evaluation of the Easy and Hard integrals completes
the derivation of the three-loop four-point correlator of stress-tensor multiplets in
N =4 SYM. The multiple polylogarithms that we find can be numerically evaluated
to very high precision, which paves the way for tests of future integrable system
predictions for the four-point function, or for instance for further analyses of the
operator product expansion.

Finally, since our set of methods has allowed to obtain the analytic result for
the Easy and Hard integrals in a relatively straightforward way (despite the fact
that these are not at all simple to evaluate by conventional techniques) we wish to
investigate whether this can be repeated to still higher orders. We examine a first
relatively simple looking, but non-trivial, four-loop example from the list of integrals

contributing to the four-point correlator at that order [103]:

1423 = 3 (3.1.15)

7@ 1 / drrsd*ved vrding 23, 23,72%,
T

2.2 .2.2.2.2.92 .2 .92 .92 . 92,9 ,92 °
T15T18Lo5LogL37L38L 5L gL y7LygL56 L5778

The computation of its unique leading singularity follows the same lines as at three
loops. However, just as for the Hard integral, the alphabet {z,1 — z,z,1 — z} and
the corresponding function space are too restrictive. Interestingly, this integral is
related to the Easy integral by a differential equation of Laplace type. Solving this
equation promotes the denominator factor 1 — u of the leading singularities of the
Easy integral to a new entry in the symbol of the four-loop integral. Note that it is
at least conceivable that the letter  — z arrives in the symbol of the Hard integral

due to a similar mechanism, although admittedly not every integral obeys a simple
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Figure 3.2: The four-loop integral [1(3?23 defined in eq. (3.1.15).

differential equation.

The paper is organized as follows:

e In section 3.2, we give definitions of the concepts introduced here: symbols,

harmonic polylogarithms, SVHPLs, multiple polylogarithms and so on.
e In section 3.3, we comment on the asymptotic expansion of Feynman integrals.

e In sections 3.4 and 3.5 we derive the leading singularities, symbols and ulti-
mately the pure functions corresponding to the Easy and Hard integrals. We

also present numerical data indicating the correctness of our results.
e In section 3.7, we perform a similar calculation for the four-loop integral, 4.

e Finally we draw some conclusions. We include several appendices collecting
some formulae for the asymptotic expansions of the integrals and alternative

ways how to derive the analytic results.
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3.2 Conformal four-point integrals and
single-valued polylogarithms

The ladder-type integrals that contribute to the correlator are known. More precisely,

if we write
91324 = ! q’(l)(u v)
7 x%3x§4 n
1
h13;24 = (13(2)(U,U), 3.2.1
x%3w§4 ( )
1
113;24 = ¢(3)(U7U)7
x%x&

then the functions ®*)(u, v) are given by the well-known result [109],

1 ! dé¢ ~
(L) - _ L-1
& (u,0) = L!(L—l)!/o @ r(—u—v)itu ® ¢
X <log3—i—log§>L_1 (logg+210g§> (3.2.2)
u u

_ 1 f(L) T T
r—17 r—1"2—-1)"

where the conformal cross ratios are given by eq. (3.1.11) and where we defined the

pure function

L

fO @)=Y (;!1()2% )_!LT!)! log” (47) (Liss»(2) — Ligy_,(2)) . (3.2.3)

At this stage, the variables (z,Z) are simply a convenient parameterization which ra-
tionalizes the two roots of the quadratic polynomial in the denominator of eq. (3.2.2).
We note that z and  are complex conjugate to each other if we work in Euclidean
space while they are both real in Minkowski signature.

The particular combination of polylogarithms that appears in eq. (3.2.2) is not
random, but it has a particular mathematical meaning: in Euclidean space, where

x and T are complex conjugate to each other, the functions ®%) are single-valued
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functions of the complex variable x. In other words, the combination of polyloga-
rithms that appears in the ladder integrals is such that they have no branch cuts in
the complex x plane. In order to understand the reason for this, it is useful to look

at the symbols of the ladder integrals.

3.2.1 The symbol

One possible way to define the symbol of a transcendental function is to consider its

total differential. More precisely, if I is a function whose differential satisfies

dF =Y FidlogR;, (3.2.4)

where the R; are rational functions, then we can define the symbol of F' recursively
by [36]
S(F) =) S(F)®R;. (3.2.5)

As an example, the symbols of the classical polylogarithms and the ordinary loga-

rithms are given by

n!
(n—1) times n times

1
S(Li(2)=—-(1-2)®2z®...® 2z and S(—ln”z)zz@...@z. (3.2.6)
——— ———

In addition the symbol satisfies the following identities,

LR )®... =...0a®...+..0b® ...,
L@EFED®... =0, (3.2.7)
S(FG) =S(F)UIS(G),

where IIT denotes the shuffle product on tensors. Furthermore, all multiple zeta

values are mapped to zero by the symbol map. Conversely, an arbitrary tensor

> Ciriai ® ... Qwy, (3.2.8)
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whose entries are rational functions is the symbol of a function only if the following

integrability condition is fulfilled,

Z Ciy..in dlogwi, Ndlogw;, | wi; ®@...Quw; | Qw;,,®...0uw;, =0, (3.2.9)

ilv”’ain

for all consecutive pairs (iy, ig11).

The symbol of a function also encodes information about the discontinuities of
the function. More precisely, the singularities (i.e. the zeroes or infinities) of the first
entries of a symbol determine the branching points of the function, and the symbol of
the discontinuity across the branch cut is obtained by dropping this first entry from

the symbol. As an example, consider a function F'(x) whose symbol has the form
S(F(z)=(a1 —2)®...® (a, — ), (3.2.10)

where the a; are independent of x. Then F(z) has a branching point at x = a;, and

the symbol of the discontinuity across the branch cut is given by
S [discy, F(x)] =2mi(as —2) @ ... @ (a, — x) . (3.2.11)

If F is a Feynman integral, then the branch cuts of F' are dictated by Cutkosky’s
rules. In particular, for Feynman integrals without internal masses the branch cuts
extend between points where one of the Mandelstam invariants becomes zero or in-
finity. As a consequence, the first entries of the symbol of a Feynman integral must
necessarily be Mandelstam invariants [40]. In the case of the four-point position
space integrals we are considering in this paper, the first entries of the symbol must
then be distances between two points, x?j fori,j =1...4. Combined with conformal
invariance, this implies that the first entries of the symbols of conformally invariant
four-point functions can only be cross ratios. As an example, consider the symbol of
the one-loop four-point function,

1—x z

S[fY(z,2)] =u® o Tve . (3.2.12)
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The first entry condition puts strong constraints on the transcendental functions
that can contribute to a conformal four-point function. In order to understand this

better let us consider a function whose symbol can be written in the form
S(F)=u®S,+v®8,=(27) @S, +[(1-2)1-2)]®S,, (3.2.13)

where S, and S, are tensors of lower rank. Let us assume we work in Euclidean
space where x and T are complex conjugate to each other. It then follows from the
previous discussion that F' has potential branching points in the complex x plane at
x € {0,1,00}. Let us compute for example the discontinuity of F' around = = 0.
Only the first term in eq. (3.2.13) can give rise to a non-zero contribution, and x

and ¥ contribute with opposite signs. So we find
S [disco(F)] = 2mi S, — 26 Sy = 0. (3.2.14)

The argument for the discontinuities around x = 1 and x = oo is similar. We thus
conclude that F'is single-valued in the whole complex = plane. This observation puts
strong constraints on the pure functions that might appear in the analytical result for
a conformal four-point function. In particular, the ladder integrals ®*) are related

to the single-valued analogues of the classical polylogarithms,

log® || Li,_x (), (3.2.15)

n—1
B2k
D, (z) =R, Z o
k=0

where fR,, denotes the real part for n odd and the imaginary part otherwise and Bj

are the Bernoulli numbers. For example, we have

fO(w,2) = 4i Dy(x) . (3.2.16)

3.2.2 Single-Valued Harmonic Polylogarithms (SVHPLs)

For more general conformal four-point functions more general classes of polyloga-

rithms may appear. The simplest extension of the classical polylogarithms are the
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so-called harmonic polylogarithms (HPLs), defined by the iterated integrals® [48]

H(ay,...,an;7) = / dt fo,(t) H(ag, ..., an;t), a; € {0,1}, (3.2.17)
0

with X X
folz) = - and fi(x) = (3.2.18)

1z

By definition, H(z) = 1 and in the case where all the a; are zero, we use the special
definition
S 1
H(0p;2) = —log" . (3.2.19)
n!
The number n of indices of a harmonic polylogarithm is called its weight. Note that

the harmonic polylogarithms contain the classical polylogarithms as special cases,
H(0,_1,1;2) = Li,(z). (3.2.20)

In ref. [111] it was shown that infinite classes of generalized ladder integrals can be
expressed in terms of single-valued combinations of HPLs. Single-valued analogues
of HPLs were studied in detail in ref. [47], and an explicit construction valid for all
weights was presented. Here it suffices to say that for every harmonic polylogarithm
of the form H(a;x) there is a function Lz(z) with essentially the same properties
as the ordinary harmonic polylogarithms, but in addition it is single-valued in the
whole complex x plane. We will refer to these functions as single-valued harmonic

polylogarithms (SVHPLs). Explicitly, the functions £z(z) can be expressed as

La(x) =y H(dyx) H(d; 7). (3.2.21)
i?j
where the coefficients ¢;; are polynomials of multiple ¢ values such that all branch
cuts cancel.
There are two natural symmetry groups acting on the space of SVHPLs. The

first symmetry group acts by complex conjugation, i.e., it exchanges x and z. The

3In the following we use the word harmonic polylogarithm in a restricted sense, and only allow
for singularities at « € {0,1} inside the iterated integrals.
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conformal four-point functions we are considering are real, and thus eigenfunctions
under complex conjugation, while the SVHPLs defined in ref. [47] in general are not.

It is therefore convenient to diagonalize the action of this symmetry by defining

1 .
— 1 Lz(x) — (=1 ‘(l'ﬁg z)|,
%[ () = ( )ﬂ ()] 3222
L [Lale) + (~1)Le()]

where |@| denotes the weight of Lz(x). Note that we have apparently doubled the
number of functions, so not all the functions Lz(x) and Lgz(x) can be independent.

Indeed, one can observe that
La(x) = [product of lower weight SVHPLs of the form Lgz(z) |. (3.2.23)

The functions Lz(x) can thus always be rewritten as linear combinations of products
of SVHPLs of lower weights. In other words, the multiplicative span of the functions
Lz(x) and multiple zeta values spans the whole algebra of SVHPLs. As an example,

in this basis the ladder integrals take the very compact form

f(L) (z,7) = (_1)L+1 2Lo,...0010,...0(). (3.2.24)
L—1 L—1

While we present most of our result in terms of the Lz(z), we occasionally find it
convenient to employ the Lz(x) and the L£z(x) to obtain more compact expressions.
The second symmetry group is the group S3 which acts via the transformations

of the argument

r—z, z—1l—-z, z—1/(1-2), (3.2.25)

r— 1/, v—>1-1/z, v —z/(z—1).

This action of S3 permutes the three singularities {0, 1, 00} in the integral represen-

tations of the harmonic polylogarithms. In addition, this action has also a physical
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interpretation. The different cross ratios one can form out of four points z; are pa-
rameterized by the group Sy/(Zs X Zs) ~ S3. The action (3.2.25) is the representation

of this group on the cross ratios in the parameterization (3.1.11).

3.2.3 The z — 0 limit of SVHPLs

We will be using knowledge of the asymptotic expansions of integrals in the limit
Z — 0 in order to constrain, and even determine, the integrals themselves. If the
function lives in the space of SVHPLs there is a very direct and simple way to obtain
the full function from its asymptotic expansion.

This direct procedure relies on the close relation between the series expansion of
SVHPLs around z = 0 and ordinary HPLs. In the case where SVHPLs are analytic

at (x,7) =0 (i.e. when the corresponding word ends in a ‘1) then
lim £, (x) = H,(x) . (3.2.26)
z—0
Similar results exist in the case where £, (x) is not analytic at the origin. In that
case the limit does strictly speaking not exist, but we can, nevertheless, represent the
function in a neighborhood of the origin as a polynomial in logu, whose coefficients

are analytic functions. More precisely, using the shuffle algebra properties of SVHPLs,

we have a unique decomposition

Lo(x) = apuwloghuly(z), (3.2.27)

p,w’

where a,,, are integer numbers and L,/ (x) are analytic at the origin (z,z) = 0.
Conversely, if we are given a function f(z,z) that around z = 0 admits the

asymptotic expansion
f@,2) =) apwloghuHy(x) + O(F) (3.2.28)
p,w

where the a,,, are independent of (x, Z) and w are words made out of the letters 0 and

1 ending in a 1, there is a unique function fsyupr(x, Z) which is a linear combination of
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products of SVHPLs that has the same asymptotic expansion around z = 0 as f(z, ).
Moreover, this function is simply obtained by replacing the HPLs in eq. (3.2.28) by

their single-valued analogues,

fsvupL(7, 7) Zapwlog uLly(x) . (3.2.29)

In other words, f(z,z) and fsympr(x,Z) agree in the limit  — 0 up to power-
suppressed terms.

It is often the case that we find simpler expressions by expanding out all products,
i.e. by not explicitly writing the powers of logarithms of u. More precisely, replacing
logu by logx + log Z in eq. (3.2.28) and using the shuffle product for HPLs, we can
write eq. (3.2.28) in the form

Zaw w(®) +logz P(x,logz) + O(T), (3.2.30)

where P(z,log ) is a polynomial in log z whose coefficients are HPLs in x. From the
previous discussion we know that there is a linear combination of SVHPLs that agrees
with f(z,z) up to power-suppressed terms. In fact, this function is independent of
the actual form of the polynomial P, and is completely determined by the first term
in the left-hand side of eq. (3.2.30),

fsvapL(7, ) Z&w w(T) . (3.2.31)

So far we have only described how we can always construct a linear combination of
SVHPLs that agrees with a given function in the limit z — 0 up to power-suppressed
terms. The inverse is obviously not true, and we will encounter such a situation for
the Hard integral. In such a case we need to enlarge the space of functions to include
more general classes of multiple polylogarithms. Indeed, while SVHPLs have symbols
whose entries are all drawn from the set {x,z,1—z,1—Z}, it was observed in ref. [106]
that the symbols of three-mass three-point functions (which are related to conformal

four-point functions upon sending a point to infinity) in dimensional regularization
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involve functions whose symbols also contain the entry x — z. Function of this type
cannot be expressed in terms of HPLs alone, but they require more general classes of

multiple polylogarithms, defined recursively by G(z) = 1 and,

dt

v p
G(al’ ees O ]}') = / n G(a’27 <oy Qpy t) ) G(Op, LU) = 10g (l’)
o L—m!m

p!

. (3.2.32)

where a; € C. We will encounter such functions in later sections when constructing

the analytic results for the Easy and Hard integrals.

3.3 The short-distance limit

In this section we sketch how the method of ‘asymptotic expansion of Feynman in-
tegrals’ can deliver asymptotic series for the ¥ — 0 limit of the Easy and the Hard
integral. These expansions contain enough information about the integrals to even-
tually fix ansétze for the full expressions.

In ref. [107,112] asymptotic expansions were derived for both the Easy and Hard
integrals in the limits where one of the cross ratios, say u, tends to zero. The limit
u — 0,v — 1 can be described as a short-distance limit, z9 — 2. Let us assume
that we have got rid of the coordinate x4 by sending it to infinity and that we are
dealing with a function of three coordinates, 1, x5, x3, one of which, say z, can be
set to zero. The short-distance limit we are interested in then corresponds to xy — 0,
so that the coordinate x5 is small (soft) and the coordinate x5 is large (hard). This
is understood in the FEuclidean sense, i.e. x5 tends to zero precisely when each of its
component tends to zero. One can formalize this by multiplying x5 by a parameter p
and then considering the limit p — 0 upon which u ~ p? v — 1 ~ p.

For a Euclidean limit in momentum space, one can apply the well-known formulae
for the corresponding asymptotic expansion written in graph-theoretical language (see
ref. [108] for a review). One can also write down similar formulae in position space.
In practice, it is often more efficient to apply the prescriptions of the strategy of
expansion by regions [108,113] (see also chapter 9 of ref. [114] for a recent review),

which are equivalent to the graph-theoretical prescriptions in the case of Euclidean
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limits. The situation is even simpler in position space where we work with propagators
1/ xfj It turns out that in order to reveal all the regions contributing to the asymptotic
expansion of a position-space Feynman integral it is sufficient to consider each of the
integration coordinates x; either soft (i.e. of order xs) or hard (i.e. of order x3).
Ignoring vanishing contributions, which correspond to integrals without scale, one
obtains a set of regions relevant to the given limit. One can reveal this set of regions
automatically, using the code described in refs. [115,116].

The most complicated contributions in the expansion correspond to regions where
the internal coordinates are either all hard or soft. For the Easy and Hard inte-
grals, this gives three-loop two-point integrals with numerators. In ref. [112], these
integrals were evaluated by treating three numerators as extra propagators with neg-
ative exponents, so that the number of the indices in the given family of integrals was
increased from nine to twelve. The integrals were then reduced to master integrals us-
ing integration-by-parts (IBP) identities using the c++ version of the code FIRE [117].
While this procedure is not optimal, it turned out to be sufficient for the computa-
tion in ref. [112]. In ref. [107], a more efficient way was chosen: performing a tensor
decomposition and reducing the problem to evaluating integrals with nine indices by
the well-known MINCER program [118], which is very fast because it is based on a
hand solution of the IBP relations for this specific family of integrals. This strategy
has given the possibility to evaluate much more terms of the asymptotic expansion.

It turns out that the expansion we consider includes, within dimensional reg-
ularization, the variable u raised to powers involving an amount proportional to
e = (4 —d)/2. A characteristic feature of asymptotic expansions is that individ-
ual contributions may exhibit poles. Since the conformal integrals we are dealing
with are finite in four dimensions, the poles necessarily cancel, leaving behind some
logarithms. The resulting expansions contain powers and logarithms of u times poly-
nomials in v — 1. Instead of the variable v, we turn to the variables (z,z) defined
in eq. (3.1.11). Note that it is easy to see that in terms of these variables the limit
u — 0,v — 1 corresponds to both x and z becoming small.

In fact, we only need the leading power term with respect to v and all the terms

with respect to x. The results of ref. [107] were presented in terms of infinite sums
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involving harmonic numbers, i.e., for each inequivalent permutation of the external

points, it was shown that one can write

I(u,v) = Z log" u fi(2) + O(u), (3.3.1)

where I(u,v) denotes either the Easy or the Hard integral, and v = 1 — = + O(z).
The coefficients fi(x) were expressed as combinations of terms of the form

o s—1 s—1

Zx—.Sj(s) or Z ° Si(s), (3.3.2)

(1+s)?

s=1 s=1

where Si(s) are nested harmonic sums [52],

Si(s) = Z% and Si(s) = 3 Sﬂ‘fl;") | (3.3.3)

To arrive at such explicit results for the coefficients fy(x) a kind of experimental
mathematics suggested in ref. [119] was applied: the evaluation of the first terms in
the expansion in x gave a hint about the possible dependence of the coefficient at the
n-th power of z. Then an ansatz in the form of a linear combination of nested sums
was constructed and the coefficients in this ansatz were fixed by the information about
the first terms. Finally, the validity of the ansatz was confirmed using information
about the next terms. The complete z-expansion was thus inferred from the leading
terms.

For the purpose of this paper, it is more convenient to work with polylogarithmic
functions in x rather than harmonic sums. Indeed, sums of the type (3.3.2) can easily
be performed in terms of harmonic polylogarithms using the algorithms described
in ref. [61]. We note, however, that during the summation process, sums of the
type (3.3.2) with ¢ = 0 are generated. Sums of this type are strictly speaking not

covered by the algorithms of ref. [61], but we can easily reduce them to the case 7 # 0
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using the following procedure,

oo o~ 1
Z;x L Sin(s) = ;

s

nl ), (334

nMg

Y s =

%3

where the last step follows from SH0) = 0. Reshuffling the sum by letting s = ny +n,

we obtain the following relation which is a special case of eq. (96) in ref. [119]:

9] .~ 1 o) o0 1 e8] s—
;x 1 S(s) :Emz:: ZO " Sn) = _x;xsi SHs).  (3.3.5)

The last sum is now again of the type (3.3.2) and can be dealt with using the algo-
rithms of ref. [61].

Performing all the sums that appear in the results of ref. [107], we find for example

logu
1‘%3 $§4 Fig0s = i <H2,2,1 — Hyyo+ Hi31+2H19110 — Hiq13 —2H1112 (3.3.6)

2
— 6C3Hy — 6C3H1,1) - (2C3H2,1 —4Q3Hyp +4(¢3 Hy1q + H3o,
— H3i19+Hys1— Hy13+2H 141 +2 Hi311+2H1 221 —2H1 14
— 2Hy19292—2H 113 —6 C3H3> + O(u),

4logu 2
25 05y Hizgs = xg (H1121 —Hy112— 6C3H11> — —<4H2121 —4 Hy{33.7)
+ 4H 131 — Hiap10 —4H 113+ Higa01 — 24CHyy + 6C3H1,1,1>
+ O(u),

where we used the compressed notation, e.g., Ho112 = H(0,1,1,1,0,1;2). The
results for the other orientations are rather lengthy, so we do not show them here,
but we collect them in appendix B.1. Let us however comment about the structure
of the functions fi(z) that appear in the expansions. The functions fi(z) can always

be written in the form

Z Ryy(x) x [HPLs in ], (3.3.8)
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where Ry ,;(z) may represent any of the following rational functions

1

1
x’ r(l—x)

)
LE2

(3.3.9)

We note that the last rational function only enters the asymptotic expansion of Hys.04.
The aim of this paper is to compute the Easy and Hard integrals by writing for

each integral an ansatz of the form
> Ri(x,7)P(x,x), (3.3.10)

and to fix the coefficients that appear in the ansatz by matching the limit z — 0 to the
asymptotic expansions presented in this section. In the previous section we argued
that a natural space of functions for the polylogarithmic part P;(x,z) are functions
that are single-valued in the complex z plane in Euclidean space. We however still
need to determine the rational prefactors R;(x,Z), which are not constrained by
single-valuedness.

A natural ansatz would consist in using the same rational prefactors as those

appearing in the ladder type integrals. For ladder type integrals we have
Rbdder(p 3) = ————  aeN, (3.3.11)

plus all possible transformations of this function obtained from the action of the S3

symmetry (3.2.25). Then in the limit © — 0 we obtain

lim R (. 7) = x—la : (3.3.12)
We see that the rational prefactors that appear in the ladder-type integrals can only
give rise to rational prefactors in the asymptotic expansions with are pure powers of
x, and so they can never account for the rational function 1/(z(1—x)) that appears in
the asymptotic expansion of Hi3.04. We thus need to consider more general prefactors
than those appearing in the ladder-type integrals. This issue will be addressed in the

next sections.
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3.4 The Easy integral

3.4.1 Residues of the Easy integral
The Easy integral is defined as

2 .2 4, gd, gdo. 2
T35T5y d*zs d*ve d a7 214

w6 /($%5x%5x§5)x§6(5’73613%6334216)5’5%7@%75’7%7@217).

E12;34 = (341)

To find all its leading singularities we order the integrations as follows

2 .2 4 2 4 4
> T35y d*ze 74 d*xs d*xy; (3.4.2)
12;34 — 76 22 12 32 2212 72 12 1212 12 12 : c
26436146 15425435456 17427447467

First the x; and x5 integrations: they are both the same as the massive box

computed in the Introduction and thus give leading singularities (see eq. (3.1.14))

1 1

+ + ,
4 >\1236 4 )\1246

(3.4.3)

respectively. So we can move directly to the final xg integration

! / d'rg 23 (3.4.4)

2 .2 .2 :
16 7T6 513265133651746)\1236)\1246

Here there are five factors in the denominator and we want to take the residues
when four of them vanish to compute the leading singularity, so there are various
choices to consider. The simplest option is to cut the three propagators 1/x%. Then
on this cut we have Aja3gjcut = +x3,73, and A1246lcut = +x3,23,, where the vertical
line indicates the value on the cut, and the integral reduces to the massive box. This
simplification of the A\ factors is similar to the phenomenon of composite leading

singularities [120]. Thus cutting either of the two As will result in*

1

leading singularity #1 of Ejo34 = j:647T6—)\1234 )

(3.4.5)

4With a slight abuse of language, in the following we use the word ‘cut’ to designate that we look
at the zeroes of a certain denominator factor.
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The only other possibility is cutting both A’s. There are then three possibilities,
firstly we could cut z34 and 23, as well as the two X's. On this cut Aja36 reduces to
+x2,73; and one obtains residue #1 again. Similarly in the second case where we cut
135, 36 and the two As.

So finally we consider the case where we cut z%;, 23, and the two A’s. In this
case Aioggjent = (276233 — 73255) and Aasgjens = (215234 — 27,235). Notice that
setting Ajaz6 = A12s6 = 0 means setting .CE%G = :E%G = 0. We then need to compute the

Jacobian associated with cutting z%,, %, A3, A1246

det <8($:2>,67 xz2167 1236, )\1246) )

m
Oz

cut

_ iz M w2 2 M Ho2 2
= £16det (9536a Laer L16L23 — T13L26: L16T24 — x14$26>

cut (3.4.6)
= 16 det (54, Ty, 215, xgﬁ)(xgﬂi - x%ﬂ%g)‘wt
= i‘4>\1234<I%3$%4 - I%M%z’,) ,
The result of the x4 integral (3.4.4) is
! it (3.4.7)

6 2 3 2 3 2
6470 w36 Mo3a (233274 — T34773) [
At this point there is a subtlety, since on the cut we have simultaneously z?sx3; —
2
Tiawds = xicwd, — 23w = 0, ie. 23 = 13 = 0 and so ::% is undefined. More
26
specifically, the integral depends on whether we take z%sx3; — 2,23 = 0 first or

r2w3, — 13,05, = 0 first. So we get two possibilities (after multiplying by the external

factors z2;23, in eq. (3.4.1)) :

2,12
leading singularity #2 of Eig.34 = =+ 1524 3.4.8
eading singularity #2 o 12 64 76 >\1234($§3~’U%4 - 1341'%3) ( )
1‘2 IEQ
leading singularity #3 of Eig.34 = + 12 : (3.4.9)

6 2.2 .2 .2
64 76 N9gq (23,25, — x5,275)



CHAPTER 3. LEADING SINGULARITIES / CONFORMAL INTEGRALS 136

We conclude that the Easy integral takes the ‘leading singularity times pure func-

tion’ form®

1 E@(x, z EO(z, vE© (2, T
st = —— (7)+ 7( ) N 7( )
XI55, r—7T (r—2)(v—1) (z—7)(v—1)

(3.4.10)

We note that the z3 < x4 symmetry relates £® and E©. Furthermore, putting
everything over a common denominator it is easy to see that E(® can be absorbed
into the other two functions. We conclude that there is in fact only one independent

function, and the Easy integral can be written in terms of a single pure function
E(z,z) as

1 T T
Flo.ay = FElx.x FE . 3.4.11
o= e [P oE (e )) - e

The function E(x,z) is antisymmetric under the interchange of x,

E(z,z) = —FE(x,7), (3.4.12)

to ensure that E934 is a symmetric function of x, Z, but it possesses no other sym-
metry.
The other two orientations of the Easy integral are then found by permuting

various points and are given by

1 11 1 1
FEiao4 = El - — E 3.4.13
so= ey P es) P ()] e
1 1 1
Eii02 = Fll—xz1—2 Fll——-1—— . (3.4.14
1423 x%ﬁAw—@ﬂ—u){( &)t ( Py x>] (3.414)

It is thus enough to have an expression for F(z, ) to determine all possible orienta-
tions of the Easy integral. The functional form of E(x,z) will be the purpose of the

rest of this section.

5A similar form of the Easy leading singularities, as well as those of the Hard integral discussed
in the next section, was independently obtained by S. Caron-Huot [121].
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3.4.2 The symbol of F(z, )

In this subsection we determine the symbol of E(z,z), and in the next section we
describe its uplift to a function. This strategy seems over-complicated in the case at
hand, because E(z, ) can in fact directly be obtained in terms of SVHPLs of weight
six from its asymptotic expansion using the method described in section 3.2.3. The
two-step derivation (symbol and subsequent uplift) is included mainly for pedagogical
purposes because it equally applies to the Hard integral and our four-loop example,
where the functions are not writable in terms of SVHPLs only so that a direct method
yet has to be found.

Returning to the Easy integral, we start by writing down the most general tensor

of rank six that
e has all its entries drawn from the set {z,1 —z, 2,1 — z},

e satisfies the first entry condition, i.e. the first factors in each tensor are either

zzor (1 —z)(1 —2),
e is odd under an exchange of z and .

This results in a tensor that depends on 2 - 4°/2 = 1024 free coefficients (which we
assume to be rational numbers). Imposing the integrability condition (3.2.9) reduces
the number of free coefficients to 28, which is the number of SVHPLs of weight six
that are odd under an exchange of x and z. The remaining free coefficients can be
fixed by matching to the limit © — 0,v — 1, or equivalently z — 0.

In order to take the limit, we drop every term in the symbol containing an entry
1 — z and we replace T — u/x, upon which the singularity is hidden in u. As a
result, every permutation of our ansatz yields a symbol composed of the three letters

{u,z,1—x}. This tensor can immediately be matched to the symbol of the asymptotic
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expansion of the Easy integral discussed in section 3.3. Explicitly, the limits

1 _
13%3%34 E12;34 — ——= [hm E(Jl,f) -+ lim F ( * * >:|

2 |z—0 Z—0 r—1"72—-1

+llimE< ot ) (3.4.15)

T 70 r—1"2—1

1 . 1 1
%%3&334 E13;24 — —5 ;lil’(l) FE (1 1 j) (3416)

17305, Eiaos — = lim E(1 -z, 1 — 1) (3.4.17)
xr T—0
can be matched with the asymptotic expansions recast as HPLs. All three conditions
are consistent with our ansatz; each of them on its own suffices to determine all
remaining constants. The resulting symbol is a linear combination of 1024 tensors
with entries drawn from the set {x,1 — x,Z,1 — z} and with coefficients {41, +2}.
Note that the uniqueness of the uplift procedure for SVHPLs given in section 3.2.3

implies that each asymptotic limit is sufficient to fix the symbol.

3.4.3 The analytic result for F(z,z): uplifting from the sym-
bol

In this section we determine the function E(z, ) defined in eq. (3.4.11) starting from
its symbol. As the symbol has all its entries drawn from the set {z,1 — x,z,1 — Z},
the function E(z,z) can be expressed in terms of the SVHPLs classified in [47].
Additional single-valued terms® proportional to zeta values can be fixed by again
appealing to the asymptotic expansion of the integral.

We start by writing down an ansatz for F(z,Z) as a linear combination of weight
six of SVHPLs that is odd under exchange of x and z. Note that we have some
freedom w.r.t. the basis for our ansatz. In the following we choose basis elements
containing a single factor of the form Lgz(z). This ensures that all the terms are

linearly independent.

6In principle we cannot exclude at this stage more complicated functions of weight less than six
multiplied by zeta values.
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Next we fix the free coefficients in our ansatz by requiring its symbol to agree with
that of E(x,Z) determined in the previous section. As we had started from SVHPLs
with the correct symmetries and weight, all coefficients are fixed in a unique way. We

arrive at the following expression for FE(z, Z):

E(I‘, J_I) = 4[/2’4 — 4L472 — 2L1’372 + 2L271’3 — 2L3,1,2 + 4L372,0 (3 4 18)
—2L2210+8L3100+2L3110— 2021110

For clarity, we suppressed the argument of the L functions and we employed the

77777

of the last expression correctly reproduce the terms proportional to zeta values in

eq. (3.3.7) and the formulae in appendix B.1.

3.4.4 The analytic result for F(x,z): the direct approach

Here we quickly give the direct method for obtaining F(x, Z) explicitly from its asymp-
totics via the method outlined in section 3.2.3.

The asymptotic value of the Easy integral in the permutation Ej9.34 is given in
appendix B.1. Comparing eq. (B.1.1) with eq. (3.4.15) and further writing logu =
log x +1log z and expanding out products of functions we find for the asymptotic value
of E(x,z):

E(x,7) = 4C3Hyy +2Hoy —2Hyp + Hio3 — Hizo — 2H1 40 + Hop3 — Hs i
+2H390— Hig10+ Ha120—2H2200 — Ha210+ Hz 110+ 2H12000
+ Hi2100 — Ho11,00 — 20¢H, + 8C3H3z + 2(3H, o
+ logZ P(z,log®) + O(7),
(3.4.19)

where P is a polynomial in logz with coefficients that are HPLs in x. From the

discussion in section 3.2.3 we know that there is a unique combination of SVHPLs
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with this precise asymptotic behavior, and so we find a natural ansatz for E(x, Z),

E(x,z) =4C3Lo1 +2L0y —2L4o+ L1253 — L132 —2L140+ Lo13— L3124+ 2L3290
—Ly310+ L2120—2L2200 — L2210+ L3110+ 2L12000 + L£1,21,00

IR ]

— £2 1,1,0,0 — 20C5£1 + 8§3£3 + 2C3£172 . (3420)

PRkt ]

We have lifted this function from its asymptotics in just one limit £ — 0 while we
also know two other limits of this function given in eq. (3.3.7) and appendix B.1.
Remarkably, eq. (3.4.20) is automatically consistent with these two limits, giving a
strong indication that it is indeed the right function. Furthermore, eq. (3.4.20) can
then in turn be rewritten in a way that makes the antisymmetry under exchange
of x and z manifest, and we recover eq. (3.4.18). Note also that antisymmetry in
x <> T was not input anywhere, and the fact that the resulting function is indeed
antisymmetric is a non-trivial consistency check.

As an aside we also note here that the form of E(x, ), expressed in the particular
basis of SVHPLs we chose to work with, is very simple, having only coefficients +1
or +2 for the polylogarithms of weight six. Indeed other orientations of £ have even

simpler forms, for instance

E(1)x,1/z) = Log— L33 — L1253+ Li32— L140— Lo13+ L312— Laoo+ Lap
+ L300+ L1310~ L2120+ L2210+ L3000 — L3110 — L1,21,00
— L21,000 + L21,1,00 +8CLs —2(3L12 — 6(3L20 —4(3L2 1,

(3.4.21)

with all coefficients of the weight six SVHPLs being £1, or in the manifestly anti-
symmetric form with all weight six SVHPLs with coefficient +1

E(1/2,1/7) = Log + Luga + Lsaa + Lago + Ligoo + Ligio (3.4.22)

+ Loo10+ L3ooo+ L2100+ 6¢3Ls — 2C3L4 .

14y Ly IRt ]
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3.4.5 Numerical consistency tests for F

We have determined the analytic result for the Easy integral relying on the knowledge
of its residues, symbol and asymptotic expansions. In order to check the correctness
of the result, we evaluated E4.03 numerically” and compared it to a direct numerical
evaluation of the coordinate space integral using FIESTA [122,123].

To be specific, we evaluate the conformally-invariant function 27523, E14.03. Apply-
ing a conformal transformation to send x4 to infinity, the integral takes the simplified

form,

- 2 2
lim 27325 Eia03 =
T4—>00

1 / ( d*wsd*wed 17 17527 , (3.4.23)

o $%55U%5)13§6(13%635%6)“%7@%73757)

with only 8 propagators. We use the remaining freedom to fix x3; = 1 so that u = x%,
and v = x3;. Other numerical values for x%; are possible, of course, but we found
that this choice yields relatively stable numerics.

After Feynman parameterization, the integral is only seven-dimensional and can
be evaluated with off-the-shelf software. We generate the integrand with FIESTA and
perform the numerical integration with a stand-alone version of CIntegrate. Using

8 we obtain roughly five digits of precision after five million

the algorithm Divonne
function evaluations.
In total, we checked 40 different pairs of values for the cross ratios and we found
very good agreement in all cases. A sample of the numerical checks is shown in
Table 3.1. Note that ¢ denotes the relative error between the analytic result and the

number obtained by FIESTA,

Nana wc T N

Nanalytic + NFIESTA

TAll polylogarithms appearing in this paper have been evaluated numerically using the
GINAC [66] and HPL [68] packages.

8Experience shows that Divonne outperforms other algorithms of the Cuba library for problems
roughly this size.
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uw v  Analytic FIESTA )

0.1 0.2 82.3552 82.3553 6.6e-7
0.2 0.3 57.0467 57.0468 3.2e-8
0.3 0.1 90.3540 90.3539 5.9e-8
0.4 0.5 37.1108 37.1108 1.9e-8
0.5 0.6 31.9626 31.9626 1.9e-8
0.6 0.2 54.2881 54.2881 6.9e-8
0.7 0.3 42.6519 42.6519 4.4e-8
0.8 0.9 23.0199 23.0199 1.7e-8
0.9 0.5 30.8195 30.8195 2.4e-8

Table 3.1: Numerical comparison of the analytic result for 72,23, FE4.93 against FIESTA
for several values of the conformal cross ratios.

3.5 The Hard integral

3.5.1 Residues of the Hard integral

To find all the leading singularities we consider each integration sequentially as follows

2 4 4 2 4
o Ty d*zg d*zs x, d*z; (3.5.1)
1234 — 6 22 12 72 12 2212 72 12 2212 12 12 : e
16-2636-V 46 152535445 37larts7ber

Let us start with the z7 integration,

/L (3.5.2)

2.2 .92 .92 "
T37 X757 Tg7

This is simply the off-shell box considered in section 3.1, and so its leading singularities

are (see eq. (3.1.14))
1

+ : 3.5.3
4 A3456 ( )
Next we turn to the x5 integration, which now takes the form
d*zs a2
/ ——— (3.5.4)
L1555 35835 A3456
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There are five factors in the denominator, and we want to cut four of them to com-
pute the leading singularity. The simplest option is to cut the four propagators 1/z%.
Doing so would yield a new Jacobian factor 1/\1234 (exactly as in the previous subsec-
tion) and freeze Asysgicat = 22523, This latter factor simply cancels the numerator
and we are left with the final x4 integration being that of the box in the Introduction.

Putting everything together, the leading singularity for this choice is

1

S — (3.5.5)

leading singularity #1 of Hio34 = £
Returning to the z5 integration, eq. (3.5.4), we must consider the possibility of
cutting Azs56 and three other propagators. Cutting z3, and x%; immediately freezes
A3456|cut = +x2,22, which is canceled by the numerator. Thus it is not possible to cut
these two propagators and Az4s6. However, cutting a2, 23-, 2. and A3y56 is possible
(the only other possibility, i.e. cutting z3, 23, 235 and A34s6, gives the same result
by by invariance of the integral under exchange of x3 and z4). Indeed one finds that
when 72, = 0,

Aaase = £ (235055 — 13573,) - (3.5.6)

To compute the leading singularity associated with this pole we need to compute the

o 2 2 2 by
J:det< (o o s 3456)) , (3.5.7)
Ls

Jacobian

As in the box case, it is useful to consider the square of J (on the cut),

2 —2x; - O\ ox
J? = 16 det K a6/ 075 | (3.5.8)

—QZL‘Z' . 8)\3456/a$5 (a)\3456/ax5)2

The result of the x5 integration is then simply

2
L6

2
Jirgs

2

= 3.5.9
AR (35.9)

cut cut

where the second equality follows since z2; and %, are to be evaluated on the cut
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(indicated by the vertical line) for which 23,22, — 22522, = 0. Finally we need to turn

to the remaining x4 integral. We are simply left with

(3.5.10)

1 / d4{L‘6
1676 ) a?ardeais]

)
cut

where we note that the z3; propagator term has canceled with the numerator in
eq. (3.5.9). So we have no choice left for the quadruple cut as there are only four poles.
In fact on the other cut of the three propagators we find Jiey = 4(27,235 — 213234) 236,
and so this brings back the propagator 2.

Computing the Jacobian associated with this final integration thus yields the final

result for the leading singularity,

1

2 2 2 2 :
6470 (27,255 — 21373,) A\1234

(3.5.11)

leading singularity #2 of Hjg.34 = +

We conclude that the Hard integral can be written as these leading singularities

times pure functions, i.e. it has the form

1 H)(z, 7) HO) (2, )

@2 D) (3:5.12)

Higz4 =

where H(@-®) are pure polylogarithmic functions. The pure functions must further-

more satisfy the following properties

HY(z,z) = HY(z,z), HY(z,z) = —H®(z, 1), (3.5.13)
H (2,2) = HO(x/(x = 1),2/(z - 1)),  H"(2,2) = H(z/(x — 1),7/(z - 1)),

in order that Hjs,34 be symmetric in x,z and under the permutation z; < xs. Fur-
thermore we would expect that H®(x,z) = 0 in order to cancel the pole at z — .
In fact it will turn out in this section that even without imposing this condition by

hand we will arrive at a unique result which nevertheless has this particular property.
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By swapping the points around we automatically get

1 [H9Q1/z,1/z) H®(1/2,1/7)

O el B T T ) A
1 [H9Q-=z1-z) HY(1-2,1-2)

e B s e 1)

3.5.2 The symbols of H@(z,z) and H" (z, 7)

In order to determine the pure functions contributing to the Hard integral, we proceed
just like for the Easy integral and first determine the symbol. For the Hard integral
we have to start from two ansiitze for the symbols S[H¥(x,7)] and S[H®(z,z)].
While both pure functions are invariant under the exchange x; ¢+ o, S[H®] must
be symmetric under the exchange of x, 7 and S[H®] has to be antisymmetric, cf.
eq. (3.5.13). Going through exactly the same steps as for F we find that the single-
variable limits of the symbols cannot be matched against the data from the asymptotic
expansions using only entries from the set {z,1—=z,z,1—2}. We thus need to enlarge
the ansatz.

Previously, the letter z — & ~ Aja34 has been encountered in ref. [106, 124] in
a similar context. We therefore consider all possible integrable symbols made from
the letters {z,1 — x,Z,1 — Z,x — z} which obey the initial entry condition (3.2.13).
In the case of the Easy integral, the integrability condition only implied that terms
depending on both z and ¥ come from products of single-variable functions. Here,

on the other hand, the condition is more non-trivial since, for example,

dlogg Adlog(x —z) = dlogxz ANdlogz,
v (3.5.16)

1:; Adlog(x —x) = dlog(l —z) Adlog(l —Z).

dlog

We summarize the dimensions of the spaces of such symbols, split according to parity
under exchange of x and Zz, in Table 3.2.

Given our ansatz for the symbols of the functions we are looking for, we then
match against the twist two asymptotics as described previously. We find a unique

solution for the symbols of both H® and H® compatible with all asymptotic limits.
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Weight Even Odd

1 2 0
2 3 1
3 6 3
4 12 9
) 28 24
6 69 65

Table 3.2: Dimensions of the spaces of integrable symbols with entries drawn from
the set {x,1 —z,%,1 —Z,x — T} and split according to the parity under exchange of
r and T.

Interestingly, the limit of Hi3.94 leaves one undetermined parameter in S[H (@] which
we may fix by appealing to another limit. In the resulting symbols, the letter x — &
occurs only in the last two entries of S|H (@] while it is absent from S[H®]. Although
we did not impose this as a constraint, S[H®] goes to zero when x — Z, which is

necessary since the integral cannot have a pole at x = .

3.5.3 The analytic results for H*(z,z) and H"(z,z)

In this section we integrate the symbol of the Hard integral to a function, i.e. we
determine the full answers for the functions H® (x,z) and H® (x, ) that contribute
to the Hard integral Hig.34.

In the previous section we already argued that the symbol of H®)(z, z) has all its
entries drawn form the set {z,1 —x,z,1 — Z}, and so it is reasonable to assume that
H®) (x,7) can be expressed in terms of SVHPLs only. We may therefore proceed by
lifting directly from the asymptotic form as we did in section 3.4.4 for the Easy inte-
gral. By comparing the form of Hjs.94, €q. (3.5.14), with its asymptotic value (3.1.14)
we can read off the asymptotic form of H(1/z,1/z). Writing logu as logx + log 7,

expanding out all the functions and neglecting log Z terms, we can the lift directly to
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the full function by simply converting HPLs to SVHPLs. In this way we arrive at

HO(1/2,1/%) =2Ly4 —2L33 — 2L114 — 2L140 + 2141 — 2L031 + 2L31 2
—2Ly00+2Ls10+2L1113+2L1130+2L1300 — 2L1311
—2Lo112+2L2121 +2L3000 — 2L3110 — 2L11121 — 2L112.10
+2L112110 —2L12100+2L12110 — 2L210,00 + 2L21,1,00
+16¢3L3 — 16¢3Ls 1 -

(3.5.17)

Other orientations although still quite simple do not all share the property that they
only have coefficients +£2. Using the basis of SVHPLs that makes the parity under

exchange of x and Z explicit, we can write the last equation in the equivalent form

a® (x,Z) =16Loy — 16L49 —8L139 — 8Ly 41 +8Lo13— 8Loos+8Los1 —8L3 1o
+16L3920 +8L321 —8Ly11 +4L1221 —8L1311 —4L2112+8L2121
—8L2210—4L2211 +8L3110—4L112110 —24L271110- (3.5.18)

Next, we turn to the function H(®(z,z). As the symbol of H@(z,7) contains the
entry x — T, it cannot be expressed through SVHPLs only. Single-valued functions
whose symbols have entries drawn form the set {z,1 — z,Z,1 — Z,x — } have been
studied up to weight four in ref. [106], and a basis for the corresponding space of
functions was constructed. The resulting single-valued functions are combinations
of logarithms of x and z and multiple polylogarithms G(ay,...,a,;1), with a; €
{0,1/2,1/z}. Note that the harmonic polylogarithms form a subalgebra of this class

of functions, because we have, e.g.,

1
6 (0.2,
x

This class of single-valued functions thus provides a natural extension of the SVHPLs

;1) =H(0,1,1;x). (3.5.19)

SHE=

we have encountered so far. In the following we show how we can integrate the symbol

of H@(z,7) in terms of these functions. The basic idea is the same as for the case
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of the SVHPLs: we would like to write down the most general linear combination
of multiple polylogarithms of this type and fix their coefficients by matching to the
symbol and the asymptotic expansion of H(®(x, ). Unlike the SVHPL case, however,
some of the steps are technically more involved, and we therefore discuss these points
in detail.

Let us denote by G the algebra generated by logx and logz and by multiple
polylogarithms G(ay,...,ay;1), with a; € {0,1/x,1/z}, with coefficients that are
polynomials in multiple zeta values. Note that without loss of generality we may
assume that a, # 0. In the following we denote by G* the linear subspaces of G of
the functions that are respectively even and odd under an exchange of x and z. Our
first goal will be to construct a basis for the algebra G, as well as for its even and
odd subspaces. As we know the generators of the algebra G, we automatically know
a basis for the underlying vector space for every weight. It is however often desirable
to choose a basis that “recycles” as much as possible information from lower weights,
i.e. we would like to choose a basis that explicitly includes all possible products of
lower weight basis elements. Such a basis can always easily be constructed: indeed,
a theorem by Radford [125] states that every shuffle algebra is isomorphic to the
polynomial algebra constructed out of its Lyndon words. In our case, we immediately
obtain a basis for G by taking products of log z and logz and G(ay, ..., a,; 1), where
(ay,...,a,) is a Lyndon word in the three letters {0,1/x,1/z}. Next, we can easily
construct a basis for the eigenspaces G* by decomposing each (indecomposable) basis
function into its even and odd parts. In the following we use the shorthands

G,

1 1 1 i
mk(xl,...,xk)z—G(O,...,O,—,...,0,...,0,—;1) +(z 7). (3520
""" 2 N—— T N—— T}

m1—1 mk—l
In doing so we have seemingly doubled the number of basis functions, and so not all
the eigenfunctions corresponding to Lyndon words can be independent. Indeed, we

have for example
Gli(w,2) = SGf (2)° = Gy (2)*. (3.5.21)
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It is easy to check this relation by computing the symbol of both sides of the equa-
tion. Similar relations can be obtained without much effort for higher weight func-
tions. The resulting linearly independent set of functions are the desired bases for
the eigenspaces. We can now immediately write down the most general linear com-
bination of elements of weight six in G and determine the coefficients by matching
to the symbol of H®(x, 7). As we are working with a basis, all the coefficients are
fixed uniquely.

At this stage we have determined a function in G* whose symbol matches the
symbol of H®(x, ). We have however not yet fixed the terms proportional to zeta
values. We start by parameterizing these terms by writing down all possible products
of zeta values and basis functions in G*. Some of the free parameters can immediately
be fixed by requiring the function to vanish for x = z and by matching to the
asymptotic expansion. Note that our basis makes it particularly easy to compute the
leading term in the limit z — 0, because

%%G;b(...,f,...) =0. (3.5.22)
In other words, the small u limit can easily be approached by dropping all terms
which involve (non-trivial) basis functions that depend on z. The remaining terms
only depend on log z and harmonic polylogarithms in x. However, unlike for SVHPLs,
matching to the asymptotic expansions does not fix uniquely the terms proportional
to zeta values. The reason for this is that, while in the SVHPL case we could rely on
our knowledge of a basis for the single-valued subspace of harmonic polylogarithms,
in the present case we have been working with a basis for the full space, and so the
function we obtain might still contain non-trivial discontinuities. In the remainder of
this section we discuss how on can fix this ambiguity.

In ref. [106] a criterion was given that allows one to determine whether a given
function is single-valued. In order to understand the criterion, let us consider the alge-
bra G generated by multiple polylogarithms G (a1, . . . , an; ani1), with a;€ {0,1/2,1/z}
and a,11€{0,1,1/z,1/z}, with coefficients that are polynomials in multiple zeta val-

ues. Note that G contains G as a subalgebra. The reason to consider the larger
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algebra G is that G carries a Hopf algebra structure’ [126], i.e. G can be equipped
with a coproduct A : G — G ®G. Consider now the subspace Ggy of g consisting of
single-valued functions. It is easy to see that Ggy is a subalgebra of G. However, it
is not a sub-Hopf algebra, but rather Ggy is a G-comodule, i.e. A : Ggy — Gy ® G.
In other words, when acting with the coproduct on a single-valued function, the first

factor in the coproduct must itself be single-valued. As a simple example, we have

1 l—2 1 z
A(Ly) = 5Ly @log 7—— + 5 L1 @ log —. (3.5.23)

Note that this is a natural extension of the first entry condition discussed in sec-
tion 1.3. This criterion can now be used to recursively fix the remaining ambiguities
to obtain a single-valued function. In particular, in ref. [106] an explicit basis up to
weight four was constructed for Ggi,. We extended this construction and obtained a
complete basis at weight five, and we refer to ref. [106] about the construction of the
basis. All the remaining ambiguities can then easily be fixed by requiring that after
acting with the coproduct, the first factor can be decomposed into the basis of Ggy

up to weight five. We then finally arrive at

28 136 160
H"(2,7) = H(z,7) — §C3L1,2 + 164C3 Lo + TC3L2,1 — ?LSLQJ —66LoL14
148 64 52
— TLOL273 + §L2L371 -+ §L0L372 -+ 16L1L372 + 36L0L471 + 64L1L4’1
70 26
+ ?LOLLZQ +24LoLy 3,1 + §L1L1,3,1 — 8LyLyy 1+ 64LgLo 2
58 50 88
- §L0L2,2,0 —4LoLyoy + ?L1L2,2,1 —12LgL3 10 — 3L0L3,1,1
32 166
+18L L3 1 — ?LOLl,l,Z,l —18LoLy 11 + ?LoLz,m,o —8LoL2111

+ 328(3L3 + 32L3% — 64LoLy .
(3.5.24)

The function H(z,z) is a single-valued combination of multiple polylogarithms that

9Note that we consider a slightly extended version of the Hopf algebra considered in ref. [126]
that allows us to include consistently multiple zeta values of even weight, see ref. [63,64].
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cannot be expressed through SVHPLs alone,

H(z, ) = —128G |, — 512G, — 64G 5 + 64GT;, — 64G; , — 128G, ;
+ 064G 1 — 64G 1| — 448G 11 + 64G, 7, | +64G 151 +64GS, 1+ 64GT, 1
—64G5, 11 +128G 5 + 128G, 517 + 256Gy, | § + 128Gy 1, — 128Gy 1
+ 192G, — 64G;  ; — 064G 1, +192G5 ;; + 128Hy, — 128HY,
640 64 256
5 213 — 5 231 — = s12 T OIS o — 64HY, | + 640G 5 (3.5.25)

+ 256 LoG ; + 32LoGY | 5 + 64L0G , 1 + 96LoGy | 1 + 32LoGy 1 | + 96LoGy

2,1,2 2,2,1 3,11 3,11 3,11
—64LoGy | | 1+ 64LGy 1 ;1 — 32L1GS, — 128L,Gf — 16L,G | 5
32

+32L22G; — §H;H;2 — G4AH S HY | — 1280 H — 64H; LG,

2,1,1
— B2L3Gy T — B2L3G T | + 32L3GT | | + 32L1 LoG; + 16L1 LGy
80 _ _
211~ ng LoLys —A8H| LoLoyy + 12Hy L1 Ly + 16 L3 Hy,
640
1+,1,j - ? 3 H2,1

+ 16L, LG

+32L2Hy, | — 64H; LyLo + 16H; Ly Ly + 64LsG

+64(Hyy)? + 128(Hy )? + 32Lo Lo Gy 1 — 32LoLaG | 5
+ %6L0L2H2‘J +16H; LyLy, — %HJLOLQJ — 8H; L1 Ly, — 32Hy LoL,
— 48H | L3Ly + 32H, LoLs + 16 H, Ly Ly + 32H;L3G2ji — 16H; L1LoG 5
+ %6L3G2+j + ?LgG;ﬂ — 8L LGy — 8L LG ¢ + ?HngHM
—16(H; )?LoLoy — 32Hy Hy L + g(Hf)QLgLO —12(H; )Ly Ly + 28H L3

368(H,)3 56
4 O 611Gy SLoL Lo+ X H B LoLs — SHT S LiLs

28
+8(HT 23 + 8(HF L3 + 8(HS PLoLy + - (H HE 13 — A(Hy B LoLy

160

52
—96H, (Hy )’ Lo + 3 (H;)3LoLy + ng’Lng +4H[ LoLiL,
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2 148
+4H L3L Ly + Hy LyL3 + gH;LgLf — 8HSL3L, + T(H;)‘*Lg
10, B 10,
+ E(H1 VLo +5(H)?LAL? — E(Hl VLIL, — 128@,(;;I — 128C3GI171
16 o o 64
+ §C3(H1 ) Lo + 24¢3(H{ )Ly + ?@Hl Ly,
where we used the obvious shorthand
1
HE: = §Hﬂ(x) + (r ¢ 7). (3.5.26)

and similarly for Gfﬁ. In addition, for Gﬁl the position of z is indicated by the bars
in the indices, e.g.,
= Gi,4(7,7,7). (3.5.27)

Note that we have expressed H(z, ) entirely using the basis of G constructed at the
beginning of this section. As a consequence, all the terms are linearly independent

and there can be no cancellations among different terms.

3.5.4 Numerical consistency checks for H

In the previous section we have determined the analytic result for the Hard inte-
gral. In order to check that our method indeed produced the correct result for the
integral, we have compared our expression numerically against FIESTA. Specifically,
we evaluate the conformally-invariant function zi;x3, Hiz.04. Applying a conformal

transformation to send x4 to infinity, the integral takes the simplified form,

1 / d*zsdzediz, xizad,
6 2 . 2\.2 (2 \.2 (2 2 2
™ (%5%5%5)%6(9536)9567(37179527%7)

: (3.5.28)

m 1573 Hizps =
with 9 propagators. As we did for Ej4.03, we use the remaining freedom to fix z3; = 1
so that u = 2%, and v = 3, and perform the numerical evaluation using the same
setup. We compare at 40 different values, and find excellent agreement in all cases.

A small sample of the numerical checks is shown in Table 3.3.
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uw v  Analytic FIESTA )

0.1 0.2 269.239 269.236 6.4e-6
0.2 0.3 136.518 136.518 1.9e-6
0.3 0.1 204.231 204.230 1.3e-6
0.4 0.5 61.2506 61.2505 5.0e-7
0.5 0.6 46.1929 46.1928 3.5e-7
0.6 0.2 &82.7081 82.7080 7.4e-7
0.7 0.3 57.5219 57.5219 4.7e-7
0.8 0.9 24.6343 24.6343 2.0e-7
0.9 0.5 34.1212 34.1212 2.6e-7

Table 3.3: Numerical comparison of the analytic result for x%3x§4 Hi3.04 against
FIESTA for several values of the conformal cross ratios.

3.6 The analytic result for the three-loop correla-

tor

In the previous sections we computed the Easy and Hard integrals analytically. Using
eq. (3.1.8), we can therefore immediately write down the analytic answer for the three-

loop correlator of four stress tensor multiplets. We find

:ﬁﬂ@PBZEg}[ﬂ&@%+ﬂ@<1—§)+f®(lim)]

e frr o (1)

(3.6.1)

+ 4_[ L B+ E( : )+11uE(1—x)
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1 _ v+1H(b)(x)+1+uH(b)(1_$)+u+vH(b) (1)} ‘
r—7T |v—1 1—u uU— T

The pure functions appearing in the correlator are defined in egs. (3.2.3), (3.4.18),
(3.5.17) and (3.5.24). For clarity, we suppressed the dependence of the pure functions
on 7, i.e. we write fF(x) = f¥"(2,7) and so on. All the pure functions can
be expressed in terms of SVHPLs, except for H® which contains functions whose
symbols involve x — Z as an entry. We checked that these contributions do not cancel

in the sum over all contributions to the correlator.

3.7 A four-loop example

In this section we will discuss a four-loop integral to illustrate how our techniques
can be applied at higher loops. The example we consider contributes to the four-
loop four-point function of stress-tensor multiplets in A/ = 4 SYM. Specifically, we

consider the Euclidean, conformal, four-loop integral,

Iy i8/ 2,2 d24$52d4$26dzlv;i%zsx%l‘%x% 2 .2 21 > f(u,v), (3.7.1)
T L5018 25126 L3738 45 46 a7 g U56 L7 L8 L1324

where the cross ratios v and v are defined by eq. (3.1.11). As we will demonstrate in

the following sections, this integral obeys a second-order differential equation whose

solution is uniquely specified by imposing single-valued behavior, similar to the gen-

eralized ladders considered in ref. [111].

The four-loop contribution to the stress-tensor four-point function in N’ =4 SYM
contains some integrals that do not obviously obey any such differential equations,
and with the effort presented here we also wanted to learn to what extent the two-step
procedure of deriving symbols and subsequently uplifting them to functions can be
repeated for those cases. Our results are encouraging: the main technical obstacle is
obtaining sufficient data from the asymptotic expansions; we show that this step is
indeed feasible, at least for /™, and present the results in section 3.7.1. Ultimately

we find it simpler to evaluate 1™ by solving a differential equation, and in this case
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the asymptotic expansions provide stringent consistency checks.

3.7.1 Asymptotic expansions

Let us first consider the limits of the four-loop integral (3.7.1) and its point per-
mutations for x5, 234 — 0. We derive expressions for its asymptotic expansion in
the limit where v — 0,v — 1 similar to those for the Easy and Hard integrals
obtained in section 3.3. The logarithmic terms can be fully determined, while the
non-logarithmic part of the expansion requires four-loop IBP techniques that allow
us to reach spin 15. This contains enough information to fix the ¢, log’(u) terms
(important for beyond-the-symbol contributions) while the purely rational part of
the asymptotic series remains partially undetermined. However, our experience with
Easy and Hard has shown that each of the three coincidence limits is (almost) suffi-
cient to pin down the various symbols. Inverting the integrals from one orientation to
another ties non-logarithmic terms in one expansion to logarithmic ones in another,
so that we do in fact command over much more data than it superficially seems. It
is also conceivable to take into account more than the lowest order in w.

We start by investigating the asymptotic expansion of the integral [ 1(3323 whose
coincidence limit x5, x34 — 0 diverges as log2 u. There are three contributing regions:
while in the first two regions the original integral factors into a product of two two-
loop integrals or a one-loop integral and a trivial three-loop integral, the third part
corresponds to the four-loop ‘hard’ region in which the original integral is simply
expanded in the small distances. The coefficients of the logarithmically divergent
terms in the asymptotic expansion, i.e. the coefficients of log®u and logu, can be
worked out from the first two regions alone. It is easy to reach high powers in x and
we obtain a safe match onto harmonic series of the type (3.3.2) with ¢ > 1. Similar
to the case of the Easy and Hard integrals discussed in section 3.3, we can sum up
the harmonic sums in terms of HPLs. Note that the absence of harmonic sums with
i = 1 implies the absence of HPLs of the form H; _(z).

In the hard region, we have explicitly worked out the contribution from spin zero

through eight, i.e., up to and including terms of O(x®). By what has been said above
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about the form of the series, this amount of data is sufficient to pin down the terms
involving zeta values, while we cannot hope to fix the purely rational part where the
dimension of the ansatz is larger than the number of constraints we can obtain. The
linear combination displayed below was found from the limit £ — 0 of the symbol
of the four-loop integral derived in subsequent sections. Its expansion around z = 0

reproduces the asymptotic expansion of the integral up to O(z®). We find

x%z& T3 ]S;)% = (3.7.2)
% 10g2 U [H2,1,3—H2,3,1 + Hs19—Hs01+2Ho110 —2Ho011 + (3(6H3 + 6H2,1)] +
i log u [—4H2,1,4+4H2,4,1 —3H313+3H331—3Hy10+3Hy01—4Hs113—4H51 29
+4H001+4Hs311—2H3112+2H3911+C3(—18Hy — 8Hy o — 2H3 1 + 8H2,1,1)} +

1
- [10H2,1,5 +2Ho94 —2Ho33 — 10Ho 51 +8H3z 14 — S8Hg 41 +6Hy13 — 6Hy3,

+6H519—6H591+8H114+6H2123+8H5130—2Ho141+2Ho990—4H5231

—4Hy319—10Ho301—4Hs411+4H3113+6H3100—6H3201—4H3311+4H21122

yLy&y by dysy

—4H3 1901 —4H201,10 +4H22211 + (3(36Hs + 8Hs 3 + 12H3 9 — 12Hyy — 4Ho 1 5
—16Haz, — 8Hy 1) + G(10Hy + 10Hy,1)| + O(u)

Next we turn to the asymptotic expansion of the orientation / 1(;1;)34. Here the Euclidean
coincidence limit x1o, x34 — 0 is finite, and thus the only region we need to analyze
is the four-loop hard region, for which we have determined the asymptotic expansion
up to and including terms of O(x'®). Just like for the non-logarithmic part in the
asymptotic expansion of [ 1(223, eq. (3.7.2), we have fixed the terms proportional to
zeta values by matching an ansatz in terms of HPLs onto this data, and once again,
the terms not containing zeta values are taken from the relevant limit of the symbol.
We find

I%B 1’34 11(3334 = (3‘7‘3)
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1
x

—2H 1 412—2H 511+ H1 1213 +VH 11231 —Hii312—Hi1321+Hi2113+ Hi2131

Uyt IRt ]

s L9y IR

[4H1,3,4—4H1,5,2+2H1 124—2H1140+2H 1 914—2H 1230 +2H1313+2H1 331

—Hipoio+Hipoo1—2H 19311+ Hiz121—Hiz211+Hig1121 — Hig1211+
(3(8Hy113—8Hy90+4H 191 —4H1211) + 70 Hy | + O(u).

The expansion around x = 0 of this expression reproduces the asymptotic expansion
of the integral up to O(z'9).

The most complicated integrals appearing in the asymptotic expansion of 1 53323 and
I 1(3‘?34 are four-loop two-point dimensionally regularized (in position space) integrals
which belong to the family of integrals contributing to the evaluation of the five-loop

contribution to the Konishi anomalous dimension [112],

Gl(a a14) = / d?zd?zrd wgd g
1y---,014 (ZE%G)‘“ ($%7)a2 (ﬁs)% (35%9)“4 (I%)% (x%)aa (;p%)a?
1
y . (3.74)

(5)7s () (wg) 10 (wo )11 (w7g) 12 (79) 112 () 14

with various integer indices ay,...,a;4 and d = 4 — 2e.

The complexity of the IBP reduction to master integrals is determined, in a first
approximation, by the number of positive indices and the maximal deviation from
the corner point of a sector, which has indices equal to 0 or 1 for non-positive and
positive indices, correspondingly. This deviation can be characterized by the number
>icv, (@i—1) =37, a; where vy are sets of positive (negative) indices. So the most
complicated (for an IBP reduction) integrals appearing in the contribution of spin s
to the asymptotic expansion in the short-distance limit have nine positive indices and
the deviation from the corner point is equal to 2s — 2. It was possible to get results
up to spin 15.

As in ref. [112] the IBP reduction was performed by the c++ version of the code
FIRE [117]. The master integrals of this family either reduce, via a dual transfor-
mation, to the corresponding momentum space master integrals [127,128] or can be
taken from ref. [112]. To arrive at contributions corresponding to higher spin values,

FIRE was combined with a recently developed alternative code to solve IBP relations
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LiteRed [129] based on the algebraic properties of IBP relations revealed in ref. [130].
(See ref. [131] where this combination was presented within the Mathematica version

of FIRE.)

3.7.2 A differential equation

We can use the magic identity [22] on the two-loop ladder subintegral

1 d*rsd*xer?
2 5 64924
1@y, w9, 4, 7) = higor = — 3 5 5 9 3 9 3 - (3.7.5)
VL A P2 00 17000 1700 o 00 o G o
15L25L26 45X 46 L7 L 56

The magic identity reads
](2) ([El, To, Ty, ZL‘7) - 1(2) (I’Q, T1,T7, .174) s (376)

and using it on the four-loop integral we find

4. 4

](4) o 1 dl’7d LUS 1(2)

14;23 — 4 5 9 9 9 9 9 ($1,l‘27$4,$7)
™ Ti1gT37X38L 47 L4878

1 d*x,d
- _/ Trd s 1(2)($2,$17$7,x4>

4 2.2 .2 .2 .92 9
s Ti1gl37L38L a7 L4878

1 d*wsd wed v7d vyl 2t a3, ‘ (3.7.7)

8| 2.2 .2 .2 ,2.2 .2 .2 .92, 2 2 92 92
T Tigl37L38 L 7L g L78LasL15L16L75L76 L5456

The resulting integral (3.7.7) is ‘boxable’; i.e. we may apply the Laplace operator
at the point x5. The only propagator which depends on x5 is the one connected to
the point x5 and we have

DQLQ = —47125* (295) - (3.7.8)
Lo
The effect of the Laplace operator is therefore to reduce the loop order by one [22].

Thus on the full integral /¥ we have

A, 34 A 2 .2 2
0,79 _ 4 d*red*r7d* x307,27,75,
1423~ " 6 | 2.2 .2 .2.2.2.2.2.2.2 .2 2
T T1gT37L38L 47 L g L7 L1aL16L72L76L54L 26
2
14
- —4ﬁE14;23 3 (379)

T12T34
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where we have recognized the Easy integral,

Fragzs = 76 | P22 g2 a2 2 02 2 2 2 2 2 2 2 fe(u,v). (3.7.10)
1873713847 48 V781672076 L6426 13724

1 / d*zed xrd oy w3t 1

The differential equation (3.7.9) becomes an equation for the function f,

2
1 1y

T13L4 T12T13L24

Applying the chain rule we obtain the following equation in terms of u and v,

A® f(u,v) = —3 Fulu,v). (3.7.12)
where
AP = 42(0, + 0,) + ud? +vd? — (1 —u — v)D,0,] . (3.7.13)
In terms of (z,z) we have
170,05 f (2,7) = — fp(z, 7), (3.7.14)
where
fle,7) = —(z — 2)f(u,v) (3.7.15)

and similarly for fz. Note that f(z,z) = —f(z,z). Now we recall that the function
fe(u,v) defined by eq. (3.7.10) in the orientation Fj4.93 is of the form

fE(u7U) =

[E(1 — 21— %) —|—9ch(1 . i)] . (3.7.16)

(x — 7)(1 — z7) x T

Hence we find the following equation for f ,

. 1 1
(1 — 27)220,05 f (1, 7) = — [E(l a1 7)+ mE(1 1 —ﬂ . (3.7.17)
x z
Without examining the equation in great detail we can immediately make the follow-

ing observations about f .
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e The function f is a pure function of weight eight. From eq. (3.7.15) the only
leading singularity of the four-loop integral I is therefore of the 1/(z — Z)
type, just as for the ladders.

e The final entries of the symbol of f (r,z) can be written as functions only of
x or of Z, but not both together. This follows because the right-hand side
of eq. (3.7.17) contains only functions of weight six, whereas there would be
a contribution of weight seven if the final entries could not be separated into

functions of x or T separately.

e The factor (1 — zZ) on the left-hand side implies that the next-to-final entries
in the symbol of f(z,Z) contain the letter (1 — 2z).

In ref. [111], slightly simpler, but very similar, equations were analyzed for a class
of generalized ladder integrals. The analysis of ref. [111] can be adapted to the case
of the four-loop integral I and, as in ref. [111], the solution to the equation (3.7.17)
is uniquely determined by imposing single-valued behavior on f .

First of all we note that any expression of the form h(x) — h(Z) obeys the homo-
geneous equation and antisymmetry under the exchange of x and z and hence can be

added to any solution of eq. (3.7.17). However, the conditions of single-valuedness,
[disc, — discs]f(2,2) =0, [discy_, — discy_g] f(2,2) =0, (3.7.18)

and that 0 and 1 are the only singular points, fix this ambiguity.

Let us see how the ambiguity is fixed. Imagine that we have a single-valued
solution and we try to add h(z)—h(Z) to it so that it remains a single-valued solution.
Then the conditions (3.7.18) on the discontinuities tell us that A can have no branch
cuts at x = 0 or z = 1. Since these are the only places that the integral has any
singularities, we conclude it has no branch cuts at all. Since the only singularities
of the integral are logarithmic branch points, h has no singularities at all and the
only allowed possibility is that h is constant, which drops out of the combination
h(xz) — h(z). Thus there is indeed a unique single-valued solution to eq. (3.7.17). The

argument we have just outlined is identical to the one used in ref. [111] to solve for
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the generalized ladders.
A direct way of obtaining the symbol of the single-valued solution to eq. (3.7.17)

is to make an ansatz of weight eight from the five letters
{z,1—z,2,1-2,1 -2z}, (3.7.19)

and impose integrability and the initial entry condition. Then imposing that the

differential equation is satisfied directly at symbol level leads to a unique answer.

3.7.3 An integral solution

Now let us look at the differential equation (3.7.17) in detail and construct the single-
valued solution. It will be convenient to organize the right-hand side of the differential

equation (3.7.17) according to symmetry under = <> 1/z. We define

_ 1 _ 1 1
1 i 1 1
E_(:L‘,m):E[E(l—x,l—:p)—E(l—E,l—E)]. (3.7.20)
Then the differential equation reads
(1 — 22)220,0: f (2, %) = —(1 — 22) E_(2, %) — (1 + 27) B, (2, T) . (3.7.21)
We may now split the equation (3.7.21) into two parts
220,0z fo(x,T) = —FE_(x,7), (3.7.22)
(1 — 22)220,0z fo(x,Z) = —(1 + 22)Ey (2, T) . (3.7.23)

Note that we may take both f, and f, to be antisymmetric under z <> 1/x.
The equation (3.7.22) is of exactly the same form as the equations considered in

ref. [111]. Following the prescription given in ref. [111], section 6.1, it is a simple
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matter to find a single-valued solution to the equation (3.7.22) in terms of single-

valued polylogarithms. We find

fa(z,Z) =Lg a0 — 2La30+ Ls20+ 2L3220 — 2L4120 — L1200 —2Ls210+ L5000

+ 205100+ 205110 +2L41,1,00 — 4C3 (Iz5 —2L35+2L40 + 3E4,1)
(3.7.24)

We now treat the equation (3.7.23) for f,. Let us split it into two parts so that
fb(xa "Z‘) = fl(xa j:) + fQ(xv j)7

(1 —22)x20,0: f1(x,T) = —FE,(x,T),
(1 —22)0,0z fo(x,2) = —FE,(x,T) . (3.7.25)
We may write integral solutions
dt dt B (t,t
/ / HE,(t,1) (3.7.26)
1—tt
and
E+
folz,z) = —f1(1/x,1/Z) = dt dt (3.7.27)
which obey the equations (3.7.25).
It follows that the full function f is given by
f(2,2) = fu(x,2) + fi(z, T) + folz, ) + h(z) — h(Z) (3.7.28)

for some holomorphic function h. We note that f(z,1) — fa(x,1) = h(z) — h(1).

Now we examine the function f5 in more detail. Writing,
Ey(t,1) =Y H,,(t)Hy (), (3.7.29)

we find,

=Y /1 w%Hwi(t)Iw;(t,f) (3.7.30)
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where, for a word w made of the letters 0 and 1,

L) = [ 0 = (DG ) -G ). (3731

We may now calculate the symbol of f;. We note that

dfs(z, ) = dlog x Z Hy (2) Ly (2,7) — (z 4> 1) . (3.7.32)

The symbol of I, is obtained recursively using

1—2ax T

S(I,(r,7)) =S(H,(T —(—1D)"S(Iy(z, , 3.7.33
(1ule,)) = S(HA) © o — (~1S (L (0,7) © 1=, (BT3))
where w = apw’. When w is the empty word I(z,z) is a logarithm,
_ 1—2azx
I(xz,z) = log . (3.7.34)

Using the relations (3.7.32,3.7.33,3.7.34) we obtain the symbol of fo(x,z). One finds
that the result does not obey the initial entry condition (i.e. the first letters in the
symbol are not only of the form v = 2% or v = (1 — x)(1 — Z)). However, the initial
entry condition can be uniquely restored by adding the symbols of single-variable
functions in the form S(ha(x)) — S(h2(z)). Inverting x <+ 1/2 we may similarly treat

fi(z,z) = —fo(1/x,1/z). Combining everything we obtain the symbol

S(f(w,2)) = S(falw, &)+ folw, 2) + ho() = ho(Z) = fo(1 /2, 1/2) = hy(1 /) + ho(1/7)) .

(3.7.35)
The symbol obtained this way agrees with that obtained by imposing the differential
equation on an ansatz as described around eq. (3.7.19).

Given that single-valuedness uniquely determines the solution of the differential
equation (3.7.17) one might suspect that we can use this property to give an explicit
representation of the function hy(z). Indeed this is the case. The integral formula
(3.7.27) can, in principle, have discontinuities around any of the five divisors obtained

by setting a letter from the set (3.7.19) to zero.
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Let us consider the discontinuity of fo(x,z) at =z = 1/,

* B (t,t
disco—1/z fo(2, T) = / dt disctl/x/ dt—/——~ +(t, 3

g B, (t,t
= / dt disca—y s / arEr )
1/z o 1—tt

= _/x %(%z‘)EJr(t,l/t). (3.7.36)
1/

The above expression vanishes due to the symmetry of F, under x <> 1/z and the
antisymmetry under x <+ z. The absence of such discontinuities is the reason that
we split the original equation into two pieces, one for f, and one for f.

Now let us consider the discontinuity around z = 1. We find

discy g fo(x, T) / —d1s01 t/ _ dt/ E,(t,1)

t

—(2m')/1 —E+t 1/t) + / dt/ plisoiBe (D) g7 gy

1—tt

The first term above again vanishes due to the symmetries of E,. The second term
will cancel against the corresponding term involving disc;_¢F (¢,) in the integrand
when we take the combination [disc;_, —discy_z|f2(x, Z). The discontinuities at x = 1
and T = 1 of fy therefore satisfy the single-valuedness conditions (3.7.18) since E
does.

For the discontinuities at z = 0 we find

* E (t,t
disc, fo(x, &) = / dt disct/ 1+ tj / / — dlsctE+(t7f). (3.7.38)
0 1 -

Now writing the 7 integral above as [" = [ — fol and using [disc; — discg] B, (t,£) = 0

we find

[disc, — discz] fo(x, T) = { / dt / —dlSCtE+(t f)} (x <> T)

ol [af

E+ (t f)} (x 7))  (3.7.39)
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Thus fy(x, Z) is not single-valued by itself since the above combination of discontinu-
ities (3.7.39) does not vanish. Note however that eq. (3.7.39) is of the form k(x)+k(Z),
as necessary in order for it to be canceled by adding a term of the form hy(z) — ho(Z)
to fao(z, ). We now construct such a function hs(z).

Let

x 1 di
hy(z) = / dt / 1_tt,E+(t,E>. (3.7.40)
0 0

Writing B (t,1) = >, Hy, (1) Hy (f) we find

1) ——/Ow%ZH(wi;t)/o % H(uwl:F). (3.7.41)

We can write

/0 % H,(t) = (—1)G(1/t,w}(0,1); 1), (3.7.42)

where we have made explicit that w] is a word in the letters 0 and 1 and d is the

number of 1 letters. One can always rewrite this in terms of HPLs at argument ¢.

Indeed we can recursively apply the formula

td bd
G(%,ag,ag...,an;l):/ ! G(%,ag,...,an;l)—/ —TG(%,G,g,...,CLn;l).
o r—1 o T

(3.7.43)

to achieve this. Note that a; € {0,1} in the above formula. We also need
G(2,041) = (=1) " Hypq (1) - (3.7.44)
Once this has been done, one can use standard HPL relations to calculate the products
H,, ()G(1/t,wi; 1) (3.7.45)

and perform the remaining integral from 0 to x w.r.t. ¢. We thus obtain a function
hy whose discontinuity at # = 0 is minus that of the z-dependent contribution to

[disc, — discz|fo(x, T).
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In ref. [111] an explicit projection operator F was introduced which removes the
discontinuity at x = 0 of a linear combination of HPLs while preserving the disconti-
nuity at x = 1. The orthogonal projector (1 — F) removes the discontinuity at x = 1

while preserving that at x = 0. We define
ho(z) = (1 — F)hy(z). (3.7.46)

Explicitly we find

151 15 3 15 19
ha(x) = E@Hﬁ ?CgHz — §C2C3H2,0 - ZCE’HQ’O — (o3 Ho 1+ Z<4H2’2 +2(3H> 3

21 19 17 3
—CoHy 4+ §C4H2,0,0+ ZC4H2’1’0+ §C4H2,1,1 +5C3Hs 10— CoHy 13— §C3H2,2,0

1 3
+C3H2,2,1 _<2H2,2,2+ §<2H2,3,0 _<2H2,3,1 - §<3H2,0,0,0 _3<3H2,1,0,0 _3<3H2,1,1,0

1 1 1
+4C3Ho 111+ CGHo 12020 Ho 121+ = Ho140+CHa210+=Hasz20—=H2400
2 2 2
1
—Hy 410+ §C2H2,1,0,0,0 +CoHo11,00+2CHo1110+Ha1130+FH21220—H21300
1 1
+2H11120—Ho1310+H22120— §H2,2,2,0,0 —Hs9910+ §H2,3,0,0,0 —Hs3110

77777777777777777777

+H2111000. (3747)

777777

Here the H functions are all implicitly evaluated at argument x.
The contribution from fi(z, %) = — fo(1/x,1/Z) is made single-valued by inversion

on x. So we define

h(z) = ho(z) — ho(1/2) . (3.7.48)
Finally we deduce that the combination
f(2,2) = fu(z,2) + fi(2,7) + folz,7) + h(z) — h(2) (3.7.49)

is single-valued and obeys the differential equation (3.7.17) and hence describes the

four-loop integral I™® defined in equation (3.7.1). The equations (3.7.27), (3.7.47),
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(3.7.48) and (3.7.49) therefore explicitly define the function f.

3.7.4 Expression in terms of multiple polylogarithms

Now let us rewrite the integral form (3.7.27), (3.7.31) for fo(x,Z) in terms of multiple
polylogarithms. We use the following generalization of relation (3.7.43),

G(;jaa% s 7an;z) :(G(%vy) - G(aivy))G(a% s 7an;2)
y
—l—/( at dt)G( A3, .y Ay Z) (3.7.50)
0

t— 1L t
as

to recursively rewrite the G(1,...) appearing in the L(t,Z) in eq. (3.7.27) so that
the ¢ appears as the final argument. Note that in eq. (3.7.50), the two terms involving

an explicit appearance of 1/ay vanish in the case as = 0. The recursion begins with
G(5;2) =log(1 —y2) = G(3;y). (3.7.51)

The recursion allows us to write the products H,, (t)L(t,7) as a sum of multiple
polylogarithms of the form G(w;t) where the weight vectors depend on Z. Then
we can perform the final integration dt/t to obtain an expression for f, in terms of
multiple polylogarithms.

We may relate fi(x,z) directly to fo(z, ) since

[ gt
:/17[/1:—&1# 0= /‘E*”)]

= fo(x, %) = > _[How,(¥) — How, (1)][How; (2) — Houy(1)] (3.7.52)
For a practical scheme we express E as a sum over H,,(t)H,/(t) and do the t
integration. In any single term of the integrand of f5, the recursion (3.7.50) will
lead to multiple polylogarithms of the type G(...,1/z;t). Next, we take the shuffle

product with the second polylogarithm and integrate over .
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In this raw form our result is not manifestly antisymmetric under x <+ z. Re-

markably, in the sum over all terms only G(0,1/Z,...;z) remain. Upon rewriting

1
) 70

G’(O al,...,an;x) = G(0;2)G (%,al,...,an;x) — /x .

i (3.7.53)
we can use (3.7.50) to swap G(1/z,...;x) for (a sum over) G(...,1/z; ). Replacing
the original two-variable polylogarithms by 1/2 themselves and 1/2 the x, z swapped
version, we can obtain a manifestly antisymmetric form. The shuffie algebra is needed
to remove zeroes from the rightmost position of the weight vectors and to bring the
letters 1/x,1/Z to the left of all entries 1. Finally we rescale to argument 1.

In analogy to the notation introduced for the Hard integral let us write
G3,2,1 = G (07 07 %7 0 1L ]-) (3754)
etc. Collecting terms, we find

1@23(%@ = (3.7.55)
— Looat+2Lo33—Loso—2Lo114+200123—200132+2L2141+200213— 200222
—2L9231+2La319+2L2320+2L2321—2L2410—2L2411—2L3130+2L3310
—4L91122+4Lo 1221 +4 L0201 12—4L09210—4L22211—4L31120+2L32100
+4Ls2110+Lo(—Hyou+2H g5 — Hyyo—2H, 1 4+2H, 53— 2H 5, +2H 44
+2H 513 2H 595 2H 53, +2H 310+ 2H 351 —2H 411 —4H 1 00+4H] 155,
+4H 511 —4H1_,272,1,1) +AH 55— 4H 5, —4H, 43 +4H 5, +8H | s —4H 54
FAH ) g0 —8H 51 —4H 5 4y F8H 550+ 4H 5y —8H 5 3—4H ) 4 5—4H 45,
+8H 511 +8H 1155 +8H 11 30— 8H 1931 —8H 1351 —8H 5113+8H 53,1,

—8H, 31 9+8H 5511 +(3(8Lo3—12L35—12L910+12L5 51 —12L3510—16L3 11
—12LgH , ,+12L0Hy 5, 4+ 16H; 35— 16H 5, —16H ;5 +16H 5, ;) + 2L3(s

+ (5 (—24L,—T2H; —48H ) H+

G; (—L4,2 —Ly00—2L410—2L411 —4[_/2,1C3+4L0C3H2_ +4L1GHy
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+3LoHy +2Ly 1 Hy —4L Hy +4¢sH, ,—2LoogHy 3+5L0H; 4 —2LHi ,—12H;
+12(3Hy, — LogHy,+2LoHy 3 —2L1 Hy s—6Hy ,+ LoH; , — 2L Hy , —4LoHy
—2LyH, \+2H, ,+16H; , +16(3H; ,  —2LooHy 4 4 +6LoHy 4 3—12H;, y—2LooH; 5,
+6LoH; 5 —8H 5 3+2LoH; 51 —8H 5o +4H 4 +2L0oHs 1 1 +2LoHy, s —4H5 4
—2LoHy, —4Hy, 0 +4Hy s —6LoHy, +4H;, ,+12H;,  +12H,

+4LoH{ 5 —8Hy 1 5—8H 50— 4LoH 51 1 +8H 50 +8H 5,1 — LoH )+

G (2L32+4L310+4L311—8CHy —6LoHy —2LooHy —4L11Hy +8LoH,
+6L1Hy —20H; —8(3Hy +8LoH; 3+4L Hy 3—20H; ,+6LoH; ,+4L Hy
—16H;3+4LoH;, +4L Hy, — 16 Hy, —8H,  +4LoHy, ,—16Hy ) 3 +4LoHy
—16H, 5, —8H; 3, —4LoHy, , —8Hy o +8Hs,  —8H 1 ,+8H 5, 1 +2LsHy )+
Gﬁfl (2L32—Lao—2La1+2L31,0—12Ls(3+16(Hy —4LoHy

—2LgoHy +8LoH, +8L1Hy —20H; +16(3H; ,+4LoH, 3—16H, ,+4LoH;,
—12H; 3, —12H3,+4LoHy, ,—8Hy, 3—8H ,,—4LoHy, 1 +8H5,  +8Hs | )+

G (3LoHy —12H; +3LoH, ,—12H; 3+6LoH;, —12H,,—12H; , +6LoHy ,
—12Hy, ,—12H,,) + Gg;l (2L30+4Ls1—8(3H, +2LoHy —AL1Hy —8H
+4LoH{,—8H y+4LoH;, —8H; ,—8H , ,+8H;, 1) + G;z(L4+L3,0+4L3,1
—16¢3Hy —4L1Hy +4H; 3+4H;,+8H;, —4LoHy 1 +8Hy 51 +8Hy

G} (=2L4+2L30+16(3H;y +4LoH; ,—8H; 3—8H;, )+

2,1,1
GI(—4Hy —4H;,—8H,,—8H ) + Gi (=6Lo1+3LoH;y +6L1Hy —12H;
—12H,—12H;,) + GF (—2Ls—8Ly, +2LoHy +8L Hy —4H; —8H,
—8H, +8H ) + G| | (4Ls+4LoHy —16Hy —8H,,) + GF,(—4Ls—8La,

+2LgHy +8L1Hy —4H,—8Hy+8H: ) + G}, (4L3—8H; —8H ,)+

22,1
Gf (4L3+4Lyy—4L Hy —4H; +8Hy ) + Gf | (4LoHy —8H;y

21,2 51,11

(10G},+8GE +3G,—8G) ,—8G], ,—4G], —8G}  —8G} —6GT

2.1,3 22,2 23,1 3,1,2 32,1 11,1

+ + + + + + +
+4Gi1,1,2 _4GQ,2,1,1) Ly + (_ 16GQ,4 o 12G3,3 _6G41,2 _4G5,1 + 12Gé,l,s
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+12G/, +8G/, +8G! +8G! —8GS  —8G! —8G!  H,+

5,2,2 5,31 31,2 32,1 5,1,1,2 5,1,2,1 3,1,1,1

+ + + + + + + -
(—16G5,—16G;,—12G,—8G} +8Gy | . +8Gy, ,+8G, ) Hy i+

+ + + + + + + +
(20G5,+20G; , +12G] +4G},—16G; | —12G, —12G}, ,—16G;

—16G;. . —8G+, —12G+  —12GF  —8GH +8GT ~ +8GI . —8GT

3,2,2 3,3,1 11,2 12,1 51,1 2.1,1,3 2.1,2,2 22,21

—8Gt, +8GS . —8GI  )H+

2.3,1,1 3,1,1,2 3,2,1,1
Gé_’l (2L32—Lao—2La1+L3oo+2L510—12Ls(3+8(Hy —4L, Hyf
+8LyHf —16CHy, —AH 3 +4LoHi, —4H{, —16H ] —ALoHyf | ,+8H, 4
+8H; s +4LoHy, 1 —8Hy | —8Hy | H+
Gy, (2Ls0+4L31+4L1(3—6LoHS —4Ly HS +20H, —4LoH ,+16H{,
—4LoHS\+16H5,+8H5 | +8H, ,—8H5 | ) + G;z(i4+ig,0+4E371 +8L1(3
—2LoHy —4L Hy +4H{ +4H{,+AHS, +ALoH, | | —8H{ ), —8Hy | )+

Gy 1y (—2L4+2L50—8L1 (G —4LoH +16H{ —ALoH[,+8H  ; +8Hyf, )+

Gy, (=3L20—6Loy+3LoHy +6L1Hy ) + Gy, (—2L3—2L20—8Lo 1t

2LoHy +8LyHy —8H [y —8Hy, —8H\ | 1) + Gy | (4Ls—2Lao+8H,)+

G (=4L3—2Ly0—8La1— Looo—8Gs+2LoHy +8L1 Hy —12H7,
—8HF 1 —8H{ ) + G, (4L3+2Looo+16(+8H,) + G | (4Ls+Lag

22,1 2,1,2
+4Lo1+ Looo+8C3—2LoHy —AL Hy +8H ") + Gy | | (—2L2g—2Lg00—16(3)+

51,11

Gy (4Hy +8H{,) + G, (38Lo+12H ) + G | | (—6Ly+12H, ) +G;  (8La+2Loyo

—4HS +16H{,) + G, (—=8Ly—4Loo+8H)) + G | ,(—8Ly—2Loo+8H;

3,2,1 3,1,2

—8H",) + Gy, (4Loo+8H5 ) + G, (10Ly+4Lo o —4HS +16H{ ) )+
Gosi
-

2,1,3

(—4Ly—4Lop) + G, (—8La—4Loo+4H5 —8H{ ) + G, | (—4L2+8H; 1+

32,2 52,11

(=8Ly—4Loo+4HS —8H{\) + G5, (4Loo+8H5) + Gy, ,(4L2+4Log)+

2.1,2,1 2.1,1,2

(—10G;,—8G;,—3G, ,+10G, |, +8G,, . +8G;  ,+4G;  +8G;

2,1,4 2,2,3 2,3,2 24,1 3,1,3

8GQ,1,1,3 o 8GQ,1,2,2 _4GQ,1,3,1 _4GQ,2,1,2

+8G; . +8G, —|—3G£1 2+6G7

32,2 33,1 12,1
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8G371,1,2_8G3,1,271_6G21,1,1,1 4GQ,1,2,1,1

+4G5

511,12

+4G;,3,171 N ) Lo+

(—10G;,—10G; , —6G, —2G; ,+8G; | ,+6G;, ,+6G, , ,+8G;

21,4 22,3 2.3,2 31,3

+8G, , , +4G,, +6G.  +6G. +4G, 4G5 4G5 +4GS

3,2,2 33,1 1,1,2 12,1 51,1 751,13 35,122 592921
+4G5 4G5 . +4G L+

531,1 781,12
20G;6+20G§:5+ 12G2;4+4G§:3 — 2()(?2_71’5 — 16G;72’4 — 12G;’3’3 — 12G;’472

3,2,1,1)

—-20G; , ,—16G, , ,—16G, 8G, ,  —12G5 . —12G; . —12G .,  —4G;

31,4 32,3 332 Y341 41,3 12,2 431 51,2

—8G. .  +16G +12G5 +12G5 +8G +8G 8G; 8G5

52,1 21,14 2,1,2,3 2,1,3,2 2,2,1,3 5222 3321 °732411

+ 16Gz3:1,1,3+ 16G§;1,2,2+8G§:1,3,1 +8G§;2,1,2 _8G§;3,1,1 + 12G2;1,1,2 + 12GZI,1,2,1 +8G§,1,1,1

—8G 8G, +8G +8G 8G; +8G;

51,1,1,3 °5,1,1,2,2 2,1,2,2,1 51,311 °© 311,12 31,2,1,1

3.7.5 Numerical consistency tests for ¥

In order to check the correctness of the result from the previous section, we evaluated
I numerically and compared it to a direct numerical evaluation of the coordinate
space integral using FIESTA. In detail, we evaluate the conformally-invariant function
flu,v) = 22322, I (1, 29, 23, 24) by first applying a conformal transformation to

send x4 to infinity, the integral takes the simplified form,

(3.7.56)

i 2 o ) _ 1 drrsd* ved vrdiag 23,
1N Ty3T9 L1403 = o

2.2 .2 .92 .2 .92 .92 .2 92 °
L4300 T15T18Lo5LoeL37L38L56L67LT8

and then using the remaining freedom to fix %, = 1 so that u = z%, and v = z2,.
In comparison with the two 3-loop integrals, the extra loop in this case yields a
moderately more cumbersome numerical evaluation. As such, we modify the setup
for the 3-loop examples slightly and only perform 5 x 10° integral evaluations. We
nevertheless obtain about 5 digits of precision, and excellent agreement with the
analytic function at 40 different points. See Table 3.4 for an illustrative sample of

points.
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uw v  Analytic FIESTA )

0.1 0.2 156.733 156.733 4.9e-7
0.2 0.3 116.962 116.962 5.9e-8
0.3 0.1 110.366 110.366 2.8e-7
0.4 0.5 84.2632 84.2632 1.4e-7
0.5 0.6 75.2575 75.2575 1.4e-7
0.6 0.2 783720 78.3720 3.7e-8
0.7 0.3 70.7417 70.7417 6.8e-8
0.8 0.9 58.6362 58.6363 1.4e-7
0.9 0.5 60.1295 60.1295 1.1e-7

Table 3.4: Numerical comparison of the analytic result for z2,22, I™ (zy, 2o, 73, 74)
against FIESTA for several values of the conformal cross ratios.

3.8 Conclusions

Recent years have seen a lot of advances in the analytic computation of Feynman inte-
grals contributing to the perturbative expansion of physical observables. In particular,
a more solid understanding of the mathematics underlying the leading singularities
and the classes of functions that appear at low loop orders have opened up new ways
of evaluating multi-scale multi-loop Feynman integrals analytically.

In this paper we applied some of these new mathematical techniques to the com-
putation of the two so far unknown integrals appearing in the three-loop four-point
stress-tensor correlator in A/ = 4 SYM, and even a first integral occurring in the
planar four-loop contribution to the same function. The computation was made pos-
sible by postulating that these integrals can be written as a sum over all the leading
singularities (defined as the residues at the global poles of the loop integrand), each
leading singularity being multiplied by a pure transcendental function that can be
written as a Q-linear combination of single-valued multiple polylogarithms in one
complex variable. After a suitable choice was made for the entries that can appear
in the symbols of these functions, the coefficients can easily be fixed by matching

to some asymptotic expansions of the integrals in the limit where one of the cross
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ratios vanishes. In all cases we were able to integrate the symbols obtained form this
procedure to a unique polylogarithmic function, thus completing the analytic compu-
tation of the the three-loop four-point stress-tensor correlator in A" = 4 SYM. While
for the Easy integral the space of polylogarithmic function is completely classified
in the mathematical literature, new classes of multiple polylogarithms appear in the
analytic results for the Hard integral and the four-loop integral we considered.

One might wonder, given that the Hard integral function H® involves genuine
two-variable functions, whether there could have been a similar contribution to the
Easy integral, compatible with all asymptotic limits. Indeed there does exist a symbol
of a single-valued function, not expressible in terms of SVHPLs alone, which evades
all constraints from the asymptotic limits. In other words the function is power
suppressed in all limits, possibly up to terms proportional to zeta values. However,
the evidence we have presented (in particular the numerical checks) strongly suggests
that such a contribution is absent and therefore the Easy integral is expressible in
terms of SVHPLs only.

We emphasize that the techniques we used for the computation are not limited to
the rather special setting of the N = 4 model. First, by sending a point to infinity
a conformal four-point integral becomes a near generic three-point integral. Such
integrals appear as master integrals for phenomenologically relevant processes, like
for example the quantum corrections to the decay of a heavy particle into two massive
particles. Second, the conformal integrals we calculated have the structure Y R; F;
(so residue times pure function) that is also observed for integrals contributing to on-
shell amplitudes. However, we believe that this is in fact a common feature of large
classes of Feynman integrals (if not all) and one purpose of this work is to advocate
our combination of techniques as a means of solving many other diagrams.

Further increasing the loop-order or the number of points might eventually ham-
per our prospects of success. Indeed, beyond problems of merely combinatorial nature
there are also more fundamental issues, for example to what extent multiple polylog-
arithms exhaust the function spaces. It is anticipated in ref. [132,133] that elliptic
integrals will eventually appear in higher-point on-shell amplitudes. Via the corre-

lator /amplitude duality this observation will eventually carry over to our setting.
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Nevertheless, some papers [133,134] also hint at a more direct albeit related way of
evaluating loop-integrals by casting them into a ‘dlog-form’, which should have a

counterpart for off-shell correlators.
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Chapter 4

Hexagon functions and the

three-loop remainder function

4.1 Introduction

For roughly half a century we have known that many physical properties of scattering
amplitudes in quantum field theories are encoded in different kinds of analytic behav-
ior in various regions of the kinematical phase space. The idea that the amplitudes of
a theory can be reconstructed (or ‘bootstrapped’) from basic physical principles such
as unitarity, by exploiting the link to the analytic behavior, became known as the
“Analytic S-Matrix program” (see e.g. ref. [135]). In the narrow resonance approx-
imation, crossing symmetry duality led to the Veneziano formula [136] for tree-level
scattering amplitudes in string theory.

In conformal field theories, there exists a different kind of bootstrap program,
whereby correlation functions can be determined by imposing consistency with the
operator product expansion (OPE), crossing symmetry, and unitarity [137,138]. This
program was most successful in two-dimensional conformal field theories, for which
conformal symmetry actually extends to an infinite-dimensional Virasoro symme-
try [139]. However, the basic idea can be applied in any dimension and recent progress
has been made in applying the program to conformal field theories in three and four
dimensions [140-142].

176
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In recent years, the scattering amplitudes of the planar N = 4 super-Yang-Mills
theory have been seen to exhibit remarkable properties. In particular, the ampli-
tudes exhibit dual conformal symmetry and a duality to light-like polygonal Wilson
loops [21,22,24,25,143]. The dual description and its associated conformal symme-
try mean that CFT techniques can be applied to calculating scattering amplitudes.
In particular, the idea of imposing consistency with the OPE applies. However,
since the dual observables are non-local Wilson loop operators, a different OPE,
involving the near-collinear limit of two sides of the light-like polygon, has to be
employed [38-40, 144].

Dual conformal symmetry implies that the amplitudes involving four or five par-
ticles are fixed, because there are no invariant cross ratios that can be formed from
a five-sided light-like polygon [3,26,83]. The four- and five-point amplitudes are
governed by the BDS ansatz [32]. The amplitudes not determined by dual conformal
symmetry begin at six points. When the external gluons are in the maximally-helicity-
violating (MHV) configuration, such amplitudes can be expressed in terms of the BDS
ansatz, which contains all of the infrared divergences and transforms anomalously un-
der dual conformal invariance, and a so-called “remainder function” [1,2], which only
depends on dual-conformally-invariant cross ratios. In the case of non-MHV ampli-
tudes, one can define the “ratio function” [27], which depends on the cross ratios as
well as dual superconformal invariants. For six external gluons, the remainder and
ratio functions are described in terms of functions of three dual conformal cross ratios.

At low orders in perturbation theory, these latter functions can be expressed in
terms of multiple polylogarithms. In general, multiple polylogarithms are functions
of many variables that can be defined as iterated integrals over rational kernels. A
particularly useful feature of such functions is that they can be classified according
to their symbols [145-147], elements of the n-fold tensor product of the algebra of ra-
tional functions. The integer n is referred to as the transcendental weight or degree.
The symbol can be defined iteratively in terms of the total derivative of the func-
tion, or alternatively, in terms of the maximally iterated coproduct by using the Hopf

structure conjecturally satisfied by multiple polylogarithms [63, 148]. Complicated
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functional identities among polylogarithms become simple algebraic relations satis-
fied by their symbols, making the symbol a very useful tool in the study of polyloga-
rithmic functions. The symbol can miss terms in the function that are proportional
to transcendental constants (which in the present case are all multiple zeta values),
so special care must be given to account for these terms. The symbol and coproduct
have been particularly useful in recent field theory applications [14,36,40,64,71]. In
the case of N' = 4 super-Yang-Mills theory, all amplitudes computed to date have
exhibited a uniform maximal transcendentality, in which the finite terms (such as
the remainder or ratio functions) always have weight n = 2L at the L loop order in
perturbation theory.

Based on the simplified form of the two-loop six-point remainder function ob-
tained in ref. [36] (which was first constructed analytically in terms of multiple poly-
logarithms [6,7]), it was conjectured [14,71] that for multi-loop six-point amplitudes,
both the MHV remainder function and the next-to-MHV (NMHV) ratio function
are described in terms of polylogarithmic functions whose symbols are made from
an alphabet of nine letters. The nine letters are related to the nine projectively-
inequivalent differences z;; of projective variables z; [36], which can also be repre-
sented in terms of momentum twistors [149]. Using this conjecture, the symbol for
the three-loop six-point remainder function was obtained up to two undetermined
parameters [14], which were later fixed [45] using a dual supersymmetry “anomaly”
equation [44,45]. The idea of ref. [14] was to start with an ansatz for the symbol,
based on the above nine-letter conjecture, and then impose various mathematical and
physical consistency conditions. For example, imposing a simple integrability condi-
tion [146, 147] guarantees that the ansatz is actually the symbol of some function,
and demanding that the amplitude has physical branch cuts leads to a condition on
the initial entries of the symbol.

Because of the duality between scattering amplitudes and Wilson loops, one can
also impose conditions on the amplitude that are more naturally expressed in terms of
the Wilson loop, such as those based on the OPE satisfied by its near-collinear limit.
In refs. [38-40,144], the leading-discontinuity terms in the OPE were computed. In
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terms of the cross ratio variable that vanishes in the near-collinear limit, the leading-
discontinuity terms correspond to just the maximum powers of logarithms of this
variable (L —1 at L loops), although they can be arbitrarily power suppressed. These
terms require only the one-loop anomalous dimensions of the operators corresponding
to excitations of the Wilson line, or flux tube. That is, higher-loop corrections to the
anomalous dimensions and to the OPE coefficients can only generate subleading log-
arithmic terms. While the leading-discontinuity information is sufficient to determine
all terms in the symbol at two loops, more information is necessary starting at three
loops [14].

Very recently, a new approach to polygonal Wilson loops has been set forth [150,
151], which is fully nonperturbative and based on integrability. The Wilson loop is
partitioned into a number of “pentagon transitions”, which are labeled by flux tube
excitation states on either side of the transition. (If one edge of the pentagon coincides
with an edge of the Wilson loop, then the corresponding state is the flux tube vac-
uum.) The pentagon transitions obey a set of bootstrap consistency conditions. Re-
markably, they can be solved in terms of factorizable S matrices for two-dimensional
scattering of the flux tube excitations [150, 151].

In principle, the pentagon transitions can be solved for arbitrary excitations, but
it is simplest to first work out the low-lying excitations, which correspond to the
leading power-suppressed terms in the near-collinear limit in the six-point case (and
similar terms in multi-near-collinear limits for more than six particles). Compared
with the earlier leading-discontinuity data, now all terms at a given power-suppressed
order can be determined (to all loop orders), not just the leading logarithms. This
information is very powerful. The first power-suppressed order in the six-point near-
collinear limit is enough to fix the two terms in the ansatz for the symbol of the three-
loop remainder function that could not be fixed using the leading discontinuity [150].
At four loops, the first power-suppressed order [150] and part of the second power-
suppressed order [152] are sufficient to fix all terms in the symbol [153]. At these
orders, the symbol becomes heavily over-constrained, providing strong cross checks
on the assumptions about the letters of the symbol, as well as on the solutions to the

pentagon transition bootstrap equations.
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In short, the application of integrability to the pentagon-transition decomposition
of Wilson loops provides, through the OPE, all-loop-order boundary-value informa-
tion for the problem of determining Wilson loops (or scattering amplitudes) at generic
nonzero (interior) values of the cross ratios. We will use this information in the six-
point case to uniquely determine the three-loop remainder function, not just at symbol
level, but at function level as well.

A second limit we study is the limit of multi-Regge kinematics (MRK), which has
provided another important guide to the perturbative structure of the six-point re-
mainder function [5,8-10,12-15], as well as higher-point remainder functions [16, 17]
and NMHV amplitudes [18]. The six-point remainder function and, more gener-
ally, the hexagon functions that we define shortly have simple behavior in the multi-
Regge limit. These functions depend on three dual-conformally-invariant cross ratios,
but in the multi-Regge limit they collapse [19] into single-valued harmonic polylog-
arithms [47], which are functions of two surviving real variables, or of a complex
variable and its conjugate. The multi-Regge limit factorizes [15] after taking the
Fourier-Mellin transform of this complex variable. This factorization imposes strong
constraints on the remainder function at high loop order [15,19,154].

Conversely, determining the multi-loop remainder function, or just its multi-
Regge limit, allows the perturbative extraction of the two functions that enter the
factorized form of the amplitude, the BFKL eigenvalue (in the adjoint representa-
tion) and a corresponding impact factor. This approach makes use of a map be-
tween the single-valued harmonic polylogarithms and their Fourier-Mellin transforms,
which can be constructed from harmonic sums [19]. Using the three- and four-loop
remainder-function symbols, the BFKL eigenvalue has been determined to next-to-
next-to-leading-logarithmic accuracy (NNLLA), and the impact factor at NNLLA
and N®LLA [19]. However, the coefficients of certain transcendental constants in
these three quantities could not be fixed, due to the limitation of the symbol. Here
we will use the MRK limit at three loops to fix the three undetermined constants in
the NNLLA impact factor. Once the four-loop remainder function is determined, a
similar analysis will fix the undetermined constants in the NNLLA BFKL eigenvalue
and in the N3LLA impact factor.
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In general, polylogarithmic functions are not sufficient to describe scattering am-
plitudes. For example, an elliptic integral, in which the kernel is not rational but
contains a square root, enters the two-loop equal-mass sunrise graph [155], and it
has been shown that a very similar type of integral enters a particular N3MHV 10-
point scattering amplitude in planar ' = 4 super-Yang-Mills theory [132]. However,
it has been argued [133], based on a novel form of the planar loop integrand, that
MHV and NMHV amplitudes can all be described in terms of multiple polyloga-
rithms alone. Similar “dlog” representations have appeared in a recent twistor-space
formulation [134,156]. Because six-particle amplitudes are either MHV (or the parity
conjugate MHV) or NMHV, we expect that multiple polylogarithms and their asso-
ciated symbols should suffice in this case. The nine letters that we assume for the
symbol then follow naturally from the fact that the kinematics can be described in
terms of dual conformally invariant combinations of six momentum twistors [149].

Having the symbol of an amplitude is not the same thing as having the function. In
order to reconstruct the function one first needs a representative, well-defined function
in the class of multiple polylogarithms which has the correct symbol. Before enough
physical constraints are imposed, there will generally be multiple functions matching
the symbol, because of the symbol-level ambiguity associated with transcendental
constants multiplying well-defined functions of lower weight. Here we will develop
techniques for building up the relevant class of functions for hexagon kinematics,
which we call hezagon functions, whose symbols are as described above, but which
are well-defined and have the proper branch cuts at the function level as well. We
will argue that the hexagon functions form the basis for a perturbative solution to
the MHV and NMHYV six-point problem.

We will pursue two complementary routes toward the construction of hexagon
functions. The first route is to express them explicitly in terms of multiple poly-
logarithms. This route has the advantage of being completely explicit in terms of
functions with well-known mathematical properties, which can be evaluated numeri-
cally quite quickly, or expanded analytically in various regions. However, it also has
the disadvantages that the representations are rather lengthy, and they are specific

to particular regions of the full space of cross ratios.
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The second route we pursue is to define each weight-n hexagon function iteratively
in the weight, using the three first-order differential equations they satisfy. This
information can also be codified by the {n — 1,1} component of the coproduct of
the function, whose elements contain weight-(n — 1) hexagon functions (the source
terms for the differential equations). The differential equations can be integrated
numerically along specific contours in the space of cross ratios. In some cases, they
can be integrated analytically, at least up to the determination of certain integration
constants.

We can carry out numerical comparisons of the two approaches in regions of
overlapping validity. We have also been able to determine the near-collinear and
multi-Regge limits of the functions analytically using both routes. As mentioned
above, these limits are how we fix all undetermined constants in the function-level
ansatz, and how we extract additional predictions for both regimes.

We have performed a complete classification of hexagon functions through weight
five. Although the three-loop remainder function is a hexagon function of weight
six, its construction is possible given the weight-five basis. There are other potential
applications of our classification, beyond the three-loop remainder function. One
example is the three-loop six-point NMHYV ratio function, whose components are
expected [71] to be hexagon functions of weight six. Therefore, it should be possible
to construct the ratio function in an identical fashion to the remainder function.

Once we have fixed all undetermined constants in the three-loop remainder func-
tion, we can study its behavior in various regions, and compare it with the two-loop
function. On several lines passing through the space of cross ratios, the remainder
function collapses to simple combinations of harmonic polylogarithms of a single vari-
able. Remarkably, over vast swathes of the space of positive cross ratios, the two-
and three-loop remainder functions are strikingly similar, up to an overall constant
rescaling. This similarity is in spite of the fact that they have quite different analytic
behavior along various edges of this region. We can also compare the perturbative
remainder function with the result for strong coupling, computed using the AdS/CFT

correspondence, along the line where all three cross ratios are equal [157]. We find
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that the two-loop, three-loop and strong-coupling results all have a remarkably sim-
ilar shape when the common cross ratio is less than unity. Although we have not
attempted any kind of interpolation formula from weak to strong coupling, it seems
likely from the comparison that the nature of the interpolation will depend very
weakly on the common cross ratio in this region.

The remainder of this paper is organized as follows. In section 4.2 we recall some
properties of pure functions (iterated integrals) and their symbols, as well as a repre-
sentation of the two-loop remainder function (and its symbol) in terms of an “extra
pure” function and its cyclic images. We use this representation as motivation for
an analogous decomposition of the three-loop symbol. In section 4.3 we describe
the first route to constructing hexagon functions, via multiple polylogarithms. In
section 4.4 we describe the second route to constructing the same set of functions,
via the differential equations they satisfy. In section 4.5 we discuss how to extract
the near-collinear limits, and give results for some of the basis functions and for the
remainder function in this limit. In section 4.6 we carry out the analogous discussion
for the Minkowski multi-Regge limit. In section 4.7 we give the final result for the
three-loop remainder function, in terms of a specific integral, as well as defining it
through the {5,1} components of its coproduct. We also present the specialization
of the remainder function onto various lines in the three-dimensional space of cross
ratios; along these lines its form simplifies dramatically. Finally, we plot the function
on several lines and two-dimensional slices. We compare it numerically to the two-
loop function in some of these regions, and to the strong-coupling result evaluated
for equal cross ratios. In section 4.8 we present our conclusions and outline avenues
for future research. We include three appendices. Appendix C.1 provides some back-
ground material on multiple polylogarithms. Appendix C.2 gives the complete set of
independent hexagon functions through weight five in terms of the {n — 1,1} com-
ponents of their coproducts, and in appendix C.3 we provide the same description of
the extra pure weight six function R, entering the remainder function.

In attached, computer-readable files we give the basis of hexagon functions through
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weight five, as well as the three-loop remainder function, expressed in terms of mul-
tiple polylogarithms in two different kinematic regions. We also provide the near-

collinear and multi-Regge limits of these functions.
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4.2 Extra-pure functions and the symbol of Rég)

In this section, we describe the symbol of the three-loop remainder function as ob-
tained in ref. [14], which is the starting point for our reconstruction of the full function.
Motivated by an alternate representation [71] of the two-loop remainder function, we
will rearrange the three-loop symbol. In the new representation, part of the answer
will involve products of lower-weight (hence simpler) functions, and the rest of the
answer will be expressible as the sum of an extra-pure function, called R, plus its
two images under cyclic permutations of the cross ratios. An extra-pure function of m
variables, by definition, has a symbol with only m different final entries. For the case
of hexagon kinematics, where there are three cross ratios, the symbol of an extra-pure
function has only three final entries, instead of the potential nine. Related to this,
the three derivatives of the full function can be written in a particularly simple form,
which helps somewhat in its construction.

All the functions we consider in this paper will be pure functions. The definition
of a pure function f™ of transcendental weight (or degree) n is that its first derivative
obeys,

dft =" frVdng,, (4.2.1)

T
where ¢, are rational functions and the sum over r is finite. The only weight-zero
functions are assumed to be rational constants. The f,gn_l) and ¢, are not all inde-
pendent of each other because the integrability condition d?f™ = 0 imposes relations

among them,
> dfU Ading, = 0. (4.2.2)

Functions defined by the above conditions are iterated integrals of polylogarithmic
type. Such functions have a symbol, defined recursively as an element of the n-fold

tensor product of the algebra of rational functions, following eq. (4.2.1),
S(f™)=>"S(f" V) @ ¢ (4.2.3)

In the case of the six-particle amplitudes of planar N = 4 super Yang-Mills theory,
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we are interested in pure functions depending on the three dual conformally invariant

cross ratios,

2 .2 2 .2 2 .2
Ti4T T30 T35T
1374 24751 2
W =u=—"5-L Uy =v =221 us = w = —32>-32 (4.2.4)
iz T35T T36T
14736 25741 36752
The six particle momenta k' are differences of the dual coordinates #f': o} —a%', , = k',

with indices taken mod 6.
Having specified the class of functions we are interested in, we impose further [14,

71] that the entries of the symbol are drawn from the following set of nine letters,
Sy =A{u,v,w, 1 —u, 1 —v, 1 — W, Yu, Yo, Yo } - (4.2.5)

The nine letters are related to the nine projectively-inequivalent differences of six CP*

variables z; [36] via

y = N29) |y = 2905) (26)(13)(45)

(14) (25)’ m ) Yu = W , (4.2.6)

and relations obtained by cyclically rotating the six points. The variables vy,, v, and
Yw can be expressed locally in terms of the cross ratios,

U — 24 v — 2y w— 2y

Yu = ) Yv = ) Yw = ) (427)
u— zZ_ Z — Z_ w — Z_

where

1
zi:—[—l—l—u—l—v—l—wi\/Z], A

5 (1—u—v—w)?—duvw. (4.2.8)

Note that under the cyclic permutation z; — z;17 we have u — v — w — u,
while the y; variables transform as y, — 1/y, = y» — 1/yu. A three-fold cyclic
rotation amounts to a space-time parity transformation, under which the parity-even
cross ratios are invariant, while the parity-odd y variables invert. Consistent with the

inversion of the y variables under parity, and eq. (4.2.7), the quantity A must flip
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sign under parity, so we have altogether,

1
Parity :  w; — u;, vy, — —, VA = —VA. (4.2.9)
The transformation of VA can also be seen from its representation in terms of the

2;; variables,
—~  (12)(34)(56) — (23)(45)(61)
(14)(25)(36) ’ (42.10)

upon letting z; — z;13. It will prove very useful to classify hexagon functions by their

parity. The remainder function is a parity-even function, but some of its derivatives
(or more precisely coproduct components) are parity-odd, so we need to understand
both the even and odd sectors.

Since the y variables invert under parity, v, — 1/y,, etc., it is often better to
think of the y variables as fundamental and the cross ratios as parity-even functions
of them. The cross ratios can be expressed in terms of the y variables without any

square roots,

Yu(l — ) (1 — y) |y = 1= %)~ Yuuy)
(1 - yuyv)(l yuyw) (1 uyv)(l - yuyw) 7
v — W =)~ y) Lo = =90 = yutiy)
(1 = %) (1 = yotu) (1 = you) (1 = yul) ’
wlewow) o (ew)(awy P
(1 = Yubu) (1 — ywyv) (= o) (L = yo)

)

(U =2) (1= y) (1 = ) (1 = YuYoYu)
VA= (1—yuyv)(1 yvyw)(l Yulu)

where we have picked a particular branch of v/A.

Following the strategy of ref. [14], we construct all integrable symbols of the
required weight, using the letters (4.2.5), subject to certain additional physical con-
straints. In the case of the six-point MHV remainder function at L loops, we require
a weight-2L parity-even function with full S5 permutation symmetry among the cross

ratios. The initial entries in the symbol can only be the cross ratios themselves, in
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order to have physical branch cuts [40]:
first entry € {u, v, w} . (4.2.12)

In addition we require that the final entries of the symbol are taken from the following
restricted set of six letters [14,46]:

u v w
final ent s Yos Yoo o 4.2.1

Next one can apply constraints from the collinear OPE of Wilson loops. The leading-
discontinuity constraints [38-40] can be expressed in terms of differential operators
with a simple action on the symbol [14]. At two loops, the leading (single) discon-
tinuity is the only discontinuity, and it is sufficient to determine the full remainder
function R{” (u,v,w) [39]. At three loops, the constraint on the leading (double) dis-
continuity leaves two free parameters in the symbol, c; and a [14]. These parameters
were determined in refs. [45,150], but we will leave them arbitrary here to see what
other information can fix them.

The two-loop remainder function Ré2) can be expressed simply in terms of classical
polylogarithms [36]. However, here we wish to recall the form found in ref. [71] in

terms of the infrared-finite double pentagon integral Q®), which was introduced in
ref. [79] and studied further in refs. [71,158]:

1
R((f)(u,v,w) =1 Q(2)(u,v,w)+Q(2)(v,w,u)+Q(2)(w,u, v) —I—R((fgat(u,v,w). (4.2.14)

The function Rggat can be expressed in terms of single-variable classical polyloga-

rithms,

R = E (Lia1 1 /u)+ Lia(1—1/0) + Lin(1— /) ) +-r(u) 4 r(o) 4 r(w)—Ga|
(4.2.15)

r(u) = — Liy(u) — Lig(1 — u) + Lig(1 — 1/u) — InuLig(1 — 1/u) — é In®u In(1 — u)
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ey 2 Loy ; 2
+Z<L12(1—1/u)> —l—ﬁln u—l—Cg(LlQ(l—u)—Hn u> + ¢ Inu.  (4.2.16)

We see that Ré?r)at decomposes into a product of simpler, lower-weight functions
Lis(1—1/u;), plus the cyclic images of the function 7(u), whose symbol can be written
as,

u U

U 1 U U
S — 9 Su®— Y (4217
(r(w) U T O, O, T U @ue T )

The symbol of Q2 can be deduced [71] from the differential equations it satis-
fies [158,159]. There are only three distinct final entries of the symbol of Q) (u, v, w),

{ L yuy} (4.2.18)

namely

l—u'l—v
Note that three is the minimum possible number of distinct final entries we could hope
for, since Q? is genuinely dependent on all three variables. As mentioned above, we
define extra-pure functions, such as Q@ to be those functions for which the number
of final entries in the symbol equals the number of variables on which they depend.
Another way to state the property (which also extends it from a property of symbols
to a property of functions) is that p-variable pure functions f of weight n are extra-
pure if there exist p independent commuting first-order differential operators O;, such
that O, f are themselves all pure of weight (n — 1).
More explicitly, the symbol of Q2 can be written as [71],

S(QP (u,v,w)) = —% S(Qy) @6+ S(Qr) @7+ S(P6) @ Yo | , (4.2.19)
where (1= )
b= ATy e (4.2.20)

The functions ), and ), will be defined below. The function dg is the weight-
three, parity-odd one-loop six-dimensional hexagon function [159,160], whose symbol
is given by [159],

S(®g) = —S(QW (u, v, w)) @y, + cyclic, (4.2.21)
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where Q) is a finite, four-dimensional one-loop hexagon integral [79,158],
QW (u,v,w) = Inulnv + Lig(1 — u) + Liy(1 — v) + Lig(1 — w) — 2¢,.  (4.2.22)

Although we have written eq. (4.2.21) as an equation for the symbol of D¢, secretly
it contains more information, because we have written the symbol of a full function,
QW (u,v,w) in the first two slots. Later we will codify this extra information as
corresponding to the {2,1} component of the coproduct of dg. Another way of saying
it is that all three derivatives of the function @, with respect to the logarithms of
the y variables, are given by —Q) (u, v, w) or its permutations, including the ¢, term
in eq. (4.2.22). Any other derivative can be obtained by the chain rule. For example,

to get the derivative with respect to u, we just need,

alnyu_l—u—v—w alnyv_l_u_v+w alnyw_l—u—l—v—w

ou w/A T ou A—wVA T 0w (1—uwVA

(4.2.23)
which leads to the differential equation found in ref. [159],
DBy — — VT WM (4 ) — 2TV G0 4
u A Y Y 1 . A Y )
uVA 1 -wva (4.2.24)

_loutv—wog

T—uva

(u,v,w).

Hence ®g can be fully specified, up to a possible integration constant, by promoting
the first two slots of its symbol to a function in an appropriate way. In fact, the
ambiguity of adding a constant of integration is actually fixed in this case, by imposing
the property that the function ®g is parity odd.

Note that for the solution to the differential equation (4.2.24) and its cyclic images
to have physical branch cuts, the correct coefficients of the (5 terms in eq. (4.2.22)
are crucial. Changing the coefficients of these terms in any of the cyclic images of
QW would correspond to adding a logarithm of the y variables to ®g, which would
have branch cuts in unphysical regions.

The other weight-three symbols in eq. (4.2.19) can similarly be promoted to full
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functions. To do this we employ the harmonic polylogarithms (HPLs) in one vari-
able [48], Hg(u). In our case, the weight vector @ contains only 0’s and 1’s. If the
weight vector is a string of n 0’s, @ = 0,, then we have Hy, (u) = % log"u. The

n

remaining functions are defined recursively by

Hoyg(u) = i %Hu;(t), Hy g(u) = /0 1d—thu~,(t). (4.2.25)
Such functions have symbols with only two letters, {u,1 — u}. We would like the
point u = 1 to be a regular point for the HPLs. This can be enforced by choosing
the argument to be 1 — u, and restricting to weight vectors whose last entry is 1.
The symbol and HPL definitions have a reversed ordering, so to find an HPL with
argument 1 — u corresponding to a symbol in {u,1 — u}, one reverses the string,
replaces u — 1 and 1 —u — 0, and multiplies by (—1) for each 1 in the weight vector.
We also use a compressed notation where (k — 1) 0’s followed by a 1 is replaced by k
in the weight vector, and the argument (1 — u) is replaced by the superscript u. For

example, ignoring (-value ambiguities we have,

U®(1—U) — —H071(1—u) — —H;L,
U®U®(1—U) — H07171(1—U,) — Hg@?
1R (1—-v)@ve(l-v) = Hoioi(l—v) — Hy,. (4.2.26)

The combination
HY +2In”u = —Lix(1 — 1/u) (4.2.27)
occurs frequently, because it is the lowest-weight extra-pure function, with symbol
u®@u/(1—u).
In terms of HPLs, the functions corresponding to the weight-three, parity-even

symbols appearing in eq. (4.2.19) are given by,

Qs = [—H;—Hgl—Hglnu—%ln2ulnv+(H§—Cz)lnw+(u<—>v)]
+2Hy, + HyInw +Inulnvinw, (4.2.28)
Q. = [-Hy+ Hyy + (HY + HY —2G)Inu+ $In® ulnv — (u > v)].
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Here we have added some (y terms with respect to ref. [71], in order to match the
{3,1} component of the coproduct of Q) that we determine later.

Note that the simple form of the symbol of R((fr)at in eq. (4.2.15) means that it can
be absorbed into the three cyclic images of Q®)(u,v,w) without ruining the extra-
purity of the latter functions. Hence R((f) is the cyclic sum of an extra-pure function.

With the decomposition (4.2.14) in mind, we searched for an analogous decompo-
sition of the symbol of the three-loop remainder function [14] into extra-pure compo-
nents. In other words, we looked for a representation of S (Ré?’)) in terms a function
whose symbol has the same final entries (4.2.18) as Q@ (u,v,w), plus its cyclic rota-
tions. After removing some products of lower-weight functions we find that this is

indeed possible. Specifically, we find that,
S(Ré?’)) = S(Rep(t, v, w) + Rep (v, w, u) + Rep(w, u,v)) + S(Ps(u,v,w)). (4.2.29)

Here Pj is the piece constructed from products of lower-weight functions,

Ps(u,v,w) = — E[Q(z) (u,v,w) Lig(1 — 1/w) + cyclic| — %(&)6)2
+ iLig(l — 1/u) Lis(1 — 1/v) Lis(1 — 1/w). (4.2.30)

The function R, is very analogous to Q?) in that it has the same (u <+ v) symmetry,

and its symbol has the same final entries,

u (%

l=v (4.231)

S (Rep(u,v,w)) = S(Rgp(u,v,w)) ® . —|—S(R2jp(v,u,w)) ®

—Uu

+ S (R (u, v, w)) @ Yulo -

In the following we will describe a systematic construction of the function R., and
hence the three-loop remainder function. As in the case just described for dg, and
implicitly for Q®), the construction will involve promoting the quantities S (Ry,) and
S(RY:) to full functions, with the aid of the coproduct formalism. In fact, we will per-
form a complete classification of all well-defined functions corresponding to symbols

with nine letters and obeying the first entry condition (4.2.12) (but not the final entry
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condition (4.2.13)), iteratively in the weight through weight five. Knowing all such
pure functions at weight 5 will then enable us to promote the weight-five quantities
S(Ry,) and S(RY:) to well-defined functions, subject to (-valued ambiguities that we

will fix using physical criteria.
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4.3 Hexagon functions as multiple polylogarithms

The task of the next two sections is to build up an understanding of the space of
hexagon functions, using two complementary routes. In this section, we follow the
route of expressing the hexagon functions explicitly in terms of multiple polyloga-
rithms. In the next section, we will take a slightly more abstract route of defining
the functions solely through the differential equations they satisfy, which leads to

relatively compact integral representations for them.

4.3.1 Symbols

Our first task is to classify all integrable symbols at weight n with entries drawn
from the set S, in eq. (4.2.5) that also satisfy the first entry condition (4.2.12).
We do not impose the final entry condition (4.2.13) because we need to construct
quantities at intermediate weight, from which the final results will be obtained by
further integration; their final entries correspond to intermediate entries of R,.

The integrability of a symbol may be imposed iteratively, first as a condition on
the first n — 1 slots, and then as a separate condition on the {n — 1,n} pair of slots,
as in eq. (4.2.2). Therefore, if B,,_; is the basis of integrable symbols at weight n — 1,

then a minimal ansatz for the basis at weight n takes the form,
{b@x|beB,_1, z€8,}, (4.3.1)

and B, can be obtained simply by enforcing integrability in the last two slots. This
method for recycling lower-weight information will also guide us toward an iterative
construction of full functions, which we perform in the remainder of this section.
Integrability and the first entry condition together require the second entry to be
free of the y;. Hence the maximum number of y entries that can appear in a term in
the symbol is n — 2. In fact, the maximum number of y’s that appear in any term in
the symbol defines a natural grading for the space of functions. In table 4.1, we use
this grading to tabulate the number of irreducible functions (i.e. those functions that

cannot be written as products of lower-weight functions) through weight six. The
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majority of the functions at low weight contain no y entries.

The y entries couple together w,v,w. In their absence, the symbols with letters
{u,v,w,1 —u,1 —v,1 —w} can be factorized, so that the irreducible ones just have
the letters {u, 1 —u}, plus cyclic permutations of them. The corresponding functions
are the ordinary HPLs in one variable [48] introduced in the previous section, HY,
with weight vectors @ consisting only of 0’s and 1’s. These functions are not all
independent, owing to the existence of shuffle identities [48]. On the other hand, we
may exploit Radford’s theorem [161] to solve these identities in terms of a Lyndon
basis,

H, = {H" | l, € Lyndon(0,1)\{0}} , (4.3.2)

where H' = H,, (1 —u), and Lyndon(0, 1) is the set of Lyndon words in the letters
0 and 1. The Lyndon words are those words w such that for every decomposition into
two words w = {u,v}, the left word u is smaller! than the right word v, i.e. u < v.
Notice that we exclude the case l,, = 0 because it corresponds to In(1 —u), which has
an unphysical branch cut. Further cuts of this type occur whenever [, has a trailing
zero, but such words are excluded from the Lyndon basis by construction.

The Lyndon basis of HPLs with proper branch cuts through weight six can be

written explicitly as,

_ u u u u u u u u u u u u
Hu|n§6 - {lnu, H27 H37H2,17 H47H3,17H2,1,17 H57H4,1aH3,27H3,1,17H2,2,17H2,1,1,17
u u u u u u u u u
H6 ) H5,17 H4727 -H4’1717 H372717 H3’1’27 H3 1.1.1 H2,271’1, H271’1’171} . (4.3.3)

IR ]

Equation (4.3.3) and its two cyclic permutations, H, and H,,, account entirely for the
y° column of table 4.1. Although the y-containing functions are not very numerous
through weight five or so, describing them is considerably more involved.

In order to parametrize the full space of functions whose symbols can be written in
terms of the elements in the set S,,, it is useful to reexpress those elements in terms of

three independent variables. The cross ratios themselves are not a convenient choice

'We take the ordering of words to be lexicographic. The ordering of the letters is specified by the
order in which they appear in the argument of “Lyndon(0,1)”, i.e. 0 < 1. Later we will encounter
words with more letters for which this specification is less trivial.
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Weight || 4 | v" | v* | ¥* | ¢*
1 3 -1 -1-1-
2 30 -] -1-1-
3 6| 1] -|-|-
4 9133 -|-
5 184|136 | -
6 27| 4 | 27|29 18

Table 4.1: The dimension of the irreducible basis of hexagon functions, graded by the
maximum number of y entries in their symbols.

of variables because rewriting the y; in terms of the u; produces explicit square roots.
A better choice is to consider the y; as independent variables, in terms of which the
u; are given by eq. (4.2.11). In this representation, the symbol has letters drawn from

the ten-element set,

Sy = {Yu, Yo, Yoos L = Yus 1 = Yo, 1 = Yo, 1 =YY, 1 = YuYos L = YoV, 1 — YUY } - (4.3.4)

We appear to have taken a step backward since there is an extra letter in S, relative
to §,. Indeed, writing the symbol of a typical function in this way greatly increases
the length of its expression. Also, the first entry condition becomes more complicated
in the y variables. On the other hand, S, contains purely rational functions of the
yi, and as such it is easy to construct the space of functions that give rise to symbol

entries of this type. We will discuss these functions in the next subsection.

4.3.2 Multiple polylogarithms

Multiple polylogarithms are a general class of multi-variable iterated integrals, of
which logarithms, polylogarithms, harmonic polylogarithms, and various other iter-

ated integrals are special cases. They are defined recursively by G(z) = 1, and,

2 dt In” z
G(ay,...,an;2) = G(ag,...,ay;t), G(0,...,0;2) = . (4.3.5
(@1 iz) = [ Glan i), GO 02 = S (435



CHAPTER 4. HEXAGON FUNCTIONS AND R’ 197

Many of their properties are reviewed in appendix C.1, including an expression for

their symbol, which is also defined recursively [162],

n—1

S(G(an—h e 7a1;an)) = Z |:S(G<an—1a oyl e, an)) ® (a; — aiy1)

i=1

—S(G<6Ln,1, Ce 7&1'7 ey Qg an)) X (ai — CLZ',1> s (436)

where ag = 0 and the hat on a; on the right-hand side indicates that this index should
be omitted.
Using eq. (4.3.6), it is straightforward to write down a set of multiple polyloga-

rithms whose symbol entries span Sy,

G = et e 0.1 fufcfu e {01}
U{G(W;yw)‘wié {0’1’i’i 1 }}

Yu Yo Yulo

(4.3.7)

The set G also emerges naturally from a simple procedure by which symbols are
directly promoted to polylogarithmic functions. For each letter ¢;(yu, Y, yu) € S, we
write w; = dlog ¢;(ty,ty,ty). Then following refs. [146,163], which are in turn based

on ref. [145], we use the integration map,

¢1®...®¢nl—>/wno...ow1. (438)
v

The integration is performed iteratively along the contour v which we choose to take
from the origin ¢; = 0 to the point t; = y;. The precise choice of path is irrelevant,
provided the symbol we start from is integrable [145,146]. So we may choose to take
a path which goes sequentially along the t,,%,,t, directions. Near the axes we may
find some divergent integrations of the form foy dt/to...odt/t. We regularize these
divergences in the same way as in the one-dimensional HPL case (see the text before
eq. (4.2.25)) by replacing them with -5 log™ y. In this way we immediately obtain an

expression in terms of the functions in G, with the three subsets corresponding to the
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Region I

Figure 4.1: TIllustration of Regions I, II, III and IV. Each region lies between the
colored surface and the respective corner of the unit cube.

three segments of the contour.

The set G is larger than what is required to construct the basis of hexagon func-
tions. One reason for this is that G generates unwanted symbol entries outside of the
set Sy, such as the differences y; — y;, as is easy to see from eq. (4.3.6); the cancella-
tion of such terms is an additional constraint that any valid hexagon function must
satisfy. Another reason is that multiple polylogarithms satisfy many identities, such
as the shuffle and stuffle identities (see appendix C.1 or refs. [37,162] for a review).
While there are no relevant stuffle relations among the functions in G, there are many
relations resulting from shuffle identities. Just as for the single-variable case of HPLs,

these shuffle relations may be resolved by constructing a Lyndon basis, GF C G,

GF = {G(u_f; Yu)|w; € Lyndon(0, 1)} U {G<w§ Yo)

1
w; € Lyndon (O, 1, —) }
Yu

11 1 (4.3.9)
U{G(IU;yw)’wi ELyndon(OJ,_,_, )}
Yu Yo Yulo
A multiple polylogarithm G(wy, ..., w,;z) admits a convergent series expansion

if |z] < |w;| for all nonzero w;, and it is manifestly real-valued if the nonzero w;

and z are real and positive. Therefore, the set GF is ideally suited for describing
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configurations for which 0 < y; < 1. In terms of the original cross ratios, this region

is characterized by,

A>0, O<wu <1, and u+tv+w<l,
Region I: (4.3.10)
0<y <1.

We will construct the space of hexagon functions in Region I as a subspace of GF with
good branch-cut properties.

What about other regions? As we will discuss in the next subsection, multiple
polylogarithms in the y variables are poorly suited to regions where A < 0; in these
regions the y; are complex. For such cases, we turn to certain integral representations
that we will describe in section 4.4. In this section, we restrict ourselves to the
subspace of the unit cube for which A > 0. As shown in fig. 4.1, there are four
disconnected regions with A > 0, which we refer to as Regions I, II, III, and IV.
They are the regions that extend respectively from the four points (0,0,0), (1, 1,0),
(0,1,1), and (1,0, 1) to the intersection with the A = 0 surface. Three of the regions
(IL, IIT and IV) are related to one another by permutations of the u;, so it suffices to

consider only one of them,

) A>0, O<wu <1, and u+v—w>1,
Region 11 : (4.3.11)
0<yy < — <+ L <1,
YuYv Yu ' Yo
In Region II, the set GF includes functions G(wy, ..., wy; z) for which |w;| < |z|

for some 7. As mentioned above, such functions require an analytic continuation and
are not manifestly real-valued. On the other hand, it is straightforward to design an

alternative basis set that does not suffer from this issue,

Gl = {G(’u?; y—1u> ‘wi € Lyndon(0, 1)} U {G(u?; i) ‘wi € Lyndon(0, 1,yu)}

1 1 1
U {G(zﬁ;yw)’wi c Lyndon(0,17_7_7 )}
Yu Yo Yulo

(4.3.12)
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Like GF, GE also generates symbols with the desired entries. It is therefore a good

starting point for constructing a basis of hexagon functions in Region II.

4.3.3 The coproduct bootstrap

The space of multiple polylogarithms enjoys various nice properties, many of which
are reviewed in appendix C.1. For example, it can be endowed with the additional
structure necessary to promote it to a Hopf algebra. For the current discussion, we
make use of one element of this structure, namely the coproduct. The coproduct on
multiple polylogarithms has been used in a variety of contexts [37,64,106, 164-166].
It serves as a powerful tool to help lift symbols to full functions and to construct
functions or identities iteratively in the weight.

Let A denote the Hopf algebra of multiple polylogarithms and A,, the weight-n

subspace, so that,

A=EPA.. (4.3.13)
n=0

Then, for G,, € A, the coproduct decomposes as,

AGr) = Y Dpy(G), (4.3.14)

ptg=n

where A, , € A,®A,. It is therefore sensible to discuss an individual {p, ¢} component
of the coproduct, A, ,. In fact, we will only need two cases, {p,q} = {n — 1,1} and
{p,q} = {1,n — 1}, though the other components carry additional information that
may be useful in other contexts.

A simple (albeit roundabout) procedure to extract the coproduct of a generic
multiple polylogarithm, G, is reviewed in appendix C.1. One first rewrites G in the
notation of a slightly more general function, usually denoted by [ in the mathematical
literature. Then one applies the main coproduct formula, eq. (C.1.15), and finally
converts back into the G notation.

Let us discuss how the coproduct can be used to construct identities between

multiple polylogarithms iteratively. Suppose we know all relevant identities up to
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weight n — 1, and we would like to establish the validity of some potential weight-n

identity, which can always be written in the form,
A, =0, (4.3.15)

for some combination of weight-n functions, A,,. If this identity holds, then we may
further conclude that each component of the coproduct of A, should vanish. In
particular,

Ap11(A,) =0. (4.3.16)

Since this is an equation involving functions of weight less than or equal to n — 1,
we may check it explicitly. Equation (4.3.16) does not imply eq. (4.3.15), because
A,_11 has a nontrivial kernel. For our purposes, the only relevant elements of the
kernel are multiple zeta values, zeta values, i7, and their products. Through weight

six, the elements of the kernel are the transcendental constants,

IC - {'Mn C27 Cg,Z.TI'S, C472.7TC37 CZC37C57¢7T57 C67C§aiﬂ€5aiﬂ-3c3a } (4317>

At weight two, for example, we may use this information to write,
A11(A2) =0 = Ag =c(y, (4.3.18)

for some undetermined rational number ¢, which we can fix numerically or by looking

at special limits. Consider the following example for some real positive z < 1,

1 1
Ay =—-G(0,2;1) - G (O, —; 1) + iG(O;[L')Q —irG(0; x)
X (4.3.19)

1 1
= L12 (—) + ng(.’L’) + §ln2x — iﬂ'lnl'.
X

Using eq. (4.3.19) and simple identities among logarithms, it is easy to check that

Ay1(A) =0, (4.3.20)
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so we conclude that Ay = c(5. Specializing to x = 1, we find ¢ = 2 and therefore
Ay = 2 (5. Indeed, this confirms the standard inversion relation for dilogarithms.
The above procedure may be applied systematically to generate all identities
within a given ring of multiple polylogarithms and multiple zeta values. Denote
this ring by C and its weight-n subspace by C,,. Assume that we have found all iden-
tities through weight n — 1. To find the identities at weight n, we simply look for all

solutions to the equation,

N (Z ci Gi) =Y (An_l,l(Gi)> —0, (4.3.21)

% )

where G; € C, and the ¢; are rational numbers. Because we know all identities through
weight n — 1, we can write each A,_;1(G;) as a combination of linearly-independent
functions of weight n — 1. The problem is then reduced to one of linear algebra. The
nullspace encodes the set of new identities, modulo elements of the kernel IC. The
latter transcendental constants can be fixed numerically, or perhaps analytically with
the aid of an integer-relation algorithm like PSLQ [167].

For the appropriate definition of C, the above procedure can generate a variety
of interesting relations. For example, we can choose C = GF or C = GF and confirm
that there are no remaining identities within these sets.

We may also use this method to express all harmonic polylogarithms with argu-
ment u; or 1 — u; in terms of multiple polylogarithms in the set GF or the set GE.
The only trick is to rewrite the HPLs as multiple polylogarithms. For example, using

the uncompressed notation for the HPLs,

Hay,.0 (@) = (1) Glax, .., ap;u) = <—1>W1G(a1,...,an; B ) ,

(1 =Yulo) (1= Yulu)
(4.3.22)

where w; is the number of a; equal to one. With this understanding, we can simply
take,
C = {Hg(u;)} UGF or C = {Hg(u;)} UGE, (4.3.23)

and then proceed as above to generate all identities within this expanded ring.
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In all cases, the starting point for the iterative procedure for generating identities
is the set of identities at weight one, i.e. the set of identities among logarithms. All
identities among logarithms are of course known, but in some cases they become
rather cumbersome, and one must take care to properly track various terms that
depend on the ordering of the y;. For example, consider the following identity, which

is valid for all complex y;,

—In yu(l B yv)(l B yw)
o= ((1 - yuyv)(l - yuyw))

=Iny, +In(1 —y,) + In(1 — yy) — In(1 — yuy) — In(1 — yuyw)

. Yull = y0) (1 — yu) _ Ar — Ar _ — Ar —
i g (P IIL o)) agy,) — Arg(1 )~ Arg(1 )

+ Al"g(l - yuyv) + Arg(l - yuyw):| )

(4.3.24)

where Arg denotes the principal value of the complex argument. In principle, this
identity can be used to seed the iterative procedure for constructing higher-weight
identities, which would also be valid for all complex y;. Unfortunately, the bookkeep-
ing quickly becomes unwieldy and it is not feasible to track the proliferation of Arg’s
for high weight.

To avoid this issue, we will choose to focus on Regions I and II, defined by
egs. (4.3.10) and (4.3.11). In both regions, A > 0, so the y variables are real, and the

Arg’s take on specific values. In Region I, for example, we may write,

Regl)n I

Inwu Iny, +In(l —y,) +In(1 — yy) — In(1 — yuy) — In(1 — yuyu)

= G(0y) +G(Liy) + G (Lyw) — G (l;yv> e (L;yw) - (4325)

u u

In the last line, we have rewritten the logarithms in terms of multiple polylogarithms

in the set GF, which, as we argued in the previous subsection, is the appropriate basis
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for this region. In Region II, the expression for Inwu looks a bit different,

egion 1
Inu R g: 1 In (1 — —) -+ 111(1 — yw) —1In <1 - ) - hl(l - yuyw)
Yo YulYo

1 1 1
= G (1;—> +G(Lyy) — G (yu;—) -G <—;yw) :
Yo Yo Yu

In this case, we have rewritten the logarithms as multiple polylogarithms belonging
to the set GF,.

We now show how to use these relations and the coproduct to deduce relations at

(4.3.26)

weight two. In particular, we will derive an expression for Hy = Hy(1 —u) in terms of
multiple polylogarithms in the basis GF in Region I. A similar result holds in Region

IT. First, we need one more weight-one identity,

(1 —u) "G (Ly) -G (i;yv) -G (i;yw) +G <

Yu Yu

e | - (4.3.27
iw) . (s
Next, we take the {1,1} component of the coproduct,

Aj1(Hy) =—Inu®In(l —u), (4.3.28)

and substitute eqgs. (4.3.25) and (4.3.27),

A (Hy) = - {G(O;yu) +G (L) +G(Liyw) -G <i;yv) -G <i;yw>}

1 1 1
®{G(l;yu)—G(—;yv)—G(—;yw)+G( ;yw)} -
Yu Yu YulYo

(4.3.29)

Finally, we ask which combination of weight-two functions in G¥ has the {1,1} com-

ponent of its coproduct given by eq. (4.3.29). There is a unique answer, modulo
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elements in /C,

egion ]. ]. ]_ 1 ]_
Hy et _g (—,—;yw> +G (1, ;yw> -G (L—;yw) -G (1,—;yv>
Yu YuYo YulYv Yu Yu,
1 1 1 1
+G(0,1;y,) + G Yo | G| —i%0 | + G —;u0 | G Yoo
yuyv yu yu yuyv

-G (Liy,) G <%;yw> -G (Liy) G <L;yw> —G(0;y.) G <L;yw>

u uJv uJv

1 1 2 1 1 1
- =G (—;yw -G (—;yv G (—;yw) + G (Lyw) G (—;yw>

1 1 1 1 2
+G(Lyy) G| —5yw | +G(0;0) G| —5yw | — G | —3 00

Yu Yu 2 Yu

1 1

(—;yu) + G (0;y.) G (—;yv) — G (0;90) G (1 9u) + G-

u

(4.3.30)

We have written a specific value for the coefficient of (5, though at this stage it is
completely arbitrary since Ay ;(¢2) = 0. To verify that we have chosen the correct
value, we specialize to the surface y, = 1, on which v = 1 and Hy = 0. It is
straightforward to check that the right-hand side of eq. (4.3.30) does indeed vanish
in this limit.

An alternative way to translate expressions made from HPLs of arguments u; into
expressions in terms of the y variables is as follows. Any expression in terms of HPLs
of arguments u, v, w may be thought of as the result of applying the integration map

to words made from the letters u; and 1 — u; only. For example,

= —/dlog(l —s1)odlogs; + (s, (4.3.32)
v

where, to verify the final equality straightforwardly, we may choose the contour ~ to
run from s; = 0 to ($1 = u, so = v, 83 = w) sequentially along the si, 59, s3 axes. In
the above simple example the second and third parts of the contour are irrelevant

since the form to be integrated only depends on s; anyway. Then we can change
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variables from wu, v, w to Y., Y», Y by defining

t1(1 —t2)(1 —t3)
(1 — tth)(l — tltg) ’

51 = (4.3.33)
and similarly for sy, s3. Since the result obtained depends only on the end points
of the contour, and not the precise path taken, we may instead choose the contour
as the one which goes from the origin ¢; = 0 to the point t; = yu,t2 = Yy, 3 = Yu
sequentially along the t1,%,,t3 axes, as in the discussion around eq. (4.3.8). Then
expression (4.3.32) yields an expression equivalent to eq. (4.3.30).

Continuing this procedure on to higher weights is straightforward, although the
expressions become increasingly complicated. For example, the expression for Hj’
has 9439 terms. It is clear that GF is not an efficient basis, at least for representing
harmonic polylogarithms with argument u;. Despite this inefficiency, GF and G5 have
the virtue of spanning the space of hexagon functions, although they still contain
many more functions than desired. In the next subsection, we describe how we
can iteratively impose constraints in order to construct a basis for just the hexagon

functions.

4.3.4 Constructing the hexagon functions

Unitarity requires the branch cuts of physical quantities to appear in physical chan-
nels. For dual conformally-invariant functions corresponding to the scattering of
massless particles, the only permissible branching points are when a cross ratio van-
ishes or approaches infinity. The location of branch points in an iterated integral is
controlled by the first entry of the symbol; hence the first entry should be one of
the cross ratios, as discussed previously. However, it is not necessary to restrict our
attention to the symbol: it was argued in ref. [64] that the condition of only having
physical branch points can be promoted to the coproduct. Then the monodromy op-
erator M, —., (which gives the phase in analytically continuing the variable z; around

the point zy) acts on the first component of the coproduct A (see appendix C.1.2),

AoM,_y = (M. —y®id)o A (4.3.34)
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We conclude that if F;, is a weight-n function with the proper branch-cut locations,

and

Ap11(F) =) F @dlng,, (4.3.35)

then F_, must also be a weight-(n—1) function with the proper branch-cut locations,
for every r (which labels the possible letters in the symbol). Working in the other
direction, suppose we know the basis of hexagon functions through weight n — 1. We
may then use eq. (4.3.35) and the coproduct bootstrap of section 4.3.3 to build the
basis at weight n.

There are a few subtleties that must be taken into account before applying this
method directly. To begin with, the condition that all the ', belong to the basis of
hexagon functions guarantees that they have symbol entries drawn from §,,. However,
it does not guarantee that F;, has this property since the ¢, are drawn from the set
Sy, which is larger than §,,. This issue is easily remedied by simply disregarding those
functions whose symbols have final entries outside of the set S,,.

In pushing to higher weights, it becomes necessary to pursue a more efficient con-
struction. For this purpose, it is useful to decompose the space of hexagon functions,

which we denote by H, into its parity-even and parity-odd components,
H =H &aH . (4.3.36)
The coproduct can be taken separately on each component,

Ap1i(H)) € (Mt oLy @ (H, ®L7),
An1i(Hy) © (Hioi®Ly) @ (Mo ® L),

(4.3.37)

where £ and £ are the parity-even and parity-odd functions of weight one,

LT = {lnu, In(1 —u), Inv, In(1 — ), Inw, In(1 —w)} ,
[ = {lnu, Dol = ), e, (1= ), nw, (1 - w)) .
LT = {lny,, Iny,, Iny,} .

To construct H=

n?

we simply write down the most general ansatz for both the
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left-hand side and the right-hand side of eq. (4.3.37) and solve the linear system. The
ansatz for HE will be constructed from the either GF or G&, supplemented by multiple
zeta values, while a parametrization of the right-hand side is known by assumption.
For high weights, the linear system becomes prohibitively large, which is one reason
why it is useful to construct the even and odd sectors separately, since it effectively
halves the computational burden. We note that not every element on the right hand
side of eq. (4.3.37) is actually in the image of A,_; ;. For such cases, we will simply
find no solution to the linear equations. Finally, this parametrization of the {n—1,1}
component of the coproduct guarantees that the symbol of any function in H, will
have symbol entries drawn from §,,.

Unfortunately, the procedure we just have outlined does not actually guarantee
proper branch cuts in all cases. The obstruction is related to the presence of weight-
(n — 1) multiple zeta values in the space H,\ ;. Such terms may become problematic
when used as in eq. (4.3.37) to build the weight-n space, because they get multiplied

by logarithms, which may contribute improper branch cuts. For example,
(o1 ®@In(l —u) e HE @ L, (4.3.39)

but the function ¢,—1 In(1 — u) has a spurious branch point at « = 1. Naively, one
might think such terms must be excluded from our ansatz, but this turns out to be
incorrect. In some cases, they are needed to cancel off the bad behavior of other,
more complicated functions.

We can exhibit this bad behavior in a simple one-variable function,
fo(u) = Lig(u) + Inu In(1 —u) € Hy . (4.3.40)
It is easy to write down a weight-three function f3(u) that satisfies,
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Indeed, one may easily check that
1
fs(u) = Hay1(u) + Lig(u) In(1 — u) + 5 In*(1 —u)Inu (4.3.42)

does the job. The problem is that f3(u) & Hy because it has a logarithmic branch
cut starting at v = 1. In fact, the presence of this cut is indicated by a simple pole

at u =1 in its first derivative,

fiw], ., — — (4.3.43)

1—u’

The residue of the pole is just fo(1) and can be read directly from eq. (4.3.40) with-
out ever writing down f3(u). This suggests that the problem can be remedied by

subtracting (» from fo(u). Indeed, for

fa(u) = fa(u) = G = —Lis(1 —u), (4.3.44)

there does exist a function,

f3(u) = —Liz(1 —u) € Hi, (4.3.45)

for which,
Ao1(fs(u) = folu) @ In(1 —u). (4.3.46)

More generally, any function whose first derivative yields a simple pole has a
logarithmic branch cut starting at the location of that pole. Therefore, the only
allowed poles in the u;-derivative are at u; = 0. In particular, the absence of poles at
u; = 1 provides additional constraints on the space Hz.

These constraints were particularly simple to impose in the above single-variable
example, because the residue of the pole at u = 1 could be directly read off from a
single term in the coproduct, namely the one with In(1 — ) in the last slot. In the

full multiple-variable case, the situation is slightly more complicated. The coproduct
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of any hexagon function will generically have nine terms,

Apra(F) =Y [F“ ®Inu + FI% @n(l — u) + F% @ In yi] , (4.3.47)

i=1

where F is a function of weight n and the nine functions {F“, F1=% F¥} are of
weight (n — 1) and completely specify the {n — 1,1} component of the coproduct.
The derivative with respect to u can be evaluated using eqgs. (4.2.23) and (4.3.47) and

the chain rule,

OF F* Fl=v 1—u—v—w l—u—v+w l—u+v—w

il I Foog s U TV Wy, 1 TUT YT Wy,

ou - v 1—wu uV/A (1 —u)\/z (1 —u)\/z
(4.3.48)

Clearly, a pole at u = 1 can arise from F'~% F¥% or FYw or it can cancel between
these terms.

The condition that eq. (4.3.48) has no pole at u = 1 is a strong one, because it must
hold for any values of v and w. In fact, this condition mainly provides consistency
checks, because a much weaker set of constraints turns out to be sufficient to fix all
undetermined constants in our ansatz.

It is useful to consider the constraints in the even and odd subspaces separately.
Referring to eq. (4.2.9), parity sends VA — —V/A, and, therefore, any parity-odd

function must vanish when A = 0. Furthermore, recalling eq. (4.2.11),

JA (1= y)(1 = 5)(1 = yu) (1 = YuYoYu)
1

= T = ) (= por) (L —vuge) (4.8.49)

we see that any odd function must vanish when y; — 1 or when vy, y,y, — 1. It turns
out that these conditions are sufficient to fix all undetermined constants in the odd
sector. One may then verify that there are no spurious poles in the w;-derivatives.
There are no such vanishing conditions in the even sector, and to fix all undeter-
mined constants we need to derive specific constraints from eq. (4.3.48). We found it
convenient to enforce the constraint for the particular values of v and w such that the

u — 1 limit coincides with the limit of Euclidean multi-Regge kinematics (EMRK).
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In this limit, v and w vanish at the same rate that u approaches 1,

EMRK: v —1, v—0, w— 0;

=z, =y, (4.3.50)

where z and y are fixed. In the y variables, the EMRK limit takes y, — 1, while y,
and y,, are held fixed, and can be related to x and y by,

vl_w2 wl_v2
oo Yol —y) yzw (4.3.51)

(1= yoyu)?’ (1= yoyu)?
This limit can also be called the (Euclidean) soft limit, in which one particle gets
soft. The final point, (u,v,w) = (1,0,0), also lies at the intersection of two lines
representing different collinear limits: (u,v,w) = (z,1—x,0) and (u,v,w) = (z,0,1—
x), where z € [0,1].

In the case at hand, F' is an even function and so the coproduct components
FY are odd functions of weight n — 1, and as such have already been constrained
to vanish when y; — 1. (Although the coefficients of F¥» and F¥» in eq. (4.3.48)
contain factors of 1/ VA, which diverge in the limit y, — 1, the numerator factors
1 —u7F (v—w) can be seen from eq. (4.3.50) to vanish in this limit, canceling the
1/v/A divergence.) Therefore, the constraint that eq. (4.3.48) have no pole at u = 1
simplifies considerably:

FY""(yy = 1,9, ) = 0. (4.3.52)

Of course, two additional constraints can be obtained by taking cyclic images. These
narrower constraints turn out to be sufficient to completely fix all free coefficients in
our ansatz in the even sector.

Finally, we are in a position to construct the functions of the hexagon basis. At
weight one, the basis simply consists of the three logarithms, Inu;. Before proceeding
to weight two, we must rewrite these functions in terms of multiple polylogarithms.
This necessitates a choice between Regions I and II, or between the bases GF and GF,.

We construct the basis for both cases, but for definiteness let us work in Region I.
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Our ansatz for Ay ;(Hy ) consists of the 18 tensor products,
{nu; @z |ze L]}, (4.3.53)

which we rewrite in terms of multiple polylogarithms in GF. Explicit linear algebra
shows that only a nine-dimensional subspace of these tensor products can be written
as A1 1(Gy) for Gy € GE. Six of these weight-two functions can be written as products
of logarithms. The other three may be identified with Hy(1—u;) by using the methods
of section 4.3.3. (See e.g. eq. (4.3.30).)

Our ansatz for Ay ;(H, ) consists of the nine tensor products,
{lnu; @z |z €Ly}, (4.3.54)

which we again rewrite in terms of multiple polylogarithms in GF. In this case, it turns
out that there is no linear combination of these tensor products that can be written
as Ay 1(Gq) for Gy € GE. This confirms the analysis at symbol level as summarized
in table 4.1, which shows three parity-even irreducible functions of weight two (which
are identified as HPLs), and no parity-odd functions.

A similar situation unfolds in the parity-even sector at weight three, namely that
the space is spanned by HPLs of a single variable. However, the parity-odd sector
reveals a new function. To find it, we write an ansatz for Ay ;(H; ) consisting of the
39 objects,

{p@x| freHS, v €Ly} (4.3.55)

(where Hy = {(2,Inu;Inwu;, Hy'}), and then look for a linear combination that can

be written as Ay 1(G3) for Gy € GE. After imposing the constraints that the function
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vanish when y; — 1 and when v, y,y., — 1, there is a unique solution,

g " G (0594) G (059.) G (0390) + G (0,159,) G (039) — G (0, 1) G (03 1,)
— G (0, L) G(03yw) — G (0,139) G (03 9) + G (0, 13) G (0 )

1 1
-G (0,1 4,) G(0;90) — G (0, y—;yv) G(0;y,) — G (0, y—;yv) G (05 y)

1
+G (0, —; yv) G (05 4w) — G (0,15 90) G (05 90) — G (0, 15 9) G (05 )

Yu

1 1
+ G (0,1;yw) G (0;yw) +2G (0,15 y,) G (—;%) -G (0, —;yw) G (03 yu)

u u

+G (0, i;yw) G(0;y,) — G (0, i;yw) G (0;90) —2G (0,0, 15 yu)
Yu Yu,

—2G (0, i;yw) G(lLy,) +G <0, i;yw> G (0;94) —2G (0,0, 1; )

u v

1 1
-G (07 —;yw) G (0;y0) — G (0, y—;yw) G (0;9w) — 2G(0,0,1; )

v

1
-2G <0, —;yw) G(Liy,)+G <0,

v

—Yw | G(05y,) — 2G (0,1, 15,

1
+G (0, —;yw) G(0;y) +G (0,

uJvU

1
YulYov

;yw> G (Oa yw) - 2G (07 1a 1; yv)

Yo | G (1 y4) + 2G (0, ;yw> G (L;y,) —2G(0,1,1;9)

uJv uJv

( G (i;yv> -2G (0,0, L ;yw>
Yu YuYv

1 1 1

yu yu yv

1 1 1 1 1 1
07 ) _ayv) + 2G (07 ) _7yw) + 2G (07 R _7yw)

Yu Yu Yo Yo

u u

1 1 1 1 1
Oa 9 17 y’w) - 2G (07 y T yw) - 2G (07 y T yw)
YulYv YulYv Yu YuYv Yo
— GG (0;9.) — LG (0;9) — GG (0;9w) -
(4.3.56)

The normalization can be fixed by comparing to the differential equation for D,
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Weight y° y' y? y? y*
1 3 HPLs - - - -
2 3 HPLs - - - -
3 6 HPLs D - - -
4 9 HPLs | 3xF 3x Q) - -
5 I8 HPLs | G, 3x K, | 5x My, N, O,6xQep | 3x Hy, 3x.J; -
6 27 HPLs 4 27 29 3% Rep + 15

Table 4.2: Irreducible basis of hexagon functions, graded by the maximum number of y
entries in the symbol. The indicated multiplicities specify the number of independent
functions obtained by applying the S3 permutations of the cross ratios.

eq. (4.2.24). This solution is totally symmetric under the S35 permutation group of the
three cross ratios {u, v, w}, or equivalently of the three variables {y., yu, Y }. However,
owing to our choice of basis GF, this symmetry is broken in the representation (4.3.56).

In principle, this procedure may be continued and used to construct a basis for
the space H,, any value of n. In practice, it becomes computationally challenging
to proceed beyond moderate weight, say n = 5. The three-loop remainder function
is a weight-six function, but, as we will see shortly, to find its full functional form
we do not need to know anything about the other weight-six functions. On the
other hand, we do need a complete basis for all functions of weight five or less. We
have constructed all such functions using the methods just described. Referring to
table 4.1, there are 69 functions with weight less than or equal to five. However, any
function with no y’s in its symbol can be written in terms of ordinary HPLs, so there
are only 30 genuinely new functions. The expressions for these functions in terms of
multiple polylogarithms are quite lengthy, so we present them in computer-readable
format in the attached files.

The 30 new functions can be obtained from the permutations of 11 basic func-
tions which we call &g, Fi, Q¥ G, Hy, Ji, K;, My, N, O, and Qep- Two of these
functions, @ and Q) have appeared in other contexts, as mentioned in section 4.2.
Also, a linear combination of F} and its cyclic image can be identified with the odd

part of the two-loop ratio function, denoted by V [71]. (The precise relation is given
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in eq. (C.2.20).) We believe that the remaining functions are new. In table 4.2, we
organize these functions by their weight and y-grading. We also indicate how many
independent functions are generated by permuting the cross ratios. For example, D
is totally symmetric, so it generates a unique entry, while F; and Q® are symmetric
under exchange of two variables, so they sweep out a triplet of independent functions
under cyclic permutations. The function )¢, has no symmetries, so under Ss per-
mutations it sweeps out six independent functions. The same would be true of M,
except that a totally antisymmetric linear combination of its S3 images and those
of Qep are related, up to products of lower-weight functions and ordinary HPLs (see
eq. (C.2.51)). Therefore we count only five independent functions arising from the Ss
permutations of M;.

We present the {n— 1,1} components of the coproduct of these 11 basis functions
in appendix C.2. This information, together with the value of the function at the
point (1,1,1) (which we take to be zero in all but one case), is sufficient to uniquely
define the basis of hexagon functions. We will elaborate on these ideas in the next

section.
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4.4 Integral Representations

In the previous section, we described an iterative procedure to construct the basis of
hexagon functions in terms of multiple polylogarithms in the y variables. The result is
a fully analytic, numerically efficient representation of any given basis function. While
convenient for many purposes, this representation is not without some drawbacks.
Because S, has one more element than S, and because the first entry condition is
fairly opaque in the y variables, the multiple polylogarithm representation is often
quite lengthy, which in turn sometimes obscures interesting properties. Furthermore,
the iterative construction and the numerical evaluation of multiple polylogarithms are
best performed when the y; are real-valued, limiting the kinematic regions in which
these methods are practically useful.

For these reasons, it is useful to develop a parallel representation of the hexagon
functions, based directly on the system of first-order differential equations they satisfy.
These differential equations can be solved in terms of (iterated) integrals over lower-
weight functions. Since most of the low weight functions are HPLs, which are easy to
evaluate, one can obtain numerical representations for the hexagon functions, even in
the kinematic regions where the y; are complex. The differential equations can also
be solved in terms of simpler functions in various limits, which will be the subject of

subsequent sections.

4.4.1 General setup

One benefit of the construction of the basis of hexagon functions in terms of multiple
polylogarithms is that we can explicitly calculate the coproduct of the basis functions.
We tabulate the {n — 1,1} component of the coproduct for each of these functions
in appendix C.2. This data exposes how the various functions are related to one
another, and, moreover, this web of relations can be used to define a system of
differential equations that the functions obey. These differential equations, together
with the appropriate boundary conditions, provide an alternative definition of the
hexagon functions. In fact, as we will soon argue, it is actually possible to derive

these differential equations iteratively, without starting from an explicit expression



CHAPTER 4. HEXAGON FUNCTIONS AND R’ 217

in terms of multiple polylogarithms. It is also possible to express the differential
equations compactly in terms of a Knizhnik-Zamolodchikov equation along the lines
studied in ref. [146]. Nevertheless, the coproduct on multiple polylogarithms, in
particular the {n — 1,1} component as given in eq. (4.3.47), is useful to frame the
discussion of the differential equations and helps make contact with section 4.3.

It will be convenient to consider not just derivatives with respect to a cross ratio, as
in eq. (4.3.48), but also derivatives with respect to the y variables. For that purpose,

we need the following derivatives, which we perform holding y, and vy, constant,

Olnu (I —u)(1l—v—w) Olnv  u(l—v)
oln(l—w)  u(l-—v-—w) olm(l—v)  w o
We also consider the following linear combination,
0 0 0
=y — Y 4.4.2
aln(yu/yw) ayu YusYw &Uw Yu,Yu ( )

Using eqgs. (4.2.23) and (4.4.1), as well as the definition (4.4.2), we obtain three
differential equations (plus their cyclic images) relating a function F' to its various

coproduct components,

(9_F B ﬂ_Fl_“+1—u—v—wau+1—u—v+wav
oul, ., (N uvA (1 —u)vVA
1—u—|—v—waw
(1 —u)vVA ’
(4.4.3)
OF
\/Zyua— = (1-uw)(l—-—v—w)F*"—u(l—0v)F’"—u(l—w)F"
Yu Yv,Yw
—u(l —v—w)F'" 4 uv F*0 + uw F7 + VA FY (4.4.4)
OF
Ae—e—— = (1-u) (1 =0)F*— (u—w)(1 —v)F"
T = (= 0= )F = = w1 v

—(1—=v) (1 —w)F* —u(l —v)F"" + (u — w)v F°
+w(l —v) FY7% + VA F¥% — VA FY (4.4.5)
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Let us assume that we somehow know the coproduct components of F', either from
the explicit representations given in appendix C.2, or from the iterative approach
that we will discuss in the next subsection. We then know the right-hand sides of
eqs. (4.4.3)-(4.4.5), and we can integrate any of these equations along the appropriate
contour to obtain an integral representation for the function F. While eq. (4.4.3)
integrates along a very simple contour, namely a line that is constant in v and w,
this also means that the boundary condition, or initial data, must be specified over a
two-dimensional plane, as a function of v and w for some value of u. In contrast, we
will see that the other two differential equations have the convenient property that
the initial data can be specified on a single point.

Let us begin with the differential equation (4.4.4) and its cyclic images. For
definiteness, we consider the differential equation in y,. To integrate it, we must
find the contour in (u,v,w) that corresponds to varying y,, while holding y, and v,

constant. Following ref. [71], we define the three ratios,

w(l B U’) o yw(l - yu)2

T Ul w) T (T g
_ w(l - w)u(l - u) o yw(l - yw)2yu(1 - yu)2
S s ¢ S (4.48)
po v (= yew)* (1 = yutio)
uw yw(l - yw)yu(l - yu)<1 - yv) .

Two of these ratios, r and s, are actually independent of y,, while the third, ¢, varies.
Therefore, we can let ¢t parameterize the contour, and denote by (uy, vy, w;) the values
of the cross ratios along this contour at generic values of ¢. Since r and s are constants,

we have two constraints,

Y

wy(1 — uy) _ w(l —u)

w(l—wy)  u(l —w)

wy(1 —wu (1 =) w(l —w)u(l —u)
) :

(1 — )2 - (1—v)?

(4.4.7)
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We can solve these equations for v; and wy, giving,

(1 —v)u(1 — wy) o — (1 — w)wuy
u(l —w) + (w—uw)u;’ Cu(l —w) + (w— )y

vp=1-— (4.4.8)
Finally, we can change variables so that u; becomes the integration variable. Calcu-
lating the Jacobian, we find,

dlny, dlny, dlnt (1 —y,)(1 = yuYolw) 1 _ VA (4.4.9)

du;,  dlnt du, Yo (1 = Y w(ug — 1) vpug(uy — 1)

where A; = A(uy, vy, wy). There are two natural basepoints for the integration: u; = 0,
for which y, = 1 and (u,v,w) = (0,1,0); and u; = 1, for which y, = 1/(yuyw) and
(u,v,w) = (1,1,1). Both choices have the convenient property that they correspond
to a surface in terms the variables (v, ¥y, ¥w) but only to a single point in terms of
the variables (u, v, w). This latter fact allows for the simple specification of boundary
data.

For most purposes, we choose to integrate off of the point u; = 1, in which case

we find the following solution to the differential equation,

v . OF .
F<u7vvw) :F(17]~71>+ dlnyv—(yuvy’uvyw)
1 Yy

v dut vV At or
=F(1.1,1
( Y ) * /1 Ut(ut - 1) v, Olny, (Ut’vt’wt)

. v dut aF
=F(1,1,1) - \/Z/l ve[u(l — w) + (w — u)uy] O1ny, (e, vr, )

(4.4.10)

The last step follows from the observation that v/A/(1 — v) is independent of y,,

which implies
VA VA

1l—v, 1—0"

(4.4.11)

The integral representation (4.4.10) for F' may be ill-defined if the integrand di-
verges at the lower endpoint of integration, u; = 1 or (u,v,w) = (1,1,1). On the

other hand, for F' to be a valid hexagon function, it must be regular near this point,
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and therefore no such divergence can occur. In fact, this condition is closely related to
the constraint of good branch-cut behavior near u = 1 discussed in section 4.3.4. As
we build up integral representations for hexagon functions, we will use this condition
to help fix various undetermined constants.

Furthermore, if F'is a parity-odd function, we may immediately conclude that
F(1,1,1) = 0, since this point corresponds to the surface y,y,y, = 1. If F' is parity-
even, we are free to define the function by the condition that F'(1,1,1) = 0. We use
this definition for all basis functions, except for Q) (u, v, w), whose value at (1,1, 1)
is specified by its correspondence to a particular Feynman integral.

While eq. (4.4.10) gives a representation that can be evaluated numerically for
most points in the unit cube of cross ratios 0 < u; < 1, it is poorly suited for
Region I. The problem is that the integration contour leaves the unit cube, requiring
a cumbersome analytic continuation of the integrand. One may avoid this issue by
integrating along the same contour, but instead starting at the point u; = 0 or

(u,v,w) = (0,1,0). The resulting representation is,

B uw dut 8F
F(u,v,w) = F(0, 1,0)—\/Z o vu(l —w) + (w—w)u] Olny,

(Ut, Vt, wt) . (4412)

If F'is a parity-odd function, then the boundary value F'(0,1,0) must vanish, since
this point corresponds to the EMRK limit y, — 1. In the parity-even case, there
is no such condition, and in many cases this limit is in fact divergent. Therefore,
in contrast to eq. (4.4.10), this expression may require some regularization near the
u; = 0 endpoint in the parity-even case.

It is also possible to integrate the differential equation (4.4.5). In this case, we
look for a contour where y, and y,y, are held constant, while the ratio y,/y, is
allowed to vary. The result is a contour (u;, vy, w;) defined by,

vy (1 — uy) uw(1 — uy)

Vy = Wy = . (4413)

ww+ (1 —u—w)u’ uw + (1 —u—w)uy

Again, there are two choices for specifying the boundary data: either we set y,/y, =

YulYw for which we may take u; = 0 and (u, v, w) = (0,0,1); or yu/yw = 1/(YuYu), for
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which we may take u; = 1 and (u, v, w) = (1,0,0). We therefore obtain two different

integral representations,

“ duy \/Kt OF
F(u,v,w) = F(0,0,1) +/0 w (1= ) (1 = vy) OIn(yu/yw)

d oOF
F(0,0,1) +\/_/ al )(ut,vt,wt),

(1 — o) [uw + (1 — uw — w)ug] OIn(yu/Yu

(ut7 Vg, wt)

(4.4.14)

and,

duy oF
F(u,v,w) = F(1,0,0) + \/_/ (1= oo + (1= u —w)w] OTn(yn/gm) (1, ve, wy) -
(4.4.15)

Here we used the relation,
VA _ VA

(0 (%

(4.4.16)

which follows from the observation that vA /v is constant along either integration
contour. Finally, we remark that the boundary values F'(1,0,0) and F'(0,0,1) must
vanish for parity-odd functions, since the points (1,0,0) and (0,0, 1) lie on the A =
0 surface. In the parity-even case, there may be issues of regularization near the
endpoints, just as discussed for eq. (4.4.12).

Altogether, there are six different contours, corresponding to the three cyclic im-
ages of the two types of contours just described. They may be labeled by the y-
variables or their ratios that are allowed to vary along the contour: yu, Yu, Yuw, Yu/Yw,
Yu/Yu, and vy, /y,. The base points for these contours together encompass (1,1,1),
(0,1,0), (1,0,0) and (0,0, 1), the four corners of a tetrahedron whose edges lie on the
intersection of the surface A = 0 with the unit cube. See fig. 4.2 for an illustration
of the contours passing through the point (u,v,w) = (2,1 1)

47 47 2

4.4.2 Constructing the hexagon functions

In this subsection, we describe how to construct differential equations and integral

representations for the basis of hexagon functions. We suppose that we do not have
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yu
yv
—_— Yo
Yo /Yo
Yu/Yuw
Yo/Yu

Figure 4.2: The six different integration contours for the point (u,v,w)
labeled by the y-variables (or their ratios) that vary along the contour.

I
—~
=
=
N =
S~—

any of the function-level data that we obtained from the analysis of section 4.3;
instead, we will develop a completely independent alternative method starting from
the symbol. The two approaches are complementary and provide important cross-
checks of one another.

In section 4.3.1, we presented the construction of the basis of hexagon functions
at symbol level. Here we will promote these symbols to functions in a three-step

iterative process:

1. Use the symbol of a given weight-n function to write down an ansatz for the
{n—1,1} component of its coproduct in terms of a function-level basis at weight

n — 1 that we assume to be known.

2. Fix the undetermined parameters in this ansatz by imposing various function-

level consistency conditions. These conditions are:

(a) Symmetry. The symmetries exhibited by the symbol should carry over to

the function.
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(b) Integrability. The ansatz should be in the image of A, _; ;. This condition

is equivalent to the consistency of mixed partial derivatives.

(c) Branch cuts. The only allowed branch cuts start when a cross ratio van-

ishes or approaches infinity.

3. Integrate the resulting coproduct using the methods of the previous subsection,
specifying the boundary value and thereby obtaining a well-defined function-

level member of the hexagon basis.

Let us demonstrate this procedure with some examples. Recalling the discussion
in section 4.3.1, any function whose symbol contains no y variables can be written
as products of single-variable HPLs. Therefore, the first nontrivial example occurs
at weight three. As previously mentioned, this function corresponds to the one-loop

six-dimensional hexagon integral, dg. Tts symbol is given by,

S(Pg) = [—u@v—v®u+u®(1—u)—{—v@(l—v)—i—w@(l—w)] Ry + cyclic. (4.4.17)

It is straightforward to identify the object in brackets as the symbol of a linear
combination of weight-two hexagon functions (which are just HPLs), allowing us to

write an ansatz for the {2, 1} component of the coproduct,

AV <é6> = — [ln ulnov+ Lig(1—u) + Lig(1 —v) 4+ Lig(1 —w) + als| ®Iny,, + cyclic,
(4.4.18)
for some undetermined rational number a.

The single constant, a, can be fixed by requiring that ®¢ have the same symmetries
as its symbol. In particular, we demand that g be odd under parity. As discussed
in the previous section, this implies that it must vanish in the limit that one of the y;
goes to unity. In this EMRK limit (4.3.50), the corresponding u; goes to unity while
the other two cross ratios go to zero. The right-hand side of eq. (4.4.18) vanishes in

this limit only for the choice a = —2. So we can write,

AV (@6) = —0W(u,v,w) ®Iny, + cyclic, (4.4.19)
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where,

QW (u,v,w) = Inulnv 4 Lig(1 — u) 4 Lis(1 — v) + Lig(1 — w) — 2¢,

(4.4.20)
=Hy + H)+ HyY +Inulnv —2¢,

confirming the expression given in eq. (4.2.21). It is also straightforward to verify
that eq. (4.4.18) is integrable and that it does not encode improper branch cuts. We
will not say more about these conditions here, but we will elaborate on them shortly,
in the context of our next example.

Now that we have the coproduct, we can use eqgs. (4.4.4) and (4.4.5) to immediately

write down the differential equations,

0P

— _0M
Iy, QY (w, u,v), (4.4.21)
D
— = W, w,u) + QY (u,v,w) = In(u/w)lnwv. 4.4.22
T (vr0,0) + 0 (w0, w) = In(u/w) lno. (14.22)

These derivatives lead, via eqs. (4.4.10) and (4.4.14), to the following integral repre-

sentations:

_ A / dut wt,ut,m ’ (4.4.23)

)+ (w — uw)uy
with (ug, vy, wy) as in eq. (4.4.8), or

— VA [ ot ()
with (ug, v, wy) as in eq. (4.4.13). We have set the integration constants to zero
because g is a parity-odd function.

We have now completed the construction of the hexagon basis through weight
three. Moving on to weight four, the symbol-level classification reveals one new
parity-even function, Q® (u,v,w), and one new parity-odd function, F(u,v,w), as
well as their cyclic images. We will discuss the parity-even function Q) (u, v, w) since
it exhibits a variety of features that the parity-odd functions lack.

As discussed in section 4.2, Q@ (u, v, w) is an extra-pure function, and as such its
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symbol has only three distinct final entries, which were given in eq. (4.2.18),

(%

u
final entry € { ——, —— Yuly © - 4.4.25
e [t ) 1429

Furthermore, the symbol is symmetric under the exchange of u with v. Taken to-
gether, these symmetry properties dictate the form of the {3,1} component of the

coproduct,

v

B2 (2 (u,v,w)) = 29" @ In(

—Uu

) + Q@

® l]a(1 ) + Q@Y @ Iny,y, .
(4.4.26)
There are two independent functions in eq. (4.4.26), Q)% and Q®)¥«, The symbols

of these functions can be read off from the symbol of Q) (u,v,w). Both functions

UV

must be valid hexagon functions of weight three. The symbol indicates that Q@) ig
parity-even and Q®)¥ is parity-odd.
The most general linear combination of parity-even hexagon functions of weight

three whose symbol is consistent with that of Q)% is

1 1
O Hy, — Hy) — 5 In(uw/v)(Hy + Hy') + 3 In(uv/w) Hy
! (4.4.27)
+ §lnu Inv In(v/w) +a GInu+asGlnv+azolnw + ay (s,

for four arbitrary rational numbers a;. There is only a single parity-odd hexagon

function of weight three, so Q®¥ is uniquely determined from its symbol,

QO = . (4.4.28)

It is not necessarily the case that the right hand side of eq. (4.4.26) is actually the
{3,1} component of the coproduct of a well-defined function for arbitrary values of
the parameters a;. This integrability condition can be formalized by the requirement
that the operator

(i[d®dAd)(Ay; ®id) (4.4.29)

annihilate the right hand side of eq. (4.4.26). To see this, note that (Ay; ® id) o
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As; = A1, and therefore d A d acts on the the last two slots, which are just
weight-one functions (logarithms). This can be recognized as the familiar symbol-
level integrability condition, eq. (4.2.2), promoted to function-level.

Another way of thinking about the integrability condition is that it guarantees
the consistency of mixed partial derivatives. Since there are three variables, there are
three pairs of derivatives to check. To illustrate the procedure, we will examine one

pair of derivatives by verifying the equation,

(4.4.30)

9, [89(2)(u, v, w) 0 [89(2) (u, v, w)}

O10(Yo /Yu) ] :ﬂaln@v/yu) D1n g,

dlny,

We have multiplied by an overall factor of /A for convenience. To simplify the

notation, let us define,
U=0®P" and V=Q®v,,,. (4.4.31)

Then, using eqgs. (4.4.4) and (4.4.5), we can immediately write down an expression
for the left-hand side of eq. (4.4.30),

e omtsng | =V Sawse [ v )

= (1-w)*(l—u—0v) (VY =U")
+w(l—w)(U"+ U+ U =V =V - VI
—uww(l—w)(U 4+ U+ U =V = VI — Vi)
WUP + U+ U -y — i ey
(4.4.32)

—vw(l —w)(

The algebra leading to the second line may be simplified by using the fact that
(1 —w)/VA is independent of y,,. Similarly, it is straightforward to write down an
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expression for the right-hand side of eq. (4.4.30),

VA

9 [89(2)(u,v,w)] ) [_w

O (1 /yu) N \/Z(U - v)}

~ V)
= —w(l—-w)(U*-U"+V"=V")

—uw(l —w)(UY + U+ U VY 4 Ve Vi)
+ow(l—w)(U” +U"+ U+ VY + VY4 VI
+w(u—v) (U 4+ V)

0lny,,

(4.4.33)

where we have used the fact that w/+/A is annihilated by 9/0In(y,/y.).-

As usual, the superscripts indicate the various coproduct components. A special
feature of this example is that the functions U and V' are built entirely from single-
variable HPLs, so it is straightforward to extract these coproduct components using
the definitions in appendix C.1. More generally, the functions may contain non-HPL
elements of the hexagon basis. For these cases, the coproduct components are already
known from previous steps in the iterative construction of the basis.

The nonzero coproduct components of U are,

1
Ut — -3 (H;L — H)+ HY —Inv ln(v/w)> + a1 Ca,

Uv = (H;+H5+H;”+21nu Inv—lnu 1nw> tasCa,

DN | —

1
Uw=—§ (H§L+H§’+H§”+lnulnv> +az (o,

. (4.4.34)
Ut = HY + 5 Inwu In(uw/v) ,

1
Uty = —5 Invn(u/w),

1
U = §lnwln(u/v) :
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while those of V' are related by symmetry,

VESUT, VU V= U,

(4.4.35)
Vl—u _ Ul—l} ’ vl—v _ Ul_u, Vl—w — Ul_w|u(—>v ]

Using eqs. (4.4.33), (4.4.34), and (4.4.35), it is straightforward to check that the
equality of mixed-partial derivatives, eq. (4.4.30), is satisfied if and only if ay = —as.
Continuing in this way, we can derive similar constraints from the remaining two

mixed partial derivative consistency conditions. The result is that
ay=-—1, and az3=1. (4.4.36)

Finally, we must impose good branch-cut behavior. As discussed in section 4.3.4, this

constraint can be implemented by imposing eq. (4.3.52), or, in this case,
U(1,0,0) =0, (4.4.37)

which implies that ay = 0.

The one remaining parameter, ay, corresponds to an ambiguity that cannot be
fixed by considering mathematical consistency conditions. Indeed, it arises from a
well-defined weight-four function with all the appropriate symmetries and mathemat-
ical properties. In particular, it is the product of (, with an extra-pure weight-two

hexagon function that is symmetric under u <+ v,
G [L12(1 ~1/u) + Lis(1 — 1/v)] . (4.4.38)

In general, we would resolve such an ambiguity by making an arbitrary (though
perhaps convenient) choice in order to define the new hexagon function. But because
9(2)(u,v,w) corresponds to a particular Feynman integral, the value of a; is not
arbitrary, and the only way to fix it is to bring in specific data about that integral.
We are not interested in determining the value of a; directly from the Feynman

integral since this integral has been evaluated previously [71]. Instead, we will be
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satisfied simply to verify that a consistent value of a; exists.
From eq. (4.4.33) we have,

JA 00 (u, v, w)

3y = —w(U+V), (4.4.39)
@) (u, v, w
\/Z%v’/y’u)) = —(1-w)(U=-V). (4.4.40)

Equation (4.4.39) is consistent with the differential equations of section 4 of ref. [71]
only if the function Q4 from that reference (and eq. (4.2.28)) is related to U and V/
by,

Qs =—(U+V). (4.4.41)

This equation is satisfied, provided that a; = 1. Having fixed all a;, we have uniquely
determined the {3, 1} component of the coproduct of Q) (u, v, w). Indeed, eq. (4.4.26)
is consistent with the expressions in eqs. (4.2.19) and (4.2.28), as of course it must
be.

We remark that the antisymmetric combination appearing in eq. (4.4.40) is related

to another function defined in ref. [71],

Z(v,w,u) =—-2(U—-V), (4.4.42)

where Z appears in a derivative of the odd part of the NMHV ratio function (see
eq. (C.2.19)).
Following the discussion in section 4.4.1, the differential equation eq. (4.4.39) gives

rise to the integral representation,

0@ - _ /u d M 4.4.4
(u7 v, w) 6(4 + . Uy Ut(ut _ 1) ) ( 3)
where,
vy — (1 — u)vuy w = 1 (1 —w)uy (1 — uy) (4.4.44)

a1l =)+ (v —u)u w1l =)+ (v —wuy
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While our conventions for generic hexagon functions require the functions to vanish
at the boundary value (1,1,1), in this specific case we must specify a nonzero value
Q®(1,1,1) = —6(4 in order to match a prior definition of the function.

The differential equation (4.4.40) gives rise to another integral representation for
0,

1 [ dv, Z
(ﬂmﬁm:_/ v Z (v, Wi, ) (4.4.45)
2 0 (0 ( 1-— Ut)
where,
1— 1—
uy = —ol =) w = —ull=v) (4.4.46)

S w+ (I—u—v)y Cuwv+ (1 —u— )y,

There is no constant of integration in eq. (4.4.45) because in this case Q2 vanishes
at the lower endpoint, Q) (1,0,0) = 0 [71,158].

Continuing onward, we construct the remaining functions of the hexagon basis
in an iterative fashion, using the above methods. We collect the results through
weight five in appendix C.2. We present the data by the {n — 1,1} component of
the coproduct, plus the constraint that the functions vanish at (u,v,w) = (1,1,1)
(except for the special case of Q). With this information, we can build an ansatz

for the three-loop remainder function, as we discuss in the next subsection.

4.4.3 Constructing the three-loop remainder function

In this subsection, we complete the construction of an ansatz for the three-loop re-
mainder function. We use the decomposition (4.2.29) of the symbol of Ré?’) as a
template, and extend it to a definition of the function using the same steps as in sec-
tion 4.4.2:

1. From the symbol of the extra-pure function Re,(u,v,w), which depends on a4
and aw, we expand the {5, 1} components of its coproduct in terms of our weight-
five basis functions. These functions can be given as multiple polylogarithms,
as in section 4.3.4, or as integral representations, as in section 4.4.2. We also

allow for the addition of zeta values multiplying lower-weight basis functions.
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2. We fix as many undetermined parameters in this ansatz as possible by enforcing

various mathematical consistency conditions. In particular,

(a)

We impose extra-purity and symmetry in the exchange of v and v as
function-level conditions on the coproduct entries, since these conditions

are satisfied at symbol level:

Re, = —R;U = —Ré;“(u “v) = Rgp(u ),

[ u wo__ 1—w __ (T
RV = RV, RY = RS =R = 0.

ep

(4.4.47)

In principle, beyond-the-symbol terms do not need to obey the extra-purity
relations. At the end of section 4.5, we will relax this assumption and use

the near-collinear limits to show that the potential additional terms vanish.

We demand that the ansatz be integrable. For the multiple polylogarithm
approach, this amounts to verifying that there is a weight-six function
with our ansatz as the {5, 1} component of its coproduct. For the approach
based on integral representations, we check that there are consistent mixed

partial derivatives.

We require that the resulting function have the proper branch-cut struc-
ture. We impose this constraint by verifying that there are no spurious
poles in the first derivatives, just as we did in the construction of the

hexagon basis.

After imposing these constraints, there are still nine undetermined beyond-

the-symbol parameters. They correspond to well-defined extra-pure hexagon

functions of weight six, and cannot be fixed by mathematical consistency con-

ditions.

3. We integrate the resulting coproduct. This result is a weight-six function,

Réglm), which depends on the symbol-level constants, a; and as, and nine

lower-weight functions rq, ..., r9, which come multiplied by zeta values. The r;

may be expressed in terms of previously-determined hexagon functions, while
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Régl’”) may be given as an integral representation or explicitly in terms of

multiple polylogarithms.

This procedure leaves us with the following ansatz for Ré?’):

9

(3) _ (a1,02) T '
R® (u, v, w) [(Rep (uvv,w)+;cm(“v”)>“yChC}+P6(”’U’w) (4.4.48)

+ c10Ge + c11 (C3)2 .

where the ¢; are undetermined rational numbers, and

i 1
=4 H§‘+§ln2u+(u<—>v)},

r 1
T2:€3 H£1—61n3u+(u<—>v)],

ry = Gy | Hy = 2H, + HYH + (u 5 0)] |

I 1
ro= G [Hy + HYH = S(H) + (u o v)]

' 1
rs = Go | Hif —3H3 y + HYH + S (Y H + (u & ,U)] | (4.4.49)

16 = (o _Héfl —3Hy,, + H{'Hy; + (u v)] ,

I 1
rr =G [Hiay + 57 (H) + (u o v)]

1 1
rg = (o <H§‘+§ln2u> <H§’+§1n20>,

T = (2 Q(z)(%?}, w) .

In the following section we will use the collinear limits of this expression to fix ay,
as and the ¢;. After fixing these parameters, we can absorb all but the constant
terms into a redefinition of R.,. The {5,1} component of its coproduct is given in
appendix C.3. The final integral representation for Ré?’), having fixed also ¢19 and
c11, is given in section 4.7, eq. (4.7.1). The final expression in terms of multiple
polylogarithms is quite lengthy, but it is provided in a computer-readable format in
the attached files.
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4.5 Collinear limits

In the previous section, we constructed a 13-parameter ansatz for the three-loop re-
mainder function. It has the correct symbol, proper branch structure, and total S3
symmetry in the cross ratios. In other words, the ansatz obeys all relevant math-
ematical consistency conditions. So in order to fix the undetermined constants, we
need to bring in some specific physical data.

Some of the most useful data available comes from the study of the collinear limit.
In the strict collinear limit in which two gluons are exactly collinear, the remainder
function must vanish to all loop orders. This condition fixes many, but not all, of the
parameters in our ansatz. To constrain the remaining constants, we expand in the
near-collinear limit, keeping track of the power-suppressed terms. These terms are
predicted by the OPE for flux tube excitations. In fact, the information about the
leading discontinuity terms in the OPE [38-40] was already incorporated at symbol
level and used to constrain the symbol for the three-loop remainder function up to
two undetermined parameters [14].

Here we take the same limit at function level, and compare to the recent work
of Basso, Sever and Vieira (BSV) [150], which allows us to uniquely constrain all of
the beyond-the-symbol ambiguities, as well as the two symbol-level parameters. The
two symbol-level parameters were previously fixed by using dual supersymmetry [45],
and also by studying the near-collinear limit at symbol level [150], and we agree with

both of these determinations.

4.5.1 Expanding in the near-collinear limit

In the (Euclidean) limit that two gluons become collinear, one of the cross ratios goes

to zero and the sum of the other cross ratios goes to one. For example, if we let ko

2

and k3 become parallel, then 23, = (ko + k3)> — 0, corresponding to v — 0, and

u+ w — 1. BSV [150] provide a convenient set of variables (7,0, ¢) with which one
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can approach this collinear limit. They are related to the (u;,y;) variables by [152]:

Fs?

YT A+ T (F + FS*+ ST + F2ST + F12)°

T2

ST
F
w =
F+FS2+ ST + F2ST + FT?

FSoT (4.5.1)

M RS+ FT)

_ (S+FT)(1+ FST +1T?)
W FS+T)(F + ST + FT?)°
F+ ST + FT?
F(1+FST +1T?)"

Yw =

where T'=e™ 7, S = ¢, and F = ¢%.

As T — 0 (1 — oo) we approach the collinear limit. The parameter S controls
the partitioning of the momentum between the two collinear gluons, according to
ko ks ~ S?, or ky/(ko + k3) ~ S?/(1+ S?%). The parameter F controls the azimuthal
dependence as the two gluons are rotated around their common axis with respect
to the rest of the scattering process. This dependence is related to the angular
momentum of flux-tube excitations in the OPE interpretation.

By expanding an expression in 7' we can probe its behavior in the near-collinear
limit, order by order in 7. Each order in 7" also contains a polynomial in In7". In
general, the expansions of parity even and odd hexagon functions f¢'*" and f°4 have

the form,

feven(f_r7 F, S) — Z Z

S T (=InT)" cos” ¢ f,(S) (4.5.2)
m=0 n=0 p=0
oo N m-—1
T FS) = 2ising Y > Y T (—InT)" cos” § fold (S). (4.5.3)
m=1n=0 p=0

Odd parity necessitates an extra overall factor of sin ¢. The maximum degree of the

polynomial in e*® is m, the number of powers in the T expansion, which is related
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to the twist of a flux tube excitation in the final answer. The maximum degree N of
the polynomial in 7 = — In T satisfies N = w — 2 for the non-HPL hexagon functions
with weight w in appendix C.3, although in principle it could be as large as N = w
for the m = 0 term (but only from the function In* v), and as large as N = w — 1
when m > 0. For the final remainder function at L loops, with weight w = 2L, the
leading discontinuity terms in the OPE imply a relatively small value of N compared
to the maximum possible, namely N = L — 1 =2L — (L + 1) for RéL), or N =2 for
RY.

BSV predict the full order 7" behavior of the remainder function [150]. The part
of the T? behavior that is simplest for them to predict (because it is purely gluonic)
contains azimuthal variation proportional to cos? ¢, i.e. the T?F? or T?F~2 terms;
however, they can also extract the T?F° behavior, which depends upon the scalar
and fermionic excitations as well [152]. To compare with this data, we must expand
our expression for Rég) to this order.

The expansion of an expression is relatively straightforward when its full analytic
form is known, for example when the expression is given in terms of multiple polylog-
arithms. In this case, one merely needs to know how to take a derivative with respect
to T" and how to evaluate the functions at 7" = 0. The derivative of a generic multiple
polylogarithm can be read off from its coproduct, which is given in appendix C.1.
Evaluating the functions at T" = 0 is more involved because it requires taking y, — 1
and y,, — 1 simultaneously. However, the limit of all relevant multiple polylogarithms
can be built up iteratively using the coproduct bootstrap of section 4.3.3.

If the expression is instead represented in integral form, or is defined through
differential equations, then it becomes necessary to integrate up the differential equa-
tions, iteratively in the transcendental weight, and order by order in the 7" expansion.
Recall that for any function in our basis we have a complete set of differential equa-
tions whose inhomogeneous terms are lower weight hexagon functions. The change of
variables (4.5.1), and its Jacobian, allows us to go from differential equations in the
u; or y variables to differential equations in (F,S,T).

The structure of the 7" — 0 expansion makes most terms very straightforward to

integrate. In eqs. (4.5.2) and (4.5.3), T only appears as powers of T', whose coefficients
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are polynomials of fixed order in InT". The variable F' only appears as a polynomial
in cos¢ and sin¢@, i.e. as powers of I and F~!. Hence any T or F derivative can
be integrated easily, up to a constant of integration, which can depend on S. The S
derivatives require a bit of extra work. However, the differential equation in .S is only
required for the 7" and F' independent term arising in the parity-even case, f576(S ).
This coefficient is always a pure function of the same transcendental weight as f itself,
and it can be constructed from a complete set of HPLs in the argument —S?. Thus
we can integrate the one required differential equation in S by using a simple ansatz
built out of HPLs.

There is still one overall constant of integration to determine for each parity-
even function, a term that is completely independent of T, F and S. It is a linear
combination of zeta values. (The parity-odd functions all vanish as T" — 0, so they do
not have this problem.) The constant of integration can be determined at the endpoint
S =0 or S = oo, with the aid of a second limiting line, (u,v,w) = (u,u,1). On this
line, all the hexagon functions are very simple, collapsing to HPLs with argument
(1 —w). In the limit v — 0 this line approaches the point (0,0, 1), which can be
identified with the S — 0 “soft-collinear” corner of the 7" — 0 collinear limit in the
parametrization (4.5.1). Similarly, the S — oo corner of the 7" — 0 limit intersects
the line (1,v,v) at v = 0. Both lines (u,u,1) and (1,v,v) pass through the point
(1,1,1). At this point, (most of) the hexagon functions are defined to vanish, which
fixes the integration constants on the (u,w,1) and (1,v,v) lines. HPL identities then
give the desired values of the functions in the soft-collinear corner, which is enough to
fix the integration constant for the near-collinear limit. We will illustrate this method
with an example below.

The coefficients of the power-suppressed terms that also depend on T and F,
namely f, ,,(S) in egs. (4.5.2) and (4.5.3) for m > 0, are functions of S that involve
HPLs with the same argument —S2, but they also can include prefactors to the HPLs
that are rational functions of S. The f,,,,(S) for m > 0 generally have a mixed
transcendental weight. Mixed transcendentality is common when series expanding

generic HPLs around particular points. For example, expanding Lis(1 — ) around
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x = 0 gives

2 mz 1 mz 1
Lis(1— ) ~ % +a(lng — 1)+ xQ(% - Z) + 1:3(% = 5) LO®Y). (4.5.4)

Using an HPL ansatz for the pure S-dependent terms, we use the differential
equations to fix any unfixed parameters and cross-check the ansatz. Repeating this
process order by order we build up the near-collinear limiting behavior of each element

of the basis of hexagon functions as a series expansion.

4.5.2 Examples

In order to illustrate the collinear expansion, it is worthwhile to present a few low-
weight examples. We begin with the simplest nontrivial example, the weight-three
parity-odd function ®g. Since ®g is fully symmetric in the u; and vanishes in the
collinear limit (like any parity-odd function), its expansion is particularly simple. To

conserve space in later formulas, we adopt the notation,
s=S8%  L=IS*  Hgz=Hz-5%). (4.5.5)

The expansion of ®g is then

b — M%é [2 1nT((1 v s)H, + 3L> —(1+5s) (Hf (L4 2)H1) . ZSL]

2iT? cos ¢ sin ¢
+ I

{—21nT((1 + %) Hy 4 s(sL+ 1)) + (1+ 5%)(H} + LH)

+ (1 +s)*H, + s((l + s)L + 1)} +O(T?).
(4.5.6)
The sign of eq. (4.5.6), and of the collinear expansions of all of the parity-odd func-

tions, depend on the values of the y variables used. This sign is appropriate to

approaching the collinear limit from Region I, with 0 < y; < 1.
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Because Q) lacks the symmetries of dg, its expansion must be evaluated in mul-
tiple channels, and it is substantially lengthier. Through order 72, we find,
Q@ (u,v,w) =

In? T(z(H2 +G)+ L2) +2 1nT(H3 —2(Hyy — ) — LH2> 4 Hy — 4H;,

1 5
+4Hz11 + §<H§ + L*(Hs + Cz)) - L(H3 —2(Hy + Cz)) +26H, + G
T cos
| Teos

{—411127’ s(Hy+ L) +4InT ((1 + $)H, + s(H? + L(H, + 1)))
+ 3(4(H2,1 —(3) — %Hf’ — Hy(2Hy + L?) — 2L(H} + 2) — 2C2(2H, + L))

—2(1+8)(H? + Hy (L + 2))}

+ 5 cos2¢{41n TSQ(H1+L+ )

1+s

82

1+s

—21nT(232H1(H1+L)+H1+5—|— ((5+3)Hl+(3+s)L)>
4
5 (<A(Han = G) + Hi(2Hy + L2 +4G) + SHY + 2L(H} + )

+H(Hy + L)+ (1 + 33)((1 4 §)H, + sL> +s

((5 +s)H,(H, + L) — s(2Hy + L2)> + 2<2M1

_|_
1+s

1+s
—2In*T s((2+4 8)(H, + L) + 1)

+ 1117’(52(2}[1(}11 VL) £ 3(Hy + L)) + s(AH (Hy + L+ 1) + 2L +3) + H1>

+5(2+ s) <2Hg,1 ~ HyH,— LH? §H§’ . %L2H1 — G2H, + L) — 2@,)

— s(H2 + %Lz +2¢ + ;) - %((1 +s)(1+3s)Hy(Hy + L) + (1 + 5s)H,
+5(3+ 78)(H, + L)) } +O(T?).

(4.5.7)

The integral Q(Q)(u,v,w) is symmetric under the exchange of w and v. This
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implies that the limiting behavior of Q®) (v, w,u) can be determined from that of
Q@ (u,v,w) by exchanging the roles of u and w in the collinear limit. At leading
order in 7', this symmetry corresponds to letting S <+ 1/S. This symmetry is broken
by the parametrization (4.5.1) at order T?; nevertheless, the correction at order T
is relatively simple,

Q@ (v, w,u) = Q(Q)(u,v,w)‘ AT {1n2TH1 —InT H(H, + L) — Hs + Hy,

S—

w0l

— %(Hl(H2—C2)_L(H2+H12)> + éHf} +0O(T?).

(4.5.8)

The last independent permutation is Q@ (w, u,v). It is symmetric under u <+ w
and vanishes at order T°, which together imply that its near-collinear expansion is
symmetric under S <+ 1/S through order T2, although that symmetry is not manifest
in the HPL representation,

Q@ (w,u,v) = Tcgs (b(l +s) <2LH2 — H\(L* + 2(2)>
2
+ %{0082 ¢ {(1 + %) (=2LHy + Hy(L* +2G) ) +2(1 - 5*) Hy

+5(1 — 8)(L? +26) — 2(1 4 8)((1 + s)Hy + SL)]
2T (1 +8)((1+ s)Hy + sL)
+ (14 )2 [ LH, — Hy (%LQ +G—L—3) + Hi| +3s(1+ s)L}
+O(T?).

(4.5.9)

We determine these expansions by integrating the differential equations in F, S, and
T, as described in the previous subsection. For parity even functions, it is necessary to
fix the constants of integration. Here we present one technique for doing so. Suppose
we set S =T in eq. (4.5.1). Then the limit 7" — 0 corresponds to the EMRK limit,

u=uv — 0, w — 1, approached along the line (u,u,1). As an example, let us consider
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applying this limit to the expansion of Q) (u, v, w), eq. (4.5.7). We only need to keep
the T° terms, and among them we find that the Hg terms vanish, L — Inwu, and

InT — %lnu (since u ~ T?). Therefore, as u — 0 we obtain,
(2) L. 4 2 5
QO (u,u,1) = Zln u+ GIn"u+4¢Inu + §C4+O(u). (4.5.10)

The constant of integration, g@, clearly survives in this limit. So, assuming we did
not know its value, it could be fixed if we had an independent way of examining this
limit.

This independent method comes from the line (u,u, 1), on which all the hexagon
function have simple representations. This can be seen from the form of the integra-
tion contour parametrized by v, and w; in eq. (4.4.8). Setting v = w and w = 1, it
collapses to

vy = Uy, wy=1. (4.5.11)

The integral (4.4.43) then becomes

“duy w* (ug, ug, 1)
ut(ut — ].) ’

(4.5.12)

9(2) (U, u, 1) = _6C4 - /
1

where
w(u,u, 1) = [P 4 (u 4 )] (u,u, 1) = Z[Hg + Hyy +InuHy + i’ u| . (4.5.13)

Such integrals can be computed directly using the definition (4.2.25) after a partial
fraction decomposition of the factor 1/[us(u; — 1)]. Expressing the result in terms of

the Lyndon basis (4.3.3) gives,

Q@ (u,u,1) = —2H} — 2HY| + 6Hy | |, +2(Hy)? + 2Inu(HY + Hy,)
1 (4.5.14)
+ In* uHY + ZlnA‘u—GQ.

At the point u = 1, all the H% = Hg(1 — u) vanish, as does Inu = —H{}', so we see
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that eq. (4.5.14) becomes
Q®(1,1,1) = =6 (4, (4.5.15)

in agreement with the explicit —6(; in eq. (4.5.12). In order to take the limit u — 0,
we use HPL identities to reexpress the function in terms of HPLs with argument u
instead of (1 — u):

1 1
Q@ (u,u, 1) = 2 In*u + Hy(u)In®u + (—QHg(u) + §(H1(u))2 + Cg) In? u

+ (4(Hs(w) ~ Hoa(w) +G) = S (L () + 26 Ha(w) ) o

- 6H4(U) + 2H371(u) -+ 2H27171(U) + 2(H2(U))2 + HQ(U)(Hl(u))Q

— 2(Hs(u) + Hyy(u) — 2¢3) Hy(u) — Co(4Ha(u) 4+ (Hi(u))?) + g@x :
(4.5.16)

In the limit uw — 0, the Hz(u) vanish, leaving only the zeta values and powers of In u,
which are in complete agreement with eq. (4.5.10). In particular, the coefficient of (4
agrees, and this provides a generic method to determine such constants.

In this example, we inspected the (u,u, 1) line, whose u — 0 limit matches the
S — 0 limit of the T"— 0 expansion. One can also use the (1, v,v) line in exactly the
same way; its v — 0 limit matches the S — oo limit of the 7" — 0 expansion.

Continuing on in this fashion, we build up the near-collinear expansions through
order T? for all of the functions in the hexagon basis and ultimately of Ré?’) itself.
The expansions are rather lengthy, but we present them in a computer-readable file

attached to this document.

4.5.3 Fixing most of the parameters

In section 4.4.3 we constructed an ansatz (4.4.48) for Rég) that contains 13 undeter-
mined rational parameters, after imposing mathematical consistency and extra-purity
of Rep. Two of the parameters affect the symbol: oy and as. (They could have been
fixed using a dual supersymmetry anomaly equation [45].) The remaining 11 param-

eters ¢; we refer to as “beyond-the-symbol” because they accompany functions (or
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constants) with Riemann ¢ value prefactors. Even before we compare to the OPE
expansion, the requirement that Ré?’) vanish at order TV in the collinear limit is al-
ready a powerful constraint. It represents 11 separate conditions when it is organized
according to powers of InT, In 5% and Hgz(—S?), as well as the Riemann ¢ values.
(There is no dependence on F' at the leading power-law order.) The 11 conditions
lead to two surviving free parameters. They can be chosen as sy and cq.

Within R, the coefficient co multiplies ¢, 22 (u, v, w), as seen from eq. (4.4.49).
However, after summing over permutations, imposing vanishing in the collinear limit,
and using eq. (4.2.14), ¢g is found to multiply (, Rg). It is clear that ¢9 cannot be
fixed at this stage (vanishing at order T°) because the two-loop remainder function
vanishes in all collinear limits. Furthermore, its leading discontinuity is of the form
T™(InT'), which is subleading with respect to the three-loop leading discontinuity,
terms of the form 7T™(InT)2 It is rather remarkable that there is only one other
ambiguity, aps, at this stage.

The fact that a; can be fixed at the order T stage was anticipated in ref. [14].
There the symbol multiplying a; was extended to a full function, called f;. It was
observed that the collinear limit of f;, while vanishing at symbol level, did not vanish
at function level, and the limit contained a divergence proportional to (5 InT" times
a particular function of S?. It was argued that this divergence should cancel against
contributions from completing the «;-independent terms in the symbol into a function.
Now that we have performed this step, we can fix the value of ;. Indeed when we
examine the (3 InT" terms in the collinear limit of the full Rég) ansatz, we obtain

a; = —3/8, in agreement with refs. [45,150].

4.5.4 Comparison to flux tube OPE results

In order to fix as and cg, as well as obtain many additional consistency checks, we
examine the expansion of Ré3) to order 7" and 72, and compare with the flux tube
OPE results of BSV.

BSV formulate scattering amplitudes in planar ' = 4 super-Yang-Mills theory, or

rather the associated polygonal Wilson loops, in terms of pentagon transitions. The
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pentagon transitions map flux tube excitations on one edge of a light-like pentagon,
to excitations on another, non-adjacent edge. They have found that the consistency
conditions obeyed by the pentagon transitions can be solved in terms of factorizable S
matrices for two-dimensional scattering of the flux tube excitations. These S matrices
can in turn be determined nonperturbatively for any value of the coupling, as well as
expanded in perturbation theory in order to compare with perturbative results [150,
151]. The lowest twist excitations dominate the near-collinear or OPE limit 7 —
oo or T — 0. The twist n excitations first appear at O(7T™). In particular, the
O(T") term comes only from a gluonic twist-one excitation, whereas at O(T?) there
can be contributions of pairs of gluons, gluonic bound states, and pairs of scalar or
fermionic excitations. As mentioned above, BSV have determined the full order 7"
behavior [150], and an unpublished analysis gives the T?F? or T?F~2 terms, plus the
expansion of the T?F? terms around S = 0 through S [152].

BSV consider a particular ratio of Wilson loops, the basic hexagon Wilson loop,
divided by two pentagons, and then multiplied back by a box (square). The pentagons
and box combine to cancel off all of the cusp divergences of the hexagon, leading to
a finite, dual conformally invariant ratio. We compute the remainder function, which
can be expressed as the hexagon Wilson loop divided by the BDS ansatz [32] for
Wilson loops. To relate the two formulations, we need to evaluate the logarithm
of the BDS ansatz for the hexagon configuration, subtract the analogous evaluation
for the two pentagons, and add back the one for the box. The pentagon and box
kinematics are determined from the hexagon by intersecting a light-like line from a
hexagon vertex with an edge on the opposite side of the hexagon [150]. For example,
if we have lightlike momenta k;, : = 1,2,...,6 for the hexagon, then one pentagon is
found by replacing three of the momenta, say k4, k5, kg, with two light-like momenta,
say kj and ki, having the same sum. Also, one of the new momenta has to be parallel

to one of the three replaced momenta:
ky + ki = ky + ks + ke , Ky =&ky. (4.5.17)

The requirement that k% is a null vector implies that & = s123/(S123 — S56), Where
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si; = (ki + k)%, Sijm = (ki + kj + k)%, The five (primed) kinematic variables of the

pentagon are then given in terms of the (unprimed) hexagon variables by

r r ;o S345123 r ;51235234 — 523556
S19 = 812,  S93 = 823, S3y — ———, Sy5 = S123, Sy1 — :
5123 — S56 5123 — S56
(4.5.18)

The other pentagon replaces ki, ko, k3 with k7 and k% and has k] parallel to k;, which

leads to its kinematic variables being given by

no_ n 51235234 — 523556 "o "o n _ S615123
S1g = S123, So3 = y  S34 = 845, Sy5 = S565,  S;1— T -
5123 — 523 S$123 — 523
(4.5.19)

Finally, for the box Wilson loop one makes both replacements simultaneously; as a

result, its kinematic invariants are given by

" 5123(51235234 — S23556) (4.5.20)

s =g s = .
2 1 23 (3123 - 323)(8123 - 856)

The correction term to go between the logarithm of the BSV Wilson loop and
the six-point remainder function requires the combination of one-loop normalized
amplitudes V,, (from the BDS formula [32]),

Ve Vi— VI V", (4.5.21)

which is finite and dual conformal invariant. There is also a prefactor proportional

to the cusp anomalous dimension, whose expansion is known to all orders [168],

219
Vi (a) = da — 4¢a” + 22(4a° — 4(?56 + <c3>2) '+ (4.5.22)
where a = g3%,,N./(327%) = \/(327?). Including the proper prefactor, we obtain the

following relation between the two observables,

Vi (a)
8

In [1+Whex(a/2)] — Rsa) + X (u,v,w) (4.5.23)
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where

X(u,v,w) = —H;—H;’—H;"—ln(ﬁ

) In(l—v)—Inulnw+2¢. (4.5.24)

Here Wiy is BSV’s observable (they use the expansion parameter g2 = \/(167?) =
a/2) and Rg is the remainder function.

In the near-collinear limit, the correction function X (u, v, w) becomes,

X(u,v,w) = 2T COS¢<%+S(H1+L)>

+T? [(1 ~ 9cos? §) (% + 8% (H, + L)) O(H, + L)} L OT?).

(4.5.25)

Next we apply this relation in the near-collinear limit, first at order 7%. We find
that the 7' In® T terms from BSV’s formula match perfectly the ones we obtain from
our expression from Ré?’). The T'InT terms also match, given one linear relation
between s and the coefficient of (, RéQ). Finally, the 7" In° T terms match if we fix
ay = 7/32, which is the last constant to be fixed. The value of oy is in agreement
with refs. [45,150]. The agreement with ref. [150] (BSV) is no surprise, because both
are based on comparing the near-collinear limit of Ré?’) with the same OPE results,
BSV at symbol level and here at function level.

Here we give the formula for the leading, order T term in the near-collinear limit
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of Rég), after fixing all parameters as just described:

Rg)’) = %cos <z${

2 1 1 1
1n2T{§Hf’ + HY(L+2) + H1(1L2 2L+ 56+ 3) — H3 + 5HQ(L —1)

1 1 3
— lnT[EHf + H}(L+2)+ Hf(ZL2 +3L+ 50+ 5)

1
+ H1<§L2 4 (Hy+2Cs + 5)L — Gy + 3G + 9)

+ %(Hg —2H51)(L+1) + %HQ(L — 1)}

1 1 1
+ —Hy + ~H} (L +2)+ EH;”(H +12L + 6¢, + 20)

1017
1
+ ;HE (L2 +2(Hp + 2C + 5)L — 2C3 + 6C + 18)

1
+ S [8(H4 — Hy) + 2H2 + (Hy + o + 3) L% + (S(H2 — Hyy) + 4G

160, + 36)L 4 2Co(Ha +9) — 39C, — 8C; + 72}

1 1

— S Hya L+ 5 (—6H4 - 8Hyy 1 + H2 + 2H; — 12Hyy + 2(Co + 2)H2)L
1 1 1 1

+ §H22 — ZHQ(QH?) +4Hs1 +2(5 + (o) — 1(2@ —3)H; — 5({2 +1)Hy,

9 3 1
+ §H5 + Hyq + Hso +6H311 +2Ho9,1 + é_lH4 — H2,1,1} + (S — g)

+ O(T?).
(4.5.26)

The 77 terms are presented in an attached, computer-readable file. The T? terms
match perfectly with OPE results provided to us by BSV [152], and at this order
there are no free parameters in the comparison. This provides a very nice consistency
check on two very different approaches.

Recall that we imposed an extra-pure condition on the terms in eq. (4.4.49) that
we added to the ansatz for Rég). We can ask what would happen if we relaxed this

assumption. To do so we consider adding to the solution that we found a complete set
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of beyond-the-symbol terms. Imposing total symmetry, there are 2 weight-6 constants
(Cs and (¢3)?), and 2 weight-5 constants (5 and (»¢3) multiplying In uvw. Multiplying
the zeta values (4, (3 and (5 there are respectively 3, 7 and 18 symmetric functions,
for a total of 32 free parameters. Imposing vanishing of these additional terms at
order T° fixes all but 5 of the 32 parameters to be zero. We used constraints from the
multi-Regge limit (see the next section) to remove 4 of the 5 remaining parameters.
Finally, the order 7" term in the near-collinear limit fixes the last parameter to zero.
We conclude that there are no additional ambiguities in Rég) associated with relaxing

the extra-purity assumption.
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4.6 Multi-Regge limits

The multi-Regge or MRK limit of n-gluon scattering is a 2 — (n — 2) scattering
process in which the (n — 2) outgoing gluons are strongly ordered in rapidity. It
generalizes the Regge limit of 2 — 2 scattering with large center-of-mass energy
at fixed momentum transfer s > t. Here we are interested in the case of 2 — 4
gluon scattering, for which the MRK limit means that two of the outgoing gluons are
emitted at high energy, almost parallel to the incoming gluons. The other two gluons
are also typically emitted at small angles, but they are well-separated in rapidity from
each other and from the leading two gluons, giving them smaller energies.

The strong ordering in rapidity for the 2 — 4 process leads to the following strong

ordering of momentum invariants:

S12 > S345, S123 > S34, S45, S56 > S23, S61, 5234 - (4.6.1)

In this limit, the cross ratio u = $12845/(S1235345) approaches one. The other two
cross ratios vanish,

u— 1, v—0, w — 0. (4.6.2)

In this section, we denote the original cross ratio w by w, in order to avoid confusion
with another variable which we are about to introduce. The cross ratios v and w

vanish at the same rate that u — 1, so that the ratios  and y, defined by

4
S5

, (4.6.3)

remain fixed. The variable y in eq. (4.6.3) should not be confused with the variables
y;- In the y variables, the multi-Regge limit consists of taking vy, — 1, while y, and
Y. are left arbitrary. (Their values in this limit are related to x and y by eq. (4.3.51).)

It is very convenient [12] to change variables from z and y to the complex-conjugate

pair (w,w*) defined by,

1 ww*

T hrwlre) VT Orw e

(4.6.4)
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(Again, this variable w should not be confused with the original cross ratio called
w in this section.) This change of variables rationalizes the y variables in the MRK

limit, so that
14w (1+w)w*
1+w’ T w(l+w)

Yu — 1, Yo = (4.6.5)

As an aside, we remark here that the variables T, S, F in eq. (4.5.1), used by
BSV to describe the near-collinear limit, are closely related to the variables w, w*
introduced for the MRK limit. To establish this correspondence, we consider (in this
paragraph only) the MRK limit v — 0, v — 0, w — 1, which is related to eq. (4.6.2)
by a cyclic permutation w; — w;_1, y; — ¥;—1. This limit corresponds to the 7" — 0
limit in eq. (4.5.1) if we also send S — 0 at the same rate, so that 7'/S is fixed. Let’s
rewrite v, from eq. (4.5.1) as
_ltgr

1+ LF

Yu (4.6.6)

and compare it with the limiting behavior of y, in eq. (4.6.5). (Comparing y, with
Yy is required by the cyclic permutation of the u; and y; variables which we need for
the two limits to correspond.) If we let

T _T1

=—=F = —— 4.6.7
w S Y w S F ? ( )
then y, in eq. (4.6.5) correctly matches eq. (4.6.6). If we start with the variables

T,S,F in eq. (4.5.1), insert the inverse relations to eq. (4.6.7),

T =SvVuw', F= wﬂ , (4.6.8)
and then let S — 0 with w,w™* fixed, we can check that all variables approach the
values appropriate for the multi-Regge limit u — 0, v — 0, w — 1. The cross-ratio w
approaches unity as S vanishes, through the relation @ = (14 S?|1+w|*)~!. Finally,
we note that the MRK limit interpolates between three different limits: the collinear
limit v — 0, corresponding to |w| — 0; the endpoint of the line (u,u,1) with u — 0,
corresponding to w — —1; and a second collinear limit v — 0, corresponding to

|w| — 0.
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Now we return to the u — 1 version of the MRK limit in eq. (4.6.2). If this limiting
behavior of the cross ratios is approached directly from the Euclidean region in which
all cross ratios are positive, we call it the EMRK limit (see also eq. (4.3.50)). In
this limit, the remainder function vanishes, as it does in the Euclidean collinear limit
discussed in the previous section. However, the physical region for 2 — 4 scattering
is obtained by first analytically continuing u — e~ ?™u, then taking u — 1, v, — 0
as above. The analytic continuation generates imaginary terms corresponding to the
discontinuity of the function in the u channel, which survive into the MRK limit; in
fact they can be multiplied by logarithmic singularities as u — 1.

The general form of the remainder function at L loops in the MRK limit is

L—1
R —w,w,w) = (2m) Y (1 — u) [¢%) (w,w) + 2mih) (w,w*)] + O(1 —u),

r=0

(4.6.9)
where the coefficient functions g,(,L)(w, w*) are referred to as the leading-log approx-
imation (LLA) for r = L — 1, next-to-LLA (NLLA) for r = L — 2, and so on. The
coefficient functions hsaL)(w, w*) can be determined simply from the gﬁL), by using a
crossing relation from the 3 — 3 channel [13,19].

The coefficient functions in this limit are built out of HPLs with arguments —w
and —w*. Only special combinations of such HPLs are allowed, with good branch-cut
behavior in the (w, w*) plane, corresponding to symbols whose first entries are limited
to x and y [19]. Such functions may be called single-valued harmonic polylogarithms
(SVHPLs), and were constructed by Brown [47].

Using a Fourier-Mellin transformation, Fadin, Lipatov, and Prygarin wrote an all-
loop expression for the MRK limit in a factorized form depending on two quantities,

the BFKL eigenvalue w(v, n) and the impact factor ®reg(v,n) [15]:

. a w\s [T dv .
€R+m5|MRK = COS TWyp + 1 5 Z (_1)n (_) 2 / |w|2w q)Rog(Va n)

B
1% VQ"‘%

1|1+ w2\
X — EEEre— .
1—u |w]

(4.6.10)

n=—0oo
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Here
1 2
Wap = g%{(a) log |w]|*, (4.6.11)
1 |w|?
6 = — 1 4.6.12
8/7K(a’) 0g|1+w|47 ( )

where the cusp anomalous dimension vk (a) is given in eq. (4.5.22).

By taking the MRK limit of the symbol of the three-loop remainder function, it
was possible to determine all of the coefficient functions gy) and A through three
loops, up to four undetermined rational numbers, d;, ds, 7' and ~”, representing
beyond-the-symbol ambiguities [14]. (Two other parameters, ¢ and ", could be
fixed using consistency between the MRK limits in 2 — 4 kinematics and in 3 — 3
kinematics.) One of these four constants was fixed by Fadin and Lipatov [15], using
a direct calculation of the NLLA BFKL eigenvalue: 4 = —9/2. The remaining
three undetermined constants, dy, dy and ~”, all appear in the NNLLA coefficient
g5 (w, w*).

In ref. [19], the coefficient functions g (w,w*) and ) (w,w*) that appear in the
MRK limit (4.6.9) of Rég) were expressed in terms of the SVHPLs defined in ref. [47].
More specifically, they were rewritten in terms of particular linear combinations of
SVHPLs, denoted by L}f, that have definite eigenvalues under inversion of w and

under its complex conjugation. The coefficient function gé?’)(w, w*) then becomes [19]:

o7 3 1 5 oy 1o
gég)(w>w ) = ) L; + 1 Lg_,l,l ) L:—f [Lﬂz T 39 L; [LO]Q 3 LT L2,1 Ly
3 19 3 5) 2
_L—2L+3 _L+L—4 _L+2 __L—2 _L+3
+32[0][1]+384 1[0]+8[1]C3 32[0] C3+96[1]
2 N 3 2 1 1,
— e T (L - 56— T {2 — L - S5 It
1 T ST TR (RO B
+ 7y G [EF = SIL51° ) — T LE{ L1 — 12612} + o 23T
(4.6.13)

In the remainder of this section we will describe how to extract the MRK limit

of the three-loop remainder function at the full function level. Comparing this limit
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with eq. (4.6.13) (as well as the other ¢'* and A" coefficient functions) will serve
as a check of our construction of Ré?’), and it will also provide for us the remaining
three-loop MRK constants, d;, dy and ~”.

4.6.1 Method for taking the MRK limit

Let us begin by discussing a method for taking the multi-Regge limit of hexagon
functions in general, or of Ré3) in particular, starting from an expression in terms of
multiple polylogarithms. The first step is to send v — e ?™u, i.e. to extract the
monodromy around uw = 0. Owing to the non-linear relationship between the u; and
the y;, eq. (4.2.11), it is not immediately clear what the discontinuity looks like in the
y variables. The correct prescription turns out simply to be to take g, around 0. To

see this, consider the A;,_; component of the coproduct, which can be written as,
A pa(F)=hu®F+ho@F+how®“F. (4.6.14)

There are only three terms, corresponding to the three possible first entries of the
symbol.

Using the coproduct formulas in appendix C.1, it is straightforward to extract the
functions “F, "F, and “F for any given hexagon function. These functions capture
information about the discontinuities as each of the cross ratios is taken around
zero. In particular, since the monodromy operator acts on the first component of the
coproduct, we have (c.f. eq. (4.3.34)),

Att [ Muso(F)| = [ Muco(lnw)| @ *F (4.6.15)
= (lnu — 27i) @ “F. N

Equation (4.6.15) is not quite sufficient to deduce M,,—o(F'). The obstruction comes
from the fact that all higher powers of (27i) live in the kernel of A, ,,_;. On the other
hand, these terms can be extracted from the other components of the coproduct: the

(27i)* terms come from the piece of Ay,,_,(F) with In* u in the first slot.
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If we write eq. (4.6.14) in terms of the y; variables, we find,

Aypa(F) = [G(O;yu) +G (L) + G (Lyw) — G (i;yu) -G (i;yw)} ®"F

u u

+ [G(O;yv) +G (L) + G (Liyw) -G <i;yv) -G (i;ywﬂ ®“F

Yu, Yy
1 1
+ [G(O;yw) +G (Liye) +G(Ly) =G (—;yw) -G (y—;yw)} RYF,
(4.6.16)

where we have now assumed that we are working in Region I. Equation (4.6.16)
indicates that “F' can be extracted uniquely from the terms with G(0;y,) in the first
slot. Similarly, the elements of the full coproduct with In*u in the first slot are given
exactly by the terms with G(0;y,)* in the first slot. Therefore the discontinuity
around u = 0 is the same as the discontinuity around y, = 0. Furthermore, because
our basis GF exposes all logarithms G(0;y,) (by exploiting the shuffle algebra), the
only sources of such discontinuities are powers of G(0;y,). As a result, we have a

simple shortcut to obtain the monodromy around u = 0,

My=o(F) = F’G(O;yu)%G(O;yu)—Qwi- (4.6.17)

The final step in obtaining the MRK limit is to take y, — 1. This limit is
trivially realized on functions in the basis GF because the only source of singularities
is G(1;y,); all other functions are finite as y, — 1. Writing the divergence in terms

of £ =1 — u, which approaches 0 in this limit, we take

Yyu—1 1
G(Ly.) = &+ G(Ly) +G(Lyw) -G (—;yw) : (4.6.18)
and then set y, = 1 in all other terms.
The result of this procedure will be a polynomial in In& whose coefficients are
multiple polylogarithms in the variables y, and ¥,. On the other hand, we know
from general considerations that the coefficient functions should be SVHPLs. To

translate the multiple polylogarithms into SVHPLs, we use the coproduct bootstrap
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of section 4.3.3, seeded by the weight-one identities which follow from eq. (4.6.5) and
from combining eqgs. (4.3.51), (4.6.4) and (4.6.5),

L oyl —ww)? wl* (= y)? (4.6.19)
T4+w? (1= yoyw)?’ T+w? (1= yuyu)? o
We obtain,
Ly = Infw|®* = —=G(0;y,) + G(0, ) + 2G(1;y,) — 2G(1;y)
1 1 1
L+:1ﬂ:—Go-v ZG0: ) + G(L: ) + G(1:yw) — 26 ([ =111
1 n|1+w|2 2 (ay)+2 (7y)+ (ay)+ (ay) yvay )

(4.6.20)

and,

In <1 1 va*) =—-G(0;y,) and In (%) =—-G(0;y,) — G(0;y,).  (4.6.21)

Alternatively, we can extract the MRK limits of the hexagon functions iteratively
in the weight, by using their definitions in terms of differential equations. This pro-
cedure is similar to that used in section 4.5 to find the collinear limits of the hexagon
functions, in that we expand the differential equations around the limiting region of
u— 1.

However, first we have to compute the discontinuities from letting u — =™ in
the inhomogeneous (source) terms for the differential equations. For the lowest weight
non-HPL function, ®g, the source terms are pure HPLs. For pure HPL functions we
use standard HPL identities to exchange the HPL argument (1 — u) for argument
u, and again use the Lyndon basis so that the trailing index in the weight vector w
in each Hg(u) is 1. In this new representation, the only discontinuities come from
explicit factors of Inwu, which are simply replaced by Inu — 272 under the analytic
continuation. After performing the analytic continuation, we take the MRK limit of
the pure HPL functions.

Once these limits are known, we can integrate up the differential equations for the

non-HPL functions in much the same fashion that we did for the collinear limits, by
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using a restricted ansatz built from powers of In ¢ and SVHPLs. The Jacobian factors
needed to transform from differential equations in (u,v,w) to differential equations

in the MRK variables (£, w,w*), are easily found to be:

or __or oF . oF
o ou o Yow

OF ¢ OF  OF
OF ¢ L OF  OF
ow* w* (1 + w*) [_ “ov - ya_w} '

We compute the derivatives on the right-hand side of these relations using the formula
for OF /Ou; in terms of the coproduct components, eq. (4.4.3). We also implement the
transformation u — e~*™u on the coproduct components, as described above for the
HPLs, and iteratively in the weight for the non-HPL hexagon functions. When we
expand as & — 0, we drop all power-suppressed terms in &, keeping only polynomials
in In¢. (In OF/0¢, we keep the derivatives of such expressions, i.e. terms of the form
1/€ xIn*¢)

In our definition of the MRK limit, we include any surviving terms from the
EMRK limit. This does not matter for the remainder function, whose EMRK limit
vanishes, but the individual parity-even hexagon functions can have nonzero, and

even singular, EMRK limits.

4.6.2 Examples

We first consider the simplest non-HPL function, ®¢. Starting with the expres-
sion for ®g in Region I, eq. (4.3.56), we take the monodromy around u = 0, uti-
lizing eq. (4.6.17),

Mol @s) = 27| G (0, yjyﬁyw) - a(o, yi y) + G0, i; y) +G(0, yiu; )
FG(0,159,) + G (0,1:0) = G0, 159) + G (0:0) G () + G

(4.6.23)
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Next, we take the limit y, — 1. There are no divergent factors, so we are free to set

Y, = 1 without first applying eq. (4.6.18). The result is,

ol = 27126 (0, 711 ) +26 (0, 111 +2G (0, i) +G (051) G (0: ) +26].

(4.6.24)
To transform this expression into the SVHPL notation of ref. [19], we use the coprod-
uct bootstrap to derive an expression for the single independent SVHPL of weight
two, the Bloch-Wigner dilogarithm, L,

— . . N 1 1+w
Al,l(LQ) = Al,l <L12(—w) — L12(—w ) -+ 5 In |w|2 In T w*>

1 1+w 1 w 1 w
) — - <—) S el (-)
20®[n(1+w*) 2nw*]+21®nw*

1 1
=200 (6 (0 ) = GO - GO 1)~ 4G OG0

(4.6.25)

In the last line we used eqs. (4.6.20) and (4.6.21). Lifting eq. (4.6.25) from coproducts
to functions introduces one undetermined rational-number constant, proportional to

(o. It is easily fixed by specializing to the point y, = y,, = 1, yielding,

1 1
LQ_ =G (07 ) yw) -G (07 1; yw) -G (07 1; yv) - EG (07 yv) G (07 yw) o CZ ) (4626)

Yo

which, when compared to eq. (4.6.24), gives,
Pglvrx = —4mi Ly . (4.6.27)

Let us derive this result in a different way, using the method based on differential
equations. Like all parity-odd functions, ®g vanishes in the Euclidean MRK limit;
however, it survives in the MRK limit due to discontinuities in the function QM
given in eq. (4.2.22), which appears on the right-hand side of the ®g differential
equation (4.2.24). The MRK limits of the three cyclic permutations of Q) are given
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by

QW (u, v, W) =2miln |1+ w|?,
MRK

Q(l)(v,w,u) — 2miln €, (4.6.28)

2

QW (b, u, v) = 2miln |1+ ]

MRK lw|?

Inserting these values into eq. (4.2.24) for 0®4/du and its cyclic permutations, and
then inserting those results into eq. (4.6.22), we find that

P 0
o |,
3
0P In|w|2 In|l 2
% zzm[— nful’ | Inft+wl } (4.6.20)
ow ¢o 14w w
0Dy

dw*

,[ln]wP ln|1+w|2]
= 2mi — .
€0 14 w* w*

The first differential equation implies that there is no In¢ term in the MRK limit of

dg. The second two differential equations imply that the MRK limit is proportional
to the Bloch-Wigner dilogarithm,

s

1 1
MRK = —4m3 ng(—’LU) — Ll?(_w*) + 5 In ”LUP In 1 :_uzj)*

(4.6.30)
= —4mi L, .
Now that we have the MRK limit of ®g, we can find the limiting behavior of all the

coproduct components of Q) appearing in eq. (4.4.26), and perform the analogous
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expansion of the differential equations in the MRK limit. For Q®)(u, v, 1) we obtain,

00 (u, v, ) 27i { 1

—_— = Inll+wP|-In —|——1n1—|—w2—m},
ot |, = e Rl |-nes gl ul

00 (u, v, 1) 2mi [ 1 3 1

= = ——In*( —— | + =In|w|* In|1 SR
5o . 1+w[ 510 <|1+w|2)+2n|w| n|l+ w| s TG

it ()
T+ ul)]

plus the complex conjugate equation for 9Q? (u, v, 1) /Ow*.

(4.6.31)

The solution to these differential equations can be expressed in terms of SVHPLs.
One can write an ansatz for the result as a linear combination of SVHPLs, and fix the
coefficients using the differential equations. One can also take the limit first at the
level of the symbol, matching to the symbols of the SVHPLs; then one only has to

fix the smaller set of beyond-the-symbol terms using the differential equations. The

result is
) . 11 v oy, L N S I T
Q9 (u, v, W) |y g = 271 Zln £(2L] —L0)+§1n§(2L1 —Lg) +4—8[L0]
1 1 __ 1 _
t3 (Lo LT + 1o [Lf]hrg[Lﬂs —Lj —2Ly,
Ca

- SeL-15) - 26

— (47)? B mERLY — Ly) + 1—16(2 L — Lg)Z} :
(4.6.32)

In this case the constant term, proportional to (3, can be fixed by requiring vanishing
in the collinear-MRK corner where |w|?> — 0. The last set of terms, multiplying (47)?,
come from a double discontinuity.
The MRK limit of Q) (i, u, v) is related by symmetry to that of Q) (u, v, 0):
0® (i

U, v)’MRK = Q@ (u, v, W) |yrk (w — 1/w, w* = 1/w*). (4.6.33)
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The final MRK limit of Q® is,

. 1 1. 1. 1 _ 5
O (v, b, u) | e = ZLL%(_ <§[L0]2—(2>L§( t4GLx + o7 [Lo]* + 1% [Lo]? + 5
|1 1. 1
+2m[§Li—z(gw—<2)LX+5{L012L1+—2<L;—<3> ,

(4.6.34)

where Lx = In& + L. Note that this orientation of Q) has a nonvanishing (indeed,
singular) EMRK limit, i.e. even before analytically continuing into the Minkowski
region to pick up the imaginary part. On the other hand, there is no surviving
double discontinuity for this ordering of the arguments.

As our final (simple) example, we give the MRK limit of the totally symmetric,
weight five, parity-odd function G(u,v,w). As was the case for dg, the limit of G is
again proportional to the Bloch-Wigner dilogarithm, but with an extra factor of (5,

to account for the higher transcendental weight of G:

G(u,v,w)

g = 16miC Ly . (4.6.35)

As usual for parity-odd functions, the EMRK limit vanishes. In this case the double

discontinuity also vanishes. In general the MRK limits of the parity-odd functions

must be odd under w <+ w*, which forbids any nontrivial constants of integration.
Continuing onward, we build up the MRK limits for all the remaining hexagon

functions. The results are attached to this document in a computer-readable format.

4.6.3 Fixing d,, do, and ~"

Using the MRK limit of all the hexagon functions appearing in eq. (4.4.48), we obtain
the MRK limit of Ré3). This is a powerful check of the function, although as mentioned
above, much of it is guaranteed by the limiting behavior of the symbol. In fact,
there are only three rational parameters to fix, di, d; and 7", and they all enter the
coefficient of the NNLLA imaginary part, 983) (w,w*), given in eq. (4.6.13). Inspecting

the MRK limit of Ré?’), we find first of all perfect agreement with the functions
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b (w, w*) entering the real part. (These can be determined on general grounds using
consistency between the 2 — 4 and 3 — 3 MRK limits.) We also agree perfectly with
the imaginary part coefficients gég) at LLA and gig) at NLLA.

Finally, we find for the NNLLA coefficient g( )

; 27 3 1 15 1oL
o (w,w") = S Lf + L8, — 5 I (L — o LT (L) - §L+L21L
3 19 1 1
_L72 L+3 LJrL L+ 2 2
+ 35 Lo P IET + o7 Li (L] + o5 (LT + 5 (LT G [ 0l G
572 w2 _ 2 3
o ls - gl Ll - g I - G

(4.6.36)

Comparing this result with eq. (4.6.13) fixes the three previously undetermined ra-
tional parameters, di, dy, and 7”. We find

d1 == y d2 = — Y= (4637)

1
2
These three parameters were also the only ambiguities in the expression found

in ref. [19] for the two-loop (NNLLA) impact factor @ge)g(y, n) defined in ref. [15].

Inserting eq. (4.6.37) into that expression, we obtain,

1 2 1 5
oy (v,n) = 5 [cpggg(y, n)} ~EVE,,+ < (D, E,,J* + o N2 (N? +41V?)

|
C2(2]32 +N2+6V2> +Z7<4'

(4.6.38)

Here ®\}) is the one-loop (NLLA) impact factor, and E,,, and E,,n are the LLA and
NLLA BFKL eigenvalues [15,19]. These functions all are combinations of polygamma

Reg

(1) functions and their derivatives, plus accompanying rational terms in v and n. For

example,

_ In] I gy 2 LI
Em_w(lﬂwr >+1/)( 2) 2¢(1) 2, (4.6.39)
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Additional rational dependence on v and n enters eq. (4.6.38) via the combinations

V=—" . N=— . (4.6.40)

2 4 Inl2’ 2 4 Inl2
1/+4 y—|—4

We recall that the NNLLA BFKL eigenvalue Ey also has been determined [19],
up to nine rational parameters, a;, ¢ = 0,1,2,...,8. These parameters enter the
NNLLA coefficient function g§4)(w, w*). If the above exercise can be repeated at four
loops, then it will be possible to fix all of these parameters in the same way, and
obtain an unambiguous result for the NNLLA approximation to the MRK limit.

Finally, we ask whether we could have determined all coefficients from the collinear
vanishing of Rég) and the MRK limit alone, ¢.e. without using the near-collinear
information from BSV. The answer is yes, if we assume extra purity and if we also
take the value of ay from ref. [45]. After imposing collinear vanishing, we have two

)

parameters left: s and the coefficient of (s Ré2 . We can fix the latter coefficient

in terms of sy using the known NLLA coefficient gél) in the MRK limit. (The LLA
coefficient g§2) automatically comes out correct.) Then we compare to the NNLLA
coefficient g:(,,o). We find that we can fix dy and +” to the values in eq. (4.6.37), but

that «s is linked to d; by the equation,

d 5
=— 4+ —. 4.6.41
RIS (4.641)
If we do take ay from ref. [45], then the near-collinear limit of our result for Rég)

provides an unambiguous test of BSV’s approach at three loops, through O(T?).
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4.7 Final formula for Rég) and its quantitative be-

havior

Now that we have used the (near) collinear limits to fix all undetermined constants in
eq. (4.4.48) for Ré?’), we can write an expression for the full function, either in terms
of multiple polylogarithms or integral representations. We absorb the ¢;7;(u, v) terms
in eq. (4.4.48) into R.p. In total we have,

413
Rég) (U, v, w) - Rep(uv v, w) + Rep(v7 w, U) + Rep(wa u, U) + P@(U, v, w) + g CG + (C3)2 :

(4.7.1)
Expressions for Ré?’) in terms of multiple polylogarithms, valid in Regions I and II,
are too lengthy to present here, but they are attached to this document in computer-
readable format. To represent R, as an integral, we make use of its extra purity and

similarity to Q@ (u, v, w), writing a formula similar to eq. (4.4.43):

Rep (1, v, 0) = — /lu du, [Re, + (ztztv_)](;)ﬁt,vt,wt) 7 (4.7.2)

with v; and w, as defined in eq. (4.4.44). Note that the function @, in eq. (4.4.43) is
given, via eq. (4.4.41), as —[Q®“ + (u ¢ v)], the analogous combination of coproduct
components entering eq. (4.7.2). The function Ry, is defined in appendix C.3.

We may also define Ré3) via the {5, 1} component of its coproduct, which is easily
constructed from the corresponding coproducts of R, in appendix C.3, and of the

product function Fs. The general form of the {5,1} component of the coproduct is,

A <Ré3)> = Rég)’u ® Inu + Rég)’v ®Inv+ Ré?’)’w ® Inw
+ Rg’)’l_u ®In(l —u) + Rég)’l_v ®@1In(1 —v) + Rég)’l_w ® In(1 — w)

+ R?)vyu ® In Yu + R(().S)’y” (29 In Yo + Ré3)7yw &® In Yw -
(4.7.3)
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Many of the elements are related to each other, e.g. by the total symmetry of Rég):

Ré3),l—u _ _Ré?)),u 7 Ré3),l—v _ _Ré?)),v : RéS),l—w _ _Ré3),w :

Rég)v(u,v,w) _ Rég)’“(v,w,u), R(63),w(u7v,w) = Rézxu(w,u,v), (4.7.4)
ROV (u, v, w) = RV (v, w, ), RO (u,v,w) = ROV (w,u,v).

The two independent functions may be written as,

1
R — — 4 (Hy(u,v,w) + Hi(u,w,v)) — 2 Hy (v, u, w)
0 32
3
+ 3 (Jl(u, v,w) + Ji(v,w,u) + Jy(w, u,v))
1 -
4 [H;+Hg + Hy + 5 <ln2u+ln2v—|—ln2w> —94’2} <I>6(u,v,w)},
(4.7.5)
and .
Ré?’)’" =33 [A(u, v,w) + A(u,w,v)} ) (4.7.6)
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where

A = My (u,v,w) — My (w,u,v) + ?(er(v,w,u) — er(uu,w))
+ (@Inu —Inv+Inw) Q@ (u,v,w) + (Inu + Inv) Q? (v, w, u)
+24Hy — 14H}| + gHg’z +42H3,  + gH;,ZI —36Hy 11,

1 1 I
o Hy [=5H + SHy, + TG +5 W u(Hy — 12H, +3G) + 7 n’ u (Hj — G)

2
57 1 7

+ Inu|—14(H} = Gi) + 19H3, — = Hy, + 7 (HY)? + 1GH3 |

33 u u v 5 v v 19 v v
+ CQ <ZH3 + H2,1> - 2H4,1 o §H3,2 + 30H3,1,1 + ?HQ,QJ o 12H2,1,1,1

9 9 1
Y H] (H;; — SHy, + Gy - 7@,) — 5 In% v (Hy + 4H;, +36,)
15 5 1

10|20} + 5Hy, — S Hyy = () 4+ 66 — 300 (Hy = &)

1 1 1 3
— G (Hy = 28Hy,) + (2 + 5’ w) (—=5Hj — 1THY, — TlnvHj + S’ )

1 1 21
e (H2 5’ v> (—43}1; + 41H, —SnuHy — I’ u) — AlnuHHY

+lnu [16H}j — 4HY, — 5(HS)? — 6 Inv(2Hy — HY, ) +31n” v( HY —2(,) + 12@1{5}
+ %1112 [ + Hg,) + o] + o2y, - %(H;)Z + 26,11
+lnw [—6H§71 . %(H;’)Q —2Inv(2HY — HY,) + In® vHY — 2G,(3HY + In? v)}
+ %ln2 w(4Hy — InvH3) + %(H;’ + %1112 v> (8HY, +4InwHy — In® w)
+2In* v(H3, + InuHy) — lnulnw[éng +2H5, + g lnu(HQU + %an v)}
+lnvlnw[—2H§fl — %lan;‘ — 21nu<H§‘ +2H3 + glnvlnw — 6{2” .

(4.7.7)

Since the {5, 1} component of the coproduct specifies all the first derivatives of Ré?’),
egs. (4.7.5) and (4.7.6) should be supplemented by the value of Ré?’) at one point. For
example, the value at (u,v,w) = (1,1,1) will suffice (see below), or the constraint

that it vanishes in all collinear limits.



CHAPTER 4. HEXAGON FUNCTIONS AND R’ 265

In the remainder of this section, we use the multiple polylogarithmic and integral
representations to obtain numerical values for Rég) for a variety of interesting contours
and surfaces within the positive octant of the (u, v, w) space. We also obtain compact

formulae for Rég) along specific lines through the space.

4.7.1 The line (u,u,1)

On the line (u,u, 1), the two- and three-loop remainder functions can be expressed

solely in terms of HPLs of a single argument, 1 — u. The two-loop function is,
2 u u u u u u 1 u
R((s )(u,u, 1) = Hj — Hgy + 3 H3, y + Hy(H3 — Hy,) — 2 (H3)? = (¢)?, (4.7.8)
while the three-loop function is,

3 u n u n u u
R((a )(u,u, 1)=-3Hg+2Hs, —9H} , —2H3y, +6H ,, —15Hy, 1,
1 1 3 5

1 (Hy)? - 5 Hs Hyy + (Hy,)® — T3 (Hy)?
+ % HY [3 (Hy + Hy1,) + H?ﬁl}
— Hy (3H§f —2H} +9H3 1 +2Hyy; —6Hy,,, — Hy Hé‘)
T CHY)? [ CHY 4 ) — 5+ ()
— G [HY + HYy B Hy 4 HE HS + HE) — (D HE — © (HEY]
— G [(Hf)z + QH;] + %@ + (Gs)*.
(4.7.9)
Setting u = 1 in the above formula leads to
RP(1,1,1) = % Go+ (G3)2 (4.7.10)

We remark that the four-loop cusp anomalous dimension in planar N' =4 SYM,

219
7o = 3 G —4(G)?, (4.7.11)
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Re(a)(u,u,l)
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Figure 4.3: Rég) (u,u,1) as a function of w.

has a different value for the ratio of the (s coefficient to the ((3)* coefficient.

The value of the two-loop remainder function at this same point is
@) (2D
Ry(1,1,1) = —(()° = 2(’4. (4.7.12)
The numerical value of the three-loop to two-loop ratio at the point (1,1,1) is:

RY(1,1,1)

5 = —7.004088513718.... (4.7.13)
Rg7(1,1,1)

We will see that over large swaths of the positive octant, the ratio Ré?’) / R((f) does not
stray too far from —7.

We plot the function Rég)(u, u, 1) in fig. 4.3. We also give the leading term in the
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expansions of R((f) (u,u,1) and Rég)(u, u, 1) around u = 0,
1
Ré2)(u7u, ]_) =1U |:—§ IDQU +2Inu + CQ — 3:| + O(U,Q) :

1 9 5 11 3
Rég)(u,u, 1) = u[—zln?’u + <C2+Z> In?u— <§C2 + 9> Inu — ?@ -G+ 5@ + 15

+O(u?).
(4.7.14)
Hence the ratio Ré?’)/ R((f) diverges logarithmically as u — 0 along this line:
R (u,u,1 1
W ~ —Inu, as u — 0. (4.7.15)
Ry’ (u,u, 1) 2

This limit captures a piece of the near-collinear limit 7" — 0, the case in which S — 0
at the same rate, as discussed in section 4.5 near eq. (4.5.10). The fact that Ré?’) has
one more power of Inu than does Rg) is partly from its extra leading power of InT
(the leading singularity behaves like (InT)%~!), but also from an extra In S? factor in
a subleading In 7" term.

As u — 00, the leading behavior at two and three loops is,

27 171 ]
RéQ)(U,U,l) :—ZC4—|—E[§1n3u+ln2u—|—((2+2)lnu+gz+2} +0O (@) :

6097
96

) 1 1 1 1
Gt 5GP+ 7|t gintu - 366+ o)y
u

Ré?))(u?u? 1) = 10 2

+ <%CS —5C — 6) In®u — <%C4 — (34 10¢ + 12) Inwu
~ 25 4+ 2y — T Gat G~ 106, 12] Lo (%) |

(4.7.16)

As u — oo along the line (u,u, 1), the two- and three-loop remainder functions, and
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Re® (u,u,1)/Rg® (u,u,1)
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Figure 4.4: Rég)/Ré2) on the line (u,u, 1).

thus their ratio Ré?’) / Rg), approach a constant. For the ratio it is:

R (u,u, 1 50 (¢3)? | 871
fig ()| 0USE | STh ] g 09128508107, as u— oo,
ROwuy) L3 o

(4.7.17)
We plot the ratio Rég)/ Réz) on the line (u,u,1) in fig. 4.4. The logarithmic scale for
u highlights how little the ratio varies over a broad range in u.

The line (u, u, 1) is special in that the remainder function is extra pure on it. That
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is, applying the operator u(1 — u) d/du returns a pure function for L = 2, 3:

dRéQ) (u,u, 1)

u(l — U)GT =3Hg — 2H4,1 + 9H3,1,1 + 2H2,2,1 - 6H2,1,1,1 — Hy Hj
HY (S )~ S+ (]

+ G| Hy + Hy, — 201 Hy |

20 HY
(4.7.18)

The extra-pure property is related to the fact that the asymptotic behavior as u — oo
is merely a constant, with no Inu terms. Indeed, if one applies u(1 — u) d/du to any
positive power of In u, the result diverges at large u like v times a power of In u, which

is not the limiting behavior of any combination of HPLs in H,,.

4.7.2 The line (1,1, w)

We next consider the line (1,1,w). As was the case for the line (u,u, 1), we can
express the two- and three-loop remainder functions on the line (1,1, w) solely in
terms of HPLs of a single argument. However, in contrast to (u,u, 1), the expressions
on the line (1,1, w) are not extra-pure functions of w.

The two-loop result is,

Ré )(L Lw) = ) Hy — H3,1 + 3H2,1,1 - Z(HQ )2 + Hy'(Hy — 2H2,1)
(4.7.19)

+ S (Hy — G)(HY)? = 54| -

N | —

It is not extra pure on this line, because the quantity

@
11 1 1
dRg" (1,1, w) _ 2= w)(2 Hyy — HY H;)—§H;+9(1—w)1{;” (4.7.20)

w(l —w) 5

w
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contains explicit factors of w.

The three-loop result is,

3 9 15
3 w w w w w w
Ré )(1, Lw) = 5 Hg + Hgy — 5 M — Hyyy+3Hg 1, — o M2

— S HY (HY +2Hy)) + = (Hy))? + 5 Hy (HY + Hyy — < (Hy)?)

1 w w w w w w w w 1 w w
- §H1 {3H5 +H3,2 +6]1’3,1,1 +H2,2,1_9H2,1,1,1_H2 Hy + 92 H2,1

1 w w w w w w w w
+ ng <_5H4 + 5H3,1 - 9H2,1,1 + (Hy )2 — H{’(Hj _H2,1))}

1 1
— 5G [ HY + Hy 4+ 3HY, — (HY)? + HY (Hy —2Hy, + 5 HY HY )|

+ @ [—Hﬁﬂ + %7 (H?)z} + % G+ (Gs)°.

(4.7.21)

It is easy to check that it is also not extra pure. We plot the function Rég)(l, 1, w) in
fig. 4.5.

At small w, the two- and three-loop remainder functions diverge logarithmically,

1 15
RY(1L L w) = 5 G lnw — 22 G+ Ow),

Ré3)(1, 1’w) = 3—72 Ca In?w — (g (s + 2 Co Cg) Inw + g Co + % (C3)2 + (’)(w) '
(4.7.22)

At large w, they also diverge logarithmically,

1 1
RéQ)(l,l,w) = —— ln4w—§§2 In?w + G lnw—%§4+0 (E) ’

96 2
1 1
Ré?))(l,l,w) = 560 ln6w—|—% ln4w—% In®w +5¢ In*w — (ZBC5+2C2§3> In w
1197 9, 1
+ 32 Ce + 3 ((3)°+0O (E) .

(4.7.23)

As discussed in the previous subsection, the lack of extra purity on the line (1,1, w)
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Re®(1,1,w)
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Figure 4.5: Ré?’)(l, 1,w) as a function of w.

is related to the logarithmic divergence in this asymptotic direction.

4.7.3 The line (u,u,u)

The symmetrical diagonal line (u, u, ) has the nice feature that the remainder func-
tion at strong coupling can be written analytically. Using AdS/CFT to map the
problem to a minimal area one, and applying integrability, Alday, Gaiotto and Mal-
dacena obtained the strong-coupling result [157],
- 2 3 2
Ré )(u, u,u) = —% + ;b—ﬁ + 3 [ln2 u+ 2Lig(1 — u)] - % : (4.7.24)
where ¢ = 3 cos™!(1/v/4u). The extra constant term —7?/12 is needed in order for

Réoo)(u, v,w) to vanish properly in the collinear limits [169].2

2We thank Pedro Vieira for providing us with this constant.
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In perturbation theory, the function RéL) (u,v,w) is less simple to represent on
the line (u,u,u) than on the lines (u,u, 1) and (1,1, w). It cannot be written solely
in terms of HPLs with argument (1 — «). At two loops, using eq. (4.2.14), the only

obstruction is the function Q@ (u, u,u),

R (u,u,u) = Z O (u,u,u) + 4 HY — 2 HY ) — 2 (HE)? + 2 HE (2 HY — HY )

- i (HY)' =G (2 Hy + (Hi‘)2> + 244} :
(4.7.25)

One way to proceed is to convert the first-order partial differential equations for all
the hexagon functions of (u, v, w) into ordinary differential equations in u for the same
functions evaluated on the line (u,w,u). The differential equation for the three-loop

remainder function itself is,

dRég) (u,u,u)
du B

3 {1 —u [_1()H1(u,% u) + §J1(U,U, u) — 496 (u, u, u) (3}[; + §< w2 9C2)]

32 uvA 2
8 3
+— [——Hf Q@ (u,u,u) + 6HY — AHY\ + 18HY | | +4HY, | — 12HY | |,

u(l—wu)| 2
+ Hy (Hyy — 3H3) — H <H4 +4H3, —9Hy, 1 — Z(HQ)Q)
u u U u u 5 U
+ (HY)* (Hy, = 5H3) + (HY)* Hy + ¢ (H})?

+ G (203 + 2Hy, — SHYHS — (H})*) = 5¢, Hf} } ,

(4.7.26)

with similar differential equations for Q® (u,u,u), H(u,u,u) and J;(u, u, u). Inter-
estingly, the parity-even weight-five functions M; and @, do not enter eq. (4.7.26).

We can solve the differential equations by using series expansions around three
points: u = 0, u = 1, and u = oco. If we take enough terms in each expansion (of

order 3040 terms suffices), then the ranges of validity of the expansions will overlap.
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At u = 1, A vanishes, and so do all the parity-odd functions, so we divide them by
VA before series expanding in (u — 1). These expansions, and those of the parity-
even functions, are regular, with no logarithmic coefficients, as expected for a point
in the interior of the positive octant. (Indeed, we can perform an analogous three-
dimensional series expansion of all hexagon functions of (u,v,w) about (1,1, 1); this
is actually a convenient way to fix the beyond-the-symbol terms in the coproducts,
by using consistency of the mixed partial derivatives.)

At u = 0, the series expansions also contain powers of In « in their coefficients. At
u = 00, there are two types of terms in the generic series expansion: a series expansion
in 1/u with coefficients that are powers of Inu, and a series expansion in odd powers
of 1/y/u with an overall factor of 73, and coefficients that can contain powers of
Inu. The square-root behavior can be traced back to the appearance of factors of

A(u,u,u) = (1 — u)y/1 — 4u in the differential equations, such as eq. (4.7.26).

The constants of integration are easy to determine at w = 1 (where most of
the hexagon function are defined to be zero). They can be determined numerically
(and sometimes analytically) at « = 0 and u = oo, either by evaluating the multiple
polylogarithmic expressions, or by matching the series expansions with the one around
u=1.

At small u, the series expansions at two and three loops have the following form:

3 17 3
R (u,u,u) = ZCZ 1n2u+EC4+—u In®u +n®u+ (5¢ — 2) IHU+3C2_6]

4
+O(u?),
63 1691 1
Rég)(uauvu) =-3 Cs In*u — 192 G + 1 (¢3)?

+%u In°u+In"u—43¢G+1) In*u+4((—2¢—3) In*u

—2(97¢ — 4¢3 — 4G —12) Inu — 60, — 8¢ + 120
+O(u?),
(4.7.27)
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while the strong-coupling result is,

o 3 3 ™ o7 3 3 3
RE (u,u, u) = (§ — E) In®u + 1% +u [(Z — ;) Inu— ﬂ +O(u?). (4.7.28)
Note that the leading term at three loops diverges logarithmically, but only as In® u.
Alday, Gaiotto and Maldacena [157] observed that this property holds at two loops
and at strong coupling, and predicted that it should hold to all orders.
At large u, the two- and three-loop remainder functions behave as,
) 33

2
Ré )(uauau) = —§§4 - m

1
" l6u [2 I + 15 In? u + 6 (6Co + 11) Inw + 245 + 126¢, + 138

m 1
"3 O (E) ’
29 s 37
1 3 15
+ o [—1—0 In®u — T In*u — (22¢ + 33) In*u

+ (12¢3 — 159¢, — 207) In* u
— (TATCy — 483 + 690¢, + 846) Inu

4263
— 96(5 + 72¢2(3 — 5 4+ 96C3 — 1434¢, — 1710
3 | o 1
+W(—36nu+6(’2—70)+ 2

(4.7.29)
while the strong-coupling behavior is,

5n? Tr 3 3
+———+—[

(00) N
Re™(wwu) = —Zr+ o -5 m T,

1 1 1
Inu+1+ ;} — W +0O (E) . (4.7.30)

In fig. 4.6 we plot the two- and three-loop and strong-coupling remainder func-
tions on the line (u,u,w). In order to highlight the remarkably similar shapes of the
three functions for small and moderate values of u, we rescale RéQ) by the constant

factor (4.7.13), so that it matches Ré3) at u = 1. We perform a similar rescaling of
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Rg®(u,u,u) vs. rescaled Rg®(u,u,u) and strong coupling
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Figure 4.6: RéQ), Ré?’), and the strong-coupling result on the line (u,u, u).

the strong-coupling result, multiplying it by

R (1,1,1)

o — —63.4116164. . ., (4.7.31)
RY(1,1,1)

where Réoo)(l, 1,1) = 7/6 — 7%2/12. A necessary condition for the shapes to be so
similar is that the limiting behavior of the ratios as u — 0 is almost the same as the
ratios’ values at u = 1. From eq. (4.7.27), the three-loop to two-loop ratio as u — 0
is,
Rég) (u,u,u)
RéQ) (u,u,u)
which is within 1.5% of the ratio at (1,1,1), eq. (4.7.13). The three-loop to strong-

21
~ TG = 6908723, asu =0, (4.7.32)

coupling ratio is,

Rés) (u,u,u) 21 ¢
~o— 4
RY (u, u, ) 1-2/m

= —62.548224...,  asu— 0, (4.7.33)
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which is again within 1.5% of the corresponding ratio (4.7.33) at u = 1.

The similarity of the perturbative and strong-coupling curves for small and mod-
erate u suggests that if a smooth extrapolation of the remainder function from weak
to strong coupling can be achieved, on the line (u,u,w) it will have a form that is
almost independent of u, for u < 1.

On the other hand, the curves in fig. 4.6 diverge from each other at large u,
although they each approach a constant value as u — o0o. The three-to-two-loop
ratio at very large u, from eq. (4.7.29), eventually approaches —1.227..., which is
quite different from —7. The three-to-strong-coupling ratio approaches —3.713.. .,
which is very different from —63.4.

On the line (u,u,u), all three curves in fig. 4.6 cross zero very close to u = 1/3.

The respective zero crossing points for L = 2,3, oo are:

u? =0.33245163. .., ul¥ =0.3342763..., W =0.32737425. ...
(4.7.34)
Might the zero crossings in perturbation theory somehow converge to the strong-

coupling value at large L7 We will return to the issue of the sign of RéL) below.
Another way to examine the progression of perturbation theory, and its possible
extrapolation to strong coupling, is to use the Wilson loop ratio adopted by BSV,
which is related to the remainder function by eq. (4.5.23). This relation holds for
strong coupling as well as weak coupling, since the cusp anomalous dimension is known
exactly [168]. In the near-collinear limit, considering the Wilson loop ratio has the
advantage that the strong-coupling OPE behaves sensibly. The remainder function
differs from this ratio by the one-loop function X (u,v,w), whose near-collinear limit
does not resemble a strong-coupling OPE at all. On the other hand, the Wilson loop
ratio breaks all of the S3 permutation symmetries of the remainder function. This
is not an issue for the line (u,u,u), since none of the S3 symmetries survive on this
line. However, there is also the issue that X (u,u,u) as determined from eq. (4.5.24)

diverges logarithmically as u — 1.

In fig. 4.7 we plot the perturbative coefficients of In[1 + Whex(a/2)], as well as the

strong-coupling value, restricting ourselves to the range 0 < u < 1 where X (u,u, u)
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remains real. Now there is also a one-loop term, from multiplying X (u,wu,u) by
the cusp anomalous dimension in eq. (4.5.23). We normalize the results in this case
by dividing the coefficient at a given loop order by the corresponding coefficient of
the cusp anomalous dimension, and similarly at strong coupling. Equivalently, from

eq. (4.5.23), we plot
Ry (u, u,u)

L
i

+ éX(u, u,u), (4.7.35)
for L =1,2,3,00.

The Wilson loop ratio diverges at both u = 0 and w = 1. The divergence at
u = 1 comes only from X and is controlled by the cusp anomalous dimension. This
forces the curves to converge in this region. The In*wu divergence as u — 0 gets
contributions from both X and Rg. The latter contributions are not proportional
to the cusp anomalous dimensions, causing all the curves to split apart at small .
Because X (u,u,u) crosses zero at u = 0.394..., which is a bit different from the
almost identical zero crossings in eq. (4.7.34) and in fig. 4.6, the addition of X in
fig. 4.7 splits the zero crossings apart a little. However, in the bulk of the range,
the perturbative coefficients do alternate in sign from one to three loops, following
the sign alternation of the cusp anomaly coefficients, and suggesting that a smooth

extrapolation from weak to strong coupling may be possible for this observable as

well.

4.7.4 Planes of constant w

Having examined the remainder function on a few one-dimensional lines, we now turn
to its behavior on various two-dimensional surfaces. We will now restrict our analysis
to the unit cube, 0 < u,v,w < 1. To provide a general picture of how the remainder
function behaves throughout this region, we show in fig. 4.8 the function evaluated

on planes with constant w, as a function of v and v. The plane w = 1 is in pink,

w = % in purple, w = % in dark blue, and w = }l in light blue. The function goes to
zero for the collinear-EMRK corner point (u, v, w) = (0,0,1) (the right corner of the

pink sheaf). Except for this point, Ré?’) (u,v,w) diverges as either u — 0 or v — 0.
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Wilson Loop Ratio Normalized by Cusp Anomaly
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Figure 4.7: Comparison between the Wilson loop ratio at one to three loops, and the
strong coupling value, evaluated on the line (u,u,u).

While the plot might suggest that the function is monotonic in w within the unit
cube, our analytic expression for the (1,1, w) line in section 4.7.2, and fig. 4.5, shows

that at the left corner, where u = v = 1, the function does turn over closer to w = 0.

1

(In fact, while it cannot be seen clearly from the plot, the w = 3

surface actually

intersects the w = % surface near this corner.)

4.7.5 The plane u+v—w =1

Next we consider the plane u + v — w = 1. Its intersection with the unit cube is
the triangle bounded by the lines (1,v,v) and (w, 1,w), which are equivalent to the
line (u,u, 1) discussed in section 4.7.1, and by the collinear limit line (u, 1 — u,0), on
which the remainder function vanishes.

In fig. 4.9 we plot the ratio Rés)/R((f) on this triangle. The back edges can be
identified with the v < 1 portion of fig. 4.4, although here they are plotted on a linear

scale rather than a logarithmic scale. The plot is symmetrical under u <> v. In the
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Figure 4.8: The remainder function Rés) (u,v,w) on planes of constant w, plotted in
u and v. The top surface corresponds to w = 1, while lower surfaces correspond to

_ 3 _ 1 _ 1 :
w =7, w=3; and w = 7, respectively.
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Figure 4.9: The ratio Rég) (u,v, w)/RéQ) (u,v,w) on the plane u+v—w=1, as a function
of u and v.

bulk of the triangle, the ratio does not stray far from —7. The only place it deviates is
in the approach to the collinear limit, the front edge of the triangle corresponding to
T — 0 in the notation of section 4.5. Both RéQ) and Rég) vanish like 7" times powers of
InT as T — 0. However, because the leading singularity behaves like (InT)“~! at L
loops, R((;’) contains an extra power of In7T" in its vanishing, and so the ratio diverges
like In7T". Otherwise, the shapes of the two functions agree remarkably well on this

triangle.

4.7.6 The plane u+v+w =1

The plane u + v + w = 1 intersects the unit cube along the three collinear lines. In
fig. 4.10 we give a contour plot of Rég) (u,v,w) on the equilateral triangle lying between
these lines. The plot has the full S3 symmetry of the triangle under permutations
of (u,v,w). Because Ré?’) has to vanish on the boundary, one might expect that it

should not get too large in the interior. Indeed, its furthest deviation from zero is
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(0,0,1)

0.00
—0.01
—0.02
—0.03
—0.04
—0.05
—0.06
—0.07

Figure 4.10: Contour plot of Rég)(u, v,w) on the plane u 4+ v + w = 1 and inside the
unit cube. The corners are labeled with their (u,v,w) values. Color indicates depth;
each color corresponds to roughly a range of 0.01. The function must vanish at the
edges, each of which corresponds to a collinear limit. Its minimum is slightly under
—0.07.

slightly under —0.07, at the center of the triangle.

From the discussion in section 4.7.3 and fig. 4.6, we know that along the line
(u, u, u) the two- and three-loop remainder functions almost always have the opposite
sign. The only place they have the same sign on this line is for a very short interval
u € [0.3325,0.3343] (see eq. (4.7.34)). This interval happens to contain the point
(1/3,1/3,1/3), which is the intersection of the line (u, u, u) with the plane in fig. 4.10,
right at the center of the triangle. In fact, throughout the entire unit cube, the
only region where Rém and Rég) have the same sign is a very thin pouch-like region
surrounding this triangle. In other words, the zero surfaces of R((f) and Ré3) are close
to the plane u + v 4+ w = 1, just slightly on opposite sides of it in the two cases. (We
do not plot R((f) on the triangle here, but it is easy to verify that it is also uniformly
negative in the region of fig. 4.10. Its furthest deviation from zero is about —0.0093,

again occurring at the center of the triangle.)
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4.7.7 The plane u=v

In fig. 4.11 we plot Ré3) (u,v,w) on the plane u = v, as a function of u and w inside
the unit cube. This plane crosses the surface A = 0 on the curve w = (1 — 2u)?,
plotted as the dashed parabola. Hence it allows us to observe that Rés) is perfectly
continuous across the A = 0 surface. We can also see that the function diverge as w
goes to zero, and as u and v go to zero, everywhere except for the two places that this
plane intersects the collinear limits, namely the points (u,v,w) = (1/2,1/2,0) and
(u,v,w) = (0,0,1). The line of intersection of the u = v plane and the u +v+w =1
plane passes through both of these points, and fig. 4.11 shows that Ré3) is very close
to zero on this line.

Based on considerations related to the positive Grassmannian [133], it was recently
conjectured [170] that the three-loop remainder function should have a uniform sign
in the “positive region”, or what we call Region I: the portion of the unit cube where
A > 0 and u+v+w < 1, which corresponds to positive external kinematics in terms
of momentum twistors. On the surface u = v, this region lies in front of the parabola
shown in fig. 4.11. It was already checked [170] that the two-loop remainder function
has a uniform (positive) sign in Region I. Fig. 4.11 illustrates that the uniform sign
behavior (with a negative sign) is indeed true at three loops on the plane u = v. We
have checked many other points with u # v in Region I, and Rég) was negative for
every point we checked, so the conjecture looks solid.

Furthermore, a uniform sign behavior for R((f) and Rg’) also holds in the other
regions of the unit cube with A > 0, namely Regions II, III, and IV, which are all
equivalent under S3 transformations of the cross ratios. In these regions, the overall
signs are reversed: Réz) is uniformly negative and Rg)’) is uniformly positive. For the
plane u = v, fig. 4.11 shows the uniform positive sign of Ré?’) in Region II, which lies
behind the parabola in the upper-left portion of the figure.

Based on the two- and three-loop data, sign flips in RéL) only seem to occur where

A < 0, and in fact very close to u + v +w = 1.
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Figure 4.11: Plot of R((f)(u,v,w) on the plane v = v, as a function of v and w.
The region where Rég) is positive is shown in pink, while the negative region is blue.
The border between these two regions almost coincides with the intersection with the
u + v + w = 1 plane, indicated with a solid line. The dashed parabola shows the
intersection with the A = 0 surface; inside the parabola A < 0, while in the top-left
and bottom-left corners A > 0.
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Figure 4.12: Ré?’)(u, v,w) on the plane v + v = 1, as a function of u and w.

4.7.8 The plane u+v =1

In fig. 4.12 we plot R?) on the plane u + v = 1. This plane provides information
complementary to that on the plane u = v, since the two planes intersect at right
angles. Like the u = v plane, this plane shows smooth behavior over the A = 0
surface, which intersects the plane u + v = 1 in the parabola w = 4u(1 — u). It also

shows that the function vanishes smoothly in the w — 0 collinear limit.
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4.8 Conclusions

In this paper, we successfully applied a bootstrap, or set of consistency conditions, in
order to determine the three-loop remainder function Ré?’) (u, v, w) directly from a few
assumed analytic properties. We bypassed altogether the problem of constructing and
integrating multi-loop integrands. This work represents the completion of a program
begun in ref. [14], in which the symbol S (Rég)) was determined via a Wilson loop
OPE and certain conditions on the final entries, up to two undetermined rational
numbers that were fixed soon thereafter [45].

In order to promote the symbol to a function, we first had to characterize the
space of globally well-defined functions of three variables with the correct analytic
properties, which we call hexagon functions. Hexagon functions are in one-to-one
correspondence with the integrable symbols whose entries are drawn from the nine
letters {u;, 1 —u;, y; }, with the first entry restricted to {u;}. We specified the hexagon
functions at function level, iteratively in the transcendental weight, by using their co-
product structure. In this approach, integrability of the symbol is promoted to the
function-level constraint of consistency of mixed partial derivatives. Additional con-
straints prevent branch-cuts from appearing except at physical locations (u; = 0, c0).
These requirements fix the beyond-the-symbol terms in the {n—1,1} coproduct com-
ponents of the hexagon functions, and hence they fix the hexagon functions themselves
(up to the arbitrary addition of lower-weight functions multiplied by zeta values). We
found explicit representations of all the hexagon functions through weight five, and
of Rég) itself at weight six, in terms of multiple polylogarithms whose arguments in-
volve simple combinations of the y variables. We also used the coproduct structure
to obtain systems of coupled first-order partial differential equations, which could be
integrated numerically at generic values of the cross ratios, or solved analytically in
various limiting kinematic regions.

Using our understanding of the space of hexagon functions, we constructed an
ansatz for the function Ré?’) containing 11 rational numbers, free parameters multiply-
ing lower-transcendentality hexagon functions. The vanishing of Rég) in the collinear

limits fixed all but one of these parameters. The last parameter was fixed using the
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near-collinear limits, in particular the 7' InT" terms which we obtained from the OPE
and integrability-based predictions of Basso, Sever and Vieira [150]. (The T'In°T
terms are also needed to fix the last symbol-level parameter [150], independently of
ref. [45].)

With all parameters fixed, we could unambiguously extract further terms in the
near-collinear limit. We find perfect agreement with Basso, Sever and Vieira’s results
through order 72 [152]. We have also evaluated the remainder function in the the
multi-Regge limit. This limit provides additional consistency checks, and allows us
to fix three undetermined parameters in an expression [19] for the NNLLA impact
parameter (Dggg(u, n) in the BFKL-factorized form of the remainder function [15].

Finally, we found simpler analytic representations for Ré3) along particular lines
in the three-dimensional (u,v,w) space; we plotted the function along these and
other lines, and on some two-dimensional surfaces within the unit cube 0 < u; < 1.
Throughout much of the unit cube, and sometimes much further out from the origin,
we found the approximate numerical relation Rég) ~ =T R((f). The relation has only
been observed to break down badly in regions where the functions vanish: the collinear
limits, and very near the plane v + v + w = 1. On the diagonal line (u,u,u), we
observed that the two-loop, three-loop, and strong-coupling [157] remainder functions
are almost indistinguishable in shape for 0 < u < 1.

We have verified numerically a conjecture [170] that the remainder function should
have a uniform sign in the “positive” region {u, v, w > 0; A > 0;u+v+w < 1}. Tt also
appears to have an (opposite) uniform sign in the complementary region {u,v,w >
0;A > 0;u+v+w > 1}. The only zero-crossings we have found for either R((f) or
Rég) in the positive octant are very close to the plane u+v+w = 1, in a region where
A is negative.

Our work opens up a number of avenues for further research. A straightforward ap-
plication is to the NMHYV ratio function. Knowledge of the complete space of hexagon
functions through weight five allowed us to construct the six-point MHV remainder
function at three loops. The components of the three-loop six-point NMHV ratio
function are also expected [71] to be weight-six hexagon functions. Therefore they

should be constructable just as Rég) was, provided that enough physical information
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can be supplied to fix all the free parameters.

It is also straightforward in principle to push the remainder function to higher
loops. The symbol of the four-loop remainder function was heavily constrained [19]
by the same information used at three loops [14], but of order 100 free parameters
were left undetermined. With the knowledge of the near-collinear limits provided by
Basso, Sever and Vieira [150, 152], those parameters can now all be fixed. Indeed,
all the function-level ambiguities can be fixed as well [153]. This progress will allow
many of the numerical observations made in this paper at three loops, to be explored
at four loops in the near future. Going beyond four loops may also be feasible,
depending primarily on computational issues — and provided that no inconsistencies
arise related to failure of an underlying assumption.

It is remarkable that scattering amplitudes in planar N/ = 4 super-Yang-Mills —
polygonal (super) Wilson loops — are so heavily constrained by symmetries and other
analytic properties, that a full bootstrap at the integrated level is practical, at least
in perturbation theory. We have demonstrated this practicality explicitly for the six-
point MHV remainder function. The number of cross ratios increases linearly with the
number of points. More importantly, the number of letters in the symbol grows quite
rapidly, even at two loops [46], increasing the complexity of the problem. However,
with enough understanding of the relevant transcendental functions for more external
legs [171,172], it may still be possible to implement a similar procedure in these cases
as well. In the longer term, the existence of near-collinear boundary conditions,
for which there is now a fully nonperturbative bootstrap based on the OPE and
integrability [150], should inspire the search for a fully nonperturbative formulation

that also penetrates the interior of the kinematical phase space for particle scattering.



Chapter 5

The four-loop remainder function

5.1 Introduction

In the previous chapter, we introduced a set of polylogarithmic functions, which we
call hexagon functions, whose symbols are built out of the nine letters eq. (1.1.3)
and whose branch cut locations are restricted to the points where the cross ratios u;
either vanish or approach infinity. We developed a method, based on the coproduct
on multiple polylogarithms (or, equivalently, a corresponding set of first-order partial
differential equations), that allows for the construction of hexagon functions at arbi-
trary weight. Using this method, we determined the three-loop remainder function
as a particular weight-six hexagon function.

In this chapter, we extend the analysis and construct the four-loop remainder
function, which is a hexagon function of weight eight. As in the three-loop case, we
begin by constructing the symbol. Referring to the discussion in section 1.7.2, the

symbol may be written as

113

SR =08, (5.1.1)
=1

where «; are undetermined rational numbers. The S; are drawn from the complete
set of eight-fold tensor products (i.e. symbols of weight eight) which satisfy the first

entry condition and which obey the following properties:

288
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0. All entries in the symbol are drawn from the set {u;, 1 —u;, y; }i=1.23, where the

y;’s are defined in eq. (1.1.4).
1. The symbol is integrable.
2. The symbol is totally symmetric under S3 permutations of the cross ratios u;.
3. The symbol is invariant under the transformation y; — 1/y;.
4. The symbol vanishes in all simple collinear limits.

5. The symbol is in agreement with the predictions coming from the collinear OPE
of ref. [38]. We implement this condition on the leading singularity exactly as

was done at three loops [14].
6. The final entry of the symbol is drawn from the set {u;/(1 — w;), i }ic1.23.

Imposing the above constraints on the most general ansatz of all 9® possible words
will yield eq. (5.1.1); however, performing the linear algebra on such a large system is
challenging. Therefore, it is useful to employ the shortcuts described in section 4.3.1:
the first- and second-entry conditions reduce somewhat the size of the initial ansatz,
and applying the integrability condition iteratively softens the exponential growth of
the ansatz with the weight. Even still, the computation requires a dedicated method,
since out-of-the-box linear algebra packages cannot handle such large systems. We
implemented a batched Gaussian elimination algorithm, performing the back substi-
tution with FORM [173], similar to the method described in ref. [174].

As discussed in section 1.7.2, the factorization formula of Fadin and Lipatov in
the multi-Regge limit provides additional constraints on the 113 parameters enter-
ing eq. (5.1.1),

7. The symbol is in agreement with the prediction coming from BFKL factoriza-
tion [15].

We may also apply constraints in the near-collinear limit by matching onto the
recent predictions by Basso, Sever, and Vieira (BSV) based on the OPE for flux tube

excitations [150],
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8. The symbol is in agreement to order T* with the OPE prediction of the near-

collinear expansion [150].

9. The symbol is in agreement to order T? with the OPE prediction of the near-

collinear expansion [152].

The dimension of the ansatz after applying each of these constraints successively is

summarized in table 5.1.

Constraint Dimension
1. Integrability 5897
2. Total S3 symmetry 1224
3. Parity invariance 874
4. Collinear vanishing (7°) 622
5. Consistency with the leading discontinuity 482
of the collinear OPE

6. Final entry 113
7. Multi-Regge limit 80
8. Near-collinear OPE (T")

9. Near-collinear OPE (7?)

Table 5.1: Dimensions of the space of weight-eight symbols after applying the suc-
cessive constraints. The final result is unique, including normalization, so the vector
space of possible solutions has dimension zero.

In section 4.5, we applied the last two constraints at function-level to fully deter-
mine the three-loop remainder function. In fact, we will soon apply them at function-
level in the four-loop case as well, but first we will apply them at symbol-level in order
to determine the constants not fixed by the first seven constraints. For this purpose,
it is necessary to expand S(RY) in the near-collinear limit, which, in the variables
of eq. (4.5.1), is governed by T'— 0. To this end, we formulate the expansion of an
arbitrary pure function in a manner that can easily be extended to the symbol. This

is not entirely trivial because the expansion will in general contain powers of InT',
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and some care must be given to keep track of them. Consider a pure function F(7T')

for which F'(0) = 0. We can immediately write,

[F(T)] - /OT dT, [F’(Tl)} 0 (5.1.2)

1

where []; indicates the T term of the expansion around 0. Owing to the presence of

logarithms, it is possible that in evaluating [F'(T)]o we might generate a pole in T.

Letting,
F(T) = flT(T) + fo(T) + O(T") (5.1.3)

we have,
[P0 =2 [Fam)] + [p)] (5.14)

Notice that f_1(0) = 0 (since otherwise F(0) # 0), so we can calculate [f_1(T)]; by
again applying eqn. (5.1.2), this time with /' — f_;. Therefore eq. (5.1.2) defines a
recursive procedure for extracting the first term in the expansion around 7' = 0. The
recursion will terminate after a finite number of steps for a pure function.

The only data necessary to execute this procedure is the ability to evaluate the
function when T" = 0, and the ability to take derivatives. Since both of these opera-
tions carry over to the symbol, we can apply this method directly to S (Ré4)). To be

specific, we write
S(BY) = Ag® Ro+ A @ R ®T + Ay @ Ry @ TR T+ A3 @ By T TR T, (5.1.5)

where R; # T is defined to have length one and the A; have length 7 — i. This de-
composition has made use of Constraint 5, consistency with the leading discontinuity
predicted by the OPE: at ¢ loops, the OPE predicts the leading logarithm of T" to
be In“~Y T, which implies that no term in the symbol of RéA‘) can contain more than
three 7" entries. We also note that although we have made explicit the 7" entries at

the back end of the symbol, there may be up to 3 — ¢ other 7" entries hidden inside
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A;. Applying eqn. (5.1.2), we obtain,

T R/ T T
[s), = [ an[a) + [Can [T [REA]
Todrn, (M dT2 32 (T2) ,
5.1.6
/dTO/ / 15 RQ Tz ]0 ( )

T dT dT, (™ dTs 1 RY(
+/ dTo/ / 2/ R3 )A3} .
0 0 ) 0

As indicated by the brackets [.]o, the integrands should be expanded around 7" = 0 to

order T°. To expand the A;, one should first unshuffle all factors of T" from the symbol,
and then identify them as logarithms. Only after performing this identification should
the integrations be performed. Notice that the integrals over Ty have no 1/7j in the
measure, and as such they will generate terms of mixed transcendentality.

Equation (5.1.6) gives the expansion of S (Rgl)) to order T, but it is easy to
extend this method to extract more terms in the expansion. To obtain the 7" term,
we first subtract off the expansion through order 7"~ ! and divide by 7™}, yielding
a function that vanishes when T = 0. Then we can proceed as above and calculate
the T term, which will correspond to the T™ term of the original function.

Proceeding in this manner, we obtain the expansion of the symbol of Rgl) through
order T2?. To compare this expansion with the data from the OPE, we must first
disregard all terms containing factors of 7 or (,,, since these constants are not captured
by the symbol. Performing the comparison, we find that the information at order 7"
is sufficient to fix all but four of the remaining parameters. At order T2, all four
of these constants are determined and many additional cross-checks are satisfied.
The final expression for the symbol of Ré4) has 1,544,205 terms and is provided in a
computer-readable file attached to this document.

We now turn to the problem of promoting the symbol to a function. In principle,
the procedure is identical to that described in chapter 4; indeed, with enough compu-
tational power we could construct the full basis of hexagon functions at weight seven
(or even eight), and replicate the analysis of chapter 4. In practice, it is difficult to

build the full basis of hexagon functions beyond weight five or six, and so we briefly
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describe a more efficient procedure that requires only a subset of the full basis.

To begin, we construct a function-level ansatz for A5717171(Ré4)). The ansatz is
a four-fold tensor product whose first slot is a weight-five function and whose last
three slots are logarithms. The symbol of the weight-five functions can be read off
of the symbol of Ré4) and identified with functions in the weight-five hexagon basis.

Therefore we can immediately write down,

A5717171<Ré4)) = Z [Rgl)]si’sj’sk & In S; X In Sj X In Sk (517)

Si,S]’,SkESu

where [Ré4)]si75jvsk are the most general linear combinations of weight-five hexagon
functions with the correct symbol and correct parity. There will be many arbitrary
parameters associated with ¢ values multiplying lower-weight functions.

Many of these parameters can be fixed by demanding that > s [Ré4)]si’sf k be
the {5, 1} component of the coproduct for some weight-six function for every choice of
7 and k. This is simply the integrability constraint, discussed extensively in chapter 4,
applied to the first two slots of the four-fold tensor product in eq. (5.1.7). We also
require that each weight-six functions have the proper branch cut structure; again,
this constraint may be applied using the techniques discussed in chapter 4. Finally,
we must guarantee that the weight-six function have all of the symmetries exhibited
by their symbols. For example, if a particular coproduct entry vanishes at symbol-
level, we require that it vanish at function-level as well. We also demand that the
function have definite parity since the symbol-level expressions have this property.

After imposing these mathematical consistency conditions, we will have con-
structed the {5, 1} component of the coproduct for each of the weight-six functions en-
tering A671,1(Ré4)), as well as all the integration constants necessary to define the cor-
responding integral representations (see section 4.4). There are many undetermined
parameters, but they all correspond to ( values multiplying lower-weight hexagon
functions, so they cannot be fixed at this stage.

It is also also straightforward to represent A67171(Ré4)) directly in terms of multiple
polylogarithms in Region I. To this end, we describe how to integrate directly the

{n — 1,1} component of the coproduct of a weight-n function in terms of multiple
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polylogarithms. The method is very similar to the integral given in eq. (4.3.8), which
maps symbols directly into multiple polylogarithms. Instead of starting from the
symbol, we start from the {n — 1,1} coproduct component, and therefore we only
have to perform one integration, corresponding to the final iteration of the n-fold
iterated integration in eq. (4.3.8). As discussed in section 4.3, we are free to integrate
along a contour that goes from the origin ¢; = 0 to the point ¢; = y; sequentially along
the directions ¢, ¢, and ¢,,. The integration is over w = dlog ¢ with ¢ € §,, and
the integrand is a combination of weight-(n—1) multiple polylogarithms in Region I;
together, these two facts imply that the integral may always be evaluated trivially by
invoking the definition of multiple polylogarithms, eq. (C.1.1).

Applying this method to the case at hand, we obtain an expression for A671,1(Ré4))
in terms of multiple polylogarithms in Region I. Again, we enforce mathematical con-
sistency by requiring integrability in the first two slots, proper branch cut locations,
and well-defined parity. We then integrate the expression using the same method,
yielding an expression for A771(Ré4)). Finally, we iterate the procedure once more and
obtain a representation for Rgl) itself. At each stage we keep track of all the unde-
termined parameters. Any parameter that survives all the way to the weight-eight
ansatz for Ré4) must be associated with a ¢ value multiplying a lower-weight hexagon
functions with the proper symmetries and branch cut locations. There are 68 such
functions. The counting of parameters is presented in table 5.2.

It is straightforward to expand our 68-parameter ansatz for Ré4) in the near-
collinear limit. Indeed, the methods discussed in section 4.5 can be applied directly
to this case. We carried out this expansion through order 73, though even at order
T the result is too lengthy to present here. The expansion is available in a computer-
readable format attached to this document.

Demanding that our ansatz vanish in the strict collinear limit fixes all but ten of
the constants, while consistency with the OPE at order T fixes nine more, leaving
one constant that is fixed at order T2, The rest of the data at order T provides many
nontrivial consistency checks of the result. The final expression for Ré4) in terms of
multiple polylogarithms in Region I is attached to this document in a computer-

readable format.
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k | MZVs of weight £ | Functions of weight 8 — k& | Total parameters
2 G2 38 38
3 (3 14 14
4 G4 6 6
5] C2Gs5 G5 2 4
6 G, o 1 2
7 2G5 C3Ca, Cr 0 0
8 | (2l3, (3G, Gs, G5 1 4
68
Table 5.2: Characterization of the beyond-the-symbol ambiguities in Ré4) after im-

posing all mathematical consistency conditions.

5.2 Multi-Regge limit

The multi-Regge limit of the four-loop remainder function can be extracted by using

the techniques described in section 4.6.

undetermined functions in this limit,

19

We find expressions for the two previously

(4) 3 —12 77 —12 3 1277 412 1217414
= —|L L — — L L — L L
73 _ 17 1. 3. _
+ﬁ[Lo]4[L1+]2 - EL+ LI + ZLO Ly, — ZLO Lyqqa
1 29 11 1
— Ly, (Lo — = LT LT [Lg)? — = [L]° — < [Lo,)?
+ g5 Lo [LT = 2 I L (L5 — s (451 — 2 (L3
11 1 1 1
+ —[L{]° +3[L+] —— Ly Ly +-Ly Ly, + 9L+L+
5 1 1 3 -
+ZL1 LE{1,1+§L1+L2+,2,1+§C§——CsLIL+C2C3L
27 1 1 15
+ G - J126) + G (IET - Lf + LGP
7 1 _
— 56 (agglEalt + SIL1 + SIE I 3L L
-
- LO L2,1 + 1[112 ]2> )
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and,

4 . 5) B B 1 21
o (w,w*) = = L (L2 [Lg]? —

> SR IT - 2 1 L P [T
+ ﬁ (Lo [LYT° + % Ly [Lg)° + iL‘ Lyya Ly - % Ly
¥ oo (L (L7 — <o Ly I (L + g I EoT

— S L (51 o Ly (L5 = 1 Do L1 = 5 g Ly [P
F DL L~ s I T o 14T - 3 L Ly L
- % Ly Ly Lg, + i Lo Loy LY = é Ly Loy Ly — % Lo Loy Lt
+ % Lim + % Ljf,2,1 + ZL%J - %Lil,zl,l - ;L;m,l,l
+;L311[L+] F5 Ly~ ALdy s + 7 L (LT
+ 2G4 206+ 33T+ 6 (el - JILT)
" <2<3(—[L11 - %[L()] )+ (G + S L L - 213)
4 Go(lE + gLl — SLELE + LI + 4 (L5P)
~ GIET + s L LT + o L P I — LILPL

;Z[L ] L+ LLy 0Loq+ 241L++

3
2L2 21 T 3L:—{1,1> .

(5.2.2)

These expressions match with those of egs. (1.7.14) and (1.7.15), provided that the

constants in chapter 1 take the values,

1
agp = O, ay :—6,
4 17 15

4
ay = —95, az=1, =3,
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and
97 127 1720 622 644 2328
b = 5z b=~ bs=——, bu=-—— b=+, bs=——
1220 3660 183 183 305 305
5H4 10416 248 11
br = -1, bsz—ﬁ, 9= ""305 b1o=?, bui =5 b1z = 49,
83 1126 849 83
bis = —112, bu= Ty =g b= 155 b= bis = —10.
(5.2.4)

These constants, in turn, determine the NNLLA BFKL eigenvalue and N*LLA impact

factor,

1(1
EZ = —{— DE,, -V DE,, + (V*+2G) D*E,,, — V (N? +8()D,E,,,

86
+ G4V + N?) +44¢ B, + 160G + 80C5} , (5.2.5)
and,
1 9 o7 189 15 123
@(3) —- E6 _E4 N2 _E2 N4 _N6 _E2 N2V2 _N4v2
Reg 48{ v,n + 4 v,n + 16 v,n + 64 + 2 v,n + 8

LNV 3 <4E3nv v 5EV,nN2v> D,E,.,

+3 (Ezn v ZNQ v 2v2> (D, E,,J* + 6E,., (E2n + %NQ v v2) DE,,

—12V[D,E, ,)|D?E, ., — 6E,,VD3E,, +2[D,E,,|[DE,,]

+2[DE,,.)* + El,mD,‘fE,,m}

- 1
— -G 3B +2FE* N*— —N*—6E? V? - 16N*V?—-12E,,VD,E,,
v,n v,n 16 v,n 5 5

+ [Dy Byl + 4E, DB, |

r 5 13
- ~G|3E, + 5EWLN? +E,,V*-3VD,E,, + FD,%EM

219 14
—C6 — §C§ :

— SG[2TE2, + N — 45V2] = 5(26; + o) o — 2

(5.2.6)
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where V and N are as given in chapter 1,

o L] 1 iv
T ol T T | T [nf?
2 w+5 it S v:+ -
1 1 n
N =sgn(n) |- il R
i+ 5 vt v: 4+ 5

These data suggest an intriguing connection between the BFKL eigenvalues E, ,,, E,&n,

298

(5.2.7)

1)

and Eﬁ)t and the weak-coupling expansion of the energy E(u) of a gluonic excitation

of the GKP string as a function of its rapidity, given in ref. [175]. First we rewrite

the expressions for F, ,, El(,lr)L, and E,(,Qr)L explicitly in terms of ¢ functions and their

derivatives,

By = $(€7) + 9(€7) = 26(1) - 3 sgn(m)N
B = 2 [0 +2(€) — sm(m)N (TN +12)]
V[0 ~40E)] - B — 36

s _ 1[1

8
—V|$O(e") = 6O(€7) — Bsgn(mV N4V + V)]

(V2 420)[uO(€h) + P (€7) — sau(m)N (3 4+ 1N

4
— V(N? +8G) [v'(€7) — v'(

§7)
+ 44C4E1/7n + 16 <2<3 + 80 CE)} )

—{5 V() + (€7 — 60sga(m)N (V* + %vaz +

i N4
80

)

—sgn(n)VN] + (3 (4V? + N?)

I 6oy
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where £ = 1 £ v + @ Next, we keep only the pure ¢ terms, dropping anything
with a V or an N,

Byl | = 0(E€) +0(E0) — 26()
Bl = =3 [sen + )] - Gluen + wie) - 2] - 36

(5.2.9)
B2, = 55 [0 )] + 26 [en) + v

AAGBED) +0(E) — 20(1)] + 16y + 80 c5} |

Finally we write,

+aE,)

+a*E®
% only wn

=aq (Ey,n

—w(v, n)‘ o > . (5.2.10)

1 only 1 only

Now we compare this formula to equation (4.21) of ref. [175] for the energy E(u) of
a gauge field (¢ = 1) and its bound state (¢ > 1),

B() = £+ Teasp(9) [ U457 (5,10) = o(1)| = 26* |47 (s5,w) + 66,
6
+ % [wiﬂ(s, u) + 27r2¢)§+)(s, u) + 24C377/J§+)(S —1,u)+ 8<7r2C3 + 30@)}
+0(g%),

where g° = a/2 is the loop expansion parameter, s = 1+ /2,

Fcusp(g) = 492(1 — 2(292 + 22(494 + - ) s (5211)
and,
YF (s,u) = % [1/)(”)(3 +iu) £ ™ (s — zu)] : (5.2.12)

Neglecting the constant offset at a°, eq. (5.2.11) matches perfectly with eq. (5.2.10)

at order a' and a?, provided we identify,

¢ =|n|, u=v. (5.2.13)
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The correspondence continues to order a?® if we also drop the term 24¢s (H(s —1,u).
It would be very interesting to understand the origin of this correspondence, and if
there is a physical meaning to the the operation of dropping all terms with a N or a
V. We leave this question for future work and return our attention to the quantitative

behavior of the four-loop remainder function.

5.3 Quantitative behavior

5.3.1 The line (u,u,1)

As noted in section 4.7.1, the two- and three-loop remainder functions can be ex-
pressed solely in terms of HPLs of a single argument, 1 — u, on the line (u, u,1). The
same is true at four loops, though the resulting expression is rather lengthy. To save
space, we first expand all products of HPL’s using the shuffle algebra. The result will
have weight vectors consisting entirely of 0’s and 1’s, which we can interpret as binary
numbers. Finally, we can write these binary numbers in decimal, making sure to keep
track of the length of the original weight vector, which we write as a superscript. For

example,
H{Hy, = H{'Hy,, = 3Hy,,, + H} 011_>3h[4]+h[4] (5.3.1)

In this notation, RéQ)(u, u, 1) and Ré?’) (u,u, 1) read,

5
Réz)(u,u, 1) = h[14] — hgq + hgl] — h[141} — —C4, (5.3.2)
3 9 3 3
Rég)(u,u, 1) = —3h[16} + 5h:[))6] + Eh[56] 2h[6] h[G} 2h[6] h[g 2h[167]
3o Ll 3,06 6] 6 3,060 9,06

1 6 3 6 6 3 6 3 6 1 6 3 6
—ghil = Shis = hid = Shig + Shil — shsy — Shi (533)

e [—h[f‘] +3h 4 op _ pld gl 2h[4]]
113

24 Cﬁa

+¢4[ onl? — 2h[2] Ny
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and the 4-loop remainder function on the line (u,u, 1) is,

31 105 IS
Ry (uyu, 1) = 151 — 41 — Tohg 4 —==h — ohg? + Th 4 12855 — 4200
5 S 11 ] 9 8 41 8 8] 8 3 8
+ 2l 2L 2l - ﬂ%@rwﬁﬂﬁﬂw
3 3
Gy — LU — 3hg + Bhgg — 4R — 4hi — V1A + Shig — Sh]

3 3
—3nl —5pl 4 §h[58; _ ih[;g +onld — 2508 — onl¥ 4 27pl — o

5
+on® 4 opll _o3pll ol _ B gplS 4 opll — 3pl §h§;

7.8 8 5. 18 1 s I s 1 s 98 8
- éhgg] - §h[1(11 + _h[lgzs + _h[1(15 + _h[10]7 + —h[u}g - —h[11]1 + 15h[12]9
31 105 7 53
- 41h[18?11 - Eh[fgz% + = h[18?15 _h[37 + _h[1839 + 12h141 - 42h[1523

D o | 9. 8 8 8 8
+ I+ 5 e + —h[lig — SR i — 13nl — T
8 8 8 8 g
- 5h15]9 + 6h[161 — 11, — 3hids + 3higy — 4k, — 4hi

3 3 3 3

- 11h[187]5 + h177 - _h[lﬂﬁ) - 3h[1881 - 5h183 +3 h[18§5 - §h[1§37
8 8 8 8 8 8

+ Ohlgs — 25h[19]5 — ORlgy + 27hig, — 2hi + 9h[233 + 2N — 23hig

5 7 1
s L
5) 1 8] 1 5 5 15

+ h231 h[233+ h235 _h[2317_ _hggg

15 37 5 25 1

h“ h[ﬁ} h[]—|—7h[6} —h[167]
2 2

15

— 3nl 1 3pl 4 2pld — 14pl¥ — 5

5.6 7.6
+5hsy + 5hss

+ G |20 — 14k — hg 4

56 T 0 o
h h —hos
T3 2 T3 2 T3 2
37 5 6] 25 16 6 6
+ 7 h39 h£11 5 hL:s] + 7h£151 - §h£19]

+ 9h[565 — 308 + 3nl]]

pin _ 55 41

g 15 554 ,
+ ¢ [ - hy_?hgu?hg]_?hgg__h[ ]

(<2<3 - —45) 19+ A (<§ - ) [+ 2]

471
- 5@2@3 C3C5 — —CS + C53

h[ﬁ]

(5.3.4)
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Ratio of RéL)(u, u,1) to RéL_l)(u, u, 1)
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Figure 5.1: The successive ratios RéL) / RéLil) on the line (u,u,1).

These expressions are all extra-pure. It is easy to check this property by verifying
their symmetry under the operation,

plrl s plr! (5.3.5)

m+2n71 9

where the lower index is taken mod 2". This operation exchanges 0 <+ 1 in the initial
term of the weight vectors, which corresponds to the final entry of the symbol.

Setting © = 1 in the above formulas leads to

5
RP(1,1,1) = ~(G)? = =2 ¢ = —2.705808084278.. ..

413
RP(1,1,1) = 51 Got+ (G:)* = 18.95171932342 .. (5.3.6)

471

3 5 3
RV(1,1,1) = =566 — 566 — —Gs + 56 = —124.8540111141 ..
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The numerical values of the L-loop to the (L — 1)-loop ratios at the point (1,1,1)

are remarkably close,

( ) = —7.004088513718... ,

(1,1,1) (5.3.7)
( ) = —6.588051932566 ... .

(1,1,1)

In fact, the ratios are also similar away from this point, as can be seen in fig. 5.1.
The logarithmic scale for v highlights how little the ratios vary over a broad range in

u, as well as how the u-dependence differs minimally between the successive ratios.

We also give the leading term in the expansion of RéA‘)(u, u, 1) around u = 0,

48 402 2
+ (15§4 — 3G +13G + 50) Inu

2 1 2
Ré4) (u,u,1) =u {—i In*u + (Z@ + g) In’ u — <—7C4 G3 + 52 + —5> In” u

219 71 175
+ ?Ce* + (3 4 5 + (G — §C4 +6¢3 — 10¢ — T]

+ O(u?).
(5.3.8)

We note the intriguing observation that the maximum-transcendentality piece of the

v In” w term is proportional to the four-loop cusp anomalous dimension, 212(s + (2=

8
—iyﬁf). In fact, the corresponding pieces of the two- and three-loop results (eq. (5.3.8))

correspond to —}ﬁ}?) and —}ﬂg’).
Comparing with eq. (5.3.8), we see that the ratios RéL) / RéLil) both diverge log-

arithmically as u — 0 along this line:

R 1 1

W ~ Elnu, asu — 0,

RG (u’ u’7 1) (539)
Ré4)(u,u, 1) 5

5~ — Inu, as u — 0.

Ry’ (u,u, 1) 12
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The slight difference in these coefficients is reflected in the slight difference in slopes
in the region of small u in fig. 5.1.

As u — 00, the leading behavior at four loops is,

88345 19 63 5
Tad Cs — —C2(C3)2 - —C3C5 + 1(5,3

1 4 11
—|——[Eln u+6ln u+ <1+—C2>ln5u— (EC3_4C2_5> In" u

Ré4)(u,u, 1)=—

<@§4 _ —43 4160, + 20) I
— <7C5 —f- 9C2C3 — —C4 + 11€3 — 48C2 — 60) 1112 u

6257 13 605

( 2 (G)? = 146 — 186Gy + -G — 226y
32 4

+96C, + 120) Inu

DG 256 — TG+ ok

605 1

2—3@3)2 — 14¢;

— 18(a2(3 + —4‘4 — 2205 + 96(, + 120
1
) () |

Just like at two- and three-loops, Ré4) (u,u,1) approaches a constant as u — oc.

(5.3.10)

Comparing with eq. (4.7.17), we find

3)

Rf(g)(“’ W) 900128803107....  asu - oo,

ftg (v, u, 1) (5.3.11)

Ré4)(u u, 1) -
) -~ —9.73956178163.. ., as u — 0o.

Ry (u,u, 1)

5.3.2 The line (u,1,1)

Next we consider the line (u, 1, 1), which, due to the total S3 symmetry of Rg(u, v, w),
is equivalent to the line (1, 1, w) discussed in section 4.7.2. As was the case at two- and

three-loops, we can express Rgl) (u,1,1) solely in terms of HPLs of a single argument.
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Using the notation of section 5.3.1, the two-loop result is,

1 1
RP(u,1,1) = 2h” 4h[4] 5@4} h[;g——@hm g4,

the three-loop result is,

3 3 6 1 6 1 6 3 6 1 6 1 6 6
R (u,1,1) = =20 4 Shg' = 2hg = Shy) 2R — bty — b
1 6 1 6 1 6 1 6 3 6 1 6 1 6
+ 5his — ghat — 5ha + 5hit — Shis + 5hig — Thi?
3 1 5 3 1 3 3
= SHE - Shls — by + Jhs] — SR = TR+ Tk
1 1 1 1
+G [—511[4] +hy! + 5hs! — ohy! — h[;g]

17 413
G [nf = P+ G+ S

305

(5.3.12)

(5.3.13)
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and the four-loop result is,

R (u,1,1) =

15 13 3 15
S~ 2h h[8+ Thi h81 4h[8]+ Shis + i
5 s 5 5y 5 s g 95 17
— g+ h[21]+8h”+4h” hg;_ghgg+§hgg_ S
3 3 1 11 59 . 9% 90 3
— Shsg + Jhas + s g hi = g b = his iy — g = i
3.8 . 3.8 9 By Ty, 3,0 g 13,5
+ Jhss + That + 4hgg Tt — gty + JhE + ol — hi
5) 8 23 8] 25 8] 5) ) 7 ) 9 8 3 8 1 )
- - b1 S0 G S+ 08— Gl
11 8 8 8 7 8 3 8 5 8 5 8 7 8
TR R Y AT, NS Y Y. R,
By 99 LT 15, 13y 3, . 3
8 h’[ll]S 8h[11]7+ 8h‘119 2 h[129 2 h[li‘)]l 4h[133+ 4h135
8] 8] 8 8
+ hlSy — hlly 4 T Sl — a4 Thll 4 h 4 2l
1 8 9 8 7 8 9 8 9 8 9 8 1 8
+ Zh[1§7 + _h[lf]il - Zh[m]z - gh[16]5 + gh[m% + gh[us]g - gh[nh - §h[17]3
i 7 9 3 3
+2hi%, — h[1879 - gh[lin + 8h[188]3 + 8h185 + 8h[8]7 + Ghigy — Thigs
589838383825831818
=3t S Sl - 2, - g 2, - B g,
11 8 8 1 8 7 8 8] 17 8 b 8 5 8
+ gh[m]s + his + Zh[zgl + §h[22]5 — Thij; — 3 —hbg + Zh[23]1 + gh[2313
3w T8 58 198 7,8 5.
- -l - D~ ol o
7 1 g 3
+ G| 3l —Zh[ﬁ] ZhG]—Zh[G +4h + h[6] + 78 - 2hld
6 1 6 6 1 6 6 6 3 1 6
+y@—ZM&~%@—;@+@¢~%Q—;W—-@A
36 9.6 O 16 3,6 5
o= L B Sl By Loy By 3y
AT 1 3,w 15,4 3w, 9
+c4[ WY = sl — <ohl - Shif - 2 h Sl 4 Sl

(<2c3 - —<5) KL h[‘“’] +G [T r 41661 W] — 3G [0+ ]

471
- §C2C3 - C3C5 - —Cs + 453

(5.3.14)
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Using eq. (5.3.5), it is easy to check that none of these functions are extra-pure.
At both large and small u, these functions all diverge logarithmically. At two-
and three-loops, this can be seen from eqs. (4.7.22) and (4.7.23). At four loops, we

find at small wu,

A 1,7 639 829 69 39
RP(u,1,1) = ﬂ(égg, _ <2<3) I’ u — —= G In*u + (6—4<7 + 3G+ gggg) Inu
3 ., 57 123523 19
e S =Y 10
16C2C3 16C3C5 2830 (s + 80(5,3 + O(u),
(5.3.15)
and at large wu,
1.1) = — n®u— —Cl L amiu— 22261
R (u1,1) = —gooegp I U~ ggle I u g5 G In”u — o7 Glntu
A7 53 6019 11
¥ (_g5 n —@@,) In® u — ( Co + —gg) n2 u
48°° T 48 128 16
. <@C +%<’<’ _}_§CC>1 (5.3.16)
g 7 39 304 9 2G5 | 11U
25 1488641 1 1
— 2 — — o ————————————— — —
366 - Tt - MG+ 160 (1)

The ratios RéL) (u, 1, 1)/R((3L_1)(u, 1,1) also diverge in both limits,

R (u,1,1 7t
?2)(% D ( = >1nu: <0.393921796467...> Inu,  aswu—0),
RO (u,1,1) 14406,
R (u,1,1 60Cs 20
?3)(% LN ( o f’) Inw = (0200722549640 ... ) Inw,  asu—0,
Rﬁ (U’7171) Q i
(5.3.17)
and,
R (u,1,1 1
6(52)<u7 ) ) _1_011,12“’ as u — 00,
1,1
R?4>(u’ Y (5.3.18)
Ry’ (u,1,1) 37 .,
(3) ~ —oa Intu, as u — 00.
Rﬁ (u7171) 336
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Ratio of RéL)(u, 1,1) to RéL_l)(u, 1,1)

) (u,1,1) /RS (w, 1, 1)

107° 1072 10 10* 107 1010

Figure 5.2: The successive ratios RéL) / RéLil) on the line (u,1,1).

In fig. 5.2, we plot the ratios RéL) (u,1, 1)/RéL71)(u, 1,1) for a large range of u. The

ratios are strikingly similar throughout the entire region.

5.3.3 The line (u,u,u)

As discussed in section 4.7.3, the remainder function at strong coupling can be written

analytically on the symmetrical diagonal line (u,u,u),
T ¢ 3 2

R =T s It 2L - w)| - T 5.3.19

6 (u,u,u) 6+37r+8 n°u+ 2 Lix(1 — u) 15 ( )

where ¢ = 3 cos™'(1/+v/4u). In perturbation theory, the function RéL) (u,u,u) cannot

be written solely in terms of HPLs with argument (1 — w). However, it is possible

to use the coproduct structure to derive differential equations which may be solved

by using series expansions around the three points u = 0, v = 1, and u = oo. This
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method was applied in section 4.7.3 at two and three loops, and here we extend it to
the four loop case.

The expansion around u = 0 takes the form,

1791 3 32605
R ) = (Foo = 3G) I ut 202G~ 266 — 2G(G)?
b} b}
—i—u{@ln u+1921 ( Co + )lnu

112 9 15

i+ <3+3<“2 8) I’

+ (636 —5) mtus (
- <EC5 —C2C3 - @Czl —C3 =60 — —> In® u

(ngf’@ - 3(6)° - —45 - St - 5t G

7119
_ ?Cz — Z) Inwu + §2§5 — —C3C4 + 128 —¢e
+ 2(53)2 + %CB + §CQC3 + 3—2C4 —C3 - —CQ - @}
+ O(u?).
(5.3.20)

The leading term at four loops diverges logarithmically, but, just like at two and
three loops, the divergence appears only as In*w. This is another piece of ev-
idence in support of the claim by Alday, Gaiotto and Maldacena [157] that this
property should hold to all orders in perturbation theory. Because of this fact, the
ratios Rég) (u,u,u)/Rég) (u,u,u) and Ré4) (u,u,u)/Ré3) (u,u,u) approach constants in
the limit u — 0,

R(3) T2
?2)(%%“) ~ 1 = 6.90872308076..., asu— 0,
Ry (w,u,u) 10
6 (u,u, (5.3.21)
RW 19972 60((3)?
6 (wuu) - 1997  60(Gs) — —6.55330020271,  asu — 0.
®) 294 Tt
Rﬁ (u,u,u) T
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At large u, the expansion behaves as,

3 1713 3 47"
Rgl) (u,u,u) = 5(2((3)2 — 10¢3¢s + 61 %8~ ZCE”?’ T uR

1T 5 51 33
- _17 _16 (_ _)15
+32u{5611“+'nsn'“+ Gt g ) Inu

249 345
(g gy,
1237 547 705
+< 1 Cs — 50C3 + —C2+—>13
17607 3441
(168{5-+—222<§(3 Co+ 330G — oy —
BT 38397
(  L44(G)” — T44Gs — 1032625 +

— 14163 + 7041 + 8595) Inu — 360¢7 — 2499(3¢4

134553
— 1200425 +

80289

44-2976g3+—14193g24-17235}
3

* 32 u3/?

469 1
+671G+ — | +0 | = | .
2 u?

Co + 426(C3)* — 1596C5 — 2292¢:(3

5
{3hﬁ1w+——ln2u%—(&XK2+EM>1nu——9GQ-+36@

310

Inu

(5.3.22)

The ratios Ré3) (u, u, u)/Réz) (u,u,u) and Ré4) (u, u, u)/RéB') (u, u,u) approach constants

in the limit u — oo,

R(3)

f%(“’“’“) ~ —1.22742782334....  asu — oo,
R (u,u,w)
R (u, u, u)

@) L ~ 21.6155002540... , as u — 00.
Re” (u,u,u)

(5.3.23)

In contrast to the expansions around v = 0 and © = oo, the expansion around v = 1
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Ratio of RéL)(u, u,u) to RéL_l)(u, U, u)

15 -

10 -

RéL) (u,u, u)/RéL_l) (u, u,u)

107° 1072 10 10* 107 100

Figure 5.3: The successive ratios RéL)/RéLfl) on the line (u,u,u).

is regular,
3 5 471 3
RS (u, u,u) = —§C2C§ - §C3C5 - TCB + 5{5,3

+ (219C6 — g(gg)Q + %5(4 + 3¢ + 4—5>(1 —u) + (’)((1 — u)2> .

8 2
(5.3.24)

We take 100 terms in each expansion and piece them together to obtain a numerical
representation for the function Ré4) (u,u,u) that is valid along the entire line. In the
regions of overlap, we find agreement to at least 15 digits. In fig. 5.3, we plot the
ratios RéL) (u, u, u)/RéL_l)(u, u,u) for a large range of u.

As noted in eq. (4.7.34), the two and three loop remainder functions vanish along

the line (u,u,u) near the point u = % The same is true at four loops, and we find
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the zero-crossing point to be,
u = 0.33575561 . ... . (5.3.25)
As can be seen from fig. 5.3, Rgl) (u,u,u) actually crosses zero in a second place,
ully = 5529.65453. .. . (5.3.26)

Aside from the small region near where RéQ) (u, u,u) and Ré?’) (u, u,u) vanish, the
general agreement between the two successive ratios is excellent for relatively small
u, say u < 1000. For large u, the ratios approach constant values that differ by a
factor of about —17.6 (see eq. (5.3.23)).

In fig. 5.4, we plot the two-, three-, and four-loop and strong-coupling remainder
functions on the line (u,u,u). In order to compare their relative shapes, we rescale
each function by its value at (1,1,1). The remarkable similarity in shape that was
noticed at two and three loops persists at four loops, particularly for the region
0<u<l.

As discussed in section 4.7.3, a necessary condition for the shapes to be so similar
is that the limiting behavior of the ratios as u — 0 is almost the same as the ratios’

values at u = 1. Comparing eq. (5.3.21) to eq. (5.3.7), we find,

R® RY(1,1,1
(62)(U,U,Uz)/ (62)( > ) ~ 0.986... R as u — 07
Ry’ (u,u,u)’ Rg'(1,1,1) (5.3.27)
RW RM(1,1,1 -
(63)(U,U,U)/ (63)< > ) ~ 0.995... R as u — 07
R’ (u,u,u)’ Rg’(1,1,1)

which are indeed quite close to 1. The agreement is slightly better between the three-

and four-loop points than it is between the two- and three-loop points. We can also
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Rescaled RéL)(u, u,u) and strong coupling

141
12+
=
— 1.0
= L
3
—© 0.8
~
= I
S 0.6F --- Rf)(ufu., u)/RéQ)(l., 1,1)
S i . .
S [ E— Rg”(u, u, u)/Ré’g)(l, 1,1)
’5/ 0'45 """" /u’((‘f')(u.'u.'u,)/lf,((f)(]. 1,1)
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Figure 5.4: The remainder function on the line (u,wu,u) plotted at two, three, and
four loops and at strong coupling. The functions have been rescaled by their values
at the point (1,1,1).

see how how well these points agree with strong coupling values,

RY (u, u, u) /Ré‘”)(l, 1,1)

~ 1 , asu — 0,
RéQ)(u,u,u) Ré?)(l, 1,1)
R R 1.1.1
6(3) (u,u,u)/ 6(3)( L1 ~ 1.014, asu — 0, (5.3.28)
Ry’ (u,u,uw) ” Ry’ (1,1,1)

RS (u, u, u) /Ré‘”)(l, 1,1)

~ 1.019, asu — 0,
Ré4)(u, u,u) Ré4)(1, 1,1)

The ratio between the two-loop and strong-coupling points is exactly 1, while the
corresponding ratios for three and four loops deviate slightly from one. The deviations

increase as L increases, suggesting that the shapes of the weak-coupling curves on the
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line (u,u,u) are getting slightly further from the shape of the strong coupling curve,

at least for small L. This observation is also evident in fig. 5.4 at large .

5.4 Conclusions

In this chapter, we presented the four-loop remainder function, which is a dual-
conformally invariant function that describes six-point MHV scattering amplitudes
in planar N' = 4 super Yang-Mills theory. The result was bootstrapped from a lim-
ited set of assumptions about the analytic properties of the relevant function space.
Following the strategy of ref. [14], we constructed an ansatz for the symbol and con-
strained this ansatz using various physical and mathematical consistency conditions.
A unique expression for the symbol was obtained by applying information from the
near-collinear expansion, as generated by the OPE for flux tube excitations [150].
The symbol, in turn, was lifted to a full function, using the methods described in
chapter 4. In particular, a mathematically-consistent ansatz for the function was
obtained by applying the coproduct bootstrap of section 4.3.3. All of the function-
level parameters of this ansatz were fixed by again applying information from the
near-collinear expansion.

The final expression for the four-loop remainder function is quite lengthy, but
its functional form simplifies dramatically on various one-dimensional lines in the
three-dimensional space of cross ratios. While the analytic form for the function on
these lines is rather different at two, three, and four loops, a numerical evaluation
shows that they are in fact quite similar for large fractions of the parameter space,
at least up to an overall rescaling. On the line where all three cross ratios are equal,
an analytical result at strong coupling is available. The perturbative results show
good agreement with the strong-coupling result, particularly in the region where the
common cross ratio is less than one. This agreement suggests that an interpolation
from weak to strong coupling may depend rather weakly on the kinematic variables,
at least on this one-dimensional line.

Given the full functional form of the four-loop remainder function, it is straight-

forward to extract its limit in multi-Regge kinematics. This information allowed us to
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fix all of the previously undetermined constants in the NNLLA BFKL eigenvalue and
the N3LLA impact factor. We also observed an intriguing correspondence between
the BFKL eigenvalue and the energy of a gluonic excitation of the GKP string. It
would be very interesting to better understand this correspondence.

There are many avenues for future research. In principle, the methods of this work
could be extended to five loops and beyond. The primary limitation is computational
power and the availability of boundary data, such as the near-collinear limit, to fix the
proliferation of constants. It is remarkable that a fully nonperturbative formulation
of the near-collinear limit now exists. Ultimately, the hope is that the full analytic
structure of perturbative scattering amplitudes, as exposed here through four loops
for the the six-point case, might in some way pave the way for a nonperturbative

formulation for generic kinematics.



Appendix A

Single-valued harmonic
polylogarithms and the
multi-Regge limit

A.1 Single-valued harmonic polylogarithms

A.1.1 Expression of the L* functions in terms of ordinary

HPLs

In this appendix we present the expressions for the Zy x Z, eigenfunctions L(z) de-
fined in eq. (1.3.19) as linear combinations of ordinary HPLs of the form H,,, (2) Hy,(Z)
up to weight 5. All expressions up to weight 6 are attached as ancillary files in
computer-readable format. We give results only for the Lyndon words, as all other
cases can be reduced to the latter. In the following, we use the condensed nota-
tion (1.3.27) for the HPL arguments z and Z to improve the readability of the formu-

las.

316
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A.1.2 Lyndon words of weight 1

La = HO —f-ﬁo :lOg|Z|2, (A].].)

— 1 1 1
Ly = H1+H1+§HO+§HO:—1og|1—z|2+§1og|zy2, (A.1.2)

A.1.3 Lyndon words of weight 2

1 — — _ —
Ly :Z[_2H170+2H1,0+2H0H1—2H0Hl+2H2—2H2]

1 (A.1.3)
= Liy(z) — Lis(2) + 5 log |2|? (log(1 — z) — log(1 — %)),

A.1.4 Lyndon words of weight 3

1 _ __ _ __ _ __
Ly = Z[2H0H0,0+2H0H1,0+2H0H070+2H0H1,0+2H1 Hoo+ 2 Hy Kjgl .4)
+2Hoypo+2H00+ Qﬁo,o,o + 2ﬁ1,0,0 +2H;z + Qﬁ:s]
1 1
= Lis(z) + Liz(2) — 5 log |z|*[Lis(2) + Lix(2)] — 2 log? |z log |1 — z|?

1
+E 10g3 |Z|2 ’

1 — — — — — —
L£1 = Z[HOHLO+H0H1,0+H1H0,0+H1H0,0+2H0H0,0+2H0H1,1 (A15>

+2HoHoo+2HoHy 1+ Higo+2Hooo+2Hoo+2Ho +2Hy1p
+Hio0+2Hooo+2Hoo+2Ho1 +2Hy10+2HoHy+2 Hg Hy
+2H, Hy+2H, Hy + Hy + Hy — 4 (3]
1 1
1 1 1
) log |1 — 2|*[Lis(z) + Lis(2)] — 3 log? |2|* log [1 — 2> + D log® | 2|?

1
—A—llogg[logz(l —2) —log*(1 — 2)] + ¢ log |1 — 2|* + (3,
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A.1.5

+
L3,1

L2,1,1 =

Lyndon words of weight 4

i [Ho Hso + HoH100 — Ho Hog — Ho Hi09 — Hi Hopo + Hi Hoo,0(A.1.6)
+Hoo Ha+ Hoo H1o— Hoo Ho — Hoo Hio+2Ho Hi10—2HoHiap
+2Hyp Fl,l - QFO,O Hyy+ Hso— Hopo— Hippo+2Hs1 —2H; 100
+Hoo+ Hi000— Hzo—2Hz1 +2H, 00— HoHz+ HyHs — 2 Hy Hj
+2HHs+4H (s + Hy—4H, G — Hy

2[2 HoHipo—2HoHio0—2Hi Hoopo+2H; Hopo+2HooHip (A17)

—2HooHyo—2Hy000+2Hi000+2H, — 2ﬁ4} ;

111 [Ho ﬁl,0,0 + H Hl,? + H Hl,l,o—ﬁo HI,O,O_ﬁO H1,2—F0 Hi1o (A.18)
—H, ﬁo,o,o - H FQ,O + H, Ho 0 + H, Hyo+ Hpp Hl,o + Hyp ﬁm
—HooHyo— HooHiy+ Hy Hig— HyHig+2HoHypy —2Ho Hyp gy
—2H, HZ,l +2H, Hyy + 2 Hy Fl,l —2H, Hyy+ Hsp + Hop
—Hyp00—Hi20—Hi100+2Ho11—2Hy110+ Hio00+ Hizo+ Hii00
~Hjzy — Hoo—2Ho11 +2Hy 10— H Hs+ Hy Hy +2 H, (3 + H,y

_Qﬁl C3 - ﬁll] )

A.1.6 Lyndon words of weight 5

Ly

+
L3,1,1

1 — _ . —
1 [2 Hy Ho0,0+2Ho Hip00+2HoHoop0+2HoHipo0 (A.1.9)

+2 Hy Hoppo0+2Hy Hopo0+2HooHooo+2HooHiop

+2 Hoo Hooo+2HooHioo+2HioHooo+2HioHooo+ 2 Hopo00

+2 Hi 0000 + 2 Hop000 +2Hi10000 +2Hs +2Hs) ,

i[Hs) + Hs+ Hyo+ Huo+ Hig+ Hig+ Hyo+ Hyo+ Hy 1o (A.1.10)
+Hs000 + H2000+ H2100 + Ha100 + Hi0000 + Hi0000 + Hi200
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+ _
L2,2,1 =

+Hi 200+ H1,1000 + Hi1,000 + 2 Hop00 +2Hoo000 + Ho Hy

+2 Hs00+2Hs00+2Hs11+2Hs 1 +2Hy1100+2H11100+4C
+Hy ﬁS,l + Hy ﬁz,op + Hy F2,1,0 + H Hl,O,O,O + H F1,2,0 + H F1,1,0,0
+Hy Hy + Hy Hsq + Hy Hypo + Hy Hyq0+ Hy Hippo0+ H, Hiop
+Ho Hy 100+ Hi Hoppo+ Hi Hy+ Hy Hy g+ Hy Hooo0+ Hy Hy
+H, Hso+ Hoy ﬁQ,O + Hoy ﬁz,l + Hyy F1,0,0 + Hyy Fl,Q + ﬁS,l,O
+Hy ﬁm,o + ﬁo,o Hypo + Fo,o Hyq + ﬁo,o Higo+ ﬁo,o Hyo+ ﬁo,o Hiqp
+Hy Hooo+ Hy Hy + Hy Hooo + Hy Hy + Hy g Hopoo + Hio H
+H1,0 Hypo + ﬁl,o Hs + Hy 4 ﬁo,o,o + Fl,l Hooo+2Hy Ho,o,o,o
+2HoHso+2HoHy110+2HoHoooo+2HoHso+2HoHyii0
+2Hy Hyy +2Hy Hsy + 2 Hyg Hooo+2HooHs+2HooHyia
+2Hoo Hooo+2HooHs +2HooHyyg —2Hy (3 —2H,y (3 — 2 Hy g G
—2H,0CG+2H 1 Hs +2H1Hs —4H11G—4H 1 G

—2HoH (s —2Ho Hi G,

i[[ﬁ + Hs+ Hyy+ Hyq + Hos + Hos + Higpo0 + Hio000 (A.1.11)
+Hy 30+ His0+ Hi1000+ Hi11000 4 2 Hoo000 4+ 2 Hop000
+2Hyo+2Hao+2Hogo0+2Ha000+2Hooo+2Hsag

+2Hyo1 +2Hoo1 +2Hi100+2H1120—6C+ HoHi000

+HoHy 3+ Hy Hyy00+ HoHyoo0+ Ho Hys + Ho Hyyop + Hi Hoppo
+H, Hy + H, ﬁzo,o + H, Hypo0+ H,Hy+ H, Hjop

+Hyp ﬁm,o + Hy Hl,l,o + Ho,o Hyigo+ Fo,o Hyq0+ H ﬁl,0,0

+Hy Hypo+ HyoHopo + HioHapo+ Hip Hopo + Hig Hayp

+H ﬁo,o,o + Hl,l Hyoo+2Hy ﬁo,o,o,o +2Hy Hy + 2 Hy F2,0,0
+2HoHy +2HoHypo+2HoHoo+2HoHy10+2H, Hyy

+2H1 Hop+2HoHoo+2HyHi12+2Ho Hooo0+ 2 Hoo Hooo
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L4,1 -

L2,1,1,1 -

+2 Hoo Hap+2Hop Hooo+2Hoo Hop+2Ho Hooo+2Hy Hoy
+2HyHy 10+ 2Hy(3+2Hy Hooo+2Hy Hyg+2Hy Hyy o+ 2 Ha G
+2Hy 1 Hog+2Hy1 Hog—4HooCG —4Hools+4HigC+4H0C
+8H11(G+8H11(—4HoHo(s+4HoHi (3 +4HoHyi G,

i [Ho Hoa00+ HoHi000 + Ho Ha00 + Ho Hip00 + Hi Hopoo (A.1.12)
+H, Hop0,0+ Hoo Hao+ Hop Hio0+ Hoo Hap+ Hopo Hiop

+H, Fo,o,o + H, Hyoo+ Hip Fo,o,o + Fl,o Hyoo+2Hy Fo,o,o,o

+2Ho Hy100+2HoHopoo+2HoHii00+2HooHooo+2HooHiio
+2 Hoo Hopo+2HooHi10+2Hiy Hooo+2Hi1 Hoop

—4 HooC3—4HyoC+ Hyo+ Hopoo+ Hipp00+2Hoo000+2Hs,
—4HyoCG—4Hy 0+ Hao+ Hopoo+ Hi0000+2Ho0000+2Han
+2H 11000 —4HoHo(s—4HoHy (3 —4HoHy G5+ Hy Hy

+2 Hy 1000+ HoHy+2H, Hy+2H, Hy + Hs + Hs — 4(5] ;

i [Ho Hi00+ HoHip00+ Hi Hoooo+ Hi Hopoo+ Hoo HiodA1.13)
+Hoo Hi0+ HioHopo+ HioHooo+2HoHoooo+ 2 Ho Hsp
+2HoHy90+2HoHooo00+2HoHso+2HoHio0+2H, Hap

+2 H, Hso+2Hyp Fo,o,o +2Hyy Hs+2 Hyp Hl,z + Qﬁo,o Hypo
+2HooHs +2HooHio+2HgHs+2HyoHs + 8 Hyo (s

+8 Hi0Cs+ Hi0000 1+ 2 Hop000+2Hs00+2Hs2+2Hi200

+8 Fo,o C3 + SFLO G3 + H1,0,0,0,0 + 2ﬁo,o,o,o,o + 2Fg,o,o + QFS,Q
+2H1200+8HoHo(+8HoH1(3+8HoHy (3 + Hs + Hs + 16 G5,

i [H5 + Hs + Hyq + H4,1 + Hzo + ﬁ3,2 + H3zq11 + F3,1,1 + Hy3 (A.1.14)
+Hypy + Hopy + Hovg+ Hayo 4+ Hipo00 4+ Hi000 + Hiso+ Hiso
+Hi200 + ﬁl,z,o,o +Hi210+ ﬁl,z,l,o + Hi1,000 + H1,1,0,0,0 +Hii120

+Hy190+ Hi1100+ Hi1100+2Hoo000+2Hopo00+2Hio+ Has
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+2Hyo+2Hs00+2Hso0+2Hs1042Hs10+2Hs00+2Hs000
+2Hy0042Haz0+2H100+2Hz100+2Hz110+2Ha11p0
+2Hy 11 +2Ho1110 +2Hi1110+2H11110—4C+ HoHigo0
+H, FI,S + H H1,2,0 + H ﬁm,l + H HLLO,O + H ﬁm,z + H ﬁ1,1,1,0
+Ho Hy 00+ HoHy 3+ HoHyo0+ HoHyo1 + Ho Hyyoo + Ho Hyp
+Hy Hyq10+ Hy Fo,o,o,o + H, H, + H, ﬁz&,o + H, F3,1 + H, on,o
+H, Hoo+ HyHoy o+ Hy Hogoo+ Hy Hy+ Hy Hyo+ Hy Hz,

+H, Hj 00+ H, Hy o+ H, Hj 10+ Hoyp HI,O,O + Hyp ﬁ1,2 + Hyp Fm,o
+Hy Hl,l,l + H0,0 Hyipo+ ﬁo,o Hyo+ Fo,o Hyq0+ H0,0 Hiqq

+H, ﬁm,o + H, Fl,Q + H, Fl,l,o + H, Higo+ H, Hyo+ H, Hi
+Hy o Hooo+ HioHs+ HyoHso+ HiogHyy + Hig Hoppo+ Hio Hs
+F1,0 Hyo+ ﬁl,o Hyy + Hyy Fo,o,o + Hy Hs+ Hiy ﬁz,o

+Hy 1 Hopo+ Hyy Hs + Hyy Hog+2HoHopoo+ 2 Ho Hy+ 2 Hy Hj
+2HoHsq +2HyHopo+2HoHoo+2HyHy10+2HoHoy g
+2HoHi111+2HoHopoo+2HoHy+2HoHso+2Ho Hs

+2 Ho Hopo+2HoHyg+2HoHoyo+2HoHyy1 +2HoHygg,
+2H, Hyyq +2H, Hypq +2HooHooo+ 2 Hoo Hs + 2 Hyo Hap

+2 HooHoy +2Hoo Hooo+2Hoo Hs +2Hop Hag+2Hog Hay

+2 Hy Fo,o,o +2Hy Hz + 2 H, ﬁzo + 2 Hy F2,l +2H, ﬁl,l,l

+2 H, Ho0 + 2H, Hs +2H, Hypo + 2 H, Hyq + 2 H, Hiqq

+2Hy, ﬁ2,1 —2H 1 (G + 2Hm Hyp — 2Hl,l C:ﬂ .
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A.1.7 Expression of Brown’s SVHPLs in terms of the L*

functions

In this appendix we present the expression of Brown’s SVHPLs corresponding to

Lyndon words in terms of the Zy x Z, eigenfunctions LZ(z).

Ly =L, ,
1
L1 :L;r_ﬁL[)?
Ly =Ly,
L3=L+—i[L—]3
3120
1 1 _
L2,1 :—ZLT [La]2+§L;+L271+<3,
Ly =L, ,
1
Loy = =7 Lo [Lo]* + Ly + Ly
1 _
L211:—1L5L6Lf+ L31+L2117
1
L :L-l—__ —15
5 5 240[ 0]’
1+—41+—21—2 3+—
L4,1 :4_8L1 [Lo] _ZLs [Lo] +§[Lo] C3+§L5 +L4,1+C57
1 _ 1 _ 7 _ _
L3 :_ELT [Lo]4+§L§r [LO]Q_§L;_[L0]2C3+L3,2_4C5a
1 - 1 - 7 _ 1 1 __
L31q = 6 (Lo P [L{)? — 1 Ly, Lo + 960 [Ly]” — 1 Ly L Ly + 3 Ly L G
+ Ly + Ly
3 .. _ 1 _ 13 3 1
Lopy = =T [Lo P [LT]? + §L2,1 [Ly]? — 960 [Lo]” + ZLO L Ly — §Lo Ly G
7T 1
—§L4,1—§L3,2+L;2,17
172+31+741+72172 1——+
L2,1,1,1 :_[Lo] [Ll] - =1L [Lo] +—Ls [Lo] __[Lo] G— L L2,1L1
48 192 16 8 4
1 1 1 -~
_ZL;+§L:—{1,1+§C5+L2,1,1,1,
L¢ = Ly ,
Lo Ly — +
L5, __ZLL“ [Lo] +4_8L2 [Lo]" +2Lg + Ly,
3. | 11
L4,2:ZL4 [L0]2_EL2 [L0]4_?L6 JFLIz,

(A.1.15)
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1 1 _ 1 3
Lapy = 16L L+[L ] _ZLgr,l[L ] 4L Ly L++2L Ly Gs+ 5 L51+L4117
3 B LS ENR | 7
L3an = 16L Ly [Lo] +§L3,1 [Lo] +ZL4 Lo Ly — 2L Ly G — 51+L3217
1 3 _
L3y :_ZL2 Ly L;_§L2 Ly C3+L3,1,2+3L 1+L427
| | 5) e 1 _
L371,1,1 = EIQ [L0]2 [L;L]Q + ZL4 [L0]2 - @IQ [L0]4 - ZL2,1,1 [L0]2
1 _ _
_ZLO LIFL;;I_LG +L4,1,1+L§r,1,1,17
| 3 . 1 3 11
Lopi1 = _ZLz (Lo P L) — ZL4 [LO]Q+EL2 [L0]4+ZL2,1,1 [Ly]? +ZL
1 __ 1 3 1 __ _ _
+1L2 LTL;_QIQ LTCS‘F_LO LTL§1_§L3,1,2_5L4,11 L321+L22117
) 1 _ 1 1
L271717171 — 192L L+ [LO] 16 Lz’)i_l [LO] 48L L [L+] +8L L L+
1 1 _ 1 1 _
4L Ly G — L L211LJr 4L+1+2L3111+L2,1,1,1,1-

(A.1.16)

A.2 Analytic continuation of harmonic sums

In this section we review the analytic continuation of multiple harmonic sums and the
structural relations between them, as presented by Bliimlein [54]. Multiple harmonic

sums are defined by,

kn

ZZ ngf;aall ...ngzlj:) | (A.2.1)

k1=1ko=1 kn=1

where the a;, are positive or negative integers, and N is a positive integer. For the cases
in which we are interested, they are similar to the Euler-Zagier sums (1.3.10), except
that the summation range differs slightly. They are related to Mellin transforms of

real functions or distributions f(x),

1
Snan (V) = / 02 2 fur o = Mfur, o (@)](V). (A22)
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Typically f(z) are HPLs weighted by factors of 1/(1 + x). To avoid singularities at

r =1, it is often useful to consider the +-distribution,

MI@)IN) = [ do (¥ =1) fia). (A:2.3)

The weight |w| of the harmonic sum is given by |w| = »7;_, |ag|. The number of
harmonic sums of weight w is equal to 2 - 3/*“I=1, but not all of them are independent.
For example, they obey shuffle relations [176]. It is natural to ask whether these are
the only relations they satisfy. In fact, it is known that in the special case N — oo,
in which the sums reduce to multiple zeta values, many new relations emerge [65,174,
177,178]. In ref. [54], an analytic continuation of the harmonic sums was considered.
It is defined by the integral representation, eq. (A.2.2), where N is allowed to take
complex values. This allows for two new operations—differentiation and evaluation at
fractional arguments—which generate new structural relations among the harmonic
sums.

In the present work, harmonic sums with negative indices do not appear, so we
will assume that a; > 0. This assumption provides a considerable simplification. The
derivative relations allow for the extraction of logarithmic factors,

dl
Mlog!(z) f()I(N) = —M[f()](N), (A.2.4)
which explains why the derivatives of the building blocks in section 1.6 generate
SVHPLs. In ref. [54], all available relations are imposed, and the following are the

irreducible functions through weight five:

weight 1

S (N) = (N + 1)+ 75 = M K ! )J (N) (A.2.5)

weight 3

Fy(N)=M KUQ@)J (N) (A.2.6)
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weight 4
Liz(x)
Feo(N) =M K; —z )J &) (A.2.7)
F(N)=M K ;i@)J (N)
weight 5
V) - :(Ij{ﬁ))J (N)
[ Saa(x)
Fu(N)=M (;;1) )J (N) (A.2.8)
Fiy(N) =M _(xlz_l’l >+ (N)
F7(N) =M (ig_(?)J ()

There are no irreducible basis functions of weight two. These functions are mero-
morphic with poles at the negative integers. To use these functions in the integral
transform (1.4.4), we need the expansions near the poles. Actually, we only need

the expansions around zero, since the expansions around any integer can be obtained
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from them using the recursion relations of ref. [54],

w(n)u +2) = w(n)(z) + (—1)";@11

Fy(2) = Fy(z — 1) — % {Cz B Slz(Z)‘|

Foa(2) = Foalz = 1) = @ 4 L {42 _ Sl_(»z)}

Z 22 Z
Fi(2) = Fr(z — 1) + % - 2—; [S7(2) + S2(2)]
RO =RE-1+ 88,8 Lo
Fii(2) = Fu(z— 1)+ % - % + % [S7(2) + S2(2)]
Fis(2) = Fis(z — 1) + %2 - % - 22—42251(2) + 2522’;(’2) + % [S2(2) + Ss(2)]
Fir(2) = Fiz(z — 1) + % - é [S3(2) 4+ 351(2) S2(2) + 2595(2)] -

(A.2.9)

The expansions around zero can be obtained from the integral representations. We

find that, for 6 — 0, the expansions can all be expressed simply in terms of multiple
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zeta values,

o0

$1(6) = =Y (=6)" G »

n=1
[eS)

F4(5) = Z(_5>nCn+1,2>

n=1
[eS)

Fs.(0) = Z(—é)"(nﬂg )

n=1
oS

F7(5) = = Z(_(S)nCn—i-l,Q,l )
! (A.2.10)

o0

F9(5) = - Z(—5>ngn+1,4 )

n=1
(o9

Fi1(6) = — Z(_(S)nCn—i—l,?),l ;

n=1
oS

Fi3(6) = — Z(—5)n (2Cnt1.22 +4Ct131)

n=1

Fi7(8) = = (=0)"Car1211 -
n=1

These single-variable functions can be assembled to form two-variable functions of v
and n, such that their inverse Fourier-Mellin transforms produce sums of SVHPLs.

This construction is not unique, because other building blocks could be added. We
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choose to define the two-variable functions as,

_ 1 1 1
Fy = sgn(n) {F4 (i + %) +Fi(—iv+ In |) — DiByn = SN*Byp = SVE,,
1 1 1
+§(77b +V)D Eun+C2 VTL_4<3} {§V¢—+§C2}7
~ n n 1 3 1
F6a:sgn(n){F6a<w+%> Fﬁa(—w+|2‘> S DLy ZN?VE, =3V E,,
1 2
1
+N{E (N? +12V7?) w_+cgv} :
; :F(iu+ﬂ)—F(—w+M>—1F v
7 7 2 7 9 9 6a 9 4
1o, 1, 1 ]
- |lS - - = “ Dz/Eyn
S +36
1.1, 1, 1 1,
+ |5 Fit 35 N Bun+ V2 By = 7V DuBo + 5 D2y — G| +5V G,
1 1 3 1 1
N{-——vVE: —-y3_ 2 NQ—[— R ]
+ sgn(n) { 8V o 2V 32V 8(¢) w+—|—2Cz ,
(A.2.11)
where
" z¢<1+w+| |) w(l—iy—i—M),
|2’ % | (A.2.12)
U, E@D( + v+ >+w< il/+%>.

A.2.1 The basis in (v,n) space in terms of single-valued HPLs

In this appendix we present the analytic expressions for the basis of Zy X Zs eigen-
functions in (v, n) space in terms of single-valued HPLs in (w, w*) space up to weight
five. The Zy x Zs acts on (w,w*) space via conjugation and inversion, while it acts
on (v,n) space via [n <> —n| and [v <> —v,n <> —n|. The eigenvalue under Zs x Zy

in (w,w*) space will be referred to as parity.
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Basis of weight 1 with parity (+,+):

(1] =2L7. (A.2.13)
Basis of weight 1 with parity (+,—):

Z[0on] =Ly - (A.2.14)

Basis of weight 2 with parity (+,+):

B, = LT - 550, (A:2.15)
T[S0/ (iv)] = %[Lg]?. (A.2.16)

Basis of weight 2 with parity (4, —):
T|V] = —Lg L} . (A.2.17)

Basis of weight 2 with parity (—, —):
I[N] =41;. (A.2.18)

Basis of weight 3 with parity (+,+):

2
T[E,] = ST - L3, (A.2.19)
I[N?] = 12Lf -2L{ [Lg]?, (A.2.20)

1 _
Z[Vv?] = 5L1+[L0]2—L3+. (A.2.21)
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Basis of weight 3 with parity (+, —):

IVE,,) = é[LgP—M;l, (A.2.22)
Z[D,E,,] = —1—12[L0]3—L0 [L{P+4L;,, (A.2.23)
Z [bo,/(iv)?] = é[Lg]?’. (A.2.24)

Basis of weight 3 with parity (—,+):

I[NV]=-L; Ly . (A.2.25)

Basis of weight 3 with parity (—, —):

IINE,,] =2L; L. (A.2.26)

Basis of weight 4 with parity (+,+):

T[E}.]

I[N’E,,]
I[V*E,,]
IV D,E,,]

I[DJE,,]

Z [bo,n/ (iv)?]

Ty Ly 3

1. 1. B o

3 (L3 + 3 (Lo 1P LT + % [Lo]" + 3 [L]" = 3 Ly Ly, (A.2.27)
5

~ S LI L 3L G,

1

o (L)' +2[Ly)? —2Lg Ly, + 2L L —4L{ (s, (A.2.28)

—lL—2—1L—2L+2—iL—4 §L—L— A.2.29
1

3 1 B o

DL LT 4 1 [Lo)" + (Lo P = 2Ly Lyy — 2L L (A:2.30)
+4 LT G,

—lL—2L+2—iL—4—2L—2 ALT LT —8LT ¢ (A.2.31
S (L (LT = 5 [Lo]' = 2[Ly 1P + A Lf L =8 L{ G (A:231)
1

— [Lg]*. (A.2.32)
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Basis of weight 4 with parity (+, —):

1 a1 . .
I[VE] = 3 LT [LgP + g Lo [LTP = Ly G —2 L5, LT, (A.2.33)
Z[N*V] = %LT (Lo —2Lg LT, (A.2.34)
1 1 .
TV = 5Ly L — gLl (L], (A.2.35)
1 1 1
IZ[E,.D,E,,] = -3 LT [Lg]? — 3 Ly [LT]? + 3 Ly Li + Ly & (A.2.36)
2Ly, LT,

Basis of weight 4 with parity (—,+):

IINVE,, = -2Lj,, (A.2.37)
Z[ND,E,,] = 8Lj, —2L; Ly L{. (A.2.38)

Basis of weight 4 with parity (—, —):

L. _ _ _
[ } - _ZL2 (L) + Ly L] +4 L7 — 6Loy s (A.2.39)
1
IINE,] = 5 L2 [Lg)* — 6Ly +8Ly, 4, (A.2.40)
T[N*] = 40Ly —6L; [Lg]*, (A.2.41)
1
IINVY] = SLy (L) -2L;. (A.2.42)

2
Basis of weight 5 with parity (+,+):

17 5 4 g 2 43
TB,] = oo LTIV = S L3 (L) + S (LI + 1 L3 (A.2.43)

+[Lo PP [LTP +4[L ] G — 4 L3 [L{] = 8[LT]* G5
— ALy Loy Ly +12 L5, +8 L35,

1 1
I[NE;,] = gLl (L - oy L (L)' + 417 [L1P + 3L [Lo]* (A2.44)
—8[Ly]* ¢ —25 L5 —24 L3, — 16 L3, ,
1
I[NY] = —3L+ [Lo]* =20 L3 [Ly)* + 140 L7 (A.2.45)

6



APPENDIX A. SINGLE-VALUED HPLS AND THE MULTI-REGGE LIMIT 332

TV EL] = o LGP LT - oo L (L) + {13 (LG~ {14 (A2.46)
— L [P +2[Lg)P G+ 10 LY, +4L5,, — 4G,
IZIN*V?] = —% LT [Lo)* + L [Ly)* =5 L7, (A.2.47)
[V = % L [Ly]* — EL; (Lo + Z LY, (A.2.48)
TV By DuByl = 1 L[] = S L5 15T~ S 15T Gt 5 14 (A.2.49)
+ LT [Ly)P+ Ly Lyy LY — 1213, —4 L35, +6¢s,
T(DB] = SUGPILTT - 5 IF (L)t - 208 (L5 + 2 1 L5 (A2.50)
20152 — 4 LT LT+ 8 (LT G — 8 L5 Ly, L
—OLE +48 LT, +16 L5y, — 24
T[Byn DiFs] = ¢ (L) — (LI — L (L + 415 [L{] + 2 LiA 251)
—8[L{PPG+4Ly Ly, LT —24 LY, | —8L3,, +12¢,
I[NR] = SOl - LIS P+ SLP G- L [P (A252)

— Ly Ly LT +15LF +12L5, , +8L3,, .

Basis of weight 5 with parity (+, —):

11 29

- 5 _ | _
T[] = 2L5 (L) - 5 LoP LF1P + 7 Loy [L5)° + 555 (L (A-253)
5 3 . 7 _
+ 13 Ly LT+ 3 Ly L Ly — B L3, — Ly, [LY)
1 3 .. 3 . 1 _
1 [V Egn] = 5 Ly [Ly]? + 16 (Lo P (LT + 1 Lyy [Lg 2 - 102 [Lo]° (A.2.54)
1 9 9 _ _ _
- 1 LO LT L:;L + 5 LO LT §3 - 5 L3,2 - 6L4,1 —12 L2,1,1,1 )
1. 1 _ _ _
I[N*VE,,] = —7 Lo PILE)? - yr (Lo + Loy [Lo]? + Lo L LT (A.2.55)

— 2Ly L {3 — 8Ly, —2Ls,,
I[V*E = 3L73L+2—§L7 Ly)? §L75—§L7L+ A.2.56
|: l/,TL:| 16[ 0] [ 1] 4 2,1[ 0] +960[ 0] 4 0 1 [( e )
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3 3. _ _

(B2, DBu] = —5 L5 (sl — o LGP IERT - 5 (61 - 5 Lg [L{]1A257)
+ Ly LY L§ — 2Ly LY 3+ 4Ly, +3L355,+8L5, 4,4,
TIN’DE,) = o LGP + o L] — 2L (51— 4 L5, (L] (A259)
— 8Ly LT L3 + 16 Ly LY (s +48 Ly, + 12 L3,
IV D,E,] = 5L (L — 2 LT BT — s [l + Loy (L (A2.59)
+2L5 Ly L —4 Ly LY (s —12L5, —5L3,,
I[VDE,,] = —% [Lo)P — 2Ly [Ly)? — 2Ly L L +4 Ly L¢3 (A.2.60)
Lod Ly, £12L5,.
I[DJE,,] = % (Lo P [LT)? + % [Lg]° + 6Ly [Ly]* — 48 Ly, (A.2.61)
— 24 L;Q,
A ﬁ L. (A.2.62)

Basis of weight 5 with parity (—,+):

~ 1 _
T|fa) = o5 Lo Lol = L3 Ly + Ly Ly, — Lf L, (A.2.63)
. | .
7 [v FZJ = SL LGP - L LGP =S L Ly — Ly Ly, (A2.64)
+3Lg Lyyy + L Ly, .
| 3. L
IINVE,,] = T (Lo ]? + 5 Le Lo [LT)? + 1L Lo =21 L5 ,(A.2.65)
3
IZ[N*V] = 1L [Lo)? —5L; Ly, (A.2.66)
3o T
IZ[NV?] = 1l Lo — gl Lo, (A.2.67)
5 3

TINEynDyEvn] = =51 Ly [Lo]? + gLilo—La Ly [LT]? +4 LT LY, . (A.2.68)
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Basis of weight 5 with parity (—, —):

5

15 1

(A.2.69)

(A.2.70)

(A.2.71)

(A.2.73)
(A.2.74)

TINE,] = gLy LT LG — o Ly L — 5 Ly Lf = Ly [L{)°
+12L5,, L
1
I [Ey, N?] ) Li[LgP+2Ly LY +6Ly LT —16L; (3
—4 Ly LY,
1 1 1
I[E,.NV? = ) LT [Lg]? + 5 L Ly — 5 L2 Li+ Ly Ly,
IINVD,E,,] Z Ly LT [Lg)? = 3Ly L + Ly L +4 L5 (3 — 2Ly L, (A2.72)
I[ND.E,,| = —L; L{[Lg)?+12Ly LT —4L; L] — 16 L; (3,
. 1 2 1 1
T [En F4} = SLy LT P+ Ly LT +5 L5 Lf + 5 Ly L
L _ _ _

2



Appendix B

Leading singularities and off-shell

conformal integrals

B.1 Asymptotic expansions of the Easy and Hard

integrals

In this appendix we collect the asymptotic expansions of the different orientations
of the Easy and Hard integrals in terms of harmonic polylogarithms. The results
for Ey4.03 and Hig.34 were already presented in section 3.3. The results for the other
orientations are given below.
2,2 3 1 1
X13Loy E12;34 = 10g u |:— @ <2H172 + H1,171> + 3—1‘(H1’2 + H171’1>] (Bll)
2
+ log’u [? (2H2,2 +Hyp1 +2H, 3+ H1,1,2>

1
- %< —4Hy5 —3Hy11 —4H13 — Hip1 — 4H1,1,2>}

1
-+ lOgU [P( — 16H372 — 8H371,1 — 16[‘[273 — 8H27172 - 8H174 +4 H17371
— 4Hy90 — Hyo11 —4H 113 +2 Hi121 — Higa2
1
+ - (8H3,2 +5H311 +8Hog+ Hyoq +6Hy10+4 Hiy— Hiz;

+ OHigo+ Hioi1+4H 13 —2 Hiq01 + H1,1,1,2>}

335
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2 2
T13T5, B304

4 4
T13T94 Hiz04

%(4@,1{13 +2C3Hy g g+ 32H, 5 + 16H, 1, + 32 Hys + 16Hs 5
16Hy4—8Hy31+8H29+2 Hoyo11+8Hy13—4Hs 191 +2Ho1 10
S8Hyan+4 Hizo+4H 311 +4H 1 23—2H 1 291+2H 1 212—4 Hi13:1
Hyiip11— H1,1,1,2,1> + i <—4C3H2,1 —603H12—2C3H111—16 Hyp
10H 11 —16H33 — 10H319—8Hy 4 +4Hs31 — 8 Hoo9 —2H2911
6Hy13+4Ho101—2Ho1120+2 Hy g1 —6H 1 30—4H1 311 — 6Hi23
2H1901 —2H1 010 +4H 131 — Hig211 + Hi1121 — 8C3 Hs

20C5H1) + O(u),

log u

(H2,2,1 —Hy1o+Hiz1—Hig11—Hi13+Hi121—6 <3H2>

1

o <4C3H2,1 —2@3H 1 9—2H391+2H319—2H531 + Hyp11 +2H 13
2Hy 1901+ Ho 1 0—4H 40 +3H 310+ H 01 0+4H 14 — 2H, 13,1
Hij00—Hii010— Higps+Hiii21+ 12C3H3> + O(u), (B.1.2)

1 1
log® [—<2H —Hyy—H ) —<H —H)] B.1.3
og-u 3.2 2,1 1,2 11,1 ) + 3(1—2)z 2,1 3 ( )
1
10g2 U [P( — 4H3,1 — ZHQ’Q + 2H1’3 + 2H1’2’1 + 2H17172)

1
m< —2H31 — Hyp — Hyyqg — Hiz3+ Hig1 + 4H4>}

1
logu [ﬁ (16H372 + 8H37171 + 8H273 — 8H272’1 — 4H174 — 12H17371

A4H, 990+2H 911 —4H1 13 —2H1,1,1,2> + 4H,1+4Hs

5
(1—2)x
6Hz 11 +4Hys +2Hy 19+ 8H 14 —4H 131 —2H 129 —2H1 911

1
2Hy 1+ 2H1 120~ 20Hs ) | + = (326, Ho.1~16GsHy =166 Hi
64H5’1 —32H472 —32H47171 —24H373+ 16H372,1 — 16H37172 —24]‘.[274
40H 31 —4Ho 911 —8Hoy 3 +4Ho 10 +40H 41 +4H, 39
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4 4
Ty39y His03

8Higi1 —4H1 23 +4H 201 —4H 1212 + 8H1,1,1,3>

-2z (1663H2,1 —4Hy 5 —12Hy 11 — 4H33 — 12H3 51 — 8Hs 1 5
12Hy 4 +4Ho 31 +2Ho911 —4Ho 121 +2Hy1 190 —20H, 5 + 4H1 44
A4H, 390+6H 1 311+4H 1 03+2H 1210 +8H 1 14—4H1131—2H1 122

2H171’2,171 — 2H171,173 + 2H171’1,271 — 16<3H3 -+ 40H6> + (’)(u) s

log®u 11
Zi; [E (2H2,1 —His+ 2H1,1,1) —2Hyy —Hyo—2H, 11 — H3}
2
10g2 u [ — ﬁ <2H371 + HQQ — H1’3 + 2H1’271 + 2H171’2> (B14)
4
- <H3,1 +Hoo+Hys+Hio1+Hipo+ H4>]

4
log u [ﬁ <4H3,2 —4H3 11 +2Hy3+4Hy 10— Hy 4 +2H 31 +4H, 2

2H1 011 +4H 13+ 2H1,1,1,2> + %(21{4,1 +4H30 —2H3 1 +4Hs 3
2Hy 19 +5H 4 +2H 31 +4H 199 —2H 1911 +4H1 13 +2H1 112
5H5>} + % <4C3H2,1 —2Q3H 9 +4C3H 11 +8H5 1 —4H,0+8Hy 11
6Hzs+4Hs01 —4Hs19 —3Hoy +2Hs31 —4Ho99 +2H911
6Ho13—2Hy 10+ 2H 410 —3H 30 +4H 311 —5H103+2H1 291
2Hy1 219 —4H114—2H1 122 — 2Hl,1,1,3> + ;( —A4G3Hyy — 2G3Hy 2
A0sH 11 +3Hyo — 2Hy 10 +3H3 3 — 2H3z 91 +4Ho 4+ 2Hs 55
2Hy13+5H 15+ 3H 139 —2H 311 +3H123 —2H1 991 +4H 114
2H 100 +2H 113 — 2(3H3 + 5H6> + O(u),

B.2 An integral formula for the Hard integral

We want to find an integral formula for pure functions which involve x — Z in the

symbol as well as x, 2,1 — x,1 — . We are interested in single-valued functions, i.e.
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ones obeying the constraints on the discontinuities,
[disc, — discz|f(z,2) =0, [discy—, — disc—z] f(z,2) = 0. (B.2.1)

and with no other discontinuities.
It will be sufficient for us to consider functions whose symbols have final letters

drawn from a restricted set of letters,

S(F)=S(X) @ % +§(V)® 1_”5 +S(2) @ (2 —7). (B.2.2)

— X

where X, Y, Z are single-valued functions of z, z.

We will suppose also that the function F' obeys F(z,z) = 0, as required to remove
the poles at x = & present in the leading singularities of the conformal integrals. We
therefore take Z(x,z) = 0 also. If F' has a definite parity under x <> z then X and
Y have the opposite parity while Z has the same parity.

The functions X,Y and Z are not independent of each other. Integrability (i.e.

d?>F = 0) imposes the following restrictions,

1
dX/\dlogg—i—dY/\dlogl Y v dz Adlog(z —7) =0. (B.2.3)
e xr

We may then define the derivative of F' w.r.t x to be

X Y A
_|_

so that X(r) YD) 2D
) v t 7 ¢z t 7
F(as,:l:)—/gE dt[ T T 13 + Tz | (B.2.5)

A trivial example is the Bloch-Wigner dilogarithm function, defined via,

Fy(z,z) =logxz (Hi(x) — Hi(Z)) — 2(Ha(x) — Ho(Z)) . (B.2.6)
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It has a symbol of the form (B.2.2) where
X; =log(l —z)(1 —z), Y, = —logazx Z,=0. (B.2.7)

Thus we can write the integral formula (B.2.5) for F5.

B.2.1 Limits

We want to be able to calculate the limits of the functions to compare with the
asymptotic expressions obtained in section 3.3. The formula (B.2.5) allows us to
calculate the limit z — 0 (which means dropping any power suppressed terms in this

limit). We may commute the limit and integration

_ (T [ X () Y(tz)  Z(t )
C%%F(x,x)—/j dtélg%[ T T 1 T . (B.2.8)

In the second and third terms one may also set the lower limit of integration to zero.
directly. In the first one should take care that contributions from X (¢, z) which do
not vanish as ¢t — 0 produce extra logarithms of Z, beyond those explicitly appearing

in the limit of X, as the lower limit approaches zero.

B.2.2 First non-trivial example (weight three)

The first example of a single-valued function whose symbol involves © — z is at
weight three [106]. There is exactly one such function at this weight, i.e. all single-
valued functions can be written in terms of this one and single-valued functions con-
structed from single-variable HPLs with arguments x and z only. It obeys Fs(z,Z) =
—F3(z,x). The symbol takes the form (B.2.2) with

Xy = —log(zz)(Hy(x) + Hi(Z)) + %(Hl(x) + Hy(7))?,
s = g log?(a) + log(az)(Hi (x) + Hi(2)

Zy = 2log 27 (Hy(z) — H\(7)) — A(Ha(z) — Hy(T)) . (B.2.9)
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Note that X5, Y5 and Z, are single-valued and that Z; is proportional to the Bloch-
Wigner dilogarithm (it is the only antisymmetric weight-two single-valued function
so it had to be). They obey the integrability condition (B.2.3) so we can write the
integral formula (B.2.5) to define the function Fj.

We have constructed a single-valued function with a given symbol, but in fact
this function is uniquely defined since there is no antisymmetric function of weight
one which is single-valued which could be multiplied by (» and added to our result.
Moreover, since it is antisymmetric in x and Z, we cannot add a constant term
proportional to (3.

Looking at the limit z — 0 we find, following the discussion above,

glzigr[l) F3(z, ) :% log? zH, (z) + logf(Hg(x) + Hip(x) — HLl(m))

— 3H;(x) — Hia(x) + Hoo(x) + Haa(z) + Hipo(z) — Hig0()
(B.2.10)

Starting from the original symbol for F3 and taking the limit z — 0 we see that the

above formula indeed correctly captures the limit.

B.2.3 Weight five example

We now give an example directly analogous to the weight-three example above but
at weight five. The example we are interested in is symmetric F5(z,Z) = F5(Z,z). It

has a symbol of the canonical form (B.2.2) with

Xa(x,2) = (Lop11 — L1100 — Lorr1+Li110),
Yi(z,Z) = (Loo01 — L1000 — Loo11+ L11.00)
Zy(x,z) = (Loo11 + L1100 — Lo110 — L1001) - (B.2.11)

The above functions are single-valued and obey the integrability condition and
therefore define a single-valued function of two variables of weight five via the integral

formula.
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Taking the limit z — 0 we find

glcig(l) Fs(x,2) =Hy 1 Hooo + (Hy10 — Hi11)Hop

+ (—=Hs1+ Hap1 + Hi100— Hi110)Ho
—Hyy—Hys+2Hyq + Hi31— Hz10— Hsia
+Hoy10+ Hig000— Hi11,00+2H11C3. (B.2.12)

This formula correctly captures the limit taken directly on the symbol of Fj. This

weight-five function plays a role in the construction of the Hard integral.

B.2.4 The function H from the Hard integral

The function H® from the Hard integral is a weight-six symmetric function obeying
the condition H®(z,z) = 0. The symbol of H® is known but is not of the form
(B.2.2). However, we can use shuffle relations to rewrite the symbol in terms of
logarithms of u and v and functions which end with our preferred set of letters. We

find the symbol can be represented by a function of the form

HY(1 —z,1-7)
= (2H0,0(U) + 4Hy(u)Hy(v) + 8H0,0(U)) (50,0,1,1 +Li100—Loi1,0 — 51,0,0,1)
— 8F5(Ho(u) 4+ 2Ho(v)) + Fs . (B.2.13)

Here Fj is the weight-five function defined in section B.2.3. The function Fjy is now
one whose symbol is of the form (B.2.2), where the functions X35, Y5 and Z5 take the

form

X5 =20Lop0,1,1+ 12Lo01,1,0 —32L00,1,1,1 —8Lo1,01,1 — 12L01,1.00 — 8L01,1,01
+16L01,1,110 — 8L1,0,0,1,1 +8L10,1,1,0 — 20L1,1,000 + 8L1,1,001 +8L11,0,1,0
+32L1 11,00 — 16L1 1110 — 16£1 13, (B.2.14)

Y5 =20Lo0,0,01 — 32L0,0,01,1 — 8L0,0,1,1,0 T 16L0,0,1,1,1 — 8L0,1,0,01 + Lo,1,1,0,0
—20L1,0,0,0,0 + 8L1,0,0,1,0 + 16L10,0,1,1 +8L10,1,00 + 32L1,1,000 — 16L1,100,1
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— 16£1,171’0,0 - 16[:170<3 + 64£1,1C3 . (B215)

Note that the (3 terms have been chosen in such a way the the functions X5, Y5 and

Zs obey the integrability condition (B.2.3). The integral formula for Fg based on the

above functions will give a single-valued function with the correct symbol, i.e. one

such that H® defined in eq. (B.2.13) has the correct symbol and is single-valued.
We recall that the Hard integral takes the form

1 [HY91—-2,1-2) H®1—-21-27)
1573 (z — 1) (1 —zz)(x —I)

H14;23 = <B217)

Calculating the limit Z — 0 we find that H® reproduces the terms proportional
to 1/2% in the limit exactly, including the zeta terms. Note that in this limit the
contributions of H® and H® are distinguishable since the harmonic polylogarithms
come with different powers of x. Since there are no functions of weight four or
lower which are symmetric in x and Z and which vanish at * = z and which vanish
in the limit # — 0, we conclude that H® defined in eq. (B.2.13) is indeed the
function. Comparing numerically with the formula obtained in section 3.5 we indeed

find agreement to at least five significant figures.

B.3 A symbol-level solution of the four-loop dif-

ferential equation

In this appendix we sketch an alternative approach to the evaluation of the four-loop
integral. More precisely, we will show how the function I® can be determined using
symbols and the coproduct on multiple polylogarithms. We start from the differential

equation (3.7.17), which we recall here for convenience,

(1 — zZ)xx (1 —zz)
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where we used the abbreviations F;(z,z) = E(1 —x,1 — &) and Ey(x,z) = E(1 —
1/z,1—1/z). We now act with the symbol map S on the differential equation, and

we get

1 1

0,0:8|f (x, 1)) = — S|Ey (x,&)] —

(1 —zz)xx

where the differential operators act on tensors only in the last entry, e.g.,
Oplar @ ... ®a,] = [0:logay] a1 ® ... ®@a,_1, (B.3.3)

and similarly for dz. It is easy to see that the tensor

S1 = S[E(z,7)] ® (1 — 96—15:) ® (27) + S[Ex(2,2)| @ (1 —27) ® (xz)  (B.3.4)
solves the equation (B.3.2). However, S; is not integrable in the pair of entries (6,7),
and so 57 is not yet the symbol of a solution of the differential equation. In order to
obtain an integrable solution, we need to add a solution to the homogeneous equation
associated to eq. (B.3.2). The homogeneous solution can easily be obtained by writing
down the most general tensor S, with entries drawn from the set {z,z,1—z,1—2z,1—

xx} that has the correct symmetries and satisfies the first entry condition and
0,052 = 0. (B.3.5)

In addition, we may assume that S5 satisfies the integrability condition in all factors
of the tensor product except for the pair of entries (6,7), because S) satisfies this
condition as well. The symbol of the solution of the differential equation is then

given by S; + Ss, subject to the constraint that the sum is integrable. It turns out
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that there is a unique solution, which can be written in the schematic form

2 l—z «x T
S[f(x, 7)) :sf®u®u+sz_®v®u—l—sg®1_j®%+sj®%®u
T 1—=x T r
T — T T I

+55 @ (1—u)®u,

where 57" are (integrable) tensor that have all their entries drawn from the set {x, 7, 1—
x,1 — z} and the superscript refers to the parity under an exchange of x and Z.

The form (B.3.6) of the symbol of f(x,Z) allows us to make the following more
refined ansatz: as the s are symbols of SVHPLs, and using the fact that the symbol is
the maximal iteration of the coproduct, we conclude that there are linear combinations
f#(x,7) of SVHPLSs of weight six (including products of zeta values and SVHPLs of
lower weight) such that S[f(z,z)] = s and

Noaalf(@,2)] = 7 (2,7) @ logu @ logu + f5 (¢, 7) @ log v @ log u

x T x
—l—fg(x,i‘)®log1 f®log§—i—ff(al:,:i')®log§®logu

:E ® logu (B.3.7)
— T

xr
+f5 (2, 7) @ logu @ log — + f¢' (z,7) ® log
x x x
+f7+(~75aif)®10gv®10g5+f8_(37753)®10g§®10g§

+ [y (2,2) ®log(l —u) ®u.

The coefficients of the terms proportional to zeta values and SVHPLs of lower weight
(which were not captured by the symbol) can easy be fixed by appealing to the
differential equation, written in the form?

1

(id®0, ®0:) Ag 11 [f(2,7)] = (1 —az)xE

Ei(z,2)®@1®1— Ey(z,2)®1®1.
(B.3.8)

The expression (B.3.7) has the advantage that it captures more information about

(1 —zx)

the function f(z,z) than the symbol alone. In particular, we can use eq. (B.3.7) to

'We stress that differential operators act in the last factor of the coproduct, just like for the
symbol.
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derive an iterated integral representation for f (x,Z) with respect to x only. To see
how this works, first note that there must be functions A*(z, z), that are respectively

even and odd under an exchange of x and Z, such that
Apa[f(z,7)] = A~ (2,Z) @ logu + AT (2,Z) ® log ﬁ : (B.3.9)
x
with

Aﬁyl[Ai(waf)] = ff(xai') ® logu + f;(iﬂ,ii‘) ® logv + f:(l’,i’) ® logg

1—=x

+ fof (2, 7) ® log + fo (2,2) @ log(1l —u),

1—2z
1—=x

Nai[A* (2,2)] = 5 (2,5) ®log ;

(B.3.10)

- + f (2, 7) @ logu

+ f (2, 7) @ logv + fg (7,7) ®10g%.

The (6,1) component of the coproduct of A (x,z) does not involve log(1 —wu), and
so it can entirely be expressed in terms of SVHPLs. We can thus easily obtain the
result for A" (x,Z) by writing down the most general linear combination of SVHPLs
of weight seven that are even under an exchange of x and z and fix the coefficients
by requiring the (6,1) component of the coproduct of the linear combination to agree
with eq. (B.3.10). In this way we can fix AT (z,Z) up to zeta values of weight seven
(which are integration constants of the original differential equation).

The coproduct of A~ (x,Z), however, does involve log(1 — u), and so it cannot
be expressed in terms of SVHPLs alone. We can nevertheless derive a first-order

differential equation for A~ (z,z). We find

1

0.4 (w,7) = = [y (0,) + f{ (2,2)] = = [f5 (0, ) + i (2,2)]

= _fmfg—(x,x) (B.3.11)

= K(z,).



APPENDIX B. LEADING SINGULARITIES / CONFORMAL INTEGRALS 346

The solution to this equation is
A (x,7) = h(T) +/ dt K(t,z), (B.3.12)

where h(z) is an arbitrary function of z. The integral can easily be performed in
terms of multiple polylogarithms. Antisymmetry of A~ (x,Z) under an exchange of z

and T requires h(Z) to vanish identically, because

A (x,2) = h(Z) + /x dt A~ (t,z) = h(Z)+ A (2, ) — A~ (Z,Z) = h(ZT) + A~ (2, T) .
: (B.3.13)

We thus obtain a unique solution for A~ (z, ).
Having obtained the analytic expressions for A*(z,Z) (up to the integration con-

~

stants in A (x, %)), we can easily obtain a first-order differential equation for f(z,z),

0, f (2, %) = %[A‘(x,i) + A (2, 7). (B.3.14)
The solution reads -
@, 7) = / A a)+ 472 (B.3.15)

The integral can again easily be performed in terms of multiple polylogarithms and
the antisymmetry of f (x, ) under an exchange of z and = again excludes any arbitrary
function of  only. The solution to eq. (B.3.14) is however not yet unique, because
of the integration constants in A™(x, %), and we are left with three free coefficients of

the form,
T
(c1Cr+ 2G5 G+ 3G C3) log = (B.3.16)

The free coefficients can be fixed using the requirement that f (x,Z) be single-valued
(see the discussion in section 3.7). Alternatively, they can be fixed by requiring that
f(x,7) be odd under inversion of (z,z) and vanish at = Z. We checked that the

resulting function agrees analytically with the result derived in section 3.7.



Appendix C

Hexagon functions and the

three-loop remainder function

C.1 Multiple polylogarithms and the coproduct

C.1.1 Multiple polylogarithms

Multiple polylogarithms are a general class of multi-variable iterated integrals, of
which logarithms, polylogarithms, harmonic polylogarithms, and various other iter-

ated integrals are special cases. They are defined recursively by G(z) = 1, and,

= odt - In”
G(ay,...,a,;2) :/ G(ag,...,a,;t), G(0,;2) = 1 Z, (C.1.1)
0o t—m p!
where we have introduced the vector notation @, = (a,...,a).
——
For special values of the weight vector (aq, . .., a,), multiple polylogarithms reduce
to simpler functions. For example, if a # 0,
G(0,_1,a;2) = —Liy(z/a), G(0,, dg; 2) = (—1)9S, 4(2/a), (C.1.2)

347
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where S, , is the Nielsen polylogarithm. More generally, if a; € {—1,0, 1}, then
G(ay, ... an;2) = (=1)" Hoy a0 (2), (C.1.3)

where w; is the number of a; equal to one.

Multiple polylogarithms are not all algebraically independent. One set of relations,
known as the shuffle relations, derive from the definition (C.1.1) in terms of iterated
integrals,

G(wy; z) G(wy; z) = Z G(w; z), (C.1.4)

wew mws
where wyITws is the set of mergers of the sequences w; and ws that preserve their rel-
ative ordering. Radford’s theorem [161] allows one to solve all of the identities (C.1.4)
simultaneously in terms of a restricted subset of multiple polylogarithms {G(l,; 2)},
where [,, is a Lyndon word. The Lyndon words are those words w such that for every
decomposition into two words w = {u,v}, the left word is smaller (based on some
ordering) than the right, i.e. u < v.

One may choose whichever ordering is convenient; for our purposes, we choose
an ordering so that zero is smallest. In this case, no zeros appear on the right of a
weight vector, except in the special case of the logarithm, G/(0; z) = In z. Therefore,
we may adopt a Lyndon basis and assume without loss of generality that a,, # 0 in
G(ay,...,a,, z). Referring to eq. (C.1.1), it is then possible to rescale all integration

variables by a common factor and obtain the following identity,
G(cay,...,cap;cz) =G(ay,...,a;2), ap, #0, c#0. (C.1.5)

Specializing to the case ¢ = 1/z, we see that the algebra of multiple polylogarithms
is spanned by Inz and G(ay,...,a,;1) where a, # 0. This observation allows us to
establish a one-to-one correspondence between multiple polylogarithms and particular

multiple nested sums, provided those sums converge. In particular, if for |z;| < 1 we

define,

ni ,.n2 Y3

. xl :L.Q .. .xk
Liy,omy (@1, - 2g) = E T T (C.1.6)

ni"'ng n,

np<ng<---<ng
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then,

Limy,.mg (21, .-, 2) = (1) G(0, ... ,o,i,...,o, ..,0, ;;1) . (C17)
o T o
Equation (C.1.7) is easily established by expanding the measure dt/(t—a;) in eq. (C.1.1)
in a series and integrating. A convergent series expansion for G(ay,...,a,;z) exists
if |z] < |a;| for all i; otherwise, the integral representation gives the proper analytic
continuation.
The relation to multiple sums endows the space of multiple polylogarithms with

some additional structure. In particular, the freedom to change summation variables

in the multiple sums allows one to establish stuffle or quasi-shuffle relations,
Lig, (F)Lim, () = Y _ Lia(2). (C.1.8)

The precise formula for 77 and 2" in terms of mq, ms, T, and ¥ is rather cumbersome,
but can be written explicitly; see, e.g., ref. [65]. For small depth, however, the stuffle

relations are quite simple. For example,
Li,(2)Lis(y) = Ligs(x,y) + Lipe(y, x) + Ligss(zy) - (C.1.9)

Beyond the shuffle and stuffle identities, there are additional relations between mul-
tiple polylogarithms with transformed arguments and weight vectors. For example,

one such class of identities follows from Holder convolution [65],

. 1 1
G(al,...,an;l):Z(—l)kG<1—ak,...,1—a1;1—1—9>G<ak+1,...,an;—> ,

k=0 p
(C.l.lO)

which is valid for any nonzero p whenever a; # 1 and a,, # 0.

One way to study identities among multiple polylogarithms is via the symbol,
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which is defined recursively as,

—_

n—

S(G(an_l, . ,al;an)) = [S(G(an_l, U/ PR A% an)) ® (a; — aj11)

i=1

_S(G(anfla cee 7di7 ceey a1 an)) ® (ai - aifl) )
(C.1.11)

While the symbol has the nice property that all relations result from simple algebraic
manipulations, it has the drawback that its kernel contains all transcendental con-
stants. To obtain information about these constants, one needs some more powerful

machinery.

C.1.2 The Hopf algebra of multiple polylogarithms

When equipped with the shuffle product (C.1.4), the space of multiple polylogarithms
forms an algebra, graded by weight. In ref. [162], it was shown how to further equip
the space with a coproduct so that it forms a bialgebra, and, moreover, with an
antipode so that it forms a Hopf algebra. The weight of the multiple polylogarithms
also defines a grading on the Hopf algebra. In the following we will let A denote the
Hopf algebra and A,, the weight-n subspace, so that,

A=PA,. (C.1.12)
n=0

The coproduct is defined most naturally on a slight variant of eq. (C.1.1),

dt

t—ap

An+4+1
I(ag;a, ... an; anyt) :/ I(ap;ay, ... ,an_1;t). (C.1.13)

ao

The two definitions differ only in the ordering of indices and the choice of basepoint.
However, as shown in ref. [64], it is possible to reexpress any multiple polylogarithm

with a generic basepoint as a sum of terms with basepoint zero. This manipulation
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is trivial at weight one, where we have,
I(ag; ar;az) = I1(0;a1;a9) — 1(0;a1;a0) = G(ag;az) — G(ag; ap) - (C.1.14)

To build up further such relations at higher weights, one must simply apply the
lower-weight identity to the integrand in eq. (C.1.13). In this way, it is easy to
convert between the two different notations for multiple polylogarithms.

The coproduct on multiple polylogarithms is given by [162],

A(I(CL(], A1y -y Qns an—l—l)) =
k (C.1.15)
Z I(ao; @iy, - - -5 3 A1) ® [Hl(az‘p; Qi 1y oy Qi g —15 aipﬂ)] -
0<i1 < <ip=n p=0
Strictly speaking, this definition is only valid when the a; are nonzero and distinct;
otherwise, one must introduce a regulator to avoid divergent integrals. We refer the
reader to refs. [64,162] for these technical details.
It is straightforward to check a number of important properties of the coproduct.

First, it respects the grading of A in the following sense. If GG,, € A,,, then,

AGn) = Y DpylG), (C.1.16)

pt+q=n

where A, , € A, ® A,. Next, if we extend multiplication to tensor products so that

it acts on each component separately,
(Cl,l & CLQ) . (bl (029 bg) = (a1 . b1> X (CLQ . bg) 5 (Cll?)
one can verify the compatibility of the product and the coproduct,

Aa-b) = Ala) - A(D). (C.1.18)
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Finally, the coproduct is coassociative,
(id® A)A = (A®id)A, (C.1.19)

meaning that one may iterate the coproduct in any order and always reach a unique
result.

This last property allows one to unambiguously define components of the coprod-
uct corresponding to all integer compositions of the weight. Consider G,, € A,, and a
particular integer composition of n, {ws,...,w}, such that w; > 0 and Zle w; = n.
The component of the coproduct corresponding to this composition, Ay, ., (Gr),
is defined as the unique element of the (k — 1)-fold iterated coproduct in the space
Ay, @ -+ ® A,,. For our purposes it is sufficient to consider & = 2, although other
components have been useful in other contexts.

Consider the weight-n function f(z,..., 2,) of m complex variables z1,. .., Z,

with symbol,

SUF™M) = D" Chinin @ D B (C.1.20)
i1 yeenriin
The monodromy of f(™ around the point z; = z is encoded by the first entry of the
symbol,
SMeeeo f™) = D Memey () iy G, ® -+ @ G, (C.1.21)

where M., ., (In ¢;,) is defined in eq. (4.6.15), and we have ignored higher powers of

(2mi) (see section 4.6). Similarly, derivatives act on the last entry of the symbol,

S(ot™) = X it © - ©0n (5 n) (©122)

Lyeeny in
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In the same way, the monodromy operator acts only the first component of the co-

product and the derivative operator only on the last component,

A (MZk:ZOf(n)) = (Mzk:ZO ® id) A(f(n)) )

i w) [ i - (C.1.23)
s () - (s L) g

One may trivially extend the definition of the coproduct to include odd ¢ values,

AGn+1) = 1@ Gns1 + Q1 ® 1 (C.1.24)

but including even ¢ values and factors of 7 is more subtle. It was argued in ref. [63,64]

that it is consistent to define,
ACon) = (@1 and Am)y=m®1. (C.1.25)

Equation (C.1.25) implies that powers of 7 are absent from all factors of the coproduct
except for the first one. Finally, we remark that the symbol may be recovered from
the maximally-iterated coproduct if we drop all factors of ,

1 mod 7. (C.1.26)

.....
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C.2 Complete basis of hexagon functions through

weight five

We present the basis of hexagon functions through weight five by providing their

{n — 1,1} coproduct components. For a hexagon function F' of weight n, we write,

3
Ap1i(F) =D FU@nu + F7 @In(l —u) + F¥ @ Iny; (C.2.1)

i=1
where the nine functions { i, F1=%_F%} are of weight n — 1 and completely specify

the {n—1, 1} component of the coproduct. They also specify all of the first derivatives
of F,

8_F
ou

Fv Flv 1 —y—v—w l—u—v+w
=— — + I e
v,Ww u l—wu ’LL\/Z (1—'LL)\/Z
l—u+v—w -
(I-—uwvVA (C.2.2)
=1l-uw)(l—v—w)F*—u(l—-v)F" —u(l —w)F"

Yv,Yw

Yo

OF
VAy,
Yy

—u(l —v—w)F" 4 uv F*" + uw F'™ + VA FY

The other derivatives can be obtained from the cyclic images of eq. (C.2.2). These
derivatives, in turn, define integral representations for the function. Generically, we
define the function F by (see eq. (4.4.10)),

dut 8F

)+ (w —w)uy| O1ny, (e, vy wp) , (C.2.3)

F<u7vvw) = F<1’1’1> N \/Z/lu vt[u(l —w

where,

(1 —v)u (1 — wy) o (1 — w)wu,
u(l —w) + (w—u)u’ Tl —w) + (w—w)uy

(C.2.4)

/Utzl—
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We choose F(1,1,1) = 0 for all functions except for the special case Q) (1,1,1) =
—6(4. Other integral representations of the function also exist, as discussed in sec-
tion 4.4.1.

We remark that the hexagon functions &g, G, N and O are totally symmetric
under exchange of all three arguments; Q) is symmetric under exchange of its first
two arguments; F} is symmetric under exchange of its last two arguments; and Hj,

J1 and K are symmetric under exchange of their first and third arguments.

C.2.1 &

The only parity-odd hexagon function of weight three is ®g. We may write the {2,1}

component of its coproduct as,

Doy (D6) = ¢ @ Inu+ Py @ Inv+ ¢F @ Inw
+ O @l —u)+ P @In(l —v) + DL @In(1 —w)  (C.2.5)
+ 0 @Iny, + P @Iny, + ¢4 @ Iny,,

where
P =PY =PV =P =Pl =Pl = 0. (C.2.6)

Furthermore, @ is totally symmetric, which implies,

(i)?év = &)gu(va w, U) ’ and &)gw = &)gu(w7 u, U) : (027)

The one independent function, ég“, may be identified with a finite, four-dimensional

one-loop hexagon integral, Q) which is parity-even and of weight two,

oY = QW (v, w,u) = —HY — H — HY —InvInw+2¢ . (C.2.8)
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c.2.2 Q®

Up to cyclic permutations, the only non-HPL parity-even hexagon function of weight

three is Q. We may write the {3, 1} component of its coproduct as,

Azy (9®) = 0P @ Inu+ Q@ @ Inv + QA" @ Inw
+ QO @ In(1 —u) + Q@ @ In(1 — v) + QP @ In(1 — w)
+ Qv @Iy, + QD% @Iny, + Q2% @ Iny,,
(C.2.9)

where the vanishing components are

Qv — @1-w — O@yw — (C.2.10)

9
and the nonvanishing components obey;,

QY = Q@I = Q@I 5 ) = QP (y s v)  and QP = Q@
(C.2.11)

The two independent functions are
QLCIE e — (C.2.12)

and

1 1
O = HY + HY | — HY| — 3 In(uw/v)(Hy + Hy —2¢) + 3 In(uv/w) Hy

1
+ §lnu Inv In(v/w).
(C.2.13)
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C.23 F

Up to cyclic permutations, the only parity-odd function of weight four is F;. We may

write the {4, 1} component of its coproduct as,

Ay (F)=F'®@nu+ FY @Inv+ F’ ® Inw
+F T eh(l-uw)+ A eh(l-v)+ F Y eh(l-w)  (C2.14)
+ F" ®@Iny, + F" ®Iny, + F{" @ Iny,,

where
Fy* =F'(vew) and F'=F/=F'=F""=F™"=0. (C215)

Of the three independent functions, one is parity odd, F}'™* = ®g, and two are parity

even,
FV" = —2HY 4 2(; (C.2.16)

and
F* = —2Hy — 21y, +nw (H — Hy — HY +26) +2;. (C.2.17)

In ref. [71] the pure function entering the parity-odd part of the six-point NMHV

ratio function was determined to be

1

V= 8(VX + 1), (C.2.18)

where Vy + f satisfied an integral of the form (4.4.10) with

O(Vx + f) >
Ty, Zwow) (C.2.19)

1
zz[H;_Hgl—lnu(H;Jng—z@—§1n2w)] ~ (e w).

This integral can be expressed in terms of F; and (fg as,

Vx + f = —Fi(u,v,w) + F(w,u,v) + In(u/w) $g(u, v, w). (C.2.20)
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Cc24 G

The {4, 1} component of the coproduct of the parity-odd weight five function G' can

be written as,

A (G)=G"@hu+G" @nv+G’@nw
+G" Il —uw)+G7"@In(l —v) + G @In(l —w)  (C.2.21)
+G""@Iny, + G ®Iny, + G ®Iny,, ,
where

G'=G"=G"=G"=G""=G""=0. (C.2.22)

Furthermore, G is totally symmetric. In particular,
G¥ (u,v,w) = G (v,w,u), and G (u,v,w)=G"(w,u,v). (C.2.23)
Therefore, it suffices to specify the single independent function, G¥*,

1 2 1, (C.2.24)
+§<H§+H§+H§”+1nvlnw> —5111 vin®w —4¢,.

C.2.5 H;

The function Hq(u,v,w) is parity-odd and has weight five. We may write the {4, 1}

component of its coproduct as,

Ayq (Hy(u,v,w)) = ]:I}‘ ®Inu+ ﬁf ®Inwv+ I:If’ ® Inw
+H 7 @In(l —u)+ H 7" ®@In(l —v) + H ™ @ In(l — w)
+ H{* ®Iny, + H" @ Iny, + H{" @ Iny,,,
(C.2.25)
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where we put a hat on f]f, etc., to avoid confusion with the HPLs with argument

1 — u. The independent functions are H*, HY and HY,

N 1 ~
H = ——(Fl(u,v,w) —lnuCI>6> — (u < w),

1
) ! 1 1
e — [5(9@(@, wy) + 0w, w,0)) + o (HY + HY) — 5 (Hy — H,)

3 1 1 1
- 5([—];’1’1 + Hy ) — (lnu + 5 ln(w/v))]—[g — élnvﬂg - iln(w/v)Hg’l

1 1 1
= Inv Hy, — Z((H;)z + (H3)?) + 2 (ln2 u— ln2(w/v)>H§‘

1 1
- glnzuan(w/v) — (o (H; + §1n2 u) + 3C4} + (u ¢ w),

H" = QP (w,u,v).
(C.2.26)

Of the remaining functions, two vanish, H L= ]:Ill_” = 0, and the others are simply

related,

B = Y == < and A= A (©.2.27)

C.2.6 J

We may write the {4,1} component of the coproduct of the parity-odd weight-five

function Jy(u, v, w) as,

Ay (Si(u,v,w)) =J@Inu+ J) @Inv + J @ Inw
+J7@In(l —u) + J7 @ In(l —v) + J @ In(1 — w)
+J@Iny, + J" @Iny, + J7* @ny,,
(C.2.28)
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where the independent functions are Ji*, J/*, and J}",

Ji = [— Fi(u,v,w) —i—lnui)ﬁ] — (u <> w),
Jo = [—9(2)(10,u,v)—6H}j+2(H;l—H§’71+H§7171+2(2 lnu—ln(w/v))H§‘>+%(H§)2
+ 2In(w/v)Hy |, —Inu (Inu — 2In(w/v)) Hy — %1n2(u/w)H2” — %lnvlngu
+ %lnzuanw + C2(8H§‘ + 2HY 4 In*(u/w) + 4lnulnv> —14¢G+ (u e w)]
— In(u/w) <4H§’71 +2Inv Hy — élnvlrﬂ(u/w)) :
= [— A(Hy — Hyy + Hy,y o+ Hyyy — o (H — Hy,)) = 210w Hy
+ <H§ —2Inu ln(u/w)> Hj — %lnu Inw <1n2(u/w) + %lnu lnw)
+8C <H§‘+%ln2u> —8@] +(u e w) .
(C.2.29)

Of the remaining functions, two vanish, J¢ = J}7¥ = 0, and the others are simply

related,

JiTr =T = g = T and JP = JV(u > w). (C.2.30)

C.2.7 K,

The final parity-odd function of weight five is K (u, v, w). We may write the {4,1}

component of its coproduct as,

Agq (K (u,v,w) =K!'@hu+ K @Inv+ K’ ® lnw
+ K7 @n(l —u)+ K" ®In(l —v) + K7 ®@In(1 — w)
+ K" ®@Iny, + K" @ Iny, + K{* @ lny,,,
(C.2.31)
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where the independent functions are K}, K{*, and K7,
K = —Fy(w,u,v) +Inw dg
K ==2 (H§,+H§ +Hy,) — 2In(v/w)H§ +2Inu Hy +2Inv Hy +2 In(uw) H |
1
5 (Hy + Hy + Hy 26,)° + (Inun(v/w) + Invnw) (HY + H —20,)
— (Inuln(vw) — Invlnw)HY —Inulnvln®w — 2 G In(uw/v) + (4,

K" = [— 4H3 ) — 2In(u/w) Hy + 2In(uw) Hy; + In?u HY
u 1 2 v 1 2
+2(H2 +5n u) <H2 ~5n w—2C2) 3¢+ (u o w).
(C.2.32)

Of the remaining functions, two vanish, K¥ = K; =¥ = 0, and the others are simply

related,

K=Kl Kf =Kl = Kiuorw) ad KP = Kuo u).
(C.2.33)

C.2.8 M,

The {4,1} component of the coproduct of the parity-even weight-five function M;

can be written as,

Ay (M) =M!@nu+ M @Inv+ M ®Inw
+ M7 @n(l—u)+ M7 (1l —v)+ M7 @In(l —w) (C.2.34)
+ M @Iny, + M{* @ Iny, + M{* @ Iny, ,

where,

MIT =ML and M=M= MU= MP S MP =00 (0239
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The three independent functions consist of one parity-odd function,
MY = —Fi(u,v,w), (C.2.36)
and two parity even functions,

Ml = [—9(2)(u,v,w)+21nv <H§L+H§,1)+21nuH§’7l
1 1
_ (H;—ilnz u) <H§+§lnzu> +Inwu Inwv (H; + HJ + HY — 2C2>
2w = (0.6 w)] + 0% 0,0, 0) + 2007

1 |
+2HY, — 6HY, | — 2Inw <H§”+H;‘jl> _ (H; . §1an> (H;u N §1n2w>
(1) + (WP(0/w) = 4G) HE + 26 Inu+ 6y,

(C.2.37)

and,

MY = —2 (H:?,l — Hj, — Hy, + In(uww /w) (H;f — C3) +Inw Hy; +1Inv H;‘h)

1 2 1
—3 (H;‘—Hg—H;”—lnvlnw+2C2> +§ln2vln2w+5g4.

(C.2.38)

C.29 N

The {4, 1} component of the coproduct of the parity-even weight-five function N can

be written as,

Ay (N)=N*@Inu+N'@Inv+NY®@Ilnw
+ N7 @In(l —u) + N7 @In(l —v) + N'""*®@In(l —w)  (C.2.39)
+ N ®Iny, + N @ Iny, + N ® Iny, ,
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where,

N'%=_-N“ N''=-NY N'%=_-N" —and NY =N¥% =N¥ =0.

(C.2.40)
Furthermore, N is totally symmetric. In particular,
NY(u,v,w) = N*(v,w,u), and N“(u,v,w)= N"(w,u,v). (C.2.41)
Therefore, it suffices to specify the single independent function, N*,
N¥ — {Q@) (v, w,u) + 2HY + 2Hy | — 6HY, | — 2Inv (Hg; + H;l) —(HD)?
(C.2.42)

1 1
- <H§’+§ln2v> <H§”+§ln2w> —|—6C4} + (v > w).

C.2.10 O

The {4,1} component of the coproduct of the parity-even weight-five function O can

be written as,

A1 (0)=0"@Inu+0"®@Inv+ 0" ®@Inw
+0""@In(l —u) + 0" @In(l —v) + O ®@In(l —w)  (C.2.43)
+ 0" ®@Iny, + O ®Iny, + O QK Iny,,

where
O"=0"=0"=0% =0% =0% =0. (C.2.44)

Furthermore, O is totally symmetric. In particular,

O (u,v,w) = O *“(v,w,u), and O “(u,v,w)=O0""(w,u,v). (C.2.45)
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Therefore, it suffices to specify the single independent function, O,

1
O = | — Q@ (u,v,w) + 203, + (3Inu —2Inw) Hy; +2Inv Hy ) — 5([—[5)2
1 1
+Inu Inv(Hy + H)) 4+ In(u/v) Inw Hy + §ln2vH§‘ — §ln2wH§
1
+ ZIHQU Inv + (v < w)} + Q@ (v, w,u) — 2HY HY —Inv Inw HY

1
- ZlDQU In? w4 2 ¢, (HS + HY —Inu In(vw) + Inwv lnw> — 6.
(C.2.46)

C.2.11 Q

The {4,1} component of the coproduct of the parity-even weight-five function Qe

can be written as,

As1 (Qep) = QY @Inu+ QY @ Inv+ Q¥ @ Inw
1—u 1—v 1—w
+Qp " ®@In(l —u) + Q" @In(l —v) + Q¥ @In(1l —w)  (C.2.47)
+ Q% @Iny, + Q% @Iny, + Q% @1Iny,,

where,
1-v _ l-w _ _ Hw Yw — (Y and Qu — Ol-v — OYu — 0
ep ep? ep ep ep = Xep ep ep ~ Wep = Y-

(C.2.48)

The three independent functions consist of one parity-odd function, %, which is

fairly simple,

1 ~
= Gl Fi(u,v,w) + Fy(v,w,u) — 2 Fy(w,u,v) + (Inu — 3 Inv)Pg | ,



APPENDIX C. HEXAGON FUNCTIONS AND R{” 365

and two parity-even functions, ()¢, and Qg

eps Which are complicated by the presence

of a large number of HPLs,

o = 3129 (u,v,w) + 116Q (v, w,u) + 312H“+ 332H”—|— 116Hi" 332H31f,1
_ 3%]—];’171 694]-[;’11 136[-];”11 + — % Inu Hs — EIHUH;’U — 3—32111u[1f§”1
1161nuH;Hl+3121nUH§_%lang_3121an;’1+%1an;1
—3—121anu 32 lan”+3ilan;‘1+3ilan§1—Elan;’jl
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C.2.12 Relation involving M; and Qe

There is one linear relation between the six permutations of M; and the six per-

mutations of Q)ep. The linear combination involves the totally antisymmetric linear

combination of the S3 permutations of both M; and Q. It can be written as,

4
{(Ml(u, v,w)—%@ep(u,v,w)—i—Zlan(Q)(u,v, W)+ Erat (u, v)) —(u > v)|+eyel. =0,

(C.2.51)

where E,.(u,v) is constructed purely from ordinary HPLs,

1 1 1
Erat(u,v) = (H; + = In? U) (§(H§f + Hyy) + —InuHy — = In’ u)

2 3
CAH (zﬂgl +1nuH;)

3 2

1
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Because of this relation, the images of M; and (), under the S3 symmetry group
together provide only 11, not 12, of the 13 non-HPL basis functions for H3. The

totally symmetric functions N and O provide the remaining two basis elements.
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C.3 Coproduct of R,

We may write the {5, 1} component of the coproduct of the parity-even weight six-

function R, as,

Asy (Rep) = Ry, @Inu+ R, @Ino + Ry @ Inw
1-u 1—v 1—w
+Ry"@n(l—u)+ Ry @In(l—v)+ Ry ®@n(l —w)  (C.3.1)
+ R%: @ Iny, + RY @ Iny, + RYY @ Iny,,

where,
R’ = —REV = —RE“(u s v) = R (u > v),
P P ol 1) ol ) (C.3.2)
Ry =Ry, and R =R, =Rl =0.
The two independent functions may be written as,
1
Ry = E{—Hl(u,v,w) — 3 Hy(v,w,u) — Hy(w,u,v)
3
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4 (C.3.3)
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where,
Rgp rat
1 u u v w 5 u 11 v w u
3 24H; 14(H4,1_H4,1)_16H4,1+§H3,2+?H3,2_8H3,2+42H3,1,1

v w 13 u 15 v w u v w
H2AH O o gt Hypy H2 5, =30 ;=36 H,, 1 +24H5, ),

15 w Lo 1 1 31 N Ow (e O rw
+<7H2,1—5H3 +o5Hy— g Hy — 5 H; —§H2,1>H2 +<—§H3 oty —5Hs,
7 7 ) 17
—3H§+4H§‘71—14H§‘)H§—I—(—6H§‘—§H§,1+4H§”+§H§+€H§1)H§“
u v u v w 57 u v w 1 u

+(_14H4 +16H, +19H3,1_2(H3,1+H3,1)_?H2,1,1_24(H2,1,1_H2,1,1)+1(H2)2

5 3 17
——(H§)2+—(H§’)2+6H§‘H§—EH;‘H;”—ZLH;’H;“) Inu+ (—10H1—8(H§“+H§)

2 2
u v w u 3 v 11 u 19 v 1 w
—AH, +3HE, +2Hy +6 3 — S Hy 5 (H) + - (HE) 45 ()

17 7
+?H§‘H§+4H§H§”+§H§H§”> Ino+(10(Hy + HY)+8HY +6 Hy | —8HY , +2H,

u w u v w (7 v 17 u w 1 v w
_6(H2,1,1+H2,1,1>_6(H2)2_5(H2)2_2(H2 )2_8H2 Hy——HyHy —-HyH, > Inw

3 3

1 3 5 9] . 35 131
(5113 + S H+ 2 H] —6H2,1—ZH2’1+€H271> In? ut (—7H3 + Hy+ 2 H;

B S AP U U I |
+AHY, +2H], — 6H21>120+<3H+6H ~TH S H

o+ (GHy —14Hy —2Hy +4HS, ~2Hy, ) Inwlno— 2(3Hy — HY + Hy — HY, ) Inulnw

ngl) In? w

1 .5 .3
< —A0H}+6HY —2Hy | +AH - zngl) lnvlnw+<ZH§—§H§+ZH§“> In® u
T 1 1 3
+( H”+H“’) '+ (H3+Hy+4HY) In*w— <§H§”+H§—ZH§> Inuln v
( HY+6HY — H“’) 1nu1n2v+(—§H;U+H;—H§> In? uln w
11 u 1 v w 2 1 w v 2
—|—(——H2 —§H2 —H ) Inuln w—l—(—éﬂ2 +2H2> In“vinw

1
4
+ (-2}[;—31{;"—5}15) InvIn? w—2(He+HY — HY) Inulnolnw
3.3 2 3.9 3 2 2 7. 9 2 7 2 2
+§ln uln w—Zln uwln® w+In“uln vlnw—zln uwlnvln w—z—Llnuln vIn®w

1
+21nu1nvln3w—21n3uln2v+g1n2u1n3v+§ln3vln2w—§lln2vln3w

(C.3.5)



APPENDIX C. HEXAGON FUNCTIONS AND R{” 370

33 9 7
G| o H L HY+ 2H + Hgy —1THS y+ 24y, + (14Hy + 7 Hy —10H3 ) Inw

47 1 1
+ (—6H§”—18H§"—ZH§> v+ (SHy +GHY +20H3 ) nw— 0wt I v
AP w+2In’ulnv—12Inuln®v—2lnwin®*u+2Inuln®>w—4In?vInw
+61nwvIn? w+12lnulnv1nw]
3 1
+(3 [7H§‘—5H§—2H§”+§ lnzu—§ In® v—In? w}

+(4 [14111 u+50Inv—441In w] }



Bibliography

[1] Z. Bern, L. J. Dixon, D. A. Kosower, R. Roiban, M. Spradlin, C. Vergu and
A. Volovich, Phys. Rev. D 78 (2008) 045007 [arXiv:0803.1465 [hep-th]];

[2] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, “Hexagon
Wilson loop = six-gluon MHV amplitude,” Nucl. Phys. B 815, 142 (2009)
[arXiv:0803.1466 |[hep-th]].

[3] L. F. Alday and J. Maldacena, “Comments on gluon scattering amplitudes via
AdS/CFT,” JHEP 0711, 068 (2007) [arXiv:0710.1060 [hep-th]].

[4] J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, “The hexagon
Wilson loop and the BDS ansatz for the six-gluon amplitude,” Phys. Lett. B
662, 456 (2008) [arXiv:0712.4138 [hep-th]].

[5] J. Bartels, L. N. Lipatov and A. Sabio Vera, “BFKL pomeron, Reggeized
gluons and Bern-Dixon-Smirnov amplitudes,” Phys. Rev. D 80 (2009) 045002
larXiv:0802.2065 [hep-th]].

6] V. Del Duca, C. Duhr and V. A. Smirnov, JHEP 1003, 099 (2010)
[arXiv:0911.5332 [hep-ph]];

[7] V. Del Duca, C. Duhr and V. A. Smirnov, “The two-loop hexagon Wilson loop
in A/ =4 SYM,” JHEP 1005, 084 (2010) [arXiv:1003.1702 [hep-th]].

[8] J. Bartels, L. N. Lipatov and A. Sabio Vera, “N = 4 supersymmetric Yang Mills
scattering amplitudes at high energies: the Regge cut contribution,” Eur. Phys.
J. C 65 (2010) 587 [arXiv:0807.0894 [hep-th]].

371



BIBLIOGRAPHY 372

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[17]

R. M. Schabinger, “The imaginary part of the N = 4 super-Yang-Mills two-loop
six-point MHV Amplitude in multi-Regge kinematics,” JHEP 0911, 108 (2009)
[arXiv:0910.3933 [hep-th]].

L. N. Lipatov and A. Prygarin, “Mandelstam cuts and light-like Wilson loops in
N =4 SUSY,” Phys. Rev. D 83 (2011) 045020 [arXiv:1008.1016 [hep-th]].

J. Bartels, J. Kotanski and V. Schomerus, “Excited Hexagon Wilson Loops for
Strongly Coupled N=4 SYM,” JHEP 1101, 096 (2011) [arXiv:1009.3938 [hep-
th]].

L. N. Lipatov and A. Prygarin, “BFKL approach and six-particle MHV
amplitude in A/ = 4 super Yang-Mills,” Phys. Rev. D 83 (2011) 125001
larXiv:1011.2673 [hep-th]].

J. Bartels, L. N. Lipatov and A. Prygarin, “MHV amplitude for 3 — 3 gluon
scattering in Regge limit,” Phys. Lett. B 705 (2011) 507 [arXiv:1012.3178 [hep-
th]].

L. J. Dixon, J. M. Drummond and J. M. Henn, “Bootstrapping the three-loop
hexagon,” JHEP 1111 (2011) 023 [arXiv:1108.4461 [hep-th]].

V. S. Fadin and L. N. Lipatov, “BFKL equation for the adjoint representation of
the gauge group in the next-to-leading approximation at N = 4 SUSY,” Phys.
Lett. B 706 (2012) 470 [arXiv:1111.0782 [hep-th]].

A. Prygarin, M. Spradlin, C. Vergu and A. Volovich, “All two-loop MHV sm-
plitudes in multi-Regge kinematics from applied symbology,” Phys. Rev. D 85,
085019 (2012) [arXiv:1112.6365 [hep-th]].

J. Bartels, A. Kormilitzin, L. N. Lipatov and A. Prygarin, “BFKL approach
and 2 — 5 MHV amplitude,” Phys. Rev. D 86, 065026 (2012) [arXiv:1112.6366
[hep-th]].



BIBLIOGRAPHY 373

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

L. Lipatov, A. Prygarin and H. J. Schnitzer, “The multi-Regge limit of NMHV
amplitudes in N = 4 SYM theory,” JHEP 1301, 068 (2013) [arXiv:1205.0186
[hep-th]].

L. J. Dixon, C. Duhr and J. Pennington, “Single-valued harmonic polylogarithms
and the multi-Regge limit,” JHEP 1210, 074 (2012) [arXiv:1207.0186 [hep-th]].

J. Bartels, V. Schomerus and M. Sprenger, “Multi-Regge Limit of the n-Gluon
Bubble Ansatz,” arXiv:1207.4204 [hep-th].

L. F. Alday and J. M. Maldacena, “Gluon scattering amplitudes at strong cou-
pling,” JHEP 0706, 064 (2007) [arXiv:0705.0303 [hep-th]].

J. M. Drummond, J. Henn, V. A. Smirnov and E. Sokatchev, “Magic identities
for conformal four-point integrals,” JHEP 0701, 064 (2007) [hep-th/0607160].

Z. Bern, M. Czakon, L. J. Dixon, D. A. Kosower and V. A. Smirnov, “The four-
loop planar amplitude and cusp anomalous dimension in maximally supersym-
metric Yang-Mills theory,” Phys. Rev. D 75, 085010 (2007) [hep-th/0610248].

J. M. Drummond, G. P. Korchemsky and E. Sokatchev, “Conformal properties of
four-gluon planar amplitudes and Wilson loops,” Nucl. Phys. B 795, 385 (2008)
[arXiv:0707.0243 [hep-th]].

A. Brandhuber, P. Heslop and G. Travaglini, “MHV amplitudes in A/ = 4 super
Yang-Mills and Wilson loops,” Nucl. Phys. B 794, 231 (2008) [arXiv:0707.1153
[hep-th]].

J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, “Conformal
Ward identities for Wilson loops and a test of the duality with gluon amplitudes,”
Nucl. Phys. B 826, 337 (2010) [arXiv:0712.1223 [hep-th]].

J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, “Dual super-
conformal symmetry of scattering amplitudes in N=4 super-Yang-Mills theory,”
Nucl. Phys. B 828 (2010) 317 [arXiv:0807.1095 [hep-th]].



BIBLIOGRAPHY 374

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

V. P. Nair, “A Current Algebra for Some Gauge Theory Amplitudes,” Phys.
Lett. B 214, 215 (19838).

N. Arkani-Hamed, F. Cachazo and J. Kaplan, “What is the simplest quantum
field theory?,” JHEP 1009, 016 (2010) [arXiv:0808.1446 [hep-th]].

A. Brandhuber, P. Heslop and G. Travaglini, “A note on dual superconformal
symmetry of the N' = 4 super Yang-Mills S-matrix,” Phys. Rev. D 78 (2008)
125005 [arXiv:0807.4097 [hep-th]].

H. Elvang, D. Z. Freedman and M. Kiermaier, “Solution to the Ward identities
for superamplitudes,” JHEP 1010, 103 (2010) [arXiv:0911.3169 [hep-th]].

Z. Bern, L. J. Dixon and V. A. Smirnov, “Iteration of planar amplitudes in
maximally supersymmetric Yang-Mills theory at three loops and beyond,” Phys.
Rev. D 72, 085001 (2005) [hep-th/0505205].

A. B. Goncharov, “Multiple polylogarithms, cyclotomy and modular complexes,”
Math. Research Letters 5 (1998) 497 [arXiv:1105.2076 [math.AG]].

K. T. Chen, “Iterated path integrals,” Bull. Amer. Math. Soc. 83 (1977) 831.

F. Brown, “Multiple zeta values and periods of moduli spaces M ,,” Annales
scientifiques de 'ENS 42, fascicule 3, 371 (2009) [math/0606419].

A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, “Classical Polyloga-
rithms for Amplitudes and Wilson Loops,” Phys. Rev. Lett. 105 (2010) 151605
[arXiv:1006.5703 [hep-th]].

C. Duhr, H. Gangl and J. R. Rhodes, “From polygons and symbols to polyloga-
rithmic functions,” JHEP 1210, 075 (2012) [arXiv:1110.0458 [math-ph]].

L. F. Alday, D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, “An Operator
Product Expansion for Polygonal null Wilson Loops,” JHEP 1104 (2011) 088
[arXiv:1006.2788 [hep-th]].



BIBLIOGRAPHY 375

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, “Bootstrapping Null Polygon
Wilson Loops,” JHEP 1103 (2011) 092 [arXiv:1010.5009 [hep-th]].

D. Gaiotto, J. Maldacena, A. Sever and P. Vieira, “Pulling the straps of poly-
gons,” JHEP 1112 (2011) 011 [arXiv:1102.0062 [hep-th]].

J. M. Drummond, J. M. Henn and J. Plefka, “Yangian symmetry of scatter-
ing amplitudes in A/ = 4 super Yang-Mills theory,” JHEP 0905, 046 (2009)
[arXiv:0902.2987 [hep-th].

T. Bargheer, N. Beisert, W. Galleas, F. Loebbert and T. McLoughlin, “Exacting
N = 4 superconformal symmetry,” JHEP 0911, 056 (2009) [arXiv:0905.3738
[hep-th]].

N. Beisert, J. Henn, T. McLoughlin and J. Plefka, “One-loop superconformal
and Yangian symmetries of scattering amplitudes in N' = 4 super Yang-Mills,”
JHEP 1004, 085 (2010) [arXiv:1002.1733 [hep-th]].

M. Bullimore and D. Skinner, “Descent Equations for Superamplitudes,”
arXiv:1112.1056 [hep-th].

S. Caron-Huot and S. He, “Jumpstarting the All-Loop S-Matrix of Planar N=4
Super Yang-Mills,” JHEP 1207 (2012) 174 [arXiv:1112.1060 [hep-th]].

S. Caron-Huot, “Superconformal symmetry and two-loop amplitudes in planar
N=4 super Yang-Mills,” JHEP 1112 (2011) 066 [arXiv:1105.5606 [hep-th]].

F. C. S. Brown, “Single-valued multiple polylogarithms in one variable,” C. R.
Acad. Sci. Paris, Ser. I 338 (2004) 527.

E. Remiddi and J. A. M. Vermaseren, “Harmonic polylogarithms,” Int. J. Mod.
Phys. A 15, 725 (2000) [hep-ph/9905237].

G. P. Korchemsky and A. Sabio Vera, private communications.

L. Euler, Novi Comm. Acad. Sci. Petropol. 20, 140 (1775).



BIBLIOGRAPHY 376

[51]

[52]

[53]

[54]

[55]

D. Zagier, “Values of zeta functions and their applications,” in First Euro-
pean Congress of Mathematics (Paris, 1992), Vol. II, A. Joseph et. al. (eds.),
Birkhauser, Basel, 1994, pp. 497-512.

J. A. M. Vermaseren, “Harmonic sums, Mellin transforms and integrals,”
Int. J. Mod. Phys. A14 (1999) 2037 [hep-ph/9806280].

J. Bliimlein and S. Kurth, “Harmonic sums and Mellin transforms up to two
loop order,” Phys. Rev. D 60, 014018 (1999) [hep-ph/9810241].

J. Bliimlein, “Structural relations of harmonic sums and Mellin transforms up
to weight w = 5,” Comput. Phys. Commun. 180 (2009) 2218 [arXiv:0901.3106

[hep-ph]].

J. Bliimlein, “Structural relations of harmonic sums and Mellin transforms at
weight w = 6,” in proceedings of “Motives, Quantum Field Theory, and Pseu-
dodifferential Operators”, Clay Mathematics Proceedings 12 (2010) 167, eds.
A. Carey et al. [arXiv:0901.0837 [math-phl]].

L. J. Dixon, C. Duhr and J. Pennington, “Meditationes de quatuor loop reliquum

functio”, to appear.

N. Beisert, B. Eden and M. Staudacher, “Transcendentality and crossing,” J.
Stat. Mech. 0701, P01021 (2007) [hep-th/0610251].

J. Bliimlein, “Algebraic relations between harmonic sums and associated quan-
tities,” Comput. Phys. Commun. 159 (2004) 19 [hep-ph/0311046].

D. Zagier, “The Bloch-Wigner-Ramakrishnan polylogarithm function,” Math.
Ann. 286, 613 (1990).

S. Bloch, “Higher regulators, algebraic K-theory, and zeta functions of elliptic

curves,” Irvine lecture notes, 1977.

S. Moch, P. Uwer and S. Weinzierl, J. Math. Phys. 43 (2002) 3363 [hep-
ph/0110083].



BIBLIOGRAPHY 377

[62]

[63]

[64]

[65]

[66]

[71]

[72]

A.B. Goncharov, “Galois symmetries of fundamental groupoids and noncommu-
tative geometry”, Duke Math. J. 128, no.2 (2005), 209 [arXiv:math/0208144].

F. C. S. Brown, “On the decomposition of motivic multiple zeta values,”
arXiv:1102.1310 [math.NT];

C. Duhr, “Hopf algebras, coproducts and symbols: an application to Higgs boson
amplitudes,” JHEP 1208 (2012) 043 [arXiv:1203.0454 [hep-ph]].

J. M. Borwein, D. M. Bradley, D. J. Broadhurst and P. Lisonék, “Special values of
multiple polylogarithms,” Trans. Am. Math. Soc. 353, 907 (2001) [math/9910045

[math-cal].

C. W. Bauer, A. Frink and R. Kreckel, “Introduction to the GiNaC framework
for symbolic computation within the C++ programming language,” ¢s/0004015

[cs-sc].

J. Vollinga and S. Weinzierl, “Numerical evaluation of multiple polylogarithms,”
Comput. Phys. Commun. 167, 177 (2005) [hep-ph/0410259].

D. Maitre, Comput. Phys. Commun. 174, 222 (2006) [hep-ph/0507152];
D. Maitre, Comput. Phys. Commun. 183 (2012) 846 [hep-ph/0703052].

D. Maitre, “Extension of HPL to complex arguments,” Comput. Phys. Commun.
183 (2012) 846 [hep-ph/0703052].

J. Bartels, L. N. Lipatov and A. Prygarin, “Collinear and Regge behavior of
2 — 4 MHV amplitude in N/ = 4 super Yang-Mills theory,” arXiv:1104.4709
[hep-th].

L. J. Dixon, J. M. Drummond and J. M. Henn, “Analytic result for the two-
loop six-point NMHV amplitude in N=4 super Yang-Mills theory,” JHEP 1201
(2012) 024 [arXiv:1111.1704 [hep-th]].

L. N. Lipatov, “Reggeization of the vector meson and the vacuum singularity
in nonabelian gauge theories,” Sov. J. Nucl. Phys. 23 (1976) 338 [Yad. Fiz. 23
(1976) 642].



BIBLIOGRAPHY 378

(73]

[74]

[75]

[76]

[77]

(78]

E. A. Kuraev, L. N. Lipatov and V. S. Fadin, “Multi-Reggeon processes in the
Yang-Mills theory,” Sov. Phys. JETP 44 (1976) 443 [Zh. Eksp. Teor. Fiz. 71
(1976) 840].

I. 1. Balitsky and L. N. Lipatov, “The Pomeranchuk singularity in quantum
chromodynamics,” Sov. J. Nucl. Phys. 28 (1978) 822 [Yad. Fiz. 28 (1978) 1597].

V. S. Fadin, R. Fiore, M. G. Kozlov and A. V. Reznichenko, “Proof of the multi-
Regge form of QCD amplitudes with gluon exchanges in the NLA,” Phys. Lett.
B 639 (2006) 74 [hep-ph/0602006].

Z. Bern, L. J. Dixon, D. C. Dunbar and D. A. Kosower, Nucl. Phys. B 425, 217
(1994) [hep-ph/9403226]; Nucl. Phys. B 435, 59 (1995) [hep-ph/9409265].

R. Britto, F. Cachazo and B. Feng, “New recursion relations for tree amplitudes
of gluons,” Nucl. Phys. B 715, 499 (2005) [hep-th/0412308].

R. Britto, F. Cachazo, B. Feng and E. Witten, “Direct proof of tree-level re-
cursion relation in Yang-Mills theory,” Phys. Rev. Lett. 94, 181602 (2005) [hep-
th/0501052].

N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, S. Caron-Huot and J. Trnka,
JHEP 1101 (2011) 041 [arXiv:1008.2958 [hep-th]].

N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo and J. Trnka, “Local Integrals
for Planar Scattering Amplitudes,” JHEP 1206, 125 (2012) [arXiv:1012.6032
[hep-th]].

Z. Bern, J. J. M. Carrasco and H. Johansson, “New Relations for Gauge-Theory
Amplitudes,” Phys. Rev. D 78, 085011 (2008) [arXiv:0805.3993 [hep-ph]].

Z. Bern, J. J. M. Carrasco and H. Johansson, “Perturbative Quantum Grav-
ity as a Double Copy of Gauge Theory,” Phys. Rev. Lett. 105, 061602 (2010)
[arXiv:1004.0476 [hep-th]].



BIBLIOGRAPHY 379

[83]

[84]

[85]

[36]

[87]

[90]

J. M. Drummond, J. Henn, G. P. Korchemsky and E. Sokatchev, Nucl. Phys. B
795 (2008) 52 [arXiv:0709.2368 [hep-th]];

R. C. Brower, H. Nastase, H. J. Schnitzer and C.-I. Tan, “Implications of multi-
Regge limits for the Bern-Dixon-Smirnov conjecture,” Nucl. Phys. B 814, 293
(2009) [arXiv:0801.3891 [hep-th]].

R. C. Brower, H. Nastase, H. J. Schnitzer and C.-I. Tan, “Analyticity for Multi-
Regge Limits of the Bern-Dixon-Smirnov Amplitudes,” Nucl. Phys. B 822, 301
(2009) [arXiv:0809.1632 [hep-th]].

V. Del Duca, C. Duhr and E. W. N. Glover, “Iterated amplitudes in the high-
energy limit,” JHEP 0812, 097 (2008) [arXiv:0809.1822 [hep-th]].

V. Del Duca, “Equivalence of the Parke-Taylor and the Fadin-Kuraev-Lipatov
amplitudes in the high-energy limit,” Phys. Rev. D 52, 1527 (1995) [hep-
ph/9503340].

M. T. Grisaru, M. Rocek and W. Siegel, Phys. Rev. Lett. 45 (1980) 1063;
W. E. Caswell and D. Zanon, Phys. Lett. B100 (1981) 152; P. S. Howe,
K. S. Stelle and P. K. Townsend, Nucl. Phys. B214 (1983) 519; S. Mandelstam,
Proc. 21st Int. Conf. on high energy physics, eds. P. Petiau and M. Porneuf,
J. Phys. 12 (1982) 326, Nucl. Phys. B213 (1983) 149; L. Brink, O. Lindgren and
B. E. W. Nilsson, Nucl. Phys. B212 (1983) 401; Phys. Lett. B123 (1983) 323,
P. S. Howe, K. S. Stelle and P. K. Townsend, Nucl. Phys. B236 (1984) 125.

J. A. Minahan and K. Zarembo, JHEP 0303 (2003) 013 [hep-th/0212208];
N. Beisert, V. Dippel and M. Staudacher, JHEP 0407 (2004) 075 [hep-
th/0405001]; N. Beisert and M. Staudacher, Nucl. Phys. B727 (2005) [hep-
£1/0504190].

J. Maldacena, Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200]; S. Gub-
ser, I. Klebanov and A. Polyakov, Phys. Lett. B428 (1998) 105 [hep-th/9802109];
E. Witten, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150].



BIBLIOGRAPHY 380

[91]

[92]

[94]

[95]

[96]

[97]

G. P. Korchemsky and A. V. Radyushkin, Phys. Lett. B171 (1986) 459;
S. V. Ivanov, G. P. Korchemsky and A. V. Radyushkin, Yad. Fiz. 44 (1986) 230
[Sov. J. Nucl. Phys. 44 (1986) 145]; G. P. Korchemsky and A. V.Radyushkin,
Sov. J. Nucl. Phys. 45 (1987) 127 [Yad. Fiz. 45 (1987) 198]; Sov. J. Nucl. Phys.
45 (1987) 910 [Yad. Fiz. 45 (1987) 1466]; Nucl. Phys. B283 (1987) 342; G. P. Ko-
rchemsky and G. Marchesini, Nucl. Phys. B 406 (1993) 225 [hep-ph/9210281].

L. F. Alday, B. Eden, G. P. Korchemsky, J. Maldacena and E. Sokatchev, JHEP
1109 (2011) 123 [arXiv:1007.3243 [hep-th]]; B. Eden, G. P. Korchemsky and
E. Sokatchev, JHEP 1112 (2011) 002 [arXiv:1007.3246 [hep-th]]; Phys. Lett.
B709 (2012) 247[arXiv:1009.2488 [hep-th]].

E. D’Hoker, D. Z. Freedman, S. D. Mathur, A. Matusis and L. Rastelli,
Nucl. Phys. B562 (1999) 353 [Lep-th/9903196]); E. D’Hoker, S. D. Mathur,
A. Matusis and L. Rastelli, Nucl. Phys. B589 (2000) 38 [hep-th/9911222];
G. Arutyunov and S. Frolov, Phys. Rev. D62 (2000) 064016 [hep-th/0002170];
G. Arutyunov, F. A. Dolan, H. Osborn and E. Sokatchev, Nucl. Phys. B665
(2003) 273 [hep-th/0212116].

B. Eden, P. S. Howe, C. Schubert, E. Sokatchev and P. West, Nucl. Phys. B557
(1999) 355 [hep-th/9811172]; Phys. Lett. B466 (1999) 20 [hep-th/9906051];
F. Gonzalez-Rey, 1. Y. Park and K. Schalm, Phys. Lett. B448 (1999) 37 [hep-
th/9811155).

B. Eden, C. Schubert and E. Sokatchev, Phys. Lett. B482 (2000) 309 [hep-
th/0003096]; M. Bianchi, S. Kovacs, G. Rossi and Y. Stanev, Nucl. Phys. B584
(2000) 216 [hep-th/0003203].

A. Galperin, E. Ivanov, S. Kalitsyn, V. Ogievetsky and E. Sokatchev, “Un-
constrained N=2 Matter, Yang-Mills and Supergravity Theories in Harmonic
Superspace,” Class. Quant. Grav. 1 (1984) 4609.

G. G. Hartwell and P. S. Howe, “(N, p, q) harmonic superspace,” Int. J. Mod.
Phys. A 10 (1995) 3901 [hep-th/9412147].



BIBLIOGRAPHY 381

98] B. Eden, A. C. Petkou, C. Schubert and E. Sokatchev, Nucl. Phys. B607 (2001)
191 [hep-th/0009106].

[99] B. U. Eden, P. S. Howe, A. Pickering, E. Sokatchev and P. C. West, “Four point
functions in N=2 superconformal field theories,” Nucl. Phys. B 581 (2000) 523
[hep-th/0001138].

[100] F. A. Dolan and H. Osborn, “Superconformal symmetry, correlation func-
tions and the operator product expansion,” Nucl. Phys. B 629 (2002) 3 [hep-
th/0112251].

[101] P. J. Heslop and P. S. Howe, “Four point functions in N=4 SYM,” JHEP 0301
(2003) 043 [hep-th/0211252].

[102] B. Eden, P. Heslop, G. P. Korchemsky and E. Sokatchev, Nucl. Phys. B862
(2012) 193 [arXiv:1108.3557 [hep-th]].

[103] B. Eden, P. Heslop, G. P. Korchemsky and E. Sokatchev, Nucl. Phys. B862
(2012) 450 [arXiv:1201.5329 [hep-th]].

[104] A. B. Goncharov, Math. Res. Lett. 5 (1998) 497.
[105] F. Cachazo, “Sharpening The Leading Singularity,” arXiv:0803.1988 [hep-th].

[106] F. Chavez and C. Duhr, “Three-mass triangle integrals and single-valued poly-
logarithms,” JHEP 1211, 114 (2012) [arXiv:1209.2722 [hep-ph]].

[107] B. Eden, “Three-loop universal structure constants in N=4 susy Yang-Mills
theory,” [arXiv:1207.3112 |[hep-th]].

[108] V. A. Smirnov, Springer Tracts Mod. Phys. 177 (2002) 1.

[109] N. I. Usyukina and A. I. Davydychev, Phys. Lett. B298 (1993) 363; Phys. Lett.
B305 (1993) 136.

[110] S. Caron-Huot, ECT*, Trento workshop “Scattering Amplitudes: from QCD to

maximally supersymmetric Yang-Mills theory and back.”



BIBLIOGRAPHY 382

[111] J. M. Drummond, “Generalised ladders and single-valued polylogarithms,”
JHEP 1302 (2013) 092 [arXiv:1207.3824 [hep-th]].

[112] B. Eden, P. Heslop, G. P. Korchemsky, V. A. Smirnov and E. Sokatchev, “Five-
loop Konishi in N=4 SYM,” Nucl. Phys. B862 (2012) 123 [arXiv:1202.5733
[hep-th]].

[113] M. Beneke and V. A. Smirnov, “Asymptotic expansion of Feynman integrals
near threshold,” Nucl. Phys. B 522 (1998) 321 [hep-ph/9711391].

[114] V. A. Smirnov, Springer Tracts Mod. Phys. 250 (2012) 1.

[115] A. Pak and A. Smirnov, “Geometric approach to asymptotic expansion of Feyn-
man integrals,” Eur. Phys. J. C 71 (2011) 1626 [arXiv:1011.4863 [hep-ph]].

[116] B. Jantzen, A. V. Smirnov and V. A. Smirnov, “Expansion by regions: revealing
potential and Glauber regions automatically,” Eur. Phys. J. C 72 (2012) 2139
[arXiv:1206.0546 [hep-ph]].

[117] A. V. Smirnov, “Algorithm FIRE — Feynman Integral REduction,” JHEP 0810
(2008) 107 [arXiv:0807.3243 [hep-ph]].

[118] S. G. Gorishnii, S. A. Larin, L. R. Surguladze and F. V. Tkachov, “Mincer: Pro-
gram For Multiloop Calculations In Quantum Field Theory For The Schoonschip
System,” Comput. Phys. Commun. 55 (1989) 381.

[119] J. Fleischer, A. V. Kotikov, O. L. Veretin and , “Analytic two loop results for
selfenergy type and vertex type diagrams with one nonzero mass,” Nucl. Phys.
B 547 (1999) 343 [hep-ph/9808242].

[120] E. I. Buchbinder and F. Cachazo, “Two-loop amplitudes of gluons and octa-cuts
in N=4 super Yang-Mills,” JHEP 0511 (2005) 036 [hep-th/0506126].

[121] S. Caron-Huot, unpublished.



BIBLIOGRAPHY 383

[122] A. V. Smirnov and M. N. Tentyukov, “Feynman Integral Evaluation by a Sector
decomposiTion Approach (FIESTA),” Comput. Phys. Commun. 180 (2009) 735
[arXiv:0807.4129 [hep-ph]].

[123] A. V. Smirnov, V. A. Smirnov and M. Tentyukov, “FIESTA 2: Parallelizeable
multiloop numerical calculations,” Comput. Phys. Commun. 182 (2011) 790
[arXiv:0912.0158 [hep-ph]].

[124] O. Schnetz, “Graphical functions and single-valued multiple polylogarithms,”
[arXiv:1302.6445 [math.NT]].

125] D. E. Radford, J. Alg. 58 (1979), 432-454.
[126] A. B. Goncharov, (2001) [math/0103059v4].

[127] P. A. Baikov and K. G. Chetyrkin, “Four Loop Massless Propagators: An
Algebraic Evaluation of All Master Integrals,” Nucl. Phys. B837 (2010) 186
larXiv:1004.1153 [hep-ph]].

[128] R. N. Lee, A. V. Smirnov and V. A. Smirnov, “Master Integrals for Four-
Loop Massless Propagators up to Transcendentality Weight Twelve,” Nucl. Phys.
B856 (2012) 95 [arXiv:1108.0732 [hep-th]].

[129] R. N. Lee, “Presenting LiteRed: a tool for the Loop InTEgrals REDuction,”
[arXiv:1212.2685 [hep-ph]].

[130] R. N. Lee, “Group structure of the integration-by-part identities and its ap-
plication to the reduction of multiloop integrals,” JHEP 0807 (2008) 031
[arXiv:0804.3008 [hep-ph]].

[131] A. V. Smirnov and V. A. Smirnov, [arXiv:1302.5885 [hep-ph]].

[132] S. Caron-Huot and K. J. Larsen, “Uniqueness of two-loop master contours,”
JHEP 1210 (2012) 026 [arXiv:1205.0801 [hep-ph]].



BIBLIOGRAPHY 384

[133] N. Arkani-Hamed, J. L. Bourjaily, F. Cachazo, A. B. Goncharov, A. Post-
nikov and J. Trnka, “Scattering Amplitudes and the Positive Grassmannian,”
arXiv:1212.5605 [hep-th].

[134] A. E. Lipstein and L. Mason, JHEP 1305, 106 (2013) [arXiv:1212.6228 [hep-
th]l;

[135] R. J. Eden, P. V. Landshoff, D. 1. Olive, J. C. Polkinghorne, “The Analytic
S-Matrix”, Cambridge University Press (1966).

[136] G. Veneziano, “Construction of a crossing - symmetric, Regge behaved ampli-

tude for linearly rising trajectories,” Nuovo Cim. A 57, 190 (1968).

[137] S. Ferrara, A. F. Grillo and R. Gatto, “Tensor representations of conformal
algebra and conformally covariant operator product expansion,” Annals Phys.
76 (1973) 161.

[138] A. M. Polyakov, “Nonhamiltonian approach to conformal quantum field the-
ory,” Zh. Eksp. Teor. Fiz. 66 (1974) 23.

[139] A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, “Infinite Confor-
mal Symmetry in Two-Dimensional Quantum Field Theory,” Nucl. Phys. B 241
(1984) 333.

[140] R. Rattazzi, V. S. Rychkov, E. Tonni and A. Vichi, “Bounding scalar operator
dimensions in 4D CFT,” JHEP 0812 (2008) 031 [arXiv:0807.0004 [hep-th]].

[141] S. El-Showk, M. F. Paulos, D. Poland, S. Rychkov, D. Simmons-Duffin and
A. Vichi, “Solving the 3D Ising Model with the Conformal Bootstrap,” Phys.
Rev. D 86, 025022 (2012) [arXiv:1203.6064 [hep-th]].

[142] C. Beem, L. Rastelli and B. C. van Rees, “The N=4 Superconformal Bootstrap,”
arXiv:1304.1803 [hep-th].

[143] Z. Bern, M. Czakon, L. J. Dixon, D. A. Kosower and V. A. Smirnov, Phys. Rev.
D 75 (2007) 085010 [hep-th/0610248];



BIBLIOGRAPHY 385

Z. Bern, J. J. M. Carrasco, H. Johansson and D. A. Kosower, Phys. Rev. D 76
(2007) 125020 [arXiv:0705.1864 [hep-th]];

[144] A. Sever, P. Vieira and T. Wang, “OPE for Super Loops,” JHEP 1111 (2011)
051 [arXiv:1108.1575 [hep-th]].

[145] K. T. Chen, “Iterated Path Integrals”, Bull. Amer. Math. Soc. 83, 831 (1977).

[146] F. C. S. Brown, “Multiple zeta values and periods of moduli spaces M,,,",
Annales scientifiques de I'ENS 42, fascicule 3, 371 (2009) [math/0606419].

[147] A. B. Goncharov, “A simple construction of Grassmannian polylogarithms”,
arXiv:0908.2238v3 [math.AG].

[148] A. B. Goncharov, “Galois symmetries of fundamental groupoids and noncom-
mutative geometry”, Duke Math. J. Volume 128, Number 2 (2005) 209.

[149] A. Hodges, “Eliminating spurious poles from gauge-theoretic amplitudes,”
JHEP 1305, 135 (2013) [arXiv:0905.1473 [hep-th]].

[150] B. Basso, A. Sever and P. Vieira, “Space-time S-matrix and Flux-tube S-matrix
at Finite Coupling,” arXiv:1303.1396 [hep-th].

[151] B. Basso, A. Sever and P. Vieira, “Space-time S-matrix and Flux-tube S-matrix
II. Extracting and Matching Data,” arXiv:1306.2058 [hep-th].

[152] B. Basso, A. Sever and P. Vieira, private communication.
[153] L. J. Dixon, J. M. Drummond, C. Duhr and J. Pennington, to appear.

[154] J. Pennington, “The six-point remainder function to all loop orders in the multi-
Regge limit,” JHEP 1301, 059 (2013) [arXiv:1209.5357 [hep-th]].

[155] S. Laporta and E. Remiddi, Nucl. Phys. B 704, 349 (2005) [hep-ph/0406160];
S. Muller-Stach, S. Weinzierl and R. Zayadeh, Commun. Num. Theor. Phys. 6,
no. 1, 203 (2012) [arXiv:1112.4360 [hep-ph]].



BIBLIOGRAPHY 386

[156] A. E. Lipstein and L. Mason, “From dlogs to dilogs; the super Yang-Mills MHV
amplitude revisited,” arXiv:1307.1443 [hep-th].

[157] L. F. Alday, D. Gaiotto and J. Maldacena, “Thermodynamic Bubble Ansatz,”
JHEP 1109, 032 (2011) [arXiv:0911.4708 [hep-th]].

[158] J. M. Drummond, J. M. Henn and J. Trnka, “New differential equations for
on-shell loop integrals,” JHEP 1104 (2011) 083 [arXiv:1010.3679 [hep-th]].

[159] L. J. Dixon, J. M. Drummond and J. M. Henn, “The one-loop six-dimensional
hexagon integral and its relation to MHV amplitudes in N=4 SYM,” JHEP 1106
(2011) 100 [arXiv:1104.2787 [hep-th]].

[160] V. Del Duca, C. Duhr and V. A. Smirnov, “The massless hexagon integral in
D = 6 dimensions,” Phys. Lett. B 703, 363 (2011) [arXiv:1104.2781 [hep-th]].

[161] D. E. Radford, “A Natural Ring Basis for the Shuffle Algebra and an Applica-
tion to Group Schemes,” J. Alg. 58 (1979) 432.

[162] A. B. Goncharov, “Multiple polylogarithms and mixed Tate motives,”
math/0103059.

[163] C. Bogner and F. Brown, “Symbolic integration and multiple polylogarithms,”
PoS LL 2012 (2012) 053 [arXiv:1209.6524 [hep-ph]].

[164] J. Drummond, C. Duhr, B. Eden, P. Heslop, J. Pennington and V. A. Smirnov,
“Leading singularities and off-shell conformal integrals,” arXiv:1303.6909 [hep-
th].

[165] A. von Manteuffel and C. Studerus, “Massive planar and non-planar double box
integrals for light Nf contributions to gg-;tt,” arXiv:1306.3504 [hep-ph].

[166] O. Schlotterer and St. Stieberger, “Motivic Multiple Zeta Values and Super-
string Amplitudes,” arXiv:1205.1516 [hep-th].

[167] H. R. P. Ferguson and D. H. Bailey, RNR Technical Report RNR-91-032 (1991);
H. R. P. Ferguson, D. H. Bailey and S. Arno, Math. Comput. 68, 351 (1999).



BIBLIOGRAPHY 387

[168] N. Beisert, B. Eden and M. Staudacher, “Transcendentality and Crossing,” J.
Stat. Mech. 0701, P01021 (2007) [hep-th/0610251].

169| P. Vieira, private communication.
, P

[170] N. Arkani-Hamed, S. Caron-Huot and J. Trnka, private communication.

[171] J. Golden, A. B. Goncharov, M. Spradlin, C. Vergu and A. Volovich, “Motivic
Amplitudes and Cluster Coordinates,” arXiv:1305.1617 [hep-th].

[172] J. Golden and M. Spradlin, “The Differential of All Two-Loop MHV Amplitudes
in N=4 Yang-Mills Theory,” arXiv:1306.1833 [hep-th].

[173] J. A. M. Vermaseren, “New features of FORM,” math-ph/0010025.

[174] J. Bliimlein, D. J. Broadhurst and J. A. M. Vermaseren, “The multiple zeta
value data mine,” Comput. Phys. Commun. 181, 582 (2010) [arXiv:0907.2557
[math-ph]].

[175] B. Basso, “Exciting the GKP string at any coupling,” Nucl. Phys. B 857, 254
(2012) [arXiv:1010.5237 [hep-th]].

[176] M. E. Hoffman, “The Hopf algebra structure of multiple harmonic sums,” Nucl.
Phys. Proc. Suppl. 135, 215 (2004) [math/0406589 [math-qal|.

[177] D. J. Broadhurst, “On the enumeration of irreducible k fold Euler sums and
their roles in knot theory and field theory,” hep-th/9604128.

[178] D. J. Broadhurst and D. Kreimer, “Association of multiple zeta values with
positive knots via Feynman diagrams up to 9 loops,” Phys. Lett. B 393 (1997)
403 [hep-th/9609128].



