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In this paper, we make a close comparison of a covariant definition of an energy/entropy

in general relativity, recently proposed by a collaboration including the present authors,
with existing definitions of energies such as the one from the pseudo-tensor and the

quasi-local energy. We show that existing definitions of energies in general relativity are

conserved charges from Noether’s second theorem for the general coordinate transfor-
mation, whose conservations are merely identities implied by the local symmetry and

always hold without using equations of motion. Thus, none of the existing definitions

in general relativity reflects the dynamical properties of the system, and the need for a
physical definition of an energy. In contrast, our new definition of the energy/entropy

in general relativity is generically a conserved non-Noether charge and gives physically
sensible results for various cases such as the black hole mass, the gravitational collapse

and the expanding universe, while existing definitions sometimes lead to unphysical ones

including zero and infinity. We conclude that our proposal is more physical than exist-
ing definitions of energies. Our proposal makes it possible to define almost uniquely the

covariant and conserved energy/entropy in general relativity, which brings some impli-
cations to future investigations.
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1. Introduction

Since Einstein proposed general relativity as a theory for gravity,1 a proper defini-

tion of an energy, more generally a conserved charge from an energy–momentum

tensor (EMT), has been looked for. A main obstruction comes from a fact that a

covariant conservation law with a covariant derivative ∇a for an EMT of matters

T ab in general relativity

∇aT ab = 0 (1)

is different from the standard conservation law

∂a
(√
−gT ab

)
= 0, g := det gab, (2)

which is required to construct a conserved energy but is not covariant under the gen-

eral coordinate transformation, the most fundamental symmetry of general relativ-

ity. Einstein himself modified a definition of the EMT as T̃ ab = T ab + tab to satisfy

(2). Since tab is not a tensor under the general coordinate transformation except the

affine transformation, T̃ ab is called Einstein’s energy–momentum pseudo-tensor. A

more modern way is to define a total energy of a system by a surface integral of grav-

itational fields in its asymptotic region, called a quasi-local energy, for an asymptot-

ically flat space–time.2–4 This approach has been extended further for more general

asymptotic behaviors by properly incorporating extra surface terms.5–8 See Ref. 9

for a recent summary of the problem including historical perspectives.

Recently, the present authors and their collaborator have proposed a different

definition for conserved charges such as the energy and its generalization in a curve

space–time including general relativity,10,11 directly from the EMT of matters but

still keeping its covariance under the general coordinate transformation. Advantages

of this definition, however, have not been fully recognized, partly because our previ-

ous papers focused on the idea and the quick report of the results without detailed

comparisons to existing definitions. Thus, in this paper, we make detailed compar-

isons between our proposal and other definitions for conserved charges in general

relativity, showing that our definition is much more natural and physical than oth-

ers, in order to establish that our definition of the energy and its generalization

solves the long-standing issue for the definition of the energy in general relativity.

In Sec. 2, we demonstrate that (almost) all existing definitions of the energy in

general relativity can be regarded as a conserved charge implied by Noether’s second

theorem for local symmetries.12 We show that definitions of the energy as charges

from Noether’s second theorem are categorized either as Einstein’s pseudo-tensor

type or as the Komar energy15 type, the later of which includes the Arnowitt-Deser-

Misner (ADM) mass,2 and the energy in the asymptotically flat space–time3,4 as

well as in the asymptotically de Sitter (dS)/anti-de Sitter (AdS) space–time.5–8

Since both types of definitions allow quasi-local expressions, we can easily change

their definitions of the energy by adding an arbitrary total divergent term to the

Einstein–Hilbert action. Even worse, the energy from these two types of definitions

is conserved without using equations of motion. Thus, the conservation of the energy
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is merely identity implied by the general coordinate transformation rather than a

consequence of a time evolution, so that it cannot represent dynamics of the system.

We conclude that none of existing definitions from Noether’s second theorem can

provide a physical definition of an energy in general relativity. Indeed Noether

herself referred the charge from the second theorem improper by citing the word

from Hilbert and Klein.12

In Sec. 3, we instead explain our proposal for a covariant definition of the energy

and its generalization in general relativity, which requires equations of motion,10,11

and thus is not a charge from the second theorem. After reviewing our proposal,

we discuss three cases, (1) energy conservation by a global symmetry, (2) energy

conservation without symmetry, (3) conserved charge in the absence of energy con-

servation, together with explicit examples, where we also compare results from our

proposal with those from Noether’s second theorem. In the case (1), our definition

gives the finite energy of the Schwarzschild black hole even for nonzero cosmological

constant Λ, while definitions from Noether’s second theorem require a subtraction

of the infinite vacuum energy to obtain the finite black hole energy for Λ 6= 0 cases,

which agrees with the one from our definition only at d = 4. We have a similar com-

parison for the energy during a gravitational collapse in the case (2). In the case (3),

the homogeneous and isotropic expanding universe is analyzed. While the energy

in our covariant definition is not conserved, we show that our definition allows a

conserved charge as the generalization of the energy, which we identify the entropy.

On the other hand, the conservation of the energy for definitions from Noether’s

second theorem implies the vanishing total energy, which is physically meaningless.

Our conclusion and discussion are given in Sec. 4. For the sake of readers,

Noether’s second theorem is explained for general cases in App. A.

2. Noether’s Second Theorem and Conserved Charges

in General Relativity

In this section, we derive conservation equations using Noether’s second theorem in

general relativity. We then show that these conservation equations lead to a pseudo-

tensor as well as charges associated with asymptotic symmetry including the ADM

mass.

2.1. Noether ’s second theorem in general relativity

We apply Noether’s second theorem to general relativity. Noether’s second theorem

is given in Ref. 12, and its application to general relativity is discussed in Ref. 13,

but these considerations, except the famous Noether’s first theorem, have not been

recognized well or have been sometimes misunderstood in the community. Thus,

for the sake of readers, we explain the second theorem here in the case of general

relativity, and the derivation of the theorem is presented for a general case in

App. A.
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To make our argument concrete, we take a scalar field theory coupled to the

Einstein gravity, whose Lagrangian density is given by

L = LG + LM , (3)

where

LG =
1

2κ

√
−g(R− 2Λ), κ := 4πG, (4)

LM =
√
−g
[
−1

2
gab∂aφ∂bφ− V (φ)

]
, (5)

and consider the integral of L over an arbitrary d-dimensional region Ω in the d-

dimensional space–time as

SΩ :=

∫
Ω

ddxL. (6)

We first derive an equation of motion by considering an arbitrary variation δv as

2κδgSΩ =

∫
Ω

ddx
√
−g

×
[(

1

2
gab(R− 2Λ)−Rab + 2κT ab

)
δvgab +∇a

(
gbcδvΓ

a
bc − gabδvΓcbc

)]
,

δφSΩ =

∫
Ω

ddx
[√
−g(∇a∇aφ− V ′(φ))δvφ− ∂a

(√
−ggab∂bφδvφ

)]
,

(7)

where

T ab :=
1√
−g

∂LM
∂gab

=
1

2

[
∂aφ∂bφ− 1

2
gab(∂cφ∂cφ+ 2V (φ))

]
, (8)

and we use a fact that δvΓ
a
bc can be regarded as a mixed tensor. Since we can take

arbitrary variations which, together with their derivatives, vanishes at the boundary

of Ω, we obtain equations of motion as

EabG := −
√
−g

2κ

(
Rab − 1

2
gab(R− 2Λ)− 2κT ab

)
= 0, (9)

Eφ :=
√
−g(∇a∇aφ− V ′(φ)) = 0. (10)

Note that we can add the total derivative term ∂a(
√
−gKa) to the Lagrangian

density L without changing equations of motion. Thus, there is an ambiguity for a

choice of the Lagrangian density from which we can derive the above equations of

motion. In our analysis, we exclusively use the above L, keeping this ambiguity in

mind. In particular, we take the Einstein–Hilbert type for LG.

We now consider a general coordinate transformation generated by ξa as

δxa := (x′)a − xa = ξa(x), δφ := φ′(x′)− φ(x) = 0,

δgab := g′ab(x
′)− gab(x) = −ξc,a(x)gcb(x)− ξc,b(x)gac(x).

(11)
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Since δ does not commute with derivatives, we introduce the Lie derivative by

ξ as

δ̄gab := δgab − gab,cξc = −∇aξb −∇bξa, δ̄φ := δφ− ξcφ,c = −ξc∇cφ, (12)

which satisfies

δ̄(gab,c···) = (δ̄gab),c···, δ̄(φ,c···) = (δ̄φ),c···. (13)

A fact that an integration of the Lagrangian density over a d-dimensional domain

Ω is invariant under the general coordinate transformation leads to

δSΩ =

∫
Ω

ddx [δ(LG + LM ) + (LG + LM )ξa,a]

=

∫
Ω

ddx [δ̄(LG + LM ) + ∂a{(LG + LM )ξa}] = 0, (14)

where we employ

dd(x+ δx) = det[δab + (δxa),b]d
dx ' (1 + tr ξa,b)d

dx = (1 + ξa,a)ddx, (15)

δ(LG + LM ) = δ̄(LG + LM ) + ξa∂a(LG + LM ). (16)

Using

δ̄(LG + LM ) = (EabG δ̄gab + Eφδ̄φ) + ∂a

×
{√
−g

2κ
(gbcδ̄Γabc − gabδ̄Γcbc − 2κgab∂bφδ̄φ)

}
(17)

and

EabG δ̄gab = ξc[2∂a(EabG gbc)− EabG gab,c]− 2∂a(EabG gbcξ
c), (18)

we have

δSΩ =

∫
Ω

ddx ξc
[
2∂a(EabG gbc)− EabG gab,c − Eφ∇cφ

]
+

∫
Ω

ddx ∂aJ
a[ξ] = 0, (19)

where

Ja[ξ] = (LG + LM )ξa − 2EabG gbcξ
c +

√
−g

2κ
(gbcδ̄Γabc − gabδ̄Γcbc − 2κgab∂bφδ̄φ)

=
1

2κ

√
−g[2Rabξ

b + gbcδ̄Γabc − gabδ̄Γcbc] =
1

2κ

√
−g∇b[∇[aξb]]. (20)

To obtain the last line, we use Rabξ
b = −gac[∇c,∇b]ξb,

gbcδ̄Γabc = −gbc∇b∇cξa + gac[∇c,∇b]ξb, gabδ̄Γcbc = −gab∇b∇cξc. (21)

Since we can take an arbitrary vector field ξa(x) which satisfies ξa = ξa,b =

ξa,bc = 0 at ∂Ω (the boundary of the region Ω) as a general coordinate transforma-

tion, (19) implies

2∂a(EabG gbc)− EabG gab,c − Eφ∇cφ = 0, (22)
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for off-shell gab and φ, which give d constraints among the quantities EabG and Eφ,

which would vanish at on-shell, so that solutions to the equation of motion contain d

undetermined free functions. In other words, (22) identically holds. Thus, a number

of independent components for the symmetric tensor gab become d(d+ 1)/2− d =

d(d− 1)/2, as is well known.

Furthermore, taking an arbitrary ξa(x) without constraints on ∂Ω, (19) with

(22) leads to

∂aJ
a[ξ] = 0, (23)

where Ja[ξ] includes the arbitrary vector ξa. Indeed, we can confirm that ∂aJ
a[ξ] =

0 holds identically using an explicit form of Ja[ξ] in the last line of (20).

The current Ja[ξ] is expanded as

Ja[ξ] = Aabξ
b +Bab

cξb,c + Cab
cdξb,cd, (24)

where

Aab =

√
−g

2κ
(2Rab + gcaΓddb,c − gcdΓacd,b)

=

√
−g

2κ
[∂c(g

d[aΓ
c]
db) + Γeecg

d[aΓ
c]
db], (25)

Bab
c =

√
−g

2κ
(gacΓddb − 2gdcΓadb + gdeδabΓcde), (26)

Cab
cd =

√
−g

4κ
(gacδdb + gadδcb − 2gcdδab ) = Cab

dc, (27)

and (23) for an arbitrary ξa implies

∂aA
a
b = 0, (28)

Aab + ∂cB
c
b
a = 0, (29)

Bab
c +Bcb

a + 2∂dC
d
b
ac = 0, (30)

Cab
cd + Cdb

ac + Ccb
da = 0. (31)

Combining (29)–(31), we can generally write

Aab = −1

2
∂cB

[c
b
a] − 1

2
∂cB

{c
b
a} = −1

2
∂cB

[c
b
a] + ∂c∂dC

d
b
ac = −∂cB̃cba, (32)

where

B̃cb
a :=

1

2
B[c

b
a] − 1

3
∂dC

[c
b
a]d, (33)

which is anti-symmetric under a↔ c.a

aIn classical particle mechanics, A,B,C and J all vanish. Therefore, these equations are trivially
satisfied.14
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We fully utilize the fact that the general coordinate transformation is generated

by an arbitrary vector field ξa(x) to obtain (22), (23) and (28)–(31), which are the

consequence of Noether’s second theorem.

There are two remarks. First of all, if we add the total derivative term X :=

∂a(
√
−gKa) to L, its variation under δ becomes (see (14))∫

Ω

ddx [δ̄X + ∂a(Xξa)] =

∫
Ω

ddx ∂a[δ̄(
√
−gKa) +Xξa], (34)

which leads to a shift of Ja[ξ] as

Ja[ξ]→ Ja[ξ] +
√
−g[ξ[a∇bKb] −K [a∇bξb]], (35)

where we use

δ̄Ka = Kb∇bξa − ξb∇bKa, δ̄
√
−g = −

√
−g∇bξb. (36)

Second, even though we can take ξa(x) = ξa0 with a constant vector ξa0 , we still

have Noether’s second theorem, so that the current associated with this symmetry

is always conserved without using equations of motion.

Using (23) and (28), we can define two types of conserved charges, one is covari-

ant, the other is noncovariant, which will be explained below. Their conservation,

however, is an identity implied by the general coordinate transformation, and holds

without using equations of motion.

2.2. Noncovariant conserved charge from Noether ’s second

theorem: Pseudo-tensor

The noncovariant off-shell conserved current density is given by

Aab :=

√
−g

2κ
(2Rab + gacΓddb,c − gcdΓacd,b), (37)

and the conservation law ∂aA
a
b = 0 implies

0 =

∫
M

ddx ∂aA
a
b

=

∫
Σ2

(dd−1x)aA
a
b −

∫
Σ1

(dd−1x)aA
a
b +

∫
∂Ms

(dd−1x)aA
a
b, (38)

where M is the d-dimensional space–time whose boundary consists of ∂M =

Σ1 ⊕ ∂Ms ⊕Σ2. Here, Σ1 and Σ2 are past- and future-directed space-like surfaces,

respectively, and ∂Ms is a time-like boundary of M . If
∫
∂Ms

(dd−1x)aA
a
b = 0, we

can define a conserved charge as

Qpseudo,b =

∫
Σ

(dd−1x)aA
a
b, (39)

since it does not depend on a choice of space-like surfaces Σ1,2. We call Qpseudo,b

the noncovariant conserved charge, since Aab is not covariant under the general

coordinate transformation.b Furthermore, (32) leads to a quasi-local expression of

bIt is only covariant under affine transformation that ξa(x) := mabx
b − ba.
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Qpseudo,b as

Qpseudo,b = −
∫
∂Σ

(dd−2x)ac B̃
c
b
a, (40)

where the boundary of Σ is denoted by a spatial surface ∂Σ.

As already noted before, the conservation of Qpseudo,b is an identity, which is not

a consequence from the dynamics of general relativity, since equations of motion

are not required to show it. In addition, if the equation of motion for gab (EabG = 0)

is used, Aab becomes

Aab =
√
−g(T ab + tab),

tab :=
1

2κ

[
Rab +

R− 2Λ

2
δab + gcaΓddb,c − gcdΓacd,b

]
,

(41)

where tab is not covariant due to the last two terms. In the case of the vanishing

cosmological constant, by adding an appropriate total divergent term ∂µ(
√
−gKa)

to the total Lagrangian density, tab can be transformed to Einstein’s gravitational

pseudo-tensor, which was claimed to represent the gravitational contribution. A dis-

tinction between matter and gravitational field, however, seems ambiguous, since

Rab and R in tab are also expressed in terms of T and T ab.

Using (41) for b = 0, one may define the conserved energy as

Epseudo = −
∫

Σ

[dd−1x]a
√
−g(T a0 + ta0)

(
=

∫
∂Σ

[dd−2x]ac B̃
c
0
a

)
, (42)

where a minus sign is introduced for Epseudo to match the standard definition of the

energy. While Einstein interpreted the second contribution from his pseudo-tensor

t00 as the energy of the gravitational field, it depends on a choice of the coordinates

due to its noncovariance, and it sometimes diverges.

2.3. Covariant conserved charge from Noether ’s

second theorem: Komar integral

The second type of the conserved current is given by Ja itself as

Ja[ξ] =
1

2κ

√
−g∇b[∇[aξb]], (43)

which satisfies ∂aJ
a[ξ] = 0 for an arbitrary vector ξb. Then one may define the

covariantly conserved charge as

QKomar[ξ] :=

∫
Σ

[dd−1x]a J
a[ξ] =

1

2κ

∫
Σ

[dd−1x]a
√
−g∇b[∇[aξb]] (44)

=
1

2κ

∫
∂Σ

[dd−2x]ab
√
−g∇[aξb], (45)

where the second line is a quasi-local expression. We call this charge the Komar

integral, since the expression is identical to the one introduced by Komar.15 This
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charge is conserved not only for an arbitrary metric gab but also for an arbitrary

vector ξb. Thus, one may define various different charges depending on a choice of

ξb. We introduce several such charges used in literature.

2.3.1. Komar energy

If the space–time allows a time-like Killing vector ξaK , one may define the energy

as a charge associated with the Killing vector as EKomar = QKomar[ξK ], which we

call Komar “energy”. Explicitly

EKomar =
1

κ

∫
Σ

[dd−1x]a
√
−gRabξbK (46)

=
1

κ

∫
Σ

[dd−1x]a
√
−g
[
2κ

(
T abξ

b
K −

TξaK
d− 2

)
+

2ΛξaK
d− 2

]
, (47)

where we use the equations of motion to obtain the second line, which shows that the

Komar “energy” does not lead to the standard definition of the energy in the limit

of the flat space–time. A time-like Killing vector is given by ξaK = −δa0 for the

stationary space–time, for example, where the metric gab does not depend on the

time coordinate x0. Since ξaK = −δa0 is constant, the Komar energy coincides with

the energy from the pseudo-tensor by definition: EKomar = Epseudo. Note that the

Komar “energy” EKomar is always conserved as a consequence of Noether’s second

theorem, even though ξaK is not a Killing vector for a generic (nonstationary) space–

time.

2.3.2. Wald entropy

It has been proposed to define the black hole entropy,16 by choosing ξa = ta +

ΩHϕ
a, where ta is the stationary Killing field, ϕa is the axial Killing field and ΩH

is the angular velocity of the horizon. In Ref. 16, it is concluded that ∂aJ
a[ξ] = 0

holds when the equations of motion are satisfied. This statement is misleading,

however, since a full power of Noether’s second theorem was not employed to derive

∂aJ
a[ξ] = 0 in Ref. 16. As we have frequently mentioned, ∂aJ

a[ξ] = 0 can be

derived from Noether’s second theorem for an arbitrary ξb without using equations

of motion or gab and matters.

2.3.3. Asymptotically flat space–time: ADM energy

An asymptotically flat space–time is defined as a space–time whose metric satisfies

the vacuum Einstein equation without cosmological constant at x2 → +∞ (large

space-like separation). In this case, the conserved energy is defined in Cartesian

coordinate as2

EADM :=
1

4κ

∫
+∞

[dd−2x]0i (∂jhij − ∂ihjj), hµν := gµν − ηµν , (48)
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which is called as the ADM energy (or mass), where i, j run from 1 to d− 1, ηµν
is the flat Minkowski metric, and

∫
+∞ means that the integral is evaluated at

x2 → +∞.

The ADM energy can be written in a covariant manner as17

EADM =
1

4κ

∫
+∞

[dd−2x]ab
√
−g∇[aηb] =

1

2
QKomar[η], (49)

where ηa is an asymptotic time-like Killing vector and satisfies ∇aηb +∇bηa = 0 at

x2 → +∞. Since there are many asymptotic Killing vectors, we identify a vector

η with another η′ if there exists a vector va = ηa − η′a which vanishes at x2 →
+∞. Clearly, QKomar[η] = QKomar[η

′]. Under this identification, a collection of all

independent asymptotic Killing vectors η generate the isometry of the Minkowski

space–time, so that a number of independent vectors are d(d + 1)/2 (translation

and Lorentz transformation). Thus, the ADM energy is regarded as a conserved

energy associated with the asymptotic time translation η in the asymptotically flat

space–time. Since the ADM energy is (a half of) the Komar integral, we can write

EADM =
1

4κ

∫
Σ∞

[dd−1x]a
√
−g∇b[∇[aηb]], (50)

where Σ∞ is a space-like surface whose boundary is given by x2 → +∞.

2.3.4. Asymptotically dS/AdS space–time

As in the case of the asymptotically flat space–time, we define the asymptotically

dS or AdS space–time as the space–time whose metric satisfies the vacuum Einstein

equation with cosmological constant, Gab + Λgab = 0 at x2 → ∞. We then regard

the isometry of the dS/AdS space–time as a (representative of) asymptotic Killing

vectors of this space–time. The isometry of the dS is SO(1, d), while that of the AdS

is SO(2, d). Since it is possible to make the metric gab static, the Killing vector η

for the time translation always exists. Thus, the energy in these asymptotic space–

times is defined using the asymptotic Killing vector η as Eas
dS/AdS = QKomar[η].

2.4. Cautions on charges from Noether ’s second theorem

As we have already mentioned frequently, Noether’s second theorem tells that cur-

rents associated with local symmetries are always conserved without using equations

of motion of dynamical variable. Thus conserved currents and conserved charges

do not reflect dynamical properties of the system. Rather they are consequences

of constraints (22) for Einstein gravity among the quantities EabG and Eφ, each of

which would vanish at on-shell. Therefore, it does not seem reasonable to define

energy in general relativity by either pseudo-tensor or Komar integral including

the ADM energy or asymptotic charges. Indeed Noether calls the conservation law

from her second theorem improper, referring statements by Hilbert and Klein.12

In addition, both pseudo-tensor and Komar integral are easily modified by an

arbitrary total divergence term, which can be added without changing equations
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of motion, so that they are not unique. Furthermore, the pseudo-tensor depends

on the choice of the coordinate as it is not covariant under general coordinate

transformation. The Komar integral, on the other hand, is conserved for an arbitrary

vector ξa, so that it may depend on a choice of ξa.

One may argue to define a physical Noether charge by regarding the local trans-

formation restricted to constant parameters as the “global” transformation. How-

ever, this does not work except Quantum Electrodynamics (QED), since the con-

servation of Noether’s charge associated with the “global” transformation is still

a part of constraints implied by the local transformation. QED is somewhat spe-

cial, since the charge can be defined from the matter current, which is U(1) gauge

invariant.

In the following section, we introduce our proposal for a proper and covariant

definition of charges in general relativity, which are conserved only after equations

of motion for gravity and matters are satisfied. We consider several examples in

order to compare our definition with those from Noether’s second theorem.

3. Our Physical Definition Versus Noether’s Second

Theorem in General Relativity

In this section, we first explain our recent proposal for the covariant definition of

the energy and its generalization in general relativity.10,11 We then compare our

definition with those derived from Noether’s second theorem in the previous section

for various examples with explicit calculations.

3.1. Our proposal for conserved non-Noether charge

We first summarize our proposal to define a conserved charge in general relativ-

ity.10,11 We start with the Einstein equation given by

Gab + Λgab = 2κTab, (51)

where the EMT Tab should be covariantly conserved, ∇aT ab = 0, as a consequence

of equations of motion for matters, since the left-hand side identically vanishes after

applying ∇a due to the Bianchi identity.

Since ∇aT ab(x) = 0 does not give a conserved charge, however, we introduce a

special vector ζa which satisfies

T ab(x)∇aζb(x) = 0. (52)

We then define a new conserved current density
√
−gT ab(x)ζb(x), which indeed

satisfies the standard conservation law as

∂a
(√
−gT ab(x)ζb(x)

)
=
√
−g∇a(T ab(x)ζb(x)) =

√
−gT ab(x)∇aζb(x) = 0. (53)

We thus call (52) the conservation condition. In Refs. 10 and 11, we have shown an

existence of ζa and discussed how to construct it.
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A new conserved charge is easily constructed as

Q[ζ] =

∫
Σ

[dd−1x]a
√
−g T ab(x) ζb(x), (54)

for a space-like surface Σ, which is manifestly covariant under general coordinate

transformations. With a similar argument as discussed for Aab around (38), it is

easy to show that Q[ζ] is conserved (i.e. it does not depend on a choice of the

space-like surface Σ).

Using the conserved charge Q[ζ], we define the energy and its generalization

in general relativity. There are three distinct cases for a choice of ζ, which will

be explained with explicit examples in the following sections. We will also make

comparisons with other definitions of the energy from Noether’s second theorem in

the previous section.

3.2. Energy conservation by symmetry

If the metric, which is a solution to the Einstein equation (51), is invariant under the

time translation, then the (time-like) Killing vector ξa, defined by ∇aξb+∇bξa = 0,

exists. Since Tab = Tba, it is easy to see that ζa = ξa satisfies (52). If the metric

does not contain a time coordinate x0, the Killing vector is given by ξa = −δa0 in

such a coordinate. Thus, the conserved energy is defined by10

E := Q(ζa = −δa0 ) = −
∫

Σ

[dd−1x]a
√
−g T a0 = −

∫
Σ0

[dd−1x]0
√
−g T 0

0, (55)

and the conservation is a consequence of the global time translational invariance of

the on-shell metric, the solution to the Einstein equation, but is not a consequence

implied by the local symmetry of the theory assumed in Noether’s second theorem.c

In the second equality, we present an expression for a constant x0 space-like surface

Σ0, where [dd−1x0]0 := dx1dx2 · · · dxd−1.

3.2.1. Vacuum energy

As a warmup, we consider a vacuum described by

ds2 = −f(r)(dx0)2 +
1

f(r)
dr2 + r2dΩ2

d−2, f(r) = 1− 2Λr2

(d− 2)(d− 1)
. (56)

As already mentioned, the time-like Killing vector is given by ξa = −δa0 , though it

becomes space-like beyond the cosmological horizon r > rH =
√

(d−2)(d−1)
2Λ for the

positive cosmological constant Λ (dS space–time). By definition, the energy of the

cWhile (55) is not a Noether charge in the general relativity where gab is dynamical, this energy

may be regarded as a conserve charge of Noether’s first theorem associated with the isometry for
a fixed background metric.
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vacuum is zero for our definition, Evac
our = 0, while energies from Noether’s second

theorem become

Evac
pseudo = Evac

Komar = − 2ΛΩd−2

(d− 2)κ

∫
rd−2dr, Ωd−2 :=

2π(d−1)/2

Γ
(
d−1

2

) . (57)

Thus, we have

Evac
our = Evac

pseudo = Evac
Komar = Evac

ADM = 0 (58)

for a flat space–time, while

Evac
our = 0, Evac

pseudo = Evac
Komar = Evac

dS/AdS

= − 2ΛΩd−2

(d− 2)κ

∫
rd−2dr → −Λ×∞ (59)

for nonzero cosmological constant, where the divergence comes from the divergent

r integral.

3.2.2. Schwarzschild black hole

As a nontrivial example, we consider the Schwarzschild black hole in d dimensions,

whose metric is given by

ds2 = −(1 + u)dτ2 − 2udτdr + (1− u)dr2 + r2dΩ2
d−2 (60)

in the Eddington–Finkelstein coordinates, where

u := δu− 2Λr2

(d− 2)(d− 1)
, δu := −

(rg
r

)d−3

, rd−3
g := 2GMθ(r), (61)

rg is the black hole horizon for a case with Λ = 0, and M is the mass of the black

hole. Here, we introduce the step function θ(r) with θ(0) = 0 to properly treat the

singularity at r = 0 in the distributional sense. Note that we can replace θ(r) with

other regularizations without changing discussions below.18

The constant τ surface is normal to

na = −(1− u)−1/2δτa , nan
a = −1, (62)

thus the constant τ surface is always space-like even inside the horizon except in

the large r region that 1−u < 0 for the negative Λ (AdS space–time). We illustrate

the constant τ surface in the Kruskal–Szekeres like coordinates for d = 4 and Λ = 0

in Fig. 1, where the metric becomes

ds2 = −
4r3
ge
−r/rg

r
(dT 2 − dX2) + r2dΩ2, (63)

X = e
r

2rg

[
sinh

(
τ

2rg

)
+ e
− τ

2rg
r

2rg

]
,

T = e
r

2rg

[
cosh

(
τ

2rg

)
− e−

τ
2rg

r

2rg

]
(64)
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Fig. 1. (Color online) The Schwarzschild black hole in the Kruskal–Szekeres like coordinate.
A blue curve defined by T =

√
1 +X2 represents a black hole singularity at r = 0 in the

Eddington–Finkelstein coordinates, while the dotted black line given by T = X is the horizon as

r = rg . Red curves are constant τ surface in the Eddington–Finkelstein coordinates at τ → −∞,
τ < 0, τ = 0 and τ > 0, respectively. The physical region exists above the surface at τ → −∞
and below the singularity surface at r = 0.

and

dT

dX

∣∣∣∣
τ

=
2rg cosh

(
τ

2rg

)
− e−

τ
2rg (r + 2rg)

2rg sinh
(
τ

2rg

)
+ e
− τ

2rg (r + 2rg)
(65)

for a fixed τ . Toward the singularity (r → 0), the coordinates behave as

X → sinh

(
τ

2rg

)
, T → cosh

(
τ

2rg

)
,

dT

dX

∣∣∣∣
τ

→ tanh

(
τ

2rg

)
, (66)

while at horizon (r = rg), they become

X = T =

√
e

2
e

τ
2rg ,

dT

dX

∣∣∣∣
τ

=
2 sinh

(
τ

2rg

)
− e−

τ
2rg

2 cosh
(
τ

2rg

)
+ e
− τ

2rg

, (67)

and at r →∞, they approach

X → r

2rg
e

(r−τ)
2rg , T → − r

2rg
e

(r−τ)
2rg ,

dT

dX

∣∣∣∣
τ

→ −1. (68)

The relevant component of the EMT is given by10

T τ τ =
d− 2

4κ

∂r(r
d−3δu)

rd−2
= − (d− 2)M

8π

δ(r)

rd−2
, (69)
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whose second expression agrees with the expression for the EMT by other regular-

izations in the distributional approach.18 Contrary to the general argument,19 the

EMT is well defined in the distributional sense, since it does not contain ill-defined

products of two distributions. The energy is evaluated by the integral of this EMT

over the (d−1)-dimensional constant τ surface (red curves in Fig. 1 for d = 4) with

the Killing vectord ξa = −δaτ as

EBH
our =

∫
dd−1x

√
−gT τ a(−δaτ ) =

(d− 2)M

8π
Ωd−2

∫
dr∂rθ(r)

=
(d− 2)Ωd−2

8π
M [θ(∞)− θ(0)] =

(d− 2)Ωd−2

8π
M, (70)

which exactly gives a mass of the black hole at d = 4. While we here simply integrate

∂rθ(r) over r, a direct use of δ(r) leads to the same result, showing a correctness of

the distributional approach as well as a famous relation ∂rθ(r) = δ(r).

We now consider the black hole energies from Noether’s second theorem. Since

we take the constant ξa = −δaτ in the case of the Schwarzschild black hole, the

energy from the pseudo-tensor agrees with the Komar energy. In addition, the result

by the “volume” integral with the delta function agrees with the one by the “surface

integral” without requiring a specific asymptotic behavior. Explicitly

EBH
pseudo = EBH

Komar

=
1

κ

∫
dΩd−2

∫
dr rd−2Rτ τξ

τ =
1

2κ

∫
dΩd−2 r

d−2∇[τξr]

= Ωd−2

[
(d− 3)M

4π
− 2Λrd−1

κ(d− 2)(d− 1)

]
=

(d− 3)Ωd−2

4π
M + Evac

Komar. (71)

Thus, EBH
pseudo/dS/AdS diverges for Λ 6= 0, while we can define the finite energy by

subtracting the “vacuum” contribution as

∆EBH
2nd := EBH

2nd − Evac
2nd =

(d− 3)Ωd−2

4π
M, (72)

where the word “2nd” represents the pseudo-tensor energy and the Komar energy

including the ADM energy and the asymptotically dS/AdS energy.

If we compare (70) with (72), we have

∆EBH
2nd

EBH
our

=
2(d− 3)

d− 2
, (73)

which becomes unity only at d = 4. Thus, the covariant definition of the black hole

energy in our proposal is in general different from “energies” defined from Noether’s

dAlthough constant τ surfaces are space like, the Killing vector ξµ is time-like outside the horizon
(r > rg) but space-like inside the horizon (r < rg) for Λ = 0. In the case of nonzero cosmological
constant, the situation is similar but more complicated.
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second theorem, even after subtractions of the divergent vacuum contribution nec-

essary for Λ 6= 0, though the difference appears only in the normalization. A more

distinct difference between the two definitions appears in the case of energies for a

compact star.10

3.3. Energy conservation without symmetry

We next consider a case without Killing vector for the time translation. Even in

such a case where ξa = −δa0 is not a Killing vector anymore, the energy defined by

(55) is time independent if the EMT and the metric satisfy

T ab∇aξb = −T abΓba0 = 0. (74)

In this case, the energy E is conserved but the conservation is NOT even a conse-

quence of the global time translational invariance.

3.3.1. Gravitational collapse

Let us consider a simple model of gravitational collapses for thick light shells,20

whose metric in the Eddington–Finkelstein coordinate is given by

gabdx
adxb = −(1 + u)dτ2 − 2udτdr + (1− u)dr2 + r2dΩ2

d−2, (75)

where x0 = τ , and

u(r, τ) := −m(r, τ)

rd−3
− 2Λr2

(d− 2)(d− 1)
, (76)

m(r, τ) :=


2GMθ(r), τ + r > ∆, I,

2GMθ(r)F

(
τ + r

∆

)
, 0 ≤ τ + r ≥ ∆, II,

0, τ + r < ∆, III,

(77)

where a monotonically increasing function F (x) satisfies F (0) = 0 and F (1) = 1.

The vector ξa = −δa0 is NOT a Killing vector due to an existence of the light shell

region (II), while it becomes the Killing vector in Schwarzschild (I) and Minkowski

(III) regions. See Fig. 2 (left), where solid lines represent infalling lights which reach

the origin at τ = 0, τ0,∆.

Since the metric in (75) gives11

Γ0
00 =

1 + u

2
uτ −

u

2
ur = −Γrr0,

Γ0
r0 =

u

2
uτ +

1− u
2

ur, Γr00 = −2 + u

2
uτ +

1 + u

2
ur,
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Fig. 2. (Left) Gravitational collapse of thick light shells in the Eddington–Finkelstein coordinate.

Solids lines represent infalling lights which reach the origin at τ = 0, τ0,∆. (Right) The local

energy density ε(r) as a function of r at various τ . Here, we consider F (x) = x case as a simplest
example, and ε(r) has δ function contribution at r = 0, represented by a thick vertical line.

and

T 0
0 =

(d− 2)

4κ

(rd−3δu)r
rd−2

, T rr =
(d− 2)

4κ

[
(rd−3δu)r
rd−2

− 2(δu)τ
r

]
,

T 0
r =

(d− 2)

4κ

(δu)τ
r

= −T r0, δu := −m(r, τ)

rd−3
,

(78)

the condition (74) is satisfied for ξa = −δa0 as

T abΓ
b
a0 = (T 0

0 − T rr)Γ0
00 + T 0

r(Γ
r
00 − Γ0

r0) = 0. (79)

In this system, the energy (55) is calculated as

E(τ) = −
∫
dd−1x

√
−gT 0

0 =
(d− 2)Ωd−2

16πG

∫ ∞
0

dr [m(r, τ)]r. (80)

For τ < 0 (before the collapse without a black hole), (80) is evaluated as

E(τ) =
(d− 2)MΩd−2

16πG

∫ ∆−τ

−τ
dr ∂r(θF ) =

(d− 2)MΩd−2

8π
:= Etot. (81)

For 0 ≤ τ ≤ ∆ (during the collapse with a growing black hole), we obtain

E(τ) = Etot

∫ ∆−τ

0

dr ∂r(θF ) = Etot

[
1− θ(0)F

( τ
∆

)]
= Etot, (82)
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which can be evaluated differently using ∂r(θF ) = δ(r)F + ∂rF as

E(τ) = Etot

[
F
( τ

∆

)
+
{
F (1)− F

( τ
∆

)}]
= Etot, (83)

where the first term represents a mass of a growing black hole while the second one

is an energy of remaining light shells.

Finally for τ > ∆ (after the collapse with the final black hole), we evaluate the

total energy as

E(τ) = Etot

∫ ∞
0

drδ(r) = Etot, (84)

which agrees with the mass of the final black hole.

The total energy is conserved as E(τ) = Etot, and we plot typical distributions

of the local energy density in Fig. 2 (right).

Other examples have also been discussed in Ref. 11, and gravitational collapses

for more general EMTs have been investigated recently in Ref. 21.

3.3.2. Comparison with energies in Noether ’s second theorem

Since ξa = −δa0 is constant, the energy from the pseudo-tensor and the Komar

energy agree. We thus obtain

Epseudo = EKomar

=
Ωd−2

2κ

∫
dr ∂r[r

d−2(ur − uτ )] =
Ωd−2

2κ
rd−2(ur − uτ )

∣∣∣∣r1
r0

, (85)

where r1 = ∆ − τ and r0 = −τ for τ < 0, r1 = ∆ − τ and r0 = 0 for 0 < τ < ∆,

and uτ = 0 with r1 =∞ and r0 = 0 for τ > ∆. We thus obtain

E2nd := Epseudo = EKomar =
(d− 3)Ωd−2

4π
M + Evac

Komar, (86)

which again gives

E2nd − Evac
2nd

Eour
=

2(d− 3)

d− 4
. (87)

3.4. Conserved charge in the absence of energy conservation

We finally consider the most general cases, where the Killing vector for time trans-

lation is absent and (74) for the constant vector ξa = −δa0 is not satisfied. To define

a conserved charge, which is a generalization of the energy, we must solve (52) for

ζa(x) = β(x)na(x) with na(x) = dxa(η)
dη where η is a parameter to characterize the

time evolution of space-like surfaces Ση. (If we choose η to be the global time x0,

we have ζa(x) = β(x)δa0 .) As discussed in Ref. 11, a solution to (52) always existse

eThe existence of such a vector field for a spherically symmetric gravitational system, known as
the Kodama vector, was pointed out in Ref. 26.
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and is unique once an initial condition for β(x) is given at some η = η0. Thus, using

this ζa, we can always define a conserved charge (54), which is a generalization of

the energy in general relativity.

3.4.1. Expanding universe

As an example, we consider a model of homogeneous and isotropic expanding

universe in Einstein gravity with a cosmological constant Λ, described by the d-

dimensional Friedmann–Lemâıtre–Robertson–Walker (FLRW) metric,22–25

ds2 = −(dx0)2 + a2(x0)g̃ijdx
idxj , (88)

where a(x0) is the scale factor dependent only on time x0, and the (d − 1)-

dimensional Riemann tensor and the Ricci tensor for g̃ij becomes

R̃ik
jl = kδj[iδ

l
k], R̃i

j = k(d− 2)δij , (89)

with k >= 1 (sphere), 0 (flat space), −1 (hyperbolic space).

The EMT is given by the perfect fluid as

T 0
0 = −ρ(x0), T ij = P (x0)δij , T 0

j = T i0 = 0, (90)

where ∇aT ab = 0 implies

ρ̇+ (d− 1)(ρ+ P )
ȧ

a
= 0, ρ̇ := ∂0ρ, ȧ := ∂0a, (91)

while the Einstein equation leads to

8πGρ =
(d− 1)(d− 2)

2

(k + ȧ2)

a2
− Λ,

8πGP = (2− d)

[
ä

a
+

(d− 3)

2

(k + ȧ2)

a2

]
+ Λ.

(92)

In this case, the energy is given by

E(x0) := −
∫
dd−1x

√
−gT 0

0 = Vd−1a
d−1ρ, Vd−1 :=

∫
dd−1x

√
g̃, (93)

which is NOT conserved unless P = 0, since

Ė

E
= −(d− 1)

ȧ

a

P

ρ
6= 0. (94)

To define a conserved charge as a generalization of energy, we take ζa =

−β(x0)δa0 to satisfy (52), which leads to11

−T 0
0β̇ − T ijΓji0β = ρβ̇ − (d− 1)P

ȧ

a
β = 0, (95)

where we use Γji0 =
ȧ

a
δji . An existence of the second term violates the condition

(74) for the energy conservation.

A new conserved charge is thus given by

S(x0) :=

∫
dd−1x

√
−g(−T 0

0)β = Vd−1a
d−1ρβ, (96)
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which is manifestly conserved as

Ṡ

S
=
Ė

E
+
β̇

β
= −(d− 1)

ȧ

a

P

ρ
+ (d− 1)

P

ρ

ȧ

a
= 0. (97)

The energy nonconservation is compensated by the second term.

What is this conserved charge S? If we define densities e(x0) := E(x)/Vd−1 =

ρ(x)v(x0) and s(x0) := S(x)/Vd−1 = e(x0)β(x0), where v(x0) := a(x0)d−1 is a local

volume element at time x0, we obtain

ds

dx0
=

de

dx0
β + e

dβ

dx0
=

(
de

dx0
+ P

dv

dx0

)
β, (98)

where we use (95). This relation is very similar to the first law of thermodynamics

as

Tds = de+ Pdv, (99)

if we identify β = 1
T as an inverse temperature. We thus interpret S as the total

entropy of the universe, which is conserved in the FLRW universe.11,f In addition,

β(x0) is regarded as the time-dependent inverse temperature of the universe. It is

easy to see that the temperature decreases as the universe expands, since

β̇

β
= (d− 1)

P ȧ

ρa
> 0. (100)

Even in more general cases, the entropy S so defined is conserved in general

relativity.11

Although we assume the Einstein equation (51) for analyses in this section, our

definition of the conserved charge (54) works for an arbitrary theory of general

relativity whose equation of motion is given by G̃ab = 2κTab instead of (51), where

G̃ab is an arbitrary second rank symmetric tensor composed of the metric gab which

satisfies ∇aG̃ab = 0.

3.4.2. Conserved charge from the second theorem

Let us consider the conserved charge from Noether’s second theorem for the FLRW

universe. In the case of the pseudo-tensor, we have

A0
0 =

√
−g

2κ
[2R0

0 + g0cΓdd0,c − gcdΓ0
cd,0] = 0, (101)

where we use

R0
0 = (d− 1)

ä

a
, Γ0

ij = aȧg̃ij . (102)

Thus EFLRW
pseudo = 0, which is conserved but physically trivial.

fWithout a mixing between time and space components for the metric and the EMT, the entropy
density s is also conserved.11
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The conserved current density for the Komar energy is given by

Ja[ξ] =
1

2κ

√
−g∇b[∇[aξb]], (103)

where we take a nonconstant ξa = γ(x0, r)δa0 . Here, the (d− 1)-dimensional metric

is parametrized as

g̃ijdx
idxj =

dr2

1− kr2
+ r2hkldx

kdxl (104)

with the (d − 2)-dimensional metric hkl for a unit sphere. Since r = 0 is not a

special point in the (d− 1)-dimensional space, γ(x0, r = 0) must be finite. Nonzero

components of the current density with this choice of ξa become

J0(x) = −a
d−3
√
h

2κ
∂r
(
rd−2

√
1− kr2∂rγ

)
,

Jr(x) =
rd−2
√

1− kr2
√
h

2κ
∂0(ad−3∂rγ),

(105)

where h is the determinant of hkl. For the conservation of the Komar energy, the

boundary contribution at r → r∞, where r∞ =∞ for k ≤ 0 or r2
∞ = 1/k for k > 0,

given by

lim
r→r∞

∫ x0
f

x0
i

dx0

∫
dd−2xJr(x)

= lim
r→r∞

Ωd−2

2κ
ad−3(x0)rd−2

√
1− kr2∂rγ(x0, r)

∣∣∣∣x0=x0
f

x0=x0
i

(106)

must vanish,g where Ωd−2 :=
∫
dd−2x

√
h is the volume of the (d − 2)-dimensional

unit sphere. Thus, γ(x0, r) must satisfy

lim
r→r∞

rd−2
√

1− kr2∂rγ(x0, r) = 0. (107)

Under this condition, the Komar energy is evaluated as

EFLRW
Komar =

∫
dd−1J0(x)

= −Ωd−2

2κ
ad−3(x0)rd−2

√
1− kr2∂rγ(x0, r)|r=r∞r=0 = 0. (108)

Thus, the Komar energy is conserved but physically trivial, as in the case of the

pseudo-tensor.

gIf the space is a (d− 1)-sphere (k > 0), there should be no need for spatial boundary condition.

Using the spherical coordinate and polar angle θ to set r as
√
kr = sin θ, the boundary condition

(107) reads limθ→π(sin θ)d−2∂θγ = 0. It is obvious that this equation is trivially satisfied.
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3.5. Initial condition of ζa(x) = β(x)na(x)

As mentioned before, (52) has a unique solution if the initial condition for β(x)

is given. A priori, there is no principle for a choice of the initial β(x). Since β(x)

physically represents a local inverse temperature, we have to determine a local

temperature distribution of matters from the matter EMT T ab(x) at some x0 in

order to fix the initial value of β(x). In the case of the FLRW universe, since matters

are uniformly distributed, it is natural to take the initial β(x) to be uniform as well.

For general cases, however, it has not been known to define the local temperature

from matter distributions. We leave this important problem to future investigations.

4. Conclusion and Discussion

In this paper, we have shown that the pseudo-tensor as well as the Komar integral

types of the energy including their quasi-local expressions are inappropriate to

give the physically meaningful definition of the energy in general relativity. This

is because their conservation derived from Noether’s second theorem is merely an

identity representing a constraint by the local invariance rather than a consequence

of the dynamics. Noether’s second theorem covers almost all existing definitions of

the energy in general relativity including the Abbott–Deser definition27 in addition

to others mentioned in the main text.

In contrast, our proposal utilizes equations of motion to derive the conservation

of the energy/entropy without using Noether’s theorem. Thus, more than 100 years

after Einstein’s proposal, our definition finally provides a proper and covariant

definition of the energy whose generalization as the entropy is always conserved in

general relativity.

The form of the conserved entropy in general relativity depends explicitly on

the on-shell gab, the solution to the Einstein equation, through ζa(x) = β(x)na(x)

in (52), where β(x) is determined after the Einstein equation is solved. Thus, we

cannot predict how the space–time evolves in time using the conservation law of the

entropy, unlike the standard conservation law of the energy in the flat space–time,

which often gives manifest constraints to dynamics of the system.

As evident from the form of the conserved current, Ja(x) := T ab(x)nb(x)β(x),

the energy/entropy in general relativity is carried only by the matter EMT. This

means that gravitational fields including (Ricci flat) gravitational waves cannot

carry the energy/entropy in general relativity. Even though one may invent another

definition of a conserved energy for gravitational fields, it is still true that there

exists the conserved energy/entropy carried only by matters in general relativity.

Thus, it is interesting to reanalyze the binary star merger in terms of the conserved

entropy, since it has been interpreted that the energy loss through the emission of

gravitational waves from rotating binary stars causes their merger. Last but not

least, a fact that gravitational fields carry no energy/entropy give a very strong con-

straint to a theory of quantum gravity if it indeed exists. For example, although a

graviton, a quanta of the quantized gravity, carries the energy/entropy, a quantum
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average of an energy/entropy exchange between matter and gravity field must van-

ishes in the classical limit (~→ 0).
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Appendix A. Noether’s Second Theorem

For the sake of readers, we give a derivation of Noether’s second theorem.12 In the

case of general relativity, see also an appendix of Ref. 13, which however seems to

be not recognized well in the community.

A.1. Invariant variational theory

Let us consider an integral of Lagrangian L over an arbitrary d-dimensional region

Ω given by

SΩ =

∫
Ω

ddxL(ϕn, ϕn,µ, ϕn,µν), (A.1)

where ϕn,µ := ∂µϕn, ϕn,µν := ∂ν∂µϕn and n = 1, 2, . . . , N labels N different

fields. Unlike the standard Lagrangian which, contains at most the first derivatives

of ϕ, the above L also contains the second derivatives of ϕn, which are necessary

for Einstein’s general relativity. Our discussion below can be extended to a more

general L including derivatives of ϕn higher than the second, though the formula

becomes more complicated.

A variation of SΩ is evaluated as

δvS =

∫
Ω

ddx

[
∂L

∂ϕn
δvϕn +

∂L

∂ϕn,µ
∂µδvϕn +

∂L

∂ϕn,µν
∂ν∂µδvϕn

]
=

∫
Ω

ddx {[L]nδvϕn + ∂µΘµ(δvϕn)}, (A.2)

where

[L]n :=
∂L

∂ϕn
− ∂µ

∂L

∂ϕn,µ
+ ∂ν∂µ

∂L

∂ϕn,µν
, (A.3)

Θµ(δvϕn) =

(
∂L

∂ϕn,µ
− ∂ν

∂L

∂ϕn,µν

)
δvϕn +

∂L

∂ϕn,µν
∂νδvϕn. (A.4)

If we take an arbitrary variation of ϕn such that δvϕn = ∂µδvϕn = ∂µ∂νδvϕn = 0

on the boundary of Ω, the total divergent term, ∂µΘµ, vanishes. Thus, δvSΩ = 0
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for an arbitrary variation of ϕn under this constraint implies [L]n = 0, which gives

equations of motion for ϕn.

In addition, we assume that SΩ is invariant under the following transformation:

xµ → (x′)µ = fµ(x), ϕn(x)→ ϕ′n(x′) = Fn(ϕ, x), (A.5)

whose infinitesimal version is given by

(x′)µ = xµ + δxµ, ϕ′n(x′) = ϕn(x) + δϕn(x). (A.6)

Note that δ can be global as well as local transformations, but is different from the

variation δv to derive equations of motion for ϕn. Since

∂(x′)µ

∂xν
= δµν +

∂δxµ

∂xν
⇒ ∂xν

∂(x′)µ
= δνµ −

∂δxν

∂xµ
, (A.7)

we obtain

δ(∂µF (x)) :=
∂F ′(x′)

∂(x′)µ
− ∂F (x)

∂xµ
= ∂µδF (x)− ∂νF (x)∂µδx

ν , (A.8)

where δF (x) := F ′(x′) − F (x). This shows that δ does not commute with the

derivative ∂µ due to the second term. We thus introduce another variation δ̄F (x) :=

F ′(x)− F (x), which commutes with derivatives as

δ̄(∂µF ) = ∂µδ̄F, δF = δ̄F + ∂µFδx
µ. (A.9)

Then the variation of SΩ under δ is evaluated as

δSΩ =

∫
Ω

ddx

[
∂L

∂ϕn
δϕn +

∂L

∂ϕn,µ
δ(ϕn,µ) +

∂L

∂ϕn,µν
δ(ϕn,µν) + L∂µδx

µ

]
=

∫
Ω

ddx [[L]nδ̄ϕn + ∂µ{Θµ(δ̄ϕn) + Lδxµ}]

=

∫
Ω

ddx [[L]n(δϕn − ϕn,µδxµ)

+ ∂µt{Θµ(δϕn)− Eµνδxν −Gµαν∂αδxν}] = 0, (A.10)

where we use ddx′ = (1 + ∂µδx
µ)ddx and

∂αL(ϕn, ϕn,µ, ϕn,µν) =
∂L

∂ϕn
∂αϕn +

∂L

∂ϕn,µ
∂αϕn,µ +

∂L

∂ϕn,µν
∂αϕn,µν , (A.11)

and we define

Eµν :=
∂L

∂ϕn,µ
ϕn,ν − ∂α

∂L

∂ϕn,µα
ϕn.ν +

∂L

∂ϕn,µα
ϕn,να − δµνL, (A.12)

Gµαν :=
∂L

∂ϕn,µα
ϕn,ν . (A.13)
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A.2. Noether ’s first theorem

Before considering Noether’s second theorem, we derive the well-known Noether’s

first theorem from the invariant variational theory. If we take

δxµ = εrfµr (x), δϕn = εrFr,n(x, ϕ), (A.14)

where εr (r = 1, 2, . . . , R) are arbitrary constant parameters while fµr (x) and

Fr,n(x, ϕ) are given functions of arguments. Then (A.10) becomes

δSΩ = εr
∫

Ω

ddx {[L]nXn,r + ∂µJ
µ
r} = 0, (A.15)

where

Xn,r := Fr,n − ϕn,µfµr ,

Jµr :=

(
∂L

∂ϕn,µ
− ∂α

∂L

∂ϕn,µα

)
Fr,n

− Eµνf
ν
r +

∂L

∂ϕn,µν
∂νFr.n −Gµαν∂αfνr ,

(A.16)

and summations over repeated indices including n are understood.

Since we can take Ω arbitrarily small, we obtain

[L]nXn,r + ∂µJ
µ
r = 0. (A.17)

Thus, if equation of motions are satisfied as [L]n = 0 for ∀n, there appear R con-

served currents Jµr such that ∂µJ
µ
r = 0, as a consequence of the global symmetry

generated by parameters εr. This is the famous Noether’s first theorem.

A.3. Noether ’s second theorem

Let us consider the local transformation generated by ξr(x) as

δxµ = ξrfµr (x), δϕn = ξrFr,n(x, ϕ) + ξr,µFr
µ
,n(x, ϕ), (A.18)

where r = 1, 2, . . . , R labels R different generators, and we denote ξr,µ := ∂µξ
r,

ξr,µν := ∂ν∂µξ
r and so on, as before. Then Eq. (A.10) becomes∫

Ω

ddx[ξr{[L]n(Fr,n − ϕn,µfµr )− ∂µ([L]nFr
µ
,n)}

+ ∂µ(Aµrξ
r +Bµ,νrξ

r
,ν + Cµ,ναrξ

r
,να)]

= 0, (A.19)

where

Aµr :=

(
∂L

∂ϕn,µ
− ∂α

∂L

∂ϕn,µα

)
Fr,n

−Eµνfνr + [L]nFr
µ
,n +

∂L

∂ϕn,µν
∂νFr.n −Gµαν∂αfνr ,
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Bµ,νr :=

(
∂L

∂ϕn,µ
− ∂α

∂L

∂ϕn,µα

)
Fr

ν
,n

+
∂L

∂ϕn,µν
Fr.n +

∂L

∂ϕn,µα
∂αFr

ν
n −Gµναfαr ,

Cµ,ναr :=
∂L

∂ϕn,µν
Fr

α
n = Cν,µαr,

(A.20)

and summations over repeated indices including n are also understood.

As before we can take Ω arbitrarily small. In addition, as opposed to the case

of the global symmetry, we can also take ξr = ξr,µ = ξr,µν = 0 on ∂Ω (the boundary

of Ω). This choice leads to

[L]n(Fr,n − ϕn,µfµr )− ∂µ([L]nFr
µ
,n) = 0, (A.21)

which can give R constraints on N equation of motions. Putting this back into

(A.19) with an arbitrary Ω and ξ, we obtain

∂µ(Aµrξ
r +Bµ,νrξ

r
,ν + Cµ,ναrξ

r
,να) = 0, (A.22)

which reduces to

∂µ(Aµr)ξ
r + (Aνr + ∂µB

µ,ν
r)ξ

r
,ν +

1

2
(Bµ,νr +Bν,µr + 2∂αC

α,µν
r)ξ

r
,νµ

+
1

3
(Cµ,ναr + Cν,αµr + Cα,µνr)ξ

r
,ναµ = 0. (A.23)

Since ξr, ξr,ν , ξr,µν and ξr,µνα in (A.23) are all arbitrary, we can conclude

∂µA
µ
r = 0,

Aνr + ∂µB
µ,ν

r = 0,

Bµ,νr +Bν,µr + 2∂αC
α,µν

r = 0,

Cµ,ναr + Cν,αµr + Cα,µνr = 0,

(A.24)

as constraints for off-shell ϕn. Thus, the constraints are expressed by the form of

conservation as

∂µJ
µ
r = 0, r = 1, 2, . . . , R, (A.25)

where

Jµr := Aµr = −∂νB̃ν,µr, B̃ν,µr :=
1

2
B[ν,µ]

r −
1

3
∂αC

[ν,µ]α
r. (A.26)

These constraints that ∂µJ
µ
r = 0, however, are not invariant under (A.18) due to

a presence of uncontracted index r.

Equation (A.22) is also regarded as a conservation equation that

∂µJ
µ[ξ] = 0, (A.27)
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where Jµ[ξ] is defined as

Jµ[ξ] = Aµrξ
r +Bµ,νrξ

r
,ν + Cµ,ναrξ

r
,να. (A.28)

This conservation equation is manifestly invariant under (A.18), since uncontracted

indices are absent. Using (A.24) one can further rewrite Jµ(x) as

Jµ[ξ] = −(∂νB
ν,µ

r)ξ
r +Bµ,νrξ

r
,ν + Cµ,ναrξ

r
,να

= −∂ν(Bν,µrξ
r) +B{µ,ν}rξ

r
,ν + Cµ,ναrξ

r
,να

= −∂ν(Bν,µrξ
r + 2Cν,µαrξ

r
,α) + (2Cα,µνr + Cµ,ναr)ξ

r
,να

= −∂ν(Bν,µrξ
r + 2Cν,µαrξ

r
,α). (A.29)

Thus, the current Jµ[ξ] turns out to be a total divergence.

Let us remind readers that equations of motion are not employed to derive the

conservation equations in Noether’s second theorem. Even if we restrict ξµr (x) to a

constant as ξµr (x) = εµr , off-shell conservation equations still hold, so that conser-

vations cannot be regarded as the dynamical ones in the standard Noether’s first

theorem. Noether herself (as a word by Hilbert and Klein) called such conservations

improper12 and distinguished them from proper conservations in the first theorem.
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