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In this paper, we make a close comparison of a covariant definition of an energy/entropy
in general relativity, recently proposed by a collaboration including the present authors,
with existing definitions of energies such as the one from the pseudo-tensor and the
quasi-local energy. We show that existing definitions of energies in general relativity are
conserved charges from Noether’s second theorem for the general coordinate transfor-
mation, whose conservations are merely identities implied by the local symmetry and
always hold without using equations of motion. Thus, none of the existing definitions
in general relativity reflects the dynamical properties of the system, and the need for a
physical definition of an energy. In contrast, our new definition of the energy/entropy
in general relativity is generically a conserved non-Noether charge and gives physically
sensible results for various cases such as the black hole mass, the gravitational collapse
and the expanding universe, while existing definitions sometimes lead to unphysical ones
including zero and infinity. We conclude that our proposal is more physical than exist-
ing definitions of energies. Our proposal makes it possible to define almost uniquely the
covariant and conserved energy/entropy in general relativity, which brings some impli-
cations to future investigations.
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1. Introduction

Since Einstein proposed general relativity as a theory for gravity,! a proper defini-
tion of an energy, more generally a conserved charge from an energy—momentum
tensor (EMT), has been looked for. A main obstruction comes from a fact that a
covariant conservation law with a covariant derivative V, for an EMT of matters
T%, in general relativity

VoT% =0 (1)
is different from the standard conservation law

Oq (\/—gTab) =0, g¢g:=detgu, (2)

which is required to construct a conserved energy but is not covariant under the gen-
eral coordinate transformation, the most fundamental symmetry of general relativ-
ity. Einstein himself modified a definition of the EMT as T = T% +t%, to satisfy
(2). Since t%, is not a tensor under the general coordinate transformation except the
affine transformation, 7%, is called Einstein’s energy—momentum pseudo-tensor. A
more modern way is to define a total energy of a system by a surface integral of grav-
itational fields in its asymptotic region, called a quasi-local energy, for an asymptot-
ically flat space-time.2# This approach has been extended further for more general
asymptotic behaviors by properly incorporating extra surface terms.>® See Ref. 9
for a recent summary of the problem including historical perspectives.

Recently, the present authors and their collaborator have proposed a different
definition for conserved charges such as the energy and its generalization in a curve
space-time including general relativity,!%!! directly from the EMT of matters but
still keeping its covariance under the general coordinate transformation. Advantages
of this definition, however, have not been fully recognized, partly because our previ-
ous papers focused on the idea and the quick report of the results without detailed
comparisons to existing definitions. Thus, in this paper, we make detailed compar-
isons between our proposal and other definitions for conserved charges in general
relativity, showing that our definition is much more natural and physical than oth-
ers, in order to establish that our definition of the energy and its generalization
solves the long-standing issue for the definition of the energy in general relativity.

In Sec. 2, we demonstrate that (almost) all existing definitions of the energy in
general relativity can be regarded as a conserved charge implied by Noether’s second
theorem for local symmetries.!2 We show that definitions of the energy as charges
from Noether’s second theorem are categorized either as Einstein’s pseudo-tensor
type or as the Komar energy!® type, the later of which includes the Arnowitt-Deser-
Misner (ADM) mass,? and the energy in the asymptotically flat space—time®* as
well as in the asymptotically de Sitter (dS)/anti-de Sitter (AdS) space-time.>8
Since both types of definitions allow quasi-local expressions, we can easily change
their definitions of the energy by adding an arbitrary total divergent term to the
Einstein—Hilbert action. Even worse, the energy from these two types of definitions
is conserved without using equations of motion. Thus, the conservation of the energy
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is merely identity implied by the general coordinate transformation rather than a
consequence of a time evolution, so that it cannot represent dynamics of the system.
We conclude that none of existing definitions from Noether’s second theorem can
provide a physical definition of an energy in general relativity. Indeed Noether
herself referred the charge from the second theorem improper by citing the word
from Hilbert and Klein.!2

In Sec. 3, we instead explain our proposal for a covariant definition of the energy
and its generalization in general relativity, which requires equations of motion,'% 11
and thus is not a charge from the second theorem. After reviewing our proposal,
we discuss three cases, (1) energy conservation by a global symmetry, (2) energy
conservation without symmetry, (3) conserved charge in the absence of energy con-
servation, together with explicit examples, where we also compare results from our
proposal with those from Noether’s second theorem. In the case (1), our definition
gives the finite energy of the Schwarzschild black hole even for nonzero cosmological
constant A, while definitions from Noether’s second theorem require a subtraction
of the infinite vacuum energy to obtain the finite black hole energy for A # 0 cases,
which agrees with the one from our definition only at d = 4. We have a similar com-
parison for the energy during a gravitational collapse in the case (2). In the case (3),
the homogeneous and isotropic expanding universe is analyzed. While the energy
in our covariant definition is not conserved, we show that our definition allows a
conserved charge as the generalization of the energy, which we identify the entropy.
On the other hand, the conservation of the energy for definitions from Noether’s
second theorem implies the vanishing total energy, which is physically meaningless.

Our conclusion and discussion are given in Sec. 4. For the sake of readers,
Noether’s second theorem is explained for general cases in App. A.

2. Noether’s Second Theorem and Conserved Charges
in General Relativity

In this section, we derive conservation equations using Noether’s second theorem in
general relativity. We then show that these conservation equations lead to a pseudo-
tensor as well as charges associated with asymptotic symmetry including the ADM
mass.

2.1. Noether’s second theorem in general relativity

We apply Noether’s second theorem to general relativity. Noether’s second theorem
is given in Ref. 12, and its application to general relativity is discussed in Ref. 13,
but these considerations, except the famous Noether’s first theorem, have not been
recognized well or have been sometimes misunderstood in the community. Thus,
for the sake of readers, we explain the second theorem here in the case of general
relativity, and the derivation of the theorem is presented for a general case in
App. A.
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To make our argument concrete, we take a scalar field theory coupled to the
Einstein gravity, whose Lagrangian density is given by

L=Lg+ L, (3)

where
Lg = iH(R —2A), k:=4nG, (4)
Las = /=3 |- 5070000 - V(9)|. )

and consider the integral of L over an arbitrary d-dimensional region €2 in the d-
dimensional space—time as

Sq 1= /Qdde. (6)

We first derive an equation of motion by considering an arbitrary variation &, as

2K045q = / d%z V=g
Q
1
X Kanb(R —2A) — R + Mr“b) Sv9ab + Va (976, Tf, — gabavrgc)] ,

%&f34d%[JQanwh4ﬂw»&¢—aAVQ@“&@%@L
(7)

where

1 0Ly 1 [ 1
T = — == 0%0"¢ — —g**(9°¢pD.0 + 2V (¢ ] 8
V=9 0gar 2 59" () (8)
and we use a fact that §,1'j. can be regarded as a mixed tensor. Since we can take
arbitrary variations which, together with their derivatives, vanishes at the boundary

of 2, we obtain equations of motion as

EY = —% <R“b - %g“b(R —2A) — QIiTab> =0, (9)
Ey = /=g(V Vi = V'(4)) = 0. (10)

Note that we can add the total derivative term 0,(y/—¢gK®) to the Lagrangian
density L without changing equations of motion. Thus, there is an ambiguity for a
choice of the Lagrangian density from which we can derive the above equations of
motion. In our analysis, we exclusively use the above L, keeping this ambiguity in
mind. In particular, we take the Einstein—Hilbert type for L¢.

We now consider a general coordinate transformation generated by £ as

52 = () — 20 = £(x), b= ¢/(a') — B(2) = O,
5gab = g;b(‘r/) - gab(x) == 7£C,a(x)gcb(x) - fc,b(‘r)gac(x)-
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Since § does not commute with derivatives, we introduce the Lie derivative by
& as

Sgab = 5gab - gab,cgc = _vagb - vbgav S¢ = 6¢ - §C¢,c = _fcvc(ba (12)
which satisfies
S(gab,(}“‘) = (Sgab),c"»a S((b,C) = (6¢)c (13)

A fact that an integration of the Lagrangian density over a d-dimensional domain
) is invariant under the general coordinate transformation leads to

5Sq = /Qddx [6(La + L) + (La + L)€

= /Qddx [0(La + L) + 8a{(Le + Lar)E"}] = 0, (14)
where we employ
d*(z + ox) = det[5f + (02%) pld2 = (1 + tr&})d%e = (14 €%)d%,  (15)
6(La + L) = 6(La + L) 4 £%0a(La + L) (16)
Using

5(LG + LM) = (Eg;bggab + E(bg(b) + 0a

y {ng(gb65rgc — gl — 2ﬁg“b3b¢5¢)} (17)

2K
and
Eg'bggab = fc[Qaa(Eg'bgbc) - Eg'bgab,c] - 280,(Eg'bgbc§c)7 (18)
we have

55q = / A2 & [204(EE goc) — E& gav,e — EgVed] + / d*z9,J°[¢{] =0, (19)
Q Q
where

J¢]

(LG + LM)fa - QEg:becﬁc + Q;If(gbcgrgc - gabgrgc - QHgabab¢S¢)

1 = - 1
= 5 V=ORR"E" + 0T, — g™ 0TG ] = o=V, [VI¢"). (20)
To obtain the last line, we use R%&? = —g%°[V,, V3]€0,
gheoTe, = —g"°V, V€% + g%V, Vi €0, goTs, = —g™PV,V £ (21)

Since we can take an arbitrary vector field &,(x) which satisfies {, = &, =
Eabe = 0 at 90 (the boundary of the region ) as a general coordinate transforma-
tion, (19) implies

2aa(Eg;bgbc) - Eg;bgab,c - E(bvc(b = 0; (22)
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for off-shell ga, and ¢, which give d constraints among the quantities £ and Ej,
which would vanish at on-shell, so that solutions to the equation of motion contain d
undetermined free functions. In other words, (22) identically holds. Thus, a number
of independent components for the symmetric tensor g, become d(d+1)/2 —d =
d(d —1)/2, as is well known.

Furthermore, taking an arbitrary &,(z) without constraints on 99, (19) with
(22) leads to

9aJ[§] = 0, (23)

where J[¢] includes the arbitrary vector £%. Indeed, we can confirm that 9, J%[¢] =
0 holds identically using an explicit form of J*[¢] in the last line of (20).
The current J*[¢] is expanded as

JUE = A%E + BUEl 4 O, (29
where
A% = %(23% + gcargb,c - ngFZd,b)
= Y910, (g"r)) + Tig T (29
By = I (T, - 29T, + 96T, (26)
Cabcd _ \Zj]{g(‘gac&(f + gad(sg _ 290‘151?) _ Cabdc’ (27)

and (23) for an arbitrary £* implies

Bu A% = 0, (28)

A% + 0.B%% = 0, (29)

“° + B® 4 204C%," = 0, (30)
Cayed 4 odyac 4 e da _ () (31)

Combining (29)-(31), we can generally write
1 1 1 _
A% = —20cBI% — S0.B1 = —20. B + 0040 = —0.5%7, (32)
where
RC a 1 le a] 1 e ald
B b = §B b — gadc b 5 (33)

which is anti-symmetric under a <> ¢.?

2In classical particle mechanics, A, B, C and J all vanish. Therefore, these equations are trivially
satisfied.14
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We fully utilize the fact that the general coordinate transformation is generated
by an arbitrary vector field £*(z) to obtain (22), (23) and (28)—(31), which are the
consequence of Noether’s second theorem.

There are two remarks. First of all, if we add the total derivative term X :=
04(v/—gK*®) to L, its variation under ¢ becomes (see (14))

/ dz [6X + 0,(XEY)] = / dz 0,[0(vV/—gK*®) + X &9, (34)
Q Q
which leads to a shift of J¢[¢] as

JoE] = JUE] + V=gl v, K — Klew,etl), (35)

where we use

SK® = KPVye® — 6V, K, 6v/—g = —/—gVe. (36)
Second, even though we can take £%(x) = £§ with a constant vector £§, we still
have Noether’s second theorem, so that the current associated with this symmetry
is always conserved without using equations of motion.

Using (23) and (28), we can define two types of conserved charges, one is covari-
ant, the other is noncovariant, which will be explained below. Their conservation,
however, is an identity implied by the general coordinate transformation, and holds
without using equations of motion.

2.2. Noncovariant conserved charge from Noether’s second
theorem: Pseudo-tensor

The noncovariant off-shell conserved current density is given by

A%y = 27;9(2]%% + gacrcdlb,c - ngng,b)v (37)

and the conservation law 9, A%, = 0 implies

o:/ d%z 8,A%,
M

= / (@t an, - / (@) ¢ [ @, e

oM,
where M is the d-dimensional space-time whose boundary consists of OM =
Y1 P OM, ® Xo. Here, X1 and Xo are past- and future-directed space-like surfaces,
respectively, and OMj is a time-like boundary of M. If faMs (d?=1x), A% = 0, we
can define a conserved charge as

Qp591ldo,b:/(dd71x)a Aaba (39)
b

since it does not depend on a choice of space-like surfaces 1 2. We call Qpscudo,b
the noncovariant conserved charge, since A%, is not covariant under the general
coordinate transformation.” Furthermore, (32) leads to a quasi-local expression of

Tt is only covariant under affine transformation that £%(x) := m®,z® — b%.
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steudo,b as
steudo,b = _/ (dd_2$)ac ~cba7 (40)
ox

where the boundary of ¥ is denoted by a spatial surface 0%.

As already noted before, the conservation of Qpseudo,s is an identity, which is not
a consequence from the dynamics of general relativity, since equations of motion
are not required to show it. In addition, if the equation of motion for g4 (Eg;b =0)
is used, A%, becomes

A% = /—g(T" + %),
1 R—2A (41)

t% = o R + oy + g“"FZb,C - QCngd,b )

where t%, is not covariant due to the last two terms. In the case of the vanishing
cosmological constant, by adding an appropriate total divergent term 9, (v/—gK®)
to the total Lagrangian density, t%;, can be transformed to Einstein’s gravitational
pseudo-tensor, which was claimed to represent the gravitational contribution. A dis-
tinction between matter and gravitational field, however, seems ambiguous, since
R%, and R in t%, are also expressed in terms of T" and T'%.

Using (41) for b = 0, one may define the conserved energy as

Epseudo = — /E [d% 2], v/=g(T% + %) <: /6

where a minus sign is introduced for Epseudo to match the standard definition of the
energy. While Einstein interpreted the second contribution from his pseudo-tensor
t% as the energy of the gravitational field, it depends on a choice of the coordinates
due to its noncovariance, and it sometimes diverges.

d—2 nc a
la z1acBo), (42)

2.3. Covariant conserved charge from Noether’s
second theorem: Komar integral

The second type of the conserved current is given by J¢ itself as
1
U] = - V=gVi[Vieel, (43)

which satisfies 9,.J%[¢] = 0 for an arbitrary vector £°. Then one may define the
covariantly conserved charge as

Qromar[€] := /E @ e Sl = 5 /E (" 2l V=gV [V (49)
= 5 [ vV )

where the second line is a quasi-local expression. We call this charge the Komar
integral, since the expression is identical to the one introduced by Komar.!> This
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charge is conserved not only for an arbitrary metric g,; but also for an arbitrary
vector £°. Thus, one may define various different charges depending on a choice of
€. We introduce several such charges used in literature.

2.3.1. Komar energy

If the space-time allows a time-like Killing vector £}, one may define the energy
as a charge associated with the Killing vector as Fxomar = QKomar|[$k], Which we
call Komar “energy”. Explicitly

EKomar - %/E[ddill']a \/ngabgl;( (46)
1 TEG 2AE£9
= [l el =g e (T - g ) 2L

where we use the equations of motion to obtain the second line, which shows that the
Komar “energy” does not lead to the standard definition of the energy in the limit
of the flat space-time. A time-like Killing vector is given by (% = —é§ for the
stationary space—time, for example, where the metric g,, does not depend on the
time coordinate x°. Since £% = —§¢ is constant, the Komar energy coincides with
the energy from the pseudo-tensor by definition: Exomar = Epscudo- Note that the
Komar “energy” Fxomar 1S always conserved as a consequence of Noether’s second
theorem, even though £% is not a Killing vector for a generic (nonstationary) space—
time.

2.3.2. Wald entropy

It has been proposed to define the black hole entropy,'® by choosing &% = t* +
Qpe®, where t* is the stationary Killing field, ¢* is the axial Killing field and Qg
is the angular velocity of the horizon. In Ref. 16, it is concluded that 9,J%[¢] = 0
holds when the equations of motion are satisfied. This statement is misleading,
however, since a full power of Noether’s second theorem was not employed to derive
0,J[¢] = 0 in Ref. 16. As we have frequently mentioned, 9,J%[(] = 0 can be
derived from Noether’s second theorem for an arbitrary £° without using equations
of motion or g,; and matters.

2.3.3. Asymptotically flat space—time: ADM energy

An asymptotically flat space—time is defined as a space—time whose metric satisfies
the vacuum Einstein equation without cosmological constant at z2 — +oo (large
space-like separation). In this case, the conserved energy is defined in Cartesian
coordinate as?

1 _
Eapm = - [d?22]o; (Dshij — Dihjj)y  huw = Guv — Ty (48)
—+oo
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which is called as the ADM energy (or mass), where 4, j run from 1 to d —1, 7,
is the flat Minkowski metric, and [ oo means that the integral is evaluated at
2% — 400.

The ADM energy can be written in a covariant manner as'?
1 o a 1
EADM - Z [dd 2”]ab V _gv[ 77b] = 7QK0mar[77]a (49)
K Jtoo 2

where 1 is an asymptotic time-like Killing vector and satisfies V,n, + Vipn, = 0 at
22 — +4oo0. Since there are many asymptotic Killing vectors, we identify a vector
n with another 7’ if there exists a vector v, = 1, — 7/, which vanishes at z? —
+o0. Clearly, Qkomar[] = @Komar[7']. Under this identification, a collection of all
independent asymptotic Killing vectors n generate the isometry of the Minkowski
space—time, so that a number of independent vectors are d(d + 1)/2 (translation
and Lorentz transformation). Thus, the ADM energy is regarded as a conserved
energy associated with the asymptotic time translation 7 in the asymptotically flat
space—time. Since the ADM energy is (a half of) the Komar integral, we can write

1
Baow = 4 [ (@l v=g9s(V ") (50)
Yoo

where Y is a space-like surface whose boundary is given by 22 — +o0.

2.3.4. Asymptotically dS/AdS space—time

As in the case of the asymptotically flat space-time, we define the asymptotically
dS or AdS space-time as the space—time whose metric satisfies the vacuum Einstein
equation with cosmological constant, Ggp + Agey = 0 at 22 — co. We then regard
the isometry of the dS/AdS space—time as a (representative of) asymptotic Killing
vectors of this space—time. The isometry of the dS is SO(1, d), while that of the AdS
is SO(2,d). Since it is possible to make the metric gq, static, the Killing vector n
for the time translation always exists. Thus, the energy in these asymptotic space—
times is defined using the asymptotic Killing vector 1 as E3g /AdS = Qxomar[n]-

2.4. Cautions on charges from Noether’s second theorem

As we have already mentioned frequently, Noether’s second theorem tells that cur-
rents associated with local symmetries are always conserved without using equations
of motion of dynamical variable. Thus conserved currents and conserved charges
do not reflect dynamical properties of the system. Rather they are consequences
of constraints (22) for Einstein gravity among the quantities Egb and E4, each of
which would vanish at on-shell. Therefore, it does not seem reasonable to define
energy in general relativity by either pseudo-tensor or Komar integral including
the ADM energy or asymptotic charges. Indeed Noether calls the conservation law
from her second theorem improper, referring statements by Hilbert and Klein.!2
In addition, both pseudo-tensor and Komar integral are easily modified by an
arbitrary total divergence term, which can be added without changing equations
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of motion, so that they are not unique. Furthermore, the pseudo-tensor depends
on the choice of the coordinate as it is not covariant under general coordinate
transformation. The Komar integral, on the other hand, is conserved for an arbitrary
vector €%, so that it may depend on a choice of £%.

One may argue to define a physical Noether charge by regarding the local trans-
formation restricted to constant parameters as the “global” transformation. How-
ever, this does not work except Quantum Electrodynamics (QED), since the con-
servation of Noether’s charge associated with the “global” transformation is still
a part of constraints implied by the local transformation. QED is somewhat spe-
cial, since the charge can be defined from the matter current, which is U(1) gauge
invariant.

In the following section, we introduce our proposal for a proper and covariant
definition of charges in general relativity, which are conserved only after equations
of motion for gravity and matters are satisfied. We consider several examples in
order to compare our definition with those from Noether’s second theorem.

3. Our Physical Definition Versus Noether’s Second
Theorem in General Relativity

In this section, we first explain our recent proposal for the covariant definition of
the energy and its generalization in general relativity.!11 We then compare our
definition with those derived from Noether’s second theorem in the previous section
for various examples with explicit calculations.

3.1. Our proposal for conserved non-Noether charge

We first summarize our proposal to define a conserved charge in general relativ-
ity.1% 11 We start with the Einstein equation given by

Gab + Agab = 2/ijjaln (51)

where the EMT T,; should be covariantly conserved, V,T%, = 0, as a consequence
of equations of motion for matters, since the left-hand side identically vanishes after
applying V, due to the Bianchi identity.

Since V,T%(x) = 0 does not give a conserved charge, however, we introduce a
special vector (* which satisfies

T%(2)VoCP(z) = 0. (52)

We then define a new conserved current density /—g7T%(x)¢’(x), which indeed
satisfies the standard conservation law as

0a(V=gT%()C"(x)) = V=gVa(T(2)¢"(x)) = V=gT"(2)Va((x) = 0. (53)

We thus call (52) the conservation condition. In Refs. 10 and 11, we have shown an
existence of (* and discussed how to construct it.
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A new conserved charge is easily constructed as

Qld] = / (@412, V=g T () ¢*(a), (54)

for a space-like surface ¥, which is manifestly covariant under general coordinate
transformations. With a similar argument as discussed for A%, around (38), it is
easy to show that Q[(] is conserved (i.e. it does not depend on a choice of the
space-like surface ¥).

Using the conserved charge Q[(], we define the energy and its generalization
in general relativity. There are three distinct cases for a choice of {, which will
be explained with explicit examples in the following sections. We will also make
comparisons with other definitions of the energy from Noether’s second theorem in
the previous section.

3.2. Energy conservation by symmetry

If the metric, which is a solution to the Einstein equation (51), is invariant under the
time translation, then the (time-like) Killing vector £%, defined by V& + Vi, = 0,
exists. Since Tyup = Tha, it is easy to see that (* = £* satisfies (52). If the metric
does not contain a time coordinate x°, the Killing vector is given by £¢ = —§¢ in
such a coordinate. Thus, the conserved energy is defined by!?

Ei= Q" = —68) = — / (), g T = — / oy =g T,  (55)

and the conservation is a consequence of the global time translational invariance of
the on-shell metric, the solution to the Einstein equation, but is not a consequence
implied by the local symmetry of the theory assumed in Noether’s second theorem.®
In the second equality, we present an expression for a constant 20 space-like surface
Yo, where [d97120)g := dztda? - - - dzd .

3.2.1. Vacuum energy

As a warmup, we consider a vacuum described by

A 2
%dﬂ + 202 ,, f(r)=1- TETC 722)(2 =

As already mentioned, the time-like Killing vector is given by £* = —§§, though it

ds? = —f(r)(da®)? + (56)

becomes space-like beyond the cosmological horizon r > rg = (‘1_22)# for the
positive cosmological constant A (dS space—time). By definition, the energy of the

“While (55) is not a Noether charge in the general relativity where gq; is dynamical, this energy
may be regarded as a conserve charge of Noether’s first theorem associated with the isometry for
a fized background metric.
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vacuum is zero for our definition, EY3¢ = 0, while energies from Noether’s second
theorem become

200 o / do 2(d=1)/2
Vel o = ERS =——— = [ %, Qg = ————. (57)
seudo Komar ) d—2 _
» ST M%)
Thus, we have
Ec\),ﬁ;: = ]\)/gccudo = I\g)cmar = EXZ}SM = (58)
for a flat space—time, while
Egig = 07 ;)lgccudo = I\gi)cmar = Ec\ilgC/AdS
2AQ4 o d—2
=——" dr — —A 59
a—2n /r r X 00 (59)

for nonzero cosmological constant, where the divergence comes from the divergent
r integral.

3.2.2. Schwarzschild black hole

As a nontrivial example, we consider the Schwarzschild black hole in d dimensions,
whose metric is given by

ds* = —(1 +u)dr?® — 2udrdr + (1 — w)dr? +r2dQ3_, (60)
in the Eddington—Finkelstein coordinates, where
2AT2 Tg d-3 d—3
= _ - = — | —= 0= 2 M 1
v -1y () o GMO(r), (1)

r4 is the black hole horizon for a case with A = 0, and M is the mass of the black
hole. Here, we introduce the step function 6(r) with 8(0) = 0 to properly treat the
singularity at » = 0 in the distributional sense. Note that we can replace 6(r) with

other regularizations without changing discussions below.!®
The constant 7 surface is normal to
ng =—(1-— u)71/25;, ngn® = —1, (62)

thus the constant 7 surface is always space-like even inside the horizon except in
the large r region that 1 —u < 0 for the negative A (AdS space—time). We illustrate
the constant 7 surface in the Kruskal-Szekeres like coordinates for d = 4 and A =0
in Fig. 1, where the metric becomes

4r3e=T/Tg
ds? = — 95 T (ar? — dX?) 4 r2d0?, (63)
r
X =e%9 {sinh <T) +e_ﬁ " }

2ry 2rg

_r_ T T T
T =e?s h{— ) —e 29— 4
e |:COS <2Tg> e 27“g] (64)
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Fig. 1. (Color online) The Schwarzschild black hole in the Kruskal-Szekeres like coordinate.
A blue curve defined by T = /1 + X2 represents a black hole singularity at 7 = 0 in the
Eddington—Finkelstein coordinates, while the dotted black line given by T'= X is the horizon as
r = rg. Red curves are constant 7 surface in the Eddington—Finkelstein coordinates at 7 — —oo,
7 < 0, 7=0 and 7 > 0, respectively. The physical region exists above the surface at 7 — —oo
and below the singularity surface at » = 0.

and
dT 2r4 cosh (i) —eiﬁ(r—&—%g)
ax

- 2rg sinh (i) +e T (r+ 2ry)

for a fixed 7. Toward the singularity (r — 0), the coordinates behave as

T T dT T
X — sinh [ — T — cosh | — —| — tanh | — 66
o <2Tg), o <2Tg), dX‘T " (27’9)7 (66)

while at horizon (r = r,), they become

. dT 2sinh (5-) — e Ty
x=1=Y, | _ (57,) — (67)
2 dX'[,  2cosh (i) +e %
and at r — oo, they approach
) ro G- dT
X > —e? T——e? — —1.
— 2Tge g, — 27“96 R ) — (68)
The relevant component of the EMT is given by!°
d—209,(ri=3s d—2)M §
o d=20,6"60) _ (d=2)M 5(r) )

4K rd—2 8T rd=2’
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whose second expression agrees with the expression for the EMT by other regular-
izations in the distributional approach.!® Contrary to the general argument,'? the
EMT is well defined in the distributional sense, since it does not contain ill-defined
products of two distributions. The energy is evaluated by the integral of this EMT
over the (d— 1)-dimensional constant 7 surface (red curves in Fig. 1 for d = 4) with
the Killing vectord ¢2 = —§2 as

Egy = / A4 /=g T7 o (—62) = %QH / drd,0(r)
= D002 g0y g0 = =Dz (70

which exactly gives a mass of the black hole at d = 4. While we here simply integrate
0-0(r) over r, a direct use of §(r) leads to the same result, showing a correctness of
the distributional approach as well as a famous relation 0,6(r) = §(r).

We now consider the black hole energies from Noether’s second theorem. Since
we take the constant £* = —¢§2 in the case of the Schwarzschild black hole, the
energy from the pseudo-tensor agrees with the Komar energy. In addition, the result
by the “volume” integral with the delta function agrees with the one by the “surface
integral” without requiring a specific asymptotic behavior. Explicitly

preudo = EI%(I;Imdr
/de g/drrd 2RT.E = /de ,rd2ylrer]
2Ar d—1
= Qa2
47r r(d—2)(d—1)
(d — 3)Qd— vac
= TQM + EKomar' (71)

Thus, Efsfudo /dS/AdS diverges for A # 0, while we can define the finite energy by
subtracting the “vacuum” contribution as

vac (d — 3)Qd—2
AER = Byl — B3 = TMa (72)
where the word “2nd” represents the pseudo-tensor energy and the Komar energy
including the ADM energy and the asymptotically dS/AdS energy.

If we compare (70) with (72), we have
AEQBHI({jl _ 2(d—3)
EBL  d-2 "

our

(73)

which becomes unity only at d = 4. Thus, the covariant definition of the black hole
energy in our proposal is in general different from “energies” defined from Noether’s

dAlthough constant 7 surfaces are space like, the Killing vector £ is time-like outside the horizon
(r > rg) but space-like inside the horizon (r < r4) for A = 0. In the case of nonzero cosmological
constant, the situation is similar but more complicated.
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second theorem, even after subtractions of the divergent vacuum contribution nec-
essary for A # 0, though the difference appears only in the normalization. A more
distinct difference between the two definitions appears in the case of energies for a
compact star.1?

3.3. Energy conservation without symmetry

We next consider a case without Killing vector for the time translation. Even in
such a case where £* = —4§ is not a Killing vector anymore, the energy defined by
(55) is time independent if the EMT and the metric satisfy

T"WVo&" = -T2 = 0. (74)
In this case, the energy FE is conserved but the conservation is NOT even a conse-

quence of the global time translational invariance.

3.3.1. Gravitational collapse

Let us consider a simple model of gravitational collapses for thick light shells,2°
whose metric in the Eddington—Finkelstein coordinate is given by

Japdz®dz = —(1 4 u)d?® — 2udrdr + (1 — u)dr?® + r2dQ3_,, (75)
where 2° = 7, and
_ m(r,T) 2A7r?
un ) = - T Ao @ =) (76)
2GMO(r), T+7r> A, 1,
T+
m(r,7) := { 2§GMO(r)F < A ), 0<7+r>A, II, (77)
0, T <A, 11,

where a monotonically increasing function F'(x) satisfies F/(0) = 0 and F(1) = 1.
The vector £* = —46§ is NOT a Killing vector due to an existence of the light shell
region (IT), while it becomes the Killing vector in Schwarzschild (I) and Minkowski
(I1T) regions. See Fig. 2 (left), where solid lines represent infalling lights which reach
the origin at 7 = 0, 79, A.

Since the metric in (75) gives!!

14+u U -
Y = 5 Ur — U = —I',

u 1—-u . 2+u 14+u
T = 5 lr T s Lo = Ty Ur U
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e(r)

AN hd
—

Fig. 2. (Left) Gravitational collapse of thick light shells in the Eddington—Finkelstein coordinate.
Solids lines represent infalling lights which reach the origin at 7 = 0,70, A. (Right) The local
energy density e(r) as a function of r at various 7. Here, we consider F'(z) = x case as a simplest
example, and £(r) has ¢ function contribution at » = 0, represented by a thick vertical line.

and
o (d —2) (ri=36u), - (d—2) [(r?36u), 2(6u),
T = 5 T°, = - )
4K rd—2 4k rd—2 r
(78)
d—2) (du) m(r,T)
TO — ( T _ _Tr e ’
" 4k r o, ou rd=3 "7
the condition (74) is satisfied for £* = —4§ as
T“bI‘ZO = (TOO - TTT)Fgo + TOT(FSO - 1—‘20) =0. (79)
In this system, the energy (55) is calculated as
d—2)Qq_o [
E(r) = —/ddilxsﬁ—gToo = M/ dr [m(r, 7)), (80)
167TG 0
For 7 < 0 (before the collapse without a black hole), (80) is evaluated as
(d—2)MSQy_ /A—T (d—2)MQy_o
™ 6 ), dror) 87 o (81)
For 0 < 7 < A (during the collapse with a growing black hole), we obtain
A—T1 .
E(T) = Etot/ d'l" 87~(9F) = Etot |:1 — Q(O)F (Z):| = Et0t7 (82)
0
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which can be evaluated differently using 0, (0F) = §(r)F + O, F as

B(r) = B [F (5) + {FO = F (5) }] = Buor, (83)

where the first term represents a mass of a growing black hole while the second one
is an energy of remaining light shells.

Finally for 7 > A (after the collapse with the final black hole), we evaluate the
total energy as

E(1) = Eiot /0ij dré(r) = Fiot, (84)

which agrees with the mass of the final black hole.

The total energy is conserved as F(7) = Fiot, and we plot typical distributions
of the local energy density in Fig. 2 (right).

Other examples have also been discussed in Ref. 11, and gravitational collapses
for more general EMTs have been investigated recently in Ref. 21.

3.3.2. Comparison with energies in Noether’s second theorem

Since £* = —4§ is constant, the energy from the pseudo-tensor and the Komar
energy agree. We thus obtain

Epscudo = Fxomar
T1

Q42 d—2 _ Qg2 d—2
= / Ar 0,2 e — )] = 22 ) (85)

ro
where 1y = A—7andrg=—7for7<0,r1=A—7andrg =0for 0 <7 <A,
and u, = 0 with 71 = oo and r¢9 = 0 for 7 > A. We thus obtain

(d=3) + Byc (86)

E2nd = Epseudo = EKomar = Ar Komar>

which again gives

Eana — P36 2(d—3)
L = . 87
Eour d - 4 ( )

3.4. Conserved charge in the absence of energy conservation

We finally consider the most general cases, where the Killing vector for time trans-
lation is absent and (74) for the constant vector £* = —4§ is not satisfied. To define
a conserved charge, which is a generalization of the energy, we must solve (52) for
¢%(x) = B(x)n*(z) with n*(z) = %én) where 7 is a parameter to characterize the
time evolution of space-like surfaces X,. (If we choose 7 to be the global time z0,
we have (*(z) = B(x)d§.) As discussed in Ref. 11, a solution to (52) always exists®

°The existence of such a vector field for a spherically symmetric gravitational system, known as
the Kodama vector, was pointed out in Ref. 26.
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and is unique once an initial condition for 3(z) is given at some 1 = 19. Thus, using
this (%, we can always define a conserved charge (54), which is a generalization of
the energy in general relativity.

3.4.1. Ezpanding universe

As an example, we consider a model of homogeneous and isotropic expanding
universe in Einstein gravity with a cosmological constant A, described by the d-
dimensional Friedmann—Lemaitre-Robertson-Walker (FLRW) metric,22 2

ds® = —(dz°)? + a®(2°) i da’da? (88)
where a(2°) is the scale factor dependent only on time 2°, and the (d — 1)-
dimensional Riemann tensor and the Ricci tensor for g;; becomes
R = k63, R = k(d - 2)d}, (89)
with k >=1 (sphere), 0 (flat space), —1 (hyperbolic space).
The EMT is given by the perfect fluid as
TOO = _p(x0)7 Tij = P(‘TO)(S;v Toj = TiO =0, (90)
where V,T%, = 0 implies
a
/)—l—(d—l)(p—i—P)E:O, p = Opp, a:= Opa, (91)
while the Einstein equation leads to
(d—1)(d—2) (k+a?)
— A,
2 a?

(d—3) (k+a?)

81Gp =
(92)

8TGP = (2 — d) {a+ .
a a

[ +a
In this case, the energy is given by

E(z°) := —/ddflx\/—gT% =Vy1a®lp, Vyi:= /dd’lx Vi, (93)
which is NOT conserved unless P = 0, since

E aP

—=—(d—-1)—— #0. 94

B -1 (94)

To define a conserved charge as a generalization of energy, we take (¢ =

—B(x%)6¢ to satisfy (52), which leads to*!
. o . a
~T%6 =TT} =pB — (d - 1)Pg5 =0, (95)

j aj . . s
where we use IY); = —47. An existence of the second term violates the condition
a

(74) for the energy conservation.
A new conserved charge is thus given by

S(20) = /ddflx\/?g(—T%)ﬂ =Vy_1a® 1B, (96)
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which is manifestly conserved as

S E B aP Pa
—==+4+-=—d-1)—-—4+(d-1)——=0. 97
STETS (d-1)- >t (d—1) va (97)
The energy nonconservation is compensated by the second term.
What is this conserved charge S? If we define densities e(z%) := E(z)/Vy—1 =

p(z)v(z?) and s(z°) := S(x)/Vy_1 = e(x°)B(x°), where v(2°) := a(2°)4~! is a local

volume element at time x°, we obtain
ds de dg de dv
— = —=|—+P— 98
dz®  dzV + ©dx0 (dxo + dx()) h (98)

where we use (95). This relation is very similar to the first law of thermodynamics
as

Tds = de + Pdwv, (99)

if we identify 8 = % as an inverse temperature. We thus interpret S as the total
entropy of the universe, which is conserved in the FLRW universe.'®f In addition,
B(z%) is regarded as the time-dependent inverse temperature of the universe. It is
easy to see that the temperature decreases as the universe expands, since
b_a-nfio (100)
B pa
Even in more general cases, the entropy S so defined is conserved in general
relativity.1t
Although we assume the Einstein equation (51) for analyses in this section, our
definition of the conserved charge (54) works for an arbitrary theory of general
relativity whose equation of motion is given by Ggp = 2xT,; instead of (51), where
Gap is an arbitrary second rank symmetric tensor composed of the metric Ggap Which
satisfies Vaé“b =0.

3.4.2. Conserved charge from the second theorem

Let us consider the conserved charge from Noether’s second theorem for the FLRW
universe. In the case of the pseudo-tensor, we have

AOO = Z;HQ[QROO + gocrgo,c - ngF(c)d,O] = 0) (101)
where we use
R% = (d— 1)37 T = aagy;. (102)

Thus EFLRW — () which is conserved but physically trivial.

pseudo

fWithout a mixing between time and space components for the metric and the EMT, the entropy
density s is also conserved.l!
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The conserved current density for the Komar energy is given by

1
JUE) = oo V=gVi Ve, (103)
where we take a nonconstant £€* = ~(z°,r)d¢. Here, the (d — 1)-dimensional metric
is parametrized as

gijdxidacj = + r2hyda® dat (104)

r
1—kr?
with the (d — 2)-dimensional metric hy; for a unit sphere. Since r = 0 is not a

special point in the (d — 1)-dimensional space, v(z°,r = 0) must be finite. Nonzero
components of the current density with this choice of £* become

d—3
J(x) = e vh \/Eﬁr (rd_Q\/ 1 — kr29,v),

2
" y (105)
21— kr2vh
J (@) = - ——=d0(a"9,7),
2K

where h is the determinant of hy;. For the conservation of the Komar energy, the
boundary contribution at r — 4., where ro, = oo for k < 0 or r2 = 1/k for k > 0,
given by

0
*r
lim dxo/dd72x J"(x)
0

r—Too

0__,.0
T —acf

Qq—
= lim ﬁad_g(xo)rd_%/ 1 — kr20,y(2° r) (106)

r—=ree 2K 0_..0
xT 7{1?7;

must vanish,® where Qg4_2 := [ d¥2zv/h is the volume of the (d — 2)-dimensional
unit sphere. Thus, (2%, ) must satisfy

lim 79721 — kr20,~(z°,r) = 0. (107)

r—Too

Under this condition, the Komar energy is evaluated as

B = [
_Q
= ; 2 3( 2V = kr20,y(20, ) 120 = (108)
K

Thus, the Komar energy is conserved but physically trivial, as in the case of the
pseudo-tensor.

8If the space is a (d — 1)-sphere (k > 0), there should be no need for spatial boundary condition.
Using the spherical coordinate and polar angle 6 to set r as vkr = sin 6, the boundary condition
(107) reads limg_,  (sin §)4=28yy = 0. It is obvious that this equation is trivially satisfied.
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3.5. Initial condition of (%(x) = B(x)n*(x)

As mentioned before, (52) has a unique solution if the initial condition for B(x)
is given. A priori, there is no principle for a choice of the initial 3(z). Since f(x)
physically represents a local inverse temperature, we have to determine a local
temperature distribution of matters from the matter EMT T%(x) at some 20 in
order to fix the initial value of 5(z). In the case of the FLRW universe, since matters
are uniformly distributed, it is natural to take the initial S(x) to be uniform as well.
For general cases, however, it has not been known to define the local temperature

from matter distributions. We leave this important problem to future investigations.

4. Conclusion and Discussion

In this paper, we have shown that the pseudo-tensor as well as the Komar integral
types of the energy including their quasi-local expressions are inappropriate to
give the physically meaningful definition of the energy in general relativity. This
is because their conservation derived from Noether’s second theorem is merely an
identity representing a constraint by the local invariance rather than a consequence
of the dynamics. Noether’s second theorem covers almost all existing definitions of
the energy in general relativity including the Abbott-Deser definition?” in addition
to others mentioned in the main text.

In contrast, our proposal utilizes equations of motion to derive the conservation
of the energy/entropy without using Noether’s theorem. Thus, more than 100 years
after Finstein’s proposal, our definition finally provides a proper and covariant
definition of the energy whose generalization as the entropy is always conserved in
general relativity.

The form of the conserved entropy in general relativity depends explicitly on
the on-shell gqp, the solution to the Einstein equation, through (%(z) = B(x)n*(x)
in (52), where B(x) is determined after the Einstein equation is solved. Thus, we
cannot predict how the space-time evolves in time using the conservation law of the
entropy, unlike the standard conservation law of the energy in the flat space—time,
which often gives manifest constraints to dynamics of the system.

As evident from the form of the conserved current, J%(x) := T%(x)n®(z)B(z),
the energy/entropy in general relativity is carried only by the matter EMT. This
means that gravitational fields including (Ricci flat) gravitational waves cannot
carry the energy /entropy in general relativity. Even though one may invent another
definition of a conserved energy for gravitational fields, it is still true that there
exists the conserved energy/entropy carried only by matters in general relativity.
Thus, it is interesting to reanalyze the binary star merger in terms of the conserved
entropy, since it has been interpreted that the energy loss through the emission of
gravitational waves from rotating binary stars causes their merger. Last but not
least, a fact that gravitational fields carry no energy/entropy give a very strong con-
straint to a theory of quantum gravity if it indeed exists. For example, although a
graviton, a quanta of the quantized gravity, carries the energy/entropy, a quantum
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average of an energy/entropy exchange between matter and gravity field must van-
ishes in the classical limit (A — 0).
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Appendix A. Noether’s Second Theorem

For the sake of readers, we give a derivation of Noether’s second theorem.'2 In the
case of general relativity, see also an appendix of Ref. 13, which however seems to
be not recognized well in the community.

A.1. Invariant variational theory

Let us consider an integral of Lagrangian L over an arbitrary d-dimensional region
Q given by

Ssz:/Qdde(wn,wn,mwn,W), (A1)

where ¢, = 0.¢0n, Pnuw = 0,0upn and n = 1,2,..., N labels N different
fields. Unlike the standard Lagrangian which, contains at most the first derivatives
of ¢, the above L also contains the second derivatives of ¢,,, which are necessary
for Einstein’s general relativity. Our discussion below can be extended to a more
general L including derivatives of ¢,, higher than the second, though the formula
becomes more complicated.

A variation of Sq is evaluated as

oL oL oL
0,8 = /Qddx [ 5v<pn + 781161)9071 + 878118/16”30”

8‘;0'0 8<Pn,u Pn, v
- / d'x {[L]"6upn + 3#@“(51,@”)}, (A.2)
Q
where
oL oL OL
L= —-90,— + 0,0, ——, A3
IZ] P *00n v (A-3)

6v90n + aaiLau(sv@n- (A4)

n,uy

04 (5 — ( oL, oL )

Oony  Onuw
If we take an arbitrary variation of ¢, such that d,¢, = 0,0v0n = 0,0,0u0n =0
on the boundary of Q, the total divergent term, 0,0*, vanishes. Thus, 6,50 = 0
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for an arbitrary variation of ¢, under this constraint implies [L]™ = 0, which gives
equations of motion for ¢,.
In addition, we assume that Sq is invariant under the following transformation:

at = (@) = (@), en(@) = 0 (2') = Fulp, @), (A.5)
whose infinitesimal version is given by
(@) =at +oa", ¢ (') = on(@) + dpn (). (A.6)

Note that § can be global as well as local transformations, but is different from the
variation J, to derive equations of motion for ¢,,. Since

o)y ., 0dz! oz ., 0dx”
oxv Y Oxv o)y dar’ (A7)
we obtain
! !/
50, F(z)) = 2L (@) _OF@) _ 0,6F (x) — 0, F(2)d,62", (A.8)

o(z!)m Oz

where 6F(z) := F'(2’) — F(z). This shows that  does not commute with the
derivative 9,, due to the second term. We thus introduce another variation §F(z) :=
F'(x) — F(z), which commutes with derivatives as

5(8NF) = 8#5F, SF =6F + OpFoxt. (A.9)
Then the variation of Sqg under § is evaluated as

oL OL

§Sq = / dz {5% + —
Q a(pn,p,

9o —(pn ) + L0, 02"

5(pn) +
(90 H) aQDn,,W

- / 4"z [[L]"S g, + 8,{0" (Bipn) + Lo
Q

= [ L1 = onu8")
Q

+0,H{O08(8pn) — M 00" — GH, 8,827 }] = 0, (A.10)
where we use d%2’ = (1 + 9,6x)d%z and
oL oL OL
aaL(SO'ru(pn, s Pn, V) = 780490n + 7804()071, + 76@‘)071, v (All)
H H a‘pn a@n,,u H a@n,;w H
and we define
oL oL oL
BV = ——ny —O0as—Pnv+ —¥nva — 0L L, (A.12
8907%# &Pm#a aﬁon,ua )
oL
Guau _ O A.13
0P pa (A.13)
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A.2. Noether’s first theorem

Before considering Noether’s second theorem, we derive the well-known Noether’s
first theorem from the invariant variational theory. If we take

ozt =€ fl(x), dpn =€Frn(z,0), (A.14)

where € (r = 1,2,...,R) are arbitrary constant parameters while f*(z) and
F, »(z, ) are given functions of arguments. Then (A.10) becomes

6Sq =¢" / A%z {[L]" Xp,r + OpJ",} = 0, (A.15)
Q

where

Xn,r = Llrn — @n,uf#a
L L
J“r ::( 0 — Oq 0 )Fr,n
Opn,p 0Pn o
oL

- E'ul/f: + 7auFr,n - Guavaozf:a
On v

(A.16)

and summations over repeated indices including n are understood.
Since we can take € arbitrarily small, we obtain

(L) X + 0", =0, (A.17)

Thus, if equation of motions are satisfied as [L]” = 0 for "n, there appear R con-
served currents J#, such that d,J*, = 0, as a consequence of the global symmetry
generated by parameters €. This is the famous Noether’s first theorem.

A.3. Noether’s second theorem
Let us consider the local transformation generated by &"(z) as
oxt =& fl(x), Spn =& Frn(z,0) + &, FV n(z, ), (A.18)

where r = 1,2,..., R labels R different generators, and we denote £, := 9,§",

o
" = 0,0,&" and so on, as before. Then Eq. (A.10) becomes

/Q e (L (Fp — po ) — 0, (LI"E, )}
0, (AP BRLET, 4 Ome g )]

=0, (A.19)

where

A ( oL _ . oL )Fm
0Pn. 0¢n pa

oL
- Euufql«/ + [L]nFrN,n + 78uFr.n - Guauaaf:7
OPn, v
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L L
B'u"yr = ( 9 — aa 9 ) Frl/,n
890’&# a@n,,uoz

oL oL
+ Fr.n + aozFrun - ijocfgv
8¢n,uu 84)071,;“1
C#’Var = oL Fran = Cu,pa“
aSﬁn,,uz/

(A.20)

and summations over repeated indices including n are also understood.
As before we can take 2 arbitrarily small. In addition, as opposed to the case

of the global symmetry, we can also take {" = ¢, = &7, =0 on 9Q (the boundary
of ). This choice leads to
[L"(Frn — @nufl) — Ou([LI" ) = 0, (A.21)

which can give R constraints on N equation of motions. Putting this back into
(A.19) with an arbitrary Q and £, we obtain

Ou(A!E + BIV " 4 O gn, ) =0, (A.22)
which reduces to

N

1
Ou( A" ) + (A% + OuB )6, 4 5 (BMYs + B 420,01 ),

1 ro vV, (e} v T
(O 4 OV 4 OO ), = 0. (A.23)

Since £", €', €', and ', in (A.23) are all arbitrary, we can conclude
0 AM,. =0,
AV’I“ + a,u,BM’Vr =0,
(A.24)
B*Y .+ BYP . 4 20,C%M . =0,
crre. OV £ OV =0,

as constraints for off-shell ¢,,. Thus, the constraints are expressed by the form of
conservation as

o J', =0, r=12,... R, (A.25)
where

. - 1 1
Jh. =AM = —9,B"",., BV, = iB[”’“]T - gaac[wﬂar. (A.26)

These constraints that d,J*, = 0, however, are not invariant under (A.18) due to
a presence of uncontracted index 7.
Equation (A.22) is also regarded as a conservation equation that

8,J"[€] = 0, (A.27)
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where J#[£] is defined as
JH[E] = AMET + B, 4 O L, (A.28)

var

This conservation equation is manifestly invariant under (A.18), since uncontracted
indices are absent. Using (A.24) one can further rewrite J*(z) as

THE] = (OB )E BT o+ O
= —0,(B"H ") + B 4 C1YOLLT g
= =0, (B8 4+ 207,67 o) + (204 + CHY)E o
= —0,(BYH.£" 4+ 201" ). (A.29)

Thus, the current J#[£] turns out to be a total divergence.
Let us remind readers that equations of motion are not employed to derive the
conservation equations in Noether’s second theorem. Even if we restrict £#(z) to a

constant as &¥(x) = e

1 off-shell conservation equations still hold, so that conser-

vations cannot be regarded as the dynamical ones in the standard Noether’s first
theorem. Noether herself (as a word by Hilbert and Klein) called such conservations
improper'? and distinguished them from proper conservations in the first theorem.
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