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Abstract
We present a feasible scheme to implement a planar and tunable quantum state transfer (QST) via
topologically protected zero-energy mode in a splicing Y-junction Su–Schrieffer–Heeger (SSH)
chain. The introduction of the elaborate nearest-neighbor (NN) hopping enables one to generate a
topological interface at the central site of the Y-junction. By modulating the NN hopping
adiabatically in the chain, the quantum state initially prepared at the central site can be
simultaneously transferred to the three endpoints of the Y-junction with the equal/unequal
probabilities. The planar distribution of QST is expected to realize a quantum router, whose
function is to make the quantum information on the central site (input port) appear
equally/unequally at the three endpoints (output ports) with different directions. Moreover, the
numerical simulations demonstrate that the scheme possesses the robustness on the fluctuations of
the NN hopping and the on-site potential in the system. Furthermore, we show that the number of
the output ports with different directions can be flexibly increased in an extended X-junction SSH
chain, and the experimental feasibility for implementing special QST in a superconducting
qubit-resonator system is briefly discussed. Our work extends the space distribution of QST from
linear distribution to planar distribution and promotes the construction of large-scale quantum
networks.

1. Introduction

Quantum network [1–5], a brand-new way of information network, has attracted increasing attention since
its fast processing speed, strong processing capability, and high safety. As one of the essential blocks in
quantum network, the reliable quantum state transfer (QST) [6–18] between long-distance sites directly
affects the accuracy and efficiency of the above procedure. Therefore, it is necessary to design and to
implement a high-performance quantum communication channel. A plethora of efforts have been made to
obtain the optimal channel for implementing QST, including the trapped ions [11, 12], spin chains [13–16],
and nitrogen-vacancy centers [17, 18], etc. It needs to be emphasized that the intrinsic fluctuations or defects
in different resources are still an unavoidable issue, which reduce the fidelity of realizing QST and inhibit the
building of large-scale quantum networks.

One class of robust QST protocols come from Su–Schrieffer–Heeger (SSH) [19, 20] model of topological
insulator [21, 22] have received considerable interest. They host conducting edge states, which propagate
along the chain and are robust to the mild disturbances of the system [23, 24]. To this end, the topological
edge states of matter have been widely applied on the establishment of quantum transfer channel. For
instance, based on the superconducting Xmon qubits chain, the single-qubit state can be transferred via the
topologically protected zero-energy mode [25]. With the deepening of research on topologically protected
channel, different forms of SSH model [26–30] have been constructed to realize the fast and robust QST.
Meanwhile, the traditional QST with only one output port has also been extended [31–33]. In reference [31],
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the standard SSH model with on-site energy and next nearest-neighbor (NN) hopping can be engineered as a
topological beam splitter, in which the initial state prepared at only one site can be transferred into two sites
with equal probabilities. And the researchers in reference [32] have demonstrated that a topological router
can be implemented in the standard SSH model with long-range hopping. These extended models
dramatically enrich the content of QST and further improve the transfer efficiency. Note that the
distributions of above protocols show a linear form since the state transfer between the initial state and final
state is presented as a linear structure in the space. The quantum state can be transferred into one or two
directions relative to the initial state. However, the quantum network is a complicated network in the
practical applications, which requires quantum information to be sent and received from more different
directions. Besides that, these extended protocols focus on only the equal distributions of the gap state and
ignore the unequal distributions. This may limit the application of tasks related to information diversity in
quantum networks. Thus the construction of the topologically protected QST channel with the realistic
applications is an urgent problem.

In this paper, we propose a planar and tunable QST scheme via engineering the elaborate NN hopping in
a splicing Y-junction SSH chain. We show that the elaborate NN hopping with the same hopping amplitudes
as the intercell hopping added on the central site and the first site of the each SSH chain induces a special
zero-energy mode, in which the zero-energy mode has the equal distributions at the three endpoints of the
Y-junction. Via adiabatically ramping of the NN hopping, the initial state prepared at the central site can be
transferred into the three endpoints of the Y-junction with the approximately equal probabilities. The space
location among the central site and endpoints presents the planar distribution, which implies the form of
QST is transformed to planar distribution. We also study that the elaborate NN hopping with different
hopping amplitudes as the intercell hopping added on the central site and the first site of the each SSH chain,
the zero-energy mode has the unequal distributions at the three endpoints of the Y-junction. Depending on
the different elaborate NN hopping amplitudes, the probability distribution of the zero-energy mode at the
three endpoints can be arbitrarily modulated. Based on the probability distribution of the zero-energy mode,
we show that the planar and tunable QST channel can be constructed. If we treat the central site as the input
port and treat the three endpoints as the output ports, this special topological state transfer can be naturally
equivalent to a quantum router in form. Furthermore, the imperfect factors in the chain have been discussed,
and the results indicate that the present protocol shows the robustness to the inevitable disorder in the NN
hopping and on-site potential. Finally, we extend the current model into a splicing X-junction SSH chain,
which can achieve planar QST with four different directions, and the experimental feasibility for
implementing special QST is also briefly discussed.

The paper is organized as follows: in section 2, we demonstrate that a planar and tunable QST can be
accomplished based on a splicing Y-junction SSH chain and reveal the robustness of the imperfect system
with the disorders in NN hopping and on-site potential. In section 3, we propose an extended planar QST
with four directions based on a splicing X-junction SSH chain and discuss the experimental feasibility of our
protocol. Finally, a conclusion is given in section 4.

2. Planar and tunable QST assisted by the zero-energy mode

A usual QST protocol [25] in an odd-sized SSH model is based on the motion of the zero-energy edge state.
By adiabatically varying the NN hopping in the chain, the zero-energy mode occupies the left or right edge
with maximal distribution. Therefore, the edge state plays a role of topologically protected quantum channel
to realize robust QST from the left to the right edge. The questions arise: when we design a splicing
Y-junction SSH chain based on three conventional SSH chains with the same size, can each SSH chain still
realize a QST? If that, can the comprehensive results of each chain realize a special QST? In the following, we
show a planar and tunable state transfer channel induced by the elaborate NN hopping in a splicing
Y-junction SSH chain. At the same time, we find that this special state transfer can be expected to achieve a
quantum router, which provides the potential application toward topological quantum networks.

2.1. Planar QST with the equal probabilities
The universal setup of a planar QST via the topological zero-energy mode in the splicing Y-junction SSH
chain is shown in figure 1. The junction contains three conventional SSH chains and a central site. For
convenience, we denote the three chains by L, R, and M, according to their locations in the figure. Here, we
consider cases where the three SSH chains have the same size N (N ∈ even) and the total number is
L= 3N+ 1. When we restrict ourselves to the one-excitation subspace, the Hamiltonian of this splicing
Y-junction SSH chain is written as [27, 34, 35]
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Figure 1. Schematic diagram of a splicing Y-junction SSH chain. The Y-junction consists of three conventional SSH chains and a
central site. Each SSH chain with the same size N. Each color represents a class of sites. A green site and a blue site form a unit cell.
The intra- and intercell couplings between two adjacent sites are J1 and J2. Note that the splicing Y-junction chain has the
elaborate NN hopping among the each SSH chain and the central site with the hopping amplitude Tc .

H= J1
∑
c∈C

N−1∑
nodd=1

(|c,n⟩⟨c,n+ 1|+H.c.)+ J2
∑
c∈C

N−2∑
neven=2

(|c,n⟩⟨c,n+ 1|+H.c.)

+
∑
c∈C

Tc (|0⟩⟨c,1|+H.c.) , (1)

where C= {L,R,M} is a set of positional index, and n is the site index of each SSH chain. The state localized
on the nth site of the chain c is defined as |1⟩c,n (n= 1,2, . . .,N) and on the central site is defined as |1⟩0. The
parameters J1 and J2 are the NN hopping amplitudes, which are set to J1 = J(1+ cosθ) and J2 = J(1− cosθ),
with θ being a periodic parameter varying from 0 to 2π. In addition, the central site owns the elaborate NN
hopping, which supports the NN hopping among the central site and the first site of the chain c with
hopping amplitude Tc = J2 = J(1− cosθ).

The above Hamiltonian possesses a topological zero-energy mode in the real space energy spectrum since
the system Hamiltonian respects chiral symmetry, i.e. Γ̂ĤΓ̂+ =−Ĥ with Γ = Diag[(−1)0,(−1)1,(−1)2, . . . ,
(−1)L−1]. And, the relevant wave function of zero-energy mode can be described by the following ansatz
(after normalization): ∣∣∣Ψ(1)

E=0

〉
=
∑
c∈C

|0c,N,0c,N−1, . . . ,0c,1,10⟩ (J1 ≫ J2) ,∣∣∣Ψ(2)
E=0

〉
=

1√
3

∑
c∈C

|1c,N,0c,N−1, . . . ,0c,1,00⟩ (J1 ≪ J2) . (2)

The analytical result indicates that the zero-energy mode occupies the central site 0 when J1 ≫ J2, and
concentrates toward the endpoint (c,N) when J1 ≪ J2. Here, the three endpoints (L,N), (R,N), and (M,N)
with the equal probabilities 1/3 are located in different directions relative to the central site. The space
distribution of the central site and the three endpoints constructs a two-dimensional plane. Obviously, the
planar distribution of the zero-energy mode is totally different from the linear distribution in
references [25–33].

More generally, if the central site in chain is prepared in an arbitrary state a|0⟩+ b|1⟩ initially, the state of
the system is written as

|Ψi⟩= a|G⟩+ b
∣∣∣Ψ(1)

E=0

〉
, (3)

where |G⟩=
∑

c∈C |0c,N,0c,N−1, . . . ,0c,1,00⟩. As the NN hoppings varying from J1 ≫ J2 to J1 ≪ J2, the state

evolves from |Ψ(1)
E=0⟩ to |Ψ

(2)
E=0⟩ and |G⟩ remaining unchanged. In the end, we realize the planar QST,

|Ψi⟩= a|G⟩+ b
∣∣∣Ψ(1)

E=0

〉
→ |Ψf⟩= a|G⟩+ b

∣∣∣Ψ(2)
E=0

〉
. (4)

The information of the central site a|0⟩+ b|1⟩ was transferred to the three endpoints. For the sake of

simplicity, we take the transfer of |Ψ(1)
E=0⟩ → |Ψ(2)

E=0⟩ as example in the following numerical analysis and
discussion.
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Figure 2. (a) Energy spectrum of the splicing Y-junction SSH chain versus the parameter θ. The gap state with zero energy is
pinned in the energy gap. (b) Enlargement of the energy spectrum in the region of θ ∈ [0.9π,π]. (c) Distribution of the
zero-energy mode versus the parameter θ. (θ ∈ [0,0.95π]) (d) Probability amplitude of the zero-energy mode when θ= 0 or
θ = 0.95π. The size of the chain is L= 3N+ 1= 13. Here, we take J= 1 as the energy unit.

To certify the above claims, we plot the energy spectrum of the system and the distribution of the
zero-energy mode when the size of each SSH chain is N = 4, as shown in figure 2. Notably, we choose
L= 3N+ 1= 13 as an example throughout the paper without special emphasis. We find that each eigenvalue
E accompanied by a chiral symmetric partner with eigenvalue−E and the eigenvalue E= 0 is pinned in the
whole energy gap. When θ gradually increases to π, the zero-energy mode almost touches the bulk state, as
shown in figure 2(a). It is worth emphasizing that the zero-energy mode is nondegenerate in the parameter
space 0.9π < θ < 0.95π in figure 2(b). In order to avoid the disturbance of the bulk state to the zero-energy
mode, we choose the distribution of the zero-energy mode for the appointed parameter range with
θ ∈ [0,0.95π ]. As shown in figure 2(c), the zero-energy mode occupies the central site 0 when θ ∈ [0,0.5π ]
and concentrates toward the three endpoints (L,N), (R,N), and (M,N) when θ ∈ [0.5π,0.95π ]. Further, we
plot the detailed distribution of the zero-energy mode with the specific parameters θ= 0 and θ = 0.95π in
figure 2(d). It can be found that the zero-energy mode has probability 1 at the central site 0 and the equal
probabilities 1/3 at the three endpoints (L,N), (R,N), and (M,N). Obviously, these numerical simulation
results are in good agreement with the theoretical analysis in equation (2).

The root reason of the zero-energy mode with a planar distribution is that, when θ ∈ [0,0.5π ], the strong
hopping amplitude J1 and the weak hopping amplitude J2 = Tc lead each SSH chain to be split into several
dimers and the central site to be isolated. In this way, the zero-energy mode mainly occupies the central site
and the central site becomes the topological edge state, as shown in figure 3(a). On the contrary, when
θ ∈ [0.5π,0.95π ], the NN hopping amplitude and the elaborate NN hopping amplitude satisfy J2 = Tc > J1,
indicating that the last site of each SSH chain is isolated. Then, the zero-energy mode occupies the three
endpoints (L,N), (R,N), and (M,N) and the three endpoints become the special edge states. Furthermore,
each SSH chain connects the central site with the same elaborate NN hopping amplitude Tc. This signifies
that each SSH chain occupies the equal weight for the central site and the probability distributions of
zero-energy mode in the three endpoints are equal. The particular distribution predicts that the zero-energy
state may experience the planar transfer from the central site to the three endpoints of the Y-junction with
different directions when the periodic parameter θ varies from 0 to 0.95π.

The special QST between |Ψ(1)
E=0⟩ and |Ψ(2)

E=0⟩ can be realized via the evolution of the time-dependent
Hamiltonian. We rewrite the periodic parameter θ as the time-dependent version θ =Ωt with the ramping
speed Ω and the time t. If the system is driven sufficiently slowly during the transfer process, we can
guarantee the zero-energy eigenstate without exciting other eigenstates. Therefore, it is necessary to evaluate
the appropriate adiabatic parameter Ω and ensure the evolution process against the influence of the bulk
state. In figure 4, we simulate the QST fidelity as a function of the ramping speed Ω for different sizes of the

splicing Y-junction SSH chain. The fidelity in our work can be defined as F= |⟨Ψ(2)
E=0|ψend⟩|2, where |ψend⟩

denotes the evolved final state and |Ψ(2)
E=0⟩ represents the ideal final state of the planar QST. The results show

that the range of the appropriate adiabatic parameter Ω is increased since the size of a splicing Y-junction
SSH chain decreases. For instance, the shorter chain L= 13 with F≈ 1 requires Ω⩽ 0.075. For a longer chain
L= 25, the high fidelity F≈ 1 occurs for Ω⩽ 0.023. Figure 4 reveals the prefect QST can be realized when the
system with different sizes satisfies the reasonable adiabatic condition.
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Figure 3. The analysis of the distribution for the zero-energy mode when θ ∈ [0,0.95π]. (a) When θ ∈ [0,0.5π], the strong
hopping amplitude J1 and the weak hopping amplitude J2(Tc) lead that the central site 0 becomes an isolated site. As a result, the
zero-energy mode is localized at the central site. (b) When θ ∈ [0.5π,0.95π], the strong hopping amplitude J2(Tc) and the weak
hopping amplitude J1 lead that the endpoint (c,N) becomes an isolated site. As a result, the zero-energy mode is localized at the
endpoint (c,N). (The isolated site is filled in the orange shading.)

Figure 4. The fidelity of the planar transfer versus the ramping speedΩ corresponds to different size of the splicing Y-junction
SSH chain. Here, we take J= 1 as the energy unit.

In practice, the precise control of a tunable coupling parameter is impossible during experimental
implementation. Therefore, it is necessary to evaluate the robustness of the planar QST when the fluctuation
exists in the tunable coupling (J1, J2 and Tc). This imperfection can be described by the Hamiltonian

HND = (J1 +Wδ)
∑
c∈C

N−1∑
nodd=1

(|c,n⟩⟨c,n+ 1|+H.c.)+ (J2 +Wδ)
∑
c∈C

N−2∑
neven=2

(|c,n⟩⟨c,n+ 1|+H.c.)

+
∑
c∈C

(Tc +Wδ)(|0⟩⟨c,1|+H.c.) , (5)

whereW represents the strength of the random disorder in NN hopping and δ is a random number in the
range of [−0.5,0.5]. For eachWδ, we choose 101 samples to perform the numerical simulation throughout
this work. In figure 5(a), we plot fidelity of the QST to weigh its resilience of the NN disorder in different
sizes. Here, we choose the ramping speed Ω= 0.001 to realize the adiabatic evolution process, which obeys
the adiabatic condition of the size L (L= 7,13,19,25) in figure 4. The numerical results show that,
corresponding to the mild enough disorder strength log10(W) ∈ [−2,−0.75], the state transfer between
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Figure 5. (a) The fidelity of the planar QST against the strength of the NN disorder corresponds to different sizes of the splicing
Y-junction SSH chain. (b) The energy spectrum of the imperfect system with the NN disorder strengthW = 0.01. (c) The related
state transfer via the evolution of zero-energy mode in the figure 5(b), where the adiabatic parameter satisfiesΩ= 0.001. (d) The
energy spectrum of the imperfect system with the NN disorder strengthW = 0.1. (e) The related state transfer via the evolution of
zero-energy mode in the figure 5(d), where the adiabatic parameter satisfiesΩ= 0.001. The size of the splicing Y-junction SSH
chain in figures 5(b)–(e) is L= 3N+ 1= 13. Here, we take J= 1 as the energy unit.

|Ψ(1)
E=0⟩ and |Ψ(2)

E=0⟩ can be realized with a high enough fidelity F≈ 1. This indicates that the present protocol
is naturally immune to the mild disorder in NN hopping with the size L (L= 7,13,19,25). To explore the
reason of the imperfect NN hopping has barely effect on the QST, we numerically simulate the energy
spectrum and state evolution with different disorder strength log10(W) for the size L= 13. For the slow
enough ramping speed Ω= 0.001 and mild enough disorder strength log10(W) =−2, it is straightforward to
observe that the gap state with zero energy exists stably in the energy spectrum and the bulk state occurs a
slight fluctuation, as shown in figure 5(b). Considering the above zero-energy mode corresponds to a planar

transfer channel, the QST between the state |Ψ(1)
E=0⟩ and |Ψ(2)

E=0⟩ can be realized when the mild disorder is
added into the NN hopping. This is verified by our numerical simulation in figure 5(c). When the mild
enough disorder strength log10(W) increases, the bulk state produces a larger fluctuation. However, the gap
state still keep the zero energy, as shown in figure 5(d). In this way, the QST can be successfully implemented
based on the gap state, as shown in figure 5(e). Figure 5 demonstrates that nearly perfect QST can be
achieved when the mild NN disorder added on the system.

In addition, the on-site potential of site may possess the disorder due to the modulation of external
control, namely, on-site disorder. Then, the splicing Y-junction chain can be described as,

HOD =
∑
c∈C

N∑
n=1

Vδ |c,n⟩⟨c,n|+Vδ |0⟩⟨0|+ J1
∑
c∈C

N−1∑
nodd=1

(|c,n⟩⟨c,n+ 1|+H.c.)

+ J2
∑
c∈C

N−2∑
neven=2

(|c,n⟩⟨c,n+ 1|+H.c.)+
∑
c∈C

Tc (|0⟩⟨c,1|+H.c.) , (6)

where the term Vδ |c,n⟩⟨c,n| ( Vδ |0⟩⟨0| ) represents the on-site disorder added on the site (c,n)
[central site 0] with the disorder strength V. Here, we mainly consider two cases of on-site disorder: one
where the on-site disorders are imposed on all sites (disorder 1) and another where the on-site disorders are
added on the sectional sites (disorder 2) [the central and three endpoints are exempted]. From the figure 6,
we investigate that the disorder 2 is almost has no influence on the QST with a high fidelity F≈ 1. When the
on-site disorder are respectively added on all sites, we observe that the disorders have little effect on the
planar QST with respect to log10(V)<−1.8 while the fidelities show a rapid trend of decline with
log10(V)>−1.8. In the case of disorder 2, the protocol proves to be even more robust than the case in
disorder 1. The reason is that the planar QST mainly occupies the site (c,N) and central site 0. Figure 6
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Figure 6. The fidelity of the planar QST with equal probabilities against the strength of the on-site disorder. The size of the chain
is L= 3N+ 1= 13 and the ramping speedΩ satisfiesΩ= 0.001. Here, we take J= 1 as the energy unit.

reveals the on-site disorder added on the site (c, n) (n ̸= N) has minimal effect of the planar QST and our
protocol is insensitive to the mild disorder in on-site potential.

Based on the matrix representation of the Hamiltonian the disorder on the NN hopping is commonly
addressed as off-diagonal disorder, while the disorder on the on-site potential of site is addressed as diagonal
disorder. The off-diagonal disorder keeps chiral symmetry and the zero-energy mode is insensitive to the
mild disorder in the NN hopping. And, for the special distribution of the zero-energy mode, the diagonal
disorder in the special site (c,n) (n= 1,2,3, . . .,N− 1) has barely effect on the QST. To sum up, benefiting
from the protection of the energy gap and the distribution of the zero-energy mode, the QST with equal
probabilities in the splicing Y-junction SSH chain is naturally immune to the mild disorder of the NN
hopping and the on-site potential.

The above process is a kind of special topological QST in SSH model, in which the quantum state initially
prepared at the central site (regarded as input port) can be equally transferred toward the three endpoints
(regarded as output ports). We here have two remarks. First, compared to the traditional topological QST
with only one output port, the present protocol can realize the QST with multiple output ports. In the
quantum network, efficiency and scalability are the basis of the large-scale quantum information processing.
Second, the space distribution among the central site and the three endpoints is a planar structure, which
extends the QST form from linear distribution to planar distribution. The quantum state can be sent with
more different directions. Thus, the appearance of a planar QST with multiple output ports will greatly
supply the applications of the topological matters in large-scale quantum network.

2.2. Planar QST with the unequal probabilities
We have implemented a planar QST with the equal probabilities in a splicing Y-junction SSH chain. The
reason of the equal probabilities in the three endpoints is that, the same NN hopping amplitudes Tc lead each
SSH chain to hold the equal weight for the central site. In this way, the quantum state initially prepared at the
central site can be pumped toward the three endpoints with the equal probabilities. Following the essence of
the equal probabilities in the three endpoints, we adjust the hopping amplitudes of the elaborate NN hopping
Tc, in which the NN hopping Tc satisfies TL:TR:TM = 1:0.5:0.5. For different NN hopping amplitudes Tc,
each SSH chain occupies the unequal weight for the central site. Accordingly, the probability distributions of
the zero-energy mode in the three endpoints are unequal. To sustain our claim, we make a related numerical
simulation. Similar to the case of the elaborate NN hopping amplitudes satisfy TL:TR:TM = 1:1:1, the present
energy spectrum also possesses a zero-energy mode, as shown in figure 7(a). Obviously, the system follows
chiral symmetry due to different NN hopping amplitudes Tc as the off-diagonal terms. The zero-energy
mode is independent when the periodic parameter satisfies θ ∈ [0,0.95π] in figure 7(b). In order to
demonstrate that different NN hopping amplitudes Tc steer the zero-energy mode to occupy the three
endpoints with unequal probabilities, we plot the distribution of the zero-energy mode in figure 7(c). We can
conclude that the zero-energy mode is localized at the central site 0 within θ ∈ [0,0.5π ] while it is unequally
distributed at three endpoints (L,N), (R,N), and (M,N) within θ ∈ [0.5π,0.95π ]. To make the distribution
of the zero-energy mode more accurately, we plot probability distribution of the zero-energy mode. As
shown in figure 7(d), the zero-energy mode possesses equal probabilities 1/6 at the endpoints (R,N) and

(M,N) while at the endpoint (L,N) possesses 4/6. In this way, it is easy to infer that the initial state |Ψ(1)
E=0⟩

can be transferred into the three endpoints with unequal probabilities.

7



New J. Phys. 25 (2023) 113003 L-N Zheng et al

Figure 7. (a) Energy spectrum of the splicing Y-junction SSH chain versus the parameter θ. The gap state with zero energy is
pinned in the energy gap. (b) Enlargement of the energy spectrum in the region of θ ∈ [0.9π,π]. (c) Distribution of the
zero-energy mode versus the parameter θ. (θ ∈ [0,0.95π]) (d) Probability amplitude of the zero-energy mode when θ= 0 or
θ = 0.95π. The size of the chain is L= 3N+ 1= 13. Here, we take J= 1 as the energy unit.

Next, by modulating the elaborate NN hopping amplitudes Tc, we can engineer a series of the planar
QST channels based on the unequal distribution of the zero-energy mode. Figure 8 shows multiple QST with
unequal probabilities when the system possesses different NN hopping amplitudes Tc. In figure 8(a), the NN
hopping amplitudes Tc satisfy TL : TR : TM = 1 : 0 : 0, indicating that two SSH chains have no coupling with
the central site and the initial state on the central site only can be transferred into the endpoint (L,N).
Namely, the present form of the splicing Y-junction SSH chain is equivalent to a conventional odd-sized SSH
chain, which realize a linear QST from the central site 0 to the endpoint (L,N). Subsequently, we plot a series

of the state transfer process of the initial state |Ψ(1)
E=0⟩ with different NN hopping amplitudes Tc. The initial

state at the central site can be transferred to the evolved final state with the unequal probability at three
endpoints (L,N), (R,N), and (M,N) in figures 8(b)–(f). It is evident that a planar and tunable QST can be
implemented.

Similarly, to test the robustness of the tunable QST, we study the effects of different type of disorder in
figure 9. First, we plot the disorder of the NN hopping versus the different NN amplitudes Tc on the fidelity,
as shown in figure 9(a). The numerical results reveal that, corresponding to the small enough ramping speed
Ω= 0.001 and different NN hopping amplitudes Tc, the mild parameterW with log10(W)<−1.3 ensures
that the almost perfect state transfer can be realized with a high enough fidelity F≈ 1 for the chain size
L= 3N+ 1= 13. The on-site disorders added on all sites also has been discussed in figure 9(b). The
numerical results reveal conclusions similar to the cases in figure 6. The robustness of the protocol to the
disorder and perturbation provides much more convenience for the experimental realization and the
practical application.

In section 2.2, by varying the elaborate NN hopping amplitudes Tc flexibly, the special channel is
engineered to implement the planar and tunable QST in a splicing Y-junction SSH chain. The present
scheme extends the transfer structure from linear distribution to planar distribution and realizes the tunable
probabilities at the three endpoints of a Y-junction. The extraordinary performance indicates that, from the
perspective of treating the central site as the input port and treating the three endpoints of the Y-junction as
output ports, the present state transfer is thus equivalent to a quantum router [36–43] and naturally immune
to the mild local perturbation. The thickness of the black line represents the quantum state prepared at input
port can be transferred into three output ports with different probabilities, as shown in figure 10. The
appearance of the quantum router with planar and tunable output ports will greatly supply the applications
of the topological matters in large-scale quantum network with much more universal and flexible.

3. Extension and implementation

In the above, we have demonstrated that a planar and tunable QST protocol for transferring the quantum
state from the central site to the three endpoints with different directions through a splicing Y-junction SSH
chain. Here, we will extend a Y-junction SSH chain into a X-junction SSH chain and further advance the
process of a planar QST. Based on the Y-junction SSH chain, an additional SSH chain is introduced in
figure 11, which also connects with the central site by the NN hopping Tc, namely, a splicing X-junction SSH
chain. Similarly, we plot the energy spectrum as shown in figure 12(a), the zero-energy mode is pinned in the
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Figure 8. The evolution of the initial state |Ψ(1)
E=0⟩ when a splicing Y-junction SSH chain possesses the unequal NN hopping

amplitudes Tc . (a) TL:TR:TM = 1:0:0. Probability distribution of the evolved final state satisfies PL,N:PR,N:PM,N = 1:0:0 (b)
TL:TR:TM = 1:0.9:0.8. Probability distribution of the evolved final state satisfies PL,N:PR,N:PM,N = 13:9:8. (c) TL:TR:TM =
1:0.8:0.7. Probability distribution of the evolved final state satisfies PL,N:PR,N:PM,N = 15:8:7. (d) TL:TR:TM = 1:0.5:0.5.
Probability distribution of the evolved final state satisfies PL,N:PR,N:PM,N = 4:1:1. (e) TL:TR:TM = 1:0.8:0.9. Probability
distribution of the evolved final state satisfies PL,N:PR,N:PM,N = 13:8:9. (f) TL:TR:TM = 1:0.7:0.8. Probability distribution of the
evolved final state satisfies PL,N:PR,N:PM,N = 15:7:8. The size of the chain is L= 3N+ 1= 13 and the ramping speedΩ satisfies
Ω= 0.001. Here, we take J= 1 as the energy unit.

energy gap. The figure 12(b) shows the magnified spectrum of the system in the special parameter range of
θ ∈ [0.9π,π] and the zero-energy mode is not contact with the bulk state. Therefore, the zero-energy mode is
indeed independent of the bulk state for the parameter satisfies θ ∈ [0,0.95π]. In order to prove that the
extended model can realize a planar QST with more directions, we give the corresponding zero-energy mode
distribution for the parameters θ= 0 and θ = 0.95π in figure 12(c). It is shown that the zero-energy mode is
mainly localized at the central site 0 with θ= 0 while it is uniformly distributed at four endpoints of the
X-junction with θ = 0.95π. The simulation reveals that the zero-energy mode in a splicing X-junction SSH
chain can be treated as the topological channel to implement the multiple directions QST. The relevant
evolution process is shown in figure 12(d) and the numerical results clearly show that the information
encoded on the central site 0 can be transferred to the site (c ′,N) [(L1, N), (L2, N), (R1, N), (R2, N)] via the
adiabatic pumping of the zero-energy state. Obviously, when the splicing SSH chain possesses the multiple
SSH chains, a series of similar planar QST channels with multiple directions can be designed. The above
extended model greatly facilitates the process of the planar QST and provides the basis for large-scale
quantum network construction.

In principle, our state transfer scheme can be applicable to any kinds of superconducting systems
[25, 44–48]: qubit chains, qubit-resonator chains, and resonator chains. Here, we manage to realize such a
scheme in a superconducting qubit-resonator chain. The feasibility of the scheme comes from the precise
modulation of the coupling (NN hopping) between sites (qubit and resonator) in a splicing Y-junction
(X-junction) SSH chain. For superconducting qubit-resonator chain, two adjacent sites (qubit and
resonator) can be dynamically tuned by a coupler of superconducting quantum interference device
(SQUID), as shown in figure 13. Utilizing the controlled voltage pulses of a waveform generator to tune the
flux threading the SQUID loop [49, 50], the NN hopping between qubit and resonator can be modulated
arbitrarily. The typical coupling between two superconducting elements can be tuned in the range of
1∼ 50MHz [51], which provides a considerably wide tuning range for the amplitudes of the NN hopping.
Our scheme is not limited to the superconducting qubit-resonator chain, and can also be applied to other
types of superconducting element. The similar superconducting systems of the SSH model with different
forms have also been demonstrated [25, 27, 29, 35]. Besides, with a typical coupling strength of
J/2π= 50MHz and the ramping speed Ω= 0.001, the operation time can be achieved in
TL=13 = 0.95π/Ω≈ 9.5µs. Under the current experimental conditions, the decoherence time of the
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Figure 9. (a) The fidelity of the planar QST against the strength of the NN disorder corresponds to the unequal NN hopping
amplitudes Tc of a splicing Y-junction SSH chain. (b) The fidelity of the planar QST against the strength of the on-site disorder
corresponds to the unequal NN hopping amplitudes Tc of a splicing Y-junction SSH chain. The size of the chain is
L= 3N+ 1= 13 and the ramping speed Ω satisfiesΩ= 0.001. Here, we take J= 1 as the energy unit.

Figure 10. The function of the present scheme, in which the central site is treated as the input port and the endpoint (c,N) is
treated as the output port. The present process of the state transfer is naturally equivalent to a quantum router in form.
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Figure 11. Schematic diagram of a splicing X-junction SSH chain. The X-junction consists of four conventional SSH chains and a
central site. Each SSH chain with the same size N. Each color represents a class of sites. A green site and a blue site form a unit cell.
The intra- and intercell couplings between two adjacent sites are J and J. Note that the X-junction chain has the elaborate NN
hopping among the each chain and the central site with the same hopping amplitude Tc .

Figure 12. (a) Energy spectrum of the splicing X-junction SSH chain versus the parameter θ. The gap state with zero energy is
pinned in the energy gap. (b) Enlargement of the energy spectrum in the region of θ ∈ [0.9π,π]. (c) Probability amplitude of the

zero-energy mode when θ= 0 or θ = 0.95π. (d) The evolution of the initial state |Ψ(1)
E=0⟩ when the splicing X-junction SSH chain

possesses the equal NN hopping amplitudes Tc . The size of the chain is L= 4N+ 1= 17 and the ramping speed Ω satisfies
Ω= 0.001. Here, we take J= 1 as the energy unit.

Figure 13. Circuit schematic of one unit cell in superconducting qubit-resonator chain. The coupling strength can be dynamically
tuned by a coupler of SQUID.

superconducting magnetic flux qubit can be achieved on 1ms [52] and the superconducting resonator
lifetimes can be achieved between 1 and 10ms [53, 54], which are far more than the evolution time TL=13.
Therefore, based on the current technique of superconducting system, our scheme is entirely possible. In
addition, the splicing Y-junction structure in minimum control also can implement the present scheme,
which is contributed to reducing the difficulty of experimental operation.

4. Conclusions

In conclusion, we have proposed a planar and tunable QST scheme for transferring the quantum state from
the central site to the three endpoints with different directions through a splicing Y-junction SSH chain. The
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elaborate NN hopping amplitudes induce the zero-energy mode to occupy the three endpoints of the
Y-junction with equal/unequal probabilities, which makes the present topological channel have many
potential applications in quantum router device. Moreover, we study the influence of fluctuation or
disturbance in the NN coupling or on-site potential on the present scheme. The simulation results
demonstrate that the proposed scheme is naturally immune to the mild NN disorder and on-site disorder of
the splicing Y-junction SSH chain. Our scheme can also be extended to realize a planar QST with four
different directions in a splicing X-junction SSH chain. Furthermore, we also give the experimental
implementation of the present scheme by using superconducting qubit-resonator system (a splicing
Y-junction or X-junction SSH chain). Our work opens up a new path for the implementation of a planar and
tunable QST and further promotes the building of large-scale quantum networks.
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