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Abstract Harrison’s argument against the interpretation of the cosmological
redshift as a Doppler effect is revisited, exaggerated, and discussed. The context,
purpose, and limitations of the interpretations of this phenomenon are clarified.
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1 Introduction

There is still much debate on whether the cosmological redshift can be interpreted
as a Doppler effect (in the sense of Special Relativity) due to the recessional mo-
tion of galaxies, as originally envisaged by Hubble, or whether this interpreta-
tion is incorrect [1; 2; 3; 4; 5]. Many current discussions are based on particular
choices of coordinates or observers. We emphasize that coordinate-based state-
ments are meaningless in a covariant theory such as General Relativity. Fami-
lies of observers, on the contrary, are defined in a coordinate-independent way
by their four-velocity fields (often, coordinates and observers are confused be-
cause geometrically-defined observers identify certain coordinate systems, those
in which they are at rest, but the distinction should be kept in mind). Each ob-
server will have its own interpretation of a certain physical phenomenon, which
is perfectly legitimate for that observer. A different observer will have a different
interpretation, which is legitimate as well. It is pointless to debate which inter-
pretation is “the correct one”: they are all correct. However, it may happen that
strong physical reasons select a preferred family of observers which, in turn, se-
lects a preferred interpretation.
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The standard textbook derivation of the cosmological redshift for an observer
and a light source at rest in comoving coordinates in a Friedmann–Lemaitre–
Robertson–Walker (FLRW) universe does not require the discussion of the (four-
)velocities of the source and observer. However, in principle, it does not prevent
one from looking for an interpretation in more familiar terms, either. The Doppler
effect is obtained in Special Relativity by a Lorentz transformation from a source
to an observer in Minkowski space, in which it is legitimate to speak of the relative
motion and relative velocity of a light source and an observer located at different
spatial points. In a FLRW (or in any curved) space instead one cannot compare
directly the four-velocities of a source and an observer located at different spatial
points. It seems, therefore, that the interpretation of the cosmological redshift in
terms of Doppler effect is ill-conceived from the start and that this redshift should
be attributed entirely to the gravitational field of the universe. This interpretation
is consistent: it is well known that even a static gravitational field causes frequency
shifts in null rays propagating through it. The classic example of this phenomenon
is the shift experienced by a photon propagating between a source and an observer
both at rest at different radii in the Schwarzschild spacetime. However, even in this
case, one could still give a formal representation in terms of an “effective Doppler
effect” by thinking of the shift as being equivalent to the Doppler shift that would
occur if the source (observer) were falling freely to the position of the observer
(source), reaching it with non-zero velocity. Narlikar [6] has given a precise mean-
ing to this idea; since in a curved spacetime one cannot compare four-velocities at
different points, the best one can do is to parallel-transport the four-velocity of the
source to the observer’s location along the photon worldline, and then construct
an effective Doppler formula at that point. This formula contains, as special cases,
the Doppler effect of Special Relativity, the shift in Schwarzschild space, and the
cosmological redshift. It is clear, however, that this procedure entails a fictitious,
not a real “relative motion”, especially when this method is applied to the case
of Schwarzschild space. It seems more convenient to distinguish between “purely
special-relativistic” Doppler shift caused by local motion in Minkowski space and
“purely gravitational” shift of the kind experienced by a photon propagating be-
tween a source and an observer at rest in the Schwarzschild space. It is safe to say
that, for the latter, the frequency shift is caused by the fact that the metric tensor
gµν assumes different values at the different spacetime points where the source
and the observer are located. Where does this place cosmological redshift then? It
is easy to see why a naive interpretation of the resdshift in terms of Doppler effect
tends to linger. If a source and an observer at a fixed comoving distance dcomoving
are locally at rest with respect to the cosmic substratum, they still experience what
advocates of the Doppler interpretation could call a “relative motion” in the sense
that their physical (proper) separation dphysical = a(t)dcomoving [where a(t) is the
scale factor] changes with time. The derivative of this physical separation with
respect to the comoving time is

ḋphysical = ȧdcomoving = Hdphysical, (1.1)

i.e., Hubble’s law, where H ≡ ȧ/a is the Hubble parameter. It is tempting to in-
terpret ḋphysical as a “velocity of recession” v, especially for nearby galaxies, pro-
ducing a redshift factor v/c. However, this “relative velocity” is not obtained by
comparing directly four-velocities at distinct spacetime points: such an operation
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is not defined and giving a meaning to it requires Narlikar’s [6] non-local pro-
cedure of parallel transport. Then, the redshift is unambiguously ascribed to the
spacetime curvature and, while Narlikar writes down an effective Doppler for-
mula, it is conceptually different from the relative motion between source and
observer in a static Minkowski spacetime. The identification of the cosmological
reshift factor z with v/c, thinking of v as a relative velocity in Minkowski space,
would be arbitrary.

The purpose of this work is to discuss the limits of the interpretations of the
cosmological redshift in order to gain a better understanding of this phenomenon.
To this end we develop, exaggerate, and discuss an example proposed by Harrison
[7], who considered a light source and an observer at rest in Minkowski space. The
source emits a light ray and, while this propagates to the observer, space suddenly
expands for a short time and then stops expanding before the observer receives the
signal (with the spacetime becoming Minkowskian again). Harrison argues that
there is cosmological redshift given by the usual formula

z+1 =
aO

aS
(1.2)

[where a(t) is the scale factor of the FLRW metric and subscripts O and S de-
note observer and source, respectively] and that, because both source and ob-
server are at rest during emission and detection, this redshift cannot be interpreted
as a Doppler effect. This situation is a special case of the general situation con-
templated in the derivation of the cosmological redshift. In the general situation,
consider source and observer widely separated in space and time; then, it can be
said without risking any interpretation that the redshift is a non-local effect due
to the different values of the scale factor at emission and absorption. If, follow-
ing Narlikar [6], one wants to parallel-transport the four-velocity of the source at
the observer and construct an effective Doppler formula, one is still sampling the
curvature of a wide region of spacetime and non-local effects. This rules out argu-
ments advocating local motions based on the statement that any curved manifold
can be locally approximated by its tangent space and, therefore, curvature effects
can only be seen as Doppler effects because curvature is not sampled on such
small regions. This would be akin to saying that the Riemann tensor Rµναβ van-
ishes at one point p because space is locally flat while, in fact, Rµναβ (p) 6= 0 but
its effects are of higher order and are only felt when larger regions of spacetime
are sampled. Spacetime is locally flat, but the cosmological redshift is a non-local
effect due to the curvature of the large region of spacetime sampled by the ray be-
tween emission and detection. A Doppler interpretation based on local arguments
is meaningless, while one based on Narlikar’s parallel transport is technically cor-
rect, although its convenience is debatable.

We stress that Eq. (1.2), together with its derivation, is not under discussion
here; it is a standard and established prediction of the theory, and textbook mate-
rial. What is under discussion is its interpretation. An interpretation is usually part
of the baggage of a physical theory; the interpretation of the cosmological redshift
depends on a chosen set of observers. A priori, therefore, different interpretations
based on different observers are possible and they would seem to be equally valid.
However, in a spatially homogeneous and isotropic universe there is a physically
preferred set of observers—those that see the cosmic microwave background as
homogeneous and isotropic—they select a preferred interpretation.
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Harrison’s example has been taken and adapted by Saulson to illustrate an
analogous situation in a different context [8]. A gravitational wave impinges on a
laser interferometer and causes a phase shift between the laser beams propagat-
ing in the two arms. Saulson’s purpose is to answer a common objection and to
demonstrate that, although the wavelength of the laser light and the interferome-
ter’s arm in which it propagates are stretched by the same amount, the gravitational
wave is observable through the non-vanishing phase shift (different approaches to
this problem can be found in Refs. [9; 10]. Saulson [8] correctly notes the anal-
ogy with Harrison’s argument in cosmology and makes his case by considering a
gravitational wave amplitude described by a step function.

On this line, it seems fit to revisit Harrison’s argument and exaggerate it for
clarity by assuming that the cosmic expansion takes place suddenly at a single
instant of time. For simplicity, the spacetime metric is given by the spatially flat
FLRW line element

ds2 =−dt2 +a2(t)
(
dx2 +dy2 +dz2) (1.3)

in comoving coordinates (t,x,y,z) and with scale factor a(t) = 1+θ(t), where

θ(t) =

 0 if t < 0

1 if t ≥ 0
(1.4)

is the Heaviside step function. This describes a universe doubling its size abruptly
at time t = 0.

There are risks in adopting discontinuous metrics: the gravitational accelera-
tions (Christoffel symbols) are impulsive, while the curvature tensor and its con-
tractions the Ricci tensor and Ricci scalar may be ill-defined because, in general,
they contain products of distributions. At best, the corresponding stress-energy
tensors will also be distributional. In spite of these formal difficulties, discontin-
uous and even delta-like metrics have been considered long ago by Penrose [11].
Such exact solutions of the Einstein equations can be obtained by cut-and-paste
procedures in which different regions of spacetime (perhaps Minkowski spaces,
as in our present example) are joined together with a suitable warp along an hy-
persurface [11]. Similar metrics have been studied extensively in the literature
on exact plane gravitational waves [12; 13; 14; 15; 16] and it has also been dis-
cussed how to make sense of the product of distributions in General Relativity
[17]. It is not too surprising, therefore, to see a discontinuous metric in Saulson’s
example which deals with gravitational waves [8]. Abstracting from the technical
difficulties with the Riemann tensor, in the following we study the propagation
of a null ray between a source and an observer which are at rest initially (when
light is emitted) and after the expansion of the universe has stopped (when light
is received by the observer)—we derive and discuss the corresponding redshift
formula. The calculation does not require the consideration of the curvature.
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2 Harrison’s model revisited

The metric tensor and its inverse are

(
gµν

)
=



−1 0 0 0

0 1+3θ 0 0

0 0 1+3θ 0

0 0 0 1+3θ


, (gµν) =



−1 0 0 0

0 1
1+3θ

0 0

0 0 1
1+3θ

0

0 0 0 1
1+3θ


,

(2.1)

respectively. The only non-vanishing Christoffels symbols are

Γ
0

11 = Γ
0

22 = Γ
0

33 =
3δ (t)

2
,

(2.2)
Γ

1
01 = Γ

1
10 = Γ

2
02 = Γ

2
20 = Γ

3
03 = Γ

3
30 =

3δ (t)
2 [1+3θ(t)]

,

where δ (t) denotes the Dirac delta.
Consider now a light source located at x = L and an observer at x = 0, both

on the x-axis. The source emits a signal at time tS, which is received at time tO
by the observer, with tS < 0 < tO. The null ray propagates along the x-axis in the
direction of decreasing x and has four-tangent

uµ =
dxµ

dλ
=

(
u0,u1,0,0

)
, (2.3)

where λ is a parameter along the null geodesic. The normalization gµν uµ uν = 0
yields

u1 =− u0√
1+3θ(t)

. (2.4)

The negative sign is chosen because u0 = dt/dλ > 0 corresponding to the
parameter λ increasing along the null geodesic, and the ray propagates in the
direction of decreasing x. The zero component of the null geodesic equation

duµ

dλ
+Γ

µ

αβ
uα uβ = 0 (2.5)

then yields

du0

dλ
=−Γ

0
11

(
u0)2

=− 3δ (t)(u0)2

2 [1+3θ(t)]
. (2.6)

By using the definition of u0, it is seen that dλ = dt/u0 and

du0

dt
=− 3u0δ (t)

2 [1+3θ(t)]
. (2.7)
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The integration of this equation along the null geodesic between the source S and
the observer O yields1

ln

[
u0

(O)

u0
(S)

]
=−3

2

tO∫
tS

dt
δ (t)

1+3θ(t)
=− ln2, (2.8)

therefore,

u0
(O) =

u0
(S)

2
. (2.9)

Light is emitted in flat spacetime and the four-tangent to the null ray at S is uµ

(S) =
(1,−1,0,0), hence

u0
(O) =

1
2
. (2.10)

The propagating photon has four-wavevector kµ = ωuµ = (ω,k) in flat spacetime.
For a photon emitted at the source with unit angular frequency, it is kµ = uµ and
the angular frequency measured by the observer is k0

(O) = u0
(O) = 1/2. In fact, the

angular frequency measured by any observer with four-velocity vµ is −kµ vµ , and
both source and observer have four-velocity vµ = δ 0µ in comoving coordinates.
A photon emitted at S with angular frequency ωS will have an angular frequency
as measured by O

ωO =
ωS

2
, (2.11)

i.e., light is redshifted by the sudden cosmic expansion at t = 0. The redshift factor
defined in terms of the wavelenghts λ em

S,O of the electromagnetic signal at the source
and observer is

z≡
λ em

O −λ em
S

λ em
S

=
λ em

O
λ em

S
−1 =

ωS

ωO
−1 = 1. (2.12)

Note that z+1 = 2 and that the universe has doubled its size at t = 0, so the usual
formula for the cosmological redshift (1.2) is satisfied. As a check of this little
calculation, one can integrate also the x-component of the null geodesic equation

1 Note that one cannot simply use the property
∫ tO

tS f (t)δ (t)dt = f (0) because f (t) =
[1+3θ(t)]−1 is not a test function continuous with all its derivatives; the integration is nev-
ertheless straightforward.
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du1

dλ
=−2Γ

1
01u0u1 =

3δ (t)(u1)2√
1+3θ(t)

. (2.13)

The integration between S and O as above yields

u1
(O) =

u1
(S)

4
(2.14)

and, using uµ

(S) = (1,−1,0,0), it is u1
(O) =−1/4. This value of u1

(O) coincides with

the one obtained from Eq. (2.4) evaluated at O, i.e., u1
(O) =−u0

(O)/2 =−1/4.

3 Discussion

The cosmological redshift factor (1.2) is a straightforward prediction of standard
cosmology, but its interpretation seems to be still controversial, judging from the
number of articles debating it. Our implementation of Harrison’s example should
shed some light here. According to Harrison [7] the cosmological redshift cannot
be interpreted as a Doppler shift because both source and observer are at rest when
the signal is emitted or received. This redshift is due to the fact that the scale factor
(the only degree of freedom of the metric gµν ) assumes different values at the
spacetime points S and O. Narlikar’s procedure of parallel-transporting the source
four-velocity along the null geodesic from S to O and constructing an effective
non-local Doppler formula there [6] can be applied, but it is not particularly useful
for understanding the physics involved: here we do have a source and an observer
at rest in comoving coordinates. One could object that, after all, these source and
observer are not truly at rest all the time: the comoving distance between S and O
is L, while their physical (proper) separation

dphysical(t) = a(t)L =

 L if t < 0

2L if t ≥ 0
(3.1)

doubles suddenly at t = 0 with infinite “velocity” ddp
dt = Lδ (t). Here we assumed

that source and observer return to rest after the universe has expanded, without
worrying about whether this happens spontaneously or some entity forces them to
do so. It is shown in the Appendix that they actually remain spontaneously at rest.

In some sense, therefore, there has been some “relative motion” of S and O, but
this is not a local motion in the sense of Special Relativity. The space in which S
and O live has expanded, changing their proper separation, and this sudden “non-
local motion” has redshifted the light.

It has been argued [1; 4] that the interpretation depends on the coordinate or
gauge adopted; it is more correct to say that it depends on the set of observers
adopted (the latter are defined in a coordinate-independent way by their four-
velocities). It is certainly true that different observers, which define different coor-
dinate systems (those in which they are at rest with their four-velocity components
given by vµ = δ 0µ ), will have different interpretations of the same physics. Each
one of this is a legitimate interpretation for that observer. While the redshift factor
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is an observer-invariant quantity, its interpretation is not. There are other examples
in which, by choosing different observers, coordinate systems, or gauges, differ-
ent interpretations of the same physics arise. In a laser-interferometric detector
of gravitational waves one can choose a gauge in which the end mirrors move,
and attribute the phase shift to the relative motions of the mirrors, which differ
in the two arms; or one can choose the transverse-traceless (TT) gauge in which
the mirrors are at rest in TT coordinates (but their proper separation changes)
and attribute the phase shift to the different rates at which time elapses (a fre-
quency shift effect again) and caused by the passing gravitational wave. Of course,
the physics is gauge-invariant: the phase shift (a scalar, therefore gauge-invariant,
quantity) is ultimately a tidal effect caused by the curvature tensor, which is also
a gauge-invariant quantity. Another example is quantum mechanics, in which the
Schrödinger, Heisenberg, and interaction pictures all provide different interpreta-
tions of the same physics, and the use of these different formalisms is a matter of
convenience.

The cosmological redshift in a FLRW space is a geometric, non-local, coordinate-
invariant effect. It seems that there is little point arguing in favour of one of its
interpretations based on a set of observers versus another. However, in a FLRW
space, there definitely is a set of physically preferred observers: they are the co-
moving observers who see the cosmic microwave background homogeneous and
isotropic around them (apart from small temperature fluctuations). It is arguable
whether an interpretation of the redshift formula (1.2) derived in such a clear way
in textbooks is really necessary but, if one opts for choosing an interpretation, this
should be tied to the physically preferred comoving observers. For the latter, the
redshift is definitely gravitational and not due to an ill-defined recessional motion
of galaxies.

There is still a difficulty to be dealt with. In Ref. [1] discussing the interpre-
tation of the cosmological redshift, the Milne universe is considered as an exam-
ple: this is a region of Minkowski space written in accelerated coordinates, which
yields the line element of an open universe with linear scale factor a(t) = t,

ds2 =−dt2 + t2 [
dχ

2 + sinh2
χ

(
dθ

2 +dϕ
2)] . (3.2)

Of course, a calculation of the Riemann tensor shows that it vanishes everywhere
and that this is (a portion of) flat spacetime foliated using hyperbolic 3-surfaces.2
There is redshift, which is certainly not due to gravity (which is absent here); it is
definitely a Doppler shift due to the fact that the observers at rest in (t,χ,θ ,ϕ) co-
ordinates (“Milne observers”) are moving away from each other when seen from
observers at rest in Minkowski space. The latter are comoving observers, but per-
haps one could say that also the Milne observers can be called “comoving”; this
ambiguity in the term “comoving” arises because spacetime is empty and any ob-
server can be said to be
“comoving” with no matter. However, this is really a pathological example and its
choice to discuss the interpretation of the cosmological redshift is an unhappy one.
A set of geometrically preferred observers consists of those with four-velocity vν

parallel to the timelike Killing field of this metric, which is defined in an invariant
way.

2 The spatial curvature is negative, but the spacetime curvature is zero.
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If the energy density ρ of a FLRW universe is non-zero, there will be pre-
cisely one set of physically preferred observers that see zero spatial gradients of ρ

(comoving observers) and the ambiguity in the interpretation of the cosmological
redshift (gravitational versus Doppler) disappears.

Acknowledgments This work is supported by the Natural Sciences and Engineering Research
Council of Canada.

Appendix

Here we address the question of whether two objects initially at rest remain at
rest or are set in relative motion after the expansion of the universe has stopped.
Consider an observer with timelike four-velocity vµ satisfying the initial condition
vµ

initial = (1,0,0,0) at t < 0 and the normalization gµν vµ vν =−1 (this could be the
source S or the observer O). The geodesic equation yields

dv0

dλ
=−

[
Γ

0
11(v

1)2 +Γ
0

22(v
2)2 +Γ

0
33(v

3)2] =− 3(v)2δ (t)
2

, (3.3)

dvi

dλ
=− 3δ (t)v0vi

1+3θ(t)
, (3.4)

where (v)2 = (v1)2 +(v2)2 +(v3)2. The normalization of vµ yields

(v)2 =
(v0)2−1
1+3θ(t)

. (3.5)

Using Eq. (3.5) and dλ = dt/v0 along the timelike geodesic with tangent vµ , and
integrating between times tinitial and tfinal, one obtains

vi
final =

vi
initial

1+3θ(t)
=


vi

initial if t < 0

vi
initial

4 if t ≥ 0
(3.6)

The initial condition vi
initial = 0 then guarantees that vi = 0 at all times. Indeed, due

to spatial isotropy, an object initially at rest cannot pick up a spatial velocity as a
consequence of the sudden cosmic expansion because this would select a preferred
direction in 3-space.
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