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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model has been intensively studied for various motivations,
ranging from condensed matter physics to quantum gravity via holography. Given the
importance of the SYK model, it is natural to try quantum simulations. Indeed, there are a
few attempts [1, 2]. Still, it is difficult to simulate the SYK model on quantum devices without
some simplifications. One of the obstacles is that elementary degrees of freedom are fermions
and fermions are non local when mapped to qubits. Specifically, via the Jordan-Wigner
transform, Majorana fermions χ̂a (a = 1, 2, · · · , NMaj) satisfying {χ̂a, χ̂b} = 2δab are written
in terms of Pauli strings (tensor products of Pauli matrices) acting on Nspin = NMaj

2 spins as

χ̂1 = σ̂x ⊗ Î ⊗ Î ⊗ · · · ⊗ Î ⊗ Î ,

χ̂2 = σ̂y ⊗ Î ⊗ Î ⊗ · · · ⊗ Î ⊗ Î ,

χ̂3 = σ̂z ⊗ σ̂x ⊗ Î ⊗ · · · ⊗ Î ⊗ Î ,

χ̂4 = σ̂z ⊗ σ̂y ⊗ Î ⊗ · · · ⊗ Î ⊗ Î ,

· · ·
χ̂2Nspin−1 = σ̂z ⊗ σ̂z ⊗ σ̂z ⊗ · · · ⊗ σ̂z ⊗ σ̂x ,

χ̂2Nspin = σ̂z ⊗ σ̂z ⊗ σ̂z ⊗ · · · ⊗ σ̂z ⊗ σ̂y . (1.1)

Here, we used Pauli matrices

σ̂x =
(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
, σ̂z =

(
1 0
0 −1

)
(1.2)
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and the identity matrix

Î =
(
1 0
0 1

)
, (1.3)

which act on the local Hilbert space of each qubit. These long chains of Pauli matrices, which
are as long as the number of degrees of freedom in the system, require a lot of resources
(quantum operations) in digital quantum simulations.

In this paper, we will consider a spin model which is obtained by replacing all Pauli σ̂z

operators in (1.1) with the identity Îs. Such a theory contains only SU(2) spin variables (Pauli
matrices σ̂x and σ̂y) on Nspin sites. For brevity, we will denote this model as ‘SpinXY4’ in this
paper. XY refers to σ̂x and σ̂y and 4 refers to the number of Pauli operators in the interaction.

There are several reasons we are interested in such a model. First of all, this model can be
studied more easily on quantum computers. Therefore, if this model inherits some interesting
features of the SYK model, it will be an interesting target for quantum simulation in the near
future and, hopefully, serve as a good starting point for the experimental study of quantum
gravity via holography [3–5]. We could hope that much of the physics is preserved by the
replacement of fermions with spins, given that the Sachdev-Ye model (SY model) [6], which is
closely related to the SYK model, is a model consisting of SU(M) spin variables. A potential
advantage of this model over the SY model is that there is only one limit (Nspin → ∞) while
the SY model requires the large-spin limit (M → ∞) and the many-spin limit (Nspin → ∞).
The simple structure in terms of spin-1/2 variables makes the simulation on qubit-based
quantum devices straightforward.1 Note that an important motivation for the large-M limit
in the SY model is to avoid the spin-glass phase, and hence, we would like to know if a
spin-glass phase appears in SpinXY4.

Our findings are the following:

• We studied the density of states (DoS) up to NMaj = 2Nspin = 34 by exact numerical
diagonalization, collecting many samples with different random couplings. For small
Nspin, the DoS is almost indistinguishable from the one for the SYK model. As Nspin
increases, we see a small discrepancy near the edge, although the bulk of the spectrum
looks very similar to SYK. (Section 3)

• Statistical properties of the energy spectrum are consistent with those of Random
Matrix Theory (RMT), suggesting the absence of the spin-glass phase except for a few
low-energy modes. (Section 4)

• The spectral form factor (SFF) has a long ramp that suggests a strongly-chaotic nature,
similar to the SYK model. (Section 4)

• For some values of Nspin, some correlation functions are quantitatively close to the
counterparts in SYK at any time scale. (Section 4.3.2 and section 6)

• While the Edwards-Anderson (EA) parameter defined using the σ̂z operators as well as
a generalized version of the EA parameter decrease monotonically as a function of the

1Depending on the context, one could think the existence of two size parameters is the advantage that
leads us to a richer phase diagram. Here, we regard the simplicity of the model as an advantage.
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system size for a majority of the energy spectrum, their increase suggests that a small
number of low-energy states behave as in the spin-glass state. (Section 5)

We believe these findings provide us with good motivation for further investigations.
This paper is organized as follows. In section 2 we give the precise definition of the

model. We also provide an incomplete list of potential generalizations. In section 3 we study
the density of states. We make a quantitative comparison with the SYK model and find
an intriguing resemblance, except for the edges. In section 4 we study the correlation of
energy eigenvalues and compare it with that of Random Matrix Theory. We observe striking
similarities with the SYK model: agreement with RMT is observed except for a small number
of low-lying modes, and the agreement extends to a wide energy band (equivalently, a long
ramp is observed in the spectral form factor). In section 6 we study two-point functions.
The late-time behavior is consistent with RMT and similarities with the SYK model are
observed. For certain choices of operators and values of N , we observe a striking quantitative
coincidence at all time scales. In section 5, we introduce a generalized version of the EA
parameter, defined between eigenstates belonging to the two parity sectors, and study it along
with the EA parameter. In section 6, we study the two-point functions as a function of time
and find strong similarities with the SYK model. In section 7 we introduce a path-integral
formulation for the description of the large-N limit of these spin models based on collective
multi-local fields following a closed set of Schwinger-Dyson equations. We end the paper by
commenting on the implementation of a Trotterized Hamiltonian evolution of the SpinXY4
model on a quantum device in section 8 and then we conclude with an outlook.

Note added. We note that SYK-like behavior has been observed in the spectral function of
random Heisenberg magnets for low and finite frequencies [7], where the ground state is spin
glass [8]. Also see [9] for saddle-point equation study and numerical study for the SpinXYZq
model (see below for definition), which was initially introduced as the quantum p-spin glass
model [10]. Possibility of studying black hole spacetimes by a spin system with another type
of four-spin random couplings has been previously discussed in [11, 12].

2 Definition of the model

We use Nspin = NMaj
2 spins instead of NMaj Majorana fermions. Let Ôa be the counterpart

of χ̂a, i.e., Ôa is obtained by replacing σ̂z with Î in χ̂a. Specifically, Ô2j−1 = σ̂j,x and
Ô2j = σ̂j,y, where

Ô1 = σ̂1,x = σ̂x ⊗ Î ⊗ Î ⊗ · · · ⊗ Î ⊗ Î ,

Ô2 = σ̂1,y = σ̂y ⊗ Î ⊗ Î ⊗ · · · ⊗ Î ⊗ Î ,

Ô3 = σ̂2,x = Î ⊗ σ̂x ⊗ Î ⊗ · · · ⊗ Î ⊗ Î ,

Ô4 = σ̂2,y = Î ⊗ σ̂y ⊗ Î ⊗ · · · ⊗ Î ⊗ Î ,

· · ·
Ô2Nspin−1 = σ̂Nspin,x = Î ⊗ Î ⊗ Î ⊗ · · · ⊗ Î ⊗ σ̂x ,

Ô2Nspin = σ̂Nspin,y = Î ⊗ Î ⊗ Î ⊗ · · · ⊗ Î ⊗ σ̂y . (2.1)

– 3 –
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The Hamiltonian of the model is the following:

Ĥ =
√

6
N3

Maj

∑
1≤a<b<c<d≤NMaj

Jabcdi
ηabcdÔaÔbÔcÔd , (2.2)

in which the couplings Jabcd are chosen from the standard normal distribution

P (Jabcd) =
1√
2π
e−J2

abcd/2, (2.3)

and ηabcd is the number of spins whose both x and y components appear in (a, b, c, d), e.g.,
η1357 = 0, η1235 = 1, η1234 = 2. We need iηabcd for the Hermiticity of the Hamiltonian.2 We
will compare this model with the SYK model with q = 4 which we rename for conciseness
as ‘SYK4’:

ĤSYK =
√

6
N3

Maj

∑
1≤a<b<c<d≤NMaj

Jabcdχ̂aχ̂bχ̂cχ̂d . (2.4)

We chose the normalization of the random couplings Jabcd in such a way that the large-
NMaj limit of the SYK model simplifies. Specifically, the energy E and entropy S scale as
N1

Maj when the temperature T is fixed to be an order-N0
Maj value and characteristic time

scales, such as the decay rate of a two-point function, are of order N0
Maj.

Despite an apparent similarity at a formal level, the Hamiltonians (2.2) and (2.4) are
clearly different because we are using different building blocks: Pauli spins Ô in the former
and fermions χ̂ in the latter. We could interpret Ô2a−1± iÔ2a as the creation and annihilation
operators of a hard-core boson3 rather than a fermion.

2.1 Parity

A convenient basis of the Hilbert space is {
∣∣∣s1, s2, · · · , sNspin

〉
}, where sa = ±1 (a =

1, 2, · · · , Nspin) represents a spin up or spin down at each site. Because σa,x and σa,y

change sa to −sa (up to down), and because the Hamiltonian is a sum of products of four
of them, the product ∏Nspin

a=1 sa is conserved. We can see this also by noticing that Ĥ and
Γ̂ ≡ σ̂1,z ⊗ σ̂2,z ⊗ · · · ⊗ σ̂Nspin,z commute. Therefore, the Hamiltonian can be written in a
block-diagonal form with two blocks consisting of γ ≡

∏Nspin
a=1 sa = ±1. Each block is a

2Nspin−1 × 2Nspin−1 matrix.
We will call γ = +1 the parity even sector and γ = −1 the parity odd sector. They

correspond to the parity-even and odd sectors in the SYK model.

2.2 Possible variants

Similarly to the case of the SYK model, we can consider many variants of the SpinXY4 model.

2Note that Ô2j−1Ô2j = σ̂j,xσ̂j,y = iσ̂j,z is anti-Hermitian.
3A hard-core boson is bosonic in that there is no sign factor associated with the exchange of two of them

but, unlike the usual bosons, only one hard-core boson can sit at each site.

– 4 –



J
H
E
P
0
5
(
2
0
2
4
)
2
8
0

q-local models (SpinXYq). We can take the number of spins in each interaction term
to be a generic number q:

Ĥ = N
∑

a1<a2<···<aq

Ja1a2···aq i
ηa1a2···aq Ôa1Ôa2 · · · Ôaq , (2.5)

where the standard choice of the normalization factor is N =
√
q!(NMaj − q)!/NMaj!.4 Note

that q can be odd, in which case parity is not conserved.5

Binary/sparse model. The random couplings Jabcd can be made sparse (i.e., many of
them can be set to be zero) [14–16] and/or binary (nonzero couplings ∝ ±1) [17].

Adding or removing σz. In the SpinXY4 model defined above we allowed σx and σy

on the same site to appear in the same interaction term. We can forbid this to happen
and this amounts to setting η = 0. Such a modification should not change the theory in
the limit of Nspin → ∞. However, there are some differences that are not captured in the
large-Nspin limit. For example, the universality class (from RMT) is the Gaussian unitary
ensemble (GUE) for any Nspin when σx and σy are allowed at the same site, while it is the
Gaussian orthogonal ensemble (GOE) for even Nspin and GUE for odd Nspin when σx and
σy are not allowed at the same site.6

We could also consider the random q-local coupling of σa,x, σa,y, and σa,z with a =
1, 2, · · · , Nspin. Such a model could be called SpinXYZq. The density of states for this
model has been studied in ref. [10].

Complex model. The analog of complex fermions are Ô2a−1 ± iÔ2a. By using them, we
can define the analog of the complex SYK model.

Coupled SYK-like models. We can also prepare multiple copies of the SpinXY model
and couple them. A particularly interesting model of this kind would be the analog of the
coupled SYK model [18] which could be used to study the traversable wormhole [19]. Note
that the traversable wormhole is a promising target of experimental quantum gravity via
holography [20], and there has been an attempt to study the SYK model on a quantum
device in this context [2].

Qudit models. We can define a model replacing Pauli operators with spin-s representations
with s > 1

2 and correspondingly replace qubits with qudits as the fundamental quantum
registers for quantum simulations.

4Unlike in the SYK case where the q = 2 model is readily solvable, the q = 2 case for the spin model is
already nontrivial.

5For the SYK model, it is not common to consider odd values of q because the Hamiltonian would be
fermionic then. Still, with an explicit basis choice, the Hamiltonian can be expressed as the ordinary Hermitian
matrix and there is no apparent reason to exclude such models [13].

6To see this, it is convenient to perform a unitary transformation that maps σ̂a,y and σ̂a,z to σ̂a,z and
−σ̂a,y. Then, The Hamiltonian Ĥ =

∑
JabcdÔaÔbÔcÔd is mapped to Ĥ ′ =

∑
JabcdÔ′

aÔ′
bÔ′

cÔ′
d, where

Ô′
2a−1 = σ̂a,x and Ô′

2a = σ̂a,z are real and symmetric. We can see that Ĥ ′ is real and symmetric if Ô′
2a−1

and Ô′
2a are forbidden to couple directly. The operator Γ̂ = σ̂1,z ⊗ σ̂2,z ⊗ · · · ⊗ σ̂Nspin,z is mapped to

Γ̂′ = (−1)Nspin σ̂1,y ⊗ σ̂2,y ⊗ · · · ⊗ σ̂Nspin,y, which is real and symmetric if Nspin is even. Therefore, if Nspin is
even, Ĥ ′

± ≡ 1±Γ̂′

2 Ĥ ′ are real and symmetric, and hence, they are in the GOE universality class. When Nspin

is odd, there is no specific structure, and hence, we observe the GUE universality class.
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Figure 1. The normalized density of states for SpinXY4 (left) and SYK4 (right). The contributions
of the two parity sectors are not separated. The number of samples is 228−Nspin except for SpinXY4
with Nspin = 17 and for SYK4 with NMaj = 34.

3 Density of states

In this section, we define the density of states (DoS) by taking the average over many samples
with different random couplings Jabcd. Practically, we introduce a binning separation of the
energy spectrum and count the number of energy levels in each bin. When we combine many
samples, we can take a very fine binning width (due to the large statistics of counts). In
figure 1 we show the DoS obtained in this way. We can see similar shapes across different
system sizes. In figure 2, we compared SpinXY4 and SYK4 in the same panel. The two
densities are almost indistinguishable, except for a tiny discrepancy near the edges.

Note that we did not separate the two parity sectors to obtain these results. Whether
we separate or not the two parity sectors, we see almost identical densities.

Edge of the energy spectrum. Let us look closely at the edge of the spectrum, where
small deviations between the two models are apparent. Figure 3 is a zoomed-in view of the
lower edge of the DoS from NMaj = 2Nspin = 16 to 34. The horizontal axis is E/|⟨E0⟩SYK|.
As NMaj increases we see a small but clear discrepancy between SpinXY4 and SYK4.

For the SYK model, the DoS behaves as ρ(E) ≃ A sinh(B
√
(E − C)) near the lower

edge, where C = ⟨E0⟩, and A,B,C were estimated analytically [21–23]. A natural question
is whether the SpinXY4 shows a similar pattern. A nontrivial technical issue here is that
the smallest eigenvalue tends to have a large fluctuation at finite N . To deal with this issue,
we consider the distribution of E′

i = Ei − E0 (i = 1, 2, · · · ) [23] for each parity sector. Note
that E0 is subtracted in a sample-by-sample fashion. This option could remove sample-by-
sample fluctuations of E0. The distribution of E′ is more relevant than that of E when we
consider the low-temperature region with the quenched averaging. In figure 4, we plotted the
density of E′ for SpinXY4 and SYK4. While we can see sharp edges for both models, the
discrepancy grows as N increases. In figure 5, we tried to fit the density of E′ for SpinXY4
by ρ(E′) = A sinh(B

√
E′). Although this fit ansatz is not bad for Nspin = 12 and 13, we

do not find a nice fit for Nspin = 14 and 15.
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Figure 2. Density of states from NMaj = 2Nspin = 16 to 34. We can see that SpinXY4 and SYK4
have almost the same distribution except for a small discrepancy near the edges. See figure 3 for the
zoom-in picture near the lower edge. The contributions of the two parity sectors are not separated.

4 Level correlations

In this section, we compare the correlation in the energy spectrum with that of Random
Matrix Theory (RMT). We will study two sectors corresponding to γ ≡

∏Nspin
a=1 sa = ±1

separately. Unlike SYK4, we do not find eigenvalue degeneracy within each sector nor between
the two sectors. We do observe agreement with RMT except for a small number of low-lying
eigenvalues. Such an agreement suggests that this model is ergodic rather than in a spin-glass
phase. (See e.g., refs. [24, 25] for the spectral analysis of spin glass.) As we will see in
section 4.3, the spectral form factor of our model resembles that of SYK4. This implies a
very strongly chaotic nature of the model.

4.1 Nearest-neighbor level spacing

To compute the eigenvalues, we can utilize the block-diagonal structure of the Hamiltonian,
i.e., we can diagonalize 2Nspin−1 ×2Nspin−1 blocks corresponding to γ = ±1 separately. In each
sector, we sorted energy eigenvalues in increasing order as (E0 ≡)E1 < E2 < · · · < E2Nspin−1 .
The nearest-neighbor level spacing is defined by si ≡ Ei+1 −Ei. To compare it with RMT,
we need to unfold the spectrum. Here we use the fixed-i unfolding [26], i.e., we define the
unfolded spacing s̃i by s̃i = si/⟨si⟩J for each i.
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NMaj = 2Nspin = 24, 26, 28, 30. For both SpinXY4 and SYK4, parity-even sector is used.
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In figure 6, the distribution of the unfolded level spacing P (s̃i) is plotted for several
values of i. For Nspin. For Nspin = 11, although a significant difference from RMT can be
seen only for i = 1, we see almost no difference from RMT at i ≥ 2. For Nspin = 15, we
see a larger deviation from RMT at small i. However, the agreement with RMT is not bad
already at i = 4 and it is hard to see a difference from RMT at i ≥ 10. For the SYK4, a
good agreement with RMT is observed even for i = 1 [27].

4.2 Neighboring gap ratio

By using the unfolded level spacing s̃i, we define the neighboring gap ratio ri as

ri =
min(s̃i, s̃i+1)
max(s̃i, s̃i+1)

. (4.1)

In the left panel of figure 7, we plotted ⟨ri⟩ for SpinXY4, i = 1, 2, 3, · · · , 30, Nspin = 11, · · · , 16.
Good agreement with RMT (the GUE universality class) [28] is observed at i ≥ 4. In the
right panel, the same quantities for SYK4 are plotted for the values of N corresponding to
GUE. Again, a good agreement with RMT is observed at i ≥ 4.

Note that the gap ratio can be sensitive to the unfolding near the edges of the energy
spectrum. By using the unfolded level spacings, we can see good agreement even near the
edge of the spectrum.
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Figure 6. Distribution of the unfolded level spacing P (s̃i) for i = 1, 2, 3, · · · . SpinXY4, Nspin = 11
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parity-even and parity-odd sectors have the same eigenvalues when Nspin = NMaj/2 is odd.
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both, only the parity-even sector was used. For SYK4, NMaj = 12, 20, 28 that correspond to Gaussian
symplectic ensemble (GSE) are omitted.
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4.3 Spectral form factor

A convenient quantity to see the correlation of energy eigenvalues in a wider energy band is
the spectral form factor (SFF). The SFF can be defined for each parity sector as

gγ=±1(t, β) =
⟨|Zγ=±1(t, β)|2⟩J

⟨|Zγ=±1(0, β)|2⟩J
, (4.2)

where

Zγ=±1(t, β) ≡ Zγ=±1(β + it) =
∑

j

exp (−(β + it)Ej) . (4.3)

Here the sum over states j is taken in γ = +1 or γ = −1 sector. The SFF starts with 1 at
t = 0 and shows the slope, dip, ramp, and plateau. The ramp and plateau are universal
among chaotic systems. If the ramp is longer (equivalently, if the onset of the ramp is earlier),
the energy spectrum agrees with RMT in the wider energy band. We plotted g(t, β = 0)
for our model in figure 8. We can compare it with the same quantity for the SYK model.
We can see similar long ramps.

The onset of the ramp can be hidden by the slope. To see the onset of the ramp more
accurately, a modified spectral form factor h(α, t, β) defined by [29, 30]

hγ=±1(α, t, β) =
⟨|Yγ=±1(α, t, β)|2⟩J

⟨|Yγ=±1(α, 0, β)|2⟩J
, (4.4)

where

Yγ=±1(α, t, β) ≡
∑

j

exp
(
−αE2

j − (β + it)Ej

)
, (4.5)

is useful. By tuning a parameter α appropriately, the slope can fall much more quickly and
the hidden part of the ramp can be revealed. hγ=±1(α = 1, t, β = 0) is plotted in figure 9.

4.3.1 Spectral form factors with and without separating parity sectors

In the above, we defined the SFF for each parity sector. We could also combine two sectors.
Specifically, by using Zfull = Zγ=+1 + Zγ=−1, we could define gfull(t, β) ≡ ⟨|Zfull(t,β)|2⟩J

⟨|Zfull(0,β)|2⟩J
as

the ‘full’ SFF.
In figure 10, we plotted gfull(t, β) and gγ=±1(t, β). We can see that

gfull(t, β) = gγ=±1(t, β) (4.6)

at an early time and

gfull(t, β) =
1
2 · gγ=±1(t, β) (4.7)

at late time. It can be understood as follows.

• At early time, Zγ=±1 are self-averaging and take the same value. Therefore, Zfull =
2Zγ=+1 = 2Zγ=−1 up to 1/Nspin-corrections without the average over random couplings,
which implies (4.6).
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Figure 8. The spectral form factor for SpinXY4, Nspin = 8, 9, . . . , 16 (left) and that for SYK4,
NMaj = 2Nspin = 16, 18, . . . , 32 (right). Only the parity-even sector is used. Note that SYK4 has a
two-fold degeneracy in eigenvalues in each parity sector when NMaj ≡ 4 mod 8 and such a degeneracy
shifts the height of the plateau by factor 2. The number of samples is 228−(Nspin) for both SpinXY4
and SYK4.
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Figure 9. The modified spectral form factor for SpinXY4, Nspin = 5, 6, . . . , 16 (left) and SYK4,
NMaj = 2Nspin = 10, 12, . . . , 32 (right). Only the parity-even sector is used. The number of samples is
228−(Nspin) for both SpinXY4 and SYK4.

• To see the late-time behavior, we use |Zfull|2 = |Zγ=+1|2+ |Zγ=−1|2+2Re(Zγ=+1Z
∗
γ=−1).

The first two terms on the right-hand side are described by RMT with matrix size
2Nspin−1 × 2Nspin−1. The third term vanishes because there is no correlation between
two parity sectors and hence Zγ=±1 fluctuates around zero independently, averaging
to zero: ⟨Zγ=+1Z

∗
γ=−1⟩J = 0. Therefore, the late-time behavior of ⟨|Zfull|⟩J coincides

with that of RMT. The factor-2 difference in (4.7) is explained by the difference in the
dimension of the full and parity-fixed Hilbert spaces.

4.3.2 Comparison with SYK at all time scales

As we have seen above, the late-time features of the SFF capture the fine-grained energy-level
correlations. On the other hand, at the early time, the SFF is sensitive to the density of
states. Therefore, the observation so far indicates that the SFF of SpinXY4 resembles that
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Figure 10. The spectral form factor for SpinXY4 for β = 0, Nspin = 16 (4096 samples). [Left]
gfull(t, β) = gγ=±1(t, β) can be seen at an early time. [Right] gfull(t, β) = 1
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late time.

of SYK4 closely both at an early time and at a late time. Now we would like to ask if the
similarity can be observed at all time scales.

For quantitative agreement at the late time, we choose N such that Nspin = NMaj/2 is
odd because then both SpinXY4 and SYK4 are in the GUE universality class and hence
we can expect the precise agreement at a late time. With such a choice of N , there is
a two-fold degeneracy in the energy eigenvalues in SYK4. Therefore, there are 2Nspin−1

independent eigenvalues used in the SFF. If we keep only one of the parity sectors in
the spin model, the numbers of eigenvalues match. Therefore, we compare gγ=±1(t, β) in
SpinXY4 and g(t, β) in SYK4.

In figure 11, we plot the spectral form factor for NMaj = 2Nspin = 26 and 30, β = 0, 1,
and 2. In addition to g(t, β), we plot the ‘connected part’ defined by

gc(t, β) ≡
⟨|Z(t, β)|2⟩J − |⟨Z(t, β)⟩J |2

⟨|Z(0, β)|2⟩J
. (4.8)

The agreement is strikingly good, although a small discrepancy is visible around the dip.

5 Edwards-Anderson parameter

The Edwards-Anderson parameter [31] is a standard tool to see if a given system has a
spin-glass phase or not. In this section, we study the generalized Edwards-Anderson parameter
qgEA(j), here defined for the j-th lowest energy normalized eigenstates |Ej⟩(E),(O) as [9]

qgEA(j) =
1

Nspin

∑
i

∑
α=x,y

∣∣∣〈ψ(O)
j

∣∣∣ σ̂i,α

∣∣∣ψ(E)
j

〉∣∣∣2 . (5.1)

Note that we do not include α = z in the sum because
〈
ψ

(O)
j

∣∣∣ σ̂i,z

∣∣∣ψ(E)
j

〉
= 0 due to the

parity conservation. We also study qzEA defined by

qzEA(j) =
1

Nspin

∑
i

|⟨ψj | σ̂i,z |ψj⟩|2 . (5.2)

Numerically, we observed that qzEA takes a nonzero value only for odd Nspin.
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Figure 11. g(t) (left) and gc(t) (right) for SpinXY4 and SYK4 are compared. The results for
β = 0, 1, 2 are plotted from bottom to top. [Top] Nspin = 13. 32768 samples are used for both models.
[Bottom] Nspin = 15. 8192 samples are used for both models. The parity-even sector is used for both
SpinXY4 and SYK4.

In figure 12 we plot the value of qgEA(j) as a function of the eigenstate index j ∈
[1, 2Nspin−1]. For clarity we only plot the results for even Nspin, however the results for odd
Nspin qualitatively agree with the even Nspin case as we see below. Due to the symmetry
concerning the overall sign of the Hamiltonian, the distributions of qgEA(j) and qgEA(2Nspin−1+
1 − j) are identical. At Nspin ≤ 14 we observed the following pattern:

• qgEA(j) at small and fixed j increases as a function of Nspin, indicating that the lowest
energy eigenstates behave as spin glass states.

• For j > O(101), qgEA(j) decreases as a function of Nspin. However, it is possible that
qgEA eventually increase with Nspin at any fixed j, if Nspin becomes sufficiently large.

• At fixed Nspin, qgEA(j) shows a power-law decay as a function of the eigenstate index,
until j reaches ≈ 2Nspin−2.

• The smallest value of qgEA decreases exponentially as Nspin is increased.

Removal of terms with ηabcd > 0, where multiple operators acting on the same spin are chosen,
affects the value of qgEA(j) slightly but does not qualitatively change the pattern above.
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Figure 12. The averaged values of Edwards-Anderson parameter plotted as function of the eigenstate
index for Nspin = 6, 8, 10, 12, 14. 228−Nspin samples are used. The eigenstate index, j = 1, 2, . . . , 2Nspin−1

is allocated in the increasing order of the eigenstate energy for each parity sector, and data from both
parity sectors are used. Top: terms with ηabcd > 0 are allowed in (2.2). Bottom: Jabcd is set to zero
if ηabcd > 0.

In figure 13, we plot qgEA and qzEA for odd Nspin. We observe that qgEA behaves similarly
to the case of even values of Nspin. While qzEA(j) shows a similar behavior with a smaller
number of j showing increase with Nspin between Nspin = 11 and Nspin = 13, it decreases
exponentially as Nspin is increased for all j when terms with ηabcd > 0 are removed from
the model (2.2).

In summary, qgEA(j) suggests some low-energy states are in the spin-glass phase, although
qzEA(j) suggests the opposite may be the case if terms with ηabcd > 0 are suppressed. More
studies will be needed to have a conclusive statement. In this context, we note that ref. [9]
studied the Edwards-Anderson parameter for the ground state of the SpinXYZq model. They
observed a slow decline of the Edwards-Anderson parameter that is consistent with the
absence of the glassiness, although the signal could mean that q = 4 is sitting at the border
between spin-glass and ergodic cases in the sense that q = 3 and q = 5 respectively exhibit
clear growth and decline of the Edwards-Anderson parameter. Also, see ref. [32] that analyzed
an analogue of the EA parameter to study the phase structure of the SYK model.
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Figure 13. The averaged values of (left) the generalized Edwards-Anderson parameter qgEA and
(right) the Edwards-Anderson parameter qzEA plotted as functions of the eigenstate index for Nspin =
5, 7, 9, 11, 13. 228−Nspin samples are used. The eigenstate index, j = 1, 2, . . . , 2Nspin−1 is allocated in
the increasing order of the eigenstate energy for each parity sector, and data from both parity sectors
are used. Top: terms with ηabcd > 0 are allowed in (2.2). Bottom: Jabcd is set to zero if ηabcd > 0.

6 Two-point function

We consider the two-point function
1

Z(β)
∑
E

e−βE ⟨E| Ôa(t)Ôa(0) |E⟩ = 1
Z(β)

∑
E,E′

e−βE+i(E−E′)t
∣∣∣⟨E| Ôa

∣∣E′〉∣∣∣2 . (6.1)

Note that we take the sum over all the energy eigenstates from both parity γ = ±1 sec-
tors. We will take the average over random couplings separately for the numerator and
denominator. Furthermore, we take the average over a = 1, · · · , NMaj. Here we consider
the annealed average:

Gx,y(t) ≡
1

2Nspin
· 1
⟨Z(β)⟩J

〈∑
E,E′

e−βE+i(E−E′)t
2Nspin∑

a=1

∣∣∣⟨E| Ôa

∣∣E′〉∣∣∣2〉
J

. (6.2)

We will also consider

Gz(t) ≡
1

Nspin
· 1
⟨Z(β)⟩J

〈∑
E,E′

e−βE+i(E−E′)t
Nspin∑
j=1

∣∣⟨E| σ̂j,z

∣∣E′〉∣∣2〉
J

. (6.3)
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Figure 14. |Gxy(t)| plotted for the SpinXY4 model at β = 0 (left) and β = 2 (right) from top to
bottom. The vertical axis is linear (logarithmic) in the upper (lower) plots. 1024 samples are used,
and the average over all operators and samples is taken before the absolute value is computed.

If the system is chaotic, late-time behaviors of such correlation functions should be
understood based on RMT. We can repeat the argument for the SYK model [21] without
a substantial change.

As for Gx,y(t), the operators Ôa connect states with different parity, and hence,∣∣∣ ⟨E| Ôa |E′⟩
∣∣∣2 is nonzero when |E⟩ and |E′⟩ are in different parity sectors. Other than

that, it can be approximated by a smooth function of E − E′, as suggested by the eigenstate
thermalization hypothesis (ETH). As far as the late-time behaviors are concerned, we can
approximate it with a constant. Then, contributions from two sectors with different parity,
which are not correlated, cancel out and we do not see the ramp and plateau. As we can see
in figure 14, this is indeed the case. We can see a close similarity with two-point function
of ψi(t) and ψi(0) in SYK4 with NMaj = 2Nspin = 16, 20 and 24 [21].

As for Gz(t), the operators σ̂j,z do not change the parity. Therefore, the late-time
behavior resembles the sum of SFF in two parity sectors, and hence, we expect the ramp
and plateau. In figure 15, we do see such a pattern.

6.1 Comparison with SYK model at all time scales

In section 4.3.2, we observed that the spectral form factors from SYK4 and SpinXY4 can
be close at all time scales. Let us see if a similar coincidence can be seen for the two-point
functions.

We take Nspin odd so that both models are in the GUE universality class. The eigenvalues
in two parity sectors in SpinXY4 are not correlated while the eigenvalues in the two parity
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Figure 15. |Gz(t)|, Re Gz(t), and Im Gz(t) for β = 0, 2 plotted for the SpinXY4 model. Note that
Im Gz(t) = 0 holds for β = 0, which is numerically confirmed. 1024 samples are used, and the average
over all operators and samples is taken before the absolute value is computed.

sectors of the SYK model are paired. Therefore, we compare fixed-parity sectors in SpinXY4
and SYK4, and we choose the operators that do not mix different parity sectors. Specifically,
we study the two-point function of σ̂a,z = −iÔ2a−1Ô2a = −iχ̂2a−1χ̂2a, which is Gz(t) defined
by (6.3).

The results are shown in figure 16, for β = 0, 2. Overall, we find them remarkably similar
to each other. For β = 0, we observe good agreement at early and late times, although some
discrepancy is visible in between. For β = 2, we can see a small difference at late time as well.

7 Path-integral approach

We discuss how large-N spin systems can be studied systematically with path integral methods.
To develop a systematic large-N (and 1/N) expansion, the following features are needed:
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Figure 16. |Gz(t)|, Re Gz(t), and Im Gz(t) for β = 0, 2 plotted for the SpinXY4 model (Nspin =
5, 7, 9, 11, 13) and for the SYK4 model (NMaj = 10, 14, 18, 22, 26). Note that Im Gz(t) = 0 holds for
β = 0, which is numerically confirmed. 1024 samples are used, and the average over all operators and
samples is taken before the absolute value is computed.

i) An invariant (collective) set of variables Φ(a) needs to be identified, generally as singlets
under a U(N), O(N), Sp(2N) or SN group operating on the system.

ii) A closed set of Schwinger-Dyson (SD) equations needs to be deduced and/or

iii) a collective action describing the 1/N dynamics of collective variables Φ(a) needs to be
established.

We note that items ii) and iii) should have an equivalent description in terms of Feynman
diagrams, e.g., planar diagrams in matrix models, and bubble diagrams in vector models.
For theories of spin degrees of freedom, however, none of the required features items i)–iii)
were obvious so far. We will see shortly that for spin systems the relevant symmetry group is
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SN , which induces an infinite set of collective variables. This SN symmetry is featured by
expanding the kinetic term in the Lagrangian, thus our formalism described below applies
to all spin systems.

Let Sa
i = 1

2σi,a denote the spin operator, where a = x, y, z, and i = 1, . . . , Nspin denotes
the site index. From here on, we use the letter N instead of Nspin, i.e., N = Nspin. Furthermore,
we take the variance of the random coupling to be J2. (Previously, we took J = 1.) Up to
the 1/N -suppressed terms, the real-time path integral after the disorder average is given by

ZJ =
∫ N∏

i=1
DSi δ

(
S2

i − s2)

× exp

i ∫ LKdt−
J2N

4

∫
dt1dt2

(
1
N

N∑
i=1

(
S+

i (t1)S−
i (t2) + S−

i (t1)S+
i (t2)

))4 ,
(7.1)

where s = 1
2 and S±

i ≡ Sx
i ± iSy

i . In the above formula we only consider the η = 0 sector in
the Hamiltonian (2.2) since in the large N limit the η > 0 sector is of lower order in 1/N
and hence can be dropped. To be more specific, one can see from above that the η = 0
sector gives a potential of order O(N). On the other hand, one can show that the η = 1
and η = 2 sectors are of order O(1) and O(1/N) respectively, and thus are suppressed in
the large N limit. The kinetic term in the Lagrangian is

LK = i

2

N∑
i=1

S−
i Ṡ

+
i − S+

i Ṡ
−
i

s+ Sz
i

. (7.2)

This term does not have the O(N) symmetry as opposed to the SYK model [33], while the
SN symmetry is manifest. We can use the constraint to write Sz =

√
s2 − S+S− and expand

the denominator into a Taylor series as

LK = i

2s

[
N∑

i=1
(S−

i Ṡ
+
i − S+

i Ṡ
−
i )
(1
2 + 1

8s2S
+
i S

−
i + 1

16s4S
+
i S

−
i S

+
i S

−
i + . . .

)]
. (7.3)

This expression motivates us to use the SN -singlet multi-time collective variables

ΦL(t1, t2, . . . , tL; t′1, t′2, . . . , t′L) =
1
N

N∑
i=1

S+
i (t1)S+

i (t2) · · ·S+
i (tL)S−

i (t′1)S−
i (t′2) · · ·S−

i (t′L) ,

(7.4)
with L being the length of the sequence (number of pairs of S+

i S
−
i ). The multi-time labels

of these collective variables are themselves identical under the SL-exchange and we can
therefore consider time-ordered sequences

{t}L ≡ {t1, t2, . . . , tL | t1 ≥ t2 ≥ · · · ≥ tL} . (7.5)

The set of collective fields extends the bi-locals operational in the O(N) symmetry case.
The infinite sequence of multi-time collective variables will be shown to close under SD
equations, giving a basis for the large-N limit of these spin-chain models. We note that
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these SN invariants are due to the kinetic terms in the Lagrangian, as such their appearance
is a universal feature for spin systems.

In the strong coupling limit (1/J → 0), the potential term is dominant in the action (7.1).
Then, O(N) symmetry emerges and the bi-local description applies. Since it is analogous to the
bosonic SYK model, and has been shown by [34] that the replica non-diagonal configuration
is of lower energy, we will consider the quenched averaging which involves n replica fields.
To compare with the well-known results in the SYK model, we will work in the Euclidean
time τ = it. In the 1/J → 0 limit, we see that after rescaling

Si → J− 1
4 Si , (7.6)

the kinetic term in the action drops out, such that the replica representation of the partition
function with the disordered average is

⟨Zn⟩J =
∫ n∏

a=1

N∏
i=1

DS+
i,aDS

−
i,a e

−A[S] , (7.7)

where a is the replica index, and the Euclidean action is

A[S] = −N4

∫
dτ1dτ2

n∑
a,b=1

[
1
N

N∑
i=1

(
S+

i,a(τ1)S−
i,b(τ2) + S−

i,a(τ1)S+
i,b(τ2)

)]4

(7.8)

with an emerging O(N) symmetry Si → OijSj . This allows a bi-local as the invariant
collective field:

ϕab(τ1, τ2) =
1
N

N∑
i=1

[
S+

i,a(τ1)S−
i,b(τ2) + S−

i,a(τ1)S+
i,b(τ2)

]
≡ ϕ(X,Y ) , (7.9)

where we use the variable X to package the time variable t and the replica index a [33]. The
bi-local field is symmetric under the exchange X ↔ Y :

ϕ(X,Y ) = ϕ(Y,X) . (7.10)

By contrast, the bi-local field in the SYK model is anti-symmetric [33]. Thus, the partition
function can be written as

⟨Zn⟩J =
∫

Dϕ(X,Y )J [ϕ] e−A[ϕ] . (7.11)

The Jacobian J [ϕ] is

J [ϕ] =
∫ n∏

a=1

N∏
i=1

DS+
i,aDS

−
i,a δ

(
ϕ(X,Y )− 1

N

N∑
i=1

(
S+

i (X)S−
i (Y )+S−

i (X)S+
i (Y )

))
. (7.12)

A standard way to deal with this is to introduce an auxiliary field, integrate out S±
i , and

then eliminate the auxiliary field by solving the saddle-point equations. The end result is

J [ϕ] = eN Tr ln ϕ . (7.13)
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With this Jacobian, we have the collective action in the strong coupling limit

Acol[ϕ] = − lnJ +A[ϕ] = −N Tr lnϕ− N

4
∑
X,Y

[ϕ(X,Y )]4 . (7.14)

In contrast to the SYK model [33], the coefficient in front of the Jacobian term is minus
instead of plus. As mentioned before, for the low temperature (large β) limit, replica indices
should be added with possible replica non-diagonal solutions [34]. The SD equation is
δAcol[ϕ]/δϕ = 0, giving the relation∑

Z

[ϕ0(X,Z)]3ϕ0(Z, Y ) = −δX,Y . (7.15)

We now consider finite coupling with only the SN symmetry and show the explicit form
of the associated collective and SD equations. The general collective scheme for specifying
the Jacobian J [Φ] applies [35]. It represents a change to the invariants Φ({t}L, {t′}L) defined
in (7.4), with L = 1, 2, . . . . On the right-hand side of (7.4), the sum over i is analogous to
the trace in the matrix model. This sequence of ‘single-trace’ fields is analogous to the ‘loop’
or ‘word’ variables of matrix models. Hence the basic building blocks will be the ‘splitting’
and ‘joining’ of ‘single-trace’ fields. The ‘splitting’ operation is

ω({t}L, {t′}L) =
∫ N∑

i=1

δ2Φ({t}L, {t′}L)
δS+

i (t)δS−
i (t)

dt

= 1
N

L∑
l,k=1

δ(tl − t′k)
N∑

i=1
S+

i (t1) . . . S+
i (tl−1)S+

i (tl+1) . . . S+
i (tL)

× S−
i (t′1) . . . S−

i (t′k−1)S−
i (t′k+1) . . . S−

i (t′L) , (7.16)

resulting in a sum of variables of length L− 1. By using aL and bL−1 to mean ({t}L, {t′}L)
and ({t}L−1, {t′}L−1), this operation can be written schematically as

ω(aL) =
∑
bL−1

∆(aL; bL−1)Φ(bL−1) . (7.17)

Note that the counterpart of this operation in the matrix model splits a loop into two
loops. The ‘joining’ is

Ω(aL, bK)=
∫ N∑

i=1

δΦ(aL)
δS+

i (t)
δΦ(bK)
δS−

i (t)
dt

= 1
N2

L∑
l=1

K∑
k=1

δ(al−b′k)
N∑

i=1
S+

i (a1) . . .S+
i (al−1)S+

i (al+1) . . .S+
i (aL)S−

i (a′1) . . .S−
i (a′L)

×S+
i (b1) . . .S+

i (bK)S−
i (b′1) . . .S−

i (b′k−1)S−
i (b′k+1) . . .S−

i (b′K) ,
(7.18)

where the l-th and k-th spins are taken out of the sequence. This is then a linear combination
of traces of length L + K − 1, or schematically

Ω(aL, bK) = 1
N

∑
cL+K−1

∆(aL, bK ; cL+K−1)Φ(cL+K−1) . (7.19)
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Often, it is hard to obtain the Jacobian explicitly, while it is not hard to determine ω and
Ω as illustrated above. Still, we can write the saddle-point equation explicitly without
knowing the Jacobian [35]:

∑
b

Ω(a, b)δA[Φ]
δΦ(b) − ω(a) = 0 . (7.20)

This is the large-N SD equation written explicitly in terms of the collective variables. As
demonstrated in [35], this general formula applies to the O(N) vector model, U(N) Yang-Mills
gauge theory, etc. It applies to the large-N spin systems as well, whose relevant collective
variables are SN singlets, and one needs to substitute (7.17) and (7.19) into this formula.
This set of equations represents a natural multi-time generalization of bi-local SD equations.
It offers a possibility to search for more general ground state configuration of relevance
at small temperatures.

As a concrete example, we may apply these equations explicitly to the strong coupling
limit. For simplicity let us assume that in this case we can have the replica-diagonal solutions
such that we can ignore the replica indices. The action (7.8) can be written in terms of the Φ1:

A[Φ] = −N4

∫
[Φ1(τ, τ ′) + Φ1(τ ′, τ)]4dτdτ ′ . (7.21)

Since the action A[Φ] only depends on Φ1 in the strong coupling limit, we see that the
SD equations (7.20) reduce to

∫
Ω(ΦL,Φ1(τ ; τ ′))

δA

δΦ1(τ ; τ ′)
dτdτ ′ = ω

(
{τ}L, {τ ′}L

)
, (7.22)

giving

−2
L∑

a=1

∫
[ϕ(τa, τ)]3ΦL(τ1, . . . , τa−1, τ,τa+1, . . . , τL;τ ′1, . . . , τ ′L)dτ =ω

(
{τ}L,{τ ′}L

)
, (7.23)

where ϕ(τ, τ ′) = Φ1(τ ; τ ′) + Φ1(τ ′; τ). Explicitly, for L = 1, 2, we have

− 2
∫
[ϕ(τ, τ1)]3Φ1(τ ; τ ′1)dτ = δ(τ1 − τ ′1) , (7.24)

− 2
∫ (

[ϕ(τ, τ1)]3Φ2(τ, τ2; τ ′1, τ ′2) + [ϕ(τ, τ2)]3Φ2(τ1, τ ; τ ′1, τ ′2)
)
dτ =

δ(τ1 − τ ′1)Φ1(τ2; τ ′2) + δ(τ1 − τ ′2)Φ1(τ2; τ ′1) + (τ1 ↔ τ2) . (7.25)

We see that the equation for L = 1 (7.24) is consistent with the saddle point equation of the
collective action (7.15) we derived before. These equations have the recursive pattern that
ΦL is determined by the ΦL−1 and Φ1. Let Φ(0)

L and ϕ0 be the solution of the L = 1 part.
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Then, the following ansatz solves the above Schwinger-Dyson equations:

Φ(0)
L (τ1, . . . , τL; τ ′1, . . . , τ ′L)

= 1
2LL!

[∫
ϕ0(τ, τ ′)

N∑
i=1

δ

δS+
i (τ)

δ

δS−
i (τ ′)

d τ d τ ′
]L N∑

j=1
S+

j (τ1) . . . S+
j (τL)S−

j (τ ′1) . . . S−
j (τ ′L)

(7.26)

= 1
2L

∑
σ∈SL

ϕ0(τ1, τ
′
σ(1))ϕ0(τ2, τ

′
σ(2)) . . . ϕ0(τL, τ

′
σ(L)) . (7.27)

Thus, all multi-local fields are determined solely by Φ(0)
1 , consistent with that in the strong

coupling limit the only degree of freedom is the bi-local field.

8 Toward quantum simulation

We have already discussed in the introduction how the SYK4 model requires long chains of
Pauli matrices when embedding the Majorana fermions on qubit degrees of freedom (e.g. using
a Jordan-Wigner transformation). Those Pauli strings have a length that grows linearly with
the size of the system Nspin, making it prohibitively challenging to approach the many-spin
(Nspin → ∞) limit. On the other hand, the advantage of SpinXY4 over SYK4 is that each
term in the Hamiltonian involves at most only four qubits, regardless of the size of the system.
A review of the computational resources for the quantum digital simulation of the SYK4
model can be found in refs. [36, 37] and a recent experimental trial for N = 6 Majorana
fermions on a superconducting qubit device has been reported in ref. [38].

As an example of what building blocks are required for the digital quantum simulation
of the dynamics of SpinXY4, we focus on a first-order Suzuki-Trotter decomposition and
reduce the simulation to a product of 4-qubit unitary operations. We can think of considering
only spin operators acting on 4 different spins. Practically, if Û ≡ e−iJδtσ̂1,xσ̂2,xσ̂3,xσ̂4,x can be
realized for Jδt≪ 1, the Hamiltonian time evolution can be coded into a circuit using native
single-qubit and two-qubit quantum gates. We restrict to this exponential of a Pauli string
because site indices can be handled by swapping qubit labels, and it is straightforward to
replace σ̂j,x with σ̂j,y (or σ̂j,z) by a change of basis realized with single-qubit gates. Let us
note that having Pauli strings with several terms that are exponentiated is a very common
occurrence in quantum chemistry applications [39], such as in the Unitary Coupled-Cluster
ansatz, and there exist numerous techniques to synthesize the corresponding quantum circuits,
such as those based on phase gadgets and ZX-calculus [40].

As an example, the unitary operator Û above can be applied on 4 qubits using 6 CNOT
gates in a staircase pattern, sandwiching a single-qubit Z rotation Rz(α) = e−

1
2 iασ̂z with angle

α = J · δt, while the Hadamard gate H is used at the beginning and at the end of the circuit:

H Rz(J · δt) H

H • • H

H • • H

H • • H
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The Hamiltonian (2.2) can contain terms that are acting on 2 qubits, 3 qubits, or 4
qubits at most. These terms will involve in general all qubits in the system, and all qubits
will eventually be connected to all other qubits. For the purpose of Trotterized digital
quantum simulations, a system of qubits arranged with a local geometry will require a large
number of SWAP gates to implement all the interactions. On the other hand, we can expect
that trapped-ion devices, such as Quantinuum H-series systems [41], can tame the non-local
nature of the interaction. In the case of the quantum charged-coupled device architecture of
H-series [42], qubits are realized by ions that can physically move on the device, effectively
implementing all-to-all connections with no additional gate overhead [43]. One additional
feature of the Quantinuum H-series systems is the native 2-qubit gate ZZPhase(α), which
implements directly the operator e− 1

2 iα(σ̂i,z⊗σ̂j,z) between any pair of qubits i and j with an
infidelity that is proportional to the angle α, and around 0.5− 2.0× 10−3 [44]. Using such
arbitrary-angle two-qubit gate we can express the circuit for Û above with one less 2-qubit
gate, replacing the Z rotation and the neighboring CNOT gates by a single ZZPhase:

Rz(α)
ZZPhase(α)=

• •

Overall, when taking into account the large number of terms in the Hamiltonian (2.2), this
results in a great reduction of the total circuit depth, making the circuit for the Trotterized
simulation less susceptible to noise [44]. In recent demonstrations of quantum algorithms
on Quantinuum H-series devices, circuits with a number of 2-qubit gates between 600 and
1000 were run without significant loss of signal [45] making use of tailored error detection
techniques [46]. Moreover, in the application of quantum optimization algorithms, a recent
paper has implemented circuits with e−iθσ̂1,z σ̂2,z σ̂3,z σ̂4,z Hamiltonian terms on Quantinuum
H-series devices with up to 1000 2-qubit gates [47], using an optimization algorithm to
reduce the number of gates by arranging Hamiltonian terms. The possibility of exploring the
SpinXY4 variants described in section 2.2, such as introducing σ̂z or reducing the number
of terms to sparsify the interactions, using digital quantum simulations on real hardware is
therefore a near-term challenge we would like to pursue in the future.

9 Conclusion and discussion

In this paper, we defined and studied the randomly coupled spin model (SpinXY4) by
replacing Majorana fermions in the SYK model (SYK4) with Pauli spin operators. We found
striking similarities between this model and the SYK model. We conclude that this is an
interesting model of quantum chaos that can be simulated more easily on quantum computers.

There are many directions to be explored. It would be nice if we could solve this model
or some variants analytically. For the SYK model, the effective action in terms of bi-local
fields provided us with a better understanding of the model itself and its relation to gravity.
Hence, if we could do a similar analysis in terms of multi-local fields, we could understand if
this model has a connection to gravity via holography. It would also be interesting to study
various variants of the model including those suggested in section 2.2. We might be able
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to find an even simpler target for quantum simulation, or we might be able to find good
models for holography or condensed matter physics.

As a final remark, we point out the similarity between the SpinXY4 Hamiltonian and
the interactions in the matrix model for quantum black hole (see refs. [4, 5]). The matrix
model contains several N ×N matrices consisting of N2 bosonic degrees of freedom. The
interaction part of the Hamiltonian consists of O(N4) 4-local terms of these bosons. In
the coordinate basis truncation, each bosonic operator can be written as a sum of σ̂z, and
hence the entire interaction consists of the sum of 4-local interactions of σ̂zs. For this reason,
the quantum simulation of SpinXY4 may be a good starting point for the simulation of
the matrix model. Furthermore, the Yang-Mills theory can be embedded into the matrix
model [48, 49], and hence, the same technique can be used to study Yang-Mills theory, and
probably, the standard model of particle physics.
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