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Aspekte von /emphderivative screening in erweiterten Brans-Dicke-
Theorien:

Wir betrachten das Problem der Kosmologischen Konstante im Zusammenhang
mit dem dhnlichen Hierarchie-Problem des Higgs-Boson. Wir beschreiben Mod-
elle, die ein running der Energiedichte des Vakuums mit der kosmischen Expan-
sion vorhersagen. Diese Modelle sind mit der Brans-Dicke-Theorie (BD-Theorie)
verwandt, die faszinierende theoretische und empirische Konsequenzen hat; ins-
besondere erklart die (BD-Theorie) Abweichungen zwischen Messungen kosmol-
ogischer Parametern, die in [1, 2, 3, 4, 5, 6, 7] diskutiert werden. In BD-ACDM
kann die effektive gravitative Kopplung 4 — 9% grolere Werte annehmen als
die Gravitationskonstante Gx. Um mit den getesteten Vorhersagen Allgemeiner
Relativitatstheorie kompatibel zu sein, miissen BD-Effekte auf lokalen Skalen
abgeschirmt sein. Wir untersuchen erweiterte BD-Theorien, die Abweichungen
von G auf kosmologischen Skalen erlauben und lokal mit G kompatibel sind.
Wir zeigen, dass Abschirmungsmechanismen nicht die von BD-ACDM vorherge-
sagten signifikanten Abweichungen von G erklaren kénnen. AbschlieBend unter-
suchen wir fiir diese Erweiterungen die Stabilitdt klassischer Theorien héherer
Ableitungsordnungen unter Quanten-Korrekturen, was in einem allgemeineren
Kontext bereits in [8, 9] getan wurde.
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Aspects of Derivative Screening in Extended Brans-Dicke Theories:

We discuss Cosmological Constant (CC) problem in conjunction with a similar
problem of Higgs fine-tuning. We move on to describe models where we expect
the running of vacuum energy density with the cosmic expansion. These models
are related to Brans-Dicke (BD) theory which has alluring theoretical and obser-
vational consequences; in particular, BD theory with a constant vacuum energy
density (BD-ACDM), alleviates cosmological tensions. These are discussed in
previous works like, [1, 2, 3, 4, 5, 6, 7]. In BD-ACDM, the effective gravitational
couplings at cosmological scales can take values 4 — 9% greater than Newton con-
stant Gy. The BD effects have to be screened in the local scales where we have
tight constraints for theories that deviate from GR. In this context, we explore
extended BD theories that can allow variations in GG at cosmological scales and
reconcile G at local scales. We show that the screening mechanisms cannot ex-
plain large deviations of G as predicted by BD-ACDM [10]. In the last part, for
our particular extensions, we study the stability of classical higher-order deriva-
tive theories under quantum corrections, which has been done in a very general
context in [8, 9].
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Part 1

Fine Tuning Problem



1 Cosmological Constant

In this chapter we shall discuss aspects of Cosmological Constant and its association
to vacuum energy density. We introduce the CC problem and the fine tuning problem
at the classical level. For this chapter we import knowledge from [1, 2, 11] along
with other references cited in the text.

The discovery of accelerated expansion of the Universe with the observations of
supernova and the cosmic microwave background (CMB) was a major breakthrough
in modern cosmology research. It predicted diffusive Dark Energy (DE) which is
evenly spread across the cosmos and is responsible for the acceleration of the Uni-
verse. The other important discovery of the last century is the presence of ‘Dark
Matter’ (DM) which dominates the fraction of matter content of the Universe. From
observations and numerical simulations of the dynamics of galaxies, it was predicted
that DM exists around the galaxies and clusters. As the name indicates, DM par-
ticles are ‘dark’ as they have not been found interacting with rest of the accessible
Universe through any of the know forces. The amount and nature of DM plays
an important role in cosmology, particularly in the formation of structures. Non-
relativistic (cold), massive particles would explain structures of the Universe and
is well supported by Cosmic Microwave Background (CMB) spectrum. Relativistic
DM models are not able to explain the small structures of the Universe. Thus, the
kinematic characteristics of DM particles are constrained by the structure forma-
tion in the Universe which in turn narrows down the expected DM mass range for
ongoing experiments. Even though there are some interesting anomalies in our de-
tection, there has not been a direct detection of DM particles. In this thesis we will
not discuss DM sector, rather we will focus on yet another mysterious component
of the Universe, Dark Energy (DE).

Cosmological constant (CC) would be the simplest candidate for DE. As the name
indicates, its energy density remains constant in time. The bare CC, represented by
Ap which we add to the Einstein Hilbert Action, together with Cold Dark Matter
(CDM) makes the ACDM model of cosmology. This model has proved its consistency
through a wide range of observations. CC is usually associated with some form of
vacuum energy. A small energy scale of CC would be sufficient to account for
the cosmic acceleration. But, if one associates DE with vacuum energy from the
quantum field theory (QFT), as we will see, the energy scales are at least 10°°
bigger than the former leading to the famous CC problem. We shall discuss this
along with the required fine tuning of bare CC term to obtain the observed dark



energy, in the next section. We can show from simple thermodynamics that CC is
associated with vacuum energy and it scales with volume. In de Sitter universe (just
vacuum, no matter), as there is no exchange of energy, we set d@ = 0. Then from
the first law of thermodynamics, the variation of internal energy is proportional
to the internal pressure. Thus the universe with only vacuum energy density p?,.
(which is a constant, indicated by A) dU = d(p2,.V), we can write,

dU = dQ‘(:O for CC) — pll}acdv
— pll)\acdv = _pzl)\acd‘/'

Constant vacuum enerqy density behaves as the CC with constant equation of
state (EoS) w? . = pA /ph. = —1. Violation of strong energy condition is implied
by wh,. < —1/3 which explains that it is responsible for acceleration of the Universe.
From these arguments, we can put the CC term as a matter component in addition
to the Einstein-Hilbert (EH) action. But historically, CC term has more drama
attached to it.

Soon after Albert Einstein presented the theory of General Relativity (GR) in
1915, along with weak field solutions (like the Schwarzschild solution), people tried
to apply this theory to the Universe. It was then understood that the Universe was
made up of matter which would eventually collapse due to attractive gravitational
force. Einstein introduced cosmological constant A to his equation in 1917, believing
in the static Universe. This term will evidently work as repulsive force as we just saw.
In the same year Willem de Sitter found solutions for Einstein equation with CC (and
no matter) and showed that we get accelerating Universe with only vacuum energy
which was supposed to make Universe static. Moreover, Georges Lemaitre found
that Einstein’s static solutions suffered from stability problems - a small perturbation
of matter would result in collapse or forever expansion of the Universe!. Vesto
Slipher’s observations of galaxies in 1910-20’s and Edwin Hubble’s (also significant
contributions from astronomer Henrietta S. Leavitt and predictions by Lemaifre)
redshift measurements in 1929 indicated an expansion of the Universe favouring the
idea of de Sitter. So in 1931, Einstein renounced the idea of CC and set A = 0. He
also went ahead to abandon the idea of static Universe and proposed the Friedmann-
Einstein model of a universe with positive curvature and the Einstein-de Sitter
model of a flat universe with only matter. In the later half of the 20th century,
measurements of CMB indicated a flat Universe. Also, redshift measurements by
SNIa, not only re-invoked A but was measured to be greater than zero with very
high accuracy. It dominates the current expanding Universe with its energy density
approximately given by p8 ~ 10~2g/cm? = 10~4"GeV*.

Einstein equations in vacuum are derived from Einstein-Hilbert action. We in-
troduce a CC term Ap in the action. The action and resulting field equations are

ILemaitre went further to propose the first cosmological model.
* T have tried to give a very short summary of the historical events without any references. For
a more detailed historical view see [2] and references therein



1
— 4 [ _
SEH = /d x167TGN g(R 2AB) (11)

Gw/ + ABguV = 0. (12)

G = R, — %gWR is the Einstein tensor given by trace-reversed Ricci ten-
sor R,,. It is the geometrical part of the equation quantifying the curvature of
pseudo-Riemannian spacetime manifold. The ‘beauty’ of Einstein equation is in the
realization that curvature of spacetime manifold is proportional to energy momen-
tum of the matter fields present?. In (1.2), curvature is sourced by the bare CC term
Ap, denoting constant vacuum energy density as we mentioned earlier. The name
“bare” carries the same meaning as in particle physics indicating that, parameters
appearing in the Lagrangian are not exactly the quantities we measure. In this case
Ap is not actually observed in the cosmos and it should get some corrections, say,
from the matter fields present in the Universe. When we take this in account, we
have an effective Ar which is of small value as we have measured it from observa-
tions. As we shall see, the corrections from zero point energy of mater fields lead to
“fine-tuning problem”.

From Bianchi identities, we have vanishing covariant derivative of the Einstein
tensor V#G,,, = 0. This is purely due to algebraic and differential symmetries asso-
ciated with Riemann Curvature tensor encoded in Bianchi identities. Considering
metric compatibility V#g,, = 0,

VHGw +ABguw] =0 = V¥Ap =0 = Ap = constant. (1.3)

The CC term in (1.2) could be transferred to the r.h.s by defining the energy
momentum tensor of the CC as,

Ap
T/i\yB = _p%gwf = 87TGNglw (14)
1
Ry = 50w = 8TGNT P (1.5)

Again applying covariant derivative on both sides of equation (1.5), the Bianchi
identities imply conservation of energy momentum tensor V“T/fVB = (0. With con-
stant gravitational coupling Gy, covariantly conserved energy momentum tensor

2The Reimann curvature tensor R, is a mathematical structure which has the tracefull part,
the Ricci tensor (its trace is the Ricci scalar g Ry, = R), which is entirely determined by
the energy density 7),,. Riemann curvature tensor also includes traceless Weyl Tensor C,,as
((B.5)) with same symmetries as the former and is invariant under conformal transformations.



implies that we can have a “cosmological constant” (as described in (1.3)) incor-
porated in the Einstein equation. Since the Einstein equation has this beauty of
equating geometrical quantity of [.h.s to the matter component in r.h.s, transfer of
CC term is not just a mathematical step and needs more attention. By applying
divergence operator on (1.5), the [.h.s vanishes due to Bianchi identities. However,
on the r.h.s we have the following two possibilities.

1. From purely theoretical point of view, a generic energy momentum tensor
should be conserved locally,

My =0 = T, XN
but one could still keep V¥T,, #0 = T}, < g

This is counter-intuitive as the latter expression is just a ’covariantized’ form
of the former and we can always have a transformation from local Minkowski
(flat) spacetime to a curved spacetime. But one has to be careful here as gen-
eral covariance principle also allows any combinations of invariant quantities
possible. That is,

Té\VB = aoGuw + a1 Ry + (..)

with a;’s composed of constants like R, R?, R, R" etc .

Hence, one could in principle have modified conservation laws like in Rastall
gravity [12],

VT, =0+aVR or = BR"VuR
where «, § have to be fixed from observations.

Clearly, only aq is a constant which we equate with p%. For i > 0, a;’s involve
higher derivatives and should not be our immediate concern.

2. We could also think of gravitational coupling as a variable G(t) instead of
a Newtons constant G and retain covariant conservation of stress-energy
tensor. This case indicates violation of strong equivalence principle and such
a theory could have interesting impacts on cosmology which will be discussed
in the next chapter.

Hence, by either having a time dependent gravitational coupling G(¢) or covari-
antly non-conserved energy momentum tensor? a "time dependent cosmological con-
stant” A(t) would still be compatible in the Einstein equation, fulfilling Bianchi
identities.

3if there were matter fields, this possibility could be thought of as the vacuum exchanging energy
with matter fields



Now let us consider matter action in terms of a real scalar field ¢ with some
potential V(¢). In the classical treatment, its energy-momentum tensor is now

given by T,
4 Lo
Sol¢, gu] = —/d v/ —g [2g“ 0, P0v ¢ + v(¢)] (1.6)
o _ —2 05 _ P
T = /=g 0g" 000y d — Guv [29 0a 93¢ + V(qb)} : (1.7)

The combined action and the corresponding field equations respectively read,
S = SEH[.Q;W] + S¢[¢, g/ux]

1 1 1.8
_ / Ao/ =g |R =200 = 50" (0,000 + V(¢))] (1.8)

1
R, — §gWR + Apgu = 87GNTY, (1.9)

In general, all matter fields contribute to r.h.s of the above field equation. Our
focus has been one a single field ¢ which can be associated with the Higgs field*. All
massive gauge bosons, quarks and charged leptons get masses through their coupling
to Higgs field. The well defined renormalizable Higgs potential

1 1
V(p) = §m2¢2 + EA& (A>0) (1.10)
has the property to trigger the phenomenon of Spontaneous Symmetry Breaking
(SSB). In fact, SSB is the only known way to generate masses in a gauge invariant
way.

« For m? > 0 the potential has a minimum at (¢) = 0, there is no symmetry
breaking. Then the ground state of (1.7) is given by,

(0IT5,10) = (T5,) = (V(#))guw = 0 . (1.11)

The ground state is nothing but the vacuum state of scalar field and hence
there is no kinetic energy contribution. Hence the ground state is just the
vacuum expectation value of scalar field potential.

« For m? < 0, SSB is triggered and potential has a minimum at v/v/2 = (¢) =
\/%’”2. The ground state will have contribution to vacuum energy at classical
level given by,

m2

(075,10 = (T5,) = V() g = (=539 = — Pt Gy - (1.12)

4This is a simplification for further discussions. However, one must have introduced Higgs as
a complex doublet of scalar fields in SM. Nevertheless, this simplification will not affect the
nature of the problem



We can calculate this quantity once we rewrite the vacuum energy density
in terms of the two free parameters of the potential, the vacuum expectation
value v and mass m as,

3m*  m*v

pvac _ o ~ 8
poet =(V(e)) o 1 2.4 x 10°GeV . (1.13)

tental T>Te

T<Te

ek}
(field)

Figure 1.1: Here we show diagrammatic representation of SSB which is often found
in literature (for example [13]). The symmetric potential in red and the
potential after symmetry breaking is blue curve is the broken potential.
A simple analogy of Paramagnet to Ferromagnet phase-transition can
be made where we have (rotational) symmetric potential for high tem-
peratures beyond a critical temperature 7, below which we have broken
phase.

In last equation we have plugged in the values of v = 246GeV and m =
125.35GeV. This energy density is induced at classical level by the phenom-
ena of electroweak phase transition (SSB) of Higgs potential. This gives an
additional term in (1.9).

1
Ryy = 59 R + Apgu = 87GN (T, + (Tyw)) (1.14)

The first term on the r.h.s is for ordinary matter which can be radiation, dust etc.

and the second part is the induced part from classical vacuum. This can be seen as
—¢vac
p

an addition to the bare CC term. We define gles— = A% then effective CC, Ap
is given by,

Ap = Ag + A%, (1.15)

clas

Since this is the quantity which we measure, we can accordingly replace Ag in the
field equation

1
Ry = 59 R+ Apgu = 87GNT}, . (1.16)



The subscript clas reminds us that we are in the classical limit. By comparing the
value obtained in (1.13) with the observed vacuum energy density p3,

p¢vac
(%) ~ 107 . (1.17)
Po

This discrepancy in our observed value when compared with the theoretical pre-
dictions is the famous cosmological constant problem. The CC problem can be
recognized in (1.15) as the observational value is low in spite of huge contribution
from A% We have only calculated the classical contribution. But the latter has
contributions from the quantum zero point energy which we will discuss in the next
sections. The latter appears to somehow cancel out such that we observe a small
CC. And also, the bare CC term Ag which we put in the EH Lagrangian has to be

finely tuned up to at least 55 decimal places. This is the fine tuning problem®.

5The nature of the problems discussed here are not specific to electroweak phase transition. One
would come across similar problems if QCD phase transition is considered for example.



2 Higgs mass fine-tuning and hierarchy
problem

In this chapter we describe some standard regqularization procedures and renormal-
ization schemes. Our focus will be on ¢* scalar field theory. We discuss divergences
in the loop integrals, the ways in which we can parameterize and later isolate these
divergences. The procedures of reqularization will introduce a new parameter, an
energy scale p. As a consequence of this scale dependence of coupling constants we
obtain the flow equations or the beta functions. We also introduce fixed points and
conclude this chapter by listing some important problems of the Higgs. These prob-
lems by themselves are very interesting and have cosmological consequences. The
structure of these problems are also closely related to the CC problem which was
introduced in the previous chapter. For this chapter, we derive insights from various
sources like [13, 1/, 15, 16, 17].

2.1 Regularization and Renormalization

Lets us consider a simple Lagrangian with quartic potential just like we had it
in (1.10) and systematically introduce regularization and renormalization by actu-
ally calculating important divergent integrals at 1-loop level. The bare quantities
denoted with subscript B do not include quantum corrections and are not the quan-
tities we measure in real world. They just appear in the Lagrangian and receive
radiative corrections and has to be renormalized!.

1 1 1
Lp= 3 00" o — §m23¢23 - @AB& : (2.1)

We can calculate the quantum corrections for mg and Ag from 1-loop diagrams.
For a basic 2-particle scattering amplitude at 1-loop level,

iM(p1, pa, 0, ph) = TW = —idp + [iV(s) + iV (1) + iV (u)] (2.2)

'Here we shall limit ourselves to one loop level to obtain some intuition which will help us in later
chapters. You can see some of the loop diagrams in, (7.9) and (7.6) which are all divergent.
There are also loop diagrams which contributes to radiative corrections of tree level 2-particle
scattering.



where the first term is from the tree level contribution and each loop contribution
(s,t,u are Mandelstam variables) is proportional to (i\)? because of two external
leg vertices for each diagram. We indicate the mass of the virtual particle by my,
which could be mass of any particle, for example quark, massive boson, etc., in that
particular loop. For the s-channel diagram, representing, internal loop momentum
with k£ and external legs as p,

k+p
/\

N
k

V(pz):(_MB) /(dk i i

2m)4 k2 —m3 (p+ k)2 —m3

—ZAB ' 1 ,
N / dm/ L2+ 2(1 — 2)p? — m?)? (where, I =k +ap).
(2.3)

One way to evaluate such integrals is to rotate the integration contour for {° from
real to imaginary axis [ = il%. Now the integral is on Euclidean space. This is
Wick rotation and such a rotation is possible as the integrands are analytic in first
and third quadrant. We have shown the mathematical steps in Appendix (C). The
integral reduces to

o0

—|—log(lE+x(1—:U)p —|—mL>] . (2.4)

V() = iNg /1 " [ r(1—x)p* + mi

3272 24+ x(1—2)p2+m

In the limit |lg| — oo, the integrand is logarithmically divergent - quantum
corrections to 2-particle scattering amplitude becomes very sensitive to quantum
fluctuations in high energy scales.

We come across divergences of 2-point function (7.9) as well. For example at
1-loop level, we have the following diagram,

Cixp [ Ak
Q.

2 | CniRz—m2
g [ dp 1 i / , R
= = dkp—"— )
) / Grik—m? s ) ChEE e (25)

i\g B2\~
= k2 In(1+ — .
3272 [ F mL n( " mL)L

10



This time, the divergence is worse than the former method because, along with
subdominant logarithmic divergence, we also have a dominant quadratic divergence
as |kg| — oo. This could be due to our carelessness while writing down integral. The
integral is over all possible momenta of the internal loops and we are using the bare
quantities in our calculations. We need to be smart in our ignorance. We shall try
to parametrize the high energy (UV) behaviour of the theory so that theory is well
defined in the scales at which we are interested in. This procedure of parametrizing
our ignorance is Regularization and can be achieved in a numerous of ways.

2.1.1 Regularization

Regularization and a systematic Renormalization scheme will help us make sense
out of our calculations which are yielding infinities. One way to regularize a theory
is to parametrize the sensitivity to short distances scales by introducing a cutoff
parameter. With such a cutoff, say A.., we have now modified the theory which
ran to all momentum scales to a theory which is well defined till A.,;. In our new
theory, the UV divergences are replaced by - sensitivity to cutoff scale such that for
fixed couplings, in the limit of cutoff A.,; — oo physical quantities diverge instead
of divergence due to lg, kg — oo. We can check this by setting limit of integration
in (2.5) as A., instead of integrating to infinity.

2 A?
Q = 2B lAzut —m3 In (1 + n;;tﬂ . (2.6)
L

= 3272

Now divergence for |kg| — oo disappeared. Instead, physical divergences are now
only in the continuum limit A.,; — oo. As long as the cutoff is large compared
to physical scales of interest, we have a well defined behaviour of the theory be-
cause we have simply removed the UV part. This is cutoff reqularization. There are
other ways in which we could have introduced the cut off parameter for example-
Lattice regularization, Pauli-Villars regularization etc. Most of these regularization
schemes are only convenient to specific purposes. For example the above equation
is still divergent in the limit A.,; — oo. The divergence in other schemes, for ex-
ample, dimensional regularization, may not be as severe as in cutoff scheme (see
(2.10)). Some of these regularization schemes should be done at each loop order
of the perturbation theory (example, dimensional regularization). The cutoff reg-
ularization has the problem of unitarity. Lorentz symmetry and gauge invariance
may not be manifestly preserved in some of the schemes. We have to make some
compromises when it comes to associating meaning to these schemes. Together with
a renormalization scheme, these procedures are of high practical importance.

One of the use full regularization scheme is Dimensional Regularization, which
is to parametrize the sensitivity to UV scale by expressing our theory in a lower
dimension. We shall apply this scheme to both 1-loop divergent terms of 4-point
function (2.4) and 2-point function (2.5) . Let us first generalize (2.3) to d dimensions
in Euclidean space, and in order to keep Ag dimensionless, we add a parameter p. As

11



we saw from previous examples of regularization, all reqularization schemes introduce
one more parameter to the naive continuum theory.

V(p*) = W;B)/O dx/ (dl ! (2.7)

21)4 (12 4+ (1 — z)p? — m2)?

€ = 4 — d is the small deviation of the spacetime dimension from 4. We again
refer to Appendix (C) for detailed calculation of the loop integrals.

V(p?) = i) /O1 dx lQ —7+log< 5 Ay )] (2.8)

3272 € mi —x(l — x)p?

The integral has an extra parameter of mass dimension 1, x4 which was not present
in our original Lagrangian. The logarithmic divergence for higher momenta in (2.4)
has been removed. We can choose p at will as this is not associated with momentum
scale. We can also do the same calculation for the 2-point function. Let us generalize
it to sum of all 1PI diagrams? at one loop level ¥(k?). Such a generalization would

be helpful because we can then express exact propagator A(p?) as a geometric series
in 3(k?) (represented by the blob).

1
T g - SR

(2.9)

If the above is actually an exact propagator, it should have a pole for —p? = m?.

Where, the mass parameter is the physical mass instead of bare mass mp. It has
to be renormalized to remove this ambiguity. Lets first regularize and keep the
renormalization for the next section. For the first blob, in simple case of 1 loop
approximation, there is only one loop diagram contribution it. But at 2 loop level
we have 2 more diagrams (the last two diagrams in (7.9)). So, we shall apply
dimensional regularization to the 1-loop diagram (2.5),

— 7€ d ; s €d/2 _
HORS U By = T L4

2 2m)4 k2 —m? 2(2m)¢  (m3)(1=d/2)

i) 2
- 3272 L

(2.10)

2

2 4
< — g+ In L +O(e)> .
€ m

L

We have denoted Ag(12)2~%2 as A(u) - see Appendix (C) such that in 4 dimen-
sions, A(11) — Ap. The regularization has removed the high momentum divergence
with the help of a new parameter . In comparison to cutoff regularization, we
have got better results, as A.,; — oo is just a pole as d — 4. Moreover, the new

2PI stands for ’particle irreducible’. In 1PI diagrams, we cannot cut any internal propagator
such that we end up with two disconnected diagrams. In a QFT, of all the possible Feynman
diagrams, only 1PI diagrams contribute for physical observables.

12



parameter, 4 is not a momentum cutoff parameter so we need not take p — oco)to
have a continuum theory. Unlike cutoff regularization, dimensional regularization is
perturbative regularization which allows momentum integrals at all scales for indi-
vidual loops. For a physical application, we would want to provide a finite integral
measure directly in the path integral. In a physical application, the regulated theory
indicates that the couplings will scale with the new parameter A.,; or p. This implies
that, a change in cutoff can be compensated by changing the bare couplings so that
all physical quantities remain invariant. Moreover, all the quantities we used in the
initial Lagrangian are bare quantities. Now we implement renormalization schemes
in order to remove the divergent parts from them. Thus, after renormalization we
should be left with the same number of parameters we started with.

2.1.2 Renormalization

In (2.9), all the divergences are encapsulated in (k%) which upon dimensional reg-
ularization (2.10), still has pole as € — 0. Dimensional regularization is usually used
along with minimal subtraction renormalization scheme or rather modified minimal
subtraction M S scheme. The former is to choose the counter terms so as to remove
the pole ¢ — 0. In the latter scheme, we also remove Euler-Mascheroni constant
and log 4.

The removed divergent parts are given by dm and A

S — iA(p) m2 (2 — g+ 1In 47r)
€

Y
2.11
5r = W) (2 +Indr) .
= - — ™
3272 \e F
For A to be exact propagator, it should have a pole —p? = m? where m is

the physical mass. Hence we can say that, the physical renormalized mass is the
difference,

m? =m% — [X — om]

BT 3om2 T2 (2.12)
3)\2 2
A= Ap— ) 1o 1

0g
3272 m2

So far we have been successful in isolating all the divergences in the physical cou-
plings using methods of regularization; now we have to get rid of them. The way
to get rid of divergence is by implementing wave function renormalization where we
replace the bare fields ¢ with renormalized fields ¢ which are defined by rescaling
the former as shown below. The idea is to absorb the cutoff dependent divergences
through rescaling factor Z. The Lagrangian with rescaled fields is now,

13



¢B

¢p — ¢ = —=, (rescaling)

\/zv

h . (2.13)
Ly — L= 520,00"¢ — §m232¢2 —

AB 2 4
PI

We also write expressions for rescaling the bare couplings so that we get a La-
grangian with renormalized couplings (m, A) which we actually measure in the ex-
periments.

my = ZH(m? 4+ dm?),
Ap = Z7 26N+ ) (2.14)
and, Z —1=02Z

The quantum effects are encoded in 62, dm, A which represent our freedom to
adjust the couplings in original action. They form the counter Lagrangian o L which
absorb the infinities from the loop calculation we formed earlier. The new La-
grangian L is given by,

Lg—L=L+6L

1 1 1
L= 0,60"¢ — sm*¢? — - A¢* (2.15)

+ ;5za“¢aﬂ¢ — ;5m2¢2 — 25A¢2

We have to note that, the Feynman diagrams would involve renormalized mass
and coupling constant. As we are adding extra counter terms to the Lagrangian,
these result in interactions which correspond to new vertices. The exact propagator
in (2.24) would have additional counter terms.

A™H=p? i — ()

(p?) = O v 4. (2.16)
= X(k?) +i(p*0Z — om?)

In principle, we can expand X to any orders in loop. At 1-loop level, the sum of all
1PT diagrams Y (k?) (see (2.5)), receives a counter term equivalent to a propagator
(p?6Z — dm) which is represented with crossed vertex which reminds us that they
are corrections at perturbation level. We consider counter terms to 1-loop order,
which includes only a tree level propagator for 1 loop diagram shown in (2.16). We
can get higher order terms by expanding dm as a power series in A\. Nevertheless
we have to fix 62, dm and d\ using some renormalization conditions such that the
divergences are cancelled.

14



1. e The renormalized exact propagator should represent the classical prop-
agator with m being actual physical mass. As a classical propagator it
(i) should have a pole at physical mass —p? = m? and (ii) residue of this
pole should be 1.

o We expand II(p?) in external momenta p* around arbitrary value of m?
upto second order (derivative with respect to p? is indicated by ’)

I(p*) = B(k?) +i(p*6 Z — dm?)
= (m?) + (p* — m*)I (m?) + 1(p?) + i(p*0 Z — 6m?)

The first two terms are respectively quadratic and logarithmic divergent
whereas the third term is not divergent. Since we want exact propagator
to have pole at physical mass, (i) we would want II(m?) = m%—m?. Then
the exact propagator is just a classical propagator. It would have been
convenient to have started with physical mass in the initial Lagrangian.
Then, on the shell —p? = m?, the quantum correction cancel to give,
II(m?) = 0. This would satisfy the first condition of m? being the pole.

(ii) The second condition can be met by setting IT'(m?) = 0, (this is true
because the integral ¥ is independent of p) which leads to 2 = 0 and
thus the residue is 7. From (2.16) we set the complete divergent integral
> in the above equation to the remaining parameter, dm which has the
opposite sign. In the previous section we regularized this integral.

o With cutoff regularization

P A2
gm? = — [Aiu —m3In (1 + “tﬂ : (2.17)
3272 |t L m2

Now, the 1-loop quantum correction . is divergent, even in the continuum
limit A.,; — oo. After all this calculations, we see that, we need not
integrate over all the energy scales 3.

e And in case of dimensional regularization, the 1-loop integral in (2.10)
implies,

A1) 2 pw
om? =~ 2 (2 o+t 2.1
m° = oo My <e VE + nm% + O(e) (2.18)

2. The 4-point function (scattering amplitude) including the counter terms is
written as follows (also Feynman diagram of counter term vertex).

T = i\ + (=iN)?[iV (s) + 3V (t) 4 iV (u)] — i6X ><

3We can simply put the cutoff scale right in the partition function (7.1).
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The renormalization condition then would be to set A to be scattering ampli-
tude at zero momentum : s = 4m? (we ignore t and u-channel contribution).

Which implies from (2.8),

5A = —X2[V (4m?)]
N(p)T(2—dj2) [* 1
T2 (4m)ie /0 da [[m% (- 91:)4m2]2d/2] (2.19)

3N () [* 2 4m
= de |- — 1
3272 /0 Tle P log m2 — x(1 — x)4m?

This is on-shell renormalization, in which we fixed the counter terms to get the
actual physical mass and scattering amplitude.

2.2 Running of couplings and Fixed Points

Even upon removal of divergent parts, the resulting mass and coupling is still not
sufficiently 'practical’ couplings as it still depends on the renormalization scale. We
would also need initial values of renormalized couplings to find the physical couplings
at any given energy scale. The physical quantities like, scattering matrix, or exact
propagator in (2.9) has to be independent of these conditions, especially independent
of renormalization scale . For example, lets us consider a theory for massless scalar
field with only quartic self coupling. Physical coupling A to be independent of u we
should have,

0
_ 9 3N (1) 2
= ua—u l)\B ~ 35,2 log i (2.20)
0N _ 3N (n) 2
= B(A) = M@TL = 16z T O(N%).

This is an example of Beta Function. If we define f = ug—z and also include bare
mass, then we can rewrite the above equation as?,

(Ma 10 4 ome a) A=0, (2.21)
u B

which is a simple version of Callan-Symanzik Equation. For cutoff regularization,
we have a similar expression

d (a dm2 0 d>\38>>\_0'

=
dAcut aAcut * dAcut 87n2B * dAcut aAB

(2.22)

“In d= 4, A would be independent (because the quartic coupling is marginally irrelevant in 4
dimensions) of .
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Instead of X\ one could have any other physical quantity like, the exact propagator
for example,

2
d 0 ,dmp 0, ds O )Alzo, (2.23)

A 2\\—1 _
dAcut< (p )> (aAcut * dAcut a77@23 dAcut a/\B

A, as we saw earlier is a geometric series in X(k?). At 1-loop level,
Al =p* —mp — l(Q) + O(2-loop) + ] (2.24)

Now using cutoff regularized 2-point function of (2.6) in the above equation at 1-loop
level, and then using (2.23), we have,

de )\B

_ 2 2
Acut dAcut = 1672 (Acut mL)‘ (225)

With the above examples we want to emphasis that beta function gives us the
flow of couplings or rather the theories themselves w.r.t renormalization scale p. For
scalar field, we see that the beta function is positive. That is the coupling increases
with energy scale. This is similar to QED. Solution to the beta function (2.20) is,

Ay

Avv
1 3 A
In 2OV = A\py &~ 0

16w 1— 163;2 Ao In “5—0‘/

(2.26)

In practical applications, py would determine the energy scale of the experiment
performed A, and Ay would be the value of experimentally obtained coupling con-
stant. This would involve known interactions from which we can precisely compute
Ao- puy = Ay determines the cut-off energy scale where we believe the considered
quantum field theory still works. Coupling at high energies then seem to be increas-
ing with A, as shown below in Figure(2.1). From the solution above, we see that
there is a pole when uyy = o exp(%). This is Landau pole which determines the
scale up to which our perturbative approach dealt in this chapter is valid. There
may be new physics at very high energies which are yet to be discovered. This is
very important for the Hierarchy problem described in the next section. The QED
beta function is very similar to our analysis of scalar field model. For QCD, we
have a negative beta function which also has a Landau pole indicating the break-
down of perturbation theory. Here we expect non-perturbative physics for example
hardronization.

For a generic coupling g, the solution to beta function 5(g) = udg/ou is,

gu . N
Blg)=0 = g—g

\4
dg 1 <MUV
—_— n [
g — 0

) diverges for pyy — oo if
JB (9) o
0

(2.27)
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For pyy — 0 then we have IR flow of couplings and for ;1 — oo we have UV flow.
The divergent UV flow can be result of either ¢ — oo or f(¢*) — 0 in the limit
where g goes to some ¢g*. The points where couplings change sign, that is, those
points where evolution curves meet x — axis in the above plot we have 3(0) = 0
which are called the fized points. See Figure(2.1) and the description below®.

1. 3 > 0 (the violet curve): Beta function always remain positive. This is the case
in QED where the coupling increases with energy until it reaches Landau pole
beyond which we cannot use the perturbative approach to track its growth.
This is also the case for scalar field (¢*) model described in this chapter.
Equation (2.20) gives the beta function for such a theory where the coupling
increases with energy. As discussed in the next section, we can still ask if we
have non trivial zero of the beta function. It turns out that ¢* theory has
trivial zero which is, beta function vanishes for vanishing coupling.

2. 3 < 0 (the green curve): This is the case where the coupling vanishes for very
high energies. QCD is one example of this scenario. The flow however goes to
trivial zero which we know as asyptotic freedom where coupling goes to zero
at large energies.

3. There are also non-trivial fixed points indicated by red and blue dots. The
red curve represents a the beta function which is positive till it reaches the red
point. The flow then reverses the direction, that is beta function is negative
for larger couplings. The fixed point is attained at high energies from the
both the directions and hence this is a UV fixed point. The blue point is an
example of IR fixed point where the couplings flow towards this fixed point.

Beta functions can tell us about the flow of couplings and moreover, they are
scheme independent. We shall introduce them again in the context of Wilsonian
Renormalization Group flow and Callan-Symanzik equation.

2.3 Problems of Triviality, Hierarchy and Fine
Tuning

Equation (2.26) is seemingly simple yet encapsulates some of the fundamental prob-
lems. One of those is realised when we want to extend the above solution to all
energy scales pyy — 0o, then we would want 1y — 0 to avoid divergence of the cou-
pling at higher energies. But then, the theory should be independent of scales and
1o should remain zero at all scales which implies we simply have non-interacting,
trivial theory at all scales. The question one could ask is, if this is a valid behaviour
at high energy scales. However, we have to notice that this triviality problem has

5The colour indication is in accordance with Figure(2.1)
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Figure 2.1: Examples of beta functions and fixed points is shown in this § vs g plot.
This plot is inspired by [18]. All the curves have a trivial fixed point
where the coupling vanishes. There are also IR and UV fixed points
g* # 0 indicated by blue and red points respectively.

appeared due to presence of Landau pole. If one can still continue the theory with
non-perturbative approach beyond A.,; then we have no such issues.

The global symmetry underlying Standard Model(SM) of particles helped us dis-
cover many particles in the previous century (see for example [19], for historical
introduction). By gauging the global symmetries we demand the Lagrangian to be
invariant under local diffeomorphism, which leads to Gauge Theory. The SM is a
gauge theory with gauge group Gsy = SU(3)e X SU(2)w X U(1)y, where the sub-
scripts indicate the respective charges- color, weak isospin and weak hypercharge.
The Higgs field which is usually represented by a complex (doublet) scalar field,
through electro-weak symmetry breaking SU(2)y X U(1l)y — U(1)gy gains mass
but also gives mass to weak W and Z bosons. The vacuum solution breaks the sym-
metry but the symmetry of the Lagrangian is still maintained. The Higgs particle
is the excitation around the vacuum expectation value. The mass term of Higgs is
valid under gauge symmetry but fermions cannot have bare mass terms because,
such terms will violate gauge symmetry 6. So, SSB is the only standard mechanism
we have at our disposal to give masses to elementary particles while preserving the
gauge symmetry. Fermions, on the other hand, through Yukawa couplings to Higgs,
also get their mass in SM.

SSB was triggered for m? < 0 implying a imaginary mass. This already hinders
our need for fundamental understanding. On the other hand, apart from the classical
potential, there are also quantum corrections in QFT for the scalar field. We saw
these corrections for mass and quartic coupling at 1-loop level in the previous section.
It was shown in [20] that we could have SSB even with m = 0 through radiative
corrections. One also has to remember that the Higgs vacuum expectation value is
gauge dependent, that is it can be zero or non-zero depending on the choice of gauge

6Tt mixes the left and right handed particles. In SM left and right handed particles have different
gauge quantum numbers and interact differently
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[21, 22]. In simple words, the Higgs need not be simple doublet field whose vacuum
expectation value is within our reach in the particle physics experiments. It could
have been a much higher dimensional field depending on the choice of gauge and its
representation with gauge dependent vacuum.

In our calculations of radiative corrections, we have noted that problems with
diverging integrals appear. For example, in calculations to compute corrections to
Higgs mass using cutoff regularization (2.6), the loop integration over all possible
momenta of virtual particle was cutoff with limit A.,;. This limit could be proxy for
some unknown energy scale for example the scale of Grand Unified Theory Aqyr,
Planck scale Ap etc. The corrections scale with the cutoff, and for A.,; ~ Ap, there
is an unnatural separation between Higgs mass and Ap. From definitions of exact
propagator,

m = Mmp — Mcorrection Where, Meorrection = [Z - 6m} (228)

Due to quadratic divergence, the quantum corrections Mmeorrections t0 Higgs mass
is greater than Higgs mass itself. For example’, the top quark, with mass m; ~
172GeV > m ~ 125GeV (m is just the Higgs mass) leads to a very large correction.
The separation between high energy cutoff scale and electro-weak scale is the Hier-
archy Problem. This can be compared to problems encountered with CC in (1.15).
There appears to be a significant dependence on the new physics scale which is en-
dowed by the mass of the particle in the loop. This implies we have an unnatural,
fine tuning in the initial conditions to have a small value of observed Higgs mass.

Interestingly, one can also think of this problem being only manifested in cutoff
regularization. This suspicion is valid because the results of quadratic divergence
upon applying cutoff regularization, disappears in dimensional regularization (2.10).
The problem in cutoff regularization appears when we believe a fundamental theory
at high energy scales exist (UV-complete theory) and embed Higgs as a low energy
effective theory. However, any scheme will introduce a new parameter which will
eventually lead to logarithmic divergences at 1-loop level.

There are various proposals which could be possible solutions to the problems
mentioned above. It has to be noted that this Hierarchy problem is generic to
any scalar field, hence the dark energy models which use scalar fields to mimic the
dynamics of a cosmological constant (for example, Quintessence) are not addressed
to solve the Hierarchy problem but rather to explain the observed acceleration of the
Universe alone. However in a broader perspective, one can attempt to address both
issues using new models which will be discussed in the further sections. Theories
like Supersymmetry try to address this problem by posing a bigger symmetry where
the scalar field mass is protected similar to the chiral symmetry which protects
fermion mass [23]. There are also proposals of Technicolor[24], Relaxation [25],
extra dimensions and Composite Higgs [26].

"The loop could be simply by a top quark in which case, the mass of top quark determines the
Higgs mass; but it is actually the Higgs which gives the mass to top quark through Yukawa
coupling.
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Since A ~ m?/v?, it is relatively hard to obtain precise values of \ in comparison
to m and we need to aim for very precise value of the latter in order to get good
estimates for A. The major dependence is on the top quark mass. However, the
potential is assumed to be stable as long as scale u dependent A(u) is positive. This
is necessary to make distinction between ‘true’ vacuum and ‘false’ vacuum. If the
vacuum we have found is not ‘true’ and there exists much deeper minima, then there
could be tunneling towards that minima to the deeper minima. This implies decay
of electro-weak vacuum and this, apparently has cosmological consequences [27, 28].
Precision calculations of A indicate that the data favours metastable potential [29,
30]. For overview of the problem and its consequence see [31] and references therein.
We can of course introduce new physics in the intermediate scales (~ O(101)GeV -
this is approximately the scale at which the potential becomes unstable) and hence
could possibly make potential stable [28].
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3 Vacuum Energy

After looking at the quantum corrections to bare couplings of Higgs through loop
diagrams, we shall do a similar exercise to extend our notion of CC problem. Vac-
uum energy in flat spacetime is not of any concern in particle physics experiments
because the observable quantities are dependent on differences in energy and not the
absolute energy itself. Hence our precise calculations of particle physics which are
in flat spacetime, are not affected by the presence of vacuum energy. However, GR
encapsulates the complete energy density present in the (local) spacetime. The first
section of this chapter deals with vacuum enerqy in flat spacetime which supplements
our discussions on curved spacetime in the following section. Our objective will be
to represent energy density in terms of propagators. We make use of [32] along with
[1] which gives an extensive review on the topic. For the second section we also refer
to standard texts and papers like [33, 34, 35, 36, 37, 38].

3.1 Zero Point Energy: Flat Spacetime

Along with the classical contribution, CC receives contribution from quantum zero
point fluctuations. The latter will still remain even if we could somehow vanish the
classical contributions of the last section. Thus the second terms on the r.h.s in
(1.14) and (1.15) involves the quantum contributions. Hence it becomes important
to discuss Zero Point Energy (ZPE), the quantum ground state of energy momentum
tensor. We shall do this first, for a free theory and then for interactions in the next
section. Our approach in this section will be semi-classical, which means we shall
not discuss quantizing the gravity part of the Einstein equation and rather focus on
ZPE.

3.1.1 ZPE: Free Theory

For free theory, A = 0 in our potential of the scalar field (1.10). Now with this
potential V(¢) = m?¢*/2 we can derive the field equations by taking the variations
of (1.6) w.r.t ¢. We arrive at the Klein-Gordon equation

Vi —m?¢ = 0. (3.1)

This is similar to differential equation for a simple (linear) harmonic oscillator.
Note that V? = V,V” = ¢, V*V”, with metric signature (—, +,+,+) and on flat

22



spacetime ¢ — n and V = 0. To solve the above equation, we go to the Fourier
space where, (the bold letters indicate 3-vectors)

d4k ik-x yt 2 2
otxt) = [ e ok and G-+ (& +mo ~0 (3.2)
Promoting the scalar fields as operators, it can be expressed in terms of annihi-
lation and creation operators ay, aL which are quantum operators and follow the
commutation rules [13]

d3k 1 —1 ik.x iBt—ik.x
¢(X, t) = /\(271')3/2@ ((Ik@ Ettik. + aL@ EBt=ik. ) ; {ak, CZL,} = (53(]€ — k/)
(3.3)

The Lorentz invariant normalization factor v/2E (with factor of 2 for convenience)
has been used like in'[13] but the only difference is that we have (27)3/? instead
of its square. The time component of the 4-momentum k* = (FE, k), represents
the frequency or energy of the harmonic oscillator (|k| = k is the magnitude of
3-momentum vector)

wk)=FE = Vk?+m? (3.4)

The fields are quantized which is evident from commutation relation of ladder op-
erators as this is equivalent to canonical commutation relation [¢(¢,x), 7(t,x’)] =
i03(x — x’)) where 7(t,x’) is the conjugate field operator. With the above quantum
definition of the field ¢(x,t), we now turn to calculate vacuum state of the energy
momentum tensor. In general, with four velocities u, normalized as g, u*u" =
u,u” = —1, the energy momentum is given by,

<T/“’> = <puuuu + (gm/ + u,u“u)p)- (35)

From this expression we can extract mean energy density (p) and pressure (p) by
projecting energy momentum tensor along ufu” and (¢g"” + utu") respectively. We
have computed the energy momentum tensor for a scalar field in (1.7),

~ J{Too) = (0]
<TW>—{<TU> _ 0 (3.6)

30° = 3170,00;6 — m*¢?| |0) .

30° + 517019036 + ;mﬂ 0)

[ ittt - m2(e) = [ G (o - VBT + (AE+ Ve m) ) o)

(for positive energy the second term vanishes)
B k1
) (2n)3/22E

is a Lorentz invariant integral.
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We point out that for slowly varying fields (negligible kinetic energy), the scalar field
energy density behaves like that of a cosmological constant with (Ty) = —(T};).
With (3.3), we can calculate mean values of each of the quantities in the above
expression

Bk 1 Bk k? /d3k 1
(27)3 2E(k)

@) = [ Gamm B 0000 = [ o () =

In the inertial reference frame of the observer, four velocities are given by u* =
(1,0) such that energy momentum tensor is diagonal. With above integral quantities
plugged into (3.6) we can have mean energy and pressure density in this frame as

1 1 3 G

s / PV (3.7)
Lo o _ 1 ﬁ K _1 d’k K

(p) = §<[9 + uu'T,,]) = 6 / (27 E(k) 6 / (27)3 VE2 + m2

In out preferred frame, there are no off-diagonal terms. The EoS is not similar
to that of CC (w?, = —1). In fact, the average quantities are expressed in terms
of integrals whose solution might result in expected EoS of —1. But, both of the
integrals are indefinite and diverge for large momentum. Usually such integrals are
ignored in the absence of gravity because relative energies are observable and not
absolute energy. For instance, starting with the Lagrangian of the scalar field

)=o) = 5 [ 5B -

(3.8)

1. 1 1
[ ———24 = 2 1 2,2

and its canonical momentum 7(z) = 2 = ¢, we can construct the Hamiltonian

0¢
H = [ d*x[r(x)$ — L]. That is,

. 3
1= [ #xl-38 = 5 (vor + gmier) = | (%3

A3k 1
= / WEI{ (aLak + B [ak,au) .

Here we have denoted energy associated with particular state as Fyx. From com-
mutation relations of annihilation and creation operators in (3.3), the second term
which is usually associated with energy of the scalar particle in its ground state
yields §(0) which diverges to infinity. We can reformulate it using the relation
6(0) = V/(27)3 where V is the space volume which runs to infinity, we can write
energy density as,

p= / (;lﬂ];g“;k (3.10)

which is simply the replica of (3.7). The ground state energy given by wy /2 appears
in all quantized oscillators. Sum of all the ground state energies of these oscilla-
tors constitutes Zero Point Energy (ZPE) (h/2) >y wk. For historical facts on ZPE

(3.9)
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refer to [1, 2]. Since the sum is over all possible k it gives infinities. While doing
standard quantum mechanics or QFT, we escape these quantities by claiming that
only relative energies are measurable not the absolute quantities. Whereas, in the
gravitational context we place all these energy densities to the r.h.s of the Einstein
Equations. Since all forms of energy contributes for curvature of the spacetime, say,
the Universe with only ZPE will not yield flat Minkowski spacetime as a solution.
This implies that space time is unavoidably curved! We will leave the consequences
of treating this problem in curved spacetime in the subsequent sections and now
focus on making sense of the divergent integrals.

As we saw in the previous chapter, we employed some renormalization schemes to
make sense out of divergent integrals. One of them is through cut-off regulator which
introduces a high energy scale as a cut off such that we have a well defined effective
theory for scales lower than it. This made sense in our previous chapter because we
need not have the information of Higgs physics to make soaps and plastics. Because
while dealing with the energy scales of chemistry, involving atomic or molecular
interactions, the Higgs influence is simply not relevant. But vacuum energy is not
soap! - it involves contribution from all the particles. Even Planck’s scale as cutoff
will not solve problem as CC problem remains at all scales. Our expression for Ap
in (1.15) has become worse than the previous chapter with ZPE contribution

Ap=Ap+ Sy /dSk\/k2 + m2. (3.11)
2(2m)3

As discussed earlier, imposing 3-momentum cut-off will break Lorentz symmetry.

The regularization schemes should maintain the symmetry of the original theory (in

SM the gauge symmetries has to preserved). So we use dimensional regularization

instead. We start with redefining all the quantities in d — 1 dimensions. Then the

field in (3.3) would be,

d4VE 1 —iBt+ikx | 1 _iBt—ikx
P(x,t) = NS (ake + aqge ) . (3.12)

In d — 1 dimensions, the energy and pressure density integrals are

s [ dT L prm? D(—d)2)
(p) = 2/ (27T>d—1E ©2(4m)d-1T(=1/2)

G Ak K pemd T(—d)2)
P = 5a-0) / ()t E(k) — 4(am)*t T(1/2) |

In the first equality, the integrals look like Euclidean integrals in d — 1 dimensions
carried out for loop integrals in the previous section. We have introduced a new
energy scale p for dimensional justification and € = 4 — d in the second equality and
have followed the same procedure which are explicitly done in the Appendix(C.4).
As we expected, the regularized integrals of energy and pressure densities gives the
correct EoS (since I'(—1/2) = —21'(1/2)),

wA:@:—l.

(p)

(3.13)
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Finally we find the approximate behaviour around the isolated poles of Gamma
function by expanding around € = 0

1 (1) 2 3 471',[1,2 (1) m4
— A\ AN, - 1 h = .14
=380 e = 2= 5 - (0] where, 0 = 2 (3.14)

is the one loop beta function. For M S renormalization, we can choose the counter
4

term to be (0p) = iz (7}3 —2+1In 47T). Now the physical (renormalized up to

1-loop) vacuum energy density is given by,

4 2
(1) _ 3
= Pha + g (7 - 2). 3.15)

This equation can be compared with (3.11). From (3.13), the average energy mo-
mentum is given by,

(1) =~ + - =17 [

The above integral in QFT is known under the name of Feynman propagator
Dp which is evaluated at the same point. Feynman propagator in (3.16) itself is
represented by a line segment indicating propagation of a scalar field from point x;
to x9. But in our case of zero point energy, the integral is evaluated at the same
point, x1 = x5. It is represented by a vacuum to vacuum diagram also called as
bubble diagram as shown below.

[ d*k exp{ik,(zf — 25)}
Di(ry — 22) = i / G - (3a6)
. [ dR 1
in our case, Dp(1; — x5) = Z/WM = Q (3.17)

We can solve time integral of (3.17) to realize (T') = m?Dp and hence, (p) =
—m?Dp/4. Now, we rewrite the effective cosmological constant and restate the CC
problem from (3.11) as,

2

In our calculations so far, there are at least three assumptions which will have a
significant effect on estimation of ZPE. The same non zero vacuum energy density
appears in Quantum mechanics as the ground state energy. But it is simply neglected
due to the fact that in laboratories we only measure relative energies and not absolute
energy. In general theory of gravity, all forms of energy gravitate. ZPE cannot be
neglected if we switch on the gravitational interactions. The above formalism is
also not a good estimate of actual vacuum energy density because it is non zero
for massive particle which contradicts our conclusion. Photons for example are safe
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because they are not massive and interaction terms would not contribute to energy
density. To have a democratic treatment it is better to express in terms of (high
energy) cutoff scale rather than mass of the particle, in which case, the orders of
magnitude might change. Also, the above expression is only first order estimation
of ZPE. If we go beyond free theory and include interactions we get corrections to
our leading order estimation.

3.1.2 ZPE: With Interactions

Lets quickly calculate ZPE with corrections from interactions and proceed with
ZPE in curved spacetime in the next section. We again make use of [13, 32].
Feynman propagator introduced in the previous section is actually a part of a
much useful quantities called correlation function. Feynman propagator are called
as two point correlation function or two point Green’s function and expressed as
Drp = (QT¢(x1)p(x2) |2). This simply means, it is amplitude for propgation of
a particle (excitation of a field) between xs and x; and by definition, it is only a
function of the difference x5 —x1. (€] denotes ground state in full interaction theory.
It is standard to use (0] to denote ground state of free theory which is different from
(Q]. T is time ordering symbol. One can of course think of three point or n point
correlation function. In fact, the Feynman propagator for vacuum to vacuum bubble
is actually one point correlation function.

So we consider the full potential in (1.10) with A # 0. Then we expect all sorts
of loop diagrams contributing to the free theory correlation function. They can
be divided into connected and disconnected diagrams. The simplest disconnected
diagram at two loop is given below in which the two loops intersect at a vertex given
by (i) [ d*xz. This is still a vacuum to vacuum diagram and hence adds to ZPE.
The corresponding energy density is given by,

A 4
')

3A 22_>\ 9
:ﬂ<¢> _gDF(O)v 8

where, factor 3 accounts for possible combinations. Along with free theory ZPE
contribution given in (3.18), we have the above term appearing in interaction theory.
Hence the total vacuum energy density is given by,

2
() = =" Dr(0) + 3 D30) (3.19)

As said earlier, vacuum bubbles are not relevant for calculating physical quanti-
ties like cross section etc. Only connected diagrams given by correlation function
(Q Top(x1)p(xg) |2) are relevant. All the disconnected diagrams gets canceled upon
using an identity which suggests exponentiation of all disconnected diagrams (it is
explained and proved in Chapter 4 of [13]). For example, two loop disconnected
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diagram is as shown below

p{8+}

Hence, (Q T'¢(x1)d(x2) |€2)is just sum of all connected diagrams. Also, because of
causality conditions, the commutator [¢(x1)@(z2)] is a well defined quantity rather
than simply ¢(x1)@(z2). We still need to renormalize mass which is similar to our
calculation for Higgs mass in the previous section (see (2.10)). Up to two loops, the
two point connected correlation function is given below.

(Q T[¢(x1)p(22)] [2) =

+; O +i@@+i +é% (3.20)

A detailed derivation of the same but using functional methods is given in Part
III. At one loop, we can use the integral in (2.10) and write the relation between
renormalized mass Myenorm, bare mass m and the loop integral which simply reduces
to —A\Dp/2 at leading order of the coupling A, as, (similar to (2.28))

A

ml?enorm = TTL2 - §DF(O)

We can use this expression to express (3.19) in terms of renormalized mass as

m2

(p) = == Dr(0). (3.21)

Before going further, we remind ourselves that, all these calculations are in flat
spacetime. The dependence of ¢ is only in the loop diagrams of the perturbation
theory. Otherwise, ZPE is only depending on the couplings. To summarize, we can
define a effective potential,

V() = Vegas + BV + R Vo + ..,

which reduces to classical contribution derived in (1.13) if A = 0. For i # 0 the
quantum contributions are switched on and at every loop order the potential gets
h contribution. At every loop order, again we have disconnected bubble diagram
contribution with no external legs V},’s where 7 is a natural number indicating the
loop order. Along with this pat, every loop order also has loop diagrams with
external ¢ legs (as shown in the diagrams above) and hence this is field dependent.
That is, if we set ¢ = 0, then the external legs vanish. Here, the couplings (like
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mass) has to be renormalized. These contributions from connected diagrams are
denoted by V{’s

Vi(d) = Vias + B(VE + VE(0)) + R2(VE + VE(9)) + ...
P = pB — pl + MV + V() + B2V + VE(9)) + ... (3.22)
1077GeV? = p3* — 108GeV* + R(VE + VA(@)) + BA(VE + VE(d)) + ... .

In the second line we associate energy densities to average values of these potentials
and redefine fine tuning problem. Evidently this expression is complicated compared
to our classical estimation in (1.15). The bare vacuum energy density (like the bare
mass term appearing in Lagrangian) has to be tuned very precisely from all the
classical and quantum contributions at all loops to obtain a very small, yet non-
zero CC. This problem is a very annoying for any physics student. Supersymmetry
among others is one way to get rid of loop corrections. We expect special symmetries
to be present in nature to cancel out all the loop order corrections. But since such
special symmetries are broken at very high energies itself, one would however end
up with classical contribution to fine tuning. Another interesting model is to have
dynamical symmetry breaking where we introduce another variable say, ® such that
mass term in ¢* theory (1.10) is now m(®). Now, symmetry breaking could have
happened for any value of ®, but accidentally, the phase transition happened at the
particular value observed today. But we are still far from having a fundamental
theory which can explain the fine tuning of vacuum energy. Nevertheless, studying
ZPE in curved spacetime is very necessary at least for the following reason. If at
all there is vacuum energy A # 0 then, it should gravitate then, a trivial Minkowski
metric is not a solution for Einstein equation in vacuum. This poses a question on all
our calculations on flat spacetime and motivates to study ZPE in curved spacetime.

3.2 ZPE: Curved Spacetime

In this section we shall briefly discuss ZPE in curved spacetime in a semi-classical ap-
proach without dwelling into the rigorous calculations®. This is important because,
the non zero ZPE density should result in some curvature of spacetime which is a
non-trivial solution of Einstein equation. Hence, the trivial Minkowski metric can-
not be a solution of Einstein equations in vacuum. On the flat background we could
use standard techniques to subtract the divergent parts of the diverging integrals
and hence obtain a renormalized ZPE. Here in renormalization of ZPE in curved
spacetime the counter terms are external gravitational field dependent. We can try
to visualize it through Feynman diagrams where, like flat spacetime, we have matter
external legs attached to matter loops (see (3.20)). But now, we also have graviton
legs attached to the matter loops (see (3.23)). In principle one also has loops of

2We would like to reproduce results of [1], for which we follow [33] but also refer to standard texts
like [34, 35], or the modern book [36] and notes [38, 37].
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gravitons themselves, but then we come across the problems of renormalization of
gravity.

Suppose we start with EH action then one can consider the perturbations h,,
around Minkowski metric 7, as the graviton field. Then, we can write propagators
for this field similar to scalar fields. The interaction diagrams will introduce terms
which are quadrtic or higher orders in h,,. One has to introduce counter terms in
our original classical EH action. EH action is surprisingly very simple but still ele-
gant even though there is no reason for its simplicity. One can include complicated
higher derivative terms to the Lagrangian. It was shown in [39] that, pure gravity is
renormalizable at one loop level because in from Einstein equations R, Rz, are zero.
This also implies higher orders like R?, R,,, R*” appearing in the loop orders are also
zero®. But in reality we do have matter, in which case it is not renormalizable. For
example, consider one loop matter correction and start with EH action which only
includes Ricci scalar R. For divergent one loop vacuum polarization diagrams as
shown below, we can use dimensional regularization and counter term renormaliza-
tion to obtain finite results in 4 dimensions. In QED the counter term for vacuum
polarization is of type %FMF " where Z3 is the wavefunction renormalization pa-
rameter. For gravity, we do not have such terms in the original EH Lagrangian. But
if one thinks of adding Higher Derivative (HD) terms like R, R, R? one would
have add more terms to counter the divergence caused by these terms. Hence we
say gravity is perturbatively not renormalizable. The non-renormaliziblity has to
do with high energy or short distance behaviour of the theory and does not lead to
any new predictions; in fact, quantum effects of gravity does not play any significant
role in late time Universe.

Qv ap

We concern ourselves with effects of spacetime curvature in our calculation of ZPE
for which we will follow semi-classical approach where the background classical grav-
itational field interacts with quantum matter fields (hence, we need not alter the
classical potential contribution to ZPE calculated in (1.13)). For such a theory, we
have an action as shown below*. This is different from the action for a scalar field in
flat spacetime with two additional features. The first evident difference is, the non-
minimal coupling of the scalar field and Ricci Curvature, with £ being dimensionless
coupling. In the absence of this coupling, we have problems of renormalization of
counter terms®. The second difference is the integral measure [ d*z./—g which is

3This is true in four dimensions as we have Chern-Gauss-Bonnet Theorem [40]. We discuss the
details later.

for a scalar field ¢, 9,¢ = V6.

5See importantace of this conformal coupling in the context of Inflation [41, 42], and actual
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the volume element of generic d—dimensional curved spacetime with line element
ds? = g™ (x)dz"dz” and g = det(g"). From analogy with bubble diagrams in inter-
action theory, the integral measure corresponds to a vertex (see Feynman rules in
[13]). In curved spacetime we can think of diagrams as shown below with external
legs of graviton represented by a wiggly line.

Siovawl = [ @aev=g 509,090 - 3R -vie)] s O @
(O—-m?—¢R)p = 0. (3.24)

The Klein-Gordon equation for scalar field in curved space time in (3.24) is derived
by differentiating the action (3.23) w.r.t scalar field. The solution solving this wave
equation can be expanded in terms of annihilation and creation operators as we did
in (3.3). Following [34], it is given by,

d(z) =) (Akfk(x) + A;r(fli(x)) ;

k

where, AL, Ak are creation and annihilation operators and, fx, fi being mode func-
tions and its conjugate. The solutions are not unique and hence the vacuum in
curved spacetime in not uniquely determined. For example, there are ambiguities
in defining a solution of a kind f ~ e %!*k* pear singularities because, the time-
like geodesics are incomplete (see Appendix(F.1)). Nevertheless, we can have these
solution indexed in such a way that it includes an index which specifies the Cauchy
surface for which they forms a complete orthonormal set [34].

Particle creation and annihilation in curved spacetime is also not trivial because
we have creation and annihilation induced by gravitational field. Similarly the two
point function which we can derive directly from (3.24) is not only having self inter-
actions but also interacts with the gravitational field. It is given by, Feynman prop-
agator in d—dimensional curved background Dp(xy,z2) = —i (0| To(x1)d(z2) |() 0),
where we define |0) such that, Ay |0) = 0 then it obeys,

(D — m2 - SR(ZL‘l))DF(ZL‘hl'Q) = —§d(m1,m2), (325)

where, 0%(x1, 22) = |g(z1)|"*6(x, — 2) is the d—dimensional Dirac delta function
(see Appendix(F.2)), O = V,V* and the minus sign is for sign convention. We
are interested in short distance aspects of these two point functions, because this
would give us a good description of ZPE contribution to vacuum energy density of
QFT (which we calculated in previous section but) in a realistic curved spacetime
background. We know from our experience on flat spacetime that, we will encounter
divergent integrals once we start calculating expectation value of field and energy
momentum tensor associated with it. Previously, standard renormalization tools like
cut-off and dimensional regularization were used. We can make use of physically
more meaningful Adiabatic Regularization which is well suited for our present context

derivation of its value from equivalence principle [43]
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and also used extensively in literature [44]. In previous section, we had full (bare)
energy momentum tensor which we renormalized order by order. We also noted that
ZPE in flat spacetime is physically irrelevant. Here, we could have started with an
assumption that metric has very slow dependence of time, then as a consequence,
creation and annihilation operators operations correspond to physical particles and
the vacuum state is also time independent. This is the idea of adiabatic limit, and
the order of adiabatic expansion hence implies the order of time derivative of metric
(for example in Friedmann - Lemaitre - Robertson - Walker metric it is the number of
time derivatives of the scale factor). There is also an assumption of certain symmetry
like homogeneity of spacetime in order to have physical meaning for quantized fields.
The adiabatic expansion is similar WKB approximation through which we obtain
finite expectation values of energy momentum tensor[44]. Same results are obtained
if one uses other techniques [45]. Since we can express the vacuum energy density
using propagators, instead of introducing new regularization method, let us rather
try to express the propagator in curved spacetime and try to isolate the divergences.
Here, we want to expand the metric up to 4th order in adiabatic expansion, that
is, expansion of a generic metric tensor in the neighbourhood a point where we can
approximate the spacetime to flat. We make use of Riemann Normal Coordinates
from Appendix(F.3) which reduces our computation efforts in writing down the
Taylor expansion of metric tensor near the origin. Consider expansion of a function
W around the origin point ), with Reimann coordinates y*, we have at any point
x in the vicinity of @,

1
W(z) = W‘Q + (8uW)’Q Y+ B (aun)‘Q Yyt 4+

The definition of Riemann coordinates makes it easy to compute the coefficients
O, W.

We want to have such expansion series for our propagator in (3.25). Let us
take the operator (inverse propagator) H = ((J+ m? — {’R)’P at some point P with
coordinates x = z* in the near neighbourhood of origin @) with (primed) coordinates
2’ = 2’*. We include the expansion of d’Alembert operator 0 = V'V, = ¢**V,V,)
in Riemann coordinates and keep only first order in curvature, that is, we keep —(R
term as it is. Then we have,

2

3
2 1

H =nu, 0,0, — 3 Rj y° aa+§ RLS Y™y 0,0, —m* + &R+ ...

| R
R 0 yP 0y + 3 R o y*y® 0,0, + ...

D‘sz = M Q a'uay

(3.26)

Notice that all the coefficients are curvatures evaluated at (), from here on we
shall not indicate in explicitly. Before proceeding further, lets define covariantized
propagator as,

G(z1,32) = |g(z1)| /2Dy (21, 25).
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The solution for G from equation (3.25) is obtained as usual by expressing it as a
Fourier expansion. We generalize to d-dimensional Euclidean space (to avoid +ie in
denominators), and with the inner product is given by, k - x = n*"k,x,,

Gly) = / gﬁljdeik'IG(k).

An iterative procedure is used in [33], G(k) = Go(k) + G1(k) + Go(k) + ..., where
the each term had geometrical coefficient and the subscripts indicated the number
of derivatives of the metric it has. Go(k) = (k*+m?)~! because, we have (9,0, —
m?)e® = —(k? + m?)e™™ and for next term G;(k) the derivatives vanish at origin.
However, curvature terms appear in coefficients of Gy(k). From (3.26),

dk , 1 dk | 6P 2k kP
—R“ Baa iky — R“ / iky a . «a )
g / emd? R T 2nd” R em2 R+ om?

After a similar step for the next term, we have, local expansion for the propagator
in curved spacetime,

'k, 1 1 (1-39)R 2 R*k,k,
= e = - = .. (3.2
G(y)’P / (Qﬂ)de [kQ +m?2 + 3 (k2 + m2)2 3 (k2 4 m2)3 + (3 7)

One can see that, in this expression can be continued to have higher orders in curva-
ture which will be compensated by higher negative powers of (k*-+m?) in the denomi-
nator. Such infinite terms would correspond to infinite number of Feynman diagrams
for every Feynman diagram of flat spacetime. Surprisingly from power counting, all
these diagrams have lesser superficial degree of divergence than the diagrams of flat
spacetime. The generic expansion up to adiabatic forth order in coefficients is given
in Appendix(F.3). There, we also write the propagator in DeWitt-Schwinger (DS)
representation and list the coefficients in coincidence limit. These are the standard
results listed from [34] (also see [35]) and for detailed derivation one can refer the
original papers and books[33, 44] and [38]. The divergence is clearly due to terms
expressing gravitational field rather than dynamics of scalar field. Renormalization
involves steps similar to our previous sections, where we add a counter term and try
to absorb the infinities by redefining the bare coupling coefficients.

One thing we are sure from the above illustration is that, renormalizability of
scalar field in curved spacetime demands classical action to have higher derivative
(HD) terms. Even though we are discussing the scalar field in curved spacetime the
divergent quantities are all geometrical. As possible counter terms in the action, we
can consider three possible scalars a) Kretschmann scalar R,,a5R"*? b) R, R* c)
R?. Their combination would be a general Lagrangian containing HD terms. The
theorem which relates all three of these scalars is given by Chern-Gauss-Bonnet
Theorem which implies

(RuvapR™* — 4R, R™ + R*) =T,
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where T is a topological invariant quantity [39]. We make use of this expression
to express Kretschmann scalar in terms of other two scalars, hence it would not
appear in our Lagrangian. Then the full Lagrangian (HD terms and Ricci Scalar) for
gravitational sector is like Lypy gy = 7 R R*™ +v8 R*+~F R where, without being
rigorous, we have absorbed signs and constant coefficients into v2’s; superscript B
indicating that these are bare couplings. This is a Lagrangian of what is known as
Quadratic Gravity. Since Weyl tensor is just the Riemann tensor with all the traces
removed, one can express the obtained full gravitational Lagrangian in terms of Weyl
tensor C\aps (B.5), but we shall restrain being rigorous at this stage® and make use
of standard results of [1] and references therein. By our qualitative arguments and
renaming the bare coefficients as a?’s, we can write the following full gravitational
action (with HD, Ricci scalar). We also add bare cosmological constant Ap such
that it quantifies the vacuum energy density in semiclassical Einstein equations, that

is, it contributes to expectation value, (T},)? = p¥g,,. Now the anticipated action
looks like,

SEH+SHD:—/d433V <16 GB _PE>

+ /d4:c\/—g (alBCQ + afRQ) :
(3.28)

One can find equations of motion as shown below (3.29). The bare constants are
af ol and bare CC, Ap is associated with vacuum energy density (7},)%. The

tensors H ;Sl) and H ,(fy) are quadratic in Riemann Tensor which are listed below [37]

v

(also see [46]).

G +oq H( ) + afHﬁ) = —81GR(T,,)" (3.29)
1 6
HY = — V—gR®
Hy A /_g 59/“’ [ g :|
1
= 2V,VuR =20, V,V'R - 5 9uwR® +2RR,,, (3.30)
and
1 6
(2) = - — Oéﬁ J— o
HY) = =5 [V=9RapR*| = 2V, V, RS = V, V" Ry,
1 1
59N,V R = gWRaﬁRaﬁ +2RR,,. (3.31)

As we saw earlier, there are divergent quantities appearing in (7},,)”. Now that we
have added counter terms, all the divergences can be absorbed by redefining the bare

61n fact, particularly in 4 dimensions, we will also have a total derivative term and a Gauss-Bonnet
term which can be omitted safely as they are surface terms and negligible.
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couplings GB,a® af into effective 1-loop couplings Gy, " (T,,)® or (p{l))
at 1-loop level as given below (from [1]). In spite being renormalized quantities,
these cannot be immediately associated with measured values (for example Gy from
Cavendish experiments) simply because these are results for 1-loop effective theory.
At 2-loop level for example, we will have to again redefine the now obtained 1-loop
finite parameters and treat them as if they were bare couplings.

(1) 1 1 m2 )
Oél = o0 (,U,) — Wﬁ ln F + ﬁnlte const (332)

1 1 2 2
ozél) = ao(p) — W <6 — f) (ln 7:/2 + finite const) (3.33)

1 1 m? /1 m?
— = -~ — In —- + finit t 3.34
167G 167G () | 2(4m)? <6 €> <n pp e cons ) (334
41 2

PV = prac(p) + 47(271')2 (ln 7/72 + finite Const> : (3.35)

Here we could also add A to the second term in the r.h.s of the above equations
(as we did in (3.22)) to symbolize that it is 1-loop order. Regularization has in-
troduced scale () dependence and p,q. is energy scale dependent vacuum energy
density. Upon removing the finite terms through some renormalization scheme we
have corresponding running of these quantities which can be expressed using beta
functions (at 1-loop),

day (@) 1 do () 1

1 2
dp 120(4m)2’ o= =y, ~ 2(4m)2 (6_€>  (3:36)

o4 1 m? ol _ dpuac(p) _m?
e = M@ 167G () (47)2 (6 _5)  Pa=w dp  2(4m)?’ (3.37)

fi = p

The beta function indicating the quantum corrections for vacuum energy density
has dependence on mass in quartic order. This implies the quantum corrections is
quickly growing with particle mass. This result of curved spacetime is no different
from that of flat spacetime” and the problem still remains. One can reach out to
supersymmetry, and supergravity in vain as they are not solving CC problem either
[47]. Theories of quantum gravity particularly in the lines of string theory also
cannot solve CC problem as it relies on supersymmetry to manifest itself in real
world.

Though we have been able to do some calculations, the procedure followed here
actually fails to describe the very dynamic nature of the ZPE. Neither the beta
function (3.37) nor (3.35) is not giving us the real value of vacuum energy density.
We still need some initial input to select one of many flows. Also, as argued in [1], the
propagator expansion in curved spacetime, for example in (3.27) tells us that we have
at the first order a propagator in Minkowski metric. Since ZPE does not exist in flat

"We can compare with (3.15) and (3.14).
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spacetime, our expansion of metric (in (F.3)) would miss the dynamical correction to
vacuum energy density. The vacuum energy does not exist on background on which
we are perturbatively expanding. This is seen in the first term of the propagator
in curved spacetime background which corresponds to a vacuum to vacuum bubble
diagram of Minkowski metric that actually does not exist. The dynamics of vacuum
energy in curved spacetime is determined by bubble diagrams with legs. Thus the
aim of having beta function or the running of coupling w.r.t change in curvature is
not yet reached. In fact, we do not have a method to derive them without doing
metric perturbations. In the following chapter we shall start with Running Vacuum
Model which gives a phenomenological description of running of vacuum energy.
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Part 11

Extended Brans-Dicke Theories
and Screening Problems
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4 Motivations for BD-ACDM

The results from previous chapter showed that vacuum energy density in flat and
curved spacetime give the same result. This is because perturbative expansion per-
formed does not not make sense as it still includes in the first term, the irrelevant
flat spacetime diagram. Here we discuss an alternative phenomenological approach
to describe the running of vacuum energy density in the cosmological context. For
this we make use of [1]. For further details we also recommend [48, 49]. In the
second part, we discuss scalar tensor theory along with ghost instabilities. We have
made use of [50] extensively and cite other important references in the text. Building
on this we will make connections to BD-ACDM cosmology in the next chapter.

4.1 Running Vacuum Model

Here we shall give an overview of Running Vacuum Model and how it can lead us
to Brans-Dicke Theory. As evident from the previous chapter the running descrip-
tion will not provide us the value of vacuum energy density but rather describes
its flow in curved spacetime. Usually this flow is w.r.t some new parameter like
energy scale p introduced by a regularization procedure. We would like to look at
evolution of vacuum energy density in cosmological context hence we associate this
free parameter to the curvature of spacetime. In Friedmann —Lemaitre —Robertson
~Walker (FLRW) universe which adheres the cosmological principle of isotropic and
homogeneous universe, we have curvature given by,

. . 2
R:6la+(a> +’Z]
a a a

Here dots ™ represent the differentiation w.r.t coordinate time, a is the scale factor
and k is the spatial curvature parameter. Defining Hubble parameter H = ¢, we

can write the curvature as,
R=12H*+6H.
For further discussions we note that the FLRW metric for flat space x = 0 in

cartesian coordinates is ds? = —dt? + dz* + dy* + dz*. From the Einstein equations
we can obtain the Friedmann equations and pressure equations from which we have,
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3H? = 87Gp

, ) (4.1)
3H* +2H = —8nGp.
The general covariance also allows higher order terms like R? R, R" as men-
tioned before. This is gives the effective action with ladder of operators'. From
analogy to electromagnetism and also from scalar potential in (1.10) we can say
that requirement of covariance would imply having even powers in our action. Now
we have R ~ H? but also R ~ H. For the sake of maintaining covariance we can
demand the powers of H to be even, but powers of H can be any (for example, terms
like H2H would be valid in our effective action). However, order of H is counted as
3. We follow the notions of [1] (we recommend the same for detailed arguments on
odd and even powers), where all the terms like H*, H?, H*H are denoted simply by
H*. In the same spirit, we note the curvature in FLRW universe to be H?. Now we
want to associate the curvature to the scale parameter and investigate the flow of
vacuum energy density pye.(H) in the curved spacetime. We realize that the scale
parameter appears logarithmically in the beta functions hence we can take u = H.
This makes sense because in natural units both have same dimensions.
Given the problems with beta functions of vacuum energy, let us consider flow of
gravitational coupling. From (3.34) we have,

1 1 m? (1 H? Gy
GH) Gy Tam g TS e H) = 4.2
G(H) GN+ 2m <6+£> an — G(H) 1+ C, In(H?/H3)’ (4.2)

where Hy is the current Hubble constant and Gy = G(H,) is the current gravita-
tional coupling that we know as Newton’s constant. The constant C; = (1/27)(1/6—
&)m? /M3 includes all the constants. The varying G is related to the vacuum en-
ergy as we argued in the first chapter (see around (1.4)). The relation is from
Bianchi identities and assumption of conserved matter energy density p,,. In FLRW
universe the conservation equation is p,, = —3H(p;m + pm) and using this, the to-
tal energy momentum (along with Gravitational coupling G) conservation equation
VHG (T + 6" poac)] = 0 s,

d - )
%[G(pm + pvaa)] + 3GH(pm + pm) I(Pm + pmc)G +Gpr =0
dG dpvac T
= (pm+pvac)d7H+G dH H—O

Since H # 0, we can solve the expression inside the brackets. We now make use of
Friedmann equations and from (4.2) the solution to the above equation is,

3C
pvaa(H) = C10 + 3 !

™

M3H?.

'We describe effective theory in Part III, also see Appendix(D.1)
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Here, Cy is a constant and hence has no dependence on H. If we take variation w.r.t
In H?, we obtain the anticipated beta function for p,q.. To make sense of the above

equation we normalize it by taking the current value of vacuum energy density as
pgac = CO + 38%M123H027

e = Pae e MA(H? — ). (4.3
We expect Cj to have mass dimension 4. Appearance of Mp in the second term
is hence justified because now, M2H? has mass dimension 4 as well. The second
term can be seen as the first correction to the vacuum energy density. This part
corresponds to the mildly (~ H?) evolving vacuum energy whereas the first term is
a non-zero constant p? = # 0. Now the free parameter C; can be constrained from
observations. In principle, one could have a series expansion in the even powers
of H accompanied by a constant coefficient which has to be constrained through
phenomenological analysis. However, these are correction terms and are expected
to be negligible, at least at present time. One can consider inflationary scenarios
using higher order Ricci scalar, for example Starobinsky’s inflation [51] where terms
of order H* (and higher) are essential. Early universe models in running vacuum
scenario are investigated for example in [48, 49]. In the late universe, that is from
radiation domainant era till today, we need not take H* (or higher) into account.
In the very late universe we can also take p,, — 0 leaving the dominant p,,. in
Friedmann equation. In this limit, taking G, p,.. to be varying or constants, possible
models were considered in [1, 2]. We could also consider models including H in (4.3)
which can be seen as vacuum energy realized from Ricci scalar [5],

1.
e = oo+ S MRH? - JH) = e+ LM (R) = prac(R).

In radiation dominated era we have R/H? < 1 and thus the correction term to the
constant vacuum energy density is negligible. The Ricci scalar in terms of trace of
energy momentum tensor can be expressed as, R = 87Gxn(pm + 4pvac). Hence the
radiation dominated era is in accordance with standard cosmology and not altered
by running vacuum energy density. We choose a particular case where we do include
interactions between matter sector and vacuum energy and assume conservation of
matter but keep the time time dependent gravitational coupling G(H). This model
is called type II (R)RVM [5]. The acronym roughly stands for (Ricci) Running
Vacuum Model. This model resembles to the famous Brans-Dicke theory. We shall
discuss this connection in the next chapter.

4.2 Scalar-Tensor Theory
For a 4-dimensional metric theory, Lovelock’s theorem states that [52, 53|, Einstein

equations are the only possible equations of motion which are of second order in
derivatives. Of course, the equations of motion can include a cosmological constant
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without any problem. So these extensions of GR should violate the Lovelock’s
theorem.

One can think of higher dimensional gravity theories in the lines of Kaluza-Klein
Theory [54, 55], which is a 5-dimensional classical theory describing a geometrical
unification of gravitation and electromagnetism. It involves a 5-dimensional metric
with 15 independent components - 10 of which can be related to a 4-dimensional
metric. The remaining 5 independent components can be represented by an elec-
tromagnetic potential A, which is a 4-vector and a scalar field ¢. Large extra
dimensions are strictly constrained from particle physics experiments, however we
could have very small extra dimensions. The proposal is to have a loop along the 5th
dimension so that we have a compact space along the extra dimension. Theories like
String theory make use of this dimensional reduction in a complicated way. We can
roughly see that higher dimensional theories can be reduced to 4-dimensional effec-
tive theories which involve new degrees of freedom, like a scalar field. String theory
also motivates braneworld models? for dark energy where a lower dimensional brane
is embedded in a higher dimensional spacetime with very large (or infinite) extra
dimensions. A famous model is the DGP model [57] where a 3-brane is embedded in
5-dimensional Minkowski space with an infinite size extra dimension. 4-dimensional
gravity emerges in small distances and 5-dimensional gravity plays the role at large
distances. These theories have significant phenomenology as they can explain late
time acceleration. However, all these theories can be recast into to an effective
scalar-tensor theory.

Theories involving higher derivative terms in the Lagrangian for example, R2,
Gauss-Bonnet model, etc. or generally f(R) theories, also add a scalar degree of
freedom to the gravitational (metric) tensor field. So modification of Einstein’s GR
is equivalent to adding new degrees of freedom. Most of the modified gravity theories
at least effectively behaves as scalar tensor theories[50].

Horndeski Theory provides us a framework for the most general scalar-tensor the-
ory whose equations of motion are second order in derivatives. This is very important
because in general the Lagrangian can have second or higher order derivatives which
corresponds to higher derivatives in the equations of motion. This would lead to
ghost instabilities. Let us first describe these instabilities and the associated Ostra-
gradsky Theorem. To introduce these aspects we follow [50]. Consider a Lagrangian
which has a second order derivative of a scalar field ¢(t) which is only a function of
time,

variations w.r. L
woions wrag 0L yoie AV
o9 do

A # 0is a constant and V' (¢) is some potential for the field. We can make use of an
auxiliary field v to rewrite the Lagrangian as, L = —Ay¢p — g 2-V(¢p)+ A%(wgb).

L=58-v(©) (1.4)

2 Also see the books [11, 56] for a review on braneworld models and Scalar-Tensor Theory respec-
tively.
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If we set the auxiliary field as ¢ = ¢ then we recover the original Lagrangian in
(4.4). We can further redefine the fields as y = (¢ +¢)/v/2 and ¢ = (¢ — ) /2,
then we can write the Lagrangian as,

A a .
L= —§X2 + 5902 —V(e,x).

The Lagrangian now has two dynamical degrees of freedom with opposite signs on
the kinetic terms. The one with negative sign is indicating the ghost-like instabili-
ties3. However, we have to construct the kinetic matrix (which is just the collecting
the coefficients of the higher order kinetic terms in a matrix) and check if it is de-
generate (determinant is zero). If the matrix is degenerate then there is a possibility
to absorb higher derivatives by combining equations of motions. Hence the ghost
instabilities originate in theories with non-degenerate Lagrangian. The theorem is
known under the name of Ostragradsky ghost instabilities. If we consider a scalar
field ¢ which is invariant under shift symmetry, ¢ — ¢+ a, where the field is shifted
along a constant a, then we can add higher derivative terms which are all invariant
under such transformations. To be more precise, we consider transformations which
are analogous to Galilei transformations (¢ — & + v), where the field is not only
shifted by a constant but also has a linear term attached to it. That is, with a
constant vector b, (shift in gradient) and a coordinate vector z*, we have Galilean
shift symmetry,

6= d+a+bat, and 0,0 — 0ub+b,. (4.5)

Then we can have derivative couplings in the Lagrangian which is invariant under

shift symmetry up to a total derivative term 4.

L= f(¢, 0, (00),....)

However the Ostragradsky theorem puts restriction on terms which are allowed in the
Lagrangian. Even though we could have higher order equations of motion without
ghost instabilities in general, here we shall restrict ourselves to Lagrangians which
will yield equations of motion at the most up to second order. In flat spacetime, the
canonical kinetic term is given by X = —n*”0,¢0,¢. The most general Lagrangian
in four dimensions whose equations of motions finally reduce to second order in

3The energy of the ghost field is not bounded from below which leads to fundamental problems
of vacuum stability etc. We make use of ghosts in cosmological scenarios as dark energy
candidates (maybe under the name of 'phantom’) as it can have EoS w < —1. For examples of
such candidates see section(8.1) and the cited references.

4See [58] as well to relaize importance of this symmetry in theories which have derivative couplings.
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derivatives is given by,

5
i=1

Ly =c¢

1
Ly = —5(09)" = X (4.6)
L3 = —C3X|:|¢

Ly = e, X [0¢* — 0,0,00"0" ¢
Ly = —§X[m¢3 — 30¢0,0,00"0" ¢ + 20,0,00" 0 p0\" )]

Here, ¢;’s (1 = 1,2,3,4,5) are constants and O = 9*Y0,0, = 0"0,. L, simply
corresponds to the tadpole, which we shall ignore as we are interested in equations
of motion, but it is still valid to consider it in the Lagrangian®. To realize such a
theory in curved spacetime, we covariantize (4.6). Since there are second derivatives
in the action and covariant derivatives do not commute they rather represent the
spacetime curvature,
[vm V,]J(Ve) = VMV,,(VQ@ - V,,V#(Vo‘(b) = %W(VB@ #0,

we will have curvature terms in equations of motion for ¢. Since we have much
higher derivatives, we also get derivatives of curvature (Ricci) tensor, for example,
terms like V*(R,,...). Such terms might introduce ghosts. So we add curvature
dependent counter terms, by hand, in order to get rid of these terms [50, 59]. The
new covaraint action is called the Covariant Galileon or Horndeski action,

5
L2:G2(X7¢) :K(X7¢)

Ly = ~Gs(X, )00 (47)
Ly = Gax(X, 9)[(00)* = V. V,oV'V"] + G4(X, 9) R

o GSX (X> ¢) 3 2
Ly =-S5 im5 300w, vv9)

6
+ Q(V“vy¢)3] + GB(Xa QS)GMVVMVVQS .

Here, the canonical kinetic term is X = —¢"'V,0V,¢ and U = ¢"'V,V, = V*V,,.
G, is the Einstein tensor and R is the Ricci scalar. Gi’s are free functions, of ¢
and X as indicated. We use subscript X to denote derivative w.r.t X; for example,
0G;/0X = G,;x. We shall later make specific choices of these terms for our purposes.

5The extra terms under shift symmetry, byt +c¢ ~ O (byaztax™ + cx®) indicates that we can write
it as a total derivative, which can correspond to a conserved charge and is allowed like in any
other theory.
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It is interesting to note that detection of gravitational waves and electromagnetic
waves from Neutron star merger event GW170817 [60] has reduced some terms in
this Lagrangian. For example we can eliminate G5 along with G5x completely. G4
has to only be a function of ¢, hence G4x = 0. See [61, 62, 63, 64] and also a review
[65].

Scalar-Tensor Theory is also known as Horndeski theory. Horndeski first proposed
the most general scalar-tensor theory with second order equations of motion [66].
It was rediscovered a decade ago under an interesting name, 'Fab Four’ [67]. In
the upcoming sections we use specific sub-classes of theories from Horndeski theory.
Particularly, we are interested in Brans-Dicke Theory in the next chapter.
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5 BD-ACDM Cosmology

In this chapter we first introduce Brans-Dicke Model, with a constant vacuum energy
density, or simply BD-ACDM and list its basic equations. The original motivation
for the theory is briefly discussed in Appendiz(E). We then explore its connections
to Running Vacuum Models which were discussed in the previous chapter. This was
originally shown in [3, 4] and also in [5, 6]. We shall also see this model in the
context of scalar-tensor theory, which allows us to think of its generalizations and
possible extensions. We also give a note on Hy and og tensions in general and in
the context of BD-NCDM [6, 7].

5.1 Introduction

Brans-Dicke (BD) theory [68, 69, 70] describes the evolution of gravitational coupling
G by assigning a time dependent scalar BD field ¢(¢) which is non-minimally coupled
to the curvature scalar. At present t = ty, the value of the BD field reduces to the
Newton’s constant and depicts the effective gravitational coupling for any other ¢.

Y(t) = 1/G(t) at present, ¥(tg) = o = 1/Gy = Mp

The scalar field also has a kinetic term which comes with a dimensionless factor,
the Brans-Dicke parameter wgp in the action. In the limit of very large values of
this parameter wpp — oo BD theory reduces to GR!. We include a constant energy
density for the vacuum energy density p,q. which is now indicated by pyec = pa-
This model is called by the name BD-ACDM [3, 4, 5, 6] and the action is given by,

1 w
Suoa = [ d'av/=g [m (wR - Z]Dv“wm) - pA] + [ dhoy =L@ g,
(5.1)
Since in this theory the scalar field is a dynamical variable, we get its equations of

motion by taking the variations of the above action w.r.t 1. We also have modified
Einstein equations upon taking variations w.r.t g"”.

In Appendix(E) we discuss how BD was motivated and its dissimilarity from GR.
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?ﬂGW + Guv [Dw + ﬁ(vw)ﬂ - Vuvzﬂ/J - waDvuwvuw = 87T<T;w - guupA)
(5.2)

PY, Vi =0. (5.3)

WR + 2wpp ) — “’z

We again note that [0 = V,V*#, Einstein tensor G, = R, — %Rg’“’ where R is the
Ricci scalar. There are two free new parameters in our formulation of BD-ACDM
cosmology. Along with time dependent BD field v, we also have a constant parame-
ter wgp which sometimes used in terms of its inverse egp = 1/wpp. For large values
of wpp or as egp — 0, then from the scalar field equations we see that we go back
to having GR.

Ricci scalar appearing in (5.3) can be removed by obtaining the trace from grav-
itational field equation (5.2). Then we have modified Klein-Gordon equation which
on FLRW background is given by,

8

2 Oy = 8n(T — 4 h+3H) = ————
(2wpp + 3)0¢) = 87 ( pr) = ¥+ 3HY CT—

(T—4py)  (5.4)
Here, dots represent derivative w.r.t to cosmic time such that we have Hubble rate
H = a/a. We are working with those models where we have varying gravitational
coupling G but have conservation in the energy momentum sector. Full energy
momentum tensor can be,

THV = me — pagh = (p +p)u#ul/ + PGy

Here, p includes all the relativistic and non-relativistic matter part along with radia-
tion, dark matter and also cosmological constant p,. p corresponds to total pressure
in the same sense. There is no coupling between ¢ and matter sector. However, we
have for constant vacuum energy density an EoS of —1 implying py = —p,. For
FLRW metric we can also rewrite the gravitational field equations in terms of Fried-
mann and pressure equations. We make use this to write two independent equations
for p and p similar to (4.1).

. . 2
3H2+3H¢—“‘”<¢> _ 5T

v o2 \y) T g 6.5
: w w WBD w ? 8m '
O +3H*>+ 2 4og— 4 2B () — 2%,
+ +w+ w+ 5 <w> o7

The Friedmann(-like) equations in (5.2) as usual talk about evolution and geome-
try? of the universe function of fluid density. But in this case we also have evolution

2We point out that, we have taken flat FLRW metric with x = 0.
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of gravitational coupling. We do not yet have analytical solutions for equations
(5.4). However we can make realistic ansatz and proceed to have some solutions.
We now proceed with this idea and look at the connection between BD-ACDM and
Running Vaccum Model.

5.1.1 Connections to Running Vacuum Models

We know that for a particular fluid in standard FLRW cosmology, the solution to
conservation equations yields a power law in scale factor. This explains how the
energy density of a particular fluid varies as a function of scale factor. So we expect
power law solutions for the BD field,

v =1hga”, with || < 1. (5.6)

We take this as an ansatz. Here, we are assuming a mild evolution of BD field
using a small parameter € such that we do not have any significant departure from
the well tested GR based ACDM. or simply GR-ACDM. The sign of € determines if
the gravitational coupling was strong (e < 0) or weak (e > 0) in the cosmic history.
The scale factor is normalized using the current value ay = 1. Now we can rewrite
the Klein-Gordon and Friedmann equations (5.4), (5.5) by using the time derivatives
of the BD field. With,

% = —€eH, % = —cH + &H?,

(8 (G
and realizing the fact that radiation has no trace and matter has no pressure, we
have,

87 Pm — 4pA

H+ (3e— &)H? = — 5.7
eH + (3¢ — €°) 3T 2om m (5.7)
2 9 € 8
3H” —3H €+€WBD = E(Pm-i‘ﬂr-ir/?/\) (5.8)
2 2 e : 81 [ pr
H? (3 -2+ €+ Supp —H(2—6):—¢(3—p1\>. (5.9)

In the Friedmann field equation (5.8), let us ignore the radiation energy density and
reorganize the terms to write it in the standard form
o 8m 1
Wl1-C
We can also bring back Newtons constant as well because 1/¢ = G(a) = Gya“.
Also we expand? the fraction 1/(1 — C) to linear order and write,
. &G N at

H? = ——
3 1-C

3We realize that C need not be a small quantity. The term e2wpp can also be of order unity. We
can still make linear approximations for very small scale factors.

(pm + pr), where C' =€ (1 + éwBD> ) (5.10)

[p?ncf?’+E + paa‘ + Ca(ph,a™® + pA)} : (5.11)

2
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We see that the last term can be rewritten by making use of (5.10). From (5.10),
we have 3(1 — C)H?/87Gy = (p%a™3 + pp). We make an approximation, pya‘ ~
pa(1 + €lna) ~ pp. This approximation is justified from our arguments in the
previous section where we argued that evolution of p, is very mild after radiation
era. Since we are concerned with matter and present epoch this approximation is
valid. Again taking up to linear terms in C,

rG
H? = WS = (0%, + ppp(H)|,  with
e 0 (5.12)
poe(H) = px + H* = py + —MpH".
TGN Ry

This equation is very similar to the one obtained from the previous chapter, for
example, (4.3). It is also called the Dynamical Dark Energy [4, 2, 1] because here
the dynamics of BD field is responsible for dynamics of dark energy (DE). We see
that C is entirely depended on the value of e. We obtain CC of standard cosmology
model ACDM, if |¢|] — 0. In fact, as shown in [4] € is related to BD parameter wpp
in the same way as egp hence, € = egp.

5.1.2 Connections to Scalar-Tensor Theories

In equation (4.7) we wrote the action for a general scalar-tensor theory. Along with
higher derivative terms in the Lagrangian, we had coefficients, G;’s (i = 2,3,4,5)
and counter terms G4x, Gsx which are all arbitrary functions of ¢ and kinetic en-
ergy X = —g"'V,¢V,¢. This action consists of most of the modified gravity. For
example, the first term Ly = K (¢, X) includes all the models which make use of
non-canonical Kinetic terms. For some examples see section(8.1) and cited refer-
ences. They present interesting phenomenology and have been used to explain the
accelerated expansion of the Universe.

By fixing the relevant coefficients, we can realize different models for gravity. To
obtain GR, we put all of them to zero except, having a constant G4 which reassembles
gravitational coupling constant. Brans-Dicke model can also be obtained by putting
Gy = X, G4 = ¢ and keeping all other coefficients zero.

In this chapter we are focusing on Brans-Dicke theory along with a constant
vacuum energy. However, in the next chapter we have extended interests along with
which we extend our original model by adding nonlinear terms. In this context, we
not only exploit K-essence models, particularly with G5 = X? but also make use of
cubic Galileons[71, 59] with G35 = X. Galileons has connections to DGP model[57]
and Massive gravity theories|[72]. We also make use of L, in the last chapter. We
list some important models in the Table(5.1).

Constraints on BD model parameters, the effective gravitational coupling and wgp
are obtained using both local and cosmological data. Locally we have Cavendish-
like table top experiments and satellites like Cassini[73] which give constraints on
the value of gravitational coupling within solar system. Cosmic microwave back-
ground also provides constraints on the BD parameters at cosmological scales. The
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Models\ Coefficients G Gs Gy G

GR 0 0 constant(1/G ) 0

BD X 0 P 0

k-essence K(¢,X) 0 0

Galileons X X 0 0

GGC a X +axX? | f(9)X 0 0

Kinetic Gravity Braiding X2 flo)X 0 0
Kinetic Coupling 0 0 0 constant(&)

Table 5.1: We schematically show different scalar tensor models realized from of the
Horndeski action (4.7). Here, GGC refers to Galileon-Ghost Condensate.

interesting part is that, in many models extracted from Horndeski theory reduce
to BD cosmology at cosmological scales [74]. Hence BD-ACDM can be used as the
boundary condition while studying cosmology of scalar-tensor theories.

5.2 Hjy and oy tension in the light of BD-ACDM

The standard cosmology model which we refer to as GR-ACDM, is based on five
things; (i) the force of gravity is explained by GR, (ii) presence of a cosmological
constant which is responsible for accelerated universe, (iii) presence of cold DM,
(iv) cosmological principle implying homogeneity and isotropy at large scales of the
universe and an (v) inflationary epoch preceding the radiation era. Even though
GR-ACDM has been very successful in matching the observational data. In the
recent years factors like new observation methods, new telescopes and observational
facilities, new tools to analyse large data, have resulted in significant improvements
size and precision of the data. In this new era of precision cosmology, we have
encountered cosmological tensions which has led many theorists to make progress
by constructing models to explain these tensions. On the other hand, the observa-
tional cosmologists have been attempting not only very precise measurements and
to achieve better control of systematic errors, but are also using new techniques to
unravel the reality.

Hy and oy tensions are often mentioned in the literature. The Hubble con-
stant Hj is a very important parameter in cosmology as it is the expansion rate
of current universe. The local (or late universe) measurements of H, are obtained
using cosmic distance ladder, cosmic chronometers and using time-delay measure-
ments of quasars when they pass through strong lenses. We also obtain constraints
on Hj using early universe probes like CMB and Baryon Acoustic Oscillations
(BAO). The tension arises due to the fact that value of Hy measured using late
universe probes does not match with that of early universe probes (also see in-
teresting results obtained by making use of Tip of Red Giant Branch [75]). The
measurements from CMB are obtained assuming GR-ACDM. Using CMB tempera-
ture anisotropy, polarization and lensing data from Planck Collaboration [76], Hy is
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measured to be 67.36 £0.54km/s/Mpc. The distance ladder measurements obtained
from SHOES Collaboration [77] gives Hy = 73.2 &+ 1.3km/s/Mpc which implies we
have 4.10 tension between these two values. If we include time delay measuremnts
from HOLICOW Collaboration which uses 6 gravitationally lensed quasars we have
Hy = 73.3 £ 1.7km/s/Mpc, where the tension is much more significant with 4.8c.
Measuring the redshift of a source continuously for a long time would be an obvious
model independent approach to measure the expansion rate. Recently there has
been interesting proposals for model-independent approaches for example method
of Clustering of Standard Candles [78] can be used to reconstruct not only Hy but
also other cosmological parameters.

The oy is a measure of the amplitude of the linear power spectra. This quantifies
the amplitudes of the initial density perturbations of the early universe. The CMB
would have imprints of the primordial density perturbations on it. However, we
usually consider the scales of length 82~ 'Mpc to infer this parameter which explains
the number 8 in its notation. We need to note that og does not belong to the
'basic’ set of parameters* but instead it is a derived parameter. This is because og
depends on the Hubble constant Hj, more specifically on h which is a dimensionless
number quantifying the expansion rate such that we have Hy = h100 km/s/Mpc. h
belongs to the basic set of parameters (see for example [80] for detailed discussion
on h). The tension in og comes from measuring the amount of large-scale structures
(LSS) in the universe from early universe probe, the CMB (Planck) and late universe
probes like weak lensing (for example, BOSS, Kilo Degree Survey- KiDS, 2dFLenS)
and galaxy surveys (for example, Dark Energy Survey- DES). A combination of
KiDS, BOSS, and 2dFLenS data shows og = 0.760"0033 which is 2.20 tension with
Planck. A related parameter Sg = 05(£2%, /0.3)*/2 is 3.10 tension tension with Planck
measurements. og depends on h, and power spectra also have dependence on h.
However, og does not show the impact of h on amplitude of power spectra because
for different values of h there is a change in reference scale R = 8h~'Mpc. This
ambiguity has been pointed out recently in [81], where they propose to use o12 such
that for h ~ 0.67, we have 8h~'Mpc ~ 12Mpc. Notice that with such formalism
one can abandon units like A~*Mpc and now the new parameter o5 is the measure
of density fluctuations in a 12 Mpc sphere.

These tensions might be an artifact caused by systematic error in the data. If
they are not, this might be hinting at new physics. Any model which explains or
eases the tension, should alleviate both Hy and og tensions at the same time. Also,
if a model loosens one of the tension it should do so without worsening the other.
This is a golden rule mentioned in [7].

Apart from its alluring theoretical connections to running vacuum models, BD-
ACDM and related Type-II (R)RVM has very interesting inputs to observational
cosmology. In fact, in [82], the former has been categorized under "Promising Models’
as the tensions loosen up to < 30, whereas, the latter has been put under ’Good
Models’ as it alleviates the tension to < 20. In a recent analysis of BD-ACDM using

4See [79] for the distinction between basic and derived parameter sets.
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data from Planck 2018, supernova Type Ia from DES and Pantheon compilation,
cosmic chronometers, BAO, LSS, the prior on Hy from SHOES and the strong-
lensing data from the HOLICOW collaboration, it was found that Hy = 71.30755)
km/s/Mpc and og = 0.789 £ 0.013. BD-ACDM has two new variables, the field ¢
and wpp. We can express dynamics of BD field in terms of a dimensionless field
» = Gy, that is, effective gravitational coupling, G(p) = Gy /p. In the case of
large wpp, we have egp = 0 and assume constant ¢ < 1 then we have larger values
for gravitational coupling. In this case, the Friedmann equation in (5.5) now reduces
to,

3 p Y
¥

N 87TGN

for a=1,
2 pla) s 13

2
where p° is the total energy density at present time. For ¢ < 1, G(y) increases, and
so does Hy and this can help in lowering the tension. We can also take non-zero
(negative) values for egp to show that the og tensions are reduced as well. For a
detailed study see [7]. The exact numerical evolution of ¢ from radiation dominated
era to present epoch is also shown in Figure 4 of [7] which is obtained by performing a
numerical fit to the observational data included in their analysis. The field ¢ mildly
evolves staying within the interval 0.918 < ¢ < 0.932 from radiation dominated era
till now.
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6 Screening and Difficulties

We have seen interesting theoretical and observational consequences of BD-ACDM.
The exact numerical evolution of ¢ suggests that, gravitational coupling at large
scales is 4-9% larger than the locally measured Newton’s constant. The variations
in G 1is constrained from the Solar System and Cavendish-like experiments which
prompts Gy as a valid constant in the local scales. In order to have BD-like be-
haviour at the cosmological scale, but still recovering GR locally, we have to provide
a screening mechanism. We are interested in extended Brans-Dicke theory where
we add higher derivative terms of the Horndeski Lagrangian to the original BD La-
grangian (with a cosmological constant). In this context, we are looking at higher
order derivative screening mechanisms, like Vainshtein and K-mouflage screening.
We realize that these mechanisms can only explain very tiny departures of effective
value of G from the locally measured coupling. We also propose as a possible remedy;
suppose BD parameter wgp takes unrealistic value close to —3/2, then we obtain the
aforementioned behaviour of scalar field. But such attempts not only indicate signif-
tcant departures from GR at some intermediate scales but also suggests wgp is fine
tuned. This chapter reflects the results and arguments of [10] quite closely.

6.1 Field Equations of Extended Brans-Dicke
Theory

We have BD-ACDM action given by, (5.1). The numerical fit to observational data
gives a mild evolution of effective gravitational coupling in the cosmic history. The
model requires cosmological gravitational coupling G to be 4 — 9% larger than the
one measured on earth Gn. In the local scales we have constraints from the Solar
System and Cavendish-like experiments on gravitational coupling. So we have to
restore GR at the local scales while allowing variations at cosmological scales!. Here
we study ‘Extended’ Brans-Dicke Theory denoted by ‘€eBD’ in the subscript. We
include higher derivative terms from Horndeski action in order to allow for screening
mechanisms. Here, we consider the following extension,

SeBD = SBDA + /d4$\1/6_? (f Dw + 0 VV’(/)VV’QD) V“wv,ﬂ/} . (61)

!See (6.6) for a comparison of local and cosmological values of BD variables
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We have a cubic and a quartic self-interaction terms with constant couplings f
and 6 with mass dimensions to the power —6 and —8 in natural units, respectively.
The couplings expected to be negligible so that they do not harm the cosmological
behaviour of BD-ACDM. However, they dominate the scalar field dynamics in the
local scales resulting in screening mechanisms. As already pointed out in section
4.2, these terms of the Horndeski Lagrangian do not alter the speed of propagation
of gravitational waves and are not affected by binary neutron star merger event
GW170817 [60]. We would like to do our calculations in Jordan frame where we
have scalar field coupled to the gravitational sector (see Appendix(E)).

We now replace the dimensionful BD field ¢/ with a dimensionless scalar field ¢ so
that we retrieve the Newton’s gravitational constant Gy = 1/M3 in the equations.

Gy
-

The modified Einstein equation and Klein-Gordon equations are obtained by taking
the variation of the action (6.1) w.r.t to the metric and the scalar field ¢ respectively.
With notations (Vp)? = V,oVFp, O = V,V*, we write the field equations,

¢ = Gy, the effective gravitational coupling G(p) = (6.2)

w w
()DGMV + g,uu [Dgp + ;;)(VSOV] - v,uvl/(p - %Vﬂ()@vl}@

v f « f f
+ I T oV (Vo) + - OpV, oV — 2V, (Vo) Ve (6.3)
2 Gy G% G2,
26 )
+ oz (Vo) [Vugavygo - gfl(vw] = 871G N (T — PAG)
N
2
0=R—""2(vy) + =220,
+ Gr V) = GV OV ) = oV [V (Vo] |

G is the Einstein tensor and T}, = —(2/1/—¢)0S,/6g"" is the total energy-
momentum tensor which includes relativistic and non-relativistic matter fields. Its
trace is T' = ¢g"”T},, which is just the matter energy density p,,. As expected in our
scenario, the scalar field equation has curvature dependence. This can be removed by
taking the trace of (6.3) and then substituting it for Ricci scalar. Detailed derivation
is given in Appendix(B.2). Now we have,

46
(3 + 2wpp) Oy =87Gn (T — 4pa) + =V, [V*(V)?]

Gy
2]6780 2 TV l m v
+ g [[B9) = (ViVup) | VIV + VIV || (6.5)
N ¥
2 1
+ é}f [—wmgo(w)? - RWV“@V”@} .
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We expect the non-linear terms to dominate in the local scales and remain negli-
gible in cosmological scales. The local and cosmological constraints on BD variables
-the scalar field ¢ and epp, are given below in (6.6). They are indicated by super-
scripts (1) and (c) respectively. By local constraints we mean the constraints put in
the Solar System from Cassini mission [73]. The cosmological values are obtained
from [7]. The screening mechanisms due to higher derivative terms are commonly
called Vainshtein mechanism [83]. However we preserve this name for the particular
case of screening mechanism due to non-linear cubic term. We refer the screening
mechanism from k-essence term as K-mouflage screening[84]. In the following sec-
tions we shall discuss these mechanisms in extended Brancs-Dicke Theory context.

local @) — 1 local 61(3% ~ 0O(107°)
cosmological !9 —~ 0.9 cosmological egfy ~ O(1077°)

6.2 Pure Brans-Dicke Solution

The objective is to obtain scalar field profile around a spherically symmetric (static)
mass, which is placed in empty space. We perform the all the calculation in weak-
field limit. This approximation is similar to FLRW universe in time scales much
smaller than inverse of Hubble function (expansion timescale) H~!. This this limit,
we can neglect the background matter energy density and cosmological constant.
We expand the metric around the background Minkowski metric 7, and the scalar
field around the cosmological background value ¢(©. We denote the fluctuation of
the field as dp = ¢.

G = M + sy 0= + 50 = +¢.

For any point far away from the source, the weak field limit applies. To be more
precise, we can say for a point, which is at distance R from a source, the weak
field limit holds if R >> rg., where rg., is the Schwarzschild radius. In this limit
by definition, the fluctuations are very small, that is |1, > |h| and [ >
|¢|. For pure BD theory, we have f = 0,6 = 0 in (6.5) and (6.3). The trace of
energy momentum tensor is just the matter density 7' = —p. In the weak-field
limit, considering only leading order of the perturbed scalar and metric fields, their
respective field equations are,

in,  —8mGnp
OO0 =55 (6.7)
QO(C)G/W(h) =+ nuuaaaa¢ - 8u81/¢ = SWGNTMV ) (68)

G (h) is the perturbed Einstein tensor given in Appendix(B.1). These are cou-
pled equations. In [85], they have suggested a way to make (6.8) ¢ independent,
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which is by introducing h,, = H,, — 1w w‘f’@. Then we can write (6.8) as,

87TGN
G/.LZI(H) = WT#V . (69)
The 0i components vanish. Then we have —V?Hy, = 89, —  Hy, = 29aM
From scalar field equation we obtain,
2GNM
=\ 6.10
¢(T) (3 + QWBD)T ( )

This is the scalar field profile. When we include non-linear terms, we still expect
the field equations reduce to that of pure Brans-Dicke for large distances.

6.3 Vainshtein Mechanism

First we consider only the cubic interaction term so we put § = 0 in (6.5). We
perform the perturbations in weak field limit as we did in the previous section for
(6.5) but now we keep terms up to second order,

(1 + 10,0, + 1T, (1) 00 (6.11)

= _87TGNP 2f<70(0) 2% 2 " AV
= 3 2wy G2.(3 + 2wpp) [(77 0.0,0)" — (0,0,9)(0"0 gb)] .

From the perturbed quantities given in Appendix(B.1) we see that Christoffel sym-
bols are already in first order in h. In static limit we have,

—8nGnp 2t
3+ QCUBD G%V(3 + QWBD>

0 = (0'0:0)* — (0:0;0)(9' )| . (6.12)

Here we recognize the Laplace operator 0'0; = V2. We make use of spherical
coordinates in which case, the Laplace operator is give by,

1d(,d) & 2(d)
vie - S (28 S 28
r2dr (T dr) dr? * T <d7’)
We consider spherical mass distribution with p = p(r) and rewrite the above equa-
tion as,

_ 40 2 2
ld ﬁ@ — 87TGNp(T)_|_ 5 fe 1 (d¢ +%%@ . (6.13)
r2 dr 3 + 2wsp G% (3 +2wpp) |72 \ dr rdr dr?

dr
Multiplying 72 and integrating once,

200 _ Z2GNM(r)  Afpl9  (de)]
dr n 3+ ZMBD G?V(?) + QOJBD) dr .

(6.14)
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For very large distances r > R we can use a constant mass M instead of distribution
M (r). The above looks like a quadratic equation and has two solutions, one of
which does not reduce to Brans-Dicke solution at large distances. Since we want
BD solution at large distances, we consider the other solution. We rearrange the
constants to define two characteristic lengths r. and ry as given below.

do _rGB+2u) [ [ m2Mgp0 ) as i [ [T A
dr o 8f¢(c) 7”3(3 + QWBD>2GN dr N 7’2 3|’

(6.15)
h 8fp@ 1" 2 [ 1"
where, 7. = ;o Try =
G?V(S + QWBD) v GN(3 + QOJBD)Q
(6.16)

We see that, for vanishing coupling, ry vanishes. In fact both r. and ry are functions
of f. The former controls the power of the screening mechanism and the latter is
known as the Vainshtein radius or Screening radius. If 3+2wgp is a negative number
then r. becomes complex. Hence we do not associate it with a physical length scale.
But ry is a physical length scale which also depends on the mass M of the object
concerned. Sign of 3 + 2wpp is crucial because if ¢(© < 1 then we need it to be
positive so that we match the cosmological value of scalar field with the local value
of o = 1. Also, the solution has to reduce to Brans-Dicke solution of previous
section for r > ry. For small values of the fraction under the square root, we can
expand it and integrate it to see that it indeed returns scalar field profile (6.10). A
general solution to the above equation is given in terms of hypergeometric function
o F [85, 86).

o) = () [ awen—viEE = (M) (1) e

Te 00 Te v

2 1 21
with, g(z) = % {1 — o (—2, ~33 —x_3>} : (6.18)

In the Figure(6.1), we plot the function g (i), where we can easily see the change
of behaviour near screening radius. For r > ry we recover unscreened pure Brans-
Dicke behaviour but for r < ry we have screened region where we do not see any
variation of g and hence ¢.

The local value of the scalar field is expected to be ) = 1. We make use of the

fact that the function g(z) — 2.103 when z — 0 and ¢ = ) — ¢ to find
2
1=¢© +2103 (TV> . (6.19)
Te

Making use of the definitions of r., 7y we can write this expression in terms of
Schwarzschild radii,

Tseh(M)

1— oy, = 4.206 .
( r ) " 3 + QCUBD

(6.20)
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Figure 6.1: Left PLot: We plot the function g(z) (6.18) as a function of -~. This
represents the shape of ¢ (6.17). The screening here refers to Vamshteln
screening. Right PLot: We plot the function y(z) (6.28) as a function of
i. This represents the shape of ¢ (6.27). The screening here refers to

K-mouflage screening.

Within screening radius, we have obvious relation ry > R > rg.,(M), which
implies,

4.206
(1 — QO(C))(3 + QOJBD)

The first term in the denominator is of the order (1 — »(©)) ~ O(0.1) and the
second term (3 + 2wpp) ! ~ €5} /2 ~ O(107?%) from (6.6). Clearly the inequality is
not satisfied. We need much bigger gradients for ¢ facilitating the running of the
scalar field. In other words, we see that the Vainshtein radius is very small, in fact
smaller than Schwarzschild radius. If this is the case, our weak field limit is not
sufficient in these limits. If wpp takes values closer to —3/2 then the equality holds.
But neither the cosmological data nor the local measurements suggest such values
to wpp. We shall explore this path later. If we want reasonable values for ry,, that
is 7y > R, then we need to choose coupling f accordingly. But in this case, we
can only explain small differences between cosmological value and the local value.
For example, 1 — ¢© < O(1078) for the Milky Way and 1 — @ < O(107!2) for
the Solar System. We show this in Figure(6.2). We encounter same problem with
K-mouflage mechanism.

>1. (6.21)

6.4 K-mouflage Mechanism

The procedure for this section is similar to the previous one. In this section we put
f=0in (6.5) and obtain scalar field equation in the weak field limit,

—87G N 46

0'0;¢ =
¢ 3+ 2WBD * GE/))V(?) + QWBD)

[(9;0)(97 $)0:0" 6 +2(0'$) (& $)0:0;¢] . (6.22)
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For the last term we make use of
2(0'0)(0 9)0,0;0 = 0i[0"$(0;0) (8 9)] — (9;0)( ¢)0:'¢
to obtain,

—87G N N 40p(9)
3+ QWBD G‘})’V(S + QWBD)

506 = MO 6(0,0)(@ 9] . (6.23)

Now we assume spherical symmetry and make use of divergence theorem to write
the following cubic equation.

_ © 3
do 2GNM 40 <d¢> | (6.24)

dr (34 2wpp)r?  G%(3 + 2wpp) \ dr
Of all the possible solutions, the physical solution has positive discriminant with
0(3 + 2wpp) < 0. For 6(3 + 2wpp) > 0 we do not get BD profile at large distances.
The discriminant cannot be zero as well (for nonzero wpp and mass M). Using
Cardano’s formula, we get the solutions similar to Vainshtein screening. Here we
define the length scales and solution to cubic equation as,

LA 1080 p0nr2 \
< G?VM ’ K= GN(?) + QWBD)?’

0o . o\ 1/3 o\ 1/3

T T
—_ = 1 1 — — | =1 1 — 6.26
dr 7323 ( * + (TK> ) ( + + (rK) ) o )

Te, T play the same role as r., 7. Only rg is a physical length scale which is always
real. A solution to the above equation for r > R is,

o) = (%) "y (L), (6.27)

Te K

y(2) = [:dm z 23 {(—1 + m)l/g - (1 + \/m)l/g] : (6.28)

(6.25)

We plot the function in Figure(6.1). In this case, if we realize that the function
y(x) — 3.984 when x — 0, we obtain a similar expression to (6.20),

TSch(M>

1— = 5.976
( 2 )TK 3 + QWBD )

(6.29)

Given the same values for (1—¢@) ~ ©(0.1) and the second term (34 2wpp) ™! ~
O(1073) from (6.6), we see that we have similar issues like we had in Vainshtein
mechanism.
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Figure 6.2: Here we plot screening radius as a function of ¢ = (1 — ¢(®). In both
the plots red line is the size of Vainshtein radius ry and blue line is the
size of K-mouflage radius 7x to obtain which we use egp = 2 - 1072 in
(6.20) and (6.29) respectively. From both the plots we see that we need
very small values of (1 — ¢(?) to obtain reasonable values for screening
radius. Left PLot: We see the screening radius associated to the Solar
System as a function of ¢. The black dashed lines indicate Schwarzschild
radius (2.9 km), radius of Kupier belt (~ 50AU) and a radius which is
ten times radius of Kupier belt. Right PLot: We see the screening radius
associated to the Milky Way as a function of ¢. The black dashed lines
indicate Schwarzschild radius (0.25ly), physical radius (15kpc), and a
radius ten times the physical radius.
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6.5 Screening with a varying wgp parameter

So far we have considered wgp as a constant. But the results of previous sections
shows that, very low values of egp plays a significant role in reducing the variation of
scalar field. Since both Vainshtein and K-mouflage mechanisms have not been able
to explain non-negligible differences of scalar field and their presence is the theory
is not improving the situation. Instead we expect wgp to be taking different values
throughout the space such that we have differences of scalar field as expected. We
see that to satisfy inequalities in (6.20) and (6.29), wgp has to be close to —3/2. This
would generate large gradients of scalar field. This can supplement the Vainshtein
and K-mouflage screening mechanisms by quickly taking the scalar field to nonlinear
regime. However wpp ~ —3/2 is not allowed by any data; neither in cosmological
scales nor in local scales. There might still be some regions of space where wgp
can take such values. Here we consider non-constant wgp such that it results in
screening-like behaviour where ¢ takes constant values in small scales. So we set
nonlinear interactions to zero with f = 0,6 = 0. Now the scalar field equation is,

1 WBD 2 2 2WBD
0=R+ —|(wgp — — | (Vp)* + (Vp)* + —0O
(o = 22) (9 (vop + 2200,
— (34 2wpp)dp = 8GN (T — 4py) — wiyp(Vp)?
The prime denotes derivatives w.r.t ¢. In the second line we have substituted the
Ricci scalar from taking the trace of metric field equation. In the weak field limit,
3+ 2WBD 3+ QWBD

0'0;¢p = 0;p0" ¢ . (6.31)

Again, considering spherical symmetry,

T’2 dr dr N 3 + ZWBD 3 + ZWBD dr ) ’

Far away from the source, the density distribution simply vanishes. So for » > R,
1d ( ,d ; o\
Ld(2d0) _ wmp  (do)T (6.33)
r2dr dr 3+ 2wpp \ dr
which is easily solvable to obtain,
pde_ ¢
dr vV 3+ QWBD

C is an integration constant which has to be determined. This is set by demanding
the field varies like BD field sufficiently far away from the source at some radius r,.

(6.34)

d C - C
C':rfd—f NE R MG —C (6.35)

. V34205
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wpp is a function of scalar field ¢; and what we need is ¢ = dp. If we choose
wpp(p) then we can compute ¢ by performing integration of (6.34). Then we will
have a profile for BD parameter wpp(r). Instead, we can also select the shape of
¢, then we compute wpp(r) which leads us to wpp(p). Here, we guess the following
phenomenological expression for ¢,

1 A"
o(r) = e | BB | (6.36)

(T’ “+r S) 3 —+ ZWBD

where rg is the screening radius and n is a positive number. For different values
of n we have different slopes which connects large scale pure BD behaviour with
screened regions. In the screened regions, ¢ remains constant ¢g.. non-negligible
value as expected. The screening radius can be obtained by specifying the free
parameters in the above expression. For ¢(@ ~ 0.9, ¢g., = 0.1 and 75, = 2.9km
and assuming rg ~ 50AU we plot the shapes of ¢(r),wpp(r) for different values of
n. Even though we now have expected variations of gravitational coupling, from the
shapes of the plot we see that there has to be lot of fine tuning to get wgp ~ —3/2.
At this point we should have significant deviations from GR. However, we can still
look for other shapes of ¢ but in any case the problems mentioned will still remain.

17

0.001 10

102 10'°
= 10-15 &8 1000
=S a8
w

10-21 i 107

1072 1071

1073 -8

1 10° 1012 108 10** 10%° 1 10° 1012 10 10** 10°°
1 [kimn] 1 [km]

Figure 6.3: For both the plots we have considered Solar System values - rge, = 2.9km
and set ry = 50AU, 9 = 0.9. n is a positive number in (6.36). Left
Plot: ¢ = 0p (6.36) for various values of n. Right Plot: Plots for
associated wpp(r) (6.34).

We studied extended BD-ACDM where we included cubic and quartic self-interaction
terms from the Horndeski family. In the weak field limit we obtained Brans-Dicke
scalar field profile assuming Vainshtein and K-mouflage screening mechanisms. We
have seen that both of these screening mechanisms are only able to explain very small
variations of G which is quantified through the difference ¥ — (¢ < O(107%) for
the Milky Way and ¢ —¢(©) < O(107'2) for the Solar System. However, BD-ACDM
allows for ) — (@ ~ ((0.1). This difference in gravitational couplings allowed by
BD-ACDM have proven to be very useful to loosen the cosmological tensions.
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We can consider next higher order derivatives available from Horndeski Lagrangian.
As mentioned in the previous chapter, measurements of speed of gravitational waves
have constrained Horndeski Lagrangian such that G4x = 0. Even in this case we do
not anticipate any significant changes to our results because in the weak field limit,
again the small value of egp will prevent large deviations. The introduction of a
non-constant potential for the scalar field does not solve the problem neither. The
very criteria for such a potential regardless of its shape would be to generate large
gradients of 6p = ¢ = ) — (. This is the origin of the aforementioned problems.
Hence, we do not expect the latter to be solved with the aid of Chameleon[87] or
Symmetron[88] mechanisms which make use of environment dependent potentials.
They are of course able to screen Brans-Dicke effects in dense enough environments,
but they are not capable of explaining the large differences of the gravitational
coupling that are needed by BD-ACDM.
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7 Functional Methods

We start with introducing important generating functionals like, Schwinger func-
tional and effective action. The latter is a functional of the mean field and its
corresponding equations of motion includes all quantum effects in it and hence exact
(for vanishing source). We use [89] as our reference. In the second section we revisit
renormalization and flow equations but in Wilsonian picture. Appendiz(D.1) also
give a note on effective field theory which supplements this section. With the example
of gravitational coupling, we insist on computing flow equations for dimensionless
couplings as their divergence is related to physical divergence. In this particular
example, appearance of non-trivial UV fixed point indicates asymptotic safety sce-
nario. In general non-trivial fized points are reached in an interacting theory for non
vanishing anomalous dimension and coupling. Finding such points plays a major
role in the following chapter. Here we make use of [16, 90] as references.

7.1 Generating Functionals and Correlation
Functions

Correlation functions play an important role in QFT. For example, 1-point cor-
relation function is just the expectation value; 2-point correlation function is the
Green’s function, interpreted as propagators. Moreover, we can treat QFT as a sta-
tistical field theory, if we can define a generating functional (analogous to partition
functions in statistics) such that the correlation functions are its moments. In path
integral formalism, a generic generating functional of source function J(z) reads,

200 = / Dyexp (—S[X] + / J(x)x(x)d4x>. (7.1)

We could in principle have many sources which set the background. It generalizes
a constant background to an inhomogeneous (for example, it can be x dependent
magnetic field background). S[y] is just the classical action functional and the
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integral measure is given by!,

/DX ~ 11, /Z dx(z). (7.2)

Any n-point function is obtained by performing functional differentiation of Z[J]
n number of times. So, the only condition on Z[J] is that it has to be differentiable.

R R R /2y (e S

Thus one can see Z[J| as a generating functional. In a more traditional way
we can also show this by writing Z[.J] as an expansion in powers of J for a weak
background source.

exp (/ d4:13J(:L')X(:B)> =1 +/d4xJ(:v)x(x) +;/d4xd4yJ(:E)x(a?)J(y)x(y) + .

— 2= 20 (1+ [ s @) + 5 [ FatsI DI EDNGD) + )
(7.4)

The n-point functions are the time-ordered Green’s function written in terms of
Heisenberg operators (indicated by T" and "respectively).

e Wy (z1)..x(z, R R
(c(arnten) = LRI oy 7igan) gm0 0o

If we take 1-point functional for example, the expectation value would be back-
ground J dependent. Since we need expectation values independent of a background,
we just set J = 0 after differentiation. The generating functional generates all pos-
sible interactions, even the ones which do not affect the observable quantities. The
useful interactions for particle physics are those which affect the cross-section, de-
picted by connected Feynman diagrams. On the other hand, unconnected diagrams
which are also called vacuum bubbles or vacuum to vacuum transitions, can be fac-
tored out and are cancelled by the same factor in the denominator thus they do not
play any role in calculating cross-sections?. One such example would be the 2 loop
diagram in (7.6).

!The integral is for all positions, however small you can get! This looks a problem which will be
corrected to be written as (7.17) in a regularized sense.

2Connected diagrams mean we can go from one end of the diagram to the other end by fol-
lowing the edges in the Feynman diagrams. Disconnected diagrams mean the diagrams are
disconnected from external points.
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() 8 (7.6)

The mean field (x) or the 1-point correlation function which we have been repeat-
edly pointing out has relevance to our discussion on CC because it refers to 1-loop
vacuum to vacuum transition (the first diagram in the above equation). Bubble
diagrams (vacuum to vacuum) are propagators evaluated at the same point which
contribute to CC. To have only connected diagrams, we define a new functional,
Schwinger functional by taking logarithm of the partition function. In our present
discussion, we are considering particle physics perspective, where ground state is
non zero.

W[J] = In Z[J] (7.7)

WJ] is the Schwinger functional and the correlation functions are again defined by
taking functional derivatives. But now, the resulting n-point functions are connected
indicated by subscript c.

"W 1J]
0J(x1)0J (x2)...0J (x,,)

Gl (1, T, ..y ) =

example: 2-point function -
) w0 1 07
Gar, ) = 07 (21)0J (z2) _ 0J(x1) <Z@J(x2)> (7.8)
1 0?7 1 0z 0z
T Z0J(20)0J(x2) 229 (x1) 0 (22)
= (x(@1)x(z2)) — (x(z1)) (X (22))

C

G? = +— O & 8 +— —— (7.9

The terms representing unconnected dlagrams are subtracted from 2-point corre-
lation function in (7.8) to give only connected diagrams (7.9). Schwinger functional
still contains extra information. We need 1-particle reducible diagrams - the dia-
grams that cannot be cut into two parts by cutting one internal line. For example
the third diagram in (7.9) with two loops can be cut in the internal line between
the loops and hence a reducible diagram.

We define a new generating functional by performing a Legendre transformation
of the Schwinger functional. This is usually referred to as effective action which is
a functional of mean field (x) = ¢,
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o)
- 0J(x)

Nl = W1 = [ dted(@)ele) s o) = (x(a) (7.10)

Now that we have an action, we can get the field equation in a given background
J. For comparison we also write the classical field equation derived from the classical
action S|x]

M:J(w) ; —— =0 (7.11)
op

For J = 0 the first equation is the exact field equation. Unlike S|x], I'[¢], which is
a functional of the mean field ¢, includes all the quantum effects and thus it is the
exact quantum field equation. Now, the second functional derivative gives the inverse
propagator I'® = G~'. Similarly, for higher derivatives we get n point vertices as
shown below, which are one particle irreducible (1PI). These diagrams cannot be
cut on any internal propagator into two disconnected diagrams. This is very useful
because the scattering amplitude is nothing but the amputated, connected Green
function.

_ O"Tg]
0p(x1)0p(x2)...00(xy,)
We also mention an important identity, the Background Field Identity, where we

make use of the above definitions of Schwinger functional and source functional to
show?,

(21, 29, .oy Tp) (7.12)

T = e (WHlie) — / Depe—S+(x=7¢)

= /qu eXP[—SJF/;I;(X— ©)] (7.13)

— /D¢ exp (—S[x] +/x§£¢($)>-

The macroscopic field x can be decomposed into a background mean field ¢
and 'true’ quantum fluctuations ¢ around it such that (¢) = 0. Then microscopic
(quantum fluctuations) field around the background macroscopic field is, ¢ = y — .
To have quantum equations of motion, we just have to take the derivative of the
above w.r.t . In the absence of interactions ¢ = 0 the effective action reduces to
macroscopic action. The quantum equations of motion are called Dyson-Schwinger.
In (7.13), the classical action S[p + ¢] is complemented by quantum equation of

3The notations of integral is simply fw = fd4x; or for example fz v = fd4xfd4y. The number
of dimensions on which the integral is performed need not always be 4. Unless mentioned we
can take it to be d dimensions in general.
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motion already. Hence it is an implicit equation and we make use of the Saddle
Point Approximation where we expand the classical action to obtain equations of
motion up to 1-loop.

Ul = 8l - o [ D6 oxp (—S[so +ol - sl + [ §g¢<x>),
classical 1 fluctuation (71 4)
Sl -+ 6= Slel + [ SVglo@) + 5 [ SPIs@00) + ...

—_———
last term of fluctuation term

where we neglected higher order terms and g—; so that we can extract the effective
1-loop contribution to the effective action. One loop effective action is a Gaussian
integral given by (in the second line ¢ is a constant),

Fu = —tn [ Do (5 [ 5niotarotn)
— —In(dety/(S®) . ¢) (7.15)

1
= §Tr InS®[g].

It is evident that I'® and S® have a difference of 1-loop and using this we can now
extrapolate to have 2-loop contributions and so on. We will discuss the renormal-
ization and flow equations in section(9.1). To avoid confusion with effective average
action appearing in that section, we shall represent effective action by Sg in the
following section. Now lets start with Wilsonian approach to renormalization and
the framework of EF'T to revisit beta functions and fixed points.

7.2 Wilsonian Renormalization

Quantum fluctuations modify the strength of the couplings. The loop diagrams
leads to diverging integrals. We introduced the idea of cutoff regularization to trade
physical divergences (k — 00) against sensitivity to cutoff scale. Our approach so far
has been of a reductionist. We can instead explain it from the perspective of Effective
Field Theory (EFT). Here, we shall refrain from giving historic and fundamental
motivation in the aspects of phase transitions and study of critical exponents but
rather focus on modern renormalization techniques including the flow equation in
the form of Callan-Symanzik Equation®. Most of the insights are from the [90, 16].
However, we have given very short introduction to EFT in Appendix(D.1) mostly
based on [91] which complements this section.

“In Appendix(D.3) we have revisited fixed points and have given a short note on linearization of
beta functions around fixed points.
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If a quantum field theory (QFT) is well defined upto a fundamental energy scale
A but our experiments are restricted to much lower energy scales A.,, << A then we
can choose a cutoff in between these scales such that A.,; < A and divide all the
quantum field into high and low energy components x = xr + xz. Only low energy
field components are sufficient to make predictions for experiments as A¢yp < Acys.
We can integrate out the high energy fields as they do not appear in our calculations,
for example in the computation of the cross-section of a scattering process. So, with
decomposition of fields we can write the relevant part of the action which is only
dependent on the low energy fields by integrating out all the high energy fields as
shown below.

dip . dip .
% :/ ezp-:rX + / elp-:pX
Ip|<A (2m)d Acur<|p|<A (2m)d

= XL+ XH, (7.16)
e~ SExr] — /DXH e_S[XL7XH]7

then the partition function (7.1) in d-dimensions can be written as follows
Z[Ji) = /DXLD¢H eXP{—S[Xb x|+ / JL[l']XL[fB]} (7.17)

—ZplJL] = /DXLGXP{_SE[XL]“’/JL[x]XL[x]}' (7.18)

T

The action Sg(xz) is called Wilsonian Effective Action®. We have to note that,
Sk depends on the choice of cutoff A.,; because this determines the energy beyond
which fluctuations are integrated out®. To define the theory at some other energy
scale, say A’, we can simply formulate the action in a similar fashion by integrating
out modes above A’. For A’ < A.,;, we can consider this as a renormalization group
flow and we should be able to derive a flow equation similar to (2.23). Let us take
the exact case and put all the local sources to zero J = 0. It is apparent that we are
allowed to express effective partition function as a functional of couplings ¢;(Acut)
which depends on cutoff energy scale,

Zlgi(Aeu)] = / Dxs exp{—Se[xz]}-

Since the integral is only over low energy modes this will result in the exact partition
functional with exact couplings go. These are the same couplings which we obtained
in experiments. In other words we have an EFT which valid up to certain energy
scale that is a part of some more comprehensive theory. Suppose we lower the energy

5We can see the relation to thermodynamic free energy when written as above. For a review see
[92]

6Note that, having such a cutoff makes Sz non-local because at the length scales associated with
Acyt the high energy modes are not present as they are integrated out
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scale A’ < A, knowing that the partition function in the higher energy scale A.,;
ends up giving the ’exact’ partition function which has couplings go. Then we want
the partition function to be independent of cutoff scale (this is similar to reasons
mentioned to write (2.23)). Which is why we write,

dZ 9] _ 9
Acut dAcut - Acut aAcut ,

89@ (Acut) 8
a/\cut agz

+ Acut

) Zp(g) =0, (7.19)

Acut

i

or in terms of correlation function” [93, 94],

0
Acu aAx
( ' 6/\cut

We could also write a generic effective action including all possible interactions
operator along with a kinetic term. Then accounting for wavefunction renormaliza-
tion, we can do the rescaling of field using Z (¢ = ‘%) But now, this factor is
defined at A.,;. One has the anomalous dimension defined as,

agz(Acut) a
OANewr 09

+ Acut

9i

) Gn({xk}y Acut; g’L)

Acut

1 81112/\

:_*Acu “aAr
T T T

cut

which also looks like a beta function and hence appears as an additional term in
the Callan-Symanzik equation. The factor 1/2 in is due to the particular rescaling
mentioned above. While adding this term to (7.19) for a n-point function, the
anomalous dimension is multiplied by n because of the wavefunction rescaling. As
one can see, the beta function along with the anomalous dimension depends on all
the couplings. The n-point function (with 1-loop correction) includes a tree level
diagram, 1PI loop diagrams. We will also have counter terms for vertex. For a two
point function G2,
Gf) =__ +loop diagrams + counter terms
1

; A2 7.20
— 4+ % (A In —cut B) + counter term. ( )
m

P> p 7

A and B are some constants in accordance with (2.10). The counter terms are
given in (2.16). From Callan-Symanzik equation, we again see that the counter
term has to be of the form given in (2.16). So beta function can be thought of as
a combination of all the coefficients of divergent logarithms. Even though the beta
function and gamma function depend on the coupling which in tern depend on the
energy scales, the renormalized connected Green’s function do no depend on the
cutoff scale.

The use of dimensionless constants is helpful, because their divergence implies
divergence of physical quantities. Consider the example of renormalized Newton’s

"Refer [13] for details.
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coupling Gy (Acut) = Gn/Z2¢(Aeur) where Z¢ is the wavefunction renormalization
factor of graviton [95]. It is dependent on the cutoff energy A.,. Dimensionless
gravitational coupling is Gy = Gn(Aew)AL? = GNAL?/Z4 for which, Callan-
Symanzik equation is given by,

9 o Oln ZG e
(Mg, Al Ao 535 ) G =
O(GyAGy) 1, 0lnZg -

cut

Ay DoV Reut) _ 2y OMZG
— Newt 9 Acut 9 cut ) Acut

(7.21)

where we included anomalous dimension as well. Now this beta function leads to
two types of fixed points. The first type is a Gaussian fixed point where we take
anomalous dimension to be zero hence considering the theory to be classical (non-
interacting). In this case, G’ = 0 solves the equation. There is also a non-Gaussian
fixed point G # 0 when anomalous dimension is —(d — 2). This fixed point is
reached in an interacting theory. The direction from which this point is reached
becomes important and will be discussed in the next section. It is interesting to
note that all the quantum aspects are in this second term. On the first term of r.h.s
of (7.21) we have a running with number of dimensions, and the second term includes
contributions from quantum fluctuations. Suppose for A.,; — A the dimensionless
coupling grows, then the quantum contributions are significant only if they are very
large. As we will see, in the case of Newton’s gravitational coupling the second
term counter-balances the canonical dimension. Now, renormalized gravitational
coupling scales as Gy (Aey) ~ Gy /A%:2 which becomes small in high energy limits.
Similarly, the dimensionless coupling will reach a fixed point C?}‘V in this limit. This is
parameterized as Gy = A2, /(M3 +k?/G%) [90]. This trend is shown in Figure(7.1).

For our applications we stick with the beta function definition as rate of flow of
renormalization group of couplings constant. With this definition a positive beta
function would mean that the renormalized coupling increases with energy scale.
With all the couplings rescaled such that they are dimensionless we can express
their vanishing variation w.r.t A.,; as beta functions. We denote them with a tilde

(for example, § = gAZ7? where D is the dimension of the coupling).

~ 9 gi/\gﬁ_d ~
pilg;) = Ao 2 ) (di — d)gi + Bi(g;)
aA/\cut
for example, dimensionless gravitational coupling Gy, (7.22)
, O(GNAZY) o 2 OGw
Gy) = Nesr———= =2G A .
6( N> ' 8AAcut N * cut 8/\CME
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Figure 7.1: Here we show how the coupling strengths of Newton’s gravitational con-
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stant and dimensionless gravitational constant vary with scales. The en-
ergy scales are labeled as A.,;. They are normalized with Planck’s mass
Mp. The dimensional coupling G remains constant at low energies and
decreases like 1/A2,, at high energies. The dimensionless coupling Gy
however reaches a fixed point @*N at high energies. We can clearly see
the transition when A.,; ~ Mp.



8 Validity Regime for Classical Higher
Derivative Screening

This chapter derives its motivation from [8]. First we define generic K-mouflage
(and Galileons) theories in effective field theory perspective. We define strong cou-
pling regime which is the region of interest in the context of screening mechanisms.
The aim is to see stability of classical solutions in these theories. The stability is
confirmed if quantum corrections (at 1-loop) do not dominate over classical solution
even when higher order operators are dominant. We use [96] for calculations and
reproduce results of [8].

8.1 Motivation

So far, we studied classical K-mouflage and Galileon theories as an extension to
Brans-Dicke theory or as a part of general Horndeski theory. The main reason
for considering such extensions is to obtain a screening mechanism for the scalar
field so that we retrieve GR in local scales but still maintain BD behaviour at larger
scales. The considered screening mechanisms requires no potential and is completely
dependent on the dominant dynamics from the kinetic or higher derivative terms.
To this point, we found that higher derivative terms in the extension could not
screen the BD effects. The considered two sub-classes of theories can be thought as
Effective Field Theories which include a ladder of all possible derivative terms in the
Lagrangian. Galileon theories are in fact effective theories of DGP model. In this
spirit, we would like to know how these classes of theories behave in the UV regime.
But first let us set the simple objective to define a regime of validity of screening
solutions. This would be our regime of interest where we have dominant dynamics
coming from non-canonical kinetic terms or higher derivative terms. The objective
is to check if 1-loop contributions are small compared to the classical theory.

P(X) theories belong to the class of k-essence models mentioned in the previous
chapter. Unlike quintessence models, here we do not introduce a (slowly varying)
potential to realize cosmic acceleration. Instead, the kinetic energy X of a scalar
field ¢ drives the acceleration. Hence these can be considered as modified matter
models which have been widely studied and have rich phenomenology. A list some
of the examples mentioned in [11].

1. Ghost Condensate Model [58]: P = —X + X?/A]
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Energy momentum tensor is given by, T}, = P'0,¢0,¢ + g, P and equation
of state is given by, w = p/p = (1—X/AJ)/(1—3X/A). For -1 < w < —1/3,
range of kinetic energy is the interval (1/2,2/3). One can slightly modify this
model with some extra terms for example,

a) Dilatonic Ghost Condensate [97]: P = —X + eo#/V8rGn x2 /A4
b) Galileon Ghost Condensate [98]: P = —X + X?2/AJ + fX .

In fact, it was shown that cosmological data favors Galileon ghost condensate
model over standard ACDM model [98]. The equation of state has an attractor
solution unlike models with only cubic galileon term in which behaviour of
equation of state is not consistent with data in matter dominated era. Hence,
such models are useful to explain the acceleration of the late universe.

2. Dirac-Born-Infeld (DBI) theories [99]: P = Ajv/1 + X — A}

These theories arise in Type IIB String theory (due to dynamics of D-branes -
hence called D-acceleration) which can also explain the late acceleration of the
Universe; as a cosmological constant [100] and general dark energy component
[101].

3. We can also consider such theories to drive inflation in the early epochs. These
models are called k-inflation [102] which can lead to slow-roll or power law like
inflation.

These models introduce new degrees of freedom and are seen as EFTs in the
cosmological context. They become interesting in the so called strong coupling
regime. 'This is the regime in which a screening mechanism helps these theories
escape the local constraints. The screening mechanism relies on high order terms in
the Lagrangian which dominate the dynamics. To make way for such dynamics, we
should rely on the fact that effects of higher order terms are radiatively stable. But
there is no reason for why they should not cause problems with diverging couplings
and thus spoil the macroscopic behaviour. When applied as an extension of Brans-
Dicke theories we have seen in previous chapter that, higher derivative screening
mechanisms were insufficient to reconcile the Newton’s gravitational constant in the
solar system scales and galaxy scales. Hence, one has to look at high energy aspects
of these theories to see if at some scale they spoil the macroscopic behaviour. For
this reason, we shall now follow the works of [8] and try to reproduce their results
to define the regime of validity for effective K-essence and Galileon theories. All our
calculations in this chapter and the next one will be on flat spacetime.
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8.2 Validity Regime for Effective K-mouflage and
Galileon Theories

We first look at the dynamics of P(X) theories in flat space time. We start with
effective action,

uv
SE = /d%AéP(X), where, X = _QZMASOFVSD‘ (8.1)
0

This includes all possible terms, for example, terms like (0¢)?, (Op)* etc. The scalar
field ¢ couples to the rest of the matter through an effective coupling 5(¢). We
refer to P(X) as K in the following. From dimensional analysis, we see that P(X)
is dimensionless and Ay is some constant with dimensions of energy. The classical
equation of motion is the modified Klein-Gordon equation! with the source given
by the trace of energy momentum of matter field Ty.

We have again considered Jordan frame where the scalar field couples to the metric.
Let us consider simple case where r.h.s be a point source T' = —M§3(7). Then we
have equations of motion,

2 M
K'Op — —K"0"9" 00,00, = ———8°.

We can directly see the 'fifth force’ if we integrate the equations of motion. The
fifth force has to be such that it is very small compared to Gravitational force at
local scales but should mimic Newtons’s inverse square law at large distances. Such
a solution would be a screening solution. The screening mechanism is dependent on
the dominance of non-canonical kinetic terms. We can spilt the regimes as strong
coupling regime where we expect to have screening mechanism and a weak coupling
regime where the fifth force behaves like Newton’s force d#yp ~ M /r*Mp. To make
this distinction, we define Ay appearing in our equations to be the scale at which
the screening mechanisms unravel themselves. Later we shall address the question
whether we can claim this scale as the cutoff scale of the theory itself. If this is
the cutoff scale of the effective field theory, then P(X) is too generic and consists
of many operators which have dominant behaviour in strong coupling regime. We
shall elaborate on this towards the end.

We expect | X| to be greater than or of order unity |X| > 1 in the strong coupling
regime. In this regime, without loss of generality, P(X) can be given as P(X) ~
0(—X)N, where N is a constant (> 1 in the strong coupling regime). This definition
of regime is not physically strict, rather, the dynamics of scalar field can change from

!Primes denote derivative w.r.t X, that is, dK/dX = K', d®°K/dX? = K".
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one to another without any problems. Then in this limit, the fifth force mediated
by ¢ can be seen upon integrating the above equation of motion once,

KX = o — X" XAG ~ a )

N 7“2Mp T‘QMP
2/(2N—1)
_X ~ M ~ (LK)‘*/@N*U (8.2)
OANZMpr2 r

| M
where T ~ M
0

So for r < rg we can compare the fifth force with Newton’s force,

4(N—1)

FK 1 ( r )21\731+2 1 r 55—

™ ~ o (8.3)

K Or K

To check the validity of our EFT (8.1), we check if the loop contributions are less
than the classical screening solutions obtained above. To do this, we follow a similar
routine as the previous chapter, we split the field into background and fluctuation
@ = ¢ + dp. The fluctuations will be denoted by dp = ¢. Now, the kinetic term
can be split as X = X 40X where X contains all the derivatives of the background
field and,

1

1
0X = ——0"p0,¢ — o' ¢0,,.
Ad ” 2A% "
We can write the Lagrangian Lx = Li 4+ 0L where § Lg corresponds to 6Sg which

can be written as a series
§Sk = / Add*2[K'6X + K"(6X)* + ..].

Note that in the action, the integral over linear terms like d¢ are boundary terms
which we assume to vanish by the divergence theorem. Collecting terms up to
quadratic order we have,

"

§Lg = K'0"$0,¢ + 2(8’”@8,@)2.

If we separate the background field dependence from ¢, we can write the fluctuation

part of the effective action as?,

i

55K = /#ﬂz}{i[&]@%&%}, with Z5[5] = —K'6,, + ZKM@@@V@)Z- (8.4)
0

Similarly, for generic P(B) models, with B = Oy, we have Lg + dLp, with 0p
taken up to quadratic order, becoming §Lp = B'(6B) + B"(6B)*+ O((6B)3). §B is

2we have suppressed the subscript E representing effective action
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obtained, again, by first splitting the classical field to background and fluctuation
part and separating out the background field dependence. So 6B = 0,,0"0"¢ and
(6B)? = 09" $0,0,¢ where we have again ignored the linear terms in ¢.

dLp = (B'd,, + B"0,0,0) 0"0"¢
Now as an example, we take the Galileon Lagrangian which is a particular model
of generic P(X, B) theories. It is given by?,
1
Le = —58‘@8”@ + 11 0p0" 0,0 = X — ¢ 1 BX.

Notice that since B appears in the linear order, we do not have any fluctuation
contribution Galileon terms to 0Sg. They only appear in the background level and
we can easily see that,

§(X — fBX) = (0¢)* + 2¢11 B[—0"$,p — (0¢)?].

Taking up to quadratic order with vanishing boundary terms, also dividing each
term by relevant powers of Ag, we have a similar equation for Galileons [8],

- - U 0,0,¢
S = / d'2[Z0 [p|0* 60" ¢), with 28, = —6,, +4der (Af% - “A;”). (8.5)
0 0
We should not recognize Z as the rescaling parameter Z which appeared while
discussing wave function renormalization (2.13). For now looking at the above equa-
tion we can relate this to the background effective 'metric’. In fact, we could also
write a mass term for the scalar field which depends on the background field,

5L = 2, [@0" 60”6 — M2[5)6? + ]\?T. (8.6)
p

The higher derivative screening mechanism is reliant on dominant kinetic terms
which we can now recognize as Z[@] > O(1). Similarly we have thin shell screening
mechanisms like Chameleon[87] where M[g] dominates making the range of the
force very small in a massive environment. But the associated fifth force behaves
like Newtonian gravity at large scales. In analogy with a canonical scalar field, we

can associate this to

Zuu = \/Eguu
where, g represents the determinant of the effective metric §,,,. The covariant deriva-

tives w.r.t the effective metric can be denoted by V. We can write a covariant the
expression which due to divergence theorem reduces to,

0Ska = / 'z [V Gud"¢0"¢] “E Sy ¢ = / d'z ¢ [\G 5w V"V"] 6. (8.7)

by parts

3The coupling ¢ 1 has different dimensions compared to that of f of extended-BD (see around
(6.1)). ¢1,1 has dimensions of -7, where as the latter is of -6 mass dimension. However, we have
brought back G in terms of Mp by redefining the BD field ¢ = /Gy and approximating
the theory on flat spacetime.
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The effective action at 1-loop is Sg ~ S + I'y; where the last term is the effective
1-loop action. We can define a regime of validity where the quantum fluctuations,
particularly the 1-loop contributions, are negligible compared to classical theory.
This tells us up to what scales we can continue with classical equations. We can
make use of the Background Field Identity given in (7.13) to obtain (7.15), I'y[¢] ~
Trn[62(6Sk.c)/dp?). This equation is exact as [.h.s is a functional of the macroscopic
field . To compute this we should have started with a known exact form of the
fundamental action; the action in (8.1) is very general and has all possible functions
of kinetic term. We shall see more on this in the next section. Since we do not have
such a theory yet, we can use techniques like heat kernel method to compute 1-loop
contributions [8, 34]. We have obtained the results by splitting the classical field
p as, ¢ = ¢ + ep. Suppose we do similar splitting in the case of Einstein Hilbert
action we expect the 1-loop divergences to be of the form given below,

P [ doVG (R + 2R R,

Now we make use of this by obtaining the curvature terms from the effective metric?.
We see that the effective 1-loop action looks like massless propagator in curved
spacetime. We have performed similar calculations in Appendix(F.3) where we
computed DeWitt-Schwinger coefficients. This rough estimation works for any Z
including Galileons. The definition of the regime of validity for classical theory can
be symbolically represented as [§],

|Lr,,| < |Lg|
\/_~2 4 ag ? 82§2 4
| B2 < AGP(X) ; ; $P(X) 55)
— 4 =2
0Z 0°Z
= == AP(X
Z ’ Z < 0 ( )7

where Z can be roughly recognized as velocity of the background field and 02 as
acceleration (and the derivatives 0 are assumed to be in Cartesian coordinates).
From (8.3) we have the definition of acceleration in the strong coupling regime and,
also making use of (8.2), we have validity regime of K-mouflage theories,

4(N—-1)

_4 _N
() () oy = () e, 59
T Tk Tk

This inequality has to be maintained to have a valid classical solution. This also
suggests that N > 1/2. Within the screening regime, r < rx and roughly taking
Ay ~ 1/rx we see that Lh.s the inequality gets smaller for larger values of N.

4One should also include power law divergences and a detailed analysis is done in [103, 104] using
heat kernel method. We shall not include for time being but will consider in the next section
with a different approach.
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Similarly, for Galileons we can make use of our classical solution (6.15) in strong
coupling regime, Fi/Fy ~ 3, to symbolically represent validity regime,

(Aory)® < . (8.10)

So far through symbolic arguments we tried to see, to what extent we could
have stable classical solution, which at some scales could be spoiled due quantum
fluctuations. This is not the entire picture and our approach has some drawbacks.
First, the loop divergences we have included are logarithmically divergent. But
power law divergences will play a major role in determining influence of high energy
physics at the classical level. Secondly, in our EFT for higher derivatives, it is
difficult to choose the high energy cutoff. Let the cutoff of a full theory be A, with
the EF'T cutoff scale A.,; and strong coupling scale Ag. In the limit A.,; < A the loop
divergences of the EFT should be independent of A.,; which is shown through (7.19)
or (2.21). But to extrapolate the theory to be valid up to A but still include the
same couplings of the low energy EFT (which matches with experiments) requires
fine tuning of high energy contributions as shown in first chapter.

1. In EFT picture of higher derivative theories, Aq is the scale where irrelevant
higher order terms become dominant in the Lagrangian and accordingly have
screening mechanisms at this scale. Suppose if we choose Ay ~ A.,; then we
have to include a ladder of higher order terms in the Lagrangian (for example
(D.1)) itself. This is the scale where perturbative unitarity breaks down which
implies breakdown of perturbation theory[105]. Unless we have some sort of
symmetry, such that all the higher order terms gets summed up to give only
classical couplings the effective theories are not isolated from the UV physics.
We have DBI theory which is a good example for such a theory®. The higher
derivative terms make the propagator to diverge very quickly at high energies.

2. We could also have Ag < A.,; which reflects the hierarchy between strong
coupling regime and cutoff scales. In this case, we can continue doing low
energy EFT, just like in the Standard Model of particle physics where we do
not know the full theory, yet can make low energy predictions. This is true
because the Standard Model theory is a renormalizable theory. We would
want our screening mechanisms to fall into such simple framework. However,
we have non-renormalizability theorem for Galileons [109]. Thus, Ay < Acu
leads to hierarchy problem and seems unnatural.

3. If we try to continue in the path of Callan-Symanzik (7.19) or for high energy
modes using Polchinski’s equation (D.5), we have the dependence of the ef-
fective action on the cutoff scale A.,; or A’ respectively which is a unphysical.
We have shown Polchinski equation in a simple context in Appendix(D.2).

5See [8, 9] and references therein for detailed claims on symmetries, analyticity and also on non-
standard UV completions. For perturbation renormalizability at 1-loop, see [106] and related
matter loop corrections for Galileons [107], and also see [108]

79



80

Introducing more loops and propagators will immediately make it very com-
plicated equation to solve. The functional renormalisation group equation on
the other hand handles non-pertubative theories systematically where we only
come across 1-loop structure.

. The other way to bypass this problem is to look for asymptotic safety as dis-

cussed in previous section. The way to move forward is to use non-perturbative
methods to find non-trivial UV fixed points [9, 110]. We start the next section
with some introduction to the former. We introduce the Exact Functional
Renormalization Equation or Wetterich equation and use it to look for fixed
points.



9 Exact Renormalization Group
Approach for Higher Derivative
Theories

Here we derive Fract Renormalization Group equation for K-mouflage and Galileon
theories. This is the exact flow equation for effective average action and includes all
the quantum fluctuations even though it is 1-loop equation. To proceed in this line,
we truncate the theory up to dimension 8 operators which is in accordance with our
previous work in chapter 6. From beta functions of some important couplings, we
see that there is no running of the couplings. Here, we again refer to [8] and also
[9]. Our results are in fact particular case of [9] who also take the discussion further
to discuss UV completion in standard Wilsonian way and non-standard ways.

9.1 Exact Functional Renormalization Group
Equation

The idea of Wilson renormalization was to integrate out the fluctuations shell by
shell. We integrated out high energy modes and concentrated on the flow of effective
couplings appearing in the effective action. We now make use of the effective action
['[¢] given in (7.10) which is a functional of mean field (x) = ¢. In this chapter
we denote effective action using a bar on top to distinguish it from a more useful
generating functional, the effective averaged action I'y. Effective action now denoted
by '), includes all the quantum effects, the subscript k is the distance /energy scale of
interest. The classical action S can be extracted from it for specific scale. Effective
average action is also a scale dependent action. It interpolates between classical
S and effective action T'y, which in principle could be the action of full theory.
The scale dependence implies that it includes all the fluctuations appearing at the
scale k butit rather acts as the dynamic cutoff which in the limit & — 0 (large
distances, hence includes all quantum fluctuations) gives the effective action and
for kK — oo or Ay gives the classical action. Now we have a flow for infinitesimal
change in scale k — k — dk. Hence variation w.r.t k is called flow equation or exact
functional renormalization group equation or simply ezxact renormalization group
equation (ERGE) or Wetterich equation [111, 89]. The running in k£ can be thought
as zooming in or out on a microscope.

81



The effective average action comes with an infrared (IR) cutoff such that it only
accounts for scales which are greater than a certain cutoff p; that is k& > p. Con-
ceptually it is similar to cutoff regularization (discussed in the first chapter) which
involves an addition of a large mass to the propagator. For example consider chang-
ing the loop integrand (k* + ie)™! — (k? +d€)~ ' — (k* — M +ie)™!, then for very
large M, the propagator does not make a difference for small k&, but acts like a cutoff
for K > M. The way it is implemented here is through a regulator in the Schwinger
effective generating functional Wy[J].

(Wil = [ Dxexp< e+ | J(fv)x(ﬂi)—AkSk[X]>- 01)

The IR cutoff part which has been added in the tail of the equation in momentum
space reads,

ARSIy = ;/x(—p)Rk(pQ)x(p)

Ry, is called a regulator which more or less serves works like a step function. Some
examples would be,

2
Ry(p*) = szf_l exponential cutoft

Ri(p®) = (k* — p?) ©(k* — p*) step function 9.2)
B k? for p? < k?
~]ofor p? > k2
As a result of the IR cutoff, we expect a suppression of small momentum modes by
Ry which acts like a k-dependent mass term. As an example, we can consider an

inverse propagator, now including step function Ry, which vanishes for p?> > k% and
attains a constant value for p? < k2. The regularized propagator looks like,

(S + A1) = p* + R (p®) + ... . (9.3)

The effective action Ty, is the Legendre transform of the generating functional (7.10)
D[] = Wi + [ Jo. The effective average action is expressed as a subtraction of IR
piece from the effective action.

or
e(-Tle)) = [ Dx exp ( S+ o1+ [ go(a) - Aks) o
Tyfg] = Tp — ALS

o For k — oo we expect to have classical microscopic action. At this limit terms
depending on fluctuations ¢ become less dominant and S[e + ¢] — S[g]. The
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dominating term is the IR cutoff. The effective action reduces to classical
action at the fundamental level.

Jim Ry, (p) — 00 = lim Iy[p] — Slg],

By setting the cutoff part of the integral to have large values, we keep the
propagator convergent; we then just have a Gaussian integral. Symbolically,
in loop expansion we would come across integrands like (k% + m?)™™ which
now becomes (k? — R+m?) and has no divergences for large k due to presence
of large R (in our context this is scale dependent). Thus loop expansion has
no IR divergences even if m? = 0.

For small momentum modes,
lim Ry(p) — 0 = lim Ty [p] — Tlg].

Here we have not used any unphysical regularization cutoff like we did in
the first chapter. However, in this method all the necessary small modes are
included. Hence we can conclude that in the theory space, I'x[¢] flows between
macroscopic (quantum included) effective action I'[¢]| and microscopic action

Sle].

The practical use of this is through the flow equations. Given all the definitions of
scale dependent generating functionals, it is not hard to derive the flow equations.
We start with (9.1) where the regulator term is the only k-dependent term.

1 1 .
W= 5 0= - [ Dx(-aAs e Sh-ase Ty

The variation of the regulator 5 fp X(—p)(OkxRi(p))x(p) can be separated from the
rest of the functional integral over fields. Also by making use of the definition of
n-point functions (7.5) in second line, and using (7.8), (7.9) in the next steps,

W), = 2_21,6 P(akRk(p)) / Dxe SM=25=] ey (—p)x(p)
= —; /(GkRk(p)Xx(—p)x(p))
2 2 (9.5)
- / (OuBi(p) (G2 + (x(—0)) (x (0)))
1

-1 / (OuRe(p) G2 — 0.AS,.
V4

This is however the flow for the Schwinger functional. The effective functional is
defined as functional of mean field ¢ = (x) which is independent of k. From its
relation to Schwinger functional we have,

ot = ol - [ |- (%0r0) + @6

T
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Notice that, taking the supremum of the second term leads to equations of motion

% — ¢ = (x) — ¢ = 0. Taking another variation w.r.t J gives,

0
ﬁ = G,(f) (331,33'2).

iati i i 6] _ (2 _ 82T
frorrll1 ya}xlrlatlons of quantum equations of motion (7.11) 5o = Iy’ = Sol)sp@a)’
o which,

due

B =1 = () + Ryl

1_“,(62) can be thought of as the inverse of 2 point function. In the second equality we
have made use of the fact that, two variations of ASy w.r.t ¢ gives the regulator
Ry. At some supremum, J up, the flow of effective averaged action is given by,

OTele] = 0 (/ Jo— Wi, — ASk>
= —OWiJ] — 0uASk[Y]

(9.6)

Now we can use the last result of (9.5) and replace the 2-point function by its inverse
(in matrix representation), to have the final flow equation of average effective action
in the theory space given by,

ATy = ;Tr[(r@) + Riy) " O Ry (9.7)

The integral over momentum modes is written as a trace. We multiply both sides
by k then we write the derivatives w.r.t k as derivatives w.r.t Ink. We replace In k
with ¢t to write J; = kJ,, which makes the flow equation dimensionless.

O Ry,

1
i = 5 Te[(CF + Ri) ™ 0uRe| = . (9.8)

The most interesting part of the flow equation is that the functionals appearing are
functionals of the macroscopic field . We have made no assumptions on cutoffs and
scales of relevance etc. Hence the flow equation is exact. The finiteness of this inte-
gral in IR is ensured by Ry and in UV it is controlled implicitly by 9 Ri(p*) because
this term is almost zero everywhere except at p?> = k2. So we are only calculating
on shell contributions keeping the UV and IR convergence in the integrals which is
comparable to Wilsonian flow equations. However, this flow equation includes all
non-perturbative effects. This is a one loop equation and that is all that is needed.
All the higher loop effects can be obtained by iteration of the flow equation.

The flow equation is a functional differential equation, except for few cases, it
cannot be solved exactly. We can however evaluate the trace on the r.h.s by ex-
panding it in terms of a small coupling constant. For practical applications, as an
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ansatz, we truncate the theory space (which otherwise has many terms) and look at
flow in finite dimensional subspace which can potentially include features of the full
theory space.

The loop expansion of effective averaged action goes like I'y = .S + Ty 1, + ..., and
for 1-loop, flow equation is

1 1
Ok = 5 Tr [atRk(S@) + Rk)*l} = 5@ Tr ln(S(Q) - Rk). (9.9)
The solution to this gives back (7.15),
1 1
Pru = 3 Trln(S(Z) + Rk) +c = I'y~S+ 3 Trln(S(z) + Rk).

This confirms the consistency with the perturbative approach. Now lets us use
these techniques to find (if any) fixed points in higher derivative theories.

9.2 Exact Renormalization Group Equations for
Higher Derivative Theories

K-mouflage along with Galileon theories can be expressed using a polynomial P, (X, B) =
> Cam(k)X"B™ where X = —(9p)?/2A% B = Op/A%. For our extended-BD

n,m=0
theories discussed in previous part, we can truncate the theory by taking up to

dimension 8 operators,
P]C<X, B) = Co,0 + CL()X + 0072B2 + CLlXB + +02’0X2. (910)

The operators on r.h.s are of dimensions 0,4, 6, 7, 8 respectively!. The couplings are
dimensionful which in terms of dimensionless couplings (with tilde) can be expressed
as,

én,m(k> — Cn7mk4n+3mf4'
The coupling ¢; o can be recognized as the rescaling parameter from wavefunction
renormalization (2.13), ¢; o = Z/2. To obtain fixed points, we have to first derive

the running of dimensionless couplings. Let us first focus on P(X) theories [’y ~
[, A'P(X) 4+ O(9?) and use the step function regulator from (9.2),

Ry, = Zi(k* + D)O(0 + k?)

We recall that in (8.7), as we had not defined effective average action for higher
derivative theories, we could not use I'y; (7.15). But now we can make use of this

'Dimensions are in accordance with (8.1), [¢] = 1, [0¢] = 2,[X] = 4, [B] = 3.
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through (9.9). In momentum space, taking step function regulator into account,
ERGE is,

P.(X 1 Zik
OF(X) _ / d*p A : (9.11)
ok (271')4 p2<k? Zka — ka2 + lep“p”

8%(8Sk.clel)
6¢
(7.15)). We again point out that Zj is the wave function rescaling parameter and

Z is the background field dependent factor which behaves like an effective metric.
The presence of Z ~ P' — P"(0¢)? from (8.4) implies we have many terms in the
denominator if we do not consider any truncation and the equation is not exact.
Multiplying k& on both sides we have,

8Pk 1 / 4 Zkk:2
e - d 9.12
ot (271')4 p2<k?2 b Zkka + Xk,uypupy ( )

where X ., = (2, — Z10,,). For P(X) theories alone, from our truncation (9.10),
we have P,(X) = coo + c10X + ¢20X? Now we expand r.h.s up to second order in
X and perform the integral in spherical coordinates up to momentum shell k,

oP; 1 / N P 4 (Xk,wp’“‘p”>2 N
»

where we have used (8.7) by taking its variations w.r.t ¢ twice S,(f) ~ (see

ot (2m)! 2, k2 Zk?
where, X, = —4¢20X 0,0,
% _ A, [1 B 20270ij n 4C%’OX2 k41 (9.13)
ot (2m)4 co 6 o 8
_Ar l 180X 1 5370)(21
(2m)* 3 G0 2 &y

Now matching the coefficients from [.h.s, we get equations similar to beta func-
tions for couplings ¢; ¢ and ¢;o. Since we are on flat spacetime, we have ignored
the vacuum energy. Otherwise we should have included a scale dependent vacuum
potential along with the coupling c¢o. The beta functions for ¢ g is,

8(]{345170) —~ ]C4 5270
ot 12w ¢y

Bro = (9.14)

k4 53,0
8m3 &7,
that we have a trivial fixed point for ¢, = 0. Also, we see that the beta function
vanishes for no values of ¢; o. However, we know that at least for classical canonical
kinetic term ¢, # 0. The couplings considered in our truncation only have trivial
fixed points rather than non-trivial UV fixed points. If it was the latter case one
would have to linearize beta functions around fixed points and look at the direction
of the flow - that is if the flow is towards IR or UV (Appendix(D.3)). These are

For fixed points we have ;9 = 0. For ¢y, we have 859 =~ where we notice
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know as relevant’ and ’irrelevant’ flow respectively. UV fixed points however do
not indicate that we have reached a fundamental theory. They would imply a
very generic prediction for all our experiments irrespective of quantum corrections
which is exactly our aim. From these fixed points the couplings flow slightly on a
hypersurface when we reduce the scale. If we find irrelevant flows in some couplings,
then this implies that there are some quantum fluctuations which dominate at low
scales. If we find a non-trivial UV fixed point at all then we can have a scenario like
asymptotic safety similar to what we have for gravitational coupling. However, in
the considered P(X) truncation we do not find any such fixed points. Hence these
theories are valid as effective field theories without any problems from the quantum
sector.

Now we shall take into account the complete truncation (9.10) involving Galileons.
We start by deriving a very general expression for the inverse propagator as done in
9] and then use it in our context to find if any non-trivial UV fixed points exists.
First, let us distinguish between derivatives w.r.t X and B by specifying them as
subscripts. For example, Px = dP/dX; Pz = dP/dB; Px p = d*P/dXdB. We also
suppress the subscript k. We can split the fields ¢ — ¢ 4 €¢, with for small e. The
inverse propagator is obtained by taking functional derivative - this can be expressed
in a form where a kernel 2L is acting on the test’ function ¢ [112].

Jala
e

Let us start with finding the kernel. The variation of effective action twice w.r.t
background field and collecting terms up to quadratic order, we have,

/ 52rk ( )
do(x ’ (9.15)
= Pxd( 6X) + PXX((SX) + PxpéX6B + Ppp(dB)>.

ol [p] =

Now we use integration by parts and separate the terms into kernel and test function.
Every term in the above equation is represented in a separate line on the 7.h.s.

Lle]® = [0,Px0"]¢(x) + [Px0"8,]¢(x)

— [0"(Pxx0,90,)0"|¢(x) — [(Pxx0,p0,$)0" 0" |d(z)

— [0"(PxB0,p)0"0,]¢(x) — [20,(Pxp0,9)0"0"|p(x) — [OPxpd,p|0"d(z)
— (0.0, Pp) 8" 0" |¢(x) — [20, Pep00"|¢(x) — [Pepl?](x) .

This is exactly the equation obtained in [9] where the expressions are regrouped to
write,

Z_,uu[@] - PX(SW/ - (PXXall,@aV@) - 8p(PXBap§5)5MV
- 28#(PXB&/95) - (8p8pPBB)5W7
Z,[¢] = 0,Px — 0"(Pxx0,p0,¢) — O(Pxpd,p), (9.16)

— / lgﬂ o) = (Zw[@l0"0" + 2,[¢l0" + 20,Ppp0Id" + PppI*)¢.
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Now we take IR regulator of the form [9, 113],
Ry = [Z1(k)(K* + D) + Zy(k)(k* — O*)]0(K* + 0).

We then follow steps similar to the previous example of P(X) theories; this included
expansion of the fraction on r.h.s of (9.12) up to second order with the only change
being, we stop at the leading order this time. Hence we only obtain beta functions
for some of the constants whereas others vanish at first order. Also, 21 = ¢; and
Zy = Cpa.

OP
p2 =
ok
/ d4p Zlk’Q + ng?4
(2m)4 (212 + Zok4) + [Z_p,y + 2Ppgp*6, — Pxx0,, — (21 — Zop?)0,u|pHp”

(9.17)

On performing the integration and comparing with [.h.s we get the beta functions
of all the couplings in our truncation. Ignoring the vacuum energy cg, we list the
beta functions for dimensionless couplings.

> 0¢1 4 ¢y
~Nk—= R~ — ’
hro~k5; 1273 .
~ 0¢1 4 4c¢y 4 1
/8171 ~ k ak ~ 247T3 (9 8)
¢y 2 _ Coz2
ok 2473

Boo = k

Again, we see that we have to have ¢, # 0 which validates our previous result.
Also we see constant beta functions for & 1,¢p2. This might be indicating that
higher derivative couplings are not running. From (7.22) this implies that there is no
quantum contribution (and without a fixed point, we cannot have asymptotic safety
scenario). However, we have to go for next order in our expansion in denominator of
(9.17) to make final conclusions. Our results can be related to the one obtained for
a much bigger truncation (and background ansatz) in [9]. There, they also proceed
with linearizing beta functions near fixed points to obtain the direction of running.
It is also shown that ¢;( has the marginal direction whereas other couplings are
repelled away from UV and run towards their trivial fixed points ¢, ,, = 0 in the IR.
Here we have not discussed the aspects of UV completion for which we again refer
to [9]. To conclude, we have shown that we do not have running of couplings which
allows us to use K-mouflage and Galileon theory as effective field theories.
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10 Summary and Future Prospects

In this thesis, we studied Higher Order Derivative theories in the context of ex-
tended Brans-Dicke theories. We pointed out difficulties in explaining non-negligible
differences between effective cosmological gravitational coupling and the locally mea-
sured Newton’s gravitational constant. We have also check the stability of classical
screening solutions against quantum corrections. Using ERG approach, we show the
absence of running of couplings.

The first part included an elaborate discussion on Fine Tuning Problem in the
context of CC and Higgs. We introduced standard regularization techniques and
renormalization schemes. An invitation to beta functions and fixed points was pro-
vided. Using these tools we not only commented on Hierarchy and Fine Tuning
Problem of Higgs but also used them to compute vacuum energy in flat spacetime.
We then proceeded with computation of vacuum energy density in curved spacetime.
In the propagator expansion in curved spacetime, the first term clearly corresponds
to vacuum to vacuum bubble diagrams of the flat spacetime. Bubble diagrams with
graviton hair will only contribute to calculation of vacuum energy density in curved
spacetime. The appearance of bubble diagram without hair, explains why the re-
sults of vacuum energy density in flat and curved spacetime are the same. There is
already a need for a more realistic and practical tool to describe the vacuum energy
density in generic, nontrivial, curved background.

Since we do not yet have a theoretical way to express the actual vacuum energy
density in curved spacetime, we look at the beta functions for the gravitational
coupling. This eventually leads to Running Vacuum Models which presents many
interesting upshot. The model describes the running of vacuum energy density as a
function of curvature or H2. However, in such models we have a nonzero constant
background value p?,. which corresponds to present value of vacuum energy density.
In the second part we show simple connections between these models and Brans-
Dicke Model. This leaves us with BD-ACDM which is simply Brans-Dicke Model
with a constant vacuum energy density. After list some important equations we
give a short note on observational consequences of this model, particularly in the
context of Hy and oy tensions. In this model we have a scalar field which quantifies
the effective gravitational coupling, has a small evolution curve in the cosmic history.
The model predicts that in the cosmological scale, gravitational coupling could be
4 — 9% stronger than what we locally measure. Experiments put tight constraints
for a varying gravitational coupling within Solar System. This calls for a screening
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mechanism, which does not affect the behaviour of theory in the large scale but
reduce it to GR in the Solar System scale.

In this spirit, we look at ‘extended’ Brans-Dicke Theory. The ‘extensions’ to the
original BD-ACDM are simply borrowed from the Horndeski Lagrangian which pro-
vides very general higher order derivatives of the scalar field in the Lagrangian yet
results in equations of motion which are of second order. The nonlinear terms in-
cluded results in screening the BD effects in the local scales. We use cubic Galileon
and quartic K-essence terms leading to Vainshtein and K-mouflage screening mecha-
nisms respectively. However, we see that the screening mechanisms can only explain
tiny departure of local gravitational coupling at cosmological scale. This remains
a problem for BD-ACDM which predicts much bigger deviations in effective grav-
itational coupling. However, we recognize, very small values of egp = 1/wpp at
cosmological scales (allowed by the cosmological data) as the root cause of the prob-
lem as it leads to very mild spatial variation of the scalar field. For wgp — —3/2, we
can explain the difference between gravitational couplings of two different realms.
This limit not only indicates very significant deviations from GR at intermediate
scales, also as the deviations happen for a particular (low) field value, one demands
explanation for this fine tuning. Moreover neither cosmological data nor Solar sys-
tem measurements allow for wgp — —3/2. “Our analysis suggests that the current
value of the cosmological gravitational coupling can only be extremely close to G
in the context of the scalar-tensor theories of gravity that reduce to BD-ACDM at
large scales, and this can be used as a boundary condition in any cosmological study
dealing with these theories”[10].

In the third part of this thesis, we started the discussion with looking at validity
and stability of classical solutions against quantum 1-loop corrections. We simply
reproduced the computations of [8] in a detailed manner. We define validity regime
where 1-loop radiative effects are less compared to the classical solution. This study
in effective field theory perspective is relevant for higher derivative screening mecha-
nisms because, the latter rely on domination of higher dimensional operators within
the screening radius. In EFT perspective, such domination indicates, breakdown
of perturbation theory. The radiative corrections might possibly spoil the classical
screening behaviour. We see that for K-essence and Galileons, the quantum correc-
tions are low even deep inside the screening radius. We also describe briefly why
this approach is not the complete picture. We make use of flow equations of effective
averaged action which is by definition a functional of macroscopic fields implying it
has all the information of the quantum level, to study the stability of higher deriva-
tive theories in the UV scales. Using the general flow equation [9], and truncating
the theory of our interest (up to dimension 8 operators), we investigate the beta
functions. We see that at first order expansion, there is no running of couplings.

90



Part 1V

Appendix

91



A Lists

A.1 List of Figures
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1.1

2.1

6.1

6.2

6.3

Here we show diagrammatic representation of SSB which is often
found in literature (for example [13]). The symmetric potential in
red and the potential after symmetry breaking is blue curve is the
broken potential. A simple analogy of Paramagnet to Ferromagnet
phase-transition can be made where we have (rotational) symmet-
ric potential for high temperatures beyond a critical temperature T

below which we have broken phase. . . . . . . . ... ... ... ...

Examples of beta functions and fixed points is shown in this g vs ¢
plot. This plot is inspired by [18]. All the curves have a trivial fixed
point where the coupling vanishes. There are also IR and UV fixed

points ¢g* # 0 indicated by blue and red points respectively. . . . . . .

Left PLot: We plot the function g(z) (6.18) as a function of =
This represents the shape of ¢ (6.17). The screening here refers to
Vainshtein screening. Right PLot: We plot the function y(x) (6.28) as
a function of - This represents the shape of ¢ (6.27). The screening

here refers to K-mouflage screening. . . . . . . . ... ... ... ...

Here we plot screening radius as a function of ¢ = (1 — (). In both
the plots red line is the size of Vainshtein radius ry and blue line is
the size of K-mouflage radius 7k to obtain which we use egp = 2-1073
in (6.20) and (6.29) respectively. From both the plots we see that we
need very small values of (1 — ¢(®) to obtain reasonable values for
screening radius. Left PLot: We see the screening radius associated to
the Solar System as a function of ¢. The black dashed lines indicate
Schwarzschild radius (2.9 km), radius of Kupier belt (~ 50AU) and
a radius which is ten times radius of Kupier belt. Right PLot: We
see the screening radius associated to the Milky Way as a function
of ¢. The black dashed lines indicate Schwarzschild radius (0.25ly),
physical radius (15kpc), and a radius ten times the physical radius.

For both the plots we have considered Solar System values - rs., =
2.9km and set ry = 50AU, ¢ = 0.9. n is a positive number in
(6.36). Left Plot: ¢ = 0y (6.36) for various values of n. Right Plot:

Plots for associated wpp(r) (6.34). . . . . . . . ...

7

29



7.1 Here we show how the coupling strengths of Newton’s gravitational
constant and dimensionless gravitational constant vary with scales.
The energy scales are labeled as A.,;. They are normalized with
Planck’s mass Mp. The dimensional coupling Gy remains constant
at low energies and decreases like 1/AZ,; at high energies. The di-

mensionless coupling Gy however reaches a fixed point G"]‘V at high
energies. We can clearly see the transition when A, ~ Mp. . . . . . 72

A.2 List of Tables

5.1 We schematically show different scalar tensor models realized from
of the Horndeski action (4.7). Here, GGC refers to Galileon-Ghost
Condensate. . . . . . . .. 49

D.1 Relevance of Operators in Effective Lagrangian and Renormalizability 105
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B Perturbed Quantities and Equations of
Motion

B.1 Perturbed and Important Geometrical
Quantities

We list the formulas of some geometrical quantities up to first order in the perturbed
metric h,,, which includes Christoffel symbols, Ricci tensor, Ricci scalar and Einstein
tensor. They are respectively given by,

o /i
D5e(h) = 75 (g + g = ) (B.1)
1
Ruy(h) = 5 (090, by + 0° Oy — 0,0 — 11 0a0shy | | (B.2)
R(h) = 8°0"hay — 1" 00, (B.3)

1
Gu(h) = 5 100, hagy + 0°Ouhew — Db — 1770005 hy + 1 (17 0a0sh — 9°0°hag)] -
(B.4)

We also note that unperturbed Weyl tensor (only defined for dimensions d > 2)
is given by,

1
C;U/aﬁ = Rw/ + ﬁ (gMO'RpI/ + ngRO’M - gupRau - gVO'Rp,u)
1

ICEDICEr)

(gupgua - g;wgz/p) R. (B5)

B.2 Equations of Motion

Here we give detailed derivation of the field equations[114] for chapter(6.1)
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B.2.1 Cubic interaction term
Field equation

Action

Siom = [ atev=a | g (0B 2T0P 4 FOUTOR) < | 450 (B0

Differentiate with respect to 1

0S =0=0dpR—§ (Z(VQ/JF) +differentiate self interaction term+((§2n =0) (B.7)

The second term variation is

5 (Z(ve)?) = =2 vV w6 (“’(Sv > _ o 2 Or(5p)V i — — 20
(20907) = - £9mu9,0t0+ (26907 = 20609, = 22
(B.8)
The third term in the RHS can be simplified as follows,
3(Vp)? = VH(0p) Vb + VIV, (59)
— OV ()Y, (B.9)

— —Wdeb

In the third equality, we have used the fact that, divergence of a vector vanishes at
the boundary; that is,

VH(V o) = 0 = (VIV ,0) 00+ (VHOY)V 0 = (VHoY)V 0 = —(VHV ,10) 0.

Now, lets differentiate the self interaction term with respect to BD field, considering
f to be a constant.

S(f(@)(Ve)*) = f3(O) (V) + fo((V)") T (B.10)

We can employ the divergence theorem for both of these terms. Let these terms be
X and Y where the later can be written as, 2(V*(6¢)V ,1)0¢ f respectively. Now,

consider

VL VH00) (V)2 f] = 0 = X + V, (V)2 V(60) f
AVHSYTIV 0 f] = 0 = Y + 2VH(T0) V060 + 2(0)? f5¢

Substituting for X and Y in Eq(B.10), the differentiation of self interaction term is,

S(f(OW)(VY)?) = =V, (VY)* V! (80) — 2fVH(OU) Vo0 — 2f(D¢)2?w |
B.11
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As the first contains differentiation of §¢) we can use the same divergence theorem to
simplify. Considering that term as A, upon divergence theorem, A = —J(V1))%fd1).
Hence the above equation can be rewritten as,

S(f(O)(VY)?) = fO(VY)*6y = 2f VH(OU) Vo — 2f(Op)*6¢  (B.12)
Now the including Eq(B.9) and Eq(B.12) in Eq(B.7), it can be written as,

?z=wn:R—ZEvwﬂmw+3fDw+fmawwkﬂfV%Dwﬂhw—2ﬂD¢V<Bl$

Now we can use the dimensionless field p = G, thus the above equation changes
to,

2 2
0=R— ;;v#@v#w :Dcp+ L nwer- 2o

2
= o 2 (Opy (B14)

.“90_ G?V
Lets further deal with term, fJ(V)? explicitly the following,
O(Vy)? = VA2V, 0V, (V7)) = 2[(VIV,0)(V,. V") + V,00(V7)] (B.15)

Now with the definition of Ricci tensor as the commutators acting on a Vector field,
R, (V') =V ,V, (V) —V,V . (V#)), we can replace the LHS term in the above
equation by,R,,, (V*) 4+ V,(O¢).

Metric Field Equation
Upon variation of the action in Eq(B.6) with respect to g,,, the first term will be,
S(YR) = Y R0g" + g™ [VA(OTy,) — V. (0T3,)] (B.16)

In the second term in the above equation, the terms in the square bracket is not
the boundary term (as there is an extra field). The actual boundary terms are
(which vanish at the boundary),

Valvg" (6T7,)] = Vag" (6Ty,) + gV A(dT,)

Vo [g" (0T3,)] = Vouibg" (6T3,) + ¥g" V., (6T3,,)

The last terms here looks like divergence of a vector integrated over curved space
time volume - by Gauss Theorem, it vanishes. Now we have write variation of
Christoffel symbols in terms of variation of metric.

1
sz = igxp(vvgup) + (Vugvp) = (Vpgpu)

96



M‘i\w - ;5{9/\p[(vvgup) + (Vugup) — (Vpgu)]} = ;gA”[Vu@gup) + V,u(090p) = V,(69,)]

1 1
51—&” = 55{g>\p[(v>\gup) + (v,ugAp) - (Vpgku)]} = §g>\pvu(59p>\)

(B.17)

Given that we have to evaluate, V ig"’(dT),) — V,4g" (0T'},). The metric is
not raised and we have been varying with respect to dg"”. So we need to convert
G — g using, (See Appendix A of [Alejandro Guarnizo et.al 2010])

09as = —Gangp09"” (B.18)

—Vag" (0T,,) + Vubg" (0T3,) = Var[=g" (0T},) + g"*(0T3,) (B.19)
= Va[V,u(3g") = 9V (09™)] (B.20)

We had changed the variable A — v in the above equation. We will change it
back, which is now,

VoV 0" — Vg, V> agH

As the terms involve the derivatives of the variation, we can simplify these terms
again using the divergence theorem.

V. (Vopdgh) =V, NV, pog" + V, V69"

v/\(v)\wg;wéglw> = v/\v/\wguy(gglw + VATMWV’\@W
LHS vanishes, Hence Eq(B.16) is,

0(YR) = YRy 0g" + (9w — V.V, )10d g™ (B.21)
Now we can vary the second term in Eq(B.6) which is straight forward

s d

(8 (8

Also, variation of S,, gives the Energy momentum tensor 7, which also added
with the constant energy density of vacuum.
Derivative of the interaction term is,

S(fOU(VY)?) = fO(Ow)(Ve)® + fOpd(Vy)* (B.23)

0(=—(VY)?) = = (V. V., )dg"” (B.22)
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Let us focus on the first term on RHS as we have seen the last term will be
dg" (fOyYV V). To see the variation of d’Alembert operator we need variation
of Christoffel Symbols given by Eq(B.17),

§(W) = 69"V NV, — g (T2, VAt (B.24)

pv

1
= 09"V, V0 + VAV . (5g™) — §QWV,\¢VA(5g‘“’) (B.25)

In the second equality we have used Eq(B.18) to raise the indices of metric under
variation. We can again use divergence theorem to remove that variation of metric
under derivative.

O(f(Ve)*O)

= 09" [f(VY)*V. Vo) = V[ f(V) V9] + ;gﬁ“’vx[f (VO VawIv.) (B.26)
Eq(B.24)

+ fOP6(Vy)?

The first term in the second equation cancels when we see the variation root of
determinant of g. We can try to solve the derivatives but it does not matter. Hence,

o(fOU(VY)?) = 59“”[—f¢VH(V¢)2VV+;QWVWVA(VW%JCD@ZJVWVV@D] (B.27)

Putting all the bits together Eq(B.21), Eq(B.22) and Eq(B.27) or simply (keeping
the total derivatives without simplification in the previous step),

65
Sgrv
1 1 w 1 9
R,uz/ - §Rg;w + E(vuvuw - guuD¢) - E[vud}vuw - §guu(vd}) ] (B28)
1 1
+ E[f(VL/J)QvMV,/I?/) - V,u[f(V@/J)Q]VVQ/J + §guuVA[f(V¢)2]VA¢VV¢]
Making substitutions to the earlier equation,
w 9 w
Gy + g [ + %(VSO) ] = [VuVip — ;VMPVMP] (B.29)
I 9w ORI 2
+ 25 00V,oVop + 525 VapVA (V) — 5V [Ve'V,p (B.30)
Gy 2G%, Gy
— 87G (T — prgu) (B31)

98



B.2.2 Quartic term
Differential w.r.t field
O[OV YV ) (VPPV )] = 20(VHV ,00) 5(VFPV 1)) (B.32)
26(V 1)

RHS can be simplified using the divergence theorem
VuI(VERYV ,40) (09)] = 0 = V ,(V*V ,90)d1+RHS of the above equation (B.33)
Finally we have,

o(Ve)t
ot

— 40V, [V (VMY )] (B.34)

Differential w.r.t metric
This is straight forward

(g™ (Vb Vo) (V)?)

Sgn = 0(VY)* [V VY (B.35)

There is also an additional term in the equations of motion as we are also differ-
entiating /—g w.r.t the metric.
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C Feynman Methods and Loop Integrals

C.1 Feynman Methods

We list some useful methods for loop integration.

1 1 1 ! 1
s dzdy §(z + (1
AL A, /0 [2A; + (1 — 7)Ag]? /0 yolr+y-— )[g;A1 Tty A, (C.1)

We can have a general formula for

1 ! (n —1)!
AAy A, /0 d1dzs..dzy 5(21.: e T A o T oA

1 B ! Lz T(my+ ... +my)
ATTATE A /0 derdandan 00 i = 1) s T ) T
(C.2)
C.2 Loop Integrals: 4 dimensions
o (- z’)\B)2/ &k i
V) = 2m) k2 — 1 (p + R)? — il .

MB o 1 ,
s (P =k
/ / YR+ x(l—2)p2—m2)?2’ ( +ap)

We start integration over energy component then, clearly the integrand has poles

at lp = :I:\/ﬁ +2(1 — z)p?> — m3 and the contour is along the real axis. If we
subtract a small value ie from the denominator, we see that the poles are located
slightly below and above the positive and real real axis. We can calculate the the
residue,

2 m/ /d3l 1 o
B 32713 (13 — x(1 — x)p? + m32)3/2 '

Now performing other three integration will reduce the power of denominator by
1/2 and multiply by an overall factor. In the last integral, we see that there is a
logarithmic divergence ~ 32 Z, fo dxlog(l? — z(1 — x)p? + m2).

But the most often used method is Wick rotation where we rotate the integration
contour from real axis to imaginary axis by substituting {° = il%. Now, the integral
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is reduced to one in Euclidean space where we can use rotational symmetry to
integrate over the volume of 3-sphere.

d*ly dQq [ 5 o2

Now we use standard integration procedures by substitution as given below.

3 1 2 2\ _ 2 w2 a2 1 2 1 1
de:f m2mdx( ) 2 fuma du=~{=-—a’lnu
2 + a? 2 22+ a? 2 u2 2 \u

(C.3) can be solved similarly (we apply the limits in the last step).

Z)\2 d4lE 1 .
R e e e AL

MQ / p /dl 13
Y ’ P2 —z(1—2)p2 + m2)?
_ i / df[ (1 —z)p* + m?

322 %+z(l—x)p*+m

o0

+log<l2 + 2(1 — x)p? +mL)]
0

(C.6)

C.3 Loop Integrals: d dimensions

Solving the integral (2.7) which is a d dimensional integral is not very different from
our previous calculation in 4-dimensions. By analytic continution to d dimensions,
we have,

9 wﬁ)\B dl 1
Vi) = / / d(12 4+ 2(1 —x)p2 —m2)?’ (C.7)

The evaluation of the d dimensional volume integral can be simplified using the
Gamma functions I'(n). Because,

(R = </dx€_xz>d: /ddmxp{_iﬁ} :/de_I/OOO deate ™ os)
:/(dgd_l) @F(d/?))-

We can use this to separate the integral as follows

ddlE 1 defl o0 ldEfl 27Td/2

= dlr : wh A, 1 = ———

/ 2m) (I3 + a2)? / <27r>d/0 (12 +a2)2 " W/ 1T T(d)2)
1 (l2 )d/2 1

| o 2
1nteg1"al over lE 1S A Wdl}; = 2/0' Wd(ZE)
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Continuing with the integration by substitution,

1 (l2)d/2 1 o\ (u=a?/12+a?) 1 /1 2-dfz 1-d -
1 7dl /E Lrl 1201 — W)Y qy. (C.9
o, e (@) [ o

Now we use beta function and gamma function relation 5(a,b) = I'(a)I'(b)/T'(a+Db).
The complete integral would be then,

2¢ ddlE 1 B (M2)27d/2 1‘\( d/Q) 2 2—d/2
' / @m)* ([ +a)  (4m)¥ () ()

Due to poles of Gamma function the integral has the poles as well. The approximate
behaviour for €/2 = 2 — d/2, is given in terms of Euler-Mascheroni constant g

2
['(e/2) = ~ e + O(€e) where, yg = 0.5772

We set d = 4 — € and expand exponential factor 1/a? around e = 0.
1 €/2 we1/a2
(2) (=1 exp{elnx} =1 + “Ina+.. (C.10)
a 2

We have included a factor of 47 which comes from the Gamma function and volume
integral and denoted Ag(pu?)2~%2 as A(u).

V(p?) 2 A (p) /01 dx li — e +log ( 5 Ay )1 (C.11)

mi — z(1 — x)p?

C.4 Divergent Integrals: Vacuum Energy

In d — 1 dimensions, the energy and pressure (d — 1 appears due to d-dimensional
energy momentum tensor) density integrals are

<,o>=; [ v = 1 [ e [ ageye e

d2q—s Ty (d/2-3/2), (d/2—-3/2)] M . 2012 2
o [l [ = ] T (5 )

1 (2
d
_ mj / ddy—s / (1 = u)(@/2=3/2) (~4/2-),

27Td1

1 dk | dQy_s o\ (B2)4/21/2
<p>‘2<d—1>/ 2r) T IE T ‘4<d—1>/ <2w>d—1/ W) e

md de_Q
_ du(l — ) @/2-1/2),(~d/241/2)
4<d—1>/ <2w>d—1/ u(l )

(C.12)
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For dimensional reasons we plugged in a new parameter p along with €/2 = 2—d/2
n (2.7). Similarly, we make of these parameters here as well. We then have to refer
to (C.9) to express the integral in terms of Gamma functions and using volume
integral (C.8) for d — 2 dimensions,

_prm® T(—d/2)
Ch 2(4m)-1T(—1/2)
_prm® T(—d/2)
W)= Jam T2

(C.13)

Then we expand around € = 0 as we did in (C.10) that is, m™ ~ (1 — em) and
(471)5/2 ~ 1+ gln(47r),

1 2 3 47 p?
_taw|, 29 1 K C.14
=5 =2 5 - ()] (C14)
where 61(\1) = 3’2”;2 is the one loop beta function.
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D Effective Field Theory

D.1 EFT: A Short Note

[For detailed discussion see for example, [18, 91]]
We write the effective action as an expansion in terms of local field operators of
low energy as,

SE[XL]:/dd:L'LE where, LE—ZQ xz, OxL]. (D.1)

We have written the effective Lagrangian explicitly in terms of coupling constants
¢; called Wilson coefficients and functions F; of low energy fields x and its deriva-
tives dxr. The Lagrangian in principle could contain infinite terms in the sum
(allowed by the symmetries of the theory). With our assumption of a single funda-
mental scale A for the theory, and coupling with mass dimension [cl] = 7;, we can
write it in terms of dimensionless couplings denoted by ¢; as, ¢; = A% The order

of these couplings could have a wide range in principle but we assert on naturalness
claiming that, they are of order 1, ¢ ~ O(1) unless we have specific explanation
for their smallness or largeness, for example we encountered such problem in case
of the CC and Higgs, where we had unnaturally small value for the observed value.
Now the values of couplings determine how much does each term F; in the La-
grangian, contribute in some measurements (we assume the measurable quantity to
be dimensionless).

i =6 (Am”) =<{>1 ify <0 (D.2)
ot <1 ify >0

We can see that, due to largeness of A, (< A), only the first two cases are significant.
We can truncate the infinite terms in the Lagrangian depending upon precision we
need to compare with the experimentally obtained values. Since Lagrangian Ly has
mass dimensions of the spacetime d, then each term has dimension [F;] = D;. With
the couplings ¢; with dimensions ~;, we can write, D; = d + ;. Now, we can classify
the terms in the summation (D.1), as given in Table(D.1)

Naive dimensional analysis tells us that only finite number of relevant (and marginal)
terms exist in the expansion (D.1). We can have any arbitrary number of irrelevant
operators but as we see from (D.2), such couplings comes are suppressed by higher
powers of A. We have to remember that, we are looking at free theory Lagrangian
and the quantum effects can change the scaling of couplings described in (D.2). In
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Dimension Relevance as A¢yp — 0 Renormalizability
D; <d (v; <0) grows; relevant operators super-renormalizable
D; =d (v; = 0) | constant; marginal operators renormalizable
D; > d(v; > 0) falls; irrelavant operators non-renormalizable

Table D.1: Relevance of Operators in Effective Lagrangian and Renormalizability

perturbation theory, we can make use of the dimensional regularization in which
case, our A is just p. In fact the couplings can be written as ¢;(u) and ~; are
anomalous dimensions facilitating regularization. The non renormalizable, higher
dimensional irrelevant operators contribute for the precision of measurements of a
low energy process and tells us about the physics at cutoff scale.

Symmetries are defined while writing the Lagrangian. From our naturalness asser-
tion, mass of a scalar field in 4-dimensions, comes with 'relevant’ operator m? ~ A?
(natural). This is the case for the Higgs field which was discussed in first part. In
order for EFT to work, we claim all the mass terms to be forbidden. This imposed
symmetry (scale invariance) can then be broken at low energy through which the
particles get masses. This is like chiral symmetry for fermions where their masses
vanish imposing this symmetry. Unlike chiral symmetry, Higgs mass is not protected
by any symmetry and hence is not consistent with our low energy effective picture of
the Standard Model. Supersymmtery would be one of the way to solve this problem.
Indeed this problem of naturalness is exactly what we came across as Higgs mass
fine tuning problem.

EFT is based on the idea that the picture of the Universe depends on the energy
scales in which we see it. For example, decay of muons can be approximated by
Fermi’s Theory of weak interactions where W boson is integrated out. In this picture,
we have a four fermion vertex parametrized by Fermi constant, Gr. This ’effective’
picture is valid up to 107% corrections. For precise measurements of muon lifetime
lifetime (which is O(107°)/GeV?), we will have to include the W boson propagator of
Standard Model theory. To summarize, Fermi Theory of weak interactions is the first
order approximation of the much bigger theory, for example Standard model which
will give corrections of the order, O(AZ—Z). Another example would be dimension 5

operators which are necessary to include the right handed fermions to the SM. The
Standard Model of particles is also an effective field theory of a much bigger theory
in the UV scale which we don’t know yet.

EFT involves following steps, before one proceeds to compute the observable
quantities.

o Identify relevant degrees of freedom : this gives us an idea of available number
of fields in Lagrangian.

o Identify relevant Symmetries : this determines the kind of operators appearing
in Lagrangian. All of those operators has to be included.
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Lg [X] = Lk’inetzc + Z i | XL7 aXL (Dg)

Usage of EFT can be two ways, bottom-up approach and top-bottom approach.
The latter approach refers to a situation where the high energy theory is known but
we employ EFT to understand low energy behaviour of the theory. For example,
QCD. The former approach refers to cases like SM where the underlying theory is
unknown but we can write a EFT Lagrangian with all possible operators whose
couplings are measured in the experiments. The precision of the experiments tell us
how many terms are needed to explain the full theory.

We are aware that we can only do experiments up to some energy scales. Most of
the theories we have so far which have been tested very well are phenomenological
theories and for a pure theorist, there exists a fundamental theory which explains our
universe in high energy scales - and the low energy physics can be calculated exactly
from this underlying theory (even if the computation is hard). In this context,
Standard model is a phenomenological theory where we can test our effective theories
of low energy by doing precision experiments.

So far, by setting a high energy cutoff we built a effective theory which captured
relevant terms at this energy scale so as to make predictions. Evidently the drawback
of this approach is that we would not know if there were relevant interactions in the
high energy which we integrated out. So we are stuck with many theories each valid
up to certain energy scales. A vast number of QFTs have a same low energy theory,
this is called universality.

In perturbative theories we encountered Landau pole (in QED for example) where
the perturbative approach breaks down. In our EFT approach we can evade such
problems because existence of such pole is just an indication that theory is simply
incomplete and there exists a much bigger theory at high energy scale where it has
to incorporated.

D.2 High Energy Interactions

We can handle interactions by splitting the full action into Sa[xr + x#u] = So[xr] +
So[xu] + Salxr, xu]- The pieces Sp[xr], Solxm] contain no interaction terms hence
are tree level actions. From (7.16), realizing the effective action Lh.s also includes
tree level action for y; which cancels with the first piece of the splitting, we have,

Selxt]=—In [ / Dxwexp{—Sa[xr + xn] }] .
D.4

T SitxL] = —In [/ Dxy exp(—So[xu] — SA[XLaXH])] :

Now, the trouble is in including the high energy interactions Sy[xr, xg] while the
other term on the r.h.s only contributes to the vacuum energy. Since we shall
restrict ourselves to weak field or Minkowski limits in the further calculations, we
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shall ignore contribution of the latter in this section. The real space propagator for
high energy modes is the integral,

ip-x

dp e

G, 1) :/ X

Aewr<lplza (2m)4p? +m?

This is full integral up to the fundamental energy scale A which implies integration to
smallest length scales. To have a flow, we lower the scale by 0A, that is, A" = A—0A,
in the lowest order, the propagator is

1 A
(21)4 A2 + m?2

Ga(z,y)| = /de_leiA'p'(m_y).

As we can observe, the integral space has reduced. To lowest order in JA we have
to consider only up to single xy propagator. Treating x as external legs then we
have only two possibilities to incorporate xy as a single propagator. It has to be
either a loop connects the same point which can have many x;, legs or a propagator
connecting two n-point vertex which can each have many y, legs!. This mechanism
is like zoom out mechanism. We start out with high resolution-integrating smallest
scales and slowly vary the (first order) the scale to zoom out to finally obtain the
full theory in the macroscopic level. This is encoded Polchinski’s equation which is
infinitesimal limit of e,

,0S\ / d ad [ 0SS\ 0SS\ 5%Sn
—A = [ d%d Gar(x, —Ga(x,y)—————|. (D5
oN Y 5XL(37) w(@:9) Ixw(y) w( y)5XL(5U)5XL(33) ( )

In practice, we expand Sx[xr, x| in derivatives of the potentials which is called the
loacl potential approximation. Even though this equation gives us a hope to attain
knowledge of full theory, this is in principle includes many interactions and loops
if we consider higher orders of dA. This complicates calculations. However, to our
rescue, we shall later use much more systematic way of dealing with high energy
theory.

D.3 Fixed Points Revisited

The fixed points of beta functions were described in section(2.2). In the similar
fashion, we have, §;(g;) = 0, where g7 denotes the values of the couplings at fixed
point. At this point the theory is scale invariant. We can think of these points as UV
or IR points in a theory space, and beta function would determine the trajectory
on this space. This scale invariance is quantum in nature. The scale invariance
of classical action plays no role here as they might be broken due to quantum
fluctuations. For example we can relate this with Weinberg-Coleman model[20]
which uses radiative correction to attain SSB even when mp = 0 in (1.10). Best

1One can hence expect non-locality.
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example would be from QCD where, fixed point ¢* = 0 denotes asymptotic freedom.
This point where couplings vanish are called Gaussian Fixed Point in contrary to
non-Gaussian Fixed Points which are fixed points in interacting theory. To get to a
non-Gaussian fixed point one can see from (7.22) that we have to tune the quantum
part (the second term) very carefully to cancel out the first term. Hence it is rare
to come across multiple (non-trivial) fixed points.

One looks at the vicinity of fixed points to see the direction of the flow - whether
it is from IR to UV or otherwise. At close vicinity of these points g + dg;, we can
approximate the trajectory using linear beta functions given by following expansion,

09
OA

cut lg; +dg;

Bi(g;) = Bi(g}) — Aecut = By;(g9")(g; — g;) + O(69)*.

The first term in the expansion is zero by definition. The stability matix B;; =
—%;Jg_j) is a constant matrix and in principle, can be infinite dimensional. From
the analogy of (7.22), we can expect the eigenvalues of this matrix to be d; — d in
case of a classical theory. If we renormalize the theory, then we have anomalous
dimension ~; for ¢« number of fields. This is in fact the difference, A; — d; such that,
in classical theory we have A; = d;. So the eigenvalues can be written in general
as, A; — d where we also include the contribution from rescaling parameter Z. The
corresponding eigenvectors be 0_; Consider a direction along one of the eigenvector

denoted by subscript [, now the linearized flow equation is simply,

6,

Acu ar
' 6Acut

Ay—d
= (Al - d)gl + 0(92) — Gl(Acut) = <A/§7t> QZ(A/)

Now if we have operators with A; > d, the coupling reduces as the scale A.,;
is reduced. Also if A; < d then those couplings grow as scale is reduced. The
lowering of the scale refers to moving towards IR theory. In the former case, the
couplings are called as irrelevant as they take us to the critical point even if we
included it in the action. In latter case, the couplings are relevant. Starting from a
fixed point, if we lower the scale, we evolve along the trajectory, the renormalized
trajectory, either eternally or to meet another critical point. There is yet other
possibility of having A; = d in which the couplings are called marginal where the
couplings remain unchanged in the flow of scale. The quantum part can contribute
a small running which can be irrelevant or relevant. The there cases of relevant,
irrelevant and marginal couplings correspond to the respective operators as described
in Appendix(D.1).

From the above example of Newton’s gravitational coupling, we can see that, the
first term in (7.22), dimensionless coupling Gy = GyA2, grows with the scale.
Lets assume, below Planck scale, all the quantum fluctuations (second term) are
suppressed. Then we know that dimensional GG is constant. The Planck scale
marks the regime above which the quantum fluctuations balance (G decreases
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with increasing scale) the canonical running in the first term leading to a constant
G which denotes the fixed point G%. This is the region of asymptotic safety. In
principle this regime is of non-perturbative in nature [90]. Hence, finding a UV fixed
point can be seen as one of the first step in asymptotic safety program. However,
asymptotic safety makes strange predictions. For example, in low energy we have a
theory for gravity in 4 spacetime dimension which reduces to 2 dimensions in high
energies.

To summarize, we started out by setting a high energy cutoff and we built a
effective theory which captured relevant terms at this energy scale. We looked at
flow of couplings which represents the flow of theory (in theory space spanned by
all the couplings). We also interpreted trivial Gaussian fixed point where all the
couplings vanishes (asymptotically free) and the non-trivial fixed points where cou-
plings runs to a non-vanishing constant (asymptotically safe). Usually these aspects
are proposed to describe UV completion through asymptotic safety program. Renor-
malizability does not imply UV completion because renormalizable theories do not
promise of being the fundamental theories. On the other hand, non renormalizable
theories can be candidates of UV complete theories [115]. Even though there are
problems with number of dimensions of the theory at high energies compared with
low energy theory, and possibility of unknown couplings in high energies, we can
think of UV completion as a guiding principle. In the following, we shall use the
beta functions in the context of general Galileon and K-essence theories (with par-
ticular truncation - operators up to dimension 8) to see if we can find (non-trivial)
fixed points which are compatible with asymptotic safety program.
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E Equivalence Principle and Conformal
Frames

We pointed out the 'beauty’ of Einstein equation in the first chapter which lies in
equating the geometry with the matter content. Brans-Dicke theory was motivated
from the difficulties encountered in applying Mach’s principle into GR. Mach’s ar-
guments can simply stated as, the state of inertia is achieved through interactions
with all the matter in the Universe [116]. The book [116] also gives a very sim-
ple illustration. Consider a state where we stand still with arms stretched out to
our sides. In this state the stars above us does not appear to move. But when
we pirouette, our arms go upwards due to centrifugal force. In the rotating state,
the stars are rotating as well. Then this would "be a remarkable coincidence if the
inertial frame in which (y)our arms hung freely, just happened to be the reference
frame in which typical stars are at rest” [116]. GR abounded the Newtonian picture
of absolute time and space. Even though we have a dynamical spacetime in GR,
Newtonian limits can be obtained by making weak field limit. In other words we can
have a (approximate) state of inertia in a very small region of space and time. This
is encoded in Equivalence Principle which is incorporated in GR which states that
"at every point in an arbitrary gravitational field it is possible to choose a locally
inertial coordinate system such that, within a sufficiently small region of the point
in question, the laws of nature take the same form as in unaccelerated Cartesian
coordinate systems in the absence of gravitation” [116].

Often there is a distinction made between strong and weak Equivalence Principle,
which are further branched for example very strong principle and medium strong
principle etc. Let us only consider Strong and Weak Equivalence Principle. Strong
Equivalence Principle (SEP) roughly translates to having constants of nature to
be universal constants. Violation of it would imply time varying constants. Weak
Equivalence Principle (WEP) is a phenomenological principle and unlike for SEP,
we have strong experimental constraints for theories which violate WEP. WEP can
be roughly stated as there should no other long range force that couples to matter
universally other than gravity. If the force is carried by a scalar field then we expect
it to be coupled to complete energy momentum tensor without depending on the
composition, just like gravity. A detection of violation can be made, for example,
if one observes anomalous acceleration of objects, then one can explain this using
introduction of a fifth force. For a nice description see [117] and also [56].

Even though GR has dynamical picture of spacetime, through Equivalence Prin-
ciple it solves the problem of inertia but still does not explain many other aspects
concerning the Mach’s principle. In a theory based on Mach’s principle, Minkowski
flat spacetime should be the only solution to Einstein equations without any matter

110



(and of course also without vacuum energy). This is achieved in GR only when we
put boundary conditions on the field equations. For example we could have a con-
dition such that we have flat universe at infinity. Now we have inertial frame which
is unrelated to the energy or matter content if the space time. With this condition,
we have Minkowski metric as solutions to Einstein equations with no matter. But
according to Mach’s principle, the entire matter content of the universe should de-
termine the state of inertia [118]. Einstein introduced cosmological constant in order
to obtain a closed universe such that he evades the necessity of applying boundary
conditions. But de Sitter showed that presence of such a term would imply non-zero
matter content. Brans-Dicke theory was an attempt to formulate a gravitational
theory which was more satisfactory than GR. BD theory violates only SEP and
introduces a varying gravitational coupling in the form a scalar field, which we refer
as BD field. There is no violation of well tested WEP because the scalar field is not
directly coupled to the matter sector.

Given that the scalar field nonminimally couples to gravitational sector, there is a
possibility of transferring it to the matter sector. This is in principle possible due to
the fact that GR is not invariant under conformal transformations. We can redefine
the conformal factor such that coupling to gravitational sector, we call this Jordan
frame, upon conformal transformation will have coupling to matter sector is called
Einstein frame. This simply means that we are going from one conformal frame to
another frame but these two frames are now very different. One can now ask which
of these frames is real. Let us take the example of BD theory!.

Lmzvca@R—ijwmwm+me) (E.1)

We denote quantities in Eisntein frame with a bar on top. The conformal trans-
formations of metric and root of its determinant is given by,

gm/ — Qquu
V=9=0"V-3g.

Here, () is the transformation function which is a arbitrary function of spacetime
coordinate. The transformation of Ricci scalar is [119],

R =[R2 —2(d —1)0In(Q) — W—lng—%wvu n(Q)V,In(Q)]  (E.2)
and with [56],
feim@) = f= 200

the first term in the Lagrangian can be written as,
Ly = V=992 (R + 600f — 65" fuf.) -

1Refer to [56] for more details.
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We want to remove the nonminimal coupling. So we put Q72¢ = Q = /¢.
The second term is the de Alembert operator in Eisntein frame which is give by,

- 1
Of = =0 (V—99"0,f),
Lo, (Vo)
this vanishes in the action due to divergence theorem. The third term in (E.1) is
Ju= %%‘b We have now the first term in Einstein frame,

Li=+v-3 (;R - ;;Qg“”&mayqb)

The derivatives in Jordan frame can be transformed to derivatives in Einstein

frame by, V# = g"V,. If we make use of this for second term of (E.1) it is not hard
to see that, in Einstein Frame, the Lagrangian should have the form,

, -1 .
L~ =j <2 R L3 V,0Vu6 + Lmatter(g)> . (E.3)
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F Normalization and Riemann Normal
Coordinates

F.1 Normalization of States

In (3.3) we defined creation and annihilation operators' such they created a particle
and hence increased the number of particles in the state by 1 or annihilated a particle
in the state. That is, we can have a state with momentum p created by the operator
a}. from vacuum |p) = v/2Eal |0). One can define a Hamiltonian of free theory as
given in (3.9). Then we have inner product

(pla) = 2E(27)*5(p — q).

The field operator in position space was also defined in the same equation. This
operator would create a particle at position x. That is, ¢(x)|0) = [ %ﬁe*ik'x Ip).
We can further define a equivalent of a wavefunction by taking the expectation value
of this operator,

<0| ¢(X) |p> — / &k L (ake—iEt—Hk.x + CLT eiEt—ik.x) \/ﬁ(ﬂ <0‘ — eik'x. (Fl)
(2m)%2 V2B y .

Similarly, one can define two point function (0] ¢(x1,x2)|0) or the time order
product of ¢ which is nothing but the propagator defines in (3.16). These defini-
tions are in trivial flat spacetime and without any interactions. For theories with
interactions, we defined the vacuum state (2| which is different from that of free
theory. Let us define the interaction Hamiltonian H; which can be equivalent to
[ x5 ¢*(x) from (1.10) in our scalar theory. As discussed in [13], we can get |Q)
simply by evolving |0) in time. the two point function in interaction theory taken
in the limit of 7" — o0,

0| T (gb(xl, X5) exp{—i_fj H(t)dt} |0>>
0| T <exp{—if:; H(t)dt} |0>>

(Q Th(x1,x2) [Q2) = lim

—00

For Klein-Gordon equation in curved spacetime (3.24), we continued with similar
method and defined creation and annihilation operators AL,Ak and the solution

'We have made extensive use of [13] especially for notations and refer the same for a detailed
overview.
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field operators fy, fi. For example, we can have f; = ¢ and fy = n*V ¢ where n* is
a timelike unit vector normal to a spacelike hypersurface where f; is defined. Here
we make use of [37] to see distinction from flat spacetime, first by looking at the
inner product (f|,|f)y =1 [ (f30,f1 — f10,f5)dE* where dX is the volume element
in the given spacelike hypersurface. The integrals and especially delta functions
appearing commutation relations (for example [AL,AW] = d(k,k’)) are evaluated
on this volume element such that (say in position space) [d(x,x’)d¥ = 1. In
Minkowski space, solutions of Klein-Gordon equation are like in (F.1), when written
explicitly with time coordinate ¢t as ¢ ~ e~ *Fxi+kx This is Lorentz invariant and
hence it is the unique solution of the Klien-Gordon equation. With this we could
define a unique vacuum state.

In curved spacetime, we cannot have unique set of solutions {fix} and hence no
unique vacuum state [37]. This is due to the fact that in general curved manifold,
we can have singularities such that timelike geodesics are incomplete - for example
on the event horizon of a Black Hole. One can still have a set of orthonormal
solutions { f;, f'}, where i includes an index specifying the Cauchy surface[34]. The
one point functions or the local expectation values in curved spacetime, need not be
associated with a particle; similarly the n-point functions (see section(3.2)). This has
very interesting physical consequences like particle creation by gravitational fields
and is discussed in [37].

F.2 Dirac Delta Function on d-dimensional
Curved Spacetime

In the section(3.2) we introduced d-dimensional Dirac Delta Function on curved

spacetime 0%(z1, z5) = |—g(z1)|/26(x1 — z2). The relation between the usual delta
function §(x; — z) in flat spacetime to the one in curved spacetime can be derived
from their definitions,

/ f(x1)6(z1 — 20)dr = f(22) — / f(I1)5d(951 — ) —g(l‘l)ddm = f(x2),

s (e ag)) = AT O ) s )| gl

N \/—g(%) N \/_9(952)

The normalization (completeness relation) is given by, 1 = [ d%z (x| \/—g(z) |z).

F.3 Reimann Normal Coordinates

Let us set a point @) to be the origin and a point P in its near neighbourhood on a
4 dimensional Manifold (in our case, a pseudo-Riemannian manifold). Then there
is a unique geodesic joining these two points. Lets define coordinates at origin @) as
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' = 2. Let the point P = z have its coordinates x*, then Riemann coordinates
y* = xt — /" of a point P is given by
y* = X" where, " = dy ,
d\ O=a'
are constant tangents to the geodesic at ). The basic idea of Riemann coordinates
is to use the geodesics passing through a point to define coordinates for nearby
points, the condition being, the geodesic do not cross or in other words working in
sufficiently small neighbourhood (for further details see [120]). Since, £ is constant
tangent vector or independent of A\, geodesic through @) is simply,

d?y+
d\?

p dyaLyB _

— F _— =
0= Lo

Q=x'

which is the definition of Riemann Coordinates. Note that the vanishing Christoffel
connections are evaluated at point (). Coordinates to any point x be z* which is at
the vicinity of point () = 2’ can be given by a expansion series

dy® 1 dy® dy”®
cH — — 'y, == —_— s
ome T O G lgme a1 G O R
=x Q=x
where C# are constant coefficients choosing which has been simplified due to our
definition (F.2). To supplement it, we also have, symmetric derivatives of Christoffel
symbols at ) also vanish This can be shown by first writing down the expansion for

Christoffel symbols as below and using (F.2)

Thaee® =Thy™y’ =0, (F.2)

Z2H = z“‘

Ihs = FZB‘Q + (aprgb’) ’Q Y+ 21‘ (8p051“’0f5) ’Q vy’ + ..
That is, we have, 8(pfgﬁ)‘Q =0, 8(plyp2,_,_7pnFZ5)‘Q =0

where we have used compact notations (0,,0,,... = 0, p2,..) for multiple derivatives
in the latter expression and parenthesis indicate the symmetrization.

Riemann tensor at @ is given by R} 5 = 0", — 0.I")5 all evaluated at Q. We
can show that,

Lo

H ——
a(ﬁra)u Q - 3 (aB)v

1
0 = Jmas =3 (Ruopy + Rupow)

.
Metric tensor g, in the vicinity of point ) can be approximated by Minkowski
metric 7, The Taylor expansion of the metric g, = 1 + Guv.as Y°Y° + ...

1 1 .
0 - g Ruau[o’ 6Ruauﬂ;7’Q Yy yﬁy’y
1 2 A a 1

+ <_20Ruayﬁ;»yé + 45RO‘NB)‘R’Wd> ’Q Y yﬁy'Yy

Guv ($) = Nuv

ny + -

1 s , (F.3)
— _ (¢ _ o Y
glx) =1 3Raﬁ]Q Yy GRQ,B;V‘Q y'y"y
1 1 1
- K - a, B, 7,0
+ (18RaﬁR75 QOR)\aﬂ R/\vém QORaﬁ;vd) ‘Q yuyyy..
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We use 7, to raise or lower the indices. Inverse of metric tensor can be similarly
expanded,

g (x) ="

1

Q‘i‘gR%VBany + ...

We have skipped intermediate steps one of which is putting non-linear terms 9,9, =
0 at (). One can derive second derivatives of metric tensor from the expression for
derivatives of Christoffel Symbols. The next order terms are of 3rd order. Covari-
ant propagator in momentum space expanded up to adiabatic fourth order for the
coefficients, is given below.

1 1 R 1 /1 0 1
“““Muwﬁ‘<6ﬂ9aﬁ_mm+a(6‘93m%ﬂw_nﬂz

2 (F.4)
19 9 1 +(é—QW+2®
J— 7a/a
2" Ok Oks (k2 — m?)? (k2 — m2)3
where,
1 1 1 1 1
o == (€= =) Rag+ - Riap — —(Rapn)™ — —=RAR
(o 2<§ 6> o0 g s = g Hes) ™ = g5 fathrs (F.5)
1 1 '
— REAR\ + —R™* Ry s
+ 60 a B A + 60 atWukf

The systematic analysis of divergences and renormalization is done in DeWitt-
Schwinger representation of the Feynman propagator. Using this, we can separate
the divergent terms and then discuss the renormalization. We list the standard re-
sults from [38, 34] (also see [35] and we also refer to original papers like, [33, 44]
where one can find detailed derivation of these results). To start with, in integral
representation,

o0

1 )
W = _i/dsezs(kQ_m2).
—m
0

Feynman propagator of equation in DeWitt-Schwinger (DS) representation is given
by (assuming x is a point in the near vicinity of z’),

AV2(x, o T _ , o(x,z' ,
Gps(z,2') = W)((dﬂ)/; /ds(zs) (d+1)/2 exp{—zmQS + ( (22,5 >> }F(x,a:’;zs),
0

where s is a scalar parameter. The function o(x,z’) = 1/2 y®y, is half of the proper
distance between x and 2’; A is Van Vleck determinant and the function F'(z,z';is)
has asymptotic adiabatic expansion,

F(z,2';is) = ao(z,2') + ar(z, 2')is + as(z, ') (is)* + ... & Y _ aj(x, 2")(is)’.
7=0
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The divergence can arise for d < 2 because we have,

GPS(z,2') ~ /ds(is)_(d“)/QeimQS*(ﬁs) [ao(m, ')+ ai(x,x')is + as(z, x’)(is)g] ,
0

where the function o is the half of proper distance between x and z’.
In ’coincidence’ limit, we have,

CLQ(ZE) = 1

1
o) = (5=¢)®

1 1 1 /1 1 /1 2
ale) = ggPassR = SGR R ¢ (5 - ) OR+ 5 (G- €) R
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