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ABSTRACT

We examine initial time Yang-Mills field configurations which satisfy
Gauss' law in the presence of static external sources. We show that if
such a configuration is an extremum of the energy, then it is a static
solution of the Yang-Mills equations. Next, we conside? Yang-Mills field
configurations which satisfy Gauss' law for one external point source.

We show that there exists a large class of such configurations which

have lower energy than the Coulomb solution.
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I. Introduction

In a previous paper,1 we gave a detailed analysis of the Yang-Mills
field equations in the presence of static external sources. The main
features and results of our discussion were the following (for further
details, see Ref. 1):

(1) A static external source was defined as one which has vanishing
space components: ji(x) = 5uoqa(x), a=1,...,n where n is the order
of the gauge group. It was shown that in this case, all the group

n
invariants build out of qaCx) (such as C(§) = 2: qa(xj qa(x) , for
example) are time independent. et

(2) We agreed to specify the external sources by giving at each
space point §, the values of the r independent group invariants

Cl(§),...,Cr(§) that can be build out of qa(x); r is the rank of the

gauge group. It is our purpose to try to solve the Yang-Mills equations:

@, Y2 = 5 *w) (1.1)

-> ->
for a given external source C,(x),...,C_(x). In the abelian case, for
1 r
a given static external source, the most general solution is the Coulomb
field plus an arbitrary number of plane waves, and there is only one
static solution: the Coulomb field itself. It turns out that in the
non-abelian case, the class of distinct - i.e., non gauge equivalent -
3 . + + - ) 3 3

solutions for a given external source Cl(x),...,Cr(x) is definitely
richer than it is in the non-abelian case. We agreed to characterize
these various solutions by gauge invariant quantities such as their

. . .2 ‘s
total energy, and their total isospin,” and such quantities as

Fjv(x) Fig(x).
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(3) We found that a set of static external point charges always
~admifs a static Coulomb solution; but, whereas the Coulomb solution is

unique in the abelian case, in the non-abelian case there are in general
several distinct static Coulomb solutions (for a same spatial distribution
of the external point sources) corresponding to the various ways one can
""diagonalize' the external point sources in isospin space. One can
characterize these distinct solutions by their distinct values of the
energy and the total isospin.

(4) We found3’1 that a continuous extended but localized external
charge distribution always admits solutions of energy as low as one
wishes. We called these "total screening" solutions because the field
strength tensor Fiv(x) vanishes outside the region where the external
source is localized. These solutions are Coulomb-like in that their
magnetic field vanishes everywhere; their existence is aue to the fact
that a continuous external charge distribution, which acts like an
infinity of point charges localized in a small region of spaces, will
tend, in the non-abelian case, to go into the energetically favored
state where the local isospins at nearby points cancel one another by
being oriented in opposite directions. This is not possible in the
abelian case where the external charge distribution is gauge invariant
and where the Coulomb solution is unique.

(5) We found3’1 that continuous extended but localiied charge
distributions also admit static solutions of a new type, unrelated to
the various Coulomb solutions mentioned so far. We called these

"magnetic dipole" solutions because they have long range spherically

asymmetric magnetic fields whereas their electric fields are short range.



b=

They have lower energy than the Coulomb solution when gq/4w, where g is
the gauge coupling constant and q the total external charge, exceeds a
certain critical value which depends on the shape of the external source.
These solutions thus appear to be related to the instability Mandula4
found in his analysis of the small oscillations around a Coulomb field.

6N h I I [ -SOUE, RIS

\O) E_I.I.l.d..l..J._y, we LoLuuidiLeu o
fields in the presence of external sources in Ao = 0 gauge. To any

> - >
initial configuration A?(x,t Y, E?(x,t ) = Fa.(x,t ) which satisfies
i o i o oi o)

Gauss' law - i.e., Eq. (1.1) for'v = 0 - there corresponds a solution
to the Yang-Mills equations, which in general will be time dependent.
The time dependence is provided by the definitiomn of E? in AO = ( gauge:
aAf .
Tl Ei’ and the Yang-Mills Eq. (1.1) for v = 1,2,3.

To the above, we would now like to add two new results. In Section

e e . . . a,r C a,r .

I1, we show that an initial time configuration Ai(x’to)’ Ei(x,to) which
minimizes the energy under the constraint of Gauss' law, is in fact a
static solution. By definition, a static solution is one in which all
gauge invariant quantities are time independent. In Section III, we
show that a point source always admits configurations of lower energy
than the Coulomb solution. 1In these initial time configurations, the

electric field is screened at the expense of the appearance of a

magnetic field.

II. Extrema of the Energy are Static Solutions

In Ref. 1 it was shown that the initial value problem for classical
Yang-Mills fields in the presence of static external sources has the

following straightforward formulation in A0 = 0 gauge. An initial
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. . a,> a ,»r . . .
configuration Ai(x,to), Ei(x’to) propagates in time according to:

-

a o
T - (Dj Fji) > T - B (2.1)
with
F2 = 9.A% - 5 A% + gc3PCPyC (2.22)
ij i it i)
a a abe,b_c
D.F.. = 3,F,, + gC ATF, 2.2b
( J Jl) J J31 8 J 11 ( )

- >
If the initial configuration A?(x,to), E?(x,to) satisfies the constraint

of Gauss' law:

(DiEi)a = BiEi + gCabCA?Ei = ?® (2.3)

and if the time development of Ai(§,t) and E?(;,t) is the one specified
by Eq. (2.1), then this constraint will also be satisfied at all later
time.
e e . . a > a,>

Consequently, to each initial configuration Ai(x’to)’ Ei(x’to) that
satisfies Gauss' law, there corresponds a time dependent solution of the
Yang-Mills field equations. These solutions can be characterized by
their energy and total isospin which are both gauge invariant and

conserved, and which can thus be calculated from the initial values:

a _ 3 a
I = fd x ai Ei(x,to) (2.4a)

_ 1 f.3 a > a > a > a >
i = zfd X [Ei(_x,to)Ei(x,to) + Bi(x,to)Bi(x,to)] (2.4b)



where

a > 1 a
Bix,t) = 7 oeqe iy

+
(x,t) (2.5)
Intuitively one might expect that a configuration which minimizes
the energy under the constraint of Gauss' law must be static. We shall
show that this is indeed so. Let us thus, at some given time to’
. a,> a, > .
minimize H with respect to Ai(x,to) and Ei(x’to) under the constraint

of Gauss' law (2.3). For each constraint, we need to introduce a

Lagrange multiplier ¢a(§). H will be an extremum when:

§(D,E2(3) - ¢* ()
§H SH _ fd3y ¢a(§)[ i~i

- 3
s s(ajw&)) 89 (%)

s(DiEi(§)-qa(§))}
-3, - =0 - (2.6)
J JCRTC)

for both ¢ = Ai(§,to) and ¢ = E?(;,to). We obtain:

a abe,b,c a _
Ei -gc ¢ Ai + 8i¢ = 0 (2.7a)

a bac,b_¢  _
—(Diji) -8 ¢E = 0 (2.7v)

To determine an extremum of the energy under the constraint of Gauss'
law, we must solve Eq. (2.7) along with Eq. (2.3). We can combine
Eq. (2.7) with Eq. (2.1) to determine the time-development of such an

extremum:

dA,

= a_
*E = E, = +g(¢><Ai) aidJ

a (2.8a)



dej a .
- e (DJFjl) = +4g(¢ x Ei) (2.8b)
where (axB)a = cabcabsc_ Note that the time development of A? and Ei

is simply an infinitesimal gauge transformation. It is easy to show
that if A? and E? satisfy Eq. (2.7) at a time t, then they also satisfy
Eq. (2.7) at time t+dt. Thus the time development of any extremum of

the energy subject to the constraint of Gauss' law is simply a gauge

tranformation:
> > t 1 , +
A, (x,8) = WUA (Xt )U - — (3. U (2.9a)
g i
> > +
E (x,8) = @/Ei(.x,to)% (2.9b)
with
> >
@M(x,t-—to) = exp [g¢(x)(t-—to)] (2.10)
> . a,a,r
and where we have used the matrix notation: ¢(x) = (-i)T ¢ (x) and

similarly for Ei and Ai’ the T° being the representation matrices for
the generators of the group. By applying the inverse gauge transfor-
mation, we obtain E? and A? fields which are time independent. In this

new gauge:
A G = g e S @an
which is also time independent. Also, notice that in this gauge Eq.

(2.7a) is simply the definition of Ei, while Eqs. (2.7b) and (2.3) are

the Yang-Mills field equatioms.
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In conclusion, we have shown that for every extremum of the energy
under the constraint of Gauss' law, there exists a gauge in which all
Ai are time—independent. These Ai are a time independent solution of
the Yang-Mills field equations. This of course implies that gauge
invariant quantities built out of the Aﬁ will be time-independent in
any gauge. Such solutions are called static. Conversely, any static

solution to the Yang-Mills equations is an extremum of the energy under

the constraint of Gauss' law.

ITIX. The Field of a Point Source

Consider the Yang-Mills equations in the presence of a single

external point source:
o M? = 523 V0 ¢ 83 (3.1)

In Ref. 1, we discussed the Coulomb solution for this point source

which, in Ao = (0 gauge is:

a> _ a3 q %
Ei(x) = § I TiTg (3.2a)
Ai(,;) = tE‘;‘(SZ) (3.2b)

a, a,r
We shall now exhibit a field configuration Ai(x’to)’ Ei(x,to) at an
initial time t s which satisfies Gauss' law, i.e., Eq. (3.1) for v = 0,
and which has lower energy than the Coulomb solution.

Let us consider a configuration of the general form:

ra - -491;—15 [5831?]5‘(17,6) + aazq“,c(r,e)] (3.3a)
r
+a al

(3.3b)

=g
1]
O
-
g
—~
[a]
-
[en]
~
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where r,08,¢ are the usual spherical coordinates and §,6,$ their associated
unit vectors. We will require G(r,0) = G(r,m) = A(x,0) = A(r,m) = 0 so
that E and A will not be singular at 6 = 0 and 8 = 7. The configuration

(3.3) solves Gauss' law provided:

3 1 3JF
f;[a ) 4 F(0,6) +;’55‘£ (r,6) +—r% G(x,0) A(r,e)] = 462 ®)
(3.4)
We thus require:
F(0,8) = 1 (3.5a)
and
oF
e (60 = -86(r,0) A(x,0) (3.5b)
The energy of the configuration (3.4) is given by:
13[_g_2122 > ~2] 36
H—Ej:ix<4ﬂ>;z(F+G)+(Vx(¢A)) (3.6)

There are many choices of F,G and A for which H is lower than the

energy of the Coulomb solution (3.2). One such choice is:

P
F(r,8) = 1 - s(lrir) sine (3.7a)
p/2
G(r,8) = B8 E'——£££2—~:E'Sin 6 ) (3.7b)
& (1+un)P
p/2
A8 = 2 —(—H—E%—————sin 8 (3.7¢)

where we have introduced the dimensionless parameters B, p > 0 and a,
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and the parameter y > 0 with dimension of mass. This configuration is
such that the "chromoelectric" field E3 is Coulomb-like very close to
the origin, but becomes modified at distances large relative to u—l.
The total charge, i.e., the charge viewed at distances large relative

-1 .
tou , 1s:

> > > >
2 [13;:(_\7 -B)? = /dzs(n )
S

(o]

5% 901 - 29) (3.8)

For B > 0, the external charge is screened whereas it is increased for

B < 0. This is done at the expense of the appearance of a chromomagnetic

field:

a _ ,al

217 « (6A))

= 4
i

al g_(ur)p/z

g 2

(2cos® r - £ gineg é) (3.9)

= § 5

To calculate the energy we introduce a short distance cutoff §. We
find for § +~ 0 and for p < 1 (otherwise our configuration has an

infrared divergence in its magnetic energy):

m oo
2 -
2.
B = n[sino defrz dr [(—‘1-> L @ +ehH + &) ]
J 4 r4
O (o)
2 22 2 2
- 41, 02 1 weP —2g + P B4+ 4m_a (84‘P2)
8¢ § 127 1-p § 2 2 v
a (gq)

2p
+ 0((262 ) (3.10)
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The minimum of H with respect to a occurs when:

- a2 = ~El§159__ = az. (3.11)

Thus the minimum energy for a given p,n and B is:

2 2 P
1 1 (pé) 4 2
- _ 971 .4 u [_ 4m / ]
i a 876 " 12r 1-p 28 + o 18l p/8+p
min
2p
+ O((uég ) (3.12)

For g8 < 0, i.e., when the total charge is larger than the external
charge q, the energy is always greater than the Coulomb energy (the
first term in (3.12)). For B < 0, i.e., when the external charge gets
screened, H can always be made smaller than the Coulomb energy, since
we can always chose p to satisfy:

%%— > g—/S + p2 , 0<p<1 ' (3.13)

for any values of the external charge q and the gauge coupling constant g.
We have exhibited initial time configurations Ai(z,to) and Ei(%,to)
which satisfy Gauss' law for a point source and which have lower energy
than the Coulomb solution. We have done so far any valueéof gq/bw.
Since the energy is positive definite, this implies that there exists a
minimum of the energy under the constraint of Gauss' 1aw,-which lies
below the Coulomb solution. From the previous section we know that this
minimum is a static solution of the Yang-Mills equations in the presence
of the external point source, albeit probably a very singular solution.

One might presume, although this has by no means been proven, that the
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time development of our initial configuration (3.7) is such that, by

emission of radiation at spatial infinity, it finally reaches this

state of lowest energy.
We wish to make the following further comments:

(1) The Yang-Mills equations in the presence of one point source are
scale invariant. Therefore a configuration that solves Gauss'
law and that depends on a scale u, will solve Gauss' law for any
value of the scale p. Such is precisely the case for (3.7).
Similarly, a solution to the Yang-Mills equations that depends on
a scale p, will be a solution for any value of u.

(2) The energy (3.12) is infinitely lower than the Coulomb energy in
the limit & + 0, provided Eq. (3.13) is satisfied, which is always
possible for an appropriate choice of p.

(3) There obviously is a very wide choice of configurations that solve
Gauss' law for a point source and that have lower energy than the
Coulomb solution. In particular, their behaviour at large dis-
tances is quite arbitrary.

(4) With the exception of energy and isospin, it is unclear which
properties of our initial configuration (3.7), if any, persist
till later times.

(5) It is interesting to note that when p approaches one from below,
the critical value of gq/4m given by Eq. (3.13) approaches 3/2,
which is precisely the critical value of gq/4m found by Mandula4

in his stability analysis of the Coulomb potential in Yang-Mills

theory.
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