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ABSTRACT 

We examine initial time Yang-Mills field configurations which satisfy 

Gauss' law in the presence of static external sources. We show that if 

such a configuration is an extremum of the energy, then it is a static 

solution of the Yang-Mills equations. Next, we consider Yang-Mills field 

configurations which satisfy Gauss' law for one external point source. 

We show that there exists a large class of such configurations which 

have lower energy than the Coulomb solution. 
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1. Introduction 

,In a previous paper,1 we gave a detailed analysis of the Yang-Mills 

field equations in the presence of static external sources. The main 

features and results of our discussion were the following (for further 

details, see Ref. 1): 

(1) A static external source was defined as one which has vanishing 

space components: j;bd = 6u0qa(x) , a = l,...,n where n is the order 

of the gauge group. It was shown that in this case, all the group 

invariants build out of qa(x) (such as C(z) = qa(x) qa(x) , for 
a=1 

example) are time independent. 

(2) We agreed to specify the external sources by giving at each 

space point x', the values of the r independent group invariants 

Cl (3 ,...,Cr& that can be build out of qa(x); r is the rank of the 

gauge group. It is our purpose to try to solve the Yang-Mills equations: 

(DP F'v)a = 6" qa(x) (1.1) 

for a given external source Cl(G),...,Cr(Z). In the abelian case, for 

a given static external source, the most general solution is the Coulomb 

field plus an arbitrary number of plane waves, and there is only one 

static solution: the Coulomb field itself. It turns out that in the 

non-abelian case, the class of distinct - i.e., non gauge equivalent - 

solutions for a given external source Cl($),...,Cr($) is definitely 

richer than it is in the non-abelian case. We agreed to characterize 

these various solutions by gauge invariant quantities such as their 

total energy, and their total isospin, 2 and such quantities as 

$)x) F;Jx> . 
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(3) We found that a set of static external point charges always 

.admi.@ a static Coulomb solution; but, whereas the Coulomb solution is 

unique in the abelian case, in the non-abelian case there are in general 

several distinct static Coulomb solutions (.for a same spatial distribution 

of the external point sources) corresponding to the various ways one can 

"diagonalize" the external point sources in isospin space. One can 

characterize these distinct solutions by their distinct values of the 

energy and the total isospin. 

(-4) We found3'l that a continuous extended but localized external 

charge distribution always admits solutions of energy as low as one 

wishes. We called these "total screening" solutions because the field 

strength tensor Frv(x) vanishes outside the region where the external 

source is localized. These solutions are Coulomb-like in that their 

magnetic field vanishes everywhere; their existence is due to the fact 

that a continuous external charge distribution, which acts like an 

infinity of point charges localized in a small region of spaces, will 

tend, in the non-abelian case, to go into the energetically favored 

state where the local isospins at nearby points cancel one another by 

being oriented in opposite directions. This is not possible in the 

abelian case where the external charge distribution is gauge invariant 

and where the Coulomb solution is unique. 

(5) We found3'l that continuous extended but localized charge 

distributions also admit static solutions of a new type, unrelated to 

the various Coulomb solutions mentioned so far. We called these 

"magnetic dipole" solutions because they have long range spherically 

asymmetric magnetic fields whereas their electric fields are short range. 
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They have lower energy than the Coulomb solution when gq/4n, where g is 

the g.auge coupling constant and q the total external charge, exceeds a 

certain critical value which depends on the shape of the external source. 

These solutions thus appear to be related to the instability Mandula4 

found in his analysis of the small oscillations around a Coulomb field. 

(6) Finally, we formulated the initial value problem of Yang-Mills 

fields in the presence of external sources in A0 = 0 gauge. To any 

initial configuration Ay($,t,), ET(G,to) = Fzi(z,to) which satisfies 

Gauss' law - i.e., Eq. (1.1) f0r.v = 0 - there corresponds a solution 

to the Yang-Mills equations, which in general will be time dependent. 

The time dependence is provided by the definition of ET in A0 = 0 gauge: 
dA; 
- = E'?, and the Yang-Mills Eq. (1.1) for u = 1,2,3. dt 

To the above, we would now like to add two new results. In Section 

II, we show that an initial time configuration Az(z,to), ET(g,to) which 

minimizes the energy under the constraint of Gauss' law, is in fact a 

static solution. By definition, a static solution is one in which all 

gauge invariant quantities are time independent. In Section III, we 

show that a point source always admits configurations of lower energy 

than the Coulomb solution. In these initial time configurations, the 

electric field is screened at the expense of the appearance of a 

magnetic field. 

II. Extrema of the Energy are Static Solutions 

In Ref. 1 it was shown that the initial value problem for classical 

Yang-Mills fields in the presence of static external sources has the 

following straightforward formulation in A = 0 gauge. An initial 
0 
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configuration AT(g,to), Ez(g,to) propagates in time according to: 

dA; 
a 9 dt=E i (2.1) 

with 

Fa ij = a.Aa 
Ij 

- ajA; + gc abcA>; 

~~~~~~~~ = ajFTi + gcabCA$$ 

(2.2a) 

(2.2b) 

If the initial configuration AT(z,to), ET(g,to) satisfies the constraint 

of Gauss' law: 

(DiEi)a = aiET i- gCabCAiE; = qa(;) (2.3) 

and if the time development of At(z,t) and ET(z,t) is the one specified 

by Eq. (~2.1), then this constraint will also be satisfied at all later 

time. 

Consequently, to each initial configuration AT($,to), Et(g,to) that 

satisfies Gauss' law, there corresponds a time dependent solution of the 

Yang-Mills field equations. These solutions can be characterized by 

their energy and total isospin which are both gauge invariant and 

conserved, and which can thus be calculated from the initial values: 

Ia = s d3x ai E;(%to) 

H = + E;(;,to)E$to) + B;(~,to)B;(~,to) 1 

(2.4a) 

(2.4b) 
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where 

(2.5) 

Intuitively one might expect that a configuration which minimizes 

the energy under the constraint of Gauss' law must be static. We shall 

show that this is indeed so. Let us thus, at some given time to, 

minimize H with respect to AF(z,to) and ET(g,to) under the constraint 

of Gauss' law (2.3). For each constraint, we need to introduce a 

Lagrange multiplier $"(Z). H will be an extremum when: 

6H a - - 

S$ (3 

a3 - 
/ 

’ (Died (;;) - qa (T) 
d3y 4°C;) 

qJ (3 

- a 
G(D~EF(?) - qa(?)) 

I 
= 

j 
0 

6(aj&)) 

for both $ = AT(g,to) and IJJ = EF(g,to). We obtain: 

E; - gc abc$bAc, + ai+a = 0 (2.7a) 

-(D~F~~)~ - gcbac$bEf = 0 

(2.6) 

(2.7b) 

To determine an extremum of the energy under the constraint of Gauss' 

law, we must solve Eq. (2.7) along with Eq. (2.3). We can combine 

Eq. (2.7) with Eq. (2.1) to determine the time-development of such an 

extremum: 

dA; 
dt=E a 

i = +g(QxAi)a - ai$a (2.8a) 
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dEa 
--& (DjFjija = +g($xEi)a (2.8b) 

abc b c where (.axB)a = c a 8 . Note that the time development of AT and ET 

is simply an infinitesimal gauge transformation. It is easy to show 

that if A: and EF satisfy Eq. (2.7) at a time t, then they also satisfy 

Eq. (2.7) at time t+dt. Thus the time development of any extremum of 

the energy subject to the constraint of Gauss' law is simply a gauge 

tranformation: 

Ai(~,t) = 4?JAi(g,to)& - f (aif2&W+ (2.9a) 

Ei(:,t) = %!E& to)@+ (2.9b) 

with 

a&t - to) = exp Cg$(g)(t- to)1 (2.10) 

and where we have used the matrix notation: 0 (3 = (-i)Ta$a(g) and 

similarly for Ei and Ai, the Ta being the representation matrices for 

the generators of the group. By applying the inverse gauge transfor- 

mation, we obtain E T and AT fields which are time independent. In this 

new gauge: 

Ao& t> = g $&a (2.11) 

which is also time independent. Also, notice that in this gauge Eq. 

(2.7a) is simply the definition of EF, while Eqs. (2.7b) and (2.3) are 

the Yang-Mills field equations. 
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In conclusion, we have shown that for every extremum of the energy 

under the constraint of Gauss' law, there exists a gauge in which all 
A 

A; are time-independent. These A; are a time independent solution of 

the Yang-Mills field equations. This of course implies that gauge 

invariant quantities built out of the A; will be time-independent in 

any gauge. Such solutions are called static. Conversely, any static 

solution to the Yang-Mills equations is an extremum of the energy under 

the constraint of Gauss' law. 

IIIC. The Field of a Point Source 

Consider the Yang-Mills equations in the presence of a single 

external point source: 

(p,F'Iv)a = ga3 6" q S3(;) (3.1) 

In Ref. 1, we discussed the Coulomb solution for this point source 

which, in A0 = 0 gauge is: 

E;(z) = 
X. 

ga3 LL = 
4n 1tj3 

A;(z) = t E;(g) 

(3.2a) 

(3.2b) 

We shall now exhibit a field configuration AT(s,t,), E~(~,to) at an 

initial time to, which satisfies Gauss' law, i.e., Eq. (3.1) for v = 0, 

and which has lower energy than the Coulomb solution. 

Let us consider a configuration of the general form: 

+a E ~2% 
C 6a3;F(r,B) + ga2i G(r,e) 1 

r 
(3.3a) 

(3.3b) +a A =6 alsA(.r,e) 
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where r,9,$ are the usual spherical coordinates and r,0,$ their associated 

unit xectors. We will require G(r,O) = G(r,r) = A(r,O) = A(r,?r) = 0 so 

that E and A will not be singular at 0 = 0 and 8 = IT. The configuration 

(3.3) solves Gauss' law provided: 

+ Lx (r,e) + _g G(r,B) A(r,B) r2 ar r2 3 
= qs3& 

F(O,B) = 1 

and 

g (r,e) = -gG(r,8) A(r,B) 

The energy of the configuration (3.4) is given by: 

We thus require: 

(3.4) 

(3.5a) 

(3.5b) 

H = ih3x [(&," -$ (F~+G~) +(G x (GA))~] (3.6) 

There are many choices of F,G and A for which H is lower than the 

energy of the Coulomb solution (3.2). One such choice is: 

F(r,e) = 1 - sin20 (3.7a) 

G(r,e) = B E (ur>p'2 sin 8 

(l+~r)~+l 
(3.7b) 

A(r,e) = t r (p->P'2 sin 8 (3.7c) 

where we have introduced the dimensionless parameters 6, p > 0 and a, 
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and the parameter II > 0 with dimension of mass. This configuration is 

such that the "chromoelectric" field z3 is Coulomb-like very close to 
. 

the origin, but becomes modified at distances large relative to n-l. 

The total charge, i.e., the charge viewed at distances large relative 

-1 
to P , is: 

Ia = 
/ 

d3x(.$ 0;)" = 
J 

d2S(;: *p) 

6 a3 = SC1 - +$I 

For B > 0, the external charge is screened whereas it is increased for 

fi < 0. This is done at the expense of the appearance of a chromomagnetic 

field: 

+a B = aal(;; x ($A)) 

gal a (vr) P/2 
= 

g r2 
(2~0~0 r - 

n ' sinf3 ') 
(3.9) 

To calculate the energy we introduce a short distance cutoff 6. We 

find for 6 + 0 and for p < 1 (otherwise our configuration has an 

infrared divergence in its magnetic energy): 

H = njsine d8jr2 dr [(&f -$ (F2+C2) + (i)2 ] 

0 0 

21 a2 1 (Ys)p = kx+---- 
12lT l-p 6 [ 

-2B + PIi2 + &I!$. (8 + P2) 
(d I 

+,A$ ( 1 (3.10) 
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The minimum of H with respect to a occurs when: 

2 a = PIBlgq = a2 
2r&7 min 

Thus the minimum energy for a given p,u and B is: 

H = $x+2 21 1ti 
12ll l-p 6 [ 

-26 + 32. 
?I a=a 

gq 161 Pm] 
min 

+ o h6)2p 

( 1 6 

(3.11) 

(3.12) 

For fi < 0, i.e., when the total charge is larger than the external 

charge q, the energy is always greater than the Coulomb energy (the 

first term in (3.12)). For B < 0, i.e., when the external charge gets 

screened, H can always be made smaller than the Coulomb energy, since 

we can always chose p to satisfy: 

w pi-q, O<p<l 

for any values of the external charge q and the gauge coupling constant g. 

We have exhibited initial time configurations AF($,to) and ET(z,to) 

which satisfy Gauss' law for a point source and which have lower energy 

than the Coulomb solution. We have done so far any value of gq/4n. 

Since the energy is positive definite, this implies that there exists a 

minimum of the energy under the constraint of Gauss' law, which lies 

below the Coulomb solution. From the previous section we know that this 

minimum is a static solution of the Yang-Mills equations in the presence 

of the external point source, albeit probably a very singular solution. 

One might presume, although this has by no means been proven, that the 
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time development of our initial configuration (.3.7) is such that, by 

emission of radiation at spatial infinity, it finally reaches this 

state of lowest energy. 

(~2) 

(3) 

(4) 

(5) 

We wish to make the following further comments: 

The Yang-Mills equations in the presence of one point source are 

scale invariant. Therefore a configuration that solves Gauss' 

law and that depends on a scale p, will solve Gauss' law for any 

value of the scale n. Such is precisely the case for (3.7). 

Similarly, a solution to the Yang-Mills equations that depends on 

a scale p, will be a solution for any value of n. 

The energy (3.12) is infinitely lower than the Coulomb energy in 

the limit 6 + 0, provided Eq. (3.13) is satisfied, which is always 

possible for an appropriate choice of p. 

There obviously is a very wide choice of configurations that solve 

Gauss' law for a point source and that have lower‘ energy than the 

Coulomb solution. In particular, their behaviour at large dis- 

tances is quite arbitrary. 

With the exception of energy and isospin, it is unclear which 

properties of our initial configuration (3.7), if any, persist 

till later times. 

It is interesting to note that when p approaches one from below, 

the critical value of gq/4r given by Eq. (3.13) approaches 3/2, 

which is precisely the critical value of gq/4n found by Mandula4 

in his stability analysis of the Coulomb potential in Yang-Mills 

theory. 
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