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Abstract. The transition to Euclidean space and the discretization of quantum field theories
on spatial or space-time lattices opens up the opportunity to investigate probabilistic machine
learning within quantum field theory. Here, we will discuss how discretized Euclidean field
theories, such as the φ4 lattice field theory on a square lattice, are mathematically equivalent
to Markov fields, a notable class of probabilistic graphical models with applications in a
variety of research areas, including machine learning. The results are established based on the
Hammersley-Clifford theorem. We will then derive neural networks from quantum field theories
and discuss applications pertinent to the minimization of the Kullback-Leibler divergence
for the probability distribution of the φ4 machine learning algorithms and other probability
distributions.

1. Introduction
To construct a probability distribution in a high-dimensional space one can turn to the framework
of probabilistic graphical models. Probabilistic graphical models comprise a set of random
variables, positioned within a graph-based representation, that satisfy certain factorization as
well as conditional dependence and independence properties. One notable case of probabilistic
graphical models is a Markov field, in which the random variables are connected through
undirected edges and satisfy a significant condition of locality, called the Markov property.
Markov properties emerge as important mathematical conditions across distinct research fields,
such as in machine learning [1] or in constructive quantum field theory [2].

In this contribution, we discuss the proof of Markov properties for discretized Euclidean field
theories [3]. Specifically, we demonstrate, through the Hammersley-Clifford theorem, that the
φ4 scalar field theory on a square lattice satisfies the local Markov property, and is therefore
mathematically equivalent to a Markov field. Based on this equivalence, we introduce algorithms
which generalize a notable class of neural networks, specifically restricted Boltzmann machines.
Finally, we present applications pertinent to the minimization of the Kullback-Leibler divergence
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for the probability distribution of the φ4 machine learning algorithms and other probability
distributions.

2. The φ4 Markov field
We denote as Λ a finite set which is equivalently expressed as a graph G = (Λ, e), where the
points of Λ correspond to the vertices of G and e denotes the edges of the graph. Two vertices
i, j ∈ Λ which are connected by an edge are neighbours. A clique is a set of neighbours, which is
called maximal if no additional vertex can be included that is simultaneously a neighbour with
all the vertices present in the clique, see Fig. 1. We now assign to each vertex i in the graph G
a continuous-valued random variable, which is denoted as φi.

A Markov random field is defined as a set of random variables on a graph G = (Λ, e) whose
associated probability distribution p(φ) satisfies the local Markov property:

p(φi|(φj)j∈Λ−i) = p(φi|(φj)j∈Ni), (1)

where Ni is the set of neighbours of a given point i. The local Markov property can be proven for
a probability distribution that is encoded in a graph through the Hammersley-Clifford theorem:

Theorem 1 (Hammersley-Clifford) A probability distribution p, satisfying the condition of
positivity, is associated with the events generated by a Markov network, iff p can be factorized as
a product of positive factors, or potential functions ψc, over the cliques of the associated graph
structure G:

p(φ) =
1

Z

∏
c∈C

ψc(φ), (2)

where Z =
∫
φ

∏
c∈C ψc(φ)dφ is a normalization constant, c ∈ C is a maximal clique, and φ

denotes all configurations of the system.

The Euclidean action of the two-dimensional φ4 scalar field theory is

SE = −κL
∑
〈ij〉

φiφj +
(µ2
L + 4κL)

2

∑
i

φ2
i +

λL
4

∑
i

φ4
i , (3)

where κL, µ
2
L, λL are dimensionless parameters. We redefine w = κL, a = (µ2

L+4κL)/2, b = λL/4
for simplicity, and consider them as inhomogeneous:

S(φ; θ) = −
∑
〈ij〉

wijφiφj +
∑
i

aiφ
2
i +

∑
i

biφ
4
i . (4)

The φ4 inhomogeneous action is described by the coupling constants θ = {wij , ai, bi}, and
the Boltzmann probability distribution:

p(φ; θ) =
exp [− S(φ; θ)]∫

φ exp[−S(φ, θ)]dφ
. (5)

Figure 1. A bipartite graph (a) and a square lattice (b). Examples of maximal cliques are
{φ1, h1} and {φ3, φ4}, respectively.
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The lattice version of the φ4 theory is, by definition, expressed as a graph. To verify that the
φ4 theory satisfies Markov properties we define the following potential function ψc that is able
to factorize the probability distribution in terms of maximal cliques c ∈ C

ψc = exp

[
− wijφiφj +

1

4
(aiφ

2
i + ajφ

2
j + biφ

4
i + bjφ

4
j )

]
, (6)

where i, j are nearest neighbours.

3. Machine learning with φ4 Markov random fields
3.1. Learning without predefined data
To compare the probability distribution p(φ; θ) of the Markov field with another probability
distribution q(φ), we define the Kullback-Leibler divergence, a nonnegative quantity, as

KL(p||q) =

∫ ∞
−∞

p(φ; θ) ln
p(φ; θ)

q(φ)
dφ ≥ 0. (7)

We now consider a target Boltzmann probability distribution q(φ) = exp[−A]/ZA that
describes an arbitrary statistical system and substitute the two probability distributions in
the Kullback-Leibler divergence to obtain:

FA ≤ 〈A − S〉p(φ;θ) + F ≡ F , (8)

where F is the variational free energy, FA = − lnZA, and 〈O〉p(φ;θ) denotes the expectation
value of an observable O under the probability distribution p(φ; θ). By minimizing this quantity
the two probability distributions p(φ; θ) and q(φ) will become equal and we can therefore use
the distribution of the φ4 theory to draw samples from the target probability distribution q(φ).

Based on a gradient-based approach, we are able to minimize Eq. 8 via

∂F
∂θi

= 〈A〉
〈 ∂S
∂θi

〉
−
〈
A ∂S
∂θi

〉
+
〈
S
∂S

∂θi

〉
− 〈S〉

〈 ∂S
∂θi

〉
, (9)

and the coupling constants θ are updated at each epoch t as:

θ(t+1) = θ(t) − η ∗ L, (10)

where η is the learning rate and L = ∂F/∂θ(t).
We now consider a variation of the φ4 theory which includes next-nearest neighbor interactions

nnn, and with a complex action A defined as

A =
5∑

k=1

gkA(k) = g1

∑
〈ij〉nn

φiφj + g2

∑
i

φ2
i + g3

∑
i

φ4
i + g4

∑
〈ij〉nnn

φiφj + ig5

∑
i

φ2
i , (11)

where i denotes the imaginary unit. The coupling constants can have arbitrary values but for
this example we consider g1 = g4 = −1, g2 = 1.52425, g3 = 0.175 and g5 = 0.15, see Ref. [3].

We now utilize the φ4 Markov field of action S, to approximate a probability distribution
which is described by an actionA{4} =

∑4
k=1 gkA(k). To investigate how accurate the equivalence

between the two probability distributions is, we will implement reweighting based on the
probability distribution of the φ4 Markov field to calculate expectation values of the full complex
action A. The reweighting relation is given by

〈O〉 =

∑N
l=1Ol exp[Sl − g′jA

(j)
l −

∑5
k=1,k 6=j gkA

(k)
l ]∑N

l=1 exp[Sl − g′jA
(j)
l −

∑5
k=1,k 6=j gkA

(k)
l ]

, (12)
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Figure 2. <[A] (left) and <[m] (right) versus g4. The statistical errors are comparable with
the width of the line.

details of which can be found in Refs. [3, 4, 5, 6].
We consider j = 4 and calculate the expectation values of the action A and the magnetization

m by extrapolating with reweighting in the range g′4 ∈ [−1.15,−0.85]. The results, shown in
Fig. 2, overlap within statistical uncertainty with independent calculations, therefore verifying
that observables which would correspond to probability distribution of the full action A can be
accurately calculated based on reweighting from the inhomogeneous action S.

3.2. Learning with predefined data
A different class of machine learning applications considers the case where the form of the target
probability distribution is unknown but there exists a set of available data in which an empirical
probability distribution is encoded. To explore this type of applications we consider the following
expression of the Kullback-Leibler divergence:

KL(q||p) =

∫ ∞
−∞

q(φ) ln
q(φ)

p(φ; θ)
dφ ≥ 0. (13)

By substituting and taking the derivative in terms of the variational parameters θ we obtain:

∂ ln p(φ; θ)

∂θ
=
〈∂S
∂θ

〉
p(φ;θ)

− ∂S

∂θ
, (14)

and the update rule of the parameters θ at each epoch t is given based on Eq. 10, where
L = −∂ ln p(φ; θ(t))/∂θ(t).

As an example of a distribution to be learned by the machine learning algorithm, we consider
the simple case of a Gaussian distribution with µ = −0.5 and σ = 0.05. Since the lattice action
is invariant under the Z2 symmetry we expect that the symmetric values of the dataset are
equiprobable in being reproduced. This invariance can be removed via the inclusion of a term∑
i riφi which breaks the symmetry of the action explicitly. The results are shown in Fig. 3 (left)

where the anticipated behaviour is observed.
Finally, we illustrate the approach in an image from the CIFAR-10 dataset. The

thermalization of the trained Markov field is depicted in Fig. 3 (right), where the image emerges
within the equilibrium probability distribution. Since the machine learning algorithm learns the
correct values of coupling constants in the action that solve the considered problem, extensions
towards learning the appropriate coupling constants which describe renormalized systems can
potentially be explored [7].

3.3. Machine learning with φ4 neural networks
To increase the expressivity of the machine learning algorithm, we will introduce a new set
of latent or hidden variables hj within the graph structure. In addition, we will restrict the



XXXII IUPAP Conference on Computational Physics
Journal of Physics: Conference Series 2207 (2022) 012056

IOP Publishing
doi:10.1088/1742-6596/2207/1/012056

5

Figure 3. Probability density function (PDF) versus φi (left). The thermalization of the trained
Markov field (right).

interactions to be exclusively between the visible φi and the hidden hj variables, giving rise to
the lattice action

S(φ, h; θ) = −
∑
i,j

wijφihj +
∑
i

riφi +
∑
i

aiφ
2
i +

∑
i

biφ
4
i +

∑
j

sjhj +
∑
j

mjh
2
j +

∑
j

njh
4
j . (15)

The φ4 neural network implemented above is a generalization of other neural network
architectures: if bi = nj = 0 the φ4 neural network reduces to a Gaussian-Gaussian restricted
Boltzmann machine and if bi = nj = mj = 0 and hj ∈ {−1, 1} then one obtains a Gaussian-
Bernoulli restricted Boltzmann machine, see Refs [8, 9]. Restricted Boltzmann machines were
inspired by Ising models and since the φ4 theory can become equivalent to an Ising model [10],
novel physical insights into how these machine learning algorithms work might emerge from the
perspective of quantum field theory. We now train the φ4 neural network on the Olivetti faces
dataset. Some representative features, which resemble face structures, are shown in Fig. 4.

4. Conclusions
In this contribution we have shown that discretized Euclidean field theories are Markov fields,
hence it is now possible to investigate machine learning directly within quantum field theory [3].
Based on the Hammersley-Clifford theorem, we demonstrated that the φ4 theory, formulated
on a square lattice, satisfies the local Markov property. In addition we have derived φ4 neural
networks which generalize restricted Boltzmann machines (see also Refs. [11, 12]). Finally,
we have presented applications pertinent to physics and computer science, opening up the
opportunity for nonperturbative investigations of machine learning within lattice field theory.
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