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Abstract We evaluate the Raychaudhuri equation for radial ingoing and outgoing null and timelike geodesic congruences in specific
families of metrics. Subsequently, we compute the Feynman propagator specifically for the Schwarzschild anti-De Sitter spacetime.
Here, we find that the classical expansion scalars diverge at the singularity. Interestingly, while the propagators for null geodesics
remain finite ingoing to the singularity, those for timelike geodesics exhibit divergence.

1 Introduction

It is well known that the Raychaudhuri equation is an identity in Riemannian geometry and therefore lacks independent dynamical
content. Only when Einstein’s field equations are introduced does the Raychaudhuri equation gain significance in describing the
dynamics of spacetime [1]. In this framework, it plays an important role in the proof of classical singularities within general relativity
due to the focusing theorem, as demonstrated by Penrose and Hawking [2, 3]. Consequently, studying the Raychaudhuri equation in
quantum frameworks provides promising avenues for understanding the nature of singularities and exploring potential resolutions
at the quantum level.

Das [4] proposed a quantum version of the Raychaudhuri equation by utilizing Bohmian trajectories, illustrating that geodesic
focusing can be prevented when a quantum potential is considered. The broader applications of this quantum formulation to
cosmological and black hole spacetimes have been discussed in [5, 6].

Meanwhile, Alsaleh et al. [7] proposed an approach that frames a geodesic congruence as a dynamical system, using ρ as
the dynamical variable, where ρ represents the square root of the determinant of the metric induced on a hypersurface. They
reformulated the Raychaudhuri equation in terms of ρ and constructed a Lagrangian such that the Raychaudhuri equation arises
naturally as the Euler-Lagrange equation. This framework enables a straightforward quantization: they introduced the canonical
conjugate momentum associated with ρ, defined a classical Hamiltonian, and promoted both ρ and its conjugate momentum to
operators to satisfy the canonical quantization rule [ρ̂, π̂] � i�. This approach allows them to derive the Hamiltonian operator for
quantum geodesic congruences directly.

Gupta et al. [8] later identified an error in one of the equations in the Alsaleh’s work, affecting the quantization process and
limiting its validity to (2 + 1) dimensions. In their work establish a “correct” quantum version of the Raychaudhuri equation based
on Alsaleh et al.’s approach, and concluded that a general application is not feasible. As they noted, “The basic reason behind this
is that the Raychaudhuri equation is actually an identity in Riemannian geometry, and naturally is not derived as the equation of
motion for a geodesic congruence from a variational principle.”

Another approach to quantize geodesic congruences was developed by Socolovsky [9]. His method involves a change in variables
that reduces the Raychaudhuri equation to a one-dimensional harmonic oscillator equation in F(λ) with a time-dependent frequency
�(λ) [10]. Since � is generally non periodic, the equation is not a standard Hill equation but instead belongs to a class of “Hill-
type” Eqs. [11]. After defining a λ-dependent Lagrangian leading to the oscillator equation, a Feynman path integral approach [12,
13] is used to construct a propagator K (F ′′, λ′′; F ′, λ′), which describes the evolution from initial conditions (F ′, λ′) to final
conditions (F ′′, λ′′) of the affine parameter and the expansion function F . This propagator, representing a functional integration
over all fluctuations in F along its classical trajectory, provides a quantum description of the congruence flow. Examples of finite
propagators have been demonstrated for null geodesics reaching a classical singularity. [9, 14]. In this paper, we focus on the
Socolovsky’s method to explore some space times with classical singularities and test if the propagators associated with radial
geodesics ingoing to the singularity are finite or not.
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The paper is organized as follows: in Sect. 2, we review the key ideas presented in [9]. In Sect. 3, we introduce the Raychaudhuri
equation for a general spacetime and provide some examples. Section 4 focuses on the Schwarzschild anti-de Sitter spacetime,
showing that while propagators for null geodesics remain finite, those for timelike geodesics diverge. Finally, Section 5 presents our
conclusions and discussions.

2 Propagators for geodesic congruences

Let v � (vμ), vμ � dxμ

dλ
, be the vector field tangent to an affinely parametrized timelike (T.L.) or null (N) geodesic congruence (λ is

the affine parameter) in a 4- dimensional spacetime with local coordinates xμ, μ � 0, 1, 2, 3, metric gμν , Levi-Civita connection,
Ricci tensor Rμν , and covariant derivative D � (Dμ). v obeys equation

v · D(vμ) � vνDν(vμ) � vν(∂νv
μ + �μ

νρvρ) � 0 (1)

with normalization v2 � gμνv
μvν � +1 (0) in the T.L. (N) case (we use the signature (+, −, −, −)). The expansion of the

congruence, that is, the fractional rate of change in the cross-sectional volume (area) to the congruence in the T.L. (N) case, is the
scalar

	 � D · v � 1√−g
∂μ(

√−gvμ), (2)

where g � det(gμν). Through pure geometrical identities, 	 can be shown to obey the Raychaudhuri equation (a Riccati equation)

d	

dλ
� − 1

n
	2 − σμνσ

μν + ωμνω
μν − Rμνv

μvν (3)

where n � 3 (2) in the T.L. (N) case; σμν (shear, which measures the change in shape of the congruence without modification of its
volume in the T.L. case, or of its area in the N case) and ωμν (rotation) are, respectively, the traceless symmetric and antisymmetric
parts of the tensor

Bμν � Dνvμ, (4)

so that 	 � Bμ
;μ. One has the decomposition

Bμν � σμν + ωμν +
1

n
	hμν , (5)

where hμν is the transverse metric (part of gμν orthogonal to v) given by gμν − vμvν in the T.L. case and gμν − (vμnν + vνnμ) in
the N case (nμ is a null vector satisfying v · n � +1).

(3) is a purely geometrical equation; its physical meaning only comes after relating the Ricci tensor to the energy-momentum
tensor Tμν through the Einstein equation

Rμν − 1

2
gμνR − �gμν � 8πTμν , (6)

where R � Rμ
μ and � is the cosmological constant; finally, all the terms in (3) depend on λ through the xμ’s. In the vacuum,

Tμν � � � 0, implying Rμν � 0.
(Units: In the geometrical system, G � c � 1, so if [λ] � [L], then [	] � [L]−1, [σ ]2 � [ω]2 � [Rμν] � [L]−2, and

[v] � [L]0.)

2.1 Frequency dependent harmonic oscillator

In terms of the function F(λ) defined by [10]

	(λ) � 1

Fn(λ)

d(Fn(λ)

dλ
� n

Ḟ(λ)

F(λ)
, (7)

the Raychoudhuri equation (3) becomes

F̈(λ) + (�(λ))2F(λ) � 0 (8)

with

�2 � 1

n
(σ 2 − ω2 + Rμνv

μvν), (9)

which is nothing but the equation of a classical 1-dimensional harmonic oscillator with λ (“time”)-dependent frequency �. After Hill
[11], (7) is known as a “Hill-type” equation. If at λ � λ0 the congruence converges to a point i.e., 	(λ) has a caustic: 	(λ) → −∞
as λ → λ0, then λ0 must be a zero of F(λ) if Ḟ(λ0) is finite.
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(8) is the Euler-Lagrange equation of the “time”-dependent Lagrangian

L(F , Ḟ , λ) � 1

2
(Ḟ2 − �2F2). (10)

For a suitable domain of definition of λ, (8) admits a solution F̄(λ) subject to the boundary conditions F ′ � F̄(λ′) and F ′′ � F̄(λ′′)
with, e.g., λ′ < λ′′.

(Units: [F]=[L]1/2 since [action]=[
∫
dλL] � [L][L] � [L]0.)

2.2 Path integrals and time-dependent quadratic Lagrangians

It is well known [12, 13] that a Lagrangian of the form

L(x , ẋ , t) � 1

2
((ẋ(t))2 − b(t)(x(t))2) (11)

has associated with it a exactly defined propagator K (x ′′, t ′′; x ′, t ′) from the quantum state |x ′, t ′ > to the quantum state |x ′′, t ′′ >

given by the path integral
∫ x(t ′′)�x ′′

x(t ′)�x ′
Dx(t)ei

∫ t ′′
t ′ dtL(x ,ẋ ,t), (12)

(� � 1) where, formally,
∫ x(t ′′)�x ′′

x(t ′)�x ′
Dx(t)... �

∏

t∈(t ′,t ′′)

∫ +∞

−∞
dx(t).... (13)

The result is

K (x ′′, t ′′; x ′, t ′) � (2π ih(t ′′, t ′))−1/2ei S[x̄], (14)

where x̄(t) is the solution of

ẍ(t) + b(t)x(t) � 0 (15)

with x(t ′′) � x ′′ and x(t ′) � x ′,

S[x̄] �
∫ t ′′

t ′
dtL(x̄(t), ˙̄x(t), t), (16)

and h(t , t ′) is the solution of

∂2h(t , t ′)
∂t2 + b(t)h(t , t ′) � 0 (17)

with h(t ′, t ′) � 0 and ∂h(t , t ′)
∂t |t�t ′� 1.

Since (10) and (11) have the same form, then

K (F ′′, λ′′; F ′, λ′) � (2π ih(λ′′, λ′))−1/2ei S[F̄] (18)

with

S[F̄] �
∫ λ′′

λ′
dλL(F̄(λ), ˙̄F(λ), λ) (19)

and h(λ, λ′) solution of (17) with t’s replaced by λ’s, is a Feynman propagator and therefore a quantum object describing the flow of
the geodesic congruence from λ � λ′ to λ � λ′′. To the pairs (F ′′, λ′′) and (F ′, λ′) might correspond “quantum states” |F ′′, λ′′ >

and |F ′, λ′ >.

3 Radial Raychaudhuri equation

Let’s consider a space-time with metric

gμν � diag ( f (r ), − 1

f (r )
, − r2, − r2 sin2 θ ) (20)

with f (r) a smooth function except perhaps on a finite set of points. These function can be dependent on some real constants, for
example f (r , a) � 1 + r2/a2 for adS and f (r , M , ) � 1 − 2M/r for Schwarzschild solution.

For this metric we want to obtain the Raychaudhuri Equation (RE) for particular geodesics as they are the radial ones, like
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• marginally bound timelike geodesics (see below)
• null geodesics

For this we need the Christoffel symbols. It is well known that for a metric (20) there are nine algebraically independent non-vanishing
Christoffel symbols

�0
01 � 1

2

f ′

f
; �1

00 � 1

2
f f ′;

�1
11 � −1

2

f ′

f
; �1

22 � −r f ; �1
33 � −r f sin2 θ ;

�2
12 � �3

13 � 1

r
; �2

33 � − sin θ cos θ ; �3
23 � cot θ. (21)

where the prime means the derivative respect to the coordinate r. Knowing this we can carry on RE calculations.

3.1 Radial marginally bound timelike geodesics

As we know the geodesic equation can be computed with the help of Euler-Lagrange Equations (ELE). In this case the Lagrangian
for the geodesic is

L � 1

2
gμν ẋ

μ ẋν (22)

where the dot means the derivative respect to affine parameter λ. In terms of the tangent vector of the geodesic vμ � (vt , vr , vθ ,
vφ) � ẋμ the Lagrangian takes the form

L � 1

2
gμνv

μvν (23)

The ELE are

∂L
∂xμ

− d

dλ

(
∂L
∂ ẋμ

)

� 0; (24)

for μ � 0 we have

ṫ f � cte � E . (25)

The marginally bound geodesic is defined as E � 1, thus the temporal component of the tangent vector is vt � 1/ f . For radial
geodesics vθ � vφ � 0.

On the other hand, for timelike geodesic holds v2 � 1, that is

v2 � gμνv
μvν � (vt )2 f − (vr )2 f −1 � 1 (26)

which implies

vr � ±√
1 − f . (27)

Therefore tangent vectors fields to radial marginally bound timelike geodesics are given by

v± � v
μ
±∂μ � 1

f
∂t ± √

1 − f ∂r � (1/ f , ± √
1 − f ), (28)

and

v±
μ � gμνv

ν± � (1, ∓
√

1 − f

f
). (29)

To calculate all elements of the RE, we need to compute first the tensor Bμ
ν :� v

μ
;ν that measures the obstruction for the deviation

vector to be parallel transported along geodesics. For this we compute Bμν :� vμ;ν instead of Bμ
ν , and since there are two tangent

vectors, one for the outgoing label by + and the ingoing label by − we will have two tensors B±
μν . Then

B±
μν :� v±

μ;ν � ∂νv
±
μ − �σ

μνv
±
σ . (30)

By a straightforward calculation we obtain

B±
μν � √

1 − f

⎛

⎜
⎜
⎜
⎝

± 1
2 f ′ − 1

2
f ′

f
√

1− f
0 0

− 1
2

f ′
f
√

1− f
± 1

2
f ′

(1− f ) f 2 0 0

0 0 ∓r 0
0 0 0 ∓r sin2 θ

⎞

⎟
⎟
⎟
⎠

. (31)
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Remembering that this tensor can be decomposed into trace, symmetric-traceless, and antisymmetric parts,

B±
μν � 1

3
	±h±

μν + σ±
μν + ω±

μν (32)

where 	± :� tr (B±) � gμνB±
μν is the expansion scalar, σ±

μν :� B±
(μν) − 1

3	±h±
μν the shear tensor, ω±

μν :� B±
[μν] the rotation

tensor, and h±
μν :� gμν − v±

μ v±
ν the transverse metric is purely ‘spatial,’ in the sense that it is orthogonal to v

μ
±.

Since by (31) B±
μν � B±

νμ, then ω±
μν � 0, and so

	± �gμνB±
μν

� ±
√

1 − f

r

(

2 − 1

2

r f ′

1 − f

)

(33)

To compute σ±
μν , we need to compute the transverse metric that for a direct substitution we have

h±
μν �

⎛

⎜
⎜
⎜
⎝

f − 1 ±
√

1− f
f 0 0

±
√

1− f
f − 1

f 2 0 0

0 0 −r2 0
0 0 0 −r2 sin2 θ

⎞

⎟
⎟
⎟
⎠

(34)

With this we are ready to calculate the shear tensor that gives us

σ±
μν � �(r )

⎛

⎜
⎜
⎜
⎜
⎝

±√
1 − f − 1

f 0 0

− 1
f ± 1

f 2
√

1− f
0 0

0 0 ∓ r2

2
√

1− f
0

0 0 0 ∓ r2 sin2 θ

2
√

1− f

⎞

⎟
⎟
⎟
⎟
⎠

(35)

where

�(r ) � 1

3

(

f ′ + 2
1 − f

r

)

. (36)

Then

σ 2± �σ
μν
± σ±

μν � 3

2

�2

1 − f
. (37)

Finally the RE for radial marginally bound timelike geodesics are

d	±
dλ

� −1

3
	2± − σ 2± − Rμνv

νvν. (38)

As an example of this, let’s consider the function f (r ) � 1 − 2M/r which is the Schwarzschild case. For this we have

	± � ±3

2

√
2M

r3 , � � 2M

r2 , σ 2± � 3M

r3 (39)

and then the RE for Schwarzschild space-time is

d	±
dλ

� −9M

2r3 (40)

as appears in [15] in the section “2.3.7 Another example.”
Our goal is the Schwarzschild anti-De Sitter (SaDS) case for which we have f � 1−2M/r +r2/a2 and Rμν � −�gμν � 3

a2 gμν .
In this case, we have

	± � ±
√

2M

r3 − 1

a3

⎛

⎝2 − 1

2

2M
r + 2r2

a2

2M
r − r2

a2

⎞

⎠. (41)

Notice that

lim
a→∞ 	± � ±3

2

√
2M

r3 (42)

that is, the Schwarzschild case is recovered for vanishing cosmological constant. The RE is

d	±
dλ

� − 3

2Mr − r4

a2

(
3M2

r2 − r4

a4 − 2Mr

a2

)

− 3

a2 . (43)
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Again, taking the limit a → ∞ we recover the Schwarzschild case (40),.
On the other hand the affine parameter obeys

dr

dλ±
� vr± � ±√

1 − f � ±
√

2M

r
− r2

a2 . (44)

Up to an additive constant, one obtains

λ± � ±2a

3
arcsin

(
r

3
2√

2Ma

)

. (45)

Once again, in the limit a → ∞ at first order we get

λ± ≈ ±2a

3

r
3
2√

2Ma
� ±1

3

√
2r3

M
(46)

that matches with Eq. (31) of [9] for the Schwarzschild case.

3.2 Null case

The metric for the space-time (20) for radial null geodesics is

f dt2 − f −1dr2 � 0 ∴ f dt2 � f −1dr2 (47)

In terms of the tortoise coordinates

r∗(r ) �
∫ r

0

dr ′

f (r ′)
(48)

the metric for radial case takes the form

ds2 � f 2(dt2 − (dr∗)2) (49)

and then the null geodesic equations can be written in the form

dt

dr∗ � ±1. (50)

The solutions in this coordinates are

t(r ) � ±r∗(r ) + r0. (51)

Strictly speaking one should divide the domain of integration, for the tortoise coordinate, in intervals like (0, r1 −ε), (r1 +ε, r2 −ε),
..., (rn−1 + ε, rn − ε), (rn + ε, r ) where f (ri ) � 0 for all i � 1, ...n.; then taking the limit ε → 0− would differ by and irrelevant
constant. In terms of the Eddington-Finkelstein coordinates

u :� t − r∗ (52)

and

v :� t + r∗ (53)

a null geodesic has the form u(r ) � u0 and v(r ) � v0 for some constants u0 and v0. The 1-forms associate to outgoing (u � cte)
and ingoing (v � cte) geodesics are

koutμ � ∂μu � (∂t u, ∂u) � (1, − f −1) (54)

and

kinμ � ∂μv � (∂tv, ∂v) � (1, + f −1) (55)

, respectively. The corresponding tangent vectors are

kμ
out � gμνkoutν � ( f −1, + 1) (56)

and

kμ
in � gμνkinν � ( f −1, − 1). (57)
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Let’s label out ones by + and the in ones by −, then

kμ
± � ( f −1, ± 1), k±

μ � (1, ∓ f −1) (58)

To obtain the RE for this case, we need a auxiliary null vector nμ
± such that nμ

±k±
μ � 1. For simplicity let’s choose for a radial vector,

that is, nν± � (nt±, nr±, 0, 0), then we get

nμ
± � 1

2
(1, ∓ f ), n±

μ � 1

2
( f , ± 1). (59)

The transverse metric defined as h±
μν � gμν − (n±

μk
±
ν + n±

ν k
±
μ ) is

h±
μν � diag (0, 0, − r2, − r2 sin2 θ ). (60)

On the other hand the B±
μν tensor for this case is

B±
μν �

⎛

⎜
⎜
⎜
⎝

± 1
2 f ′ − 1

2
f ′
f 0 0

− 1
2

f ′
f ± 1

2
f ′
f 2 0 0

0 0 ∓r 0
0 0 0 ∓r sin2 θ

⎞

⎟
⎟
⎟
⎠

. (61)

whose transverse part, defined by (B⊥± )μν � B±
μν − B±

μαn
α±k±

μ − k±
μ n

α±B±
αν + k±

μ k
±
ν B±

αβn
α±n

β
±, is

(B⊥± )μν � diag (0, 0, ∓ r , ∓ r sin2 θ ). (62)

By a direct calculations we get σ±
μν � 0 � ω±

μν and

	± � tr (B⊥) � ±2

r
. (63)

Then, the RE for the space-time (20) for null radial geodesics is

d	±
dλ

� − 2

r2 − Rμνk
μkν . (64)

For the SaDS case we get Rμνkμkν � −�gμνkμkν � 0 then the RE is

d	±
dλ

� − 2

r2 (65)

with affine parameters λ � ∓r .

4 Propagators for radial timelike geodesic congruences

Let’s beging with the pure Schwarzschild case. In [9] it was studied that for conjugate points in the massive case, the propagators
(18) are finite. However, the case in which the geodesic congruence reaches r → 0+ was not studied. Only the null case was done
for a light beam to go from r � 2M to the singularity r → 0+. The solution for h(t , t ′) (17) in the massive case is

h(t , t ′) � 3
(
t ′1/3t2/3 − t ′2/3t1/3). (66)

(This expresion corrects the wrong result (46) in [9], where h is denoted by f and λ′′ � t , λ′ � t ′.)
With this, the quantum propagator for the massive geodesic congruences in Schwarzschild is

K±(F ′′±, λ′′±; F ′±, λ′±) � ei S[F̄±]
√

2π ih(λ′′±, λ′±)
. (67)

S[F̄±] does not change and is as in equations (44, 45) in [9].
Let us then analyze this propagator K when the particle starts from the horizon r � 2M and goes to the singularity r → 0+.

From the expression for the expansion in Eq. (39) for the ingoing case we have that when r → 0+ then θ− → −∞ and by the
definition of F in (7), F ′′−(λ−) → 0. In this case the parameter λ± takes the form as in (46), so λ′−(r � 2M) � −4/3M and

λ′′−(r � ε) � −1/3
√

2ε3/M , ε > 0, so that the limit ε → 0 is then taken. We see that in (67) regardless of the numerator, the
convergence or not of |K±(F ′′±, λ′′±; F ′±, λ′±)| is dictated by the denominator and this depends on h(λ′′±, λ′±) (66). Let’s see how this

one behaves under the parameters λ′−(r � R) � −1/3
√

2R3/M and λ′′−(r � ε) � −1/3
√

2ε3/M .

h(λ′′−(ε), λ′−(R)) �
√

2

M

(
Rε1/2 − R1/2ε

)
, (68)
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For finite R and ε → 0, we have that h � 0 so the quantum propagator for the geodesic congruences of massive particles in the
Schwarzschild case diverges, contrary to what happens in the null case.

In the Schwarzschild anti-De Sitter case, f � 1−2M/r +r2/a2, and Rμν � −�gμν � 3
a2 gμν . For the marginally bounded time

like geodesics, we have Eq. (45); inverting it and using the change of variable (7) we have the differential Eq. (8) with frequency

�2(λ±) � 1

a2

(

1 +
2

sin2(3 λ±
a )

)

(69)

which has period T � aπ/3 so it is a Hill equation [11].
We are interested in the case near the singularity r � 0 that is λ± → 0, and since physically a � 1 (� � − 3

a2 ∼ −10−52m−2)
then |λ±/a|� 1 and one has the approximation

�2(λ±) ≈ 1

a2 +
2

9

1

λ2±
. (70)

Solving the differential equation by the series method, we have that

F(λ±) � c1F2/3(λ±) + c2F1/3(λ±) (71)

with

F2/3(λ±) �λ
2/3
±

(
1 + 9

[
− 1

42

(
λ±
a

)2

+
1

728

(
λ±
a

)4

− 1

27664

(
λ±
a

)6

+ ...
])

, (72)

F1/3(λ±) �λ
1/3
±

(
1 +

9

10

[
− 1

3

(
λ±
a

)2

+
1

44

(
λ±
a

)4

− 1

1496

(
λ±
a

)6

+ ...
])

. (73)

In terms of Bessel functions of the first kind [16] the solution (71) is

F(λ±) � √
λ±

(
c1 J1/6(λ±/a) + c2 J−1/6(λ±/a)

)
. (74)

h(t , t ′) follows a similar differential equation (compare (8) and (17)) so

h(λ′′±, λ′±) �
√

λ′′±
(
c1(λ′±)J1/6(λ′′±/a) + c2(λ′±)J−1/6(λ′′±/a)

)
. (75)

By imposing the boundary conditions h(λ′±, λ′±) � 0 and
∂h(λ′′±, λ′±)

∂λ′′±
|λ′′±�λ′±� 1 the constants c1(λ′±) and c2(λ′±) can be found.

Again the convergence of this propagator is dictated by the value of h(λ′′−, λ′−) with λ′′− → 0 and λ′− finite. Writing h(λ′′−, λ′−)
as in (71) we notice that for λ′′− → 0, h → 0 so also in SaDS the propagator diverges for massive particles. So the cosmological
constant does not contribute for the converging of the propagator.

5 Conclusion

We found the Raychaudhuri equation for specific cases of geodesic congruences: radial marginally bound timelike geodesics (38)
and radial null geodesics (64) in the static space time (20). Then we focus in the SaDS case and showed that to a time like geodesic
congruence can be assigned a Feynman propagator describing its flow which near the singularity diverges. It is interesting that for
the null case in SaDS the propagators, when going from the event horizon to the singularity converge because (65) is the same as that
appearing in [9]. Coincidentally, in [14] the propagators of incoming and outgoing null equatorial principal geodesic congruences
in the Kerr metric where the expanding scalars diverge at the ring singularity; however, the propagators remain finite. It would be
investigated if there is any example for massive particles near a singularity for which the propagators remain finite.
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