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Abstract

This thesis presents the computation of singular vectors of the W,, algebras and the
BRST cohomology of modules of the simple vertex operator algebra L (s((2))
associated to the affine Lie algebra §[<2) in category R7, which is the category of

relaxed highest-weight modules, their spectral flows and non-split extensions.

We will first recall some general theory on vertex operator algebras. We will then

introduce the module categories that are relevant for conformal field theory. They are
the category O of highest-weight modules and R?, where R? contains O as well as the
relaxed highest-weight modules with the relaxed spectral flow and non-split extensions.
We will then introduce the W,, algebras as well as the simple vertex operator algebra.
Properties of the Heisenberg algebra, the bosonic and the fermionic ghosts will be

discussed as they are required in the free field realisations of W,, and L(s((2)) as well

as the construction of the BRST complex.

We will then compute explicitly the singular vectors of W,, algebras in their Fock
representations. In particular, singular vectors can be realised as the image of
screening operators of the W,, algebras. One can then realise screening operators in
terms of Jack functions when acting on a highest-weight state, thereby obtaining

explicit formulae of the singular vectors in terms of symmetric functions.

We will then discuss the BRST construction and the BRST cohomology for modules
in category O. Lastly we compute the BRST cohomology for £ (sl(2)) modules in
category R?. In particular, we compute the BRST cohomology for the highest-weight
modules with positive spectral flow for all degrees and the BRST cohomology for the
highest-weight modules with negative spectral flow for one degree. We also compute
the BRST cohomology for relaxed highest-weight £y (sl(2)) modules.
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Chapter O

Introduction

0.1 Background

The ingredients of a two-dimensional conformal field theory include a vertex operator
algebra and a module category of the vertex operator algebra that satisfies a number
of constraints. The constraints are that the module category has to be closed under
conjugation, fusion and that there exists a partition function is invariant under the
action of SL(2,7Z) (modular invariance).

A large class of vertex operator algebras are the simple affine vertex operators
algebras L (g) constructed from affine Kac-Moody algebras at non-critical levels k.
These include the Wess-Zumino-Witten models [77-79] corresponding to k being integral.
Another class of vertex operator algebras called the W-algebras are constructed from the
affine vertex operator algebras via quantum hamiltonian reduction [34, 35, 39] which
is the zeroth cohomology of the so-called BRST complex. W-algebras are parametrised
by a finite-dimensional simple Lie algebra g, a level k£ and a nilpotent element f € g
and we shall denote them by Wy (g, f). Examples of W-algebras include the Virasoro
algebra Wy (sl(2), f) [81] and the W3-algebras, Wy (sl(3), f) [33] where f corresponds
to a principal nilpotent element of sl(2) and s[(3).

Given a conformal field theory, one question to ask is whether it is rational, that
is, whether the (appropriate) module category of the corresponding vertex operator
algebra is completely reducible (this will also imply that the module category has
finitely many irreducible modules [21]). The Wess-Zumino-Witten models, the Virasoro
minimal models M(p, q) = W (s((2), f), f # 0 [74] are rational, where k, p, ¢ are related
by k+2 = g for p,q > 2, where p, q are coprime. More generally, Wy(g, fy) is rational
[4] where fy is a principal nilpotent element of g with & defined in the paper.
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The approach used to prove rationality of Virasoro minimal models M(p,q) in
[74] involves deriving a projection formula of singular vectors in the Virasoro algebra
Vir. Singular vectors are in general very hard to compute explicitly. It was shown in
[57] that explicit formulae for singular vectors in Fock representations of Vir can be
expressed in terms of the Jack symmetric functions. This approach of representing
singular vectors using symmetric functions was used in [61] to prove the rationality
of M(p, ¢) and classify its modules, thereby recovering the result in [74]. The same
approach has been used to determine the spectrum of the simple affine vertex operator
algebra L (s[(2)) [62].

The approach used in [57] for computing singular vectors has been generalised to
the W,,-algebra [7], where W,, = Wy(sl(n), fs), fo being a principal nilpotent element.
The first result of this thesis is to extend the results in [57, 7] to give explicit formulae of
singular vectors of the W,,-algebra in its Fock representations. This work was published
in [60].

The approach used to prove that the simple quotient of Wy(g, f), f principal
nilpotent is rational uses BRST cohomology [4]. Specifically, it was shown that all
irreducible modules of Wy (g, f) in category O can be obtained from simple modules
in category O of the simple vertex operator algebra L;(g) via BRST cohomology.
Moreover, the so-obtained Wy(g, f) irreducible modules satisfy the constraints of a
conformal field theory.

However, for fractional admissible level k, the modules in category O of L;(g) do
not satsify any of the constraints of a conformal field theory. Therefore a larger category
than O is needed. It is conjectured that the right category to consider is the relaxed
category with spectral flow R?. This category includes O as well as relaxed highest-
weight modules and their twisted versions under the spectral flow automorphisms. We
also remark that R7 is not semisimple and thus the theory is a logarithmic conformal
field theory. A logarithmic conformal field theory is one where the module category
(of the chiral vertex operator algebra) is not semisimple[64, 24]. Similarly, there are
W-algebras that are believed to be logarithmic. For example, let f = (g § §) be a
minimal nilpotent element of s[(3). Then W (sl(3), f) is the Bershadsky-Polyakov
algebra. For k = —3 + & where p is an odd integrer greater than 3, the simple quotient
of this algebra has been proved to be rational [3]. However, for other levels it is believed
that the algebra is logarithmic. Therefore, relaxed modules of the Bershadsky-Polyakov
algebra must be considered.

It is natural then to ask whether the BRST cohomology takes relaxed modules in
category R7 of Li(g) to relaxed modules in R? of simple quotient of the Bershadsky-



0.2 Outline
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Highest-weight Highest-weight
modules BRST modules

Fig. 1 In the second part of this thesis we will compute the BRST cohomology of some
irreducible relaxed highest-weight modules of the simple affine vertex operator algebra
Lr(sl(2)). It turns out that their cohomologies are either zero or a simple highest
weight module of the Virasoro minimal model M(p, q).

Polyakov algebra. Of course we would also like to ask the same for all other W-algebras.
The simplest case of this question is the case of L (s[(2)) which is what the second
part of the thesis is about. In particular, we will compute the BRST cohomology of
some relaxed modules in R? of L, (sl(2)), as shown in Figure 1.

In the future we would like to extend the question of finding the BRST cohomology

of relaxed modules to higher ranks, see Figure 2 for example.

0.2 Outline

This thesis is organised as follows:

In Chapter 1 we start with a brief summary of the theory of vertex algebras. We also

introduce the vertex algebras and their module categories that are relevant to us.

In Chapter 2, based on the work of [7], we apply the machinery of symmetric functions
to compute singuar vectors of the Wy algebra in the Fock representations of W y.
This work was published in [60].

In Chapter 3 we give a detailed proof of certain fundamental results about BRST
cohomology, outlined in [16], that takes irreducible highest-weight modules of the

3
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Fig. 2 For most admissible levels k, the simple Bershadsky-Polyakov algebra coresponds
to a logarithmic conformal field theory. Moreover, we need to consider relaxed highest-
weight modules. An obvious future research direction is to investigate whether the
BRST cohomology takes irreducible relaxed modules of the simple affine sl(3) vertex
operator algebra L(s((3)) to irreducible relaxed modules of the simple Bershadsky-
Polyakov vertex operator algebra.

simple affine vertex operator algebra L;(sl(2)) at admissible level k to the irreducible
highest-weight modules of the Virasoro minimal model M(p, ¢) where k = —2 + %,
p,q > 2, (p,q) = 1. The module category that we work with in this chapter is the
category O.

In Chapter 4 we attempt to generalise [16] where we consider the BRST cohomology
of Lx(sl(2)) modules in the category R?. This non-semisimple category contains the
relaxed Lj(sl(2)) modules, the twisted relaxed modules under spectral flow as well as

non-split extensions of such modules. We present partial answers for this problem.



Chapter 1

Vertex Algebras

1.1 Vertex Algebras

In this section we recall some basic definitions and properties of vertex operator

algebras.

1.1.1 Definitions

Let V' be a vector space over C. We assume that V' is graded

V=V, (1.1)

ne”

Given a countable set {A,, € EndV | n € Z} of homogenous linear operators A,, of

degree —n with respect to the grading on V', we define the formal power series

Alz) = > Azt (1.2)

neL

which is called a field if for any v € V' we have A,v = 0 for n large enough.
Definition 1.1.1. Two fields A(z), B(w) are local if there exists N € N such that

(z —w)V[A(2), B(w)] = 0 (1.3)
Definition 1.1.2. A wvertex algebra is a collection of data

e A vector space V

e A vacuum vector |0) € V
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e A linear operator T :V —V

e A linear operation

Y(,2):V — End V[z¥] (1.4)

satisfying
e Y(|0),2) =id
e Forany A€V we have Y (A, 2)|0) € V[z] and lim,_,c Y (A, 2)[0) = A
o [T,A(2)] =0A(z) and T|0) =0
e All fields Y (A, z) are local to each other.

If two fields A(z), B(w) are local, then we can write the product A(z)B(w) as a power

series in z — w, assuming |z| > |w|

Y (A, - B,w)

A(z)B(w) = Y

n>0

+:A(2)B(w): (1.5)

which is called the operator product expansion of A(z), B(w).

Definition 1.1.3. The regular terms :A(z)B(w): in the series expansion in
Equation (1.5) is called the normally ordered product of A(z), B(w). Explicitly,

A(z)B(w): = Y Apz " 'B(w) + B(w) Y Azt (1.6)
n<—1 n>0
From now on we will only include the singular terms when we write the operator

product expansions of A(z), B(w). That is we write

A(2)B(w) ~ Y Y(A, - B,w)

n>0 (Z - w)n+1

(1.7)
Since A,, - B = 0 for n large enough we see that the series in Equation (1.5) always has
finite-order pole at z = w.

Definition 1.1.4. A vertex operator algebra is a vertex algebra (V,|0),T,Y") with the

existence of a conformal vector w. The field corresponding to w is an enerqgy
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momentum tensor

Y(w,z) =Y L,z "2 (1.8)

neL

such that the modes L,, satisfy the commutation relations of the Virasoro algebra

Z(m — Dm(m + 1)dmino (1.9)

Lm7Ln: - Lmn
L Ll = (m = 1) L+ 5

where ¢ is central. Furthermore, the translation operator T coincides with L_;.
The action of Lo acts diagonalisably on the vector space of the vertex operator algebra
and the grading of the vector space V- = @,,cz V,, is the grading given by the

Lg-etgenvalues. Any elements in V,, are said to have conformal weight n.

For any element A € V' with conformal weight h,, we will rewrite the field

corresponding to A as

V(A z)=> A,z ha (1.10)
nez
Since the conformal vector uniquely determined the translation operator 7" which is
L_4, the data for a vertex operator algebra is (V,|0),w,Y).
From now on we will only consider vertex operator algebras. Given one, we can define

subalgebras, ideals and quotients. In particular,

Definition 1.1.5. A wvertex operator algebra ideal I C 'V is a T-invariant subspace
that satisfies Y (A, z)B € I((z)) forall A€ V,B € I.

A special property that a vertex operator algebra has is skew-symmetry

Proposition 1.1.6. /38, Proposition 3.2.5] The identity
Y(A,2)B =Y (B, —2)A (1.11)

holds in V ((z)).
The point of Proposition 1.1.6 is that if Y/(A, 2)B € I((2)), then Y(B, 2)A € I((z)).

Therefore for vertex algebras, any left-sided ideal is automatically a two-sided ideal
and thus the quotient V/I has a natural vertex algebra structure. In particular, if V'
has the structure of a vertex operator algebra, so does V/I.

Now that we have defined vertex operator algebras, we will turn to how we can
construct them. The theorem below allows us to construct a vertex operator algebra

from a set of generators and relations.
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Theorem 1.1.7. [38, Theorem 2.3.11] Suppose that V' is a vector space, |0) a
non-zero vector, and T an endomorphism of V. Let S be a countable ordered set and

{a“}aes a collection of vectors in V. Suppose we are also given fields

a“(z) =Y afz"le (1.12)

neL

such that the following conditions hold

For all a, a*(2)]0) = a®* + 2(...)

T|0) =0 and [T,a%(2)] = 0.a*(z) for all a.

All fields a®(z) are mutually local

V' is spanned by the vectors

ajl - --a3m0) (1.13)
Then the assignment
« « 1 —71—1 o —Jim—1 o
Y(ajf"'%;” O>,z): ‘:3231 a®(z) - 977 Lam (2):

(=1 =Dt (=jm — D!
(1.14)

defines a vertex algebra structure on V. Moreover, if V' is a Z-graded vector space, |0)
has degree 0, the vectors a® are homogeneous, T' has degree 1, and the fields a®(z) have
degree dega®, then V is a Z-graded vertex algebra. Moreover, this is the unique vertex

algebra structure on 'V satisfying the above conditions such that Y (a®, z) = a®(z).

Therefore throughout this thesis, we will simply define various vertex operator algebras
by stating the underlying vector space, the generating fields, the energy-momentum
tensor T'(z) as well as the operator product expansion between these fields.

Theorem 1.1.7 ensures that it will be a well-defined vertex operator algebra.

Lastly we will state a general result on vertex operator algebras that will be important
in Chapter 3.

Lemma 1.1.8. /38, Corollary 3.3.8] For any A € V', the mode
A p,p1= /Y(A, 2)dz of Y(A, z) satisfies
0

[A—hA+17 Y(B’ U))] - Y<A_hA+1 - B, w) (115)
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1.1.2 Modules of vertex operator algebras

Definition 1.1.9. Let (V,]0),T,Y) be a vertex algebra. A vector space M is called a
V -module if it is equipped with an operation Yy : V — End M [2%] which assigns to
each A €'V a field

Yir(A,z) =Y Azt (1.16)

ne’l

on M subject to the following axioms:
e Y(|0),2) =idy

e forall A,B € V,C € M the three expressions

Yu (A, 2)Yu (B, w)C € M((2))((w)) (1.17)
Y (B, w)Yy (A, 2)C € M((w))((2)) (1.18)
Yyu(Y (A, z—w)B,w)C € M((w))((z —w)) (1.19)

are the same expansions, in their respective domains, of the same element of

Mz, w] [z’l, w (2 — w)’l} (1.20)

To construct modules of a vertex operator algebra, we want to relate them to modules
of Lie algebras. For any vertex algebra V| we can attached to it an associative algebra
U(V), see [38, Definition 4.3.1]. In particular, if the modes of all fields A(z) of the
generators are elements of some Lie algebra g, then U(V') is a completion of U(g)/I,
where U(g) is the universal enveloping algebra and [ is the ideal generated by the
expressions (S — s1) for any central element S € g and for some fixed s € C. We call a
U(V) module smooth if for all v € M and A € V| there is an N such that A, - v =0
for all n > N. Then we have

Theorem 1.1.10. /38, Theorem 5.1.6] There is an equivalence between the category
of V-modules and the category of smooth U(V')-modules.

For our applications, U(V')-modules are all g modules so it’s enough to consider

modules of g. The Lie algebras g that we consider have triangular decompositions

g=n_0hdn, (1.21)
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as well as a grading g = @,ez0, (which will be made explicit when necessary) where

go contains f. The relaxed decomposition is defined as
g=ncDgoDns (1.22)

where n. = @B, <080, N> = B0, We note that gy @ n. contains the borel
subalgebra h & g.. Given a module M of g, for any A € h* let

My={ve M|Vhebh hv=Ah)v} (1.23)

Ultimately, we are interested in vertex algebras and their modules from the conformal
field theory point of view. Recall that a conformal field theory includes a vertex

operator algebra V' and a module category of V' that satisfies certain constraints:
o closed under conjugation
e closed under fusion
o there exists a partition function that is modular invariant

The category that we need to consider in order to satisfy these assumptions depends
on the vertex operator algebra V. As V-modules are modules of the Lie algebra U(V)
which are modules of g, we will introduce some Lie algebra module category that

(conjecturally) satisfies the axioms. The first such category is the category O.
Definition 1.1.11. [58] The category O contains objects M that satisfy
e M is finitely generated

e M= P M,, where each M, is finite-dimensional
Aeh*

e M is locally n, -finite, for each v € M the n,-module generated by v is finite

dimensional
and the morphisms are g-module homomorphisms.

For example all modules of the Virasoro minimal models M(p, q) [74] and the Wy

algebras [4], which we will define in the next section, belong to category O.
Definition 1.1.12. [62] The relaxed category R contains objects M that satisfy

e M is finitely generated

10
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o M= @ My, where each My is finite-dimensional
Aeh*

e M is locally n~ -finite, for each v € M the n.-module generated by v is finite

dimensional.

Given a module M of the associative algebra U(V') associated to a vertex (operator)
algebra V', suppose that o : U(V) — U(V) is an automorphism of the Lie algebra
Uv).

Definition 1.1.13. The twisted module o(M) is defined, for any element v € M and
for any modes A,, € U(V'), by

A, o) =o(c (A, - v)), o(v) € o(M). (1.24)

Equivalently, (M) corresponds to the representation o= o p: U(V) — End M where
p:U(V)— End M is the representation map of M.

Suppose that C is a module category of V' and let ¢ be an automorphism of g. We
define ¢(C) as the set containing the twisted modules o (M) for each M € C.

Definition 1.1.14. The relaxed category with spectral flow R is the full subcategory
of smooth weight modules of g generated by objects M, o (M), M € R as well as all

non-split extensions between these objects.

1.2 The Heisenberg vertex algebra

The Heisenberg Lie algebra H is the vector space
H=Cla,,1|neZ} (1.25)
The algebra structure of ‘H is defined by the Lie bracket
(@, @n] = MOpyin ol (1.26)
with 1 central. The Heisenberg algebra has the triangular decomposition

H=H_-PHPH+ (1.27)

11
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where

H+ == C{an | n c Zzl} (128)
Hy = Cag, 1} (1.29)
H_ = (C{an | n e Zg_l} (130)

With this triangular decomposition we can define Verma modules, commonly called
Fock spaces. These modules are constructed from the one dimensional module
generated by |A\), A € C

Fa=UH-) & CIN (1.31)
U(Ho®H+)
so that
apg|lA) = A|A) (1.32)
an|A) =0, n>1 (1.33)

As a vector space, the Fock spaces are spanned by the vectors and the highest-weight
vector of F) is thus |A).

1.2.1 The Heisenberg vertex operator algebra
The module Fy has the structure of a vertex algebra H with the data (Fy, [0),7,Y)

where the translation operator is defined as

1
T = 3 Z S Ap g1 - (1.34)

nel

H is generated by a single field of conformal weight 1

a(z) = > az " (1.35)

neL

where the field a(z) satisfies the operator product expansion

(1.36)

12
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with the state-field correspondence defined as

1

Y(a_p, - a_p,|0),2) = (e — D)0 (1 — 1)!

0" a(z) - 0™ a(z): (1.37)

where ny > ---ny > 1. There is a one parameter family of conformal structures on H,

each member of which makes H a vertex operator algebra,
1 (7))
T(z) = E:a(z)a(z): + ?Ga(z), ap e C (1.38)

where ¢ =1 — 3a3.

1.2.2 Modules of the Heisenberg vertex operator algebra

For all A € C, the Fock spaces F) of the Heisenberg Lie algebra H are modules for the
Heisenberg vertex algebra H. Moreover, as modules of H, these modules are simple.
To conclude this section we introduce the spectral flow automorphism of the

Heisenberg algebra. For s € C, let oj, be the map
os(an) = a, — s4n01, o3(1) =1. (1.39)

It is routine to check that o3, is an automorphism. Since o3, leaves every element but
ap in H invariant, we see that o3,(|\)) is a highest-weight vector and thus o3, (F)) is a
highest weight module. The action of g acting on the highest weight vector of o3, (F»)

a0, (IN) = 03 (07 (a0) [ N)) = o3,((a0 + $)]A) = (A + 5)03,(|A) (1.40)
Thus we see that
03(Fr) = Fiats (1.41)

That is, twisting )\ with o3, changes it to another Fock space with a different highest
weight.

1.2.3 The rank r Heisenberg algebra

In this subsection we use different notations to the ones used for defining H, so we fix

r > 2. The rank r Heisenberg algebra is constructed from an r-dimensional complex

13
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vector space B, together with a non-degenerate symmetric bilinear form (—,—). For
the application to follow, we pick a basis {a!,...,a"} of h, such that the Gram matrix
of (—, —) is the Cartan matrix of sl(r + 1):

(ai, aj> = 2(57;7]' — 51'4_17]' — 5i,j+17 Z,] = 1, Lo, T (142)

Since (—, —) is non-degenerate, it defines a vector space isomorphism ¢ : b, — b by
a — (a,—). The induced non-degenerate symmetric bilinear form will also be denoted
by (—, —). We denote the images of the basis vectors a’ by o' = i(a’) and the
elements of the basis of b* dual to {a’} by w;. Thus, w;(a’) = §7. The o' and w; may
therefore be identified as simple roots and fundamental weights, respectively, of

sl(r +1). In this picture, the basis vectors a’ € b, are the simple coroots of sl(r + 1).
To any vector a € h,, one assigns a field a(z) whose defining operator product

expansions are
(a,b)1

27

a(2)b(w) ~ a,beb,. (1.43)

These fields admit Fourier expansions of the form

(2 —w)

a(z) = a,2""", a€h,, (1.44)

neL

whose modes satisfy the following commutation relations:
{am,bn} =m(a,b)dm _nl. (1.45)

The Heisenberg Lie algebra H, is the infinite-dimensional Lie algebra spanned by the
central element 1 and the generators a,,, for all a € h, and m € Z. We have chosen to
denote the central element by 1, since we assume that it will act as the identity on any
H,-module. A basis of H, is then given by 1 and the @, , with i =1,...,r and m € Z.

The Heisenberg Lie algebra admits a triangular decomposition

T

Heo= (M) @ (H)y® (Hy)ys  (Ho)y = EDCab & CL, (1), = D €D Cal,.

i=1 i=1 m>1

(1.46)

Verma modules over H, are commonly referred to as Fock spaces. These are induced
from the one-dimensional modules C|¢), ¢ € by, over (H,),, = (H), ® (H), that are

14



1.2 The Heisenberg vertex algebra

defined by
1O =10),  anlQ) = 0noC(a)lC), a€b,, n=>0. (1.47)
The Fock spaces
Fe=UMr) ®y(a,).,) ClO (1.48)

are well known to be simple H,-modules, for all ¢ € b;.
As a module over itself, the Heisenberg vertex algebra H, is identified with the Fock

space Fy and the state-field correspondence is given by

o™ a"*
0y «— 1, ', 0" ]0) e oD (2) - - —bF(2):, (1.49)
! k n1! nk‘
where b',...,b* € b, and normal ordering is defined in the usual way.
g y

The Heisenberg vertex algebra H, can be endowed with the structure of a vertex
operator algebra by choosing an energy-momentum tensor. This choice is not unique.
For the purposes of this note, we shall restrict our attention to the following

one-parameter family of energy-momentum tensors:

T(z) = 2[2:&(2)@”(2): + apda* ()|, ag € C. (1.50)
i=1
Here, the a*' € b, are dual to the coroots a’ in the sense that t(a*") = w;. We note
that while the quadratic summand in the above energy-momentum tensor is basis
independent, the linear summand is not. The central charge corresponding to this

choice of energy-momentum tensor depends on the parameter ay:
c=r—r(r+1)(r+2)ad. (1.51)

By definition, the coefficients of the Fourier expansion of the energy-momentum tensor
satisfy the commutation relations of the Virasoro algebra as defined in
Equation (1.60). Thus, formula (1.50) realises the Virasoro generators L,,, n € Z, as

infinite sums of products of Heisenberg generators:
T

T(:)= Y Loz L= 3|5 S ahai e — aoln + agi|. (1.52)

neL i=1 meZ
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This identification yields an action of the Virasoro algebra on the Fock spaces F¢,
¢ € br. In this way, any highest-weight vector |() € F¢ is also a Virasoro
highest-weight vector:

Ln|C> = hC5n70|C>v n > 07 hC = ;(gv C - 2050@)' (153)

Here, o = Y, w; is the Weyl vector of sl(r + 1). We note that while the Fock spaces
are simple as Heisenberg modules, they need not be as Virasoro modules.

The primary fields of the free boson theory are called vertex operators (not to be
confused with elements of the Heisenberg vertex operator algebra). To define them, we

first need to extend H, by C[h*], the group algebra of b, treating h* as an abelian

*
r

group under vector addition and C[h*] as an abelian Lie algebra. We denote the group
algebra basis element corresponding to 7 € b by € and define the commutation

relations between the generators a,, and e by
[am, €T = 0mon(a)e”, a€h,, nebhr, melZ. (1.54)

It is easy to check that this extension of #H, by C[h] is a semidirect sum of Lie
algebras.

A standard computation now shows that €” maps the highest-weight vector |¢) € F¢
to a highest-weight vector of ag-eigenvalue ((a) + n(a) = (¢ +n)(a). Following usual
practice, we shall identify €7|¢) with |( + 7). The vertex operator corresponding to

[€) = €4]0) is

Ve(z) = ez [] eXP(t{q@Zm) eXp(—j:zm), ¢ = (a) € . (1.55)

m>1

These primary fields therefore define linear maps between Fock spaces:
Ve(2): Fpy = 290 Fepnllz, 271 (1.56)

It is easy to check from the H,-primary operator product expansion

((a)Ve(w)

Z—Ww

a(z)Ve(w) ~ (1.57)

that a(z) and V¢(w) are mutually local for all a € b, and ¢ € b. The same is therefore

true for an arbitrary field of H, and any vertex operator, by Dong’s lemma [50].

16



1.3 The Virasoro vertex operator algebra

Finally, suppose that (; = «(a’) € b*, for i = 1,..., k. Then, a standard computation

allows one to write the composition of the k vertex operators V,(z;) as

VCI(zl) VCk Zk’ Heg . H 2 — Z Cz C] H Zao

= 1<i<j<k

T exp( Za_m . >exp<—2amzz )

m>1

This explicit formula will be used repeatedly in Chapter 2.

1.3 The Virasoro vertex operator algebra

We define the Virasoro algebra as the vector space
V=C{L,|neZ}dCC
with the Lie bracket

C
[Lin, L) = (m —n)Lpyn + —

15 (m + 1)m(m — 1)0pm4n.0,
(L, C] = 0

for all m,n € Z. The Virasoro algebra has the triangular decomposition
V=V_olWol,

where

V+ = (C{Ln | n e ZZI}
Vb - C{Lo,C}
V_ = C{Ln | n e Zg_l}

(1.58)

(1.59)

(1.60)

(1.61)
(1.62)

(1.63)

(1.64)
(1.65)
(1.66)

With this triangular decomposition we define Verma modules which are constructed

from a one dimensional representation C|A) of the Virasoro subalgebra V. @ V4,

17
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where the module structure is defined as

LolA) = A|A), (1.67)
CIA) = ¢|A), (1.68)
LAY =0, n>1 (1.69)

for some ¢ € C called the central charge. We then define a Verma module as the

induced module

Va=U() K ClA). (1.70)
U(Vo@Vy)

Every Verma module VA contains a unique maximal submodule I. We denote the

irreducible quotient VA /I by L.

1.3.1 Virasoro Vertex Operator Algebra

We can put a vertex operator algebra structure on Ty with the data

|0>
(@’W, |0), L_5|0), Y). The Virasoro vertex algebra Vir is generated by a single field

=Y L,z (1.71)
neL

that satisfies the operator product expansion

c/2 N 2T(z) +8T(z)

(z—w)* (z—w)? z—-w

T(2)T(w) ~

(1.72)

The structure of the Virasoro Verma module V), at different values of the central charge
¢ is shown in Figure 1.1. From this figure we see that V), always has a singular vector
L_41]0), which is an eigenvector v of Ly such that L,v = 0 for all n > 1. We define the
550 10), L-[0),Y)

— End %55 [[z 271 is defined by

universal Virasoro vertex operator algebra Vir as the data (

where the state-field correspondence Y : m

1 1
(=2 (g —2)!

Y(L_p, - Ly, |0)) = oM 2T (2) -+ 0™ 2T (2): (1.73)

For generic central charges, the maximal submodule is generated by L_1]|0) and the

vacuum module of Vir is irreducible, implying that Vir is a simple vertex operator

18



1.3 The Virasoro vertex operator algebra

generic ¢ < 1 C=C1q,Cp1 €= Cpyq
10) 10) 10)
L_4)|0) L_4]0) L_4]0) Up,q

Fig. 1.1 The structure of Virasoro Verma modules of highest-weight 0 at different
central charges ¢ < 1 where ¢, , is defined in Equation (1.74). Bullets are additional
singular vectors. Arrows means one can apply Virasoro modes to go from one singular
vector to another.

algebra. For p,q € Z>a, (p,q) =1, let

Cpg=1— 6P — 9" (1.74)
pPq
Then in this case the maximal submodule is generated by two singular vectors L_4|0)
and v, ,. We remark that singular vectors such as v, , are very hard to compute in
general. Several works [7, 57, 61, 62] have computed explicit formulae of singular
vectors for different vertex operators algebras including the next chapter of this thesis,

where we compute singular vectors of the W,, algebra.

1.3.2 Minimal models

As we have seen in the previous section, the Virasoro vertex operator algebra is
reducible when the central charge is that of Equation (1.74). Quotienting out the

maximal ideal we obtain the simple Virasoro vertex operator algebra, denoted by
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M(p, q). These VOAs are called the Virasoro minimal models which was introduced in
[14] and were proved to be rational [74]. The irreducible modules L9 of M(p, q) are
all irreducible highest-weight Virasoro modules. They are parametrised by
1<r<p-—1,1<s<qg—1 and the conformal weights of the corresponding
highest-weight states are given by

(gr —ps)* = (p— q)?
4pq

hr,s = (175)

We remark that h, o = hy_pq—s.

1.4 Free field realisation of the Virasoro vertex

operator algebra

The Virasoro vertex operator algebra Vir of arbitrary central charge can be realised as
a vertex operator subalgebra of the Heisenberg algebra. We remark that this is not
obvious for the minimal model central charges ¢, , as defined in Equation (1.74) as the

extra singular vector could be mapped to zero. The explicit embedding is given by
T(z) = ;:a(z)a(z): + O%/aa(z) (1.76)
where
c=1-3a} (1.77)

Fock spaces are now highest-weight modules of the Virasoro algebra with highest

weight

LoA) = ;)\(/\ —ay) (1.78)

and we refer to Fock spaces as Feigin-Fuchs modules when considered as Virasoro
modules. Although Fock spaces are simple as modules over the Heisenberg algebra,
they need not be over the Virasoro algebra. The structures of Feigin-Fuchs modules,

as shown in Figure 1.2, were determined in [36] . To describe this, let ay,a_ be the
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1.4 Free field realisation of the Virasoro vertex operator algebra

roots of the polynomial A(A — ay) = 1, so that
a, +a- = ay, aro = —2. (1.79)

Then we have

Theorem 1.4.1. [36] Forr,s € Z, let

g = a_ + Qg (1.80)

Then

e For o2 € C* (or equivalently for o € C*), the Fock module F) is reducible as a

Virasoro representation if A = o5 for some r,s € Z,rs >0

e If &2 is non-rational (or equivalently if & is non-rational), then the Fock
module Fy is reducible as a Virasoro representation if and only if X = o, 5 for

somer,s € Z,rs >0

o If ozi is positive rational (or equivalently if o* is positive rational), then the
Fock module Fy is reducible as a Virasoro representation if and only if A = o5

for somer;s € Z

1.4.1 Vertex operators

We will now construct vertex operators Vy(z) which can be thought of as fields
corresponding the highest weight state |A) in the Fock space F,. We remark that this
is a special case of Equation (1.55). We first extend the Heisenberg Lie algebra H with

an element a. It has commutation relations
[a,a,] = 6,01 (1.81)

for n € Z. We then define

Definition 1.4.2. For A € C, we define a Virasoro vertex operator Vy(z)

— Xa Aag )\a—l m) (_/\am —m) 1.82
Vi(z) = ez Hexp( p— I exp o (1.82)

m>1 m2>1
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Fig. 1.2 Structure of Feigin-Fuchs modules in Theorem 1.4.1. White dots denote
the singular vectors, while the gray and black dots denote the sub-singular vectors.
The white dots (singular vectors) generate the maximal semisimple submodule. After
quotienting this submodule the grey dots (sub-singular vectors) generate the maximal
semisimple submodule in the quotient. Further quotienting the submodule results in a
semisimple module, generated by the black dots (sub-singular vectors).



1.4 Free field realisation of the Virasoro vertex operator algebra

The action of vertex operators on the highest-weight vector of a Fock module F, is

Va(2)|u) = 2™ exp()\i ?z")])mtm (1.83)

n=1

Therefore vertex operators are maps
Va(2) : Fu = 2 Faiullz, 27 (1.84)

Vertex operators associated to certain values of A are important because they can be
used to construct Virasoro algebra homomorphisms. To begin, from Equation (1.76)
we have a free field realisation of the Virasoro vertex operator algebra Vir inside the
Heisenberg vertex operator algebra H, so that the Heisenberg vertex operator algebra
has an energy momentum tensor 7'(z) with central charge as in Equation (1.77). The

operator product expansion of a vertex operator with 7(z) is

AN — ay)Vy(w) n OVx(w)

(z — w)? z—w

T(z)Vi(w) = (1.85)
Therefore, vertex operators are fields with conformal weight %)\(A — ary). Now consider
a,a_ as defined in Equation (1.79). Then the vertex operators V,, (z) are fields of
conformal weight 1 and their operator product expansions with 7'(z) can be written as

a total derivative

T(2)Vas (w) ~ Vag (W) | NVay(w) _ Buo <W> (1.86)

(z —w)? z—w

We call V,,, (z) the screening fields. Therefore, we define

Definition 1.4.3. The Virasoro screening operator is defined to be the residue
Sy = % Vo (2)dz (1.87)
0

Here, the residue is indicated using a simple anticlockwise contour that encircles 0
once (we absorb the usual factor of 27i into the definition of the contour integral).
Notice that the same definition can be made for o, though we will not require it in

this thesis. It can be checked that Sy commutes with the energy momentum tensor,

[7(),8v] = [ 0 (M) dw = 0. (1.88)

23



Vertex Algebras

The action of Sy on a Fock space F, is

7{‘/ )dz|p) = % “=Fexp <a > a;"%‘) dzlp+ a_) (1.89)
0 —

Therefore Sy is a well-defined map whenever the contour in Equation (1.89) closes,

that is, when a_p € Z. For such p, Sy defines a Virasoro module homomorphism
SV . ‘FN — ‘/T_'u—i-a, (190)

An important feature of Sy is that the image Sy |u) € F 1o will be a singular vector,
due to Equation (1.88). With a single screening operator the target Fock space at
which singular vectors are constructed are rather limited. It turns out that we can
compose multiple screening fields so that we can construct singular vectors in other
Fock spaces. To do this we first compose multiple screening fields together. The

composition V,_(z1) - V,_(2,), has the following form

Vo (z1) Vo (2) = %21 O I (z- zj)az— 1 (1.91)
1<i<j<r i=1
A Gy
11 exp( Za 2; ) exp(—Zcuz?) (1.92)
m>1 mi=

We now want to determine the Fock spaces F, such that we can integrate

Vo (21) -+ - Vo (2)|p). To see this, notice that up to a phase factor, we have

Vo (1) Vo (z)lw) =TI (z—2) Hz“ (1.93)

1<itkj<r
H (a/_mz m) ( ami m)‘ + >
expl — > a 2" |exp|—— ) a_z"||u+ra_
m>1 m ;3 m 4
(1.94)
a2 9
S (1—%> CIEE (1.95)
1<i£j<r Zi i=1
11 exp(cz_mz:a 2] >|u+r0z ) (1.96)
m>1 mo
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1.4 Free field realisation of the Virasoro vertex operator algebra

042 .
Therefore we see that we require a_y + (r — 1) to be an integer. Concretely, let

s € Z, then we require p, recalling that o, = —2, to be

o2
aqw—l—(r—l)j =s—1 (1.97)
1—r +1—s
= a_
= 2

Qg (1.98)

We therefore let a5 be as defined as in Equation (1.80). We remark that for any
keZ,

Oyt kp,s+kq — Ors (199)

Then we have

Theorem 1.4.4. [67] If d(d + 1)% &7 and d(r — d)% & 7, for all integers d
satisfying 1 < d <r — 1, then for each Heisenberg weight o, 5, s € Z, there exists a
cycle I'(r) such that

[Sy]" = | Vo (21) - Va_(20)dzy -+ - dz, (1.100)

T'(r

defines a non-trivial homomorphism

[Sy]" : Frg — Fors (1.101)

1.4.2 Felder complexes

In this section we discuss Felder complexes [37] which are in essence complexes of Fock
spaces with the screening operators as the differential maps. The main result is that
one can realise the irreducible modules of the Virasoro minimal models as the zeroth
cohomology of certain Felder complexes. Concretely, recall that the irreducible
modules of the Virasoro minimal modules can be displayed in the form of a Kac table.

For any central charge with

(p—q)

Cpg=1—06 "

=1-3a} (1.102)
we see that

ay = U (1.103)
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Let
2 2
ay = 1/—p, a_=— 2 (1.104)
q p
so that « =y +a_ = %. Now we define

Definition 1.4.5. For r,s € Z, let F, s be the Fock space with highest-weight state
|, s), where
1= 1—s

Qg 50T Ty (1.105)

The Ly eigenvalue of the highest-weight state |ov.s) of F.s is

Lojan) = (qr —ps)* — (p— @)

Qpg). 1.106
i) (1.106)

We then construct a complex which is referred to in the literature as a Felder complex.

Theorem 1.4.6. [37] For 1 <r<p—-1,1<s<gq—1, let C = (C" d") be a complex
such that, for n = 2k, 2k + 1,

C%* = F_2kptrs) d* = [SV]T (1.107)
C2k+1 — ‘F72kpfr,sa d2k+1 — [SV]P—T (1108)

Then the cohomology of C' is

H™(C) = 6,0 LMP9) (1.109)

V~r,s

In order words, a Felder complex is exact except at F, 5, at which the cohomology is
isomorphic to an irreducible module of the Virasoro minimal model £, ;. The
Feigin-Fuchs modules appearing in a Felder complex, as dipicted in Figure 1.3 contain
singular, subsingular and subsubsingular vectors. After quotienting the Feigin-Fuchs
modules by its maximal semisimple submodule which are generated by the singular
vectors, the subsingular vectors become singular. Further quotienting the maximal
submodule in the quotient results in the subsubsingular vectors being singular.
Diagrammatically one can "read" off the cohomology of this complex by examining the
singular vectors, subsingular vectors and the subsubsingular vectors structure of the
Feigin-Fuchs module.
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1.5 The V,(sl(2)) Vertex Operator Algebra

[Sv]" [Syl”™" [Sy]"™"
———0 o— o 6————0 o——— -
— e e—— 0O — o o— - -

XXX 7

Fig. 1.3 Diagrammatic representations of the Felder complexes. F;24—s, Frs, Fr—s,
from left to right

1.5 The Vi(sl(2)) Vertex Operator Algebra
Recall that s[(2) has the commutation relations

[h, €] = 2e, le, f] = h, [h, f] = —=2f (1.110)
We then construct the affine s[(2) algebra s[(2) . defined as the vector space

sl(2), = sl(2) © C|z, 27| @ Ck (1.111)

Suppose that J* is a basis of s[(2). Let J¢ = J* ® 2™ for m € Z and define the Lie
brackets of 5A[(2)k by

(T2 T8 = [T T + ms(J, TPk (1.112)
[Je k] =0, for all J¢ (1.113)
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where £(-, -) is the normalised Killing form of sl(2) such that x(h, h) = 2. Thus we see

that s((2) .. has the following commutation relations:

[Py €n] = 2€m1n, [Py Bn] = 2m0yin ok, [€ms€n] =0 (1.114)
[hm7 fn] = —2fm+n, [em, fn] = hm+n + m5m+n,0/{:, [fm, fn] = O (1115)

The algebra 5A[(2)k has a triangular decomposition 5A[(2),c =g @D bhdg, given by

g+ = {en, g1, fura | n >0}, (1.116)
b = {ho, k}, (1.117)
g-={en1,hn, fon|n>0} (1.118)

Now consider a one dimensional representation C|\), A € C of h & g, where
ho|A) = A|A), g4 act trivially on C|\) and k acts as multiplication by the scalar k € C.

The Verma module V; of s[(2), induced from C|0) contains a singular vector fo|0).

Vo
(£0l0))
universal affine sl(2) vertex algebra at level k, k # —2. It is generated by the fields

e(2), h(2), f(2)

The quotient has the structure of a vertex algebra Vi (sl(2)) which we call the

e(z) =) ezt (1.119)

neZ

h(z) =Y hpz ! (1.120)
ne”Z

f2) =3 fur ! (1.121)
neL

with the following operator product expansions:

h(z)e(w) ~ iefwu),’ h(z)h(w) ~ (Z«Ek;U)Z’ e(z)e(w) ~0  (1.122)
h(z) f(w) ~ —:i(:ﬁ) e(2) f(w) ~ E _kw)Q + j(_wju f(2)f(w)~0 (1.123)

The conformal structure of Vi (sl(2)) is given by the Sugawara energy momentum

tensor

T(z) = let(:h(z)h(z): + 2:e(2) f(2): + 2:f(2)e(2):) (1.124)
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where t = k + 2 and the central charge is

3k

= — 1.12
“Tht2 (1.125)
Let p,q € Z>y with (p,q) = 1. We define k to be an admissible level if
- D
t=k+2="1 (1.126)
q

Note that we exclude the case when ¢ = 1. The vertex operator algebra Vi (sl(2)) at
admissible level k is reducible [45] and we denote its simple quotient by L(sl(2)).
Ultimately we are interested in the representation theory of L (sl(2)) where the
modules of L, (s[(2)) are weight modules of sl(2) .» in which hg act diagonalisably.

Therefore we will first describe some of the weight modules of 5A[(2) k-

1.5.1 Weight modules of sl(2)

Similar to the fact that highest-weight modules of the Virasoro algebra are modules of
Vir, highest weight modules of s[(2) .. are modules of Vi (s[(2)). However in contrast to
Vir, the category of highest-weight representations of L (sl(2)) is not closed under
conjugation as required for a conformal field theory. We therefore need to extend our
module category to the relaxed category R?. This category R contains the relaxed
highest-weight modules (which we will define later in the section), the twisted relaxed
highest-weight modules under the spectral flow automorphisms defined in

Equations (1.138) and (1.139) as well as non-split extensions of such modules. We
remark that the subcategory of L (s[(2)) modules in R? is not a semi-simple category.
Every relaxed highest-weight module in the relaxed category can be induced from a
weight module of s[(2), which is either a highest weight, a lowest weight or a dense
module. We will therefore first describe these weight modules of sl(2). Firstly we

denote the conjugation automorphism of sl(2) by w, where
w(h) =—h,w(e) = f,w(f) =e. (1.127)

o For A € N the highest-weight module £, of dimension A + 1 has a basis of
vectors v, where p € {—=X\, =A+2,..., A — 2, A}. Each v, is an eigenvector of hg

with hv,, = pv,. These modules are self-conjugate.
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o For A € C\N the infinite dimensional highest-weight module £y has a basis of
vectors v, where € {\, A —2,A —4,...}. Each v, is an eigenvector of hy with

hv, = po,,.

o For A € C\N the infinite dimensional lowest-weight module w(z,\> has a basis of
vectors v, where p € {—=X\, =\ +2,—A+4,...}. Each v, is an eigenvector of hy
with hv, = pv,.

« For A € C/2Z,A € C the dense module R A[55] with basis v, u € A + 2Z, is
neither highest nor lowest-weight. The action of s[(2) on Ry a is given by

Jou = vu—9 (1.128)

hv, = pv, (1.129)
1

ev, = Z(4tA — (e +2))vyt0 (1.130)

It turns out that Ry a is irreducible precisely when the set A + 2Z does not
contain any roots of the equation 4tA — pu(pu +2) = 0.

The simple weight modules of s[(2) are then exhausted by the following:
e The )\ + 1 dimensional modules £y, A € N
o The highest-weight modules £, [\] € C\N
 The lowest-weight modules Q(ZA), [A] € C\N

o« The dense modules Ry a, [\ € C/2Z, A € C with 4tA # u(p+ 2) for any
1wE N+ 27.

Now, let g = 5:[(2)k and

g>0 = span{ey, by, fo [ n > 0} (1.131)
go = span{eo, ho, fo, k} (1.132)
g<0 = span{ey, by, fn | n < 0} (1.133)

Relaxed highest-weight modules of sAI(2) . are constructed by taking a weight module
M of 5[(2) as a module of gy with k acting on M as a constant & € C. We then
extend M to a module over gy ® g-o by demanding that all elements in M are

annihilated by g-¢. One can then induce this module to 5:[(2) , modules in the usual
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way, M = U(g) ®U( 620) M. Highest-weight modules, a weight module which is
generated by a single weight vector v that is annhilated by g, of g[(Q) .» are therefore
special cases of relaxed highest-weight modules. Now, let w be the conjugation

automorphism of s[(2),, sending

w(en) = fu, w(hy) = —hy, (1.134)
w(fn) = €n, w(k) =k (1.135)

For A € C, let V) be the sA[(Q) Verma module of highest weight A\. The simple relaxed

highest-weight modules are therefore obtained as follows:

o Inducing £, with A € N. This induced module is highest-weight and is
isomorphic to V) /V__a, where v_,_o = f(j\“v,\. We denote the simple quotient
by L -

o Inducing £y, the infinite dimensional highest weight module, A € C\N. This

results in the Verma module V,. We again denote its simple quotient by L,.

 Inducing w(ZA) with A € C\N. This results in the conjugate Verma module

w(Vy) which is neither highest nor lowest-weight. We denote the simple quotient
by w(Ly).

o Inducing the irreducible dense module Ry a, with 4tA # p(u + 2) for all
[ € A+ 27, results in a relaxed Verma module that we denote by Ry a. We
denote its simple quotient by &£y a.

Forr=1,..,p—1and s=1,...,q, we let

Ms=r—1—(s—1)E (1.136)

q
(gr —p(s — 1))* — ¢?
4pq

Ay = (1.137)
Then the highest-weight states of the modules £, have conformal weight A, . From
now on we denote L, , = Ly, .. The irreducible relaxed highest-weight modules of

Ly (sl(2)) were classified in [1]:

Theorem 1.5.1. The irreducible relaxed highest-weight modules of L(sl(2)) are
precisely Ly, w(Lys) forr=1,...p—1,s=1,....q and Ex a,, for
AERN2Z, N # N, Ap—rgio—s mod 2 forr=1,...p—1,s=2,..,q.
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2
9

w(Lys),s #1 L.s,s#1

Enn

Fig. 1.4 The relaxed highest-weight modules of L (s(2)). The ho-eigenvalues increase
from right to left and the Lgy-eigenvalues increase from top to bottom.

Figure 1.4 shows the structure of the relaxed highest-weight modules of L(s((2)),
where the conformal weight increases from top to bottom and the sl(2)-weight, the hq
eigenvalue, increases from right to left. In addition to these relaxed modules, we need

to consider twisted relaxed modules under the spectral flow automorphism.

1.5.2 Spectral flow automorphisms of sl(2)

For each | € Z, we define the spectral flow automorphism aé[(z) on 5A[(2) by

O'é[(2) (6n> = €n—1, O‘i{@) (hn) = hn — 5n’0lk7 (1138)

T2 () = fast, ol (k) = k (1.139)

Figure 1.5 depicts the structure of the twisted relaxed highest-weight modules under
the spectral flow automorphism. We remark that the spectral low automorphism

changes the conformal weights of states,

1 1
ou)(Lo) = Lo — 5”10 + El% (1.140)

and in particular the twisted relaxed highest-weight modules in general are no longer
conformally bounded below, as opposed to the relaxed highest-weight modules.

Furthermore, by noting that w(L,1) = £, for r =1, ...,p — 1, the following modules
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Fig. 1.5 The simple modules of L;(s[(2)). o denotes the spectral flow automorphism.
Again, the hg-eigenvalues increase from right to left and the Lg-eigenvalues increase
from top to bottom.

are related by spectral flow,

05_[(12)(‘CT,8) = w(£p—r,q+1—s) (1141)
Os1(2) ('Cr,l) = Ep—’r,q (1.142)

forr=1,...,p—1,s=1,...,q. Figure 1.5 indicates precisely the simple objects in the
relaxed category R?, however as we remarked earlier R is not a semi-simple category.
We will end this section with the introduction of some of the reducible but
indecomposable modules in R?. These are characterised by the non-split exact

sequences

0— Ly — &, — w(lys) —0 (1.143)

0— w(Llys) — &, —Lrs —0 (1.144)

forr=1,---,p—1land s =2,---,¢q. We must also include aé[(z) (Efs) for [ € Z in
R Potentially there could be other indecomposable modules that are relevant, see
[22, 23, 59, 42].
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1.6 The bosonic ghost algebra

The bosonic ghost algebra G is a vertex operator algebra generated by two fields 5(2)

and y(z) with the defining operator product expansions

B(z)B(w) ~ 0,  Bz)y(w) ~ — v(2)y(w) ~ 0. (1.145)

Z—Ww

It has a one parameter family of conformal structures given by
T(z) = =(1 = A):08(2)7(2): + A:5(2)97(2): (1.146)
at which the central charge is
c=12)\% — 12\ + 2 (1.147)

For our application, we will only focus on the conformal structures at ¢ = 2, where
A =1 for the free-field realisation of Vi (sl(2)) and A = 0 for constructing the BRST
complex. Thus, depending on A, the mode expansions of the fields 5(z),7v(z) are

respectively
B(z) = Bu "7, (1.148)
nez
Y(z) = gz (1.149)
nez

The structure of the operator expansions imply that the modes of the fields are
elements of the bosonic ghost Lie algebra G. It has a basis {5,, 7, | n € Z} satisfying

the following commutation relations:

[/677” 671] - 07 [ﬁm; '771] - 6m+n,017 h/ma 771] =0. (]-]-50)

G has a triangular decomposition G =g_ S h D g,

g+ = span{B,, Y1 | 7 > 0}, (1.151)
b = span{1}, (1.152)
g =span{f_, 1,7 | n >0} (1.153)
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Consider a one dimensional representation C|0) of g, @ b where g, acts trivially on

C|0) and {1} acts as a scalar 1. The Verma module induced from C|0) is the vacuum
module of the bosonic ghost algebra.

We define the ghost degree of any state in a G module as its eigenvalue of J§, where

J¢(2) = :B(2)7(2): (1.154)

and in particular,

J8()B(z) ~ ———, T8(2)9(z) ~ —

Z—Ww Z—Ww

(1.155)

1.6.1 Representation Theory of the bosonic ghost algebra

Since the Cartan subalgebra of G is spanned by 1 which is assumed to act as the

identity, the highest weight module of G is unique: it is the vacuum module of G. The
representations of G include modules that are not highest-weight. We therefore need
to extend our category from the highest weight category to the relaxed category. To

introduce the modules in this category, let

g>0 = span{f,, . | n > 1} (1.156)
go = span{ o, Y0, 1} (1.157)
g<0 = span{f_,,v-n | n > 1} (1.158)

Relaxed modules are constructed by inducing modules over gq. To describe the

relaxed modules, we first introduce the conjugation automorphism 7 of G, by

T(Bn) = = 7(Yn) = Bn (1) =1 (1.159)
The simple weight modules of gq are the following

¢ The Verma module V, generated by a vector |0) which is annihilated by 3, and
generated freely by 7o. A basis of this module is {7{'|0)} where n € N.

e The module T(Vo) which can be obtained by applying conjugation to V. It is
generated by a vector 7(|0)) which is annihilated by 7o and generated freely by
Bo. A basis of this module is {8§7(|0))}, n € N.
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+ A one parameter family of modules W)y parameterised by [A\| € C/Z, [A] # [0],
these modules have a basis {u,} for 4 € A+ Z. Each v, is an eigenvalue of Jj

satisfying JSu, = pu,,.

We can then induce these modules of gy to obtain modules of G. In particular, by
inducing V, we obtain the vacuum module V, of G, while inducing T(VO) gives us the
twisted vacuum module 7();) under the conjugation automorphism. Finally, inducing
the Wy, A # [0] results in the new relaxed highest-weight modules Wy, A # [0]. The
modules Wy, A # [0], are simple. We also need to consider the modules Wi which can

be characterised by the following exact sequences
0— Vo — W, —7(Vy) — 0, 0—7WV) —W; — Vo — 0 (1.160)

In addition to these modules, the module category of G also contains modules
obtained by twisting the above modules with the spectral flow automorphism o' of G,
for | € Z, defined by

0g(Bn) = Ba-t, 05(m) = Yurt, og(1) =1 (1.161)

These modules are objects in the module category Rg. Twisting the module Vy with
spectral flow, as defined in Equation (1.24), will change both the J& and L

eigenvalues of the states in the module. In particular,

T(J$) = —Jo = 200001, 04 (JS) = JS — l0nel, (1.162)
W+1-2)

T(L) = Ly +2\nJS,  ob(L)) = Ly + (1= 20)1J¢ — 5

dnol (1.163)
For example, Figure 1.6 depicts the new J$ and Ly eigenvalues of states in O'lg(Vo)

under the spectral flow automorphisms.

For the rest of the thesis, we will denote the vacuum module of G by G itself.
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2
9

35 L]

T(Vo) Vo

Fig. 1.6 The conformal weights of states in 1, under spectral flow. The ghost degree
increases from left to right and the conformal weight increases from top to bottom.

1.7 Free field realisation of Vj(sl(2))

Let k42 =L and let oy = V2t = \/% and a_ = —\/%. We can realise Vi (s[(2)) as a
vertex subalgebra of H ® G. Concretely, there is an (non-trivial) injective map [71]

e(z) = B(z) (1.164)
h(z) = =2:8(2)v(2): + aya(z) (1.165)
f(z) = =B ()7 (2): + aia(z)7(2): + <O;+ - 2) 97(2) (1.166)

Under this map, the energy momentum tensor becomes
T(z) = ;:a(z)a(z): - Oi@a(z) —B(2)0(=): (1.167)
c:1—;§+2=3—$ (1.168)

Given this free field realisation the tensor product of any module of the Heisenberg
algebra and the bosonic ghost algebra can be restricted to modules of Vi (sl(2)). Such
modules are called Wakimoto modules. In summary, we have the following list of

Wakimoto modules

e The highest weight Wakimoto module F, ® G
o The conjugate highest weight Wakimoto F) ® 7(G)

« The relaxed highest weight Wakimoto module F) ® W,
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The conformal weight and hg eigenvalue of the highest weight vector of a Wakimoto
module F) ® G can be computed from the free field realisation of h(z) and T'(2)
1 2
hy = ay ), Ay, = )\()\ + > (1.169)
2 a
Similarly, the hy and Ly weights of states with lowest conformal weights of 7\ @ W,

are
1 2
h)\;u = OéJr)\ -+ QIU, A,\ = 2)\()\ + ) (1170)
where p € \ 4 2Z.

1.7.1 Vertex operators

Similar to the Virasoro case, we can construct homomorphisms between s[(2) .
modules, thereby constructing singular vectors. Firstly, if we write e(z), h(z), f(2) in
terms of their free field realisations as in Equations (1.164) to (1.166), then they have
the following operator product expansions with the Heisenberg vertex operators V,(z)
from Definition 1.4.2,

AV(w) ~ 0. V() ~ DI gy o AP )
If we define
D(z) = :B8(2)Va_(2): (1.172)

then D(z) has operator product expansions

e(z)D(w) ~ 0, h(z)D(w) ~ 0, f(z)D(w) ~ —t@w% (1.173)
Therefore the zero mode of D(z)
Suitz) = %D(z) dz (1.174)

is a s[(2) ., module homomorphism whenever the action of D(z) on a highest weight
module is well-defined, similar to Equation (1.89). We can compose s[(2) screening

operators to obtain more module homomorphisms of s(2).
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Theorem 1.7.1. [62] Let r € Z>1,s € Z,t € C* and suppose that d(d + 1)/t ¢ Z and
d(r —d)/t € Z, for all integers d satisfying 1 < d < r — 1, then for each Heisenberg
weight o, 5, s € Z, there exists a cycle I'(r) such that

[SSI(Q)Y - /F( ) D(z1) -+ D(2)dz - - - dz, (1.175)
defines a non-trivial homomorphism

S| Fra®G— F ®G (1.176)

1.7.2 Bernard-Felder complexes

Similar to the Virasoro case, any highest-weight module of L£;(s[(2)) can be realised as
a sub-quotient of a Wakimoto module. Concretely, we can construct a complex [15] of
Wakimoto modules such that the cohomology is non-trivial except at one degree,
which is a highest-weight module of L (s[(2)). We first start with the free field
realisation of Vi (s[(2)) at admissible level, so that o = 2t = %p = a4 = \/% . We
consider F,. ; ® G where the Fock space was defined in Definition 1.4.5, then the

highest-weight states of such Wakimoto modules have hy and L, eigenvalues

holos) @0V =7 — 1 — (s — 1)2j (1.177)
Lolars) @ [0)e = ar = pls = D = ¢" (1.178)

4pq

and we have

Theorem 1.7.2. [15] Let k+2 = %. For1<r<p—-1,1<s<gqg-—1, let
C = (C™,d") be a complex, for n = 2k,2k + 1, such that

O = F oppirs @G, 4 = {Ssl(Q)Y (1.179)
CHH = F oy @G, a2 — [Ss[@)}p_T (1.180)

Then the cohomology of C' is
H"(C) = 6, 0L - (1.181)

Similar to Theorem 1.4.6, the Bernard-Felder complexes are exact except at zero
degree, at which it is a highest-weight module of L (sl(2)).
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1.8 The fermionic ghost algebra B

In this section we will introduce the fermionic ghost algebra which will be used later
on when we define the BRST complex. The fermionic ghost algebra is a vertex
operator super-algebra generated by two fields b(z) and ¢(z) that satisfy the following

operator product expansions

1

(z —w)*

b(z)b(w) ~ 0, b(z)e(w) ~ c(z)c(w) ~ 0 (1.182)

This algebra admits a one parameter family of conformal structures,
TB(2) = (1 — X\):0b(2)c(2): — \:b(2)0c(2): (1.183)
at which the central charge is
c=—12\* + 12X — 2 (1.184)

Under this energy momentum tensor, the conformal weights of b(z) and ¢(z) are A and
1 — X respectively. For our purpose, which is constructing the BRST complex, we will
specialise to A = 0 and therefore consider the fermionic algebra at ¢ = —2 only. That

is, we have the energy momentum tensor
TB(2) = :0b(2)c(2): (1.185)

where the central charge is ¢ = —2 with b(z) and ¢(z) having conformal weights 0 and

1 respectively. Thus the fields have the form

b(z) = byz", o(z) =) cpz "t (1.186)

ne”Z neL

The structure of the operator product expansion implies that the modes of the fields

satisfy the antibracket relations of the fermionic Lie super-algebra B

{bm, b} =0 {bm; cn} = Ominol {em,cn} =0 (1.187)

and 1 is central. In addition to the energy momentum tensor, we introduce the ghost
field

JB(2) = —b(2)c(2): = :c(2)b(2): (1.188)



1.8 The fermionic ghost algebra B
bo|0) —— |0

4 i

10)
1bo|0 1|0 C_ 1b0|0 C_ 1|0

b_gbo|0> b_2|0> C_1b_1|0> C_2|O>

Fig. 1.7 The vacuum module of the fermionic ghost vertex operator super-algebra B.
The ghost degree increases from left to right while the conformal weight increases
from top to bottom. Blue arrows denote the images of states under the spectral flow
automorphism.

so that the operator product expansion of JB(z) with the generating fields are

1 1
B b ~ — B ~ 1.1
PEbw) o~ T()elw) ~ (1.189)
The vacuum module B of the fermionic ghost algebra at ¢ = —2 is a highest weight
module of B generated by |0) where
b,|0) =0,n > 1 (1.190)
cn|0) =0,n >0 (1.191)

We define the ghost degree on any state in the vacuum module as simply the
eigenvalue of J&, the zero mode of JB(z). This ghost number will play an important
role when we construct modules of the Virasoro algebra by realising them as the
cohomology of a certain complex called the BRST complex. In summary, we have
introduced the conformal weight and the ghost degree on the fermionic ghost vacuum,
see Figure 1.7.
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The fermionic ghost algebra B also admits spectral flow algebra automorphisms
defined as

o(by) = bu_i, ok(cn) = Coyis oh(l) =1 (1.192)
for all [ € Z. This implies that

op(JE) = J§ +1 (1.193)
I(1+1)

on(L§) = L§ +1J5 + (1.194)
Lemma 1.8.1. The twisted vacuum module o(B) under spectral flow is isomorphic

to the vacuum module B itself for all | as a B module.

Proof. From the action of B on the twisted module ok (B) defined in Equation (1.24),
we see that for each v € B, there are only finitely many positive modes b,,, ¢,,n > 0
that do not annihilate v. Moreover, the nilpotency of the modes b,,, ¢, implies that the
conformal weights of the states in o (B) are bounded below. The nilpotency of the
modes b,, ¢, also implies that the space of states with the highest conformal weight is
finite dimensional and thus there exists a highest-weight vector. But the only
highest-weight module is the vacuum module B as the Cartan subalgebra of B is just

{1} and so we must have oi5(B) = B O

We remark that the states in the vacuum module are permuted around under the

spectral flow action, as shown in Figure 1.7.

1.9 The W, Algebras

1.9.1 The W3 Algebra

We will first restrict ourselves to the rank 2 Heisenberg vertex algebra Hy, and, in the
vein of [33], define a family of subalgebras called the W3 vertex operator algebras, or
W3 algebras for short. These algebras are parametrised by ay € C and are generated,
in the sense of Theorem 1.1.7, by the energy-momentum tensor defined in

Equation (1.50) and an additional primary field W (z) of conformal weight 3.
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In the basis {a', a?} defined in Section 1.2.3, for which the Gram matrix of the inner

product (—, —) is the Cartan matrix of s[(3), the energy-momentum tensor 7'(z) is
Loy Loy 2 Loy o 1 2
T(z) = 3@ (z)a (2): + 30 (2)a”(z): + 310 (2)a”(2): + ap0,a (2) + apd.a”(2)
(1.195a)

and the central charge is ¢ = 2 — 24a2. The conformal primary of weight 3 is then

VB 2 1 1 2 1 2
W(z) = 83 [2:(@ (2) —a (z)) (a (2) +2a (z)) (2@ (2) +a (z)):

+9a0(:3a2(z) (al(z) + 2a2(z)): —:0a'(2) (2@1(2) + a2(z)>:) (1.195b)
+ 903 (8%a%(:) — 02a1(2))} , (1.195¢)

where
g 10 2 (1.196)

T 22+5c  4-— 1503

in the conventional normalisation, appropriate for ¢ #£ —% (ao #+ j:\/%) A somewhat
involved computation now determines the operator product expansion of W (z) with
itself to be

W ()W (w) ~ € C_/i)>6 + (37:<Z))4 + gi%ﬁ; (1.197)
. S0°T(w) + 2B8A(w) N 50°T(w) + BOA(w) (1.198)

(z —w)? z—w ’
where A(z) = :T(2)T(2): — 0*T(z). This, along with the primary nature of W(z),
implies the commutation relations
L, Wa| = (2m = )W, (1.199)
1 1
{Wm, Wn} = (m —n) {w(m +n+3)(m+n+2)— g(m +2)(n+2)|Liin
4 B(m — n)Apen + %m(mQ — 1) (m? — 430, (1.200)
where W (z) = 3,cp Wy "3,
Since Fock spaces are modules over the Heisenberg vertex operator algebra Hy and we

have defined the generators of the W3 algebra as fields of Hy, each Fock space is a
Wj-module, by restriction. In particular, the highest-weight vector |¢) € F¢, ¢ € b3, is
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also a highest-weight vector for Wj:

Ln|C> - n,OhC|C>7 WnlC) - n,OwC|<>7 n > 0. (1201)

Here, he was given in Equation (1.53) and the Wy-eigenvalue is given by

we = \/%(C,wg — w1)((C,w1) - ao) (((,wg) — ao). (1.202)

Our main reason for introducing vertex operators in Equation (1.55) is to construct
linear maps between Fock spaces that commute with the action of an appropriate
subalgebra of the Heisenberg vertex algebra, similar to the case in Section 1.4. Here,
we wish to construct maps that commute with W3, that is, W3-module
homomorphisms. Such module homomorphisms are called screening operators and
they are constructed from screening fields, these being vertex operators whose
operator product expansions with the fields of W3 are total derivatives. For this, it
clearly suffices to find fields whose operator product expansions with the generating
fields T'(z) and W (z) are total derivatives.

As the vertex operator V¢(w) is a conformal primary of weight h¢, its operator product
expansion with 7'(z) will be a total derivative if and only if h, = 1. Unsurprisingly,
the analogous computation for W (z) is more involved (we used Thielemans’
OPEDEFS package for MATHEMATICA), noting that a necessary condition for the
operator product expansion W (z)V¢(w) to be a total derivative is that the coefficient
of (z —w)~! in this expansion is a total derivative. Analysing this explicitly, for
general ¢ € b3, and recalling that h; = 1, we conclude that this coefficient will be a
total derivative if (; =0 or (o = 0 or if (; = (3 and ap = 0 (where the (; denote
Dynkin labels: ¢ =3, (;w;). As we are only interested in screening operators that
exist for all values of «y, it follows that there are exactly four possible weights ( that
can be used to construct screening operators: ¢ = aral, ara?. Here, similar to
Equation (1.79), we define

1 1
oy = 2(0@ + \/@), a_ = 2<040 - \/m> (1.203)

to be the solutions of the quadratic equations h¢,,i = 1, for ¢ = 1,2. It only remains to

confirm that the full operator product expansion W (z)V,(w), when ( is one of the
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above weights, is indeed a total derivative:

4-1502 "\ 2(z—w)?® zZ—w

W (2)Vasas (w) ~ —(=1)"

=1,2.

(1.204)

Having identified screening fields for W3, we construct screening operators by taking

residues:
S = fv%ai (w) duw. (1.205)
0

Taking the residue of a screening field V,_ ,i(2) is of course only well-defined when it is
acting on a Hy-module for which the exponents of z in the Fourier expansion of
Vasai(2) are all integers. In case the Hy-module is the Fock space F,,, this is satisfied
if and only if a4 (a,n) € Z. These screening operators define W3-module

homomorphisms since

[T(2),80] = - fT Visai(w) dw =0, [W(2),84] = - 7§W Voot (w) dw = 0.
(1.206)

These identities follow from the mutual locality of Heisenberg fields and vertex
operators, see Equation (1.57) as well as the fact that the operator produict
expansions are total derivatives.

Fortunately, similar to the construction of screening operators in Section 1.4, one can
also construct screening operators by integrating compositions Equation (1.58) of
multiple screening fields. In particular, composing ry copies of V,,, 42(w) with ry copies

of V,,a1(2) and then acting on F, gives

Vasat(21) *++ Varat (2r) Vagaz (w1) - -+ Va2 (wr,) (1.207)
n
202 2a o —a+t?

= JI Gi—z)™ Il (wi—w)™*-T]T]C

1<i<j<ri 1<i<j<ra i=1j=1

) ﬁ zf‘i (a'n) . ﬁ w;‘i (e2m) . groxaltraza’®

=1 7=1

T1 Zm 9 T2 wm 1 T1 Z'_m 9 T2 w'—m
m>1 [ ( T m T m "I om Toom
(1.208)
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Up to a complex phase, which we suppress, the first five multivalued factors in this

expression can be rewritten in the form

0 <1_) 1 (l_W>“2*.ﬁﬁ< Sy
1<ij<r <j 1<i#j<ra wj i=1j=1 <i

' ﬁ ?i(a1m)+ai(h*r2*1) . ﬁ w;éi (a2ﬂ7)+ai(7“2*1)7 (1.209)

i=1 j=1

thereby isolating the non-integer exponents of the z; and w; in the last two factors.
Finding closed (multivariable) contours over which multivalued functions such as
Equation (1.209) can be integrated (to obtain W3-module homomorphisms) is a highly
non-trivial problem. Fortunately, as shown in Theorem 1.4.4, Tsuchiya and Kanie
solved this problem for the rank 1 Heisenberg vertex algebra [67] by constructing
cycles with non-trivial homology classes over which screening operators can be
integrated. These cycles, which we shall denote by I'(m;t) for m € Z>q and

t € C\ Q<o," allow one to integrate expressions of the form

N\ U/t
/ 11 (1 - Z) f(2) Az dz, (1.210)
Pt 1<izj<m %
where f(z) is a Laurent polynomial in zy, ..., z,, which is invariant with respect to

permuting the indices of its variables. We shall not describe the construction of these

cycles in any detail. It will, however, be convenient to normalise them by requiring

that i
/ II (1 _ Zl) day -~ dam 1. (1.211)
T'(m;t)

1<i#j<m Zj c1tAm

The cycles I'(m; t) can be used to construct screening operators from the compositions
Equation (1.207) whenever the exponents of the z; and w; are integers. If this is the

case, then the screening operators are defined as

SEr = o sy Vo (1) Vi (o Vo (0) -+ Vo)
ri;1/ag ro;1/ag

dzy -+ dz, dwy -+ - dwy,. (1.212)

! The range of the parameter ¢ could in principle be extended to C\ {0}. However, to avoid
singularities in certain coefficients, this would require one to use a different normalisation of the Jack
symmetric function basis presented in Appendix C. Moreover, some linear independence arguments
would become more complicated. For simplicity, we therefore avoid non-positive rational values of the
parameter t.
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By construction, these screening operators are W3-module homomorphisms when
acting on appropriate Fock spaces.
We parametrise the Fock space weights for which the screening operators

Equation (1.212) are defined as follows:

Cuy o1 g 09 = ((1—u1)a++(1—vl)a,)w1+((1—u2)a++(1—02)a,)w2, Uy, Uz, V1, V2 € Z.
(1.213)

Considering the exponents of the last two factors of Equation (1.209), we conclude

that the screening operators define W3-module homomorphisms between the following

Fock spaces:

[r1,r2] .

S+ N ‘FCTl—T‘2¢31;T‘2,32 - fc—rl,sl;rl—m,%? Tl’ T'Q E ZZ()’ 817 82 E Z’ (1 214)
[s1,82] . ’

S- ’ Fcrlvsl_SQ?T%SZ — ‘FC’“L—S1;T2,51—S2’ 1,72 € Z’ 81,82 € ZZO‘

Evaluating the action of these screening operators initially appears rather daunting.

However, we know from Equation (1.207) that compositions of screening fields factorise
into a product of a multivalued function and certain power series in the z; and w; that
are symmetric with respect to permuting the z; among themselves and, separately, the
w; among themselves. The theory of symmetric functions provides the tools that allow
us to evaluate the action of these screening operators on certain Fock spaces. We refer

to Appendix C for a brief review of the theory of symmetric functions.

1.9.2 The W, Algebra

Continuing the pattern of ranks 1 and 2, the rank n — 1 Heisenberg vertex operator
algebra, with choice of energy-momentum tensor Equation (1.50), has 2(n — 1)
screening operators, Ve(w) for ¢ = aga’, where ay was defined in Equation (1.203)
and the o' are the simple roots of sl(n).

The W,, vertex operator algebra W,, is usually described as being generated by the
Virasoro field T(z) and n — 2 Virasoro primary fields W3(2), ..., W"(z) of conformal
weights 3, ..., n, respectively. Unfortunately, explicit formulae for these primaries, for
example in terms of Heisenberg fields, rapidly increase in complexity as n increases
and there are no known closed formulae for general n. Fortunately our computations
do not require explicit expressions for the W¥(z), only the fact that they commute
with the screening operators.

We therefore turn to the definition of the W), vertex operator algebra [51] in terms of a

generating function called the quantum Miura transform. This constructs a different
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set of generators of W,, that are not conformal primaries in general, but which are
easily verified to commute with screening operators. We denote these new generating
fields by U?(z) = T(z), U3(2),...,U"(z) and their generating function by

R.(z) = — i Ur(2)(0p0)" ™" = (a0, — €'(2)) - - (a0, — €"(2)):, (1.215)

where the €' are the weights of the defining representation of sl(n) so that
ettt =0and ot =€ -t fori=1,...,n— 1.
With the W, algebra now defined explicitly as the algebra generated by the U’(z),

1 =2,...n, we construct screening fields in a manner similar to W3. As mentioned

above, the vertex operators V. (w) with Heisenberg weights ( = aya;, ..., apq,_; are
screening fields, because their operator product expansions with Ry(z) are total
derivatives: .

Ro(2) Vo (W) ~ 8y (zR”(wgv‘lzai (w):> . (1.216)

Here, R!(z) is defined as the product in Equation (1.215), but without the factors
involving €’ and €1,

As in the rank 2 case, the residues of the screening fields, when defined, commute with
the W, algebra, because their operator product expansions with the generating U*
fields are total derivatives, and therefore define module homomorphisms. Also as in
the rank 2 case, one can compose screening fields and integrate them over suitable
contours to construct yet more module homomorphisms. Note that it is sufficient to
only compose screening fields whose weights are all rescalings of simple sl(n) roots by
either a, or a_. This is because the two screening operators corresponding to the
residues of Vi, 4i(w) and V,,_,;(w) commute and can thus be considered
independently. We shall therefore only present calculations involving the V,, »i(w);

those involving the V,_,i(w) work in exactly the same way.
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We therefore compose r; copies of V,, 41(2') with o copies of V,, 42(2?) and so on,

evaluating this composition on a Fock space of weight 7, to obtain

H Va+al (le) H Va+an—1 (Zznfl>
=1 i=1 n
n—1 . n—2 7y Tk+1 L ) n—1 7 N .
2 1 s
=11 (2f — 2F)t . (2 — 2F e T [ by )
k=1 1<t<y<r k=11:=1 j=1 k=11i=1
n—1 n—1 a ak Tk a ak Tk
. elka+a H H eXp( +%—m Z(zf)m exp< +“%m Z( lk)—m)
k=1 k=1m>1 mo 50 mo 3
n—1 k 2 n—1 71K Tk+1 k —a2 n—-1 71k
S I (=5) I Z;?_l) L e
k=1 1<i#j<ry J k=2i=1 j=1 i k=11i=1
s rka+a Oé+6l_m 04+an i k\—m
: : H II exp Z p——2Y (5™, (1.217)
k=1 k=1m>1 mo

where we define r, = 0. In analogy to the reasoning presented for the W3 algebra in
Section 1.9.1, one can construct a W,,-module homomorphism by choosing an
appropriate contour. Integrating over the contours of Tsuchiya and Kanie [67] is well

defined whenever
2 (rg —repr — 1) + a+(ak,n) €Z, forallk=1,...,n—1. (1.218)

To parametrise the weights satisfying these constraints, we define

n—1

Cu,v = Z((l — U,Z’)Oé_,_ + (1 — ”Ui)O{_)OJZ', u= (ul, c. ,Un_l), vV = (Ul, c ,’Un_l) € Zn_l,
=1

(1.219)
and define screening operators
[] Tn—1 n—1 rg
Sr:/ / V. ot V., gt le7
F(rl;l/ai) D(rp— 1,1/a+)zr{ * ( ) H * ( ) k::l—[lzl_ll
(1.220)
where r € Zggl. These, in turn, induce W,,-module homomorphisms
S Fe o Fpe veipl sezrt, (1.221)
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+ + .
where Mrs = Clri=rayrn_2—rn_1,m_1),s a0 er,s = ((=r1,r1 =120 rn_a—1n_1),s- SlIlAr
screening operators S are obtained by swapping the roles of o, and a_, as well as r

and s, in this development.
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Chapter 2
W,, singular vectors

In the case of the universal Virasoro vertex operator algebra, the singular vector
generating the maximal ideal of the vertex operator algebra is important because it
can be used to determine the irreducible representations of the Virasoro minimal
models [74]. In [61], symmetric functions are used to compute the corresponding
singular vectors, thereby obtaining the same results in [74]. This approach of using
symmetric functions to compute singular vectors was used for other vertex operator
algebras and classification of the spectrum (in suitable module categories) of the
corresponding minimal models [17, 62]. In this chapter we generalise the result in [61]
and obtain explicit formulae for singular vectors of the Wy algebra in certain Fock

representations. This work was published in [60].

2.1 Wj singular vectors

We now turn to the computation of singular vectors in Fock spaces, the idea being to

realise them as images of highest-weight vectors under a W3-module homomorphism

(screening operator). For definiteness, we shall choose the screening operator SJ[:”Q]

from Equation (1.212) that was constructed from r; copies of V,, 4, and ry copies of
Va.as- The computation for Sl i exactly the same and will be omitted. STM
has a well defined action on the Fock space F,, of Hy, where n = G\ —r, 5,:m0.5,, Sending
it into Fy, where 6 = (_;, s,y —ry.55, S€€ Equation (1.214).

ra]

We can now explicitly evaluate the action of the screening operator SE:I’ on the

highest-weight vector |n) € F,. Using Equation (1.207) and Equation (1.209), this
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W,, singular vectors

action is

2

Skl’rz]hﬁ _ /A va+a1 (2%) .. ‘Va+a1 (Zrl,l)va+a2 (Z%) .. .Va+a2 <232> |77> kl_Il fIl dek
2
- (11 11 (-

T

- i

i=1j5=1 112

gw\s

A =1 1<iAj<ry

=1
2 T
NI CIREI 01 ETES e ) e
i=1 k=1m>1 k=11i=1 zf
2 Zh\ei T 22\ —od
_ A G- )
/A kl;[l 1§z’1¢_y[‘§rk ( % z=Hl 31;[1 %
27 si 42 Oz+a’impm 2k 2 Tkoqzk
I1 zf)".HHexp( — )>-\9>HH . (2.1)
k=1i=1 k=1m>1 k=1i=1

Here, the integrals are over the product cycle A = I'(r;a3?) x I(ry; a3 ?), see
Section 1.9.1.
To proceed, we note that the tensor product A ®¢ A is isomorphic to
U((Hz)i) =Cla*, | k=1,2, m € Z-(] as an algebra, by Equation (C.9). Concretely,
let y! and y? denote the variables for the two factors of A ®c A and consider the
isomorphism

Ly

priA@c A —U((H2)_), pm(y") — —at,, k=12 mels (22
+

where p,,(y¥) is a power sum defined in Equation (C.1). Then, we may write

[ oo =522 ) (g o222}

m>1 m>1 m

—m(HH 1—yrzf)” ) (2.3)

i>1j=1

recognising the Cauchy kernel Equation (C.19) with parameter t = 0412.

For k = 1, we expand this Cauchy kernel in terms of Jack polynomials P (y1> and
their duals Qf <z1> as in Equation (C.19):

[T exp (a+a1_mpm (Zl>) =+ (Z Py (y") 3(21)) (24)

m>1 m )
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2.1 Wj; singular vectors

For k = 2, we first combine the Cauchy kernel with that appearing in the second
factor of the integrand of Equation (2.1):

P (H M- yfszi) I -eh72) ™ =, (Z P (v U <zl>1)QL(z2))-

i>1j=1 i=1j=1

Here, we have noted that the product is a Cauchy kernel in the alphabets
{7} U{(2/)~"} and {z7}. This may be further simplified using skew-Jacks as in

Equation (C.22):
PV D7) = P ()P () (26)

where P?, (zl) = P! ( ) We recall that the skew-Jack P , 1s O unless v C p. By
considering from Equation (C.24) the definition of G (x ), we also have the integrating

kernels
k 2

1T (%) =ceene) (2.7

k=11<i#j<ry Zj

of the symmetric polynomial inner product Equation (C.23). Finally, the product
| ) (zf)sk is a product of rectangular Jack polynomials. However, here we have
to be careful with the signs of the s;. Indeed, Equation (1.53) and Equation (1.213)
show that the conformal weights of the highest-weight vectors |n) and |#) differ by

h”? — h@ = —T181 — I'283. (28)

This must be non-negative if the screening operator S "ol is to map In) to a singular

descendant of |#). We shall therefore assume from here on that s, sy € Z<y. Thus,

(Z’k>8k - PIE—SP] (21) PIE—S?] (22)’ (2'9)

using Equation (C.15).
Putting all this back in Equation (2.1), the integrand factorises and we get

7‘1 72] t t 1\pt 1 t 1 t 1 & dzzl
= P+(P ( ))/F y G, (2 )P[—s[l](z)PV(Z )Q/\(Z)H 1

v (r1;t) i—1 %
"2 dz?

(Pl (7)) /F - GiQ(zQ)P'[fSQQ](ﬁ)QZ(z?)il‘[l z?i - 16)
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using Equation (C.23),

= (P (G P (PP ()

A,V

by Equations (C.16) and (C.25),

= 30 Wb (r2)or (P (8P (7)) 16), - (210)

ug[—s’f]
L(v)<r
where [(v) is the length of v. As bT_ 7-2](7"2) is independent of v (and non-zero), it may
S2

be absorbed into the normalisation of the singular vector. Our final result for the

singular vector is therefore

Sy = 3 B0 (P () Pz (52))16). (2.11)

vC[=s,’]

Lv)<r
This form is now easily implemented in computer algebra packages.
The right hand side of Equation (2.11) is easily seen to be manifestly non-zero by
noting that the total degree, with respect to the a?, , of the summand corresponding
to the empty partition v = [ ] is maximal and that all other summands have strictly
lesser degrees. Since bl[f_sql](rl), P’E_sm (y1> and P’E_sgg](yz) are all non-zero, this
summand is therefore linearly independent of all others. The conclusion is that

Equation (2.11) defines a singular vector for every ry,79 € Z>g, s1, S2 € Z<o and

t € C\ Q<o.

2.1.1 Examples

We now illustrate the W3 singular vector formula Equation (2.11) with three examples.

Example 1

For our first example, we compute a singular vector for the case when t = %, so that
L =

c— (2.12)

This central charge corresponds to that of the 3-state Potts model, described by the

W3 minimal model W3(4,5) (the parameters here are the numerator and denominator
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2.1 Wj; singular vectors

of t in reduced form). Take ry = ry = —s; = —sy = 1 for simplicity. Then, the map
SE’H sends F,, where n = (o _1,1,—1, into Fy, where 6 = (_; _1,0,—1. We note that

13 1 187 7
hy= =2 he=2> wy = ——— W= ——— 213
e T T 93900 ¢ 9390 (2.13)

by Equation (1.53) and Equation (1.202). The conformal weight hy is not one of those
associated with the 3-state Potts model. Nevertheless, the Fock space Fy has a
singular vector at grade 2 in accordance with Equation (2.8). Equation (2.11) writes it

in the form

Sy = 3 6,5y Wes (P (') Py (4°))16)- (2.14)

vCl[1]

There are only two partitions v to consider. Using Equation (C.25), Equation (2.2)

and SAGEMATH to write Jacks and skew-Jacks in terms of power sums, we have
=0 B = 1 o (Pl (1)) = o (o (0)) = za.
e P ()) = (o ) - s
v=[1]: bﬁ/]i[u( ) = ZZ’ P+ (Pﬁ/]ip] (yl)) =P+ (gp[l,l] (yl) + gp[m (yl)> (2.15)

p4/5

P+ (Piym (') = pe (P (y')) = 1

The singular vector is therefore explicitly identified as

5 V5
St = (atsa?, + Jat oty + Pl ) ) 210
Consider the W5 Verma module Vy whose highest-weight vector [) has Ly- and
Wh-eigenvalue hy and wy, as given in Equation (2.13). By direct calculation, Vy has a

singular vector |y), unique up to normalisation, at grade 2

390 V390 10390
|X> <119W—1W_ 17 —W_o+ WL_IW_I + L_lL_1> |19> (217)
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The free field realisation f: W5 < Hy defined by Equation (1.195) induces a

W3-module homomorphism
for Vo — Fo,  fo(U[9)) = f(U)|0). (2.18)

Here, U is an arbitrary element of the W3 mode algebra, this being the (unital)
associative algebra generated by the L,, and W, subject to Equation (1.199). Explicit
calculation now verifies that the image of the singular vector |x) under fy is, of course,
that constructed in Equation (2.16):

5 25 5v/5
o) = (Gataat + atialy+ B0 Jioy = G5t 29

Example 2

For our second example, we compute a grade three singular vector for general central
charges. Let r = 2 and o = —81 = —82 = ]_, so that n = C17_1;1’_1 and 0 = C_Q’_l;l’_l.

In order to evaluate the singular vector formula Equation (2.11), we need to compute

2 1 2 1t+2
b —— ) s -
1y (2) = t+1t () = t+1t2t+1
1 1
P[1 1] = 2P[l 1] — ip[z}, Pfl]/[o] = Pnys (2.20)
1 t—1 t
t ' B
Pl = 1 Pl + F PR T PR Phjym =1,

again using Equation (C.25), Equation (2.2) and SAGEMATH. The singular vector is
thus

[2 ! ) = {bfl,l] (2)p+ (Pfl,l} (3/1> Pfl]/[o] (92)) + bfz,l] (2)p+ (sz,l] (yl) Pfl]/[l] (CUQ))} 10)

1 1 1 1
t(t + 1) Oé+ Oé+ o

2 Loy t—1 ., 1 Lo
— — - — 0
+t(t+1)(2t+1)< a_yja_ya_y + %) a0 4 &+a_3 16)
_ 2/ory 11 1/ay al ol a?
- [(t+1)(2t+1)a_1 Ry L L
2(t —1) 11 Loy 1/a,

Er )@+ 1) 2 T 1 T et 1)“1—31 6). (2.21)
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2.1 Wj; singular vectors

We note that the result is manifestly well defined and non-zero for all o, such that

t =a;? € C\ Q<o as expected. This region includes all central charges less than 98.

Example 3

Our final example concerns singular vectors for quite arbitrary central charges
(including all ¢ < 98). This time, we fix # = 0 and use Equation (2.11) to construct
singular vectors in the Fock space Fy.

First, we note that 6 = (_,, 5,.r,—ry,s, = 0 may be solved for r; and s;:

T = —1 + (—81 + 1)t, o = —2 + (—81 — 89 + 2)t (222)

Since 11,79, 81, S92 € Z, we will only find singular vectors when ¢t € Q. Writing ¢t = %

v’

where u and v are coprime integers, it follows that
rm=mu—1, —s;=mv—1 rm=nu—2, —se=(n—m)v—1, (2.23)

for some m,n € Z. Given that 1,7y € Z>( and sy, S3 € Z(, we conclude that m, n
and n — m must be positive integers. We thereby obtain, for each fixed t € Q~q, an
infinite sequence of singular vectors, generically indexed by integers n > m > 0, of the
form SJ[:'W_LW_Q}|C(m—n)qul,_mv+1;nu_2,_(n_m)v+1). Among these, the singular vector of
lowest grade corresponds, assuming that u > 1, to (m,n) = (1,2). Moreover, the
grade of Sfﬁlg(”*l)]]C_(u_l),_(v_l);Q(U_l)ﬁ_(v_l)> is 3(u — 1)(v — 1), by Equation (2.8).
It is not clear if these singular vectors of the Fock space Fy correspond, in the sense of
Example 1 to singular vectors in the W3 vacuum Verma module V, or not. However,
there are five other Fock spaces F, whose highest-weight vectors |() have hs = w; = 0.
This follows from the easily verified fact that both h¢ and w, are left invariant by the
following shifted action of the Weyl group Ss:

o-¢C=0(¢C—app) +app, o€Ss;. (2.24)

Each of these five other Fock spaces has an infinite sequence of singular vectors given
by Equation (2.11) and it is interesting to ask whether these also correspond to
singualr vectors in Vy or not. We shall not investigate this question here. We only
note the following observation: Fa,,, has such a singular vector at grade 3 and it
corresponds to just one of the two linearly independent grade 3 singular vectors of V.
Which one is obtained depends on the branch of the square root of S chosen in
Equation (1.195).
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W,, singular vectors

We conclude by remarking that the question of whether the Fock space singualr
vectors constructed here exhaust the singular vectors of 1 is much easier to answer.
They do not. We cannot obtain the two linearly independent singular vectors at grade
1 using Equation (2.11) (for ¢ # 2; when ¢ = 2, Wj acts non-diagonalisably). Nor can
we obtain, when t = % € Q., the grade (u — 2)(v — 2) singular vector whose image is
non-zero in the universal W3 vacuum module. This singular vector can be constructed
formally using screening operators, but we do not know how to actually evaluate the
integral in this case. What is needed is a certain sl(3) analogue of the theory of Jack
functions, something which does not appear to have yet been developed (see

[65, 75, 76] for work in this direction).

2.2 W, singular vectors

In this section we generalise the results of Section 2.1.1 and derive explicit formulae
for W,, singular vectors in Fock spaces. We remark that this technique does not work
for all Fock spaces, only some of them. Recall the conventions and notations from

Section 1.9. If we apply the screening operator SE} to the H,_; highest-weight vector
[ns), we get

Tn—1

[r] o . . n—1 st
S+ |77rs N /F(rl,l/a /F(rnl;l/a HVOH_OC ( ) H va+a 1< ) ’nrs kl;[ 1;[
n—1Tk—1 7 Z;C 70&
- "'/rw/a 0o (-5)" HHH( )

L(ri;1/ad) ) k=1 1<i£j<ry 2 =2 i=1 j=1
1 1
TLII() e g )
k=1i=1 k=21=1
n—1 rg
arak dzF
NICTETS e T
k=1m>1 k 1i=1 zf

n—2Tk—1 Tk

- /r(ng/ai)m/r(rnlg/a H 1 (1 a z) 1 H(

k 1 1<i#j<ry J k=1 i=1 j=1

3y

ﬁﬁ(z’“)k 'nl:[1 11 exp(a+a_m£m(z )> n];[ 1j . (2.25)

As in the W3 case, we can evaluate these integral formulae for singular vectors in

terms of symmetric functions. Recall that the tensor product of N — 1 copies of the
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2.2 W,, singular vectors

®Xn—1

ring of symmetric functions A is isomorphic to

U((Hn1) ) =Cla", [k=1,...,n =1, m € Zo] (2.26)

as an algebra, by Equation (C.9). Distinguishing the alphabets of the tensor factors by
superscripts, so that the alphabet in the i-th tensor factor is denoted by 3¢, we define

the following algebra isomorphism generalising that of Equation (2.2):

pp: AP U((’Hn_l)_), Pn (yk) — La’in. (2.27)

ot
This isomorphism allows us to write

1 exp<o‘+“kmpm(zk)) (H eXp( 2 pm(y’“)pm(zk>>)

m>1 m m>1 m

—m(HH 1—y'2))” ) (2.28)

i>15=1

for k=1,...,n — 1. We now identify, with ¢ = a 2,

ﬁ 11 (1—> —HG (2.29)

k=1 1<i#£j<ry J

as the product of the integrating kernels for the variables z;. For £k =1, as in

Equation (2.4), we write

IT exp (W) . (; Pt (v)Q., (21)> (2.30)

m>1

For k =2,...,n — 1, similar to Equation (2.5), we have instead

oo ) (- )7 = (Sonroe gon )
= o 2 P )Ph ()00 () )

HksVE
(2.31)
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Putting everything together, we have

r1 1
Pt = 5 oelPl ) [, P (PR I

ST U5
" 2
s <PZ2/V2 (yz)) /F(Tz;t) GiQ (Zz) PI[S—SSZ] (Zz) Ptus (Z2) QZQ (22) l:1 dz?

. /F(?"nz‘t) Gin_z (27%2) I[S*STWQ} (Zn72> P't/n—l (an2) inn—z (Zn72> H ni—z
p+<Pﬂn 1/vN-1 (yrhl)
)

t n—1\pt t e
oGP ()R () TT - 102

not =1 7
t t t K
- 2 H <Q#k’ Vi1 +[—s ’“]> ' <Qun—1v P[—52"11}>
14250 Hn—1 k=1 Tn—1
V2yeeey Un—1

0 (P () TL (Pl (1)) - 12
- Z (n_ blt/kﬂJr[ ](rk) b][f—sr"—l](TN—l)>

n—1
V2yeeey Vn—1 \k=1

(Pl (v ))HP+< uk+1+[—szk1)/uk(yk)>'p *(Pf—s;i?]m1(yN_1>)|9:S>'

(2.32)

As before, the factor b'[f_sgi,ll](rn_l) does not depend on the summation indices
Vo, ...,Vn_1, appears in every summand, and is non-zero, so it can be absorbed into
the normalisation of the singular vector. Moreover, the skew-Jack polynomials vanish
unless the summation indices vs, ..., v, 1 satisfy the relations

vk Cuprr + s, k=2,....,n—2, wv,1 C[—s"] (2.33)

n—1
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Thus, the singular vector SE} 17s) € Fy+_ is proportional to

n—2
Vs .Z;n_l <k—1 bf’k+1+[*5;k] (Tk)> P+ (PItJQ-i-[—sIl] (yl))
h B n—2
| IEQ r <P%”k+1+[—82’“1)/% (yk)> P <Pf—s2*:1}/un1 (yn_l)) 0:)- (2.34)

This is our final formula for W, singular vectors generalising the n = 3 case given in
Equation (2.11). As before, considering the summand with v = -+ = v, ; = [ | shows
that the right hand side is non-zero for every r € Z%;', s € Z%;" and t € C \ Q<.

This singular vector formula also has the nice property of being comparatively easy to

evaluate using computer algebra packages such as SAGEMATH.
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Chapter 3

BRST cohomology for L;.(sl(2))

modules in category O

In this chapter we will present the proof of the BRST cohmology of L(s[(2)) highest
weight modules presented in [16].

3.1 The BRST complex

Throughout this chapter we fix an admissible level k and set k+ 2 = g =t for coprime
integers p, g > 2. Recall that the energy momentum tensor of the simple affine s[(2)
vertex operator algebra Ly (sl(2)) at level k and the fermionic ghost vertex operator

super-algebra B are

T2 (2) = L(:h(z)h(z): + 2:e(2) f(2): + 2:f(2)e(2):) (3.1)
TB(2) = :0b(2)c(2): (3.2)

where
CLp(si(2) = k?:er’ cg = —2 (3.3)

The conformal weights of e(z), h(z), f(z) are all 1 and the conformal weights of b(z)
and ¢(z) are 0 and 1 respectively. We introduce the BRST field [10-12, 69] which first

appeared in the context of gauge theory

Q(2) =:e(2)e(2): + ¢(z) (3.4)
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BRST cohomology for L;(sl(2)) modules in category O

Clearly, from the operator product expansions in Equations (1.122) and (1.182), and

noting that for the cross term we have e(2)c(w) ~ 0,

Q(2)Q(w) ~ 0 (3.5)

and we define the BRST operator dgrgr as the zero mode of Q(2)
dBRST = /OQ(Z)CIZ (36)

From Equation (3.5) it is clear that dirgy = 3{dprst, dBrsr} = 0. Now,

Lr(sl(2)) ® B has the structure of a vertex operator super algebra with respect to the
energy momentum tensor 74+2) 4 T8 The fermionic ghost vertex operator algebra
can be graded by the ghost field —:b(z)c(2): so that b(z) and ¢(z) have ghost degrees
—1 and 1 respectively. Let B,, be the subspace of B consisting of states with ghost
degree n, then for any highest weight module M of L (s((2)), dgrst is a degree one
operator acting on M ® B. We define the BRST complex, associated to M, by

_ dBRsT M®B,_, dBRST M®B, dBRST; M® Bn+1 dBﬂ) ce (37)

It turns out that when M = L;(s1(2)), the zeroth cohomology group has the structure
of a vertex operator algebra, see Lemma 3.1.1 below. However the conformal structure
does not come from T#+E2) + T8 This is because, with respect to the energy
momentum tensor above, the operator dgrgr is not a homogeneous operator of

conformal weight zero. That is,
[ TEHEOD (2) + T8(2), dppsr| # 0, (3.8)

This is due to the fact that both e(z) and ¢(z) have conformal weight one. To fix this,

we introduce a new energy momentum tensor of L (s((2))
e 1
Tﬁk( [(2))<Z) _ Tﬂk(sl(Z))(Z) + 58]1(2) (39)

under which the conformal weights of e(z), h(z), f(z) are 0, 1, 2 respectively. One can
show that with respect to this new energy momentum tensor, dgrst commutes with

this energy momentum tensor,

=Lk

T () £ TB(2), dpgsr| = 0 (3.10)
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3.1 The BRST complex

We then have

Lemma 3.1.1. The cohomology H°(Ly(s1(2)) ® B, dgrst) has the structure of a
vertex operator algebra, where the energy momentum tensor is given by the modified

energy momentum tensor TERCE@) | 1B

Proof. Let T =T £ 78 and d = dgpgr. Since |d, T £ 78| =0, it is easy
to check that both ker d and im d are invariant under the action of 7. To show that

ker d is a vertex subalgebra, let A, B € kerd. Now from Lemma 1.1.8 we have
d,Y(A,2)]=Y(dA,z)=0 (3.11)
and therefore
dY (A, 2)B=Y (A, 2)dB=0 (3.12)

so Y(A, 2)B € ker d[z*]. To show that imd is an ideal of ker d, suppose that
B € kerd and A € V. Now,

Y(dA,z)B =[d,Y (A, 2)|B=dY (A, z)B (3.13)
implying that Y (dA, z) B € im d[z*]. Therefore the quotient kerd/imd is a
well-defined vertex operator algebra, where the conformal structure is given by 7. [

For admissible level k£ 4 2 = % with coprime integers p, ¢ > 2, the irreducible highest
weight modules of L(s[(2)), £5£¢®) are parameterised by 1 <r <p—1,1<s<gq
and the irreducible highest-weight modules Eﬁf'sfp’q) of the Virasoro minimal model

M(p, q) are parameterized by 1 <r <p—1,1<s<¢q—1. Now,

Theorem 3.1.2. /2, 16] For 1 <r<p—1,1<s<qg—1 we have
H™(L,, ® B, dpgst) = 0no L) 7 (3.14)
and
H"(L,,®B,dgrsr) =0 (3.15)

for all n.

In summary, the BRST complex is non-trivial at degree zero for all s except at the

column s = g,
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S
1 qg—1
1
) La(s1(2))
Kac table
p—1
Quantum Hamiltonian Reduction
S
1 qg—1
1
. M(p q)
Kac table
p—1

In this chapter we will present a full proof of Theorem 3.1.2 for s =1,...,q — 1
following the outline presented in [16], with some modifications which will allow us to
generalise more easily to the case of relaxed highest-weight modules. The case s = ¢
will be dealt with in the next chapter, along with our results for the relaxed
highest-weight modules. The proof utilises the free-field realisations of V(sl(2)) and
Vir in Sections 1.4 and 1.7 so we will first set up the parameters needed for this.
Firstly, let 75 = TH + T be the energy momentum tensor of H ® G and let o? = 2t.

Then we have

TH = ;:a(z)a(z): - ;80,(2) +:8(2)07(2): (3.16)
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In particular, §(z) and ~y(z) now have conformal weights 1 and 0 respectively. We can
realise Vi (sl(2)) as a subalgebra of H ® G where the explicit embedding of Vi (sl(2))
into H ® G was given in Equations (1.164) to (1.166). Recall that our modified energy
momentum tensor for the BRST reduction takes the form 7°**'®” + T8 Now we
want to represent this modified energy momentum tensor using a(z), 3(z),y(z) using
the free-field realisation defined in Equations (1.164) to (1.166),

oy

T = ;:a(z)a(z): + <a+ - 2>8a(2) —:0B(2)y(2): (3.17)

In particular, 5(z),7v(z) now has conformal weights 0 and 1 respectively. From now on

we will exclusively be working with ", Also, since k + 2 = g, we have

a+:\/ﬂ:\/%and

=rF 1

T = Q:a(z)a(z): + (o +a_)0a(z) — :08(2)y(2): (3.18)

Thus we see that the Heisenberg part of T precisely the free-field realisation of
the Virasoro algebra at minimal model central charge in Equation (1.74). Already this
suggests a relationship between £(sl(2)) and M(p, ) with &k +2 = 2. As the free-ficld

realisation of e(z) is 5(z), the BRST operator now takes the form
—— /O B(2)e(2): + c(2)dz (3.19)
We have the following commutation relations

[dBrsT, Bn] = 0 [dBRST, Tn) = Cn (3.20)
{dprsT, bn} = Bn + dnpl {dgrsr,cn} =0 (3.21)

Now that we have introduced all the parameters for the proof, we will move on and

show that the Virasoro and V(sl(2)) screening operators are BRST exact.
Lemma 3.1.3. Theorems 1.4.4 and 1.7.1. Forn > 1, let a_ = —\/277 so that
{Ss[(g)r, [Sv]" are screening operators for the Virasoro and V(sl(2)) vertex operators

algebras respectively. Then there existsa field V™ (z1, ..., z;) such that

{d, 0"} = [Su)]" + (1) [Sy]" (3.22)
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Proof. The proof is done by induction. In the case when n = 1, we have
{d,b(2)Va_(2)} = B(2)Va_(2) + Va_(2) (3.23)

We now assume that there exists 1" (21, ..., z,) such that

{d, " (21, ., 20)} = ﬁﬁ(zi)va_ (z) + (=)™ ﬁl Vo (2) (3.24)

Then we see that
facaten) - 8eenen) T Vo (o) = "G aVa )} 629
=TTV )+ T3V () Vo (o) (3.26)
—ﬁmmw<wwammwwﬂwﬁﬁmmm (3.27)
= TLv, G+ 02 T (3.25)

It is obvious to see that 1" (21, ..., z,) has [Ti; Va_(2;) as a factor and therefore we

can integrate

o o} = [ToGve o+ - [TTVe 20 329

such that the operator [ 1™ will be a well-defined map whenever the screening

operators are well-defined. Taking ¥" = [ " we have
{9} = [Sue)]" + (1S (3.30)

for all n > 1 and we are done. ]

In other words, the two operators [Sy]" and {Sgl(g)r are equivalent when acting on a

BRST-cohomology.
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3.2 BRST cohomology of L;(sl(2)) highest-weight

modules

We will first outline the strategy of proving Theorem 3.1.2. First we take an
irreducible highest-weight module of £;(s[(2)) corresponding to r =1,...,p — 1,
s=1,...,¢g — 1 and form the BRST complex

dBRsT
E'r,s X Bl

dBRsT

£7",s ® BO

dBRrsT
‘Cr,s ® B—l

dprsT

We then realise L, ; as the degree zero cohomology of the Bernard-Felder complex as

per Theorem 1.7.2,

—r

[55[(2)] [Sﬁl@)]p
—

e Sﬁ[Q "
"'f2p7r,s®G—>fr,s®GQ>f7r,s®G (331)

thereby turning the BRST complex into a double complex (the fact that the

differentials commute is obvious since they only contain /3, modes)

{55[(2)} 74 doRst [Ss[(2)} o doRst {Sﬂ(z)} T dRST [55[(2)} o

S Foprs ®GOB — > F,®G®B, — 5 F L, ®GR®B —— -

[Ssr(g)} ! dprsT [Ss[@)] p—r dpRrsT [55[(2)] r dprst [Ss[@)] Dt

e Fop s @G6RQBy —— F  9G6GR®By —— F, s ®6G®B) —— - -

[Sﬁ[@)] ' derst [55[(2)} a darst [Ss[(Q)} ' deRst |:Sq[(2)} o

'—)F2p7T75®G®Bfl_)FT,S®G®Bfl—)‘F7T,S®G® -1 ——

dprsT dBRsT dprsT
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It turns out that taking [Ssl(g)r, n =r,p—r and dggst cohomologies commute by
Proposition 3.4.2. This means that we can determine the BRST cohomology of £, s by
first determining the BRST cohomology of the corresponding Wakimoto modules
instead. Proposition 3.3.1 tells us that the BRST cohomology of a Wakimoto module

is
H"(Fy® G ® B, dgrst) = 0n,0Fx (3.32)

Therefore if we first take dgrsT cohomology, all rows will be zero except at the zeroth
row, at which it will consist of a sequence of Fock spaces. Moreover, since the Virasoro
and the sl(2) screening operators are BRST-exact from Lemma 3.1.3; we see that up
to a sign, {SE[(Q)}n, [Sy|" are two equivalent maps when acting on a BRST cohomology,
that is,

[Su] 0] = [Sv)"[] (3.33)

where [v] is some non-trivial cohomology class. Therefore, we can replace [Ss[(g)r by
[Sy|" after taking the BRST cohomology of the Wakimoto modules. It turns out this
procedure results in a Felder complex at the zeroth row, recall Theorem 1.4.6,

[Sv]” [Sv]"™" [Sv]" [Sv]"™"

i — -Fprr,s ‘F’I",S ‘/_';7«73 —_——

The Felder complex is exact except at degree zero, at which we get the irreducible
M(p, ¢) highest weight module EMS(”"I).

Proof of Theorem 3.1.2. Consider the double complex D = (Di’j, di, d%), for
1 = 2k,2k + 1, where

DZkJ — ‘/_';2kp+r,s R6E® Bj> d%k = [55[(2)}r (334)
D2k+1’j — ]:72@77"75 RGCR® Bj, d%lHl _ [55[(2)}1077" (3.35)
& = dgrsr (3.36)

Then by Theorem 1.7.2,

H™(Ly,s, drst) = H"(H'(D, dy), dy) (3.37)
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from Proposition 3.4.2,

= H°(H™(D,ds,), dy) (3.38)
by Lemma 3.1.3 and Proposition 3.3.1,

= H°(6,0C,d) (3.39)
where C' = (C*, d") is the Felder complex from Theorem 1.4.6, this implies

= 5n’0£7'§f'§p,Q) (3.40)

]

Therefore to complete the proof of Theorem 3.1.2 we need to show Proposition 3.3.1

and Proposition 3.4.2 which we will do next.

3.3 BRST Cohomology of Wakimoto modules

In this section we will show the following proposition, this is a result in [16], but here

we will give a different proof.

Proposition 3.3.1.
H"(F\® G® B,dgrst) = 0n0Fx (3.41)

Proof. Firstly notice dgrst contains no elements of H and so F) factors through the

cohomology
H"(F\® G® B,dpgrst) = FA ® H"(G ® B, dgrst) (3.42)

That is, it is enough to determine the cohomology of the complex C' = (G ® B, dggrsr)-
For simplicity let |0) = |0)¢ ® |0)g and d = dgrsr. We can decompose this complex as

a tensor product of two complexes

C = Q) span{i0";|0) | pi > 0,7; € {0,1}} (3.43)
i>0
&) span{y%;¢*;|0) | ¢; > 0, s; € {0,1}} (3.44)
i>1
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since the vacuum vector lies in the kernel of d and both tensor factors are invariant
subspaces under d by Equations (3.20) and (3.21).

Now consider one of the factor I® = ®;>, span{s7;b";

0) | pi > 0,7, € {0,1}}. The
commutation relations of d with the modes [3;, b; shows that the differential d leaves
invariant the space of states generated by the same mode indices. That is, we can

further decompose I” as an infinite tensor product of complexes I¥ = @, I, where

17 = span {707

0) |pi>0,r,€{0,1}} (3.45)

We can then directly compute the cohomology of each tensor factor I2

03 span{¥.b_;|0)} a span{ %[0} } 2% 0 (3.46)
where
kerd_, =0, ker dy = span{3";|0) | p,, > 0} (3.47)
imd_, =0, imd_; = span{s”]0) | p,, > 1} (3.48)
Hence, we see that
H"(IP) = 6,0Cl0), i>0 (3.49)

By Lemma A.2.9 we see that
H"(I7) = 6,,0,C|0) (3.50)

We will now compute the cohomology of

qi Si
—iC—

I¢ = span{y 0)|i>1,¢; > 1,8, € {0,1}}. Again, d is invariant on subspaces
with the same mode indices. Therefore similar to 12, we can decompose I as

19 = ;> IF, where

1€ = span{y%.c*.|0) | ¢; > 0,s; € {0,1}} (3.51)
Again we will now compute the cohomology for each tensor factor I¢. The complex is

= span{7%,|0)} -2 span{y%,c_;|0)} -2 0 (3.52)
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where

ker dy = C|0), ker d; = span{y%.c_;|0) | ¢; > 0} (3.53)
imd_; =0, im dy = span{—1;7% 'c_;|0) | ¢ > 1} (3.54)

We therefore conclude that
H™(IF) = 6,0Cl0), i>1 (3.55)
Applying Lemma A.2.9 again we see that
H™(I€) = 6,,0C|0) (3.56)
Thus, applying Kunneth’s Theorem we finally arrive at
H"(F\® G® B, dgrst) = 0n,0Fx (3.57)

as required. N

3.4 Commutivity of the double complex

In this section we will show that taking cohomologies of the double complex in the
proof of Theorem 3.1.2 commute. Recall that the double complex in the proof of
Theorem 3.1.2 is D = (Di’j, dt, dg), for ©+ = 2k, 2k + 1, where

D%’j = F_Qkp-&-r,s ®G® Bj? d%k - {85[(2)r (358)
D2k+1’j — I—Qkp—ns RG® Bj, d%k—&-l _ [Ss[@)}p—r (3.59)
d} = dpgrst (3.60)

Firstly, let T' = T 4+ T8 = TH 4+ TS 4+ T® be the modified energy momentum tensor
of the vertex operator algebra H® G ® B, with Ly = LY + LS + LB being its zero mode.
We note the the minimal conformal weight of any Fock spaces appearing in the double
complex D is the highest-weight state of F, ;, say A. That is, LE‘ las) = Alays).

Then each D% in the double complex D can be written as a direct sum of eigenspaces

o0
of Ly, that is D"/ = @ Dy, ,. We note that some of the Dy,,’s could be zero.
k=0
Furthermore, since {Lo, {Ss[(g)}n} = [Lo, dgrst| = 0, we can decompose D as a direct
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sum of subcomplexes D = €P Ay, where A; = (A;;’j ,di, dg), A = DiA’jJrk. In other
. . kzo . .
words, each A} in the double complex Ay, is just the Lo-eigenspace D}, of weight

A + k in the original double complex D%. We then have

Remark 3.4.1. For each k € N, the double complexr Ay = (AZ’]‘, d, d%) s bounded
above and below with respect to the ghost degree. Concretely, Ai’j =0 forj >k or
j<—-k-—1

Proof. We prove this by considering the original double complex D = (D™ di, ).
The minimal conformal weight of any state with ghost degree j is A + w, which is
any state containing the modes c_; - -- c_;. Similarly, the minimal conformal weight of
any state with ghost degree —j — 1is A + @, which is any state containing the

modes b_; - - - by. Therefore, Afi,’j =0ifk<jandif k> —j5—1. O
We then arrive at

Proposition 3.4.2. For the double complex D = (Di’j, di, d%), taking cohomologies

commute. That is,
Y (H'(D,dy), dy) = H'(H (D, dy), dy ) (3.61)

Proof. As we saw before, we first write D as a direct sum of subcomplexes
D= A, (3.62)
k=0

Then each A is a bounded double complex from Remark 3.4.1. From Theorem 1.7.2
and Proposition 3.3.1, since the Bernard-Felder complex as well as the BRST
cohomology of Wakimoto module are exact except at one degree, we see that the
spectral sequence associated to the total complex of Dy degenerate at most at page
two. Therefore by Theorem A.1.9 we see that for each k,

HI(H'(Ag, dv), dy) = H'(HI(Ay, dy), dy ) (3.63)
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Now since the cohomology functor is additive we see that

Hi (Hi(D,dl),dQ) = H (Hi <é Ak,d1>,d2>

iy HY (H' (A, dy), ds)
k=0

- éHi(Hj(Ak,dg),d1>
k=0

= H'(H(D,dy), dy )

75
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Chapter 4

BRST cohomology for L;.(sl(2))

modules in category R?

The chapter contains our results on the BRST cohomology for the relaxed
highest-weight modules as well as the twisted ones under spectral flow. We will first
discuss Bernard-Felder complexes in category R? in Section 4.1. Section 4.2 contains
our main results for this chapter, which are Theorem 4.2.1 and Propositions 4.2.2
and 4.2.3. In Section 4.3 we compute the BRST cohomology of a spectrally flowed
Wakimoto module. In Section 4.4 we will discuss the commutativity of the double
complexes that we obtain for the BRST cohomology for the (spectrally flowed) relaxed
highest-weight modules.

4.1 Bernard-Felder complexes in category R’

In this section we take A = 1 for the energy momentum tensor of the bosonic ghost as
shown in Equation (1.146). The proof of quantum hamiltonian reduction[16] presented
in Theorem 3.1.2 relies on the construction of a double complex involving the
Bernard-Felder complex of Theorem 1.7.2 for the irreducible highest weight modules of
Lr(s1(2)). In order to follow the same strategy for the case of relaxed modules and
their spectral flows we need to construct analogs of the Bernard-Felder complexes for
the irreducible modules in category R?. We will therefore devote this section to
proving Propositions 4.1.3 and 4.1.10 which do exactly that.

To begin, we will first determine how to apply spectral flow to a Wakimoto module.
As Wakimoto modules are modules of H ® G we want to determine an automorphism
of H ® G that is compatible with the spectral flow automorphism of 5A[(2). First, the
free-field realisation of Vi (sl(2)) into H ® G, given by Equations (1.164) and (1.165),
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induces a map,
t: U(Vg(sl(2))) — UH® G) (4.1)

Recall from Equations (1.39), (1.138), (1.139) and (1.161) that the spectral flow
automorphisms of 5A[(2), H and G, forl € Z,s € R, t € Z are given by
Uér(2)(€n) = En—1, Ué[(2)(hn) = hy — lon ok, Ué[(2)(fn) = fntis (4.2)

Ui{(an> = an — 35n,0 O'tg(ﬁn) = ﬁn—t O-f_;(’)/n) = Tn+t (43)

Basically, we want to find s,¢ such that ¢, ® of is compatible with aé[(z). Concretely,

we have
Lemma 4.1.1. Let k +2 = g be admissible, a, = \/% and
Ohiog = 0 @ 0h (4.4)

Then we have the following commutative diagram

L

U(Vi(s1(2))) ——— U(H® G)

I
Ts1(2) TH®G

U(Vy(s1(2))) ——— U(H ® G)

Proof. We need to find s,t as functions of [ such that the following simultaneous

equations hold:

(ot (en)) = |05 @ 0g] (1(en) (4.5)
() (7)) = |05, © 0G| ((hn) (4.6)
H(oh () = o3 @ b] (o £0) (4.7)

We remark that this is an over-determined system of equations. Now, from

Equation (4.5) we have

L("i{(z)(en)) = t(en—1) = B (4.8)
(03, @ o8] (1(en)) = 03, @ 05(Ba) = Buc (4.9)
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This forces t = I. Moving to Equation (4.6),

L(O‘é[(z)Uln)) = 1(hy, — ln k) = =2:87: + ayay, — 100k (4.10)
[J;S_[ ® alg} (t(hy)) = [05{ ® O'H (=2:87: + ayay) (4.11)
= —2(:07: — l6np0) + g (an — 80,0) (4.12)
We see that
2
—lk=2l—a;s = s= (k+2)l (4.13)
ot
and we conclude that
(k+2)1 ayl
Lo aé[@) = [UHD”’ ® aé] oL = la,f ® crlgl oL (4.14)

«

olf

by noting that £ + 2 = =~. For a consistency check we now want to see if
L‘H
Equation (4.7) holds with s = O%l and ¢ =1 So let obypg = 047 @ ol and recall that

wm:—ﬁvw@wam+mu@w@m+C§—@&m (4.15)

First we remark that since [v,,,7,] = 0 for all m,n € Z, we have

aG(1(2)7(2)m) = V()7 (2)insa, (4.16)
Then
B(2)7(2)7(2)im = m;1 By (2)7(2)tn—m + ;017(2)7(2)%%% (4.17)
P CCUCHEMED S EIOHE MRS SETCHO et
(4.18)
= mgil By (2)7(2)in—mit + mgzl:v(z)y(z):n,mﬂﬁm (4.19)
= m;_l By (2)7(2)in—m+1 + mz;jozv(z)v(z):n_mﬂﬁm (4.20)

+ (@)Y impiriBar + -+ (2)Y(2) B (4.21)
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Now, 1y (2)v(2)insk+18-1 = Bor:y(2)V(2)inthrt — 2¥n41 80
Thag (B2 (2)7(2)m) = B)V(2)Y(2) it — 2n s

Next, we have

O-é{@Q(:a(z)fy(z):n) = Ul( Z A Yn—m T Z Vnmam>

m<—1 m2>0

o4
= Z A Yn—m+1 T Z Yn—m+10m — 717n+l
m<—1 m>0

o
= :a(2)7(2) 4 — %l%ﬂ
a§{®g(6”y(2)n) = —NYn+l
Therefore, putting everything together,

g (t(fa) = =AW st + 2t + 0 (a(2)y(2) aat) = s

2
+ (O; - )(—n)%m
= —:B(2)7(2)V(2)ins + al:a(2)Y(2)in41)

a?
_ <2+ - 2) (n 4+ 1)Vt

and

ooy (1)) = — B st + s (a2 o)
- (0‘2 - 2) (4 D

so we see that Equation (4.7) does indeed hold and we are done.

(4.22)

(4.23)
(4.24)

(4.25)
(4.26)

(4.27)

(4.28)
(4.29)

(4.30)

(4.31)

(4.32)

We will now call a§{®g, the automorphism of H ® G that is compatible with the

normal 5A[(2) spectral flow Jé[@), the free-field spectral flow. Recall from Theorem 1.7.2

that the Bernard-Felder complex C' = (C,,, d,,) for an irreducible highest-weight

module £, for 1 <r <p—-1,1 <s<qg—1is a complex of Wakimoto modules such
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that for n = 2k, 2k + 1,

O2k = -F—Qkp—l—'r,s X C‘7 ko - {Sﬁ[(z)}T (433)
Cokr1 = Fokp—rs @ G, dos1 = [Ssr(z)}p_r (4.34)
where cohomology of C' is

Hn(c) = n,O'CT,s (435)

Since spectral flow defines an exact functor between the relaxed category R7 to itself,
it commutes with cohomology functors in the relaxed category by Lemma A.2.5.
Therefore, spectrally flowing the above Bernard-Felder complex using the free field
spectral flow in Lemma 4.1.1, we see that the complex C' = (C,, d,,), for

n = 2k,2k + 1, where

Cor = Ohyog(Foskpirs @ G), doy, = Ué—l@@([ss[@)r) (4.36)
Coks1 = Ué{®g<F—2kp—r,s ® G), dop1 = U%@Q([Ss[(g)}pr) (4.37)

has cohomology
H™(C) = 0n0002) (Lrs) (4.38)

With some simplifications we see that the above complex becomes

Cor = Fosipirst ® 04(G), doy = U%@Q([SSI(Q)Y) (4.39)

02k+1 = -F;kafr,sfl ® Ulg(G)a dory1 = U%@Q([Ssl@)}pr) (4-40)

Therefore it remains to determine the image of the sl(2) screening operators under the

free field spectral flow.

Lemma 4.1.2. The free-field spectral flow aé_l®g preserves the sly screening operator

|:S5[(2):|n homomorphism. That is,

03{®g([551(2)}n) = {Ssr(z)}n (4.41)

foralll € Z,n > 1, where the maps are defined as in Theorem 1.7.2.
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Proof. Recall from Equation (1.172) the screening field is

B(2)Va (2) = ﬁ(z)ea‘aza‘ao I exp (a _mzm> 11 exp( a_ amzm) (4.42)

m>1 m>1

— g0 11 exp( ) 11 exp( m m) (4.43)

m>1 m>1

so that we can write

Vo (2) = Q(2)2%-% (4.44)
We first remark that
[0 (ap), e‘“a] = lao - a;l, eagl = [ao, eo‘*g] (4.45)

so the Heisenberg automorphism does not affect -2, Now notice that

= Z Brz " = z Z Bn—lzin+l = Zilﬁ(z) (446)
o—j (Vo (2)) = 0'(z*"0(2)) = =" (‘“"(‘i)l)a(z) =V, (2) (4.47)

Therefore
Ohias (B (2)) = oL (B(Nr (Va () (4.43)
= 27'8(2)2'V,_(2) (4.49)
= B(2)Va_(2) (4.50)

Now,

‘77-L®g / H 0H®g (2:)Va_ (zi))dzl -dz, (4.51)

_ /F( )Hﬁ(zi)\/a,(zi)dzl---dzr (4.52)

= [Sue]” (4.53)
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We have therefore obtained the Bernard-Felder complexes for the twisted irreducible
highest weight modules under spectral flow. To state our result more precisely,
Theorem 1.7.2 and Lemma 4.1.2 imply that

Proposition 4.1.3. Fiz an admissible level k + 2 = § and let
r=1,.,p—1,s=1,..,g—1. Let C = (C",d") be a complex such that, for
n =2k, 2k + 1,

% = Fokpirs—1 @ Ulg(G)a d*r = {Sﬁ[@)} <4'54)
02k+1 = JT:—Qkp—r,s—l ® Olg(G)a d2k+1 - {Ss[(Q)}pir (455)

Then the cohomology of C' is
Hn<C) = 5n’00é[(2) (ET',S> (456)

To summarise Proposition 4.1.3, since spectral flow aé[@) is an algebra automorphism
and thus lifts to an exact functor from R to itself, it commutes with the cohomology
functors of any complexes. All we needed to determine was the image of the
morphisms [S;[(Q)}n under spectral flow.

We now want to construct Bernard-Felder complexes for the irreducible modules
&a,, wherer =1,...,p—1,5s=2,..q. We want to follow a similar strategy to
Proposition 4.1.3, but where we shall realise each &y A, , as the image of an exact
functor applied to w(L, ), the conjugate highest-weight module. This functor is called
twisted localisation and was introduced in [54].

Firstly, let U(§[(2))e be the localisation of U(sA[(Z)) with respect to the set

{ef | n > 0} as defined in Corollary B.2.2. Then for each u € C we define a functor

&+ U(sl(2))-Mod — U(sl(2))-Mod (4.57)
M — Resigégg o(2)" o Indiggge(/\/t), (4.58)
where
Iﬂdiggige(/\/ﬂ = U(31(2))e Bu(ae) M (4.59)
21(-) = 3 (4ot ()i’ (4.60)
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U(si(2))
eSU(Z{(Q))
We remark that Q¥ € Aut (U (5[(2)) ) To see that &* is exact, notice that it is

composed of three functors:

¢ is the restriction functor and (2#)" is the twisted action induced by QF.

IndU;:ii;;e(M) : U(sl(2))-Mod — U(sl(2) ) -Mod (4.61)
()" : U(sl(2)) -Mod — U(sl(2)) -Mod (4.62)
Res gg; U(sl(2)) -Mod — U(sl(2))-Mod (4.63)

Therefore it is enough to show each of these functors is exact. From Lemma B.1.10 we
see that Indigiige(}\/{) is exact. The proofs for the exactness of (Q)”, Resiggge
are easy so we omit them. We now want to apply &* to w(L, ) for
r=1,.p—1,5=2,..,qand determine p so that &"(w(L,)) is precisely &\ A, , -
Recall that w(L, ;) is a relaxed highest-weight module generated by a relaxed
highest-weight state |—\, ;) that is annililated by fo, where —A, s denotes the hg
eigenvalue. Next recall that Ly acts on grounds states as

Lolgs = i(hg + 2eg fo + 2foeo) which coinsides with the quadratic Casimir of the

horizontal subalgebra s[(2) and so ad(eo)™(Lo|ys) = 0 for n > 1. Thus,

QZ(L0|QS) = L0|gs (464)
We also have
Qf(e0) = eo (4.65)
Qf (ho) = ho — 21 (4.66)
QL (fo) = fo + phoeg ' — p(p — 1)eg’ (4.67)

We first let
o(@) = I1(1 - <) n(@ = [1(1- ) (4.68)

Now, we have
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4.1 Bernard-Felder complexes in category R’

Proposition 4.1.4. Let A € C such that A # A\, 5, A\p—y q42—s mod 2 and r' =r
mod 2. Then

ELr(s1U2)

Al s— 371

—Loan. . < qT n
ch & 2(A7,6+/\)(w(vr,78)) — o Z 52 (4.69)
nq nez

where Vy 5 s a g[(2) Verma module of highest weight A\ 5.

Proof. Recall that &2+ tY) = ResY o (QBQ(AT’SH)) oInd{. A PBW basis for the

induced module Ind¥ (w(Vy,)) is

{680‘]2'}11 e Jak |_)\T’,75> | J € {67f’ h}?ao S Z71 S Qa, "'7&]671 S n S e S nk;}

o
(4.70)

From Remark B.2.3 we see that, for n > 1,
hoe_"|—)\r/,s> = (—)\T/7s — 2n)€_n|—)\7»/,5> (471)
Loe_n|_)‘r’,s> - Ar’,s|_>\r’,s> (472)

Therefore,
Ay A )

e Indff (w(Vy ) = T 3 (4.73)

_1
The twisted actions e 3 (ArstA)

vector |—A\y 5, A 5), as we saw from Equations (4.65) to (4.67), are

of eg, ho, fo, Lo acting on the relaxed highest weight

0 E N () =) = eo|—Avs) (4.74)

Q;E()\T'S+A)(h0)|_)‘r’,s> = (/\ + ()‘r,s - /\T’,S))|_>‘T’7S> (4'75)
Q_%()\r,s‘f‘)\) 1 —1

e (fo)|=Ars) = —Z(AT,S FAN(2 s+ Ns F A+ 2)eg | —Avs)  (4.76)

Qgi()\Mh\)(LObS)|_)‘r’,8> = AT’7S|_)‘T’,S> (4'77)

Since A, s — A\ s =0 mod 2, we see that

L (51(2)
i S

ch Ad(e™ 2Ot ) o Ind% (w(Vyr ) = 3 22 (4.78)

¢(q)2 nez

85



BRST cohomology for L;(sl(2)) modules in category R’

Notice that the expression 5(—X.s — A)(—=2Xy s + A5 + A + 2) in Equation (4.76) is
only zero if A = =\, s = Ay gy2-s +2 0or A = A, mod 2. Since we demand that

A # Ns, Ap—rgro—s mod 2, we see that Q;%(AT’SH\)(fOH—)\T@Q will never be 0. This

implies that the states involving ey ' in the PBW basis will not be annihilated after

applying the restriction functor Resge. Thus,

ch &3 (rstN) (w(Vy,)) = chRest o (Qeé(Ar,s+/\))* o Ind% (w(V,)) (4.79)
L (I2)
_ quAT;(q)Z ! e (4.80)
[
We can now compute
Proposition 4.1.5. For 1 <r <p-—-1,2<s<g,
&3 N(W(L,) = Ena.. (4.81)
Proof. We first start with the BGG resolution of £, s [53],
= My — My — Ve — Ly — 0 (4.82)
where for k£ > 1,
Mok—1 = Vorp—rs D V_s(k-1)p—r;s (4.83)
Mot = Varpirs D Voosipsrs (4.84)

Since both the conjugate automorphism and twisted localisation are exact functors,

applying both to Equation (4.82) we get

L&V (H(My)) — EFATI (M) — - (4.85)
L &N (W(),,)) — £ (w(L,,)) — 0 (4.86)
Now, let
NQk—l - g%(_AT’S_A) (W(Vka—T,S)) @ g%(_AT’S_A) (w (V—2(k—1)p—r7s>> (487)
Noj = g%(—kr,s—/\) (W(ngp+7~,5)) @ g%(_AT’S_A) (W(V—%p—f—r,S)) (4.88)
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4.1 Bernard-Felder complexes in category R’

Then the above exact sequence becomes

i Ny = Ny = E2 N (V) — £ (W(L,L) — 0 (4.89)

The above exact sequence now allows us to compute the character of
E3(ArsN) (w(Lys)). From Proposition 4.1.4 we have

(gr—p(s—1))2—¢% _ Li(1(2)

Z>‘q 4pq 24

ch &2(-Are=N) (wWVrs)) = 5 > (4.90)
and
(g(2kp—r)—p(s—=1))2—¢% _ Lk ((2) (g(=2(k=1)p—r)—p(s=1))2 —¢% _ Lr(1(2)
Z)‘ (q 4pq 24 + q 4pq 24 )
ChNQk_l = ZQn
¢(q)? nze:l
(4.91)
(a(2kptr)—p(s—1))%—¢*  Lr(52) (a(=2kp+r)—p(s=1))2—¢? _ Lk(U2)
Z/\ (q 4pq 24 _|_ q 4pq 24 )
ch Ny, = 22
¢(a)? %
(4.92)
Thus, we have
ch &2 ((L, ) = Y (~1)F ch ;
keZ
(4.93)
2 LrGI2) L
2Aq A 2@ T2 QT (qr—p(s—1)+2kpg)? (qr+p(s—1)~2kpa)® )
e 2 Z (q 4pq — q 4pq ) Z z n
¢(q) Qb(Q) keZ neZ
(4.94)
A M(p.9)
R (4.95)
n@)? 1=
Equation (4.95) follows from
2 Lr@l2) 1 6 1 1
B S S S S BT (4.96)
4pq 24 24 4p 24 P 24 12

Therefore we sce that the character of ch &2(rs=) (w(L,5)) is precisely the character

of the irreducible module £ 4, [48]. This completes the proof. O
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In summary, we start from a conjugate highest-weight module w(L, ), where |—X, ;)

is a relaxed highest-weight vector with hy and L eigenvalues —\, 5, A, s respectively,

e%l_)\r,s> 60|_)\'r,s> |_)\7‘ s>

)
- Y -

‘f—1|_)\r,s>

and we induced w(L, ) from a module over U(§[(2) k) to a module over U(sA[(Q) k) .

e

eg|_)\T’s> eol_)\T7s> |_)\T3> 651|_)\r,s> 662|_/\r,s>

)
- a 'y Y -

We then apply a twist to the module under the automorphism Q_*~=*. This will
change the hq eigenvalue of the highest-weight state and f; will act like eg' up to a
constant. Restricting the module back to a module of 5A[(2) » We get precisely £ a,
Again, |A) has hy and L, eigenvalues A, A, ; respectively.

€5 A) colA) A JolA) 31N

Now we want to apply the twisted localisation to the Bernard-Felder complex
associated to w(L,s). In order to do this we need to figure out the twisted localisation
for a Wakimoto module that is compatible with the s[(2) . twisted localisation. Since

the free field realisation sends g to 3y from Equation (1.164), we let U(H ® G); be
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4.1 Bernard-Felder complexes in category R’

the localisation of U(H ® G) with respect to the set {§ | n € N}. Then let

#": U(H ® G)-Mod — U(H ® G)-Mod (4.97)

M = Respneg) o(25) o Indyineg (M) (4.98)

where

(=)= (f) ad (o) (—)By " (4.99)

>0

Let ¢ be the inclusion map that realises U(V(s[(2))) as a subalgebra of U(H ® G)
through the free-field realisation defined in Equations (1.164) to (1.166). Let
ReSU((%i?f) be the restriction functor from a U(H ® G) module to a U(ﬁA[(Q)) module.

Specifically, if M is a U(H ® G) module then it becomes a U(§[(2)) module with the
action defined as = - v = () - v for any x € U(ﬁA[(Q)). We remark that although ¢(x)

is in general an infinite sum of elements in U(H ® G), x - v is always a finite sum of

states in M as M is smooth. Then we have

Lemma 4.1.6. The following diagram commutes

ResU(H@Q)
. (5[(2) ) ~ o
U(H ® G)-Rfeg U(5 [(2)k) 'R?[(z)k
B &
Res u(Heg)
. (5[( )k ) ~ o
U(H ® G)-Reg U(5 [(2)k) ’R?m)k

The proof of Lemma 4.1.6 is obvious since t(eg) = o € U(H ® G). In other words,
B" = &F when we regard a H ® G module as an 5A[(2) module. Now we want to apply
B30V t0 a Bernard-Felder complex. Since [y, 5,] = 0 for all n € Z, we have

Lemma 4.1.7. The sl(2) screening operators in Theorem 1.7.2, which we refer to as

dsi(2), are invariant under the twisted localisation B3 (Ars=A)

Recall that 05_[(12)(517_r,q+1_3) =w(Lys) for 1<r<p-—-1,2<s<gqgand
ot (Frs) = Frs1 by Equation (1.41). By letting [ = —1 in Proposition 4.1.3, we
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BRST cohomology for L;(sl(2)) modules in category R’

therefore see that the Bernard-Felder complex C' = (@ cn, d”) with

nez
C = Fostpip-rara-s @ 05'(G), & =[Sy (4.100)
— - ]Pr
Okt — f_gkp—(p—r),q+2—s ® O'gl(G), d*H = [Ssl(2)} (4.101)

has cohomology

Hn(C) — 5TL 005[(1 )(‘Cp*T,q+1*S)7 (4102)
= 0p0w(Lys) (4.103)

Therefore, we now want to localise each Wakimoto module appearing in the Felder
complex in Equations (4.100) and (4.101). Since the localisation functor 8~ 3*ns+3)
only acts on the bosonic ghost modules, we will first determine B3Ot (05 1(G)).
Let Jo, Lo act as Jolgs, Lo|gs on ground states, so that Jo|ss = oo, Lolgs = 0. From
the definition of localisation we now compute

Q5(B0) = Bo (4.104)
Q(v0) = o + pby " (4.105)
Qf (J0|98> = Jolgs + p (4.106)
Q5(Lolgs) = Lolgs (4.107)
Specifically,
Proposition 4.1.8. We have
1 _
@ 2()\r,5+>\) (O-g 1(G)) — W|:_ )‘T,S+/\j| (4108)
2
Proof. This proof is very similar to Proposition 4.1.4, firstly we recall that
—L(AstA) U(H®G) -1t \ " U(H®Q)
B30 — Resy i o252 ) o Tndy o) (4.109)
A PBW basis for the induced module is
{v—m' ’7—711 AL 111m16(1)30|0> |i217p0€Z7pi7Qi2071§m17"'7§mia1§n1S"'
(4.110)
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From Remark B.2.3 we see that, for n > 1,

Jofy "og (|0)) = nBy"ag (|0)) (4.111)

LoBy"ag'(10)) =0 (4.112)
Therefore,

chIndy” (o ( ):¢ 27% w" (4.113)

(Ar,s+A)

The twisted actions of Q 3
state o5'(]0)) are

of By, Y0, Jo, Lo acting on the relaxed highest-weight

2O N _ ,
Qg (Bo)og ' (10)) = ﬁoag1(|0>) (4.114)
_% >\r,5+>\ — _
Q> )(70)0g1(|0>) (ATS+A)501 g (loy) (4.115)
Qg Z(A”“)(Jobs ( ATS+A)) L(joY) (4.116)
_§(>\r,s+>\
Q2 (Lolgs)og'(10)) = (4.117)
Therefore,
_1_%()‘7",34')\) —37
ch B30t (5-1(G)) = & a w" 4118
( g ( )> #(q)? 72 ( )
w0 NG5
= w" 4.119
¢(q)? ng ( )

As XA # —)\,. s mod 2, we see that the expression in Equation (4.115) will never be
zero. Therefore, states involving 3, ' in the PBW basis will never be annihilated after

applying the restriction functor Resgﬂ . Therefore,

ch 30 (051(G)) = ch Resy o2 A““’) oInd?(05'(G))  (4.120)

It A)
w2\An q =
= S " 4.121)
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Since irreducible modules of the bosonic ghost algebra G are completely characterised

by their characters, we see that
IV _
B3Ot (Ug1<G>) — W[fé(xr,sﬂ)] (4.122)

O

Thus, applying the localisation functors & 2«43 Z=3(s*A) 4 the complex in
Equations (4.100) and (4.101) we get that the complex C' = (,,cz Cn, d,) given by

O = BN (F gy i ©05'(6)), = B3 ([55,])

(4.123)
O = B3O (F oy rgins ® 0G1(G)), dPH = g730nt ({Sg,[(z)]w)
(4.124)
has cohomology
HY (C) = 8,06 10 (w(£,..)) (4.125)

Applying Proposition 4.1.5 and Lemma 4.1.7 to the complex above we get

Proposition 4.1.9. Letr=1,....p—1,s=2,...,q and C' = (@ C’”,dn) be the
nezZ
complex with

C2k = f—2kp+p—r,q+2—s & W[z\r,s-&-/\} ’ d2k = [SEI@)} (4126)

2

2

_ p—=r
C2k+1 = f72kpfp+r,q+275 ® W|:/\r,s+>\:| ’ d2k+1 = [Ss (2)} (4127)

Then the cohomology of C' is
H"(C) = 0po€ra,. (4.128)

We can do a consistency check for Proposition 4.1.9 by computing the Euler

characteristic of the complex. Recall from Equations (1.165) and (1.167) we can write
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4.1 Bernard-Felder complexes in category R’

ho = hi} + 1§, Lo = L + LS in terms of modes of H,G. We then have

ho la-atpip-rara—s) = —2kp — A (4.129)
ho |a-okp—prrgro—s) = —2kp = Ars —2(p — 1) (4.130)
qr —p(s — 1) + 2kpq)? — ¢
Lyl |a—atpip-rgr2-s) = ( ( 4) ) (4.131)
Pq
gr +p(s —1) = 2(k 4+ 1)pq)? — ¢*
L 0ty pengra—s) = LA == 2+ Do) (4132)
Pq
1 1
S »(Am £2)) = O = V|5 O+ 2)) (4.133)
()\” + A)> - (4.134)
Then we have
Z_ka_)\r’s (qrfp(sfli+2kpq)2*q2_%
q Prq
ch f72kp+p77',q+278 = ¢(q) (4135)
Z2kp—>\r,s—2(p—7“) (qr+p(s—1)—42pgc+1)pq)2—q2_%
q
ch F—2kp—p+r,q+2—s = (b(q) (4136)
)\r s+>\
Ch W|:AT-15+>\:| - ) Z Z2n (4137)
2 neZ

where ¢t c® are central charges corresponding to Lg’, LS respectively. Therefore

(gr—p(s—1)+2kpg)?—¢> H G

Z)\r’5+>\_2kp_>\r’5q 4pq T 247 24 om
ch .F',zkp+p7r7q+2fs QW Ars+A] T 3 Z o
[ 2 } ¢(q) ne”
(4.138)
(gr—p(s—1)+2kpq)% —g> _H G
z>‘q 4pq 24 24 Z on (4 139)
- z .
¢(q)3 neL
ArstA=2kp=Ars=2(p=1) (qr+p(5_1)_42p(qk+l)pq)2_42 5% 5
ch F_Qkp_p+r7q+2—s QW Ars+r] 3 Z a"
[T} ¢(q) nez
(4.140)
y lartp(s=1)=2(k+1)pg)® —g? _ M C
2'q e 1 (4.141)
= A .
3
¢(q> neL
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Computing the Euler characteristic we get

Z (Ch f72kp+p7r,q+275 ® W|:>\,~’s+)\:| —ch f72kp*p+7',q+2*8 ® W|:>\,~’s+)\:|> (4-142)
kezZ 2 2
2 H G
z*q_ﬁ_%‘*—gTJL n (gr—p(s—1)+2kpq)? (gr+p(s=1)=2(k+1)pg)?
= @ Sy (q T —q ipq ) (4.143)
nez keZ
2 H
_ Z>\q_4qloq_242_244_24 Z Z%q 24 Z(q (QT*P(SZ;L)IJerPq)Q B q(qr+p(5121pq?(k+l)p®2> (4144)
¢(q) nez ¢(CI) keZ
R N
2q dpq 24 24 24XT'S" 9
_ 3o (4.145)
A M(p,q)
z
- X” 3 o2 (4.146)
nel
=ch SA,ATM (4.147)

Equation (4.146) follows from

2 H G 1 1 12 2 1
_q_c_c+:_q_<1_>_+ (4.148)

dpg 24 24 24 4p 24 al 24 24
q 1 6q 2 1
= ———=[1-——=]—-—=+ = 4.149
4p 24( P ) 24 + 24 ( )
1
= —— 4.150

Spectrally flowing the complex in Proposition 4.1.9, noting Equation (1.99), we arrive

at

Proposition 4.1.10. Forr=1,...,p—1,s=2,...,q, let C = (C™,d") be a complex
such that for n = 2k, 2k + 1,

2

C* = F atpip-rg-sta-1®0G (W{MD , 4> = [S;[(z)}r (4.151)

2

_ p—r
02k+1 = -F—2k‘p—(p—r),q—s+2—l & Ulg (W|:)\T,s+>\:|) ) d2k+1 = [55[(2)} (4152)

Then the cohomology of C' is

H™(C) = 0n00h2) (Exa,.,) (4.153)
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We have therefore obtained the Bernard-Felder complexes for all irreducible modules

in category R°.

4.2 BRST cohomology for L;(s[(2)) modules in
category R’

For the rest of the chapter we take A = 0 for the energy momentum tensor of the
bosonic ghosts given in Equation (1.146). In this section we will state and prove our
(partial) results for the BRST cohomology of the irreducible L (sl(2)) modules in
category R?. The more technical propositions that are used will be proved in later

sections.

Theorem 4.2.1. For 1 <r<p—-1,1<s<qg—1andl >1,
H"(0%2)(Lrs) ® B,dprsr) =0, for alln (4.154)

Proof. From Proposition 4.1.3 we see that the double complex that we should consider
is (notice the shift in ghost degree) o!(D) = (O'Z(D)i’j, di, d%), for i = 2k, 2k + 1, where

(D)™ = Foppiras @ 05(G) @ Bj_, i3 = [Su] (4.155)
o (D) = Fopyrsm1 ® 04(G) @ By, At = [55[(2)};;4 (4.156)
& = dprst (4.157)

Propositions 4.3.1 and 4.4.3 tell us that

0=H'(H(0'(D),dy),d1) = H (H'(¢"(D),d1),ds) = H' ™ (0 (Lrs) ® B, dprsr)
(4.158)

for all j and we are done. O

Since o(Ly1) = L,—r4, Theorem 4.2.1 explains the result from Theorem 3.1.2, that
Hn(ﬁﬁq X B, dBRST) = 0, nel (4159)

see Figure 4.1. Next we will state our result for negative spectral flow
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p—1

Fig. 4.1 Spectrally flowing modules from column s = 1 gives us modules in column
s = ¢. In particular, oy (Lr1) = Lp—rg-

Proposition 4.2.2. For 1 <r<p—1,1<s<qg—2and1 <[ <qg—1-—s,
H' (ol (L B,d = M@ 4.160
Og2)(Lrs) @ B, dprsr sl (4.160)

Proof. From Proposition 4.1.3, the double complex that we should consider is (notice
the shift in ghost degree) o~/(D) = (a‘l(D)i’j, di, dg), for i = 2k, 2k + 1, where

o (DY = F gppirers ® 05'(G) ® By, B3 = [Su| (4.161)
o (DY = F oy s ® o5'(G) ® Bj, At = [55[(2)]}7% (4.162)
d} = dgrsr (4.163)

Proposition 4.3.2 tells us that if we compute the cohomology with respect to ds, the
double complex reduces to a Felder complex concentrated at ghost degree [ which is
when j = 0. Since we can also replace the sl(2) screening operators with Virasoro
screening operators as they are BRST-exact from Lemma 3.1.3. Therefore we get a
complex C' = (C*,d"), where i = 2k, 2k + 1, along at j = 0,

Cor = F_okptrsti, dox, = [Sv]" (4.164)
Cokr1 = F2kp—rs+is dog+1 = [Sv]"" (4.165)
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Next from Corollary 4.4.8 we know that
HO(H(07'(D), dy),dy) = H(H(07!(D), d2), dy) (4.166)

and therefore,

H' (04 (Lrs), dprsr) = HO(H(D, dy), dy ) (4.167)
= H(H*(D, dy), d,) (4.168)
= H°(C,d) (4.169)
= L)E) (4.170)
O
We remark that we must impose the condition 1 <[ < g — 1 — s, otherwise the
cohomology functors will not commute for the double complex o~!(D).
Proposition 4.2.3. For 1 <r <p-—1,2 < s < gq, we have
H" (%(2) (5A,AT,S)> dBRST) = 00 P LT (4.171)

k=0

That is, the zeroth cohomology is an infinite direct sum of copies of E,'\,gf’f).

Proof. From Proposition 4.1.10, the double complex that we should consider is
o(D) = (a(D)™,di,dj), for i = 2k, 2k + 1, where

o (D)™ = F2kptp-rg-s+1 ® 0g (W{M,SH}) ® B;, di* = [Sﬁ[@)y (4.172)

2

O_(D)Qk-l-l,j — -F*Zip+p77',q75+1 ® O'g (W[Ar,s+)\:|> ® B], d%k+1 = [Sg[(2):|p*7” (4173)

2

d} = dpgrs (4.174)
Note that og | Wry, a7 | is conformally bounded and so the double complex satisfies
Arst+d

Remark 3.4.1. Thus the cohomology functors d;, ds commute by Proposition 3.4.2.

Now, Proposition 4.3.3 tells us that if we compute the cohomology with respect to ds,
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we get a complex C' = (C*, d"), at ghost degree j = 0,

@ f 2ip+p—r,g—s+1 ®7 |¢> ko - [SV]T (4175)
qo=0
C*H = D Fosiprp-rg-st1 @1 1), P =[Sy (4.176)
q0=0
Therefore,
n _ n 0
H (USI(Q)(gT,S)>dBRST) =H (H (U(D),dl),dz) (4.177)
:HO(H( (D) 2),d1) (4-178)
= H"(6,0C, d) (4.179)
= noEBﬁp pa) (4.180)
= n,oEBﬁif'ﬁ’f (4.181)
k=0
]

4.3 BRST cohomology for o},.,5(F\ ® G)

In this section we fix A € C. Here we will discuss the BRST cohomology for spectrally
flowed Wakimoto modules, where we will prove Propositions 4.3.1 and 4.3.2. We first

remark that the main reason we have these two different results is because
Boo5(|0)) = 0 for I > 1 whereas Byo5'(|0)g) # 0 for I > 1.

4.3.1 Case for o) 5(F\®G) with [ > 1

Proposition 4.3.1. Forl € Z>; and A € C, we have
H"(0hy0g(Fa® G) ® B, dpgsr) =0, for alln (4.182)
Proof. This proof is similar to the proof for Proposition 3.3.1. We first let

[¥) = Theg(IA) ©10)6) @ [0)s (4.183)
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Then we can decompose the complex as a tensor product of complexes

C = @ span{ B, |¥) | pm > 0,7 € {0, 1}} (4.184)
m>1

Q) span{y7,c|0) | ¢, > 0,5, € {0,1}} (4.185)

n>—l41n£0
® span{g°|¥) | qo = 0} @ span{bg’ 1)) | po € {0,1}} (4.186)

Now, let

Co = @ span{ B2, 0) | pm > 0,7 € {0, 1}} (4.187)

m>1
& span{y7c,|0) | ¢, > 0,5, € {0,1}} (4.188)

n>—14+1n#0

span{(°[¢) | go > 0} (4.189)
Iy = span{bf’|¥)) | po € {0,1}} (4.190)

so that C'= Cy ® I#. Now consider the cohomology of I

0 5 span{bo|v)} < span{|v)} -2 0 (4.191)

Then we have
kerd ' =0, ker d° = span{|y)} (4.192)
imd? =0, imd ™! = span{|)} (4.193)

Therefore we see that
H" (1) =0 (4.194)
for all n. By the Kiinneth theorem we see that

H(C.dgnst) = @ H'(Co) © HI (1) =0 (1.195)

i+j=n

for all n. O

99



BRST cohomology for L;(sl(2)) modules in category R’

4.3.2 Case for 0;.;(F)\ ® G) with [ > 1

We now move onto the BRST cohmology for negatively spectral flowed Wakimoto

modules. The proof for this is a generalisation of the proof for Proposition 3.3.1.

Proposition 4.3.2. Forl € Z>; and A € C, we have
Hn (O';L%B(JT")\ X G) X B, dBRST) = 5717107;[(./—")\), VZ 2 1 (4196)

Proof. Firstly from Lemma 1.8.1 we see that the complex

(aémg(}")\ ® G) ® B,, dBRST) is equivalent to (aéi®g®3(}",\ ® G ® B,), dBRST>, where
O ioaen = O @ 05 ® 0. As B is irreducible, any vector in the vacuum generates B.
Again, let |0) = |0)¢ ® |0)g and we define the vector

[¥) = 07'(10)) = 07 (|0)¢) ® ¢+ c1[0)g (4.197)

Notice that |¢) has ghost degree [ but we would like it to have ghost degree zero
instead. We therefore introduce a complex C' where C), = 0p%(Fy ® G) @ By A
PBW basis for [i) as well as the decomposition for the complex C' is

C = span{B".b",|v) | i > —1,p; > 0,7, € {0,1}} (4.198)
Q) span{y%c*Y) | i >1+1,¢; > 0,s; € {0,1}} (4.199)

Again we can decompose I® = ®;>_; [P, I¢ = &i>i+1 I€, where IP I¢ were defined
in Equations (3.45) and (3.51). We can then directly compute the cohomology of each

tensor factor I

03 span{5¥5b_;|¥) } a span{%i[1)} <% 0 (4.200)
where
kerd_; =0, ker dy = span{S”;|¢) | p; > 0} (4.201)
imd_, =0, imd_, = span{ B’y | p; > 0} (4.202)
Hence, we see that
H™"(IP) = 6,0Clv),  i> -l (4.203)
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Using Kiinneth’s Theorem we see that
H™(I%) = 6,,,C|0) (4.204)
We will now compute the cohomology for each tensor factor I¢. The complex is

0 2% span{y%, 1)} < span{y®c_i|v)} -2 0 (4.205)

where

ker dy = Clt), ker d; = span{~y%,c_;|v)) | ¢; > 0} (4.206)
imd_; =0, im dy = span{(¢; + 1)v%;c_i|¢) | ¢; > 0} (4.207)

We therefore conclude that
H(IE) = 5,0Cle) (4.208)
Using Kiinneth’s Theorem again we have
H™(I9) = 6,0Cl¢) (4.209)
Thus, applying Kiinneth’s Theorem one last time we finally arrive at
H™(C) = 8,007 (F») (4.210)
Since we had C™ = 0% (Fy ® G) ® B™™, we conclude that
H"(05p(Fr ® G), dgrst) = 00,105 (Fr) (4.211)

]

Summarising our results, for [ € Z>; and A € C, the BRST cohomology of a spectrally

flowed Wakimoto module is given by,

H" (O’é{@)g(‘/t‘,\ X G) X B, dBRST) = 0, for all n, (4212)
H" (Uil@)g(]a ®G) ® B, dBRST) = 8107 (Fa).- (4.213)
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4.3.3 Case for y,4(Fr @ W)
Proposition 4.3.3. Let A € C,[¢] # [0] € C/Z, then

H”(0H®g (.7'3\ ® W[g]) ® B, dBRST) = 0no é 03 (F2)

k=0

(4.214)

Proof. Let C = (ag (W[C]) ® B, dBRST), and let |1)) = 04(]0)) ® |0), then C' can be

decomposed into the tensor product of complexes

C = Q) span{ 70" V) | pm > 0,7, € {0,1}}

m2>0

& span{y?,c, [¥) | 4o = 0,5, € {0,1}}

n>1

Q) span{¢°[¥) | g0 > 0}

With an analysis similar to Proposition 4.3.2, we see that

Hn("%@@ (]—"A ® W[g]) ® B, dBRST) = On,0 é 03 (F2) ® 75’ [¥)

q0=0

= n,O@U’H(;}\)
k=0

4.4 Commutativity of the double complexes

4.4.1 Case for positive [, [ > 1

Let o(D) = (o(D)", di, d}), for i = 2k, 2k + 1, where

0 (D)™ = 0310 (Faipirs ® G) © By, B = [Sua)|
o (D) = 03406(F-atp-rs © G) @ By, B = [Sae]”
) = dppsr

Then we have

Lemma 4.4.1. o(D) is a direct sum of bounded complexes
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Proof. Since 04(G) is conformally bounded, the argument is the same as
Remark 3.4.1. O

Next, we have

Proposition 4.4.2. The cohomology functors dy,ds commute when applied to the
double complex o (D), that is,

H(H'(o(D),dv),dz) = H'(H’(0(D), dp), dy ) (4.223)

Proof. This can be proven with the same argument used in Proposition 3.4.2 along
with Lemma 4.4.1. O

Now, let Let o!(D) = (0!(D)™, di, dj), for i = 2k, 2k + 1, where

o' (D) = 0} o (Foakpirs © G) @ By, B3 = [Su| (4.224)
(DY = o (Fookp s @ G) @ By, B = [Su)]” (4.225)
& = dgrsr (4.226)

We now have

Proposition 4.4.3. For | > 2, the two double complexes o (D), c'(D) are isomorphic

as double complexes of vector spaces.

Proof. Firstly for any 4, j we denote the highest-weight vector in the Fock space
appearing in o (D)™, o'(D)" to be o (|ay)), o' (Jo;)) respectively. We then redefine the
reference vectors in 04,(Fr ® G) @ B, 0b,56(Fr ® G) @ B for A € C as

C00pmaes(|A) @ |0) ®10)), cooheger(|A) ® 0) ® |0)) respectively. Now, for each

1,7 € Z, consider the map
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0 Xeooyages(lon) @ [0) 10)) = 7 (X)cahagas(|as) @ [0) © [0)) where

T UHRGRB) — UH®G®B) (4.227)
Ay > Gy, (4.228)

B+ Bn-i+1 (4.229)

bo +— b (4.230)

by — by_p1 if 1 # 0 (4.231)

Yo = Yo (4.232)

V=141 > V-1 (4.233)

Y > Ynaio1 ifn#0, =1+ 1 (4.234)

C_ii1— 1 (4.235)

Cp > Cppp—1 ifn#0, =1 +1 (4.236)

To show that this is an isomorphism of double complexes, it is enough to show that

the following diagrams are commutative

o (D) - o (D)
¢ ¢
(D) —— T (D)
o (D) s 5D
¢ ¢
o!(D)" & 7(D)"

To show the commutativity of the first diagram, notice that we have the following

commutative diagram

104



4.4 Commutativity of the double complexes

. d o
o (D) - o (D)
¢’ ¢’
l od; o -1
o(Dys — 2202 o'(D)"

Now, since ¢!(3,) = o'(f3,) for all n and that d; only contains 3 modes and not -, see
Equation (1.172), we see that ¢' o d; o (¢!)~! = ol o d; o (¢!)~! = d; and so the first
diagram is commutative.

For the second diagram, if we decompose each vertical complexes
Dicz0(D),Bjcz,0'(D) for cach i € Z as in 77, we get

P (D) = 0y (Fa,) @ Q) span{Bmb™ |¥) | pm > 0,7, € {0,1}} (4.237)
JEZ m>1
® Q) span{y",c™ [¥) | ¢, > 0,5, € {0,1}} (4.238)
n>1
@ span{b’|¢) | 1o € {0,1}} @ span{~°|¥) | ¢ > 0}  (4.239)
P o' (D) = oby(Fo) @ Q) span{B2m b [¥) | pm > 0,7, € {0,1}} (4.240)
JEZ m>l
® & span{y".c ¥) | ¢, > 0,5, € {0,1}} (4.241)
n>—I+1£0

@ span{b’[¢) | ro € {0, 1}} @ span{y{’|¢)) | g0 2 0} (4.242)

Then we see that ¢’ maps each tensor factor to another. The crucial property is that

d29'(cor (10))) = d'da(co0'(10))) (4.243)

It is clear that ¢, d> commute for each tensorand and therefore we conclude that these

two double complexes are isomorphic as vector spaces. O

We remark that ¢! does not preserve the module structures of the double complexes.
It is only a vector space isomorphism. The reason for this is that o(C') is an exact
complex so to show that o!(C) is an exact complex is is enough to show that o!(C)

and o (C') are isomorphic double complexes of vector spaces. We finally have

Corollary 4.4.4. The cohomology functors dyi, ds commute when taking cohomologies
of the double complex o'(D).
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—— ________>

Fig. 4.2 Regions of the double complex in which Lemma 4.4.5 holds

4.4.2 Case for —[, [ >1

We will first give the proof for [ = 0 (This is the proof presented in Bershadsky and
Ooguri’s paper)

Lemma 4.4.5. Let @Dm, dyi,ds | be a double complex and dy,ds be the horizontal
2%
and vertical differentials respectively. Suppose that

e the horizontal sequences are exact except at Dy ; and the vertical sequences are

exact except at D; o

e the vertical sequences are bounded, that is for a sufficiently large J we have
D;; =40} and D; _; = {0} for any j > J.

Then
ker(dydy) = ker(dy) + ker(dz) (4.244)

for D; _; where t > 0,7 >0 or D_; ;i > 0,5 > 0.

The double complex F, ® G ® B, satisfies the first assumption due to
Propositions 4.1.3 and 4.3.2. The second assumption is satisfied due to the fact that
the conformal operator Ly commutes with both dy, ds. Therefore we can restrict the

double complex by Lg eigenspaces. We proceed to the proof.

Proof. We will use mathematical induction for the proof. Suppose that
Equation (4.244) holds at D; 1 _(j+1), we show that it also holds for D; _;.

() 1o eker(dif, Jorveker(d|, ) thenveker(didsf, ) since du.d

) + ker <d2 ) )

=7

' ) g ker(d1d2

=]

=7

commute so ker (d1
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dy

Fig. 4.3 Diagram for Lemma 4.4.5

) C ker (dl ) + ker <d2
D; D; —;

, since dadiv; —; = 0, dyv; —; belongs to ker (dg

(C) We now want to show ker <d1d2

. For
D277‘7

v;,—; € ker (d1d2 . Because
Di— i+1,—j

of exactness at Dl+1 —; with respect to ds, there is some v;41 _j_1 € D;y1,—;—1 such

that dyv; —; = dov;y1,—j—1. This implies that 0 = d%vi,_j = didaviq1,—j—1 SO

Vit1,—j— 161{6(

). According to our induction assumption, we have
Dit1,-j-1

Vit1,—j-1 € ker

+ ker <d2 ) and so
Dit1,—j-1 i+1,—j—1
Vitl,—j—1 = dlvz —j—1+ daviy1,—j—2 where
dyvi_j_1 € ker(d1 ) dyvisr sz € ker(d2 |
i+1,—j—1 i+1,—5-1
this into dlvi,fj = dg’UiJrL,j,l we have dlvi,fj = d2d1UZ7,],1 = d1 (Ui,fj - dQUL,j,l) =0

. ) and therefore v; _; € ker<d1 o)t ker(dQ D )

By interchanging d;, d, we can prove the case for D_; ; for i > 0,7 >
Since the double complex is bounded, this result can be easily verified for the modules

) by exactness. Substituting

S0 v; —j — dov; ;1 € ker( d;

on the boundaries of the double complex as it is bounded, see Figure 4.3.

For the top edge, we have the sequence

-—D_;; —0 (4.245)
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Obviously D_; ; = ker (dg‘ > Thus we obtain

—i,J

ker (dldg\D_N> C D,y —ker (dQ]D_i’J) C ker <d1‘D_i’J> & ker (dQ\D_LJ) (4.246)
For the bottom edge, we have
do do
0—D;_j—=---, (4.247)

and the induction assumption is trivially satisfied for D, _;_; = 0. This completes
the proof. O

Proposition 4.4.6. [16] Under the assumptions of Lemma 4.4.5, we have

Do,o) m ker (dg D070>

ker (dl

HY(H(D,dy),dy) =

er <d2 D) Nim (dljD_w> + ker <d1 D) Nim (d2 D)
(4.248)
and by symmetry this implies that
HY(H(D,dy),dy) = H*(H(D, dy), dy) (4.249)
Proof. Firstly consider the complex D, showing degrees —1,0, 1 respectively
. di .ker d2|D71,0 d1 'ker d2|D0,0 d1 .ker d2|D1,0 dy (4250)
1m d2|D_17_1 1m dQlDo,—1 1m d2|D17_1
Since the induced map d; sends [v] — [dyv], we see that
HO(HO(D,d2)7d1) _ {wo0 + da(Do,—1) | d2(vo,0) = 0,d1(vo0) € do(D1, 1)} (4.251)

{di(v_10) + d2(Do,—1) | do(v_1,) = 0}

From the first assumption we have dyvg o = dovy —; where vy _y € Dy _;. Since
d1d2711,71 =0 anhes UV1,—-1 = d11)07,1 -+ dQ’Ul’,Q. Therefore
d11}070 = dQ(dlvo,_l -+ dQUL_Q) = d2d11}0,_1 SO d1 (U070 - dQUO’_l) = 0. Because we are

considering the coset wq o + d2(Do 1), without loss of generality we can choose a
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representative vp o such that dyvyo = 0. Let

M = ker <d1 Do,o> () ker <d2 Do,o) (4.252)
[=d, <ker (d2 N )) (4.253)
~1,0
J =im <d2 ) (4.254)
Do, -1
Then we see that
M+J
H°(H°(D =— 4.2
( ( 7d2)7d1) T+J’ ( 55)
M+1
= Lj‘] since I C M (4.256)
M
= VGRIEY) by second isomorphism theorem  (4.257)
M
S — 4.258
I+MnJ ( )
B ker <d1‘D070> N ker (dQ‘DO,()) (4.259)

N dy (ker <d2’D1,0)> + ker (dl’Do,O> i (dz‘DO’l> |

Next we want to show that

d, (ker<d2\D )) _ ker<d2
~1,0

(C) is obvious since d; (ker <d2‘D )) C im (dl’D ) and if
di(v_q 0) € d; (ker<d2‘D )) then dgdl(v_Lo) = dldg(v_lp) =0so

( ’ 1,0
dy(
D) mim(dl\D_w).

Then dadi(v_19) = 0 so by Lemma 4.4.5 we can write v_; o = w; + wy where
wy € ker(dllD ),wg € ker(dg‘D > SO
—1,0 —1,0

DO70> (im (dl‘D_w) (4.260)

U_10) € ker(dg Do

(D) For the other direction, let di(v_1) be an element in ker (dz
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div_10 = dy (w1 + wq) = dy(we) € d4 (ker <d2‘D >) Thus we see that

Do,o)

—1,0

ker (dl i ) A ker (d2
0,0

H(H(D,dy),dy) =

ker <d2 Do,o) N im (dl'Dl,()) + ker <d1 Do,o) Nim (dg D0,1>
(4.261)
and we are done. O
Now, for [ > 1, let o~(D) = (a-l(D)W‘ e dg), for i = 2k, 2k + 1, where
o (D)™ = F oppirsrs @ 05'(G) @ By, B3 = [Su| (4.262)
o (DY = F oy rsi ® 05'(G) ® Bj, At = [55[(2)]p7r (4.263)
d} = dpgsr (4.264)

as in the proof of Proposition 4.2.2. Then we see that the double complex o~!(D)
satisfies the assumptions of Lemma 4.4.5 and therefore Proposition 4.4.6 holds for this
double complex. We will now show that this also satisfies Lemma 4.4.5. More

precisely, we have

Proposition 4.4.7. The double complex o~'(D) satisfies
ker (dBRSTds[(Q)) = ker dBRST + ker ds[(g) (4265)

for o7YD)" where i > 0,7 >0 or o' (D)™ i> 0,5 > 0.
Proof. Let D be the double complex defined in the proof of Theorem 3.1.2 and let
-1

o7 = 03bgen (4.266)

We first want to show the following equalities for all i, j € Z,

(@], ) =0 en(a,,))
* ker<d2‘g—l(D)id> =0 (ker(dg’Di,J_))

For the first equality, since d; is invariant under the free-field spectral flow by
Lemma 4.1.2, we see that for any 7,5 € Z and v € D%, 07!(dyv) = dyo~'(v). Thus
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v E ker(dllDi’j) if and only if o~!(v) € ker (dllgl(D)W) and so we get

ker(d] ) = o (ker(d] ) (4.267)

For the second equality, by comparing the proofs of Proposition 3.3.1 and
Proposition 4.3.2, in particular Equations (3.47) and (3.53), Equations (4.201)

and (4.206), we see that v € ker(dngi’j) if and only if o7'(v) € ker <d2’a—l(D)ivj>' In
order words, we have

ker (d2 ‘UI(D)M) =o! (ker <d2 ’Dm_ )) (4.268)

Now suppose that v € ker (d1d2‘Di,j>' Then

veker(dids| ) <= didyw =0, 4.269

4.270
4.271

dodiv = 0, since the differentials commute,
o Hdw) € a’l(ker(dQ DHM))
-1
g (dlv) € ker(dg‘al(D)iJrl,j)
dQO'_l<d11)) =0
dadio ™ (v) =0, since o '(dy) = dy,

-1
ol (w) € ker(dude| )

4.273
4.274

[N

/\/‘\/\/;’;/\/‘\/‘\
[\
-J
\)

— N N N N N~~~

4.275
and we see that

ker d1d2

e <ker dyds
o~ (D)7

Dm_) (4.276)

Finally we have for o~/(D)" where i > 0,5 <0 ori < 0,5 >0,

ker (d1d2‘a_l(D)i’j> = o (ker(dnd| ) (4.277)
=o' (ker(dy| ) +ker(da] ) (4.278)

=o' (ker(dy| |, )) + 0" (ker(da] ) (4.279)

- ker(dl o )”> +ker(d2‘o l(D)”> (4.280)

0
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Corollary 4.4.8. Letl > 1, let c7/(D) = (O'_I(D)i’j, di, d%), for i =2k, 2k + 1, where

o (D) = Fpppirass ® 05'(G) ® B, 3 = [Su] (4.281)
o (D) = Flgyrsni ® 05'(G) @ By, At = {Ss[(Q)]p_T (4.282)
& = dpgrst (4.283)

Then we have
HO(H(07'(D), dy), dy) = H(H(07!(D), d2), dy) (4.284)

Proof. This follows immediately from Propositions 4.4.6 and 4.4.7 [
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Chapter 5
Conclusion

In the first part of this thesis we have computed singular vectors of W,-algebras in
terms of Jack symmetric functions in certain Fock representations. We saw that this
was possible only if the monodromy in the integral inner product for Jack functions is
trivial, which in turns restricts the possibility of Fock spaces that allow such
computation. An obvious future research direction is to compute singular vectors in
the other Fock spaces of the W,,-algebras. We believe that in the case of W3-algebras,
the integral of composition of screening operators gives us a complex sl(3) Selberg
integral. Therefore the problem of computing singular vectors of the W3-algebras in
other Fock spaces is in some way equivalent to deriving a closed formula for the
complex s[(3) Selberg integral. Some work has been done for the real sl(3) Selberg
integral, see [65, 76]. In particular, an explicit formula for the real sl(3) Selberg
integral was derived in terms of Gamma functions.

In the second part of this thesis we computed the BRST cohomology of some simple
modules of £(s[(2)). We found that the BRST cohomology of a positively spectrally
flowed irreducible highest-weight module is trivial. On the other hand, the BRST
cohomology of a negatively spectrally flowed irreducible highest-weight module is
non-exact. In particular, the cohomology is an irreducible highest-weight module of a
Virasoro minimal model at a degree other than zero and we expect that all other
degrees are zero. We also computed the BRST cohomology of a simple relaxed
highest-weight module 05[(2)(57«78) and found that its cohomology is exact except at
degree zero, where it is a direct sum of a countably-infinite number of irreducible
highest-weight modules of a Virasoro minimal model. In general, the main difficulty in
computing the BRST cohomology of modules in R? is that these modules are not

conformally bounded in general, as opposed to highest-weight modules in O.
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modules with spectral flow
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and non-split extensions
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modules
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modules

BRST

Fig. 5.1

An obvious future research direction is to compute the BRST cohomology of the
irreducible relaxed highest-weight modules of the simple affine s[(3) vertex operator
algebra Ly (sl(3)). We believe that the BRST cohomology of some of these irreducible
relaxed highest-weight modules should be the relaxed highest-weight modules of the
simple Bershadsky-Polyakov vertex operator algebra, see Figure 5.1.
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Appendix A

Homological algebra

The claim we want to establish in this appendix is that infinite tensor product of
cochain complexes commutes with cohomology. Let R be a ring and we refer left

R-modules as simply R-modules. Here we consider cochain complexes over R-modules.

A.1 Cochain complexes

Definition A.1.1. A cochain complex C = (C™,d") is a sequence of R-modules
C™ n € 7Z with R-module homomorphisms d"

n—2 n—1 n m—+1
LSS oty o By ot L (A1)

such that d"+! - d" = 0.

Definition A.1.2. A cochain map f between two cochain complexes
Cy = (C},dY),Cy = (CF,dy) is a sequence of R-module homomorphisms
[0 — C% such that f**od? = dy o f* for allm € Z. In particular, the

following diagram commutes

dn—2 dn—l dn dn+1
. ! N Cvlnfl ! C’{l ! C{LH ! R
“}cnl fn “fnJrl
dn—2 dn—l dn dn+1
. 24> C';L—l 2 C’gl 2 O;H-l 24) ..
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Definition A.1.3. The tensor product C; @ Co = (C™,d™) of two cochain complexes
(CT,dy), (CF,dy) is defined as

(Cro)" = @ (Cied) (A.2)
i+j=n
with differential defined as
i+j=n

forxy € Ci,xy € CY.

We have a useful theorem that relates the cohomology of the tensor product of two

cochain complexes with the cohomologies of it’s tensorands

Theorem A.1.4 (Kiinneth formula).

H"(C) = @ (H'(C1) @ H'(Ch)) (A4)

i+j=n
A.1.1 Double complexes

Definition A.1.5. A double complex (Di’j, di, d%) is a collection of R-modules
{Di; |i,7 € Z} together with differentials di, d}

di : D — Dithi (A.5)
& : DY — D (A.6)
such that di o di = &b o d) = 0 and did} + dbdi = 0.

A cochain map f : (Di’j, dt, d%) — (Ai’j, 5t 5%) between two double complexes is a

collection of maps f : D% — A% such that the following diagrams commute

di dj
Di,j RN Dz‘—l—l,j Di,j N Di,j—l—l
/ hf / hf
o} 0
ABI —— AL ABI —— ABITL
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A.1.2 Spectral sequences

Definition A.1.6. A filtered complex (C",d", F) is a cochain complex of R-modules
with a filtration at each degree, that is, for each n € Z there are submodules
FrC, € C, such that

. CFPHICM C FPCM C FPTICM C (A7)
with the property that
d"FrC" C Fremtt (A.8)
for alln € Z.

The filtration F' on the cochain complex induces a filtration on the cohomology,
FPH™(C) = «(H"(F?C)) (A.9)
where the map ¢ is defined as

L H'(FPC) < H™(C) (A.10)
2 +imd* L (FPC™ 1) s z + im d" (O (A.11)

Definition A.1.7. A spectral sequence is a sequence of bigraded objects
(EP dP9), p,q € Z,r > 0, each at page r, where

dPd . BP9 — EPtrarHl (A.12)
are differential maps of degree (r,—r + 1) and for all p,q,r,
EPY = HPYE, d,) (A.13)
A spectral sequence is said to degenerate (or collapse) at page r if
BP9 = BV = = B2 (A.14)

for all p,q € Z. We have
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Theorem A.1.8. [56] Each filtered complex (C,d, F) determines a spectral sequence,
{E**,d.},r =1,2,... with d, of bidegree (r,1 —1) and

EP = Hp+q< o >

i (A.15)

Suppose further that the filtration is bounded, that is for each n there exists s(n),t(n)
such that

0C F*mWem C pe-lon C ... C FHC, € Ftem = on (A.16)

Then the spectral sequence converges to H(C,d), that is,

FPHP(C, d)

P —
B = FrtiHrHa(C d) (A17)
Given a double complex (D% di, d}), often we want to know whether taking
cohomologies commutes, that is whether
HI(H'(C,dy),dy) = H'(H?(C,dy), dy) (A.18)

To answer this question we will first introduce the total complex (Tot(D)",d") of a

double complex, defined as

Tot(D)"= @ D, d" Y wi;= Y dizij+djziy (A.19)
i+j=n ijez ije
I erJjezn 1+]]e=n

The total complex has two natural filtrations, they are

(FPTot(D)" = D" (A.20)
i>p

[[FPTOt(D)n = @ ani,i (A21)
i>p

Theorem A.1.9. [56] Given a double complex (Di’j, i, d%), each filtration defined in
Equations (A.20) and (A.21) on the double complez give rise to a spectral sequence

with second pages equal to

1By = HP(HY(D, dy), dy) (A.22)
nEy" = H(H"(D, dy), dy) (A.23)
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Furthermore, if the double complex is bounded, that is there is an s,t such that
D% =0 for j >t and j < s (or similarly for i >t and i < s). Then both spectral

sequences converge to the filtered quotients of the total complex
H"(Tot(D),d; + ds) (A.24)

In particular, if both spectral sequences degenerate on the second page, then taking

cohomologies commute,

H'(H/(D, dy),dy) = H(H'(D, dy), dy) (A.25)

A.2 The category of directed systems DS;(R-Mod)

Let (I, <) be the set of natural numbers N equipped with the natural ordering. In
general (I, <) can be any directed set. Let {4; | ¢ € I'} be a sequence of R-modules
and f;; : A; — A; be a homomorphism for all ¢ < j such that

e fii is the identity on A;
o fi=fixofijforalli<j<k

Then the pair (A, f;;) is called a directed system over /. We then define
DS;(R-Mod) to be the category of directed systems whose objects are directed
systems of R-modules (4;, f;;) over I. The morphisms between two objects

(Ai, fi;), (Bi, gi;) in this category are collection of R-homomorphisms {¢; | i € I} such
that the following diagram commutes

A, ¢ B
fij 9ij
A # B,

whenever ¢ < j. To see that this defines a proper morphism on this category, notice
that the identity morphism is just {1z | ¢ € I} so it remains to show the composition
property. We define composition of two morphisms {¢; | i € I},{v; | i € I} to be
{t; 0 ¢; | i € I'}. Suppose that we have three directed systems

. _ _ . sms A4 20 B 00 0 thon
A= (A, fij), B= (B, gi;),C = (Ci, hij) with morphisms A B C' then it

suffices to show the following diagram commutes
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AZ % o ¢z CZ
fij hij
A, Yj 0 ¢ C,
Now
Yjopjo fij =1j0g;00; (A.26)

We conclude that DS;(R-Mod) is a category. We then have [63]

Lemma A.2.1. Let (A;, fi;) be a direct system of R-modules over a directed set I,
and let 1; : A; — @ A; be the ith injection. Let S be the submodule generated by
tjo fij(x;) = vi(x;) for x; € A;. Then

(i) Each element ofligiAi has a representative of the form v;(x;) + S for some i.
(11) v(z;) +S =0 if and only if fi;(x;) =0 for some j > i.

Proof. (i) An arbitrary element in lim A; is of the form
r = Z Lx; + S (A.28)

Since [ is a directed set there exists a j > ¢ for all ¢ appearing in the sum. Now
let Y = fz]xz c Aj and

Then we see that

> (i) = 15(y)) = D (i) — 1 (fij(2:)) € § (A.30)

Thus z + S = y + S which is what we wanted

(ii) if f;;(z;) = 0 for some j > i then
L) + 5 = vi(w) + (¢ (fij(xi) — vilx)) + 5 =S (A.31)
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Conversely, if ¢;(x;) + S = 0 then we have an expression
vlws) = D ri((fin(a;) = (x;)) € S (A.32)
J
for some r; € R. We define

r(g, k, x5) = u(fin(z;)) — i()) (A.33)

Clearly r;r(j,k,x;) = r(j, k,r;x;) so we can assume
@) = ) (e fin())) — v(z;)) € S (A.34)
J

Now, choose m such that m > j, k for all j, k in the above expression. Then

b (fim () = tm(fim () — vi(@s) + vi(2:) (A.35)
=r(i,m,z;) + Zr(j, k,x;) (A.36)
Now, recall that r(j, k, x;) = te(fir(z;)) — tj2; and that

tn fim (%) = tm fem fir(2;) so we can write
(4, K 25) = tn fim(25) — 1(25) + tm from (= fin(25)) — (= Fir(25))  (A37)

=r(j,m,z;) +r(k,m, —fir(z;)) (A.38)

so that ¢y, fim(x;) = X, r(l,m,x;). Now it is easy to check that
r(l,m,x;) +r(l,m,x;) = r(l,m,z; + z}) so we can assume that each [ appearing

in the summand Y, (I, m, x;) are all different. Therefore we have

b fim () = > r(l,m, ay) (A.39)

l

= ;(mezmm) —u(21)) = tm (; fzm(xz)> — El: u(z). (A.40)

Now, since iy, fim(;) € A, we see that ¢(x;) = 0 if [ # m. Since ¢; is injective

for all I, we must have x; = 0. Therefore the above expression reduces to

b Jim (i) =t frm (Tm) — tn (Tm) (A.41)
=0 (A.42)
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since fym, is the identity map. This means that f;,,(x;) = 0 since ¢, is injective.
O

A.2.1 The direct limit functor hﬂ

Definition A.2.2. For each i, let 1; be the inclusion of A; into the direct sum @; A;.
We define the direct limit ligA,- of a direct system (A;, fi;) by

lim A; = P Ai/S (A.43)

where v; : A; — @, A; is the embedding map and S is the submodule generated by
L; o fzg(xz) = LZ(JJz) fO?" x; € Az

We now let
x> (xy) + S (A.45)

then we claim the direct limit satisfies the following universal property

Lemma A.2.3. Suppose that we have maps ¢; : A; — M. Then there exists a map

¢ such that the following diagram commutes

fij

ing 1
6
M
Proof. let

We only need to show that this is map is well defined. Suppose that a; f;;(x;) is in the
same coset, and therefore ¢(a; fi;j(x;) +5) = ¢;(fi;(x:)) = ¢i(x;) O
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We now want to show that the direct limit is actually a functor from the category of

directed systems of R-modules over I to R-modules
lig : DS;(R-Mod) — R-Mod (A.48)

It remains to show the image of morphisms under this functor. That is, given a
morphism between two directed systems {¢;} : (4;, fi;) — (Bi, gi;) we would like to
define a morphism ¢ : @Ai — hﬂ B;. To do this we employ the universal property
of direct limits

which guaranteeds the existence of a map ¢ : hg A — hg B;. We therefore let
lig bi=¢

We now show that the direct limit functor is exact

Proposition A.2.4. Let A= (A, fi;), B = (Bi, 9ij), C = (C;, hij) € DS;(R-Mod)

and suppose that we have a short exact sequence

0—Adplle oy (A.49)
then the sequence
) 13@ . l'gwi .
0—>th1~—>1133,~—>11£0¢—>0 (A.50)

1s exact.

Proof. Let ¢ = lim ¢; and suppose that ¢(x) = 0 for some x € hglAZ We can then

write x = 1;x; + S and therefore

o(tiz; + Sa) = 1P di(z:) + Sp =0 (A.51)
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by the definition of ¢. Therefore there exists a j such that g;;¢;(z;) = 0 and since ¢ is

a morphism we see that
9ij®i(i) = &;fij(x:) = 0 (A.52)
since ¢; is injective we have fi;(z;) = 0 and so z = 1 + S = 0, therefore ¢ is injective.
Now, suppose that z € hg C; so we can write z = LZC(ZZ) + Sc. Therefore there exists
y; € B; such that ¥;(y;) = z; and so
2= u{i(y:) + Se (A.53)
but by the definition of 1) we see that
D(e (yi) + Sp) = ¢ ¥ilys) + So = 2 (A.54)
and so we see that 1 is surjective. O]

One of the nice things about an exact functor is that it commutes with cohomology

functors.

Lemma A.2.5. Suppose that we have a cochain complex of R-Mod
iy ot I om O omt (A.55)
and an exact functor F : C — D. That is for every exact sequence in C
0— M—N-—P—0 (A.56)
we have an exact sequence
0 —FM — FN — FP —0 (A.57)
in D. Then, F commutes with cohomology, that is
FH"(C)=H"(FC) (A.58)
Proof. By the definition of a functor we see that

H1(FOp_1) = F(9y 1) F(C™Y) = F(8,_10" 1) = F(im(d,_1)) (A.59)
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We now let B, =imad,_; and Z,, = ker 0, so that B, C Z,, C C™. Then by applying

F to the exact sequence
0— Z, = C" 2% Byy — 0 (A.60)
we get the exact sequence
0 — F(Z)) 24 Fem "™ F(B,) — 0 (A.61)
We therefore see that
ker(F(0y,)) = F(Z,) = F(ker0,) (A.62)
Now, applying F to the exact sequence
0— B, — Z,— H"(C) —0 (A.63)
we get the exact sequence
0 — F(Bn) — F(Z,) — F(H"(C)) — 0 (A.64)

Therefore we see that

ker 7(0,)  F(ker(9,))
im F(0,_1)  F(im(0,_1))

H"(FC) = — FH"(C) (A.65)

We will now work in the category of cochain complexes of R-Mod,which we call
ch(R-Mod),

Definition A.2.6. A directed system in DS;(ch(R-Mod)) is a sequence of cochain
complezes ((C;,d;), fi ;) where each (C;,d;) is a complex

n 2 n+1

W on i, on Ey onnt (A.66)

such that dj*' o d = 0. Each fij = {f1}} is a cochain map f7s : C" — C'. Moreover,

the cohomology of each complex forms a directed system

H'(C) = < ker df f;;> (A.67)

b
imd)™ 1
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To see that the maps

is well-defined, observe that

fiw+di~a) = fla+ fdi " a (A.69)
= fiz+di 7 a (A.70)
(A.71)

SO []L-’s are well-defined.

Definition A.2.7. We can also define ligC’ as the cochain complex of R-modules

-1 i lim 7!

= AN (A.72)

limp d7 2 lim d7 lim d7
N hgqn—l ? th'Z"& hgcrin—&-l

Clearly ligd” o hg dvt = hg(d” od" 1) =0 by the commutative diagram below

1 d?_l n d? +1
n— mn
¢ & Cj
an—l a” an—l—l
7 e i
hg drt llg dr
_ 1 . 1
hggq” R S > 11}{} Czn fffffffffff > III[ECZHJA
\
\ !
n—1 |\ n / n+1
a; ' Q; S oy
n—1 dn
o1 . d] cn -, ol
J S J -7 J

and therefore this complex is well-defined.
Proposition A.2.4 and Lemma A.2.5 then imply the following

Lemma A.2.8. Let C be a cochain complex in DS;(R-Mod). Since exact functors
preserve cohomology, we see that the direct limit commutes with taking cohomology,
that is

H"(lim C) = lim H"(C) (A.73)
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A.2.2 Infinite tensor product of cochain complexes

This section discusses the cohomology of infinite tensor products of cochain complexes
in detail. While we can apply the Kiinneth Theorem for the cohomology of a finite
tensor product of complexes, the Theorem may not hold for infinite tensor products.
First we will define an infinite tensor product of complexes. Suppose that we have a
countable set of complexes {Cy | k > 1}. D; = ®%_, Cy, the tensor product of the first
k complexes. Let f; ; : @ D; — D; be the inclusion map onto the first ¢ tensorand of
complexes. Then (D, f; ;) is a directed system in the category of cochain complexes.

By construction, the direct limit hgrl D; is

lim D; = Ch A.74
ling g (A.74)

and that
liy H"(D;) = ®) H"(C}) (A.75)

Using the Kiinneth formula, we see that

H' (D)= & H"(Ch)® - @ H"(Cy) (A.76)

ni+-4n;=n

Since direct limit commutes with cohomology functors by Lemma A.2.8, we finally

arrive at

Lemma A.2.9.

H" (@ Ok) = H"(Ch) (A.77)
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Appendix B

Localisation

B.1 Definitions

Let R be a non-commutative domain and let S be a multiplicatively closed set, 0 & S
satisfying the (left) Ore condition

VreR,s€S, SrNRs# 2 (B.1)

Definition B.1.1. Define an equivalence relation ~ on S x R by (s1,71) ~ (S2,72) if

there exists ai,ao € R such that

18] = U89 € S (B.2)
a1 = asre € R <B3)

and we write ST'R = S x R/ ~.

Given two equivalence classes (s1,71), (s2,72), the Ore condition in Equation (B.1)
says that there are a € R, x € S such that zs; = as,. Since (s1,71) ~ (xsy,zr;) and
(s2,72) ~ (asq, ars), it follows that we can choose representatives (s, 1) and (sq,7r2) of
any two classes so that s; = s,. This allows us to define addition on S™'R.

Definition B.1.2. Given two representatives (s1,71), (s2,72) € ST'R, the Ore
condition in Equation (B.1) says that there are a € R,z € S such that xs; = ass.
Define addition on ST'R by

(s1,71) 4 (82,72) = (t, 211 + arg), t = x5, = ass (B.4)
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Definition B.1.3. Given two representatives (s1,71), (S2,72), by Equation (B.1) we

have Rso N Sty # @ which implies that asy = xr1. Define multiplication on SR by
(s1,71) X (82,79) = (871, ars). (B.5)

We then have

Definition B.1.4. The localisation of R is the ring (S™'R,+, x). Lemmas B.1.5
to B.1.7 shows that (S™'R,+, X) is well-defined.

We will now proceed to proving Lemmas B.1.5 to B.1.7.
Lemma B.1.5. The equivalence relation ~ in Definition B.1.1 is well-defined.

Proof. The relation is obviously reflexive and symmetric and we only show transitivity.
Suppose that (s1,71) ~ (S2,72) and (s2,72) ~ (s3,73). Then there exists
ai,as,bs, by € R such that

a171 = QaT2 bQT’Q = bng (BG)

a151 = A2S2 bQSQ = b383 (B?)

By Ore’s condition we have S(as$2) N R(besy) # @ so there exists ¢ € R,z € S such

that xasss = cbesy. As R is a domain and 0 ¢ S this implies that xas = cby. Then we

have
TaiT] = TAoTy = cbory = cbsry (B.8)
TA18] = TASy = cbysy = cbsss (B.9)
so we see that (s1,71) ~ (s3,73) and we are done. O

Lemma B.1.6. Addition appearing in Definition B.1.2 is well-defined.

Proof. We need to show that the operation is independent on the choice of a, z, r1, $;
and ry, So. Suppose that there are o’ € R, 2’ € S such that 2's; = a’sy. Since

S(xzs1) N R(x'sy) # &, we have yxs; = ba's; for some b € R,y € S. Since

81 = asy, x's1 = a’'sy we also have yas, = ba’sy. This implies that yx = b, ya = ba'.
Thus

(xs1, 11 + ary) ~ (yxsy, yrry + yars)) = (ba'sy, ba'ry + ba'ry) ~ ('sy, x'ry + a'ry)

(B.10)

130



B.1 Definitions

and so the sum is independent of the choice and a or x.
To see that it does not depend on (sq,7), we will first show that if we replace (s1,71)
with (bsy, bry) such that bs; € S, then multiplcation is still well-defined. To see this,

as S(bs1) N Rsy # @ we have x'bs; = a’sy. So we have

(s1,71) + (82,72) = (t, 211 + ary), t =ax5; = asy (B.11)
(bs1,br1) + (s2,79) = (', 2'bry + a'rs), t'=2'bs; = d'sy (B.12)

Now, S(zs1) N R(2'bsy) # @ so yxs; = cx'bsy = yx = cz’b. Now,
yass = yrs, = cx'bsy = ca’sy so ya = ca’. Thus we see that

(yt,yxry + yary) = (ct', ca’bry + ca'ry), implying that
(t,zry + ars) = (yt, yxry + yary) = (ct', cx’bry + ca'ry) = (', 2'bry +a'ry)  (B.13)

So we see that multiplication is well-defined after replacing (s, r;) with (bsy, bry).
Now, in general suppose that (s1,71) ~ (s},7}). By definition there exists b, b’ such
that bry = 0'r},bsy = U's| so (bsy,bry) = (U's), b'r}). The above argument shows that
multiplcation is well-defined if we replace (s1,r;) with (bsy,brq) and (s}, 7]) with
(b'sy,0'ry). But (bsy,bry) = (b's},b'r}) so we see that multiplication is still well-defined
after placing (s1,71) with (s7,7]). The case for (s, 73) is exactly the same so we are
done. O

Lemma B.1.7. Multiplication appearing in Definition B.1.3 is well-defined.

Proof. Suppose that a’sy = 211, so that (sq1,71) X (s2,72) = (2/s1,a'r3). Since

R(xzs1) N S(x'sy) # @ we have yrs; = y'x'sy = yx = y'2’. Therefore
(w81, ary) ~ (yxsy,yars) = (Ya'sy,y'a'ry) ~ (2'sy,a'rs) (B.14)

Now we want to check multiplication is independent of (s1,71). As we have mentioned
before we can just consider elements of the form (bsy, brq) such that bs; € S. Now,
originally we have asy = zr1. As Rs N Sb # @ we have cx = yb. Therefore

casy = cxry = ybry. So we have (bsy, bry) X (sg,72) = (ybsy, cary). But then

(81, ary) ~ (cxsy,cary) ~ (ybsy, cary).

Lastly we need to check multiplication is independent of (sq,r2). Again we can just
check for (bsy, brg). From Ore’s condition we have a’bsy = 2'ry so we have

(s1,71) X (82,72) = (2's1, a’bry). Again we can assume x’ =  so

a'bsy = a'r1 = xr; = asy = d’b = a and so (2'sy, a’bry) ~ (xs1,ars). O
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Now that we have shown S™!R is a well-defined ring, let ¢ be the map

¢: R — S7'R where ¢(r) = (1,r). Then ker¢ = {r € R | 3s € S, sr = 0}. Since R
is a domain we see that ¢ is injective and therefore we can realise R as a subring of
S~T!R. Furthermore, any element (s,7) € S™'R can be written as a product
(s,1)(1,7). Noting this, we have

Definition B.1.8. Suppose that M is an R-module. The localisation Rg Qg M of M
with respect to S is the tensor product ST'R ®p M.

Elements in S™'R ®r M can be written in the form
(s,r)@m=(s,)(1,r)@m=(s,1) @rm = (s,1) @ m/, m' € M. (B.15)

We will write the element (s,1) @ m’ as (s, m’). It is easy to check, using the definition
in Definition B.1.1 that if s € S;m € M, (s1,m1) ~ (s2,mg) if and only if there exists
ai,as € R such that

151 = A389 € S (B.16)
a1mi = asMyo € M (Bl?)

Lemma B.1.9. A homomorphism ¢ : U — V' between R-modules can be lifted to a
homomorphism ¢ : Rs @r U — Rg @V between Rg-modules by

¢((s,u)) = (s, 0(u)).

Proof. We want to show that phi is indeed a module homomorphism. Suppose that
(s1,u1), (S2,u2) € Rg ®@g U. Then as per Definition B.1.2,

O((s1,u1) + (52, u2)) = (t, zu1 + auy)

Now, suppose that (s;,7) € ST'R, (s2,u) € S7'U. Then

(51,7)¢((52,1)) = (51,7)(52, d(u)) (B.22)
= (s1,7)(82,1) ® p(u) (B.23)
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as per Definition B.1.3, we have (s1,7)(s2,1) = (z, s1a) for some a € R,z € S,

= (z, s10) ® ¢(u) (B.24)
= (7, ¢(s1au)) (B.25)
= ¢((x, s1au)) (B.26)
= ¢((s1,7)(s2,u)) (B.27)
and we are done. O
Lemma B.1.10. The functor
IndS '#(-): R-Mod — S~'R-Mod (B.28)
M— ST'TRor M (B.29)
s exact.
Proof. Given a exact sequence of R-modules
0—U-5V —W—0, (B.30)
we want to show that
0— SRRRU -2 ST R@RV — ST R@R W — 0 (B.31)

is exact. Since the tensor product functor is always right-exact, it suffices to show
left-exactness. Suppose that ¢((s,u)) = 0 hence that (s, ¢(u)) = (1,0). This implies
that there exists a € S such that ap(u) = 0 = ¢(au) = 0 = au = 0 since ¢ is

injective. Now (s,u) ~ (as,au) ~ (as,0) ~ (1,0) so ¢ is injective. O

B.2 The localisation of universal enveloping

algebras

Lemma B.2.1. [5/, Lemma 4.2] Let R be an associative algebra and let S be a
multiplicatively closed subset generated by locally ad-nilpotent elements of R. Then S

satisfies the Ore condition.

In particular, we have
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Corollary B.2.2. Let g be a Lie algebra and let e € g be a locally ad-nilpotent
element of g. Then Rgs is a well-defined ring where

R=U(g), S={e"|neN}. (B.32)

Lastly, with the above notations, we have

Remark B.2.3. Suppose that X € R and [X,e] = ce € R for some ¢ € C. Then
[X,e 1] = —ce! in Rg.
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Appendix C

The ring of symmetric functions

The purpose of this section is to review various results from the theory of symmetric
functions that will be used to evaluate the action of screening operators on certain
Fock spaces. The standard reference for symmetric functions and their myriad
properties is Macdonald’s book [52] to which we refer the reader for more details.
Let A,, denote the ring of symmetric polynomials in the n variables z1, ..., z,. This is
the subring of C|z1, ..., 2,] that consists of the polynomials that are invariant with
respect to permuting the indices of the z;. It admits numerous interesting generators

such as the power sums

pr= 2" k>1 (C.1)

=1

For 1 < k < n, the p, are algebraically independent and freely generate A,,, that is,

We can therefore use partitions A = [Ay, Ay, ...], whose parts \; are bounded by n, to
define
PA = Px; " Pa- (C.3)

These power sums, labelled by partitions whose parts do not exceed n, thus form a
basis of A,,:

A= P Cp. (C.4)

M1 <n
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Another family of symmetric polynomials is given by the monomial symmetric
polynomials

)\Cf AO'TL
my = 30, (C.5)
g

where o runs over all distinct permutations of the partition A. In this case, A is not
constrained by a bound on its individual parts, but by their number () (the length
of \) which is at most n. Note that each monomial summand of my has coefficient 1.

For example,
2.2 2.2 2.2, 2.2
Mi2,9] (2’1, 22) = 21%3, M (2’1, 22, Z3> = 212y T 2123 + 2323, (C.6)
The monomial symmetric polynomials also form a basis of A,:

LN <n

The respective restrictions on parts and lengths of partitions in the definitions of these
symmetric polynomials can be avoided by taking a formal limit to infinitely many
variables. The resulting ring A is called the ring of symmetric functions and,
unsurprisingly, its elements are called symmetric functions. The ring A,, of symmetric
polynomials in n variables can then be easily recovered from A by setting all but the

first n variables to 0. This amounts to a projection
T A= Ay, flo,20,...) = f(z1,...,2,,0,0,...). (C.8)

In A, the power sums py are algebraically independent for all £ > 1 and they freely
generate A, that is,
A:C[pl,pg,...]. (Cg)

Similarly, the restrictions on the sizes of the parts and the lengths of the partitions
labelling power sums and monomial symmetric functions, respectively, no longer apply.

Both classes of symmetric functions give bases of A:
A A

We note that m,(m)) = 0 if and only if /(\) > n, but that no such truncations exist

for the power sums py: their images under m, are all non-zero.
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C.1 The Jack functions

There exists another family of bases of A and A,, labelled by partitions, called the Jack
symmetric functions and Jack symmetric polynomials (or just Jack functions or
polynomials for short), respectively. These are defined using the dominance partial
ordering of partitions: if A and p are both partitions of the same non-negative integer,

then we write A > u (and say that A dominates u) if
MA N>+ g, (C.11)

for all 7+ > 1.
For each t € C\ Q< (the non-positive rationals are excluded to avoid certain
normalisation problems), the Jack functions P are uniquely defined by the following

two properties:

1. For any partition A\, P§ admits an upper triangular decomposition of the form

pt = my + Z U)\“u(t>mu, U)\“u(t) e C. <C12)

A>p

2. The Jack functions form an orthogonal basis of A with respect to the inner

product defined by

(pa. pu) = t" Vo5, T my!, (C.13)

i>1
where m; denotes of number of parts of A equal to i.

For each n > 1, the Jack polynomials in A,, may be defined as the images of the
corresponding Jack functions in A under the projection 7,. As with monomial
symmetric polynomials, we have m,(P) = 0 if and only if £(\) > n. For £(\) < n, the

Jack polynomials
Ph(21 s 2n) = ma(PY) (C.14)

are linearly independent and form a basis of A,,. For the application to follow, we
mention the following important examples in A,, called the rectangular Jack

polynomials. In these, the partition has the form A = [m"] in which all n parts are
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equal to m. Rectangular Jack polynomials have a very simple form:

men} (zl, . ,zn> = Mpn) (zl, .. .,zn) = HZZ" (C.15)

This follows because all partitions of mn that are strictly dominated by [m"] have
length greater than n. They also have extremely simple products with other Jacks.
For ¢(\) < n, denote by A\ + [m"] the partition with parts A; + m. Then,

me"] (zl, . ,zn)Pi(zl, . ,zn) = Pf\+[mn} (zl, . ,zn). (C.16)

We emphasise that rectangular Jack polynomials are independent of the parameter ¢.

C.2 Inner product for Jack functions

The Jack functions and polynomials satisfy many properties that shall be essential for

what follows. We list some of them here for convenience.

1. We denote by Qf the elements of the basis dual to the P§ with respect to the
inner product Equation (C.13). Since the Jack functions form an orthogonal

basis, P} is proportional to Q}:

1
t_ bt Pt’ bt — I C.17
The proportionality constant bf is given explicitly by
a(s)t +1(s) + 1
bl = , C.18
A Sg\ (a(s) + 1)t +1(s) ( )

where a(s) and [(s) denote the arm and leg lengths, respectively, of the box s in

the Young diagram of .

2. The Jack functions and their duals admit a kind of generating function called
the Cauchy kernel:

[T —yiz) 0= T] exp (1W> =Y Piy)Q(z).  (C19)

In this identity, the two alphabets {y;} and {z;} may be finite or infinite. The

sum is across all partitions A.
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3. Given partitions A and 4, the skew Jack functions P} ,, and Qf,, are defined to

be the unique symmetric functions satisfying
¢ t ¢ t
(P Q) =(PLQLQL)  and  (Q),.PL) =(Q\,PLPL)  (C.20)

for all partitions v. Let us write  C X if the Young diagram of p is contained in
that of A\. Then, P} = Q% =0 unless © C A. Finally, the ordinary and dual
skew Jack functions are proportional:

t b5 o

Mp = bTP/\/u' (C.21)

o
4. Consider an alphabet z = (z1, 2, ... ), partitioned into two subsets

x = (x1,29,...)and y = (y1, Y2, ...). Any symmetric function in z may
obviously be decomposed into symmetric functions in z and y. For Jack

functions, this decomposition is

Pi(2) = Pi(euy) = ZPL(e)PL(v),
M(z) = Q(zvy) = ZV:QZ (2)Q%, (v)- (C.22)

Both sums may clearly be restricted to partitions satisfying v C \.

5. The Jack polynomials P (zl, . ,zn) are orthogonal with respect to the inner
product
t t 1 n
= G _— C.23
(ko= [ Ghlafa)yla) o, (23

where I'(n;t) is the cycle normalised in Equation (1.211),

g(x1,29,...) = g(zy 23", ... ) and

Glx)= 1] (1—%>l/t (C.24)

1<i#j<n
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is called the integrating kernel. With respect to this integral inner product, the
Jack polynomials satisfy

(P (). Qi) = Onbi ),

b n+a(s)t —1U(s)
A= 1w e v -1

(C.25)

where a'(s) and I'(s) denote the arm and leg colengths, respectively, of the box s
in the Young diagram of .
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