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1 INTRODUCTION

The determination of the two basic machine parameters, energy and
luminosity, which are needed for high energy physics analysis is the
subject of this paper.

There is a basic difference between electron-positron machines and
proton-antiproton colliders which should be made clear at the outset.
First, because electrons and positrons are simple objects which
interact via the electroweak force, their interaction cross sections
into explicit final states can be calculated very precisely. Thus, for
example, if elastic ete~ scattering (Bhabha) can be monitored at a
physics detector, one has a measure of the machine luminosity. The
energy of an e*e~ machine does not come so easily and is of tremendous
importance as it is a constraint on the final state detected in the

experiment.

In a hadron-hadron collider, on the other hand, the absolute
energy determination is relatively unimportant. This follows from the
constituent nature of the proton and antiproton. Since these hadrons
are made up of a collection of quarks and gluons (partons) which share
the beam momentum, an interaction is really between one parton in each
of the beams; the total energy in that interaction is only loosely
related to the energy of the beams. Furthermore, since hadronic cross
sections other than Coulomb scattering are not precisely calculable,
reaction rates do not serve as absolute luminosity monitors.

In the following, only bunched beam operation is considered. This
is a remarkable omission especially considering the tremendous success
of the ISR, an unbunched proton-proton machine which used a novel

luminosity measuring technique (the "van der Meer method").
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2 LUMINOSITY

The number of events per second, R, which occur at an intersection
region of a collider is simply related to the luminosity, L, and the
production cross section, Otot. For a detector which is sensitive to
scattered particles reasonably close to the circulating beams, the
observed cross section is near 50 millibarns for collisions of 900 GeV
protons on 900 GeV pbars. A luminosity of 1030 cm-2 s-1 will yield
50,000 events per second into this detector. Thus, if one can measure
the production cross section and the counting rate in a detector, one
can determine the absolute luminosity of the machine.

R =1L otot
2.1 Luminosity from bunch and lattice parameters

A simple geometrical argument allows one to express Lcross, the
luminosity per bunch-bunch crossing, as a function of the number of
particles or antiparticles per bunch, N or N, and the rms beam radius,
a. The factor of 4 in the denominator comes from the assumption of
beam distributions which are bi-Gaussian in the horizontal and
vertical planes.

N K

CTOSS 4 7 32

This is the luminocsity per crossing of two bunches. To get the
luminosity per revolution as seen at a particular interaction region
(IR), Leross for each pair of particle and antiparticle bunches which
meet at the IR must be summed. The luminosity per second follows by

multiplying the sum by the revolution frequency, frev.

There are corrections to this equation which are usually not
discussed. The first is the observation that the intensities and
profiles (both longitudinal and transverse) are usually different for
each bunch of particles. To find the luminosity at a particular
interaction region, one must use the parameters of the bunches which
really collide there. The second correction involves the fact that the
effective transverse beam size is a function of the strength of the
focusing quadrupoles near the beam-beam crossing point. What this means
is that a2 proper convolution of the longitudinal beam distributioms
must be made with the actual beta functioms.



Only in exceptional cases can the beam size be determined at the
interaction region where the experiment of interest is located. Usually
the transverse rms invariant beam emittance € is measured at some other

place in the lattice. The beam size in each plane is then given by:

a = I‘E:; = J ﬁ*EN mc/p

where the relationship between the actual emittance and the normalized

emittance is expressed in terms of the mass, m, and momentum, p, of the

particle.

Since the interaction region occupies a drift space of the
lattice, the focusing can be expressed by =a quadratic in the
longitudinal displacement from the center of the IR, where the
(minimum) f* occurs, B(s) = f* + s2/p*.
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Fig. 1 Lattice parameters at the Tevatron BO interaction region. The
length of the bunches is indicated.

Figure 1 shows the expected interaction distribution for the design
parameters of the Tevatron Collider. The convolution integral over the
longitudinal beam distribution can be done numerically, but tricks can

be used to get an analytic expression which works well in all practical



cases. Assuming that the overlap region has a triangular rather than
Gaussian longitudinal distribution yields the following expression for

the luminosity degradation factor:
2 tan 1z log (1 + 22) 2 3 ( af + 0y
B S ——— > , where z = —
z z 2 ﬂx ﬁy
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This bunch length degradation factor due to the fact that the bunch
length is long relative to p* is shown in figure 2. In this figure the
horizontal and vertical beam sizes are assumed equal and the particle

and antiparticle bunch lengths are also equal.
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Fig. 2 Relationship between luminosity and fx. Here fx is normalized
to the bunch length. LO corresponds to an infinitesimally short bunch.

The total luminosity at one IR with n bunches of particles and n
bunches of antiparticles can be expressed as:

n - -
" frev Ni N_"| F(aki’gkj’px’py)
et 1 - -
ax {p,p, T [ 1 (e ye T
The subscript j = i + p, where p is a constant that depends on the

bunch numbering scheme and the particular IR of interest. The o) are
bunch lengths of the ith and jth  bunches of particles and
antiparticles, respectively. The transverse emittances, €x and €y, are

each averaged for particles and antiparticles. In this case the



emittances are not the normalized emittances, but those scaled for the
energy of the collider. It is an easy exercise for the reader to show
that if the normalized emittances and betas are equal, the luminosity
will scale with the momentum of the beams, a fact of some significance
when comparing the SppS with the Tevatron.

The expression above for the total luminosity was derived assuming
that the dispersion at the crossing point is zero. Low f insertions are
designed to keep the machine dispersion function and its derivative as
close to zero as possible over the interaction region. This is approx-
imately true for the BO low [ insertion at the Tevatron (# = 0.19 m,

n’ = -.143), but even these small numbers affect the beam size at the
crossing point. The modified expression is easy to derive.[11]

So now seeing all the components of a measurement of the
luminosity based on intensities, emittances, and lattice functions, we
can comment on how well you could do in the real world. At the Tevatron
and the SPS the intensities and lengths of each bunch are measured with
a resistive wall monitor, the transverse profiles are measured with a
flying wire monitor, and the beta functions are inferred from SYNCH
calculations and checked by measurements of betatron tunes as a
function of single quadrupole strengths. Perhaps the biggest
uncertainty at the Tevatron is the knowledge of the transverse beam
sizes at the IR.

The transverse emittance of the bunches is determined using flying
wire measurements at some convenient locations in the lattice. In the
Tevatron, where much of the beam pipe is surrounded by cryogenic
compeonents of one sort or another, there are relatively few locations
where the environment is suitable for a wire scanner. For the best
measurements, one would prefer a location where the f function is large
in the plane of interest to minimize effects from the finite resolution
of position encoders. One also prefers to have separate wire scanners
which are as independently sensitive to transverse emittance and
dispersion as possible. These requirements are rarely satisfied
simultaneously, especially considering that the scanners must work for
different lattice configurations (e.g. with the low f on or off).

What is usually done in the horizontal plane is to use two wire
scanners at different locations which have different beta functions and
different dispersion functions. The horizontal beam size as measured at

positions 1 and 2 is due to the combination of the transverse emittance



and the momentum spread of the beam:

2 _ ap 12

21,27 Pra*[ M2 ]

The two equations can be solved to yield the horizontal emittance and
the momentum spread. This method works well if the profiles as seen by
the wire scanners are simple enough to be characterized by a single
number, a. What can be done to gain some confidence that the
measurement is valid is to compare the momentum spread measured by this
technique to the momentum spread determined by the bunch length
measured from the sampling scope monitor of the resistive wall pick up
and the rf voltage.

The bucket area in eV-s is

J 27 h" 7

where a( T = sin ¢g ) = 1 for a stationary bucket, eV is the rf
voltage, h is the harmonic number of the Tevatron rf (1113), and

y = —% = —% o ————l—§ , for the Tevatron.
% 1 18.8
T106 TEVATRON LUMINOSITY CALCULATION ¢FTP¢COPIES¢*
STORE 1635 CMA100% mini lattice 10/03/88 12:23:37
*READ DataBase ®CALC EMITS *CALC LUMS *STORE IN DB  LAST FLY

SBD Data and Flying Wire.-Sigmas 95% trans emittance and rms DP/P
SBint SBsig HAl1l7 HC4B  VC48 vert horiz DP/P SBDp/p
Pl 53.2 51 1.148 .6707 .4611 17.65 12.43 «144 .141
p2 53.8 51 1.142 .6321 .4414 16.17 11.04 «146 «141
p3 56.2 52 1.106 .6296 .4374 15.88 10.95 «140 .143
P4 53.1 48 1.08 .6432 .4467 16.56 11.43 .135 .133
P5 51.3 48 1.097 .6467 .4406 16.12 11.56 «137 «133

pP6 64.1 50 1.082 .6255 .44 16.07 10.81 .136 .138
(E9) (cm)  (mm)  (mm)  (mm) (r mmmr) («r mmmr) (E-3) (E-3)

al 25.1 42 1.009 .6447 .4598 17.55 11.48  .122 .116

a2 25 43 1.026 .627 .451 16.88 10.86  .127 .119

a3 27 44 1.025 .6373 .4536 17.08 11.22 126 .122
aqa 26 44 1.001 .6396 .4647 17.93 11.30 .121 .122

a5 25.3 43 1.043 .6493 .469 18.26 11.65 .128 .119
aé 22.8 44 1.051 .6566 .4746 18.70 11.91 «129 .122
ENERGY= 900 Ql= 4283 p avg 16.41 11.37 140 .138
RFSUM = 1.132 RA= 1.128 pbar " 17.73 11.41 125 «120
Ltot BO (a{] EO
.806 .804 .B05 .815 .812 .80 1.806E+30 9.5B1E+27 2.419E+28
B0 Bunch Length Corrections BOLUMP= 1.46 E+30
LUMINOSITY AT STRAIGHT SECTIONS
pl p2 p3 pé PS5 pé a

BO 2.746E+29 2.593E+29 3.088E+29 2.947E+29 3.044E+29 3.648E+29561234
CO 1.473E+27 1.600E+27 1.796E+27 1.578E+27 1.471E+27 1.664E+27123456
EO 3.686E+27 3.491E+27 4.147E+27 3.915E+27 4.056E+27 4.894E+27561234

Fig. 3 Display of Tevatron parameters for a typical store.
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Fig. 4 Comparison of calculated and measured beta functions for the

Tevatron injection or fixed target lattice.
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Fig. 5 The same as figure 4, but a low beta lattice.



The bunch momentum spread can be calculated to be

h
Ah : |
8p/P = BRp 5“’[ R ]

where o) is the rms bunch length from the Sampled Bunch Display, 27R/h

is the bucket length, and the factor multiplying the sine function is
the bucket half height.

Figure 3 shows an on-line display of all the parameters we have
just discussed for the Tevatron Collider. The rows show the parameters
for the 6 bunches of protons (pl - p8) and 6 bunches of antiprotons (al
- aB). The intensities and bunch lengths as measured from the Sampled
Bunch resistive wall monitor are shown as are the measurements from the
flying wire scanners at the A17 and C48 locations in the lattice. The
units are shown on the row in the middle of the figure. The calculated
emittances and momentum spreads are also shown for each bunch. The
calculated luminosities at the three interaction regions where

exﬁeriments are installed are shown at the lower right of the figure.

One of the most uncertain aspects of the calculations is in the
knowledge of the lattice functions, not only at the IR, but also at the
positions of the flying wires. If there were single quadrupoles at
these important locations one could verify the beta function values
directly by measuring the betatron tune change as a function of
quadrupole strength. Unfortunately, the best we can do to is to use the
few individually powered quads in the Tevatron lattice to verify that
the calculated lattice functions are correct. Figures 4 and 5 show the
results of measurements of f functions wusing this technique at 4
locations in the lattice. Figure 4 corresponds to the lattice used for
fixed target physics (also wused for injection into the collider) and
figure 5 corresponds to one of the low f lattices.

The agreement between the calculations and measurements seems to
be better than 10%. It should be noted that the agreement was vorse by
a factor of two before the calculation was done with the measured

multipoles of all magnets and closed orbit errors included.

The beta functions at the low f IR were verified using a technique
whereby the longitudinal crossing point of the p and pbar bunches was

varied. That is, the rf for the protons is independent of the pbar rf
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Fig. 7 Results of fitting the curves of Fig. B8 to determine the betax
at the interaction point.



and the crossing point can be varied. Figure 6 shows the measured
interaction rate as a function of the position of the central collision
point as well as the results of calculations for different assumed f*.
A simple model which incorporates the equation for the luminosity
degradation factor F above can be used to determine [*. The equation is
more complicated when the place where the beams meet is displaced from
Pmin. However the appropriate integral can still be calculated. Figure
7 shows the x2 for the fits for the different assumptions. The
agreement is very close to that predicted by the lattice calculation
which included all magnet measurements.

2.2 Luminosity Inferred From o0¢oct and Counting Rates

Very precise measurements of the total cross section for proton-
antiproton collisions can be made using detectors of small angle
elastic scattering.[1] These detectors sit very close to the beam in
specially modified vacuum chambers often called Roman Pots. A
coincidence of scattered particles on each side of the IR with equal
scattering angle, B, is used to identify an elastic event. Figure 8 is
a schematic of such an experiment. Note that there are at least two
sets of Roman Pots on each side of the IR, the farthest being well into

the lattice to measure the smallest possible scattering angles.

There are actually three measurements which must be done to
determine the total cross section in a way that is independent of
knowledge of the luminosity. In the following discussion we shall use

the conventional expression for the momentum transfer squared, t.

N 2 _ 2
tE ( Pinc - Pscat) = 2p“(1- cos B8)

where P is the 4-momentum, and p is the beam momentum.

The first measurement is of the change in the scattering rate as t
goes to 0. Equation 1) combined with the optical theorem yields:

2 2
dt [t=0 16 “2

dt 1t=0 ~
where p is the ratio of the real to imaginary scattering amplitudes.
Clearly this measurement cannot be made at O degrees and an
extrapolation is required. Figure ® shows the scattering angle of the
protons vs that of the pbars. The elastic scatters are easily seen.

Figure 10 shows the measured differential cross section for experiment
E710 at Fermilab.
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The second measurement involves surrounding the IR with detectors
to measure the total rate R, giving Lotot. Some events will be entirely
contained within the beam pipe, even missing the detectors in the Roman
Pots. What is usually done to see how many such events are missed is to

use a Monte Carlo calculation based on some model of the interaction.

The third measurement is to see the interference between the
nuclear and electromagnetic (Coulomb) forces in the details of the
shape of the differential cross section. This measurement determines p.
The t region where this interference takes place corresponds to smaller

and smaller scattering angles as the emergy is increased. At energies
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Fig. 10 Distribution of elastic scattering events as seen in the
previous figure. The abscissa comes from the scattering angle, the
ordinate from the number of particles within each angular interval.

approaching 1 TeV special conditions have to be used; the beams may
have to be scraped to provide small transverse emittances and the
lattice functions at the IR may have to be adjusted to provide parallel
trajectories of the colliding particles. The value of p has been
measured to be about 0.25 at CERN collider energies and is expected to
be around 0.15 at the Tevatron. Since p enters into the expression for
the luminosity as p2, the sensitivity of the final answers to this

parameter is somewhat diminished.



The three separate measurements can then be combined to give L,
Opp, and p. Unfortunately, the conditions for the most precise
measurements are not those needed for the most popular operating
conditions and more extrapoclations are needed. For example, at Fermilab
the best total cross section measurements are to be done at a different
IR than the one with the major detectors. What should be possible is a
precise measurement of the beam emittances as a consequence of the
precise luminosity determination. The luminosity at the major detectors
then depends primarily on a knowledge of the f functions in the low f
regions of these major experiments.

3 ENERGY
3.1 Spin Depclarization Resonance Method For ete— Machines

In an ete~ machine the energy calibration of the beams relates
directly to the precision of the mass measurements of particles
produced in collisions. Luckily there is a very sophisticated method
for determining the absclute energy of e*e~ machines. [2]

The beams in a collider can become polarized due to synchrotron
radiation. A small spin-flip contribution is responsible for this
polarizing effect which amounts to only one part in 1011 of the total
radiation. The polarization of the beam can be monitored by scattering
a2 laser beam off the circulating beam and measuring the spin-dependent
part of the Compton scattering by recording the angular distribution of
the back-scattered 7 rays.

The energy of the machine can be varied until a (g-2) resonance is
excited which causes the beam to depolarize. Assuming the resonance can
be uniquely identified, the spin tune vg =7(g-2)/2 is determined. The
beam energy is me7y. The largest source of error in this determination

is in me which is known to 2.7 parts per million.

3.2 Traditional Energy Determination by Magnetic Field Measurements

As stated before, the energy of a bhadron collider 1is not as
important as for an e+te- machine as far as high energy physics results
are concerned. Nevertheless, one needs to know the value and how

accurately the number is known. It may be instructive to examine the



details of the Tevatron energy determination.

In principle, the energy of +the beam in the Tevatron could be
measured by determining the speed of the particles. This takes knowing
the path length and the transit time. Here, the path length is the
circumference, as determined from the optical survey, and the transit
time is the inverse of the revolution frequency which is determined
from the rf frequency. While the circumference is probably known from
optical surveys to better than a few centimeters (out of 27 km) and the
rf frequency can be measured to better than 1 Hz (out of 53 MHz), the
problem is that the velocity of a 900 GeV particle is not a sensitive

function of energy. This is a consequence of special relativity.

2 2

In units where c = 1, E2= p"+n” ,E=mq, andp=mf v,
dE p? dp

one can easily show that — = S Now suppose you could
E m P

measure the revolution period infinitely well but knew the
circumference to 1 mm out of 27 km, a rather remarkable precision even
with the sophistication of modern survey techniques. Then for a
momentum of 900 GeV/c (mp = 0.938 GeV/c2), the fractional error on the
energy determination would be over 10%.

A more sensitive method is to use the measured fields of the
Tevatron magnets to determine the beam energy. That is, the total line
integral corresponds to exactly 27 radians of bend. It is fortunate
that each of the Tevatron magnets was measured in some detail; many

previous accelerators were built without such precise measurements.

An operator sets the energy of the Tevatron by entering the
desired values in the T48 application program. This program downloads a
table of values in Amperes to the power supply control microprocessor
(TECAR) scaled by the factor 4.44 Amps/GeV. The factor was determined
based on measurements of the very first Tevatron dipoles.[3] This
factor is only 1.5 10-3 higher than our best estimate based on
measurements of all the Tevatron dipocles.

The TECAR microprocessor system uses a precision transductor[4] to
regulate the current to the table wvalues. The specifications on the
transductor are quite good, but the wuncertainty introduced in the
modifications needed to incorporate the device into the Tevatron turn
out to be the limiting factor in the absolute energy determination of



the machine.
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Fig. 11 Data from magnet measurements of the superconducting dipoles
from reference [10]. The first figure shows the line integral of each
magnet plotted as a function of magnet number. The second figure is a
projection of the first figure, showing the distribution of excitation
constants for the magnets. These data correspond to 2000 A excitation
current. The third plot shows how the excitation field deviates from a
linear function of current, presumably due to iron saturation and coil
deformation.

3.2.1 Dipole Field Measurements

The results of integral field measurements of the Tevatron
superconducting dipoles using a stretched wire loop have been
published. [5] Figure 11 shows the results of the measurements. The
average excitation function for the 870 measured dipoles is 61.08 kG-
m/kA for a current of 2 kA. There is some dependence of the excitation
function on the current; as the current approaches the 1 TeV level the



excitation function drops by 0.1%, presumably from yoke saturation and
coil deformation. Besides these effects, a numerical error of -.03%
which was discovered after publication has been included in the
analysis. [6]

Only 772 full 1length superconducting dipoles are wused in the
Tevatron lattice. The equivalent bending strength of two more full
length dipoles is provided by the special magnets of the abort system
at the CO long straight section. These special magnets include two
half-length superconducting dipoles, three conventional symmetric
Lambertson septum magnets (the' circulating beam passes through the
field region), and two conventional C magnets. Whereas data exist on
the Lambertson magnets[7], the C magnets may not have been measured.
The Lambertson measurements indicate a field which is high by about 1%
compared to that expected for the initial design. Geometric constraints
and the fact that trim power supplies for the conventional magnets in
the abort system were not needed, lend credence to the assumption that
the 5 conventional magnets in the CO straight section have the sanme
bending strength as one superconducting dipole. In any case, the
calculations below are based on 774 full length dipoles, where a

possible error of 1% on the CO equivalent magnet is negligible.
3.2.2 Corrections

closed orbit. A few closed orbit files from the ’87 run still exist

which have been examined for momentum errors. Figure 12 shows an orbit
taken during a 900 GeV store at low beta. The average momentum
displacement is -2.43E-4. Although the beam position monitoring system
did not handle single rf bunches well, there is no reason to believe
that the errors would produce or hide a systematic radial offset. Based
on this assumption and the fact that an earlier 800 GeV store with 20
bunches shows the same offset, the energy reported below has been
reduced by a factor of -2.43E-4.

dipocle correction elements. The horizontal correction dipoles can

provide additional bending strength to the Tevatron. Each correction
dipole can provide 4.5974 kG-m at 50 Amps. Including 4 special
horizontal dipoles at BO, the 112 correction dipoles in the ring had an
average current of 6.6 Amps according to the T23 files for the 900 GeV

low B stores. This leads to an energy correction of +.336 GeV.

These corrections apply only to the 9800 GeV data. No orbits or



correction dipole ADC files remain for the 315 GeV data; the 315 GeV

error has been increased accordingly.

3.2.3 Errors

Systematic errors in the magnet measurements include the geometry
of the stretched wire probe (#3E-4), the shunt calibration (#2E-4), and
the integrator time constant (*3E-4).

In addition there is a possible current error in the Tevatron due
to wuncertainties in the current regulator circuitry (21E-3). As
mentioned before, this error can be reduced by a factor of 3 or more by
measuring the properties of the circuit. For this reason, this error is
explicitly listed in the table below.

3.2.4 Results
Combining all corrections and errors except the current regulator
error (shown in parentheses), the actual Tevatron energies for the ’87

collider run were (in GeV, total);

Nominal Energy Calculated Energy Systematic Error

315 315.7 + 0.1 (0.3)
900 901.5 £ 0.2 (0.9)
3.2.5 Discussion; Tevatron Radius

The beam energy has been determined from the measured fields of
the bending magnets, where a bending angle of 27 radians was used. The
measured rf frequency (53104707+¢2) Hz[8] determines the circumference
or average radius of the closed orbit at 900 GeV.

h fc

R=——— = 1000.0061 m
2 f
rf

This implies a very precise measurement of the average radius,
where the error is determined by the error on the measurement of the rf
frequency. An assumed frequency error of 2 Hz out of 53 MHz leads to a
precision of better than 40 um on the determination of the radius. This

can be compared to 2 measurement made during the earliest days of



Tevatron operation which essentially assumed that the transfer energy
between the MR and Tevatron was well known.[®] This early measurement
yvyielded a radius of 1000.006245 m *# 1 mm at 150 GeV.

An analysis of the magnetic field data was used to correct the Amp
factor in the Tevatron low 1level rf system some years ago. The value
coded into the K/IZ2 box is 4.4287 compared to the original 4.44. The
value at 800 GeV, based on the analysis in this paper for zero average
horizontal correction dipole current, should be 4.4333.

For future measurements of the beam energy, it will probably be
sufficient to make an accurate determination of the rf frequency and
use the now well measured average radius of 1000.0061 m. The
determination of the error of the Tevatron current regulation circuit

should be improved, however, before the number is cast in stone.

3.3 Dther Possibilities for Energy Determination.

The absolute calibration of an external beam line can be quite
good. 0One especially interesting technique which uses elastic
scattering of an extracted beam off of a gaseous helium target has been
used up to 300 GeV at the SPS.[10] By simultaneously measuring the
scattering angle, 6, and the energy of the recoiling nucleus, TR, the

determination of the four-momentum transfer is over-constrained:
abs (t)=(ph) ==2 and abs(t)=2 MR TR.

The novel feature of this experiment, and the reason that the
result is so precise, is the absolute calibration of the determination
of the recoil energy. The helium target is also the ionization chamber
used to measure the recoil energy. By using a radicactive a source of
energy Eo and using events where TR = Eg, one has an absolute
calibration reference which does not rely on assumptions about the
relation between ionization charge and recoil energy or about the

linearity of the electronics.

The authors quote an error of 0.15% at 250 GeV with the
expectation that the errors would be smaller at higher energy. While
this method could not be used during colliding beam operation,
requiring an extracted primary beam, it would allow the value of the

machine energy to be calibrated absolutely without any assumptions



about the strengths of the magnets and the currents in them.
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