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Introduction

Proton-induced reactions play an important role
in a variety of domains including medical
isotope synthesis, study of isotopic structures,
nuclear characteristics and nuclear reactions
[1]. Among various established medical
isotopes, *™Tc is particularly significant
because it is used in over 30
radiopharmaceuticals,  making  consistent
production and supply necessary for diagnosis
and nuclear therapy. With significant
breakthroughs in theranostics, the need for
®mTc¢ continues to rise. An investigation by
Takehito Hayakawa and colleagues has
identified %¢Tc and ®9Tc as potential
replacements, notably these radioisotopes could
be viable substitutions. Their findings indicate
that these isotopes may be realistic alternatives
to **™Tc, ensuring a more reliable supply chain
for medical treatments [2]. This investigation
into alternate isotopes emphasizes the
continuing need for innovation in isotope
manufacturing to support important medical
applications. In present work, the cross sections
of 100Mo(p,x)*MTc, "at\Mo(p,x)*°Mo,
"tMo(p,x)%9"Tc  and  "'Mo(p,x)%®9"MTc
reactions were measured along with detailed
uncertainty analysis.

Experimental Details

The Experiment was performed using BARC-
TIFR Pelletron Linac Facility in Mumbai. Each
natural Mo target was stacked with Cu monitor
and the irradiation details of each stack of Cu-
Mo foils is specified in table 1. The proton
beam degradation along the stack was
calculated by using SRIM code [3].
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Three HPGe detectors were used to count the y-
ray activity of the irradiated samples, the first
two detectors with relative efficiency of 30%
and the third with 33%. All samples were
mounted at 10 cm from the end cap of detector
to avoid summing effect. The HPGe detectors
were calibrated using standard 'S?Eu source.

Table 1: Irradiation Details

Energy Mean Irradiation
(MeV) Current Time (hrs)
(nA)
21.8 100 1.15
20.0 92 1.00
18.8 99 1.08
18.0 62 1.10
16.7 111 0.90
16.0 58 1.50
14.0 62 2.12
12.7 97 1.70
Analysis
The detector efficiency was calculated using:
_ C
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where C is the photo-peak counts of various
peaks, Ao is the initial activity, I, is branching
ratio, 4t is the counting time, 4 is the decay
constant of the °Eu source, t is the time
difference between date of production and date
of counting of source.
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formula:

cA
NiaeNpI,, T

where C is number of counts of each
characteristic y-ray, 1 is decay constant, N is the
number of atoms per unit area, a is abundance,
€ is the detector efficiency, N, is the number of
protons incident per second on the target, I, is
gamma ray intensity and T is timing factor.

Results

The measured cross-sections for the production
of ®"Tc, %Mo, %9*"T¢, and %9"MTc, spanning
the energy range from 12.7+0.05 to 21.8+0.05
MeV MeV have been measured. These results
illustrated in Figure 1 to Figure 4 along with
their uncertainties, exhibit a good alignment
with the data available in the EXFOR database
[4] from various authors.
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Figure 1. Cross Sections of ®Mo(p,x)**"Tc
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Figure 2. Cross Sections of "™*Mo(p,x)**Mo
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Figure 3. Cross Sections of "*Mo(p,x)?9*™Tc
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Figure 4. Cross Sections of "Mo(p,x)%9*™Tc
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