
UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA
DEPARTAMENTO DE FÍSICA

VALPARAÍSO - CHILE

Two-Pion Bose-Einstein Correlation
measurements with CLAS detector

Antonio Radic Brito



Contents

Contents 2

Abstract I

1 Introduction 1
1.1 Bose-Einstein Correlation . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.2 Derivation of Bose-Einstein Correlation . . . . . . . . . . . . . 3
1.1.3 Goldhaber Parametrization . . . . . . . . . . . . . . . . . . . . 8
1.1.4 Coulomb Correction . . . . . . . . . . . . . . . . . . . . . . . 9

2 Experimental Setup 11
2.1 CLAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Torus Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 Drift Chambers (DC) . . . . . . . . . . . . . . . . . . . . . . . 14
2.1.3 Cherenkov counters, CC . . . . . . . . . . . . . . . . . . . . . 17
2.1.4 Time-of-Flight Counters (SC) . . . . . . . . . . . . . . . . . . 18
2.1.5 Forward Electromagnetic Calorimeters (EC) . . . . . . . . . . 18

2.2 Double-Target System . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Data Analysis 23
3.1 Analysis Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Electron Identification . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Vertex Cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2



3.3 π+ Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Pion pair Construction . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.3 Close-Track Efficiency . . . . . . . . . . . . . . . . . . . . . . 40
3.3.4 Double Ratio Correction . . . . . . . . . . . . . . . . . . . . . 44
3.3.5 Experimental Goldhaber Parametrization Fitting . . . . . . . . 45

3.4 Two Dimensional Bose-Einstein Correlation . . . . . . . . . . . . . . . 47
3.5 Systematics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5.1 Mixing Procedure . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.5.2 Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.5.3 Fit range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.4 Total Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.5 Comparison Tables . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Results 62
4.1 One Dimensional Study . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.1 Nuclear Target Comparison . . . . . . . . . . . . . . . . . . . 63
4.2 Two Dimensional Study . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Nuclear Target Comparison . . . . . . . . . . . . . . . . . . . 64

5 Conclusions and Future Analysis 68



Abstract

In this analysis, we studied Bose-Einstein correlations for positive pions produced in
DIS events. The analysed data came from experiments carried out during the run pe-
riod EG2 in Jefferson Lab, Virginia. Multiple nuclear targets exposed to a 5.014 GeV
electron beam. The studied nuclear targets were D2, C, Fe and Pb.

This phenomena has been studied in various types of scattering experiments such
as pp, pp, πp, Kp, e+e−, heavy-ion collisions, DIS, among others, measuring different
kind of bosons, such as pions, kaons and photons. The HERMES collaboration using
nuclear targets from 1H to Xe found no significant variation among them.

By comparing the pairs of π+ to uncorrelated pairs, we can obtain information of
the space-time structure and dynamics of the source of the produced bosons. The goal
of the study was to measure the size of the π+ production source and its degree of coher-
ence in one and two-dimensional approaches. A correlation function was constructed
for each target by the ratio of the distribution of π+ pairs, coming from a single event
to a distribution of uncorrelated pairs. The uncorrelated pairs were constructed using
an event-mixing method that takes pions from two different events.

The correlation function was corrected with a double ratio technique, using recon-
structed events from simulations. By this way, biases from the experiment and analysis
were removed from the correlation function.

The corrected correlation function was fitted by a Goldhaber parametrization in
order to measure parameters of interest r and λ, which represent the size of the pion
source and its degree of coherence respectively. No significant differences were found,
regarding the size of the source along solid targets.

In the two-dimensional study, we obtained the parameters rt and rl. These represent
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the size of the pion source along two perpendicular directions in order to measure a
possible elongation of the source. Clear elongation was found for all nuclear targets
with dependence in nuclear number A. Bigger elongation was found in light targets
and it presented saturation for heavier targets, such as, Fe and Pb.
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Chapter 1

Introduction

High energy physics experiments study the fundamental laws of the universe, and par-
ticularly, the microscopic structure of nuclear matter. Deep inelastic scattering (DIS) of
lepton off a nucleon is a type of a particle experiment which may serve as an excellent
tool for studies of hadron formation processes inside a nuclear medium. One of the
phenomenas, which may play a fundamental role in the formation of those hadrons, are
so-called Bose-Einstein correlations.

Bose-Einstein correlations (BEC), whose equivalent in astronomy is called Hanbury-
Brown and Twiss effect , arises from the quantum mechanical interference between the
symmetrized wave functions of identical bosons. This principle was first studied in ra-
dio astronomy by Hanbury Brown and Twiss to determine the spatial extent of photon
radiating sources to measure stellar radii [1].

In the field of particle physics, this phenomenon was first observed in pp annihila-
tions by G. Goldhaber, S. Goldhaber, W. Lee and A. Pais [2] [3].

This technique has been applied in various types of scattering experiments such as
pp [4] [5] [6]; pp, πp, Kp, e+e− [2] [7]; heavy-ion collisions [8] [9] [10] [11] [12],
deep-inelastic lepton scattering [13] [14] [15]; among others, measuring different kind
of bosons, such as pions, kaons and photons.

Two-pion Bose-Einstein correlations have been used in high energy physics exper-
iments to obtain information about the space-time structure and the dynamics of the
boson source, such as the shape and the size of the source.
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Most of the scientific research, and as a consequence the theoretical knowledge on
BEC comes from heavy-ions collision experiments. In those theories BEC is explained
by a "fireball" [16] created in the collision considered as the source distribution that
decay into hadrons, a process mostly described by hydrodynamics models. There are
few works that consider the case of DIS and describe this phenomenon in terms of
string-fragmentation models.

In this work, BEC were studied for positive pions produced in e−p interactions in
the DIS regime using multiple nuclei targets from deuterium to lead in order to observe
possible nuclear dependence. We measured the size and shape of the pion source and
its degree of coherence.

The formation process of hadrons after a quark is struck by the lepton can extend
beyond the nuclei. Interactions with the struck quark or the formed hadrons with the
medium could alter the measured size and the coherence of the formation zone. The
Big Bubble Chamber Neutrino Collaboration (BBCNC) studied Bose-Einstein corre-
lations in neutrino and antineutrino interactions with nucleus and found no substantial
differences between the data obtained from 1H , 2H and Ne [17]. The HERMES col-
laboration using nuclear targets from 1H to Xe found no significant variation among
them. [14].

1.1 Bose-Einstein Correlation

1.1.1 Definition

In classical mechanics, where we can describe a particle’s position and movement with
total certainty, we can track two identical particles and distinguish them, and follow
their trajectories. Contrary to classical mechanics, in quantum mechanics, identical
particles are indistinguishable and we can not track their trajectories at any time. One
of its basic principles in the quantum theory is that particles and systems composed of
multiple particles can be described mathematically with wave functions. We can de-
scribe a system of n identical particles as Ψn(q1, ..., qi, ..., qj, ...qn), where qi indicate
the coordinates that describe particle i. We can apply a permutation operator Pij on the
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wave function of the system, which swap the position of particles i and j. If we apply
the same Pij twice, the wave function Ψ will remain the same. Therefore P 2

ijΨ = Ψ,
and its eigenvalues are +1 and −1. The wave function Ψ will be completely symmetri-
cal or asymmetrical. In the case of completely symmetrical wave functions the particles
are called bosons. On contrary, they are called fermions.

In order to study the Bose-Einstein correlation we define a function for two-particles
in the following way: the ratio of the two particle inclusive cross section to the product
of the single-particle cross sections:

R(p1,p2) =
D(p1, p2)

D(p1)D(p2)
(1.1)

where p1 and p2 are the four-momenta of the particles, and D(p1, p2), D(p1), D(p2) are
the two-particle and one-particle probability densities.

We will find later that the correlation R will depend on the Lorentz-invariant quan-
tityQ12 = (

√
−(p1 − p2)2); the absolute value of the 4-momentum difference between

the produced pair of particles, which will result on an enhancement on the pion produc-
tion at low values of Q12, which will show up as a bump in the correlation function’s
shape. Typically, the Goldhaber parametrization [3] -presented later in this thesis- is
used to fit the correlation function obtained, so we can obtain quantities of interest.

1.1.2 Derivation of Bose-Einstein Correlation

In a quantum process, the probability of producing new particles is determined by the
amplitude of the sum’s square of multiple terms in the wave-function that contribute to
the process. The sum’s square will lead to interference terms that could enhance the
total probability.

In order to understand the origin of Bose-Einstein correlations, we can start con-
sidering the most basic example presented in [18] and [14], two identical bosons, for
instance, positive pions coming from two different point sources. We take the situation
shown in Fig. 1.1 where two identical pions are emitted from the same event in the
points r1 and r2 and detected at the detectors DA and DB with momenta kA and kB
respectively. Both pions are identical and indistinguishable. Therefore, it is impossible
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to determine which particle reached which detector. Because of their indistinguishabil-
ity and combined with the fact that pions are bosons, the pions wave function must be
symmetric under the exchange of them:

Figure 1.1: Scheme of Bose-Einstein correlation effect. Two identical pions are created
in points r1 and r2 and detected in detectors DA and DB. Two possible scenarios are
possible, represented by full lines and dashed lines.

ΨA,B(1, 2) =
Ψ1AΨ2B + Ψ1BΨ2A√

2
(1.2)

where Ψ1A is the wave function of a pion produced at point r1 with momentum kA

and detected at detector A . Assuming that both pions can be described by plane waves
in the form Ψ1A ∝ eikAr1 , the wave function of this process is given by:

ΨkA,kB(1, 2)) =
1√
2

[ei(kAr1+kBr2) + ei(kAr2+kBr1)] (1.3)

and the square of the wave function will have the following form:

|ΨkA,kB(1, 2)|2 =
1

2
[ei(kAr1+kBr2)+ei(kAr2+kBr1)][e−i(kAr1+kBr2)+e−i(kAr2+kBr1)] (1.4)
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|ΨkA,kB(1, 2)|2 = 1 +
1

2
[ei(kA−kB)r1ei(kB−kA)r2 + ei(kB−kA)r1ei(kA−kB)r2 ] (1.5)

We can rearrange this and get:

|ΨkA,kB(1, 2)|2 = 1 +
1

2
[eiq(r1−r2) + e−iq(r1−r2)] (1.6)

and then we can obtain:

|ΨkA,kB(1, 2)|2 = 1 + cos(q(r1 − r2)) (1.7)

This shows that the probability of the process and, therefore, the Bose-Einstein
correlation effect depends on the spatial distance (r1−r2) between two particle sources
and the momentum difference q between the observed pions.

The previous example considers the source of the pions as two points in space. In
a more general case, if we consider that the pions are emitted from the whole source
statistically independently with the density of the source represented as ρ(r), we can
get the total probability of the process integrating over r1 and r2, obtaining:

Pk1,k2 ∝
∫
d3r1d

3r2ρ(r1)ρ(r2)|ΨkA,kB(1, 2)|2 (1.8)

Pk1,k2 ∝
∫
d3r1d

3r2ρ(r1)ρ(r2)(1 +
1

2
[eiq(r1−r2) + e−iq(r1−r2)]) = 1 + |ρ̃(q)|2 (1.9)

where q = k1 − k2 and ρ̃ is the Fourier transformation of ρ(r).

Coherence Parameter

The previous treatment considers a complete chaotic source, but in reality, any degree of
coherence can reduce the Bose-Einstein effect. In order to include the "phase" of each
point-like oscillators, one can consider a time dependent amplitude f(t) associated with
each local source.

5



We can start by considering two point-like oscillators. The total amplitude for emit-
ting a single pion with momentum kA from those sources is given by:

ΨkA(1, 2) ∝ [f1e
ikAr1 + f2e

ikAr2 ] (1.10)

where f1 = f1(t) and f2 = f2(t) represent the time dependence of the oscillators
located at r1 and r2 respectively.

The probability for single particle production is obtained by squaring 1.10:

|ΨkA(1, 2)|2 = [|f1|2 + |f2|2 + f1f2e
ikA(r2−r1) + f2f1e

ikA(r1−r2)]. (1.11)

Now, the joint amplitude for a two-pion production process is given by the product
of two single particle processes:

ΨkA,kB(1, 2) = ΨkA(1, 2)ΨkB(1, 2) ∝ [f1e
ikAr1 +f2e

ikAr2 ][f1e
ikBr1 +f2e

ikBr2 ] (1.12)

And then we obtain the joint probability of the process by squaring 1.12:

|ΨkA,kB(1, 2)|2 =[|f1|2 + |f2|2 + f1f
∗
2 e

ikA(r2−r1) + f2f
∗
1 e

ikA(r1−r2)]×

[|f1|2 + |f2|2 + f1f
∗
2 e

ikB(r2−r1) + f2f
∗
1 e

ikB(r1−r2)]
(1.13)

In case of completely coherent sources, the amplitudes for radiation from each
source do not change, and the product of both phases will simply be < f1f

∗
2 >= f1f

∗
2

and < f2f
∗
1 >= f2f

∗
1 . The joint probability 1.13 in this particular case will take the

form:

|ΨkA,kB(1, 2)|2C = |ΨkA(1, 2)|2|ΨkB(1, 2)|2 (1.14)

and the correlation function disappear completely, in other words, the two-particle
probability of detecting two identical pions will be equivalent to the product of two
one-particle probabilities.

On the contrary, in case of completely incoherent sources, the amplitudes for radi-
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ation from each source fluctuate wildly, and the average of the product of the phases
< f1f

∗
2 >=< f2f

∗
1 >= 0. We can calculate the joint probability 1.13 easily consid-

ering all terms in the product containing: f1f ∗
2 , f2f ∗

1 , (f1f
∗
2 )∗, or (f2f

∗
1 )∗ are zero in

average.
Then, the joint probability in the incoherent case is:

|ΨkA,kB(1, 2)|2I = (|f1|2+|f2|2)2+|f1|2|f2|2[ei(r1−r2)(kB−kA)+e−i(r1−r2)(kA−kB)] (1.15)

And we can obtain:

|ΨkA,kB(1, 2)|2I = (|f1|2 + |f2|2)2 + 2|f1|2|f2|2cos[(kB − kA)(r1 − r2)] (1.16)

In this opposite case, the correlation function will be enhanced.
In order to clearly see the degree of enhancement, we can look at the definition

of the correlation function R(k1,k2) =
P (k1, k2)

P (k1)P (k2)
which corresponds to the ratio

of the two-particle probability densities divided by the product of two single parti-
cle distributions. We have: P (k1, k2) =< |ΨkA,kB |2 >, P (k1) =< |ΨkA|2 > and
P (k2) =< |ΨkB |2 >,

Therefore, the correlation function in the coherent case will take the form:

R(k1,k2)C =
P (k1, k2)C
P (k1)P (k2)C

= 1 (1.17)

In the other hand, in the completely incoherent case:

R(k1,k2)I =
P (k1, k2)I
P (k1)P (k2)I

= 1 +
2|f1|2|f2|2cos[q(r1 − r2)]

(|f1|2 + |f2|2)2
> 1 (1.18)

We can notice that the correlation function R(k1,k2)I →
3

2
when q → 0, in the

case both sources emitting with equal strength. When we add more sources [19], the
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correlation function takes the form:

Rk1,...,(kn)I → 1 + (1− 1

n
) (1.19)

when q → 0.
For a source with infinite emitters distributed over a region in space, the expression

for the correlation function will take the form:

R(Q) = 1 + |ρ̃(Q)|2 (1.20)

where Q12 = (
√
−(p1 − p2)2) is the Lorentz invariant 4-momentum difference.

In reality, the emission region can be a mixture of coherent and incoherent sources.
Such sources lead to intermediate cases which will manifest in the correlation function.
To take into account this effect, a empirically factor λ was introduced. For a source
with infinite emitters distributed over a region in space, the most general expression for
the correlation function will take the form:

R(Q) = 1 + λ|ρ̃(Q)|2 (1.21)

where λ is called chaoticity parameter. The chaoticity parameter λ shows the degree of
coherence in the pion production. A completely coherent source (λ = 0) would show
no interference, and λ = 1 corresponds to a complete incoherent source.

1.1.3 Goldhaber Parametrization

We have concluded that the Bose-Einstein correlation function depends on the density
of the source; the 4-momenta difference between pions; and that it can show different
grades of coherence. Regarding the pion source, we can assume a space-time distribu-
tion ρ(r) proposed by Goldhaber corresponding to an emitting source with a spherical
Gaussian density distribution:

ρ(r) = ρ(0)exp(
−r2

2R2
) (1.22)

Considering this source distribution and using Eq. 1.21, we can obtain that the
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Bose-Einstein correlation will have the following form, called Goldhaber parametriza-
tion:

R(Q12) = (1 + λexp(−r2Q2
12)) (1.23)

where the parameter r represents the size of the pion production zone and λ is the co-
herence parameter previously discussed. Different experimental effects could include
final state interactions between the pions or misidentification of particle which leads to
the reduction of the purity of the pion sample. These effects can modify the λ parame-
ter below or over 1, which makes it difficult to compare measured values of λ between
experiments.

1.1.4 Coulomb Correction

When we deal with charged particles, we have to consider the Coulomb force between
them [20]. In Bose-Einstein correlations, we work with identical particles with the
same charge so the repulsive Coulomb force tend to separate the pair and reduce the
enhancement signal. In case of opposite charged particles, the effect is reversed when
compared to the like-sign case, and particles tend to get closer. The measured distribu-
tion of pion pairs, including the effect of Coulomb interaction force, can be described
as:

Nmeasured(Q) = G(Q)N(Q) (1.24)

where Nmeasured is the measured pair distribution, G(Q) is the Coulomb correction
factor, and N(Q) is the pair distribution free of Coulomb force. The most simple
expression for G(Q) is the Gamow factor [19] given by:

Gl(η) =
η

exp(η)− 1
(1.25)

Gu(η) =
η

1− exp(−η)
(1.26)

respectively -for like-sign and unlike-sign pairs- where η = 2παmπ/Q, α is the fine
structure constant (1/137) and mπ is the particle mass. The intensity of this correction
is shown in Fig. 1.2. The Gamow factor is calculated assuming that both particles
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are created in single point -which is not the case in the Bose-Einstein correlations-
. Therefore, this approach would not be optimal [21]. We can also consider that, at
Q12 = 0.05[MeV ], the Gamow factor is only around 2% and its effect negligible. We
decided not to include this correction in the analysis. Instead, we only considered for
the final fit the range Q12 > 0.05[MeV ], as proposed in [14]. Below this point, the
Coulomb effect are strong enough to be considered.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
12

Q

0.6

0.8

1

1.2

1.4

)
12

G
(Q

Gamow factor

Gamow Factor

Same charge (++) (--)

Opposite charge (+-)

Gamow factor

Figure 1.2: Gamow factor for like and unlike sign pairs. This factor is used to correct
the measured distribution of detected pairs affected by Coulomb force.
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Chapter 2

Experimental Setup

The experiments (E02-104, E02-110) were carried out during the run period called
EG2, from January 9, 2004 to March 5, 2004, in the experimental Hall-B at Thomas
Jefferson National Accelerator Facility, in Newport News, VA, USA. The electron beam
from CEBAF (Continuous Electron Beam Accelerator Facility) is simultaneously de-
livered into three different experimental areas, which are Halls A, B and C. The main
detector in Hall B was called CLAS (CEBAF Large Acceptance Spectrometer) [22],
and it was designed to operate with both electron and photon beams of 5 GeV dur-
ing the EG2 run period. A schematic of the facility, including the accelerator and the
experimental halls, are shown in Fig. 2.1.
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Figure 2.1: CEBAF accelerator and experimental halls.

2.1 CLAS

The CLAS design is based on a toroidal magnetic field. Such field provides the ability
to measure charged particles with good momentum resolution and keep a zone around
the target free of magnetic field which allows the use of dynamically polarized targets.
The magnetic field is generated by six superconducting coils around the beam axis.
The detection system is composed of Drift Chambers (DF) to determine trajectories
of charged particles; Cherenkov Counters (CC) for electron identification; Scintillation
counters (SC) for measuring time-of-flight (TOF); and electromagnetic calorimeters
(EC) to measure particle energy and neutral particles as neutrons. All segments form
six independent spectrometers with a common target, trigger and data acquisition. For
electron scattering experiments, a small normal-conducting mini-torus surrounds the
target to keep low momentum electrons produced by Møller scattering from reaching
the innermost drift chambers. The schematic view of the detector with the beamline
and the target region can be seen in Fig.2.2 and perpendicular to the beam in Fig. 2.3.
A spherical coordinate system is used to describe the geometry of the experiment .The
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z-axis is taken to lie along the beam direction with θ as the polar (scattering) angle, and
φ as the azimuthal angle. The x and y directions are respectively horizontal and vertical
in the plane normal to the beam.

Figure 2.2: CLAS schematic along the beam line. Typical photon, electron and proton
tracks from an interaction are illustrated.

2.1.1 Torus Magnet

The magnetic field for the momentum analysis of charged particles is generated by six
superconducting coils arranged in a toroidal geometry around the electron beam line.
The magnetic field can be calculated directly from the current in the coils because there
is no iron in the system. The layout of the coils and contours of constant absolute field
strength are shown in Fig. 2.4. The magnet is approximately 5 m in diameter and 5 m in
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Figure 2.3: CLAS view in a plane perpendicular to the beam direction.

length. The main field component is in the φ-direction. However, there are significant
deviations from a pure φ-field close to the coils. The effect of these deviations on
the particle trajectories is minimized by the circular inner shape of the coil: particles
coming from the target do not experience a significant deflection in φ when crossing
the inner boundary of the coil. The magnet bends charged particles toward or away
from the beam axis depending on the sign of the charge but leaves the azimuthal angle
essentially unchanged.

2.1.2 Drift Chambers (DC)

The magnet coils separate the detector in six different areas or sectors. In each of the six
sector, 18 separate drift chambers were grouped in 3 different radial regions. Each of
these regions has different magnetic field intensities. The six "Region One" chambers
are closer to the target in an area of low intensity field. The six "Region Two" chambers
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Figure 2.4: Magnetic field contour produced by the super conducting coils.

are placed between the magnet coils in an area of high intensity field near the point of
maximum track saggita. And the six "Region Three" are located outside the magnetic
coils.

The wires placed in the chambers were stretched between two endplates. Each par-
allel to its closest coil plane, and thus tilted at 60o with respect each other. For pattern
recognition and tracking redundancy, the wire layers in each chamber are grouped into
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two superlayers of six wire layers each: one axial to the magnetic field, and the other
tilted at a 6o stereo angle to provide azimuthal information. The stereo superlayer of
Region One is an exception to this rule, consisting of only four wire layers due to space
constraints. The wire layout can be seen in Fig. 2.5.

From considerations of system safety, as well as in order to improve the operating
lifetime, an 88–12% mixture of Ar and CO2 was used.

Details on the drift chamber system can be found in [23].

Figure 2.5: Representation of a Region Three chamber, showing the layout of its two
superlayers. The sense wires are at the center of each hexagon and the field wires are
located are the vertices. A passing particle is shown by the highlighted drift cells that
have fired.
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2.1.3 Cherenkov counters, CC

The Cherenkov Counters have two main functions: triggering electrons and discrimi-
nating pions from electrons. In each sector, CC covers out an angle of θ = 45o. Placing
the light collecting and PMTs in the region of φ covered by the magnet coils and cover-
ing most the available space with mirrors as seen in Fig. 2.6, a low amount of material
in the sensitive area is placed, preventing degradation of energy resolution. Since the
charged particle trajectories lie in planes of constant φ, the placement of the PMTs does
not affect the angular coverage. The light-collection optics were designed to focus the
light only in the φ direction, which preserves the information on the electron polar an-
gle θ. The PMTs were covered with high-permeability magnetic shields because they
were located at the field’s region of the torus with the highest transverse fields. The
Cherenkov radiator gas, used in the detector, was perfluorobutane (C4F10) with a re-
fractive index of 1.00153, which results in a pion momentum threshold of 2.5 GeV/c.
An inbending electron, passing through the active volume of the detector, results in
typically 4-5 photoelectrons.

Details on the CLAS Cherenkov detector can be found in [24].

Figure 2.6: Schematic diagram of one Cherenkov segment, symmetric around the sector
center. Shown an example of an electron trajectory with the collection of Cherenkov
light to the PMT. The PMTs, magnetic shields, and light-collecting Winston cones lie
in the region of the detector shadowed by the CLAS magnet coils, and thus do not affect
the electron acceptance.
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2.1.4 Time-of-Flight Counters (SC)

The time-of-flight counters are made of scintillator counters located radially outside
the tracking system and Cherenkov counters but in front of calorimeters as can be seen
in Fig. 2.2 and Fig. 2.3. They cover the polar angle θ between 8o and 142o, and the
entire active range in φ. The thickness of the scintillator is 5.08 cm and is positioned
perpendicular to the average local particle trajectory. At forward angles θ < 45o the
counters are 15 cm wide and 32-376 cm in length, for large-angle counters are 22 cm
wide and 371-445 cm in length.

Details on the Time-of-flight system can be found in [25].

2.1.5 Forward Electromagnetic Calorimeters (EC)

The main functions of the electromagnetic calorimeter are the detection of electrons at
energies above 0.5 GeV; photons with energies over 0.2 GeV; and detection of neutrons.
It covers the θ angle up to 45o. The calorimeters were made of alternating layers of
scintillator strips and lead sheets with a total thickness of 16 radiation lengths. The
ratio of lead-scintillator thickness was 0.24 leaving a total of 39 cm of scintillator and
8.4 cm of lead. For each EC module, the lead-scintillator layers are contained within a
volume having a shape of a nearly equilateral triangle with projective geometry pointing
to the nominal target position. Each EC module consisted of 39 layers, constructed with
10mm thick scintillator; followed by a 2.2mm lead sheet; and contained in a volume
with a nearly equilateral triangle shape. For the readout system, 36 strips parallel to
one side of the triangle with a rotation of 120o in successive layers, giving rise to a set
of views U, V and W, each one with 13 layer as seen in Fig. 2.7. Each of the views are
further subdivided into an inner (5) and outer (8) stack, providing longitudinal sampling
that helps to improve hadron/electron separation.

Details on the CLAS forward electromagnetic calorimeter system can be found in
[26].

Performance studies include 10 cm fiducial cut from the edges of EC. The energy
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Figure 2.7: Exploded view of one of the six CLAS electromagnetic calorimeter mod-
ules.

resolution is:
σ

E
=

10.3%√
E(GeV )

,

and has a negligible constant term.
The sampling fraction ranges from 0.25, for electrons around 0.5 GeV to 0.3 for

electrons of 3 GeV and more. The position resolution is 2.3 cm for electrons above 0.5
GeV, and the timing resolution is around ∼ 200 ps.

2.2 Double-Target System

The design of the target was arranged for precision measurement of nuclear medium
effects- such as the hadron attenuation and transverse momentum broadening- and the
attenuation of rho mesons in nuclei to search for color transparency in a unpolarized
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electron scattering electron beam of 4-5 GeV. To accomplish this goal, an effort was
made to minimize the systematic uncertainties through a unique double-target design.
This design is composed of two targets: one solid (Carbon, Aluminum, Tin, Iron or
Lead), and one liquid (Deuterium). Both target are positioned a few centimeters apart
exposed at the same time, and to the same electron beam.

The main reason to use a double-target system is related to time-dependent modu-
lations of trigger efficiency, charged particle reconstruction efficiency, and acceptance
corrections based on emergence and disappearance of inoperative channels. Other sys-
tematic uncertainties sources -such as atmospheric pressure variations and drift cham-
ber gas composition variations- can be reduced by exposing two targets simultaneously
to the electron beam.

The requirements for the target were as follows:

• Large acceptance for semi-inclusive and exclusive kinematics, plus a good match
to the CLAS spectrometer acceptance.

• Minimal mass for low-energy particles at large angles (70 − 140o relative to the
beam direction) as well as forward going particles.

• Approximately equal scattering rates for two targets in the beam simultaneously.

• One of the targets needed to be a stable deuterium cryotarget.

• Less than 2-3% of a radiation length of any target material to suppress secondary
electromagnetic processes.

• Minimal entrance/exit window thicknesses for cryotarget to maximize target/win-
dow ratio.

• Rapid target changes for the heavy nuclear targets.

• Minimal mass in support structure.

A schematic of the cryotarget can be seen in Fig. 2.8. A full assembly of the double
target is shown on Fig. 2.9. Each holder arm carries a different target and can be flipped
on and off remotely to change the target on beam.
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Figure 2.8: A schematic drawing of the cryotarget cell, wich shows the three support
tubes through which cryogens flow; the entrance foil attached to the cylindrical stand-
off; and the exit foil attached to the outer cone. The electron beam passes through the
center of the support ring in the upper left part of the drawing, then through the entrance
and exit foils in the lower right part of the drawing.

Details on the Target system can be found in [27].
In what follows, the solid targets used in the analysis are 12C, 56Fe 208Pb.
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Figure 2.9: The full double-target assembly, which shows one solid target flipped on
position; five solid targets retracted; and the thermally insulated cryotarget cell.
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Chapter 3

Data Analysis

3.1 Analysis Tools

The raw data obtained from the experiment was stored in a BOS (Bank Object Sys-
tem) [28] format database in separated files for each run. The data is organized in
banks, which are units of information corresponding to certain detector. The recon-
struction procedure to convert raw data into particle information is named "cooking".
The "cooking" is performed using USERANA software, which gives information of
the reconstructed tracks in BOS format. The data is organized in terms of events, in-
cluding the trigger electron followed by all the reconstructed particles detected after
the trigger. The next step consists in taking the BOS format data from USERANA and
convert them to ROOT [29] format files. This step is performed using the ClasTool
software. ClasTool organizes the information in ClasTool-like structure using NTuple
objects from ROOT. The links between different banks are included as pointers.

The last step is performed using Analyser [30], a c++ based class. Analyser takes
the data from ClasTool and reduces it to NTuples with general information of the par-
ticles. This process is implemented in order to have a simpler format, as well as, easier
and faster to work with.

Using the information stored, particles are identified and assigned an PID. In this
study, electrons and π+ were identified in order to measure Bose-Einstein pion corre-
lations.
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3.2 Electron Identification

The particles in the EVNT bank are ordered according to their arrival time to SC. De-
pending on the type of particle, some of them will leave tracks in all detectors and others
in just a part of them. The information, regarding the sign of the electrical charge of the
particles, is extracted from the DC looking at the curvature presented under the mag-
netic field produced by the torus magnet. If the particle bends inwards, it has a negative
electric charge, on the contrary, if the particle is positive, it will bend outwards. To
classify an event as a "good" one, the first particle identified in the event must be the
scattered electron, hence the focus is on the first row of the EVNT bank. The basic
requirements to identify a particle as an "electron" are listed below.

• The particle must leave a track in all detectors (DC, CC, SC, EC).

• The charge must be negative.

In terms of Bank information in the Analyser software, electron identification is re-
quired to be:

Requirement Description
0 < EVNT.status < 100 Correct Status
rows in CCPB != 0 Must be information in the Cherenkov Counter bank
rows in ECPB != 0 Must be information in the Electromagnetic calorimeter particle bank
rows in SCPB != 0 Must be information in the Scintillator counter particle bank
EVNT.CCStat > 0 Valid pointer to CCPB bank
EVNT.SCStat > 0 Valid pointer to SCPB bank
EVNT.DCStat > 0 Valid pointer to DCPB bank
EVNT.ECStat > 0 Valid pointer to ECPB bank
EVNT.Charge == -1 Particle must have negative charge

Table 3.1: Bank information in the Analyser software required for electron identifica-
tion.

If these requirements are fulfilled, the next step is to make π−/e− separation by
using the information on CCPB. We can differentiate e− from π− measuring the elec-
tromagnetic radiation emitted by them passing through a medium, called Cherenkov
radiation. Cherenkov radiation is a type of electromagnetic radiation emitted by a
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charged particle passing through a medium with a velocity larger than the velocity
of light in such medium, and the number of photons emitted by the charged particle
increases with its velocity. A minimum momentum threshold for each type of particle
is required to emit Cherenkov radiation, depending on the mass of the particle. In this
case, charged pions need a minimum momentum of 2.5 GeV to emit Cherenkov light,
compared to electrons that need just few MeV. From the distribution of the number
of photons collected by the PMTs of the CC, a clear peak with low number of photo-
electrons is observed. This peak correspond to the π− signal. A minimum number of
2.5 photo-electrons is required in each sector of the CC in order to select the particle as
an electron. A cut in the number of photoelectrons can be seen in Fig. 3.1.

Figure 3.1: Number of photo-electrons threshold on CC. The peak on the left side come
from π− contribution. The red filled area corresponds to the electron selection.

Even with the electrons identified, some additional cuts are necessary in order to
assure the quality of the data. As a result of the detector being divided in six sectors,
there is a gap between the sectors with poor acceptance because when a particle hit the
edge of the detector, the electromagnetic shower is not fully contained within the detec-
tor. In order to reduce systematic uncertainties due to acceptance, a fiducial volume is
selected where the acceptance is large and uniform. A set of cuts called "fiducial cuts",
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developed by Lorenzo Zana, removed the data near the edges of the detector where
the acceptance decreases. The difference between electrons selected with and without
fiducial cuts applied can be seen in see Fig. 3.2.

After the electrons are identified, the next step is to select events with kinematics
in the DIS regime. According to the wave length of the virtual photon: λ ≈ 1/Q, the
selection of Q2 > 1.0 allows to resolve partons inside the nucleons. To exclude the
hadrons coming from nuclear resonance decay (e.g. ∆++) a cut on the invariant mass
of the electron-nucleon interaction W is applied: W > 2.0. Besides that, one of the
possible sources of the data contamination are the radiative effects which are becoming
more important for larger values of the DIS variable y, hence a cut y < 0.85. Fig 3.3
show electrons with all selection cuts applied.

3.2.1 Vertex Cuts

After a particle is identified as electron, the next step is to identify if it interacted with
the solid or liquid target. To achieve this, a vertex cut is applied on the Z variable that
represents the position of the vertex along the beam axis. The vertex cuts on Z for each
sector are presented in the Table 3.2, Figure 3.4 shows the Z distribution of the vertex
position of electrons, and Figure 3.5 shows vertex cuts for each sector.

Sector Liquid Target Solid Target
0 -32.50 ; -28.00 -26.50 ; -20.00
1 -32.50 ; -27.50 -26.00 ; -20.00
2 -32.00 ; -27.25 -26.65 ; -20.00
3 -32.00 ; -27.75 -25.85 ; -20.00
4 -32.50 ; -28.35 -26.65 ; -20.00
5 -33.50 ; -28.75 -27.15 ; -20.00

Table 3.2: Vertex cuts on Z to identify electron target interaction.
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Figure 3.2: θlab vs φlab for electron candidates in each of the six sectors. The upper plot
shows electron candidates before fiducial cuts ; the lower plot shows the electrons after
fiducial cuts, the hits at the edges of each sector are removed.
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Figure 3.3: Electron phase space after all cuts applied.

Figure 3.4: The rightmost peak corresponds to the solid target and the leftmost distri-
butions corresponds to the liquid deuterium target. The smallest center peak shows the
aluminum foil between both targets.
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Figure 3.5: Vertex for the target discrimination. Events coming from liquid and solid
target are shown in red in the left and right side respectively. Plots made by Sebastián
Morán

3.3 π+ Identification

The main particles on this analysis were positive pions π+. The principal task on the
selection process was to discriminate them from other positive hadrons. Positive pions
were identified using positive reconstructed tracks with track signals in the SC, DC.

In terms of Bank information in the Analyser software, it is expressed as:

• 0 < EVNT.status < 100
rows in SCPB != 0
EVNT.SCStat > 0
EVNT.DCStat > 0

• EVNT.Charge == 1

To separate positive pions from kaon and proton contamination, we used a "time-
of-flight" discrimination technique. The selection was made using information from
the tracking system and the time-of-flight system to determine the timing difference be-
tween a positive hit and the outgoing electron. This time difference is called TimeCorr4
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(∆t) and has the following form:

∆t =
Le

−

flight

c
− te−flight + tflight − TRFI −

Lflight√
(
Mπ+

p
)2 + 1

(3.1)

where te
−

flight and tflight are correspondingly the electron’s and charged particle’s
time of flight from the interaction vertex to the scintillator plan. Le

−

flight and Lflight are
the pathlenghts from the vertex to the TOF counters. Mπ+ is the π+ mass and p is the
momentum of the charged particle. The TRFI is an additional timing correction using
the radio frequency signal sent from the accelerator injector.

The idea with this technique is to compare the theoretical time for a π+ with a
given momentum with the measured time taken for the particle to reach the SC detec-
tor. Particles heavier than the searched particle would take more time to reach the SC
than the theoretically expected time. In a similar way, lighter particles would take less
time. Cuts around 0 [ns] in time difference between the theoretical and measured time
TimeCorr4 are applied for different momentum bins to select the π+. These cuts are
summarized in Table 3.3.

Momentum bin [GeV/c] TimeCorr4 [ns]
0.00 ; 0.25 -0.70 ; 0.70
0.25 ; 0.50 -0.70 ; 0.65
0.50 ; 0.75 -0.70 ; 0.65
0.75 ; 1.00 -0.70 ; 0.65
1.00 ; 1.25 -0.55 ; 0.55
1.25 ; 1.50 -0.50 ; 0.55
1.50 ; 1.75 -0.50 ; 0.40
1.75 ; 2.00 -0.48 ; 0.40
2.00 ; 2.25 -0.50 ; 0.40
2.25 ; 2.50 -0.50 ; 0.40
2.50 ; 2.70 -0.50 ; 0.40

Table 3.3: TimeCorr4 cuts for π+ for different momentum bins.

Plots in Fig. 3.6 show the TimeCorr4 and mass distribution for positive particles
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Figure 3.6: TimeCorr4 cuts. π+ selected in red from all positive candidates that satis-
fied all cuts prior to time of flight cuts. T4 and mass distributions are presented on the
left and right side respectively.
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that fulfilled selection cuts mentioned in each momentum bin. All positive hadrons are
plotted in blue and the selected pions that satisfy TimeCorr4 cuts are shown in red. A
clear peak can be seen at the proton mass.

For pions with energies higher than 2.7 GeV, CC is used. Over this energy threshold,
pions start to emit Cherenkov Radiation, a kind of electromagnetic radiation emitted
when a charged particle moves faster than light in the medium. Heavier hadrons will
not emit Cherenkov radiation at this energies. We request particles with more than 2.5
photo electrons emitted. In the final analysis it was decided to not include pions in
this momentum range because hadron discrimination starts to get worse and proton and
contamination is expected to be higher.

For π+, we also apply fiducial cuts in a similar way we applied to electrons as
mentioned in 3.2 to ensure good quality data. We made a cut in θlab and φlab variables to
remove hits close to edges of the detector where acceptance is worse, and reconstruction
is less reliable.

Identified π+ are shown in Fig. 3.7. The red dots show pions selected. Proton, kaon
and even deuterium signals can also be seen.

Figure 3.7: π+ selected shown in red after applying all selection cuts. Particles taht not
passed the selection cuts are shown in black. Protons, kaons and positrons can be seen
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3.3.1 Pion pair Construction

In order to construct the correlation function, we need the two-particle probability dis-
tribution directed by Bose-Einstein symmetrization as well as the single particle dis-
tributions described in Eq. 1.1. The single particle distributions for the denominator
of this ratio are difficult to measure experimentally, so instead of using two single par-
ticle distribution, a common practice is to replace both single-particle distribution by
a reference two-particle probability density distribution, also called background distri-
bution Db(p1, p2). The background distribution is constructed experimentally creating
uncorrelated pion pairs that ideally behaves exactly as D(p1)D(p2) with the exception
of not containing Bose-Einstein correlations. Therefore the experimentally constructed
Bose-Einstein correlation becomes:

R(p1,p2) =
D(p1, p2)

Db(p1, p2)
(3.2)

The numerator from the experimental Bose-Einstein correlation is constructed from
the number of π+ same-event pairs that satisfy the imposed cuts. This distribution, also
called signal distribution, contains identical pion-pairs coming from the same source
and, therefore, correlated by Bose-Einstein statistics.

The number of π+π+ same-event pairs for all different targets studied are presented
in the following table:

Target Number π+ in 2+ pion events Number of same-event pairs
D2 4.465.779 2.279.010
C 995.063 517.690
Fe 1.628.385 850.902
Pb 454.873 236.911

Table 3.4: Number of positive pions slected from multiple π+ events and same-event
pairs constructed from them, for different nuclear targets.

For good determination of the Bose-Einstein effect, is highly important to have a
correct background distribution, the denominator in Eq. 3.2. The background can be
constructed in different ways that satisfies the absence of Bose-Einstein effects but
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maintain other properties found in the same-event distribution. The methods most
widely used in literature are the following:

• Method of unlike-sign pairs.

• Method of event mixing.

In the method of unlike-sign pairs, the background distribution is constructed in
the same way as the signal distribution with the exception of pairing two pions of the
opposite charge (π+π−), instead of two identical pions with the same charge π+π+.
In this case, as the two particle are not identical, their wave functions do not interfere
leading to the Bose-Einstein effect. One of the disadvantages of these methods is the
possible contamination of unlike-sign pion pairs coming from resonances. Another
disadvantage is that the detector efficiency and contamination in the selection method
of positive and negative pions are not identical.

In the method of event mixing, the background distribution in constructed using
π+π+ but the two particles, needed to construct the pair, are taken from different events.
In our case, we tried different ways to do the mixing of events, that is discussed later
in the systematic errors section. With this method for the construction of the back-
ground, Bose-Einstein correlations from the original events are lost because both pions
were originated from different events and, therefore, have different sources. The main
problem related to the mixing method is the violation of energy-momentum conser-
vation when selecting pions from two different events. Some of the pion-pairs in the
background distribution are created outside the phase space of the same event pion-pair
distribution that leads to higher number of pairs with high Q12 compared to the same
event part.

In this work, the method of event mixing was chosen for the construction of the
background distribution for the calculation of the Bose-Einstein correlation function.
The main reason for this decision was that we have a better identification of π+ com-
pared with π−, which leads to more consistent results and a better correlation function
shape. In the mixing method, the pions are selected from different events. In conse-
quence, this procedure will pick events with virtual photons with different orientations
in the lab frame. Then to conserve the collinearity between the virtual photons from
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both events, for each pair we rotated the second event selected to align both virtual
photons as shown in Figure 3.8. In this sketch, two events with their respective vir-
tual photon and scattered electron are shown in different colors. The second event is
rotated into the first one by the angle ∆ϕ, which is defined as the difference between
both virtual photons. It is important to emphasize that not only the virtual photon is
rotated but also the complete event, including the selected pion. The number of π+π+

pairs constructed using the method of event mixing is arbitrary; we can virtually form
as many pairs as we want. In order to get good statistics, we created 3 times the number
of pairs from the signal distribution.

Figure 3.8: Sketch of the rotation used to preserve the collinearity of photons of both
events in the mixing method. Different events are shown in different colors. The second
event is rotated into the first one by the angle ∆ϕ in order to align both virtual photons.

Only π+ with measured momentum P < 2.7 GeV were included in the construc-
tion of the pairs. The reason behind this is that pion identification up to these energies
is based on the information obtained mainly from the SC and DC, which is more reli-
able and is expected better purity of the pion sample, for momentum P > 2.7, proton
contamination is expected to be higher.
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Pion pairs, from both the same event distribution and background distribution, are
created taking events with at least two particles identified as π+. All events with only
one identified positive pion are discarded. For events with three or more π+ identified,
all possible pair combinations are included, i.e., for a three positive pion event, we can
construct 3 different pion pairs; for a four pion event, we get 6 pion pairs, etc. Special
emphasis has to be taken to not make double counting. Most of the selected pairs
comes from only two-pion events (97.3%), and a little percentage comes from events
with three (2.7%) or more (<0.1%) identified pions.

With both, the signal and background distributions constructed shown in Fig.3.9,
we calculated the correlation functions shown in Fig. 3.10 using Eq. 3.2 for different
nuclear targets.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
)2)

2
-p

1
-(p=(

12
Q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 p
ai

r 
co

un
ts

D2 Pair distribution

hreal
Entries  2279010

Mean   0.4574

Std Dev    0.2241

Pair distribution

Same events (singal)

Mixed evnts (background)

D2 Pair distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
)2)

2
-p

1
-(p=(

12
Q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
N

or
m

al
iz

ed
 p

ai
r 

co
un

ts

C Pair distribution

hreal
Entries  517690

Mean   0.4684

Std Dev    0.2375

Pair distribution

Same events (singal)

Mixed evnts (background)

C Pair distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
)2)

2
-p

1
-(p=(

12
Q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 p
ai

r 
co

un
ts

Fe Pair distribution

hreal
Entries  850902

Mean   0.4659

Std Dev    0.2404

Pair distribution

Same events (singal)

Mixed evnts (background)

Fe Pair distribution

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
)2)

2
-p

1
-(p=(

12
Q

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 p
ai

r 
co

un
ts

Pb Pair distribution

hreal
Entries  236911

Mean   0.4602

Std Dev      0.24

Pair distribution

Same events (singal)

Mixed evnts (background)

Pb Pair distribution

Figure 3.9: π+ pairs normalized distributions from data for all nuclear targets in the
Q12 variable. Black curves correspond to same event pairs (signal distribution) and red
curves correspond to mixed rotated events pairs (background distribution).
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Figure 3.10: Correlation function obtained by dividing the signal distribution by the
background distribution for different nuclear targets. Top left Deuterium, top right
Carbon, bottom left Iron, bottom right Lead.
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3.3.2 Simulations

Simulations are an important part in the understanding of experiment based problems
and are critically essential in the data’s correction. The simulations used for both, the
double ratio correction and the close track efficiency calculation, discussed in sections
3.3.4 and 3.3.3, were performed by Hayk Hakobyan and are explained in detail in [31].
The simulated events consist in two sets, the generated events and the reconstructed
events. By reconstructed events, it is meant the generated events after passing through
the Monte-Carlo→ GSIM→ GPP→ USERANA sequence, explained as follows.

Pythia 6.319 was the Monte-Carlo event generator used. In order to feed the events
to GSIM, the output file of the Monte-Carlo simulation was converted into BOS database
format containing the "PART" banks, which containing the information from the event
generator. The GSIM program creates an idealized model of the CLAS spectrometer.
The GSIM program is built on the base GEANT 3 simulation package and allows to
model the response of the spectrometer to the passage of particles through it including,
such processes as energy loss and radiation of secondary particles during transports
through different parts of CLAS.

In order to eliminate signals from dead channels, the GSIM Post Processor (GPP)
program was used to remove signals from dead wires in the drift chambers and bad
tubes in the scintillator counters.

The GSIM files were processed with the USERANA program to reconstruct the
simulated events. The executable of the reconstruction program was built with the same
libraries which were used for the processing of the actual data from the EG2 running
period. In the final stage, the same cuts used on the experimental data were used to the
simulated output data.

As an important note, these simulation did not include Bose-Einstein correlations
at generator level, which let us to apply a correlation function calculated from recon-
structed events as a correction to the data.

The simulated events were then processed in the exact same chain as the data in
order to construct the simulated correlation function for each of the four nuclear targets
as is shown in Fig. 3.12. The pion pair distributions needed to construct the simulated
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correlation function are shown in Fig. 3.11.
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Figure 3.11: π+ pairs normalized distributions from simulations for all nuclear targets
in the Q12 variable. Black curves correspond to same event pairs (signal distribution)
and red curves correspond to mixed rotated events pairs (background distribution).

We can see in 3.12 a completely different shape for all four nuclear targets at small
values of Q12 mainly because of two reasons. The first one corresponds to the lack of
enhancement in the signal distribution because the Bose-Einstein effect is not present.
The second one is related to the efficiency of the detector to detect very close tracks
(small Q12), which is discussed in detail in the next section and valid for both data and
simulation.

3.3.3 Close-Track Efficiency

Two particles with same charge and close momenta are a difficult configuration to mea-
sure. This happens when two particles in an event travel close to each other through the
detector with very close trajectories, so they could hit the same or neighboring detector
cells and their tracks can be misdetected as one particle instead of two separated tracks
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Figure 3.12: Correlation function obtained from reconstructed simulated events for dif-
ferent nuclear targets. A clear drop at low Q2 can be seen, this behaviour is related to
the absence of Bose-Einstein correlations in the simulations combined with low accep-
tance for close particle tracks.
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as shown in Fig. 3.13. In consequence there is a possibility of losing one track, and
thus, a pair. Thus, the probability to loss one of the two tracks will be higher if the
tracks are closer to each other.

Figure 3.13: Example of two proton close tracks. Two tracks very close with each other
can be detected as a single track.

Close-track momenta efficiency in CLAS detector was studied by K.Mikhailov, A.
Stavinsky, and A. Vlassov in [32]. In this study, three different methods were used to
measure this effect. The first method is the most conventional and is based on Monte-
Carlo simulations. The second method used experimental pairs made of two particles
with different masses. The third method uses well identified protons and consists in
the merging of different events at detector hit level to create new artificial events which
were reconstructed later.

The close track efficiency ε(q) is defined as:

dσmeasured
dνdQ2d~p1d~p2

= ε(q)ε1(~p1)ε2(~p2)
dσ

dνdQ2d~p1d~p2
(3.3)

where ε1 is the single particle reconstruction efficiency. ε(q) is extracted studying
the ratio:

Rmeasured(q)

R(q)generated
= ε (3.4)
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In this analysis two of the three previous methods were tested with some differ-
ences.

In the first method based on Monte-Carlo simulations, generated and reconstructed
events were analyzed, and events with the following pairs combinations were selected:
pp, pπ and ππ. Then, the correlation function were calculated for each pair type sep-
arately using 3.4, where R(q) correspond to the correlation function using generated
events and Rmeasured was the correlation function with reconstructed events. We took
-for the close track efficiency analysis- protons in the range 0.3 − 1.0 GeV and pions
with momentum range of 0.15− 0.6 GeV.

The second method, based in experimental data, is associated with the fact that
particles with the same charge and close momenta in the laboratory reference system,
but different masses leave the same track in the detector compared to identical particles.
Thus, close track efficiency is expected to be the same. There should be no sharp
singularities for small momenta difference −→q in the correlation function of pairs with
different masses in the laboratory system. With this method, the detection efficiency for
a pair of identical particles with small relative momenta are determined by measuring
the correlation function of particles with different masses and small relative momenta.
The dependence of such correlation function could be interpreted as the efficiency on
−→q .

A comparison between efficiency curves for both methods is shown in Fig.3.14. We
can see a clear drop on the efficiency on pairs detection at low momentum difference
between particles of the pairs, and a clear consistency between both methods and type
of pairs.

The close-track efficiency results were not applied directly on the construction of
the Bose-Einstein correlation function. However, is a good indication that most pairs
at low 4-momenta difference are lost, reduces the strength of the correlation, thus data
had to be corrected in some way, which was achieved by the double ratio correction
shown in section 3.3.4.
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Figure 3.14: Close track efficiency measured with different methods. A clear drop in
efficiency can be seen at low q.

3.3.4 Double Ratio Correction

We discussed in section 3.3.1 that the correlation function calculated from data has
some undesirable behaviour at high Q12. Such behaviour is related to the phase space
of the π+π+ pairs constructed with method of event mixing for the background dis-
tribution. We also showed that the experimental efficiency for close-tracks get worse
at low momentum difference Q12 of the pairs. We must add that our correlation func-
tion is subject to long-range correlations that affect the final Bose-Einstein correlation
shape.

The double ratio correction is an important part in the Bose-Einstein analysis. This
helps to correct experimental systematic biases found in the correlation function ob-
tained in data (Fig. 3.10) related to the experiment and our analysis methods.

The double ratio technique consists on dividing the experimental correlation func-
tion obtained from data by a correlation function constructed in the exact same way
as the experimental one, but using reconstructed Monte-Carlo events. The simulation
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used for the correction should include the same behaviour than data but must not in-
clude Bose-Einstein correlations.

Double ratio for the correlation function is defined:

R(Q12) = R(Q12)
data/R(Q12)

simul (3.5)

R(Q12) = (
D(Q12)

D(Q12)mix
)data/(

D(Q12)

D(Q12)mix
)simul (3.6)

In this way, other dynamical correlations -that are presented in both data and simu-
lations not coming from Bose-Einstein- should cancel out. This procedure should also
correct for other biases coming from efficiency/acceptance of the detector; violation
of momentum energy conservation in the background distribution; particle misidenti-
fication; and selection cuts. The double ratio correlations obtained are shown in Fig.
3.15

3.3.5 Experimental Goldhaber Parametrization Fitting

In order to extract the parameters r and λ from the correlation function obtained, we
need to fit the final shape. Different parametrizations can be used to fit the correlation
function. Most applied functions found in literature and other studies [13], [15] [14]
correspond to the Goldhaber parametrization presented in Eq. 1.23. The Golhaber
parametrization is an approximation that considers the source of the pions as a perfect
spherical Gaussian distribution, which in general is not the case. Additianaly, it does
not take in consideration all other possible interaction between the pions, the source,
and other generated particles in the process. In order to get adaptable function to adjust
the shape of the experimental correlation function, the Goldhaber parametrization has
to be multiplied by an additional polynomial to describe long-range correlations at
larger values Q12. An additional parameter γ is also included in the parametrization
as a normalization factor. The experimental Golhaber parametrization will have the
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following structure:

R(Q12) = γ(1 + λexp(−r2Q2
12))(P (Q12)) (3.7)

First, second and third order polynomials: [1 + δ(Q12)], [1 + δ(Q12) + ε(Q2
12)]

and [1 + δ(Q12) + ε(Q2
12) + σ(Q3

12)] were tested for the fit, where δ, ε and σ are free
parameters.

The second order polynomial [1 + δ(Q12) + ε(Q2
12)] was chosen for the final fit in

this analysis mainly because it adjusted better to the shape with less free parameters,
resulting in better χ2/ndf among the nuclear targets. The specific parametrization to
fit the correlation function used in analysis to get the r and λ has the following form:

R(Q12) = γ(1 + λexp(−r2Q2
12))(1 + δ(Q12) + ε(Q2

12)) (3.8)
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Figure 3.15: Double Ratio obtained by dividing the data correlation function by the
simulated one for all four nuclear targets. Goldhaber fit applied is shown in red.

The parameters obtained in the fit for each target can be found in Table 3.5
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Fit Deuterium Carbon Iron Lead
γ 1.142± 0.012 1.244± 0.035 1.313± 0.026 1.353± 0.082
λ 0.653± 0.122 0.427± 0.075 0.858± 0.088 0.616± 0.110
r 4.033± 0.252 2.577± 0.301 2.873± 0.150 2.280± 0.370
δ −0.393± 0.069 −0.604± 0.156 −0.650± 0.110 −0729± 0.305
ε 0.263± 0.115 0.403± 0.242 0.293± 0.181 0.364± 0.460

χ2/ndf 129.5/40 68.53/40 53.18/40 69.39/40

Table 3.5: Parameters obtained from the Goldhaber fit performed over all nuclear tar-
gets.

3.4 Two Dimensional Bose-Einstein Correlation

Up to this point in the analysis, we have described the Bose-Einstein correlation de-
pending on Q12 = (

√
−(p1 − p2)2) using one dimensional parametrization. This ap-

proach was based on the assumption that the pions’s source density is a Gaussian dis-
tribution described with one spatial parameter r. This assumption leads to a perfect
spherical geometry. Bose-Einstein correlations can also be studied in more than one
dimensions to describe the shape of the bosonic source. Studies in two or three dimen-
sions have been performed in other experiments to extract a more accurate picture of the
bosonic source. With a two-dimensional approach, we can "see" the pion source with
more detail by describing it with a spheroid-like shape that gives information about the
elongation of the source. Therefore, the correlation function is parametrized using two
space-time parameters. In DIS experiments, it is common to look at the longitudinal
and transverse components of the pair’s three-momentum difference, on respect to the
virtual photon axis. We are looking for differences in the size of the source along these
two perpendicular directions to see if the source is elongated along any of these two
axes. Other studies in deep inelastic scattering experiments show an elongation along
the longitudinal component of the source [33] [13].

For the two-dimensional case, instead of the Laboratory frame, the Longitudinally
Co-Moving System (LCMS) is often used as system of reference. In the LCMS, Bose-
Einstein correlations can be interpreted by the Lund-String Model [34][35] since it
represents the local rest frame of a string. The LCMS is defined for each pair of
particles with momenta −→p 1 and −→p 2, so that the sum of the momenta of both pions
−→p 12 = (−→p 1 + −→p 2) is perpendicular to the virtual photon axis. To accomplish this, a
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Lorentz boost is applied in a pair to pair basis to meet the previous requirement.
In this system, we decompose the momenta difference

−→
Q 12 = (−→p 1 − −→p 2) in its

longitudinal and perpendicular components (ql, qt).
The two-dimensional analysis was performed in the same way to the one-dimensional

study. The exact same pairs constructed in the one-dimensional study were used to
build the signal and background distributions in the two-dimensional case with an ad-
ditional cut: Q12 < 0.05. In this way, we are removing the same pairs not considered
in the one-dimensional study because of Coulomb effects for close pion pairs. The
two-dimensional correlation function is calculated:

R(Q12) = R(ql, qt)
data/R(ql, qt)

simul (3.9)

R(Q12) = (
D(ql, qt)

D(ql, qt)mix
)data/(

D(ql, qt)

D(ql, qt)mix
)simul (3.10)

In this case, a two-dimensional Goldhaber function can be applied to fit the Bose-
Einstein effect. The parametrization, which already includes a normalization factor and
a polynomial to describe long-range correlations, is written in the form:

R(ql, qt) = γ(1 + δlql + δtqt)(1 + λexp[−(r2l q
2
l + r2t q

2
t )]) (3.11)

where rl and rt can be interpreted as longitudinal and transverse size of the pion
source, λ correspond to the coherence parameter. γ is a normalization factor. δl δt are
free parameters.

In this case, the fits were performed in the range 0 < ql < 0.5GeV and 0 < qt <

0.5GeV .
For the two-dimensional correlation plots (Fig. 3.16, 3.18, 3.20, 3.22), the strength

of the correlation can be seen in the vertical axis, where an enhancement on the correla-
tion function can be found near ql = qt = 0. In the upper side plot, a three dimensional
view of the correlation shape is shown. The red surface represents the Goldhaber fit
from Eq. 3.11 applied to the curve obtained. The lower side plot shows the same curve
and fit seen from above; the red lines shows regions of fit with the same correlation
strength value.
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Figure 3.16: Two-dimensional correlation function for Deuterium target. In the top
image, a 3D representation of the correlation function is show. At the top left corner,
an enhancement in the distribution can be seen at ql = qt = 0. In the bottom image, a
2D projection can be seen with ql and qt in the vertical and horizontal axes respectively.
The red curve shows the two-dimensional Goldhaber fit.
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Figure 3.17: Two-dimensional correlation function slices for Deuterium target. In the
top image the first bin on ql (0 < ql < 0.05) is shown, with qt in the horizontal axis.
The bottom image shows the first bin on qt (0 < qt < 0.05) is shown, with ql in the
horizontal axis. Red line shows the two-dimensional Goldhaber fit.
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Figure 3.18: Two-dimensional correlation function for Carbon target. In the top image,
a 3D representation of the correlation function is show. At the top left corner, an en-
hancement in the distribution can be seen at ql = qt = 0. In the bottom image, a 2D
projection can be seen with ql and qt in the vertical and horizontal axes respectively.
The red curve shows the two-dimensional Goldhaber fit.
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Figure 3.19: Two-dimensional correlation function slices for Carbon target. In the top
image the first bin on ql (0 < ql < 0.05) is shown, with qt in the horizontal axis.
The bottom image shows the first bin on qt (0 < qt < 0.05) is shown, with ql in the
horizontal axis. Red line shows the two-dimensional Goldhaber fit.
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Figure 3.20: Two-dimensional correlation function for Iron target. In the top image,
a 3D representation of the correlation function is show. At the top left corner, an en-
hancement in the distribution can be seen at ql = qt = 0. In the bottom image, a 2D
projection can be seen with ql and qt in the vertical and horizontal axes respectively.
The red curve shows the two-dimensional Goldhaber fit.
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Figure 3.21: Two-dimensional correlation function slices for Iron target. In the top
image the first bin on ql (0 < ql < 0.05) is shown, with qt in the horizontal axis.
The bottom image shows the first bin on qt (0 < qt < 0.05) is shown, with ql in the
horizontal axis. Red line shows the two-dimensional Goldhaber fit.
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Figure 3.22: Two-dimensional correlation function for Lead target. In the top image,
a 3D representation of the correlation function is show. At the top left corner, an en-
hancement in the distribution can be seen at ql = qt = 0. In the bottom image, a 2D
projection can be seen with ql and qt in the vertical and horizontal axes respectively.
The red curve shows the two-dimensional Goldhaber fit.
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Figure 3.23: Two-dimensional correlation function slices for Lead target. In the top
image the first bin on ql (0 < ql < 0.05) is shown, with qt in the horizontal axis.
The bottom image shows the first bin on qt (0 < qt < 0.05) is shown, with ql in the
horizontal axis. Red line shows the two-dimensional Goldhaber fit.
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In order to visualize the results in an easier way, slice plots on the qt and ql variables
of the two-dimensional correlations are presented in Fig. 3.17, 3.19, 3.21, 3.23. In the
uppermost plots, the first bin of ql of the correlation function is shown, corresponding
to the pairs with ql < 0.05GeV and full range on qt. In a similar way, on the lower-
most plots, the correlation function is presented taking only the first bin on qt which
corresponds to the full range on ql with qt < 0.05GeV . The red curve in the slice plots
shows the projection of the two-dimensional fit at ql = 0 and qt = 0 in the top and
bottom plot respectively, and do not represent 1-dimensional fits.

3.5 Systematics

Systematic errors arise from the data’s treatment. The different methods on processing
the data can lead to deviations from the parameters values obtained for r, rl, rt, and λ
in both one and two-dimensional analysis. In Bose-Einstein studies, the most impor-
tant source of systematics comes from the construction of the background distribution.
Different methods of event mixing could present different biases and thus different re-
sults. There is no "the" perfect method for the data mixing. Another important source
systematic arises from the function chosen for the fit in order to get the parameters r, rl,
rt and λ. Different fit functions and ranges of fitting could affect the final results. The
way of binning the correlation function and the polynomial chosen for the parametriza-
tions 3.7 and 3.11 are selected based on the best goodness of the fit among them, but
the remaining polynomials are still valid options.

In order to estimate the uncertainty errors related to these factors, we repeated the
analysis described previously with all possible combinations of different:

• Methods for the construction of the background distribution.

• Fit ranges

• Parametrization functions.

• Binning.
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to get all the important parameters previously mentioned. We obtained slightly different
results compared to the standard analysis. Then, we calculated the square root of the
mean of squares (RMS) of the deviation of the modified parameters r, rl, rt and λ from
the results calculated with standard method in the following way: ∆RMS =

√
Σ∆2

n/n

where ∆ is the difference between the parameter values obtained using the standard and
the alternative method tested. n is the number of different methods in each systematic
error estimation.

3.5.1 Mixing Procedure

Two different procedures were tested in order to do the mixing of events. This helped
to check how the construction of the background affected the behaviour of the Q12

distribution of the mixed pairs and the final correlation function. The tested methods,
that presented good results, are listed here:

• Fixed-Random: first pion of the pair is selected using the first pion in the dataset.
The second pion of the first pair is chosen using a random number generator from
an event different of the first one. Then, for the construction of the next pair, the
first pion of the pair is chosen using the second pion in the dataset while the
second pair is selected randomly from a different event and so on. This was the
standard method used in the main analysis to create the pairs for the background
distribution.

• Random-Random: for each pair, the first and second pions are selected from
different events using two different random generated numbers.

The systematic errors estimated from the mixing procedure of the background dis-
tribution can be summarized in the following tables. In Tables 3.6, and 3.7 the sys-
tematic errors for the parameters r and λ in the one-dimensional and two-dimensional
analysis respectively are presented for all four different nuclear targets.
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Target r λ
D2 ±0.124(3.07%) ±0.056(8.55%)
C ±0.089(3.43%) ±0.014(3.31%)
Fe ±0.141(4.90%) ±0.022(2.56%)
Pb ±0.116(5.11%) ±0.016(2.62%)

Table 3.6: Systematic errors estimated from the mixing method on the background
distribution construction in the one-dimensional analysis.

Target rt rl rt/rl λ
D2 ±0.037(3.07%) ±0.140(5.22%) ±0.028(6.12%) ±0.024(6.04%)
C ±0.041(2.85%) ±0.031(1.60%) ±0.014(1.92%) ±0.004(0.97%)
Fe ±0.049(2.54%) ±0.017(0.78%) ±0.022(2.60%) ±0.017(2.30%)
Pb ±0.091(5.56%) ±0.037(2.02%) ±0.036(4.14%) ±0.029(4.21%)

Table 3.7: Systematic errors estimated from the mixing method on the background
distribution construction in the two-dimensional analysis.

3.5.2 Fitting

Alternatives functions to the fitting parametrization presented in Eq. 3.7 were tested to
fit the final correlation functions. In the one-dimensional analysis, we tried the Gold-
haber parametrization using first order and third order polynomials to fit the tail of the
correlation:

R(Q12) = γ(1 + λexp(−r2Q2
12))(1 + δ(Q12)) (3.12)

R(Q12) = γ(1 + λexp(−r2Q2
12))(1 + δ(Q12) + ε(Q2

12 + σ(Q3
12))) (3.13)

In a similar way for the two-dimensional case, an alternative parametrization to the
function presented in Eq. 3.11 was tested, which consists on a second order polynomial
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to fit the two dimensional tail of the correlation:

R(ql, qt) = γ(1 + λexp[−(r2l q
2
l + r2t q

2
t )](1 + δlql + δtqt + εqtql + σlq

2
l + σtq

2
t ) (3.14)

In the one-dimensional case, the same parametrization functions were applied to
fit the correlation distribution constructed with variable bin sizes instead of equally
sized bins. We used thinner bins in the correlation for smaller values of Q12 where
the shape of the correlation is steeper and has more importance than the tail, where the
enhancement is smaller.

The estimated errors for r, rt, rl, and λ, related to the fitting function applied and
binning, are found in Tables 3.8, 3.9, and 3.10:

Target r λ
D2 ±0.238(5.90%) ±0.051(7.86%)
C ±0.384(14.90%) ±0.017(3.90%)
Fe ±0.133(4.64%) ±0.020(2.36%)
Pb ±0.272(11.91%) ±0.024(3.79%)

Table 3.8: Systematic errors estimated from the parametrization function chosen for
the fit in the one-dimensional study.

Target rt rl rt/rl λ
D2 ±0.220(18.03%) ±0.655(24.43%) ±0.025(5.45%) ±0.010(2.48%)
C ±0.146(10.10%) ±0.207(10.48%) ±0.029(3.86%) ±0.030(6.73%)
Fe ±0.084(4.36%) ±0.120(5.36%) ±0.016(1.91%) ±0.032(4.32%)
Pb ±0.183(11.25%) ±0.175(9.50%) ±0.035(4.01%) ±0.064(9.20%)

Table 3.9: Systematic errors estimated from the parametrization function chosen for
the fit in the two-dimensional study.
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Target r λ
D2 ±0.258(6.40%) ±0.031(4.71%)
C ±0.177(6.87%) ±0.013(3.07%)
Fe ±0.049(1.70%) ±0.033(3.81%)
Pb ±0.097(4.26%) ±0.022(3.50%)

Table 3.10: Systematic errors estimated from the binning used for the construction of
correlation function.

3.5.3 Fit range

Three different ranges for the fit on Q12 were tested in the one-dimensional study:
0.05 < Q12 < 0.50, 0.05 < Q12 < 1.00, 0.05 < Q12 < 1.50. On the other hand, in the
two-dimensional case the ranges tested for the variables qt and ql are: 0.05 < qi < 0.50,
0.05 < qi < 0.75, 0.05 < qi < 1.00, where i = t, l. The systematic errors estimated
from range on the fitting can be summarized in the following tables. In Table 3.11,
the systematic errors for the parameters r and λ in the one-dimensional analysis. In
Table 3.12, the systematic errors for the parameters rl, rt and λ in the two-dimensional
analysis.

Target r λ
D2 ±0.137(3.35%) ±0.035(5.30%)
C ±0.301(12.32%) ±0.020(4.67%)
Fe ±0.176(6.20%) ±0.048(5.77%)
Pb ±0.262(12.03%) ±0.041(7.05%)

Table 3.11: Systematic errors estimated from the fit range in the correlation function in
the one-dimensional case.

3.5.4 Total Errors

The systematic errors estimated from all sources previously discussed were added in
quadrature. The total errors for one and two dimensional studies are presented in Tables
3.13 and 3.14 respectively.
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Target rt rl rt/rl λ
D2 ±0.063(5.20%) ±0.191(7.11%) ±0.013(2.93%) ±0.012(3.12%)
C ±0.069(4.78%) ±0.063(3.17%) ±0.026(3.50%) ±0.018(4.04%)
Fe ±0.047(2.41%) ±0.052(2.33%) ±0.009(1.02%) ±0.027(3.54%)
Pb ±0.057(3.47%) ±0.079(4.30%) ±0.025(2.83%) ±0.021(3.07%)

Table 3.12: Systematic errors estimated from the fit range in the correlation function in
the two-dimensional case.

Target r λ
D2 ±0.037(9.1%) ±0.08(12.3%)
C ±0.043(16.7%) ±0.03(7.0%)
Fe ±0.020(7.0%) ±0.04(4.65%)
Pb ±0.031(13.6%) ±0.04(6.45%)

Table 3.13: Total systematic errors estimated in the one-dimensional study.

Target rt rl rt/rl λ
D2 ±0.23(18.6%) ±0.70(26.1%) ±0.04(8.9%) ±0.03(7.7%)
C ±0.17(11.7%) ±0.22(11.2%) ±0.08(5.4%) ±0.04(8.9%)
Fe ±0.11(5.7%) ±0.13(5.8%) ±0.06(3.5%) ±0.05(6.7%)
Pb ±0.21(12.9%) ±0.20(12.3%) ±0.10(6.8%) ±0.07(10.0%)

Table 3.14: Total systematic errors estimated in the two-dimensional study.

3.5.5 Comparison Tables

The fit parameters λ and r measured with all possible combinations of: event mix-
ing methods, fit functions, fit ranges and binning are presented in Tables 3.15, 3.16,
3.17, 3.18 for the one-dimesional study and Tables 3.19, 3.20, 3.21, 3.22 for the two-
dimensional case.

Results from all different presented methods show relative small difference in the
final parameters obtained. Bigger differences arise from the parametrization function
which is chosen for the fit in comparison to the mixing technique used to construct the
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background distribution. Fitting for lead target presents problems when using third-
order polynomial on the fit of the correlation function, and was removed to the calcu-
lation of systematic errors only for that target.

0.05 < Q12 < 0.50 0.05 < Q12 < 1.00 0.05 < Q12 < 1.50
Method Fit function Binning r λ chi2/ndf r λ chi2/ndf r λ chi2/ndf

Fixed-Random 4.03± 0.25 0.65± 0.12 3.24 4.09± 0.25 0.66± 0.13 2.09 4.06± 0.24 0.65± 0.12 1.53
Variable bin 3.71± 0.11 0.65± 0.05 13.93 3.73± 0.11 0.65± 0.05 12.42 3.61± 0.10 0.64± 0.05 13.04

Random-Random 2st order pol 3.92± 0.24 0.60± 0.11 3.00 3.89± 0.23 0.60± 0.10 1.89 3.86± 0.22 0.60± 0.10 1.44
Variable bin 3.72± 0.13 0.59± 0.05 11.67 3.69± 0.12 0.59± 0.05 10.41 3.55± 0.11 0.58± 0.05 11.15

Fixed-Random 3.84± 0.22 0.64± 0.11 3.28 3.01± 0.22 0.47± 0.07 4.58 0.74± 0.04 0.21± 0.01 3.23
Variable bin 3.59± 0.10 0.65± 0.05 13.20 3.22± 0.10 0.59± 0.04 28.19 3.01± 0.10 0.55± 0.04 52.92

Random-Random 1st order pol 3.64± 0.20 0.59± 0.09 3.19 2.78± 0.22 0.43± 0.06 4.23 0.81± 0.04 0.21± 0.01 3.27
Variable bin 3.52± 0.11 0.59± 0.05 11.91 3.08± 0.11 0.52± 0.04 26.05 2.81± 0.12 0.47± 0.04 51.39

Fixed-Random 3.79± 0.24 0.68± 0.10 3.17 4.01± 0.25 0.65± 0.12 2.10 4.10± 0.25 0.66± 0.13 1.54
Variable bin 3.46± 0.11 0.75± 0.05 12.66 3.67± 0.12 0.66± 0.05 13.72 3.75± 0.11 0.65± 0.05 12.60

Random-Random 3rd order pol 3.63± 0.23 0.64± 0.09 2.85 3.84± 0.23 0.60± 0.10 1.90 3.92± 0.24 0.60± 0.11 1.44
Variable bin 3.44± 0.13 0.67± 0.05 10.64 3.68± 0.13 0.59± 0.05 11.70 3.72± 0.13 0.59± 0.05 10.47

Table 3.15: One-dimensional study - Deuterium Target.

0.05 < Q12 < 0.50 0.05 < Q12 < 1.00 0.05 < Q12 < 1.50
Method Fit function Binning r λ chi2/ndf r λ chi2/ndf r λ chi2/ndf

Fixed-Random 2.58± 0.30 0.43± 0.08 1.71 2.44± 0.20 0.43± 0.07 1.42 2.44± 0.20 0.43± 0.07 1.16
Variable bin 2.72± 0.30 0.43± 0.07 2.37 2.46± 0.20 0.42± 0.06 2.33 2.26± 0.15 0.40± 0.05 2.43

Random-Random 2st order pol 2.52± 0.29 0.43± 0.08 1.53 2.52± 0.21 0.44± 0.07 1.22 2.53± 0.20 0.44± 0.07 0.98
Variable bin 2.54± 0.27 0.42± 0.06 3.21 2.48± 0.20 0.42± 0.06 2.87 2.31± 0.15 0.40± 0.05 2.87

Fixed-Random 2.28± 0.18 0.42± 0.06 1.73 2.02± 0.14 0.39± 0.05 1.60 1.86± 0.13 0.37± 0.04 1.52
Variable bin 2.27± 0.16 0.41± 0.05 2.67 1.94± 0.11 0.38± 0.04 4.01 1.65± 0.10 0.34± 0.03 12.09

Random-Random 1st order pol 2.36± 0.19 0.43± 0.06 1.52 2.08± 0.15 0.39± 0.05 1.43 1.91± 0.13 0.37± 0.04 1.38
Variable bin 2.32± 0.16 0.41± 0.05 3.01 1.98± 0.12 0.38± 0.04 4.47 1.69± 0.10 0.34± 0.03 12.86

Fixed-Random 2.91± 0.54 0.41± 0.10 1.74 2.31± 0.23 0.42± 0.06 1.42 2.43± 0.22 0.42± 0.07 1.17
Variable bin 3.20± 0.55 0.43± 0.11 2.50 2.86± 0.36 0.43± 0.08 2.30 2.51± 0.22 0.42± 0.06 2.28

Random-Random 3rd order pol 2.85± 0.53 0.40± 0.10 1.55 2.33± 0.23 0.43± 0.06 1.21 2.47± 0.22 0.43± 0.07 0.98
Variable bin 3.20± 0.59 0.40± 0.11 3.34 2.62± 0.33 0.42± 0.07 3.18 2.52± 0.22 0.42± 0.06 2.85

Table 3.16: One-dimensional study - Carbon Target.

0.05 < Q12 < 0.50 0.05 < Q12 < 1.00 0.05 < Q12 < 1.50
Method Fit function Binning r λ chi2/ndf r λ chi2/ndf r λ chi2/ndf

Fixed-Random 2.87± 0.15 0.86± 0.09 1.33 2.83± 0.12 0.86± 0.08 1.14 2.81± 0.12 0.85± 0.08 0.98
Variable bin 2.87± 0.13 0.84± 0.08 1.02 2.84± 0.12 0.84± 0.08 0.93 2.64± 0.10 0.80± 0.07 2.52

Random-Random 2st order pol 2.95± 0.16 0.89± 0.10 1.54 2.86± 0.13 0.88± 0.09 1.15 2.83± 0.13 0.87± 0.09 1.03
Variable bin 2.94± 0.15 0.85± 0.09 1.65 2.89± 0.13 0.84± 0.09 1.51 2.63± 0.10 0.78± 0.07 3.54

Fixed-Random 2.75± 0.12 0.85± 0.08 1.35 2.52± 0.10 0.79± 0.07 1.55 2.37± 0.10 0.75± 0.06 1.74
Variable bin 2.71± 0.10 0.83± 0.07 1.42 2.38± 0.09 0.74± 0.06 7.07 2.09± 0.08 0.65± 0.05 25.15

Random-Random 1st order pol 2.80± 0.13 0.87± 0.09 1.58 2.54± 0.11 0.80± 0.07 1.54 2.39± 0.10 0.75± 0.07 1.71
Variable bin 2.73± 0.11 0.82± 0.07 2.12 2.35± 0.09 0.71± 0.06 8.20 2.03± 0.09 0.61± 0.05 24.33

Fixed-Random 2.95± 0.20 0.83± 0.09 1.35 2.79± 0.14 0.85± 0.08 1.15 2.86± 0.13 0.86± 0.09 0.98
Variable bin 2.87± 0.18 0.84± 0.09 1.16 2.88± 0.14 0.83± 0.08 1.02 2.87± 0.11 0.83± 0.07 0.90

Random-Random 3rd order pol 3.16± 0.24 0.86± 0.12 1.52 2.89± 0.15 0.88± 0.09 1.16 2.92± 0.15 0.89± 0.10 1.02
Variable bin 3.12± 0.22 0.82± 0.10 1.62 2.97± 0.17 0.84± 0.09 1.61 2.93± 0.13 0.84± 0.09 1.45

Table 3.17: One-dimensional study - Iron Target.
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0.05 < Q12 < 0.50 0.05 < Q12 < 1.00 0.05 < Q12 < 1.50
Method Fit function Binning r λ chi2/ndf r λ chi2/ndf r λ chi2/ndf

Fixed-Random 2.28± 0.37 0.62± 0.11 1.73 2.22± 0.19 0.62± 0.10 1.44 2.19± 0.17 0.61± 0.09 1.24
Variable bin 2.46± 0.43 0.62± 0.14 6.80 2.18± 0.22 0.58± 0.09 6.12 1.96± 0.14 0.55± 0.07 5.77

Random-Random 2st order pol 2.46± 0.37 0.65± 0.14 1.69 2.22± 0.19 0.61± 0.10 1.44 2.22± 0.18 0.61± 0.10 1.26
Variable bin 2.42± 0.37 0.61± 0.12 6.25 2.31± 0.22 0.60± 0.10 5.57 2.00± 0.14 0.55± 0.07 5.59

Fixed-Random 2.07± 0.17 0.60± 0.08 1.70 1.93± 0.13 0.57± 0.07 1.53 1.77± 0.11 0.54± 0.06 1.48
Variable bin 2.02± 0.16 0.57± 0.07 6.22 1.74± 0.10 0.53± 0.05 6.57 1.43± 0.08 0.47± 0.04 13.78

Random-Random 1st order pol 2.15± 0.18 0.61± 0.09 1.68 1.95± 0.13 0.56± 0.07 1.51 1.77± 0.12 0.52± 0.06 1.50
Variable bin 2.12± 0.17 0.59± 0.08 5.67 1.76± 0.11 0.52± 0.05 6.70 1.41± 0.09 0.45± 0.04 13.78

Fixed-Random 4.95± 0.25 2.00± 1.77 1.39 1.95± 0.19 0.62± 0.07 1.42 2.31± 0.22 0.63± 0.10 1.24
Variable bin 5.10± 0.26 2.00± 1.41 4.93 3.02± 0.56 0.72± 0.24 6.47 2.24± 0.24 0.58± 0.10 6.09

Random-Random 3rd order pol 4.88± 0.24 2.00± 1.55 1.38 2.13± 0.24 0.61± 0.09 1.45 2.32± 0.23 0.63± 0.11 1.26
Variable bin 5.07± 0.26 2.00± 1.30 4.42 2.81± 0.54 0.67± 0.20 6.09 2.38± 0.25 0.61± 0.11 5.53

Table 3.18: One-dimensional study - Lead Target.

Fit Range Mixing Fit Function rt rl rt/rl λ chi2/ndf
Fixed-Random 1st order pol 1.22± 0.09 2.68± 0.14 0.45± 0.04 0.39± 0.03 4.83

0.00 < qt < 0.50 Random-Random 1st order pol 1.23± 0.08 2.82± 0.14 0.44± 0.04 0.41± 0.03 4.67
0.00 < ql < 0.50 Fixed-Random 2nd order pol 1.35± 0.15 2.91± 0.19 0.47± 0.06 0.39± 0.03 4.39

Random-Random 2nd order pol 1.27± 0.12 2.97± 0.17 0.43± 0.05 0.41± 0.03 4.37
Fixed-Random 1st order pol 1.17± 0.07 2.48± 0.13 0.47± 0.04 0.38± 0.03 3.02

0.00 < qt < 0.75 Random-Random 1st order pol 1.17± 0.07 2.64± 0.13 0.44± 0.03 0.41± 0.03 3.03
0.00 < ql < 0.75 Fixed-Random 2nd order pol 1.34± 0.12 2.98± 0.16 0.45± 0.05 0.38± 0.03 2.73

Random-Random 2nd order pol 1.30± 0.11 3.07± 0.16 0.42± 0.04 0.40± 0.03 2.74
Fixed-Random 1st order pol 1.06± 0.06 2.18± 0.12 0.48± 0.04 0.36± 0.02 2.43

0.00 < qt < 1.00 Random-Random 1st order pol 1.08± 0.06 2.36± 0.12 0.46± 0.04 0.39± 0.03 2.43
0.00 < ql < 1.00 Fixed-Random 2nd order pol 1.38± 0.13 3.06± 0.17 0.45± 0.05 0.38± 0.03 2.06

Random-Random 2nd order pol 1.34± 0.12 3.17± 0.16 0.42± 0.04 0.39± 0.03 2.04

Table 3.19: Two-dimensional study - Deuterium Target.

Fit Range Mixing Fit Function rt rl rt/rl λ chi2/ndf
Fixed-Random 1st order pol 1.45± 0.13 1.97± 0.14 0.74± 0.08 0.45± 0.04 2.89

0.00 < qt < 0.50 Random-Random 1st order pol 1.48± 0.13 1.98± 0.14 0.75± 0.08 0.45± 0.04 2.66
0.00 < ql < 0.50 Fixed-Random 2nd order pol 1.66± 0.17 2.14± 0.18 0.78± 0.10 0.49± 0.05 1.95

Random-Random 2nd order pol 1.64± 0.17 2.09± 0.17 0.79± 0.10 0.49± 0.05 1.78
Fixed-Random 1st order pol 1.43± 0.12 1.92± 0.13 0.74± 0.08 0.44± 0.04 2.34

0.00 < qt < 0.75 Random-Random 1st order pol 1.47± 0.12 1.95± 0.12 0.76± 0.08 0.44± 0.04 2.16
0.00 < ql < 0.75 Fixed-Random 2nd order pol 1.50± 0.15 2.06± 0.16 0.73± 0.09 0.46± 0.05 1.85

Random-Random 2nd order pol 1.55± 0.15 2.09± 0.15 0.74± 0.09 0.46± 0.05 1.70
Fixed-Random 1st order pol 1.37± 0.11 1.82± 0.12 0.75± 0.08 0.42± 0.04 1.78

0.00 < qt < 1.00 Random-Random 1st order pol 1.42± 0.11 1.86± 0.12 0.76± 0.08 0.43± 0.04 1.70
0.00 < ql < 1.00 Fixed-Random 2nd order pol 1.52± 0.15 2.11± 0.16 0.72± 0.09 0.45± 0.05 1.56

Random-Random 2nd order pol 1.57± 0.15 2.12± 0.15 0.74± 0.09 0.45± 0.05 1.51

Table 3.20: Two-dimensional study - Carbon Target.
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Fit Range Mixing Fit Function rt rl rt/rl λ chi2/ndf
Fixed-Random 1st order pol 1.93± 0.11 2.23± 0.08 0.86± 0.06 0.75± 0.05 3.63

0.00 < qt < 0.50 Random-Random 1st order pol 1.90± 0.11 2.25± 0.08 0.85± 0.06 0.76± 0.05 3.55
0.00 < ql < 0.50 Fixed-Random 2nd order pol 1.91± 0.12 2.21± 0.08 0.86± 0.06 0.80± 0.05 2.39

Random-Random 2nd order pol 1.82± 0.11 2.23± 0.08 0.82± 0.06 0.82± 0.05 2.45
Fixed-Random 1st order pol 1.90± 0.10 2.18± 0.08 0.87± 0.06 0.74± 0.05 2.63

0.00 < qt < 0.75 Random-Random 1st order pol 1.87± 0.10 2.19± 0.07 0.85± 0.05 0.76± 0.05 2.54
0.00 < ql < 0.75 Fixed-Random 2nd order pol 1.95± 0.12 2.26± 0.08 0.86± 0.06 0.75± 0.05 1.94

Random-Random 2nd order pol 1.90± 0.11 2.27± 0.08 0.84± 0.06 0.77± 0.05 1.93
Fixed-Random 1st order pol 1.85± 0.10 2.11± 0.07 0.87± 0.06 0.73± 0.05 2.33

0.00 < qt < 1.00 Random-Random 1st order pol 1.82± 0.09 2.13± 0.07 0.86± 0.05 0.75± 0.05 2.20
0.00 < ql < 1.00 Fixed-Random 2nd order pol 1.97± 0.12 2.29± 0.08 0.86± 0.06 0.74± 0.05 1.89

Random-Random 2nd order pol 1.94± 0.11 2.31± 0.08 0.84± 0.06 0.75± 0.05 1.77

Table 3.21: Two-dimensional study - Iron Target.

Fit Range Mixing Fit Function rt rl rt/rl λ chi2/ndf
Fixed-Random 1st order pol 1.63± 0.15 1.84± 0.11 0.88± 0.10 0.70± 0.07 2.26

0.00 < qt < 0.50 Random-Random 1st order pol 1.75± 0.16 1.89± 0.12 0.92± 0.10 0.73± 0.08 2.07
0.00 < ql < 0.50 Fixed-Random 2nd order pol 1.76± 0.18 1.87± 0.13 0.94± 0.12 0.77± 0.08 1.54

Random-Random 2nd order pol 1.89± 0.20 1.93± 0.14 0.98± 0.12 0.80± 0.08 1.41
Fixed-Random 1st order pol 1.66± 0.15 1.89± 0.11 0.88± 0.09 0.69± 0.08 2.45

0.00 < qt < 0.75 Random-Random 1st order pol 1.72± 0.15 1.90± 0.11 0.91± 0.10 0.72± 0.08 2.46
0.00 < ql < 0.75 Fixed-Random 2nd order pol 1.76± 0.18 1.98± 0.14 0.89± 0.11 0.74± 0.08 1.82

Random-Random 2nd order pol 1.85± 0.18 2.00± 0.13 0.93± 0.11 0.77± 0.09 1.79
Fixed-Random 1st order pol 1.55± 0.13 1.76± 0.10 0.88± 0.09 0.66± 0.07 2.11

0.00 < qt < 1.00 Random-Random 1st order pol 1.63± 0.14 1.80± 0.10 0.91± 0.09 0.69± 0.07 2.14
0.00 < ql < 1.00 Fixed-Random 2nd order pol 1.82± 0.19 2.06± 0.14 0.88± 0.11 0.73± 0.10 1.82

Random-Random 2nd order pol 1.88± 0.19 2.05± 0.13 0.92± 0.11 0.76± 0.09 1.85

Table 3.22: Two-dimensional study - Lead Target.
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Chapter 4

Results

4.1 One Dimensional Study

Correlation parameters r and λwere obtained from the fitting of the correlation function
for each target using the experimental Goldhaber parametrization presented in section
3.3.5. The fit was performed in the range of Q12 = [0.05 − 1.00] GeV. For Q12 val-
ues below this range, Coulomb interactions between pions become stronger and can
not be neglected. Corrections must be applied to include lower values of Q12 in the
fit. Coulomb corrections are not included in this analysis. Over Q12 = 1.0 GeV, the
main Gaussian shape, which contains the pion source information, is diminished al-
most completely because its exponential nature, and only remains the linear long-range
correlations tail. The values for λ and r measured for different nuclear targets are pre-
sented in Table 4.1.

Target r [fm] λ
D2 4.03± 0.25± 0.21 0.65± 0.12± 0.05

C 2.58± 0.30± 0.25 0.43± 0.08± 0.01
Fe 2.87± 0.15± 0.12 0.86± 0.09± 0.03
Pb 2.28± 0.37± 0.18 0.62± 0.11± 0.02

Table 4.1: Parameters obtained from Goldhaber fit. λ and r parameters represent co-
herence and size of the pion source respectively.
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The parameters presented include statistical and systematic errors estimated in Sec-
tion 3.5.

4.1.1 Nuclear Target Comparison

In Fig. 4.1, we can see the coherence parameter λ for each nuclear target.
By looking at the source radius parameter r in Figure 4.2, we can notice that the

source’ size remains constant within errors for all solid targets. A value of around 2.4
[fm] is measured among solid targets. Deuterium presents a different behavior when
compared to other nuclei in the source size parameter r. For Deuterium target the radius
measured is around 4.0 [fm].

The different behaviour between liquid and solid targets could come from ...
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Figure 4.1: Coherence parameter λ vs nuclear mass number A in one-dimensional
study. Nuclear target presented are: D2, C, Fe, Pb. This plot includes statistic and
systematic errors.
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Figure 4.2: Source’s measured Radius r vs nuclear mass number A. Nuclear target
presented are: D2, C, Fe, Pb. This plot includes statistic and systematic errors.

4.2 Two Dimensional Study

Parameters obtained from Goldhaber fit of two-dimensional correlations, obtained in
section 3.4, are shown in Table 4.2. In the two-dimensional case, the fit was performed
in the range of 0.0 < ql < 0.50 GeV and of 0.0 < qt < 0.50 GeV; and λ, rt and rl are
measured. In order to measure an elongation in the longitudinal direction of the pion
source, we are interested in the ratio rt/rl.

We can clearly see that the pion source is elongated in the longitudinal direction
among all targets.

4.2.1 Nuclear Target Comparison

The results obtained show no dependence in the longitudinal spatial component of the
source rl with a measurement of around 1.9 [fm] among solid targets. On the other
hand, measured transverse radius rt has a clear dependence on atomic number A. We
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Target rt rl rt/rl λ
D2 1.22± 0.09± 0.23 2.68± 0.14± 0.70 0.45± 0.04± 0.04 0.39± 0.03± 0.03

C 1.45± 0.13± 0.17 1.97± 0.14± 0.22 0.74± 0.08± 0.04 0.45± 0.04± 0.04
Fe 1.93± 0.11± 0.11 2.23± 0.08± 0.13 0.86± 0.06± 0.03 0.75± 0.05± 0.05
Pb 1.63± 0.15± 0.21 1.84± 0.11± 0.20 0.88± 0.10± 0.06 0.70± 0.07± 0.07

Table 4.2: Parameters obtained from two-dimensional Goldhaber fit.

found that heavier nuclear targets present larger values of rt.
This leads to the ratio between both spatial parameters rt/rl to increase with nuclear

target number A as can be seen in Figure 4.4. This shows that the source region is
elongated in all nuclear targets in the direction of the longitudinal axis. For light nuclei,
the elongation is stronger and the elongation is diminished in heavier nuclei.

From Fig. 4.6, shows parameter λ in the two-dimensional case. Similar, but not
exact same grade of coherence can be seen comparing one and two dimensional studies
as seen in Fig.
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Figure 4.3: Source’s spatial dimensions vs nuclear mass number A in two-dimensional
study. Nuclear target presented are: D2, C, Fe, Pb. This plot includes statistic and
systematic errors.
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Figure 4.4: Source elongation vs nuclear mass number A.

66



0 20 40 60 80 100 120 140 160 180 200
A

0

0.2

0.4

0.6

0.8

1

1.2λ
 vs Aλ vs Aλ

Figure 4.5: Coherence parameter λ vs Nucleus comparison in two-dimensional study.
This plot includes statistic and systematic errors.
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Figure 4.6: Coherence parameter λ vs Nucleus comparison in one and two-dimensional
studies. This plot includes statistic and systematic errors.
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Chapter 5

Conclusions and Future Analysis

From the plots shown in Fig.3.15, 3.16, 3.18, 3.20, and 3.22, we can clearly see that
Bose-Einstein correlation were observed. The analysis was performed in one and two-
dimensions with some minor differences found between them, regarding the degree of
coherence of the source (λ).

From the one-dimensional study, we can conclude that the size of the pion source
(r) was found to be the same, within errors, among solid targets: around 2.4 [fm].
Liquid target presents a bigger size of around 4 [fm].

From the two-dimensional study, we found elongation of the source along its lon-
gitudinal component (rt < rl) in all targets. The elongation is dependant of the nu-
clear medium and it is stronger for lighter targets (rt/rl = 0.45 for D2 compared to
rt/rl = 0.88 for Pb). The transverse component rt get bigger with heavier targets.
In the contrary, the longitudinal component rl gets smaller (Fig. 4.3). The difference
between the size of these two parameters gets smaller for heavier nuclear targets.

We also found that this effect reach a saturation point for heavy targets such as Fe
and Pb. This behaviour could come from the fact that the pion source is completely
located within the nuclear medium in heavier targets. On the contrary, for light targets
such as deuterium, part of the formation process occurs outside the nucleus.

This analysis can be expanded by including alternative ways of background distri-
bution construction. As it was mentioned, instead of the event-mixing method, it is also
possible to perform the same analysis using unlike-sign pairs. This could help to cross
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check the results obtained with the current method used. It could be possible to study
the dependence of Bose-Einstein correlations in different kinematic ranges, and look
for possible dependence in Zh or other kinematic variables.

Further theory studies can be conducted to explain the elongation process and how
the nuclear medium impacts on it.
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