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CHAPTER 1

HOLOGRAPHY AND THE ADS/CFT
CORRESPONDENCE

(1.1) INTRODUCTION

One of the most exciting discoveries made in the context of String Theory in the last decade
are holographic dualitites, which relate gravity theories in (d+1) dimensions to Quantum Field
Theories (QFTs) in d dimensions. The most prominent example is the AdS/CFT correspondence
[5, 6, 7] in which the gravity theory is given by String Theory in asymptotically Anti de Sitter
space and the boundary theory by a QFT whose renormalization group flows to a fixed point in
the UV.

The very idea that a gravity theory be related to a QFT in one dimension less has been conjec-
tured earlier in the context of black hole physics. According to the Bekenstein-Hawing formula,
the entropy S = A/4 (in units G = c = ~ = k = 1) of a black hole scales with the horizon
area A. However in a (local) QFT, the entropy of a system, being an extensive quantity, should
scale with the volume of the system. This led ’t Hooft and Susskind to conjecture that a descrip-
tion of the microscopic degrees of freedom of black holes and hence of gravity are given by a
QFT in one dimension less [8]. This idea has been named holographic principle, since the lower-
dimensional QFT was thought to contain all the physical information of the higher-dimensional
gravity theory.

In 1997, Maldacena found the first concrete example of a holographic duality [5]: By con-
sidering the low-energy limit of N parallel D3 branes he conjectured that IIB String Theory
on AdS5 × S5 is dual to N = 4 SU(N) Super Yang-Mills theory (without gravity) in four di-
mensions, which can be imagined to live on the boundary of AdS5. Naively one might think
this to be unrelated to the holographic principle, since the string theory side is living in a

1
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10-dimensional space. However in the limit of large N and large ’t Hooft coupling the string
theory in AdS5 × S5 is described by its low-energy supergravity approximation, which in turn
can be Kaluza-Klein reduced on the S5 to a gravity theory on AdS5 coupled to the Kaluza-Klein
modes. This five-dimensional gravity theory is then dual to four-dimensional strongly coupled
large N Super Yang-Mills theory on the boundary, thus implementing the holographic principle
for d = 4.

Soon thereafter, more examples which resembled above setup were found. In all of these exam-
ples, the string theory side consists of a geometry asymptotic to AdSd+1 ×X9−d, where X9−d

is a (9− d)-dimensional compact space. Whereas the N = 4 Super Yang-Mills theory discussed
above is conformal and has a vanishing β-function, the d-dimensional QFT dual to asymptotic
AdS will in general have a renormalization group flow which however flows to a conformal
fixed point in the UV. It is also important to mention that all known holographic dualities in
string theory are strong-weak dualities, meaning that the regime where the curvature in the
bulk is small enough such that stringy corrections to supergravity calculations can be neglected
corresponds to a strongly coupled boundary theory.

A precise formulation of holographic dualities in string theory was proposed in [6, 7]. There
it is assumed that the duality between a (d + 1)-dimensional bulk theory and a d-dimensional
QFT is defined by an equality of (Euclidean signature) partition functions,

ZQFT [φ0] ≡ 〈exp(−
∫
ddxφ0Oφ)〉QFT = Zbulk[φ|bdry ∼ φ0]. (1.1)

The partition functions in this equality are functions of a generating source φ0. At the bulk side
on the right, this source φ0 has an interpretation as the boundary value of a bulk field φ (up
to a potential divergent prefactor), whereas in the QFT φ0 couples to a dual operator Oφ. The
right hand side simplifies in the limit that the bulk theory becomes classical. In the examples
mentioned in the previous paragraph this limit corresponds to the limit of large N and large ’t
Hooft coupling, in which the string theory can be approximated by its low-energy supergravity
description. The supergravity limit is equivalent to the saddle point approximation of the bulk
partition function,

Zbulk[φ0] = exp(−IS(φ)), (1.2)

where IS(φ) is the on-shell action of the supergravity theory with boundary condition φ|bdry =

φ0. In the supergravity limit, one can use the relation (1.1) to calculate (connected) correlation
functions of dual operators in the field theory,

〈Oφ(x1)Oφ(x2) . . .Oφ(xn)〉c = (−1)n
δ

δφ0(x1)

δ

δφ0(x2)
. . .

δ

δφ0(xn)
WQFT [φ0]|φ0=0, (1.3)

where WQFT ≡ lnZQFT = lnZbulk = −IS is the generator of connected correlation functions
in the QFT. Given this framework, one usually proceeds in two steps: In the first steps one tries
to identify the dual QFT to a given bulk theory. This can usually only be achieved if the bulk
as well as the boundary theory can be obtained by taking low energy limits of brane config-
urations, following the example of [5] for parallel D3 branes. In this limit the d-dimensional
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world volume theory of the brane configuration decouples from the bulk, giving rise to the
QFT on the boundary, while on the gravity side one zooms in in the near-horizon region of
the back-reacted branes. The latter yields a 10-dimensional geometry which typically can be
Kaluza-Klein reduced to a (d+1)-dimensional gravity theory. An important check of the duality
is a correspondence of global symmetries on both sides. In the case of D3 branes for example,
the conformal group in four dimensions SO(4, 2) of the Super Yang-Mills theory corresponds
to the isometry group of AdS5, the SU(4) ' SO(6) R-symmetry group to the isometry group of
S5, and the Monotonen-Olive duality SL(2, Z) to the S-duality of IIB String theory. In addition,
both sides are invariant under 16 Poincaré and 16 conformal supercharges.

Given this duality of theories, the second step is to match the spectrum on both sides, which
means to match bulk fluctuations around the background to dual operators on the boundary. A
first guideline to achieve this is to map fluctuations to operators transforming in the same rep-
resentations under the global symmetries. However if symmetries are not restrictive enough, it
is necessary to compare dynamic information on both sides by calculating correlation functions.
This comparison in turn is complicated by the strong-weak nature of the duality. In general,
correlation functions renormalize as the coupling is changed from the regime where the bulk
description is valid to the regime in which perturbation theory in the boundary theory can be
applied. Only if there are enough supersymmetries to protect the correlation functions through
non-renormalization this comparison can be performed and the map between bulk fluctuations
and dual operators can be refined by dynamic information.

A comprehensive introduction into the AdS/CFT correspondence is clearly beyond the scope of
this thesis, see [9, 10] for further reference. In what follows, we will restrict ourselves to key
concepts which will be central to the discussion in later chapters.

(1.2) THE HOLOGRAPHIC DICTIONARY

In the approximation (1.2) the problem of finding the generating functional on the boundary is
reduced to solving the classical supergravity equations for the bulk fields φ given the Dirichlet
boundary data φ0 and evaluating the bulk action on this solution. But one can also use (1.2)
together with (1.3) to read off field theory data from a given bulk solution. It turns out that
there are two linearly independent solutions in the bulk for each field, the normalizable and the
non-normalizable mode, which are related respectively to the vacuum expectation value (vev)
of the dual operator and deformations of the dual field theory by the dual operator.

Let us explore these solutions in the case of a free scalar field in a fixed AdS background
described by the action

S =
1

2

∫
dd+1x

√
g(gµν∂µφ∂νφ+m2φ2), (1.4)
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where the AdS background in Poincaré coordinates is given by

ds2 =
dz2 − dx2

0 + dx2
1 + . . .+ dx2

d

z2
. (1.5)

The equation of motion is given by

(−∇2
g +m2)φ = 0, (1.6)

where ∇2
g denotes the Laplace operator in AdS. The solution to this equation can be written as

φ(z, x) = a+φ
+(z, x) + a−φ

−(z, x), (1.7)

where φ± are linearly independent and behave asymptotically as

φ± ∼ zα± , α± =
d

2
±
√

(d/2)2 +m2. (1.8)

The solution (1.7) can thus asymptotically be written as

φ(z, x) ∼ φ0(x)zα− + . . .+ φn(x)zα+ + . . . , (1.9)

where φ0(x) and φn(x) denote the non-normalisable and normalisable mode respectively.1 Ob-
viously, since α− < α+ and the boundary is at z → 0, φ0(x) plays the role of the boundary
source. On the boundary, φ0(x) couples in the generating functional to the dual operator Oφ
via 〈exp(

∫
dxφ0Oφ)〉 and a non-trivial φ0(x) corresponds to a deformation of the boundary

action by precisely this term.

To identify the field theory interpretation of φn(x), it will be helpful to look at how isometries
in the bulk map to the boundary. Given the metric (1.5), which diverges at the boundary z → 0,
we can define a boundary metric by multiplying the bulk metric with z2 and restricting it to the
boundary,

ds2
0 = (z2ds2)|z=0. (1.10)

The transformation z → λz, x→ λx is an isometry of (1.5) which induces a boundary dilatation
ds2

0 → λ2ds2
0. This is referred to as the fact that AdS only defines a conformal structure at the

boundary. We can now use this result to translate dependencies on the radial coordinate z to
the conformal dimension of the coefficient. As φ(z, x) is invariant under AdS isometries φ0(x)

must have conformal dimension α−. The dimension of the dual operator Oφ, to which φ0

couples via 〈exp(
∫
dxφ0Oφ)〉 must be

∆ = d− α− = α+. (1.11)

Furthermore we see that φn(x) has just the right conformal dimension to be identified with
the vev of Oφ. For general φ0(x) however the relation between φn(x) and 〈Oφ〉 turns out to
be more complicated and requires properly addressing the subtleties of renormalizing infinities
which arise in the bulk. This is done by the framework of holographic renormalization, which
we will summarize in the next section.

1The case in which the Breitenlohner-Freedman bound [11] m2 ≥ −(d/2)2 is saturated requires special
treatment. Furthermore in the case −(d/2)2 < m2 < −(d/2)2 + 1 there is a second dual QFT in which α+

and α− are interchanged [12].
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(1.3) A PREVIEW OF HOLOGRAPHIC RENORMALIZATION

Holographic renormalization [13, 14, 15, 16, 17, 18, 19, 20, 21] starts with the observation
that the action IS in (1.2) evaluated on an asymptotically AdS geometry will be divergent. Even
if we truncate the bulk action to pure gravity with cosmological constant there still remains the
divergence corresponding to the infinite volume of AdS space. The divergences can be cancelled
by adding counter-terms to the regulated on-shell action, which are local in the sources. These
counterterms can be made bulk-covariant by expressing them in terms of local functionals of
the bulk fields. In essence, holographic renormalization corresponds to the well-known UV
renormalization in the QFT.

Let us illustrate the calculation of counterterms for the case of a free scalar in a fixed AdS
background, which we already explored in the last section.2 The first step is to asymptotically
expand the field equations to determine the dependence of arbitrary solutions on the boundary
conditions. This is done by expanding the fields in the Fefferman-Graham expansion (in the
new radial coordinate ρ = z2),

Φ(ρ, x) = ρ(d−∆)/2
[
φ(0)(x) + ρφ(2)(x) + . . .+ ρ∆−d/2(φ(2∆−d)(x) + φ̃(2∆−d)(x) log ρ) + . . .

]
,

(1.12)
and inserting it in the equation of motion (1.6). At each order in ρ this results in a recursion
formula which determines higher order coefficients in terms of lower order coefficients,

φ(2n) =
1

2n(2∆− d− 2n)
∇2

0φ(2n−2), (1.13)

where n < ∆ − d/2 and we have used the notation ∇2
0 to denote the Laplace operator with

respect to the (flat) boundary metric. Iterating (1.13), we can express all φ(2n) with n < ∆−d/2
as local functionals of φ0. It can also be easily checked that the coefficient of any power of ρ
not appearing in (1.12) necessarily vanishes.

The further discussion now depends on whether ∆− d/2 is an integer. If ∆− d/2 is an integer,
(1.13) cannot be applied to obtain φ(2∆−d), which means that the latter is not determined by
the asymptotic expansion of the equations of motion. Furthermore one has to add a logarithmic
term to the expansion (1.12) to satisfy the equation of motion at order ∆ − d/2. If ∆ − d/2 is
not an integer, one can still add an (undetermined) coefficient φ(2∆−d) to the expansion, but
the coefficient of the logarithmic term φ̃(2∆−d) vanishes in this case.

The undetermined coefficient φ(2∆−d) corresponds to the normalizable mode found in (1.7). It
is not surprising that it is not determined in terms of φ(0) since φ(0) and φ(2∆−d) are just the
first coefficients of the two linearly independent solutions in (1.6). In order to fix φ(2∆−d) we
have to impose additional boundary conditions, for example that the solution is smooth in the
interior.

2For illustration purposes we neglect here the backreaction of the scalar on the geometry. This can only
be done in special cases like the free scalar, and only if one is interested in a subset of possible correlation
functions [18]. In general one should always solve the full set of gravity-scalar equations.
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In the next step we would like to isolate the divergences in (1.4). To this aim we insert the
expansion (1.12) in (1.4) and introduce a radial cutoff at ρ = ε. The part of the on-shell action
which diverges as ε→ 0 is then given by the boundary action

Sreg =

∫
ρ=ε

ddx
(
ε−∆+d/2a(0) + ε−∆+d/2+1a(2) + . . .− a(2∆−d) log ε

)
. (1.14)

Fortunately, the powers of ε work out in such a way that all a(n) can be expressed as local
functionals of the source φ(0) and are independent of the normalizable mode φ(2∆−d). This
important property allows us to define a counterterm action which is local in φ(0) simply by

Sct[φ(x, ε)] = −Sreg[φ(0)[φ(x, ε)]]. (1.15)

The fact that we have determined the counterterm action for general boundary coundition φ(0)

means that its form does not depend on a particular solution but applies for extracting data
from all solutions of the field equations with the given boundary conditions. However as in-
dicated in (1.15), the counterterm action should be defined in terms of the bulk fields φ(x, ρ)

instead of the sources φ(0) in order to transform in a well-defined manner under bulk diffeo-
morphisms. The inverse expression φ(0)[φ(x, ρ)] can be obtained by inverting the expansion
(1.12).

This allows us to define the renormalized action

Sren = lim
ε→0

(Son−shell + Sct) , (1.16)

with which we can compute the exact renormalized 1-point function in the presence of arbitrary
source φ(0),

〈Oφ〉s ≡
δSren
δφ(0)

= −(2∆− d)φ(2∆−d) + C[φ(0)], (1.17)

where C[φ(0)] is a local functional of φ(0). Note that (1.16) leaves the freedom of adding
additional finite counterterms to (1.16) which corresponds to a change of scheme in the renor-
malization of the boundary theory. In (1.17) a change of scheme corresponds to a change of
C[φ(0)].

With (1.17), higher point functions can in principle be calculated via

〈Oφ(x1) . . .Oφ(xn)〉 =
δnSren

δφ(0)(x1)δφ(0)(x2) . . . δφ(0)(xn)
(1.18)

= −(2∆− d)
δn−1φ(2∆−d)(x1)

δφ(0)(x2) . . . φ(0)(xn)
+ contact-terms, .

where the scheme-dependent contact-terms in the second line arise from the functional deriva-
tives of C[φ0]. Note that we have presupposed a functional dependence of the normalizable
mode φ(2∆−d) on the source φ(0). This seems in conflict with the above statement that φ(2∆−d)

is an independent mode of the equations of motion. However, after imposing an additional
boundary condition in the interior, namely that the solution be smooth, φ(2∆−d) is fixed and its
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behavior as φ(0) is changed can be studied. Hence in contrast to the counterterms, which are
local functionals of φ(0), φ(2∆−d) depends on φ(0) in a very non-local way.

Retrieving the full functional dependence of φ(2∆−d) on φ(0) would however require solving the
non-linear field equations with arbitrary Dirichlet boundary conditions, which is too difficult
given current techniques. A viable alternative is to linearize the field equation around a given
background to obtain the infinitesimal dependence of φ(2∆−d) on changes of φ(0), which allows
one to calculate two-point functions at the background value of φ(0). Higher point functions
similarly require an expansion to the given order.

For arbitrary bulk fields F(x, ρ), most of above discussion generalizes in a straightforward way.
We again start by asymptotically expanding the fields in a Fefferman-Graham expansion,

F(x, ρ) = ρm
[
f (0)(x) + f (2)(x)ρ+ . . .+ ρn(f (2n)(x) + f̃ (2n)(x) log ρ) + . . .

]
. (1.19)

One of the fields will be the metric of the asymptotically AdS geometry, which is given by

ds2 =
dρ2

4ρ2
+

1

ρ
gij(x, ρ)dxidxj , (1.20)

gij(x, ρ) = g(0)ij(x) + g(2)ij(x, ρ)ρ+ . . .

Assuming the metric aymptotically behaves as in (1.20) will restrict the boundary behavior
of the other fields through the field equations, and with it the leading power m in (1.19).
Furthermore the expansion will proceed in integer steps in the power of ρ if only integer powers
of ρ arise in the asymptotic field equations. Givenm, the powerm+n of the undetermined term
is also determined by the field equations. Analogously to the example of the scalar a logarithmic
term has to be added if the undetermined term arises at an order which is a multiple of the step
size of the expansion. Whereas the terms up to the power m are used to define the counterterm
action, the undetermined term f (2n)(x) again is related to the 1-point function.

There is one complication however in generalizing the holographic renormalization of the
scalar to non-scalar fields: In the example of pure gravity in AdS, in which m = 0 and n = d,
the trace and divergence of g(2n)ij are asymptotically determined as local functions of g(0)ij .
This fact is due to Ward identities of the dual operator, in this case the conformal and diffeo-
morphism Ward identity of the dual energy-momentum tensor. Also note that in the general
case of multiple fields, the coefficients F i(2n) in the Fefferman-Graham expansion depend not
only on the source F i(0) but on all sources Fj(0) turned on in the problem at hand.

Although the presented method of holographic renormalization satisfactorily solves the prob-
lem of extracting holographic correlation functions given the bulk field equations with specified
boundary conditions it includes the somewhat clumsy step of first asymptotically expanding the
fields and then inverting the expansion to retrieve the covariant counterterm action. This issue
is addressed in the Hamiltonian formulation of holographic renormalization [19, 20]. In this
formalism, the asymptotic expansion in terms of a radial variable is replaced by an expansion
in terms of the dilatation operator, which is an asymptotic symmetry of asymptotic AdS spaces.
As the dilatation operator is formulated as functional derivative on the solution space of the
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field equations w.r.t. boundary conditions on an arbitrary radial hypersurface near the bound-
ary, the elements in this expansion are covariant from the outset. By Hamilton-Jacobi theory,
the holographic 1-point function, obtained by varying the on-shell action w.r.t. the boundary
condition on the hypersurface, is related to the radial canonical momentum π. The renormal-
ized 1-point function is then given by the term of weight ∆ in the dilatation expansion of the
canonical momentum,

〈Oφ〉 = πφ(∆). (1.21)

The Hamiltonian formulation allows one to determine the counterterms to the momenta by
calculationally efficient recursion relations. Furthermore it is advantageous for proving general
statements that are independent of the particular solution at hand, like Ward identities.

(1.4) CHIRAL PRIMARIES AND THE KALUZA-KLEIN SPEC-
TRUM

In the last section we have discussed the extraction of field theory data given bulk field equa-
tions and geometry in a (d+ 1)-dimensional asymptotically AdS space. However, as mentioned
in the introduction, in all known dualities the string theory lives in a 10-dimensional back-
ground, as for example AdSd+1 ×X9−d. The (d + 1)-dimensional field equations can then be
obtained by linearizing and Kaluza-Klein reducing the 10-dimensional field equations around
the AdSd+1 × X9−d background. Given the lower-dimensional modes, we would then like to
know how they map to dual operators.

As mentioned in the introduction, mapping bulk fields to dual operators for general dualities
is far from being trivial. The most powerful tool at hand is to use existing global symmetries
like supersymmetry, R-symmetry and conformal symmetry. Of particular importance here is su-
persymmetry since it is able to protect multiplets from changing their constitution and dimen-
sions by renormalization as the coupling is changed from strong to weak ’t Hooft-coupling, or
equivalently from the regime with weakly curved bulk description to the perturbative regime
in the boundary description. Protected multiplets, which are also called short multiplets or
BPS multiplets, have the property that they span a shorter spin range than general multiplets.
Their lowest dimension state, the chiral primary state, is not only annihilated by all conformal
supercharges, as in the case of a general multiplet, but also by a combination of Poincaré su-
percharges. We will be mostly interested in 1/2-BPS chiral primaries, which are annihilated by
half of possible combinations of Poincarè supercharges.

The theory obtained by Kaluza-Klein reducing 10-dimensional supergravity contains only 1/2-
BPS multiplets. This is because by this method only fields with spin ≤ 2 appear which have to
fit into multiplets with a spin range ≤ 2. But only 1/2-BPS multiplets fulfill this requirement;
1/4-BPS, 1/8-BPS and long multiplets have a spin range of 3, 7/2 and 4 respectively. A further
important property of 1/2-BPS multiplets is that the conformal dimension of its chiral primary
is fixed in terms of its R-charge, as can be shown from the superconformal algebra.



1.5. KALUZA-KLEIN HOLOGRAPHY 9

Furthermore, the spectrum of operators in the boundary theory is expected to be dual to single-
particle states as well as bound states of multiple particles in the bulk. Multiple particle states
could then be constructed out of operator product expansions of their single particle con-
stituents. This behavior can be reproduced if we remind ourselves that all known holographic
dualities are dualities of large N theories where N corresponds to the number of indices cor-
responding to a symmetry, for example a gauge symmetry. As all multiple trace operators with
respect to this symmetry can be constructed out of multiplying single trace operators in a oper-
ator product expansion, it is natural to identify single trace operator with single particle states
and multiple trace operator with bound states of particles. Thus when matching the supergrav-
ity spectrum to the spectrum of operators it suffices to consider chiral multiplets of single-trace
operators.

In the latter part of the thesis, we will make extensive use of the duality between IIB Super-
gravity on AdS3 × S3 ×M4, where M4 can be either T 4 or K3, and the dual two-dimensional
N = (4, 4) superconformal theory, which is a deformation of the sigma-model on the symmetric
orbifold MN

4 /SN . The volume of the Ricci-flat compact space M4 on the bulk side is taken to
be of the order of the string scale, thus when considering the low energy effective theory we
can neglect all but the zero modes. Reducing IIB Supergravity to six dimensions yields N = 4b

supergravity coupled to nt tensor multiplets, where nt = 5, 21 in the case of M4 = T 4,K3

respectively. The radius of the S3 however is of the same size as that of AdS3, so we need to
retain the whole Kaluza-Klein tower.

(1.5) KALUZA-KLEIN HOLOGRAPHY

After relating the spectrum on both sides, we would like to compute holographic correlation
functions as outlined in section 1.3. The subtleties of this process are addressed in the method
of Kaluza-Klein holography [22]. At first it might seem that the Kaluza-Klein reduction of 10-
dimensional supergravity leads to an infinite number of fields all coupled together, and hence
it would be intractable to extract 1-point and higher-point functions. However, if the aim is to
extract higher-point functions for vanishing source, we solely need to retain the perturbation
expansion in the given number of fields. For example, to extract 3-point functions, we need
to keep quadratic terms in the field equations. If the aim is to extract 1-point functions from
specific bulk solutions asymptotic to AdSd+1 × X9−d we can make use of the fact that the
fall-off of the fields near the boundary is fixed by their mass, or equivalently by the conformal
dimension of the dual operator. Only interaction terms involving modes with lower conformal
dimension can contribute to the 1-point function of a given operator.

The lower-dimensional field equations are obtained by expanding the 10-dimensional fields
perturbatively around a background Φb(x, y) as

Φ(x, y) = Φb(x, y) + δΦ(x, y), (1.22)

δΦ(x, y) =
∑
I

ψI(x)Y I(y),
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where x is a coordinate in the (d+ 1) non-compact directions, y is a coordinate in the compact
directions and Y I denotes collectively all harmonics (scalar, vector, tensor and their covariant
derivatives) on the compact space.

The expansion (1.22) however is not unique. There will be gauge transformations

XM′ = XM − ξM (x, y), (1.23)

whereXM = {x, y} that transform the fluctuations ψI to each other or the background solution
Φb. One possibility to address this ambiguity is to pick a gauge, for example de Donder gauge,
in which a subset of modes are set to zero. This has however the disadvantage that a given
solution has to be brought to this gauge-fixed form before being able to extract data from it.
Alternatively one constructs combinations of modes which transform as scalars, vectors and
tensors under these gauge transformations and reduce to single modes in de-Donder gauge.
Schematically at second order in the fluctuations these are given by

ψ̂Q =
∑
R

aQRψ
R +

∑
R,S

aQRSψ
RψS . (1.24)

After the reduction the equations of motion for the gauge-invariant modes will be of the form

LI ψ̂I = LIJK ψ̂J ψ̂K + LIJKLψ̂J ψ̂K ψ̂L + . . . , (1.25)

where the differential operator LI1...In contains higher derivatives. These higher derivatives
however can be removed by a non-linear shift of the lower-dimensional fields, which is called
the Kaluza-Klein map and allows one to integrate the equations of motion to an action,

φI = ψ̂I +KIJK ψ̂J ψ̂K + . . . (1.26)

Integrating to an action is necessary in order for holographic renormalization discussed in
section 1.3 to be applicable.

In addition, there is a subtlety related to extremal correlators which further contributes to the
non-linear relation between 1-point functions and Kaluza-Klein modes. Extremal correlators
are correlators between operators with conformal dimensions (∆i,∆), s.t

∑
∆i = ∆. It has

been shown at cubic order [23, 24], that extremal correlators do not arise from bulk couplings,
since their existence would cause conformal anomalies known to be zero. Instead they arise
from additional boundary terms in the 10-dimensional action. The extremal correlators modify
the expression for the 1-point function to

〈OI〉 = πI(∆) +
∑
JK

aIJKπ
J
(∆1)π

K
(∆2) + . . . , (1.27)

where the numerical constants aφJK are related to extremal 3-point functions and the dots
denote contributions from extremal higher-point functions.

In total, (1.24), (1.26) and (1.27) all contribute to non-linear terms in the relations between
1-point functions and Kaluza-Klein modes which are schematically given by

〈OI∆(~x)〉 = [ψI(~x)]∆ +
∑
JK

bIJK [ψI(~x)]∆1 [ψK(~x)]∆−∆1 + . . . , (1.28)
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where ~x is now the d-dimensional boundary coordinate, bIJK are numerical coefficients and we
have used the notation

δφ(ρ, ~x, y) =
∑
I,m

[ψI(~x)]2mρ
mΨI(y) (1.29)

for the asymptotic coefficients of the Fefferman-Graham radial coordinate ρ.
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CHAPTER 2

THE FUZZBALL PROPOSAL FOR

BLACK HOLES

(2.1) BLACK HOLE PUZZLES

Among the most challenging questions of black hole physics of the last 30 years are the origin
of the Bekenstein-Hawking entropy, whether information is lost in black hole evaporation and
how singularities are resolved in a full theory of quantum gravity.

According to the no-hair theorem of Einstein-Maxwell gravity, black holes are solely character-
ized by their mass, charge and angular momentum. Nevertheless to prevent the total entropy in
the universe to decrease if matter falls in a black hole, which would be a violation of the second
law of thermodynamics, it is necessary to assign black holes an intrinsic entropy. Following a
formal analogy between the laws of thermodynamcis and the laws of black hole mechanics, this
entropy should be proportional to the horizon area of the black hole, the Bekenstein-Hawking
entropy. The discovery of Hawking radiation by semiclassical quantiztion of the black hole
geometry then showed that black holes indeed emit black body radiation according to their
assigned temperature and furthermore fixed the precise prefactor of their entropy. [25] Since
then it has been a longstanding issue of gravitational physics to find the microscopic degrees of
freedom corresponding to the Bekenstein-Hawking entropy and to explain why their number
grows as exp(A/4G) with the horizon area A.

Hawking radiation also gave rise to the information paradox. Since the radiation is exactly
thermal and the black hole finally evaporates, it seems as if information is lost in this process
(see figure 2.1). In quantum-mechanical terms, conservation of information is equivalent to
unitarity. If a final state in a quantum-mechanical process arises from unitary evolution,

|ψ〉f = e−iHt|ψ〉i, (2.1)

13
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Figure 2.1: Penrose diagram of information loss: The inital data |ψ〉i provided on Σi

partly falls into the black hole, leaving the data on Σf in a mixed state. The evolution
from Σi to Σf is non-unitary. (Figure adapted from [26].)

it means that the initial state can be reconstructed by inverting the evolution,

|ψ〉i = eiHt|ψ〉f , (2.2)

and hence information has been preserved. However, in Hawking’s calculation, entanglement
between infalling and outgoing pair quanta at the horizon causes the state at Σf to be mixed,
since the infalling quanta have been destroyed. If the state at Σi is pure, the evolution from Σi

to Σf is necessarily non-unitary.

An alternative is to assume that information leaks out in subtle correlations of the Hawking
radiation which are invisible in the semiclassical approximation. In this scenario the Hawking
radiation is conceptually not very different from the black body radiation of a piece of burning
coal. However, for a macroscopic black hole with mass well above the Planck mass, this requires
that information must be non-locally transmitted from the infallen matter near the center of
the black hole to the horizon. As a result, it seems that the information paradox requires either
giving up unitarity or locality in a full quantum theory of gravity.

Assuming that AdS/CFT is valid gives an implicit solution to the information paradox: Since
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the evolution in the dual QFT is unitary the evolution in the bulk gravity theory must be as
well, so information must be conserved. Unfortunately however, this argument does not reveal
how information escapes the black hole. It is not known how to calculate in the dual QFT
correlations measured by an infalling observer.

The fuzzball proposal [27, 28], arising out of string theory, proposes to resolve the information
paradox and to provide a microscopic description of the Bekenstein-Hawking entropy. The basic
idea is to replace the black hole by a large number of horizonless solutions which asymptote to
the black hole geometry but differ at the horizon scale. These horizonless solutions are thought
to correspond to microscopic states in the black hole ensemble, and upon averaging over these
geometries, the original black hole with its horizon is retrieved. The fuzzball proposal solves the
information paradox because each individual microstate geometry does not possess a horizon
which implies that information can escape the black hole after a very long time once one takes
into account its pure state. After quantization of the solution phase space, it furthermore allows
for a statistical explanation of the Bekenstein-Hawking entropy as the microstates are given by
the (quantized) individual geometries.

So far, all candidate solutions which have been found only involve low energy supergravity
fields. However there are only a few, atypical states which are believed to be well described
by supergravity. Typical microstate geometries are expected to contain regions of string scale
curvature in which higher string modes and higher modes arising in the compact space of a
ten- or eleven-dimensional fuzzball solution become important.

Although the fuzzball proposal was originally formulated for black holes in asymptotically flat
spacetimes, it can be analyzed using AdS/CFT if the near-horizon limit of the black hole has
a known holographic dual at the boundary. In fact, as we will elaborate on below, AdS/CFT
strongly supports the fuzzball program.

(2.2) BLACK HOLE ENTROPY COUNTING BY STRING THE-
ORY

Already before the proposal of the fuzzball program, string theory has been able to count the
entropy of black holes, mostly extremal BPS black holes. [29] As an example we review here the
case of the five-dimensional black hole arising from the bound D1-D5-P system with respective
charges Q1, Q5 and Qp compactified on S1×M4, where M4 is either T 4 or K3. Both D1 and D5
branes wrap the S1 with radius Rz >>

√
α′, while the volume of the compact space is taken of

the order of the string length, vol(M4) ∼ α′2. The momentum P then denotes the momentum
of excitations along the circle. This system preserves 1/8 of the supersymmetry. The solution
in the decoupling limit is given by

ds2 =
1√
h1h5

(
−(dt2 − dz2) +

Qp
r2

(dz − dt)2

)
(2.3)
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+
√
h1h5dx

mdxm +

√
h1

h5
ds2(M4),

where hi = 1 + Qi/r
2, xm denote the coordinates in the transverse direction and ds2(M4)

denotes the metric on the compact space. The corresponding RR 2-form potential and dilaton
is given by

e−2Φ =
h5

h1
, C2 = (h−1

1 − 1)dt ∧ dz. (2.4)

The charges Qi can be expressed in terms of integral charges Ni via

Q1 =
N1gsα

′3

V
, (2.5)

Q5 = N5gsα
′,

Qp =
Npg

2
sα
′2

R2
z

,

with V = (2π)−4vol(M4). The Bekenstein-Hawking entropy of this black hole in the Einstein
frame ds2

E = e−Φ/2ds2 can be calculated to be

SBH =
A10

4G10
=

A5

4G5
= 2π

√
N1N5Np, (2.6)

where (A10, G10) and (A5, G5) are the horizon area and gravitational constant in ten and five
dimensions respectively. The gravitational constants are given by

G10 = 8πκ10 = 8π6g2
sα
′4, (2.7)

G5 =
G10

(2π)5RV
.

This supergravity description of the D1-D5-P system is valid if all Qi >>
√
α′.

The microscopic calculation of the entropy counts the excitations of the low-energy theory
of the D-brane system. Since the volume of M4 is of order of the string scale the system is
described by an effective (1+1)-dimensional theory living on the circle. This low-energy theory,
which is conjectured to be the a deformation of the N = (4, 4) sigma model on the symmetric
orbifold (M4)N1N5/SN1N5 , is also the AdS/CFT dual to IIB string theory on AdS3 × S3 ×M4,
since the decoupling limit of the D1-D5-P solution above is BTZ × S3 ×M4, and BTZ can be
obtained by orbifolding AdS3. The perturbative description of the dual theory is valid for all
Qi << α′.

However, unlike in [29] where the microscopic entropy was counted in the perturbative regime
of the orbifold CFT and related to the supergravity regime by using non-renormalization theo-
rems, we strictly speaking do not need the details of the CFT here. If we invoke AdS/CFT, the
only necessary assumption is that there is a CFT dual to AdS3 × S3 ×M4 in the supergravity
regime which is unitary. By either analyzing the asymptotic conformal symmetries [30] or by
computing the conformal anomaly [13] one then finds that the central charge of this CFT dual
is given by

c =
3l

2G3
= 6N1N5. (2.8)
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In the supersymmetric case the momentum P in the bound state correspond to the left-moving
excitation level in the dual CFT, while the right-moving excitations are in their ground state.
Due to the unitarity of the dual CFT we can calculate the degeneracy at high excitation number
Np with Cardy’s formula [31],

d(c,Np) ∼ e2π
√
Npc/6. (2.9)

As a result, the microscopic calculation of the entropy yields

Smic = ln d(c,Np) = 2π
√
N1N5Np, (2.10)

which precisely agrees with (2.6).

(2.3) THE D1-D5 TOY MODEL

Even though black hole entropy counting, which has been succesfully performed for many
more extremal and near-extremal black holes, offers an important glimpse of the microscopic
origin of the Bekenstein-Hawking entropy, it only partly addresses the questions raised in the
beginning of section (2.1). The counting is performed in the dual QFT and it is a priori not clear
how the QFT states are related to gravitational states. Particularly it is not known how global
properties of the gravitational description like horizons are encoded in the QFT. As a result, it
does not give information on how the entropy is related to the horizon of the black hole and
how the information paradox is resolved. In contrast, the fuzzball proposal goes further by
suggesting an explicit representation of the microscopic states in terms of gravitational degrees
of freedom. As we will see below, these gravitational degrees of freedom are related to the dual
microscopic states by AdS/CFT.

The idea of the fuzzball proposal is to replace naive black hole solutions like (2.3) by an ensem-
ble of solutions with the same asymptotic charges but a different geometry at the horizon scale.
Unfortunately, the fuzzball solutions corresponding to the macroscopic 3-charge D1-D5-P black
hole are quite intricated. An interesting toy model, which we will extensively explore in later
chapters, is the 2-charge D1-D5 system. The naive solution is obtained by setting Np = 0 in
(2.3),

ds2 =
1√
h1h5

(−dt2 + dz2) +
√
h1h5dx

mdxm +

√
h1

h5
ds2(M4), (2.11)

and preserves 1/4 of the supersymmetry. The solution is only a toy model for a black hole,
since its naive solution has no horizon but only a naked singularity. Only if one includes higher
order corrections a small horizon appears, whose associated entropy agrees with the dual CFT
calculation.1 The D1-D5 system can be related by U-duality to the F1-P chiral null model
describing a fundamental string winding a compact direction with momentum, whose solution

1This is surprising since only a subset of higher order corrections are known and the curvature at the
horizon of this small black hole is of order of the string scale. An explanation for black holes involving an
AdS3 factor in their (corrected) near-horizon geometry was given in [32].
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has been found in [33, 34]. We will exploit this in chapter 4 to find the most general fuzzball
solution.

The D1-D5 fuzzball solutions corresponding to (2.11) are characterized by a curve F I(v) =

(F i(v), F ρ(v)) extending in the transverse and internal directions, on which D1 and D5 charge
is distributed. If there are no internal excitations, F ρ(v) = 0, the solution has a slightly simpler
form (3.44) than in the general case (4.51). If F I ≡ 0 the solution collapses to the naive solu-
tion; otherwise the size of the curve F I(v) determines the scale at which the fuzzball geometry
starts deviating. If the curve does not intersect with itself and if d

dv
F I(v) 6= 0 everywhere, the

geometry close to the curve resembles a Kaluza-Klein monopole and remains smooth. Further-
more, since the Killing vector field ∂/∂t is timelike everywhere, there is no horizon and the
solution has the same Penrose diagram as Minkowski space.

Classically, there is an infinite number of solutions parametrized by the curve F I(v). If one
wishes to obtain a statistical entropy out of this ensemble of solutions one has to quantize the
phase space by geometric quantization, which has been done for the D1-D5 system with only
transverse excitations in [35]. Geometric quantization in this case yields commutation rela-
tions, in which the Fourier modes of F I(v) behave as oscillators. Counting the appropriate sub-
space yields precisely the fraction of entropy expected for transverse excitations. However one
should mention that the counting includes regions in the phase space where higher-derivative
corrections to supergravity are non-negligible. It is not clear why in this case the (mostly un-
known) higher-derivative corrections do not seem to influence the counting.

(2.4) ADS/CFT SUPPORTS THE FUZZBALL PROPOSAL

If according to the fuzzball proposal there is an explicit representation of the microscopic states
of a black hole in terms of geometries, it should be possible to map these states back to the
microscopic states in the dual theory which we counted in section 2.2. In fact, this is what
most of our discussion in chapter 3 and 4 will be about.

In the first step, we have to bring the fuzzball solutions in a form where we can analyze them
with AdS/CFT: We replace the asymptotically flat region by an asymptotically AdS region,
which corresponds to the replacement h1,5 → h1,5 − 1. While the naive solution becomes
locally AdS3 × S3 × M4, the fuzzball geometries will only asymptotically be AdS, differing
by normalizable modes from the naive solution. This is due to the fact that the curve F I(v)

spreads out in the transverse directions, generating higher multipole moments in addition to
the asymptotic charges. By the AdS/CFT dictionary developed in chapter 1 we can then relate
the normalizable modes to the vevs of gauge-invariant operators in the dual CFT. Knowing all
such vevs determines in principle the (pure) state of the CFT which corresponds to the fuzzball
geometry.

In practice this procedure is however complicated by the fact that we have to use Kaluza-Klein
holography to extract holographic data from a ten-dimensional (or in this case six-dimensional,
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since the M4 is taken very small) geometry. As discussed in section 1.5 the formula (1.28) for
the vevs of the dual operators in terms of the six-dimensional geometry contains in general
non-linear contributions which have the same radial falloff as the linear contribution. In our
case that means that the vev of a dual operator of dimension k does not only get contributions
from the k-th multipole moment but also from the product of lower multipole moments. As
we are doing perturbation theory in the order of the multipole moments it follows that for
example at cubic order we can only extract the vevs of operators of lowest and second-lowest
dimension.

In chapter 3 we will therefore conjecture a specific map between fuzzball geometries and CFT
states. The extraction of the dual vevs of lowest and second-lowest dimension operators will
serve as a way to perform kinematical and dynamical test of this map.

Nonetheless, on a more general level we can invert above arguments to show how AdS/CFT
supports the fuzzball proposal for every black hole whose entropy we believe to be counted by a
(strongly coupled) dual QFT. Also in this QFT we would be able to distinguish the dual states of
a black hole ensemble by the vevs of gauge invariant operators. By AdS/CFT every such (pure)
state maps to a geometry with different normalizable modes and hence with different sublead-
ing asymptotics. Replacing again the asymptotically AdS region by an asymptotically flat region
we obtain an ensemble of fuzzball solutions which have the same asymptotic geometry as the
black hole but differ in the interior.

This procedure however does not imply that the fuzzball geometries obtained in this way are
resolvable in supergravity. In fact, as we will see for the D1-D5 system in section 3.11, many
states in the dual CFT do not yield geometries which are distinguishable in supergravity.

(2.5) ARE ASTROPHYSICAL BLACK HOLES FUZZBALLS?

Even though we restrict our attention for the rest of this thesis to supersymmetric fuzzballs,
we would like to mention that eventually the fuzzball program should also resolve the infor-
mation loss and entropy problem for astrophysical black holes. These black holes differ from
the supersymmetric D1-D5-P black hole in that they are four-dimensional and non-extremal,
with an electric charge much smaller than their mass. While counting entropy and constructing
fuzzball solutions for four-dimensional black holes are in principle not any more difficult than
for five-dimensional black holes, the non-extremality adds an additional challenge. Extremal
black holes are particularly easier to handle if there are (sufficiently) supersymmetric. Super-
symmetry can not only protect the microstates in the dual QFT as the coupling is changed
from weak to strong coupling, a requirement for many black hole counting arguments, but
BPS (ie. supersymmetric) supergravity solutions are often given by harmonic functions which
can be linearly superposed. For supersymmetric solutions like the D1-D5 system, the coarse-
graining of the fuzzball geometries to the naive solution can be be achieved by a simple linear
superposition.
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For non-extremal black holes however coarse-graining, and particularly how it leads to a hori-
zon in the naive solution, is not yet understood. A few candidate geometries for non-extremal
fuzzballs are known [36, 37, 38]. All these geometries possess a superradiant instability which
is thought to correspond to black hole evaporation, only that the decay time is much shorter
than the evaporation time. This is not a contradiction if these states are atypical in the ensemble
of the non-extremal black hole.

In principle, if we assume that also the microstates of a non-extremal black hole are given by a
dual QFT, there should be corresponding fuzzball geometries. Following the general argument
in the last section, we can invoke AdS/CFT to infer the existence of a large number of geome-
tries with the same ADM charges as the black hole but differing in the interior. Since each of
these geometries should correspond to a pure state, they should be horizonless. However the
way in which the asymptotic data prevents the presence of a horizon in the interior, which then
only appears after coarse-graining, still remains to be understood.

Finally we would like to mention that in all known fuzzball geometries corresponding to macro-
scopic black holes, typical geometries may contain regions of high curvatures or geometries
may not be distinguishable in supergravity. A full gravitational description of an ensemble of
fuzzball geometries most likely requires an understanding of these geometries as solutions of
the full string theory. Overcoming the technical challenges associated with such a description
would be a big progress in the fuzzball program.



CHAPTER 3

HOLOGRAPHIC ANATOMY OF

FUZZBALLS

(3.1) INTRODUCTION, SUMMARY OF RESULTS AND CON-
CLUSIONS

In this chapter we examine the precise relation between the fuzzball solutions and dual mi-
crostates for the 2-charge D1-D5 system which we introduced in section 2.3. Recall that the
D1-D5 system is a 1/4 supersymmetric system and the “naive” black hole geometry has a near-
horizon geometry of the form AdS3×S3×M , where M is either T 4 or K3. The naive geometry
has a naked singularity but one expects that a horizon would emerge from α′ corrections. At
any rate, the description in terms of D-branes (at weak coupling) is well defined and one can
obtain a statistical entropy in much the same way as for the 3 charge geometry which has a
finite radius horizon. Indeed, the D1-D5 system can be mapped by dualities to a system of a
fundamental string carrying momentum modes and the degeneracy of the system can be com-
puted by standard methods. To be more specific, let us take M = T 4; then the degeneracy is
the same as that of 8 bosonic and 8 fermionic oscillators at level N = n1n5, where n1 and n5

are the number of D1 and D5 branes, respectively. The fuzzball proposal in this context is that
there should exist an exponential number of horizon free solutions, one for each microstate,
each carrying these two D-brane charges.

An exponential number of solutions was constructed by Lunin and Mathur in [27] and proposed
to correspond to microstates. These were found by dualizing a subset of the FP solutions
[33, 34], namely those that are associated with excitations of four bosonic oscillators. These
provide enough solutions to account for a finite fraction of the entropy but one still needs
an exponential number of solutions (associated with the additional four bosonic and eight

21
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fermionic oscillators in the example of T 4) to account for the total entropy. Such solutions,
related to the odd cohomology of T 4 and the middle cohomology of the internal manifold have
been discussed in [39] and [40], respectively, and we will complete this program in chapter 4.
We thus indeed find that there are an appropriate number of solutions to account for all of the
D1-D5 entropy1.

Do these solutions, however, have the right properties to be associated with D1-D5 microstates,
and if yes, what is the precise relation? The aim of this chapter is to address this question for
the solutions corresponding to the universal sector of the T 4 and K3 compactifications.

As mentioned above the solutions of interest were obtained by dualizing FP solutions so let us
briefly review these solutions and their relation to string perturbative states. A more detailed
discussion will be given in section 3.2. The FP solutions (which are general chiral null models)
involve the metric, B-field and the dilaton and are characterized by a null curve F I(x+) with
I = 1, . . . , 8 in R8. The solution describes the long range fields sourced by a string wrapping
one compact direction and having a transverse profile given by the null curve F I(x+). The
ADM conserved charges, i.e. the mass, momentum and angular momentum, associated with
this solution are given precisely by the energy, momentum and angular momentum of the
classical string that sources the solution.

On general grounds, one would expect that this classical string should be produced by a co-
herent state of string oscillators. Indeed, we show in section 3.2 that associated to a classical
curve F I(x+),

F I(x+) =
∑
n>0

1√
n

(
αIne

−in
(
x+

wR9

)
+ (αIn)∗e

in
(
x+

wR9

))
, (3.1)

where x+ = x0 + x9, x9 is the compact direction of radius R9, w is the winding number and
αIn are (complex) numerical coefficients, there is a coherent state |F I) of the first quantized
string in an unconventional lightcone gauge with x+ = wR9σ

+, where σ+ is a worldsheet light-
cone coordinate, such that the expectation value of all conserved charges match the conserved
charges associated with the solution. More precisely, let

XI =
∑
n>0

1√
n

(
âIne
−inσ+

+ (âIn)†einσ
+
)

(3.2)

be the 8 transverse left moving coordinates with âIn the quantum oscillators normalized such
that [âIn, (â

J
m)†] = δIJδmn. The corresponding coherent state is given by

|F I) =
∏
n,I

|αIn) (3.3)

where |αIn) is a coherent state of the left-moving oscillator âIn, i.e. it satisfies âIn|αIn) = αIn|αIn),
and the eigenvalues αIn are the coefficients appearing in (3.1). By construction

(F I |XI |F I) = F I (3.4)

1Note however that this is a continuous family of supergravity solutions. To properly count them one
needs to appropriately quantize them. Such a quantization has been discussed in [35], see also [41, 42] for
a counting using supertubes.
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with root mean deviation of order 1/
√
m, where m ≡ (F I |m̂|F I) the expectation value of

the occupation operator2 m̂ =
∑
âI−nâ

I
n. In other words, the expectation value is given by

the classical string that sources the solution, and this is an accurate description as long as the
excitation numbers are high. For low excitation numbers the state produced is fuzzy and the
supergravity solution would require quantum corrections (as one would indeed expect). Note
that the right-movers are in their ground state throughout this discussion.

Given winding w and momentum p9 quantum numbers there are also corresponding Fock states

∏
(âI−nI )mI |0〉, NL =

∑
nImI = −wp9 (3.5)

where NL is the total left-moving excitation level (mI are integers). It is sometimes stated
in the literature that the solutions of [33, 34] represent these states. This cannot be exactly
correct as the string coordinates have zero expectation on these states, so semiclassically they
do not produce the required source. The statement is however approximately correct since
these states strongly overlap with the corresponding coherent state for high excitation num-
bers. So in the regime where supergravity is valid the coherent state can be approximated
by Fock states. Notice that one can organize the Fock states (3.5) into eigenstates of the an-
gular momentum operator by using as building blocks linear combination of oscillators that
themselves are eigenstates (e.g. (âI−n ± iâI+1

−n )). The coherent states are however (infinite)
superpositions of states with different angular momenta and are thus not eigenstates of the
angular momentum operator.

We now return to the discussion of the dual D1-D5 system. The solutions of [27] were obtained
by dualizing the FP solutions we just discussed but with a curve that is restricted to lie on R4.
The corresponding underlying states are now R ground states of the CFT associated with the
D1-D5 system. This CFT is a deformation of a sigma model with target space the symmetric
product of the compactification manifold X, SN (X) (N = n1n5 and n1, n5 are the number
of D1 and D5 branes). The R ground states can be obtained by spectral flow of the chiral
primaries of the NS sector. Recall that the chiral primaries are associated with the cohomology
of the internal space. For the discussion at hand only the universal cohomology is relevant and
this leads (after spectral flow) to the following R ground states

∏
(OR(±,±)

nl )ml |0〉
∑

nlml = N = n1n5 , (3.6)

where nl is the twist, ml are integers and the superscripts denote (twice) the R-charges of
the operator. Here the ground states are described in the language of the orbifold CFT; each
ground state of the latter will map to a ground state of the deformed CFT. Notice that there is
1-1 correspondence between these states and the Fock states in (3.5). Namely one can map the

2Usually the occupation operator is called N but we reserve this letter for the level of the Fock states,
N =

∑
nâI−nâ

I
n. Note also that after the duality to the D1-D5 system the occupation number becomes the

eigenvalue of j3 which is usually called m.
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operators OR(±,±) to the harmonic oscillators3,

â±12
−n ↔ OR(∓,∓)

n , â±34
−n ↔ OR(±,∓)

n . (3.7)

where â±12
−n ≡ (â1

−n± iâ2
−n)/

√
2 and â±34

−n ≡ (â3
−n± iâ4

−n)/
√

2. In particular, the frequency n is
mapped to the twist of the operator and the R-charge to the angular momentum in the 1-2 and
3-4 plane. However, the underlying algebra of these operators is different from the algebra of
the harmonic oscillators.

Motivated by this correspondence it was proposed in [27] that each of the solutions obtained
via dualities from the FP solution corresponds to a R ground state and via spectral flow to
a chiral primary [28]. One of the original motivations for this work was to understand how
such a map might work. Whilst it was clear from these works that the frequencies involved
in the Fourier decomposition of the curve should map to twists of operators, it was unclear
what the meaning of the amplitudes is in general and moreover a generic curve has far more
parameters than an operator of the form (3.6). In our discussion of the FP system we have seen
that the geometry is more properly viewed as dual to a coherent state rather than a single Fock
state. The coherent state however viewed as linear superposition of Fock states (see (3.32))
contains states that do not satisfy the constraint NL = −p9w and therefore do not map to R
ground states after the dualities. This then leads to the following proposal for the map between
geometries and states [43] 4:

Given a curve F i(v) we construct the corresponding coherent state in the FP system and then find
which Fock states in this coherent state satisfy NL = −p9w. Applying the map (3.7) then yields
the superposition of R ground states that is proposed to be dual to the D1-D5 geometry.

Let us see how this works in some simple examples. The simplest case is that of a circular
planar curve that we may take to lie in the 1-2 plane:

F 1(v) =

√
2N

n
cos 2πn

v

L
, F 2(v) =

√
2N

n
sin 2πn

v

L
, F 3 = F 4 = 0, (3.8)

where L is the length of the curve and the overall factors are fixed by requiring that the solution
has the correct charges (this will be explained in the main text). The corresponding coherent
state can immediately be read off from the curve

|a−12
n ; a+12

n ; a−34
n ; a+34

n ) = |
√
N/n; 0; 0; 0). (3.9)

In this case there is a single state with NL = N = −wp9 contained in this coherent state,
namely

|N/n〉 = (â−12
−n )N/n|0〉. (3.10)

3This correspondence straightforwardly extends to the general case where all R ground states are consid-
ered and all bosonic and fermionic oscillators are used in (3.5).

4A map between density matrices of the CFT states built from 4 bosonic oscillators and modified fuzzball
solutions has been recently discussed in [44]. Here we provide a map between the original fuzzball solutions
and superpositions of R ground states of the D1-D5 system.
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Using the map (3.7) we get that the D1-D5 solution based on the circle is dual to the R ground
state

|circle) =
(
OR(+,+)
n

)N/n
(3.11)

which was the proposal in [27].

As soon as one moves to more complicated curves, however, the correspondence becomes more
complex, as there is more than one Fock state with NL = −wp9. For example the next simplest
case is the solution based on an ellipse

F 1(v) =

√
2N

n
a cos 2πn

v

L
, F 2(v) =

√
2N

n
b sin 2πn

v

L
, F 3 = F 4 = 0, (3.12)

with a2 + b2 = 2. Following our prescription we obtain the following superposition

|ellipse) =

N/n∑
k=0

1

2
N
n

√
(N
n

)!

(N
n
− k)!k!

(a+ b)
N
n
−k(a− b)k

(
OR(+,+)
n

)N
n
−k (
OR(−,−)
n

)k
, (3.13)

as is explained in section 2.3. The superposition for a general curve will involve a large number
of Fock states.

Given such a map from curves to superpositions of states the question is whether the corre-
spondence can be checked quantitatively. The D1-D5 solutions approach AdS3 × S3 (times T 4

or K3) in the decoupling limit so one can use the AdS/CFT correspondence to make detailed
quantitative tests. Recall that the deviations of the solution from AdS3 × S3 encode vacuum
expectation values of chiral primary operators (and possible deformations of the CFT by such
operators), so by analyzing the asymptotics one can in principle completely characterize the
ground state of the boundary theory.

Before proceeding to explain this, let us contrast the somewhat different meanings that one
attaches to the statement “a geometry is dual to a state |S〉”. In the context of the FP system,
the state |S〉 is meant to provide the source for the supergravity solution and because of that
we argued it should be a coherent state. In the context of the D1-D5 system however the same
statement means that the ground state of the dual field theory is the state |S〉 (so |S〉 need not
be approximated by a classical solution) and the vevs of gauge invariant operators on this state,
〈S|O|S〉, are encoded in the asymptotics of the solution.

The D1-D5 system is governed by a 1+1 dimensional theory with N = (4, 4) supersymmetry.
This theory has Coulomb and Higgs branches (which are distinct even quantum mechanically)
[45, 46, 47]. The boundary CFT is the IR limit of the theory on the Higgs branch. Thus
the fuzzball solutions should be in correspondence with the Higgs branch. Note that due to
strong infrared fluctuations in 1+1 dimensions one usually encounters wavefunctions rather
than continuous moduli spaces of the quantum states. So more properly one should view
the fuzzball solutions as dual to wavefunctions on the Higgs branch. These wavefunctions,
however, may be localized around specific regions in the large N limit and one should view our
proposed correspondence in this way.
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The vevs of gauge invariant operators in this 1+1 dimensional theory can be computed from
the asymptotics of the solution. As we discussed in chapter 1, the existence of such a relation-
ship follows from the basic AdS/CFT dictionary that relates bulk fields to boundary operators
and the bulk partition function to boundary correlation functions. The implementation of this
program is however very subtle. Precise formulae for the 1-point functions for solutions with
asymptotics to AdS × S were obtained in [22].

Naively the vev of an operator of dimension k is linearly related to coefficients of order zk in
the asymptotic expansion of the solution, where z is a radial coordinate (with the boundary of
AdS located at z = 0.) The actual map however is more complicated and involves in addition a
variety of non-linear contributions from terms of lower order zl, l < k. There are four sources
of such non-linear contributions, as we now discuss.

Recall from chapter 1 that the holographic 1-point functions are derived by functionally differ-
entiating the renormalized on-shell action w.r.t. the corresponding sources (see, for example,
the review [21]). The most transparent way to describe the outcome of this computation is to
use a radial Hamiltonian language where the radial coordinate plays the role of time. As we
saw in section 1.5 the relationship (1.28) between 1-point functions and asymptotic coefficients
is in general non-linear

For the case at hand, the first step is to reduce the 10 dimensional solution over T 4 or K3. We
show that the fuzzball solutions reduce to solutions of 6-dimensional supergravity coupled to
tensor multiplets. These solutions (in the decoupling limit) are asymptotic to AdS3 × S3. The
next step is to find the non-linear gauge invariant KK map from 6 to 3 dimensions. Following
[22], this is done to second order in the fluctuations using (and extending) the results of
[24, 48]. The results up to this order are sufficient to derive (after taking into account the
subtle issue of extremal correlators) the vevs of all 1/2 BPS operators up to dimension 2. This
includes in particular the conserved charges and the stress energy tensor. We emphasize that
the non-linear terms are crucial in getting the right physics. We also discuss the vevs of higher
dimension operators but these results are only qualitative as we did not compute the non-linear
contributions; these could be computed along the lines described above, but the computation
becomes very tedious. One point functions for this system have also been discussed in the
context of black rings [49], although the non-linear terms (which play a crucial role) were not
included there.

The final results for the vevs of the fuzzball solution are given in section 3.6. In particular, the
vevs of the stress energy is (non-trivially) zero for all solutions, consistent with the fact that the
solutions are supersymmetric. The vevs of the other operators are〈

OS1
i

〉
=

n1n5

4π
(−4
√

2f5
1i); (i=1, . . ., 4) (3.14)〈

OS2
I

〉
=

n1n5

4π
(
√

6(f1
2I − f5

2I)); (I=1, . . ., 9)〈
OΣ2

I

〉
=

n1n5

4π

√
2(−(f1

2I + f5
2I) + 8aα−aβ+fIαβ); (α=1, . . ., 3)〈

J+α
〉

=
n1n5

2π
aα+(dy − dt);

〈
J−α

〉
= −n1n5

2π
aα−(dy + dt),
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where OS1
i

are dimension 1 operators, OS2
I
,OΣ2

I
are dimension 2 operators,and J±α are R-

symmetry currents. These operators correspond to the lowest lying KK states, the KK spectrum
consisting of two towers of spin 1 supermultiplets, the S and Σ towers, and a tower of spin
2 supermultiplets, which contain the gauge field that is dual to the R-symmetry current. The
coefficients f5

1i, f
1
2I , f

5
2I , a

±α appear in the asymptotic expansion of the harmonic functions that
specify the solution, see (3.68)-(3.83), and fIαβ is a certain triple overlap of spherical harmon-
ics. Expressed in terms of the defining curve F i, the degree k coefficients involve symmetric
rank k polynomials of F i, see (3.71). In general, the vev of an operator of dimension k depends
linearly on degree k coefficients and non-linearly on lower degree coefficients but such that the
sum of degrees is k.

Any proposal for the field theory dual of these geometries should reproduce these vevs. Now,
except when the curve is circular, operators charged wrt the R-symmetry acquire a vev. This
implies immediately that the ground state of the field theory dual cannot be an eigenstate of
R-symmetry since if this were the case only neutral operators would acquire a vev [43]. So
none of the fuzzball solutions, except the circular ones, can correspond to a single R-ground
state. Indeed, we have argued above (as in [43]) that these solutions should instead be dual to
particular superpositions of R-ground states.

To test this proposal we discuss in some detail the case of the ellipse, comparing the vevs ex-
tracted from the supergravity solution with those implicit from the corresponding superposition
of states in the field theory. We find complete matching for all kinematical properties of these
vevs, thus demonstrating the consistency of our proposal. Moreover, the first dynamical test -
matching of the R charges - is passed. To match the other vevs would require a knowledge of
certain multiparticle three point functions at strong coupling, and is thus not currently possi-
ble. However, approximating the required three point functions using free harmonic oscillators
leads to vevs which are in remarkable agreement with those extracted from the supergravity
solution. This agreement suggests that certain three point functions in the dual CFT may be
well approximated by free field computations, a result which in itself merits further investi-
gation. Our proposal therefore passes all kinematical and all accessible dynamical tests, with
other dynamical tests requiring going beyond the supergravity approximation.

Given that the original fuzzball solutions do not correspond to single R ground states, one may
wonder whether there are other supergravity solutions that do correspond to a given R ground
state. A necessary condition for this would be that the vevs of all charged operators are all zero,
and this will only be the case if the solution preserves an SO(2) × SO(2) symmetry (among
the original solutions only the circular one had this symmetry). We give the most general
asymptotic supergravity solution consistent with these requirements. Different solutions with
such asymptotics are parametrized by the vevs of the neutral operators, and to obtain these
vevs one needs the complete solutions.

One way to produce solutions with an SO(2) × SO(2) symmetry is to take appropriate super-
positions of the non-symmetric solutions. We discuss how to do such an averaging in general
and we work out the details for the ellipse and for a curve that is a straight line followed by
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a semi-circle. This latter case yields the Aichelburg-Sexl metric namely the metric describing a
massless particle moving along a greater circle on S3 and sitting at the center of AdS3. Solu-
tions with the same SO(2)×SO(2) symmetry can also be produced using disconnected circular
curves; one would expect that such solutions are related to Coulomb rather than Higgs branch
physics.

We then discuss the relationship between such symmetric geometries and R ground states. We
argue that the vevs for neutral operators in a particular ground state can be related to three
point functions at the conformal point. Thus with knowledge of the latter one can distinguish
whether a given geometry corresponds to a particular R ground state. However, we find that
implementing this procedure generically requires going beyond the leading supergravity ap-
proximation: one would need to know three point functions of multi particle operators, not
captured by supergravity, as well as 1/N corrections. Thus we cannot currently determine
which geometries are indeed dual to R ground states; indeed even the solutions based on
disconnected curves (which should be Coulomb branch) could not be ruled out.

So what do hese results imply for the fuzzball program? Firstly, they support the overall picture;
the fuzzball solutions can be in correspondence with the black hole microstates in a way that is
compatible with the AdS/CFT correspondence and our computations provide the most stringent
test to date. The detailed correspondence however is more complicated than anticipated. In
particular a generic fuzzball solution corresponds to a superposition of many R ground states,
and in general one would need to go beyond the leading supergravity to properly describe
the system, even in this simplest 2-charge system. It has long been appreciated that most
of the fuzzball solutions, despite being regular, have regions of high curvature so are at best
extrapolations of the actual solutions describing the microstates. Here we see that even for
solutions with low curvature everywhere, such as the ones based on large ellipses, one needs
to go beyond the leading supergravity to test any proposed correspondence.

There has been a lot of interest in finding and analyzing fuzzball geometries in systems with
more charges which have classical horizons [50] but a precise matching between these geome-
tries and black hole microstates has not been established. Such a matching is clearly necessary,
both to demonstrate that the correct geometries have been identified and to find for what frac-
tion of the total entropy these account. A precise correspondence would also be important in
understanding the quantization of the geometries and, most importantly of all, how the black
hole properties emerge.

A key result of our work is that the vevs encoded by a given geometry give significant infor-
mation about the field theory dual, and distinguish between geometries with the same charges
(mass, angular momentum). In particular, dipole and higher multipole moments are related
to the vevs of operators with dimension two or greater. Vevs determined by kinematics can
by themselves rule out proposed correspondences, as shown in [43] and here, and vevs deter-
mined by dynamics are strong tests of a given proposal, when they can be computed on both
sides. In particular, whilst our solutions based on disconnected curves pass all kinematical tests
to correspond to R ground states on the Higgs branch, they should be ruled out by dynamical
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tests.

Previous work has often focused on computing two point functions and relating them to those
in the dual field theory, and vice versa, see for example [51], but extracting vevs is much
easier, since one needs only the geometry itself, rather than solving fluctuation equations in
the geometry. Thus one can easily extract vevs from geometries with few symmetries, where
the corresponding fluctuation equations are intractable. It hence seems worthwhile to explore
whether the techniques developed here can give useful information in the context of other
fuzzball geometries. One can analyze any fuzzball geometry which has a throat region using
AdS/CFT techniques, with the formalism developed here being directly applicable to three
charge black strings in six dimensions. Black rings in six dimensions could also be explored
using the same formalism; indeed the extracted data should uniquely identify the field theory
dual.

The plan of this chapter is as follows. In section 3.2 we discuss the relationship between
solitonic string supergravity solutions and coherent states of the fundamental string. In section
3.3 we introduce the dual solutions in the D1-D5 system, and discuss the embedding of their
decoupling limit into 6-dimensional supergravity. In section 3.4 we discuss the asymptotic
expansion of these six dimensional solutions near the AdS3 × S3 boundary. In section 3.5 we
explain how the vevs of field theory operators can be extracted from these asymptotics. In
section 3.6 we give the explicit values of these vevs for the fuzzball solutions in full generality,
and in section 3.7 we specialize to the examples of solutions sourced by circular and elliptical
curves. In section 3.8 we recall relevant features of the dual field theory, and discuss how the
vevs can be related to three point functions at the conformal point. In section 3.9 we move
on to the correspondence between fuzzball geometries and superpositions of chiral primaries,
giving evidence for our proposed correspondence in terms of the matching of the vevs for the
ellipsoidal case. In section 3.10 we discuss the asymptotics of a geometry dual to a single chiral
primary, and give some examples of solutions which have such asymptotics. In section 3.11 we
discuss the correspondence between symmetric geometries and chiral primaries, emphasizing
that dynamical tests require going beyond the leading supergravity approximation. In section
3.12 we discuss how the asymptotically flat part of the geometry can be included in the field
theory description.

Throughout this chapter we use a number of technical results which are contained in appen-
dices. Appendix 3.A.1 contains various properties of S3 spherical harmonics whilst appendix
3.A.2 proves an addition theorem for harmonic functions on R4. Appendix 3.A.3 discusses the
perturbative expansion of six-dimensional field equations about the AdS3 × S3 background.
Appendix 3.A.4 discusses the supergravity computation of certain three point functions, whilst
appendix 3.A.5 contains a derivation of the one point function for the energy momentum ten-
sor in this system. Appendix 3.A.6 concerns the three point functions in the orbifold CFT; we
argue that these differ from those computed in supergravity and that they are therefore not
protected by any non-renormalization theorem.
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(3.2) FP SYSTEM AND PERTURBATIVE STATES

We begin by discussing solitonic string supergravity solutions and their relation to perturbative
string states. The FP solutions are characterized by a curve F I(x+) describing the transverse
displacement of the string. For later purposes only 4 transverse directions will be excited so the
curve is confined to R4 but for now we keep the discussion general. The supergravity solution
describing an oscillating string is given by [33, 34]

ds2 = H−1(−dx−dx+ +K(dx+)2 − 2AIdx
Idx+) + dxIdxI

H = 1 +
Qf

|~x− ~F (x+)|6
, K =

Qf |Ḟ |2

|~x− ~F (x+)|6
, AI =

Qf ḞI

|~x− ~F (x+)|6
(3.15)

with suitable B field and dilaton. Here x± = x0 ± x9 are lightcone coordinates, ~x are 8
transverse coordinates and x9 ≡ x9 + 2πR9. ḞI denotes the derivative with respect to x+. The
fundamental string charge Qf is proportional to the number of fundamental strings. The ADM
mass and momentum along the compact direction are respectively [33, 34]

M = kQf (1 + |Ḟ |20); P 9 = −kQf |Ḟ |20, (3.16)

where the subscript denotes the zero mode and k = 3ω7/2κ
2 with ω7 the volume of the S7.

The angular momenta in the transverse directions are similarly given by

JIJ = kQf (F J Ḟ I − F I Ḟ J)0. (3.17)

As we will review below, these are exactly the conserved quantities of a string which wraps
around the compact direction w times and whose transverse profile is given by F I .

(3.2.1) STRING QUANTIZATION

To relate the supergravity solutions to perturbative string states, let us consider quantizing a
string propagating in a flat background; we discuss this in some detail since the preferred gauge
choice is a non standard light cone gauge. The relevant part of the worldsheet action is

S =
1

4πα′

∫
d2σ(∂+X

M∂−XM + · · · ), (3.18)

where the worldsheet metric is gauge fixed to −gττ = gσσ = 1. Fermions will not play any role
in the discussion here and will be suppressed. We will also set α′ = 2 to simplify formulae.
Null worldsheet coordinates are introduced by setting σ± = (τ ± σ) and a lightcone gauge can
be chosen for V such that

X+ = (w+σ+ + w̃+σ−). (3.19)
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A similar choice of lightcone gauge for open strings has been discussed in [52]. The other fields
are then expanded in harmonics as

X− = x− + (w−σ+ + w̃−σ−) +
∑
n

1√
|n|

(a−n e
−inσ+

+ ã−n e
−inσ−); (3.20)

XI = xI + pI(σ+ + σ−) +
∑
n

1√
|n|

(aIne
−inσ+

+ ãIne
−inσ−).

Reality of XM demands that aM−n = (aMn )†. The Virasoro constraints are

T++ = ∂+X
M∂+XM = 0; T−− = ∂−X

M∂−XM = 0. (3.21)

At the classical level this enforces

(−w+w− + (pI)2)δm,0 + i
m√
|m|

(w+a−m − 2pIaIm) +
∑
n

n(n−m)√
|n(n−m)|

aIna
I
m−n = 0;

(−w̃+w̃− + (pI)2)δm,0 + i
m√
|m|

(w̃+ã−m − 2pI ãIm) +
∑
n

n(n−m)√
|n(n−m)|

ãInã
I
m−n = 0,

thereby determining the non-dynamical field X− in terms of the dynamical transverse fields
XI , as in standard lightcone gauge. The conserved momentum and winding charges are given
by

PM =
1

4π

∫ 2π

0

dσ(∂τX
M ); WM =

1

2π

∫ 2π

0

dσ(∂σX
M ), (3.22)

which take the values

PM =

(
1

4
(w− + w+ + w̃− + w̃+),

1

4
(w+ − w− + w̃+ − w̃−), pI

)
; (3.23)

WM =

(
1

2
(w− + w+ − w̃− − w̃+),

1

2
(w+ − w− − w̃+ + w̃−), 0

)
.

In order for the string not to wind the time direction, one thus needs

W 0 =
1

2
(w− + w+ − w̃− − w̃+) = 0. (3.24)

We are interested in states with only left moving excitations and no transverse momentum,
namely the w̃+ = 0 sector. For these the momentum and winding charges are

PM = ( 1
2
wR9 −

p9

R9
,
p9

R9
, 0); WM = (0, wR9, 0); (3.25)

w+ ≡ wR9; w− ≡ −2
p9

R9
.

Restricting to such states the L0 constraint becomes

p9w +
∑
n>0

naI−na
I
n ≡ p9w +NL = 0. (3.26)

The angular momenta in the transverse directions are given by the usual expressions

JIJ =
1

4π

∫ 2π

0

dσ(XJ∂τX
I −XI∂τX

J) = −i
∑
n>0

(aI−na
J
n − aJ−naIn). (3.27)
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Quantization proceeds in the standard way, with the oscillators satisfying the commutation
relations [

âIn, (â
J
m)†
]

= δm,nδ
IJ , (3.28)

and states being built out of creation operators (âIm)† acting on the vacuum. The classical
expressions continue to hold, replacing aIm by operators âIm, with appropriate shift in L0 (which
is negligible in the large charge limit).

(3.2.2) RELATION TO CLASSICAL CURVES

On rather general grounds, one expects that the supergravity solution characterized by a null
curve corresponds to a coherent state of string oscillators. To be more precise, let us Fourier
expand the classical curve

F I(x+) =
∑
n>0

1√
n

(
αIne

−inσ+

+ (αIn)∗einσ
+
)

(3.29)

where αIn are (complex) numerical coefficients and x+ = wR9σ
+. Then the coherent state |F I)

of string oscillators that corresponds to this curve is given by

|F I) =
∏
n,I

|αIn) (3.30)

where |αIn) is a coherent state of the oscillator âIn, i.e. it satisfies,

â|α) = α|α) (3.31)

where we suppress the super and subscripts for clarity. Recall the coherent states are related to
the Fock states by

|α) = e−|α|
2/2
∑
k

αk√
k!
|k〉 (3.32)

and
|k〉 =

1√
k!

(â†)k|0〉 (3.33)

is the standard kth excited state. By construction

(F I |N̂L|F I) ≡ NL =
∑
n>0

n|αIn|2. (3.34)

From (3.26) and (3.25) we find that

(F I |P̂ 0|F I) = ( 1
2
wR9 +

1

wR9
NL); (F I |P̂ 9|F I) = − 1

wR9
NL. (3.35)

Now note that the zero mode of (Ḟ I)2 is given by 2NL/(wR9)2. This means that the mass and
momentum of the supergravity solution associated with this curve are, using (3.16),

M = kQf (1 +
2NL

(wR9)2
); P 9 = −kQf

2NL
(wR9)2

, (3.36)
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which agree with the expressions (3.35) provided that

kQf = 1
2
wR9, (3.37)

which is the relationship found in [33, 34]. Moreover,

(F I |ĴIJ |F I) =
1

2
wR9(F J Ḟ I − F I Ḟ J)0, (3.38)

which manifestly agrees with the expression (3.17).

(3.2.3) EXAMPLES

Consider an elliptical curve in the 1-2 plane, such that

F 1 =

√
2N

n
a cos(nσ+); F 2 =

√
2N

n
b sin(nσ+), (3.39)

with (a2 + b2) = 2; this case was discussed in the introduction around (3.8) and (3.12). The
amplitude of the curve is fixed such that the angular momentum in the 1-2 plane is

J12 = −N
n
ab, (3.40)

and the total excitation number defined in (3.34) is NL = N = −wp9. This ensures that
the mass and momenta match that of the supergravity solution, as described in the previous
subsection.

Introducing the usual combinations of oscillators with definite angular momenta in the 1-2
plane

â±12
n ≡ 1√

2
(â1
n ± iâ2

n), (3.41)

the coherent state corresponding to the curve is

|a−12
n ; a+12

n ) = |
√
N

2
√
n

(a+ b);

√
N

2
√
n

(a− b)), (3.42)

which in the case of the circle (α = β) reduces to (3.9). Extracting from this coherent state
those states which satisfy NL = N gives

|ellipse) =

N/n∑
k=0

1

2
N
n

√
(N
n

)!

(N
n
− k)!k!

(a+ b)
N
n
−k(a− b)k|k−12 = (

N

n
− k); k+12 = k〉, (3.43)

which leads to the corresponding superposition (3.13) in the dual D1-D5 system.
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(3.3) THE FUZZBALL SOLUTIONS

We now consider the two charge fuzzball solutions in the D1-D5 system, obtained from the FP
chiral null models by a chain of dualities. These fuzzball solutions were constructed by Lunin
and Mathur [53, 27] and are given by

ds2 = f
−1/2
1 f

−1/2
5

(
−(dt−A)2 + (dy +B)2

)
+ f

1/2
1 f

1/2
5 dx · dx+ f

1/2
1 f

−1/2
5 dz · dz;

e2Φ = f1f
−1
5 ; (3.44)

Cti = f−1
1 Bi; Cty = f−1

1 ;

Cyi = f−1
1 Ai; Cij = cij − f−1

1 (AiBj −AjBi),

where i, j are vector indices in the transverse R4 and the metric is in the string frame. These
fields solve the equations of motion following from the type IIB action

S =
1

2κ2
10

∫
d10x
√
−g10

(
e−2Φ(R10 + 4(∂Φ)2)− 1

12
F 2

3 + · · ·
)
, (3.45)

where F3 is the curvature of the two form C and 2κ2
10 = (2π)7(α′)4 (we set gs = 1 since it plays

no role in our discussion), provided the following equations hold

dc = ∗4df5, dB = ∗4dA,

�4f1 = �4f5 = �4Ai = 0, ∂iAi = 0. (3.46)

where the Hodge dual ∗4 and �4 are defined on the four (flat) non-compact overall transverse
directions xi. The compact part of the geometry does not play a role; it could be either T 4 or
K3.

A solution to the conditions (3.46) based on an arbitrary closed curve F i(v) of length L in R4

is given by

f5 = 1 +
Q5

L

∫ L

0

dv

|x− F |2
; f1 = 1 +

Q5

L

∫ L

0

dv|Ḟ |2

|x− F |2
; Ai =

Q5

L

∫ L

0

Ḟidv

|x− F |2
. (3.47)

It was argued in [27] that these solutions are related to the R ground states (and via spectral
flow to chiral primaries [28]) common to both the T 4 andK3 CFTs. The physical interpretation
of these solutions is that the D1 and D5 brane sources are distributed on a curve in the trans-
verse R4. The D5-branes are uniformly distributed along this curve, but the D1-brane density
at any point on the curve depends on the tangent to the curve. The total one brane charge is
given by

Q1 =
Q5

L

∫ L

0

|Ḟ |2dv. (3.48)

Both the Qi have dimensions of length squared and are related to the integral charges by

Q1 =
(α′)3n1

V
; Q5 = α′n5, (3.49)
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where (2π)4V is the volume of the compact manifold. Furthermore, the length of the curve is
given by

L = 2πQ5/R, (3.50)

where R is the radius of the y circle.

The holographic analysis in this chapter will be done for the general class of solutions (3.44)
satisfying (3.46). Results appropriate for the solutions determined by (3.47) will be obtained
by specializing the general results to this case and we will indicate how this is done at each
step of the analysis.

(3.3.1) COMPACTIFICATION TO SIX DIMENSIONS

Since only the breathing mode of the compact manifold is excited, it is convenient to com-
pactify and work with solutions of six-dimensional supergravity. The effective six-dimensional
(Einstein) metric coincides with the six-dimensional part of the (string frame) metric above
(because the would be six-dimensional dilaton φ6 = Φ− 1

4
ln detgM4 , where gM4 is the metric

on the compact space, is constant). Thus the six-dimensional metric

ds2 = f
−1/2
1 f

−1/2
5

(
−(dt−A)2 + (dy +B)2

)
+ f

1/2
1 f

1/2
5 dx · dx (3.51)

along with the scalar field and tensor field of (3.44) satisfy the equations of motion following
from the reduced action

S =
1

2κ2
6

∫
d6x
√
−g
(
R− (∂Φ)2 − 1

12
e2ΦF 2

3

)
, (3.52)

where R is the six-dimensional curvature and F3 is the curvature of the antisymmetric tensor
field C. These equations of motion are

RMN = 1
4
e2Φ(FMPQF

PQ
N − 1

6
F 2gMN ) + ∂MΦ∂NΦ;

DM (e2ΦFMNP ) = 0; �Φ =
1

12
e2ΦF 2. (3.53)

Note that the six-dimensional scalar field originates from the breathing mode of the compacti-
fication manifold.

The equations of motion which follow from the action (3.52) can be embedded into those of
d = 6, N = 4b supergravity coupled to nt tensor multiplets, the covariant field equations for
which were constructed in [54]. The bosonic field content of this theory is the graviton and
five self-dual tensor fields from the supergravity multiplet, along with nt anti-self dual tensor
fields and 5nt scalars from the tensor multiplets.

Following the notation of [55, 24] the bosonic field equations may be written as

RMN = Hm
MPQH

m PQ
N +Hr

MPQH
r PQ
N + 2PmrM PmrN ; (3.54)

DMPmrM =

√
2

3
HmMNPHr

MNP , (3.55)
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along with Hodge duality conditions on the 3-forms

Hm
MNP =

1

6
εMNPQRSH

mQRS ; Hr
MNP = −1

6
εMNPQRSH

rQRS . (3.56)

In these equations m,n are SO(5) vector indices running from 1 to 5 whilst r, s are SO(nt)

vector indices running from 6 to 5 + nt. The three form field strengths are given by

Hm = GAV mA ; Hr = GAV rA, (3.57)

whereA ≡ {n, r} = 1, · · · , 5+nt; dGA = 0 and the vielbein on the coset space SO(5, nt)/(SO(5)×
SO(nt) satisfies

V mA V mB − V rAV rB = ηAB , (3.58)

with ηAB = diag(+ + + + +−−− · · ·−). The associated connection is

dV V −1 =

(
Qmn

√
2Pms√

2Pnr Qrs

)
. (3.59)

The equations of motion (3.53) can be embedded into this theory using an SO(1, 1) subgroup
as follows. Let

V m=5
5 = cosh(Φ); V m=5

6 = sinh(Φ); V r=6
5 = sinh(Φ); V r=6

6 = cosh(Φ), (3.60)

so that the connection is
√

2P 56 = dΦ. Now let5

G5 = 1
4
(F + e2Φ ∗6 F ); G6 = 1

4
(F − e2Φ ∗6 F ), (3.61)

which are both closed using the three form equation in (3.53). This implies that

Hm=5 = 1
4
eΦ(F + ∗6F ); Hr=6 = 1

4
eΦ(F − ∗6F ), (3.62)

which manifestly have the correct Hodge duality properties to satisfy (3.56). Substituting H
and P into (3.54) also correctly reproduces the Einstein and scalar field equations of (3.53).

Since this embedding uses only an SO(1, 1) subgroup it does not depend on the details of the
compactification manifold. Thus one can use this six-dimensional supergravity to analyze the
fuzzball geometries in both T 4 and K3 systems. More generally, the (anomaly free) case of
nt = 21 gives the complete six dimensional theory obtained by K3 compactification of type IIB
supergravity. For T 4 compactification of type IIB one obtains the maximally supersymmetric
non-chiral six-dimensional theory, whose field content is a graviton, eight gravitinos, 5 self-
dual and 5 anti-self dual three forms, 16 gauge fields, 40 fermions and 25 scalars. (Bosonic)
solutions of this supergravity which do not have gauge fields switched on are solutions of the
chiral supergravity given above, with nt = 5.

5 The field strengths G5 and G6 were called G± in [43].
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(3.3.2) ASYMPTOTICALLY ADS LIMIT

In the appropriate decoupling limit, the solutions (3.44) become asymptotically AdS. This cor-
responds to harmonic functions with leading behavior r−2. In terms of the harmonic functions
in (3.47) the decoupling limit amounts to removing the constant terms in the harmonic func-
tions f1 and f5. (Later on in section 3.12 we will discuss the interpretation of these constant
terms in the dual CFT.) The solutions are then manifestly asymptotic to AdS3 × S3 as r →∞.
Firstly the metric asymptotes to

ds2
6 =

r2

√
Q1Q5

(−dt2 + dy2) +
√
Q1Q5

(
dr2

r2
+ dΩ2

3

)
; (3.63)

whilst the three-forms and scalar field from (3.44) asymptote to

Frty =
2r

Q1
; FΩ3 = 2Q5; e2Φ0 =

Q1

Q5
. (3.64)

It is convenient to shift the scalar field so that Φ→ Φ− Φ0 and rescale G5 → eΦ0G5 and same
for G6. Then the relevant background fields of the six-dimensional supergravity are

go(m=5) = Ho(m=5) =
r√
Q1Q5

dr ∧ dt ∧ dy +
√
Q1Q5dΩ3; (3.65)

V
o(m=5)
5 = 1; V

o(r=6)
6 = 1,

with the off-diagonal components of the vielbein vanishing; the anti-self dual field go(r=6) =

Hr=6 vanishing and Φ being zero also. Note that with the coordinate rescalings t → t
√
Q1Q5

and y → y
√
Q1Q5, the curvature radius appears only as an overall scaling factor in both the

metric (3.63) and the three form (3.65). When one rescales the coordinates in this way, the
new y coordinate will have periodicity R̃ = R/

√
Q1Q5.

The goal is to extract from the subleading asymptotics around the AdS boundary the vevs
of chiral primaries in the dual theory, and thus investigate the matching with R vacua. The
strategy is as follows. First one expands the solution systematically near the AdS boundary.
Then one extracts from the asymptotic solution the values of 6-dimensional gauge invariant
fields. These must then be reduced to three dimensional fields using the KK map, and then the
vevs can be extracted using holographic renormalization.

(3.4) HARMONIC EXPANSION OF FLUCTUATIONS

Let us consider the asymptotic expansion of the solution. The perturbations of the six-dimensional
supergravity fields relative to the AdS3 × S3 background can be expressed as

gMN = goMN + hMN ; GA = goA + gA; φmr. (3.66)
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These fluctuations can then be expanded in spherical harmonics as follows:

hµν =
∑

hIµν(x)Y I(y), (3.67)

hµa =
∑

(hIvµ (x)Y Iva (y) + hI(s)µ(x)DaY
I(y)),

h(ab) =
∑

(ρIt(x)Y It(ab)(y) + ρIv(v)(x)DaY
Iv
b (y) + ρI(s)(x)D(aDb)Y

I(y)),

haa =
∑

πI(x)Y I(y),

gAµνρ =
∑

3D[µb
(A)I

νρ] (x)Y I(y),

gAµνa =
∑

(b(A)I
µν (x)DaY

I(y) + 2D[µZ
(A)Iv
ν] (x)Y Iva (y));

gAµab =
∑

(DµU
(A)I(x)εabcD

cY I(y) + 2Z(A)Iv
µ D[bY

Iv
a] );

gAabc =
∑

(−εabcΛIU (A)I(x)Y I(y));

φmr =
∑

φ(mr)I(x)Y I(y),

Here (µ, ν) are AdS indices and (a, b) are S3 indices, with x denoting AdS coordinates and y

denoting sphere coordinates. The subscript (ab) denotes symmetrization of indices a and b with
the trace removed. Relevant properties of the spherical harmonics are reviewed in appendix
3.A.1. We will often use a notation where we replace the index I by the degree of the harmonic
k or by a pair of indices (k, I) where k is the degree of the harmonic and I now parametrizes
their degeneracy, and similarly for Iv, It.

Imposing the de Donder gauge condition DAhaM = 0 on the metric fluctuations removes the
fields with subscripts (s, v). In deriving the spectrum and computing correlation functions,
this is therefore a convenient choice. The de Donder gauge choice is however not always a
convenient choice for the asymptotic expansion of solutions; indeed the natural coordinate
choice in our application takes us outside de Donder gauge. As discussed in [22] this issue is
straightforwardly dealt with by working with gauge invariant combinations of the fluctuations;
we will present the relevant gauge invariant combinations later.

(3.4.1) ASYMPTOTIC EXPANSION OF THE FUZZBALL SOLUTIONS

Now consider the asymptotic expansion at large radius of the fuzzball solutions. The natural
radial coordinate in which to expand the solutions is the radial coordinate r of the transverse
R4, even though with this choice it will turn out that the metric is not in de Donder gauge.

The harmonic functions appearing in the solution (3.44) can be expanded as

f5 =
Q5

r2

∑
k,I

f5
kIY

I
k (θ3)

rk
;

f1 =
Q1

r2

∑
k,I

f1
kIY

I
k (θ3)

rk
; (3.68)

Ai =
Q5

r2

∑
k,I

(AkI)iY
I
k (θ3)

rk
,
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for some coefficients f5
kI , f

1
kI and (AkI)i. There are restrictions on the coefficients (AkI)i be-

cause ∂iAi = 0 which will be given below.

In the case of the (near-horizon) harmonic functions of (3.47), the coefficients f5
kI , f

1
kI , (AkI)i

are given in terms of the curve F i(v). To obtain these coefficients we make use of the following
addition theorem for harmonic functions on R4:

1

(xi − yi)2
=
∑
k≥0

yk

(k + 1)r2+k
Y Ik (θx3 )Y Ik (θy3 ). (3.69)

In this expression xi and yi are Cartesian coordinates on R4, with the corresponding polar
coordinates being (r, θx3 ) and (y, θy3 ) respectively. Y Ik (θ3) are (normalized) spherical harmonics
of degree k on S3 with I labeling their degeneracy; the degeneracy of degree k harmonics is
(k + 1)2. For the k = 1 harmonics of degeneracy four, it is convenient to use the label i, Y i1 .
The addition theorem can also be expressed as

1

|x− y|2
=
∑
k≥0

1

(k + 1)r2+k
Y Ik (θx3 )(CIi1···iky

i1 · · · yik ), (3.70)

where CIi1···ik are the orthogonal symmetric traceless rank k tensors on R4 which are in one-to-
one correspondence with the (normalized) spherical harmonics Y Ik (θ3) of degree k on the S3.
This formula is the exact analogue of the well-known addition theorem for electromagnetism
(see [56]) and also of the addition theorem for harmonic functions on R6 discussed in the
appendix of [57], and it can be proved in the same way, as we show in appendix 3.A.2.

Using the addition theorem we obtain

f5
kI =

1

(k + 1)L

∫ L

0

dvCIi1···ikF
i1 · · ·F ik ;

f1
kI =

Q5

Q1(k + 1)L

∫ L

0

dv
∣∣Ḟ ∣∣2 CIi1···ikF i1 · · ·F ik ; (3.71)

(AkI)i =
1

(k + 1)L

∫ L

0

dvḞiC
I
i1···ikF

i1 · · ·F ik .

Furthermore, in the final equality of (3.68) the summation is restricted to k ≥ 1 because of the
closure of the curve F i (

∫
dvḞi = 0). Note that we will often suppress implicit summations

over the index I in later expressions for compactness.

Before substituting these expressions into the supergravity fields, we need to consider which
fluctuations are physical. Suppose we use translational invariance to impose the condition∫ L

0

dvFi = 0, (3.72)

which was the choice made in previous literature, for example, in [27]. This corresponds to
choosing the origin of the coordinate system to be at the center of mass of the D5-branes.
However, the center of mass of the D1-branes does not coincide with that of the D5-branes in
general; thus this condition does not take one to the center of mass of the whole system.
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Indeed with this choice the leading correction to the AdS background derives from the k = 1

terms in the harmonic function f1. The choice (3.72) gives a leading metric deviation

hµν = DµDνλ; hab = gabλ, (3.73)

with

λ =
∑
i

f1
1iY

i
1

2r
, (3.74)

which satisfies �λ = −λ. Such a perturbation is unphysical because it can be removed by a
superconformal transformation (with parameter −λ). The physical origin of the term is that
with the choice (3.72) we are not working in the centre of mass of the system. Instead of
imposing that the k = 1 term in the D5-brane harmonic function vanishes, we should impose
that the k = 1 term in

√
f1f5 vanishes, namely

f5
1i + f1

1i = 0. (3.75)

When the solution is related to a closed curve this reduces to∫ L

0

dvF i(1 +
Q5

Q1
|Ḟ |2) = 0. (3.76)

Then all unphysical k = 1 terms in the metric vanish automatically.

Now consider the asymptotic expansion of Ai. The restriction on the coefficients in the asymp-
totic expansion imposed by the condition ∂iA

i = 0 is most easily understood as follows. The
form A may be written as

A = Q5

∑
k,I,i

(AkI)i
r2+k

Y Ik
(
Y i1 dr + rdY i1

)
, (3.77)

using
dxi = drY i1 + rdY i1 . (3.78)

Projecting the products of spherical harmonics onto the basis of spherical harmonics gives

A = Q5

∑
l,L,k,I,i

(AkI)i
r2+k

(aiILY
L
l dr +

bIiL
ΛL

rdY Ll ) (3.79)

+ Q5

∑
kv,Iv,k,I,i

(AkI)i
r1+k

E±IvIiY
Iv±
kv

,

where the spherical harmonic overlaps (aiIJ , bIiJ , E
±
IvIi

) are defined in (3.226), (3.225) and
(3.229) respectively. The term in A proportional to the vector harmonic is already divergence-
less on its own. The first two combine into divergenceless combination iff scalar harmonics
with degree l = (k − 1) appear in this asymptotic expansion:

A = Q5

∑
L,k,I,i

(AkI)i
r2+k

aIiL(Y Lk−1dr −
r

(1 + k)
dY Lk−1) (3.80)

+Q5

∑
kv,Iv,k,I,i

(AkI)i
r1+k

E±IvIiY
Iv±
kv

.
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Vanishing of the other terms requires∑
I,i

(AkI)iaiIL = 0 l 6= (k − 1). (3.81)

In particular this means that (A1j)i must be antisymmetric (since aijL is symmetric in i, j).
Note that this condition is clearly satisfied for the (A1j)i defined in (3.71).

The leading term in the asymptotic expansion is given in terms of degree one vector harmonics
as

A =
Q5

r2
(A1j)iY

j
1 dY

i
1 ≡

√
Q5Q1

r2
(aα−Y α−1 + aα+Y α+

1 ), (3.82)

where (Y α−1 , Y α+
1 ) with α = 1, 2, 3 form a basis for the k = 1 vector harmonics, which coincide

with the Killing one forms of SU(2)L and SU(2)R respectively. Here we define

aα± =

√
Q5√
Q1

∑
i>j

e±αij(A1j)i (3.83)

where the spherical harmonic triple overlap e±αij is defined in (3.227) and explicit values in a
particular basis are given in (3.241). For solutions defined by a curve F i(v), the coefficients
(A1j)i are given in (3.71). The dual field to leading order is

B =

√
Q5Q1

r2
(aα−Y α−1 − aα+Y α+

1 ), (3.84)

where we use the Hodge duality property of the vector harmonics given in (3.221).

Putting these results together the leading perturbations of the metric are

− htt = hyy =
1

2

(
−(f1

2I + f5
2I)Y

I
2 + (f5

1iY
i
1 )2
)

;

hrr =
1

2r4

(
(f1

2I + f5
2I)Y

I
2 − (f5

1iY
i
1 )2
)

;

hta =
(
aα−Y α−1 + aα+Y α+

1

)
; (3.85)

hya =
(
aα−Y α−1 − aα+Y α+

1

)
;

hab = goab
1

2r2

(
(f1

2I + f5
2I)Y

I
2 − (f5

1iY
i
1 )2
)
− 2

r2
aα−aβ+((Y α−1 )a(Y β+

1 )b + (Y α−1 )b(Y
β+
1 )a).

Note that the condition (3.75) has been used to eliminate f1
1i. Terms quadratic in spherical

harmonics will need to be projected back onto the basis of spherical harmonics in order to
determine the contributions to each perturbation component in (3.67).

In these expressions we have suppressed the scale factor
√
Q1Q5. As mentioned previously,

after rescaling t → t
√
Q1Q5 and y → y

√
Q1Q5, the metric has an overall scale factor

√
Q1Q5.

Scale factors will similarly be suppressed in the other fields. The overall scaling will be taken
into account via the normalization of the three-dimensional action.
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Now consider the other supergravity fields; from (3.65) and (3.66) one finds the following
three form fluctuations are

g5
tya =

1

4
Da
(

2(f5
1iY

i
1 )2 − (f5

2I + f1
2I)Y

I
2

)
;

g5
tab = −(aα−D[a(Y α−1 )b] − aα+D[a(Y α+

1 )b]); (3.86)

g5
yab = −(aα−D[a(Y α−1 )b] + aα+D[a(Y α+

1 )b]);

g5
rab =

1

r3

(
1

4
εab

c(f1
2I + f5

2I)DcY
I
2 + 4aα−aβ+(Y α−1 )[a(Y β+

1 )b]

)
;

g5
abc =

1

r2
εabc(f

1
2I + f5

2I)Y
I
2 −

6

r2
aα−aβ+D[a(Y α−1 )b(Y

β+
1 )c]).

and

g6
tyr =

1

2
f5

1iY
i
1 ; (3.87)

g6
tya =

1

4
Da
(

2f5
1iY

i
1 r + (f5

2I − f1
2I)Y

I
2

)
;

g6
rab =

1

2r2
εab

cf5
1iDcY

i
1 +

1

4r3
εab

c(f5
2I − f1

2I)DcY
I
2 ;

g6
abc =

3

2r
εabcf

5
1iY

i
1 +

1

r2
εabc(f

5
2I − f1

2I)Y
I
2 .

Finally the scalar field is expanded as

φ(56) ≡ Φ = −f
5
1i

r
Y i1 + 1

2

f1
2I − f5

2I

r2
Y I2 . (3.88)

All other fluctuations, gA with A 6= 5, 6 and φmr with m 6= 5, r 6= 6 vanish.

(3.4.2) GAUGE INVARIANT FLUCTUATIONS

We now wish to extract gauge invariant combinations of these fluctuations. Gauge invariant
means that the fluctuations do not transform under coordinate transformations δxM = ξM , or,
in the case of the three dimensional metric and gauge fields, they have the correct transforma-
tion properties. Using the fact that the metric and three forms transform (up to linear order in
fluctuations) as

δhMN = DMξN +DNξM +DMξ
PhPN +DNξ

PhPM − ξPDPhMN ; (3.89)

δgAMNP = 3D[Mξ
SgoANP ]S + 3D[Mξ

SgANP ]S + ξSDSg
A
MNP ,

one can systematically compute combinations which are gauge invariant to quadratic order in
fluctuations. That is, the gauge invariant fluctuations ψ̂Q are given by the following schematic
expression

ψ̂Q =
∑
R

aQRψ
R +

∑
R,S

aQRSψ
RψS , (3.90)

where ψQ collectively denotes all fields and the quadratic contributions are rather complicated
in general. Note that each gauge invariant field at linearized level should reduce to the corre-
sponding field in de Donder gauge on setting the fields with subscripts (s, v) to zero in (3.67).
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Clearly by retaining higher order terms in (3.89) one could compute the invariants to arbitrarily
high order in the fluctuations.

For the discussion at hand, however, we do not need the most general expressions. Since we
are working perturbatively in the radial coordinate, we need only retain terms in (3.90) with
the same radial behavior. In particular, as we discuss only leading order and next to leading
order perturbations, we will need at most quadratic invariants. In fact the only combinations
which will be needed here are

π̂2
I = πI2 + Λ2ρI2(s); (3.91)

Û
(5)I
2 = U

(5)I
2 − 1

2
ρI2(s);

ĥ0
µν = h0

µν −
∑
α,±

h1±α
µ h1±α

ν .

In addition the fluctuations (Φi1,Φ
I
2, U

(6)i
1 , U

(6)I
2 ) are by themselves gauge invariant up to the

necessary order and the fields (Z
(5)1±α
µ , Z

(6)1±α
µ , h1±α

µ ) by themselves transform correctly as
gauge fields. Thus only in the metric do we need to take into account a quadratic contribution.

(3.5) EXTRACTING THE VEVS SYSTEMATICALLY

In this section we will compute the vevs following the systematic procedure of [22]. First one
should identify the six-dimensional equations of motion that these fields satisfy to appropriate
order, in this case quadratic. Secondly one should remove derivative terms in these equations
of motion by a field redefinition: this defines the Kaluza-Klein reduction map between six-
dimensional and three-dimensional fields. Finally, once one has the three dimensional fields
and their equations of motion, one extracts vevs using the by now familiar methods of holo-
graphic renormalization.

(3.5.1) LINEARIZED FIELD EQUATIONS

Let us first consider the linearized field equations. As discussed in [22], the equations of motion
for the gauge invariant fields at linear order are precisely the same as those in de Donder gauge,
provided one replaces all fields with the corresponding gauge invariant field. So now let us
briefly review the linearized spectrum in de Donder gauge derived in [55]. Consider first the
scalars. It is useful to introduce the following combinations of these fields which diagonalize
the linearized equations of motion:

s
(r)k
I =

1

4(k + 1)
(φ

(5r)k
I + 2(k + 2)U

(r)k
I ), (3.92)

t
(r)k
I =

1

4
(φ

(5r)k
I − 2kU

(r)k
I ),

σkI =
1

12(k + 1)
(6(k + 2)Û

(5)k
I − π̂kI ),
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τkI =
1

12(k + 1)
(π̂kI + 6kÛ

(5)k
I ).

Note that these combinations are applicable when the background AdS3 × S3 has unit radius.
Here the fields s(r)k and σk correspond to scalar chiral primaries. In what follows we will need
only the r = 6 fields and will thus drop the r superscript. The masses of the scalar fields are

m2
sk = m2

σk = k(k − 2), m2
tk = m2

τk = (k + 2)(k + 4), m2
ρk = k(k + 2). (3.93)

Note also that k ≥ 0 for (τk, t(r)k); k ≥ 1 for s(r)k; k ≥ 2 for (σk, ρk).

Next consider the vector fields. It is useful to introduce the following combinations which
diagonalize the equations of motion:

h±µIv = 1
2
(C±µIv −A

±
µIv

), Z
(5)±
µIv

= ± 1
4
(C±µIv +A±µIv ). (3.94)

For general k the equations of motion are Proca-Chern-Simons equations which couple (A±µ , C
±
µ )

via a first order constraint [55]. The three dynamical fields at each degree k have masses
(k−1, k+ 1, k+ 3), corresponding to dual operators of dimensions (k, k+ 2, k+ 4) respectively.
The lowest dimension operators are the R symmetry currents, which couple to the k = 1 A±αµ

bulk fields. The latter satisfy the Chern-Simons equation

Fµν(A±α) = 0, (3.95)

where Fµν(A±α) is the curvature of the connection and the index α = 1, 2, 3 is an SU(2) adjoint
index. Only these bulk vector fields will be needed in what follows, and therefore the equations
of motion for general k discussed in [55] are not given here. There are also the massive vectors
Z

(6)±
µIv

but their mass is sufficiently high that they are irrelevant for our discussion.

Finally there is a tower of KK gravitons with m2 = k(k+2) but again only the massless graviton
will play a role here. Note that it is the combination Ĥµν = hoµν + π0goµν which satisfies the
linearized massless Einstein equation

(LE + 2)Ĥµν ≡ 1
2
(−�Ĥµν +DρDµĤρν +DρDνĤρµ −DµDνĤρ

ρ + 4Ĥµν) = 0. (3.96)

That this is the appropriate combination follows from the reduction of the six-dimensional
Einstein term in the action over the sphere; keeping terms linear in fluctuations the three
dimensional action is

S3 ∼
∫
d3x
√
−g((1 + 1

2
π0)R+ · · · ), (3.97)

and the Weyl transformation Ĥµν = h0
µν + π0goµν is required to bring the action to Einstein

frame.
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(3.5.2) FIELD EQUATIONS TO QUADRATIC ORDER

From the asymptotic expansion we now identify the fields of (3.92). In the asymptotic expan-
sion we have retained only terms to quadratic order, that is of order 1/r and 1/r2 relative to
the background. These terms are sufficient to determine vevs for the scalar chiral primaries of
dimension one and two; the R symmetry currents and the energy momentum tensor. Using the
tables in [55], one finds that the corresponding supergravity fields are (s1, s2, σ2, A1±

µ , Hµν)

respectively. Terms in other supergravity fields at the same order do not capture field theory
data: they are simply induced by the non-linearity of the supergravity equations. Therefore we
need only consider the above fields.

The next step is to derive the six-dimensional equations satisfied by the fluctuations, at non-
linear order. The generic field equation for each field ψQ expanded in the number of fields is
(schematically)

LQψQ = LQRSψRψS + LQRSTψRψSψT + · · · , (3.98)

where LQ1···Qn is generically a non-linear differential operator. (Note that each field ψQ should
be the appropriate diffeomorphism invariant combination.) The complete set of corrections to
the field equations involves many terms even to quadratic order.

Fortunately what is required for extracting field theory data is the equations of motion ex-
panded perturbatively near the conformal boundary, where the radial coordinate acts as the
perturbation parameter. This means that we need only retain terms on the right hand side
which affect the radial expansion at sufficiently low order to impact on the vevs. In practice
for our discussion, the relevant quadratic corrections are those involving two s1 fields or two
gauge fields, since all other quadratic terms do not contribute at the required order. (Note that
there are no corrections involving one s1 field and one gauge field.) That all other terms can
be neglected will be justified when one carries out the holographic renormalization procedure
and considers the perturbative solution of the field equations.

The scalar field corrections to the field equations were computed in [24, 48]6. These computa-
tions along with the corrections quadratic in the gauge field are discussed in detail in appendix
3.A.3. Consider first the scalar field equations. There are no quadratic corrections to the (s1, s2)

equations from either s1 fields or gauge fields, and thus the relevant equations remain the lin-
earized equations. The σ2 field equation does however get corrected by terms quadratic in
scalars:

�σ2
I =

11

3
(s1
i s

1
j − (Dµs

1
i )(D

µs1
j ))aIij . (3.99)

The coefficient aIij is the triple overlap of the corresponding spherical harmonics (see appendix
3.A.1). As discussed in the appendix 3.A.3, there are also corrections to this equation quadratic
in the gauge fields which involve the field strengths Fµν(A±α) associated with the connec-
tions A±αµ respectively. However, according to the linearized field equations (3.95) these field
strengths vanish and thus these corrections do not play a role.

6We thank Gleb Arutyunov for making the latter available to us.
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Next consider the corrections to the Einstein equation, which are also discussed in more detail
in 3.A.3. Note that these corrections were not computed in [24, 48]. The appropriate three
dimensional metric to quadratic order is

Hµν = h0
µν −

∑
α,±

h1±α
µ h1±α

ν + π0goµν . (3.100)

As discussed previously the quadratic term is necessary in order for the metric to transform
correctly under diffeomorphisms. Then the equation satisfied by the metric, up to quadratic
order in the scalar fields s1

i and the gauge fields is

(LE + 2)Hµν = 16(Dµs
1
iDνs

1
i − goµνs1

i s
1
i ), (3.101)

where the linearized Einstein operator was defined in (3.96). This equation can be rewritten
as

Gµν − goµν = 16
(
Dµs

1
iDνs

1
i − 1

2
goµν((Ds1

i )
2 − (s1

i )
2)
)
, (3.102)

where Gµν is the linearized Einstein tensor. The rhs of this equation is the stress energy tensor
of s1. Note that the gauge field contributions to the energy momentum tensor involve the field
strengths, and thus are zero when one imposes the lowest order field equation (3.95).

Finally, let us consider the equations for the gauge field. As discussed in [24, 48] the corrections
quadratic in the gauge field correct the linearized equation to the non-Abelian Chern-Simons
equation. That is, the six-dimensional equation is

εµνρ(∂νA
±α
ρ + 1

2
A±βν A±γρ εαβγ) = 0, (3.103)

where the εαβγ arises from the triple overlap of vector harmonics defined in (3.236). Note that
the SU(2)L and SU(2)R gauge fields are decoupled from each other. There are also corrections
quadratic in the scalars s1, which provide a source for the field strength:

εµνρ(∂νA
±α
ρ + · · · ) = ±4s1

iD
µs1
je
±
αij , (3.104)

where the ellipses denote the non-linear Chern-Simons terms and the triple overlap is defined
in (3.227).

(3.5.3) REDUCTION TO THREE DIMENSIONS

Given the corrected six-dimensional field equations (3.99), (3.101) and (3.103), we now need
to determine the corresponding three-dimensional field equations. As discussed in [22], the
KK map between six and three dimensional fields is in general non-linear. The non-linear
corrections arise from field redefinitions used to remove derivative couplings. From the form
of the corrected field equations, it is apparent that only the scalar fields σ2 are affected (at this
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order) by such field redefinitions. That is, the derivative couplings in (3.99) can be removed
by the field redefinition

Σ2
I =
√

32(σ2
I +

11

6
s1
i s

1
jaIij + · · · ), (3.105)

where Σ2
I is the three dimensional field. (The prefactor ensures canonical normalization of

the three dimensional field, as we will shortly discuss.) This field redefinition defines the KK
reduction map between six and three dimensional fields.

The resulting set of three dimensional field equations can then be integrated to the following
three-dimensional bulk action

n1n5

4π

∫
d3x
√
−G(RG + 2− 1

2
(DS1

i )2 + 1
2
(S1
i )2 − 1

2
(DS2

I )2 − 1
2
(DΣ2

I)
2) (3.106)

+
n1n5

8π

∫
(A+

αdA
+α +

1

3
εαβγA

+αA+βA+γ −A−α dA−α −
1

3
εαβγA

−αA−βA−γ) + · · · .

The ellipses denote fields dual to operators of higher dimension not being considered here,
along with higher order interactions. The boundary terms in this action will be discussed later
in the context of holographic renormalization.

An overall rescaling of the scalar fields arises from demanding that the three-dimensional scalar
fields are canonically normalized, up to the overall scaling of the action; it follows from the
quadratic actions given in [24]. Thus the three dimensional fields SkI and ΣkI are related to the
six-dimensional fields skI and σkI via

SkI = 4
√
k(k + 1)(skI + · · · ), ΣkI = 4

√
k(k − 1)(σkI + · · · ). (3.107)

The ellipses denote non-linear terms in the KK map of which only (3.105) will be relevant here;
other terms do not contribute to the order we need. The normalization of the gauge field terms
also follows from the actions given in [24]. Note that the leading scalar field corrections to the
gauge field equation (3.104) are also implicitly contained in the action (3.106), recalling that
D is a covariant derivative and the scalar fields are charged under the SO(4) gauge group.

The overall prefactor in the action (3.106) follows from the chain of dimensional reductions

1

2κ2
10

∫
d10x
√
−g10e

−2Φ(R10+· · · )→ 1

2κ2
6

∫
d6x
√
−g(R+· · · )→ 1

2κ2
3

∫
d3x
√
−G(RG+2 · · · ).

(3.108)
Implicitly in the latter expression the curvature scale is contained in the prefactor, so that the
background AdS3 metric G has unit radius. Then

2κ2
10 = (2π)7(α′)4; 2κ2

6 =
1

(2π)4V
2κ2

10; 2κ2
3 =

1

2π2Q1Q5
2κ2

6, (3.109)

which using (3.49) implies that
1

2κ2
3

=
n1n5

4π
, (3.110)

as in (3.106).
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(3.5.4) HOLOGRAPHIC RENORMALIZATION AND EXTREMAL COUPLINGS

Having determined the three-dimensional fields and the equations of motion which they satisfy
we are now ready to determine vevs using the procedure of holographic renormalization. We
will first briefly review this procedure, using the Hamiltonian formalism developed in [19, 20].
Let OΨk be the dimension k operator dual to the three dimensional supergravity field Ψk, the
latter being related to the six dimensional fields ψQ by non-linear KK maps. Then its vev can
be expressed as

〈OΨk 〉 =
n1n5

4π

(
(πΨk )(k) + · · ·

)
; (3.111)

where we will explain the meaning of the ellipses below. Now πΨk is the radial canonical
momentum for the field Ψk and (πΨk )(k) is the kth component in its expansion in terms of
eigenfunctions of the dilatation operator. The results of [19, 20] show that there is a one to
one correspondence between momentum coefficients and terms in the asymptotic expansion of
the fields.

That is, the near boundary expansion of the metric and scalar fields is

ds2
3 =

dz2

z2
+

1

z2

(
g(0)uv + z2

(
g(2)uv + log(z2)h(2)uv + (log(z2))2h̃(2)uv

)
+ · · ·

)
dxudxv;

Ψ1 = z(log(z2)Ψ1
(0)(x) + Ψ̃1

(0)(x) + · · · ); (3.112)

Ψk = z2−kΨk
(0)(x) + · · ·+ zkΨk

(2k−2)(x) + · · · , k 6= 1.

In these expressions (G(0)uv,Ψ
1
(0)(x),Ψk

(0)(x)) are sources for the stress energy tensor and scalar
operators of dimension one and k respectively; as usual one must treat separately the operators
of dimension ∆ = d/2, where d is the dimension of the boundary. Note that the 2-dimensional
boundary coordinates are labeled by (u, v).

The correspondence between the momentum coefficients and these expansion coefficients for
the scalar fields is then

(πΨk )(k) = ((2k − 2)Ψk
(2k−2)(x) + · · · ); (3.113)

(πΨ1)(1) = (2Ψ̃1
(0) + · · · ).

The ellipses denote non-linear terms in the relations that involve the sources and do not play a
role here.

The ellipses in (3.111) denote terms non-linear in momenta. Such terms are related to extremal
correlators and play a crucial role which we will discuss in detail. Before doing so, however, it
is convenient to first discuss the gauge fields.

R SYMMETRY CURRENTS

Let us now consider the vevs for R symmetry currents; these were previously discussed in
[58, 59] and we will briefly summarize their results here. Given the asymptotic form of the
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metric (??) the Chern-Simons gauge fields have corresponding asymptotic field expansions

A±α = A±α + z2A±α(2) + · · · . (3.114)

HereA±α are fixed boundary values which are respectively holomorphic and anti-holomorphic.
A key point is that the vev will be obtained from the leading order term in this expansion
which is not affected by the other supergravity fields. Supergravity couplings affect only the
subleading behavior of the gauge field, and thus we can neglect them. Put differently, the
vev for the R symmetry current involves only the gauge field and there are no non-linear
contributions.

The following boundary action

SB =
n1n5

16π

∫
d2x
√
−γγuv(A+α

u A+α
v +A−αu A−αv ) (3.115)

ensures that the variational problem for the gauge fields is well-defined with these boundary
conditions; γuv is the induced boundary metric. 7. With these boundary terms the on-shell
variation of the action yields the currents

〈
J±αu

〉
=

1√
−γ

(
δS

δA±αuα

)
=
n1n5

8π
(g(0)uv ∓ εuv)A±αv. (3.116)

As discussed recently in [59] the resulting currents have the desired properties. In particular,
momentarily switching to the Euclidean signature and using conformal gauge for the boundary
metric so that g(0)uvdx

udxv = dwdw̄, the currents are

J+α
w =

n1n5

4π
A+α
w ; J+α

w̄ = 0; (3.117)

J−αw = 0; J−αw̄ =
n1n5

4π
A−αw̄ .

Thus the SU(2)L and SU(2)R right currents are holomorphic and anti-holomorphic respec-
tively, as expected for the boundary CFT. Moreover the current modes defined by

J+α
n =

1

2πi

∮
dwwnJ+α

w ; J−αn =
1

2πi

∮
dw̄w̄nJ−αw̄ , (3.118)

obey the correct SU(2) current algebras.

SCALAR OPERATORS

Consider next the scalar operators; here the non-linear terms in (3.111) play a crucial role. Just
as in [22] we need to take into account the rather subtle issue of extremal couplings. Recall
that an extremal correlation function is one for which the dimension of one operator is equal

7In [58] the additional boundary term ∆SA = −n1n5
16π

∫
d2x
√
−γ(γuv + εuv)A+α

u A−αv was added to
the action. The variational problem is still consistent, but this term couples left and right movers so it is not
appropriate for our purposes.
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to the sum of the other operator dimensions. The corresponding bulk couplings in supergravity
vanish: this is physically necessary, because such couplings would induce conformal anomalies
which are known to be zero (and non-renormalized). In [60] it was appreciated that extremal
correlators are obtained not from bulk couplings, but instead from certain finite boundary
terms. These would arise from demanding a well posed variational problem in the higher
dimensional theory, and then keeping track of all boundary terms when carrying out the KK
reduction.

These same extremal couplings play a key role in determining the vevs. Suppose the operator
OΨk has a non-vanishing extremal n-point function with operators {OΨka }, with a = 1, · · · (n−
1). Then this implies an additional term in the holographic renormalization relation

〈OΨk 〉 =
n1n5

4π

(
(πΨk )(k) +Akk1···k(n−1)

∏
ka

(πΨka )(ka) + · · ·

)
(3.119)

The coupling Akk1···k(n−1)
must be such that one obtains the correct n-point function upon

functional differentiation.

Now consider how this issue affects the vevs being determined here: there are potentially
contributions to vevs of dimension two operators from their couplings to two dimension one
operators. The latter include both the operators dual to the scalars S1

i and the R-symmetry
currents dual to the gauge fields A±αµ . Let us consider first the following extremal three point
functions between scalar operators

Σ2 :
〈
OΣ2

I
OS1

i
OS1

j

〉
; S2 :

〈
OS2

I
OS1

i
OS1

j

〉
. (3.120)

If these three point functions are non-zero, there will necessarily be additional quadratic con-
tributions to the vevs of the dimension two operators.

In the discussions of [22] one could use the known free field extremal correlators of N = 4

SYM along with non-renormalization theorems to fix the additional terms in (3.119). As we will
discuss momentarily comparing with field theory is in this case rather more subtle. From the
supergravity side there are two methods to compute these quadratic terms. The first would be
to start with the six-dimensional action, demand that the variational problem is well-defined
(which fixes boundary terms), and then dimensionally reduce to three dimensions. This is
straightforward in principle, but to extract the required coefficient we need boundary terms
cubic in the fields, which in turn requires expanding the field equations to cubic order. Thus
we choose to use a second method: we compute the extremal correlator in supergravity by
computing the corresponding non extremal correlator and then using a careful limiting proce-
dure. This computation of the extremal correlators and hence the non-linear terms (3.119) is
presented in appendix 3.A.4.

Since all non-extremal three point functions between three OSI operators vanish [61, 24],
one also obtains no extremal three point function and therefore no extra contributions to

〈
S2
I

〉
beyond the standard term given in (3.111). The cubic coupling between one Σ field and two
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S fields is however generically non-vanishing [61, 24] and therefore we do obtain an extremal
three point function which leads to the following result for the scalar contributions to the one
point function (3.296), (3.298)

〈OΣ2
I
〉 =

(n1n5

4π

)(
π

Σ2
I

(2) −
1

4
√

2
aIijπ

S1
i

(1)π
S1
j

(1)

)
. (3.121)

An extremal coupling between the dimension two scalar operators and two R symmetry cur-
rents would require a term in the rhs of (3.121) proportional to AuAu. However such term is
gauge dependent and thus forbidden. We conclude that there are no additional contributions
to (3.121).

Before leaving this section we should note why the extremal correlators were fixed via a limit
of the non-extremal supergravity correlators and other indirect arguments rather than from
a dual field theory computation. The relevant three point functions of scalar operators in
the orbifold CFT were computed in [62] and [63]. There is no known non-renormalization
theorem to protect them and thus no justification for extrapolating them to the strong coupling
regime. Indeed, as we discuss in appendix 3.A.6, certain correlation functions seem to disagree
between supergravity and the orbifold CFT.

STRESS ENERGY TENSOR

Finally we discuss the vev for the stress energy tensor. This being a dimension two operator,
we again need to take into account terms quadratic in two dimension one operators. Terms
quadratic in the scalar fields S1

i and in the gauge fields A±αµ both contribute. Let us momen-
tarily suppress the gauge field contributions. Then as discussed in the previous section, the
three dimensional metric couples at leading order to the scalar field S1

i in the three dimen-
sional equations of motion and thus we need to derive the one point functions for this coupled
system. This computation is very similar to the Coulomb branch analysis given in [17, 18] and
is summarized in appendix 3.A.5.

Next consider the additional contributions to the stress energy tensor quadratic in the gauge
field. These immediately follow from the variation of the boundary terms (3.115), since the
bulk Chern-Simons terms cannot contribute. Thus the total result for the stress energy tensor
follows from (3.312) plus gauge field terms giving:

〈Tuv〉 =
n1n5

2π

(
g(2)uv + 1

2
Rg(0)uv +

1

4
(S̃1

(0))
2g(0)uv + 1

4
(A+α

(u A
+α
v) +A−α(u A

−α
v) ) + · · ·

)
,

(3.122)
where the terms in ellipses (source terms for the scalars) are given in (3.312) but do not con-
tribute in our solutions. (Recall that parentheses denote the symmetrised traceless combination
of indices.)

Now consider the effect of a large gauge transformation of the form A+3
w → A+3

w + η. As
discussed in [59] (see also [64]) this induces the shifts

L0 → L0 + ηJ+3
0 + 1

4
kη2; J+3

0 → J+3
0 + 1

2
kη, (3.123)
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where the Virasoro generator is defined as L0 = c
24

+
∮
dwTww and the level of the SU(2)

algebra is k ≡ n1n5. This is clearly a spectral flow transformation, and shows the relationship
between bulk coordinate transformations on the S3 and spectral flow in the boundary theory.

(3.6) VEVS FOR THE FUZZBALL SOLUTIONS

We are now ready to extract the vevs from the asymptotic expansions of the fields in the fuzzball
solutions given in (3.85), (3.86), (3.87) and (3.88). The appropriate (gauge invariant) combi-
nations of six-dimensional scalar and gauge fields are

s1i =
1

4r
(f11i − f51i) + · · · ; s2I =

1

8r2
(f12I − f52I) + · · · ; (3.124)

σ2
I = − 1

8r2
(f12I + f52I) +

1

24r2
(f5

1i)(f
5
1j)aIij +

1

r2
aα−aβ+fIαβ + · · · .

A+α
t = −2aα+ + · · · ; A+α

y = 2aα+ + · · · ,

A−αt = −2aα− + · · · ; A−αy = −2aα− + · · · .

The graviton is given by

Htt = f5
1if

5
1i − aα+aα+ − aα−aα− + · · · ; (3.125)

Hyy = −f5
1if

5
1i − aα+aα+ − aα−aα− + · · · ;

Hty = aα+aα+ − aα−aα− + · · · ;

Hrr = − 2

r4
f5

1if
5
1i + · · · .

Next we extract the three-dimensional fields, which involves rescaling and shifting the scalar
fields as defined in (3.105) and (3.107):

S1
i = −2

√
2

r
f5

1i + · · · ; S2
I =

√
3√

2r2
(f1

2I − f5
2I) + · · · ; (3.126)

ΣI2 =
√

32(− 1

8r2
(f1

2I + f5
2I) +

1

2r2
(f5

1i)(f
5
1j)aIij +

1

r2
aα−aβ+fIαβ + · · · ).

where we used (3.75) in S1
i . Note that the gauge fields and the metric are not rescaled or

shifted upon the dimensional reduction to this order.

Thus for the scalar operators we obtain using (3.111) and (3.121) the vevs〈
OS1

i

〉
=

n1n5

4π
(−4
√

2f5
1i); (3.127)〈

OS2
I

〉
=

n1n5

4π
(
√

6(f1
2I − f5

2I));〈
OΣ2

I

〉
=

n1n5

4π

√
2(−(f1

2I + f5
2I) + 8aα−aβ+fIαβ).

The currents follow from (3.116) as〈
J+α

〉
=
n1n5

2π
aα+(dy − dt);

〈
J−α

〉
= −n1n5

2π
aα−(dy + dt). (3.128)
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To evaluate the vev of the stress energy tensor using (3.122) we first need to bring the metric
into the Fefferman-Graham coordinate system. This requires the following change of radial
coordinate

z =
1

r
− 1

2r3
(f5

1i)
2 + · · · (3.129)

After changing radial coordinate in this way the metric becomes

ds2
3 =

dz2

z2
+

1

z2
(1− 2(f5

1i)
2z2)(−dt2 + dy2) (3.130)

−aα+aα+(dt− dy)2 − aα−aα−(dt+ dy)2 + · · ·

The metric perturbation in the second line is traceless with respect to the leading order metric.
Now applying the formula (3.122) we find that

〈Tuv〉 = 0. (3.131)

This is the anticipated answer, since these solutions are supposed to be dual to R vacua. The
cancellation is however very non-trivial and needed all the machinery of holographic renor-
malization.

(3.6.1) HIGHER DIMENSION OPERATORS

Having extracted the vevs for all operators up to dimension two using the systematic procedure
developed in [22], it is worth considering whether any predictions can be made for vevs of
higher dimension operators. These could of course be determined by the same systematic
procedure used above, by retaining all terms to sufficiently high order, but this would involve
considerable computation.

It is therefore useful to recall at this point the result obtained in [57] for the vevs extracted
from supergravity solutions corresponding to the Coulomb branch of N = 4 SYM. When these
solutions are asymptotically expanded in the radial coordinate of the defining harmonic func-
tion, non-linear terms in the vevs of CPOs arising from non-linear terms in the higher dimen-
sional fields, non-linear terms in the KK reduction map and non-linear terms in the holographic
renormalization relations all cancel out8! The vevs are given by the linear terms in the higher
dimensional fields. “Non-linear” in this context means terms which are non-linear in spherical
harmonics.

Now consider what happens here if one retains only the linear terms in the fields, the dimen-
sional reductions and the holographic renormalization relations. Then from (3.124), only the
terms in boldface are retained. This means that there is no graviton perturbation to this order,
and thus that the three-dimensional mass vanishes, in accordance with the expectation that

8Strictly speaking, the cancellation was proven in [57] for operators of dimension four and less for which
the corresponding vevs had been extracted using the rigorous procedures of [22]. However, the linearized
approach gave results which agreed with the (non-renormalized) weak coupling field theory results for all
dimension operators.
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these geometries describe R vacua. Furthermore, these terms give precisely the same results
as before for the scalar OS and current vevs, in which all non-linear contributions canceled. It
is an interesting question to understand why the linear terms alone determine the stress en-
ergy tensor and OS vevs. Note that just as in [57] a priori there is absolutely no justification
for neglecting the non-linear terms, given that there is no small parameter. Presumably this
question can be answered by understanding holographic renormalization directly in the higher
dimension and developing the map between higher-dimensional fields and operators.

However, the linear terms clearly fail to give the correct answer for the operators dual to Σ2.
Thus the linearized approximation in this situation fails already at dimension two, which is the
first place where non-linear terms can play a role (but note that it still holds for the dimension
two operator OS2).

Nevertheless one may proceed with the linearized procedure in order to get a rough idea of
the behavior of the vevs for higher dimension operators. From the asymptotic expansion of the
solution we extract the following linear terms for the scalars

skI =
1

4krk
(f1
kI − f5

kI) + · · · (3.132)

σkI = − 1

4krk
(f1
kI + f5

kI) + · · ·

From these asymptotics the vevs of the dual operators contain the linear terms〈
OSk

I

〉
=

(n1n5

4π

)
2(k − 1)

√
k + 1√
k

(f1
kI − f5

kI + · · · ); (3.133)〈
OΣk

I

〉
= −

(n1n5

4π

)
2(k − 1)

√
k − 1√
k

(f1
kI + f5

kI + · · · ),

where the ellipses denote the non-linear terms. Recall that (f1
kI , f

5
kI) are proportional to the kth

multipole moments of the D1 and D5 brane charge distributions, respectively. We will argue in
the section 3.9 that these linear terms do not give the expected answer for the vevs of operators
OΣk

I
, although they seem to be sufficient to give the expected answer for the vevs of operators

OSk
I

, at least for circular curves.

Following analogous arguments for the dimension kv vector chiral primaries JIv±kv
dual to bulk

vectors AIv±kv , we get the following structure〈
JIv±kv

〉
∝
(n1n5

4π

)
(AkI)iE

±
IvIi

(dt∓ dy) + · · · , (3.134)

where the ellipses denote again the non-linear terms, the spherical harmonic triple overlap
E±IvIi is defined in (3.229) and (AkI)i is defined in terms of the curve F i(v) in (3.71). To
extract the exact coefficient relating the asymptotics of the bulk vector fields to the current
vev, one would need to analyze the relevant Proca-Chern-Simons bulk equation and obtain the
holographic renormalization relation for this case.

In the discussions of [57], the vevs obtained by the linearized approach gave correctly all the
(non-renormalized) field theory vevs. Here the linearized approach does not give correctly
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vevs for chiral primaries. Moreover, we will also argue that there are additional vevs which
are not captured by the linearized approximation at all. For example, when one linearizes the
solution following the above procedure the (non primary) scalar fields (tkI , τ

k
I ) are identically

zero, but arguments given in section 3.9 suggest that the corresponding operators should in
general have non-zero expectation values. Perhaps these vevs could still be extracted by an
appropriate linearized analysis, but it is not apparent what the prescription should be. By
contrast, the systematic method of [22] used in earlier sections will certainly give the correct
answer for these vevs.

Note also that the linearized approximation manifestly gives different answers in different co-
ordinate systems. For the example of the solution based on a circular curve we discuss in the
next section, the linearized approximation in the coordinate system (3.144) actually gives the
conjectured answers for scalar vevs, but linearizing in the hatted coordinate system (flat coor-
dinates on R4) gives different answers. Both in the fuzzball solutions considered here and in
the Coulomb branch solutions discussed in [57] there are preferred coordinate systems, those
in which the harmonic functions are naturally expressed. For the Coulomb branch this coordi-
nate systems was precisely that in which linearizing gives the correct vevs, but here it does not.
In general, however, there will be no preferred coordinate system or it may not be visible (as in
(3.144)), and therefore there would be no natural way to linearize; one would have to apply
the general methods of [22].

(3.7) EXAMPLES

We discuss in this section the application of the general results to two specific examples: solu-
tions based on circular and ellipsoidal curves, respectively.

(3.7.1) CIRCULAR CURVES

A commonly used example of the fuzzball solutions is that in which the curve F i(v) is a (mul-
tiwound) circle [64, 65, 53],

F 1 = µn cos
2πnv

L
, F 2 = µn sin

2πnv

L
, F 3 = F 4 = 0. (3.135)

The ten-dimensional solution in this case is conveniently written as

ds2 = f
−1/2
1 f

−1/2
5

(
−(dt̃− µn

√
Q1Q5

r̂2 + µ2
n cos2 θ̂

sin2 θ̂dφ)2 + (dỹ − µn
√
Q1Q5

r̂2 + µ2
n cos2 θ̂

cos2 θ̂dψ)2

)
+f

1/2
1 f

1/2
5

(
(r̂2 + µ2

n cos2 θ̂)(
dr̂2

r̂2 + µ2
n

+ dθ̂2) + r̂2 cos2 θ̂dψ2 + (r̂2 + µ2
n) sin2 θ̂dφ2

)
+f

1/2
1 f

−1/2
5 dz · dz; (3.136)

e2Φ = f1f
−1
5 ,

f1,5 = 1 +
Q1,5

r̂2 + µ2
n cos2 θ̂

,
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whilst the tensor field is as in (3.44) with

A = µn

√
Q1Q5

(r̂2 + µ2
n cos2 θ̂)

sin2 θ̂dφ; B = −µn
√
Q1Q5

(r̂2 + µ2
n cos2 θ̂)

cos2 θ̂dψ. (3.137)

This solution is precisely of the form (3.44), using a non-standard coordinate system on R4.
That is, the hatted coordinates (r̂, θ̂, φ, ψ) are related to usual coordinates (r, θ, φ, ψ) on R4

such that the metric is

ds2 = dr2 + r2(dθ2 + sin2 θdφ2 + cos2 θdψ2), (3.138)

via
r̂ cos θ̂ = r cos θ; r2 = r̂2 + µ2

n sin2 θ̂. (3.139)

Note that this relation implies

1

r̂2 + µ2
n cos2 θ̂

=
1√

(r2 + µ2
n)2 − 4µ2

nr2 sin2 θ
, (3.140)

with the latter admitting the following asymptotic expansion

1√
(r2 + µ2

n)2 − 4µ2
nr2 sin2 θ

=
∑
k∈2Z

(−1)k/2
µknY

0
k (θ3)√

k + 1r2+k
, (3.141)

where the harmonic function is expanded in normalized spherical harmonics Y 0
k which are

singlets under the SO(2)2 Cartan of SO(4). These harmonics are given in (3.238); there is
precisely one such singlet at each even degree. The asymptotic expansion in (3.141) follows
from (3.69) upon using the fact that the lhs of (3.141) is equal to

1

L

∫ L

0

dv

|x− F |2
, (3.142)

with F i given in (3.135), so θF3 = π/2 and Y 0
k (π/2) = (−1)k/2

√
k + 1 .

The parameters (n, µn) labeling the curve are related to the charges via

nµn =
L

2π

√
Q1

Q5
=

√
Q1Q5

R
≡ µ, (3.143)

or equivalently µn = 1/(nR̃), where R̃ = R/
√
Q1Q5. In deriving these results we have used

(3.48) and (3.50).

The near horizon limit of (3.136) gives the six-dimensional fields

ds2
6 =

√
Q1Q5

(
−(r̂2 + µ2

n)dt2 + r̂2dy2 +
dr̂2

(r̂2 + µ2
n)

)
(3.144)

+
√
Q1Q5

(
dθ̂2 + sin2 θ̂(dφ+ µndt̃)

2 + cos2 θ̂(dψ − µndỹ)2
)

;

G5 =
√
Q1Q5r̂dt ∧ dy ∧ dr̂ +

√
Q1Q5 cos θ̂ sin θ̂dθ̂ ∧ (dφ+ µndt) ∧ (dψ − µndy).
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with the scalar field Φ and the anti-self dual field G6 vanishing. As previously, it is convenient
to use the rescaled coordinates t̃ =

√
Q1Q5t and ỹ =

√
Q1Q5y so that the overall scale factor

is manifest. Note that the coordinate y has periodicity 2πR̃. When n = 1 there is a coordinate
transformation (φ → φ + µnt, ψ → ψ + µny) that makes the metric exactly AdS3 × S3. For
n > 1 one can similarly shift the angular coordinates, but the resulting spacetime metric has
a conical defect. As discussed in [64, 40], such a coordinate change is equivalent to carrying
out a spectral flow to the NS sector; in the case of n = 1 the flow is to the vacuum. One
way of seeing this is that under such a shift the Killing spinors change periodicity about the
circle direction ỹ. In the above coordinate system they are periodic, whilst after the coordinate
transformation they are anti-periodic [64].

In the context of this chapter, however, we are interested in R vacua of the CFT, and thus we do
not wish to flow to the NS sector. This means we should interpret the solution in the original
coordinate system, where the Killing spinors are periodic. From (3.144) we can immediately
read off the three dimensional gauge field as

A−3 = µn(dy + dt); A+3 = µn(dy − dt). (3.145)

The superscript indicates that the relevant Killing vectors are those given in the appendix in
(3.233), such that A+3 and A−3 commute. The fact that there is a coordinate transforma-
tion where the solution is (locally) AdS3 × S3 means that the three dimensional scalar fields
(S1
i , S

2
I ,Σ

2
I , · · · ) vanish. Note that the latter result is immediately obvious in the hatted coordi-

nate system but it is not manifest in the coordinate system (r, θ, φ, ψ). That the S fields vanish
in the latter coordinate system follows from (3.124) since f1

kI = f5
kI . To see the vanishing of

Σ2
0 one has to use in (3.124) the identity

− 1

8
(f1

20 + f5
20) + f033a

3+a3− = 0, (3.146)

which follows from (3.141) and the identity (3.237).

Now given the three dimensional fields we derive the corresponding vevs,

〈Tuv〉 =
〈
OS1

i

〉
=
〈
OS2

I

〉
=
〈
OΣ2

0

〉
= 0; (3.147)〈

J+3
〉

=
n1n5

4π
µn(dy − dt);

〈
J−3

〉
=
n1n5

4π
µn(dt+ dy).

Note that the R-symmetry charges

j3 ≡
∫ 2πR̃

0

dyJ+3
ỹ =

n1n5

2n
; (3.148)

j̄3 ≡
∫ 2πR̃

0

dyJ−3
ỹ =

n1n5

2n
,

are quantized in half integral units provided that n is a divisor of n1n5.
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(3.7.2) ELLIPSOIDAL CURVES

The next simplest case to consider is a solution determined by a planar ellipsoidal curve:

F 1 = µna cos
2πnv

L
, F 2 = µnb sin

2πnv

L
, F 3 = F 4 = 0, (3.149)

with µn as in (3.143). The D1-brane charge constraint (3.48) implies that (a2 + b2) = 2. The
vevs for this solution are given by

〈Tuv〉 =
〈
OS1

i

〉
= 0;〈

J+3
〉

=
N

4π
µnab(dy − dt);

〈
J−3

〉
=
N

4π
µnab(dt+ dy);〈

OS2
m,m̄

〉
=

〈
OΣ2

m,m̄

〉
= 0; m 6= m̄ (3.150)〈

OS2
1,1

〉
=

〈
OS2
−1,−1

〉
= − N

8
√

2π
µ2
n(a2 − b2);〈

OS2
0,0

〉
=

N

4
√

2π
µ2
n(a2b2 − 1);〈

OΣ2
1,1

〉
=

〈
OΣ2
−1,−1

〉
= −

√
3N

8
√

2π
µ2
n(a2 − b2);〈

OΣ2
0,0

〉
=

√
3N

4
√

2π
µ2
n(a2b2 − 1).

Here we denote by (m, m̄) the (SU(2)L, SU(2)R) charges. The vanishing of the vevs of oper-
ators with charges m 6= m̄ follows from the fact that the curve preserves rotational symmetry
in the 3-4 plane. The equality of the vevs for operators with charge (1, 1) and (−1,−1) follows
from the orientation of the ellipse in the 1-2 plane: its axes are orientated with the 1-2 axes.
Explicit representations of the corresponding spherical harmonics are given in (3.242).

One can also consider a planar ellipsoidal curve of different orientation, described by the curve

F 1 = µn(a cos
2πnv

L
+ c sin

2πnv

L
), F 2 = µn(b sin

2πnv

L
+ d cos

2πnv

L
), (3.151)

with F 3 = F 4 = 0 and µn as in (3.143). The D1-brane charge constraint (3.48) in this case
requires that (a2 + b2 + c2 + d2) = 2. The non-vanishing vevs are

〈
J+3

〉
=

N

4π
µn(ab− cd)(dy − dt);

〈
J−3

〉
=
N

4π
µn(ab− cd)(dt+ dy);〈

OS2
±1,±1

〉
= − N

8
√

2π
µ2
n((a± id)2 + (c± ib)2);〈

OS2
0,0

〉
=

N

4
√

2π
µ2
n((ab− cd)2 − 1); (3.152)〈

OΣ2
±1,±1

〉
= −

√
3N

8
√

2π
µ2
n((a± id)2 + (c± ib)2);〈

OΣ2
0,0

〉
=

√
3N

4
√

2π
µ2
n((ab− cd)2 − 1).
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The vevs for operators with charge (1, 1) and (−1,−1) are no longer equal, since the axes of the
ellipse are no longer orientated with the 1-2 axes. The vevs are however complex conjugate,
as they must be since the operators are complex conjugate to each other.

(3.8) DUAL FIELD THEORY

To understand the interpretation of the holographic results it will be useful to review certain
aspects of the dual CFT and the ground states of the R sector. The dual CFT is believed to be
a deformation of the N = (4, 4) supersymmetric sigma model with target space SN (X), where
N = n1n5 and the compact space is either T 4 or K3. Most of the discussion below will be
for the case of T 4, although the results extend simply to K3. The orbifold point is roughly the
analogue of the free field limit of N = 4 SYM in the context of AdS5/CFT4 duality.

The chiral primaries and R ground states can be precisely described at the orbifold point. In
particular, there exists a family of chiral primaries in the NS-NS sector associated with the (0, 0),
(2, 0), (0, 2), (1, 1) and (2, 2) cohomology of the internal manifold (we do not discuss the chiral
primaries associated with odd cohomology in this chapter). These can be labeled as

O(0,0)
n , h = h̄ = 1

2
(n− 1); (3.153)

O(2,0)
n , h = h̄+ 1 = 1

2
(n+ 1);

O(1,1)q
n , h = h̄ = 1

2
n; q = 1, . . . , h1,1

O(0,2)
n , h = h̄− 1 = 1

2
(n− 1);

O(2,2)
n , h = h̄ = 1

2
(n+ 1),

where n is the twist, h1,1 in the dimension of the (1, 1) cohomology and h = j3, h̄ = j̄3. The
operator O(0,0)

1 is the identity operator. The complete set of chiral primaries associated with
this cohomology is built from products of the form

∏
l=1

(O(pl+1,ql+1)
nl )ml ,

I∑
l=1

nlml = N , (3.154)

where pl, ql take the values ±1 (so that one gets the product of operators in (3.153); we
suppress the index q) and symmetrization over the N copies of the CFT is implicit.

In [66] the spectrum of chiral primary operators of the orbifold CFT was matched with the KK
spectrum. One should note however that the matching is not canonical in the sense that the
operators at the orbifold point and the fields in supergravity are characterized by additional
labels not visible in the other description. In particular, the supergravity spectrum is also or-
ganized in representations of an additional9 S̃O(4) × SO(nt), as can be seen from the tables
of [55], where the S̃O(4) is the R-symmetry of the 6D supergravity (not to be confused with
the SO(4) R-symmetry of the CFT which is related to the isometries of the S3) and nt is the

9S̃O(4) was called SO(4)R in [55].
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number of tensor multiplets. On the other hand, the chiral spectrum at the orbifold point is
characterized by the set of integers nl,ml and the type of operator associated with these, as
in (3.154). Furthermore, there is an additional SO(4)I acting on the chiral spectrum, related
to global rotations of T 4 (see, for example, [62] or the review [67]). It is not immediately
clear how the labels nl,ml translate in the supergravity description and what is the relation of
SO(4)I with the supergravity S̃O(4)× SO(5) (nt = 5 for T 4).

To get a more precise mapping let us consider the special case of chiral primaries with h = h̄.
We see from (3.153) that there are 6 such operators for any h < N/2, except when h = 1/2 in
which case there are only 5 operators (O(0,0)

1 is the identity operator). In all cases 4 of these
operators form a vector of SO(4)I . On the supergravity side, the fields S(r)I

k and ΣIk have the
correct dimensions and charges to correspond to these operators. Note that k > 1 for ΣIk, so
we indeed have only 5 fields corresponding to operators of dimension (1/2, 1/2). These fields
are singlets under S̃O(4) and S(r)I

k transforms in the vector of SO(5). It thus appears natural
to identify SO(4)I with an SO(4) subgroup of SO(5) and to make the correspondence

Sp(q+6)
n ↔ O(1,1)q

n , q = 1, . . . , 4, n ≥ 1 (3.155)

where here and below the superscript p denotes that the relevant scalar fields are those for
which j3 = j and j̄3 = j̄. The question is then whether O(0,0)

n+1 or O(2,2)
n−1 corresponds to Sp(6)

n .
The most natural correspondence seems to be

Sp(6)
n ↔ O(0,0)

n+1 , n ≥ 1; (3.156)

Σpn ↔ O(2,2)
n−1 n ≥ 2.

This identification is natural given that there is no Σ1 in supergravity but is clearly not unique
because Spn and Σpn have the same charges so it could be that different combinations of them
correspond to the operators at the orbifold point.

A similar discussion holds for chiral primaries with h− h̄ = ±1/2,±1. The case of h− h̄ = ±1/2

is not relevant here since we are not considering solutions associated with odd cohomology in
this chapter. The case h − h̄ = ±1 is relevant but most of the points we want to make can
be made using examples that utilize only chiral primaries with h = h̄, so we will not need a
detailed discussion of them. We only mention that the corresponding supergravity fields are
massive vector fields.

Spectral flow maps these chiral primaries in the NS sector to R ground states, where

hR = hNS − jNS3 +
c

24
;

jR3 = jNS3 − c

12
, (3.157)

where c is the central charge. Each of the operators in (3.154) is mapped by spectral flow to
an operator of definite R-charge∏

l=1

(O(pl+1,ql+1)
nl )ml → OR(2jR3 ,2j̄

R
3 ), jR3 = 1

2

∑
l

plml, j̄
R
3 = 1

2

∑
l

qlml. (3.158)
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In particular, for fixed twist n the operators in (3.153) have the following charges after the flow

O(0,0)
n → OR(−,−)

n ; (3.159)

O(2,0)
n → OR(+,−)

n ;

O(0,2)
n → OR(−,+)

n ;

O(2,2)
n → OR(+,+)

n ;

O(1,1)q
n → OR(0,0)q

n ,

where it is understood that each of these operators is tensored by the appropriate power of
the identity operator such that (3.154) holds. For example, O(0,0)

n should be tensored by
(O(0,0)

1 )N−n, and the R-symmetry charge of the flown operator OR(−,−)
n follows from (3.157)

with c = 6n. It follows from (3.159) that the operators OR(±,±)
n form a ( 1

2
, 1

2
) representation of

SU(2)L × SU(2)R whilst the operators OR(0,0)q
n are q singlets. From the form of the operators

in the NS sector (3.154) it is clear that jR ≤ 1
2
N , since one can have at most N operators in

the product. Symmetrization over the copies of the CFT means that spectral flow in the left and
right moving sectors is not quite independent. When one has m copies of the same operator
one needs to symmetrize over copies and thus one obtains only states with jR = j̄R = 1

2
m

(although the values of jR3 and j̄R3 range independently from −jR to jR).

We will label by the R-charges the states obtained by the usual operator-state correspondence,

|jR3 , j̄R3 〉 = OR(2jR3 ,2j̄
R
3 )(0)|0〉. (3.160)

(3.8.1) R GROUND STATES AND VEVS

The R ground states can also be characterized by the expectation value of gauge invariant
operators in them. Since the fuzzball solutions are conjectured to be dual to R ground states
and the vevs of gauge invariant operators is the information we extracted from the fuzzball
solutions we would like to see what one can say about them using the dual CFT. There are two
sets of constraints on these vevs: kinematical and dynamical.

KINEMATICAL CONSTRAINTS

The kinematical constraints follow from symmetry considerations and they have been recently
discussed in [43]. As discussed above the R ground states in the (usual) basis are eigenstates
of the R-symmetry charge. This implies that only neutral operators can have a non-vanishing
vev,

〈−jR3 ,−j̄R3 |O(k1,k2)|jR3 , j̄R3 〉 = 0, {k1 6= 0 or k2 6= 0} (3.161)

where k1 and k2 are the R-charges of the operator and we use the fact that the bra state has
the opposite R charge to the ket state.
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DYNAMICAL CONSTRAINTS AND 3-POINT FUNCTIONS

The vevs of neutral gauge invariant operators are determined dynamically. One way to deter-
mine them is using 3-point functions at the conformal point. Let |Ψ〉 = OΨ(0)|0〉. Then the vev
of an operator Ok of dimension k in the this state is given by

〈Ψ|Ok(λ−1)|Ψ〉 = 〈0|(OΨ(∞))†Ok(λ−1)OΨ(0)|0〉, (3.162)

where λ is a mass scale. For scalar operators the 3-point function is uniquely determined by
conformal invariance and the above computation yields

〈Ψ|Ok(λ−1)|Ψ〉 = λkCΨkΨ (3.163)

where CΨkΨ is the fusion coefficient. Similarly, the expectation value of a symmetry current
measures the charge of the state

〈Ψ|j(λ−1)|Ψ〉 = 〈0|(OΨ(∞))†j(λ−1)OΨ(0)|0〉 = qλ〈Ψ|Ψ〉 (3.164)

where q is the charge of the operator OΨ under j.

Let us now apply these principles to the cases of interest here. We will thus need to know the
3-point functions at the conformal point, which can be computed in the NS sector and then
flowed to the R sector. A computation of 3-point functions at the orbifold point has been given
in [62, 63]. We however need to know the result in the regime where supergravity is valid.
For the theory at hand there is no known non-renormalization theorem that would protect the
3-point functions. Moreover, as discussed in appendix 3.A.6, the 3-point functions that can also
be computed holographically (i.e. those involving only operators dual to supergravity fields)
are different from the 3-point functions computed at the orbifold point.

So the only dynamical tests that one can currently do must involve states created by operators
corresponding to single particle states. In our case the fuzzball solutions are meant to corre-
spond to the R ground states connected with universal cohomology, so only states created by
the operators OR(±,±)

n are relevant. For these cases the corresponding 3-point point functions
can be computed by standard holographic methods using the results in [61, 24].

Let Φ = (S,A+, A−,Σ) be the fields dual to the operators OR(±,±)
n . The three point functions

involving scalar chiral primaries have the following structure〈
O†ΦOΣOΦ

〉
6= 0,

〈
O†ΦOSOΦ

〉
= 0. (3.165)

where O†Φ denotes the conjugate operator with j3 = −j, j̄3 = −j̄. Our results for the vevs
include the lowest dimension operators in these towers.

From the results of [24] there are however other non-zero three point functions in supergravity,
such as 〈

O†ΦOτOΦ

〉
6= 0,

〈
O†ΦOρ±OΦ

〉
6= 0,

〈
O†ΦOA±OΦ

〉
6= 0, · · · (3.166)
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where the ellipses denote other operators, dual to other vectors and KK gravitons. These oper-
ators all have sufficiently high dimensions that we did not compute their vevs. Moreover, the
vevs of these operators are not captured at all by the linearized approximation.

(3.9) CORRESPONDENCE BETWEEN FUZZBALLS AND CHI-
RAL PRIMARIES

(3.9.1) CORRESPONDENCE WITH CIRCULAR CURVES

Having reviewed the description of the degenerate R ground states in the CFT we now turn to
the connection with the fuzzball solutions. The basic proposal is that there is a correspondence
between the R ground states and the curves F i(v) defining the supergravity solutions. Let us
consider first states of the specific form

(OR(±,±)
n )

N
n |0〉, jR3 = ±N

2n
; j̄R3 = ±N

2n
. (3.167)

Then such ground states are proposed to be in one to one correspondence with circular curves
[27]:

(OR(+,+)
n )

N
n |0〉 ↔ F 1 =

µ

n
cos(

2πnv

L
); F 2 =

µ

n
sin(

2πnv

L
), (3.168)

with F 3 = F 4 = 0 and where the parameter µ is fixed via (3.48) to be
√
Q1Q5/R, see (3.143).

Similarly (OR(−,−)
n )N/n corresponds to a circle of the same radius in the 1-2 plane with the op-

posite rotation (that is, F 2 → −F 2) and the operators (OR(+,−)
n )N/n, (OR(−,+)

n )N/n correspond
to circles in the 3-4 plane.

Note the states (3.167) are generically not dual to supergravity fields. Only the specific states
obtained by flowing the NS operators ((O(0,0)

1 )N ,O(p,q)
N ) correspond to supergravity fields. All

product operator do not correspond to supergravity fields, with the exception of (O(0,0)
1 )N , since

this is simply the identity operator in the NS sector. Moreover, whilst the operators O(p,q)
N are

dual to supergravity fields their special properties (following from having maximal dimension)
are not visible in supergravity computations which effectively takes N →∞.

There are various pieces of evidence for this correspondence between states and circular curves.
Firstly the rotation charges match, using the discussions in section 3.7.1, in particular (3.148).
Secondly, as first discussed in [27], one can consider absorption processes in the corresponding
geometries, and compare the scattering behavior with CFT expectations; they agree. (Note that
for a general fuzzball geometry the wave equation for minimal scalars is not separable, so the
absorption cross-section cannot be computed, and this comparison cannot be made.)

Our results for the scalar 1-point functions in (3.147) (along with (3.133)) give more data
which can be used to test the proposed correspondence. As discussed previously kinematical
constraints arise simply from charge conservation: if the R ground state is an eigenstate of both
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jR3 and j̄R3 then only scalar operators with j3 = j̄3 = 0 can acquire a vev. These correspond to
the Y k0 harmonics discussed in section 3.7.1. Thus the fact that only such operators appear in
(3.147) follows solely from kinematics.

Determining which of the (kinematically allowed) operators actually acquire a vev involves
dynamics also and is rather more subtle. Consider first the special case where the operator
(3.154) determining the ground state is the product (O(0,0)

1 )N , that is, the NS vacuum. Then
clearly all three point functions vanish, and thus all 1-point functions (apart from j) in the
corresponding R vacuum must vanish.

Moreover the vanishing of all 1-point functions implies that the non-linear terms in the vevs of
OΣk

I
in (3.133) must contribute. The linear terms in (3.133) do give the expected vanishing

vev for OSk
I

since the D1-brane and D5-brane densities are constant along the curve. However,
for the circular profile the linear terms in the OΣk

I
vevs following from (3.133) give

〈
OΣk0

〉
= (−)k+1/2N(

√
Q1Q5

R
)k

(k − 1)3/2

π
√
k(k + 1)

+ · · · (3.169)

and therefore the non-linear terms denoted by ellipses must contribute, to give the expected
zero vev.

Next consider the cases where the operator (3.154) determining the ground state is (O(2,0)
1 )N ,

(O(0,2)
1 )N or (O(2,2)

1 )N . The supergravity solutions corresponding to these vacua are clearly
closely related to that just discussed: the defining curve is still a circle with radius a = 1/R̃,
but the rotation is in the opposite direction or the circle lies in the 3-4 plane. Therefore the
one point functions should also vanish in these three cases. This is consistent with the fact that
these NS operators are related to the NS vacuum under spectral flow by an integral parameter
(i.e. NS to NS). That is, under a spectral flow

h′ = h− 2θj +
cθ2

6
; j′3 = j3 −

cθ

6
(3.170)

with θ = 1 the chiral primary with maximal j3 = N is mapped to the vacuum.

Now let us move to the more general states of the form (3.167), which are conjectured to
correspond to circular curves. Still there are no scalar chiral primary vevs according to (3.169).
Kinematics again dictates that only j3 = j̄3 = 0 operators acquire a vev, but the fact that
kinematically allowed vevs are zero follows from dynamical information about three point
functions. In particular, one needs to know the three point functions at the conformal point
for operators OΦ which are products in the CFT, and which therefore do not correspond to
single particle supergravity fluctuations. These are not known, so the results for the vevs
provide a prediction for these correlation functions at strong coupling, provided the conjectured
correspondence is correct.
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(3.9.2) NON-CIRCULAR CURVES

Next we consider the curves corresponding to the most general states of the form (3.154); it
has been conjectured that these should correspond to connected curves in R4. For example, a
state of the form

(OR++
n )γN/n(OR−−n )δN/n γ + δ = 1 jR3 = j̄3

R = 1
2
N(γ − δ)/n, (3.171)

was conjectured in [27] to correspond to an elliptical curve

F 1(v) = µ
a

n
cos(

2πnv

L
); F 2(v) = µ

b

n
sin(

2πnv

L
), (3.172)

with F 3 = F 4 = 0 and µ =
√
Q1Q5/R. Provided that

a =
1√
2

(
√

1 + (γ − δ) +
√

1− (γ − δ)); b =
1√
2

(
√

1 + (γ − δ)−
√

1− (γ − δ)), (3.173)

the supergravity solution would have the correct angular momenta to match with the field
theory state.

Without any further data to match between supergravity and field theory one could not check
the proposed correspondence further. The one point functions of chiral primaries computed
here, however, immediately contradict the correspondence between operators of the form
(3.154) and connected curves in R4. The issue is the following. States of the form (3.154)
are eigenstates of angular momentum operators j3

R and j̄3
R. This means that scalar operators

can acquire a vev only if j3
R = j̄3

R = 0, following (3.161). Note that this is again purely kine-
matical, with dynamical information determining precisely which of these operators actually
acquire a vev.

However, the supergravity solution generated by a connected curve will, according to the for-
mulae, give rise to non-zero vevs for operators with (j3

R, j̄
3
R) 6= 0 whenever the curve is not

circular. Put differently, a non-circular curve explicitly breaks the SO(2) × SO(2) symmetries,
with the symmetry breaking characterized by the vevs for operators with non-zero (j3

R, j̄
3
R).

One might wonder whether a non-circular curve could nonetheless give rise to vevs only for
j3
R = j̄3

R = 0 operators. That is, although the curve is non-circular in flat coordinates on R4,
it might be circular in another coordinate system, and the vevs might be related to multipole
moments in that coordinate system. This however contradicts the explicit formulae for the
vevs, exemplified by the case of an ellipsoidal curve, whose vevs are given in (3.150). More
generally, the vevs will clearly involve the multipole moments of the charge distribution on the
R4.

(3.9.3) TESTING THE NEW PROPOSAL

Now consider the proposal made in [43] and here, that the supergravity solution defined by
a given curve is dual to a linear superposition of states with coefficients following from those
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in the coherent state in the dual FP system. In particular, according to (3.13) and (3.43) the
ellipse (3.172) would be dual to the linear superposition

|ellipse) =

N/n∑
k=0

1

2
N
n

√
(N
n

)!

(N
n
− k)!k!

(a+ b)
N
n
−k(a− b)k(OR++

n )(N
n
−k)(OR−−n )k; (3.174)

note that (a2 + b2) = 2 and that (a, b) are both real.

The issue is whether this proposal is consistent with the vevs extracted from the corresponding
geometry in section (3.7.2). Again this question is divided into kinematical and dynamical
parts. The fact that operators with equal and opposite J12 charge acquire equal values in
section (3.7.2) follows from the orientation of the ellipse and is a kinematical constraint which
must also be implicit in the dual description. (That operators with non-zero J34 charge do not
acquire a vev is also a kinematical constraint, of course, but this is automatically satisfied for
any proposed dual involving only operators of zero J34 charge.) The actual non-zero values for
the vevs in section (3.7.2) require dynamical information.

So does the proposed linear superposition satisfy the kinematical constraints? We can prove
that it does as follows. Let us write (3.174) as

|ellipse) =

N/n∑
k=0

ak|(
N

n
− k); k〉, (3.175)

where |(N
n
− k); k〉 is shorthand for the state created by (OR++

n )(N
n
−k)(OR−−n )k and ak are real

coefficients (that can be read-off from (3.174)). Now consider a general J12 charged operator
Om,m. Its vev is given by

(ellipse|Om,m|ellipse) =

N/n−m∑
k=0

a∗kam+k〈(
N

n
− k); k|Om,m|(

N

n
− k −m); k +m〉, (3.176)

whilst the corresponding operator with opposite charge O−m,−m acquires a vev

(ellipse|O−m,−m|ellipse) =

N/n−m∑
k=0

a∗m+kak

(
〈(N
n
− k); k|Om,m|(

N

n
− k −m); k +m〉

)†
,

(3.177)
Given that the coefficients am are real, the vevs (3.176) and (3.177) will be the same provided
that the overlaps are real; the fusion coefficients for the corresponding extremal three point
functions do indeed have this property.

To test the values of the non-zero vevs in (3.150) one needs dynamical information. One can
check that the R charges are in agreement with those of the superposition (3.174) as follows.
The state |(N

n
− k); k〉 is an eigenstate of both j3 and j̄3 with (equal) eigenvalues (N/2n − k).

Then

(ellipse|j3|ellipse) =

N/n∑
k=0

1

22N
n

(N
n

)!

(N
n
− k)!k!

(a+ b)2N
n
−k(a− b)2k(

N

2n
− k) (3.178)

= − (a2 − b2)
N
n

2
2N
n

+1
z
∂

∂z
(z +

1

z
)
N
n =

N

2n
ab; z =

(a− b)
(a+ b)

;
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with the same result for j̄3. This is in exact agreement with the result of (3.150).

The remaining non-zero vevs of (3.150) are the vevs of the charged operatorsO1,1 ≡ {OS1,1 ,OΣ1,1},
and the neutral operators, O0,0 ≡ {OS0,0 ,OΣ0,0}, where (m,n) denote the (SU(2)L, SU(2)R)

charges. To test whether the proposal is consistent with these vevs is far more difficult: we
would need to know the three point functions between all operators occurring in (3.174) and
the dimension two operators. Given that the former are not dual to supergravity fields, we do
not have any information about the relevant three point functions and thus cannot check the
vevs. That said, a well motivated guess for the structure of the three point functions leads to
vevs which agree remarkably well with those in (3.150).

Note that in (3.150) the vevs of the operators with the same charges are the same up to overall
numerical coefficients. We aim here to derive the universal behavior. For simplicity we set
n = 1. The corresponding state |N − k; k〉 in the FP system is a multiparticle state, built
out of free harmonic oscillators, as in (3.33), containing (N − k) quanta of negative angular
momentum and k quanta of positive angular momentum. We will assume that the same picture
holds in the D1-D5 system, at least in the large N limit, where the negative (positive) angular
momenta quanta are now positive (negative) R-charge quanta.

We now treat O1,1 and O0,0 in similar way. O1,1 creates a quantum of positive R-charge and
destroys a quantum of negative R-charge, so

O1,1 ∼ (a−12)†a+12, (3.179)

and O0,0 is the product of number operators for positive and negative R-charge quanta,

O0,0 ∼
1

N

(
(a+12)†a+12

)(
(a−12)†a−12

)
, (3.180)

where the normalization factor is introduced for later convenience.

Using standard harmonic oscillator relations then yields

〈N − k; k|O1,1|N − k − 1; k + 1〉 ∼
√

(N − k)(k + 1)µ2, (3.181)

with the scale µ2 appropriate to a dimension two operator inserted, as in (3.163). Then the
total vev for the ellipse is

(ellipse|O1,1|ellipse) ∼
N−1∑
k=0

µ2

22N

N !

(N − 1− k)!k!
(a+ b)2N−2k−1(a− b)2k+1;

=
Nµ2

22N
(2(a2 + b2))N−1(a2 − b2) = 1

4
Nµ2(a2 − b2), (3.182)

which indeed agrees in form with the vevs of charged operators in (3.150). The fact that such
a simple approximation for the three point functions works so well merits further investigation.

For the neutral operators we obtain

〈N − k; k|O0,0|N − k, k〉 ∼
1

N
µ2(N − k)k, (3.183)
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and the corresponding total vev for this neutral operator is

(ellipse|O0,0|ellipse) ∼
N−1∑
k=1

µ2

22N

(N − 1)!

(k − 1)!(N − (1 + k))!
(a+ b)2(N−k)(a− b)2k; (3.184)

=
1

22N
(N − 1)µ2(a2 − b2)2(2(a2 + b2))N−2 ∼ 1

4
Nµ2(1− a2b2),

in agreement with the vevs for uncharged operators given in (3.150). Note that (3.183) also
gives zero for k = 0 and k = N , in agreement with the vanishing vevs of the neutral operators
for the circular case.

Now consider the more general ellipse of (3.151). The proposed dual in this case would be

|a, b, c, d) =

N/n∑
k=0

1

2
N
n

√
(N
n

)!

(N
n
− k)!k!

(A+)
N
n
−k(A−)k(OR++

n )(N
n
−k)(OR−−n )k,

A± = (a± b) + i(c∓ d), (3.185)

with (a2 + b2 + c2 +d2) = 2. Following the same steps as above, one finds exactly the R charges
as in (3.152), supporting the proposal. As discussed below (3.152), charged operators O1,1

and O−1,−1 no longer have equal vevs. Repeating the steps which led to (3.176) and (3.177)
one finds that

(
A+

A−
)m〈Om,m〉 = (

A∗+
A∗−

)m〈O−m,−m〉. (3.186)

Taking the casem = 1 this is indeed the relationship between the vevs 〈OΣ2
±1,±1

〉 and 〈OS2
±1,±1

〉
in (3.152), thus demonstrating that the proposal passes kinematical checks. Now let us com-
pute the vevs of the dimension two charged operators using the same approximation (3.181)
as before; this gives

〈O±1,±1〉 ∼ Nµ2((a± id)2 + (c± ib)2), (3.187)

in agreement with (3.152). There is similar agreement for the behavior of the vevs of neutral
operators O0,0. Of course, given the agreement for the ellipse above, there must be agreement
for the rotated ellipse if the proposed dual captures correctly the orientation of the curve in the
1-2 plane. Nonetheless, this example clearly demonstrates how the parameters of the curve are
captured by the (complex) coefficients in the linear superposition.

So to summarize: we have tested the proposed field theory dual in the case of elliptical curves.
We find perfect agreement for all kinematically determined quantities, thus demonstrating the
consistency of the proposal. We also find exact matching for the R charges and qualitative
agreement for the vevs of the scalar operators. To test the correspondence further would require
knowledge of three point functions involving multiparticle states at the conformal point.

(3.10) SYMMETRIC SUPERGRAVITY SOLUTIONS

We next move to the question of whether one can find geometries which are dual to a single
chiral primary, rather than a superposition of chiral primaries. As has already been discussed,
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a geometry which is dual to a chiral primary must preserve the SO(2)× SO(2) symmetry. This
immediately implies that the asymptotics must be of the following form:

f5 =
Q5

r2

∑
k=2l

f5
k0

rk
Y 0
k ; (3.188)

f1 =
Q1

r2

∑
k=2l

f1
k0

rk
Y 0
k ,

where the scalar spherical harmonics Y 0
2l which are singlets under SO(2) × SO(2) are defined

in (3.238). The forms (A,B) must similarly admit an asymptotic expansion of the form:

Aa =
∑
k

Q5

rk+1
(Ak0+Y

0+
ka +Ak0−Y

0−
ka ); (3.189)

Ba =
∑
k

Q5

rk+1
(−Ak0+Y

0+
ka +Ak0−Y

0−
ka ),

where the vector spherical harmonics Y 0±
ka of degree k (k odd) whose Lie derivatives along the

SO(2)2 directions are zero are defined in (3.246). Note that these forms have only compo-
nents along the (φ, ψ) directions. We will now give several examples of solutions which have
asymptotics of this form, and discuss their interpretations.

(3.10.1) AVERAGED GEOMETRIES

Here we discuss a way to construct supergravity solutions based on a general closed curve
F i which are symmetric under SO(2) × SO(2) and thus have vanishing vevs for all charged
operators. Let us first discuss the construction for arbitrary planar curves in the 1-2 plane.
Starting from a general curve (F 1, F 2, 0, 0) we construct a rotated curve,

F̃ 1 = cosαF 1 + sinαF 2, F̃ 2 = − sinαF 1 + cosαF 2, (3.190)

and then superimpose the solutions. This leads to a new harmonic function,

f5 =

∫ 2π

0

dα

2π

Q5

L

∫ L

0

dv

|x− F̃ |2
=
Q5

L

∫ L

0

dv√
(r2 + |F |2)2 − 4r2|F |2 sin2 θ

(3.191)

where we use coordinates on R4 such that (x1)2 + (x2)2 = r2 sin2 θ, (x3)2 + (x4)2 = r2 cos2 θ.
The harmonic function for f1 is the same as f5 in (3.191) but with the numerator on the rhs
multiplied by |Ḟ |2. The non-vanishing part of the gauge field is given by

Aφ =
Q5

L

∫ L

0

Ḟ [1F 2]dv

|F |2 (1− r2 + |F |2√
(r2 + |F |2)2 − 4r2|F |2 sin2 θ

), (3.192)

where φ is a polar coordinate in the 1-2 plane and square brackets indicate antisymmetrization
with unit strength. The only non-vanishing component of the dual form B is

Bψ =
Q5

L

∫ L

0

Ḟ [1F 2]dv

|F |2 (
r2 − |F |2√

(r2 + |F |2)2 − 4r2|F |2 sin2 θ
− 1). (3.193)
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where ψ is a polar coordinate in the 3-4 plane. For a general curve (F 1, F 2, F 3, F 4) we can
proceed analogously by considering solutions rotated by angle α in the 1-2 plane and by angle
β in 3-4 plane and then averaging over α and β. For example, the function f5 would be given
by

f5 =

∫ 2π

0

dβ

2π

Q5

L

∫ L

0

dv√
(r2 + |F |2 − 2r cos θg(β))2 − 4r2((F 1)2 + (F 2)2) sin2 θ

;

g(β) = (F 3 cos(ψ + β) + F 4 sin(ψ + β)). (3.194)

This integral can be expressed in terms of elliptic integrals, although we have not obtained the
exact form. The asymptotics are however given by:

f5 =
Q5

Lr2

∫ L

0

∑
l≥0

dv

r2l
Pl(cos(2θ))Pl(Z(F (v)));

f1 =
Q5

Lr2

∫ L

0

∑
l≥0

dv

r2l
|∂vF |2 Pl(cos(2θ))Pl(Z(F (v))); (3.195)

A =
Q5

L

∫ L

0

∑
k

dv√
2(k + 1)rk+1

(
pk(F )(Ḟ 1F 2 − Ḟ 2F 1)(Y 0+

ka − Y
0−
ka )

+qk(F )(Ḟ 3F 3 − Ḟ 4F 3)(Y 0+
ka + Y 0−

ka )
)

;

Z(F ) = (F 3)2 + (F 4)2 − (F 1)2 − (F 2)2,

where Pl(x) are Legendre polynomials of degree l and pk(F ) and qk(F ) are defined in (3.248)-
(3.250). These asymptotics are manifestly of the form given in (3.188) and (3.189). Setting
F 3 = F 4 = 0 gives the asymptotic expansion of the expressions given in (3.191) and (3.192).

EXAMPLE 1: THE AVERAGED ELLIPSE

Consider the case of an ellipse, so that the defining curve is

F 1 = µa cos
2πv

L
, F 2 = µb sin

2πv

L
, (3.196)

with µ =
√
Q1Q5/R and (a2 + b2) = 2. (For simplicity we choose the frequency n to be one.)

In this example the integral over the curve in (3.191) can be carried out explicitly to give

f5 =
2Q5

πz
K(w); (3.197)

z4 = (C2 +D2); w =

√
(z2 − C)
√

2z
;

C = (r4 + 2µ2r2 cos 2θ + µ4a2b2);

D = µ2r2 sin 2θ(a2 − b2),

where K(w) is the complete elliptic integral of the first kind. Then f5 has poles only where z
has zeroes, namely at θ = π/2 and r = µa or r = µb. This suggests that any singularities of the
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metric are confined to these locations, namely circles of radius a and b in the 1-2 plane, and
indeed one finds that the other defining functions (f1, A,B) only have poles at these locations.
Thus the geometry is less singular than one might have anticipated. The integrands have
singularities in the annular region defined by θ = π/2 and µa ≤ r ≤ µb (assuming a ≤ b) but
the integrated functions only have singularities on the circles bounding this annulus. Moreover
these singularities seem to be such that the only singularities of the resulting metric are conical.

EXAMPLE 2: AICHELBURG-SEXL METRIC

The Aichelburg-Sexl metric was also obtained by the procedure of averaging over curve orien-
tations in [28]. The defining curve has a section which is constant:

F 1 = a cos(
2πv

ξL
); F 2 = a sin(

2πv

ξL
), 0 ≤ v ≤ ξL; (3.198)

F 1 = a, ξL ≤ v ≤ L,

with all other F i(v) = 0 and ξ < 1. Such a profile gives rise to the following harmonic
functions:

f5 =

(
1 +

Q5ξ

r̂2 + a2 cos2 θ̂
+

Q5(1− ξ)
(x1 − a)2 + x2

2 + x2
3 + x2

4

)
; (3.199)

f1 =

(
1 +

Q1

r̂2 + a2 cos2 θ̂

)
;

Aφ = a
√
ξ

√
Q1Q5

r̂2 + a2 cos2 θ̂
,

where Q1 = Q5a
2(2π/L)2/ξ and as in (3.139) we introduce non-standard polar coordinates on

R4 to simplify the harmonic functions. Now we take the SO(2) orbit of the defining curve, thus
averaging over the location of the constant section in the 1-2 plane. This leads to the SO(2)

symmetric harmonic functions

f5 =

(
1 +

Q5

r̂2 + ξµ2 cos2 θ̂

)
; (3.200)

f1 =

(
1 +

Q1

r̂2 + ξµ2 cos2 θ̂

)
;

Aφ =
ξµ
√
Q1Q5

r̂2 + ξµ2 cos2 θ̂
,

which are those of the Aichelburg-Sexl metric

ds2 = f
−1/2
1 f

−1/2
5

(
−(dt− ξµ

√
Q1Q5

r̂2 + ξµ2 cos2 θ̂
sin2 θ̂dφ)2 + (dy − ξµ

√
Q1Q5

r̂2 + ξµ2 cos2 θ̂
cos2 θ̂dψ)2

)
+f

1/2
1 f

1/2
5

(
(r̂2 + ξµ2 cos2 θ̂)(

dr̂2

r̂2 + ξµ2
+ dθ̂2) + r̂2 cos2 θ̂dψ2 + (r̂2 + ξµ2) sin2 θ̂dφ2

)
.

Here µ =
√
Q1Q5/R. This solution is clearly very similar to those based on circular curves, dis-

cussed in section 3.7.1. The non-zero vevs extracted from the decoupled part of the geometry



72 CHAPTER 3. HOLOGRAPHIC ANATOMY OF FUZZBALLS

follow from (3.127) and are given by〈
J+3

〉
=

N

4π
µξ(dy − dt);

〈
J−3

〉
=
N

4π
µξ(dy + dt); (3.201)〈

OΣ2
0

〉
=

N
√

2ξµ2

2π
√

3
(1− ξ).

These clearly reduce to those for the case of the circular curves when ξ = 1. Note that the
Aichelburg-Sexl metrics do not have conical singularities, and are therefore actually less sin-
gular than the unaveraged geometries. However, whilst the Aichelburg-Sexl metrics do have
the correct asymptotics to correspond to chiral primaries, they are based on averaging curves
with straight sections. The interpretation of these straight sections from the dual perspective
is rather unclear, given the proposed correspondence between frequencies on the curve and
twists of the dual operators.

(3.10.2) DISCONNECTED CURVES

Another way to obtain solutions which preserve the SO(2) × SO(2) symmetry is to consider
curves made up of disconnected circles. There exist supergravity solutions defined by the
following functions

f5 =

I∑
l=1

Q5Nl
NL

∫ L

0

dvl

|x− Fl|2
; (3.202)

f1 =

I∑
l=1

Q5Nl
NL

∫ Ll

0

dvl(∂vlFl)
2

|x− Fl|2
;

Ai =

I∑
l=1

Q5Nl
NL

∫ Ll

0

dvl∂vlF
i
l

|x− Fl|2
,

where the lth curve is parametrized by vl with
∑

lNl = N and is circular within either the 1-2
or 3-4 plane. That is, the curve defining the lth circle is given by

F 1
l =

√
Q1Q5

Rnl
cos

(
2πnlvl
L

)
; F 2

l = ±
√
Q1Q5

Rnl
sin

(
2πnlvl
L

)
, (3.203)

assuming the circle lies in the 1-2 plane; the sign determines the direction of rotation. A curve
lying in the 3-4 plane will take an analogous form. Such a linear superposition of sources solves
the field equations and is supersymmetric. By construction the total D5-brane and D1-brane
charges are Q5 and Q1 respectively, with the lth curve sourcing a fraction Nl/N of (both) the
total charges. The related radii and frequencies in (3.203) ensure that the D1-brane charge of
each curve is a fraction Nl/N of the total. This prescription also reduces to that given for the
curves corresponding to the operators (3.167); in that case one lets I = N/n and Nl = n in
the supergravity solution above and takes the circles to be coincident. Furthermore the total
R-charges will be given by

j3 = 1
2

I∑
l=1

εlml; j̄3 = 1
2

I∑
l=1

ε̄lml, (3.204)
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where ml = Nl/nl. Here (εl, ε̄l) = (±1,±1) depending on the orientation and rotation of the
curve.

Since the sources are located on disconnected circles, the singularity structure of these geome-
tries is similar to that discussed in section 3.7.1. Namely, there are conical singularities when-
ever nl 6= 1. Thus, these solutions are no more singular than the geometries based on a single
circle, although they are more singular than a geometry based on a general non-intersecting
curve.

(3.10.3) DISCUSSION

These are not the only symmetric geometries. For example, one could consider more general
superpositions of curves, superposing not just different orientation curves but also different
shape curves. However, the procedure we outlined above does illustrate how symmetric ge-
ometries can be obtained from those defined in terms of a single curve. The symmetrization
we used is the simplest, in that the measure for each curve is the same. The field theory dual
suggests that symmetrizing over shapes of curves should involve a non-trivial measure. That
is, if one has an ellipse with parameters (a, b) so that the proposed dual is

|ellipse)a,b =

N/n∑
k=0

(ak)a,b|
N

n
− k; k〉, (3.205)

then one can formally invert the relation to give

|N
n
− k; k〉 =

∑
a,b

(ak)−1
a,b|ellipse)a,b. (3.206)

This suggests that to obtain a geometric dual for a given chiral primary one could consider a
linear superposition of curves with different parameters (a, b) using a measure which is related
to (ak)−1

a,b. Precisely what the measure should be is not however immediately apparent, because,
as we will discuss below, such a symmetrization via linear superposition may in fact be rather
too naive, because of the non-linear relationship between harmonic functions and vevs. To test
whether a given symmetric geometry does indeed have the correct properties to correspond to
a given chiral primary, one will need to use the actual values of the kinematically allowed vevs,
as we will now discuss.

(3.11) DYNAMICAL TESTS FOR SYMMETRIC GEOMETRIES

The geometries in sections 3.10.1 and 3.10.2 have the correct asymptotics to correspond to
chiral primaries. Since the geometries in section 3.10.2 are based on separated sources, one
would not however anticipate that these correspond to Higgs branch vacua; the more natural
proposal would be that they relate to Coulomb branch vacua. By extracting all vevs and n-point
functions from each geometry one could in principle identify the field theory dual uniquely.
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Furthermore, given any proposed correspondence between geometries and field theory vacua,
we can use dynamical information for the kinematically allowed vevs to test it. In particular, let
us consider the averaged geometries, focusing on the example of the averaged ellipse. In this
case, we consider a defining curve (3.196) with corresponding rotated curve F̃ 1, F̃ 2 defined in
(3.190). The geometry based on the latter is proposed to correspond to the linear superposition
(3.185) with

A+ = (a+ b)eiα; A− = (a− b)e−iα. (3.207)

This means that the superposition dual to the rotated ellipse is

|ellipse)α =

N/n∑
k=0

eiα(N
n
−2k) 1

2
N
n

√
(N
n

)!

(N
n
− k)!k!

(a+ b)
N
n
−k(a− b)k(OR++

n )(N
n
−k)(OR−−n )k.

(3.208)
Averaging over the angle α clearly picks out the k = N/2n term in the superposition, which is
a state of zero angular momentum. However, the geometry obtained by averaging over rotated
ellipses does not have zero angular momentum, but rather the same angular momentum as
the original geometry. This suggests that this geometric averaging might actually average over
vevs, rather than over states, and thus not pick out a geometry dual to a single chiral primary.
Given that the averaging linearly superposes harmonic functions, however, and the vevs are
non-linearly related to the harmonic functions, the geometric averaging probably does not lead
to just an overall averaging over the vevs. One will have to use the actual vevs for the neutral
operators to see what the geometry describes.

So now let us discuss how one would use information about three point functions at the confor-
mal point to test whether a given geometry corresponds to a chiral primary. Let us work with
an example: consider the R vacuum corresponding to the operator (OSpn)R obtained by spec-
trally flowing the operator OSpn dual to the supergravity field Sp(6)

n . (Recall that the superscript
p denotes that it is primary, j3 = j and j̄3 = j̄.) Next suppose that there is a candidate dual ge-
ometry, which has the correct symmetries and R-charges, the latter being ( 1

2
(n−N), 1

2
(n−N)).

This means that the holographic vevs for the R symmetry currents must be

〈J±3〉 =
µ

4π
(n−N)(dy ∓ dt), (3.209)

where y has periodicity 2πR̃ = 2πR/
√
Q1Q5 and µ =

√
Q1Q5/R.

Now let us consider how we can relate this vev to the normalized three point function at the
conformal point. That is,

〈J±3〉ΨSn = 〈(OSn)†RJ
±3(w0)(OSn)R〉 ≡

〈(OSn)†R(∞)J±3(w0)(OSk )R(0)〉
〈(OSn)†R(∞)(OSn)R(0)〉

, (3.210)

where ΨSn denotes that the theory is in the vacuum created by (OSpn)R. The scale w0 at which
the current is inserted is found by comparing the vevs (3.209) with the normalized three point
functions, computed in (3.309). The latter give

〈J+3〉ΨSn =
(n−N)

4πw0
; 〈J−3〉ΨSn =

(n−N)

4πw̄0
, (3.211)
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which comparing with (3.209) implies that the inserted scale must be w0 = w̄0 = µ−1.

We can now use the three point functions between OSpn and neutral dimension two operators
to predict the vevs for the latter. This gives

〈OS2
0
〉ΨSn = 0; (3.212)

〈OΣ2
0
〉ΨSn = 〈(OSn)†ROΣ2

0
(µ−1)(OSn)R〉 =

√
3n3µ2

√
2π(n− 1)2

.

where the normalized three point function is defined in (3.302) and the inserted scale is as
before w0 = w̄0 = µ−1. Note that µ2 ∼ N , so the vev has the correct large N behavior (for our
choice of normalization). From the expressions given in (3.127) for the vevs of these operators
in terms of the asymptotics we can determine the degree two coefficients in (3.188). The
vanishing of 〈OS2

0
〉ΨSn implies that f1

20 = f5
20 whilst the expression for the vev 〈OΣ2

0
〉ΨSn in

(3.127) implies that

f1
20 = − µ2

√
3N2

(
(n−N)2 +

3n3N

(n− 1)2

)
(3.213)

= f1
20(circ)

(
1 +

n

N
+ · · ·

)
,

where f1
20(circ) = −µ2/

√
3 is the value of f1

20 for the circular solution. The (n−N)2 contribu-
tion on the rhs is due to the non-linear contribution 8aα−aβ+fIαβ and in the second equality
we use 1� n� N . The upper limit on n follows from the fact that the supergravity three point
functions are known only to leading order in N and do not apply for operators with dimensions
comparable to N . The lower limit is unnecessary and is imposed only to simplify the formula.

By extending the computation of the vevs to higher dimension operators and comparing with
those predicted from three point functions at the conformal point, one could in principle extract
the higher degree coefficients in (3.188) and resum the asymptotic series to obtain the full
geometry.

There is an important caveat, however. In all computations so far we have worked in the
N →∞ limit, retaining only the leading terms. This applies both to the computation of the vevs
and to the computation of three point functions. For the computation of the 3-point function to
be valid we need N � n, but then the “holographically engineered” f1

20 in (3.213) differs from
the answer for the circle only by terms subleading in n/N . In other words, the holographically
engineered geometry would be that of the circular solution up to 1/N corrections.

Next consider R vacua corresponding to operators obtaining by spectral flow on operators
which are either of high dimension (comparable to N) or multiparticle. The latter include
operators of the form (OR++

n )N/n−k(OR−−n )k for which the duals may be related to averaged
ellipses. Since there is no information about three point functions of these operators at strong
coupling, we have no precise predictions for the vevs of neutral operators and thus cannot
currently test whether a given geometry is indeed dual to such a state. Given any future
progress on computing the relevant fusion coefficients via string theory, one could however test
the correspondence further.
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To summarize: a geometry with SO(2)× SO(2) symmetry can be characterized by its angular
momentum and vevs of neutral operators. The latter can in principle be used to determine the
corresponding dual, but to implement this program will in general require going beyond the
leading supergravity approximation.

(3.12) INCLUDING THE ASYMPTOTICALLY FLAT REGION

In this section we will discuss how the asymptotically flat region of the geometry may be inter-
preted using the AdS/CFT dictionary. Our discussion will parallel an analogous discussion for
D3-branes given in section 6 of [57].

The six-dimensional metric of (3.51) along with the scalar and tensor field of (3.44) are char-
acterized by two harmonic functions (f1, f5) and a harmonic form Ai. The field equations are
satisfied for any choice of harmonic functions. The specific choices in (3.47) correspond to
(part of) the (supersymmetric) Higgs branch of the D1-D5 system. Multi-centered harmonic
functions for (f1, f5) with Ai = 0 are also well-known supergravity solutions, corresponding to
part of the Coulomb branch.

In (3.68) we gave the most general form for the asymptotic expansions of (f1, f5, Ai) under the
condition that the solution is asymptotically AdS3 × S3. The asymptotically flat region may be
included by adding constant terms to the (f1, f5) harmonic expansions, namely

f1 = ε1 +
Q1

r2

∑
k,I

f1
kIY

I
k (θ3)

rk
; f5 = ε5 +

Q5

r2

∑
k,I

f5
kIY

I
k (θ3)

rk
, (3.214)

whilst keeping the large radius expansion for Ai as in (3.68). To include all of the asymptot-
ically flat region, the parameters ε1 and ε5 clearly need to be finite. However, let us take the
parameters to be infinitesimal so that the solution remains asymptotically AdS3×S3. Since we
have discussed already the terms in the harmonic expansion behaving as r−k with k ≥ 3, we
consider only the new terms as a perturbation to the AdS background. That is, we let

f1 = ε1 +
Q1

r2
; f5 = ε5 +

Q5

r2
, (3.215)

with Ai = 0 and then identify the terms induced in the harmonic expansion of the fluctuations
(3.67). The field fluctuations are

− htt = hyy = − 1
2
r4(ε̂1 + ε̂5); hrr = 1

2
(ε̂1 + ε̂5); (3.216)

hab = 1
2
r2(ε̂1 + ε̂5); φ(56) = 1

2
r2(ε̂1 − ε̂5);

g5
tyr = −r3(ε̂1 + ε̂5); g6

tyr = −r3(ε̂1 − ε̂5),

where we define ε̂1 = ε1/Q1 and ε̂5 = ε5/Q5. Thus the only non-vanishing dynamical fields are
those from (3.92)

τ0 ≡
π0

12
=

1

8
r2(ε̂1 + ε̂5); t0 ≡ 1

4
φ

(56)
0 =

1

8
r2(ε̂1 − ε̂5). (3.217)
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(The other non-vanishing components are induced by constraint equations and do not corre-
spond to dynamical fields.) Since both τ0 and t0 couple respectively to the dimension four
operators Oτ0 and Ot0 , the radial dependence of these fields corresponds to source behavior.
Thus the CFT lagrangian is deformed by the terms∫

d2z
(
(ε̂1 + ε̂5)Oτ0 + (ε̂1 − ε̂5)Ot0

)
. (3.218)

Note that the operators (Oτ0 ,Ot0) are the top components of the short multiplets generated
from the chiral primaries (OΣ2 ,OS2) respectively through the action of the supercharges. That
is, they are given by

G1†
−1/2G

2
−1/2G̃

1†
−1/2G̃

2
−1/2 |CPO〉 , (3.219)

where (Ga±1/2, G̃
a
±1/2) with a = 1, 2 are left and right supercharges. Here (G1†

−1/2, G
2
−1/2) and

corresponding right moving charges act as raising operators on the ∆ = 2 chiral primaries. The
latter have h = j = j3 = h̄ = j̄ = j̄3 = 1. Computing two point functions in the presence of
the deformation (3.218) may capture scattering into the asymptotically flat part of the D1-D5
geometry.

(3.A) APPENDIX

(3.A.1) PROPERTIES OF SPHERICAL HARMONICS

Scalar, vector and tensor spherical harmonics satisfy the following equations

�Y I = −ΛkY
I , (3.220)

�Y Iva = (1− Λk)Y Iva , DaY Iva = 0,

�Y It(ab) = (2− Λk)Y It(ab), DaY Itk(ab) = 0,

where Λk = k(k + 2) and the tensor harmonic is traceless. It will often be useful to explic-
itly indicate the degree k of the harmonic; we will do this by an additional subscript k, e.g.
degree k spherical harmonics will also be denoted by Y Ik , etc. � denotes the d’Alambertian
along the three sphere. The vector spherical harmonics are the direct sum of two irreducible
representations of SU(2)L × SU(2)R which are characterized by

εabcD
bY cIv± = ±(k + 1)Y Iv±a ≡ λkY Iv±a . (3.221)

The degeneracy of the degree k representation is

dk,ε = (k + 1)2 − ε, (3.222)

where ε = 0, 1, 2 respectively for scalar, vector and tensor harmonics. For degree one vector
harmonics Iv is an adjoint index of SU(2) and will be denoted by α.
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We use normalized spherical harmonics such that∫
Y I1Y J1 = Ω3δ

I1J1 ;

∫
Y aIvY Jva = Ω3δ

IvJv ;

∫
Y (ab)ItY Jt(ab) = Ω3δ

ItJt , (3.223)

where Ω3 = 2π2 is the volume of a unit 3-sphere. Then∫
DaY

I1DaY J1 = Ω3ΛI1δI1J1 ;

∫
D(aDb)Y I1DaDbY

I2 = Ω3
2

3
ΛI1(ΛI1 − 3)δI1J1 .

(3.224)
The following identities are useful

1

Ω3

∫
Y IDaY JDaY

K ≡ bIJK = 1
2
(ΛJ + ΛK − ΛI)aIJK ; (3.225)

1

Ω3

∫
D(aDb)Y IDaDbY

JY K ≡ cIJK = ( 1
4
ΛIJK(ΛIJK − 4)− 1

3
ΛIΛJ)aIJK ;

1

Ω3

∫
D(aY

IDb)Y
JDaDbY K ≡ dIJK = ( 1

4
ΛIKJΛJKI +

1

6
ΛKΛIJK)aIJK ,

where ΛIJK = (ΛI + ΛJ − ΛK). We define the following triple integrals as∫
Y IY JY K = Ω3aIJK ; (3.226)∫

(Y α±1 )aY j1 DaY
i
1 = Ω3e

±
αij ; (3.227)∫

Y I(Y α−1 )a(Y β+
1 )a = Ω3fIαβ ; (3.228)∫

(Y Iv±kv
)aY Ik DaY

i
1 = Ω3E

±
IvIi

; (3.229)∫
(Y Iv±kv

)aY Ik DaY
J
l = Ω3E

±
IvIJ

; (3.230)

We also use specific identities for harmonics of low degree. The degree one vector harmonics
Y α1± transform in the (1, 0) and (0, 1) representation of (SU(2)L, SU(2)R) whilst the degree k
scalar harmonics transform in the ( 1

2
k, 1

2
k) representation. This immediately implies that the

following triple overlaps are zero:∫
Y I2 (Y α+

1 )a(Y β+
1 )a) =

∫
Y I2 (Y α−1 )a(Y β−1 )a) =

∫
Y0(Y α+

1 )a(Y β−1 )a) = 0. (3.231)

Using the following explicit coordinate system on the sphere

ds2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2, (3.232)

with volume form η3 = sin θ cos θdθ ∧ dφ ∧ dψ the following are normalized Killing forms

Y 3+
1 = (sin2 θdφ+ cos2 θdψ); Y 3−

1 = −(sin2 θdφ− cos2 θdψ), (3.233)

which generate the Cartan of the SO(4) symmetry group. The remaining Killing forms are

Y 1+
1 = (cos(ψ + φ)dθ + sin(ψ + φ) sin θ cos θd(ψ − φ));

Y 2+
1 = (− sin(ψ + φ)dθ + cos(ψ + φ) sin θ cos θd(ψ − φ));

Y 1−
1 = (cos(ψ − φ)dθ + sin(ψ − φ) sin θ cos θd(φ+ ψ));

Y 2−
1 = (− sin(ψ − φ)dθ + cos(ψ − φ) sin θ cos θd(φ+ ψ)).
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The SU(2)× SU(2) algebra realized by the Killing vectors is normalized such that

[Y α+
1 , Y β+

1 ] = 2εαβγY
γ+
1 ; [Y α−1 , Y β−1 ] = 2εαβγY

γ−
1 ; [Y α+

1 , Y β−1 ] = 0. (3.234)

Furthermore
Y α±1 ∧ Y β±1 ∧ Y γ±1 = ∓εαβγη3, (3.235)

which implies that ∫
εabcY α±a Y β±b Y γ±c = ∓Ω3εαβγ (3.236)

In the same coordinate system Y 0
2 =

√
3 cos 2θ is the normalized degree 2 spherical harmonic

which is a singlet under the SO(2)2 Cartan, with the following triple overlap∫
Y 0

2 (Y 3+
1 )a(Y 3−

1 )a =
1√
3

Ω3. (3.237)

Thus, f033 = 1/
√

3 in this specific case. More generally the normalized spherical harmonics
which are singlets under the Cartan can be expressed as

Y 0
2l =

√
2l + 1Pl(cos 2θ), (3.238)

where Pl(x) is a Legendre polynomial of degree l, normalized so that Pl(1) = 1 and Pl(−1) =

(−1)l.

In this coordinate system normalized degree one spherical harmonics are

Y 1
1 = 2 sin θ cosφ; Y 2

1 = 2 sin θ sinφ; (3.239)

Y 3
1 = 2 cos θ cosψ; Y 4

1 = 2 cos θ sinψ.

Defining Y ij ≡ 1
2
(Y j1 dY

1
1 − Y 1

1 dY
j
1 ),

Y 12 = (Y 3−
1 − Y 3+

1 ); Y 34 = −(Y 3+
1 + Y 3−

1 ); Y 13 = (Y 1+
1 + Y 1−

1 ); (3.240)

Y 34 = (Y 1−
1 − Y 1+

1 ); Y 14 = −(Y 2+
1 + Y 2−

1 ); Y 23 = (Y 2+
1 − Y 2−

1 ),

and therefore the explicit values for the overlaps e±αij defined in (3.227) are

e+3
12 = −1; e−3

12 = 1; e+3
34 = −1; e−3

34 = −1; e+1
13 = 1; e−1

13 = 1; (3.241)

e+1
24 = −1; e−1

24 = 1; e+2
14 = −1; e−2

14 = −1; e+2
23 = 1; e−2

23 = −1.

Note that e±αij = −e±αji .

We will also make use of normalized degree k scalar harmonics with maximal (m, m̄) (SU(2)L, SU(2)R)

charges:

Y
± 1

2
k,± 1

2
k

k =
√
k + 1 sink θe±ikφ; (3.242)

Y
± 1

2
k,∓ 1

2
k

k =
√
k + 1 cosk θe±ikψ.
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The triple overlap between two such harmonics of opposite charges with the neutral harmonic
of degree two given in (3.238) is given by

1

2π2

∫
Y

1
2
k,

1
2
k

k Y
− 1

2
k,− 1

2
k

k Y 0
2 = −

√
3k

k + 2
. (3.243)

We will also need the explicit values of the overlaps between two such harmonics of opposite
charges and the commuting Killing vectors:

E±3(−−)(++) ≡
1

2π2

∫
DaY

1
2
k,

1
2
k

k Y
− 1

2
k,− 1

2
k

k Y 3±
a = ±ik; (3.244)

E±3(+−)(−+) ≡
1

2π2

∫
DaY

− 1
2
k,

1
2
k

k Y
1
2
k,− 1

2
k

k Y 3±
a = ik. (3.245)

Vector spherical harmonics Y 0±
ka whose Lie derivatives along the SO(2) directions are zero can

be expressed as

Y 0+
k =

1√
2

(sin2 θpl(θ)dφ+ cos2 θql(θ)dψ); (3.246)

Y 0−
k =

1√
2

(− sin2 θpl(θ)dφ+ cos2 θql(θ)dψ), (3.247)

where k = 2l + 1 and l is an integer. The functions pl(θ) and ql(θ) of degree 2l are related to
degree k = 2l + 1 scalar harmonics with SO(2)× SO(2) charges (± 1

2
,± 1

2
). That is,

Y
± 1

2
,± 1

2
k (θ) = e±iφ sin θpl(θ); Y

± 1
2
,∓ 1

2
k (θ) = e±iψ cos θql(θ), (3.248)

are normalized degree k spherical harmonics. Explicit series representation of these functions
are

pl(θ) =
√
k + 1

(
l∑

m=0

(−)m

(
l

m

)(
l +m+ 1

l + 1

)
(cos θ)2m

)
; (3.249)

qk(θ) =
√
k + 1

(
l∑

m=0

(−)m

(
l

m

)(
l +m+ 1

l + 1

)
(sin θ)2m

)
.

Finally, let us make explicit the relation between spherical harmonics and traceless symmetric
tensors on R4. There is a one to one map between scalar spherical harmonics of degree k

and rank k symmetric traceless tensors. Given the spherical harmonic, one can read off the
associated tensor by lifting it onto a sphere in R4. For example, for the charged harmonics
(3.248), we get

Y
± 1

2
,± 1

2
k (θ) → C

± 1
2
,± 1

2
k = (x1 ± ix2)pl(x); (3.250)

pl(x) =
√
k + 1

(
l∑

m=0

(−)m

(
l

m

)(
l +m+ 1

l + 1

)
((x1)2 + (x2)2)m(

∑
i

(xi)2)l−m

)
.
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(3.A.2) PROOF OF ADDITION THEOREM FOR HARMONIC FUNCTIONS

ON R4

To prove the addition theorem one first writes

|x− y|−2 =
1

r2

∞∑
n=0

n∑
m≥0

(−1)n+m n!

m!(n−m)!

y2n−m

r2n−m (2x̂ · ŷ)m, (3.251)

where xi = rx̂i and yi = yŷi with (x̂i, ŷi) unit vectors. Collecting together terms of the same
radial power and summing the finite series one finds

|x− y|−2 =
∑
k≥0

yk

r2+k

sin((k + 1)γ)

sin(γ)
, (3.252)

where the angle γ is defined as cos γ = x̂ · ŷ.

Now at each degree k there is precisely one SO(3) invariant spherical harmonic and the nor-
malized such harmonic is given by

Y 0
k (γ) = sin((k + 1)γ)/ sin(γ). (3.253)

One can show this using spherical coordinates adapted to the SO(3) symmetry group, namely

ds2
3 = dθ̂2 + sin2 θ̂dΩ2

2. (3.254)

Then Y 0
k (θ̂) satisfies the degree k SO(3) invariant spherical harmonic equation(

1

sin2 θ̂
∂θ̂(sin

2 θ̂∂θ̂) + k(k + 2)

)
Y 0
k (θ̂) = 0, (3.255)

and is normalized as in the previous section. Therefore the addition theorem amounts to
proving the following identity

Y 0
k (γ) = αk

∑
I

Y Ik (θx3 )Y Ik (θy3 ), (3.256)

where Y Ik (θ3) are (normalized) spherical harmonics of degree k on the S3 and αk = 1/(k+ 1).
First note that in the coordinate system (3.254) on the sphere

cos γ = cos θx cos θy + sin θx sin θy(cos γ2), (3.257)

where γ2 is the angle separating the vectors on the S2. Thus when θy = 0 (it lies on the
“axis”) cos γ = cos θx. Since the SO(3) singlet harmonic is the only harmonic at level k which
is non-vanishing on the axis (3.256) collapses to

Y 0
k (γ) = αkY

0
k (θx)Y 0

k (0), (3.258)

which is true if αk = 1/(k + 1) since from (3.253) Y 0
k (0) = (k + 1).
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Now consider rotating the axes so that θy is no longer zero. Then the function Y 0
k (γ) still

satisfies the covariant version of (3.255), namely

(�x + k(k + 2))Y 0
k (γ) = 0, (3.259)

where �x is the Laplacian on the S3 with coordinates θx3 . In other words, the function can
always be expanded in spherical harmonics of rank k as

Y 0
k (γ) =

∑
I

αIk(θy3 )Y Ik (θx3 ), (3.260)

where the coefficients are given by

αIk(θy3 ) =

∫
S3

dΩ3Y
I
k (θx3 )Y 0

k (cos γ). (3.261)

However, a generic function can be expanded in terms of spherical harmonics as

f(θx3 ) =
∑
k,I

βkIY
I
k (θx3 ), (3.262)

where
βkI =

∫
S3

dΩ3f(θx3 )Y Ik (θx3 ), (3.263)

and in particular for the SO(3) singlet coefficients

βk =

∫
S3

dΩ3f(θx3 )Y 0
k (θx), (3.264)

so that f(θx = 0) =
∑

k βk(k+1). Then (3.261) is the SO(3) singlet coefficient in an expansion
of the function Y Ik (θx3 ) in a series of Y Ik (γ, · · · ) (i.e. with respect to the rotated axis discussed
earlier). One can thus read off the coefficient (3.261) as

αIk(θy3 ) = (k + 1)−1Y Ik (θ3(γ, · · · ))γ=0 = (k + 1)−1Y Ik (θy3 ), (3.265)

since in the limit γ → 0 the angles (θ, · · · ) go over into (θy, · · · ). This completes the proof of
(3.256).

(3.A.3) SIX DIMENSIONAL FIELD EQUATIONS TO QUADRATIC ORDER

In this appendix we summarize the computation of the relevant quadratic corrections to the
six-dimensional field equations using the results of [24, 48]. Expanding the Einstein equation
(3.54) up to second order in fluctuations gives

R
(1)
MN +R

(2)
MN = HA

MPQH
A
N

PQ − 2(hKL − hKPhLP )HA
MKQH

A
NL

Q
(3.266)

+hKLhPQHA
MKPH

A
NLQ +DMΦDNΦ,

≡ (E
(1)
MN + E

(2)
MN ) (3.267)
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where

R
(1)
MN = DKh

K
MN − 1

2
DMDN (hLL); (3.268)

R
(2)
MN = −DK(hKL h

L
MN ) + 1

4
DMDN (hKLhKL) + 1

2
hKMNDK(hLL)− hKMLh

L
KN ;

hKMN ≡ 1
2
(DMh

K
N +DNh

K
M −DKhMN ).

The quantities (E
(1)
MN , E

(2)
MN ) are defined to be linear and quadratic in fluctuations respectively.

The expansion of the scalar field and the three formsGA (3.66) implies the following expansion
for the three forms HA up to quadratic order in fluctuations:

H5 = go + g5 + Φg6 + 1
2
goΦ2; (3.269)

H6 = g6 + goΦ + g5Φ,

where (g5, g6) are the (closed) three form fluctuations given in (3.66) and go is the background
three form.

The scalar field equation up to second order is

(� + �a)Φ ≡ E(1) + E(2); (3.270)

= DKΦ(DLh
KL − 1

2
DK(hLL) + hKLDKDLΦ +

2

3
H5
KLM (H6KLM − 3hKS H

6SLM ),

where E(1) is the part linear in fluctuations and E(2) is quadratic part. Recall that � is the
d’Alambertian on AdS3 and �a is the d’Alambertian on S3.

The (anti)-self duality equation is

H ∓ ∗H ± S(1) ± S(2) ≡ T (1) + T (2) = 0, (3.271)

where

S
(1)
KLM = 1

2
h(∗H)KLM − 3hP[K(∗H)LM ]P ; (3.272)

S
(2)
KLM =

3

2
hPPh

Q
[K(∗H)LM ]Q − (

1

8
h2 + 1

4
hPQhPQ)(∗H)KLM − 3hP[Kh

Q
L (∗H)M ]PQ,

and (T (1), T (2)) are the parts linear and quadratic in fluctuations respectively.

We are interested in corrections to the (s2, σ2, Hµν , A
±
µ ) field equations quadratic in the scalar

field s1 and the gauge field A±. Consider first the s2 field equations. The linearized field
equation is given by a combination of the scalar field equation (3.270) and components of the
anti-self-duality equation (3.271). That is,

�s2
I ≡

1

12

(
(� + �a)Φ− E(1) − εabc( 1

2
DµDaT

(1)
µbc +

2

3
T

(1)
abc)

)
Y I2

= 0, (3.273)

where AY I2 denotes the projection of A onto the Y I2 harmonic. For the quadratic corrections to
this equation first define the following quantities

q1 = E(2); q2µa = − 1
2
εabcT

(2)6
µbc ; q3 =

1

6
εabcT

(2)6
abc , (3.274)
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then the correction to the s2
I equation is given by

�s2
I =

1

12
((q1) +DµDa(q2µa) + 4(q3))Y I2

. (3.275)

Now the explicit computations of [48] show that there are no such correction terms quadratic
in S1

i and A±α. Therefore the linearized equation remains uncorrected to quadratic order.

Next consider the σ2
I equation. Here the linearized equation is a specific combination of the

components of the Einstein equation (3.267) along the sphere with components of the self-
duality equation. Namely

�σ2
I ≡

1

6

(
1

3
(E(1)a

a −R(1)a
a ) + 1

4
(E

(1)

(ab) −R
(1)

(ab))−
1
4
εµνρDµD

aT (1)5
νρa +

2

3
εabcT

(1)5
abc

)
Y I2

= 0.

(3.276)
For the quadratic corrections to this equation define

Q1 =
1

3
(E(2)a

a −R(2)a
a ); Q2(ab) = (E

(2)

(ab) −R
(2)

(ab)); (3.277)

Qµ3a =
1

2
εµνρT (2)5

νρa ; Q4 =
1

3!
εabcT

(2)5
abc ,

and again denote as (Q)Y I
k

the projection of Q onto Y Ik . Then

�σ2 =
1

6
(Q1 + 1

4
DaDbQ2(ab) − 1

2
DµDaQ3aµ + 4Q4)Y I2

. (3.278)

Now the terms quadratic in the scalar fields s1 were computed in [48]

(Q1)Y I = −14s1
i s

1
jaIij +

2

3
(Dµs

1
iD

µs1
j + 2s1

i s
1
j )bIij ; (3.279)

(DaDbQ2(ab))Y I = 4
(
s1
i s

1
j −Dµs1

iD
µs1
j

)
dijI ;

(DµDaQ3aµ)Y I = −4
(
s1
i s

1
j −Dµs1

iD
µs1
j

)
biIj ;

(Q4)Y I = 4s1
i s

1
jaIij .

The relevant spherical harmonic triple overlaps are defined in appendix 3.A.1. We should
mention here that there are also contributions to (3.278) quadratic in the gauge field which
were not explicitly computed in [48]. These are given by

(Q1)Y I = −1

8
Fµν(A+α)Fµν(A−β)fIαβ + · · · ; (3.280)

(DaDbQ2(ab))Y I = −5

2
Fµν(A+α)Fµν(A−β)fIαβ + · · · ;

(DµDaQ3aµ)Y I =
3

4
Dµ
(
Fµν(A+α)A−βν + Fµν(A−β)A+α

ν

)
fIαβ + · · · .

The spherical harmonic triple overlap fIaβ is defined in (3.228). Terms quadratic in two
SU(2)L gauge fields or two SU(2) right gauge fields are projected out via the identities (3.231).
The ellipses denote terms quadratic in the gauge field rather than its field strength, that is,
proportional to A±αµ Aµ±β . These terms cancel out when combined in (3.278) leaving only a
contribution involving field strengths. The latter however vanish when one imposes the leading
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order field equations, and thus the combination of the corrections (3.279) and (3.280) gives
the σ2 field equation (3.99), containing only scalar field corrections.

Next consider the corrections to the Einstein equation. Recall that the three dimensional metric
to quadratic order in the fields is

Hµν = h0
µν + π0goµν − h±αµ h±αν ≡ Ĥµν − h±αµ h±αν . (3.281)

Then one can show that

(LE + 2)Ĥµν = (E(2)
µν −R(2)

µν )Y0 + (3Q1 + 4Q4)Y0g
o
µν , (3.282)

where the linearized Einstein operator is defined in (3.96). The following terms which are
quadratic in the scalar fields

(E(2)
µν −R(2)

µν )0 = (−2s1
i s

1
jg
o
µν + 16Dµs

1
iDνs

1
j − 6Dρs

1
iD

ρs1
jg
o
µν)δij , (3.283)

in combination with those contained in (3.279) give

(LE + 2)Ĥµν = 16(Dµs
1
iDνs

1
i − goµνs1

i s
1
i ). (3.284)

There are also contributions quadratic in the gauge fields to both (LE + 2)Ĥµν and (LE +

2)h±αµ h±αν . These contributions involve both the gauge fields and their field strength, and in
particular do not vanish for flat connections. This is unsurprising, since we know from general
arguments that Ĥµν on its own does not transform correctly under gauge transformations.
However the gauge field contributions to (LE + 2)Hµν , where Hµν is the three dimensional
metric (3.100) that transforms correctly under diffeomorphisms, do vanish for flat connections,
as indeed they should, and thus are zero when one imposes the leading order gauge field
equations. The corrected Einstein equation is therefore that given in (3.101).

(3.A.4) 3-POINT FUNCTIONS

In this appendix we discuss the supergravity computation of certain 3-point functions.

EXTREMAL SCALAR THREE POINT FUNCTIONS

First we will consider the computation of the 3-point function between two operators of di-
mension 1 and one operator of dimension k. The operators of dimension 1 may be the same
or different and are dual to the fields S1; there are four such operators corresponding to the
four scalar harmonics of degree 1 which are labeled by i, j. The operator OΣk

I
of dimension k

is dual to the field ΣkI (there are (k+ 1)2 such operators labeled by I). The k = 2 case is special
in that the correlator is extremal [60]. As in the five dimensional case, the computation of
extremal correlators is subtle. The bulk coupling vanishes but the spacetime integral diverges
when k → 2 in such way that the corresponding 3-point function is finite. We will take this
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value to be the correct extremal correlator and this will allow us to fix the coefficient of the
relevant terms non-linear in momentum in the 1-point function of Σ2.

The three dimensional field equations to quadratic order were determined in [24] and for the
fields of interest and with our normalizations they read

(�− k(k − 2))ΣkI = wIijS
1
i S

1
j ; (3.285)

(� + 1)S1
i = wIijΣ

k
IS

1
j ;

(� + 1)S1
j = wIijΣ

k
IS

1
i ;

where

wIij =
k3(k + 2)(k + 4)(1− k/2)

32(k + 1)
√
k(k − 1)

aIij . (3.286)

Notice that this coupling vanishes in the extremal case k = 2.

The aim is to compute the 3-point 〈OΣk
I
(x1)OS1

i
(x2)OS1

j
(x3)〉, but we start by discussing 2-

point functions. These are obtained by the first variation of the 1-point functions

〈OΣk
I
(x1)OΣk

J
(x2)〉 = −

δ〈OΣk
I
(x1)〉

δΣkJ(0)(x2)
= −

(n1n5

4π

)
(2k − 2)

δΣkI(2k−2)(x1)

δΣkJ(0)(x2)
;

〈OS1
i
(x1)OS1

j
(x2)〉 = −

δ〈OS1
i
(x1)〉

δS1
j(0)(x2)

= −
(n1n5

4π

)
2
δS̃1

i(0)(x1)

δS1
j(0)(x2)

,

where we used (3.113). It follows that in order to obtain these 2-point functions we need to
solve (3.285) to linear order in the sources (so the r.h.s is set equal to zero) and then extract
the appropriate coefficient. The details of this computation can be found in section 6.3 of [68]
with the following result

〈OΣk
I
(x1)OΣk

J
(x2)〉 =

(n1n5

4π

) (2k − 2)Γ(k)

πΓ(k − 1)

(
1

x2k

)
R

δIJ , k 6= 1;

〈OS1
i
(x1)OS1

j
(x2)〉 =

(n1n5

4π

) 2

π

(
1

x2

)
R

δij , (3.287)

where the subscript R indicates that these are renormalized correlators.

We now discuss the 3-point function with k 6= 2. We can can obtain the 3-point function by the
second variation of the 1-point function of OΣk :

〈OΣk
i
(x1)OS1

i
(x2)OS1

j
(x3)〉 =

δ2〈OΣk
I
(x1)〉

δS1
i(0)(x2)δS1

j(0)(x3)

=
(n1n5

4π

)
(2k − 2)

δ2ΣkI(2k−2)(x1)

δS1
i(0)(x2)δS1

j(0)(x3)
(3.288)

It follows that we need to solve (3.285) to quadratic order in the sources and then extract the
coefficient of order zk. The steps involved in this computation are spelled out in section 5.9 of
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[21]. For the case at hand, the result is10

〈OΣk
I
(x1)OS1

i
(x2)OS1

j
(x3)〉 = −

(n1n5

4π

)
wIij

2Γ(k)

π3Γ(k − 1)
Ik(x1, x2, x3) (3.289)

where

Ik(x1, x2, x3) =

∫
d2xdz

z3

(
z

z2 + (~x− ~x1)2

)k (
z

z2 + (~x− ~x2)2

)(
z

z2 + (~x− ~x3)2

)
. (3.290)

This integral was computed in [69] with answer

Ik(x1, x2, x3) =
πΓ(1− k/2)(Γ(k/2))3

2Γ(k)

1

|~x1 − ~x2|k|~x1 − ~x3|k|~x2 − ~x3|2−k
. (3.291)

Notice that this integral diverges in the extremal case k → 2.

The final answer for the correlator is thus

〈OΣk
I
(x1)OS1

i
(x2)OS1

j
(x3)〉 =

CkIij
|~x1 − ~x2|k|~x1 − ~x3|k|~x2 − ~x3|2−k

(3.292)

where

CkIij = −
(n1n5

4π

) k3(k + 2)(k + 4)Γ(k/2)3Γ(2− k/2)

32π2(k + 1)Γ(k − 1)
√
k(k − 1)

aIij . (3.293)

This coefficient has a smooth limit as k → 2; the zero in wIij cancels against the divergence in
I2, and we get

C2
Iij = −

(n1n5

4π

) 1√
2π2

aIij . (3.294)

We will take this to be the correct extremal 3-point function, i.e.,

〈OΣ2
I
(x1)OS1

i
(x2)OS1

j
(x3)〉 =

C2
Iij

|~x1 − ~x2|2|~x1 − ~x3|2
, (3.295)

and use it to deduce the non-linear coupling in the 1-point function of 〈OΣ2
I
〉. As discussed in

[22], the form of the 1-point function is uniquely fixed by general arguments to be

〈OΣ2
I
〉 =

(n1n5

4π

)(
π

Σ2
I

(2) +AIijπ
S1
i

(1)π
S1
j

(1)

)
(3.296)

The numerical coefficient AIij should be determined by doing holographic renormalization in
6 (rather than 3) dimensions. We will fix it, however, such that the the extremal correlator
is correctly computed directly at k = 2 (rather than obtained as a limit from k 6= 2). Since
wIij(k = 2)=0 the only contribution comes from the terms non-linear in momenta

〈OΣk
I
(x1)OS1

i
(x2)OS1

j
(x3)〉 =

(n1n5

4π

)
2AIij

 δπ
S1
i

(1)(x1)

S1
i(0)(x2)

 δπ
S1
j

(1)(x1)

S1
j(0)(x3)

 ;

=
(n1n5

4π

)
AIij

8

π2

1

|~x1 − ~x2|2|~x1 − ~x3|2
(3.297)

By comparing with (3.295) we find

AIij = − 1

4
√

2
aIij . (3.298)

10 The normalization of the bulk-to-boundary propagator in (5.52) when ∆ = 1 is C1 = 1/π.
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NON-EXTREMAL SCALAR THREE POINT FUNCTIONS

We will also need other three-point functions for scalars due to chiral primary operators. The
relevant cubic couplings in three dimensions were also computed in [61, 24] and are given by

−n1n5

4π

∫
d3x
√
−G(T123S

1S2Σ3 + U123Σ1Σ2Σ3); (3.299)

≡ −n1n5

16π

∫
d3x
√
−GV123

(
S1S2Σ3√

(k1 + 1)(k2 + 1)
+

(k2
1 + k2

2 + k2
3 − 2)

(k1 + 1)(k2 + 1)

Σ1Σ2Σ3

6
√

(k1 − 1)(k2 − 1)

)
,

V123 =
Σ(Σ + 2)(Σ− 2)α1α2α3a123

(k3 + 1)
√
k1k2k3(k3 − 1)

where ka denotes the dimension of the operator dual to the field Ψa, Σ = k1 + k2 + k3, α1 =
1
2
(k2+k3−k1) etc and a123 is shorthand for the spherical harmonic overlap. It is straightforward

to follow the same steps as before to compute the associated three point functions:

〈OS1(x1)OS2(x2)OΣ3(x3)〉 =
N

4π3

W123T123

|~x1 − ~x2|2α3 |~x1 − ~x3|2α2 |~x2 − ~x3|2α1
; (3.300)

〈OΣ1(x1)OΣ2(x2)OΣ3(x3)〉 =
3N

4π3

W123U123

|~x1 − ~x2|2α3 |~x1 − ~x3|2α2 |~x2 − ~x3|2α1
;

W123 =
Γ(α1)Γ(α2)Γ(α3)Γ( 1

2
(Σ− 2))

Γ(k1 − 1)Γ(k2 − 1)Γ(k3 − 1)
.

We will be interested in the case where (S1, S2,Σ1,Σ2) have dimension k and (S2,Σ2) are
chiral primary with (S1,Σ1) anti-chiral primary. Then charge conservation implies that the
correlators are only non-zero when Σ3 is neutral. In the case where OΣ3 has dimension two
the explicit results for the correlators using the spherical harmonic overlap of (3.243) are

〈(OSp
k
)†(x1)OSp

k
(x2)OΣ2

0
(x3)〉 =

N
√

3

2
√

2π3

k3

|~x1 − ~x2|2(k−1)|~x1 − ~x3|2|~x2 − ~x3|2
; (3.301)

〈(OΣ
p
k
)†(x1)OΣ

p
k
(x2)OΣ2

0
(x3)〉 =

N
√

3

2
√

2π3(k + 2)3

k(k − 1)(k4 − 1)

|~x1 − ~x2|2(k−1)|~x1 − ~x3|2|~x2 − ~x3|2
.

It will be useful to define normalized three point functions as

〈(OSp
k
)†OΣ2

0
(x)OSp

k
〉 ≡

〈(OSp
k
)†(∞)OΣ2

0
(x)OSp

k
(0)〉

〈(OSp
k
)†(∞)OSp

k
(0)〉 =

√
3k3

√
2π(k − 1)2

1

|~x|2 . (3.302)

〈(OΣ
p
k
)†OΣ2

0
(x)OΣ

p
k
〉 ≡

〈(OΣ
p
k
)†(∞)OΣ2

0
(x)OΣ

p
k
(0)〉

〈(OΣ
p
k
)†(∞)OΣ

p
k
(0)〉 ;

=

√
3k(k + 1)(k2 + 1)√

2π(k + 2)2

1

|~x|2 .

(Implicitly we assume here that k 6= 1.) Note that for k � 1 these expressions both tend to the
same limit,

√
3k/
√

2π|~x|2.
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TWO SCALARS AND R SYMMETRY CURRENT

Finally we will need three point functions between two scalars (of the same mass) and the R
symmetry current. The relevant cubic couplings were again given in [24]:

− n1n5

8π

∫
d3x
√
−GA±αµ (SkIDµS

k
J + ΣkIDµΣkJ)E±αIJ , (3.303)

where the triple overlap is defined in (3.230). To compute the corresponding three point
functions one again follows the steps given in [21]. This results in

〈OSk
I

(x1)J±α(x)OSk
J

(x2)〉 = 〈OΣk
I
(x1)J±α(x)OΣk

J
(x2)〉 = ∓i N

8π
E±αIJI∓(x, x1, x2), (3.304)

where the AdS integral

I∓(x, x1, x2) =

∫
d3z

z3
Kk(z, ~x1)DµKk(z, ~x2)Gµ∓(z, ~x) =

(k − 1)2

π2

Z∓
|~x1 − ~x2|2k

, (3.305)

was computed in [69]. In this integral Kk(z, ~x) and Gµ∓(z, ~x) are the standard AdS scalar and
vector bulk to boundary propagators respectively and

Z+ =
1

(w1 − w)
− 1

(w2 − w)
; Z− =

1

(w̄1 − w̄)
− 1

(w̄2 − w̄)
. (3.306)

Here we have implicitly switched to Euclidean signature, t = iτ , and introduced complex
boundary coordinates w = y + iτ .

In deriving this result we use the standard vector propagator, that following from the field
equationDµFµν = 0, although the (linearized) vector equation here is Chern-Simons, Fµν = 0.
Whilst this step should be justified more rigorously, it can be justified a posteriori by the fact
that the three point functions thus obtained are of the standard form for a two dimensional
CFT. To see this, consider the case where the scalar operators are chiral primary. Using the
specific values for the spherical harmonic overlaps (3.244) in (3.304) gives

〈(OSk )†(x1)J+3(w)OSk (x2)〉 =
N

8π3
k(k − 1)2

(
1

(w1 − w)
− 1

(w2 − w)

)
; (3.307)

= 〈(OSk )†(x1)OSk (x2)〉 k
4π

(
1

(w1 − w)
− 1

(w2 − w)

)
,

with the latter being the canonical form for the CFT three point function between the (holo-
morphic) R current and operators charged under it. An analogous formula holds for the anti-
holomorphic current, J−3(w̄) and for the correlators involving scalar operators dual to Σk.
Again it is useful to define normalized three point functions such that

〈(OSk )†J+3(w)OSk 〉 ≡
〈(OSk )†(∞)J+3(w)OSk (0)〉
〈(OSk )†(∞)OSk (0)〉 =

k

4πw
; (3.308)

〈(OΣk )†J+3(w)OΣk 〉 ≡
〈(OΣk )†(∞)J+3(w)OΣk (0)〉
〈(OΣk )†(∞)OΣk (0)〉 =

k

4πw
,
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with analogous formulae holding for the anti-holomorphic currents. The corresponding nor-
malized three point functions for the spectrally flowed operators in the R sector are then

〈(OSk )†RJ
+3(w)(OSk )R〉 ≡

〈(OSk )†R(∞)J+3(w)(OSk )R(0)〉
〈(OSk )†R(∞)(OSk )R(0)〉

=
k −N
4πw

; (3.309)

〈(OΣk )†RJ
+3(w)(OΣk )R〉 ≡

〈(OΣk )†R(∞)J+3(w)(OΣk )R(0)〉
〈(OΣk )†(∞)OΣk (0)〉 =

k −N
4πw

,

where OR denotes the spectral flowed operator. Again corresponding formulae hold for the
anti-holomorphic currents.

(3.A.5) HOLOGRAPHIC 1-POINT FUNCTIONS

In this appendix we derive the 1-point function for the stress energy tensor and the operators
dual to S1

i . We omit the details of this computation since the analysis is very similar to the
Coulomb branch analysis in [17, 18]. The asymptotic analysis of this system is also presented
(in a different coordinate system) in [70] and the form of the counterterm was obtained in
[68].

The relevant action is given in (3.106), retaining only the graviton and scalar fields S1
i , and the

most general asymptotic solution with Dirichlet boundary conditions is given by the expansion
in (3.112) with coefficients given by

Tr g(2) = − 1
2
R− 1

2

(
2(S1

i(0))
2 + (S̃1

i(0))
2
)

Dvg(2)uv = = −Du
(

1
2
R+

1

4

(
(S̃1

(0)i)
2 + 4(S1

i(0))
2 − 2S1

i(0)S̃
1
i(0)

))
− S1

i(0)DuS̃
1
i(0)

h(2)uv = −1

2
S1
i(0)S̃

1
i(0)g(0)uv

h̃(2)uv = −1

4
(S1
i(0))

2g(0)uv (3.310)

The traceless transverse part of g(2) and S̃1
i(0) (as well as the sources g(0)uv and S1

i(0)) are
unconstrained. We will soon see that these coefficients are related to the 1-point functions.

The counterterms needed to render the on-shell action finite are

Sct =
n1n5

4π

∫
z=ε

d2x
√
−γ
(

2− log ε2 1
2
R+ 1

2
(S1
i )2

(
1 +

2

log ε2

))
(3.311)

so the on-shell renormalized action consists of (3.106), the Gibbons-Hawking term and these
counterterms (along with additional counterterms for the gauge fields, discussed in the main
text). The logarithmic terms determine the holographic conformal anomalies [13].



3.A. APPENDIX 91

The renormalized 1-point functions are 11

〈OS1
i
〉 =

n1n5

4π
(2S̃1

i(0)); (3.312)

〈Tuv〉 =
n1n5

2π

(
g(2)uv + 1

2
Rg(0)uv

+
1

4

(
(S̃1
i(0))

2 − 2S̃1
i(0)S

1
i(0) + 4(S1

i(0))
2
)
g(0)uv

)
.

Using the asymptotic solution one may verify that these expressions satisfy the correct Ward
identities

〈Tuu 〉 = = −S1
i(0)〈OS1

i
〉+A (3.313)

Dv〈Tuv〉 = −〈OS1
i
〉DuS1

i(0). (3.314)

The first term on the r.h.s. is the standard term due to the coupling of the source S1
i(0) to an

operator of dimension one. The conformal anomaly A is given by

A =
c

24π
R+

n1n5

2π
(S1
i(0))

2 ; c = 6n1n5 (3.315)

The first term is the standard gravitational conformal anomaly and the second the conformal
anomaly induced by the short distance singularities in the 2-point function of OS1

i
[71].

(3.A.6) THREE POINT FUNCTIONS FROM THE ORBIFOLD CFT

In this appendix we discuss the relationship between three point functions computed in the CFT
on the symmetric product SN (T 4) with those in supergravity. The chiral primary operators are
summarized in (3.153); their detailed construction is not important here, but note that they are
SN invariant and orthonormal. The operators (3.153) manifestly have the correct dimensions
and charges to correspond to the fields S(r)I

k and ΣIk in supergravity. Moreover, as discussed
in section 3.8 the most natural correspondence seems to be that given in (3.156) although this
choice is not unique.

Extremal three point functions of these operators have the following structure as N →∞ [62]〈
O(0,0)†
n+k−1(∞)O(0,0)

k (1)O(0,0)
n (0)

〉
=

1√
N

((n+ k − 1)nk)1/2 ; (3.316)〈
O(i)†
n+k−1(∞)O(0,0)

k (1)O(j)
n (0)

〉
=

1√
N

((n+ k − 1)nk)1/2 δij ;〈
O(2,2)†
n+k−1(∞)O(0,0)

k (1)O(2,2)
n (0)

〉
=

1√
N

((n+ k − 1)nk)1/2 ;〈
O(2,2)†
n+k−3(∞)O(0,0)

k (1)O(0,0)
n (0)

〉
=

2√
N

((n+ k − 3)nk)1/2 ;〈
O(2,2)†
n+k−1(∞)O(i)

k (1)O(j)
n (0)

〉
= − 1√

N
((n+ k − 1)nk)1/2 ωi ∗ ωj ;〈

O(2,2)†
n+k+1(∞)O(2,2)

k (1)O(2,2)
n (0)

〉
= 0.

11In comparing with [68] one should note the factor of 2 difference in the source.
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(Here we use ωiaā as a basis for H(1,1)(T 4)).

The cubic couplings between scalars in supergravity were determined in [61, 24]. From (3.299)
one sees that the couplings ΣΣΣ and ΣSS are generically non-zero whereas the couplings SSS
and SΣΣ are always zero. This implies that the corresponding extremal three point functions
between chiral primaries determined in supergravity have the following structures〈

O†
Σ
p
∆
OΣ

p
∆1
OΣ

p
∆2

〉
6= 0;

〈
O†

Σ
p
∆
OSp

∆1
OSp

∆2

〉
6= 0;

〈
O†
S
p
∆
OΣ

p
∆1
OSp

∆2

〉
6= 0; (3.317)〈

O†
S
p
∆
OSp

∆1
OSp

∆2

〉
= 0;

〈
O†

Σ
p
∆
OΣ

p
∆1
OSp

∆2

〉
= 0;

〈
O†
S
p
∆
OΣ

p
∆1
OΣ

p
∆2

〉
= 0,

where ∆ = ∆1+∆2. Note that such correlators would be determined in supergravity either by a
careful limiting procedure of non-extremal correlators (which uses directly the cubic couplings
mentioned above) or by reducing the six-dimensional action including all boundary terms. In
the latter case given that there are no bulk couplings SSS and SΣΣ it seems that there would
be no boundary couplings between such fields, and hence no non-zero extremal correlators.

The correlators (3.316) and (3.317) clearly disagree if one makes the identification proposed
in (3.156). Given that this identification was not unique, one might wonder whether there is
a different linear map between supergravity and orbifold CFT operators such that the correla-
tors agree. Whilst we have not proved in full generality that this is impossible, the following
argument suggests that it is unlikely. Let Oa1 = (O(0,0)

2 ,O(i=1)
1 ) denote two of the dimension

one CFT operators and Oα2 = (O(0,0)
3 ,O(i=1)

2 ,O(2,2)
1 ) denote three of the dimension two CFT

operators. Let Ôa1 = OSa1 denote two dimension one operators dual to sugra scalar fields and
Ôα2 = (OSa2 ,OΣ2) denote three of the dimension two operators dual to sugra fields. Next write
the fusion coefficients in the corresponding extremal three point functions in the orbifold CFT
and supergravity as Cαab and Ĉαab respectively. Since these are symmetric on the last two
indices, rewrite them as (square) matrices Dαβ and D̂αβ . Now the key point is that (3.316)
and (3.317) imply that Dαβ has non-zero determinant, but D̂αβ has zero determinant. Any
linear maps between Oa1 and Ôa1 , and between Oα2 and Ôα2 which preserve the two point func-
tions will not map Dαβ to a zero determinant matrix and therefore one cannot get agreement
between (3.316) and (3.317) by making a different identification between operators.

Addendum: This issue was later resolved in [72] after agreement between three-point functions
of chiral primaries in orbifold CFT and string theory on AdS3×S3×T 4 had been shown in [73].
In general, there is a non-linear map between single particle string and orbifold CFT operators
on one side and single particle supergravity operators on the other side. When calculating
non-extremal three-point functions, the non-linear terms are suppressed in the large N limit
and it is possible to find a non-diagonal matrix which maps the operators (OS∆,OΣ

∆) to the CFT
operators (O(0,0)

∆+1 ,O
(2,2)
∆−1). For extremal three-point functions however the non-linear terms in

the operator map are not suppressed. In converse, extremal three-point functions can be used
to fix these terms. Furthermore, a non-renormalization theorem for three-point functions of
chiral primaries for AdS3/CFT2 has been proven in [74].



CHAPTER 4

FUZZBALLS WITH INTERNAL

EXCITATIONS

(4.1) INTRODUCTION

In this chapter we construct and analyze the most general 2-charge D1-D5 fuzzball geometries
which involve internal excitations. In the original work of [27], only a subset of the 2-charge
fuzzball geometries were constructed using dualities from F1-P solutions. Recall that the D1-
D5 system on T 4 is related by dualities to the type II F1-P system, also on T 4, whilst the
D1-D5 system on K3 is related to the heterotic F1-P system on T 4; the exact duality chains
needed will be reviewed in sections 4.2 and 4.3. Now the solution for a fundamental string
carrying momentum in type II is characterized by 12 arbitrary curves, eight associated with
transverse bosonic excitations and four associated with the bosonization of eight fermionic
excitations on the string [39]. The corresponding heterotic string solution is characterized by
24 arbitrary curves, eight associated with transverse bosonic excitations and 16 associated with
charge waves on the string.

In the work of [27], the duality chain was carried out for type II F1-P solutions on T 4 for
which only bosonic excitations in the transverse R4 are excited. That is, the solutions are
characterized by only four arbitrary curves; in the dual D1-D5 solutions these four curves
characterize the blow-up of the branes, which in the naive solutions are sitting in the origin
of the transverse R4, into a supertube. In this chapter we carry out the dualities for generic
F1-P solutions in both the T 4 and K3 cases, to obtain generic 2-charge fuzzball solutions with
internal excitations. Note that partial results for the T 4 case were previously given in the
appendix of [40]; we will comment on the relation between our solutions and theirs in section
4.2. The general solutions are then characterized by arbitrary curves capturing excitations
along the compact manifold M4, along with the four curves describing the blow-up in R4.

93
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They describe a bound state of D1 and D5-branes, wrapped on the compact manifold M4,
blown up into a rotating supertube in R4 and with excitations along the part of the D5-branes
wrapping the M4.

The duality chain that uses string-string duality from heterotic on T 4 to type II on K3 provides
a route for obtaining fuzzball solutions that has not been fully explored. One of the results in
this chapter is to make explicit all steps in this duality route. In particular, we work out the
reduction of type IIB on K3 and show how S-duality acts in six dimensions. These results may
be useful in obtaining fuzzball solution with more charges.

In chapter 3, we made a precise proposal for the relationship between the 2-charge fuzzball
geometries characterized by four curves F i(v) and superpositions of R ground states: a given ge-
ometry characterized by F i(v) is dual to a specific superposition of R vacua with the superposition
determined by the Fourier coefficients of the curves F i(v). In particular, note that only geometries
associated with circular curves are dual to a single R ground state (in the usual basis, where
the states are eigenstates of the R-charge). This proposal has a straightforward extension to
generic 2-charge geometries, which we will spell out in section 4.6, and the extended proposal
passes all kinematical and accessible dynamical tests, just as in chapter 3.

In particular, we extract one point functions for chiral primaries from the asymptotically AdS
region of the fuzzball solutions. We find that chiral primaries associated with the middle coho-
mology of M4 acquire vevs when there are both internal and transverse excitations; these vevs
hence characterize the internal excitations. Moreover, there are selection rules for these vevs,
in that the internal and transverse curves must have common frequencies.

These properties of the holographic vevs follow directly from the proposed dual superpositions
of ground states. The vevs in these ground states can be derived from three point functions
between chiral primaries at the conformal point. Selection rules for the latter, namely charge
conservation and conservation of the number of operators associated with each middle coho-
mology cycle, lead to precisely the features of the vevs found holographically.

To test the actual values of the kinematically allowed vevs would require information about the
three point functions of all chiral primaries which is not currently known and is inaccessible in
supergravity. However, as in chapter 3, these vevs are reproduced surprisingly well by simple
approximations for the three point functions, which follow from treating the operators as har-
monic oscillators. This suggests that the structure of the chiral ring may simplify considerably
in the large N limit, and it would be interesting to explore this question further.

An interesting feature of the solutions is that they collapse to the naive geometry when there are
internal but no transverse excitations. One can understand this as follows. Geometries with
only internal excitations are dual to superpositions of R ground states built from operators
associated with the middle cohomology of M4. Such operators account for a finite fraction of
the entropy, but have zero R charges with respect to the SO(4) R symmetry group. This means
that they can only be characterized by the vevs of SO(4) singlet operators but the only such
operators visible in supergravity are kinematically prevented from acquiring vevs. Thus it is
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consistent that in supergravity one could not distinguish between such solutions: one would
need to go beyond supergravity to resolve them (by, for instance, considering vevs of singlet
operators dual to string states).

This brings us to a recurring question in the fuzzball program: can it be implemented con-
sistently within supergravity? As already mentioned, rigorously testing the proposed corre-
spondence between geometries and superpositions of microstates requires information beyond
supergravity. Furthermore, the geometric duals of superpositions with very small or zero R
charges are not well-described in supergravity. Even if one has geometries which are smooth
supergravity geometries, these may not be distinguishable from each other within supergrav-
ity: for example, their vevs may differ only by terms of order 1/N , which cannot be reliably
computed in supergravity.

The question of whether the fuzzball program can be implemented in supergravity could first
be phrased in the following way. Can one find a complete basis of fuzzball geometries, each of
which is well-described everywhere by supergravity, which are distinguishable from each other
within supergravity and which together span the black hole microstates? On general grounds
one would expect this not to be possible since many of the microstates carry small quantum
numbers. We quantify this discussion in the last section of this chapter in the context of both
2-charge and 3-charge systems.

To make progress within supergravity, however, it would suffice to sample the black hole mi-
crostates in a controlled way. I.e. one could try to find a basis of geometries which are well-
described and distinguishable in supergravity and which span the black hole microstates but for
which each basis element is assigned a measure. In this approach, one would deal with the fact
that many geometries are too similar to be distinguished in supergravity by picking represen-
tative geometries with appropriate measures. In constructing such a representative basis, the
detailed matching between geometries and black hole microstates would be crucial, to correctly
assign measures and to show that the basis indeed spans all the black hole microstates.

The plan of this chapter is as follows. In section 4.2 we determine the fuzzball geometries
for D1-D5 on T 4 from dualizing type II F1-P solutions whilst in section 4.3 we obtain fuzzball
geometries for D1-D5 on K3 from dualizing heterotic F1-P solutions. The resulting solutions
are of the same form and are summarized in section 4.4; readers interested only in the solutions
may skip sections 2 and 3. In section 4.5 we extract from the asymptotically AdS regions the
dual field theory data, one point functions for chiral primaries. In section 4.6 we discuss the
correspondence between geometries and R vacua, extending the proposal of chapter 3 and
using the holographic vevs to test this proposal. In section 4.7 we discuss more generally the
implications of our results for the fuzzball proposal. Finally there are a number of appendices.
In appendix A we state our conventions for the field equations and duality rules, in appendix
B we discuss in detail the reduction of type IIB on K3 and appendix C summarizes relevant
properties of spherical harmonics. In appendix D we discuss fundamental string solutions with
winding along the torus, and the corresponding duals in the D1-D5 system. In appendix E we
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derive the density of ground states with fixed R charges.

(4.2) FUZZBALL SOLUTIONS ON T 4

In this section we will obtain general 2-charge solutions for the D1-D5 system on T 4 from type
II F1-P solutions.

(4.2.1) CHIRAL NULL MODELS

Let us begin with a general chiral null model of ten-dimensional supergravity, written in the
form

ds2 = H−1(x, v)dv(−du+K(x, v)dv + 2AI(x, v)dxI) + dxIdxI ; (4.1)

e−2Φ = H(x, v); B(2)
uv = 1

2
(H(x, v)−1 − 1); B

(2)
vI = H(x, v)−1AI(x, v).

The conventions for the supergravity field equations are given in the appendix 4.A.1. The above
is a solution of the equations of motion provided that the defining functions are harmonic in
the transverse directions, labeled by xI :

�H(x, v) = �K(x, v) = �AI(x, v) = (∂IA
I(x, v)− ∂vH(x, v)) = 0. (4.2)

Solutions of these equations appropriate for describing solitonic fundamental strings carrying
momentum were given in [33, 34]:

H = 1 +
Q

|x− F (v)|6 , AI = − QḞI(v)

|x− F (v)|6 , K =
Q2Ḟ (v)2

Q|x− F (v)|6 , (4.3)

where F I(v) is an arbitrary null curve describing the transverse location of the string, and
Ḟ I denotes ∂vF I(v). More general solutions appropriate for describing solitonic strings with
fermionic condensates were discussed in [39]. Here we will dualise without using the explicit
forms of the functions, thus the resulting dual supergravity solutions are applicable for all
choices of harmonic functions.

The F1-P solutions described by such chiral null models can be dualised to give corresponding
solutions for the D1-D5 system as follows. Compactify four of the transverse directions on
a torus, such that xi with i = 1, · · · , 4 are coordinates on R4 and xρ with ρ = 5, · · · , 8 are
coordinates on T 4. Then let v = (t − y) and u = (t + y) with the coordinate y being periodic
with length Ly ≡ 2πRy, and smear all harmonic functions over both this circle and over the
T 4, so that they satisfy

�R4H(x) = �R4K(x) = �R4AI(x) = 0, ∂iA
i = 0. (4.4)
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Thus the harmonic functions appropriate for describing strings with only bosonic condensates
are

H = 1 +
Q

Ly

∫ Ly

0

dv

|x− F (v)|2 ; Ai = − Q

Ly

∫ Ly

0

dvḞi(v)

|x− F (v)|2 ; (4.5)

Aρ = − Q

Ly

∫ Ly

0

dvḞρ(v)

|x− F (v)|2 ; K =
Q

Ly

∫ Ly

0

dv(Ḟi(v)2 + Ḟρ(v)2)

|x− F (v)|2 .

Here |x−F (v)|2 denotes
∑

i(xi −Fi(v))2. Note that neither Ḟi(v) nor Ḟρ(v) have zero modes;
the asymptotic expansions of AI at large |x| therefore begin at order 1/|x|3. Closure of the
curve in R4 automatically implies that Ḟi(v) has no zero modes. The question of whether Ḟρ(v)

has zero modes is more subtle: since the torus coordinate xρ is periodic, the curve Fρ(v) could
have winding modes. As we will discuss in appendix 4.A.4, however, such winding modes are
possible only when the worldsheet theory is deformed by constant B fields. The corresponding
supergravity solutions, and those obtained from them by dualities, should thus not be included
in describing BPS states in the original 2-charge systems.

The appropriate chain of dualities to the D1−D5 system is(
Py

F1y

)
S→

(
Py

D1y

)
T5678→

(
Py

D5y5678

)
S→

(
Py

NS5y5678

)
Ty→

(
F1y

NS5y5678

)
, (4.6)

to map to the type IIA NS5-F1 system. The subsequent dualities(
F1y

NS5y5678

)
T8→

(
F1y

NS5y5678

)
S→

(
D1y

D5y5678

)
(4.7)

result in a D1-D5 system. Here the subscripts ofDpa1···ap denote the spatial directions wrapped
by the brane. In carrying out these dualities we use the rules reviewed in appendix 4.A.1. We
will give details of the intermediate solution in the type IIA NS5-F1 system since it differs from
that obtained in [40].

(4.2.2) THE IIA F1-NS5 SYSTEM

By dualizing the chiral null model from the F1-P system in IIB to F1-NS5 in IIA one obtains the
solution

ds2 = K̃−1[−(dt−Aidxi)2 + (dy −Bidxi)2] +Hdxidx
i + dxρdx

ρ

e2Φ = K̃−1H, B
(2)
ty = K̃−1 − 1, (4.8)

B
(2)
µ̄i = K̃−1Bµ̄i , B

(2)
ij = −cij + 2K̃−1A[iBj]

C(1)
ρ = H−1Aρ, C

(3)
tyρ = (HK̃)−1Aρ, C

(3)
µ̄iρ = (HK̃)−1Bµ̄i Aρ,

C
(3)
ijρ = (λρ)ij + 2(HK̃)−1AρA[iBj], C(3)

ρστ = ερστπH
−1Aπ,

where

K̃ = 1 +K −H−1AρAρ, dc = − ∗4 dH, dB = − ∗4 dA, (4.9)

dλρ = ∗4dAρ, Bµ̄i = (−Bi, Ai),
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with µ̄ = (t, y). Here the transverse and torus directions are denoted by (i, j) and (ρ, σ)

respectively and ∗4 denotes the Hodge dual in the flat metric on R4, with ερστπ denoting the
Hodge dual in flat T 4 metric. The defining functions satisfy the equations given in (4.4).

The RR field strengths corresponding to the above potentials are

F
(2)
iρ = ∂i(H

−1Aρ), F
(4)
tyiρ = K̃−1∂i(H

−1Aρ),

F
(4)
µ̄ijρ = 2K̃−1Bµ̄[i∂j](H

−1Aρ), F
(4)
iρστ = ερστπ∂i(H

−1Aπ), (4.10)

F
(4)
ijkρ = K̃−1

(
6A[iBj∂k](H

−1Aρ) +Hεijkl∂
l(H−1Aρ)

)
.

Thus the solution describes NS5-branes wrapping the y circle and the T 4, bound to fundamental
strings delocalized on the T 4 and wrapping the y circle, with additional excitations on the T 4.
These excitations break the T 4 symmetry by singling out a direction within the torus, and
source multipole moments of the RR fluxes; the solution however has no net D-brane charges.

Now let us briefly comment on the relation between this solution and that presented in ap-
pendix B of [40]1. The NS-NS sector fields agree, but the RR fields are different; in [40] they
are given as 1, 3 and 5-form potentials. The relation of these potentials to field strengths (and
the corresponding field equations) is not given in [40]. As reviewed in appendix 4.A.1, in the
presence of both electric and magnetic sources it is rather natural to use the so-called demo-
cratic formalisms of supergravity [75], in which one includes p-form field strengths with p > 5

along with constraints relating higher and lower form field strengths. Any solution written in
the democratic formalism can be rewritten in terms of the standard formalism, appropriately
eliminating the higher form field strengths. If one interprets the RR forms of [40] in this way,
one does not however obtain a supergravity solution in the democratic formalism; the Hodge
duality constraints between higher and lower form field strengths are not satisfied. Further-
more, one would not obtain from the RR fields of [40] the solution written here in the standard
formalism, after eliminating the higher forms.

(4.2.3) DUALIZING FURTHER TO THE D1-D5 SYSTEM

The final steps in the duality chain are T-duality along a torus direction, followed by S-duality.
When T-dualizing further along a torus direction to a F1-NS5 solution in IIB, the excitations
along the torus mean that the dual solution depends explicitly on the chosen T-duality cycle in
the torus. We will discuss the physical interpretation of the distinguished direction in section
4.4. In the following the T-duality is taken along the x8 direction, resulting in the following
D1-D5 system:

ds2 =
f

1/2
1

f
1/2
5 f̃1

[−(dt−Aidxi)2 + (dy −Bidxi)2] + f
1/2
1 f

1/2
5 dxidx

i + f
1/2
1 f

−1/2
5 dxρdx

ρ

e2Φ =
f2

1

f5f̃1

, B
(2)
ty =

A
f5f̃1

, B
(2)
µ̄i =

ABµ̄i
f5f̃1

, (4.11)

1We thank Samir Mathur for discussions on this issue.
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B
(2)
ij = λij +

2AA[iBj]

f5f̃1

, B
(2)
αβ = −εαβγf−1

5 A
γ , B

(2)
α8 = f−1

5 Aα,

C(0) = −f−1
1 A, C

(2)
ty = 1− f̃−1

1 , C
(2)
µ̄i = −f̃−1

1 B
µ̄
i ,

C
(2)
ij = cij − 2f̃−1

1 A[iBj], C
(4)
tyij = λij +

A
f5f̃1

(cij + 2A[iBj]),

C
(4)
µ̄ijk =

3A
f5f̃1

Bµ̄[icjk], C
(4)
tyαβ = −εαβγf−1

5 A
γ , C

(4)
tyα8 = f−1

5 Aα,

C
(4)
αβγ8 = εαβγf

−1
5 A, C

(4)
ijα8 = (λα)ij + f−1

5 Aαcij , C
(4)
ijαβ = −εαβγ(λγij + f−1

5 A
γcij),

where

f5 ≡ H, f̃1 = 1 +K −H−1(AαAα + (A)2), f1 = f̃1 +H−1(A)2,

dc = − ∗4 dH, dB = − ∗4 dA, Bµ̄i = (−Bi, Ai), (4.12)

dλα = ∗4dAα, dλ = ∗4dA.

Here µ̄ = (t, y) and we denote A8 as A with the remaining Aρ being denoted by Aα where
the index α runs over only 5, 6, 7. The Hodge dual over these coordinates is denoted by εαβγ .
Explicit expressions for these defining harmonic functions in terms of variables of the D1-D5
system will be given in section 4.4.

The forms with components along the torus directions can be written more compactly as fol-
lows. Introduce a basis of self-dual and anti-self dual 2-forms on the torus such that

ωα± =
1√
2

(dx4+α± ∧ dx8 ± ∗T4(dx4+α± ∧ dx8)), (4.13)

with α± = 1, 2, 3. These forms are normalized such that∫
T4

ωα± ∧ ωβ± = ±(2π)4V δα±β± , (4.14)

where (2π)4V is the volume of the torus. Then the potentials wrapping the torus directions can
be expressed as

B(2)
ρσ = C

(4)
tyρσ =

√
2f−1

5 A
α−ω

α−
ρσ , (4.15)

C
(4)
ijρσ =

√
2
(
(λij)

α− + f−1
5 A

α−cij
)
ω
α−
ρσ ,

C(4)
ρστπ = ερστπf

−1
5 A,

with ερστπ being the Hodge dual in the flat metric on T 4. Note that these fields are ex-
panded only in the anti-self dual two-forms, with neither the self dual two-forms nor the
odd-dimensional forms on the torus being switched on anywhere in the solution. As we will
discuss later, this means the corresponding six-dimensional solution can be described in chiral
N = 4b six-dimensional supergravity. The components of forms associated with the odd coho-
mology of T 4 reduce to gauge fields in six dimensions which are contained in the full N = 8

six-dimensional supergravity, but not its truncation to N = 4b.
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(4.3) FUZZBALL SOLUTIONS ON K3

In this section we will obtain general 2-charge solutions for the D1-D5 system on K3 from F1-P
solutions of the heterotic string.

(4.3.1) HETEROTIC CHIRAL MODEL IN 10 DIMENSIONS

The chiral model for the charged heterotic F1-P system in 10 dimensions is:

ds2 = H−1(−dudv + (K − 2α′H−1N (c)N (c))dv2 + 2AIdx
Idv) + dxIdx

I

B̂(2)
uv =

1

2
(H−1 − 1), B̂

(2)
vI = H−1AI , (4.16)

Φ̂ = −1

2
lnH, V̂ (c)

v = H−1N (c),

where I = 1, · · · , 8 labels the transverse directions and V̂
(c)
m are Abelian gauge fields, with

((c) = 1, · · · , 16) labeling the elements of the Cartan of the gauge group. The fields are denoted
with hats to distinguish them from the six-dimensional fields used in the next subsection. The
equations of motion for the heterotic string are given in appendix 4.A.1; here again the defining
functions satisfy

�H(x, v) = �K(x, v) = �AI(x, v) = (∂IA
I(x, v)− ∂vH(x, v)) = �N (c) = 0. (4.17)

For the solution to correspond to a solitonic charged heterotic string, one takes the following
solutions

H = 1 +
Q

|x− F (v)|6 , AI = − QḞI(v)

|x− F (v)|6 , N (c) =
q(c)(v)

|x− F (v)|6 ,

K =
Q2Ḟ (v)2 + 2α′q(c)q(c)(v)

Q|x− F (v)|6 , (4.18)

where F I(v) is an arbitrary null curve in R8; q(c)(v) is an arbitrary charge wave and ḞI(v)

denotes ∂vFI(v). Such solutions were first discussed in [33, 34], although the above has a more
generic charge wave, lying in U(1)16 rather than U(1). In what follows it will be convenient to
set α′ = 1

4
.

These solutions can be related by a duality chain to fuzzball solutions in the D1-D5 system
compactified on K3. The chain of dualities is the following:(

Py

F1y

)
Het,T4

→

(
Py

NS5ty,K3

)
IIA

Ty→

(
F1y

NS5ty,K3

)
IIB

S→

(
D1y

D5ty,K3

)
IIB

(4.19)

The first step in the duality is string-string duality between the heterotic theory on T 4 and type
IIA onK3. Again the subscripts ofDpa1···ap denote the spatial directions wrapped by the brane.
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To use this chain of dualities on the charged solitonic strings given above, the solutions must
be smeared over the T 4 and over v, so that the harmonic functions satisfy

�R4H = �R4K = �R4AI = �R4N (c) = ∂iA
i = 0 (4.20)

where i = 1, · · · , 4 labels the transverse R4 directions. Note that although the chain of dualities
is shorter than in the previous case there are various subtleties associated with it, related to the
K3 compactification, which will be discussed below.

(4.3.2) COMPACTIFICATION ON T 4

Compactification of the heterotic theory on T 4 is straightforward, see [76, 77] and the review
[78]. The 10-dimensional metric is reduced as

Ĝmn =

(
gMN +GρσV

(1) ρ
M V

(1)σ
N V

(1) ρ
M Gρσ

V
(1)σ
N Gρσ Gρσ

)
, (4.21)

where V (1) ρ
M with ρ = 1, · · · 4, are KK gauge fields. (Recall that the ten-dimensional quantities

are denoted with hats to distinguish them from six-dimensional quantities.) The reduced theory
contains the following bosonic fields: the graviton gMN , the six-dimensional dilaton Φ6, 24
Abelian gauge fields V (a)

M ≡ (V
(1) ρ
M , V

(2)
M ρ, V

(3) (c)
M ), a two form BMN and an O(4, 20) matrix of

scalars M . Note that the index (a), (b) for the SO(4, 20) vector runs from (1, · · · , 24). These
six-dimensional fields are related to the ten-dimensional fields as

Φ6 = Φ̂− 1

2
ln detGρσ;

V
(2)
M ρ = B̂

(2)
Mρ + B̂(2)

ρσ V
(1)σ
M +

1

2
V̂ (c)
ρ V

(3) (c)
M ; (4.22)

V
(3) (c)
M = V̂

(c)
M − V̂ (c)

ρ V
(1) ρ
M ;

HMNP = 3(∂[M B̂
(2)

NP ] −
1

2
V

(a)

[M L(a)(b)F (V )
(b)

NP ]),

with the metric gMN and V (1) ρ
M defined in (4.21). The matrix L is given by

L =

(
I4 0

0 −I20

)
, (4.23)

where In denotes the n× n identity matrix. The scalar moduli are defined via

M = ΩT1

 G−1 −G−1C −G−1V T

−CTG−1 G+ CTG−1C + V TV CTG−1V T + V T

−V G−1 V G−1C + V I16 + V G−1V T

Ω1, (4.24)

where G ≡ [Ĝρσ], C ≡ [ 1
2
V̂

(c)
ρ V̂

(c)
σ + B̂

(2)
ρσ ] and V ≡ [V̂

(c)
ρ ] are defined in terms of the compo-

nents of the 10-dimensional fields along the torus. The constant O(4, 20) matrix Ω1 is given
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by

Ω1 =
1√
2

 I4 I4 0

−I4 I4 0

0 0
√

2I16

 . (4.25)

This matrix arises in (4.24) as follows. In [76, 78] the matrix L was chosen to be off-diagonal,
but for our purposes it is useful for L to be diagonal. An off-diagonal choice is associated with
an off-diagonal intersection matrix for the self-dual and anti-self-dual forms of K3, but this
is an unnatural choice for our solutions, in which only anti-self-dual forms are active. Thus
relative to the conventions of [76, 78] we take L→ ΩT1 LΩ1, which induces M → ΩT1 MΩ1 and
F → ΩT1 F . The definitions of this and other constant matrices used throughout the chapter are
summarized in appendix 4.A.2.

These fields satisfy the equations of motion following from the action

S =
1

2κ2
6

∫
d6x
√
−ge−2Φ6 [R+ 4(∂Φ6)2 − 1

12
H2

3 −
1

4
F (V )

(a)
MN (LML)(a)(b)F (V )(b)MN

+
1

8
tr(∂MML∂MML)], (4.26)

where α′ has been set to 1/4 and κ2
6 = κ2

10/V4 with V4 the volume of the torus.

The reduction of the heterotic solution to six dimensions is then

ds2 = H−1
[
−dudv +

(
K −H−1( 1

2
(N (c))2 + (Aρ)

2)
)
dv2 + 2Aidx

idv
]

+ dxidx
i,

Buv = 1
2
(H−1 − 1), Bvi = H−1Ai, Φ6 = − 1

2
lnH (4.27)

V (a)
v =

(
04,
√

2H−1Aρ, H
−1N (c)

)
, M = I24,

where i = 1, · · · , 4 runs over the transverse R4 directions and ρ = 5, · · · , 8 runs over the
internal directions of the T 4. Thus the six-dimensional solution has only one non-trivial scalar
field, the dilaton, with all other scalar fields being constant.

(4.3.3) STRING-STRING DUALITY TO P-NS5 (IIA) ON K3

Given the six-dimensional heterotic solution, the corresponding IIA solution in six dimensions
can be obtained as follows. Compactification of type IIA on K3 leads to the following six-
dimensional theory [79]:

S′ =
1

2κ2
6

∫
d6x
√
−g′

(
e−2Φ′6 [R′ + 4(∂Φ′6)2 − 1

12
H ′3

2
+

1

8
tr(∂MM

′L∂MM ′L)] (4.28)

−1

4
F ′(V )

(a)

MN (LM ′L)(a)(b)F
′(V )

(b)MN

)
− 2

∫
B′2 ∧ F ′2(V )(a) ∧ F ′2(V )(b)L(a)(b).

The field content is the same as for the heterotic theory in (4.26); note that in contrast to
(4.22) there is no Chern-Simons term in the definition of the 3-form field strength, that is,
H ′MNP = 3∂[MB

′
NP ].
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The rules for string-string duality are [79]:

Φ′6 = −Φ6, g′MN = e−2Φ6gMN , M ′ = M, V
′(a)
M = V

(a)
M ,

H ′3 = e−2Φ6 ∗6 H3; (4.29)

these transform the equations of motion derived from (4.26) into ones derived from the action
(4.28).

Acting with this string-string duality on the heterotic solutions (4.27) yields, dropping the
primes on IIA fields:

ds2 = −dudv + (K −H−1((N (c))2/2 + (Aρ)
2))dv2 + 2Aidx

idv +Hdxidx
i,

Hvij = −εijkl∂kAl, Hijk = εijkl∂
lH, Φ6 =

1

2
lnH, (4.30)

V (a)
v =

(
04,
√

2H−1Aρ, H
−1N (c)

)
, M = I24,

with εijkl denoting the dual in the flat R4 metric. This describes NS5-branes on type IIA,
wrapped on K3 and on the circle direction y, carrying momentum along the circle direction.

(4.3.4) T-DUALITY TO F1-NS5 (IIB) ON K3

The next step in the duality chain is T-duality on the circle direction y to give an NS5-F1 solution
of type IIB on K3. It is most convenient to carry out this step directly in six dimensions, using
the results of [80] on T-duality of type II theories on K3× S1.

Recall that type IIB compactified on K3 gives d = 6, N = 4b supergravity coupled to 21 tensor
multiplets, constructed by Romans in [54]. The bosonic field content of this theory is the
graviton gMN , 5 self-dual and 21 anti-self dual tensor fields and an O(5,21) matrix of scalars
M which can be written in terms of a vielbein M−1 = V TV . Following the notation of [55]
the bosonic field equations may be written as

RMN = 2PnrM PnrN +Hn
MPQH

n
N
PQ +Hr

MPQH
r
N
PQ,

∇MPnrM = QMnmPmrM +QMrsPnsM +

√
2

3
HnMNPHr

MNP , (4.31)

along with Hodge duality conditions on the 3-forms

∗6 Hn
3 = Hn

3 , ∗6Hr
3 = −Hr

3 , (4.32)

In these equations (m,n) are SO(5) vector indices running from 1 to 5 whilst (r, s) are SO(21)

vector indices running from 6 to 26. The 3-form field strengths are given by

Hn = GAV nA ; Hr = GAV rA, (4.33)

where A ≡ {n, r} = 1, · · · , 26; GA = dbA are closed and the vielbein on the coset space
SO(5, 21)/(SO(5)× SO(21)) satisfies

V T ηV = η, V =

(
V nA

V rA

)
, η =

(
I5 0

0 −I21

)
. (4.34)
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The associated connection is

dV V −1 =

(
Qmn

√
2Pms√

2P rn Qrs

)
, (4.35)

where Qmn and Qrs are antisymmetric and the off-diagonal block matrices Pms and P rn are
transposed to each other. Note also that there is a freedom in choosing the vielbein; SO(5) ×
SO(21) transformations acting on H3 and V as

V → OV, H3 → OH3, (4.36)

leave G3 andM−1 unchanged. Note that the field equations (4.31) can also be derived from
the SO(5, 21) invariant Einstein frame pseudo-action [81]

S =
1

2κ2
6

∫
d6x
√
−g
(
R+

1

8
tr(∂M−1∂M)− 1

3
GAMNPM−1

ABG
BMNP

)
, (4.37)

with the Hodge duality conditions (4.32) being imposed independently.

Now let us consider the T-duality relating a six-dimensional IIB solution to a six-dimensional IIA
solution of (4.28); the corresponding rules were derived in [80]. Given that the six-dimensional
IIA supergravity has only an SO(4, 20) symmetry, relating IIB to IIA requires explicitly breaking
the SO(5, 21) symmetry of the IIB action down to SO(4, 20). That is, one defines a conformal
frame in which only an SO(4, 20) subgroup is manifest and in which the action reads

S =
1

2κ2
6

∫
d6x
√
−g
{
e−2Φ

(
R+ 4(∂Φ)2 +

1

8
tr(∂M−1∂M)

)
+

1

2
∂l(a)M−1

(a)(b)∂l
(b)

−1

3
GAMNPM−1

ABG
BMNP

}
. (4.38)

The SO(5, 21) matrix M−1 has now been split up into the dilaton Φ, an SO(4, 20) vector l(a)

and an SO(4, 20) matrix M−1
(a)(b), and we have chosen the parametrization

M−1
AB = ΩT3

 e−2Φ + lTM−1l + 1
4
e2Φl4 − 1

2
e2Φl2 (lTM−1)(b) + 1

2
e2Φl2(lTL)(b)

− 1
2
e2Φl2 e2Φ −e2Φ(lTL)(b)

(M−1l)(a) + 1
2
e2Φl2(Ll)(a) −e2Φ(Ll)(a) M−1

(a)(b) + e2Φ(Ll)(a)(l
TL)(b)

Ω3,

(4.39)
where l2 = l(a)l(b)L(a)(b), L(a)(b) was defined in (4.23) and Ω3 is a constant matrix defined in
appendix 4.A.2.

The fields Φ, l(a) and M−1 and half of the 3-forms can now be related to the IIA fields of section
4.3.3 by the following T-duality rules (given in terms of the 2-form potentials bA) [80]:

g̃yy = g−1
yy , b̃1yM + b̃26

yM = 1
2
g−1
yy gyM , (4.40)

g̃yM = g−1
yy ByM , b̃1MN + b̃26

MN = 1
2
g−1
yy (BMN + 2(gy[MBN ]y)),

g̃MN = gMN − g−1
yy (gyMgyN −ByMByN ), l̃(a) = V (a)

y ,

Φ̃ = Φ− 1

2
log |gyy|, M̃−1

(a)(b) = M−1
(a)(b),

b̃
(a)+1
yM =

1√
8

(V
(a)
M − g−1

yy V
(a)
y gyM ), (1 ≤ (a) ≤ 24),
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Here y is the T-duality circle, the six-dimensional index M excludes y and IIB fields are de-
noted by tildes to distinguish them from IIA fields. The other half of the tensor fields, that is(

(b̃1yM − b̃26
yM ), (b̃1MN − b̃26

MN ), b̃
(a)+1
MN , b̃

(a)+1
MN

)
, can then be determined using the Hodge duality

constraints (4.32).

We now have all the ingredients to obtain the T-dual of the IIA solution (4.30) along y ≡
1
2
(u − v). The IIA solution is expressed in terms of harmonic functions which also depend on

the null coordinate v, and thus one needs to smear the solutions before dualizing. Note that
it is the harmonic functions (H,K,AI , N (c)) which must be smeared over v, rather than the
six-dimensional fields given in (4.30), since it is the former that satisfy linear equations and
can therefore be superimposed.

The Einstein frame metric and three forms are given by

ds2 =
1√
HK̃

[−(dt−Aidxi)2 + (dy −Bidxi)2)] +
√
HK̃dxidx

i,

GAtyi = ∂i

(
nA

HK̃

)
, GAµ̄ij = −2∂[i

(
nA

HK̃
Bµ̄j]

)
, (4.41)

GAijk = εijkl∂
lnA + 6∂[i

(
nA

HK̃
AjBk]

)
,

where

nm =
1

4
(H +K + 1, 04) , nr =

1

4

(
−2Aρ,−

√
2N (c), H −K − 1

)
, (4.42)

K̃ = 1 +K −H−1( 1
2
(N (c))2 + (Aρ)

2), dB = − ∗4 dA, Bµi = (−Bi, Ai).

Recall that n = 1, · · · , 5 and r = 6, · · · , 26 and ∗4 denotes the dual on flat R4; µ̄ = (t, y). The
SO(4, 20) scalars are given by

Φ =
1

2
ln
H

K̃
, l(a) =

(
04,
√

2H−1Aρ, H
−1N (c)

)
, M = I24. (4.43)

The SO(5, 21) scalar matrix M−1 = V TV in (4.39) can then conveniently be expressed in
terms of the vielbein

V = ΩT3


√
H−1K̃ 0 0

−(
√
H3K̃)−1(A2

ρ + 1
2
(N (c))2)

√
HK̃−1 −

√
HK̃−1l(b)

l(a) 0 I24

Ω3. (4.44)

(4.3.5) S-DUALITY TO D1-D5 ON K3

One further step in the duality chain is required to obtain the D1-D5 solution in type IIB, namely
S duality. However, in the previous section the type II solutions have been given in six rather
than ten dimensions. To carry out S duality one needs to specify the relationship between six
and ten dimensional fields. Whilst the ten-dimensional SL(2, R) symmetry is part of the six-
dimensional symmetry group, its embedding into the full six-dimensional symmetry group is
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only defined once one specifies the uplift to ten dimensions. The details of the dimensional
reduction are given in appendix 4.A.2, with the six-dimensional S duality rules being given in
(4.157); the S duality leaves the Einstein frame metric invariant, and acts as a constant rotation
and similarity transformation on the three forms GA and the matrix of scalarsM respectively.
The S-dual solution is thus

ds2 =
1√
f5f̃1

[−(dt−Aidxi)2 + (dy −Bidxi)2)] +

√
f5f̃1dxidx

i, (4.45)

GAtyi = ∂i

(
mA

f5f̃1

)
, GAµ̄ij = −2∂[i

(
mA

f5f̃1

Bµ̄j]

)
,

GAijk = εijkl∂
lmA + 6∂[i

(
mA

f5f̃1

AjBk]

)
,

with

mn =
(
04,

1
4
(f5 + F1)

)
, (4.46)

mr =
1

4

(
(f5 − F1),−2Aα,−

√
2N (c), 2A5

)
≡ 1

4
((f5 − F1),−2Aα− , 2A) .

Here the index α = 6, 7, 8. Note that the specific reduction used here, see appendix 4.A.2,
distinguished A5 from the other Aρ and N (c). A different embedding would single out a dif-
ferent harmonic function, and hence a different vector, and it is thus convenient to introduce
(A,Aα−) to denote the choice of splitting more abstractly. Also as in (4.12) it is convenient to
introduce the following combinations of harmonic functions:

f5 = H, f̃1 = 1 +K −H−1(A2 +Aα−Aα−), (4.47)

F1 = 1 +K, f1 = f̃1 +H−1A2.

The vielbein of scalars is given by

V = ΩT4



√
f−1

1 f̃1 0 0 0 0

GA2

√
f̃−1

1 f1 −GAF1 (
√
f1f̃1)−1A −GA kγ

−FA 0
√
f−1

5 f1 0 0

FA 0 − 1
2
f−1

5 F (kγ)2
√
f5f
−1
1 −Fkγ

0 0 f−1
5 kγ 0 I22


Ω4, (4.48)

where to simplify notation quantities (F,G) are defined as

F = (f1f5)−1/2, G = (f1f̃1f
2
5 )−1/2. (4.49)

We also define the 22-dimensional vector kγ as

kγ = (03,
√

2Aα−). (4.50)

Here γ = 1, · · · , b2 where the second Betti number is b2 = 22 for K3. Using the reduction
formulae (4.154) and (4.155), the six-dimensional solution (4.45), (4.48) can be lifted to ten
dimensions, resulting in a solution with an analogous form to the T 4 case (4.11). We will thus
summarize the solution for both cases in the following section.
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(4.4) D1-D5 FUZZBALL SOLUTIONS

In this section we will summarize the D1-D5 fuzzball solutions with internal excitations, for
both the K3 and T 4 cases. In both cases the solutions can be written as

ds2 =
f

1/2
1

f̃1f
1/2
5

[−(dt−Aidxi)2 + (dy −Bidxi)2] + f
1/2
1 f

1/2
5 dxidx

i + f
1/2
1 f

−1/2
5 ds2

M4 ,

e2Φ =
f2

1

f5f̃1

, B
(2)
ty =

A
f5f̃1

, B
(2)
µ̄i =

ABµ̄i
f5f̃1

, (4.51)

B
(2)
ij = λij +

2AA[iBj]

f5f̃1

, B(2)
ρσ = f−1

5 kγωγρσ, C(0) = −f−1
1 A,

C
(2)
ty = 1− f̃−1

1 , C
(2)
µ̄i = −f̃−1

1 B
µ̄
i , C

(2)
ij = cij − 2f̃−1

1 A[iBj],

C
(4)
tyij = λij +

A
f5f̃1

(cij + 2A[iBj]), C
(4)
µ̄ijk =

3A
f5f̃1

Bµ̄[icjk],

C
(4)
tyρσ = f−1

5 kγωγρσ, C
(4)
ijρσ = (λγij + f−1

5 kγcij)ω
γ
ρσ, C(4)

ρστπ = f−1
5 Aερστπ,

where we introduce a basis of self-dual and anti-self-dual 2-forms ωγ ≡ (ωα+ , ωα−) with γ =

1, · · · , b2 on the compact manifold M4. For both T 4 and K3 the self-dual forms are labeled by
α+ = 1, 2, 3 whilst the anti-self-dual forms are labeled by α− = 1, 2, 3 for T 4 and α− = 1, · · · 19

for K3. The intersections and normalizations of these forms are defined in (4.13), (4.14)
and (4.145). The solutions are expressed in terms of the following combinations of harmonic
functions (H,K,Ai,A,Aα−)

f5 = H; f̃1 = 1 +K −H−1(A2 +Aα−Aα−); f1 = f̃1 +H−1A2;

kγ = (03,
√

2Aα−); dB = − ∗4 dA; dc = − ∗4 df5; (4.52)

dλγ = ∗4dkγ ; dλ = ∗4dA; Bµ̄i = (−Bi, Ai),

where µ̄ = (t, y) and the Hodge dual ∗4 is defined over (flat) R4, with the Hodge dual in the
Ricci flat metric on the compact manifold being denoted by ερστπ. The constant term in C(2)

ty is
chosen so that the potential vanishes at asymptotically flat infinity. The corresponding RR field
strengths are

F
(1)
i = −∂i

(
f−1

1 A
)
, F

(3)
tyi = (f1f̃1f

2
5 )−1

(
f2

5 ∂if̃1 + f5A∂iA−A2∂if5

)
,

F
(3)
µ̄ij = (f2

5 f1f̃1)−1
(

2Bµ̄[i(f5∂j]f̃1 + f5A∂j]A−A2∂j]f5) + 2f̃1f
2
5 ∂[iBµ̄j]

)
,

F
(3)
ijk = −εijkl(∂lf5 − f−1

1 A∂
lA)− 6f−1

1 ∂[i(AjBk]) (4.53)

+(f2
5 f1f̃1)−1

(
6A[iBj(f5∂k]f̃1 + f5A∂k]A−A2∂k]f5)

)
,

F
(3)
iρσ = f−1

1 A∂i(f
−1
5 kγ)ωγρσ,

F
(5)
iρστπ = ερστπ∂i(f

−1
5 A), F

(5)
tyijk = εijklf̃

−1
1 f5∂

l(f−1
5 A),

F
(5)
µ̄ijkl = −εijklf5f̃

−1
1 B

µ̄
m∂

m(f−1
5 A),

F
(5)
tyiρσ = f̃−1

1 ∂i(k
γ/f5)ωγρσ, F

(5)
µ̄ijρσ = 2f̃−1

1 B
µ̄
[i∂j](f

−1
5 kγ)ωγρσ,

F
(5)
ijkρσ =

(
6f̃−1

1 A[iBj∂k](f
−1
5 kγ) + εijklf5∂

l(f−1
5 kγ)

)
ωγρσ.
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It has been explicitly checked that this is a solution of the ten-dimensional field equations for
any choices of harmonic functions (H,K,Ai,A,Aα−) with ∂iA

i = 0. Note that in the case
of K3 one needs the identity (4.156) for the harmonic forms to check the components of the
Einstein equation along K3.

We are interested in solutions for which the defining harmonic functions are given by

H = 1 +
Q5

L

∫ L

0

dv

|x− F (v)|2 ; Ai = −Q5

L

∫ L

0

dvḞi(v)

|x− F (v)|2 , (4.54)

A = −Q5

L

∫ L

0

dvḞ(v)

|x− F (v)|2 ; Aα− = −Q5

L

∫ L

0

dvḞα−(v)

|x− F (v)|2 ,

K =
Q5

L

∫ L

0

dv(Ḟ (v)2 + Ḟ(v)2 + Ḟα−(v)2)

|x− F (v)|2 .

In these expressions Q5 is the 5-brane charge and L is the length of the defining curve in the
D1-D5 system, given by

L = 2πQ5/R, (4.55)

where R is the radius of the y circle. Note that Q5 has dimensions of length squared and is
related to the integral charge via

Q5 = α′n5 (4.56)

(where gs has been set to one). Assuming that the curves (Ḟ(v), Ḟα−(v)) do not have zero
modes, the D1-brane charge Q1 is given by

Q1 =
Q5

L

∫ L

0

dv(Ḟ (v)2 + Ḟ(v)2 + Ḟα−(v)2), (4.57)

and the corresponding integral charge is given by

Q1 =
n1(α′)3

V
, (4.58)

where (2π)4V is the volume of the compact manifold. The mapping of the parameters from the
original F1-P systems to the D1-D5 systems was discussed in [27] and is unchanged here. The
fact that the solutions take exactly the same form, regardless of whether the compact manifold
is T 4 or K3, is unsurprising given that only zero modes of the compact manifold are excited.

The solutions defined in terms of the harmonic functions (4.54) describe the complete set of
two-charge fuzzballs for the D1-D5 system on K3. In the case of T 4, these describe fuzzballs
with only bosonic excitations; the most general solution would include fermionic excitations
and thus more general harmonic functions of the type discussed in [39]. Solutions involving
harmonic functions with disconnected sources would be appropriate for describing Coulomb
branch physics. Note that, whilst the solutions obtained by dualities from supersymmetric F1-
P solutions are guaranteed to be supersymmetric, one would need to check supersymmetry
explicitly for solutions involving other choices of harmonic functions.

In the final solutions one of the harmonic functions A describing internal excitations is singled
out from the others. In the original F1-P system, the solutions pick out a direction in the
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internal space. For the type II system on T 4, the choice of Aρ singles out a direction in the
torus whilst in the heterotic solution the choice of (Aρ, N

(c)) singles out a direction in the 20d
internal space. Both duality chains, however, also distinguish directions in the internal space.
In the T 4 case one had to choose a direction in the torus, whilst in the K3 case the choice is
implicitly made when one uplifts type IIB solutions from six to ten dimensions. In particular,
the uplift splits the 21 anti-self-dual six-dimensional 3-forms into 19 + 1 + 1 associated with the
ten-dimensional (F (5), F (3), H(3)) respectively.

When there are no internal excitations, the final solutions must be independent of the choice
of direction made in the duality chains but this does not remain true when the original solu-
tion breaks the rotational symmetry in the internal space. A is the component of the original
vector along the direction distinguished in the duality chain, whilst Aα− are the components
orthogonal to this direction. When there are no excitations along the direction picked out by
the duality, i.e. A = 0, the solution considerably simplifies, becoming

ds2 =
1

(f1f5)1/2
[−(dt−Aidxi)2 + (dy −Bidxi)2] + f

1/2
1 f

1/2
5 dxidx

i + f
1/2
1 f

−1/2
5 ds2

M4 ,

e2Φ =
f1

f5
, B(2)

ρσ = f−1
5 kγωγρσ, C

(2)
ty = 1− f−1

1 , C
(2)
µ̄i = −f−1

1 B
µ̄
i ,

C
(2)
ij = cij − 2f−1

1 A[iBj], C
(4)
tyρσ = f−1

5 kγωγρσ, C
(4)
ijρσ = (λγij + f−1

5 kγcij)ω
γ
ρσ.

In this solution the internal excitations induce fluxes of the NS 3-form and RR 5-form along anti-
self dual cycles in the compact manifold (but no net 3-form or 5-form charges). By contrast the
excitations parallel to the duality direction induce a field strength for the RR axion, NS 3-form
field strength in the non-compact directions and RR 5-form field strength along the compact
manifold (but again no net charges).

Let us also comment on the M4 moduli in our solutions. The solutions are expressed in terms
of a Ricci flat metric on M4 and anti-self dual harmonic two forms. The forms satisfy

ωγρσω
δρσ = Dε

δdγε ≡ δγδ, (4.59)

where the intersection matrix dδγ and the matrix Dγ
δ relating the basis of forms and dual

forms are defined in (4.145) and (4.147) respectively. The latter condition on Dγ
ε arose from

the duality chain, and followed from the fact that in the original F1-P solutions the internal
manifold had a flat square metric. Thus, the final solutions are expressed at a specific point
in the moduli space of M4 because the original F1-P solutions have specific fixed moduli. It is
straightforward to extend the solutions to general moduli: one needs to change

f̃1 = 1 +K −H−1(A2 +Aα−Aα−)→ 1 +K −H−1(A2 + 1
2
kγkδDε

δdγε), (4.60)

with kγ as defined in (4.52), to obtain the solution for more general Dγ
δ.

Given a generic fuzzball solution, one would like to check whether the geometry is indeed
smooth and horizon-free. For the fuzzballs with no internal excitations this question was dis-
cussed in [40], the conclusion being that the solutions are non-singular unless the defining
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curve F i(v) is non-generic and self-intersects. In the appendix of [40], the smoothness of
fuzzballs with internal excitations was also discussed. However, their D1-D5 solutions were
incomplete: only the metric was given, and this was effectively given in the form (4.45) rather
than (4.51). Nonetheless, their conclusion remains unchanged: following the same discussion
as in [40] one can show that a generic fuzzball solution with internal excitations is non-singular
provided that the defining curve F i(v) does not self-intersect and Ḟi(v) only has isolated ze-
roes. In particular, if there are no transverse excitations, F i(v) = 0, the solution will be singular
as discussed in section 4.6.6.

One can show that there are no horizons as follows. The harmonic function f5 is clearly positive
definite, by its definition. The functions (f1, f̃1) are also positive definite, since they can be
rewritten as a sum of positive terms as

f5f̃1 =

(
1 +

Q5

L

∫ L

0

dv

|x− F |2

)(
1 +

Q5

L

∫ L

0

dvḞ 2

|x− F |2

)
(4.61)

+
Q5

L

∫ L

0

dv(Ḟ(v))2 + (Ḟα−(v))2

|x− F |2

+ 1
2
(
Q5

L
)2

∫ L

0

∫ L

0

dvdv′
(Ḟ(v)− Ḟ(v′))2 + (Ḟα−(v)− Ḟα−(v′))2

|x− F (v)|2 |x− F (v′)|2
,

and a corresponding expression for f5f1. Note that in the decoupling limit only the terms
proportional to Q2

5 remain, and these are also manifestly positive definite. Given that the
defining functions have no zeroes anywhere, the geometry therefore has no horizons.

Now let us consider the conserved charges. From the asymptotics one can see that the fuzzball
solutions have the same mass and D1-brane, D5-brane charges as the naive solution; the latter
are given in (4.56) and (4.58) whilst the ADM mass is

M =
Ω3Ly
κ2

6

(Q1 +Q5), (4.62)

where Ly = 2πR, Ω3 = 2π2 is the volume of a unit 3-sphere, and 2κ2
6 = (2κ2)/(V (2π)4) with

2κ2 = (2π)7(α′)4 in our conventions. The fuzzball solutions have in addition angular momenta,
given by

J ij =
Ω3Ly
κ2

6L

∫ L

0

dv(F iḞ j − F jḞ i). (4.63)

These are the only charges; the fields F (1) and F (5) fall off too quickly at infinity for the
corresponding charges to be non-zero. One can compute from the harmonic expansions of
the fields dipole and more generally multipole moments of the charge distributions. A generic
solution breaks completely the SO(4) rotational invariance in R4, and this symmetry breaking
is captured by these multipole moments.

However, the multipole moments computed at asymptotically flat infinity do not have a direct
interpretation in the dual field theory. In contrast, the asymptotics of the solutions in the
decoupling limit do give field theory information: one-point functions of chiral primaries are
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expressed in terms of the asymptotic expansions (and hence multipole moments) near the
AdS3 × S3 boundary. Thus it is more useful to compute in detail the latter, as we shall do in
the next section.

(4.5) VEVS FOR THE FUZZBALL SOLUTIONS

Similarly to the analysis in section 3.6 we now take the decoupling limit of the fuzzball solutions
and extract the vevs using Kaluza-Klein holography.

For fuzzball solutions on K3, the relevant solution of six-dimensional N = 4b supergravity
coupled to 21 tensor multiplets was given explicitly in (4.45). For the case of T 4, we obtained
the solution in ten dimensions, but there is a corresponding six-dimensional solution of N = 4b

supergravity coupled to 5 tensor multiplets. This solution is of exactly the same form as the
K3 solution given in (4.45), but with the index α− = 1, 2, 3. Thus in what follows we will
analyze both cases simultaneously. As mentioned earlier, the T 4 solution reduces to a solution
of d = 6, N = 4b supergravity rather than a solution of d = 6, N = 8 supergravity because
forms associated with the odd cohomology of T 4 (and hence six-dimensional vectors) are not
present in our solutions.

(4.5.1) HOLOGRAPHIC RELATIONS FOR VEVS

Consider an AdS3 × S3 solution of the six-dimensional field equations (4.31), such that

ds2
6 =

√
Q1Q5

(
1

z2
(−dt2 + dy2 + dz2) + dΩ2

3

)
; (4.64)

G5 = H5 ≡ go5 =
√
Q1Q5(rdr ∧ dt ∧ dy + dΩ3),

with the vielbein being diagonal and all other three forms (both self-dual and anti-self dual)
vanishing. In what follows it is convenient to absorb the curvature radius

√
Q1Q5 into an

overall prefactor in the action, and work with the unit radius AdS3 × S3. Now express the
perturbations of the six-dimensional supergravity fields relative to the AdS3 × S3 background
as

gMN = goMN + hMN ; GA = goA + gA; (4.65)

V nA = δnA + φnrδrA + 1
2
φnrφmrδmA ;

V rA = δrA + φnrδnA + 1
2
φnrφnsδsA.
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These fluctuations can then be expanded in spherical harmonics as follows:

hµν =
∑

hIµν(x)Y I(y), (4.66)

hµa =
∑

(hIvµ (x)Y Iva (y) + hI(s)µ(x)DaY
I(y)),

h(ab) =
∑

(ρIt(x)Y It(ab)(y) + ρIv(v)(x)DaY
Iv
b (y) + ρI(s)(x)D(aDb)Y

I(y)),

haa =
∑

πI(x)Y I(y),

gAµνρ =
∑

3D[µb
(A)I

νρ] (x)Y I(y),

gAµνa =
∑

(b(A)I
µν (x)DaY

I(y) + 2D[µZ
(A)Iv
ν] (x)Y Iva (y));

gAµab =
∑

(DµU
(A)I(x)εabcD

cY I(y) + 2Z(A)Iv
µ D[bY

Iv
a] );

gAabc =
∑

(−εabcΛIU (A)I(x)Y I(y));

φmr =
∑

φ(mr)I(x)Y I(y),

Here (µ, ν) are AdS indices and (a, b) are S3 indices, with x denoting AdS coordinates and y

denoting sphere coordinates. The subscript (ab) denotes symmetrization of indices a and b with
the trace removed. Relevant properties of the spherical harmonics are reviewed in appendix
4.A.3. We will often use a notation where we replace the index I by the degree of the harmonic
k or by a pair of indices (k, I) where k is the degree of the harmonic and I now parametrizes
their degeneracy, and similarly for Iv, It.

Imposing the de Donder gauge condition DAhaM = 0 on the metric fluctuations removes the
fields with subscripts (s, v). In deriving the spectrum and computing correlation functions,
this is therefore a convenient choice. The de Donder gauge choice is however not always a
convenient choice for the asymptotic expansion of solutions; indeed the natural coordinate
choice in our application takes us outside de Donder gauge. As discussed in [22] this issue is
straightforwardly dealt with by working with gauge invariant combinations of the fluctuations.

Next let us briefly review the linearized spectrum derived in [55], focusing on fields dual to
chiral primaries. Consider first the scalars. It is useful to introduce the following combinations
which diagonalize the linearized equations of motion:

s
(r)k
I =

1

4(k + 1)
(φ

(5r)k
I + 2(k + 2)U

(r)k
I ), (4.67)

σkI =
1

12(k + 1)
(6(k + 2)Û

(5)k
I − π̂kI ),

The fields s(r)k and σk correspond to scalar chiral primaries, with the masses of the scalar fields
being

m2
s(r)k = m2

σk = k(k − 2), (4.68)

The index r spans 6 · · · 5 + nt with nt = 5, 21 respectively for T 4 and K3. Note also that
k ≥ 1 for s(r)k; k ≥ 2 for σk. The hats (Û

(5)k
I , π̂kI ) denote the following. As discussed in [22],

the equations of motion for the gauge invariant fields are precisely the same as those in de
Donder gauge, provided one replaces all fields with the corresponding gauge invariant field.
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The hat thus denotes the appropriate gauge invariant field, which reduces to the de Donder
gauge field when one sets to zero all fields with subscripts (s, v). For our purposes we will need
these gauge invariant quantities only to leading order in the fluctuations, with the appropriate
combinations being

π̂2
I = πI2 + Λ2ρI2(s); (4.69)

Û
(5)I
2 = U

(5)I
2 − 1

2
ρI2(s);

ĥ0
µν = h0

µν −
∑
α,±

h1±α
µ h1±α

ν .

Next consider the vector fields. It is useful to introduce the following combinations which
diagonalize the equations of motion:

h±µIv = 1
2
(C±µIv −A

±
µIv

), Z
(5)±
µIv

= ± 1
4
(C±µIv +A±µIv ). (4.70)

For general k the equations of motion are Proca-Chern-Simons equations which couple (A±µ , C
±
µ )

via a first order constraint [55]. The three dynamical fields at each degree k have masses
(k−1, k+1, k+3), corresponding to dual operators of dimensions (k, k+2, k+4) respectively;
the operators of dimension k are vector chiral primaries. The lowest dimension operators are
the R symmetry currents, which couple to the k = 1 A±αµ bulk fields. The latter satisfy the
Chern-Simons equation

Fµν(A±α) = 0, (4.71)

where Fµν(A±α) is the curvature of the connection and the index α = 1, 2, 3 is an SU(2) adjoint
index. We will here only discuss the vevs of these vector chiral primaries.

Finally there is a tower of KK gravitons with m2 = k(k + 2) but only the massless graviton,
dual to the stress energy tensor, will play a role here. Note that it is the combination Ĥµν =

ĥ0
µν + π0goµν which satisfies the Einstein equation; moreover one needs the appropriate gauge

covariant combination ĥ0
µν given in (4.69).

Let us denote by (O
S

(r)k
I

,OΣk
I
) the chiral primary operators dual to the fields (s

(r)k
I , σkI ) respec-

tively. The vevs of the scalar operators with dimension two or less can then be expressed in
terms of the coefficients in the asymptotic expansion as〈

O
S

(r)1
i

〉
=

2N

π

√
2[s

(r)1
i ]1;

〈
O
S

(r)2
I

〉
=

2N

π

√
6[s

(r)2
I ]2; (4.72)〈

OΣ2
I

〉
=

N

π

(
2
√

2[σ2
I ]2 −

1

3

√
2aIij

∑
r

[s
(r)1
i ]1[s

(r)1
j ]1

)
.

Here [ψ]n denotes the coefficient of the zn term in the asymptotic expansion of the field ψ. The
coefficient aIij refers to the triple overlap between spherical harmonics, defined in (4.167).
Note that dimension one scalar spherical harmonics have degeneracy four, and are thus labeled
by i = 1, · · · 4.
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Now consider the stress energy tensor and the R symmetry currents. The three dimensional
metric and the Chern-Simons gauge fields admit the following asymptotic expansions

ds2
3 =

dz2

z2
+

1

z2

(
g(0)µ̄ν̄ + z2

(
g(2)µ̄ν̄ + log(z2)h(2)µ̄ν̄ + (log(z2))2h̃(2)µ̄ν̄

)
+ · · ·

)
dxµ̄dxν̄ ;

A±α = A±α + z2A±α(2) + · · · (4.73)

The vevs of the R symmetry currents J±αu are then given in terms of terms in the asymptotic
expansion of A±αµ as 〈

J±αµ̄
〉

=
N

4π

(
g(0)µ̄ν̄ ± εµ̄ν̄

)
A±αν̄ . (4.74)

The vev of the stress energy tensor Tµ̄ν̄ is given by

〈Tµ̄ν̄〉 =
N

2π

(
g(2)µ̄ν̄ + 1

2
Rg(0)µ̄ν̄ + 8

∑
r

[s̃
(r)1
i ]21g(0)µ̄ν̄ + 1

4
(A+α

(µ̄ A
+α
ν̄) +A−α(µ̄ A

−α
ν̄) )

)
(4.75)

where parentheses denote the symmetrized traceless combination of indices.

This summarizes the expressions for the vevs of chiral primaries with dimension two or less
which were derived in chapter 3. Note that these operators correspond to supergravity fields
which are at the bottom of each Kaluza-Klein tower. The supergravity solution of course also
captures the vevs of operators dual to the other fields in each tower. Expressions for these
vevs were not derived in chapter 3, the obstruction being the non-linear terms: in general
the vev of a dimension p operator will include contributions from terms involving up to p

supergravity fields. Computing these in turn requires the field equations (along with gauge
invariant combinations, KK reduction maps etc) up to pth order in the fluctuations.

Now (apart from the stress energy tensor) none of the operators whose vevs are given above
is an SO(4) (R symmetry) singlet. For later purposes it will be useful to review which other
operators are SO(4) singlets. The computation of the linearized spectrum in [55] picks out the
following as SO(4) singlets:

τ0 ≡ 1

12
π0; t(r)0 ≡ 1

4
φ5(r)0, (4.76)

along with φ0i(r) with i = 1, · · · , 4. Recall ψ0 denotes the projection of the field ψ onto the
degree zero harmonic. The fields (τ0, t(r)0) are dual to operators of dimension four, whilst the
fields φ0i(r) are dual to dimension two (marginal) operators. The former lie in the same tower
as (σ2, s(r)2) respectively, whilst the latter are in the same tower as s(r)1. In total there are
(nt + 1) SO(4) singlet irrelevant operators and 4nt SO(4) singlet marginal operators, where
nt = 5, 21 for T 4 and K3 respectively.

Consider the SO(4) singlet marginal operators dual to the supergravity fields φi(r). These
operators have been discussed previously in the context of marginal deformations of the CFT,
see the review [67] and references therein. Suppose one introduces a free field realization for
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the T 4 theory, with bosonic and fermionic fields (xiI(z), ψ
i
I(z)) where I = 1, · · · , N . Then some

of the marginal operators can be explicitly realized in the untwisted sector as bosonic bilinears

∂xiI(z)∂̄x
j
I(z̄); (4.77)

there are sixteen such operators, in correspondence with sixteen of the supergravity fields. The
remaining four marginal operators are realized in the twisted sector, and are associated with
deformation from the orbifold point.

(4.5.2) APPLICATION TO THE FUZZBALL SOLUTIONS

The six-dimensional metric of (4.45) in the decoupling limit manifestly asymptotes to

ds2 =
r2

√
Q1Q5

(−dt2 + dy2) +
√
Q1Q5

(
dr2

r2
+ dΩ2

3

)
. (4.78)

where

Q1 =
Q5

L

∫ L

0

dv(Ḟ (v)2 + Ḟ(v)2 + Ḟα−(v)2). (4.79)

Note that the vielbein (4.48) is asymptotically constant

V o = ΩT4


I2 0 0 0

0
√
Q1/Q5 0 0

0 0
√
Q5/Q1 0

0 0 0 I22

Ω4, (4.80)

but it does not asymptote to the identity matrix. Thus one needs the constant SO(5, 21) trans-
formation

V → V (V o)−1, G3 → V oG3. (4.81)

to bring the background into the form assumed in (4.64).

The fields are expanded about the background values, by expanding the harmonic functions
defining the solution in spherical harmonics as

H =
Q5

r2

∑
k,I

f5
kIY

I
k (θ3)

rk
, K =

Q1

r2

∑
k,I

f1
kIY

I
k (θ3)

rk
, (4.82)

Ai =
Q5

r2

∑
k≥1,I

(AkI)iY
I
k (θ3)

rk
, A =

√
Q1Q5

r2

∑
k≥1,I

(AkI)Y Ik (θ3)

rk
,

Aα− =

√
Q1Q5

r2

∑
k≥1,I

Aα−kI Y
I
k (θ3)

rk
.

The polar coordinates here are denoted by (r, θ3) and Y Ik (θ3) are (normalized) spherical har-
monics of degree k on S3 with I labeling the degeneracy. Note that the restriction k ≥ 1 in the
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last three lines is due to the vanishing zero mode, see section 3.4.1. As in section 3.4.1, the
coefficients in the expansion can be expressed as

f5
kI =

1

L(k + 1)

∫ L

0

dv(CIi1···ikF
i1 · · ·F ik ), (4.83)

f1
kI =

Q5

L(k + 1)Q1

∫ L

0

dv
(
Ḟ 2 + Ḟ2 + (Ḟα−)2

)
CIi1···ikF

i1 · · ·F ik ,

(AkI)i = − 1

L(k + 1)

∫ L

0

dvḞiC
I
i1···ikF

i1 · · ·F ik ,

(AkI) = −
√
Q5√

Q1L(k + 1)

∫ L

0

dvḞCIi1···ikF
i1 · · ·F ik ,

Aα−kI = −
√
Q5√

Q1L(k + 1)

∫ L

0

dvḞα−CIi1···ikF
i1 · · ·F ik .

Here the CIi1···ik are orthogonal symmetric traceless rank k tensors on R4 which are in one-
to-one correspondence with the (normalized) spherical harmonics Y Ik (θ3) of degree k on S3.
Fixing the center of mass of the whole system implies that

(f1
1i + f5

1i) = 0. (4.84)

The leading term in the asymptotic expansion of the transverse gauge field Ai can be written
in terms of degree one vector harmonics as

A =
Q5

r2
(A1j)iY

j
1 dY

i
1 ≡

√
Q1Q5

r2
(aα−Y α−1 + aα+Y α+

1 ), (4.85)

where (Y α−1 , Y α+
1 ) with α = 1, 2, 3 form a basis for the k = 1 vector harmonics and we have

defined

aα± =

√
Q5√
Q1

∑
i>j

e±αij(A1j)i, (4.86)

where the spherical harmonic triple overlap e±αij is defined in 4.168. The dual field is given by

B = −
√
Q1Q5

r2
(aα−Y α−1 − aα+Y α+

1 ). (4.87)

Now given these asymptotic expansions of the harmonic functions one can proceed to expand
all the supergravity fields, and extract the appropriate combinations required for computing the
vevs defined in (4.72), (4.74) and (4.75). Since the details of the computation are very similar
to those in chapter 3, we will simply summarize the results as follows. Firstly the vevs of the
stress energy tensor and of the R symmetry currents are the same as in section 3.6, namely

〈Tµ̄ν̄〉 = 0; (4.88)〈
J±α

〉
= ±N

2π
aα±(dy ± dt). (4.89)

The vanishing of the stress energy tensor is as anticipated, since these solutions should be dual
to R vacua. Again, the cancellation is very non-trivial. The vevs of the scalar operators dual to
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the fields (s
(6)k
I , σkI ) are also unchanged from section 3.6:

〈
O
S

(6)1
i

〉
=

N

4π
(−4
√

2f5
1i); (4.90)〈

O
S

(6)2
I

〉
=

N

4π
(
√

6(f1
2I − f5

2I));〈
OΣ2

I

〉
=

N

4π

√
2(−(f1

2I + f5
2I) + 8aα−aβ+fIαβ).

The internal excitations of the new fuzzball solutions are therefore captured by the vevs of
operators dual to the fields s(r)k

I with r > 6:

〈
O
S

(5+nt)1
i

〉
= −N

π

√
2(A1i);

〈
O
S

(6+α−)1

i

〉
=
N

π

√
2Aα−1i ; (4.91)〈

O
S

(5+nt)2
I

〉
= −N

2π

√
6(A2I);

〈
O
S

(6+α−)2

I

〉
=
N

2π

√
6Aα−2I .

Here nt = 5, 21 for T 4 and K3 respectively, with α− = 1, · · · , b2− with b2− = 3, 19 respectively.
Thus each curve (F(v),Fα−(v)) induces corresponding vevs of operators associated with the
middle cohomology of M4. Note the sign difference for the vevs of operators which are related
to the distinguished harmonic function F(v).

(4.6) PROPERTIES OF FUZZBALL SOLUTIONS

In this section we will discuss various properties of the fuzzball solutions, including the inter-
pretation of the vevs computed in the previous section.

(4.6.1) DUAL FIELD THEORY

Let us start by briefly reviewing aspects of the dual CFT and the ground states of the R sector;
a more detailed review of the issues relevant here is contained in chapter 3. Consider the
dual CFT at the orbifold point; there is a family of chiral primaries in the NS sector associated
with the cohomology of the internal manifold, T 4 or K3. For our discussions only the chiral
primaries associated with the even cohomology are relevant; let these be labeled as O(p,q)

n

where n is the twist and (p, q) labels the associated cohomology class. The degeneracy of the
operators associated with the (1, 1) cohomology is h1,1. The complete set of chiral primaries
associated with the even cohomology is then built from products of the form

∏
l

(Opl,qlnl )ml ,
∑
l

nlml = N, (4.92)
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where symmetrization over the N copies of the CFT is implicit. The correspondence between
(scalar) supergravity fields and chiral primaries is 2

σn ↔ O(2,2)

(n−1), n ≥ 2; (4.93)

s(6)
n ↔ O(0,0)

(n+1), s(6+α̃)
n ↔ O(1,1)

(n)α̃ , α̃ = 1, · · ·h1,1, n ≥ 1.

Spectral flow maps these chiral primaries in the NS sector to R ground states, where

hR = hNS − jNS3 +
c

24
;

jR3 = jNS3 − c

12
, (4.94)

where c is the central charge. Each of the operators in (4.92) is mapped by spectral flow to a
(ground state) operator of definite R-charge∏

l=1

(O(pl,ql)
nl )ml →

∏
l=1

(OR(pl,ql)
nl )ml , (4.95)

jR3 = 1
2

∑
l

(pl − 1)ml, j̄R3 = 1
2

∑
l

(ql − 1)ml.

Note that R operators which are obtained from spectral flow of those associated with the (1, 1)

cohomology have zero R charge.

(4.6.2) CORRESPONDENCE BETWEEN GEOMETRIES AND GROUND STATES

In chapter 3 we discussed the correspondence between fuzzball geometries characterized by a
curve F i(v) and R ground states (4.95) with (pl, ql) = 1 ± 1. The latter are related to chiral
primaries in the NS sector built from the cohomology common to both T 4 and K3, namely the
(0, 0), (2, 0), (0, 2) and (2, 2) cohomology.

The following proposal was made for the precise correspondence between geometries and
ground states; see also [44]. Given a curve F i(v) we construct the corresponding coherent
state in the FP system and then find which Fock states in this coherent state have excitation
number NL equal to nw, where n is the momentum and w is the winding. Applying a map
between FP oscillators and R operators then yields the superposition of R ground states that is
proposed to be dual to the D1-D5 geometry.

This proposal can be straightforwardly extended to the new geometries, which are character-
ized by the curve F i(v) along with h1,1 additional functions (F(v),Fα−(v)). Consider first
the T 4 system, for which the four additional functions are F ρ(v). Then the eight functions
F I(v) ≡ (F i(v), F ρ(v)) can be expanded in harmonics as

F I(v) =
∑
n>0

1√
n

(αIne
−inσ+

+ (αIn)∗einσ
+

), (4.96)

2As discussed in chapter 3, the dictionary between (σn, s
(6)
n ) and (O(2,2)

(n−1)
,O(0,0)

(n+1)
) may be more compli-

cated, since their quantum numbers are indistinguishable, but this subtlety will not play a role here.
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where σ+ = v/wR9. The corresponding coherent state in the FP system is∣∣∣F I) =
∏
n,I

∣∣∣αIn) , (4.97)

where
∣∣αIn) is a coherent state of the left moving oscillator âIn, satisfying âIn

∣∣αIn) = αIn
∣∣αIn).

Contained in this coherent state are Fock states, such that∏
(âInI )mI |0〉 , N =

∑
nImI . (4.98)

Now retain only the terms in the coherent state involving these Fock states, and map the FP
oscillators to CFT R operators via the dictionary

1√
2

(â1
n ± iâ2

n) ↔ OR(±1+1),(±1+1)
n ; (4.99)

1√
2

(â3
n ± iâ4

n) ↔ OR(±1+1),(∓1+1)
n ;

âρn ↔ OR(1,1)

(ρ−4)n.

The dictionary for the case of K3 is analogous. Here one has four curves F i(v) describing
the transverse oscillations and twenty curves F α̃(v) describing the internal excitations. The
oscillators associated with the former are mapped to operators associated with the universal
cohomology as in (4.99) whilst the oscillators associated with the latter are mapped to opera-
tors associated with the (1, 1) cohomology as

âα̃n ↔ O
R(1,1)
α̃n . (4.100)

This completely defines the proposed superposition of R ground states to which a given geom-
etry corresponds. Note that below we will suggest that a slight refinement of this dictionary
may be necessary, taking into account that one of the internal curves is distinguished by the
duality chain. For the distinguished curve the mapping may include a negative sign, namely
ân ↔ −OR(1,1)

n ; this mapping would explain the relative sign between the vevs found in (4.91)
associated with the distinguished curve F and the remaining curves Fα respectively.

Note that there is a direct correspondence between the frequency of the harmonic on the curve
and the twist label of the CFT operator. The latter is strictly positive, n ≥ 1, and thus in the
dictionary (4.99) there are no candidate CFT operators to correspond to winding modes of the
curves (F(v),Fα−(v)). In the case of T 4 such candidates might be provided by the additional
chiral primaries associated with the extra T 4 in the target space of the sigma model, discussed
in [82]. However the latter is related to the degeneracy of the right-moving ground states in
the dual F1-P system, rather than to winding modes. For K3 all chiral primaries have been
included (except for the additional primaries which appear at specific points in the K3 moduli
space). Thus one confirms that winding modes of the curves (F(v),Fα−(v)) should not be
included in constructing geometries dual to the R ground states. As discussed in appendix
4.A.4 these winding modes may describe geometric duals of states in deformations of the CFT.
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(4.6.3) MATCHING WITH THE HOLOGRAPHIC VEVS

In this section we will see how the general structure of the vevs given in (4.91) can be repro-
duced using the proposed dictionary. The holographic vevs take the form〈

O(1,1)
α̃kI

〉
≈ N

√
Q5√

Q1L

∫ L

0

dvḞ α̃CIi1···ikF
i1 · · ·F ik . (4.101)

Thus the vevs of the operators O(1,1)
α̃kI are zero unless the curve F α̃(v) is non-vanishing and at

least one of the F i(v) is non-vanishing. Moreover, the dimension one operators will not acquire
a vev unless the transverse and internal curves have excitations with the same frequency. Anal-
ogous selection rules for frequencies of curve harmonics apply for the vevs of higher dimension
operators.

These properties of the vevs follow directly from the proposed superpositions, along with se-
lection rules for three point functions of chiral primaries. The superposition dual to a given set
of curves is built from the R ground states

ORI |0〉 =
∏
l

(OR(pl,qq)
nl )ml |0〉, (4.102)

with
∑

l nlml = N and I labeling the degeneracy of the ground states. So this superposition
can be denoted abstractly as |Ψ) =

∑
I aIO

RI |0〉 with certain coefficients aI . In particular, if
the curve F α̃(v) = 0 the superposition does not contain any R ground states built from OR(1,1)

α̃n

operators. Moreover, if there are no transverse excitations, the superposition will contain only
states with zero R charge.

Now consider evaluating the vev of a dimension k operator O(1,1)
α̃k in such a superposition. This

is determined by three point functions between this operator and the chiral primary opera-
tors occurring in the superposition. More explicitly, the operator vev is related to three point
functions via

(ΨNS |O(1,1)
α̃k |ΨNS) =

∑
I,J

a∗IaJ 〈(OI)†(∞)O(1,1)
α̃k (µ)(OJ )(0)〉. (4.103)

Here OI is the NS sector operator which flows to ORI in the R sector and |ΨNS) is the flow
of the superposition back to the NS sector, namely

∑
I aIO

I |0〉. The quantity µ is a mass
scale. Note we are evaluating the relevant three point function in the NS sector, and have
hence flowed the ground states back to NS sector chiral primaries. We would get the same
answer by flowing the operator whose vev we wish to compute, O(1,1)

α̃k , into the Ramond sector
and computing the three point function there. Recall that the R charges of these operators are
related by the spectral flow formula (4.94) as jNS3 = jR3 + 1

2
N . In particular, NS sector chiral

primaries built only from operators associated with the middle cohomology all have the same
R charges, namely 1

2
N .

There are two basic selection rules for the three point functions (4.103). Firstly, as usual one
has to impose conservation of the R charges. Secondly, a basic property of such three point
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functions is that they are only non-zero when the total number of operators O(1,1)
α̃ with a

given index α̃ in the correlation function is even 3. From a supergravity perspective one can
see this selection rule arising as follows. One computes n-point correlation functions using
n-point couplings in the three dimensional supergravity action, with the latter following from
the reduction of the ten-dimensional action on S3 × M4. Since a (1, 1) form integrates to
zero over M4, the three dimensional action only contains terms with an even number of fields
sα̃ associated with a given (1, 1) cycle α̃ on M4. Therefore non-zero n-point functions must
contain an even number of operators O(1,1)

α̃ , and so do corresponding multi-particle 3-point
functions obtained by taking coincident limits.

Expressed in terms of cohomology, allowed three point functions contain an even number of
(1, 1)α̃ cycles labeled by α̃. Thus in single particle correlators one can have processes such as
O(0,0) +O(1,1)

α̃ → O(1,1)
α̃ and O(1,1)

α̃ +O(1,1)
α̃ → O(2,2), but processes such as O(0,0) +O(1,1)

α̃ →
O(0,0) which involve an odd number of α̃ cycles are kinematically forbidden. This kinematical
selection rule for (1, 1) cycle conservation immediately explains why the operator O(1,1)

α̃k can
only acquire a vev when the curve F α̃(v) is non-vanishing: only then does the ground state
superposition contain operators OR(1,1)

α̃ such that the selection rule can be satisfied.

One can also easily see why the operator only acquires a vev if there are transverse excitations
as well. All Ramond ground states associated with the middle cohomology have zero R charge,
with the corresponding chiral primaries in the NS sector having the same charge jNS3 = 1

2
N .

Thus a superposition involving only O(1,1) operators has a definite R charge, and a charged
operator cannot acquire a vev. Including transverse excitations means that the superposition of
Ramond ground states contains charged operators, associated with the universal cohomology,
and does not have definite R charge. Therefore a charged operator can acquire a vev.

Thus, to summarize, the proposed map between curves and superpositions of R ground states
indeed reproduces the principal features of the holographic vevs. Using basic selection rules
for three point functions we have explained why the operators O(1,1)

α̃k acquire vevs only when
the curve F α̃(v) is non-zero and when there are excitations in R4. We will see below that using
reasonable assumptions for the three point functions we can also reproduce the selection rules
for vevs relating to frequencies on the curves. Before discussing the general case, however, it
will be instructive to consider a particular example.

(4.6.4) A SIMPLE EXAMPLE

Consider a fuzzball geometry characterized by a circular curve in the transverse R4 and one
additional internal curve, with only one harmonic of the same frequency:

F 1(v) =
µA

n
cos(2πn

v

L
); F 2(v) =

µA

n
sin(2πn

v

L
); F(v) =

µB

n
cos(2πn

v

L
), (4.104)

3Note that this selection rule was used for the computation of three point functions of single particle
operators in the orbifold CFT in [62].
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where µ =
√
Q1Q5/R and the D1-brane charge constraint (4.79) enforces

(A2 + 1
2
B2) = 1. (4.105)

The corresponding dual superposition of R ground states is then given by

|Ψ) =

N/n∑
l=0

Cl(OR(2,2)
n )l(OR(1,1)

1n )
N
n
−l |0〉 , (4.106)

Cl =

√
(N
n

)!

(N
n
− l)!l!

Al(
B√

2
)
N
n
−l,

with the operators being orthonormal in the large N limit. In the case that either A or B are
zero the superposition manifestly collapses to a single term. In the general case, this superpo-
sition gives the following for the expectation values of the R charges:

(
Ψ|jR3 |Ψ

)
=

(
Ψ|j̄R3 |Ψ

)
= 1

2

N/n∑
l=0

C2
l l; (4.107)

=
N

2n

N/n−1∑
l=0

(N
n
− 1)!

l!(N
n
− (l + 1))!

A2(l+1)(
B√

2
)2(N

n
−(l+1)) =

N

2n
A2.

Evaluating (4.89) for (4.104) gives〈
J±3

〉
=

N

2nR
A2(dy ± dt), (4.108)

and thus the integrated R charges defined in our conventions as

〈j3〉 =
1

2π

∫
dy
〈
J+3

〉
; 〈j̄3〉 =

1

2π

∫
dy
〈
J−3

〉
, (4.109)

agree with those of the superposition of R ground states.

The kinematical properties also match between the geometry and the proposed superposition.
In particular, when B 6= 0 the SO(2) symmetry in the 1-2 plane is broken: the harmonic
functions (K,A) depend explicitly on the angle φ in this plane. The asymptotic expansions
of these functions involve charged harmonics, and therefore charged operators acquire vevs
characterizing the symmetry breaking. More explicitly, the relevant terms in (4.83) are

f1
kI ∝

∫ L

0

dv(A2 +B2 sin2(
2πnv

L
))CIi1···ikF

i1 · · ·F ik ; (4.110)

AkI ∝
∫ L

0

dvB sin(
2πnv

L
))CIi1···ikF

i1 · · ·F ik .

Now the symmetric tensor of rank k and SO(2) charge in the 1-2 plane of ±m behaves as

((F 1)2 + (F 2)2)k−m(F 1 ± iF 2)m = (
µA

n
)ke±2πinm v

L . (4.111)

Note thatm is related to (j3, j̄3) viam = j3+j̄3. Thus, when B 6= 0, harmonics in the expansion
of f1 with charges |m| = 2 are excited, and terms with |m| = 1 are excited in the expansion
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of A. Following (4.101) the latter implies that the dimension k operators O(1,1)

1(km) only acquire
vevs when their SO(2) charge m in the 1-2 plane is ±1. In particular using (4.91) the vevs of
the dimension one operators are

〈O(1,1)

1(1±1)〉 = ∓i N
2πn

µAB, (4.112)

where the normalized degree one symmetric traceless tensors are
√

2(F 1 ± iF 2).

These properties are implied by the superposition (4.106). The latter is a superposition of states
with different R charge, and therefore it does break the SO(2) symmetry, with the symmetry
breaking being characterized by the vevs of charged operators. Moreover following (4.103) the
vev of O(1,1)

1(km) is given by∑
l,l′

C∗l Cl′〈(O(2,2)
n )l(O(1,1)

1n )
N
n
−l|O(1,1)

1(km)(µ)|(O(2,2)
n )l

′
(O(1,1)

1n )
N
n
−l′〉. (4.113)

For the dimension one operators, charge conservation reduces this to∑
l

C∗l±1Cl〈(O(2,2)
n )l±1(O(1,1)

1n )
N
n
∓1−l|O(1,1)

1(1±1)(µ)|(O(2,2)
n )l(O(1,1)

1n )
N
n
−l〉. (4.114)

Thus there are contributions only from neighboring terms in the superposition. Computing the
actual values of these vevs is beyond current technology: one would need to know three point
functions for single and multiple particle chiral primaries at the conformal point. However, as
in chapter 3, the behavior of the vevs as functions of the curve radii (A,B) can be captured
by remarkably simple approximations for the correlators, motivated by harmonic oscillators.
Suppose one treats the operators as harmonic oscillators, with the operator O(1,1)

1(11) destroying

oneO(1,1)
1n and creating oneO(2,2)

n . For harmonic oscillators such that [â, â†] = 1 the normalized
state with p quanta is given by |p〉 = (â†)p/

√
p!|0〉 and therefore â†|p〉 =

√
p+ 1|p + 1〉. Using

harmonic oscillator algebra for the operators gives

〈(O(2,2)
n )l+1(O(1,1)

1n )
N
n
−1−l|O(1,1)

1(11)(µ)|(O(2,2)
n )l(O(1,1)

1n )
N
n
−l〉 ≈ µ

√
(
N

n
− l)(l + 1). (4.115)

Then the corresponding vev in the superposition |Ψ) is

〈O(1,1)

1(11)〉Ψ = µ

N/n−1∑
l=0

c∗l+1cl

√
(
N

n
− l)(l + 1) = µ

N

n
AB, (4.116)

which has exactly the structure of (4.112). Given that such simple approximations (and factor-
izations) of the correlators reproduce the structure of the vevs so well, it would be interesting
to explore whether this relates to simplifications in the structure of the chiral ring in the large
N limit.

Next consider the vevs of dimension k operators. Using charge conservation and (1, 1) cycle
conservation in (4.113) implies that only operators with m odd can acquire a vev. To reproduce
the holographic result, that vevs are non-zero only when m = ±1, requires the assumption that
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only nearest neighbor terms in the superposition contribute to one point functions. This would
follow from a stronger selection rule for (1, 1) cycle conservation, that the number of (1, 1)

cycles in the in and out states differ by at most one. In particular, multi-particle processes such
as (O(1,1)

ãn )3 +O(1,1)
α̃n → (O(2,2)

n )3 would be forbidden. The selection rules for holographic vevs
suggest that there is indeed such cycle conservation, and it would be interesting to explore this
issue further.

Let us now return to the comment made below (4.100), that one may need to include a minus
sign in the dictionary for the distinguished curve. Such a minus sign would introduce factors of
(−1)N/n−l into the superposition (4.106), and thence an overall sign in the vevs of the associ-
ated operatorsO(1,1)

1(kI). This would naturally account for the relative sign difference between the
vevs associated with the distinguished curve and those associated with the remaining curves.
It is not conclusive that one needs such a minus sign without knowing the exact three point
functions and hence vevs. However such a sign change for oscillators associated with the direc-
tion distinguished by the duality would not be surprising. Recall that under T-duality of closed
strings right moving oscillators associated with the duality direction switch sign, whilst the left
moving oscillators and oscillators associated with orthogonal directions do not.

(4.6.5) SELECTION RULES FOR CURVE FREQUENCIES

Selection rules for charge and (1, 1) cycles are sufficient to reproduce the general structure of
the vevs. In the particular example discussed above, these rules also implied the selection rules
for the curve frequencies: operators acquire vevs only when the transverse and internal curves
have related frequencies.

Here we will note how, with reasonable assumptions, one can motivate the selection rules
for frequencies in the general case. Consider the computation of the vev of a dimension one
operator O(1,1)

α̃1 for a general superposition |Ψ) using (4.103). Using the selection rules for
charge and (1, 1) cycles, the contributions to (4.103) involve only certain pairs of operators
(OI ,OJ ). Their SO(2) charges must differ by (±1/2,±1/2) and they must differ by an odd
number of O(1,1)

α̃ operators.

Now let us make the further assumption that there are contributions to (4.103) only from pairs
of operators (OI ,OJ ) which differ by only one term, the relevant operators taking the form

OJ = O(p,q)
n OJ̃ , (4.117)

with OJ̃ being the same for in and out states, but the single operator O(p,q)
n differing between

in and out states. Thus we are assuming that the relevant three point functions factorize, with
the non-trivial part of the correlator arising from a single particle process.

This is indeed the structure of the three point functions arising in our example. Only nearest
neighbor terms in the superposition contribute in the computation of the vev of the dimension
one operator in (4.114). Moreover the m = ±1 charge selection rule for the vevs of higher
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dimension operators immediately follows from restricting to nearest neighbor terms in the
three-point functions. Note further that this factorization structure is present in the orbifold
CFT computation of the three point functions. The operator O(1,1)

α̃1 ≡ O(1,1)
α̃1 IN−1 is the identity

operator in (N − 1) copies of the CFT and thus only acts non-trivially in one copy of the CFT.

Consider the case of the vev of the operator with SO(2) charges (1/2, 1/2); it would take the
form ∑

I,J ,Ĩ

a∗IaJNĨ
(
〈(O(2,2)

n )†(∞)O(1,1)
α̃1 (µ)(O(1,1)

α̃n )(0)〉 (4.118)

+〈(O(1,1)
n )†(∞)O(1,1)

α̃1 (µ)(O(0,0)
α̃n )(0)〉

)
,

where NĨ is the norm of OĨ . Analogous expressions would hold for the dimension one oper-
ators with other charge assignments. Such a factorization would immediately explain the fre-
quency selection rule found in the holographic vevs obtained from supergravity (4.101). The
superposition contains operators of the form (4.117) with both (p, q) = (1, 1) and (p, q) 6= (1, 1)

only when the internal curve and the transverse curves share a frequency. Extending these ar-
guments to vevs of higher dimension operators would be straightforward, and would imply
selection rules for curve frequencies.

(4.6.6) FUZZBALLS WITH NO TRANSVERSE EXCITATIONS

Consider the case where the fuzzball geometry has only internal excitations, F i(v) = 0. Then
the corresponding dual superposition of ground states can involve only states built from the
operators OR(1,1)

αn . Any such state will be a zero eigenstate of both jR3 and j̄R3 . Furthermore,
such ground states associated with the middle cohomology account for a finite fraction of the
entropy of the D1-D5 system. In the case of K3 the total entropy behaves as

S = 2π

√
c

6
, (4.119)

with c = 24N . The ground states associated with the middle cohomology account for a central
charge c = 20N . In the case of T 4 the entropy behaves as (4.119) with c = 12N . The states
associated with the universal cohomology account for c = 4N , the odd cohomology accounts
for another c = 4N and the middle cohomology accounts for the final c = 4N .

Now let us consider the properties of the corresponding fuzzball geometry. When there are no
transverse excitations and no winding modes of the internal curves, the SO(4) symmetry in R4

is unbroken, and the defining harmonic functions (4.54) reduce to

H = 1 +
Q5

r2
; K =

Q1

r2
; (4.120)

with Ai = 0 and where Q1 is defined in (4.79). The solutions manifestly all collapse to the
standard (singular) D1-D5 solution and so, whilst one would need an exponential number of
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geometries (upon quantization) to account for dual ground states build from operators associ-
ated with the middle cohomology, one has only one singular geometry. Therefore the relevant
fuzzball solutions are not visible in supergravity: one needs to take into account higher order
corrections.

One can understand this from several perspectives. Firstly, as discussed above, R ground states
associated with the middle cohomology have zero R charge; they do not break the SO(4)

symmetry. A geometry which is asymptotically AdS3 × S3 for which the SO(4) symmetry is
exact can be characterized by the vevs of SO(4) singlet operators. The only such operators in
supergravity are the stress energy tensor, and the scalar operators listed in (4.76). Since the
vev of the stress energy tensor must be zero for the D1-D5 ground states, the geometry would
have to be distinguished by the vevs of the singlet operators given in (4.76).

Our results imply that these operators do not acquire vevs, and therefore within supergravity
(without higher order corrections) geometries dual to different R ground states associated with
the middle cohomology cannot be distinguished. The reason is the following. The SO(4) singlet
operators dual to supergravity fields are related to chiral primaries by the action of supercharge
raising operators; they are the top components of the multiplets. Thus these SO(4) singlet
operators cannot acquire vevs in states built from the chiral primaries. SO(4) singlet operators
associated with stringy excitations would be needed to characterize the different ground states.

A heuristic argument based on the supertube picture also indicates that geometries dual to
these ground states are not to be found in the supergravity approximation. The geometries
with transverse excitations in R4 can be viewed as a bound state of D1-D5 branes, blown up
by their angular momentum in the R4. Indeed, the characteristic size of the fuzzball geometry
is directly related to this angular momentum. The simplest example, related to a circular
supertube, is to take a geometry characterized by a circular curve; this is obtained by setting
B = 0 in (4.104). The characteristic scale of the geometry is

rc ∼ gsµ/n, (4.121)

where gs is the string coupling and µ has dimensions of length, whilst the (dimensionless)
angular momentum behaves as j12 = N/n, and thus rc ∼ gsµ(j12/N). Hence the size of the
D1-D5 bound state increases linearly with the angular momentum. A general fuzzball geometry
will of course not be as symmetric but nonetheless the characteristic scale averaged over the R4

is still related to the total angular momentum. In chapter 3 we noted that fuzzball geometries
dual to vacua for which the R charge is very small are not well described by supergravity. Here
we have found that this implies that an exponential number of geometries dual to a finite
fraction of the Ramond ground states, with strictly zero R charge, cannot be described at all in
the supergravity approximation.
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(4.7) IMPLICATIONS FOR THE FUZZBALL PROGRAM

In this section we will consider the implications of our results for the fuzzball program, focusing
in particular on whether one can find a set of smooth weakly curved supergravity geometries
which span the black hole microstates.

We have seen in the previous sections that the geometric duals of superpositions of R vacua
with small or zero R charge are not well-described in supergravity. The natural basis for R
ground states (4.95) uses states of definite R-charges, and it is therefore straightforward to
work out the density of ground states with given R-charges, dN,j3,j̄3 , with the total number of
ground states being given by dN =

∑
N,j3,j̄3

dN,j3,j̄3 . This computation is discussed in appendix
4.A.5 with the resulting density in the large N limit being

dN,j1,j2 ∼=
1

4(N + 1− j)31/4
exp

[
2π(2N − j)√
N + 1− j

]
1

cosh2( πj1√
N+1−j ) cosh2( πj2√

N+1−j )
, (4.122)

where j1 = (j3 + j̄3) and j2 = (j3 − j̄3) and j = |j1|+ |j2|. The key feature is that the number
of states with zero R charge differs from the total number of R ground states given in (4.203)
only by a polynomial factor:

dN,0,0 ∼= dN/N. (4.123)

The geometries dual to such ground states are unlikely to be well-described in supergravity,
and therefore the basis of black hole microstates labeled by R charges is not a good basis for
the geometric duals. This argument reinforces the discussion of chapter 3, where we showed
in detail that the geometric duals of specific states (in this basis) must be characterized by
very small vevs which cannot be reliably distinguished in supergravity; they are comparable in
magnitude to higher order corrections.

The geometries that are smooth in supergravity correspond to specific superpositions of the R
charge eigenstates, for which some vevs are atypically large. The natural basis for the field
theory description of the microstates is thus not the natural basis for the geometric duals.
This issue is likely to persist in other black hole systems. For example, the microstates of
the D1-D5-P system are also most naturally described as (j3, j̄3) eigenstates, with a relation
analogous to (4.123) holding, so the number of states with zero R-charge is suppressed only
polynomially compared to the total number of black hole microstates. Just as in the 2-charge
system discussed here, the geometric duals are related to supertubes whose radii depend on the
R-charges. States or superpositions of states which have small or zero R-charges are unlikely
to be well-described by supergravity solutions. Thus a given smooth supergravity geometry
should be described by a specific superposition of the black hole microstates. Identifying the
specific superpositions for known 3-charge geometries is an open and important question.

The issue is whether there exist enough such geometries, well-described and distinguishable in
supergravity, to span the entire set of black hole microstates. It seems unlikely that a basis exists
which simultaneously satisfies all three requirements. Firstly, on general grounds microstates
with small quantum numbers will not be well-described in supergravity. Even when considering
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superpositions that are well described by supergravity, to span the entire basis, one will have to
include superpositions which can only be distinguished by these small vevs. I.e. in choosing a
basis of geometries for which some vevs are sufficiently large for the supergravity description to
be valid one will find that some of these geometries cannot be distinguished among themselves
in supergravity.

We have already seen several examples of this problem in the 2-charge system. Let us parame-
terize the curves as

F i(v) = µ
∑
n

(αine
2πinv/L + (αin)∗e−2πinv/L); (4.124)

F β̃(v) = µ
∑
n

(αβ̃ne
2πinv/L + (αβ̃n)∗e−2πinv/L),

where µ =
√
Q1Q5/R and β̃ runs from 1 to h1,1(M4). The D1-brane charge constraint (4.57)

limits the total amplitude of these curves as∑
n

n2(
∣∣αin∣∣2 +

∣∣∣αβ̃n∣∣∣2) = 1. (4.125)

Thus in general increasing the amplitude in one mode, to make certain quantum numbers large,
decreases the amplitudes in the others. Moreover, the amplitude in a given mode is bounded
via |αn|2 ≤ 1/n2, and is thus is intrinsically very small for high frequency modes, which sample
vacua with large twist labels in the CFT. Note also that the vevs of R-charges are given in terms
of

jij = iN
∑
n

n(αin(αjn)∗ − αjn(αin)∗) (4.126)

As we have seen, to be describable in supergravity, geometries must have transverse R4 excita-
tions, and thus some large R-charges, requiring jij � 1. Combining (4.126) and (4.125) one
sees that this restricts the amplitudes of the internal excitations, and thus of the sampling of
the black hole microstates associated with the middle cohomology of M4.

Another way to understand the limitations of supergravity is to go back to the F1-P system
where the corresponding state is the coherent state |{αin}, {αβ̃m}). These states form a complete
basis of states, so we know that there is an F1-P geometry corresponding to every 1/2 BPS state.
However, only when all αin, αβ̃m are large are the geometries well-described and distinguishable
within supergravity. Indeed, the amplitudes αin, αβ̃m are also the root mean deviations of the
distribution around the mean (which is described by the classical curve), so only for large
αin, α

β̃
m is the classical string that sources the supergravity solution a good approximation of

the quantum state. Putting it differently, when some of the amplitudes are small the difference
in the solutions for different amplitudes is comparable with the error in the solutions due to
the approximation of the source by a classical string, so one cannot reliably distinguish them
within this approximation.

If one could not find a basis of distinguishable supergravity geometries spanning the mi-
crostates, one might ask whether a sufficiently representative basis exists. That is, suppose
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one chooses a single representative of the indistinguishable geometries, and assigns a measure
to this geometry. Then is the corresponding basis of weighted geometries sufficiently repre-
sentative to obtain the black hole properties? In the 2-charge system, the now complete set
of fuzzball geometries along with the precise mapping between these geometries and R vacua
allows these questions to be addressed at a quantitative level and we hope to return to this
issue elsewhere.

(4.A) APPENDIX

(4.A.1) CONVENTIONS

The following table summarises the indices used throughout this chapter. In some cases an
index is used more than once, with different meanings, in separate sections.

Index Range Usage
(m,n) 0, · · · , 9 10d sugra fields
(M,N) 0, · · · , 5 6d sugra fields
(µ, ν) 0, 1, 2 3d fields
(a, b) 1, 2, 3 S3 indices
(i, j) 1, 2, 3, 4 R4 indices
(ρ, σ) 1, 2, 3, 4 M4 indices
(µ̄, ν̄) 0, 1 2d fields
(α, β) 1, 2, 3 SU(2) vector index
(γ, δ) 1, · · · , b2 H2(M4)

(α̃, β̃) 1, · · · , h1,1 H1,1(M4)

(I, J) 1, · · · , 8 SO(8) vector
((c), (d)) 1, · · · , 16 heterotic vector fields
((a), (b)) 1, · · · , 24 SO(4, 20) vector
(A,B) 1, · · · , 26 SO(5, 21) vector
(m,n) 1, · · · , 5 SO(5) vector
(r, s) 6, · · · , (nt + 1) SO(nt) vector

FIELD EQUATIONS

The equations of motion for IIA supergravity are:

e−2Φ(Rmn + 2∇m∇nΦ− 1

4
H(3)
mpqH

(3)pq
n )− 1

2
F (2)
mpF

(2)p
n − 1

2 · 3!
F (4)
mpqrF

(4)pqr
n

+
1

4
Gmn(

1

2
(F (2))2 +

1

4!
(F (4))2) = 0, (4.127)

4∇2Φ− 4(∇Φ)2 +R− 1

12
(H(3))2 = 0,
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dH(3) = 0, dF (2) = 0, ∇mF (2)mn − 1

6
H(3)
pqrF

(4)npqr = 0,

∇m(e−2ΦH(3)mnp)− 1

2
F (2)
qr F

(4)qrnp − 1

2 · (4!)2
εnpm1···m4n1···n4F

(4)
m1···m4F

(4)
n1···n4 = 0,

dF (4) = H(3) ∧ F (2), ∇mF (4)mnpq − 1

3! · 4!
εnpqm1···m3n1···n4H

(3)
m1···m3F

(4)
n1···n4 = 0.

The corresponding equations for type IIB are:

e−2Φ(Rmn + 2∇m∇nΦ− 1

4
H(3)
mpqH

(3)pq
n )− 1

2
F (1)
m F (1)

n − 1

4
F (3)
mpqF

(3)pq
n − 1

4 · 4!
F (5)
mpqrsFn

(5)pqrs

+
1

4
Gmn((F (1))2 +

1

3!
(F (3))2) = 0,

4∇2Φ− 4(∇Φ)2 +R− 1

12
(H(3))2 = 0,

dH(3) = 0, ∇m(e−2ΦH(3)mnp)− F (1)
m F (3)mnp − 1

3!
F (3)
mqrF

(5)mqrnp = 0, (4.128)

dF (1) = 0, ∇mF (1)m +
1

6
H(3)
pqrF

(3)pqr = 0,

dF (3) = H(3) ∧ F (1), ∇mF (3)mnp +
1

6
H(3)
mqrF

(5)mqrnp = 0,

dF (5) = d(∗F (5)) = H(3) ∧ F (3),

where the Hodge dual of a p-form ωp in d dimensions is given by

(∗ωp)i1···id−p =
1

p!
εi1···id−pj1···jpω

j1···jp
p , (4.129)

with ε01···d−1 =
√
−g. The RR field strengths are defined as

F (p+1) = dC(p) −H(3) ∧ C(p−2). (4.130)

The equations of motion for the heterotic theory are:

4∇2Φ− 4 (∇Φ)2 +R− 1

12
(H(3))2 − α′(F (c))2 = 0,

∇m
(
e−2ΦH(3)mnr

)
= 0,

Rmn + 2∇m∇nΦ− 1

4
H(3)mrsH(3)n

rs − 2α′F (c)mrF (c)n
r = 0,

∇m
(
e−2ΦF (c)mn

)
+ 1

2
e−2ΦH(3)nrsF (c)

rs = 0.

F
(c)
mn with (c) = 1, · · · 16 are the field strengths of Abelian gauge fields V (c)

m ; we consider here
only supergravity backgrounds with Abelian gauge fields. This restriction means that the gauge
field part of the Chern-Simons form in H3,

H(3) = dB(2) − 2α′ω3(V ) + · · · , (4.131)

does not play a role in the supergravity solutions, nor does the Lorentz Chern-Simons term
denoted by the ellipses.
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DUALITY RULES

The T-duality rules for RR fields were derived in [83] by reducing type IIA and type IIB super-
gravities on a circle and relating the respective RR potentials in the 9-dimensional theory. How-
ever, for calculations involving magnetic sources, it is more convenient to work with T-duality
rules for RR field strengths, since potentials can only be defined locally. In the following we
will rederive the T-duality rules in terms of RR field strengths.

It is slightly easier although not necessary to use the democratic formalism of IIA and IIB
supergravity introduced in [75]. In this formalism one includes p-form field strengths for p > 5

with Hodge dualities relating higher and lower-form field strengths being imposed in the field
equations. This formalism is natural when both magnetic and electric sources are present;
moreover there is no need for Chern-Simons terms in the field equations. The RR part of the
(pseudo)-action is simply

SRR = − 1

2κ2
10

∫
d10x
√
−g
∑
q

1

4q!
(F (q))2, (4.132)

where q = 2, 4, 6, 8 is even in the IIA case and q = 1, 3, 5, 7, 9 is odd in the IIB case. The field
strengths are defined as F (q) = dC(q−1) −H(3) ∧ C(q−3) for q ≥ 3 and Fq = dC(q−1) for q < 3.
The Hodge duality relation between higher and lower form field strengths in our conventions
is

∗ F (q) = (−1)b
q
2
cF (10−q), (4.133)

where bnc denotes the largest integer less or equal to n.

Now to compactify on a circle the ten-dimensional metric can be parameterized as

ds2 = e2ψ(dy −Aµdxµ)2 + ĝµνdx
µdxν , (4.134)

where y denotes the compact direction, and 9-dimensional quantities will be denoted as hatted.
An economic way to derive the T-duality rules for the field strengths is the following. Choose
the vielbein to be

ey = eψ(dy −Aµdxµ); eµ = êµ, (4.135)

where µ denotes a tangent space index, and êµ is the 9-dimensional vielbein. Now reduce the
field strengths (in the tangent frame) as

F̂ (q)
µ

1
...µ

q
= F (q)

µ
1
...µ

q
, F̂ (q−1)

µ
1
...µ

q−1
= F (q)

µ
1
...µ

q−1
y. (4.136)

The corresponding 9-dimensional action for the field strengths is given by

SRR = − 2πR

2κ2
10

∫
d9x
√
−ĝ

9∑
q=1

1

4q!
eψF̂ 2

q . (4.137)

Since ψIIA = −ψIIB under T-duality, one can read from this action the transformation rules
for field strengths in 10d:

F̃
(q+1)
µ

1
···µ

q
y = eψF

(q)
µ

1
···µ

q
, (4.138)

F̃ (q+1)
µ

1
...µ

q+1
= eψF (q+2)

µ
1
...µ

q+1
y.
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Here q even defines IIB fields in terms of IIA fields and q odd defines IIA in terms of IIB. Note
that the field strengths on both sides are in the tangent frame. Given the T-duality rules for
NSNS fields

eψ̃ = e−ψ, Ãµ = B(2)
yµ , B̃(2)

ym = Am, (4.139)

B̃(2)
mn = B(2)

mn + 2A[mB
(2)

n]y, Φ̃ = Φ− ψ,

with the metric gmn invariant, one can easily convert (4.138) back into

F (q)
m1...mq = F (q+1)

m1...mqy − q(−1)qB
(2)

y[m1
F

(q−1)

m2...mq ] + q(q − 1)B
(2)

y[m1
Am2F

(q−1)

m3...mq ]y

F (q)
m1...mq−1y = F (q−1)

m1...mq−1
− (q − 1)(−1)qA[m1

F
(q−1)

m2...mq−1]y. (4.140)

Strictly speaking, this gives the duality rules in the democratic formalism. However we can
obtain the usual rules by simply dropping the (p > 5)-form field strengths as long as we make
sure to self-dualise F (5) in each IIB solution.

The S duality rules for type IIB are

τ̃ = − 1

τ
, B̃(2) = C(2), C̃(2) = −B(2),

F̃ (5) = F (5), G̃mn = |τ |Gmn, (4.141)

where τ = C(0) + ie−Φ.

(4.A.2) REDUCTION OF TYPE IIB SOLUTIONS ON K3

The reduction of type IIB onK3 is very similar to the reduction of type IIA, which was discussed
in some detail in [84]. In the following we will use the reduction of the NS-NS sector fields
given in [84], and derive the reduction of the type IIB RR fields. Let us first review the reduction
of the NS-NS sector. Starting from the ten-dimensional action

SNS =
1

2κ2
10

∫
d10x

√
−ĝ
(
e−2Φ̂(R̂+ 4(∂Φ̂)2 − 1

12
Ĥ2

3 )

)
, (4.142)

where ten-dimensional fields are denoted by hats, the corresponding six-dimensional field
equations can be derived from the action [84]

S =
1

2κ2
6

∫
d6x
√
−ge−2Φ

(
R+ 4(∂Φ)2 − 1

12
H2

3 +
1

8
tr(∂M−1∂M)

)
, (4.143)

where the six-dimensional fields are defined as follows. Firstly the 10-dimensional 2-form
potential is reduced as

B̂(2)(x, y) = B2(x) + bγ(x)ωγ2 (y), (4.144)

where (x, y) are six-dimensional and K3 coordinates respectively and the two forms ωγ2 with
γ = 1, · · · 22 span the cohomology H2(K3,R). The 2-forms ωγ2 transform under an O(3, 19)

symmetry, with a metric defined by the 22-dimensional intersection matrix

dγδ =
1

(2π)4V

∫
K3

ωγ2 ∧ ω
δ
2, (4.145)
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where (2π)4V is the volume of K3. A natural choice for dγδ is

dγδ =

(
I3 0

0 −I19

)
, (4.146)

corresponding to a diagonal basis for the 3 self-dual and 19 anti-self dual two forms of K3.
Furthermore, there is a matrix Dδ

γ defined by the action of the Hodge operator

∗K3
4 ωγ2 = ωδ2D

δ
γ , (4.147)

which is dependent on the K3 metric and satisfies

Dγ
δD

δ
ε = δγ ε, Dε

δdεζD
ζ
γ = dδζ . (4.148)

The SO(4, 20) matrix of scalars M−1
(a)(b) was derived in [84] to be

M−1 = ΩT2

 e−ρ + bγbδdγεD
ε
δ + 1

4
eρb4 1

2
eρb2 1

2
eρb2bγdγδ + bγdγεD

ε
δ

1
2
eρb2 eρ eρbγdγδ

1
2
eρb2bγdγδ + bγdγεD

ε
δ eρbγdγδ eρbεdεγb

ζdζδ + dγεD
ε
δ

Ω2, (4.149)

with b2 ≡ bγbδdγδ. Here ρ is the breathing mode of K3, e−ρ = 1
(2π)4V

∫
K3
∗41. The six-

dimensional dilaton is related to the 10-dimensional dilaton via Φ = Φ̂ + ρ/2.

The dimensional reduction of the NS sector makes manifest only an SO(4, 20) subgroup of
the full SO(5, 21) symmetry. Including the reduction of the RR sector should thus give the
equations of motion following from the six-dimensional string frame action, which for IIB was
given in (4.38)

S =
1

2κ2
6

∫
d6x
√
−g
{
e−2Φ

(
R+ 4(∂Φ)2 +

1

8
tr(∂M−1∂M)

)
+

1

2
∂l(a)M−1

(a)(b)∂l
(b)

−1

3
GAMNPM−1

ABG
BMNP

}
,

and in which only an SO(4, 20) subgroup of the total SO(5, 21) symmetry is manifest; recall that
M−1

AB here is an SO(5, 21) matrix, with M−1
(a)(b) being SO(4, 20). Note that the six-dimensional

coupling is related to the ten-dimensional coupling via (2π)4V (2κ2
6) = 2κ2

10, where (2π)4V is
the volume of K3.

Following the same steps as [84] the RR potentials can be reduced as

Ĉ(0)(x, y) = C0(x), Ĉ(2)(x, y) = C2(x) + cγ(0,2)(x)ωγ2 (y), (4.150)

Ĉ(4)(x, y) = C4(x) + cγ(2,4)(x) ∧ ωγ2 (y) + c(0,4)(x)(eρ ∗K3 1)(y),
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where ∗K3 denotes the Hodge dual in the K3 metric and the corresponding field strengths are

F̂ (1)(x, y) = F1(x), (4.151)

F̂ (3)(x, y) = dC2(x)− C0(x)H3(x) +
(
dcγ(0,2)(x)− C0(x)dbγ(x)

)
ω2(y) ≡ F3 +Kγ

1 ∧ ω
γ
2 ,

Ĥ(3)(x, y) = dB2(x) + dbγ(x) ∧ ωγ2 (y) ≡ H3 + dbγ ∧ ωγ2 ,

F̂ (5)(x, y) = dC4(x)− C2(x) ∧H3(x) +
(
dcγ(2,4)(x)− C2(x)dbγ(x)− cγ(0,2)(x)H3(x)

)
∧ ωγ2 (y)

+
(
dc(0,4)(x)− cγ0,2(x)dbδ(x)dγδ

)
∧ (eρ(x) ∗K3 1)(y)

≡ F5 +Kγ
3 ∧ ω

γ
2 + F̃1 ∧ eρ ∗K3 1.

The reduction of the potentials thus gives two three form field strengths H3 and F3, 3 self-dual
and 19 anti-self dual three form field strengths Kγ

3 and 46 scalars bγ , cγ(0,2), c(0,4) and C0. After
splitting the three forms H3 and F3 into their self-dual and anti-self-dual parts, we obtain 5
self-dual and 21 anti-self dual tensors in total, as described in [85].

It is then straightforward to obtain the map relating six and ten-dimensional fields by inserting
the expressions (4.150) and (4.151) into the ten-dimensional field equations (4.128). The
additional RR scalars are contained in

l(a) = ΩT2

 C0

c̃(0,4)

c̃γ(0,2)

 , (4.152)

with Ω2 defined in the appendix 4.A.2 and the shifted fields defined as

c̃γ(0,2) = cγ(0,2) − C0b
γ , (4.153)

c̃(0,4) = c(0,4) − bγcδ(0,2)dγδ +
1

2
b2C0.

The fields Φ, l(a) and the SO(4, 20) matrix M−1 given in (4.149) can be recombined into the
SO(5, 21) matrixM−1 = V TV , with the latter conveniently expressed in terms of the vielbein

V = ΩT4


e−Φ 0 0 0 0

−eΦ(C0c(0,4) − 1
2
c2(0,2)) eΦ −eΦc̃(0,4) −eΦC0 eΦc̃γ(0,2)dγδ

e−ρ/2C0 0 e−ρ/2 0 0

eρ/2c(0,4) 0 1
2
eρ/2b2 eρ/2 eρ/2bγdγδ

Ṽδγc
γ
(0,2) 0 Ṽδγb

γ 0 Ṽγδ

Ω4. (4.154)

Here the SO(3, 19) vielbein Ṽαβ is defined by dαβDβ
γ = ṼαβṼβγ , c2(0,2) ≡ cγ(0,2)c

δ
(0,2)dγδ and

the matrix Ω4 is defined in the appendix 4.A.2. The six-dimensional tensor fields are related to
the ten-dimensional fields as

H1
3 =

e−Φ

4
(1 + ∗6)H3, H

α++1

3 = − 1√
8

(Ṽ K3)α+ , (4.155)

H5
3 = −e

−ρ/2

4
(1 + ∗6)F3, H6

3 = −e
−ρ/2

4
(1− ∗6)F3,

H
α−+3

3 = − 1√
8

(Ṽ K3)α− , H26
3 =

e−Φ

4
(1− ∗6)H3.
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Here α+ = 1, 2, 3 and α− = 4, · · · 22, labeling the self dual and anti-self dual forms respec-
tively. Note that using formulas (4.154) and (4.155) to lift a six-dimensional solution to ten
dimensions requires a specific choice of six-dimensional vielbein.

The solutions we find have Dγ
δ = dγδ; this implies the identity

(ω
α−
2 )ρσ(ω

β−
2 ) σ

τ = 1
2
gρτδ

α−β− , (4.156)

where (ρ, τ) are K3 coordinates and gρτ is the K3 metric. As discussed in [86], a choice of
Dγ

ε fixes the complex structure completely and implies (ωγ2 )ρσ(ωδ2)ρσ = Dε
δdγε. Varying this

identity with respect to the metric results in (4.156).

S-DUALITY IN 6 DIMENSIONS

Given the map between 10-dimensional and 6-dimensional fields, we can now obtain the action
of S-duality on 6-dimensional fields as part of the SO(5, 21) symmetry:

G3 → OSG3, M−1 → OSM−1OTS , (4.157)

where

(OS)ij =

 0 0 −1

0 I3 0

1 0 0

 , (OS)rs =

 0 0 1

0 I19 0

−1 0 0

 , (4.158)

Moreover one can perform an SO(5) × SO(21) transformation to bring the vielbein of the S-
dual solution back to the form used by the 10-dimensional lift. Including this transformation,
H3 and V transform as

H3 → OGH3, V → OGV O
T
S , (4.159)

with

(OG)ij =
1

|τ |

 C0 0 −eΦ̂

0 I3 0

eΦ̂ 0 C0

 , (OG)rs =
1

|τ |

 C0 0 −eΦ̂

0 I19 0

eΦ̂ 0 C0

 , (4.160)

where τ = C0 + ie−Φ̂, Φ̂ = Φ− ρ/2 is the 10-dimensional dilaton and the fields C0 and eΦ̂ are
the original ones taken before the S-duality.

BASIS CHANGE MATRICES

In defining six-dimensional supergravities there are implicit choices of constant SO(p, q) matri-
ces. When discussing the compactification from the ten to six dimensions, the most convenient
choices for these matrices are certain off-diagonal forms, see for example [34, 79, 77, 78, 81,
80]. When one is interested in specific solutions of the six-dimensional supergravity equations,
such as AdS3 × S3 solutions, and deriving the spectrum in such backgrounds, it is rather more
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convenient to use diagonal choices for these matrices, see for example [55, 24]. In this chapter
we both compactify from ten to six dimensions, and expand six-dimensional solutions about a
given background. We therefore find it most convenient to use diagonal choices for the constant
matrices. To use previous results on compactification and T-duality, we need to apply certain
similarity transformations. For the most part these may be implicitly written in terms of basis
change matrices, so that compactification and duality formulas remain as simple as possible.
Thus let us define matrices Ω1 and Ω2 for SO(4, 20), and Ω3 and Ω4 for SO(5, 21) via:

ΩT1

 vρ

wρ

x(c)

 =


1√
2
(vρ − wρ)

1√
2
(vρ + wρ)

x(c)

 , ΩT3

 v

w

x(a)

 =


1√
2
(v − w)

x(a)

1√
2
(v + w)

 ,(4.161)

ΩT2


v

w

xα

yα−

 =


xα

1√
2
(v − w)

1√
2
(v + w)

yα−

 , ΩT4



v1

w1

v2

w2

xα

yα−


=



1√
2
(v1 − w1)

xα

1√
2
(v2 − w2)

1√
2
(v2 + w2)

yα−

1√
2
(v1 + w1)


,

where ρ = 1, · · · 4, (c) = 1, · · · 16, (a) = 1, · · · 24, α = 1, 2, 3 and α− = 1, · · · 19. These satisfy
the conditions:

Ω1

 0 −I4 0

−I4 0 0

0 0 −I16

ΩT1 =

(
I4 0

0 −I20

)
, (4.162)

Ω2

 σ1 0 0

0 I3 0

0 0 −I19

ΩT2 =

(
I4 0

0 −I20

)
,

Ω3

 σ1 0 0

0 I4 0

0 0 −I20

ΩT3 =

(
I5 0

0 −I21

)
,

Ω4


σ1 0 0 0

0 σ1 0 0

0 0 I3 0

0 0 o −I19

ΩT4 =

(
I5 0

0 −I21

)
.

Here σ1 is the Pauli matrix

(
0 1

1 0

)
.

(4.A.3) PROPERTIES OF SPHERICAL HARMONICS

Scalar, vector and tensor spherical harmonics satisfy the following equations

�Y I = −ΛkY
I , (4.163)
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�Y Iva = (1− Λk)Y Iva , DaY Iva = 0,

�Y It(ab) = (2− Λk)Y It(ab), DaY Itk(ab) = 0,

where Λk = k(k + 2) and the tensor harmonic is traceless. It will often be useful to explic-
itly indicate the degree k of the harmonic; we will do this by an additional subscript k, e.g.
degree k spherical harmonics will also be denoted by Y Ik , etc. � denotes the d’Alambertian
along the three sphere. The vector spherical harmonics are the direct sum of two irreducible
representations of SU(2)L × SU(2)R which are characterized by

εabcD
bY cIv± = ±(k + 1)Y Iv±a ≡ λkY Iv±a . (4.164)

The degeneracy of the degree k representation is

dk,ε = (k + 1)2 − ε, (4.165)

where ε = 0, 1, 2 respectively for scalar, vector and tensor harmonics. For degree one vector
harmonics Iv is an adjoint index of SU(2) and will be denoted by α. We use normalized
spherical harmonics such that∫

Y I1Y J1 = Ω3δ
I1J1 ;

∫
Y aIvY Jva = Ω3δ

IvJv ;

∫
Y (ab)ItY Jt(ab) = Ω3δ

ItJt , (4.166)

where Ω3 = 2π2 is the volume of a unit 3-sphere. We define the following triple integrals as∫
Y IY JY K = Ω3aIJK ; (4.167)∫

(Y α±1 )aY j1 DaY
i
1 = Ω3e

±
αij ; (4.168)

(4.A.4) INTERPRETATION OF WINDING MODES

In the fundamental string supergravity solutions (4.1) the null curves describing the motion of
the string along a torus direction xρ (whose periodicity is 2πRρ) could have winding modes
such that Fρ(v) = wρRρv/Ry, with wρ integral. Consider now the correspondence with quan-
tum string states. Such winding modes are not consistent with both supersymmetry and mo-
mentum and winding quantization for a string propagating in flat space, with no B field. Recall
that the zero modes of a worldsheet compact boson field can be written as

X(σ+, σ−) = x+
1

2
(α′

p

R
+ nR)σ+ +

1

2
(α′

p

R
− nR)σ− ≡ x+ w̃σ+ + wσ−, (4.169)

where R is the radius and (p, n) are the quantized momentum and winding respectively; note
that we define σ± = (τ ± σ). BPS left-moving states with no right-moving excitations have
w = 0 and hence α′p = −nR2. However the latter condition has no solutions at generic radius
and so states with winding along the torus directions cannot be BPS. Therefore winding modes
should not be included to describe the F1-P states and corresponding dual D1-D5 ground states
of interest here.
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Now consider switching on constant B(2)
ρv ≡ bρ on the worldsheet. The constant B field shifts

the momentum charges, and thus there are BPS left-moving states with winding around the
torus directions. To be more precise, following the discussion of chapter 3, one can describe
a string with left-moving excitations using a null lightcone gauge. The relevant terms in the
worldsheet fields are then

V = wvσ−; U = wuσ− + w̃uσ+ +
∑
n

1√
n
a−n e

−inσ− ; (4.170)

XI = δIρw
Iσ− +

∑
n

1√
n
aIne
−inσ− ,

where winding modes are included only along torus directions, labeled by ρ. The L0 constraint
implies

wvwu = (wρ)2 + 2
∑
n>0

|n|aInaI−n ≡ (wv)2|∂VXI |20, (4.171)

where |A|0 denotes the projection onto the zero mode. The momentum and winding charges
are given by

Pm =
1

4π

∫
dσ(∂τX

m +B(2)
mn∂σX

n); Wm =
1

2π

∫
dσ∂σX

m, (4.172)

respectively, where α′ = 2. Requiring no winding in the time direction and no momentum
along the xρ directions imposes w̃u = wu +wv and wρ = bρw

v. The conserved momentum and
winding charges are then

PM = 1
2
wv
(

(1 + |∂VXI |20 + b2ρ), (|∂VXI |20 − b2ρ), 0
)

; WM = wv(0, 1, 0, bρ). (4.173)

Note that the integral quantized momentum charge py along the y direction is therefore

py = Ry(wu − (wv)−1(wρ)2). (4.174)

Now consider the solitonic string supergravity solution (4.1) with defining curves F I(v) where
F ρ(v) = bρv + F̄ ρ(v), with F̄ ρ(v) having no zero mode. The ADM charges of this solitonic
string were computed in [34], and are given by

PMADM = kQ
(

(1 + |∂vF I |20), |∂vF I |20, 0, bρ
)
, (4.175)

where the effective Newton constant is k = Ω3Ly/2κ
2
6. When bρ = 0 these charges match the

worldsheet charges (4.173) provided that wv = 2kQ as in [34] but when bρ 6= 0 they do not
quite agree with the worldsheet charges. The reason is that in the supergravity solution B

(2)
ρv

approaches zero at infinity, but to match with the constant B(2)
ρv background on the worldsheet,

B
(2)
ρv should approach bρ at infinity. This can be achieved via a constant gauge transformation

Aρ → Aρ−bρ, combined with a coordinate shift u→ u+2bρx
ρ. The ADM charges of this shifted

background indeed exactly match the worldsheet charges (4.173). The harmonic functions Aρ
then take the form

Aρ = −bρH −
Q

Ly

∫ Ly

0

dv
∂vF̄

ρ

|x− F |2 , (4.176)
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where in the latter expression |x − F |2 denotes
∑

i(x
i − F i(v))2; the harmonic function has

been smeared over the T 4 and the y circle. Note that when F i(v) = 0 the supergravity solution
collapses to

ds2 = H−1dv(−du+Kdv) + dxIdxI ; K = (1 +
Q|∂vF ρ|20

r2
), (4.177)

e−2Φ = H ≡ (1 +
Q

r2
); B(2)

uv = 1
2
(H−1 − 1); B(2)

vρ = −bρ.

This is the naive SO(4) invariant F1-P solution, with an additional constant B field. Finally let
us note that one can similarly switch on winding modes for the curves q(c)(v) characterizing
the charge waves in the heterotic solution (4.16) by including constant A(c)

v on the worldsheet.

Now let us consider solutions in the D1-D5 system, and the interpretation of including winding
modes of the internal curves. In particular, it is interesting to note that the general SO(4)

invariant solutions include harmonic functions

A = ao +
a

r2
; Aα− = a

α−
o +

aα−

r2
, (4.178)

in addition to the harmonic functions (H,K) given in (4.120). The non-constant terms in these
harmonic functions are related to the winding modes of the internal curves, with the quantities
aα̃ = (a, aα−) being given by

a = −Q5

L

∫ L

0

dvḞ(v); aα− = −Q5

L

∫ L

0

dvḞα−(v). (4.179)

Following the duality chain, these constants are given by aα̃ = −Q5b
α̃ where for the T 4 case

bα̃ ≡ B(2)
ρv = bρ and for the K3 case bα̃ ≡ (B

(2)
ρv = bρ, A

(c)
v = b(c)). The constant terms (ao, a

α−
o )

are related to the boundary conditions at asymptotically flat infinity, as we will discuss below.

When these functions (A,Aα−) are non-zero, the geometry generically differs from the naive
D1-D5 geometry. The functions (f1, f̃1) appearing in the metric behave as

f̃1 = 1 +
Q1

r2
− (1 +

Q5

r2
)−1

(
(ao +

a

r2
)2 + (a

α−
o +

aα−

r2
)2

)
f1 = 1 +

Q1

r2
− (1 +

Q5

r2
)−1

(
(a
α−
o +

aα−

r2
)2

)
. (4.180)

In the decoupling limit these functions become

f̃1 → r−2(Q1 −Q−1
5 (a2 + aα−aα−)) ≡ q̃1

r2
; f1 → r−2(Q1 −Q−1

5 (aα−aα−)) ≡ q1
r2
, (4.181)

and thus (ao, a
α−
o ) drop out. Note that q̃1 corresponds to the conserved momentum charge in

the F1-P system (4.174). Substituting the decoupling region functions into (4.51), one finds
that the near horizon region of the solution is AdS3 × S3 ×M4, supported by both F (3) and
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H(3) flux:

ds2 =
r2√q1
q̃1
√
Q5

(−dt2 + dy2) +
√
q1Q5(

dr2

r2
+ dΩ2

3) +

√
q1√
Q5

ds2
M4 ; (4.182)

e2Φ =
q2
1

Q5q̃1
, F

(3)
tyr = −2r

q̃1
, F

(3)
Ω3

= 2q−1
1 q̃1Q5;

H
(3)
tyr = 2aQ−1

5 q̃−1
1 r, H

(3)
Ω3

= −2a.

The field strengths F (1) and F (5) vanish, but there are non-vanishing potentials:

B(2)
ρσ =

√
2Q−1

5 aα−ω
α−
ρσ , C(0) = −q−1

1 a, C(4)
ρστπ = Q−1

5 aερστπ; (4.183)

C
(4)
tyαβ = a(1 + q̃−1

1 r2)εαβ , C
(4)
αβρσ = 2

√
2εαβa

α−ω
α−
ρσ , C

(4)
tyρσ =

√
2Q−1

5 aα−ω
α−
ρσ ,

where ε is a 2-form such that dε is the volume form of the unit 3-sphere. The conserved charges
therefore include Chern-Simons terms; using the equations of motion (4.128) one finds that
they are given by

D5 : Q5 = 1
2

∫
S3

(F (3) +H(3)C(0));

D1 : q̃1 = 1
2

∫
S3×M4

(∗F (3) +H(3) ∧ C(4)); (4.184)

D3 : aα− =
1

2
√

2

∫
S3×ωα−

B(2) ∧ (F (3) +H(3)C(0));

NS5 : a = − 1
2

∫
S3

H(3),

where we drop terms which do not contribute to the charges. The curvature radius of the
AdS3 × S3 is l = (q1Q5)1/4, and the three-dimensional Newton constant is

1

2G3
=

8πV4Ω3

κ2
10

q̃1
q1

(q1Q5)3/4, (4.185)

with the volume of M4 being (2π)4V and 2κ2
10 = (2π)7(α′)4. Then using [30, 13] the central

charge of the dual CFT is

c =
3l

2G3
= 6

V

(α)′4
q̃1Q5 ≡ 6ñ1n5 (4.186)

where the integral charges (ñ1, n5) are given by

Q5 = α′n5; q̃1 =
(α′)3ñ1

V
. (4.187)

Now consider the relation between this system and the F1-P system discussed previously. The
conserved charges here are (Q5, q̃1, a, a

α−), which correspond to the winding, momentum
along the y circle and winding along the internal manifold in the original system. The fact
that (a, aα−) measure NS5-brane and D3-brane charges in the final system is consistent with
the duality chains from the F1-P systems: applying the standard duality rules along the chains
given in (4.6),(4.7) and (4.19), one indeed finds that the original winding charges become
NS5-brane and D3-brane charges.
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Finally let us comment on the constant terms in the harmonic functions, (ao, a
α−
o ). These

clearly determine the behavior of the solution at asymptotically flat infinity: the B field and
RR potentials at infinity depend on them. Now consider how these constant terms can be
described in the CFT. In the context of the pure D1-D5 system it was noted in chapter 3 that
(infinitesimal) constant terms in the harmonic functions (f1, f5) can be reinstated by making
(infinitesimal) irrelevant deformations of the CFT by SO(4) singlet operators. See also [57] for
a related discussion in the context of the AdS5/CFT4 correspondence. It seems probable that
a similar interpretation would hold here: the (nt − 1) parameters (ao, a

α−
o ) (where nt = 5, 21

for T 4 and K3 respectively) would be related to the parameters of deformations of the CFT
by irrelevant SO(4) singlet operators. In total taking into account these (nt − 1) zero modes,
plus the two constant terms in the (f1, f5) harmonic functions, one gets (nt + 1) parameters.
This agrees exactly with the count of the number of irrelevant SO(4) singlet operators4. How
to describe these deformations in the field theory beyond the infinitesimal level is not known,
however.

(4.A.5) DENSITY OF GROUND STATES WITH FIXED R CHARGES

In this appendix we will derive an asymptotic formula for the number of R ground states with
given R charges. Our derivation follows closely that of [87] for the density of fundamental
string states with a given mass and angular momentum. In fact, we will consider the case of
K3, so the relevant counting is precisely that of the density of left moving heterotic string states
with a given excitation level N and (commuting) angular momenta (j12, j34) in the transverse
R4. For this purpose we can consider the following Hamiltonian

H =

∞∑
n=1

 24∑
(a)=1

α
(a)
−nα

(a)
n

+ λ1j
1 + λ2j

2, (4.188)

where (λ1, λ2) are Lagrange multipliers and

j1 = j12 = −i
∞∑
n=1

n−1(α1
−nα

2
n−α2

−nα
1
n); j2 = j34 = −i

∞∑
n=1

n−1(α3
−nα

4
n−α4

−nα
3
n). (4.189)

Here the oscillators satisfy the standard commutation relations, namely
[
α

(a)
n , α

(b)
m

]
= nδn+mδ

(a)(b).
In [87] the partition function was computed in the case λ2 = 0, and thus the partition function
of interest here can be computed by generalizing their results. The first step is to diagonalize
the Hamiltonian by introducing combinations

a12
n =

1√
2n

(α1
n + iα2

n); b12
n =

1√
2n

(α1
n − iα2

n) (4.190)

4Such deformations may also be related to the attractor flow of moduli; this idea was used for the non-
renormalization theorem of [74].
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and analogously (a34
n , b

34
n ). Then the Hamiltonian takes the form

H =

∞∑
n=1

 24∑
(a)=5

α
(a)
−nα

(a)
n + (n− λ1)(a12

n )†a12
n + (n+ λ1)(b12

n )†b12
n (4.191)

+(n− λ2)(a34
n )†a34

n + (n+ λ2)(b34
n )†b34

n

)
The partition function Z = Tr(e−βH) is then

Z =

∞∏
n=1

[
(1− wn)−20(1− c1wn)−1(1− c−1

1 wn)−1(1− c2wn)−1(1− c−1
2 wn)−1

]
(4.192)

with w = e−β and c1 = eβλ1 , c2 = eβλ2 . To estimate the asymptotic density of states, one as
usual expresses the partition function in terms of modular functions and then uses the modular
transformation properties. Here one needs the Jacobi theta function

θ1(z|τ) = 2f(q2)q1/4 sin(πz)

∞∏
n=1

(1− 2q2n cos(2πz) + q4n), (4.193)

with

f(q2) =

∞∏
n=1

(1− q2n), q = eiπτ , (4.194)

and the modular transformation property

θ1(− z
τ
| − 1

τ
) = eiπ/4

√
τeiπz

2/τθ1(z|τ) (4.195)

Rewriting the partition function in terms of the modular functions, applying this modular trans-
formation and then taking the high temperature limit results in

Z(β, λ1, λ2) = Cβ12e4π2/β λ1λ2

sin(πλ1) sin(πλ2)
, (4.196)

with C a constant. From this expression one can extract the density of states with level N and
angular momenta (j1, j2) by expanding

Z(w, k1, k2) =
∑
N,j

dN,j1,j2w
Neik1j

1+ik2j
2

, (4.197)

where k1 = −iβλ1 and k2 = −iβλ2, and projecting out the dN,j1,j2 . Integrating over (k1, k2)

can be done exactly, since∫ ∞
−∞

dkeiky
k

sinh(πk/β)
= 1

2
β2 1

cosh2(βy/2)
, (4.198)

resulting in the following contour integral over a circle around w = 0 for dN,j1,j2 :

dN,j1,j2 = C′
∮

dw

wN+1
β14e4π2/β 1

cosh2(βj1/2) cosh2(βj2/2)
. (4.199)
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Assuming N is large the integral can be approximated by a saddle point evaluation, with the
saddle point defined by the solution of

4π2

β2
= N + 1− j1 tanh( 1

2
j1β)− j2 tanh( 1

2
j2β). (4.200)

For small angular momenta, which is the case of primary interest here, the solution is β ∼=
2π/
√
N + 1. For (

∣∣j1
∣∣ , ∣∣j2

∣∣) = O(N) the stationary point is at

β ∼=
2π√

N + 1− |j1| − |j2|
. (4.201)

Note that
∣∣j1
∣∣ +

∣∣j2
∣∣ ≤ N . This latter stationary point is equally applicable to small angular

momenta, and thus one can write the asymptotic density of states as

dN,j1,j2 ∼=
1

4(N + 1− j)31/4
exp

[
2π(2N − j)√
N + 1− j

]
1

cosh2( πj1√
N+1−j ) cosh2( πj2√

N+1−j )
, (4.202)

where j =
∣∣j1
∣∣+
∣∣j2
∣∣. The constant of proportionality is fixed by the state with j1 = N , j2 = 0

being unique. Note that the commuting generators (j3, j̄3) of (SU(2)L, SU(2)R) respectively
are related to the rotations in the 1-2 and 3-4 planes via j3 = 1

2
(j1 + j2) and j̄3 = 1

2
(j1 − j2).

The total number of states at level N is

dN ∼=
1

N27/4
exp(4π

√
N), (4.203)

and thus the density of states with zero angular momenta differs from the total number of
states only by a factor of 1/N ; the exponential growth with N is the same.
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CHAPTER 5

PRECISION HOLOGRAPHY OF

NON-CONFORMAL BRANES

The last two chapters of this thesis apply the techniques of precision holography in a slightly dif-
ferent context: In chapter 5 we set up the holographic dictionary for non-conformal branes. We
use these results in chapter 6 to extend the correspondence between gravitational fluctations of
the black D3 brane geometry and the hydrodynamics of the dual field theory to non-conformal
branes.

(5.1) INTRODUCTION

Recall from the introductory sections 1.3 that, in order to promote the bulk/boundary corre-
spondence from a formal relation to a framework in which one can calculate, one needs to
specify how divergences on both sides are treated. In the boundary theory, these are the UV
divergences, which are dealt with by standard techniques of renormalization. In the bulk, the
divergences are due to the infinite volume, and are thus IR divergences, which need to be
dealt with by holographic renormalization, the precise dual of standard QFT renormalization
[13, 14, 15, 16, 17, 18, 19, 20]; for a review see [21]. The procedure of holographic renor-
malization in asymptotically AdS spacetimes allows one to extract the renormalized one point
functions for local gauge invariant operators from the asymptotics of the spacetime; these can
then be functionally differentiated in the standard way to obtain higher correlation functions.

By now there are many other conjectured examples of gravity/gauge theory dualities in string
theory, which involve backgrounds with different asymptotics. The case of interest for us is the
dualities involving non-conformal branes [88, 89] which follow from decoupling limits, and
are thus believed to hold, although rather few quantitative checks of the dualities have been
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carried out. It is important to develop our understanding of these dualities for a number of
reasons. First of all, a primary question in quantum gravity is whether the theory is holographic.
Examples such as AdS/CFT indicate that the theory is indeed holographic for certain spacetime
asymptotics, but one wants to know whether this holds more generally. Exploring cases where
the asymptotics are different but one has a proposal for the dual field theory is a first step to
addressing this question.

Secondly, the cases mentioned are interesting in their own right and have many useful appli-
cations. For example, one of the major aims of work in gravity/gauge dualities is to find holo-
graphic models which capture features of QCD. A simple model which includes confinement
and chiral symmetry breaking can be obtained from the decoupling limit of a D4-brane back-
ground, with D8-branes added to include flavor, the Witten-Sakai-Sugimoto model [90, 91, 92].
This model has been used extensively to extract strong coupling behavior as a model for that in
QCD. More generally, non-conformal p-brane backgrounds with p = 0, 1, 2 may have interesting
unexploited applications to condensed matter physics; the conformal backgrounds have proved
useful in modeling strong coupling behavior of transport properties and the non-conformal ex-
amples may be equally useful.

The non-conformal brane dualities have not been extensively tested, although some checks
of the duality can be found in [93, 94, 95, 96] whilst the papers [97, 98, 99] discuss the
underlying symmetry structure on both sides of the correspondence. Recently, there has been
progress in using lattice methods to extract field theory quantities, particularly for the D0-
branes [100]. Comparing these results to the holographic predictions serves both to test the
duality, and conversely to test lattice techniques (if one assumes the duality holds).

Given the increasing interest in these gravity/gauge theory dualities, one would like to de-
velop precision holography for the non-conformal branes, following the same steps as in AdS:
one wants to know exactly how quantum field theory data is encoded in the asymptotics of
the spacetime. Precision holography has not previously been extensively developed for non-
conformal branes (see however [101, 102, 103, 104, 105]), although as we will see the anal-
ysis is very close to the analysis of the Asymptotically AdS case. The reason is that the non-
conformal branes admit a generalized conformal symmetry [97, 98, 99]: there is an underlying
conformal symmetry structure of the theory, provided that the string coupling (or in the gauge
theory, the Yang-Mills coupling) is transformed as a background field of appropriate dimen-
sion under conformal transformations. Whilst this is not a symmetry in the strict sense of the
word, the underlying structure can be used to derive Ward identities and perhaps even prove
non-renormalization theorems.

In this chapter we develop in detail how quantum field theory data can be extracted from the
asymptotics of non-conformal brane backgrounds. We begin in section 5.2 by recalling the
correspondence between non-conformal brane backgrounds and quantum field theories. We
also introduce the dual frame, in which the near horizon metric is AdSp+2 × S8−p. In section
5.3 we give the field equations in the dual frame for both D-brane and fundamental string
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solutions.

In the near horizon region of the supergravity solutions conformal symmetry is broken only by
the dilaton profile. This means that the background admits a generalized conformal structure:
it is invariant under generalized conformal transformations in which the string coupling is also
transformed. This generalized conformal structure and its implications are discussed in section
5.4.

Next we proceed to set up precision holography. The basic idea is to obtain the most gen-
eral asymptotic solutions of the field equations with appropriate Dirichlet boundary conditions.
Given such solutions, one can identify the divergences of the onshell action, find the corre-
sponding counterterms and compute the holographic 1-point functions, in complete generality
and at the non-linear level. This is carried out in section 5.5. In particular, we give renormal-
ized one point functions for the stress energy tensor and the gluon operator, in the presence of
general sources, for all cases.

In section 5.6 we proceed to develop a radial Hamiltonian formulation for the holographic
renormalization. As in the asymptotically AdS case, the Hamiltonian formulation is more el-
egant and exhibits clearly the underlying generalized conformal structure. In the following
sections, 5.7 and 5.8, we give a number of applications of the holographic formulae. In partic-
ular, in section 5.7 we compute two point functions and in section 5.8 we compute condensates
in Witten’s model of holographic QCD and the renormalized action, mass etc. in a non-extremal
D1-brane background.

In section 5.9 we give conclusions and a summary of our results. The appendices 5.A.1, 5.A.2,
5.A.3 and 5.A.4 contain a number of useful formulae and technical details. Appendix 5.A.1
summarizes useful formulae for the expansion of the curvature whilst appendix 5.A.2 dis-
cusses the holographic computation of the stress energy tensor for asymptotically AdSD+1,
with D = 4, 6; in the latter the derivation is streamlined, relative to earlier discussions, and the
previously unknown traceless, covariantly constant contributions to the stress energy tensor in
six dimensions are determined. Appendix 5.A.3 contains the detailed relationship between the
M5-brane and D4-brane holographic analysis whilst appendix 5.A.4 gives explicit expressions
for the asymptotic expansion of momenta.

(5.2) NON-CONFORMAL BRANES AND THE DUAL FRAME

Let us begin by recalling the brane solutions of supergravity, see for example [106] for a review.
The relevant part of the supergravity action in the string frame is

S =
1

(2π)7α′4

∫
d10x
√
−g
[
e−2φ(R+ 4(∂φ)2 − 1

12
H2

3 )− 1

2(p+ 2)!
F 2
p+2

]
. (5.1)
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The Dp-brane solutions can be written in the form:

ds2 = (H−1/2ds2(Ep,1) +H1/2ds2(E9−p)); (5.2)

eφ = gsH
(3−p)/4;

C0···p = g−1
s (H−1 − 1) or F8−p = g−1

s ∗9−p dH,

where the latter depends on whether the brane couples electrically or magnetically to the field
strength. Here gs is the string coupling constant. We are interested in the simplest super-
symmetric solutions, for which the defining function H is harmonic on the flat space E9−p

transverse to the brane. Choosing a single-centered harmonic function

H = 1 +
Qp
r7−p , (5.3)

then the parameter Qp for the brane solutions of interest is given by Qp = dpNgsl
7−p
s with

the constant dp equal to dp = (2
√
π)5−pΓ( 7−p

2
), whilst l2s = α′ and N denotes the integral

quantized charge.

Soon after the AdS/CFT duality was proposed [5], it was suggested that an analogous corre-
spondence exists between the near-horizon limits of non-conformal D-brane backgrounds and
(non-conformal) quantum field theories [88]. More precisely, one considers the field theory
(or decoupling) limit to be:

gs → 0, α′ → 0, U ≡ r

α′
= fixed, g2

dN = fixed, (5.4)

where g2
d is the Yang-Mills coupling, related to the string coupling by

g2
d = gs(2π)p−2(α′)(p−3)/2. (5.5)

Note that N can be arbitrary for p < 3 but (5.4) requires that N → ∞ when p > 3. The
decoupling limit implies that the constant part in the harmonic function is negligible:

H = 1 +
Dpg

2
dN

α′2U7−p ⇒ 1

α′2
Dpg

2
dN

U7−p , (5.6)

where Dp ≡ dp(2π)2−p.

The corresponding dual (p+1)-dimensional quantum field theory is obtained by taking the low
energy limit of the (p + 1)-dimensional worldvolume theory on N branes. In the case of the
Dp-branes this theory is the dimensional reduction of N = 1 SYM in ten dimensions. Recall
that the action of ten-dimensional SYM is given by

S10 =

∫
d10x
√
−gTr

(
− 1

4g2
10

FmnF
mn +

i

2
ψ̄Γm[Dm, ψ]

)
, (5.7)

with Dm = ∂m − iAm. The dimensional reduction to d dimensions gives the bosonic terms

Sd =

∫
ddx
√
−gTr

(
− 1

4g2
d

FijF
ij − 1

2
DiXD

iX +
g2
d

4
[X,X]2

)
(5.8)
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where i = 0, · · · (d−1) and there are (9−p) scalars X. The fermionic part of the action will not
play a role here. Note that the Yang-Mills coupling in d = (p+ 1) dimensions, g2

d, has (length)
dimension (p − 3), and thus the theory is not renormalizable for p > 3. Since the coupling
constant is dimensionful, the effective dimensionless coupling constant g2

eff (E) is

g2
eff (E) = g2

dNE
p−3. (5.9)

at a given energy scale E.

This discussion of the decoupling limit applies to D-branes, but we will also be interested in
fundamental strings. The fundamental string solutions can be written in the form:

ds2 = (H−1ds2(E1,1) + ds2(E8)); (5.10)

eφ = gsH
−1/2;

B01 = (H−1 − 1),

where the harmonic function H = 1 + QF1/r
6 with QF1 = d1Ng

2
s l

6
s . For completeness, let us

also mention that the NS5-brane solutions can be written in the form:

ds2 = (ds2(E1,5) +Hds2(E4)); (5.11)

eφ = gsH
1/2;

H3 = ∗4dH,

where the harmonic function H = 1 +QNS5/r
2 with QNS5 = Nl2s .

Whilst the fundamental string solutions have a near string region which is conformal to AdS3×
S7 with a linear dilaton, they do not appear to admit a decoupling limit like the one in (5.4)
which decouples the asymptotically flat region of the geometry and has a clear meaning from
the worldsheet point of view. Nonetheless one can discuss holography for such conformally
AdS3 × S7 linear dilaton backgrounds, using S duality and the relation to M2-branes: IIB
fundamental strings can be included in the discussion by applying S duality to the D1 brane
case, and IIA fundamental strings by using the fact they are related to M2 branes wrapped on
the M-theory circle.

In the cases of Dp-branes the decoupled region is conformal to AdSp+2 × S8−p and there is
a non-vanishing dilaton. The same holds for the near string region of the fundamental string
solutions. This implies that there is a Weyl transformation such that the metric is exactly
AdSp+2 × S8−p. This Weyl transformation brings the string frame metric gst to the so-called
dual frame metric gdual [89] and is given by

ds2
dual = (Neφ)cds2

st, (5.12)

with

c = − 2

(7− p) Dp. (5.13)
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In this frame the action is

S =
N2

(2π)7α′4

∫
d10x
√
−g(Neφ)γ(R+ 4

(p− 1)(p− 4)

(7− p)2
(∂φ)2 − 1

2(8− p)!N2
F 2

8−p). (5.14)

with γ = 2(p− 3)/(7− p). It is convenient to express the field strength magnetically; for p < 3

this should be interpreted as Fp+2 = ∗F8−p, with the Hodge dual being taken in the string
frame metric. The terminology dual frame has the following origin. Each p-brane couples
naturally to a (p + 1) potential. The corresponding (Hodge) dual field strength is an (8 − p)
form. In the dual frame this field strength and the graviton couple to the dilaton in the same
way. For example the dual frame of the NS5 branes is the string frame: the dual (8 − p) form
is H3 and the metric and H3 couple the same way to the dilaton in the string frame, as can be
seen from (5.1).1

The D5-brane behaves qualitatively differently, as the solution in the dual frame is a linear
dilaton background with metric E5,1 ×R× S3:

ds2
dual = ds2(E5,1) +Q

(
dr2

r2
+ dΩ2

3

)
; (5.15)

eφ =
r√
Q

; F3 = QdΩ3.

Holography for both D5 and NS5 branes involves such linear dilaton background geometries,
and will not be discussed further in this thesis.

Here we will interested in precision holography for the cases where the geometry is conformal
to AdSp+2 × S8−p; this encompasses Dp-branes with p = 0, 1, 2, 3, 4, 6. In all such cases the
dual frame solution takes the form

ds2
dual = α′d

2
(7−p)
p

(
D−1
p (g2

dN)−1U5−pds2(Ep,1) +
dU2

U2
+ dΩ2

8−p

)
; (5.16)

eφ =
1

N
(2π)2−pD(3−p)/4

p

(
(g2
dN)Up−3

)(7−p)/4
,

with the field strength being

F8−p = (7− p)dpN(α′)(7−p)/2dΩ8−p. (5.17)

Note that the factors of α′ cancel in the effective supergravity action, with only dependence on
the dimensionful ’t Hooft coupling and N remaining.

1The dual frame was originally introduced in [107] and the rational behind its introduction was the
following. If one has a formulation where the fundamental degrees of freedom are p-branes that couple
electrically to a p-form, then one expects there to exist non-singular magnetic solitonic solutions. For example,
for perturbative strings, where the elementary objects are strings, the corresponding magnetic objects, the
NS5 branes, indeed appear as solitonic objects. Moreover, the target space metric and the B field couple to
the the dilaton in the same way, so the low energy effective action is in the string frame. In a formulation
where the elementary degrees of freedom are p-branes one would anticipate that there exist smooth solitonic
(6 − p)-brane solutions of the effective action in the p-frame, which is precisely the dual frame. Indeed, the
spacetime metric of Dp-branes when expressed in the dual frame is non-singular. We should note though
that there is currently no formulation of string theory where p-branes appear to be the elementary degrees of
freedom. Other special properties of the dual frame solutions are discussed in [108, 109].
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Changing the variable,

u2 = R−2(Dpg
2
dN)−1U5−p, R =

2

5− p , (5.18)

brings the AdS metric into the standard form

ds2
dual = α′d

2
7−p
p

[
R2

(
du2

u2
+ u2ds2(Ep,1)

)
+ dΩ2

8−p

]
, (5.19)

eφ =
1

N
(2π)2−p(g2

dN)
(7−p)
2(5−p)D

(3−p)
2(p−5)
p

(
R2u2

) (p−3)(p−7)
4(p−5) .

with the field strength being (5.17). Note that by rescaling the metric, dilaton and field strength
as

ds2
dual = α′d

2
7−p
p d̃s

2
; Neφ = (2π)2−p(g2

dN)
(7−p)
2(5−p)D

(3−p)
2(p−5)
p eφ̃; F8−p = dpN(α′)(7−p)/2F̃8−p.

the factors of Dp, N and the ’t Hooft coupling can be absorbed into the overall normalization
of the action.

It has been argued in [89] that the dual frame is the holographic frame in the sense that the
radial direction u in this frame is identified with the energy scale of the boundary theory,

u ∼ E. (5.20)

More properly, as we will discuss later, the dilatations of the boundary theory are identified
with rescaling of the u coordinate. Using (5.20) and (5.9) the dilaton in (5.19) and for the
case of D-branes becomes

eφ =
1

N
cd
(
g2
eff (u)

) 7−p
2(5−p) , cd = (2π)2−pD

(p−3)
2(5−p)
p R

(p−3)(7−p)
2(5−p) . (5.21)

The validity of the various approximations was discussed in [88, 110, 89]. In particular, we
consider the large N limit, keeping fixed the effective coupling constant g2

eff , so the dilaton is
small in all cases (recall that the decoupling limit when p > 3 requires N → ∞). If g2

eff � 1

then the perturbative SYM description is valid, whereas in the opposite limit g2
eff � 1 the

supergravity approximation is valid.

As a consistency check, one can also derive (5.21) using the open string description. The low
energy description in the string frame is given by

Sst = − 1

(2π)p−2(α′)(p−3)/2

∫
dp+1x

√
−gste−φ

1

4
Tr(FijFkl)g

ik
stg

jl
st + · · · , (5.22)

where we indicate explicitly that the metric involved is the string frame metric. In the case
of flat target spacetime, gst is the Minkowski metric and eφ = gs and we recover (5.5) by
identifying the overall prefactor of TrF 2 with 1/(4g2

d). In our case, transforming to the dual
frame and using the form of the metric in (5.19) we get

Sdual = −R
p−3d

(p−3)
(7−p)
p

(2π)p−2

∫
dp+1x(Neφ)

2(p−5)
(7−p) (Nup−3)

1

4
(TrF 2) + · · · (5.23)
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where now the Lorentz index contractions in TrF 2 are with the Minkowski metric. Identifying
now the overall prefactor of TrF 2 with 1/(4g2

d) is indeed equivalent to (5.21).

As mentioned above, we will also include fundamental strings in our analysis, exploiting
the relation to D1-branes and M2-branes. In this case we focus on the near string geome-
try, dropping the constant term in the harmonic function, and introduce a dual frame metric
ds2
dual = (Neφ)cds2

st with

c = −2

3
F1, (5.24)

with the dual frame metric being AdS3 × S7. The detailed form of the effective action in the
dual frame will be given in the next section.

The aim of this chapter will be to consider solutions which asymptote to the decoupled non-
conformal brane backgrounds and show how renormalized quantum field theory information
can be extracted from the geometry. It may be useful to recall first how the conformal case of
p = 3 works. Given the AdS5×S5 background, the spectrum of supergravity fluctuations about
this background corresponds to the spectrum of single trace gauge invariant chiral primary
operators in the dual N = 4 SYM theory. The spectrum includes stringy modes and D-branes,
which correspond to other non primary, high dimension and non-local operators in the dual
N = 4 SYM theory. Encoded in the asymptotics of any asymptotically AdS5 × S5 supergravity
background are one point functions of the chiral primary operators. These allow one to extract
the vacuum structure of the dual theory (its vevs and deformation parameters), and if one
switches on sources one can also extract higher correlation functions.

The sphere in this background has a radius which is of the same order as the AdS radius, so
the higher KK modes are not suppressed relative to the zero modes and one cannot ignore
them. It is nevertheless possible to only keep a subset of modes when the equations of motion
admit solutions with all modes except the ones kept set equal to zero, i.e. there exist consistent
truncations. The existence of such truncations signify the existence of a subset of operators
of the dual theory that are closed under OPEs. The resulting theory is a (d + 1)-dimensional
gauged supergravity and such gauged supergravity theories have been the starting point for
many investigations in AdS/CFT. Gauged supergravity retains only the duals to low dimension
chiral primaries in SYM, those in the same multiplet as the stress energy tensor. More recently,
the method of Kaluza-Klein holography [22, 57] has been developed to extract systematically
one point functions of all other single trace chiral operators.

The goal here is to take the first step in holographic renormalization for non-conformal branes.
We will consistently truncate the bulk theory to just the (p + 2)-dimensional graviton and
the dilaton, and compute renormalized correlation functions in this sector. Unlike the p = 3

case one must retain the dilaton as it is running: the gauge coupling of the dual theory is
dimensionful and runs. Such a truncation was considered already in [89] and we will recall the
resulting (p+2)-dimensional action in the next section. Given an understanding of holographic
renormalization in this truncated sector, it is straightforward to generalize this setup to include
fields dual to other gauge theory operators.
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(5.3) LOWER DIMENSIONAL FIELD EQUATIONS

The supergravity solutions for Dp-branes and fundamental strings in the decoupling limit can be
best analyzed by going to the dual frame reviewed in the previous section, (5.12) and (5.24).
The dual frame is defined as ds2

dual = (Neφ)cds2, with c = −2/(7 − p) for Dp-branes and
c = −2/3 for fundamental strings. The Weyl transformation to the dual frame in ten dimensions
results in the following action:

S = − N2

(2π)7α′4

∫
d10x
√
gNγeγφ[R+ β(∂φ)2 − 1

2(8− p)!N2
|F8−p|2] (5.25)

where the constants (β, γ) are given below in (5.29) for Dp-branes and (5.30) for fundamental
strings respectively. Note that it is convenient to express the field strength magnetically; for
p < 3 this should be interpreted as Fp+2 = ∗F8−p. From here onwards we will also work in
Euclidean signature.

For p 6= 5, the field equations in this frame admit AdSp+2 × S8−p solutions with linear dilaton.
One can reduce the field equations over the sphere, truncating to the (p + 2)-dimensional
graviton g̃µν and scalar φ̃. For the Dp-branes the reduction ansatz is

ds2
dual = α′d−cp (R2g̃µν(xρ)dxµdxν + dΩ2

8−p); (5.26)

F8−p = (7− p)g−1
s QpdΩ8−p;

eφ = gs(r
2
oR2)(p−3)(7−p)/4(5−p)eφ̃,

with r7−p
o ≡ Qp and R = 2/(5 − p). The ten-dimensional metric is in the dual frame and

prefactors are chosen to absorb the radius and overall metric and dilaton prefactors of the
AdSp+2 solution. For the fundamental string one reduces the near horizon geometry as:

ds2
dual = α′(d1N

−1)1/3(R2g̃µν(xρ)dxµdxν + dΩ2
7); (5.27)

H7 = 6QF1dΩ7;

eφ = gs(roR)3/2eφ̃,

where H7 = ∗H3, r6
o ≡ QF1 and R = 2/(5 − p). It is then straightforward to show that

the equations of motion for the lower-dimensional fields for both Dp-branes and fundamental
strings follow from an action of the form:

S = −L
∫
dd+1x

√
g̃eγφ̃[R̃+ β(∂φ̃)2 + C]. (5.28)

Here d = p + 1 and the constants (L, β, γ, C) depend on the case of interest; since from here
onwards we are interested only in (d + 1)-dimensional fields we suppress their tilde labeling.
For Dp-branes the constants are given by

γ =
2(p− 3)

7− p , β =
4(p− 1)(p− 4)

(7− p)2
,

R =
2

5− p , C =
1

2
(9− p)(7− p)R2, (5.29)

L =
Ω8−pr

(7−p)2/(5−p)
o R(9−p)/(5−p)

(2π)7α′4
=

(dpN)(7−p)/(5−p)g
2(p−3)/(5−p)
d R(9−p)/(5−p)

64π(5+p)/2(2π)(p−3)(p−2)/(5−p)Γ( 9−p
2

)
.
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For the fundamental string one gets instead:

γ =
2

3
, β = 0, C = 6, (5.30)

L =
Ω7r

9
o

4(2π)7g2
s(α′)4

=
gsN

3/2(α′)1/2

6
√

2
,

This expression is related to that for the D1-brane background by gs → 1/gs with α′ → α′gs, as
one would expect from S duality. The truncation is consistent, as one can show that any solu-
tion of the lower-dimensional equations of motion also solves the ten-dimensional equations of
motion, using the reduction given in (5.26). Note that more general reductions of type II theo-
ries on spheres to give gauged supergravity theories were discussed in [111]. These reductions
would be relevant if one wants to include additional operators in the boundary theory, beyond
the stress energy tensor and scalar operator.

In both cases the equations of motion admit an AdSd+1 solution

ds2 =
dρ2

4ρ2
+
dxidx

i

ρ
; (5.31)

eφ = ρα,

where i = 1, . . . , d. Note that ρ is related to the radial coordinate u used earlier by ρ = 1/u2.
The constant α again depends on the case of interest:

α = − (p− 7)(p− 3)

4(p− 5)
; Dp (5.32)

α = −3

4
; F1.

Note that for computational convenience the metric and dilaton have been rescaled relative to
[89] to set the AdS radius to one and to pull all factors ofN and gs into an overall normalization
factor. The radial variable ρ then has length dimension 2 and eφ has length dimension 2α.

For arbitrary d, β and γ, the field equations for the metric and scalar field following from (5.28)
are 2

−Rµν + (γ2 − β)∂µφ∂νφ+ γ∇µ∂νφ+
1

2
gµν [R+ (β − 2γ2)(∂φ)2 − 2γ∇2φ+ C] = 0,

γR− βγ(∂φ)2 + Cγ − 2β∇2φ = 0. (5.33)

These equations admit an AdS solution with linear dilaton provided that α and C satisfy

α = − γ

2(γ2 − β)
, C =

(d(γ2 − β) + γ2)(d(γ2 − β) + β)

(γ2 − β)2
. (5.34)

We can thus treat both Dp-brane and fundamental string cases simultaneously, by processing
the field equations for arbitrary (d, β, γ) and writing (α,C) in terms of these parameters. It

2Our conventions for the Riemann and Ricci tensor are Rσµνρ = −2Γσ
µ[ν,ρ]

− 2Γτ
µ[ν

Γσ
ρ]τ
, Rµν = Rσµσν .
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might be interesting to consider whether other choices of (d, β, γ) admit interesting physical
interpretations.

By taking the trace of the first equation in (5.33) and combining it with the second one can
obtain the more convenient three equations

−Rµν + (γ2 − β)∂µφ∂νφ+ γ∇µ∂νφ−
γ2 + d(γ2 − β)

γ2 − β gµν = 0, (5.35)

∇2φ+ γ(∂φ)2 − γ(d(γ2 − β) + γ2)

(γ2 − β)2
= 0,

R+ β(∂φ)2 +
(d(γ2 − β) + γ2)(d(γ2 − β)− β)

(γ2 − β)2
= 0,

where the last line follows from the first two.

The type IIA fundamental strings and D4-branes are related to the M theory M2-branes and
M5-branes respectively under dimensional reduction along a worldvolume direction. The M
brane theories fall within the framework of AdS/CFT, with the correspondence being between
AdS4 × S7 and AdS7 × S4 geometries, respectively, and the still poorly understood conformal
worldvolume theories. Reducing on the spheres gives four and seven dimensional gauged su-
pergravity, respectively, which can be truncated to Einstein gravity with negative cosmological
constant. That is, the effective actions are simply

SM = −LM
∫
dd+2x

√
G (R(G) + d(d+ 1)) , (5.36)

where d = 2 for the M2-brane and d = 5 for the M5-brane. The normalization constant is

LM2 =

√
2N3/2

24π
; LM5 =

N3

3π3
. (5.37)

and the action clearly admits an AdSd+2-dimensional space with unit radius as a solution:

ds2 =
dρ2

4ρ2
+

1

ρ
(dxidx

i + dy2), (5.38)

where i = 1, · · · , d.

Now consider a diagonal dimensional reduction of the (d+ 2)-dimensional solution over y, i.e.
let the metric be

ds2 = gµν(x)dxµdxν + e4φ(x)/3dy2. (5.39)

Substituting into the (d + 2)-dimensional field equations gives precisely the field equations
following from the action (5.28); note that γ = 2/3, β = 0 for both the fundamental string and
D4-branes. It may be useful to recall here that the standard dimensional reduction of an M
theory metric to a (string frame) type IIA metric gMN is

ds2
11 = e−2φ/3gMNdx

MdxN + e4φ/3dy2
11. (5.40)
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The relation between dual frame and string frame metrics given in (5.12) leads to (5.39). Note
that

L = LM (2πRy) = 2πgslsLM , (5.41)

where we use the standard relation for the radius of the M theory circle.

The other Dp-branes of type IIA are of course also related to M theory objects: the D0-brane
background uplifts to a gravitational wave background, the D6-brane background uplifts to a
Kaluza-Klein monopole background whilst the D2-branes are related to the reduction of M2-
branes transverse to the worldvolume. These connections will not play a role in this thesis.
The uplifts reviewed above are useful here as holographic renormalization for the conformal
branes is well understood, but holography for gravitational wave backgrounds and Kaluza-Klein
monopoles is less well understood than that for the non-conformal branes.

One could use a different reduction and truncation of the theory in the AdS4 × S7 background
to obtain the action (5.28) for D2-branes. In this case one would embed the M theory circle
into the S7, and then truncate to only the four-dimensional graviton, along with the scalar field
associated with this M theory circle. This reduction will not however be used here.

(5.4) GENERALIZED CONFORMAL STRUCTURE

In this section we will discuss the underlying generalized conformal structure of the non-
conformal brane dualities. Recall that the corresponding worldvolume theory is SYMp+1. We
will be interesting in computing correlation functions of gauge invariant operators in this the-
ory. Recall that gauge/gravity duality maps bulk fields to boundary operators. In our discussion
in the previous section we truncated the bulk theory to gravity coupled to a scalar field in (d+1)

dimensions. The bulk metric corresponds to the stress energy tensor as usual, while as we will
see the scalar field corresponds to a scalar operator of dimension four. As usual the fields
that parametrize their boundary conditions are identified with sources that couple to gauge
invariant operators.

Consider the following (p+ 1)-dimensional (Euclidean) action,

Sd[g(0)ij(x),Φ(0)(x)] = −
∫
ddx
√
g(0)

(
−Φ(0)

1

4
TrFijF

ij +
1

2
Tr

(
X(D2 − (d− 2)

4(d− 1)
R)X

)
+

1

4Φ(0)

Tr[X,X]2
)
. (5.42)

where g(0)ij is a background metric Φ(0)(x) is a scalar background field. Setting

g(0)ij = δij , Φ(0) =
1

g2
d

, (5.43)

the action (5.42) becomes equal to the action of the SYMp+1 given in (5.8) (here and it what
follows we suppress the fermionic terms). The action (5.42) is invariant under the following
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Weyl transformations

g(0) → e2σg(0), X → e(1− d
2

)σX, Ai → Ai, Φ(0) → e−(d−4)σΦ(0) (5.44)

Note that the combination P1 = D2 − d−2
4(d−1)

R, is the conformal Laplacian in d dimensions,
which transforms under Weyl transformations as P1 → e−(d/2+1)σP1e

(d/2−1)σ.

Let us now define,

Tij =
2
√
g(0)

δSd

δgij(0)

, O =
1
√
g(0)

δSd
δΦ(0)

(5.45)

They are given by

Tij = Tr

(
Φ(0)FikFj

k +DiXDjX +
d− 2

4(d− 1)
(X2Rij −DiDjX2 + g(0)ijD

2X2)

−g(0)ij

(
1

4
Φ(0)F

2 +
1

2
(DX)2 +

(d− 2)

8(d− 1)
RX2 − 1

4Φ(0)

[X,X]2
))

(5.46)

O = Tr

(
1

4
F 2 +

1

4Φ2
(0)

[X,X]2

)
. (5.47)

Using standard manipulations, see for example [17, 18], we obtain the standard diffeomor-
phism and trace Ward identities,

∇j〈Tij〉J + 〈O〉J∂iΦ(0) = 0, (5.48)

〈T ii 〉J + (d− 4)Φ(0)〈O〉J = 0, (5.49)

where 〈B〉J denotes an expectation value of B in the presence of sources J . One can verify
that these relations are satisfied at the classical level, i.e. by using (5.46) and the equations of
motion that follow from (5.42). Setting g(0)ij = δij ,Φ(0) = g−2

d one recovers the conservation
of the energy momentum tensor of the SYMd theory and the fact that conformal invariance
is broken by the dimensionful coupling constant. Note that the kinetic part of the scalar field
does not contribute to the breaking of conformal invariance because this part of the action is
conformally invariant in any dimension (using the conformal Laplacian). This also dictates the
position of the coupling constant in (5.8). In a flat background one can change the position of
the coupling constant by rescaling the fields. For example, by rescaling X → X/gd the coupling
constant becomes an overall constant. This is the normalization one gets from worldvolume
D-brane theory in the string frame. This action however does not generalize naturally to a Weyl
invariant action. Instead it is (5.8) (with the coupling constant promoted to a background field)
that naturally couples to a metric in a Weyl invariant way.

The Ward identities (5.48) lead to an infinite number of relations for correlation functions
obtained by differentiating with respect to the sources and setting the sources to g(0)ij = ηij ,
where ηij is the Minkowski metric and Φ(0) = 1/g2

d. The first non-trivial relations are at the
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level of 2-point functions (x 6= 0).

∂jx〈Tij(x)Tkl(0)〉 = 0, ∂jx〈Tij(x)O(0)〉 = 0 (5.50)

〈T ii (x)Tkl(0)〉+ (p− 3)
1

g2
d

〈O(x)Tkl(0)〉 = 0

〈T ii (x)O(0)〉+ (p− 3)
1

g2
d

〈O(x)O(0)〉 = 0.

The Ward identities (5.48) were derived by formal path integral manipulations and one should
examine whether they really hold at the quantum level. Firstly, for the case of the D4 brane
the worldvolume theory is non-renormalizable, so one might question whether the correlators
themselves are meaningful. At weak coupling, renormalizing the correlators would require
introducing new higher dimension operators in the action, as well as counterterms that depend
on the background fields. This process should preserve diffeomorphism and supersymmetry,
but it may break the Weyl invariance. Introducing a new source Φj(0) for every new higher
dimension operator Oj added in the process of renormalization would then modify the trace
Ward identity as

〈T ii 〉 −
∑
j≥0

(d−∆j)Φ
j
(0)〈Oj〉 = A, (5.51)

where ∆j is the dimension of the operator Oi (with Φ0
(0) = Φ(0),O0 = O,∆0 = 4). Due to

supersymmetry one would anticipate that ∆i are protected. One would also anticipate that
these operators are dual to the KK modes of the reduction over the sphere S8−p. As discussed
in the previous section, one can consistently truncate these modes at strong coupling, so the
gravitational computation should lead to Ward identities of the form (5.49), up to a possible
quantum anomaly A. A originates from the counterterms that depend on the background
fields only (g(0),Φ(0), . . .). In general, A would be restricted by the Wess-Zumino consistency
and therefore should be built from generalized conformal invariants. We will show the extracted
holographic Ward identities, (5.141), indeed agree with (5.48)-(5.49)) with a quantum anomaly
only for p = 4.

In a (p + 1)-dimensional conformal field theory, the entropy S at finite temperature TH neces-
sarily scales as

S = c(g2
YMN,N, · · · )VpT pH (5.52)

where Vp is the spatial volume, gYM is the coupling, N is the rank of the gauge group, g2
YMN

is the ’t Hooft coupling constant and the ellipses denote additional dimensionless parameters.
c(g2

YMN,N, · · · ) denotes an arbitrary function of these dimensionless parameters. In the cases
of interest here, scaling indicates that the entropy behaves as

S = c̃((g2
eff (TH), N, · · · )VpT pH , (5.53)

where g2
eff (TH) = g2

dNT
p−3
H is the effective coupling constant and c̃((g2

dNT
p−3
H ), N, · · · ) de-

notes a generic function of the dimensionless parameters.
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Next let us consider correlation functions, in particular of the gluon operator O = − 1
4
Tr(F 2 +

· · · ). In a theory which is conformally invariant the two point function of any operator of
dimension ∆ behaves as

〈O(x)O(y)〉 = f(g2
YMN,N, · · · )

1

|x− y|2∆
, (5.54)

where f(g2
YMN,N, · · · ) denotes an arbitrary function of the dimensionless parameters. Now

consider the constraints on a two point function in a theory with generalized conformal invari-
ance; these are far less restrictive, with the correlator constrained to be of the form:

〈O(x)O(0)〉 = f̃(g2
eff (x), N, · · · ) 1

|x|2∆
. (5.55)

where g2
eff (x) = g2

dN |x|3−p and f̃(g2
eff (x), N, · · · ) is an arbitrary function of these (dimension-

less) variables. Note that the scaling dimension of the gluon operator as defined above is 4.
Both (5.54) and (5.55) are over-simplified as even in a conformal field theory the renormal-
ized correlators can depend on the renormalization group scale µ. For example, for p = 3 the
renormalized two point function of the dimension four gluon operator is

〈O(x)O(0)〉 = f(g2
YMN,N)�3

(
1

|x|2 log(µ2x2)

)
, (5.56)

where note that the renormalized version R 1
|x|8 of 1

|x|8 is given by:

R
(

1

|x|8

)
= − 1

3 · 28
�3

(
1

|x|2 log(µ2x2)

)
. (5.57)

R( 1
|x|8 ) and 1

|x|8 are equal when x 6= 0 but they differ by infinite renormalization at x = 0.
In particular, it is only R 1

|x|8 that has a well defined Fourier transform, given by p4 log(p2/µ2),
which may be obtained using the identity∫

d4xeipx
1

|x|2 log(µ2x2) = −4π2

p2
log(p2/µ2). (5.58)

(see appendix A, [112]). Thus the correlator in a theory with generalized conformal invariance
is

〈O(x)O(0)〉 = R
(
f̃(g2

eff (x), µ|x|, N, · · · ) 1

|x|2∆

)
. (5.59)

Note that this is of the same form as a two point function of an operator with definite scaling
dimension in any quantum field theory; the generalized conformal structure does not restrict
it further, although as discussed above the underlying structure does relate two point functions
via Ward identities.

The general form of the two point function (5.59) is compatible with the holographic results
discussed later. One can also compute the two point function to leading (one loop) order in
perturbation theory, giving:

〈O(x)O(0)〉 = 〈: Tr(F 2)(x) :: Tr(F 2)(0) :〉 ∼ R
(
g4
eff (x)

|x|8

)
, (5.60)
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which is also compatible with the general form. (Note that although the complete operator
includes in addition other bosonic and fermionic terms the latter do not contribute to the two
point function at one loop, whilst the former contribute only to the overall normalization.)
One shows this result as follows. The gauge field propagator for SU(N) in Feynman gauge in
momentum space is

〈Aabµ(k)Acdν(−k)〉 = ig2
d(δadδ

c
b −

1

N
δab δ

c
d)
ηµν
|k|2 , (5.61)

where (a, b) are color indices. Then the one loop contribution to the correlation function in
momentum space reduces (at large N) to

〈O(k)O(−k)〉 ∼ N2(d− 1)|k|4
∫
ddq

1

|q|2|k − q|2 . (5.62)

Using the integral

I =

∫
ddq

1

|q|2α|k − q|2β (5.63)

=
Γ(α+ β − d/2)Γ(d/2− β)Γ(d/2− α)

Γ(α)Γ(β)Γ(d− α− β)
|k|d−2α−2β ,

one finds that

〈O(k)O(−k)〉 ∼ N2(g2
d)2(d− 1)|k|dΓ(2− d/2)(Γ(d/2− 1))2

Γ(d− 2)
. (5.64)

This is finite for d odd, as expected given the general result that odd loops are finite in odd
dimensions; dimensional regularization when d is even results in a two point function of the
form N2g4

d|k|d log(|k2|). Fourier transforming back to position space results in

〈O(x)O(0)〉 ∼ R
(
g4
eff (x)

|x|8

)
, (5.65)

where again in even dimensions the renormalized expression is of the type given in (5.57).
This is manifestly consistent with the form (5.59).

The structure that we find at weak coupling is also visible at strong coupling. The gravitational
solution is the linear dilaton AdSd+1 solutions in (5.31) and conformal symmetry is broken
only by the dilaton profile. Therefore the background is invariant under generalized confor-
mal transformations in which one also transforms the string coupling gs appropriately. This
generalized conformal structure was discussed in [97, 98, 99], particularly in the context of
D0-branes.

(5.5) HOLOGRAPHIC RENORMALIZATION

In this section we will determine how gauge theory data is extracted from the asymptotics of the
decoupled non-conformal brane backgrounds, following the same steps as in the asymptotically
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AdS case. In particular, one first fixes the non-normalizable part of the asymptotics: we will
consider solutions which asymptote to a linear dilaton asymptotically locally AdS background.
Next one needs to analyze the field equations in the asymptotic region, to understand the
asymptotic structure of these backgrounds near the boundary.

Given this analysis, one is ready to proceed with holographic renormalization. Recall that the
aim of holographic renormalization is to render well-defined the definition of the correspon-
dence: the onshell bulk action with given boundary values Φ(0) for the bulk fields acts as the
generating functional for the dual quantum field theory in the presence of sources Φ(0) for op-
erators O. The asymptotic analysis allows one to isolate the volume divergences of the onshell
action, which can then be removed with local covariant counterterms, leading to a renormal-
ized action. The latter allows one to extract renormalized correlators for the quantum field
theory.

(5.5.1) ASYMPTOTIC EXPANSION

In determining how gauge theory data is encoded in the asymptotics of the non-conformal
brane backgrounds the first step is to understand the asymptotic structure of these backgrounds
in the asymptotic region near ρ = 0 where the solution becomes a linear dilaton locally AdS
background. Let us expand the metric and dilaton as:

ds2 =
dρ2

4ρ2
+
gij(x, ρ)dxidxj

ρ
, (5.66)

φ(x, ρ) = α log ρ+
κ(x, ρ)

γ
,

where we expand g(x, ρ) and κ(x, ρ) in powers of ρ:

g(x, ρ) = g(0)(x) + ρg(2)(x) + · · · (5.67)

κ(x, ρ) = κ(0)(x) + ρκ(2)(x) + · · ·

For p = 3 we should instead expand the scalar field as

φ(x, ρ) = κ(0)(x) + ρκ(2)(x) + · · · , (5.68)

since α = γ = 0. Note that by allowing (g(0), κ(0)) to be generic the spacetime is only asymp-
totically locally AdS.

Consider first the case of p = 3, so that the action is Einstein gravity in the presence of a
negative cosmological constant, and a massless scalar. The latter couples to the dimension four
operator Tr(F 2). The metric is expanded in the Fefferman-Graham form, with the scalar field
expanded accordingly. By the standard rules of AdS/CFT g(0) acts as the source for the stress
energy tensor and κ(0) acts as the source for the dimension four operator, i.e. it corresponds to
the Yang-Mills coupling. The vevs of these operators are captured by subleading terms in the
asymptotic expansion.
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For general p an analogous relationship should hold: g(0) sources the stress energy tensor and
the scalar field determines the (dimensionful) gauge coupling. More precisely, the bulk field
that is dual to the operator O in (5.46) is

Φ(x, ρ) = exp (χφ(x, ρ)) = ρ−
1
2

(p−3)
(
Φ(0)(x) + ρΦ(2)(x) + · · ·

)
(5.69)

Φ(0)(x) = exp

(
− (p− 5)

(p− 3)
κ(0)(x)

)
(5.70)

The Φ(0) appearing here is identified with Φ(0) in (5.42). It will be convenient however to work
on the gravitational side with φ(x, ρ) instead of Φ(x, ρ).

In the asymptotic expansion we fix the non-normalizable part of the asymptotics, and the vevs
should be captured by subleading terms. One now needs to show that such an expansion
is consistent with the equations of motion, and what terms occur in the expansion for given
(α, β, γ).

Substituting the scalar and the metric given in (5.66) into the field equations (5.35) gives

−1

4
Tr(g−1g′)2 +

1

2
Trg−1g′′ + κ′′ + (1− β

γ2
)(κ′)2 = 0, (5.71)

−1

2
∇ig′ij +

1

2
∇j(Trg−1g′) + (1− β

γ2
)∂jκκ

′ + ∂jκ
′ − 1

2
g′j
k
∂kκ = 0, (5.72)[

−Ric(g)− (d− 2− 2αγ)g′ − Tr(g−1g′)g + ρ(2g′′ − 2g′g−1g′ + Tr(g−1g′)g′)
]
ij

+∇i∂jκ+ (1− β

γ2
)∂iκ∂jκ− 2(gij − ρg′ij)κ′ = 0, (5.73)

4ρ(κ′′ + (κ′)2) + (8αγ + 2(2− d))κ′ +∇2κ+ (∂κ)2 + 2Tr(g−1g′)(αγ + ρκ′) = 0,(5.74)

where differentiation with respect to ρ is denoted with a prime, ∇i is the covariant derivative
constructed from the metric g and d = p+1 is the dimension of the space orthogonal to ρ. Note
that coefficients in these equations are polynomials in ρ implying that this system of equations
admits solutions with g(x, ρ) and κ(x, ρ) being regular functions of ρ and this justifies (5.67).
To solve these equations one may successively differentiate the equations w.r.t. ρ and then set
ρ = 0.

Let us first recall how these equations are solved in the pure gravity, asymptotically locally
AdSd+1 case, i.e. when the scalar is trivial. Then the equations become

−1

4
Tr(g−1g′)2 +

1

2
Trg−1g′′ = 0; −1

2
∇ig′ij +

1

2
∇j(Trg−1g′) = 0 (5.75)[

−Ric(g)− (d− 2)g′ − Tr(g−1g′)g + ρ(2g′′ − 2g′g−1g′ + Tr(g−1g′)g′)
]
ij

= 0,

The structure of the expansions depends on whether d is even or odd. For d odd, the expansion
is of the form

g(x, ρ) = g(0)(x) + ρg(2)(x) + · · ·+ ρd/2g(d)(x) + · · · . (5.76)

Terms with integral powers of ρ in the expansion are determined locally in terms of g(0) but
g(d)(x) is not determined by g(0), except for its trace and divergence, i.e. gij(0)g(d)ij and∇ig(d)ij ,
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which are forced by the field equations to vanish. In this case g(d)(x) determines the vev of
the dual stress energy tensor, whose trace must vanish as the theory is conformal and there
is no conformal anomaly in odd dimensions. The fact that g(d) is divergenceless leads to the
conservation of the stress energy tensor.

For d even, the structure is rather different:

g(x, ρ) = g(0)(x) + ρg(2)(x) + · · ·+ ρd/2(g(d)(x) + h(d)(x) log ρ) + · · · . (5.77)

In this case one needs to include a logarithmic term to satisfy the field equations; the coef-
ficient of this term is determined by g(0) whilst only the trace and divergence of g(d)(x) are
determined by g(0). This structure reflects the fact that the trace of the stress energy tensor
of an even-dimensional conformal field theory on a curved background is non-zero and picks
up an anomaly determined in terms of g(0); the explicit expression for the stress energy tensor
in terms of (g(0), g(d)) is rather more complicated than in the other case but it is such that the
divergence of g(d) leads again to conservation of the stress energy tensor.

Let us return now to the cases of interest. As mentioned above, the field equations are solved
by successively differentiating the equations w.r.t. ρ and then setting ρ to zero. This procedure
leads to equations of the form

c(n, d)g(2n)ij = f(g(2k)ij , κ(2k)), k < n (5.78)

where the right hand side depends on the lower order coefficients and c(n, d) is a numerical
coefficient that depends on n and d. If this coefficient is non-zero, one can solve this equation
to determine g(n)ij . However, in some cases this coefficient is zero and one has to include a
logarithmic term at this order for the equations to have a solution. An example of this is the
case of pure gravity with d even, where c(d/2, d) = 0. Furthermore, note that since in (5.73)
-(5.74) only integral powers of ρ enter, likewise only integral powers in (5.67) will depend on
g(0) and κ(0). In general however non-integral powers can also appear at some order and one
must determine these terms separately. An example of this is the case of pure gravity with d

odd reviewed above, where a half integral power of ρ appears at order ρd/2.

Let us first consider when one needs to include non-integral powers in the expansion. Let us
assume that ρσ is the lowest non-integral power that appears in the asymptotic expansion

κ(x, ρ) = κ(0) + ρκ(2) + · · ·+ ρσκ(2σ) + · · · (5.79)

gij(x, ρ) = = g(0)ij + ρg(2)ij + · · ·+ ρσg(2σ)ij + · · ·

Differentiating the scalar equation (5.74) [σ] times, where [σ] is the integer part of σ, and
taking ρ→ 0 after multiplying with ρ1+[σ]−σ one obtains

(2σ + 4αγ − d)κ(2σ) + αγTrg(2σ) = 0, (5.80)

Similarly, equation (5.73) yields,

(2σ − d+ 2αγ)g(2σ)ij − (Trg(2σ) + 2κ(2σ))g(0)ij = 0. (5.81)
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which upon taking the trace becomes

− dκ(2σ) + (σ − d+ αγ)Trg(2σ) = 0, (5.82)

If the determinant of the coefficients of the system of equation (5.80)-(5.82) is non-zero,

D = (2σ + 4αγ − d)(σ − d+ αγ) + αγd 6= 0 (5.83)

the only solution of these equations is

Trg(2σ) = κ(2σ) = 0 (5.84)

which then using (5.81) implies
g(2σ)ij = 0 (5.85)

i.e. in these cases no non-integral power appears in the expansion.

On the other hand, when D = 0 equations (5.82)-(5.80) admit a non-trivial solution. The two
solution of D = 0 are σ1 = d/2 − αγ and σ2 = 2(d/2 − αγ). Clearly, σ2 > σ1 and when σ2 in
non-integer so is σ1, so a non-integer power first appears at:

σ =
d

2
− αγ (5.86)

When this holds equations (5.80)-(5.82) reduce to

Trg(2σ) + 2κ(2σ) = 0. (5.87)

and the coefficient of g(2σ)ij in (5.81) vanishes, so apart from its trace, these equations leave
g(2σ)ij undetermined. The remaining Einstein equation (5.72) also imposes a constraint on the
divergence of the terms occurring at this order, as will be discussed later. To summarize, the
expansion contains a non-integer power of ρσ in the following cases

σ =
p− 7

p− 5
⇒ D0 : σ = 7/5; D1, F1 : σ = 3/2; D2 : σ = 5/3, (5.88)

and the coefficient multiplying this power in only partly constrained. As we will see, this
category is the analogue of even dimensional asymptotically AdS backgrounds, which are dual
to odd dimensional boundary theories.

The second case to discuss is the case of only integral powers. In this case the undetermined
term occurs at an integral power ρσ with

σ =
p− 7

p− 5
⇒ D3 : σ = 2; D4 : σ = 3, (5.89)

and logarithmic terms need to be included in the expansions. In these cases the combination
(Trg(2σ) +2κ(2σ)) is determined by g(0) and κ(0). This category is analogous to odd-dimensional
asymptotically AdS backgrounds, which are dual to even-dimensional boundary theories. The
remaining Einstein equation (5.72) also imposes a constraint on the divergence of the terms
occurring at this order.
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Actually one can see on rather general grounds why the undetermined terms occur at these
powers: the undetermined terms will relate to the vev of the stress energy tensor, which is of
dimension (p+ 1) for a (p+ 1)-dimensional field theory. However, the overall normalization of
the action behaves as l(p−3)2/(5−p)

s , and therefore on dimensional grounds the vev should sit in
the g(2σ)ρ

σ term where

σ = (p+ 1) +
(p− 3)2

(5− p) =
(p− 7)

(p− 5)
, (5.90)

which agrees with the discussion above. Put differently we can compare the power of the first
undetermined term to pure AdS and notice that it is shifted by −αγ = − (p−3)2

2(p−5)
(for both Dp-

branes and the fundamental string). This is just what is needed to offset the background value
of the eγφ term multiplying the Einstein-Hilbert action in (5.28), in order to ensure that all
divergent terms in the action are still determined by the asymptotic field equations.

One should note here that the case of p = 6 is outside the computational framework discussed
above. In this case the prefactor in the action is of positive mass dimension nine, whilst the
stress energy tensor in the dual seven-dimensional theory must be of dimension seven. There-
fore one finds a (meaningless) negative value for σ, indicating that one is not making the
correct asymptotic expansion. In other words, one finds that the “subleading terms” are more
singular than the leading term.

(5.5.2) EXPLICIT EXPRESSIONS FOR EXPANSION COEFFICIENTS

In all cases of interest 2σ > 2 and thus there are g(2) and κ(2) terms. Evaluating (5.74) and
(5.73) at ρ = 0 gives in the case of β = 0 and 2αγ = −1 (relevant for D1-branes, fundamental
strings and D4-branes):

κ(2) =
1

2d
(∇2κ(0) + gij(0)∂iκ(0)∂jκ(0) +

1

2(d− 1)
R(0)), (5.91)

g(2)ij =
1

d− 1
(−R(0)ij +

1

2d
R(0)g(0)ij + (∇{i∂j}κ)(0) + ∂{iκ(0)∂j}κ(0))

Here the parentheses in a quantity A{ab} denote the traceless symmetric tensor and ∇i is the
covariant derivative in the metric g(0)ij .

If β 6= 0, as for p = 0, 2, the expressions are slightly more involved:

κ(2) = − 1

M

(
2αγR(0) − 2(d− 1)∇2κ(0) + (

2αβ

γ
− 2d+ 2)(gij(0)∂iκ(0)∂jκ(0))

)
,

g(2)ij =
1

d− 2αγ − 2

(
−R(0)ij +∇i∂jκ(0) + (1− β

γ2
)∂iκ(0)∂jκ(0) (5.92)

+
γ2 − β

2(γ2d− βd+ β)
g(0)ij

(
R(0) − 2∇2κ(0) − 2(1− β

2γ2
)(gij(0)∂iκ(0)∂jκ(0))

))
,

M ≡ 16α2β − 2(d− 1)(8αγ + 4− 2d) =
16(9− p)
(5− p)2

.

The final equality, expressing the coefficient M in terms of p, holds for the Dp-branes of interest
here.
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CATEGORY 1: UNDETERMINED TERMS AT NON-INTEGRAL ORDER

Let us first consider the case where the undetermined terms occur at non-integral order.

In the cases of p = 0, 1, 2 the terms given above in (5.92) are the only determined terms. The
underdetermined terms appear at order ρ(p−7)/(p−5) and satisfy the constraints

2κ(2σ) + Trg(2σ) = 0, σ =
p− 7

p− 5
(5.93)

∇ig(2σ)ij − 2(1− β

γ2
)∂jκ(0)κ(2σ) + g(2σ)ij∂

iκ(0) = 0. (5.94)

We will see that the trace and divergent constraints translate into conformal and diffeomor-
phism Ward identities respectively.

CATEGORY 2: UNDETERMINED TERMS AT INTEGRAL ORDER

Let us next consider the case where the undetermined terms occur at integral order: this in-
cludes the D3 and D4 branes. Explicit expressions for the conformal cases, including the case
of D3-branes, are given in [15]. For the D4-branes, the equations at next order can be solved
to determine κ(4) and g(4)ij:

κ(4) =
1

8
((∇2κ)(2) + 6κ2

(2) + (∂κ)2
(2) + 1

2
Trg2

(2) + 2κ(2)Trg(2)), (5.95)

g(4)ij =
1

4
[(2κ2

(2) + 1
2
Trg2

(2))g(0)ij −R(2)ij − 2(g2
(2))ij + (∇i∂jκ)(2) + 2∂iκ(2)∂jκ(0)].

where we introduce the notation

A[g(x, ρ), κ(x, ρ)] = A(0)(x) + ρA(2)(x) + ρ2A(4)(x) + · · · (5.96)

for composite quantities A[g, κ] of g(x, ρ) and κ(x, ρ). For (5.95) we need the coefficients
of A = {∇2κ, (∂κ)2, Rij}. The explicit expression for these coefficients can be worked out
straightforwardly using the asymptotic expansion of g(x, ρ) and κ(x, ρ) and we give these ex-
pressions for the Christoffel connections and curvature coefficients in appendix 5.A.1. Note
also that we use the compact notation

(g2
(2))ij ≡ (g(2)g

−1
(0)g(2))ij , Tr(g(2n)) ≡ Tr(g−1

(0)g(2n)). (5.97)

Proceeding to the next order, one finds that the expansion coefficients κ(6) and g(6)ij cannot
be determined independently in terms of lower order coefficients because after further differ-
entiating the highest derivative terms in (5.73) and (5.74) both vanish. Only the combination
(2κ(6) + Trg(6)) is fixed, along with a constraint on the divergence. Furthermore one has to
introduce logarithmic terms in (5.67) for the equations to be satisfied, namely

g(x, ρ) = g(0)(x) + ρg(2)(x) + ρ2g(4)(x) + ρ3g(6)(x) + ρ3 log(ρ)h(6)(x) + · · · (5.98)

κ(x, ρ) = κ(0)(x) + ρκ(2)(x) + ρ2κ(4)(x) + ρ3κ(6)(x) + ρ3 log(ρ)κ̃(6)(x) + · · ·
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For the logarithmic terms one finds

κ̃(6) = − 1

12
[(∇2κ)(4) + (∂κ)2

(4) + 20κ(2)κ(4) − 1
2
Trg3

(2) + Trg(2)g(4) (5.99)

+2κ(2)(−Trg2
(2) + 2Trg(4)) + 4κ(4)Trg(2)],

h(6)ij = − 1

12
[−2R(4)ij + (−Trg3

(2) + 2Trg(2)g(4) + 8κ(2)κ(4))g(0)ij + 2Trg(2)g(4)ij

−8(g(4)g(2))ij − 8(g(2)g(4))ij + 4g3
(2)ij + 2(∇i∂jκ)(4) + 2(∂iκ∂jκ)(4) + 4κ(2)g(4)ij ],

Note that these coefficients satisfy the following identities

Trh(6) + 2κ̃(6) = 0, (5.100)

gki(0)(∇kh(6)ij + h(6)ij∂kκ(0))− 2∂jκ(0)κ̃(6) = 0.

Furthermore, κ(6),Trg(6) and ∇ig(6)ij are constrained by the following equations,

2κ(6) + Trg(6) = −1

6
(−4Trg(2)g(4) + Trg3

(2) + 8κ(2)κ(4)), (5.101)

∇ig(6)ij − 2∂jκ(0)κ(6) + g(6)ij∂
iκ(0) = Tj ,

where Tj is locally determined in terms of (g(2n), κ(2n)) with n ≤ 2,

Tj = ∇iAij − 2∂jκ(0)(A−
2

3
κ3

(2) − 2κ(2)κ(4)) +Aij∂
iκ(0) (5.102)

+
1

6
Tr(g(4)∇jg(2)) +

2

3
(κ(4) + κ2

(2))∂jκ(2),

with

Aij =
1

3

(
(2g(2)g(4) + g(4)g(2))ij − (g3

(2))ij (5.103)

+
1

8
(Tr(g2

(2))− Trg(2)(Trg(2) + 4κ(2)))g(2)ij

−(Trg(2) + 2κ(2))(g(4)ij − 1
2
(g2

(2))ij)

−(
1

8
Trg(2)Trg2

(2) −
1

24
(Trg(2))

3 − 1

6
Trg3

(2) +
1

2
Trg(2)g(4))g(0)ij

+

(
1

4
κ(2)((Trg(2))

2 − Trg2
(2))−

4

3
κ3

(2) − 2κ(2)κ(4)

)
g(0)ij

)
A =

1

6

(
−
(

1

8
Trg(2)Trg2

(2) −
1

24
(Trg(2))

3 − 1

6
Trg3

(2) +
1

2
Trg(2)g(4)

)
−32

3
κ3

(2) − 6κ(2)κ(4) − κ2
(2)Trg(2) − 2κ(4)Trg(2)

)
.

We would now like to integrate the equations (5.101). Following the steps in [15], it is conve-
nient to express g(6)ij and κ(6) as

g(6)ij = Aij −
1

24
Sij + tij ; (5.104)

κ(6) = A− 1

24
S − 2κ(2)κ(4) −

2

3
κ3

(2) + ϕ,
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where (Sij , S) are local functions of g(0), κ(0),

Sij = (∇2 + ∂mκ(0)∇m)Iij − 2∂mκ(0)∂(iκ(0)Ij)m + 4∂iκ(0)∂jκ(0)I (5.105)

+2RkiljI
kl − 4I(∇i∂jκ(0) + ∂iκ(0)∂jκ(0)) + 4(g(2)g(4) − g(4)g(2))ij

+
1

10
(∇i∂jB − g(0)ij(∇2 + ∂mκ(0)∂m)B)

+
2

5
B + g(0)ij(−

2

3
Trg3

(2) −
4

15
(Trg(2))

3 +
3

5
Trg(2)Trg2

(2)

−8

3
κ3

(2) −
8

5
κ(2)(Trg(2))

2 − 4

5
κ2

(2)Trg(2) +
6

5
κ(2)Trg2

(2)),

S = (∇2 + ∂mκ(0)∂m)I + ∂iκ(0)∂jκ(0)I
ij − 2(∂κ)2

(0)I (5.106)

−(∇k∂lκ(0) + ∂kκ(0)∂lκ(0))I
kl − 1

20
(∇2 + ∂mκ(0)∂m)B

+
2

5
Bκ(2) −

4

3
κ3

(2) −
4

5
κ(2)(Trg(2))

2 − 2

5
κ2

(2)Trg(2) +
3

5
κ(2)Trg(2)

2,

Iij = (g(4) −
1

2
g2

(2) +
1

4
g(2)(Trg(2) + 2κ(2)))ij +

1

8
g(0)ijB,

I = κ(4) +
1

2
κ2

(2) +
1

4
κ(2)Trg(2) +

B

16
,

B = Trg2
(2) − Trg(2)(Trg(2) + 4κ(2)).

Note that these definitions imply the following identities

∇iSij − 2∂jκ(0)S + Sij∂
iκ(0) = −4

(
Tr(g(4)∇jg(2)) + 4(κ(4) + κ2

(2))∂jκ(2)

)
; (5.107)

Tr(Sij) + 2S = −8Tr(g(2)g(4) − 32κ(2)(κ
2
(2) + κ(4)).

Now, these definitions imply that tij defined in (5.104) is a symmetric tensor: Aij contains an
antisymmetric part but this is canceled by a corresponding antisymmetric part in Sij . Inserting
(5.104) in (5.101) one finds that the quantities (tij , ϕ) satisfy the following divergence and
trace constraints:

∇itij = 2∂jκ(0)ϕ− tij∂iκ(0); (5.108)

Trt+ 2ϕ = −1

3

(
1

8
(Trg(2))

3 − 3

8
Trg(2)Trg2

(2) +
1

2
Trg3

(2) − Trg(2)g(4)

−3

4
κ(2)(Trg2

(2) − (Trg(2))
2)− 4κ(2)κ(4) + 2κ3

(2)

)
.

We will find that the one point functions are expressed in terms of (tij , ϕ) and these constraints
translate into the conformal and diffeomorphism Ward identities.

(5.5.3) REDUCTION OF M-BRANES

The D4-brane and type IIA fundamental string solutions are obtained from the reduction along
a worldvolume direction of the M5 and M2 brane solutions respectively. The boundary condi-
tions for the supergravity solutions also descend directly from dimensional reduction: diagonal
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reduction on a circle of an asymptotically (locally) AdSd+2 spacetime results in an asymptoti-
cally (locally) AdSd+1 spacetime with linear dilaton. Therefore the rather complicated results
for the asymptotic expansions in the D4 and fundamental string cases should follow directly
from the previously derived results for AdS7 and AdS4 given in [15], and we show that this is
indeed the case in this subsection.

As discussed in section 5.3, solutions of the field equations of (5.36) are related to solutions of
the field equations of the action (5.28) via the reduction formula (5.39). In the cases of F1 and
D4 branes this means in particular

e4φ/3 =
1

ρ
e2κ, (5.109)

where in comparing with (5.66) one should note that α = −3/4, γ = 2/3 for both F1 and D4.
This implies that the (d+ 2) solution is automatically in the Fefferman-Graham gauge:

ds2
d+2 =

dρ2

4ρ2
+

1

ρ
(gijdx

idxj + e2κdy2). (5.110)

Recall that for an asymptotically AdSd+2 Einstein manifold, the asymptotic expansion in the
Fefferman-Graham gauge is

ds2
d+2 =

dρ2

4ρ2
+

1

ρ
Gabdx

adxb (5.111)

where a = 1, . . . , (d+ 1) and

G = G(0)(x)+ρG(2)(x)+ · · ·+ρ(d+1)/2G(d+1)/2(x)+ρ(d+1)/2 log(ρ)H(d+1)/2(x)+ · · · , (5.112)

with the logarithmic term present only when (d+1) is even. The explicit expression for G(2)(x)

in terms of G(0)(x) is3

G(2)ab =
1

d− 1

(
−Rab +

1

2d
RG(0)ab

)
. (5.113)

where the Rab is the Ricci tensor of G(0), etc.

Comparing (5.110) with (5.111) one obtains

Gij = gij ; Gyy = e2κ. (5.114)

In particular G(0)ij = g(0)ij and G(0)yy = e2κ(0) , so

R[G(0)]ij = R(0)ij −∇i∂jκ(0) − ∂iκ(0)∂jκ(0); (5.115)

R[G(0)]yy = e2κ(0)(−∇i∂iκ(0) − ∂iκ(0)∂
iκ(0)),

with R[G(0)]yi = 0. Substituting into (5.113) gives

G(2)ij =
1

d− 1

(
−R(0)ij +

1

2d
R(0)g(0)ij + (∇{i∂j}κ)(0) + ∂{iκ(0)∂j}κ(0)

)
; (5.116)

G(2)yy = e2κ(0)

(
1

2d(d− 1)
R(0) +

1

d
(∇2κ(0) + (∂κ(0))

2)

)
,

3Note that the conventions for the curvature used here differ by an overall sign from those in [15].
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with G(2)yi = 0. We thus find exact agreement between G(2)ij and g(2)ij in (5.91). Now using

Gyy = e2κ = e(2κ(0)+2ρκ(2)+··· ) = e2κ(0)(1 + 2ρκ(2) + · · · ) (5.117)

one determines κ(2) to be exactly the expression given in (5.91).

Now restrict to the asymptotically AdS4 case; the next coefficient in the asymptotic expansion
occurs at order ρ3/2, in G(3)ab, and is undetermined except for the vanishing of its trace and
divergence:

Gab(0)G(3)ab = 0; DaG(3)ab = 0. (5.118)

Reducing these constraints leads immediately to

gij(0)g(3)ij + 2κ(3) = 0; (5.119)

∇ig(3)ij − 2∂jκ(0)κ(3) + g(3)ij∂
iκ(0) = 0,

in agreement with (5.93) and (5.94).

Similarly if one considers the asymptotically AdS7 case, the determined coefficients G(4) and
H(6) reduce to give (g(4), κ(4)) and (h(6), κ̃(6)) respectively. Furthermore, the trace of G(6) fixes
the combination (2κ(6) + Trg(6)). One can show that all explicit formulae agree precisely with
the dimensional reduction of the formulae in [15]; the details are discussed in appendix 5.A.3.

(5.5.4) RENORMALIZATION OF THE ACTION

Having derived the general form of the asymptotic expansion one can now proceed to holo-
graphic renormalization, following the discussion in [15]. In this method one substitutes the
asymptotic expansions back into the regulated action and then introduces local covariant coun-
terterms to cancel the divergences and renormalise the action. Whilst this method is conceptu-
ally very simple, in practice it is rather cumbersome for explicit computations. A more efficient
method based on a radial Hamiltonian formalism [19, 20] will be discussed in the next section.

Let us choose an illustrative yet simple example to demonstrate this method of holographic
renormalization: we will work out the renormalised on-shell action and compute the one-
point function of the energy-momentum tensor and the operator O for the case p = 1, both
fundamental strings and D1-branes.

Since in this case β = 0, Φ̂ ≡ eγφ behaves like a Lagrange multiplier and the bulk part of
the action vanishes on-shell. The only non-trivial contribution comes then from the Gibbons-
Hawking boundary term:

Sboundary = −L
∫
ρ=ε

d2x
√
h2Φ̂K, (5.120)

where hij is the induced metric on the boundary and K is the trace of the extrinsic curvature.
Since (5.120) is divergent we regularise the action by evaluating it at ρ = ε.
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We would like now to find counterterms to remove the divergences in (5.120). From the
discussion in section 5.5.1 we know the asymptotic expansion for Φ and hij(x, ρ) = gij(x, ρ)/ρ:

Φ̂ =
eκ(0)

√
ρ

(1 + ρκ(2) + ρ3/2κ(3) + · · · ), (5.121)

h =
1

ρ
(g(0) + ρg(2) + ρ3/2g(3) + · · · ),

where κ(3) and g(3) are the lowest undetermined coefficients. Note that the expansions are the
same for both fundamental strings and D1-branes, since in both cases αγ = −1/2. Inserting
the expansion (5.121) in (5.120) we find for the divergent part

Sdiv = −4L

∫
ρ=ε

d2xeκ(0)
√
g(0)(ε

−3/2 + ε−1/2κ(2)), (5.122)

using the formula

K = d− ρTr(g−1g′) (5.123)

for the trace of the extrinsic curvature in the asymptotically AdSd+1 background. The trace
term here cancels against the one in the expansion of the determinant.

From (5.121) and (5.91) we find

√
g(0) = ρ

√
h(1 +

1

4(d− 1)
R[h]), (5.124)

which allows us to write the counterterms in a gauge-invariant form:

Sct = −Sdiv = 4L

∫
ρ=ε

d2x
√
hΦ̂(1 +

1

4
R[h]). (5.125)

The renormalised action is then

Sren[g(0), κ(0)] = lim
ε→0

Ssub[h(x, ε), Φ̂(x, ε)); ε] (5.126)

where

Ssub = Sbulk + Sboundary + Sct

= −L[

∫
ρ≥ε

d3x
√
gΦ̂(R+ C) +

∫
ρ=ε

d2x
√
hΦ̂(2K − 4−R[h])]. (5.127)

This allows us to compute the renormalised vevs of the operator dual to Φ̂ and the stress-energy
tensor. For the former, only the boundary part contributes, since R + C = 0 from the equation
of motion for Φ̂. It can be easily checked that the divergent parts cancel and we obtain the
finite result

〈O〉 =
1
√
g(0)

δSsub
δΦ(0)

= −1

2
e3κ(0) lim

ε→0
(

1

ε3/2
√
h

δSsub

δΦ̂
) =

3

2
e3κ(0)LTrg(3) = −3e3κ0Lκ(3).

(5.128)
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where we used (5.69) and the definition of Φ̂. The vev of the stress-energy tensor 〈Tij〉 =

limε→0 Tij [h] gets a contribution from the bulk term as well. We can split it into the contribution
of the regularised action and the counterterms

Tij [h] = T regij + T ctij , (5.129)

where

T regij [h] = 2L[Φ̂(Khij −Kij)− 2ρ∂ρΦ̂hij ], (5.130)

T ctij [h] = 2L[Φ̂(Rij −
1

2
Rhij − 2hij) +∇2Φ̂hij −∇i∂jΦ̂].

One can again check that the divergent terms cancel and obtain the finite contribution

〈Tij〉 = lim
ε→0

(
2√
h

δSren
δhij

) = 3Leκ(0)g(3)ij . (5.131)

Note that the expressions for the vevs take the same form for both D1-brane and fundamental
string cases. The one point functions satisfy the following Ward identities:

〈T ii 〉 − 2Φ(0)〈O〉 = 0. (5.132)

∇i〈Tij〉+ ∂jΦ(0)〈O〉 = 0.

To derive these one needs the trace and divergence identities given in (5.93) and (5.94) and
the relation Φ(0) = e−2κ(0) (see (5.69)). These Ward identities indeed agree exactly with what
we derived on the QFT side, (5.48)-(5.49).

The first variation of the renormalized action yields the relation between the 1-point func-
tions and non-linear combinations of the asymptotic coefficients. The one point functions are
obtained in the presence of sources, so higher point functions can be obtained by further func-
tional differentiation with respect to sources.

One should note here that the local boundary counterterms are required, irrespectively of the
issue of finiteness, by the more fundamental requirement of the well-posedness of the appro-
priate variational problem [113]. The conformal boundary of asymptotically AdS spacetimes
has a well-defined conformal class of metric rather than an induced metric. This means that the
appropriate variational problem involves keeping fixed a conformal class and not an induced
metric as in the usual Dirichlet problem for gravity in a spacetime with a boundary. The new
variational problem requires the addition of further boundary terms, on top of the Gibbons-
Hawking term. In the context of asymptotically AdS spacetimes (with no linear dilaton) these
turn out to be precisely the boundary counterterms, see [113] for the details and a discussion
of the subtleties related to conformal anomalies.

(5.5.5) RELATION TO M2 THEORY

In the case of fundamental strings these formulae again follow directly from dimensional re-
duction of the AdS4 case, since for the latter the renormalized stress energy tensor is [15]

〈Tab〉 = 3LMG(3)ab. (5.133)
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Recalling the dimensional reduction formula (5.114), and noting that

LM = Leκ0 , (5.134)

one finds immediately that
〈Tij〉 = 3Leκ0g(3)ij , (5.135)

in agreement with (5.131). Noting that Gyy = e4φ/3ρ = Φ̂2ρ one finds

〈Tyy〉 = 6Le3κ0κ(3) = −2〈O〉, (5.136)

in agreement with (5.128). The first Ward identity in (5.132) is thus an immediate consequence
of the conformal Ward identity of the M2 brane theory, i.e. the tracelessness of the stress energy
tensor. The second Ward identity in (5.132) similarly follows from the vanishing divergence of
the stress energy tensor in the M2-brane theory.

(5.5.6) FORMULAE FOR OTHER DP-BRANES

It is straightforward to derive analogous formulae for the other Dp-branes. Note that in general
there is also a bulk contribution to the on-shell action

Son−shell = L
4αβ(d− 2αγ)

h

∫
ρ≥ε

dd+1x
√
geγφ + L

∫
ρ=ε

ddx
√
heγφ2K (5.137)

where hij is the induced metric on the boundary, K is the trace of the extrinsic curvature and
the action is regularised at ρ = ε. Focusing first on the cases p < 3 the divergent terms are:

Sdiv = −L
∫
ρ=ε

ddx
√
g(0)e

κ(0)ε−d/2+αγ

(
2d− 4αβ

γ
+ (− 4αβ(d− 2αγ)

γ(d− 2αγ − 2)
+ 2d)ρκ(2)

+(− 2αβ(d− 2αγ)

γ(d− 2αγ − 2)
+ d− 2)ρTrg(2)

)
, (5.138)

which can be removed with the counterterm action

Sct = L

∫
ρ=ε

ddx
√
heγφ(2d− 4αβ

γ
+ CR(R̂[h] + β(∂iφ)2)) (5.139)

= L

∫
ρ=ε

ddx
√
heγφ

(
2(9− p)

5− p +
5− p

4
(R̂[h] + β(∂iφ)2)

)
CR ≡ γ2 − β

dγ2 − dβ − γ2 + 2β
=

5− p
4

.

Again for convenience we give the formulae both in terms of (α, β, γ) and for the specific cases
of interest here, the Dp-branes. The renormalised vevs of the operator4 Oφ dual to φ and the
stress-energy tensor can now be computed giving:

〈Oφ〉 = 2σLeκ(0)
1

α
κ(2σ), (5.140)

〈Tij〉 = 2σLeκ(0)g(2σ)ij .

4Note that 〈Oφ〉 = χΦ(0)〈O〉. This is obtained using (5.69) and the chain rule.
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Using (5.93) and (5.94) one obtains

0 = 〈T ii 〉+ 2α〈Oφ〉 = 〈T ii 〉+ (p− 3)Φ(0)〈O〉 (5.141)

0 = ∇i〈Tij〉 −
1

γ
∂jκ(0)〈Oφ〉 = ∇i〈Tij〉+ ∂jΦ(0)〈O〉, (5.142)

where in the second equality we use the relation between κ(0) and Φ(0) in (5.69) which implies
in particular that 〈Oφ〉 = χΦ(0)〈O〉. These are the anticipated dilatation and diffeomorphism
Ward identities.

Next let us consider the case of D4-branes, for which one needs more counterterms:

Sct = L

∫
ρ=ε

d5x
√
heγφ(10 +

1

4
R̂[h] +

1

32
(R̂[h]ij − γ(∇̂i∂jφ+ ∂iφ∂jφ))2 (5.143)

+
1

32
γ2(∇̂2φ+ (∂iφ)2)2 − 3

320
(R̂[h]− 2γ(∇̂2φ+ (∂iφ)2))2 + a(6) log ε),

where the coefficient of the logarithmic term a(6) is given by

a(6) = 6Trh(6);

=
1

8
(Trg(2))

3 − 3

8
Trg(2)Trg2

(2) +
1

2
Trg3

(2) − Trg(2)g(4) (5.144)

−3

4
κ(2)Trg2

(2) +
3

4
κ(2)(Trg(2))

2 − 4κ(2)κ(4) − 2κ3
(2).

Note that in cases such as the D4-brane, where one needs to compute many counterterms, it is
rather more convenient to use the Hamiltonian formalism, which will be discussed in the next
section. We will also discuss the structure of this anomaly further in the following section.

The renormalised vevs of the operator dual to φ and the stress-energy tensor can now be
computed giving:

〈Oφ〉 = −Leκ(0)(8ϕ+
44

3
κ̃(6)), (5.145)

〈Tij〉 = Leκ(0)(6tij + 11h(6)ij),

where (tij , ϕ) are defined in (5.104). Note that the contributions proportional to κ̃(6), h(6)ij are
scheme dependent; one can remove these contributions by adding finite local boundary terms.

The dilatation Ward identity is

〈T ii 〉+ Φ(0)〈O〉 = −2Leκ(0)a(6), (5.146)

whilst the diffeomorphism Ward identity is

∇i〈Tij〉+ ∂jΦ(0)〈O〉 = 0. (5.147)

The terms involving (h(6)ij , κ̃(6)) drop out of the Ward identities because of the trace and
divergence identities given in (5.100).

These formulae are as expected consistent with the reduction of the M5 brane formulae given
in [15]. This computation of the renormalized stress energy tensor for the M5-brane case is
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reviewed in appendix 5.A.2. In fact in [15] the renormalized stress energy tensor for the AdS7

case was given only up to scheme dependent traceless, covariantly constant terms, proportional
to the coefficient H(6)ab of the logarithmic term in the asymptotic expansion. In appendix 5.A.2
we determine these contributions to the stress energy tensor, with the resulting stress energy
tensor being (5.330):

〈Tab〉 =
N3

3π3
(6tab + 11H(6)ab). (5.148)

The streamlined method of derivation of the renormalized stress energy tensor given in ap-
pendix 5.A.2 is also useful in the explicit derivation of the D4-brane formulae given in (5.145).
Dimensional reduction of the tab term in the stress energy tensor results in the (tij , ϕ) terms
in the D4-brane operator vevs, whilst reduction of the H(6)ab term gives the terms involving
(h(6)ij , κ̃(6)). The details of this dimensional reduction are discussed in appendix 5.A.3.

(5.6) HAMILTONIAN FORMULATION

In the previous section we showed how correlation functions can be computed using the basic
holographic dictionary that relates the on-shell gravitational action to the generating functional
of correlators, and we renormalized the action with counterterms to obtain finite expressions.
This method of holographic renormalization is conceptually very simple but does not exploit
all the structure of the theory.

The underlying structure of the correlators is best exhibited in the radial Hamiltonian for-
malism, which is a Hamiltonian formulation with the radius playing the role of time. The
Hamilton-Jacobi theory, introduced in this context in [114], relates the variation of the on-shell
action w.r.t. boundary conditions, thus the holographic 1-point functions, to radial canonical
momenta. It follows that one can bypass the on-shell action and directly compute renormal-
ized correlators using radial canonical momenta π, as was developed for asymptotically AdS
spacetimes in [19, 20].

A fundamental property of asymptotically (locally) AdS spacetimes is that dilatations are part of
their asymptotic symmetries. This implies that all covariant quantities can be decomposed into
a sum of terms each of which has definite scaling. These coefficients are in 1-1 correspondence
with the asymptotic coefficients in (5.66) with the exact relation being in general non-linear.
The advantage of working with dilatation eigenvalues rather than with asymptotic coefficients
is that the former are manifestly covariant while the latter in general are not: the asymptotic
expansion (5.66) singles out one coordinate so it is not covariant. Holographic 1-point func-
tions can be expressed most compactly in terms of eigenfunctions of the dilatation operator,
and this explains the non-linearities found in explicit computations of 1-point functions.
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(5.6.1) HAMILTONIAN METHOD FOR NON-CONFORMAL BRANES

We now develop a Hamiltonian version of the holographic renormalization of these back-
grounds following closely the steps of [19, 20]. We consider the action (5.28) with the Gibbons-
Hawking boundary term added to ensure that the action depends only on first radial derivatives
(as we will see shortly), so a radial Hamiltonian formalism can be set up:

S = −L
∫
AdSd+1

dd+1x
√
geγφ[R+ β(∂φ)2 + C]− 2L

∫
∂AdSd+1

ddx
√
heγφK. (5.149)

Note that we are again working in Euclidean signature. Next we introduce a radial Hamilto-
nian formulation. In the usual Hamiltonian formulation of gravity in the ADM formalism one
foliates spacetime by hypersurfaces of constant time. Here analogously we introduce a fam-
ily of hypersurfaces Σr of constant radius r near the boundary and denote by nµ their unit
normal. For asymptotically locally AdS manifolds there always exists a radial function nor-
mal to the boundary which can be used to foliate the space in such radial slices, at least in a
neighborhood of the boundary.

In order to give a Hamiltonian description of the dynamics, one needs to express the action
(5.28) in terms of quantities on Σr. In particular, this means that the Ricci scalar in the action
(5.28) should be expressed in terms of expressions which only contain first derivatives in the
radial variable. The induced metric on the hypersurface Σr can be expressed as hσµ = gσµ −
nσnµ, with hρµ ≡ gρσhσµ. Now let us define the radial flow vector field rµ by the relation
rµ∂µr = 1, such that the components of rµ tangent and normal to Σr define shift and lapse
functions respectively:

rµ‖ = hµρr
ρ ≡ Nµ; rµ⊥ = Nnµ. (5.150)

Thus the metric is decomposed as

ds2 = (N2 +NµN
µ)dr2 + 2Nµdx

µdr + hµνdx
µdxν , (5.151)

analogously to the usual ADM decomposition.

A useful tool in our analysis is the extrinsic curvature Kµν of the hypersurface given by the
covariant derivative of the unit normal

Kµν = hσ(µ∇σnν). (5.152)

The geometric Gauss-Codazzi equations (in the contracted form of [19, 20]) can be used to
express the curvature of the embedding space in terms of extrinsic and intrinsic curvatures on
the hypersurface5 :

K2 −KµνK
µν = R̂+ 2Gµνn

µnν , (5.153)

∇̂µKµ
ν − ∂νK = Gρσh

ρ
νn

σ,

£nKµν +KKµν − 2Kρ
µKρν = R̂µν − hρµhσνRρσ,

5The Lie derivative in our conventions is defined as £nKµν = nσKµν,σ − 2nσ,(µKν)σ .
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where Gµν is the Einstein tensor in the embedding spacetime, K is the trace of the extrinsic
curvature, R̂µν is the intrinsic curvature and ∇̂ is the covariant derivative on the hypersurface.

Combining the first equation in (5.153) with the Ricci identityRµνnµnν = nν(∇σ∇ν−∇ν∇σ)nσ

the Ricci scalar can be expressed as

R = K2 −KµνK
µν + R̂− 2∇µ(nµ∇νnν) + 2∇ν(nµ∇µnν), (5.154)

Inserting this expression into the action (5.28), the last two terms cancel the Gibbons-Hawking
boundary term in (5.28) after partial integration and the remaining term is

S = −L
∫
dd+1x

√
geγφ[R̂+K2 −KµνK

µν + β(∂φ)2 + C (5.155)

+2γ∂µφn
µ∇νnν − 2γ∂νφn

µ∇µnν ].

Note that the extrinsic curvature can be expressed as

Kµν =
1

2N
(∂rhµν − ∇̂µNν − ∇̂νNµ), (5.156)

and thus the action can be expressed entirely in terms of the fields (hµν , N
µ, N) and the scalar

field φ, and their derivatives. The canonical momenta conjugate to these fields are given by

πµν ≡ δL

δḣµν
, πφ ≡

δL

δφ̇
, (5.157)

where ḟ ≡ ∂rf and the momenta conjugate to the lapse and shift functions vanish identically.
The corresponding equations of motion in the canonical formalism become constraints, which
are precisely those obtained from the first two equations in (5.153) and are the Hamiltonian
and momentum constraints respectively.

The diffeomorphism gauge is most naturally fixed by choosing Gaussian normal coordinates
(Nµ = 0 and N = 1), such that

ds2 = dr2 + hij(r, x)dxidxj , Kij =
1

2
ḣij (5.158)

nµ = δµr , ∇µnµ = K, nµ∇µnν = 0,

where the dot denotes differentiation with respect to r. The action becomes

S = −L
∫
dd+1x

√
heγφ[R̂+K2 −KijK

ij + β(φ̇2 + (∂iφ)2) + C + 2γφ̇K]. (5.159)

and the canonical momenta are given by

πφ = 2B (βφ̇+ γK), B ≡ −Leγφ
√
h. (5.160)

πij = B (Khij −Kij + γφ̇hij),

The Gauss-Codazzi identities in this gauge become:

K2 −KijK
ij = R̂+ 2Grr, (5.161)

DiK
i
j −DjK = Gjr,

K̇i
j +KKi

j = R̂ij −Rij ,
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Now consider the regulated manifold Mr0 defined as the submanifold of M bounded by the
hypersurface Σr0 . The values of the induced fields on Σr0 become boundary conditions for the
action, and therefore the momenta on the regulating surface can be obtained from variations
of the on-shell action with respect to the boundary values of the induced fields. The Hamilton-
Jacobi identities thus allow the momenta (5.160) on the regulating surface to be expressed in
terms of the on-shell action by

πij(r0, x) =
δSon−shell
δhij(r0, x)

, πφ(r0, x) =
δSon−shell
δφ(r0, x)

. (5.162)

Since the choice of the regulator r0 is arbitrary, the equations (5.165) and (5.162) can be used
not just to compute the on-shell action and momentum on the regulating surface Σr0 but on
any radial surface Σr.

Now to calculate the regulated on-shell action one uses the first of the Gauss-Codazzi identities,
together with the field equations (5.35):

Son−shell = −2L

∫
Mr0

dd+1x
√
heγφ[R̂+ β(∂iφ)2 + C]. (5.163)

However, since the field equations follow from the variation of the bulk part of the action, the
radial derivative of the on-shell action can be expressed as a purely boundary term,

Ṡon−shell = −2L

∫
Σr0

ddx
√
heγφ[R̂+ β(∂iφ)2 + C]. (5.164)

From this expression follows that the regulated on-shell action can itself also be written as a
d-dimensional integral by introducing a covariant variable λ,

Son−shell = −2L

∫
Σr0

ddx
√
heγφ[K − λ], (5.165)

where λ satisfies the equation

λ̇+ λ(K + γφ̇) + E = 0, (5.166)

E =
(γ2 + d(γ2 − β))β

(γ2 − β)2
= −2(p− 1)(p− 4)(p− 7)

(p− 5)2
,

and the trace of the third equation in (5.161) is used, along with the field equations (5.35).
Note that since Σr0 is compact λ is defined only up to a total divergence.

The Hamilton-Jacobi identities then imply that:

πijδhij + πφδφ = −2Lδ[
√
heγφ(K − λ)], (5.167)

up to a total derivative. One can always use the total divergence ambiguity in λ to ensure that
this expression holds without integrating it over Σr. First one chooses any λ satisfying (5.166),
and then one calculates the variation δ[

√
heγφ(K − λ)]. This variation necessarily gives the left

hand side of (5.167), up to total derivative terms, which can be absorbed into the definition of
λ. (Strictly speaking, this argument applies only to the local terms in λ; the finite part of λ as
r →∞ is actually non-local in the sources, and only the integrated identity holds for this part.)
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(5.6.2) HOLOGRAPHIC RENORMALIZATION

We next turn to the formulation of a Hamiltonian method of holographic renormalization. In
the earlier sections, we discussed holographic renormalization by solving asymptotically the
field equations, as a function of sources. Here we will instead use the equations of motion
to determine the asymptotic form of the momenta as functionals of induced fields. Such a
procedure is manifestly covariant at all stages, with the Ward identities being manifest and the
one point functions of dual operators being naturally expressed in terms of the momenta.

An important tool in the Hamiltonian method is the dilatation operator, whose eigenfunctions
are covariant expressions on the hypersurface Σr, and which asymptotically behaves like the
radial derivative. The radial derivative acting on the on-shell action and on the momenta can
be represented as a functional derivative, since by means of the field equations the on-shell
action and the momenta are given as functionals of hij and φ:

∂r =

∫
ddx(2Kij [h, φ]

δ

δhij
+ φ̇[h, φ]

δ

δφ
) (5.168)

where we used (5.158). Now, recall that the dilatation operator for a d-dimensional theory on
a curved background containing sources for operators of dimension ∆ is given by

δD ≡
∫
ddx(2hij

δ

δhij
+ (∆− d)Φ

δ

δΦ
) (5.169)

In our case, the field Φ = exp 2(p−5)
(7−p) φ couples to O which has dimension 4. Using the chain

rule we obtain
δD ≡

∫
ddx(2hij

δ

δhij
− 2α

δ

δφ
) = ∂r +O(e−2r), (5.170)

so indeed the radial derivative can be asymptotically identified with the dilatation operator
since asymptotically φ̇→ −2α and ḣij → 2hij .

The next key observation is that the momenta and on-shell action can be expanded asymp-
totically in terms of eigenfunctions of the dilatation operator δD. The structure one expects
in these expansions of Ki

j , λ and φ̇ in terms of weights of the dilatation operator is similar
to the radial expansions (5.67), except that every term in the expansion also contains terms
subleading in e−2r:

Ki
j [h, φ] = K(0)

i

j
+K(2)

i

j
+ · · ·+K(d−2αγ)

i

j
+ K̃(d−2αγ)

i

j
log e−2r, (5.171)

λ[h, φ] = λ(0) + λ(2) + · · ·+ λ(d−2αγ) + λ̃(d−2αγ) log e−2r,

φ̇[h, φ] = pφ(0) + pφ(2) + · · ·+ pφ(d−2αγ) + p̃φ(d−2αγ) log e−2r.

(We will see that the logarithmic terms appear only if (d − 2αγ) is an even integer, i.e. for
p = 3, 4.) The transformation properties of these terms under the dilatation operator are:

δDK(n)
i
j = −nK(n)

i
j , δDK̃(d−2αγ)

i
j = −(d− 2αγ)K̃(d−2αγ)

i
j , (5.172)

δDK(d−2αγ)
i
j = −(d− 2αγ)K(d−2αγ)

i
j − 2K̃(d−2αγ)

i
j ,
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and similarly for λk and pφk . Thus terms with weight n < (d− 2αγ) transform homogeneously,
whilst terms with weight n = (d − 2αγ) transform inhomogeneously, indicating that these
terms depend non-locally on the induced fields. As we will see below, the terms with weight
n < d−2αγ are algebraically (locally) determined in terms of the asymptotics, while the weight
(d − 2αγ) terms are undetermined up to some constraints. The latter will be identified with
the renormalized one point functions and the on-shell action, which are non-local functionals
of the sources. Given a solution from which one wishes to extract the 1-point function dual
to a given field, one simply subtracts the lower weight terms in the dilatation expansion of
the corresponding momentum. We will show below how these lower weight terms can be
determined recursively in terms of the asymptotic data.

Although it is as mentioned above not necessary to compute the renormalised action to obtain
renormalised 1-point functions, the Hamiltonian method is more efficient at determining the
counterterms. The divergences in the on-shell action can be expressed as terms in the expan-
sions which are divergent as r0 → ∞. These divergences can be removed by a counterterm
action which consists of these divergent terms in the expansions, namely:

Ict = 2L

∫
Σr0

√
heγφ(

∑
0≤n<d−2αγ

(K(n) − λ(n)) + (K̃(n) − λ̃(n)) log e−2r0). (5.173)

This counterterm action also leads through the Hamilton-Jacobi relations to the covariant coun-
terterms of the momenta. The renormalised action is then given by the terms of appropriate
weight in the on-shell action (5.165):

Iren = −2L

∫
Σr0

ddx
√
heγφ[K(d−2αγ) − λ(d−2αγ)]. (5.174)

The gravity/gauge theory prescription identifies this with the generating functional in the dual
field theory, and so, in particular, the first derivatives of this action with respect to the sources
correspond to the one point functions of the dual operators. Since the Hamilton-Jacobi relations
identify these first derivatives with the non-local terms in the expansions of the momenta one
obtains immediately the relations:

〈Tij〉 = π(d−2αγ)ij ; 〈Oφ〉 = (πφ)(d−2αγ). (5.175)

From (5.160) one sees that the one-point functions are given by:

〈Oφ〉 = −2Leγφ(βpφ(d−2αγ) + γK(d−2αγ)), (5.176)

〈Tij〉 = 2Leγφ((K(d−2αγ) + γpφ(d−2αγ))hij −K(d−2αγ)ij).

Thus to obtain both the counterterms and the one-point functions one needs to solve for the
terms in the dilatation expansions.
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(5.6.3) WARD IDENTITIES

The diffeomorphism Ward identity can be derived from the momentum constraint, the second
Gauss-Codazzi equation in (5.161):

∇̂iKi
j − ∇̂jK = Gjr = (γ2 − β)∂jφφ̇+ γ∂j φ̇− γKi

j∂iφ. (5.177)

Using (5.160) this can easily be expressed in terms of momenta:

∇̂i(
πij√
h

) =
1

2
√
h
∂jφπφ. (5.178)

Expressing this identity at weight (d − 2αγ) in terms of one-point functions yields the Ward
identity

∇̂i〈T ij〉 − γ−1〈Oφ〉∂jκ(0) = 0. (5.179)

which becomes of the standard QFT form (5.48) upon expressing it in terms of 〈O〉 and Φ(0).
To determine the dilatation Ward identity one computes the infinitesimal Weyl transformation
of the renormalised action (5.174)

δσIren = 4L

∫
Σr

ddx
√
h(Neφ)γ [K̃(d−2αγ) − λ̃(d−2αγ)]δσ, (5.180)

where one uses the non-diagonal behaviour of K(d−2αγ) and λ(d−2αγ) under the dilatation
operator exhibited in (5.172). However, this infinitesimal Weyl transformation is also given by
the renormalised version of the Hamilton-Jacobi relations (5.162) given by6

δσIren = −
∫

Σr

ddx
√
h[2π(d−2αγ)

i
i − 2απφ(d−2αγ)]δσ. (5.181)

Since these identities hold for arbitrary δσ we can infer the conformal Ward identity

〈T ii 〉+ 2α〈Oφ〉 = A, (5.182)

where the anomaly is given by

A = −4L[K̃(d−2αγ) − λ̃(d−2αγ)]. (5.183)

The anomaly for the D4-brane will be computed below. Again this becomes the standard Ward
identity (5.49) (with an anomaly) upon replacing 〈Oφ〉 by χΦ(0)〈O〉 (see footnote 4).

(5.6.4) EVALUATION OF TERMS IN THE DILATATION EXPANSION

Let us now discuss how to evaluate the local terms in the dilatation expansion. In the previous
section we have derived a number of identities which can be solved recursively to determine

6We define e.g. πφ(d−2αγ) to be the weight (d− 2αγ) part of πφ/
√
h.
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terms in the expansions. In particular, applying the Hamilton-Jacobi identity (5.167) to dilata-
tions gives

(1 + δD)K − (d− 2αγ + δD)λ− (dγ − 2αβ)φ̇ = 0. (5.184)

The Hamilton-Jacobi relations (5.162) and (5.160) also imply expressions for the extrinsic
curvature and scalar field momenta:

(Khij −Kij + γφ̇hij) =
2

eγφ
√
h

δ

δhij

∫
Σr0

ddx
√
heγφ(K − λ); (5.185)

(βφ̇+ γK) =
1

eγφ
√
h

δ

δφ

∫
Σr0

ddx
√
heγφ(K − λ).

Next one has the Einstein equations, rewritten as the Gauss-Codazzi equations (5.161). Note
that the Hamiltonian constraint in (5.161) can be written as

K2 −KijK
ij = R̂− βφ̇2 + (β − 2γ2)(∂iφ)2 − 2γ∇̂2φ− 2γKφ̇+ C, (5.186)

where the field equations (5.35) are used on the right hand side, and the double radial deriva-
tive terms φ̈ are eliminated using the scalar equation of motion. One can also use the scalar
equation of motion (the second equation in (5.35)), which in Gaussian normal coordinates
reads

φ̈+ ∇̂2φ+Kφ̇+ γφ̇2 + γ(∂iφ)2 − γ(d(γ2 − β) + γ2)

(γ2 − β)2
= 0. (5.187)

as well as the differential equation for λ (5.166). Not all of these identities are necessary in
order to recursively determine the lower terms in the dilatation expansion.

In practice it is convenient to first use the Hamilton-Jacobi identity (5.184) to express the local
coefficients of λ in terms of those in K and φ̇:

λ(2n) =
(1− 2n)K(2n) − (dγ − 2αβ)pφ(2n)

d− 2αγ − 2n
. (5.188)

Thus this identity ensures that all counterterms are expressed in terms of the momenta.

Next one needs to solve for the momenta, using the Hamilton-Jacobi relations, Gauss-Codazzi
relations and the scalar equation of motion. Consider first the Hamilton constraint (5.186);
this equation can be expanded into terms of given dilatation weight, and solving at each weight
yields a recursion relation for terms in the expansion ofKij and φ̇. At dilatation weight zero this
constraint yields merely a check of the background solution. Noting that K(0) = K(0)ijK

ij
(0) = d

the zero weight constraint is

d(d− 1) = −β(pφ(0))
2 − 2γdpφ(0) + C, (5.189)

which is satisfied given that pφ(0) = −2α and the definition of α in terms of (β, d, C).

At higher dilatation weight one obtains a recursion relation for a linear combination for K(2n)
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and pφ(2n) at a given weight 2n:

K(2) + γpφ(2) =
1

2(d− 2αγ − 1)
[R̂+ (β − 2γ2)(∂iφ)2 − 2γ∇̂2φ], (5.190)

K(2n) + γpφ(2n) =
1

2(d− 2αγ − 1)
[

n−1∑
m=1

(K(2m)
i
jK(2n−2m)

j
i −K(2m)K(2n−2m))

−
n−1∑
m=1

(βpφ(2m)p
φ

(2n−2m) + 2γK(2m)p
φ

(2n−2m))].

Note that if (d− 2αγ) is not an even integer one immediately finds the relation

K(d−2αγ) + γpφ(d−2αγ) = 0, (5.191)

since no terms on the right hand side can contribute at this weight. This relation precisely
corresponds to (5.87) in the old formalism, in the case where the undetermined term appears
at a non-integral power of ρ.

Consider next the scalar equation of motion; to express this in terms of terms of given dilatation
weight, it is necessary to expand φ̈ in terms of eigenfunctions of the dilatation operator. (Note
that eliminating φ̈ using the other field equations does not give an identity which is independent
of (5.186).) The additional radial derivative in φ̈ can be expressed in terms of the dilatation
operator by keeping higher terms in the expansion of the radial derivative:

∂r =

∫
ddx(2Kij

δ

δhij
+ φ̇

δ

δφ
) (5.192)

= δD +
∑
n≥1

∫
ddx(2K(2n)ij

δ

δhij
+ pφ(2n)

δ

δφ
) ≡ δD +

∑
n≥1

δ(2n).

Given the transformation properties (5.172) of the expansion coefficients of the momenta, the
subleading terms in the expansion of ∂r must satisfy the commutation relation [δD, δ(2n)] =

−2nδ(2n).

Solving the scalar field equation at weight zero, (5.187) is automatically satisfied given the
leading asymptotic behavior. At higher weights 2n with n > 1 a recursion relation for a distinct
linear combination of K(2n) and pφ(2n) is obtained:

(d− 2− 4αγ)pφ(2) − 2αK(2) = −∇̂2φ− γ(∂iφ)2, (5.193)

(d− 2n− 4αγ)pφ(2n) − 2αK(2n) = −
n−1∑
m=1

(δ(2m)p
φ

(2n−2m) +K(2m)p
φ

(2n−2m)).

In the case that (d − 2αγ) is not an even integer, the relevant term in the recursion relation
becomes

− 2α(K(d−2αγ) + γpφ(d−2αγ)) = 0, (5.194)

since no terms on the right hand side can contribute at this weight, and thus reproduces the
trace constraint (5.191).
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The Hamiltonian constraint (5.190) together with the scalar equation (5.193) thus constitutes
a linear system of equations which allows one to express K(2n) and pφ(2n) in terms of lower
order coefficients. One can then determine λ(2n) from (5.188), and use the Hamilton-Jacobi
relations (5.185) to determine the extrinsic curvature K(2n)

i
j . This is all information needed to

proceed in the recursion.

It is useful to recall here the equation (5.166) for the variable λ, which determines the on-shell
action. Here again the radial derivative can be expressed in terms of the dilatation operator,
giving:

(δD +

d/2−αγ∑
n=1

δ(2n))λ+ λ(K + γφ̇) + E = 0. (5.195)

Note that in the case of E = 0, i.e. for F1,D1 and D4 branes λ = 0 solves the differential equa-
tion, and thus the coefficients λ(2n) consist only of total derivative terms which are determined
by (5.188).

CATEGORY 1: UNDETERMINED TERMS AT NON-INTEGRAL ORDER

Let us consider first the case where the undetermined terms occur at non-integral order, namely
p < 3, and obtain the counterterms and one point functions.

The Hamiltonian constraint (5.190) together with the scalar equation (5.193) can be solved at
first order to give:

K(2) =
1

2(d− 2αγ − 1)(d− 2αγ − 2)

(
(d− 2− 4αγ)(R̂+ β(∂φ)2) + 2(1 + 2αγ)e−γφ∇̂2(eγφ)

)
;

pφ(2) =
1

γ(d− 2αγ − 1)(d− 2αγ − 2)

(
γα(R̂+ β(∂φ)2)− (d− 1)e−γφ∇̂2(eγφ)

)
; (5.196)

Next note that the counterterms λ(2n) follow from (5.188), and are given by

λ(0) = −2αβ

γ
; (5.197)

λ(2) = −
K(2) + (dγ − 2αβ)pφ(2)

(d− 2αγ − 2)
.

For the cases p < 3 one only needs to solve up to this order to obtain all counterterms, with the
counterterm action being:

Ict = L

∫
Σr0

√
heγφ

(
2d− 4αβ

γ
+

γ2 − β
(d− 1)γ2 + β(2− d)

(R̂+ β(∂φ)2)

)
(5.198)

−L
∫

Σr0

√
h

d

(d− 2αγ − 2)
∇̂2(eγφ).

This coincides with the counterterm action found earlier in (5.139), up to the (irrelevant) total
derivative term in the second line.
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Next consider the one point functions. To apply the general formula (5.176), one needs to
relate the momentum coefficients with terms in the asymptotic expansion of the metric and the
scalar field. In the case that (d− 2αγ) is not an even integer, this identification turns out to be
very simple. Recall that in the original method of holographic renormalization one expanded
the induced metric asymptotically in the radial coordinate ρ = e−2r as

hij =
1

ρ
(g(0)ij + ρg(2)ij + · · ·+ ρ

1
2

(d−2αγ)g(d−2αγ)ij + ρ
1
2

(d−2αγ) ln ρh(d−2αγ)ij + · · · ), (5.199)

where the logarithmic term is included when (d− 2αγ) is an even integer. Differentiating with
respect to r gives

Kij = 1
2
ḣij =

1

ρ
g(0)ij − ρg(4)ij + · · ·+ ρ

1
2

(d−2αγ−2)
(
(1− 1

2
(d− 2αγ))g(d−2αγ)ij − h(d−2αγ)ij

)
+ρ

1
2

(d−2αγ−2) ln ρ(1− 1
2
(d− 2αγ))h(d−2αγ)ij + · · · (5.200)

However, each term in the covariant expansion of the extrinsic curvature is a functional of hij
and can be expanded as:

K(0)ij [h] = hij =
1

ρ

(
g(0)ij + ρg(2)ij + · · ·+ ρ

1
2

(d−2αγ)g(d−2αγ)ij

+ρ
1
2

(d−2αγ) ln ρh(d−2αγ)ij + · · ·
)

;

K(2)ij [h] = K(2)ij [g(0)] + ρ

∫
ddxg(2)kl

δK(2)ij

δg(0)kl

+ · · · ; (5.201)

K(d−2αγ)ij [h] = ρ
1
2

(d−2αγ−2)K(d−2αγ)ij [g(0)] + · · · ;

K̃(d−2αγ)ij [h] = ρ
1
2

(d−2αγ−2)K̃(d−2αγ)ij [g(0)] + · · · .

Inserting these expressions into the expansion and comparing with (5.200) implies:

K(0)ij [g(0)] = g(0)ij ; (5.202)

K(2)ij [g(0)] = −g(2)ij ;

K(d−2αγ)ij [g(0)] = − 1
2
(d− 2αγ)g(d−2αγ)ij − h(d−2αγ)ij + · · · ;

K̃(d−2αγ)ij [g(0)] = − 1
2
(d− 2αγ)h(d−2αγ)ij .

Here the ellipses denote terms involving functional derivatives with respect to g(0)ij of lower
order coefficients g(2n)ij [g(0)].

The formulae are thus simplified in the case where (d − 2αγ) is not an even integer, since no
lower weight terms can contribute and we obtain K(d−2αγ)ij = −( d

2
−αγ)g(d−2αγ)ij . Similarly

treating the scalar field expansion, one finds that

γpφ(d−2αγ) = −(d− 2αγ)κ(d−2αγ), (5.203)

which yields for the one point functions:

〈Oφ〉 = (d− 2αγ)(γ − β

γ
)Leκ(0)Trg(d−2αγ), (5.204)

〈Tij〉 = (d− 2αγ)Leκ(0)g(d−2αγ)ij ,
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where we used the constraint (5.191) in the last equation. Note that the mixing of K and φ̇ in
the momenta conspires to ensure that the expectation value of the energy-momentum tensor
is proportional to just g(d−2αγ)ij , without involving Trg(d−2αγ). These formulas exactly agree
with the ones in (5.140) we derived earlier (upon use of (5.86) and (5.34)).

The D4-branes are the only case under consideration where (d− 2αγ) is an even integer; here
the lower weight terms do contribute and the expressions for the vevs are considerably more
complicated. We thus turn next to the evaluation of the momentum coefficients in this case.

CATEGORY 2: THE D4-BRANE

In this section we will consider the case of the D4-branes, where (d − 2αγ) is an even integer,
and derive the counterterms; the anomaly term A in the dilatation Ward identity (5.182) and
the one point functions. Note that the anomaly appears only if (d − 2αγ) is an even integer,
since only then do we need nonzero coefficients K̃(d−2αγ) and p̃φ(d−2αγ) of the logarithmic
terms in (5.171) to fulfill the field equations. For the branes of interest, only the cases of p = 3

and p = 4 have anomalies, and the coefficients can be calculated from the counterterms. The
case p = 3 was discussed already in [13, 15] and will not be discussed further here.

The counterterms and the anomaly are found by recursively computing the momentum coeffi-
cients. The Hamiltonian constraint (5.190) along with the scalar equation (5.193) provides a
system of equations to determine K(2n) and pφ(2n), whilst the uncontracted Hamilton-Jacobi
identity (5.185) can be used to obtain K(2n)

i
j . Recall that in this case E = 0, and thus λ is

zero, up to total derivatives. This means in particular that the dilatation equation (5.188) can
always be written as

(1− 2n)K(2n) − dγφ̇(2n) = (d− 2αγ − 2n)λ(2n) ≡ Φ̂−1∇̂lY l(2n), (5.205)

where Φ̂ ≡ eγφ. As λ is zero, up to these total derivatives, the only counterterms needed are
the K(2n), along with the logarithmic counterterm K̃(6). Explicit expressions for the momenta
found by solving the recursion relations are given in appendix 5.A.4, with the terms K(2) and
K(4) agreeing with the (non-logarithmic) counterterms found previously, see (5.143).

At weight (d− 2αγ) = 6 the dilatation equation (5.188) breaks down and only a linear combi-
nation of K(6) and pφ(6) can thus be determined. This however is sufficient to determine the
anomaly

〈T ii 〉 −
3

2
〈Oφ〉 = A, (5.206)

which is given by

A = −4LK̃(6) = 2Ld(K(6) + γpφ(6)), (5.207)

where the right hand side is the combination of K(6) and pφ(6) which is determined by (5.190)
in terms of lower counterterms. The anomaly in terms of the momentum coefficients is there-
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fore:

A = 10L(K(6) + γpφ(6)) (5.208)

= 2L(K(2)
i
jK(4)

j
i −K(2)K(4) −K(2)γp

φ
(4) −K(4)γp

φ
(2)).

Explicit expressions for each of these terms are given in appendix 5.A.4; the total anomaly can
then be written as

A = − N2

192π4
(g2

5N)
[
−RljkiRlkRij − 2Φ̂−2∇2Φ̂∇i∂jΦ̂Rij (5.209)

+
1

2
R(RijRij + Φ̂−2(∇2Φ̂)2)− 3

50
R3 +

1

5
Rij∇i∂jR

+
1

20
R(∇2 + Φ̂−1∂iΦ̂∂i)R

−1

2
Rij [(∇2 + Φ̂−1∂lΦ̂∇l)Rij − 2Φ̂−2∂lΦ̂∂

(iΦ̂Rj)l − 2Φ̂−3∂iΦ̂∂jΦ̂∇2Φ̂]

+
1

2
Φ̂−1∇2Φ̂[−(∇2 + Φ̂−1∂iΦ̂∂i)(Φ̂

−1∇2Φ̂) + 2Φ̂−2∂iΦ̂∂jΦ̂Rij + 2Φ̂−3∂iΦ̂∂
iΦ̂∇2Φ̂]

]
,

where ∇ is the covariant derivative in the five-dimensional metric and

R ≡ R− 2Φ̂−1∇2Φ̂, (5.210)

Rij ≡ Rij − Φ̂−1∇i∂jΦ̂.

Note that for notational simplicity we dropped the hats for the covariant derivative and curva-
ture of the boundary metric. Here the anomaly has been expressed in such a way to demon-
strate that it agrees with the dimensional reduction of the anomaly of the M5-brane theory
found in [13, 15]. The latter is given in terms of the six-dimensional curvature Rabcd(G) of the
six-dimensional metric Gab by

〈T aa 〉 =
N3

96π3

(
RabRcdRabcd − 1

2
RRabRab +

3

50
R3 (5.211)

+
1

5
RabDaDbR− 1

2
Rab�Rab +

1

20
R�R

)
.

In particular, the anomaly vanishes for a Ricci flat manifold (more generally it vanishes for
conformally Einstein manifolds). Now recall that on diagonal reduction the six-dimensional
Ricci tensor R(G)ab can be written as:

R(G)ij = Rij − Φ̂−1∇i∂jΦ̂; R(G)yy = −Φ̂−1∇2Φ̂. (5.212)

Clearly,
Rij = ∇i∂jΦ̂ = 0, (5.213)

in the reduced theory implies that the six dimensional manifold is Ricci flat. Comparing with
(5.209) one sees that indeed the anomaly vanishes under these conditions.

The anomaly of the six-dimensional theory can be expressed in terms of conformal invariants,
such that it is of the form

A = aN3(E(6) + I(6) +DaJ
a
(5)), (5.214)
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where a is an appropriate constant, E(6) is proportional to the six-dimensional Euler density
(type A anomaly), I(6) is a conformal invariant (type B anomaly) and the DaJa(5) terms are
scheme dependent, as they can always be canceled by adding finite counterterms.

The D4 anomaly can necessarily be expressed in terms of invariants of the generalized confor-
mal structure: dimensional reduction of each of the six-dimensional conformal invariants gives
a generalized conformal invariant. Note however that the reduction of the six-dimensional Eu-
ler density will give an invariant which is not topological with respect to the five-dimensional
background. It is also not clear that the basis of generalized conformal invariants obtained
by dimensional reduction would be irreducible; it would be interesting to explore this issue
further.

The general one point functions in this case are given by evaluating the expressions:

〈Oφ〉 = −2Leγφ(γK(d−2αγ)), (5.215)

〈Tij〉 = 2Leγφ
(

(K(d−2αγ) + γpφ(d−2αγ))hij −K(d−2αγ)ij

)
.

The resulting expressions are as found before, see (5.145):

〈Oφ〉 = −Leκ(0)(8ϕ+
44

3
κ̃(6)); 〈Tij〉 = Leκ(0)(6tij + 11h(6)ij), (5.216)

where (ϕ, tij) are given in (5.104).

(5.7) TWO-POINT FUNCTIONS

In this section we will discuss the computation of 2-point functions for backgrounds with
the asymptotics of the non-conformal branes. Transforming to the dual frame, these become
Asymptotically locally AdS backgrounds with a linear dilaton and this implies that their analysis
is essentially the same as the analysis of the more familiar holographic RG flows with confor-
mal asymptotics [17, 18, 20]. In the next subsection we briefly review the basic principles of
the computation of 2-point functions, mostly following the discussion in [17]. Then we com-
pute the 2-point functions for the D-branes in subsection 5.7.2 and finally we will discuss the
computation for the general case in subsection 5.7.3.

(5.7.1) GENERALITIES

Let us start by recalling the basic formula relating bulk and boundary quantities:

〈exp(−SQFT [g(0),Φ(0)])〉 = exp(−SSG[g(0),Φ(0)]). (5.217)

The left hand side denotes the functional integration involving the field theory action SQFT

coupled to background metric g(0) and sources Φ(0) that couple to composite operators. For the
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case of Dp-branes the action SQFT is given in (5.42). On the right hand side SSG[g(0),Φ(0)] is
the bulk supergravity action evaluated on classical solutions with boundary data g(0),Φ(0). For
the cases at hand this action is given in (5.28). As discussed extensively in previous sections,
this relation needs to be renormalized and we have determined the renormalized action Sren
for all cases. By definition the variation of the renormalized action is given by

δSren[g(0),Φ(0)] =

∫
dd+1x

√
g(0)

(
1

2
〈Tij〉δgij(0) + 〈O〉δΦ(0)

)
. (5.218)

Higher point functions are determined by further differentiation of the 1-point functions, e.g.
for the case of Dp-branes

〈O(x)O(y)〉 = − 1
√
g(0)

δ〈O(x)〉
δΦ(0)(y)

∣∣∣∣
g(0)ij=δij ,Φ(0)=g−2

d

. (5.219)

As we have shown in earlier sections, the 1-point functions in the presence of sources are
expressed in terms of the asymptotic coefficients in the near-boundary expansion of the bulk
solution. In particular, they depend on the coefficients that the asymptotic analysis does not de-
termine. To obtain those we need exact regular solutions with prescribed boundary conditions.
On general grounds, regularity in the interior should fix the relation between the asymptot-
ically undetermined coefficients and the boundary data. Having obtained such relations one
can then proceed to compute the holographic n-point functions. To date, this program has
only been possible to carry out perturbatively around given solutions. In particular, linearized
solutions determine 2-point functions, second order perturbations determine 3-point functions
etc. Here we will discuss the 2-point functions involving the stress energy tensor Tij and the
scalar operator O.

Let us decompose the metric perturbation as,

δg(0)ij(x) = δhT(0)ij +∇(iδh
L
(0)j) + g(0)ij

1

d− 1
δf(0) −∇i∇jδH(0) (5.220)

where
∇ihT(0)ij = 0, hT i

(0)i = 0, ∇ihL(0)i = 0. (5.221)

All covariant derivatives are that of g(0). Then the different components source different irre-
ducible components of the stress energy tensor,

δSren[g(0),Φ(0)] =

∫
dd+1x

√
g(0)

(
〈O〉δΦ(0) −

1

2
〈Tij〉δhT ij

(0) −
1

2(d− 1)
〈T ii 〉δf(0)

+∇i〈Tij〉δhL j
(0) +∇i∇j〈Tij〉δH(0)

)
(5.222)

Now, recall that in the cases we discuss here we have already established that the holographic
Ward identities,

∇j〈Tij〉J + 〈O〉J∂iΦ(0) = 0, (5.223)

〈T ii 〉J + (d− 4)Φ(0)〈O〉J = A, (5.224)
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where there is an anomaly only for p = 4. These and the fact that Φ(0) in the background
solution is a constant imply that the second line in (5.222) does not contribute to 2-point
functions. Note also that the source for the trace of stress energy tensor is −f(0)/(2(d− 1)).

We will be interested in cases with g(0)ij = δij (or somewhat more generally the cases with
g(0) being conformally flat). The two-point functions of Tij and O have the following standard
representation in momentum space,

〈Tij(q)Tkl(−q)〉 = ΠTT
ijklA(q2) + πijπklB(q2)

〈Tij(q)O(−q)〉 = πijC(q2)

〈O(q)O(−q)〉 = D(q2) (5.225)

where A,B,C,D are functions of q2 and

πij = δij −
qiqj
q2

(5.226)

ΠTT
ijkl = −

δhTT(0)ij

δhTT kl
(0)

=
1

2
(πikπjl + πilπjk)− 1

d− 1
πijπkl

are transverse and transverse traceless projectors, respectively. The trace Ward identity implies

〈Tij(q)T kk (−q)〉 = − 1

g2
d

(d− 4)〈Tij(q)O(−q)〉

〈T ii (q)O(−q)〉 = − 1

g2
d

(d− 4)〈O(q)O(−q)〉 (5.227)

which then leads to the relations,

B(q2) = − 1

g2
d

(d− 4)

(d− 1)
C(q2) =

(
1

g2
d

(d− 4)

(d− 1)

)2

D(q2) (5.228)

Furthermore, the coefficient D(q2) is also constrained by the generalized conformal invariance
as discussed in section 5.4.

(5.7.2) HOLOGRAPHIC 2-POINT FUNCTIONS FOR THE BRANE BACK-
GROUNDS

We next discuss the computation of the 2-point functions in the backgrounds of the non-
conformal branes. Earlier discussions of the 2-point functions in the D0-brane background
can be found in [102] and for Dp-brane backgrounds they were discussed in [93, 94, 103].

We need to solve for small fluctuations around the background solution given in (5.31). We
thus consider a solution of the form

ds2 =
dρ2

4ρ2
+
gij(x, ρ)dxidxj

ρ
, (5.229)

φ(x, ρ) = α log ρ+ ϕ(x, ρ), ϕ(x, ρ) ≡ κ(x, ρ)

γ
,
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with
gij(x, ρ) = δij + γij(x, ρ). (5.230)

and ϕ, γij considered infinitesimal. The background metric is translationally invariant, so it is
convenient to Fourier transform. The fluctuation γij(q, ρ) can be decomposed into irreducible
pieces as

γij(q, ρ) = eij(q, ρ) +
d

d− 1

(
1

d
δij −

qiqj
q2

)
f(q, ρ) +

qiqj
q2

S(q, ρ), (5.231)

Let us also express the transverse traceless part as eij(q, ρ) ≡ hT(0)ij(q)h(q, ρ), where h(q, ρ) is
normalized to go to 1 as ρ → 0. The field theory sources hT(0)ij(q), f(0)(q), S(0)(q) are the lead-
ing ρ independent parts of eij(q, ρ), f(q, ρ), S(q, r). Relative to the discussion in the previous
subsection, we have gauged away the longitudinal vector perturbation hLi and traded H for
S = d

d−1
f + p2H.

The linearized equations are now obtained by inserting (5.230)-(5.231) into (5.71)-(5.74) and
treating κ, h, f, S as infinitesimal variables. This leads to the following equations:

1

2
S′′ + κ′′ = 0; (5.232)

1

2
f ′ + κ′ = 0; (5.233)

2ρh′′ − (d− 2− 2αγ)h′ − 1

2
q2h = 0; (5.234)

2ρS′′ + (2αγ + 2− 2d)S′ − 2dκ′ − q2(κ+ f) = 0; (5.235)

4ρκ′′ + (8αγ + 4− 2d)κ′ + 2αγS′ − q2κ = 0, (5.236)

where the equations are listed in the same order as in (5.71)-(5.74) with (5.234) and (5.235)
being the transverse traceless and trace part of (5.73). Equation (5.234) is already diago-
nal. The remaining equations can be diagonalized by elementary manipulations leading to the
following expressions,

κ(q, ρ) = 2αγv0(q) + v1(q)χ(q, ρ) (5.237)

f(q, ρ) = −2(d− 1)v0(q)− 2v1(q)χ(q, ρ),

S(q, ρ) = v2(q) + ρq2v0(q)− 2v1(q)χ(q, ρ)

where v0, v1, v2 are integration constants, which can be expressed in terms of the sources as

v0 =
2γφ(0) + f(0)

2(1− 2σ)
, v1 =

(d− 1)γφ(0) + αγf(0)

2σ − 1
, v2 = S(0) + 2v1, (5.238)

where σ = d/2 − αγ = (p − 7)/(p − 5) and φ(0) = κ(0)/γ with κ(0) the ρ independent part of
κ(q, ρ). χ(q, r) is normalized to go to 1 as ρ→ 0 and satisfies the same differential equation as
the transverse traceless mode, namely

2ρχ′′ − 2(σ − 1)χ′ − 1

2
q2χ = 0 (5.239)
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The solution of this equation that is regular in the interior is given in terms of the modified
Bessel function of the second kind,

χσ(q, ρ) = c(σ)xσKσ(x), x =
√
q2ρ, σ =

p− 7

p− 5
, (5.240)

where the normalization coefficient c(σ) is chosen such that χ(q, ρ) approaches 1 as ρ→ 0. In
our case, σ = {7/5, 3/2, 5/3, 3} for p = {0, 1, 2, 4}.

NON-INTEGRAL CASES

The asymptotic expansion for non-integer values of σ is

χσ(q, ρ) = 1 +
1

4(1− σ)
q2ρ+ · · ·+ χ̃(2σ)(q)ρ

σ + · · · (ν non−integer) (5.241)

where
χ̃(2σ)(q) = − Γ(1− σ)

22σΓ(1 + σ)
(q2)σ. (5.242)

One can verify that the leading order terms in the exact linearized solution indeed agree with
the linearization of the asymptotic coefficients derived earlier and furthermore one can ob-
tain the coefficient that the asymptotic analysis left undetermined. Combining the previous
formulas we obtain,

κ(2σ) = v1(q)χ̃(2σ)(q
2) (5.243)

g(2σ)ij =

(
hT(0)ij(q)−

2

(d− 1)
v1(q)πij

)
χ̃(2σ)(q

2)

which indeed satisfy the linearization of (5.93)-(5.94). Thus the 1-point functions (5.140) to
linear order in the sources are then given by

〈Oφ〉 =
2σLγ(d− 1)

α(2σ − 1)

(
φ(0) − 2α

(
−

f(0)

2(d− 1)

))
χ̃(2σ)(q

2), (5.244)

〈Tij〉 = 2σL

(
hT(0)ij −

2γ

(2σ − 1)

(
φ(0) − 2α

(
−

f(0)

2(d− 1)

))
πij

)
χ̃(2σ)(q

2). (5.245)

It follows that the 2-point functions are given by

〈Tij(q)Tkl(−q)〉 = ΠTT
ijkl

(
4σLχ̃(2σ)(q

2)
)

+ πijπkl

(
− 2α

(d− 1)

)2

〈Oφ(q)Oφ(−q)〉

〈Tij(q)Oφ(−q)〉 = πij

(
− 2α

(d− 1)

)
〈Oφ(q)Oφ(−q)〉 (5.246)

〈Oφ(q)Oφ(−q)〉 = −2σLγ(d− 1)

α(2σ − 1)
χ̃(2σ)(q

2)

These relations are of the form (5.225) with the coefficients B,C related to the D coefficient
as dictated by the trace Ward identity (with the relation becoming (5.228) once we pass from
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Oφ to O). Thus we only need discuss the transverse traceless part of the 2-point function of Tij
and the scalar 2-point function.

We now Fourier transform to position space using∫
ddqe−iqx(q2)σ = πd/22d+2σ Γ(d/2− σ)

Γ(−σ)

1

|x|d+2σ
, (5.247)

which is valid when σ 6= −(d/2 + k), where k is an integer. Let us first discuss the case of
Dp-branes. The scalar two function becomes

〈Oφ(x)Oφ(0)〉 = CφN
(7−p)/(5−p)(g2

d)(p−3)/(5−p)|x|
p2−19−2p

5−p , (5.248)

= CφN
2 (g2

eff (x))
(p−3)
(5−p)

|x|2d

where Cφ is a positive numerical constant (obtained by collecting all numerical constants in
previous formulas). Note that the characteristic scale in this case is x and therefore the effective
coupling constant is g2

eff (x) = g2
dN |x|3−p. The gd and x dependence is consistent with the

constraints of generalized conformal invariance discussed in section 5.4. Recall also that the
operator Oφ at weak coupling has dimension d (and O has dimension 4). So going from weak
to strong coupling we find that the dimension is protected but the 2-point function itself gets
corrections. The overall factor of N2 reflects the fact that this is a tree level computation.
Similarly, the transverse traceless part of the 2-point function of the stress energy tensor is
given by

〈Tij(x)Tkl(0)〉TT = CTΠTT
ijkl

N2(g2
eff (x))

(p−3)
(5−p)

|x|2d (5.249)

with CT a positive constant. In this case the dimension is protected because Tij is conserved.
We can trust these results provided

g2
eff (x)� 1 ⇒ |x| � (g2

dN)−1/(3−p) (5.250)

For the fundamental string background we obtain

〈Oφ(x)Oφ(0)〉 ∼ N3/2gs(α
′)1/2 1

|x|5 , (5.251)

〈Tij(x)Tkl(0)〉TT ∼ N3/2gs(α
′)1/2ΠTT

ijkl
1

|x|5 (5.252)

In the IIB case S-duality relates the fundamental string solution to the D1 brane solution.
Indeed, the 2-point function (5.251) becomes equal the p = 1 case in (5.248) under S-duality,
gs → 1/gs, α

′ → α′gs.

In the IIA case the fundamental string lifts to the M2 brane. As discussed in section 5.5.3, the
source for the stress energy tensor of the M2 theory is simply related to the sources for the
stress energy tensor of the string and the operator Oφ, see (5.114). Taking into account that
the worldvolume theories are related by reduction over the M-theory circle and so their actions



194 CHAPTER 5. PRECISION HOLOGRAPHY OF NON-CONFORMAL BRANES

are related by the factor of R11, the radius of the M-theory circle, we find (up to numerical
constants)

TM2
ij ∼ R−1

11 Tij , TM2
yy ∼ R−1

11 Oφ (5.253)

Using R11 = gsls we get

〈TM2
yy (x)TM2

yy (0)〉=
1

R2
11

〈Oφ(x)Oφ(0)〉 ∼ N3/2

R11|x|5
(5.254)

with similar results for the other correlators. The stress energy tensor of the M2 theory has
dimension 3, so one expects the correlator to scale as |x|−6. However, one of the worldvolume
directions is compactified with radiusR11. Smearing out over the compactified direction indeed
results in the fall off in (5.254). Finally the N scaling is the well-known N3/2 scaling of the M2
theory.

THE D4 CASE

For the σ = 3 case corresponding to D4 branes we have

χ3(q, ρ) = 1− 1

8
q2ρ+ · · ·+ ρ3(χ̃(6)(q) +

1

768
q6 log ρ) + · · · (5.255)

where
χ̃(6)(q) =

1

384
q6(

1

2
log q2 − log 2 + γ − 11

12
) (5.256)

and γ is the Euler constant (not to be confused with the γ used in other parts of this chapter).
The terms without log q2 are scheme dependent and will be omitted in what follows. The
one point functions and two point functions are then given by (5.244), (5.245) and (5.246)
respectively. In particular,

〈Oφ(q)Oφ(−q)〉 =
L

180
q6 ln q2. (5.257)

Fourier transforming back to position space, the scalar two function becomes

〈Oφ(x)Oφ(0)〉 = CφN
2R
(
g2
eff (x)

|x|10

)
, (5.258)

where Cφ is a positive numerical constant (obtained by collecting all numerical constants) and,
as in section 5.4,R(1/|x|a) denotes the renormalised version of (1/|x|a). The effective coupling
constant is g2

eff (x) = g2
dN/|x|, and the gd and x dependence is consistent with the constraints

of generalized conformal invariance discussed in section 5.4.

This result is also consistent with the uplift to the M5-brane results. The source for the stress
energy tensor of the M5 theory is simply related to the sources for the stress energy tensor
of the D4-brane and the operator Oφ. Taking into account that the worldvolume theories are
related by reduction over M-theory circle and so their actions are related by the factor of R11,
the radius of the M-theory circle, we find (up to numerical constants)

TM5
ij ∼ R−1

11 Tij , TM5
yy ∼ R−1

11 Oφ (5.259)
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Using R11 = gsls we then get

〈TM5
yy (x)TM5

yy (0)〉=
1

R2
11

〈Oφ(x)Oφ(0)〉 ∼ N3

R11
R
(

1

|x|11

)
(5.260)

with similar results for the other correlators. The stress energy tensor of the M5 theory has
dimension six, and the correlator of the six-dimensional theory behaves as R|x|−12. Here
one of the worldvolume directions is compactified with radius R11 and smearing out over the
compactified direction indeed results in the fall off in (5.260). Note that the N scaling is the
well-known N3 scaling of the M5-brane theory.

(5.7.3) GENERAL CASE

In the simple case discussed above, it was straightforward to solve the equations for linear
perturbations, but in more general backgrounds the diagonalisation of the fluctuation equations
is more involved. To treat the general case, it is convenient to use the analysis [115, 17, 20]
of linear fluctuations around background solutions of a single scalar field coupled to gravity;
in these papers the fluctuation equations were diagonalised for a general domain wall scalar
system.

In this section we will explain a general method for computing the two point functions which
exploits this analysis. As discussed in section 5.7.1 we need to determine the one point func-
tions to linear order in the sources and in the Hamiltonian method this corresponds to deter-
mining the momenta to linear order in the sources. So, as in the previous section, let us begin
by considering linear fluctuations around the background of interest in the dual frame:

hij = hBij(r) + γij(r, x) = e2A(r)δij + γij(r, x), (5.261)

φ = φB(r) + ϕ(r, x).

Note that the metric fluctuation has already been put into axial gauge. Next we will express
the canonical momenta in terms of these fluctuations. To do this, first note that the extrinsic
curvature of constant r hypersurfaces can be expressed as:

Ki
j = Ȧδij +

1

2
Ṡij , (5.262)

where Sij ≡ hikB γkj . Sij can be decomposed into irreducible components as

Sij = eij +
d

d− 1
(
1

d
δij −

∂i∂j
∇2
B

)f +
∂i∂j
∇2
B

S, (5.263)

where ∂ieij = eii = 0, S = Sii , indices are raised with the inverse background metric e−2Aδij

and ∇2
B = e−2A∇2 = e−2Aδij∂i∂j . Here the diffeomorphism invariance of the transverse space

was used to set the vector component to zero.

The momenta (5.160) up to linear order in the fluctuations are then given by

πφ = 2B(β∂rφ+ γK) = πBφ +B(2β∂rϕ+ γ∂rS), (5.264)

πii = πi,Bi − 1
2
B(d− 1)∂rS +Bdγ∂rϕ, πij,TT = πi,Bj,TT −

1
2
B∂re

i
j ,
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where πB
φ̃

, πi,Bi and πi,Bj,TT are the background values, in the absence of fluctuations, and TT
stands for transverse and traceless. The one point functions are obtained by extracting the
components of appropriate dilatation weight from these momenta. So we need to determine
∂rϕ, ∂rS, ∂re

i
j .

To obtain these momenta, however, we would need to diagonalise the equations of motion for
the linear fluctuations, and solve for ∂rϕ etc. Diagonalising such fluctuation equations is in
general rather difficult, and thus it is convenient to exploit the analysis of [17, 20], where the
fluctuation equations were diagonalised for a generic domain wall dilaton background. In the
latter work, however, an Einstein frame bulk action was used, so we will first need to transform
our backgrounds to the Einstein frame, and then map our fluctuation equations to the set of
equations which were diagonalised in full generality in [17, 20].

The analysis of [17, 20] begins with an Einstein frame bulk action:

S = −
∫
dd+1x

√
GE(

1

2κ2
RE −

1

2
(∂φ̃)2 − V (φ̃)). (5.265)

and then one considers domain wall solutions of the form

ds2
B = dr̃2 + e2A(r̃)dxidx

i, φ̃ = φ̃B(r̃), (5.266)

which preserve Poincaré symmetry in the transverse directions. Here the subscript B denotes
that this is the background solution around which linear fluctuation equations will be solved.

Substituting the ansatz (5.266) into the field equations gives:

Ȧ2 − κ2

d(d− 1)
(

˙̃
φ

2

B − 2V (φ̃B)) = 0, (5.267)

Ä+ dȦ2 +
2κ2

d− 1
V (φ̃B) = 0,

¨̃
φB + dȦ

˙̃
φB − V ′(φ̃B) = 0,

where the dot denotes differentiation with respect to r̃ and the prime denotes differentiation
with respect to φ̃. In explicitly solving these equations one can use the fact that these second
order equations are solved by any solution of the first order flow equations [116, 117]:

Ȧ = − κ2

d− 1
W (φ̃B), (5.268)

˙̃
φB = W ′(φ̃B),

with the potential expressed in terms of a superpotential W as:

V (φ̃B) =
1

2
[W ′2 − dκ2

d− 1
W 2]. (5.269)

Conversely, given an explicit solution of (5.267), which may not be asymptotically AdS but
φ̃B should have at most isolated zeros, one can use (5.268) to define a superpotential W (φ̃B)

[118].
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Now let us consider the backgrounds of interest here, which are asymptotic to Dp-brane back-
grounds. In these cases, the action (5.28) in the dual frame can be transformed to the Einstein
frame using the transformation gE = exp(2γφ/(d− 1))gdual, giving

S = −L
∫
dd+1x

√
GE [RE −

1

2
(∂φ̃)2 + Ce−2γφ̃/ν(d−1)]. (5.270)

Here the scalar has been rescaled as

φ̃ ≡ νφ, ν ≡
√

2(
dγ2

d− 1
− β), (5.271)

so that φ̃ is canonically normalized. The metric and dilaton for the decoupled Dp-brane back-
ground can then be written in Einstein frame as

ds2
E = dr̃2 + (µr̃)2(µ+1)/µdxidx

i,

φ̃ = −2αν

µ
log(µr̃), (5.272)

r̃ =
ρ−µ/2

µ
=
eµr

µ
, µ = − 2αγ

d− 1
=

(p− 3)2

p(5− p) .

From this solution one can extract the parameters and functions abstractly defined in (5.266),
(5.268) and (5.269):

κ2 =
1

2
, A(r̃) =

µ+ 1

µ
log(µr̃), φ̃B =

√
2(µ+ 1)(d− 1)

µ
log(µr̃)

V (φ̃B) = −C exp(−
√

2µ

(µ+ 1)(d− 1)
φ̃B),

W (φ̃B) = −2(d− 1)(µ+ 1) exp(−
√

µ

2(µ+ 1)(d− 1)
φ̃B).

Given a more general solution in the dual frame, which asymptotes to an AdS linear dilaton
background, one can similarly transform it into Einstein frame and extract the corresponding
superpotential etc.

Suppose the fluctuations in the Einstein frame are given by:

gEµν = gBEµν + γ̃µν ; φ̃ = φ̃B + ϕ̃, (5.273)

where S̃ij ≡ hikB γ̃kj is:

S̃ij = ẽij +
d

d− 1
(
1

d
δij −

∂i∂j
∇2
B

)f̃ +
∂i∂j
∇2
B

S̃, (5.274)

Then these fluctuations in Einstein frame are related to those in the dual frame defined in
(5.261) via:

ẽij = eij , f̃ = 2γϕ+ f, (5.275)

S̃ =
2γd

(d− 1)
ϕ+ S, νϕ̃ = ϕ, γ̃rr =

2γd

(d− 1)
ϕ.
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Note in particular that the Weyl transformation to the Einstein frame takes the fluctuations
outside axial gauge: γ̃rr 6= 0.

Using [17, 20], one can write down the diagonalised equations of motion for the linear fluctu-
ations in Einstein frame:

(∂2
r̃ + dȦ∂r̃ − e−2Aq2)ẽij = 0, (5.276)

(∂2
r̃ + [dȦ+ 2W∂2

φ̃ logW ]∂r̃ − e−2Aq2)ω = 0,

∂r̃S̃ =
1

(d− 1)Ȧ

(
e−2Aq2f̃ + 2κ2(∂r̃φ̃B∂r̃ϕ− V ′(φ̃B)ϕ̃− V (φ̃B)γ̃rr)

)
,

where

ω ≡ W

W ′
ϕ̃+

1

2κ2
f̃ , (5.277)

and we have Fourier transformed to momentum space, with q being the momentum.

To derive the two point functions we will need to obtain the functional dependence of the one-
point functions on the sources. The one-point functions are given in terms of the canonical
momenta, with the parts dependent on the fluctuations being given by linear combinations of
radial derivatives of fluctuations. Hence we write the radial derivatives of the fluctuations ẽij
and ω as functionals of the background fields A and φ̃B:

∂r̃ ẽ
i
j = E(A, φ̃B)ẽij , ∂r̃ω = Ω(A, φ̃B)ω. (5.278)

The first two equations in (5.276) then become first order equations for E and Ω:

Ė + E2 + dȦE − e−2Aq2 = 0, (5.279)

Ω̇ + Ω2 + [dȦ+ 2W∂2
φ̃ logW ]Ω− e−2Aq2 = 0.

Note that in the case of the Dp-brane backgrounds these equations actually coincide since
∂2
φ logW = 0. Given the solutions for E and Ω and omitting terms that contribute to contact

terms one can obtain the required expressions for the radial derivatives of other fluctuations:

∂r̃ ẽ
i
j = Eẽij , (5.280)

∂r̃ϕ̃ = Ωϕ̃+
1

2κ2

W ′

W
Ωf̃ ,

∂r̃S̃ = − 1

κ2

[(
W ′

W

)2

Ω +
e−2A

W
q2

]
f̃ − 2

W ′

W
Ωϕ̃.

This completes the diagonalisation of the fluctuation equations in the Einstein frame. Next one
can rewrite these relations in terms of the fluctuations and radial derivative in the dual frame
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as:

∂r ẽ
i
j = eγφB/(d−1)Eeij , (5.281)

ν∂rϕ̃ = eγφB/(d−1)

(
ν2Ω(1 +

γ

νκ2

W ′

W
)ϕ+

ν

2κ2

W ′

W
Ωf

)
,

∂rS̃ = eγφB/(d−1)

(
− 1

κ2
[(
W ′

W
)2Ω +

e−2A

W
q2]f

−2ν[(
W ′

W
+

γ

νκ2
(
W ′

W
)2)Ω +

γ

νκ2

e−2A

W
q2]ϕ

)
.

Using (5.275) in (5.264), and applying (5.176) one finds that the expressions for the one point
functions to linear order in the fluctuations are:

〈Oφ〉 = 〈Oφ〉B −B(ν∂rϕ̃− γ∂rS̃)(2σ), (5.282)

〈T ii 〉 = 〈T ii 〉B −B(d− 1)(∂rS̃)(2σ),

〈T ij,TT 〉 = 〈T ij,TT 〉B +B(∂r ẽ
i
j)(2σ),

where X(2σ) denotes the term of dilatation weight 2σ ≡ (d− 2αγ) in X.

To explicitly evaluate these one point functions with linear sources we now need to determine
exact regular solutions for E and Ω. Up to this point, we have given completely general ex-
pressions, applicable for all solutions asymptotic to the Dp-brane backgrounds. The actual
background determines the defining differential equations for E and Ω. Next we will solve
these equations for the specific case of the decoupled Dp-brane background; as mentioned be-
fore, the equations for E and Ω become identical in this case since ∂2

φ̃
logW = 0. The only

equation to be solved is thus:

(∂2
r̃ +

d(µ+ 1)

µr̃
∂r̃ − (µr̃)−2(µ+1)/µ)q2)ω = 0. (5.283)

The solution which is regular in the interior, r̃ → 0, is given by

ω(r̃) = (µr̃)−cKµc(
q

(µr̃)1/µ
) ≡ e−σrKσ(qe−r), (5.284)

µc = 1
2
(d− 2αγ) ≡ σ,

whereK is the modified Bessel function of the second kind; these are exactly the same functions
found in the previous section. The solution for Ω is then

Ω = ∂r̃ ln((µr̃)−cKµc(
q

(µr̃)1/µ
)) ≡ e−µr∂r ln(χσ(q, e−2r)), (5.285)

where χσ(q, ρ) was given in (5.240), and is normalized to approach one as ρ ≡ e−2r → 0.
The terms appearing in the one point functions (5.282) follow from taking the projections onto
appropriate dilatation weight:

(eγφB/(d−1)Ω)(2σ) ≡ (eµrΩ)(2σ) = −2σχ̃(2σ)(q). (5.286)
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where we have used the expansions of χσ(q, ρ) given in (5.240) and the terms of appropriate
dilatation weight, χ̃(2σ)(q), in these asymptotic expansions, see (5.242) and (5.256).

Using (5.282) one obtains the renormalised one point functions to linear order in the sources:

〈Oφ(q)〉 = Lχ̃(2σ)(q)ν(d− 2αγ)

(
−νϕ(q)[1− 2γ2

(d− 1)ν2
]2 (5.287)

+f(q)[
γ

ν(d− 1)
− 2γ3

ν3(d− 1)2
]

)
〈T ii (q)〉 = 2L(d− 2αγ)χ̃(2σ)(q)

(
[−γ
ν

+
2γ3

ν3(d− 1)
]νϕ(q) +

γ2

ν2(d− 1)
f(q)

)
,

〈T ij (q)〉TT = L(d− 2αγ)χ̃(2σ)(q)e
i
j(q),

where we have used W ′/W = −γ/ν(d − 1) and κ2 = 1/2. The first two expressions can be
rewritten as:

〈Oφ(q)〉 = Lγ
(d− 2αγ)

α(d− 1− 2αγ)
χ̃(2σ)(q)

(
(d− 1)φ(0)(q) + αf(0)(q)

)
(5.288)

〈T ii (q)〉 = −2Lγ
(d− 2αγ)

(d− 1− 2αγ)
χ̃(2σ)(q)

(
(d− 1)φ(0)(q) + αf(0)(q)

)
,

where we have renamed the sources as ϕ(q) ≡ φ(0)(q) and f(q) ≡ f(0)(q) to demonstrate
agreement with the expressions obtained previously in (5.244) and (5.245). The two point
functions are given as before by (5.246).

(5.8) APPLICATIONS

In this section we will present a number of applications of the holographic methods.

(5.8.1) NON-EXTREMAL D1 BRANES

Let us first consider non-extremal D1-branes, and derive the renormalized vevs and onshell
action. The ten-dimensional solution for non-extremal D1-branes is:

ds2 = H−1/2(−fdt2 + dx2) +H1/2(
dr2

f
+ r2dΩ2

7); (5.289)

eφ = gsH
1/2; F01r = g−1

s ∂r(1−
Q

r6
H−1),

with

H = 1 +
µ6 sinh2 α

r6
; f = (1− µ6

r6
); Q ≡ r6

o = µ6 sinhα coshα. (5.290)

The extremal limit is reached by taking µ → 0 and α → ∞ with µ3 sinhα fixed. In the near
extremal limit, for which µ� 1, the decoupled dual frame metric is

ds2
dual = (gsN)−1/3

((
r

ro

)4

(−fdt2 + dx2) + r2
o(
dr2

r2f
+ dΩ2

7)

)
. (5.291)
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Applying the reduction formulae (5.26) gives an asymptotically AdS3 solution of the three-
dimensional action:

ds2 =
dρ2

4ρ2f
+

1

ρ
(−fdt2 + dx2); (5.292)

e−4φ/3 =
1

ρ
, f =

(
1− 8µ6

r9
o

ρ3/2

)
.

The inverse Hawking temperature βH and the area of the horizon A are respectively given by

βH =
2πr3

o

3µ2
; A =

8πRxµ
4

r6
o

, (5.293)

where the x direction is taken to be periodic with period 2πRx.

Next one can read off the vevs for the stress energy tensor and scalar operator by bringing the
metric into Fefferman-Graham form:

ds2 =
dz2

4z2
+

1

z

(
−dt2(1− 16µ6

3r9
o

z3/2) + dx2(1 +
8µ6

3r9
o

z3/2)

)
;

e−2φ/3 ≡ 1√
z
eκ =

1√
z

(1 +
4µ6

3r9
o

z3/2). (5.294)

Then applying (5.128) and (5.131) (analytically continued back to the Lorentzian) the vevs of
the stress energy tensor are:

〈Ttt〉 = 16L
µ6

r9
o

; 〈Tyy〉 = 8L
µ6

r9
o

; 〈O〉 = −4L
µ6

r9
o

, (5.295)

with the conformal Ward identity (5.132) manifestly satisfied. Note that the mass is given by

M =

∫
dx〈Ttt〉 = LRx

32πµ6

r9
o

. (5.296)

The renormalized onshell (Euclidean) action IE is given by

IE = −L[

∫
ρ≥ε

d3x
√
gΦ(R+ C)−

∫
ρ=ε

d2x
√
hΦ(2K − 4−R[h])]. (5.297)

Evaluating this action on the solution gives

IE = −2πβHRxL
8µ6

r9
o

, (5.298)

whilst the entropy is

S = 4πLA = L
32π2Rxµ

4

r6
o

, (5.299)

and thus the expected relation
IE = βHM − S (5.300)

is satisfied. Note that M/THS = 2/3. This result is in agreement with the results found in
[119] for the entropy of non-extremal Dp-branes. The entropy can be rewritten as

S =
24π5/2

33

N2

geff (TH)
(V1TH), (5.301)
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where V1 = 2πRH is the spatial volume of the D1 brane and g2
eff = g2

2NT
−2
H is the dimension-

less effective coupling (with g2
2 = gs/(2πα

′) the dimensionful Yang-Mills coupling constant).
This is indeed of the form (5.53) dictated from the generalized conformal structure. The overall
N2 is due to the fact that the bulk computation is a tree-level computation.

(5.8.2) THE WITTEN MODEL OF HOLOGRAPHIC YM4 THEORY

As the next application of the formalism let us discuss Witten’s holographic model for four
dimensional Yang-Mills theory [90]. An early discussion of holographic computations in this
model can be found in [120]. In this model one considers D4 branes wrapping a circle of size
Lτ with anti-periodic boundary conditions for the fermions, which breaks the supersymmetry.
This system at low energies looks like a four-dimensional SU(N) gauge theory, with Yang-
Mills coupling g2

4 = g2
5/Lτ . In the limit that λ4 = g2

4N � 1 there is an effective supergravity
description given by the D4 brane soliton solution, which (in the string frame) is [90, 121]:

ds2
st =

(
r

ro

)3/2

[ηαβdx
αdxβ + f(r)dτ2] +

(ro
r

)3/2

(
dr2

f(r)
+ r2dΩ2

4),

eφ = gs

(
r

ro

)3/4

, F4 = 3g−1
s r3

odΩ4, (5.302)

f(r) = 1− r3
KK

r3
,

where dΩ4 is the volume form of the S4 and ro was defined below (5.26). Then rKK is the
minimum value of the radial coordinate and the circle direction τ must have periodicity Lτ =

4πr
3/2
o /(3r

1/2
KK) to prevent a conical singularity.

By wrapping D8-branes around the S4, and along the four flat directions, one can model chi-
ral flavors in the gauge theory [91, 92] and the resulting Witten-Sakai-Sugimoto model has
attracted considerable attention as a simple holographic model for a non-supersymmetric four-
dimensional gauge theory. The methods developed in this chapter immediately allow one to
extract holographic data from this background, and to quantify the features of QCD which are
well or poorly modeled.

Starting from the ten-dimensional string frame solution, one can move to the dual frame
ds2
dual = (Neφ)−2/3ds2 in which the metric becomes asymptotically AdS6 × S4:

ds2
dual = (Neφ)−2/3ds2

st = π2/3α′
(

4[
dρ2

4ρ2f(ρ)
+
ηαβdx

αdxβ + f(ρ)dτ2

ρ
] + dΩ2

4

)
,

f(ρ) ≡ 1− ρ3

ρ3
KK

= f(r), (5.303)

with changed variable ρ = 4r3
o/r. Comparing with the reduction given in (5.26), one obtains
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the following six-dimensional background:

ds2 =
dρ2

4ρ2f(ρ)
+
ηαβdx

αdxβ + f(ρ)dτ2

ρ
; (5.304)

eφ =
1

ρ3/4
,

which is asymptotically AdS6 with a linear dilaton.

The gauge theory operators dual to the metric and the scalar field are the five-dimensional
stress energy tensor Tij and the gluon operator O respectively, which satisfy the dilatation
Ward identity (see (5.146) or (5.182)):

〈T ii 〉+
1

g2
5

〈O〉 = 0. (5.305)

(There is no anomaly in this case, as both g(0) and κ(0) are constant.) This Ward identity can
be rewritten in terms of operators in the four-dimensional theory obtained via reduction over
the circle: the four-dimensional stress energy tensor T (4)

ab = LτTab and the scalar operator
Oτ = LτTττ . This gives

〈T aa 〉+ 〈Oτ 〉+
1

g2
4

〈O〉 = 0. (5.306)

Consider the dimensional reduction of the stress energy tensor and gluon operator defined in
(5.46) from five to four dimensions. When the reduction over the circle preserves supersym-
metry, the operator Oτ coincides with − 1

g2
4
O and the four-dimensional stress energy tensor is

traceless. With non-supersymmetric boundary conditions, this is not the case anymore, since
as we will see shortly the vacuum expectation value of the trace of the stress energy tensor is
not zero and the vevs of the two operators are different. With the proper identification of the
relation between Oτ and O, the trace Ward identity would lead to the identification of the beta
function.

Next one can extract the one point functions for the stress energy tensor and gluon opera-
tors from the coefficients in the asymptotic expansion of this solution near the boundary. To
apply the formulae for the holographic vevs, the metric should first be brought into Fefferman-
Graham form by changing the radial variable:

ρ̃ = (1 +
ρ3

6ρ3
KK

)ρ+O(ρ5), (5.307)

ds2 =
dρ̃2

4ρ̃2
+ ρ̃−1(1 +

ρ̃3

6ρ3
KK

)ηαβdx
αdxβ + ρ̃−1(1− 5ρ̃3

6ρ3
KK

)dτ2 + · · · .

Using (5.176) the one-point function of the scalar operator is thus:

〈Oφ〉 = −12Lγκ(6) = − 2L

3ρ3
KK

, (5.308)

with the vev of the stress energy tensor being:

〈Tαβ〉 =
L

ρ3
KK

ηαβ ; 〈Tττ 〉 = −5
L

ρ3
KK

. (5.309)
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The gluon condensate can be reexpressed as:

〈Oφ〉 = −26π2

38
N2 λ4

L5
τ

, (5.310)

where recall that λ4 = g2
4N is the four-dimensional ’t Hooft coupling and Lτ is the radius of

the circle. In terms of the dimension four operator O the condensate is

〈O〉 =
25π2

37
N
λ2

4

L4
τ

. (5.311)

In comparing results for this holographic model with those of QCD, it would be natural to
match the condensate values, and thus fix Lτ .

(5.9) DISCUSSION

In this chapter we have developed precision holography for the non-conformal branes. We
found that all holographic results that were developed earlier in the context of holography for
the conformal branes can be extended to this more general setup. All branes under consid-
eration have a near-horizon limit with non-vanishing dilaton and a metric that (in the string
frame) is conformal to AdSp+2×S8−p. This implies that there is a frame, the dual frame, where
the metric is exactly AdSp+2×S8−p (one can cancel the overall conformal factor by multiplying
the metric with the appropriate power of the dilaton).

There are a number of reasons why this frame is distinguished. Firstly, it is manifest in this
frame that there is an effective (p + 1)-dimensional gravitational description, obtained by re-
ducing over S8−p, as required by holography. Secondly, the setup becomes the same as that of
holographic RG flows studied earlier. Actually the bulk solutions do describe an RG flow, albeit
a trivial one driven by the dimension of the coupling constant. Recall that in the holographic
RG flows studied in the past the bulk solution asymptotically becomes AdS, corresponding to
the fact that the dual QFT approaches a fixed point in the UV. The scalar fields vanish asymp-
totically, and from the asymptotic fall off one can infer whether the bulk solution corresponds
to a deformation of the UV Lagrangian by the addition of the operator dual to the correspond-
ing field or the conformal theory in a non-trivial state characterized (in part) by the vev of
the dual operator. The coefficients in the asymptotic expansion of the solution determine the
coupling constant multiplying the dual operator in the case of deformations, or the vev of the
dual operator in the case of non-trivial states.

The non-conformal branes are analogous to the case of deformations: the asymptotic value of
the dilaton determines the value of the coupling constant, which is the (dimensionful) Yang-
Mills coupling constant in the case of Dp branes. The main difference is that in the current
context the theory does not flow in the UV to a (p + 1)-dimensional fixed point. Rather in
the regime where the various approximations are valid, the theory runs trivially due to the
dimensionality of the coupling constant.



5.9. DISCUSSION 205

In some cases however we know that a new dimension, the M-theory dimension, opens up at
strong coupling and the theory flows to a (p + 2)-dimensional fixed point. This is the case for
the IIA fundamental string and the D4 brane which uplift to the M2 and M5 brane theories,
respectively. Here is another instance that illustrates the preferred status of the dual frame: the
general solution in the dual frame

ds2
d =

dρ2

4ρ2
+

1

ρ
gijdx

idxj (5.312)

e4φ/3 =
1

ρ
e2κ, (5.313)

lifts to

ds2
d+1 =

dρ2

4ρ2
+

1

ρ
(gijdx

idxj + e2κdy2). (5.314)

In other words, the dual frame metric in the Fefferman-Graham gauge in d-dimensions is equal
to the d-dimensional part of the metric in (d+ 1) dimensions in the Fefferman-Graham gauge,
with the dilaton providing the additional dimension. It was already observed in [89] that the
radial coordinate in the dual frame is identified with the energy of the dual theory via the UV-IR
connection and here we see a more precise formulation of this statement. The radial direction
of the M5 and M2 branes is also the radial direction in the dual frame of the D4 and F1 branes,
respectively. In more covariant language, the dilatation operator of the boundary theory is to
leading order equal to the radial derivative of the dual frame metric.

Working in the dual frame, we have systematically developed holographic renormalization
for all non-conformal branes. In particular, we obtained the general solutions of the field
equations with the appropriate Dirichlet boundary conditions. This allowed us to identify the
volume divergences of the action, and then remove these divergences with local covariant
counterterms. Having defined the renormalized action, we then proceeded to calculate the
holographic one-point functions which, by further functional differentiation w.r.t sources, yield
the higher point functions. The counterterm actions can be found in (5.139) and (5.143),
whilst the holographic one point functions are given in (5.140) and (5.145). Note that the
result for the stress energy tensor properly defines the notion of mass for backgrounds with
these asymptotics.

We developed holographic renormalization both in the original formulation, described in the
previous paragraph, and in the radial Hamiltonian formalism (in section 5.6). In the latter,
Hamilton-Jacobi theory relates the variation of the on-shell action w.r.t. boundary conditions,
thus the holographic 1-point functions, to radial canonical momenta. It follows that one can
bypass the on-shell action and directly compute renormalized correlators using radial canonical
momenta π, as was developed for asymptotically AdS spacetimes in [19, 20]. For explicit
calculations, the Hamiltonian method is more efficient and powerful, as it exploits to the full
the underlying symmetry structure.

Throughout the existence of an underlying generalized conformal structure plays a crucial role.
As we discussed in section 5.4, SYM in d dimensions admits a generalized conformal structure,
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in which the action is invariant under Weyl transformations provided that the coupling constant
is also promoted to a background field Φ(0) which transforms appropriately. This background
field can be thought of as a source for a gauge invariant operator O. Then diffeomorphism and
Weyl invariance imply Ward identities for the correlators of the stress energy tensor and the
operator O. This generalized conformal structure is preserved at strong coupling, and governs
the holographic Ward identities. In particular, the Dirichlet boundary conditions for the dilaton
are determined by the field theory source Φ(0).

In the cases of the type IIA fundamental string and D4-branes, all the holographic results we
find are manifestly compatible with the M theory uplift. In particular, we showed in detail how
the asymptotic solutions, counterterms, one point functions and anomalies descend from those
of M2 and M5 branes. The generalized conformal structure is also inherited from the higher
dimensional conformal symmetry in these cases. This is exactly analogous to the case of the
more familiar holographic RG flows, which also have a similar generalized conformal structure
inherited from the UV fixed point.

Having set up the formalism in full generality, we then proceeded to discuss a number of
examples and applications. In section 5.7 we calculated two point functions of the stress energy
tensor and gluon operator. We computed these two point functions for the supersymmetric
backgrounds, and showed that the results were consistent with the underlying generalized
conformal structure. In section 5.7.3 we developed a general method for computing two point
functions in any background which asymptotes to the non-conformal brane background.

In section 5.8 we gave several more applications. One was the explicit evaluation of the mass
and action in a non-extremal brane background. The second was Witten’s model for a non-
supersymmetric four-dimensional gauge theory: we computed the dimension four condensates
in this model. One would anticipate that there are many further interesting applications of the
formalism developed here, to be explored in future work.

(5.A) APPENDIX

(5.A.1) USEFUL FORMULAE

In this appendix we collect some useful formulae for the asymptotic expansions. Given the
expansion of the d-dimensional metric gij as

gij = g(0)ij + ρg(2)ij + ρ2g(4)ij + · · · (5.315)

the inverse metric is given by

g−1 = g−1
(0) − ρg

−1
(0)g(2)g

−1
(0) + ρ2(g−1

(0)g(2)g
−1
(0)g(2)g

−1
(0) − g

−1
(0)g(4)g

−1
(0)) + · · · (5.316)

Next we compute the expansion of the Christoffel connection,

Γiij = Γi(0)ij + ρΓi(2)ij + ρ2Γi(4)ij + · · · (5.317)
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Here Γi(0)ij is the Christoffel connection of the metric g(0) and

Γi(2)ij =
1

2
gil(0)(∇jg(2)kl +∇kg(2)jl −∇lg(2)jk) (5.318)

Γi(4)ij =
1

2

(
gil(0)(∇jg(4)kl +∇kg(4)jl −∇lg(4)jk)− gil(2)(∇jg(2)kl +∇kg(2)jl −∇lg(2)jk)

)
,

where ∇ is the covariant derivative in the metric g(0).

From here we then compute the expansion of the associated curvature

Rij = R(0)ij + ρR(2)ij + ρ2R(4)ij + · · · (5.319)

with R(0)ij the Ricci tensor of g(0) and

R(2)ij =
1

2

(
∇k∇jg(2)ik −∇i∇jTr(g(2)) +R(0)kijlg

kl
(2) +R(0)img

m
(2)j

−∇2g(2)ij +∇i∇kg(2)jk

)
, (5.320)

R(4)ij =
1

2

(
1

2
∇lTrg(2)∇lg(2)ij + gkl(2)(Rkimjg

m
(2)l +Rkimlg

m
(2)j) (5.321)

+gkl(2)(Rkjmig
m
(2)l +Rkjmlg

m
(2)i) + gkl(2)∇k∇lg(2)ij +

1

2
∇jg(2)lm∇lgm(2)i

−1

2
gkl(2)(∇i∇kg(2)jl +∇j∇kg(2)il)− 2Rlimjg

lm
(4) +Rimg

m
(4)j +Rjmg

m
(4)i

+
1

4
gl(2)j∇i∇lTrg(2) +

1

4
gl(2)i∇j∇lTr(g(2)) +

1

2
∇ig(2)lm∇lgm(2)j

−∇2g(4)ij −
1

2
∇ig(2)lm∇jglm(2) −∇mg(2)il∇lgm(2)j −∇mg(2)il∇mgl(2)j

)
.

(5.A.2) THE ENERGY MOMENTUM TENSOR IN THE CONFORMAL CASES

In this section we streamline the derivation of the vev of the energy-momentum tensor in terms
of the asymptotic coefficients for the conformal cases D = 4 and D = 6 given in [15]. The
starting point is the expression of the stress energy tensor as sum of two contributions, one
originating from the bulk action and the other from the counterterms, eqns (3.5)-(3.6)-(3.7)
of [15]:

〈Tab〉 = 2LD+1 lim
ρ→0

(
1

ρD/2−1
Tab[G]), (5.322)

Tab[G] = T regab + T ctab,

T regab = G′ab −GabTr[G−1G′]− 1−D
ρ

Gab,

T ctab = −D − 1

ρ
Gab +

1

(D − 2)
(R(G)ab −

1

2
R(G)Gab)

+
ρ

(D − 4)(D − 2)2
[�R(G)ab + 2R(G)acbdR(G)cd − D − 2

2(D − 1)
DaDbR(G)

− D

2(D − 1)
R(G)R(G)ab −

1

2
Gab(R(G)cdR(G)cd − D

4(D − 1)
R(G)2

+
1

D − 1
�R(G))] +

1

2
T logab log ρ,
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where LD+1 = 1
16πGD+1

with GD+1 the Newton constant and T logab is the stress energy tensor

of the action given by the conformal anomaly7. Note that for D = 2 only the first term in T ctab
applies; for D = 4 only the first line applies plus the logarithmic terms, whilst for D = 6 all
terms listed are needed and for D > 6 one would need to include additional terms.

For D = 2 one immediately obtains the answer

〈Tab〉 = 2LD+1

(
G(2)ab −G(0)abTrG(2)

)
(5.323)

For D > 2 one can simplify the evaluation of (5.322) by using the equation of motions (5.75)
to obtain

Rab −
1

2
RGab = −(D − 2)G′ab + (D − 2)Tr(G−1G′)Gab (5.324)

+ρ[2G′′ − 2G′G−1G′ + Tr(G−1G′)G′

+(−Tr(G−1G′′) + Tr(G−1G′)2 − 1

2
(TrG−1G′)2)G]ab.

Using this identity in (5.322) we see that T regab cancels the first line of T ctab up to the terms
proportional to ρ in (5.324), so Tab[G] is manifestly linear in ρ. It follows that we only need to
set ρ = 0 in the remaining terms to obtain the vev for D = 4:

〈Tab〉 = 2LD+1

(
2G(4)ab −G(2)

2
ab +

1

2
TrG(2)G(2)ab (5.325)

+
1

4
G(0)ab(Tr(G−1G(2))

2 − (TrG−1G(2))
2) + 3H(4)ab

)
.

For D = 6 one can check straightforwardly that order ρ terms in Tab[G] cancel, so there is
indeed a finite limit. To obtain the vev one needs to extract the order ρ2 terms. To simplify
this computation we differentiate the field equations (5.75) to obtain a formula for the radial
derivative of the Ricci tensor,

R′ab = Rc(aG
′
b)c −RacbdG′cd +D(aD

bG′b)c −
1

2
�G′ab +Da∂bTrG′ (5.326)

=
1

D − 2
[−RacbdRcd +

D − 2

4(D − 1)
DaDbR+

1

2
�Rab +

1

4(D − 1)
�RGab

+RcaRbc − ρ[4R(0)
c
(aC̃b)c − 4R(0)acbdC̃

cd − D − 2

4(D − 1)
Da∂bB

−2�C̃ab −
1

4(D − 1)
G(0)ab]] +O(ρ2),

C̃ab = (G(4) −
1

2
G(2)

2 +
1

4
G(2)TrG(2))ab, B = TrG(2)

2 − (TrG(2))
2.

Then we note that the terms involving the Riemann tensor and covariant derivatives enter
with the same relative factors as in T ctab, so we can use (5.326) to express T ctab in terms of
R′ab = R(2)ab+2ρR(4)ab+ · · · , which is easier to relate to higher expansion coefficients. Indeed,
as is discussed in the next appendix, the coefficient R(2)ab, R(4)ab can be expressed in terms of
G(2)ab, G(4)ab and H(6)ab.

7The factor of 1/2 in front of T logab corrects a typo in [15].
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Combining these results and setting D = 6 we obtain

〈Tab〉 = 2L7

(
3G(6)ab − 3A(6)ab +

1

8
Sab +

11

2
H(6)ab

)
, (5.327)

where A(6)ab and Sab are given by [15]

Sab = �Cab + 2RacbdC
cd + 4(G(2)G(4) −G(4)G(2))ab (5.328)

+
1

10
(DaDbB −G(0)ab�B) +

2

5
G(2)abB

+G(0)ab(−
2

3
TrG3

(2) −
4

15
(TrG(2))

3 +
3

5
TrG(2)TrG2

(2)),

A(6)ab =
1

3

(
(2G(2)G(4) +G(4)G(2))ab −G3

(2)ab +
1

8
[TrG2

(2) − (TrG(2))
2]G(2)ab

−TrG(2)[G(4)ab −
1

2
G2

(2)ab]− [
1

8
TrG2

(2)TrG(2) −
1

24
(TrG(2))

3

−1

6
TrG3

(2) +
1

2
Tr(G(2)G(4))]G(0)ab

)
,

Cab = (G(4) −
1

2
G(2)

2 +
1

4
G(2)TrG(2))ab +

1

8
G(0)abB, B = TrG(2)

2 − (TrG(2))
2.

Noting that L7 = N3/(3π3) and introducing the combination

tab = G(6)ab −A(6)ab +
1

24
Sab (5.329)

the stress energy tensor may be expressed as

〈Tab〉 =
N3

3π3
(6tab + 11H(6)ab). (5.330)

This result includes the term in H
(6)ab

which was not given in [15].

(5.A.3) REDUCTION OF M5 TO D4

The expansion coefficients for an asymptotically local AdSD+1 metric were given in [15]. We
will be interested in the case where D = d+ 1, for which the first expansion coefficients are:

G(2)ab =
1

d− 1

(
−R(0)ab +

1

2d
R(0)G(0)ab

)
; (5.331)

G(4)ab =
1

2(d− 3)

(
−R(2)ab − 2(G2

(2))ab +
1

2
Tr(G2

(2))G(0)ab

)
.

Using the explicit form of G(2)ab and the D-dimensional analogue of (5.320) we obtain:

R(2)ab = − 1

2(d− 1)

(
2R(0)acR

c
(0)b − 2R(0)cadbR

cd
(0) −

d− 1

2d
DaDbR(0) (5.332)

+D2R(0)ab −
1

2d
D2R(0)G(0)ab

)
,
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G(4)ab = − 1

d− 3

(
− 1

8d
DaDbR+

1

4(d− 1)
DcD

cRab

− 1

8d(d− 1)
DcD

cRG(0)ab +
1

2(d− 1)
RcdRacbd

− d− 3

2(d− 1)2
RcaRcb −

1

d(d− 1)2
RRab

− 1

4(d− 1)2
RcdRcdG(0)ab + 3

(d+ 1)

16d2(d− 1)2
R2G(0)ab

)
,

where Da is the covariant derivative in the metric G(0). Note that R(2) = 0, and thus

TrG(4) =
1

4
Tr(G2

(2)). (5.333)

At next order one finds that the trace and the divergence of G(6) are determined via

Tr(G(6)) =
2

3
Tr(G(2)G(4))−

1

6
Tr(G3

(2)); (5.334)

DaG(6)ab = DaA(6)ab +
1

6
Tr(G(4)DbG(2));

A(6)ab =
1

3

(
(2G(2)G(4) +G(4)G(2))ab − (G3

(2))ab +
1

8
[TrG2

(2) − (TrG(2))
2]G(2)ab

−TrG(2)[G(4)ab −
1

2
(G2

(2))ab]− [
1

8
TrG2

(2)TrG(2) −
1

24
(TrG(2))

3

−1

6
TrG3

(2) +
1

2
Tr(G(2)G(4))]G(0)ab

)
. (5.335)

The logarithmic term in the expansion H(6) is given by

H(6)ab =
1

6
(R(4)ab + (−Tr(G(2)G(4)) + 1

2
Tr(G3

(2)))G(0)ab) (5.336)

−1

6
Tr(G(2))G(4)ab −

1

3
(G3

(2))ab +
2

3
(G(2)G(4) +G(4)G(2))ab.

Note that H(6) is traceless and divergence free.

For the dimensional reduction it is useful to note that the non-vanishing components of the
Riemann tensor can be expressed as

R(G)ijkl = Rijkl; (5.337)

R(G)yiyj = −e2κ(∇i∂jκ+ (∂iκ)(∂jκ)),

and similarly the non-vanishing components of the Ricci tensor are

R(G)ij = Rij −∇i∂jκ− ∂iκ∂jκ; (5.338)

R(G)yy = e2κ(−∇i∂iκ− ∂iκ∂iκ).

Let furthermore S be a scalar and Cab a symmetric tensor with Ciy = 0. Then the Laplacian
reduces as

D2S = (∇2 + ∂iκ∂i)S, (5.339)

D2Cij = (∇2 + ∂lκ∇l)Cij − 2∂lκ∂(iκC
l
j) + 2∂iκ∂jκC

y
y ,

D2Cyy = (∇2 + ∂iκ∂i)C
y
y + 2∂iκ∂jκC

ij − 2∂iκ∂
iκCyy .
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Letting G(0)ij = g(0)ij and G(0)yy = e2κ(0) one finds that

R(G)(0)ij = R(0)ij −∇i∂jκ(0) − ∂iκ(0)∂jκ(0); (5.340)

R(G)(0)yy = e2κ(0)(−∇i∂iκ(0) − ∂iκ(0)∂
iκ(0)),

with R(G)(0)yi = 0. Substituting into (5.113) gives8

G(2)ij =
1

d− 1

(
−R(0)ij +

1

2d
R(0)g(0)ij + (∇{i∂j}κ)(0) + ∂{iκ(0)∂j}κ(0))

)
;(5.341)

G(2)yy = e2κ(0)

(
1

2d(d− 1)
R(0) +

1

d
(∇2κ(0) + (∂κ(0))

2)

)
,

with G(2)yi = 0. Now using

Gyy = e2κ = e(2κ(0)+2ρκ(2)+··· ) = e2κ(0)(1 + 2ρκ(2) + · · · ) (5.342)

one determines κ(2) to be exactly the expression given in (5.91).

One next shows that G(4)ab in (5.331) reduces as

G(4)ij = g(4)ij ; G(4)yy = e2κ(0)(2κ2
(2) + 2κ(4)), (5.343)

with g(4)ij and κ(4) given in (5.95). This follows from the expansion of the six-dimensional
curvatures at second order:

R(G)(2)ij = R(2)ij − (∇i∂jκ)(2) − (∂iκ∂jκ)(2); (5.344)

R(G)(2)yy = −e2κ(0)(∇i∂iκ+ ∂iκ∂
iκ)(2)

−e2κ(0)2κ(2)(∇i∂iκ+ ∂iκ∂
iκ)(0).

Reducing (5.334) gives

Tr(G(6)) = Tr(g(6)) + 2κ(6) +
4

3
κ3

(2) + 4κ(2)κ(4); (5.345)

=
2

3
Tr(g(2)g(4)) +

4

3
κ(2)(κ

2
(2) + 2κ(4))−

1

6
Tr(g3

(2)),

and thus gives

Tr(g(6)) + 2κ(6) =
2

3
Tr(g(2)g(4))−

4

3
κ(2)κ(4) −

1

6
Tr(g3

(2)). (5.346)

The reduction of (5.336) gives

H(6)ij = h(6)ij ; H(6)yy = e2κ02κ̃(6), (5.347)

with

h(6)ij = − 1

12
[−2R(4)ij + (−Trg3

(2) + 2Trg(2)g(4) + 8κ2κ4)g(0)ij + 2(Trg(2))g(4)ij

−8(g(4)g(2))ij − 8(g(2)g(4))ij + 4g3
(2)ij + 2(∇i∂jκ)(4) + 2(∂iκ∂jκ)(4) + 4κ(2)g(4)ij ]

κ̃(6) = − 1

12
[(∇2κ)(4) + (∂κ)2

(4) + Trg(2)g(4) − 1
2
Trg3

(2) (5.348)

−κ(2)Trg2
(2) + 4κ(4)Trg(2) − 4κ3

(2) + 12κ(2)κ(4)],

8Round brackets (ij) denote symmetrisation and curly brackets {ij} traceless symmetrisation of indices.
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which agree with the expressions (5.99). In reducing the curvature term R(G)(4)yy one should
use the identities:

− ((∇2κ) + (∂κ)2)(0) = −10κ(2) − Trg(2); (5.349)

−((∇2κ) + (∂κ)2)(2) = −8κ(4) + 6κ2
(2) + 2κ(2)Trg(2) +

1

2
Trg2

(2).

(5.A.4) EXPLICIT EXPRESSIONS FOR MOMENTUM COEFFICIENTS

In the following we give explicit expressions for the terms in the expansions of the momenta
in eigenfunctions of the dilatation operator. The expressions given below are applicable for
β = 0 in (5.28) and d ≥ 3, although in this chapter we will use only the case of d = 5 (the D4-
branes). Here we give K(2n)ij and pφ(2n) up to n = 2; note that Φ̂ = eγφ. These expressions are
needed to compute the anomaly and one point functions for the D4-brane in the Hamiltonian
formalism in section 5.6.49:

γpφ(2) = −1

d
[

1

2(d− 1)
R̂+ Φ̂−1∇̂2Φ̂],

K(2) =
1

2(d− 1)
R̂,

K(2)ij =
1

d− 1
[R̂ij −

1

2d
R̂hij − Φ̂−1∇̂{i∂j}Φ̂]; (5.350)

γpφ(4) =
1

2d(d− 1)2(d− 3)
[−3R̂ijR̂

ij +
3(d+ 1)

4d
R̂2 − 3

d
∇̂2R̂− 3(Φ̂−1∇̂{i∂j}Φ̂)2

−2(d− 3)(Φ̂−1∇̂i(R̂ij∂jΦ̂)− d+ 2

2d
Φ̂−1∇̂j(R̂∂jΦ̂) +

1

2d
Φ̂−1∇̂2(Φ̂R̂))

−2d(Φ̂−1∇̂i∇̂j∇̂{i∇̂j}Φ̂− 2Φ̂−1∇i(Φ̂−1∂jΦ̂∇̂{i∇̂j}Φ̂))],

K(4) = − 1

2(d− 3)(d− 1)2
[−R̂ijR̂ij +

d+ 1

4d
R̂2 − 1

d
∇̂2R̂− (Φ̂−1∇̂{i∂j}Φ̂)2

−2Φ̂−1∇̂i∇̂j∇̂{i∇̂j}Φ̂ + 4Φ̂−1∇i(Φ̂−1∂jΦ̂∇̂{i∇̂j}Φ̂)],

K(4)
ij = γpφ(4)h

ij − 1

(d− 1)2(d− 3)
[−2RikR̂jk +

d+ 1

2d
R̂R̂ij − 2Φ̂−2∇̂i∂kΦ̂∇̂{j∂k}Φ̂

−1

d
(∇̂i∂jR̂+ ∇̂2R̂ij) + Φ̂−1∇̂lXijl],

Xijl = −2∇̂k(Φ̂R̂kl)hij + 2∇̂(i(Φ̂R̂j)l)− ∇̂l(Φ̂R̂ij)

+
d+ 1

2d
[∇̂l(Φ̂R̂)hij − hl(i∇̂j)(Φ̂R̂)] + 2Φ̂−1∇̂l∂(iΦ̂∂j)Φ̂− Φ̂−1∇̂{i∂j}Φ̂∂lΦ̂

−2

d
Φ̂−1hl(i∇̂2Φ̂∂j)Φ̂ +

1

d
[hl(iΦ̂∂j)R̂+

d− 1

2
Φ̂∂lR̂hij − ∇̂l(Φ̂R̂ij)

+2Φ̂∇̂lR̂ij − d∇̂l∇̂2Φ̂hij + hl(i∇̂j)∇̂2Φ̂].

Note that the terms K(2) and K(4) correspond to the (non-logarithmic) counterterms in the
action.

9Round brackets (ij) denote symmetrisation and curly brackets {ij} traceless symmetrisation of indices.



CHAPTER 6

HYDRODYNAMICS OF

NON-CONFORMAL BRANES

(6.1) INTRODUCTION

The AdS/CFT correspondence provides not only a powerful tool to study black hole physics,
but also strongly coupled quantum field theories. In particular, it has become possible to ex-
plore strongly coupled finite temperature conformal field theories by analyzing asymptotically
AdS black hole backgrounds, identifying the Hawking temperature of the black hole with the
temperature of the dual field theory.

Since any interacting field theory locally equilibrates at high enough densities, it is expected
that the evolution of long-wavelength fluctuations of strongly coupled field theories is gov-
erned by fluid dynamics. Recently, it was shown that solutions to the long-wavelength fluc-
tuation equations around the boosted black D3 brane geometry can be mapped to solutions
to non-linear equations of hydrodynamics in the dual strongly coupled conformal field theory
[122]. Using the well-known AdS/CFT dictionary, the fluctuations of the metric were shown
to be dual to a fluid configuration which is determined by a conserved hydrodynamic stress
tensor. Demanding the bulk fluctuations to be smooth in the interior constrained the transport
coefficients of the dual stress tensor.

As the hydrodynamic limit is a limit of long wavelength fluctuations, one proceeds hereby in
a derivative expansion of the velocity and temperature field of the fluid. In [122] the hy-
drodynamical energy-momentum tensor was computed to second derivative order. In [123,
124, 125, 126], this connection was further explored for pure gravity in arbitrary dimension,
in [127, 128, 129] for Einstein-Maxwell theory in 4+1 dimensions, and in [130] for grav-
ity coupled to a scalar in 4+1 dimensions. All these cases dealt with geometries which are
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asymptotically AdS.

In this chapter, we generalize this discussion to non-conformal branes. As in chapter 5 we
will consider solutions that asymptote locally to the near-horizon limit of Dp-brane (p 6= 5)
and fundamental string solutions. We will call these backgrounds asymptotically non-conformal
brane backgrounds. Using holographic renormalization for such backgrounds set up in chapter
5 makes it possible to generalize the map of bulk gravity equations to boundary hydrody-
namic equations. Earlier computations of transport coefficients of non-conformal brane back-
grounds using linear response theory, following the original work [131, 132] for conformal
backgrounds, include [133, 134, 135, 136] (see also [137, 138, 139] for computations of
transport coefficients of other non-conformal backgrounds).

Recall that in the near-horizon limit, the supergravity solutions of Dp-branes (p 6= 5) and fun-
damental strings are conformal to AdSp+2×S8−p and exhibit a running dilaton. The universal
sector of these backgrounds is obtained by dimensionally reducing on the sphere and truncating
to (p+2)-dimensional gravity coupled to a scalar. The action and solution can be best analyzed
in the dual frame in which the equations of motion admit a linear dilaton AdSp+2 solution [89].
Actually there is a family of (d + 1)-dimensional bulk actions parametrized by the positive pa-
rameter σ whose equations of motion admit a linear dilaton AdS solution, namely the metric is
exactly AdSd+1 and the dilaton is given by a power of the radial coordinate, with the parameter
σ determining the power. When expanding solutions which asymptotically (locally) approach
such solutions in a Fefferman-Graham expansion, σ turns out to also correspond to the radial
power of the normalizable mode.

The main observation of this chapter is that for half-integer σ, the (d + 1)-dimensional action
can be obtained by dimensionally reducing (2σ + 1)-dimensional pure gravity with cosmolog-
ical constant on a torus. In particular, any (d + 1)-dimensional solution which is asymptoti-
cally locally linear dilaton AdSd+1 in the dual frame can be lifted to an asymptotically locally
AdS2σ+1 pure gravity solution. Furthermore, the lower dimensional equations of motion de-
pend smoothly on σ, which implies that every solution can be generalized to arbitrary positive
σ. In our case we use this fact to obtain a black brane solution which solves the equations of
motion with arbitrary σ.

More generally, we show that all holographic results derived in chapter 5, namely counterterms,
1-point functions and Ward identities, can be obtained from their well-known counterparts [15]
using this procedure. Note that in chapter 5 we already saw such a relationship between the
holographic results for IIA fundamental strings and M2 branes and D4/M5 branes. In these
cases however this was a manifestation of the M-theory unlift, whereas it is unclear what is the
underlying reason for the more general relation we uncover here.

Recall also from section 5.4 that non-conformal branes admit a generalized conformal structure
both at weak and at strong coupling [97, 98, 99]. For the case of Dp branes, the low-energy
world-volume theory, namely maximally supersymmetric Yang-Mills theory in (p + 1) dimen-
sions, is Weyl invariant when coupled to a background metric provided the coupling constant is
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promoted to a background field that transforms appropriately 1. This invariance leads to a di-
latation Ward identity, which is of exactly the same form as the dilatation Ward identity for RG
flows induced by a relevant operator. The main difference is that in the latter case the theory
flows in the UV to a fixed point and the generalized conformal structure is inherited from the
conformal structure of the fixed point but in the non-conformal theories the running, within the
regime of validity of the corresponding descriptions (weak or strong), is due to dimensionality
of the coupling constant. For IIA fundamental strings and D4 branes, which have σ = 3/2, 3,
respectively, a new dimension, the M-theory dimension, opens up at strong coupling and the
theories indeed flow to a fixed point. In these cases one can understand the generalized con-
formal structure as descending from the conformal symmetry of the corresponding M-theory
system. The results of this chapter connect the generalized conformal structure of all cases to
a conformal structure of a theory in higher (albeit non-integral!) dimensions.

Applied to hydrodynamics we can draw the following conclusion. According to [122] and their
generalizations, every smooth metric fluctuations around the black brane solution in (2σ + 1)-
dimensional pure gravity can be mapped to a solution of conformal hydrodynamics with specific
transport coefficients in (2σ) dimensions. In a similar manner, metric and scalar fluctuations
around the non-conformal black brane with given σ in (d + 1) bulk dimensions will be dual
to a solution to non-conformal hydrodynamics in d dimensions. Since every solution of the
non-conformal gravity/scalar system can after continuation in σ be uplifted to a solution of the
higher dimensional pure gravity system, we conclude that the non-conformal hydrodynamics
in d dimensions can be obtained by dimensional reduction of conformal hydrodynamics in (2σ)

dimensions and continuation in σ.

An immediate consequence of the fact that the non-conformal hydrodynamic stress tensor can
be obtained by dimensional reduction from the conformal stress tensor is that the ratio between
bulk and shear viscosity ζ/η is fixed. A different ratio in the non-conformal fluid would uplift
to a non-vanishing bulk viscosity in the conformal fluid, which is forbidden by conformal sym-
metry. A related argument was presented in [139]. Hence the ratio of bulk and shear viscosity
in the non-conformal fluid is dictated by the generalized conformal structure. Furthermore
the ratio we find, and which was found earlier for Dp-branes in [133, 134, 135], saturates the
bound proposed in [135], ζ/η ≥ 2(1/(d− 1)− c2s), where cs is the speed of sound in the fluid.
This bound was proposed to be universal for strongly coupled gauge theory plasmas, similar to
the KSS conjecture [140], η/s ≥ 1/4π, for the the ratio between shear viscosity and entropy
density. However, there is an important qualitative difference between the two cases. In the
latter case, the ratio that saturates the bound, η/s = 1/4π, is obtained by requiring smoothness
of the bulk solution in the interior, so it has a dynamics origin, whereas in the latter case, the
ratio that saturates the bound, ζ/η = 2(1/(d− 1)− c2s), follows from the generalized conformal
structure so it is of kinematical origin.

In [122] and generalizations, the transport coefficients of the conformal hydrodynamic stress

1In a flat background, the generalized conformal structure implies that the theory is invariant under
generalized conformal transformations which act not only on the fields in the Lagrangian but also on the
coupling constant.
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tensor were computed by demanding smoothness in the interior. We use the map between
conformal hydrodynamics and hydrodynamics of generalized non-conformal branes to predict
the form of the stress tensor to second derivative order. In the sequel, we confirm the first
order form by an independent bulk calculation. However, instead of using the framework of
[122], in which the bulk equations were analyzed in Eddington-Finkelstein coordinates, we
use the method of [141] where the black D3 brane fluctuations were analyzed in Fefferman-
Graham coordinates. This is advantageous since it allows for a Lorentz covariant expansion,
the constraint equations become trivial and reading off the stress tensor from the bulk metric
is completely straightforward. Only to fix the coefficients of the dual stress tensor one switches
to Eddington-Finkelstein coordinates, which is necessary to ensure the absence of singularities
at the horizon of the black brane. We first generalize the discussion of [141] to arbitrary
dimension (2σ) and compactify to obtain the non-conformal case for general σ.

This chapter is organized as follows. We begin in section 6.2 by showing that the gravity/scalar
system relevant for the non-conformal branes can be obtained by dimensional reduction from
pure gravity in (2σ + 1) dimensions on a torus and continuation in σ, and discussing the im-
plications of this for holography. In section 6.3, we apply this reasoning to hydrodynamics and
conclude that the hydrodynamics of non-conformal branes can be obtained by dimensional
reduction from conformal hydrodynamics. We predict the form of the non-conformal hydro-
dynamic energy-momentum tensor up to second derivative order, confirm that the KSS bound
[140] is saturated and comment on Buchel’s bound [135] for the ratio between shear and bulk
viscosity. Sections 6.4 to 6.6 are devoted to explicitly checking the first order coefficients of
the non-conformal energy-momentum tensor by a bulk calculation for the case of flat boundary
metric. In section 6.4, we set up the conformal black brane solution and its non-conformal gen-
eralization. In section 6.5, we bring the black brane solution to Fefferman-Graham coordinates
and calculate its first order correction in the derivative expansion. From that we extract the
energy-momentum tensor to first derivative order. In section 6.6, we transform the first order
solution to Eddington-Finkelstein coordinates to examine the singularity at the horizon of the
unperturbed black brane. Analogously to [141], we find that the solution is only smooth in
Eddington-Finkelstein coordinates if the shear viscosity given in the stress tensor saturates the
KSS bound. Throughout sections 6.4 to 6.6, we often make use of the fact that at any point
in the calculation we can obtain the non-conformal case by dimensional reduction and con-
tinuation from the conformal case. Finally we end with conclusions and prospects for future
research. In appendix 6.A.1 we discuss the Fefferman-Graham expansion beyond the normal-
izable mode order and the dependence of the coefficients on the vev of the energy-momentum
tensor.

(6.2) LOWER DIMENSIONAL FIELD EQUATIONS

In the near-horizon limit, the supergravity solutions of Dp-branes and fundamental strings are
conformal to AdSp+2 × S8−p and exhibit a running dilaton. There is a Weyl transformation to
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the dual frame, in which the metric is exactly AdSp+2 × S8−p [89]. As in chapter 5, reducing
the action in the dual frame on the sphere yields

S = −L
∫
dd+1x

√
geγφ[R+ β(∂φ)2 + C], (6.1)

where the constants (L, β, γ, C) depend on the case of interest. The equations of motions admit
a linear dilaton AdSd+1 solution

ds2 =
dρ2

4ρ2
+
dzidz

i

ρ
;

eφ = ρα, (6.2)

where i = 1, . . . , d, provided that α and C satisfy

α = − γ

2(γ2 − β)
, C =

(d(γ2 − β) + γ2)(d(γ2 − β + β)

(γ2 − β)2
. (6.3)

Taking α instead of β as fundamental parameter we obtain the simpler form

β = γ2(1 +
1

2αγ
), C = (d− 2αγ)(d− 2αγ − 1). (6.4)

After rescaling the scalar φ→ φ/γ the action (6.1) takes the form

S = −L
∫
dd+1x

√
−Ĝeφ[R+ (1 +

1

2αγ
)(∂φ)2 + (d− 2αγ)(d− 2αγ − 1)], (6.5)

with solution (6.2) becoming

ds2 ≡ ĜMNdx
MdxN =

dρ2

4ρ2
+
dzidz

i

ρ
;

eφ = ραγ . (6.6)

We observe that in any dimension d we have a family of actions of the form (6.5) which de-
pend on the parameter αγ and whose equation of motions each admit a linear dilaton AdSd+1

solution of the form (6.6). The limit αγ → 02 and the choice αγ = −(d − 4)2/2(6 − d) corre-
spond to Einstein frame pure gravity with cosmological constant and decoupled Dp-branes with
d = p+ 1, respectively. For further reference let us also comment on the slightly non-standard
dimensions of solution (6.6) and action (6.5). The AdS radius in (6.6) is absorbed in Newton’s
constant in the prefactor L of the action (6.5) and furthermore we have length dimensions:

[ρ] = 2, [zi] = 1, [ds2] = −2, (6.7)

[R] = 0, [

√
−Ĝ] = −d− 2,

[

∫
dd+1x] = [

∫
dρ ddz] = d+ 2,

[eφ] = −[L] = 2αγ.

2To be precise this is only a well-defined limit of the action if we first rescale the scalar φ → αγφ before
taking αγ → 0.
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Extracting precise boundary theory data from the asymptotics requires using holographic renor-
malization. In chapter 5, we developed a framework of holographic renormalization for Dp
backgrounds and noted that this framework could be generalized to arbitrary values of αγ.
With the ansatz for metric and scalar

ds2 =
dρ2

4ρ2
+
gij(z, ρ)dzidzj

ρ
, (6.8)

φ(z, ρ) = αγ log ρ+ κ(z, ρ),

the field equations following from (6.5) become

−1

4
Tr(g−1g′)2 +

1

2
Trg−1g′′ + κ′′ − 1

2αγ
(κ′)2 = 0, (6.9)

−1

2
∇ig′ij +

1

2
∂j(Trg−1g′)− 1

2αγ
∂jκκ

′ + ∂jκ
′ − 1

2
g′j
k
∂kκ = 0, (6.10)[

−Ric(g)− 2(σ − 1)g′ − Tr(g−1g′)g + ρ(2g′′ − 2g′g−1g′ + Tr(g−1g′)g′)
]
ij

+∇i∂jκ−
1

2αγ
∂iκ∂jκ− 2(gij − ρg′ij)κ′ = 0, (6.11)

4ρ(κ′′ + (κ′)2) + 2(d− 4σ + 2)κ′ +∇2κ+ (∂κ)2 + 2Tr(g−1g′)(αγ + ρκ′) = 0, (6.12)

where differentiation with respect to ρ is denoted with a prime, ∇i is the covariant derivative
constructed from the metric g and σ ≡ d/2 − αγ. Since the field equations are polynomials
in ρ we can conclude that g(z, ρ) and κ(z, ρ) are regular functions of ρ and expand them in
powers of ρ. Inserting these expressions in the equations of motion yields algebraic expressions
for the subleading terms g(2n>0) and κ(2n>0) in terms of the sources g(0) and κ(0), until order
n = σ ≡ d/2− αγ, at which only the divergence of g(2σ) and the combination Trg(2σ) + 2κ(2σ)

is determined. Furthermore, if σ is integer, we have to introduce logarithmic terms at order σ
to fulfill the equations of motion:

g(z, ρ) = g(0)(z) + ρg(2)(z) + . . .+ ρσ(g(2σ)(z) + h(2σ)(z) log ρ) + . . . , (6.13)

κ(z, ρ) = κ(0)(z) + ρκ(2)(z) + . . .+ ρσ(κ(2σ)(z) + κ̃(2σ)(z) log ρ) + . . . .

Compared to pure gravity AdS, where σ = d/2, the power of the non-local term is shifted by
−αγ; this corresponds precisely to the additional factor eφ in the action (6.5) ensuring that
all counterterms can still be defined as local functionals of the sources and that the non-local
terms g(2σ) and κ(2σ) contribute only to the finite part of the regularized action. The presence
of the logarithmic terms in (6.13) appearing for σ integer corresponds precisely to the presence
of an anomaly [13] in the generalized conformal Ward identity of the dual theory:

〈T ii 〉+ 2αγ〈Oφ〉 = A. (6.14)

We will now present a new and much simpler derivation of the holographic results for the non-
conformal branes. Let us first consider the case of half integer σ > d/2. In this case the action
(6.5) can be obtained by reducing (2σ + 1)-dimensional gravity with cosmological constant
Λ = −σ(2σ − 1) on a (2σ − d)-dimensional torus with the reduction ansatz

ds2 = ds2
(d+1)(ρ, z) + e

2φ(ρ,z)
2σ−d dyady

a, (6.15)
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where a = 1, . . . , (2σ−d) runs over the torus directions. The Ricci scalar and the action reduce
as

R2σ+1 = Rd+1 − 2∇2φ− 2σ − d+ 1

2σ − d (∂φ)2, (6.16)

S = −LAdS
∫
d2σ+1x

√
−g2σ+1(R2σ+1 + 2σ(2σ − 1))

= −LAdS(2πRy)2σ−d
∫
dd+1x

√
−gd+1e

φ(Rd+1 +
2σ − d− 1

2σ − d (∂φ)2 + 2σ(2σ − 1)),

where the (in our conventions) dimensionless prefactor LAdS of the (2σ+ 1)-dimensional pure
gravity action is given by

LAdS =
l2σ−1
AdS

16πG2σ+1
, (6.17)

with lAdS the radius of the (2σ+1)-dimensional AdS space, G2σ+1 Newton’s constant in (2σ+1)

dimensions and Ry the radius of the torus. Given that σ = d/2 − αγ the last line in (6.16)
can easily seen to be proportional to (6.5) and thus lead to the same equation of motions.
Furthermore one can make the prefactors match by choosing a torus radius Ry so that

L = LAdS(2πRy)2σ−d. (6.18)

Thus, since for half-integer σ > d/2 the action can be obtained by dimensional reduction, local
counterterms for the action (6.5) can be obtained by reducing the local AdS(2σ+1) countert-
erms.

Furthermore, the generalized conformal Ward identity (6.14) can also be shown to be the
dimensional reduction of the conformal Ward identity of AdS(2σ+1). In the conformal case, the
vev of the energy-momentum tensor is given by [15],

〈Tµν〉2σ =
2√
−g(0),2σ

δSren
δgµν(0)

= 2σLAdSg(2σ)µν + . . . , (6.19)

where Sren denotes the renormalized on-shell action and the dots denote terms that locally de-
pend on g(0)µν . These terms are present when g(0)µν is curved and there is a conformal anomaly,
i.e. when σ is an integer. They do not play an important role in the discussion here and so they
will be suppressed. When relating the vev in (6.19) to the vev of the dimensionally reduced
theory, we have to account for the additional prefactor (2πRy)2σ−d of the lower-dimensional
action in (6.16) which results from the integration over the torus and for the change in the
determinant of the metric in the definition of the vev, √g(0),d = e−κ(0)

√
g(0),2σ. One obtains

eκ(0)(2πRy)2σ−d〈Tij〉2σ = 2σLeκ(0)g(2σ)ij + . . . = 〈Tij〉d, (6.20)

eκ(0)(2πRy)2σ−d〈Tab〉2σ = 2σLeκ(0)g(2σ)ab + . . .

= 2σLeκ(0)

(
e2κ/(2σ−d)

)
(2σ)

δab + . . .

=
4σL

2σ − de
(1+2/(2σ−d))κ(0)κ(2σ)δab + . . .

= −〈Oφ〉de2κ(0)/(2σ−d)δab,
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where the dots again contain curvatures of the boundary metric g(0)ij and derivatives of κ(0)

and we used in the last line formula (5.140) for the vev of the scalar operator,

〈Oφ〉d = − 4σL

2σ − de
κ(0)κ(2σ) + . . . . (6.21)

The conformal Ward identity 〈Tµµ 〉2σ = A2σ then reduces to

e−κ(0)(2πRy)d−2σ
(
〈T ii 〉2σ + gab(0)〈Tab〉2σ

)
= 〈T ii 〉d − (2σ − d)〈Oφ〉d

= e−κ(0)(2πRy)d−2σA2σ ≡ Ad, (6.22)

which is indeed equal to (6.14). The most efficient way to incorporate all local terms in the
analysis (which are denoted by dots here) is to use the Hamiltonian formulation of holographic
renormalization [19, 20] and dimensionally reduce the results. This has been discussed in
detail for the case of D4 brane (which is related to M5 by the M-theory lift) in section 5.5.3 and
appendix 5.A.3.

Thus we find that local counterterms, 1-point functions and the generalized conformal Ward
identity for half-integer σ > d/2 can be obtained by dimensional reduction. From the lower-
dimensional point of view however, σ is just a parameter of the theory on which the equations
of motion depend smoothly. Therefore local counterterms, 1-point functions and generalized
conformal Ward identities should also exist for positive, but non-integer σ > d/2.

The reduction argument yields the following prescription to obtain the counterterms to (6.5)
with σ > d/2 from AdS-counterterms. Choose any half-integer σ̃ > σ and determine the
[σ] + 1 most singular AdS(2σ̃+1)-counterterms as a function of σ̃, where [σ] denotes the largest
integer less than or equal to σ (when σ is an integer one of these counterterms is logarithmic)
. Reducing these AdS(2σ̃+1)-counterterms on a (2σ̃ − d)-dimensional torus and replacing σ̃ by
σ yields the counterterms appropriate for (6.5).

As an example we rederive the counterterm action found in (5.139) for 1 < σ < 2, which en-
compasses the cases of D0/1/2 branes and of the fundamental string, for which σ = {7/5, 3/2, 5/3, 3/2}
and d = {1, 2, 3, 2} respectively. Since σ < 2 we only need two counterterms. The two most
singular counterterms in AdS2σ̃+1 defined on a regulating hypersurface are given by (see ap-
pendix B of [15])3

Sct = LAdS

∫
ρ=ε

d2σ̃x
√
−γ2σ̃

[
2(2σ̃ − 1) +

1

2σ̃ − 2
R̂[γ2σ̃]

]
, (6.23)

where γ2σ̃ij is the induced metric on the (2σ̃)-dimensional hypersurface and R̂[γ2σ̃] the corre-
sponding curvature. The curvature on the hypersurface reduces to d dimensions as

R̂2σ̃ = R̂d[γ]− 2∇̂2φ− 2σ̃ − d+ 1

2σ̃ − d (∂iφ)2. (6.24)

The counterterm action to (6.5) for 1 < σ < 2 is then given by reducing (6.23) to d dimensions
and replacing σ̃ with σ,

Sct = L

∫
ρ=ε

ddx
√
−γd eφ

[
2(2σ − 1) +

1

2σ − 2
(R̂d +

2σ − d− 1

2σ − d (∂iφ)2)

]
, (6.25)

3Note that convention for the curvature tensor used in [15] has the opposite sign.
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which agrees with (5.139). The remaining case, i.e. the case of D4 branes has σ = 3 and the
counterterm action also follows in the same manner (i.e. from the gravitational counterterms
forAdS7), as discussed in detail in chapter 5. Finally, let us comment on the restriction σ > d/2.
At σ = d/2 the action (6.16) has a pole and the kinetic term of the scalar becomes negative in
the interval (d− 1)/2 < σ < d/2 so one should use the reduction argument when σ < d/2 with
caution. Note also that for D6 branes, which do not have a sensible decoupling limit, σ = −1.

For later convenience let us finally mention that one can always formally recover the (2σ + 1)-
dimensional equation of motion for the metric in the conformal case from the non-conformal
case by setting the scalar to zero. The conformal version of (6.9) - (6.11) reads

−1

4
Tr(g−1g′)2 +

1

2
Trg−1g′′ = 0, (6.26)

−1

2
∇µg′µν +

1

2
∂ν(Trg−1g′) = 0, (6.27)[

−Ric(g)− 2(σ − 1)g′ − Tr(g−1g′)g + ρ(2g′′ − 2g′g−1g′ + Tr(g−1g′)g′)
]
µν

= 0, (6.28)

where from now on we use transverse indices µ, ν, . . . for the conformal case and transverse
indices i, j, . . . for the non-conformal case.

(6.3) UNIVERSAL HYDRODYNAMICS

The hydrodynamic energy-momentum tensor for a conformal fluid at first-derivative order in
(2σ) dimensions on a curved manifold with metric g(0)µν is

Tµν = LAdS

(
2πT

σ

)2σ

(g(0)µν + 2σuµuν)− 2η2σ(T )σµν , (6.29)

σµν = PκµP
λ
ν ∇(κuλ) −

1

2σ − 1
Pµν(∇ · u), Pµν = g(0)µν + uµuν ,

where T , uµ and η2σ(T ) denote the temperature, velocity and shear viscosity respectively of
the fluid and ∇i is the covariant derivative corresponding to the metric g(0)ij . For given η2σ(T )

the evolution of the fluid is determined by the conservation of the energy-momentum tensor,

∇µTµν = 0. (6.30)

Furthermore, the conformal Ward identity Tµµ = 0 constrains energy density ε and pressure p
to be related by the equation of state

p = LAdS

(
2πT

σ

)2σ

=
1

2σ − 1
ε. (6.31)

Since we saw above that the bulk equations of motion for a non-conformal geometry with given
σ can be obtained by dimensional reduction of (2σ + 1)-dimensional gravity on a (2σ − d)-
dimensional torus, we can perform the same procedure on the boundary to obtain the hydro-
dynamic energy-momentum tensor dual to a non-conformal black brane solution with given σ
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in d dimensions. Demanding that Tµν in (6.29) only depends on non-compact directions and
that the fluid velocity uµ = (ui, 0) only has non-zero non-compact components yields

Tij = Leκ(0)

(
2πT

σ

)2σ

(g(0)ij + 2σuiuj)− 2ηdσij − ζdPij(∇ · u), (6.32)

〈Oφ〉 = −Leκ(0)

(
2πT

σ

)2σ

− 2

2σ − 1
ηd(∇ · u),

where

σij = P ki P
l
j∇(kul) −

1

d− 1
Pij(∇ · u), Pij = g(0)ij + uiuj , (6.33)

ηd = (2πRy)2σ−deκ(0)η2σ,

ζd =
2(2σ − d)

(d− 1)(2σ − 1)
ηd,

with ηd and ζd shear and bulk viscosity respectively of the d-dimensional fluid. The conformal
conservation equation (6.30) reduces to

∇iTij − ∂jκ(0)〈Oφ〉 = 0, (6.34)

where 〈Oφ〉 is again the expectation value of the operator dual to φ. Since we would like
the evolution of the d-dimensional fluid to be described purely by a divergence equation, we
demand that κ(0) is constant or without loss of generality zero. Moreover note that the d-
dimensional non-conformal fluid obeys the same equation of state (6.31) as the (2σ)-dimensional
conformal fluid.

In (6.33) we observe that ηd(T ) as function of the temperature in the non-conformal theory
is proportional to η2σ(T ) in the higher dimensional conformal theory. As we will check below,
smoothness of the bulk solution forces the viscosity to saturate the KSS bound [140]

ηd
sd

=
η2σ

s2σ
≥ 1

4π
, (6.35)

where the entropy density sd corresponding to (6.32) is given by

sd = 2σL

(
2π

σ

)2σ

T 2σ−1, (6.36)

and the dimensionful L is related to the dimensionless LAdS via (6.18). More generally, we see
that any fluid which is related to a conformal fluid satisfying the KSS bound by dimensional
reduction will satisfy the KSS bound as well.

Furthermore we note that in (6.33), the bulk viscosity ζd is determined by the shear viscosity
ηd. In [135] it was conjectured that the ratio of bulk to shear viscosity of a strongly coupled
gauge theory plasma satisfies the bound4

ζd
ηd
≥ 2(

1

d− 1
− c2s), (6.37)

4Note that unlike the η/s bound, this bound has known counterexamples in weakly coupled systems, e.g.
monatomic gases [135].
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where cs denotes the speed of sound. In our case cs can be calculated from the equation of
state (6.31) to be

cs =

√
∂p

∂ε
=

1√
2σ − 1

. (6.38)

Hence we see that the last line in (6.33) implies that the bound (6.37) is saturated for arbitrary
σ. This confirms the calculation of [134, 133, 135], in which this result was obtained for
black Dp-branes for p = 2, . . . , 6 and their toroidal compactifications. Note however that (6.37)
will be saturated for any fluid which arises from dimensional reduction and continuation in
dimension of a conformal fluid, irrespective of the value of η/s. In particular we did not
have to assume that the dual bulk solution is smooth. Thus in this case the ratio ζ/η is fixed
kinematically. This indicates that this case is qualitatively different than the case of η/s.

Combining (6.33) and (6.35) we obtain the bound

ζd
sd
≥ 2σ − d

2π(d− 1)(2σ − 1)
. (6.39)

which should hold for all non-conformal fluids that can be related to a (2σ)-dimensional con-
formal fluid (with (2σ) non necessarily integral), as discussed above.

We can also obtain to second order the coefficients of the non-conformal energy-momentum
tensor from the coefficients of the conformal energy-momentum tensor. In was argued in [142]
that the second order contribution to the conformal energy-momentum tensor is given by a
linear combination of all possible Weyl invariants containing two derivatives,

T2µν = 2η2στM

[
(u · ∇)σµν +

1

2σ − 1
σµν(∇ · u)

]
(6.40)

+κ̃
[
Rµν − (2σ − 2)uκuλRκ〈µν〉λ

]
+4λ1σκ〈µσν〉

κ + 2λ2σκ〈µΩν〉
κ + λ3Ωκ〈µΩν〉

κ,

where Rµνκλ and Rµν are Riemann and Ricci tensor of the metric g(0)µν , angle brackets denote
the transverse traceless part of a second rank tensor Aµν ,

A〈µν〉 =
1

2
PκµP

λ
ν (Aκλ +Aλκ)− 1

2σ − 1
PµνP

κλAκλ, (6.41)

and the vorticity Ωµν is given by

Ωµν =
1

2
PκµP

λ
ν (∇κuλ −∇λuκ). (6.42)

Note also that with notation (6.41) the shear tensor σµν can be written as

σµν = ∇〈µuν〉. (6.43)

Again, we can obtain the non-conformal second order energy-momentum tensor with given σ
by reducing (6.40) on a (2σ − d)-dimensional torus. The result can be obtained by replacing
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all tensors with angle brackets by

A〈µν〉 → A〈ij〉 +
2σ − d

(d− 1)(2σ − 1)
PijP

klAkl, (6.44)

σµν → σij +
2σ − d

(d− 1)(2σ − 1)
Pij(∇ · u),

where A〈ij〉 in the first line on the right hand side is defined as transverse traceless part in the
lower dimensional theory,

A〈ij〉 =
1

2
P ki P

l
j (Akl +Alk)− 1

d− 1
PijP

klAkl. (6.45)

The Riemann tensor, Ricci tensor, Ricci scalar and vorticity reduce trivially,

R2σ
ijkl = Rdijkl, R2σ

ij = Rdij , R2σ = Rd, Ω2σ
ij = Ωdij , (6.46)

since we demanded that κ(0) = 0. The components of the Riemann and Ricci tensor in the
internal directions of the torus do not contribute to the d-dimensional energy-momentum ten-
sor. Finally the d-dimensional energy momentum tensor gets multiplied by the overall factor
(2πRy)2σ−d which stems from the torus volume factor multiplying the (d+1)-dimensional bulk
action.

(6.4) GENERALIZED BLACK BRANES

In [122] it was shown that the long wavelength fluctuation equations around the boosted
black D3 brane geometry in Eddington-Finkelstein coordinates can be mapped to the non-linear
equations of hydrodynamics of the dual strongly coupled conformal field theory. In [141] it was
pointed out that it can be advantageous to perform the same analysis in Fefferman-Graham
coordinates, since it allows for a Lorentz covariant expansion, the constraint equations become
trivial and reading off the stress tensor from the bulk metric is completely straightforward.
Furthermore, one can construct bulk solutions dual to an arbitrary hydrodynamic boundary
stress tensor. On the other hand, irrespectively of the precise values of the coefficients of the
energy-momentum tensor, the Fefferman-Graham coordinates will have a singularity at the
(unperturbed) horizon. To find out whether this singularity is a coordinate singularity or a real
one requires to transform to Eddington-Finkelstein coordinates. Only requiring smoothness in
Eddington-Finkelstein coordinates away from the singularity of the static black brane fixes the
coefficients in the boundary stress tensor to the values found in [122].

Here we will generalize the analysis of [141] to non-conformal geometries with AdS-solution
in the dual frame and arbitrary positive σ. As a first step, we generalize it to pure gravity
in arbitrary dimension (2σ + 1) for half-integer σ and then invoke the reduction argument
of section 6.2 to obtain the case of a non-conformal geometry with arbitrary positive σ in
dimension d. Throughout the rest of this chapter we assume the boundary metric g(0)ij = ηij

to be flat and κ(0) to be constant or without loss of generality zero.



6.5. GENERALIZED BLACK BRANES IN FEFFERMAN-GRAHAM COORDINATES 225

For half-integer σ, the (2σ + 1)-dimensional pure gravity action in (6.16) has the black brane
solution

ds2 =
dρ2

4ρ2fb(ρ)
+
−fb(ρ)dt2 + dzrdz

r

ρ
, (6.47)

fb(ρ) = 1− ρσ

b2σ
,

where r runs over spatial transverse coordinates and b is related to the black brane temperature
by

b =
σ

2πT
. (6.48)

After boosting the geometry (6.47) with the boost parameter uµ we obtain the metric

ds2 =
dρ2

4ρ2fb(ρ)
+

[ηµν + (1− fb(ρ))uµuν ]dzµdzν

ρ
, (6.49)

which solves the equation of motions as long as b and uµ are constants, with b and uµ mapped
to the to the dual (inverse) temperature and velocity of the fluid. However, once we allow the
temperature in the definition of b in (6.48) and uµ to become z-dependent,

ds2 =
dρ2

4ρ2fb(z)(ρ)
+

[ηµν + (1− fb(z)(ρ))uµ(z)uν(z)]dzµdzν

ρ
, (6.50)

we have to correct the metric (6.50) at each order in the derivative expansion to still fulfill the
equations of motions. The corrections to the metric then determine the dissipative part of the
hydrodynamic energy-momentum tensor.

The non-conformal generalization of (6.50) can again be obtained by compactification. We
split the transverse coordinates zµ = (zi, ya) in non-compact and torus directions and demand
that the metric only depends on non-compact directions and that the fluid velocity uµ = (ui, 0)

has only non-zero non-compact components. This enables us to reduce using the reduction
ansatz (6.15) to obtain for metric and scalar

ds2 =
dρ2

4ρ2fb(ρ)
+

[ηij + (1− fb(z)(ρ))ui(z)uj(z)]dz
idzj

ρ
, (6.51)

eφ = ραγ .

It can be checked explicitly that this is a solution of the equations of motion following from the
(d+ 1)-dimensional action (6.5) for arbitrary σ.

(6.5) GENERALIZED BLACK BRANES IN FEFFERMAN-GRAHAM

COORDINATES

Before computing the derivative corrections to the boosted brane solution (6.51) by perturbing
around equations (6.9) - (6.12), we change to Fefferman-Graham coordinates, in which the
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solution takes the form (6.8). Again, to keep the discussion as concise as possible, we first
discuss the conformal case in arbitrary dimension and compactify to obtain the non-conformal
case. In both cases, we obtain Fefferman-Graham coordinates by a redefinition of the radial
coordinate:

ρ̃(ρ) =

(
2

1 +
√
fb(ρ)

)2/σ

ρ, (6.52)

whose inverse transformation is

ρ(ρ̃) =

(
1 +

ρ̃σ

4b2σ

)−2/σ

ρ̃. (6.53)

The metric (6.50) corresponding to the conformal fluid becomes

ds2 =
dρ̃2

4ρ̃2
+
g(z, ρ̃)µνdz

µdzν

ρ̃
, (6.54)

g(z, ρ̃)µν = A(ρ̃)ηµν +B(ρ̃)uµuν ,

where

A(ρ̃) =
ρ̃

ρ(ρ̃)
=

(
1 +

ρ̃σ

4b2σ

)2/σ

, (6.55)

B(ρ̃) =
ρ̃[1− fb(ρ(ρ̃))]

ρ(ρ̃)
=

ρ̃σ

b2σ

(
1 +

ρ̃σ

4b2σ

)2/σ−2

.

According to (6.19) we obtain the perfect fluid part of the energy-momentum tensor (6.29) by
reading off the ρ̃σ coefficient of g(z, ρ̃),

T0µν = 2σLAdSg(2σ)µν = LAdSb
−2σ(ηµν + 2σuµuν), (6.56)

using the definition of b in (6.48). The horizon in Fefferman-Graham coordinates is at ρ̃ = ρ̃h ≡
22/σb2, where g(ρ̃h, z)µν becomes non-invertible since A(ρ̃h) = B(ρ̃h).

If uµ(z) and b(z) in (6.54) become dependent on the boundary coordinates zµ we have to
introduce corrections to the metric at each order in the derivative expansion to still satisfy the
equations of motion. At first order we perturb the metric as

g(z, ρ̃) = g0(z, ρ̃) + g1(z, ρ̃), (6.57)

where g0(z, ρ̃) is given by (6.54),

g0(z, ρ̃)ij = A(b(z), ρ̃)ηij +B(b(z), ρ̃)ui(z)uj(z). (6.58)

The equations of motion (6.26) and (6.28) become

−1

2
Trg−1

0 g′0g
−1
0 g′1 +

1

2
Trg−1

0 g1g
−1
0 g′0g

−1
0 g′0 +

1

2
(Trg−1

0 g′′1 − Trg−1
0 g1g

−1
0 g′′0 ) = 0,(6.59)

2ρ̃(g′′1 − g′1g−1
0 g′0 − g′0g−1

0 g′1 + g′0g
−1
0 g1g

−1
0 g′0)− 2(σ − 1)g′1 (6.60)

+Trg−1
0 g′0(ρ̃g′1 − g1) + (Trg−1

0 g′1 − Trg−1
0 g1g

−1
0 g′0)(ρ̃g′0 − g0) = 0,
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where now the prime denotes differentiation with respect to the Fefferman-Graham radial vari-
able ρ̃. At first order in the derivative expansion, Ric(g) in (6.28) does not contribute since it
contains at least two derivatives of z.

At every order in the derivative expansion, the constraint equation (6.27) at small ρ̃ is equiv-
alent to the conservation of the dual energy-momentum tensor. However, if this equation is
fulfilled on a radial hypersurface close to the boundary, the evolution equations (6.26) and
(6.28) ensure that it remains fulfilled in the interior. Only the equations (6.59) and (6.60)
constrain the form of the metric perturbation further and with it also the form of the dual
hydrodynamic stress tensor. In section 6.6 though, where we transform the perturbed metric
to Eddington-Finkelstein coordinates, it will be convenient to use the conservation equation of
the (perfect fluid) energy-momentum tensor to relate derivatives of the temperature field to
derivatives of the velocity field.

The perturbations g1µν will contain first derivatives of uµ and its order σ term will correct
the energy momentum tensor by Tµν = T0µν + T1µν , where T0µν is the perfect fluid energy-
momentum tensor (6.56) and T1µν the dissipative part at first derivative order. Since Tµµ = 0 in
the conformal case and since we can always go to Landau gauge uµT1µν = 0 by a redefinition
of the temperature and velocity field, T1µν will be given by

T1µν = −2η2σσµν , (6.61)

where the parameter η2σ is the shear viscosity. Only for a specific value of the shear viscosity,
the bulk solution will be smooth at the horizon of the black brane. However, in Fefferman-
Graham coordinates the metric becomes non-invertible at the horizon. Fixing the value of η2σ

will require changing to Eddington-Finkelstein coordinates, which we do in section 6.6 below.
In the meantime we parametrize η2σ as

η2σ = LAdSγb
1−2σ, (6.62)

where η2σ fulfilling η2σ/s2σ = 1/4π corresponds to γ = 1.

The form of the metric perturbation g1µν can now be determined using the the following ar-
gument [141]. As is shown in appendix 6.A.1, the derivatives in the ρ̃ expansion of the metric
always enter in pairs, see (6.95), which implies that the ρ̃-expansion of the metric perturbation
g1µν at first derivative order will only contain non-derivative terms of the form (T p0 T1T

q
0 ). Due

to the Landau gauge condition uµT1µν = 0 and the tracelessness condition Tµ1µ = 0 only the
ηµν part inside (T p0 )µν contributes to the coefficients of g1µν at each order in ρ̃. Thus, each
coefficient in the expansion of g1µν will be proportional to T1µν . Hence also g1µν as a whole
will be proportional to T1µν , which in the conformal case only contains a shear part,

g1µν = λ(ρ̃)σµν . (6.63)

Extracting the transverse, traceless mode proportional to σµν out of (6.60) we obtain a second
order ordinary differential equation in λ(ρ̃)

2ρ̃(λ′′ − 2
A′

A
λ′ +

A′2

A2
λ)− 2(σ − 1)λ′ + Trg−1

0 g′0(ρ̃λ′ − λ) = 0, (6.64)
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whose asymptotically vanishing solution is given by

λ(ρ̃) = Cλ

(
1 +

ρ̃σ

4b2σ

)2/σ

log
1− ρ̃σ

4b2σ

1 + ρ̃σ

4b2σ

= CλA(ρ̃) log
2−A(ρ̃)σ/2

A(ρ̃)σ/2
. (6.65)

To fix the integration constant Cλ we demand that the order σ term of λ(ρ̃) in the Taylor
expansion in ρ̃ reproduces T1µν ,

Cλ =
2η2σ

σLAdS
b2σ =

2γb

σ
. (6.66)

The metric in Fefferman-Graham coordinates in the conformal case up to first order is then

ds2 =
dρ̃2

4ρ̃2
+
gµν(z, ρ̃)dzµdzν

ρ̃
, (6.67)

gµν(z, ρ̃) = A(ρ̃)ηµν +B(ρ̃)uµuν + λ(ρ̃)σµν .

The whole discussion can be straightforwardly generalized to the nonconformal case. Starting
from (6.51) we change to Fefferman-Graham coordinates, perturb metric and scalar as

g(z, ρ̃) = g0(z, ρ̃) + g1(z, ρ̃), (6.68)

κ(z, ρ̃) = κ0(z, ρ̃) + κ1(z, ρ̃),

to obtain perturbation equations around (6.9), (6.11) and (6.12):

−1

2
Trg−1

0 g′0g
−1
0 g′1 +

1

2
Trg−1

0 g1g
−1
0 g′0g

−1
0 g′0 (6.69)

+
1

2
(Trg−1

0 g′′1 − Trg−1
0 g1g

−1
0 g′′0 ) + κ′′1 −

1

αγ
κ′0κ

′
1 = 0,

2ρ̃(g′′1 − g′1g−1
0 g′0 − g′0g−1

0 g′1 + g′0g
−1
0 g1g

−1
0 g′0)− 2(σ − 1)g′1 (6.70)

+(Trg−1
0 g′0 + 2κ′0)(ρ̃g′1 − g1)

+(Trg−1
0 g′1 − Trg−1

0 g1g
−1
0 g′0 + 2κ′1)(ρ̃g′0 − g0) = 0

4ρ̃(κ′′1 + 2κ′1κ
′
0) + 2(d− 4σ + 2)κ′1 (6.71)

+(Trg−1
0 g′1 − Trg−1

0 g1g
−1
0 g′0)(2αγ + 2ρ̃κ′0) + 2ρ̃κ′1Trg−1

0 g′0 = 0.

However, as we know the first order solution (6.67) in the conformal case, we can again obtain
the first order solution for metric and scalar in the non-conformal case by dimensional reduction
using the ansatz (6.15):

gij(z, ρ̃) = A(ρ̃)ηij +B(ρ̃)uiuj + λ(ρ̃)σij +
2σ − d

(d− 1)(2σ − 1)
λ(ρ̃)Pij(∂ · u),

exp(
2κ(z, ρ̃)

2σ − d ) = A(ρ̃)− λ(ρ̃)

2σ − 1
(∂ · u). (6.72)

From (6.72) we can read off

g0(z, ρ̃)ij = A(ρ̃)ηij +B(ρ̃)ui(z)uj(z), (6.73)

κ0(z, ρ̃) =
2σ − d

2
logA(ρ̃),

g1(z, ρ̃)ij = λ(ρ̃)σij +
2σ − d

(d− 1)(2σ − 1)
λ(ρ̃)Pij(∂ · u),

κ1(z, ρ̃) = − 2σ − d
2(2σ − 1)A(ρ̃)

λ(ρ̃)(∂ · u),
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which can be straightforwardly shown to be a solution of (6.69) - (6.71). Finally, by extracting
the order σ term, it can be checked that the metric in (6.72) gives rise to the non-conformal
energy momentum tensor and scalar vev given in (6.32),

Tij =
L

b2σ
(g(0)ij + 2σuiuj)− 2ηdσij − ζdPij(∂ · u), (6.74)

〈Oφ〉 = − L

b2σ
− 2

2σ − 1
ηd(∂ · u).

(6.6) TRANSFORMATION TO EDDINGTON-FINKELSTEIN CO-
ORDINATES

We have thus found that the first order perturbation results in a hydrodynamic stress energy
tensor and vev for the operator Oφ that are parametrized by the shear viscosity ηd, which at
this point is unconstrained. The bulk viscosity ζd is fixed in a way prescribed by the dilation
Ward identity. Now recall that the source and the vev are a conjugate pair with the vev being
the (renormalized) radial canonical momentum [19, 20] so specifying them yields in principle
a unique bulk solution. Not all these solutions however will be non-singular. Regularity in the
interior in general leads to additional restrictions.

We now discuss the constraints imposed by the smoothness of the gravity solution in the bulk.
This requires changing to Eddington-Finkelstein coordinates, which are well-defined beyond
the horizon. In the conformal case the metric in the Eddington-Finkelstein coordinates will be
of the form

ds2 = −2uµ(x)drdxµ +Gµν(x, r)dxµdxν , (6.75)

and the transformation equations for the metric between Fefferman-Graham of the form (6.8)
and Eddington-Finkelstein coordinates are given by

(∂rρ̃)2 + 4ρ̃ gµν(z, ρ̃) ∂rz
µ ∂rz

ν = 0, (6.76)

∂rρ̃ ∂µρ̃+ 4ρ̃ ∂rz
κ ∂µz

λ gκλ(z, ρ̃) = −4ρ̃2uµ,

∂µρ̃ ∂ν ρ̃+ 4ρ̃ ∂µz
κ ∂νz

λ gκλ(z, ρ̃) = 4ρ̃2Gµν(x, ρ),

where ρ̃(x, r) and zµ(x, r) encode the dependence of the Fefferman-Graham coordinates on the
Eddington-Finkelstein coordinates. Given a solution in Fefferman-Graham coordinates we use
(6.76) to solve for ρ̃(x, r), zµ(x, r) and Gµν(x, ρ). At zeroth order in the derivative expansion,
the transformation is given by

ρ̃0(r) = ρ̃(ρ = 1/r2) =

(
2

1 +
√
fb(r)

)2/σ

1

r2
, (6.77)

zµ0 (r) = xµ + uµkb(r),

where

fb(r) ≡ fb(ρ = 1/r2) = 1− (br)−2σ, kb(r) ≡
1

r
2F1(1,

1

2σ
; 1 +

1

2σ
; (br)−2σ), (6.78)
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with 2F1(a, b; c;w) a hypergeometric function. Note that the radial coordinate r in the Eddington-
Finkelstein coordinates is related to the radial coordinate ρ in the original black brane solution
(6.51) simply by ρ = 1/r2. Furthermore ρ̃(r) and kb(r) obey the first order differential equa-
tions

∂rρ̃ = − 2ρ̃

r
√
fb(r)

,

∂rkb = − 1

r2fb(r)
. (6.79)

G0µν(x, r) is given by
G0µν = r2[ηµν + (fb(r)− 1)uµuν ]. (6.80)

At first order in the derivative expansion we perturb the Fefferman-Graham coordinates in the
transformation equations (6.76) by

ρ̃(x, r) = ρ̃0(x, r) + ρ̃1(x, r), (6.81)

zµ(x, r) = zµ0 (x, r) + zµ1 (x, r),

while Gµν(x, r) is expanded as

Gµν(x, r) = G0µν(x, r) +G1µν(x, r). (6.82)

At the same time, we use for the Fefferman-Graham metric the full first order expression
gµν(z, ρ̃) = g0µν(z, ρ̃) + g1µν(z, ρ̃) in (6.67). Note that the zeroth order expressions ρ̃0, zµ0 ,
G0µν and g0µν(z, ρ̃) depend also on x through their dependence on b(z) and uµ(z), which now
have been made dependent on z. Furthermore, we have to account for the transverse coordi-
nates change from zµ to xµ in (6.77) and Taylor expand b(z) and uµ(z) as

b(z) = b(x) + uµ(x)kb(r) ∂µb(x), (6.83)

uµ(z) = uµ(x) + uν(x)kb(r) ∂νuµ(x).

The tensor gµν(z, ρ̃) we expand both in transverse coordinates and in ρ̃

gµν(z, ρ̃) = gµν(x, r) + uλ(x)kb(r) ∂λgµν(x, r) + ρ̃1(x, r) ∂rgµν(x, r).

As mentioned above, the derivatives ∂µb(x) can be converted into derivatives of the fluid ve-
locity ∂µuν(x) by the continuity equation

∂µb = b

(
− 1

2σ − 1
uµ(∂ · u) + (u · ∂)uµ

)
, (6.84)

which follows from the conservation of the perfect fluid energy-momentum tensor (6.56),
∂µT0µν = 0, or equivalently from the divergence equation (6.27) at order σ.

Putting everything together we obtain the transformation to first order in derivatives,

ρ̃(x, r) = ρ̃0(1 + kb
∂ · u

2σ − 1
), (6.85)

zµ(x, r) = xµ + uµkb + uµ
∂ · u

2σ − 1
l(r) + (u · ∂)uµm(r),
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where l(r), m(r) satisfy the differential equations

dl

dr
= − kb(r)

r2fb(r)
− 1

r3(fb(r))3/2
, (6.86)

dm

dr
= − kb(r)

r2fb(r)
+

1

r3
√
fb(r)

,

with the boundary condition that they vanish for r → ∞. The metric in Eddington-Finkelstein
coordinates up to first derivative order is then given by

Gµν(x, r) = r2[ηµν + (fb(r)− 1)uµuν ] (6.87)

−χb(r)σµν −
2r

2σ − 1
uµuν(∂ · u) + r(u · ∂)(uµuν),

where

χb(r) =
2A(ρ̃0(r))kb(r) + λ(ρ̃(r))

ρ̃0(r)
= r2

[
2kb(r) +

2γb

σ
log

2−Aσ/2

Aσ/2

]
. (6.88)

Near the horizon r → 1/b, the hypergeometric function in the definition of kb(r) in (6.78)
develops a logarithmic divergence of the form [143]

2F1(x, y;x+ y;w) = − Γ(x+ y)

Γ(x)Γ(y)
log(w − 1) + finite, (6.89)

and χb(r) becomes

χb →
(γ − 1)

σb
log(r − 1

b
) + finite. (6.90)

Hence the divergence in χb(r) cancels precisely if γ = 1, ie. the shear viscosity to entropy
density bound η2σ/s2σ ≥ 1/4π is saturated.

In the non-conformal case, the transformation from Fefferman-Graham to Eddington-Finkelstein
coordinates is given by the same coordinate transformations (6.77) and (6.85). By either trans-
forming (6.72) or by dimensionally reducing (6.87) according to the reduction ansatz (6.15)
we obtain the metric and scalar to first derivative order in Eddington-Finkelstein coordinates:

Gij = r2[ηij + (fb(r)− 1)uiuj ]− χb(r)
[
σij +

2σ − d
(d− 1)(2σ − 1)

Pij(∂ · u)

]
(6.91)

− 2r

2σ − 1
uiuj(∂ · u) + r(u · ∂)(uiuj),

φ =
2σ − d

2

[
log r2 − 1

2σ − 1

χb(r)

r2
(∂ · u)

]
. (6.92)

In particular, we see that the condition for the scalar and metric of the non-conformal solution
to be smooth at the horizon is identical to the smoothness condition in the conformal case,
namely that γ = 1 in the definition of χb(r) in (6.88). Hence as expected also in the non-
conformal case the bound ηd/sd ≥ 1/4π is saturated for arbitrary σ.

In contrast, the fixed value of the ratio of the bulk to shear viscosity ζd/ηd = 2(1/(d− 1)− c2s)
does not follow from a smoothness condition but instead it follows from the equation of motions
away from the horizon of the black brane. As mentioned in section 6.3 and in the introduction,
it is a consequence of the generalized conformal structure established by the Ward identity
(6.14).
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(6.7) DISCUSSION

In this note we have shown that the universal sector of solutions asymptotic to non-conformal
brane geometries can be obtained by dimensionally reducing asymptotically AdS pure gravity
solutions and continuing the number of dimensions of the higher-dimensional geometry. As
a consequence, the hydrodynamics dual to non-conformal black branes is fully determined in
terms of the hydrodynamics dual to conformal black branes. We used this relation to rederive
the first order contribution to the non-conformal hydrodynamic stress tensor and predict the
second order contributions. As expected, the KSS bound [140] for the ratio between shear
viscosity and entropy density is always saturated. Furthermore we reconfirm that also the
bound between shear and bulk viscosity proposed by [135] is saturated. We show however that
the saturation of this bound for non-conformal brane geometries follows from the generalized
conformal symmetry, which indicates that it is of kinematical origin, unlike the KSS bound.

It would be interesting to explore whether the relation between conformal and non-conformal
brane backgrounds also holds at the higher derivative level. Corrections to the KSS ratio for
higher derivative bulk actions dual to conformal fluids have been investigated in [144]. The
generalized conformal structure in non-conformal brane geometries is expected to hold for
arbitrary coupling, although it is not clear whether it would always descend from a higher
dimensional conformal structure. For the cases of D4 branes and fundamental strings, this
would be the case since this is just the M-theory uplift, so at least in these cases the ratio of
bulk to shear viscosity should not receive any corrections at the higher derivative level.

On a more general level, one might wonder which further generalization of the AdS/CFT dic-
tionary can be found by compactifying asymptotically AdS spaces on other manifolds or more
general tori. In such a setup, the lower-dimensional geometry will automatically inherit many
holographic results from the higher-dimensional asymptotically AdS case. Applied to hydrody-
namics, one might obtain in this way non-conformal fluids with interesting properties.

Finally, it would be interesting to explore the hydrodynamics of non-conformal non-relativistic
field theories. Hydrodynamics of conformal non-relativistic field theories have been explored
by [145]. By compactification one might be able to obtain non-conformal generalizations.

(6.A) APPENDIX

(6.A.1) THE ASYMPTOTIC EXPANSION OF METRIC AND SCALAR BE-
YOND THE NON-LOCAL MODE

A general result that is most easily seen using the radial Hamiltonian formalism [19, 20] is that
a bulk solution is uniquely specified by the holographic vevs. The reason is that the vevs are the
radial canonical momenta and the sources the corresponding coordinates. Thus specifying the
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source and the vev is equivalent to specifying a point in the phase space of the theory, which is
equivalent to specifying a full solution.

A special case that is relevant for us is the gravity/scalar system for the non-conformal branes
with the boundary metric taken to be flat, g(0)ij = ηij , and κ(0) = 0. Then all subleading terms
in the expansion (6.13) up to order σ including the logarithmic term vanish, since they depend
on derivatives of the sources g(0) and κ(0). The order σ terms will be given by

g(2σ)ij =
1

2σL
Tij , κ(2σ) = − 1

4σL
T ii , (6.93)

where Tij and T ii denote the vev of the dual energy-momentum tensor and its trace, and κ(2σ) is
determined by the requirement that the generalized conformal Ward identity (6.14) is satisfied.
The higher order terms in Fefferman-Graham expansion are then determined in terms of Tij .
We will need the schematic form of these coefficients. The non-linear equations of motion
induce the expansion

g(z, ρ)ij = ηij +
∑

τ=nσ+m

ρτg(2τ)ij , (6.94)

κ(z, ρ) = κ(0) +
∑

τ=nσ+m

ρτκ(2τ),

where n > 1 and m > 0 in the summation are positive integers. Suppressing the index struc-
ture, the higher order terms are schematically of the form

g(2τ)ij ∝
∑

nσ+m=τ

an,m(∂2mTn)ij , (6.95)

and similarly for κ(2nσ+2m), due to dimensional considerations. In particular, if Tij is constant,
only the coefficients with τ = nσ are non-zero. Once Tij becomes dependent on the boundary
coordinates, the transverse derivatives in (6.95) always enter in pairs. This fact is used in
section 6.5 to restrict the form of the first order derivative correction to the metric.
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SUMMARY

One of the most inspiring conjectures of the last fifteen years in search of a theory of quantum
gravity is the conjecture of a holographic principle. In analogy to an optical hologram, which
stores a three-dimensional picture on a a two-dimensional photographic plate, this conjectures
states that all gravitational phenomena in a (d+ 1)-dimensional spacetime can be described by
a d-dimensional quantum field theory without gravity. The best elaborated example of such a
holographic duality is the so-called AdS/CFT correspondence.

This thesis discusses two different aspects of the AdS/CFT correspondence: On the one hand
we apply the correspondence in order to examine a microscopic theory of black holes which
was proposed about ten years ago and which contains promising features to solve long-standing
black hole paradoxa, the fuzzball proposal. This application of a holographic duality is discussed
in chapter 3 and 4. Before that, we provide an introduction to holography in chapter 1 and an
introduction to the fuzzball proposal in chapter 2. On the other hand, the last part of the thesis,
chapter 5 and 6, discusses a generalization of the AdS/CFT correspondence to cases in which
the d-dimensional quantum field theory does not have conformal symmetry. We lay down the
basics in chapter 5 and look at applications on the hydrodynamic limit of the quantum field
theory in chapter 6.

THE INFORMATION LOSS PARADOXON AND THE FUZZBALL PROPOSAL

A black hole is an object whose mass density is so high that according to General Relativity
not even light can escape its event horizon. An observer outside the event horizon has no
possibility to explore what is happening inside the horizon and different black hole geometries
are according to the no-hair theorem only distinguishable with respect to their overall mass,
charge and angular momentum. As a consequence, all information about an object falling into
a black hole is lost for the outside observer.

This by itself would not be a paradox, since it could be possible that the information is somehow
contained near the singularity of the black hole, the area in the center in which the spacetime
curvature is so high that General Relativity ceases to be valid and which then can only be
described by a full theory of quantum gravity. At this point though Stephen Hawking’s discovery
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comes into play that, due to quantum field theory arguments, black holes emit radiation and,
as a consequence, lose mass. The spectrum of this radiation is purely thermal, which means
that it only depends on the mass, charge and angular momentum of the black hole and not of
the detailed consistency of the previously infallen objects. Black holes radiate more the smaller
they are, losing more and more mass, until they finally evaporate. But with the evaporation
of the black hole also the singularity disappears and all information about infallen objects
seems irretrievably lost. This loss of information is in sharp contradiction with quantum theory
according to which all the information in the universe has to be conserved. Quantum theory
namely says that given the exact knowledge of a later state it should always be possible to
reconstruct an earlier state, including the earlier state of an object which has fallen into the
black hole.

One possibility to overcome the information loss paradox is to conjecture that a full quantum
gravity description of Hawking radiation would contain minuscule deviations from thermality
which allow information about infallen objects to escape. But even if such a description could
be successfully formulated, the information transfer from the singularity to the horizon would
be necessarily non-local. Locality however is a principle physicists give up only unwillingly
since it guarantees causality, i.e. the separation of cause and effect.

The fuzzball proposal, which has been formulated in the context of string theory, tries to resolve
the information loss problem by assuming that the usual spacetime of a black hole is only an
effective description of a sufficiently distant observer. According to the fuzzball proposal a
microscopic description of a black hole does neither contain an event horizon nor a singularity.
Hence, an object falling into the black hole can in principle escape (after a very long time) or
its information can escape through non-thermal deviations of the Hawking radiation, without
violating locality and causality.

In chapter 3 and 4 we discuss a simplified, supersymmetric toy model of a black hole in which
all microscopic states are known. These microscopic states can also be described by means of
a dual theory, which has been used fifteen years ago to count for the first time microscopically
the entropy of a black hole. It turns out however that this dual theory is just the AdS/CFT dual
of the usual gravitational description and we use the AdS/CFT correspondence to examine the
precise map between the microscopic states in both descriptions.

NONCONFORMAL BRANES AND THEIR HYDRODYNAMICS

Although it seems that the AdS/CFT correspondence can be applied to many spacetimes it could
only be formulated explicitly for few spacetimes with enough precision to allow comparison
between detailed calculations on the gravity side and on the quantum field theory side. Prime
examples of precisely formulated correspondences are the spacetimes close to a large number
of D3 branes or close to a bound state of D1 and D5 branes. (Dp branes, with p integer, are
extended massive objects in String Theory with p+ 1 spacetime dimensions.)

An important step towards a precise formulation of an AdS/CFT correspondence is a careful
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handling of infinities which would arise in a näıve formulation. On the gravity side, there
appear for example integrals over the whole spacetime which diverge due to the infinite volume
of the latter. These infinities correspond to infinities in the quantum field theory which arise
in the so-called renormalization and which require a careful redefinition of the theory. The
according redefinition of the correspondence is therefore called holographic renormalization.

Holographic renormalization for the spacetimes of D3 branes and the D1/D5 system is already
well-known. Both of these examples however correspond to quantum field theories which have
a so-called conformal symmetry, at least at high energies. In chapter 5 we develop holographic
renormalization for Dp branes with p 6= 3, which do not possess conformal symmetry and hence
are called nonconformal.

An interesting application of the AdS/CFT correspondence are spacetimes whose dual quantum
field theory describes a plasma. The plasma corresponding to the quantum field theory of
(black) D3 branes for example has been proven useful as a toy model of the quark gluon plasma,
which is examined by experimental physicists in accelerators like the Relativistic Heavy Ion
Collider in New York and soon the Large Hadron Collider in Geneva. These plasmas can often
be described by a fluid which obeys the laws of relativistic hydrodynamics. Using the AdS/CFT
correspondence one can map the equations of motion of hydrodynamics to the gravitational
fluctuation equations around the dual spacetime.

Even though the D3 brane plasma provides a reasonable model of the quark gluon plasma it
differs from the latter in that the quantum field theory proper on which the quark gluon plasma
is based, Quantum chromodynamics, is not conformal. For this reason it is interesting to study
non-conformal plasmas using the AdS/CFT correspondence. In chapter 6 we therefore apply
the results of chapter 5 to examine the hydrodynamics of nonconformal Dp branes.
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ZUSAMMENFASSUNG

Einer der inspirierendsten Vermutungen der letzten fünfzehn Jahren auf der Suche nach einer
Theorie der Quantengravitation ist die Vermutung der Existenz eines holografischen Prinzips.
In Analogie zum Hologramm in der Optik, welches ein dreidimensionales Bild auf einer zwei-
dimensionalen Fotoplatte speichert, besagt diese Vermutung, dass alle Gravitationsphänomene
in einer (d+1)-dimensionalen Raumzeit durch eine d-dimensionale Quantenfeldtheorie ohne
Gravitation beschrieben werden können. Das am besten ausgearbeitete Beispiel einer solchen
holografischen Dualität ist die sog. AdS/CFT Korrespondenz.

Diese Dissertation behandelt zwei unterschiedliche Aspekte der AdS/CFT Korrespondenz: Zum
einen verwenden wir diese, um eine mikroskopische Theorie Schwarzer Löcher zu untersu-
chen, die vor knapp zehn Jahren vorgeschlagen wurde und vielversprechende Ansätze zur
Überwindung hartnäckiger Paradoxa beinhaltet, die Fuzzball-Vermutung. Dieser Anwendung ei-
ner holografischen Dualität ist Kapitel 3 und 4 gewidmet. Zuvor enthält Kapitel 1 eine Einführung
in die Holografie und Kapitel 2 eine Einführung in die Fuzzball-Vermutung. Zum anderen be-
handelt der letzte Teil der Dissertation, Kapitel 5 und 6, eine Verallgemeinerung der AdS/CFT
Korrespondenz für Fälle, in denen die d-dimensionale Quantenfeldtheorie keine konforme Sym-
metrie mehr aufweist. In Kapitel 5 entwickeln wir dazu die Grundlagen und betrachten in
Kapitel 6 Anwendungen auf das hydrodynamische Limit der Quantenfeldtheorie.

DAS INFORMATIONSVERLUSTPARADOXON UND DIE FUZZBALL-VERMUTUNG

Ein Schwarzes Loch ist ein Objekt, dessen Massendichte so hoch ist, das der Allgemeinen Rela-
tivitätstheorie zu Folge nicht einmal mehr Licht seinem Ereignishorizont entweichen kann. Ein
Beobachter außerhalb des Ereignishorizontes hat keine Möglichkeit Aufschluss zu erhalten,
was sich innerhalb des Ereignishorizontes abspielt, und die Raumzeiten verschiedener Schwar-
zer Löcher unterscheiden sich dem No-hair-Theorem zu Folge nur gemäß deren Gesamtmasse,
-ladung und -drehimpuls. Also ist jede Information über ein Objekt, welches in ein Schwarzes
Loch fällt für den äußeren Beobachter unwiederbringlich verloren.

Dies allein würde noch kein Paradoxon darstellen, denn man könnte annehmen, dass diese
Information statt dessen in irgendeiner Weise in der Nähe der Singularität des Schwarzen Lo-
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ches enthalten ist, jenem Gebiet im Inneren, in dem die Raum-Zeit-Krümmung so hoch ist,
dass die Allgemeine Relativitätstheorie ihre Gültigkeit verliert und das dann nur durch eine
vollständige Theorie der Quantengravitation beschrieben werden kann. Nun jedoch kommt die
Entdeckung Stephen Hawkings ins Spiel, der aus quantenfeldtheoretischen Überlegungen fol-
gerte, dass Schwarze Löcher Strahlung abgeben und dabei gleichzeitig Masse verlieren. Das
Spektrum dieser Strahlung ist rein thermisch, das bedeutet lediglich von Masse, Ladung und
Drehimpuls des Schwarzen Loches abhängig und nicht etwa von der detaillierten Beschaffen-
heit der Objekte, die zuvor in das Schwarze Loch gefallen sind. Schwarze Löcher strahlen umso
mehr je kleiner sie sind und verlieren damit immer mehr Masse, bis sie irgendwann vollständig
verdampfen. Doch nach der Verdampfung des Schwarzen Loches gibt es auch keine Singularität
mehr, und somit scheint jegliche Information über die hineingefallenen Objekte endgültig ver-
loren. Ein solcher Informationsverlust ist jedoch im krassen Widerspruch zur Quantentheorie,
der zu Folge die gesamte Information im Universum erhalten bleiben muss. Die Quantentheo-
rie besagt nämlich, dass man theoretisch jederzeit einen früheren Zustand mit exakter Kenntnis
eines späteren Zustands rekonstruieren kann, in diesem Fall also den früheren Zustands eines
Objekts, das in das Schwarze Loch gefallen ist.

Eine Möglichkeit zur Überwindung des Informationsverlustparadoxon wäre anzunehmen, dass
eine volle quantengravitative Beschreibung der Hawking-Strahlung winzige nicht-thermische
Abweichungen beinhaltet, über die die Information der hineingefallenen Objekte nach au-
ßen gelangen kann. Aber selbst wenn so eine Beschreibung gelänge, würde die Informati-
onsübertragung von der Singularität bis an den Horizont notwendigerweise nicht-lokal sein.
Lokalität aber geben Physiker nur ungern auf, da dieses Prinzip ein Garant für Kausalität, also
die Trennung von Ursache und Wirkung ist.

Die Fuzzball-Vermutung, die im Kontext der Stringtheorie formuliert wurde, versucht das Infor-
mationsverlustparadoxon dadurch aufzulösen, dass es davon ausgeht, dass die übliche Raum-
zeit eines Schwarzen Loches nur eine effektive Beschreibung eines genügend weit entfernten
Beobachters darstellt. Der Fuzzball-Vermutung zu Folge besitzt eine mikroskopische Beschrei-
bung eines Schwarzen Loches weder einen Ereignishorizont noch eine Singularität. Ein Objekt,
das in das Schwarze Loch fällt kann also im Prinzip (nach sehr langer Zeit) wieder entwei-
chen oder dessen Information kann über nicht-termische Abweichungen der Hawking Strah-
lung nach außen gelangen, ohne Lokalität und Kausalität zu verletzen.

In Kapitel 3 und 4 betrachten wir ein vereinfachtes, supersymmetrisches Modellsystem eines
Schwarzen Loches, in dem alle mikroskopischen Zustände bekannt sind. Diese mikroskopischen
Zustände können auch mit Hilfe einer dualen Theorie beschrieben werden, mit deren Hilfe vor
fünfzehn Jahren erstmals die Entropie eines Schwarzen Loches mikroskopisch abgezählt wer-
den konnte. Diese duale Theorie ist mit der üblichen gravitativen Beschreibung aber gerade
über die AdS/CFT-Korrespondenz verbunden, und wir verwenden letztere, um die präzise Ab-
bildung zwischen diesen beiden Beschreibungen zu untersuchen.
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NICHTKONFORME BRANEN UND IHRE HYDRODYNAMIK

Obwohl es den Anschein hat, dass die AdS/CFT Korrespondenz im Prinzip auf viele unter-
schiedliche Raumzeiten angewandt werden kann, konnte sie bisher nur für wenige Raumzeiten
in genügendem Detail formuliert werden, dass damit detaillierte Berechnungen auf der gravi-
tativen Seite mit detaillierten Berechnungen auf der Seite der Quantenfeldtheorie verglichen
werden konnten. Paradebeispiele präzis formulierter Korrespondenzen sind die Raumzeit in
der Nähe einer großen Anzahl von sog. D3 Branen oder in der Nähe eines gebunden Zustandes
aus D1 und D5 Branen. (Dp Branen, wobei p eine ganze Zahl ist, sind ausgedehnte, massive
Objekte in der Stringtheorie mit p+ 1 Raumzeit-Dimensionen.)

Ein wichtiger Schritt zu einer präzisen Formulierung einer AdS/CFT Korrespondenz ist ein
sorgsamer Umgang mit Unendlichkeiten, die in einer naiven Formulierung auftreten würden.
Auf der gravitativen Seite sind das beispielsweise Integrale über die ganze Raumzeit, die auf
Grund deren unendlichen Volumens divergieren. Diesen Unendlichkeiten entsprechen die Un-
endlichkeiten in der Quantenfeldtheorie die bei der sog. Renormalisierung auftreten und die
eine sorgsame Neudefinition der Quantenfeldtheorie erfordern. Die entsprechende Neudefini-
tion der Korrespondenz wird deshalb Holografische Renormalisierung genannt.

Die Holografische Renormalisierung für die Raumzeiten von D3 Branen und dem D1/D5-
System sind schon länger bekannt. Beide dieser Beispiele entsprechen aber Quantenfeldtheori-
en, die zumindest bei hohen Energien eine sog. konforme Symmetrie aufweisen. In Kapitel 5
entwickeln wir die Holografische Renormalisierung für Dp Branen mit p 6= 3, die keine konfor-
me Symmetrie besitzen, also nichtkonform sind.

Eine interessante Anwendung der AdS/CFT Korrespondenz sind Raumzeiten, deren duale Quan-
tenfeldtheorie ein Plasma beschreibt. Das Plasma, das der Quantenfeldtheorie (schwarzer)
D3 Branen entspricht, hat sich beispielsweise als Modellsystem für das Quark-Gluon Plasma
bewährt, das von Experimentalphysikern in Beschleunigern wie dem Relativistic Heavy Ion
Collider in New York und bald dem Large Hadron Collider in Genf untersucht wird. Diese Plas-
men können häufig als ein Fluid beschrieben werden, das den Gesetzen der relativistischen
Hydrodynamik unterworfen ist. Mit Hilfe der AdS/CFT-Korrespondenz können die Bewegungs-
gleichungen der Hydrodynamik auf gravitative Fluktuationsgleichungen um die duale Raum-
zeit abgebildet werden.

Wenn auch das D3-Branen Plasma eine recht gutes Modell des Quark-Gluon Plasmas darstellt,
so unterscheidet es sich dahingehend, dass die eigentliche Quantenfeldtheorie, auf dem das
Quark-Gluon Plasma beruht, nämlich die Quantenchromodynamik, keine konforme Symmetrie
hat. Aus diesem Grund ist es interessant mit Hilfe der AdS/CFT Korrespondenz nicht-konforme
Plasmen zu untersuchen. In Kapitel 6 wenden wir darum die Ergebnisse von Kapitel 5 an, um
die Hydrodynamik von nicht-konformen Dp Branen zu untersuchen.
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SAMENVATTING

Een van de meest inspirerende onderwerpen van de laatste vijftien jaar bij de zoektocht naar
een theorie van de kwantumzwaartekracht is het vermoeden van het bestaan van een holo-
grafisch principe. Net als een hologram in de optica, dat een driedimensionaal beeld op een
tweedimensionale fotoplaat opslaat, zegt dit vermoeden dat alle gravitationele verschijnselen
in een (d + 1)-dimensionale ruimtetijd beschreven kunnen worden door een d-dimensionale
kwantumveldentheorie zonder zwaartekracht. Het best uitgewerkte voorbeeld van een derge-
lijke holografische dualiteit is de zogenaamde AdS/CFT correspondentie.

Dit proefschrift richt zich op twee verschillende aspecten van de AdS/CFT correspondentie:
Enerzijds gebruiken we deze om een microscopische theorie van zwarte gaten te onderzoeken,
die bijna tien jaar geleden werd voorgesteld en veelbelovende aspecten voor de oplossing van
hardnekkige paradoxen inhoudt, de fuzzball-stelling. Deze toepassing van een holografische
dualiteit is in hoofdstuk 3 en 4 behandeld. Voorafgaand bevat hoofdstuk 1 een inleiding in de
holografie en hoofdstuk 2 een inleiding in de fuzzball-stelling. Anderzijds behandelt het laatste
deel van de proefschrift, hoofdstuk 5 en 6, een generalisatie van de AdS/CFT corresponden-
tie voor gevallen waarin de d-dimensionale kwantumveldentheorie geen conforme symmetrie
meer heeft. In hoofdstuk 5 ontwikkelen we hiervoor de basis en in hoofdstuk 6 beschouwen
we toepassingen op de hydrodynamische limiet van de kwantumveldentheorie.

DE INFORMATIEVERLIESPARADOX EN DE FUZZBALL-STELLING

Een zwart gat is een object waarvan de massadichtheid zo groot is dat volgens de Allgemene
Relativiteitstheorie zelfs licht zijn waarnemingshorizon niet kan ontwijken. Een waarnemer
buiten de horizon heeft geen mogelijkheid vast te stellen wat er binnen de horizon gebeurt, en
de ruimtetijden van verschillenden zwarte gaten schelen volgens het no-hair theorem alleen
maar met betrekking tot hun gezamenlijke massa, lading en impulsmoment. Daarom is iedere
informatie over een object dat in een zwart gat valt voor de externe waarnemer onherroepelijk
verloren.

Dit alleen zou nog geen paradox zijn, omdat men zou kunnen aannemen dat deze informatie
in plaats daarvan op een of andere manier opgenomen is in de buurt van de singulariteit van
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het zwarte gat, in dat gebied binnenin, waarin de ruimte-tijd kromming zo groot is dat de
Algemene Relativiteitstheorie zijn geldigheid verliest en dat vervolgens alleen maar door een
volledige theorie van de kwantumzwaartekracht kan worden beschreven. Nu komt echter de
ontdekking van Stephen Hawking in het spel, die uit kwantumveldentheoretische overwegin-
gen afleidde dat zwarte gaten straling afgeven en daarbij tegelijkertijd massa verliezen. Het
spectrum van deze straling is puur thermisch, wat betekent dat het alleen maar van massa,
lading en impulsmoment van het zwarte gat afhankelijk is en niet van de gedetailleerde ge-
aardheid van de objecten die vooraf in het zwarte gat zijn gevallen. Zwarte gaten stralen meer
naarmate ze kleiner zijn en verliezen zo steeds meer massa, tot ze uiteindelijk volledig ver-
dampen. Maar na de verdamping van een zwart gat is er ook geen singulariteit meer en is alle
informatie over de binnengevallenen objecten verloren. Een dergelijk verlies van informatie
staat in schril contrast tot de kwantumtheorie, die zegt dat alle informatie in het universum
behouden moet zijn. Volgens de kwantumtheorie kan men namelijk altijd een eerdere toestand
met exacte kennis van een latere toestand reconstrueren, ook zoals hier de eerdere toestand
van een object dat in het zwarte gat is gevallen.

Een mogelijkheid ter omzeiling van de informatieverliesparadox is te veronderstellen dat een
volledig kwantumgravitationele beschrijving van de Hawking straling minuscule niet-thermische
afwijkingen bevat, waardoor informatie van de binnengevallen objecten naar buiten kan lek-
ken. Maar zelfs als zo’n beschrijving mogelijk zou zijn, zou de informatieoverdracht van de
singulariteit naar de horizon noodzakelijkerwijs niet-lokaal zijn. Natuurkundigen aarzelen om
localiteit prijs te geven omdat dit principe een garantie voor causaliteit, dus de scheiding tussen
oorzaak en werking is.

De fuzzball-stelling, die in de context van de snaartheorie werd geformuleerd, probeert de
informatieverliesparadox op te lossen door ervan uit te gaan, dat de gewone ruimtetijd van een
zwart gat alleen maar een effectieve beschrijving van een waarnemer op voldoende afstand
weergeeft. Volgens de fuzzball-stelling heeft een micoscopische beschrijving van een zwart gat
noch een waarnemingshorizon noch een singulariteit. Een object dat in een zwart gat valt
kan dus in principe (na zeer lange tijd) weer ontsnappen, of de informatie ervan kan door
niet-thermische afwijkingen in de Hawking-straling naar buiten lekken, zonder localiteit en
causaliteit te schenden.

In hoofdstuk 3 en 4 beschouwen we een vereenvoudigd, supersymmetrisch modelsysteem van
een zwart gat waarbij alle microscopische toestanden bekend zijn. Deze microscopische toe-
standen kunnen ook met behulp van een duale theorie worden beschreven die vijftien jaar
geleden gebruikt werd om voor het eerst de entropie van zwarte gaten microscopisch te tellen.
Echter het blijkt dat deze duale theorie niets anders is dan het AdS/CFT-equivalent van de nor-
male zwaartekracht-beschrijving en we gebruiken de AdS/CFT-correspondentie om de precieze
afbeelding tussen deze twee beschrijvingen te onderzoeken.
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NIET-CONFORME BRANEN EN HUN HYDRODYNAMICA

Hoewel blijkt dat de AdS/CFT correspondentie in principe op veel verschillende ruimtetijden
toegepast kan worden, kon ze tot nu toe alleen maar voor weinig ruimtetijden in genoeg detail
worden geformuleerd om daarmee gedetailleerde berekeningen op het vlak van de zwaarte-
kracht met gedetailleerde berekeningen op het vlak van de kwantumveldentheorie te vergelij-
ken. Schoolvoorbeelden van precies geformuleerde correspondenties zijn de ruimtetijd vlakbij
een groot aantal van zogenaamde D3 branen en vlakbij een gebonden toestand van D1 en
D5 branen. (Dp branen, waar p een geheel getal is, zijn uitgebreide, massale objecten in de
snaartheorie met p+ 1 dimensies.)

Een belangrijke stap op weg naar een precieze formulering van een AdS/CFT corresponden-
tie is een zorgvuldige behandeling van oneindigheden, die in een naive formulering zouden
optreden. Op het vlak van de zwaartekracht zijn dit bijvoorbeeld integralen over de gehele
ruimtetijd die op grond van diens oneindige volume divergeren. Deze oneindigheden komen
overeen met oneindigheden die in de kwantumveldentheorie bij de zogenaamde renormalisa-
tie optreden en die een zorgvuldige herdefinitie van de kwantumveldentheorie vereisen. De
navenante herdefinitie van de correspondentie wordt daarom holografische renormalisatie ge-
noemd.

De holografisch renormalisatie van de ruimtetijden van D3 branen en van het D1/D5 systeem
zijn al langer bekend. Maar beide voorbeelden komen overeen met kwantumveldentheorieën,
die tenminste bij hoge energieën een zogenaamde conforme symmetrie vertonen. In hoofdstuk
5 ontwikkelen we holografische renormalisatie voor Dp branen met p 6= 3, die geen conforme
symmetrie bezitten en dus niet-conform zijn.

Een interessante toepassing van de AdS/CFT correspondentie zijn ruimtetijden waarvan de
duale kwantumveldentheorie een plasma beschrijft. Het plasma dat met de kwantumvelden-
theorie van (zwarte) D3 branen overeenkomt, heeft zich bijvoorbeeld bewezen als een model-
systeem voor het Quark-Gluon-Plasma dat door experimentele natuurkundigen in versnellers
als de Relativistic Heavy Ion Collider in New York onderzocht wordt en straks de Large Hadron
Collider in Genève onderzocht gaat worden. Deze plasma’s kunnen vaak worden beschreven als
een flüıdum dat onderworpen is aan de wetten van relativistische hydrodynamica. Met behulp
van de AdS/CFT correspondentie kunnen de bewegingsvergelijkingen van de hydrodynamica
vertaald worden in vergelijkingen van gravitationele fluctuaties rondom de duale ruimtetijd.

Hoewel het D3 branen plasma een vrij goed model van het Quark-Gluon-Plasma vormt, ver-
schilt het in die zin dat de eigenlijke kwantumveldentheorie waarop het Quark-Gluon-Plasma
berust, namelijk de Kwantumchromodynamica, geen conforme symmetrie heeft. Om deze re-
den is het interessant met behulp van de AdS/CFT correspondentie niet-conforme plasma’s
te onderzoeken. In hoofdstuk 6 gebruiken we daarom de resultaten van hoofdstuk 5 om de
hydrodynamica van niet-conforme Dp branen te onderzoeken.
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