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Addendum: Islands in multiverse models
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In section 2.1, we considered vacuum solutions of Jackiw-Teitelboim (JT) gravity with
positive, zero, and negative cosmological constant, and in section 2.2, we deformed these
theories by coupling the background metric to a two-dimensional CFT with field content
collectively denoted by .

We can describe each of these three deformed theories in a unified way with the action
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where V(¢) = 2¢ results in a de Sitter (dS) solution, V(¢) = 2 results in a flat solution,
and V(¢) = —2¢ results in an anti-de Sitter (AdS) solution. Varying this action with
respect to the metric and the dilaton field ¢ produces the following equations of motion in
the semiclassical limit:
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where (7T),,) is the expectation value of the covariant stress-energy tensor of the CFT. The
vacuum solution corresponds to setting (7},,) = 0.

Upon including the coupling to the CFT, we showed that a contribution to (7),,)
coming from a trace anomaly can be removed by a suitable field redefinition, and we
subsequently proceeded with the vacuum solution for ¢ in section 2.2 and beyond. However,
we did not account for contributions from the Weyl anomaly and the Casimir energy when
we examined an n-fold extension of dSy. These contributions cancel when n = 1.1

Begin with the line element defined in eqgs. (2.22) and (2.23) and let 2 = o + ¢. As
before, we can remove (T'y _) by a suitable redefinition of the constant ¢q (as it arises from
the conformal anomaly). The Weyl anomaly and Casimir energy [1] combine to give
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where we recall that the spatial coordinate ¢ is 2mn-periodic, and we have chosen the state
in the z, z coordinates of (2.24) to be in vacuum. Therefore, the sourceless solutions for the
dilaton will acquire a supplementary additive term due to the source on the right-hand-side
of eq. (2) when n > 1.

Our starting point was the case R = 2, i.e. dS4. In this case, the solution of eq. (2)
with V(¢) = 2¢ and the source (4) is
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cf. eq. (2.5). Notice, however, that when ¢, /Gy > ¢, the vacuum contribution dominates
over the additive correction, and so we can safely neglect the correction in this limit.

"'We thank Edgar Shaghoulian for pointing this out to us.
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Figure 1. Penrose diagram for dS} with n = 2. An expanding patch is shaded in yellow, and it
intersects ZT on the interval (—pq, po) where @o < 7/2.

In particular, we can still attempt to build up a JT multiverse using vacuum solutions
as follows. Starting with pure dS% with ¢, /Gy > ¢, we drop the correction due to a CFT
stress-energy source and work with the vacuum dS dilaton. If we want to include bubbles,
the only choice is to patch in bubbles in which the dilaton obeys vacuum equations of
motion; otherwise, the gluing would result in a dilaton that is not continuous across bubble
interfaces. However, the CFT then cannot be in the Minkowski vacuum of (2.24), for which
there would have to be nonzero (74 ) sources in flat and AdS regions per eq. (4). Instead,
the CFT is in some state such that (T 1) vanishes everywhere. It is unclear whether such a
CF'T state is well defined and whether its entropy is close to that of the Minkowski vacuum
of (2.24), so that eq. (2.27) continues to hold. But, with these caveats, the existing analysis
goes forward.

Alternatively, if we do not neglect the source (4), we can solve for a backreacted
dilaton on the manifolds that we specified in egs. (2.22) and (2.23). Let us start with dS%
in the absence of any bubbles. Compared to the vacuum solution, the modified dilaton
solution (5) causes the parts of Zt on which ¢ — 400 (i.e., the future boundary of the
expanding patches) to shrink. By inspection, these are the parts of Z* for which
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For such regions of Z" to exist, one must have that
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which we assume here. This is illustrated in figure 1.

Our analysis of quantum extremal islands then proceeds essentially verbatim. We
again consider a region R whose endpoints lie near the corners of the expanding patch
centred about ¢ = 0, and we posit an island whose endpoints lie just beyond the patch’s
corners. Because the locations of the corners are now shifted relative to the vacuum case,
instead of the ansatz (3.4), we write
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where we have defined
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Making these substitutions in (3.2), we get
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where we have set 4Gy = 1. Next, if we expand cos(pg + dpr) about ¢g and assume that
the sum dp5 + dppr and the difference do; — dor are small, we arrive at
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This is identical in form to eq. (3.6), and so the rest of the analysis proceeds as before,
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where we have defined

but with ¢, — ¢/.. While ¢, now depends on n explicitly, any n-dependence only enters at
O((c/9,)?).

Next, we consider multiverse models in the presence of flat or AdSs bubbles, like the
ones in section 3.2. The task is to show that the backreacted dilaton solutions continuously
join up along bubble interfaces. Let us first examine the flat case. With a judicious choice
of integration constants, the solution of eq. (2) with V(¢) = 2 and the source (4) for ¢ in
a flat bubble centred about ¢ = 0 reads (cf. eq. (2.12))
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In particular, the flat solution (13) and the dS solution (5) coincide along o = |¢|, and so
they can be continuously joined together.

A consequence of the backreaction is that ZT in a flat bubble develops segments where
¢ — —o0. By examining the behaviour of (13) as one approaches the lines o0 = 7 & ¢, one
concludes that ¢ < || is the portion of Z% on which ¢ — co, where
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This is illustrated in figure 2. Therefore, should islands still develop, we expect that the
endpoints of a region R inside of a flat bubble should be placed just to the interior of
(0,0) = (7 — @, +pr). We were unable to locate extrema of Sgen((R U I)¢) by placing
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Figure 2. Penrose diagram for dS5 with n = 2 and a flat bubble centred at ¢ = 0. The domain of
dependence of the part of Zt+ on which ¢ — oo is shaded in blue, but the metric is still flat in the
blue hatched region.

(o1, 1) perturbatively to the past of (7 —¢¢, ¢r) and mirroring our earlier analysis, and so
additional work would be needed to conclusively determine whether or not islands develop.
For an AdSy bubble, the solution of eq. (2) with V(¢) = —2¢ and the source (4) for ¢

reads (cf. eq. (2.16)) cos
o
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where ¢ = 0 corresponds to the centre of the bubble. Its value along the line 0 = ¢ for
0 < ¢ < /2 coincides with the value of the dS dilaton (5) along the line o = m + ¢ for
a constant shift ¢ = ¢ + 7. Similarly, the AdS dilaton’s value along the line ¢ = —¢ for
—7m/2 < ¢ < 0 coincides with that of (5) along the line 0 = m — ¢ for a constant shift
@ = ¢ — . Therefore, with the appropriate coordinate translations, the backreacted dS
and AdS dilaton profiles continuously join up along AdSs bubble walls.

In our previous analysis, we were only able to locate islands with endpoints in AdSs
bubbles numerically in the regime ¢,/Gny < c. Therefore, we cannot conclusively say
whether or not islands develop when we take backreaction into account, which requires
or/Gn > ¢ for n > 1 per eq. (7).
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