

Sequential decay mechanism of superheavy nucleus (Z=114): Evaporation Residues and successive decay chains

Ashutosh Kaushik,* Shivani Jain, and Manoj K. Sharma

School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala-147004, India

Introduction

The superheavy nuclei (SHN) are synthesized either via ‘cold’ and ‘hot’ fusion processes. The isotopes with $Z = 104 - 112$ have been produced through the former process by using Lead ‘Pb’ or Bismuth ‘Bi’ as targets which are hit by different projectiles, like ^{48}Ca , ^{50}Ti , ^{54}Cr , ^{58}Fe , $^{62,64}\text{Ni}$ and ^{70}Zn [1]. On the other hand, the isotopes with $Z > 112$ are induced via hot fusion by striking the beam of ^{48}Ca on deformed actinides such as $^{233,238}\text{U}$, ^{237}Np , $^{240,242,244}\text{Pu}$, ^{243}Am , $^{248,254}\text{Cm}$, ^{249}Bk and ^{249}Cf [2]. In general, a superheavy compound nucleus (CN) is found in an unstable state and may result in a residual mass with the emission of light-particle. The residual nucleus may proceed via successive decay chains until the stable product nuclei are formed. For an illustration, see the following reaction mechanisms followed by $^{288}\text{Fl}^*$ SHN:

(I) Evaporation Residues
 $^{48}\text{Ca} + ^{240}\text{Pu} \rightarrow ^{288}\text{Fl}^* \rightarrow ^{285}\text{Fl} + 3\text{n}$

(II) α -decay chains
 $^{285}\text{Fl} \rightarrow ^{281}\text{Cn} + \alpha$; $^{281}\text{Cn} \rightarrow ^{277}\text{Ds} + \alpha$;
 $^{277}\text{Ds} \rightarrow ^{273}\text{Hs} + \alpha$; $^{273}\text{Hs} \rightarrow ^{269}\text{Sg} + \alpha$;
 $^{269}\text{Sg} \rightarrow ^{265}\text{Rf} + \alpha$

(III) spontaneous fission SF
 $^{265}\text{Rf} \rightarrow A_1 + A_2$; $A_1 \approx A_2$

In the present work, we are interested to have an understanding of a sequential decay mechanism of $^{288}\text{Fl}^*$ ($Z=114$), which is formed via the hot fusion reaction $^{48}\text{Ca} + ^{240}\text{Pu}$. The above analysis has been carried out with the use of collective clusterization approach developed on the basis of Quantum Mechanical Fragmentation Theory (QMFT) [4]. The obtained results in terms of cross-sections of ERs and half-lives of successive decay mechanisms have been compared with the available experimental data [3], in order to have a systematic analysis of neck-length parameter ΔR . Note that, ΔR is the only parameter in the adopted collective clusterization approach.

Beside this, we intend to explore the mass distributions of the first compound nucleus ($^{288}\text{Fl}^*$), residual (^{285}Fl) and the end product of α -decay chain (^{265}Rf) in terms of the preformation probability, which imparts the relative structure information of decay fragments.

Methodology

In the Preformed Cluster-decay Model (PCM) with the inclusion of temperature effects ($T \neq 0$), the decay constant λ and half-life $T_{1/2}$ are defined as [5]

$$\lambda = \nu_0 P P_0; \quad T_{1/2} = \frac{\ln 2}{\lambda}, \quad (1)$$

where P_0 is the preformation probability and P is the barrier penetrability that refer, respectively, to motions in mass asymmetry η [$= (A_1 - A_2)/(A_1 + A_2)$] and relative separation R . Here ν_0 is the barrier assault frequency. Equivalently, in the DCM, the CN decay cross-section is defined as

$$\sigma_0 = \frac{\pi}{k^2} \sum_{\ell=0}^{\ell_{max}} (2\ell + 1) P_0 P; \quad k = \sqrt{\frac{2\mu E_{c.m.}}{\hbar^2}}. \quad (2)$$

Important to mention that, both the PCM(T) and DCM models are based on the collective clusterization approach.

For α -decay of the recoiled superheavy nucleus, the temperature T (in MeV) is related to its excitation energy E_R^* as

$$E_R^* = \frac{1}{10} AT^2 - T, \quad (3)$$

where $E_R^* = E_R + Q_\alpha$. Here, Q_α denotes the Q value of α decay, and for the recoil energy E_R we take the value from experimental data. On the other hand, for SF, $E_R^* = E_R - Q_\alpha$.

Results and discussion

In the present work, we have studied a sequential decay mechanism within the framework of collective clusterization approach. Initially, we have estimated the ER cross-sections for $^{288}\text{Fl}^* \rightarrow ^{285}\text{Fl}^* + 3\text{n}$ reaction at $E_{c.m.} = 207.5$ MeV Available online at www.sympnp.org/proceedings

*Electronic address: ashukaushik411@gmail.com

(I) Evaporation Residues (ER)					
Compound nucleus	$E_{c.m.}$ (MeV)	T (MeV)	ΔR (fm)	Cross-sections (mb)	
				Theo.	Expt.
$^{288}\text{Fl}^*$	207.5	1.390	1.05	5.5×10^{-10}	5.8×10^{-10}
(II) α -decay chain					
Parent Nucleus	E_R^* (MeV)	Decay Mode	ΔR (fm)	Half-life $T_{1/2}$ (s)	
^{285}Fl	15.10	α	0.86	0.09	0.10
^{281}Cn	16.93	α	0.97	0.20	0.18
^{277}Ds	19.20	α	0.98	0.004	0.004
^{273}Hs	20.50	α	0.92	0.59	0.52
^{269}Sg	21.40	α	0.88	995	840
(III) Spontaneous Fission (SF)					
^{265}Rf	6.56	SF	0.83	69	66

TABLE I: The ER cross-sections and half-lives $T_{1/2}$ (s), for α -decay chains and spontaneous fission (SF) mechanisms followed by $^{288}\text{Fl}^*$ SHN, and corresponding neck-length parameter ΔR (fm). The experimental data [3] is also shown for comparison.

and compared the results with the available experimental data [3], as shown in Table I. Further, we have obtained the half-lives ($T_{1/2}$) of α -decays proceeded by the superheavy residual (^{285}Fl) and successive product nuclei. This chain ends when the spontaneous fission (SF) starts dominating over α -decay mechanism. Here, the end product of α -decay chain ^{265}Rf disintegrates further into two nuclei of almost similar masses. In Table I, the theoretically obtained $T_{1/2}$ for the successive decay chains are shown and find good agreement with the experimental data [3]. With this comparative analysis, we have found a systematic trend in the neck-length parameter ΔR . It is observed that ΔR is highest for ER emission and decreases as we proceed towards successive α -decay and SF channels.

On the basis of above analysis, we have studied the mass distributions in terms of preformation probability P_0 for SH nuclei, i.e. $^{288}\text{Fl}^*$ (compound nucleus), ^{285}Fl (residual nucleus) and ^{265}Rf (leading SF), mainly in the fission regions within the framework of collective clusterization approach. These regions are marked in Fig.1. The fission fragments (ffs) follow the symmetric fragmentation, but the fissioning region becomes narrower as one moves towards the SF decay mechanism. Note that, along with the peaks observed for ffs , there is an emergence of heavy-mass fragments (HMF) due to possible presence of shell closure and deformation effects. However, the symmetric peak of ffs is always dominant. Because the binding energies of symmetric

fission fragments is relatively higher than that of HMFs. One may conclude that for $Z=114$ SHN,

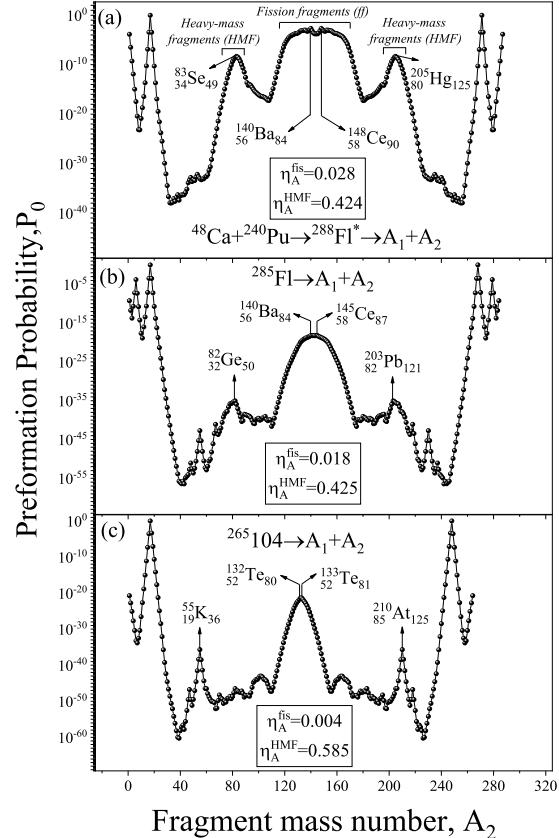


FIG. 1: The mass distributions of (a) $^{288}\text{Fl}^*$ compound nucleus (formed via $^{48}\text{Ca}+^{240}\text{Pu}$ reaction), (b) ^{285}Fl residual element (leading α -decay chain) and (c) ^{265}Rf (end product of α -decay chain) are shown as a function of decaying fragment mass number, A_2 .

a symmetric fission distribution is observed independent of the chosen set of decay mechanisms.

References

- [1] S. Hofmann and G. Munzenberg, Rev. Mod. Phys. **72**, 733 (200).
- [2] Yu. Ts. Oganessian *et al.*, Phys. Rev. C **87**, 054621 (2013).
- [3] V. K. Utyonkov *et al.*, Phys. Rev. C **97**, 014320 (2018).
- [4] R. K. Gupta, *Heavy Elements and Related New Phenomena*, edited by W. Greiner and R. K. Gupta (World Scientific, Singapore, 1999), Vol. I and II.
- [5] Niyati *et al.*, Phys. Rev. C **91**, 054606 (2015).