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Resumé

Dans cette these U'intégrabilité dans AdS / CFT est passée en revue. La technique de
I’ansatz de Bethe est presentée et les équations de Bethe a toutes les boucles sont discutées.
Du coté de la théorie des cordes, la méthode classique des bandes-finies est revisitée et une
attention particuliere est accordée a la quantification semi-classique de la supercorde. Les
méthodes basées sur la courbe algébrique sont tres générales et fournissent des contraintes
fortes sur les équations quantiques. De telles contraintes sont explorées en detail pour la
dualité AdSs/CFT, bien qu’elles soient générales et valables, entre autres, pour le systéme
AdSy/CFTs. Ces techniques permettent aussi d’étudier le systeme au dela de la limite de
volume infini quand I’ansatz de Bethe asymptotique n’est plus valable.

Abstract

In this thesis Integrability in AdS/CFT is reviewed. Bethe ansatz techniques are presented
and the all loop Bethe equations are discussed. From the string side of the correspondence,
the classical finite-gap method is revisited and special emphasis is given to the super-string
semi-classical quantization. The algebraic curve methods are quite general and provide very
important constraints on the full quantum equations. The formalism is extremely versatile
and can be applied to the AdSs;/CFT, duality — the most studied case in this work — as
well as to other integrable systems like e.g. the AdS,/C FTj correspondence. Furthermore,
these techniques yield valuable information about the spectrum of finite charge states when
the asymptotic Bethe ansatz is no longer valid.
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Resumé detailé

Resumé detailé

Cette these est consacrée a I’étude de intégralité et de son application a la dualité AdSs/CFT,
(1,2, 3,4, 5]. Cette dualité est une des nombreuses correspondances jauge/gravité entre
les théories de la gravitation quantique et la physique des particules. Ils sont certainement
parmi les plus fascinants sujets dans la science moderne. L’intégrabilité, pour resumer
une longue histoire (au détriment de la rigueur), est la structure mathématique qui per-
met souvent de résoudre une théorie physique. Ainsi, lorsqu’on parle de l'intégrabilité
dans AdS/CFT nous parlons de comprendre les caractéristiques de la gravité quantique et
théories de jauge en les résoudrant. Il est de toute évidence un Saint Graal des physiciens
théoriques.

Theorie des cordes et AdS/CFT

La théorie des cordes n’est pas seulement ’approche la plus développée de la gravité quan-
tique, mais un candidat pour une théorie du tout. Les correspondences jauge/cordes
mentionnées ci-dessus s’incarnent dans la théorie des cordes comme des dualités cordes
ouvertes/fermées. L’idée de base est que la somme sur les trous de la surface de 1'univers
de la corde peut étre remplacées par un fond nontrivial sur lequel la corde se propage.
Nous allons nous déplacer lentement vers cette image mais on peut déja dire qu’il n’y a
rien d’extravagant dans ce suject. Prenons la difusion d’un electron par un proton lourde
en QED. A l'ordre dominant, 1’electron jette un photon au proton (fig la) et cette échange
virtuelle donne lieu & l'interaction de Coulomb. A Pordre suivante on a les diagrammes de
Bremsstrahlung (fig 1b), les corrections provues des photons virtuelles (fig 1c) et, le plus
important, ’auto-energie du photon (fig 1d). Ce dernier effet polarise le vide renormalisant
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Tree level Bremsstrahlung diagrams Vertex correction ~ Vacuum polarization
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Figure 1: Processus virtuels qui contribuent pour la diffusion d’un electron par un photon lourd.

la charge du proton et corrige le potentiel de Coulomb en le potentiel de Uehling

v(ﬂ=—;(1+%%+...). (1)

En ajoutant de plus en plus de diagrammes de Feynman, on peut en principe améliorer (1)
en n'importe quelle précision’. Ainsi on a deux descriptions alternatives pour le passage de
I’électron par la région contenant le proton lourd. D’un coté on peut considérer 1’électron
et le proton comme étant dans un vide parfait et sommer sur les processus virtuelles
(diagrammes de Feynman) qui deflectent la trajectoire de I’électron. De 'autre coté on
peut oublier le proton et dire que I'électron se bouge dans une région non trivial ou il y a
un potentiel V(r) donné par (1.1). Comme expliqué ci-dessous I’approche diagramatique
de Feynman sera ’analogue de la somme sur les trous dans la surface d’univers de la corde
tandis que le remplacement des trous par un fond nontrivial est précisément ce qu’on fait
quand on remplace les diagrammes par le potentiel V (r).

Dans la théorie des cordes les particules fondamentales ne sont pas des objects ponctuels
mais des petites cordes vibrantes. En effet la caractéristique la plus attractive de la
théorie des cordes est la proposition qui nous dit que toutes les particules sont en effet
la méme corde. L’excitations des differents modes de la corde pourraient correspondre
aux differentes particules fondamentales observées dans la nature. Les cordes peuvent soit
former des boucles fermés soit avoir ces extrémités attachées a des (hyper)-surfaces comme
est representé dans la figure 2. Dans le premier cas, les cordes sont appelées de cordes
fermées tandis que dans le dernier scénario elles sont appelées de cordes ouvertes et les
planes dont elles finissent s’appellent branes.

Examinons maintenant une situation analogue a la dispersion de 1’électron par un pro-
ton lourd mentionné ci-dessous, a savoir une corde fermée en passant par une D-brane.
Comme d’habitude, la propagation quantique sera décrite par la somme sur les histoires
et la surface d'univers d’une histoire typique sera une surface de Riemann avec h poignés
et n trous (lorsque la cordes touche la brane ou les cordes ouvertes que 1y sont attachées)

2Comme anticipée ci-dessous on n’est pas concernée au rigueur mathématique sinon une note sure la
nature asymptotique de I’expansion perturbative serait approprié a ce point-la.
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Figure 2: Dans la théorie des cordes on a des cordes fermées qui se bougent partout et des cordes
ouvertes, attachées a des hyper-planes appelés branes. Dans cette figure, une corde fermée évolue
vers deux cordes ouvertes dans la présence d’une brane. On peut aussi regarder ce processus dans
la direction opposée comme décrivant la fusion de deux cordes ouvertes en une corde fermée.
Quand deux points coincident dans l’espace-temps les cordes peuvent se fusionner ou séparer.
Etant un processus local, on voit qu’une théorie des cordes fermées est possible mais une theorie
des cordes ouvertes automatiquement requis la présence de cordes fermées.

intégrés dans 'espace-temps telle qu’elle est représentée dans la figure 3a. Si on somme
sur tous les trous possibles il nous reste une propagation non triviale de la corde mais
sans brane[6, 7, 8]. La description en des termes de la brane et de ses cordes ouvertes est
échangée par un fond non-trivial sur lequel la corde fermée se propage comme l'illustre la
figure 3b. C’est I'image derriere AdS/CFT.

L’exemple le plus connu de cette dualité se dégage lorsque 'on applique cette image
a une configuration de N D3 branes coincidents dans la theorie de cordes type IIB en
espace plate a dix dimensions. Comme il est expliqué dans la section 1.2 ceci nous amene

a une correspondance précise entre N’ = 4 U(N) SYM et theorie des cordes type IIB en
AdSs x S°.

Contemplation, désespoir et intégrabilité

La conjecture entre N' = 4 U(N) SYM et théories de cordes type IIB en AdSs x S5 est
absolument remarquable et il existe de nombreux angles différents a partir desquels nous
pouvons la contempler:

e D’une part, nous pouvons dire que, plus d’une dualité entre une théorie de jauge qua-
tre dimensionnelle et une théorie de la gravitation quantique, cette correspondance
est une definition non-perturbative d’une théorie nontrivial de la gravitat. En effet la
théorie des cordes est a ce jour seulement définie perturbativement et cette définition



Figure 3: Quand une corde fermée se propage dans une région ot il y a une brane, son évolution
est décrite par une somme d’histoires qui comprend toutes les interactions possibles avec cet objet.
Au contraire, nous pouvons remplacer toutes ces interactions avec la brane par un fond sur laquel
la corde fermée se propage. C’est analogue de I’électron se déplagant dans la présence du proton
lourd - soit on somme tous les diagrammes de Feynman soit on considére son mouvement en
présence d'un potentiel V' (r) non-trivial.

dual par moyen d’une théorie de jauge quantique unitaire et bien définie pourrait
fournir la complétion non-perturbative de la théorie de la gravité. Ce point de vue a
des conséquences immédiates. Par exemple, I'information ne peut pas étre perdue si
I’on considere des trous noirs dans AdS. En effet, en principe, nous pouvons préparer
I’état qui permettra de créer le TN, on l'identifie dans la théorie dual, on 1’évolue
dans cette description explicitement unitaire et on I'identifie a nouveau dans le coté
de gravité. Il ne s’agit que d’'un exemple, parmi nombreux, de la grande puissance
des dualités AdS / CFT comme des outils pour comprendre les mysteres de la gravité
quantique.

e Cette dualité est la plus aboutie réalisation du principe holographique. Gravité dans
AdSy,1 est encodée dans une théorie des champs vivant dans My, la frontiere de
AdSgq! 1l est remarquable qu’une théorie de jauge quatre dimensionnelle puisse
encoder la dynamique d'une gravité dans un nombre de dimensions plus élevé. Plus
remarquable encore, la dualité AdS/CFT est une dualité entre la théorie de jauge
sur la frontiere et la gravité quantique dans son intérieure décrite par une somme de
géométries qui sont simplement tenus d’étre asymptotiquement anti-de Sitter.

e AdS / CFT est une dualité strictus sensus comme il relie des théories de jauge faible-
ment /fortement couplées et des théories des cordes fortement /faiblement couplées.
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Cela signifie que nous pouvons accéder a des territoires précédemment inexpugnables
de chaque théorie avec une relative facilité. Des cordes extrémement quantiques avec
une longueur beaucoup plus vaste que le radius de AdS5 ont une description dual
en termes de la théorie NV = 4 libre! Sur Pautre extréme, les effets dans théorie de
jauge fortement couplés (et non-perturbative) peuvent étre accessibles par des calculs
classiques dans la théorie des cordes. La puissance de la dualité comme un outil de
calcul peut difficilement étre surestimée.

Toutes ces caractéristiques sont bien sur remarquables, mais il y a aussi un grand in-
convénient dans tout cela relative au dernier point mentionné - sans le développement
de quelques tres puissantes techniques, le controle de n’importe quelle calcul devient une
tache pratiquement impossible. Les calculs dans le régime perturbative dans la théorie de
jauge correspondent aux calculs quantiques en interaction fort dans le coté des cordes tandis
que des cordes classiques sont associées au régime non-perturbative fortement couplée de la
théorie de jauge! Dans la limite de N infinie, quand on considere la théorie de jauge planaire
et des cordes libres - ces techniques puissantes apparaissent - I'intégrabilité [9, 10]. II est
maintenant largement reconnu que dans cette limite les deux théories sont completement
intégrables et, par conséquent, disposent de solution analytique! L’ intégrabilité et, en
particulier, des applications d’intégrabilité a AdS / CFT seront couvertes de maniére ap-
profondie dans tous les chapitres de cette these.

Sur la thése

Pendant les trois dernieres années, la période de ma these, j’ai été plutot a Paris avec des
longues périodes a Porto. Ce pendant j’ai été co-auteur dans les articles [11, 12, 13, 14
15, 16, 17, 18, 19, 20, 21] et procédures [22, 23]. Cette these ne couvrira pas [12, 23]. Les
resultats en [11, 16, 19, 20, 22] sont utilisés mais ne sont pas a ce qu 'on donne le plus
d’attention. De 'autre coté, la plupart des resultats presentés ici font partie des articles
[13, 14, 15, 17, 18, 21]. Le texte principal est divisé en 2 parties. La partie IT regarde plutot
I’ ansatz de Bethe et le coté CFT de la correspondance. La partie III est dédié a I’étude
du coté cordes de la correspondance. Cordes classiques sont étudiés dans le chapitre 4, le
spectrum semi-classique est analisé dans le chapitre 5 et, finalement, dans le chapitre 6 on
considere ’énergie du vide a une boucle au tour des solutions classiques génériques et on
établisse le contact avec l'ansatz de Bethe étudié dans la partie II. Regardez I’appendix
pour une description plus détaillé ou I'image 4 pour un plan moins detaille de la these.
On doit aussi inclure la note suivante. Due aux limitations d’espace, on a décidé de
plutot nous focaliser dans le limite d’échelle des équations de Bethe et dans les aspects de
I'intégrabilité dans les cordes semi-classiques. En particulier, les développements les plus
importants qui ont amené au tres connu facteur scalaire de Beiser-Eden-Staudacher [24] ne
seront pas développés en detail dans cette monographie. Par example, dans la section 3.7
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on saute du traitment a une boucle des sections précédentes vers les conjectures a toutes
les boucles laissant une grande bande de matérielle non couverte. Pour plus d’articles de
révision sur le sujet de intégrabilité en AdS/CFT voir [25, 26, 27, 28, 29, 30, 31].
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I.1 Theorie des Cordes et AdS/CFT

Figure 4: Plan générale de la theése et organisation logique. Seuls les principaux sujets sont
représentés, de nombreuses sections sont omises. Les parties II et III sont essentiellement
indépendantes, sauf pour la derniere section du chapitre 6.4 qui exige les résultats de la sec-

tion 3.7 dans la partie IT
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Chapter 1

Introduction

This thesis is devoted to the study of integrability and its application to Maldacena’s
AdS5/CFTy duality [1, 2, 3, 4, 5]. This duality is one of many gauge/gravity corre-
spondences between theories of quantum gravity and particle physics. They are certainly
amongst the most fascinating topics in modern science. Integrability, to make a long story
short (at the expense of rigor), is the mathematical structure which often allows one to
solve a given physical theory. Thus, when speaking about integrability in AdS/CFT we
speak about understanding features of quantum gravity and gauge theories by actually
solving them. It is obviously a holy grail for theoretical physicists.

In this introduction we will constantly hand wave and rigor will never come along.
Experts might consider completely jumping the first few sections.

1.1 String theory and AdS/CFT

String theory is not only the most developed approach to quantum gravity but a candi-
date for a theory of everything. The above mentioned gauge/gravity correspondences are
incarnated in string theory as open/closed dualities. The basic idea is that the sum over
the string worldsheet holes can be traded by a nontrivial background on which the string
propagates.

We will move slowly towards this picture but we can already advance that there is
nothing conceptually extravagant about it. Take the scattering of an electron by a heavy
proton in QED. To leading order the electron throws a photon at the proton (fig 1.1a)
and this virtual exchange leads to the Coulomb interaction. At next to leading order we
have the Bremsstrahlung diagrams (fig 1.1b), the corrections from the virtual photons (fig
1.1c) and most importantly the photon self-energy (fig 1.1d). This latter effect screens the
proton charge and corrects the Coulomb potential to the Uehling potential

Vi) =-= (1+%%+...) . (1.1)

By summing more and more Feynman diagrams we could in principle improve (1.1) to
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Figure 1.1: Virtual processes contributing to the scattering of an electron by an heavy proton.

any precision'. Thus we have two alternative descriptions for the passage of the electron
by a region containing a heavy proton. On the one hand we can consider the electron
and proton to be in a perfect vacuum and sum the virtual processes (Feynman diagrams)
which will deflect the electron trajectory. On the other hand we can forget about the
proton and say that the electron moves in a nontrivial region where there is a potential
V(r) given by (1.1). As explained bellow the Feynman diagramatic approach will be the
analogous of summing over the worldsheet holes whereas the replacement of the holes by
a nontrivial background is precisely what is done when we replace the Feynman diagrams
by the potential V' (r).

In string theory fundamental particles are not point like objects but rather small vi-
brating strings. In fact the most attractive feature of string theory is the proposal that all
particles are indeed the wvery same string. The excitation of different string modes would
correspond to the several fundamental particles observed in nature. Strings can either
form a closed loop or have its extremities attached to some (hyper)-surfaces as depicted in
figure 1.2. In the former case the strings are denoted by closed strings while in the latter
they are called open strings and the planes on which they end go by the name of branes”.
When two points of the string overlap in space they can merge or split and thus open and
closed strings can split and fuse between themselves as represented in the same figure 1.2.
In particular by locality we see that, while we can have a theory of closed strings alone, a
theory of open strings automatically contains closed strings.

Let us now consider a situation analogue to scattering of the electron by an heavy proton
mentioned above, namely a closed string passing by a D-brane. The quantum propagation
will be described by the usual sum over histories and the worldsheet of a typical history
will be a Riemann surface with A handles and n holes (when the string meets the brane
or the open strings attached to the brane) embedded in the spacetime as represented in

' As antecipated above we are not pretending to be rigorous, otherwise a note about the asymptotic
nature of the perturbative expansion would be appropriate here.

2Today, String theory is actually the theory of strings and branes with a plethora of beautiful dualities
between these objects.
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Figure 1.2: In String theory we have closed strings moving everywhere and open strings, attached

to hyper-surfaces called branes. In this figure we depicted a possible evolution of a closed string
into two open strings in the presence of a brane. We can also look at the process in the opposite
direction as describing the fusion of two open strings into a single closed string. When two points
are coincident in space-time the strings can merge or split. Since this is a local process, we see
that a theory of closed string alone is possible but a theory of open strings automatically requires
the presence of closed string.

figure 1.3a. If we sum over all the possible holes we are left with a non-trivial closed string
propagation but without any brane [6, 7, 8]. The description in terms of the brane and its
open strings is traded by a non-trivial background on which the closed string propagates
as depicted in figure 1.3b. This is the picture behind AdS/CFT.

Technically what we do in figure 1.3a is to integrate over the moduli of such Riemann
surfaces with h handles and n holes as represented in figure 1.4a. The crosses are the
vertex operators representing the initial and final closed string states whereas the holes are
described by boundary states. By the operator/state correspondence we can always replace
these states by local operators and vice-versa. To replace a vertex operator by a boundary
state we compute the path integral around the vertices up to some desired radius whereas
to close a boundary state into a vertex operator we preform the path integral inside the
hole. In this way we can close each of the h holes and replace them by local operator
insertions as represented in figure 1.4b. Schematically [8]

/dppLO|B>/LC = V. (1.2)
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Figure 1.3: When a closed string propagates in a region where there is a brane its evolution is
described by a sum of histories which comprises all possible interactions with this object. Instead
we can sum over all this interactions and replace the brane by a non-trivial background on which
the closed string propagates. This is the analogue of the electron moving in the presence of the
heavy proton — either we sum all possible Feynman diagrams or we consider its movement in the
presence of a non-trivial potential.

The Riemann surface with A holes is replaced by a closed string with h extra closed string
insertions. This is precisely consistent with our pictures — branes are not only the basis for
propagation of open strings but also (or rather alternatively) a source of closed strings. This
sea of closed strings — which in particular contains gravitons — emitted by the brane can
be interpreted as a deformation of the background on which the closed string propagates.
Indeed since we should in principle sum over the position of the vertex operators we will
obtain something like

o0 1 n
Z ﬁ / Hd20ivi = exXp (/ d2O'V) (13)
n=0 i=1

which will precisely deform the closed string action! This is schematized in figure 1.3c.
There are by now a few well understood examples where this picture was made rigorous
and quite a lot of examples where this duality is a conjecture. We should add that these
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M, M,

closed string insertion

non-trivial background

a b c

Figure 1.4: Technically the amplitude associated to the evolution of a closed string from one
asymptotic state to another leaving as track a worlsheet with h handle and n holes is given by a
path integral over the moduli space of Riemann surfaces of genus h and n holes with the insertion
of two vertex operators accounting for the initial and final closed string states. The boundary
states at the n holes can be traded by the insertions of n local operators by simply completing the
path integral to the interior of the hole (this is the open-closed duality). These local operators
are thought of as closed string vertices and we can replace the sum over all such vertices by a
non-trivial background on which the path integral should be performed.

conjectures are most surely correct given the enormous quantity of highly nontrivial checks
which have been preformed. The AdS;/C FT, duality, which will be thoroughly analyzed in
this thesis from the integrability point of view, is among such conjectured correspondences.

1.2 AdS;/CFT,

A particular fascinating duality emerges when we try to apply the pictures of the previous
section to a configuration of N coincident D3 branes in type IIB string theory in flat ten
dimensional Minkowski space. The D3 branes extend along a (341) dimensional plane and
their excitations are the open strings while the excitations of the empty (9+1) dimensional
spacetime are the closed strings. Taking the low energy limit of this system only massless
string modes survive and the complete effective action reduces to

S = Sbrane + Sbulk + Sinteraction (14)

where Sy qane describes the massless string states — which organize into an NV = 4 supermul-
tiplet in (3+1) dimensions — by an A/ = 4 U(N) Super Yang-Mills Lagrangian plus higher
derivative corrections and Sy, governs the closed massless states — which make a gravity
ten dimensional supermultiplet — and is simply the type IIB supergravity effective action.
Sinteraction couples both systems.

When we take the low energy limit by taking o/ — 0 while keeping all dimensionless
parameter fixed we see that the interaction lagrangian drops out and so do the higher
derivative terms in the brane action. We obtain therefore a decoupled system of

4D N =4 U(N) SYM ® free 10D N = 2 Chiral (IIB) supergravity (1.5)
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This description corresponds to the summing over holes picture of the previous section.
As the string tension 1/a/ — oo the holes will occupy almost all open string disk diagrams
and we will recover t'Hooft fat graph for the U (V) gauge theory. A thick line corresponds
to the propagation of an open string. The two end-points of the string can end on either
of the N branes and thus this endows the thick line with the two color indices. This is the
Chan Patton mechanism.

Let us now consider the background language where we sum over all holes — i.e., we
compute the backreaction of the brane on the geometry — to generate a nontrivial back-
ground. To find this deformation at low energies we can consider ten dimensional type I1B
supergravity. In this language the brane is an heavy charged hyper-plane deforming the
geometry to

ds¥y "
4 1+ — (dr* +r°dQ%s) , I = 4rg,Na”*. (1.6)

NG
1+

From the point of view of the observer at infinity there are two kinds of low energy exci-

ds® =

tations: low energy massless excitations propagating away from the horizon at r = 0 and
excitations of arbitrary energy as measured by an observer close to the horizon due to the
huge red-shift typical of black hole horizons. Introducing U = r/I*> we see that the near
horizon geometry reduces to

ds? = I? <d—U2 + U%ds? ) + A0 (1.7)
- U2 My S5 ¢

which corresponds to the product space AdSs x S®, both with radius I. We stress again that
when taking the low energy limit, all string excitations in the near horizon limit survive.
Thus, we obtained again two decoupled systems,

type IIB superstring in AdSsx S° ® free 10D N = 2 Chiral (IIB) supergravity (1.8)

and therefore, comparing (1.8) and (1.5) we are lead to conjecture the equivalence between
N =4 SYM and string theory in AdSs x S°. The precise mapping of parameters is sum-
marized in table 1.1.

1.3 Contemplation, despair and integrability

The conjecture between N' = 4 U(N) SYM and type IIB superstring theory in AdSs x S° is
absolutely remarkable and there are many different angles from which we can contemplate
it:
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Table 1.1: AdS;/CFT, map

N =4U(N) SYM type IIB superstrings in AdSs x S°
R4
A=giyN A= Iz
RY 1
N N f col =——
umber of colours Js T2 N
N — oo with A fixed planar theory free strings
N —ocoand A ~ 0 perturbative regime highly quantum free strings
N —ooand A > 1 strongly coupled SYM classical free strings
Anomalous dimensions A Energies of the string states

e On the one hand we can say that, more than a duality between a 4D gauge theory
and a nontrivial theory of quantum gravity, this correspondence is a non-perturbative
definition of a nontrivial theory of quantum gravity. Indeed string theory is to date
only defined perturbatively and this dual definition by means of a well defined unitary
quantum gauge theory might provide the necessary non-perturbative completion of
the theory. This point of view has immediate consequences. For example, information
can not be lost if we consider black holes inside AdS. Indeed, in principle, we can
prepare the state which will create the BH, relate it to the dual theory, evolve it in
this explicitly unitary description and map it back to the gravity side. This is just
an example, out of many, of the great power of the AdS/CFT dualities as tools to
understand the mysteries of quantum gravity.

e This duality is the most successful realization of the holographic principle. Gravity
in the AdS;,1 bulk is encoded in a field theory living in My, the boundary of AdSg,!
It is remarkable that a four dimensional gauge theory might encode the dynamics of
a higher dimensional gravity system. Even more remarkably, the AdS/CFT duality
is a duality between the gauge theory on the boundary and quantum gravity in the
bulk described by a sum of geometries which are only required to be asymptotically
anti de-Sitter.

e AdS/CFT is a duality strictus sensus as it maps weakly/strongly coupled gauge
theory to strongly /weakly coupled string theory. This means that we can access pre-
viously impregnable territories of each theory with relative ease. Extremely quantum
strings with string length much larger than the AdSs radius have a dual description
as free N = 4! On the other extreme, strongly coupled (and non-perturbative) gauge
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theory effects can be accessed by classical string computations. The power of the
duality as a computational tool can hardly be overestimated.

All these features are of course remarkable but there is also a big drawback in all
this related to the last item mentioned — without the development of some quite powerful
techniques, checking any computation becomes a virtually impossible task. Perturbative
CFT computations correspond to highly quantum interacting strings and classical strings
are mapped to the non-perturbative strong coupled regime of the gauge theory!

In the limit of infinite N, when we consider planar gauge theory and free strings —
such powerful techniques appear — integrability [9, 10]. It is now widely believed that in
this limit both theories are fully integrable and thus amenable of analytic solution! In
this introduction we will not dwell into this direction since integrability and in particular
applications of integrability to AdS/CFT will be thoroughly covered in all the subsequent
chapters of this thesis.

1.4 About the thesis

During the last three years, the period of my PhD, I was mostly localized in Paris with
some large periods of time in Porto. During this period I was co-author in the papers
(11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and proceedings [22, 23]. This thesis will not
cover at all [12, 23]. The results in [11, 16, 19, 20, 22] are used but certainly not the main
emphasis of this monograph. On the other hand, most of the results presented here are
contained in the articles [13, 14, 15, 17, 18, 21].

The main text is split into two main parts. Part II deals mostly with Bethe Ansatz
and with the C'F'T side of the correspondence. Part III is devoted to the study of the
string side of correspondence. Classical strings are studied in chapter 4, the semiclassical
spectrum is analyzed is chapter 5 and in the last chapter 6 we consider the one-loop shift
around generic classical solutions and make contact with the Bethe ansatz studied in part
I1. See the appendix for a fine grained description or figure 1.5 for a course grained plan
of the thesis.

We should also include the following disclaimer. For the lack of space we chose to
concentrate mostly on the scaling limit of Bethe equations and on aspects of semi-classical
string integrability. In particular, most important developments leading to the famous
Beiser-Eden-Staudacher dressing factor [24] are not properly covered in this monograph.
For example, in section 3.7 we basically jump from the one-loop treatment of the previous
sections to the all-loop conjectured equations leaving a huge pedagogical gap in between
which would well deserve a monograph of its own. We refer the reader to [25, 26, 27, 28
29, 30, 31] for more reviews on Integrability in AdS/CFT.
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I.1  String Theory and AdS/CFT

Figure 1.5: Course grained plan of the thesis and logical flow. Only main subjects are represented,
many sections are omitted. Parts II and III are basically independent except for the last section
in chapter 6.4 which requires the results of section 3.7 in part II






Chapter 2
Lagrangians of the AdS and CFT theories

In this section we will write down the Lagrangian of four dimensional N =4 U(N) super
symmetric Yang-Mills theory [32, 33] and the Metsaev-Tseytlin action for type IIB free
strings in AdSs x S° [34].

21 N=4SYM

The fundamental fields in NV = 4 SYM are six real scalars, four dimensional gluons, and
sixteen component Majorana spinors, all of them matrices of size N x N,

O =Q¢T, A, = AT, U =0"T", (2.1)
ll/\ X A "' ~~~ p/O‘/‘. .%x
24 A3 \0‘ ’0'
LA P k
/\ X K N AN

Figure 2.1: Component Feynman rules for N' = 4 super symmetric Yang-Mills theory. Solid,

wavy, dashed and pointed lines represent scalars, gluons, fermions and ghosts respectively and

; ; ; 9y 89 gy (0 prp” 9ym Ip
their propagators are canonically normalized to Tt B (1-— C)p—4 TP and

2
gYQ—MZ%. Obvious indices and delta functions are omitted and all vertices should be multiplied by
1/g?. For example the fourth vertex in the first row corresponds to —922 I'*, the last vertex in
Y M
2

the second row yields ——*—(p# — k#)d;;, etc. The trivial U(N) indices are omitted and fermionic

loops should be accompaniéd by an extra factor of minus one.
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where T are the N generators of U(N) normalized as Tr (T°T") = 16°. The Lagrangian
of N'=4 SYM reads

1 1 1 _ 4
I — gQ—Tr 5[DM,DV]%F (DH<I>Z-)2—§[<I>Z-, O, + W (T* D,V +T[®;, ¥]) +0,8D,c + (0,4,)°
Y M

where the covariant derivative is defined as usual
D, =0, —i [AM, ]

and (', T") are ten real 16 x 16 Dirac matrices normalized to Tr (I'T'?) = 16 6. Finally,
¢ and ¢ are the Faddeev-Popov ghosts. The Feynman rules for this theory are summarized
in figure 2.1. This is a superconformal field theory and its symmetry is PSU(2, 2|4) together
with the gauge transformations.

This is quite a minimalistic description of this very rich field theory but it is actually
more or less all we need for the moment. As we proceed we will introduce the several
needed ingredients.

2.2 Superstring in AdSs x S°

We want to study superstrings moving in AdSs x S°. The isometry group of the AdSs part
is

SO(4,2) ~ SU(2,2)
while the symmetry of the five sphere is
SO(6) ~ SU(4).

Each of these spaces is the coset between the corresponding isometry groups and the
symmetry group which leaves a fixed point (isotropy group) which is

SO(4,1) ~ SP(2,2)

for anti de-Siter and
SO(5) ~ SP(4)
for the S® factor. The bosonic part of the supercoset where the string moves is therefore

SU(2,2) x SU(4)
5
AdSs X 5" = Sp@.2) % SP@)

The full super space where the string moves has this bosonic part completed to the super-

coset
PSU(2,24)

SP(2,2) x SP(4)"
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In order to write down the string action it is useful to recall a couple of facts about the
several ingredients in this coset. The matrix superalgebra su(2,2|4) is spanned by the 8 x 8

A|B
M =
C|D
where A and B belong to u(2,2) and u(4) respectively while the fermionic components are

related by
Ioyo 0
C =B ( X ) :
0 _H2><2

The supertraceless condition means

supertraceless supermatrices

str M =TrA—TrD =0.

The psu(2,2[4) superalgebra is the quotient of this algebra by the matrices proportional
to the identity. Since the su(2,2[4) algebra enjoys the automorphism’

0
0

T T
QOM:(EAE EC’E)’E:

EBTE EDTE

with

Qt=1,
the algebra is endowed with a Z, grading. This means that any algebra element can be
decomposed into

=0
where Q o M™ ="M ™ Explicitly
T T
1702 _ 1 (A EA'E 0 103 1 0 B+iEC"E (22)
2 0 D+ EDTE )’ 2\ CTiEBTE 0

Elements of M© are invariant under the action of the automorphism meaning that B = 0,
C =0 and
A=FEATE , D=ED'D

which are precisely the defining relations for the denominator algebra sp(2,2) x sp(4) of
the coset. Therefore the M© elements span this part of the coset which we want to gauge

"Meaning Q o [M, Ms] = [Q o M1,Q o M) as can be easily checked.
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away. The remaining bosonic elements, M®, orthogonal to the former, must generate the
(orthogonal) complement of sp(2,2) x sp(4) in su(2,2) x su(4) which is precisely what we
want to keep. M) and M®) are the fermionic components of the current.

Finally, the Metsaev-Tseytlin action for the GS superstring in AdSs x S® is then given
in terms of the algebra current

J=—g dg, (2.3)
where g(o,7) is a group element of PSU(2,2[4), by

VA

T 4r

S str (JP A xJ@ — JO A JO) 4 A Astr I (2.4)

where the last term ensures that J® is supertraceless’. In section 4.2 where the emergence
of classical integrability is studied, we will discuss this action further. Besides the obvious
global PSU(2,2|4) left multiplication symmetry the action (2.4) possesses a local gauge
symmetry, ¢ — gH with H € SP(2,2) x SP(4), under which

JO - HJ9H | i=1,2,3 (2.5)
while J© transforms as a connection,
JO — g9 —g-tdm. (2.6)

The equations of motion following from (2.4) are equivalent to the conservation of the
Noether current associated with the global left multiplication symmetry

dxk=0 (2.7)
where k = gKg~! and
K:J(2)+%*J(1)—%*J(?’)—%*A.

Just a few words on how to easily derive this equation just by looking at the action
(2.4): The supertrace of a product of algebra components with different grading is not zero
only if the total grading vanishes:

str (M(m)N(")):O , ifn+m+#0 mod4. (2.8)

Thus suppose we make an infinitesimal left multiplication transformation under which
§J = g7'dGg and want to see how the action changes. When varying each J™ in (2.4)

20bviously all components J(*) must be supertraceless since they are elements of PSU (2, 2|4). However,
as manifest from (2.2), all other components are automatically supertraceless and thus require no Lagrange
multipliers.
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we can replace its variation by simply §J = > 8J™ since the superstrace will project
back to the original component 6J. Then we get 6.5 = [strg~'dGg A K and therefore,
integrating by parts and using the cyclicity of the trace we obtain (2.7).

When we restrict ourselves to purely bosonic fields we should recover the usual sigma
model action

Sp = \/_ dO'/dT\/_ (M Oyu-Ou+ Ay (u-u—1)— (u—v)), (2.9)

where the lagrange multipliers constrain the embedding coordinates

— 2 22 2 3 2 2
l=vu-u=ug+u; +uy +uy+u;+uj,

l=v-v=v]+v—v]—v;—v5—0;. (2.10)

This restriction works as follows. For a purely bosonic representative g we can write

_< o ) (2.11)
. 0| R ) '

where R € SU(4) and Q € SU(2,2). Then we see that RERT is a good parametrization
of
U(4)/SP(4) = S°

because, by definition, it is invariant under R — RH with H € SP(4). In the same way
QFEQT describes the AdS space. Then we can define the embedding coordinates u and v
by the simple relations

WY =RER" | o5} = QEQ" (2.12)
where ¥ %4 are the gamma matrices of SO(6) and SO(4,2). By construction these
coordinates will automatically satisfy (2.10) and then the bosonic part of the action can be
expressed in the usual non-linear o model form (2.9). For future convenience let us render
the matrix form of the above relations explicit:

0 —Ug — ’iU5 —Uyg — ’iU3 —U2 — iu1
UES _ U6+iU5 0 —U3 —iul U4+’iU3 (2 13>
773 Uyg + iU3 Uy + U 0 —Ug — iU5
Uy +1u; —Uyg — iU3 Ug + iU5 0
0 —Vg — Z"U5 Vg + ’iUg —Vy — 11
ZA . Vg + iU5 0 Vo + 10 Vg + ivg 4
s = | . , (2.14)
—Vg — W3 —Vgy — 1V 0 —Vg — U5
Vg + ’iUl —Uyq — i’Ug Vg + ’iU5 0

At this point we end our introduction. In the next chapter integrability comes onto stage.
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Chapter 3
Integrability in N/ = 4 and Bethe ansatz

In this chapter we will start by reviewing the seminal work of Minahan and Zarembo [9]
where integrability first appeared in N/ = 4 SYM. We will then introduce the algebraic and
coordinate Bethe ansatz formalism. In section 3.6 we will study the SO(4) which shares
many features with the N' = 4 Bethe equations proposed by Beisert and Staudacher (BS)
[35] presented in section 3.7. In the remaining section we analyze the solutions to Bethe
equations and in particular consider in detail the scaling limit of (nested) Bethe ansatz
equations. We finish the chapter with a simple toy model as a curious application of the
algebraic Bethe ansatz.

3.1 Spin chains

N =4 SYM is a superconformal field theory and therefore there is a basis of renormalized
operators such that

(O4(x)05(0)) = A8 (3.1)

- |25

where A4 are the anomalous dimensions. The renormalized operators are related to the
bare ones through

Ou(z) = (eff logA) 0% () (3.2)

AB

where H is the mixing matrix chosen in such a way that the correlation functions of O4
with arbitrary probes are finite.
Notice that to arrive at (3.1) we perform two non-trivial steps:

1. First we compute the mixing matrix H which acts on a family of bare operators
yielding renormalized operators out of which we can construct (finite) correlation
functions.

2. Next we find linear combinations of bare operators which are eigenvectors of the
mixing matrix H with eigenvalues A 4. These linear combinations of bare operators
now renormalize trivially. Namely to render such operator finite we simply multiply
it by A24. These renormalized operators are the ones entering in (3.1).
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"l‘lk \

d1 d2 dS d4

Figure 3.1: Non self-energy graphs contributing to the one loop mixing matrix for the SO(6)
scalars of planar A/ = 4 SYM. The operator we renormalize is in the bottom and the trace is
represented by the solid horizontal line. The probes, on the other hand, have free indices and are
represented by the orange small tick marks on top.

Let us carefully review [9] how the computation of H goes for the SO(6) sector of the
theory where we consider operators of length L made of the form

OY%(z) =Tr (®;, ... Py,) (3.3)

In the planar limit we need to evaluate the diagrams listed in figures 3.1 and 3.2. The
diagrams in figure 3.2 are of self-energy type and also renormalize the external legs so, to
compute the total log A divergence, we must sum all diagrams in figure 3.1 plus half of the
contribution of summing over the diagrams in figure 3.2. Since we only want to compute
the A diverging contributions, this computation is quite trivial. The first diagram d;, for
example, is given by

=aiis (%) () o e (0= 0%

where we used the Feynman rules of figure 2.1. This diagram diverges logarithmically with

the cut-off and we can therefore expand the integrand at large ¢ to obtain

L 92 N
dy =676 (14 (1 —¢)) 22" log A + finite (3.4)

Jn " Jn+1 1672

Before computing the remaining diagrams let us introduce some notation which will make
the forthcoming expressions much more eye friendly. First of all we introduce the t’Hooft
coupling \ = ¢%,,N and g as

2 A _ gyuN
1672 1672

(3.5)

<
Il
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p AL
Aok {3 O

d, d, d, d, d, d,

Figure 3.2: Self energy contribution to the dilatation operator.

Then we define the integrals

A diq¢ 1 g> A%\ dig 1
T, =q¢*losh== | —— To=2T— = — — )
=ettonn =3 [ G 2= =0 G (36)

and £ =1 — ( in terms of which the previous result reads

dy = (1+€) T oinoit . (3.7)

Jnt1

In the same way we find

do = -1, 5j"jn+15ilil+1 , d =-1 5]77,5.@77:{:11 , dy =214 5]n+153n+1 (38)
while the self energy type diagrams of figure 3.2 yield
ds = 51]:552: 2A-Ti+ (148
dr = fZZ fZIf( —(4+6)T) 3.10)
ds +dy+dig = 0" f:: ( —571,) (3.11)

Now we must add up all divergencies. Notice that the external probes are also renormalized
by Zs so we should sum

di+ -+ dy+ 5 (d5 + -+ dyp) (3.12)

which yields
2

N .
T Nog(A) (20060 4 0,670 — 26000 ) (3.13)

167T2 In+1 Inin41 n+1
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The fact that both the gauge dependence ¢ and the A? divergencies dropped out is a good
indication that no mistake was done. From this result we see that we should take
2

(eed) ™ 1 = T log(A) (20100 + Gy, — 2806 ) (3.14)

---7jn7jn+17--- 167T2

for each pair of consecutive indices. To write this in a more compact form we regard the
operators of the form (3.3) as spin chain states

| Tiy v Tiy) (3.15)

with the only difference compared with the usual Heisenberg spin chain being that here
one has six possible polarizations Ti, ..., Tg for each individual spin. We can then write
the full SO(6) one-loop dilatation operator — now regarded as a spin chain Hamiltonian —
as

L
IA{ = 92 Z (ZIn,n—i—l + Kn,n-{—l - 2Pn,n+1) (316)
n=1

where the identity, permutation and trace operators act on the correspondent two sites as

I 16ty ) = oty ) (3.17)
Pl 1ty = | m...> (3.18)
Kl...1i1...) = 5”Z| ek (3.19)

A particularly important (perturbatively) closed sector is obtained when considering op-
erators made out of the two complex scalars

Z=¢1+1ips , X = 3+ iy (3.20)
which can be in this case mapped to usual SU(2) spins
Te(ZZX...)<=|11]...). (3.21)

The Hamiltonian acting on this states reduces the usual Heisenberg Hamiltonian

:m::v - 29 Z nn+1l = n n+1) (322)

This spin chain is also known as X X X spin chain, hence the subscript. We observe that
the BPS protected state Tr(Z%) < | 7 ... 1), is an eigenvector of this Hamiltonian with
zero eigenvalue. This again indicates that no mistake was done in the diagrammatics.

As explained in the beginning, by computing H we have done half of the job, namely
we rendered the theory finite. That is the action of efllosd) _ which to this order in
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perturbation theory reduces to 1+ H log(A) — on any linear combination of bare operators
such as

[Who =1 TiT1T2) + [ T1T1T2) (3.23)

yields a renormalized operator
W) = (1 + Hlog A) DY, . (3.24)

Correlation functions between renormalized operators are finite and thus what we have
done so far is already quite interesting. As mentioned in the beginning, to go further and
compute the renormalized operators which moreover have a precise anomalous dimension
we must diagonalize H. For example we can check that

a <Z| TiTi>> = 12¢° <Z| TiTi)) (3.25)

and

H(ZXZX) = |Z2ZX X)) =12¢°(|ZXZX)) — | ZZX X)) (3.26)

which is precisely the anomalous dimension of the Konishi operator. Moreover the opera-
tors S0, Tr (®;®;) and Tr [Z, X]* belong to the same supermultiplet and therefore should
have the same anomalous dimension, precisely as observed here.

It is when we try to go beyond these simple examples and compute the full spectrum
of the one loop dilatation operator that integrability comes into play. Namely, it turns out
that the Hamiltonian (3.16) is quite special.

3.2 Algebraic Bethe ansatz

In this section we will understand how to construct and automatically compute the spec-
trum of families of integrable Hamiltonians. Remarkably the hamiltonians (3.16) and (3.22)
belong to such families.

For that purpose let us review the logic behind the Leningrad school algebraic Bethe
ansatz formalism ( for nice reviews and references see e.g. [36, ?]). We will try to describe
this beautiful and general mathematical construction with some detail with the drawback
of obliging us to hold our breath for quite a while before the connection with physics and
the spin chain Hamiltonians which we found in the previous section appears.

We consider the Hilbert space H of some spin chain of length L which will typically be
given by a tensor product of L copies of some fixed space h,

H=Ih® - ®hy. (3.27)
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R(u) = ¢ L(u) =o:

W N

2

— |~ =

—

Figure 3.3: R-matrix, monodromy matrix L(u) and transfer matrix, the fundamental building
blocks of quantum integrability.

We assume (normally this is the case) that all sites are equal and thus all h; are isomorphic
to the same vector space. For concreteness let us consider SU(M) models for which
h;j ~ CM. We also consider an auxiliary space hy, also isomorphic to C¥.

Next there are three fundamental objects in the algebraic Bethe ansatz construction:

1. An R-matrix which acts in

where in particular h; or h; can be the auxiliary space (if ¢ = 0 or j = 0). This
operator also depends on a complex number u called the spectral parameter.

2. A monodromy matrix

L(u) = Ror,(u) . .. Roa(u) Roy (u) (3.29)

which acts on the product of all spaces,

~

L(u):hog®@H — ho @ H. (3.30)

Notice that we can think of L(u) as being a M x M matrix in the auxiliary space
with each entry being an operator acting on the physical Hilbert space H.

3. A transfer matrix which is the trace of the monodromy matrix with respect to the
auxiliary space,
T(u) = TroL(u) . (3.31)
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Figure 3.4: Yang Baxter relation.

Since the trace is taken over the auxiliary space we are left with an operator acting
on the full spin chain Hilbert space,

T(u):H—H. (3.32)

These operators can be graphically represented as in figure 3.3.
For the construction that follows to go through the R-matrices must obey the triangular
Yang-Baxter (YB) relation

R12<U)R13(U —+ U))Rgg(ﬂ}) = R23<U})R13(U + w)ng(u) s (333)

depicted in figure 3.4. This is basically the single restriction on the operators above but it
is already quite constraining. For example, in SU(M) we have only two invariant tensors
acting on the product hy X hg, the identity

1, <1>J'1,j2 — §hrgl2 (3.34)

11,12 i1 Yig )

and the permutation operator

P, (P =650 (3.35)

11,82 11 12

Therefore, to construct an SU(M ) symmetric R-matrix we write

R(u) = h(u)l + f(u)P. (3.36)
Then plugging the R-matrix into (3.33) we obtain

h(u+w)  h(u)  h(w)

Flurw)  10) " fw 337

which means that we can set h(u)/f(u) = u/i. Obviously, relation (3.33) does not fix the
normalization of the R-matrix and we can chose h(u) so that

_u1+iP

R(u) U+ 1

: (3.38)
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Figure 3.5: By successive application of the Yang Baxter relation we prove Ro,o,(u —
v) Ly (u)Ly(v) = Lo(v)Ly(u)Ro,0,(u — v) which trivially implies [T(u),f(v)] = 0. This com-
mutation relation is of great importance and ensures quantum integrability of the Hamiltonians
built out of the transfer matrix 7'(u).

which is the standard SU(M) R-matrix.

So far we built a transfer matrix 7'(u) made out of R-matrices obeying the YB equation.
Let us now continue our general considerations and understand why such transfer matrix is
at all related with the Hamiltonians of the previous section or, more generically, to physical
systems with integrable Hamiltonians. To do so we need to slightly enlarge our setup and
include an extra auxiliary space. We denote the auxiliary spaces by 0; and 0, and add a
subscript 1 or 2 to the monodromy matrix L(u) to indicate which auxiliary space is being
used. Then

Ro,0,(t = v) Ly () Ly(v) = Ly (v) Ly (u) Roy0, (u — v) (3.39)

is a trivial consequence of the YB relation as explained in figure 3.5.
Multiplying this equation by Rgp, (u — v) = Ro,0,(v — u) from the right we obtain

Ro,0,(u — v) Ly (u) Lo (v) Royo, (v — u) = La(v) L1 (u) (3.40)
so that taking the trace of this equality over both auxiliary spaces yields
[T(u),T(v)] ~0, (3.41)
where we used the obvious relations
Tr(RMR™') = Te(M) , Try, eho, (L1 ® La) = Trng, (L1) Trng, (Lo) - (3.42)

Notice that since we take the trace over the auxiliary spaces the indices 1 and 2 can now
be dropped. Obviously, for T'(u) in (3.31) the choice of auxiliary space is irrelevant since
we end up taking a trace over this space.
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Figure 3.6: Transfer matrix and spin chain Hamiltonians.

Now, relation (3.41) tells us that the transfer matrices commute for different values of
the spectral parameters which is most interesting. If we construct a spin chain Hamiltonian
H from the transfer matrix (usually by taking derivatives of its logarithm at a particular
point u*) then, by construction,

[H,T(u)] =0,

and we immediately obtain a huge number of conserved charges and hence quantum inte-
grability!
Indeed, let us compute

d . .
( log T'(u )) =T7'0)1"(0) (3.43)
du u=0
At u = 0 the R-matrix (3.38) is nothing but the permutation operator and therefore
T(O) :TI‘O (POL---P01) :PL7L_1...P32P21 (344)

is the shift operator as clearly seen from figure 3.6 while
1 . L .
:;ZTI'O(POLPORP(]l)_?T(O)v (345)
k

where the hatted permutation means this permutation is absent inside the trace. The
first and second terms come respectively from the derivative acting on the numerator and
denominator of one of the R-matrices (3.38) in the definition of the transfer matrix. As
above, the first term shifts everything by one unit to the right while leaving k£ untouched
— see figure 3.6. Thus, when multiplying by T‘l(O) which shifts everything one unit to the
left, we almost arrive to the starting configuration apart from a permutation of sites k£ and
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k+ 1. But a sum of such permutations is precisely the non-trivial part of the Hamiltonian
(3.22)!" Putting all the constants in the right place we conclude that the N' = 4 SYM
dilatation operator in the SU(2) sector is described in this language as

L 2
Hypw = 29 ; (1= Pypsr) = 279 (% log T<u>)u:o . (3.46)
Note that this Hamiltonian is actually slightly more general than (3.22) because here we
are working in SU(M) and SU(2) is just a particular case.
We could repeat our analysis for SO(M). The only difference would be that instead of
(3.36) we would write
R(u) = h(u)l + f(u)P + g(u) K (3.47)

because for SO(M) there are these three invariant tensors. Then we would impose the YB
relation to fix these functions up to a normalization which we can freely chose. We would
in this case find

2u
~ul—P+———K 3.4
R(u) ~u M- (3.48)
and proceeding as before
L
1/d « M-2 M-2
H <@ log T(u))uzo ~ ; (Kn,nJrl + 7 T 3 Pmnﬂ) + constant . (3.49)

The constant term depends on the normalization of R(u) but is of course irrelevant for our
discussion of integrable vs non-integrable Hamiltonians. On the other hand the relative
coefficient between the trace and the permutation operators is fixed in our construction.
What is absolutely remarkable and noticed by Minahan and Zarembo [9] is that the SO(6)
spin chain Hamiltonian (3.16) has precisely the correct relative factor for M = 6! One
dimensional integrability fits in this way in the four dimensional N' = 4 super-symmetric
gauge theory.

So far we explained how to construct integrable Hamiltonians and realized that those
appearing in N' = 4 SYM are precisely of this type. As it is, all this sounds like a
mathematicians proof of the existence of the solution to the problem of computing the
complete spectrum of these Hamiltonians. Of course our goal is to actually compute the
spectrum. The diagonalization of these Hamiltonians will be the subject of the next section.

3.3 SU(2) spin chain spectrum

The program of the algebraic Bethe ansatz is designed to diagonalize not only the Hamil-
tonian but also the transfer matrix 7'(u),

T(u)| W) = T'(u)| ). (3.50)
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This is quite interesting because the spectrum of the Hamiltonian (3.46) is then simply
obtained by taking the logarithmic derivative of this eigenvalue.

292 ( d
Bouw = 7’? (— 1ogT(u)) . (3.51)
u=0

However, we can immediately obtain the spectrum of many more Hamiltonians. For ex-
ample, following the same reasoning as above, it is easy to see that

ad . B d . . L ;
H,p= (;@ logT(u) + —— log T(u)) = Za (1—P,pt1) + 55 [(Pr—1.n, Prnt1]

21 du?
(3.52)
and therefore the spectrum of this Hamiltonian is trivially obtained replacing the operator

u=0 n=1

T by the corresponding eigenvatue 7',

Bogp = (Ei log T'(u) + B T(u)) . (3.53)

i du 2i du? _—

By considering more and more derivatives we can obtain longer and longer ranged Hamil-
tonians together with their complete spectrum.

To compute T'(u) we will again follow a path where the physics might be a bit obscured.
We will consider the symmetry group to be SU(2) for simplicity.

The idea is to use the monodromy matrix L(u) defined in (3.29) to build our creation
operators. For that we recall that this object acts on hg ® H and thus can the thought of
as being a 2 x 2 matrix in the auxiliary space where each entry is an operator in the full

L(u) = (fm) g@)) (3.54)

Hilbert space,

(u)
Notice that with this notation
T(u) = A(u) + D(u).

The R-matrix Ry; can also be written as a 2 x 2 matrix with entrances acting on h;,

Ry — 1 (u+§(1+o—j) ioy )) (3.55)

: .+ i (1 _ -z
U+ 1 10 u+2(1 o;

To obtain this expression from (3.38) we simply recall that the permutation operator can
be written in terms of the Pauli matrices as

1000

o O O

0
1
0

O O =
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Acting with a state with a ket | T); and a generic state in the auxiliary space we obtain

Ryl 1) 12) = ('(? §%|‘Tl>>>|@> (3.56)

and therefore the monodromy ﬁ(u) acts on the ferromagnetic vacuum

QD =]T..D=[Nr® - ®|h (3.57)

as

L)) e|®) = (ITO>L §||Tl>>£>®...®(lg>1 §||Tl>>1l>|¢> (3.59)

B |€2) |non trivial)
_ < N )|c1>) (3.59)

where the triangular nature of the matrix result (3.56) was crucial. Here |non trivial)
represents some complicated (entangled) state whose explicit expression is not important.
From this expression we read

U
U+ 1

L
AW)|Q) = Q) , D(u)|Q) = ( ) 1), C(w)|Q) =0, B(u)|Q) = |non trivial) (3.60)
So in particular we found the action of T(u) on the ferromagnetic vacuum. The idea is now

to use the B (u) operators as creation operators acting on this non-trivial vacuum. That is
we propose the ansatz

10) = B(uy) ... Bluy)|Q) . (3.61)

Since we already know how A(u) and D(u) act on the vacuum, we only need to understand
how they pass through the B(u]) operators. To compute the algebra of the A, B,C,D
operators we simply need to evaluate (3.39). Recall that in this equation we have introduced
two isomorphic auxiliary spaces 0; and 0y so that instead of (3.54)

Lu) = A(w) @ | (T [+ Bu) @ | W] |+ Cw) @ | I){T |+ Dw) | 1){] |

we have two equivalent transfer matrices

Li(w)

Lo(v)

A @ | N1 @1+ B | ) |o1+Cwa| )1 ]el+Du | )] |e1
Av)@1@ | N1 +Bu)@1e| M |+C @1 | )1 |+ D) @1e]| )]
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which can be written as 4 X 4 matrices with operators as entrances

Aw) Buw) 0 0 Aw) 0 B 0
. | Cw) D(u) 0 0 s 0 A(w) 0 B@)
Lt =1"0" 0" dw Bw | 297 ¢w) o by o |56
0 0 C(u) D(u) 0 C() 0 D)

The R-matrix appearing in (3.39) can also be explicitly written as a 4 X 4 matrix

u+1

1

R0102(u) = Wt

(3.63)

o O O —|—
O =2 O
O 2 = O
+ © o o

u+1

where of course each entry is a simple number and not an operator. Now we simply need
to multiply these three matrices as in (3.39) and compare the sixteen entrances in the left
and right hand sides to obtain the algebra of the monodromy matrix elements. We will
only require the following relations among all those:

U—V—1 ~ 7

A(u)B(v) = ﬁB(z})A(u) + = vé(u)fl(v) (3.64)
Du)Bv) = %B(v)ﬁ(u) - - ! ~B(u) D(v) (3.65)
B(u)B(v) = B(v)B(u) (3.66)

Thus when we act with A(u) on our ansatz (3.61) and consecutively use (3.64) this operator
will arrive at the vacuum either with the same argument u or with the argument of one of
the parameters u; of the original B(u). That is

A) W) = A@w)| W) + > apB(u)B(us) ... B(ug_1)B(ugs1) - .- Bluar)|Q) (3.67)

To compute A(u) is a trivial task. Namely it comes from always using the first term in
(3.64) when passing through each of the M B’s and by then hitting the vacuum with A(u)
using (3.60) so
M :
Alw) = [T =2 (3.68)

U — U;
j=1 J

It is also trivial to find «y by the following argument. We need to understand which
terms in (3.04) were used when A(u) jumps through the B operators until it meets the
vacuum. To find the coefficient «y, we first arrange all the B’s in the product (3.61) so that
the leftmost creation operator is B(uk) We can clearly do so because the B’s commute
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between themselves. Then, since we want A(u) to exchange arguments with this first B (uy)
it is clear that in the first jump we use the second term in (3.64),

A(w) Blug) [ ] B(u))|Q) = ——B(w)Aur) [ ] Bwy)|0) + .. (3.69)
jk g j#k

1

but now we no longer want to swap arguments because we are already in the form (3.67)!
Therefore we will continue to move A(u) until it hits |2) using the first term in (3.64) in
each step. Thus we find

A .
ap = —— [ (3.70)
u—uk#k U — Uy
In the same way we obtain
M
D(u)|¥) = D(u)|¥) + > "6 B(u)B(us) ... B(up_1)B(urs1) - .. Bluar)|Q) (3.71)
k=1
where
Mo — + 1 u \"
D(u) = J . )
(@) H U — Uuj <u—|—z) (8:72)
7=1
and
1 M Up — U; +1 Uy, L
5 = — 1T kT ( ) . (3.73)
U — Uk - uk—uj Uk"—l
J#k

We see that if we properly fix the Bethe roots u; it is possible to cancel the second term in
(3.67) with the second term in (3.71) thus leaving us with a correct eigenvalue equation!
More precisely, let us shift u; — u; — /2 so that our wave function reads

A

|0) = B(uy —i/2) ... Bluy —i/2)|Q) . (3.74)
Then we found that
T(w)|W0) = T(u)|¥), (3.75)

where T'(u) = A(u) + D(u) is given by

T<u>:ﬁu—uj—i/2+< u )Lﬁu—uj—i—?)i/Q (3.76)

jzlu—uj+i/2 Ui jzlu—uj+i/2’

if we cancel o and J, which amounts to quantizing the Bethe roots u; according to the
so called Bethe equations

(uk+i/2)L:ﬁuk—uj+i (3.77)
up —1/2 #kuk—uj—i' ’
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Figure 3.7: The Bethe ansatz equation quantized the momenta of the excitations by imposing
that the phase piL due to the free propagation plus the phase shifts due to the scattering with
each of the other magnons is a multiple of 2.

This is the main result of this section.

In practice there is a shortcut to arrive at this result. We simply compute the eigenvalue
T(u) = A(u) + D(u) using the first terms in (3.64) and (3.65) to find (3.76). We know
that the other terms in the algebra (3.64) and (3.65) will give something which will not
be proportional to the original vector and which we will therefore want to cancel. We
know that the cancelation of these terms will constrain the positions of the Bethe roots via
some Bethe equations. To find these equations we make the following observation: Since
the transfer matrix is obtained from the trace of a product of operators like (3.38) it can
never have poles at u = u; but (3.70) seems to have such poles! The only way out is if the
Bethe roots are such that the residues of the poles in (3.76) vanish. This condition yields
precisely Bethe equations.

A remark: Notice that this reasoning also explains why we can not have coincident
Bethe roots. If we set u; = uy then we still have M conditions on the Bethe roots (from
M — 2 simple poles and 1 double pole) while having only M — 1 positions ug, ..., uy to
fix.

It is easy to see from the v — oo limit of (3.39) that [Z] aj,B(u)} = B(u) and
therefore our ansatz corresponds to a state with M spin flips in a ferromagnetic vacuum.
Equation (3.77) has then a simple physical picture behind it. If we define

U 3.78
u—ij2 7 T 2% (3.78)
then this equation can be written as
M
e'Prk H S(pg,pj) =1. (3.79)

i#k

Thus, state (3.74) should be pictured as a collection of M spin down excitations — called
magnons — moving with momenta py in the spin chain and scattering between themselves
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as represented in figure 3.7. More precisely the Bethe equations tell us that if we pick one
particle and carry it around the spin chain, the phase p; L due to the free propagation plus
the phase shifts due to the scattering with each of the other magnons must give a trivial net
result. From this description we clearly see the manifestation of integrability as factorized
scattering. The fact that the scattering of one magnon with all the other magnons is given
by a simple sequence of two-to-two scattering processes is not at all generic. In the next
section we will explore this more physical approach to quantum integrability using the
coordinate Bethe ansatz formalism.

Having quantized the momenta {p;} or alternatively the Bethe roots {ux} we compute
the spectrum from (3.51) which yields

B — EM: 2" (3.80)
]:1 J

which is of the form E,,, = E;‘il e(p;) with

e(p) = 8g” sin’ g (3.81)
being the dispersion relation for each individual magnon. As mentioned in the beginning
of this section one of the main advantages of the algebraic Bethe ansatz approach is that
we can at once diagonalize large families of integrable Hamiltonians. For example, to find
the spectrum of (3.52) we simply need to solve the same BAE (3.77) and then evaluate
(3.53) using (3.76) to find

M o /8
Bapg=2 =1+ (3.82)
2 ‘

that is E, g = Ejﬂil €(p;) with

e(p) = 4sin® g (v + Bsinp) . (3.83)

3.4 Quantum integrability and factorizable scattering

In 1+ 1 dimensions, when two particles of equal mass scatter, momenta and energy con-
servation imply that the final set of individual momenta is equal to the original set,

{p1,p2} = {p1, p2} (3.84)

When we consider three or more particles the final set of momenta is in general not a simple
rearrangement of the original one. On the other hand for systems with many conserved
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charges this can be the case. For example, if we consider the scattering of three particles
in a theory where not only the momenta and energy,

Q1= ij , Qo= Zp;‘?, (3.85)

are conserved but where there is also an extra charge

Qs=> 1), (3.86)
J

then the conservation of these three charges does imply that the final set of momenta is
equal to the original set,

{p}. ph p3} = {p1, P2, p3} - (3.87)

In the same way, the existence of N relatively generic independent charges ); would imply
that the effect of a multiple particle scattering with original momenta {p,;} would be to
simply rearrange the individual momenta between the several particles. In this kind of
theories, if we prepare the in-coming particles and collect them after the collision we would
conclude that, since the momenta were simply interchanged, the scattering was effectively
factorized into a sequence of many pairwise scattering processes.

Notice also that there is no solution to

pr+py4+ps=p7+p5 , n=1,23. (3.88)

In integrable theories there is no particle creation or annihilation.

Let us review an argument due to Shankar and Witten [37] where factorizability is very
clearly related to the existence of higher charges. Suppose we consider a superposition of
plane waves

Y(x,t) = Pzl +iv(t=to) (3.89)

into a wave packet of well definite momenta p ~ py,
U(z,t) = /dpeo‘(pPO)Qeip(me)ip;(tt(’) (3.90)
This wave packet is localized where the phase is stationary for p ~ pg that is

T = Xg —|—p0(t — f}o) . (391)

Now suppose the theory admits higher charges of the type mentioned above. If we act on
this wave packet with a charge €@ = " we get

9 W (x,t) = /dpe“(pm)?eip(fl‘o)i’f(tto)+wp” (3.92)
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Figure 3.8: The action of Higher charges shifts each wave packet by a momentum depen-
dent amount. This it implies factorized scattering and the Yang-Baxter relation §12§13§23 =
523513 512t.

and therefore the stationary phase condition telling us where the wave function is localized
becomes now

T =x0+ po(t —to) + Bnpy . (3.93)

Now suppose we prepare three wave packets like (3.90) in such a way that they will
scatter almost simultaneously in the future as in figure 3.8a. The probability amplitude
for this process is the same as the probability amplitude for the process related to this one
by application of the symmetry generated by any of the charges @),, — after all this is the
definition of symmetry.

A symmetry transformation generated by the momenta or the energy corresponds to
putting n = 1,2 in (3.93). This simply means that we simply effectuate a global translation
in space or time respectively.

Things are much more interesting for n > 3. When n > 3 each wave packet is shifted
by an amount which depends on its momentum and thus the process in figure 3.8a can be
transformed into that in figure 3.8b with the three wave packets scattering in a sequence
of arbitrarily separated pairwise collisions. This shows that the existence of higher charges
implies factorized scattering.

Furthermore since we could apply a symmetry transformation with a positive or neg-
ative deformation parameter § we find out that not only the three-to-three scattering
factorizes into a sequence of three chronologically ordered two-to-two scattering events but
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also the order of these evens can be interchanged by applying the symmetry transformation
generated by the higher charges as represented in figure 3.8c. Mathematically this means
that for integrable theories

S12(p1,p2)g13(P1,P3)S23(p2,p3) = 533(192,ps)gls(PhP?,)gm(phpQ) . (3.94)

If the S-matrix is a simple phase shift like in our previous example then of course this
equation is empty. This is the case when we consider theories with a single type of particles
without any internal degrees of freedom. On the other hand, in general particles have
polarizations and/or spins which can change in a scattering process. In other words the
S-matrices appearing in (3.94) are matrices. When this is the case equation (3.94) provides
strong constraints on the form of the S-matrix.

The spectrum of integrable theories put in a large circle of perimeter £ can easily be
found. Let us consider particles without internal structure first. Since there is no particle
creation we can consider a wave function with a precise number of particles. For simplicity
let us consider three particles, the generalization will be obvious. Since the circle is large
there is a region where r1 < x5 < x3 which we denote by asymptotic region. In this region
the wave function will be

(1, T2, 23) = G123 + D213 S12 + G132 Sa3 + P312 S13 Saz + Paz1 S13 S12 + P321 S23 S13 S12
(3.95)

where S;; = S(pi, pj) and
Giji = exp (ipir1 + ipjTe + ippT3) -

We are assuming the particles to be bosons so that the wave function in the other asymp-
totic regions such as xo < 77 < 3 can be trivially obtained from (3.95) from

@/)@1, $2,$3) = @/)@2, $1,$3) .

Obviously, when writing (3.95) we already used the factorizability property to decompose
some three body S-matrices into products of two-to-two scattering processes.

Next we pick a particle and carry it around the circle. More rigorously, we impose the
periodicity of the wave function

Y(xy + L, 29, 23) = (a1, 22, 73)

or, using the bosonic symmetry of the wave function,

1/1(1’2,.T3,l’1+£) = 1/1(.1’1,372,373) (396)
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The advantage of this second expression is that the arguments are ordered so that we can
use the wave function in (3.95). When comparing the several exponentials we find that
this condition implies the quantization conditions

M
et = T[S pr) (3.97)
k#j

with M = 3. Physically these equations translates the fact that the free phase acquired
by a particle when carried around the ring plus the phase shifts due to the scattering with
each of the other particles must be a trivial multiple of 2.

Having quantized the momenta of every individual particle by solving the Bethe equa-
tions we compute the spectrum of the theory from

E=Y «p;) (3.98)

J=1

where ¢(p) is the dispersion relation.

Notice that in all this discussion it was crucial to have enough space for an asymptotic
region to exist. Such asymptotic region was used in (3.96) to obtain Bethe equations.
It was also implicitly used in (3.98) where we used the fact that there is a region where
the wave function is given by a superposition of M plane waves with precise individual
momenta used to measure the energy of the state.

So far we studied Bethe equations of the form (3.97) which appear for example in the
study of spin chains with SU(2) symmetry. In this model the particles are down spins and
hence have no internal structure. For the SO(6) spin chain which we already described it
is clear that we will have to find something more sophisticated.

In general, when particles transform under some nontrivial symmetry group with rank
r we must solve the diagonalization problem

«— —

' k—1 ) k+1 )
) = e ] S (oroy) [ S (o) 1) (3.99)
j=1 =M

where S(py, p;) is now a matrix and |¢) is the multi-particle wave function. We will in
general obtain not just one equation like (3.97) but rather a set of r+1 equations entangling
the scattering of particles with momenta p; and p; in space-time with the scattering of
spin waves in the isotopic space. These so called Nested Bethe ansatz equations will be of
key importance throughout this monograph. In the next section they will appear for the
first time in the study of the SO(4) sigma model, an extremely instructive toy model for
what follows.
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Notice the striking mathematical similarity between equations (3.94) and (3.4). Thus of-
ten S-matrices and R-matrices will have exactly the same form (apart from normalizations).
Obviously their physical meaning is completely different — S-matrices describe scattering
of particles whereas R-matrices are used to construct integrable spin chain Hamiltonians
(or integrable 2d statistical models).

3.5 Coordinate Bethe ansatz and higher loops.

In this section we will introduce the notion of perturbative integrability or more precisely
perturbative asymptotic Bethe ansatz [38] and recognize the appearance of integrability in
N =4 SYM from the factorized scattering perspective described in the previous section.
For that purpose we will first review the coordinate Bethe ansatz description of integrable
systems.

Let us consider again the diagonalization of the Heisenberg Hamiltonian

L

Hypo =Y 1= Popi (3.100)
n=1

and construct single, double and triple spin flip excitations moving on the ferromagnetic
vacuum. To construct the single spin flip excitation, called magnon, we construct a plane

L
k) =Y _w(n)n) , ¥(n) =e* (3.101)

n=1
where |n) = o, | T...7T) is the state with all spins pointing up except for that in site n.

Acting with the Hamiltonian on this state we find
iyl ) = e(k)|R) (3.102)

where L
(k) =2 —2cos(k) = 4sin? B (3.103)

which, apart from the normalization factor of 2¢g? is precisely what we found in (3.81) from

our general treatment in the algebraic Bethe ansatz formalism. Periodicity of the wave

function quantizes k = 2”7"

Next let us consider two excitations. This is of course more interesting because now
the two magnons might scatter between themselves. Acting on the state

) = dn,m)n,m) , n,m)=0,0,[T...1) (3.104)

n<m
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with the Heisenberg Hamiltonian and imposing <1ﬁlxm — E) |1) = 0 yields
E¢(n,m)=4¢(n,m) —y(n+1,m) —¢(n—1,m) —p(n,m+1) —(n,m—1) (3.105)
for m >n+1 and
EvYn,n+1)=2¢n,n+1)—¢(n—1,n+1)—1p(n,n+2) (3.106)
when the spin flips meet. Any superposition of plane waves
Y(n,m) = eF TP §(k, p)elrtikm (3.107)
solves the first equation describing the free propagation and gives
E =¢€(k) + €(p) (3.108)

while the second condition governs the scattering between the magnons and fixes

Leot® —LcotZ —i
S(p,k) =3—=—"2—2 3.109
(. k) leot® —Lcot+i ( )
Periodicity of the wave function ¢ (n, m) = ¥ (m,n + L) now yields
e*lS(p, k) = ePES(k,p) = 1 (3.110)

which under the transformation (3.78) reduce precisely to the Bethe equations (3.77) for
M = 2 found previously. Let us then consider three particle states where, as mentioned
in the previous section, integrability can play a key role. Indeed, it is trivial to check
(specially with Mathematica) that

W) = Z Y(n1, ng, n3)|ny, ng, na)

ni<na2<ng

with

(N1, N2, n3) = G123 + Ga13 S12 + G132 S23 + D312 S13 Sa3 + D231 S13 S12 + P321 S23 S13 S12,
(3.111)

Si; = S(pi,p;) and
Giji = exp (iking + ik;jng + ikgng) | (3.112)

is an eigenstate of H,,, with energy

E=> ep)). (3.113)

k=1
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Periodicity of the wave function t(nq,ns, ng) = 1(ng, n3,ny + L) then yields the Bethe
equations (3.77),

3
eiijHSjk = 1,
k#j

Of course the fact that the ansatz worked is nontrivial but not surprising as we already
solved this model explicitly by the algebraic Bethe ansatz.

The wave functions for many magnon states are obtained following the obvious pattern
n (3.111). This ansatz for the wave function is of course far from obvious and was the
key observation of Bethe in 1931 to realize it would work [39]. As we saw in the previous
section such ansatz will generically work if there are a lot of extra conserved charges which
is of course a priori not obvious when we look at a given Hamiltonian.

Let us now consider an SU(2) Hamiltonian with also next to nearest neighbors local
interactions. The most general ansatz for such Hamiltonian with zero energy for the
ferromagnetic state is of the form

L

CVB’Y_OZZ 1_ n,n+1 _'_ﬁz nn+17 n+1n+2 +’YZ 1— nn+2) (3114)

n=1

If v = 0 we obtain an Hamiltonian which we already encountered in our algebraic Bethe
ansatz treatment (3.52). In the algebraic Bethe ansatz approach we diagonalized the

SU(2) transfer matrix T'(u). Since [T( ), T(v )} = 0, the eigenvector basis is independent

of the spectral parameter u. The first and second terms in (3.114) are the first and second
derivative of the logarithm of the transfer matrix at u = 0, see (3.52). Thus each of them
— and therefore their sum — is diagonalized by the same set of eigenvectors which is of
course not obvious at all from the coordinate Bethe ansatz perspective. For example, the
ansatz (3.111) still diagonalizes H, 0 with exactly the same a and 3 independent S-matrix
(3.109). Therefore the Bethe equations quantizing the magnon momenta are precisely the
same since they follow from imposing periodicity for the wave function. The spectrum, on
the other hand is trivially changed by the replacement of the dispersion relation by (3.83)
which can be read from the single magnon wave function as before.

In the next subsection we will consider the last term to be present, v # 0 and find out
that there is a right structure to be studied in this case.

3.5.1 Two magnons in non-integrable models.

Let us now consider v # 0 in (3.114). For simplicity we take § = 0 and, for the moment,
we consider an infinite spin chain. Single particle states (3.101) are eigenstates with energy
E = €(k) where

e(p) = 4 sin’ g <a + 47 cos? g) . (3.115)
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Creation

Reflection

Transmission

Figure 3.9: In a non integrable spin chain Hamiltonian the total energy and momenta conserva-
tion is not enough to ensure that the individual incoming momenta are simply interchanged. For
example, in the model we consider we can create a pair of particles with the same total energy
and momenta but different individual momenta as depicted by the red arrows. The wave function
is then given by 1(n, m) = etfintikem o peikontikim 4 peikantiksm

Two magnon states with wave function (3.107) are not eigenstates and therefore we must
find a better ansatz for ¢)(n,m). For m —n > 2 the free propagation equation (3.105) is
simply replaced by the homogeneous equation

—y ((n+2,m)+(n—2,m)+(n,m+2)+(n,m—2)) (3.116)

The solution to this equation for fixed total momentum P and energy FE' is given by

Y(n,m) = P <A e L Be N 4 Ce T D™ n_2m> (3.117)

where ko = 1 (P £ k) and k34 = 5 (P £ «') are the four solutions to
E(k‘l) + E(k‘g) =F s k’l + k’g = P, (3118)
6(k53) + 6(k54) = E s k’g + k’4 = P . (3119)

In particular we can easily see that

K K o Ccos ( g)
i =12/ 12
cos<2)+cos<2> 2 cos(P) (3.120)
Notice that while before we could find an eigenstate with only A, B # 0 we now need to

consider this more generic ansatz. Luckily this ansatz works not only for m > n + 2 but
also for m = n+2 and m = n+ 1. For these spin flip separations the Schrodinger equation

gives
(E =2y —4a)p(n,n+2) =~y (p(n—2,n+2)+¢(n,n+4)) (3.121)
—a((n+1,n+2)+Y(n—1,n+2)+¢(n,n+3)+¢(n,n+1))
and
(E—2a—4y) Y(n,n+1)=—-a(@(n—1,n+1)+(n,n+2)) (3.122)

-y (Y(n,n+3)+v(n—1,n)+¢Yn+1,n+2)+¢(n—2,n+1))
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which constrains the several coefficients of the wave function. Since the free propagation
equation is solved by (3.117) for any n and m we can substract it for m = n + 2 and
m =mn+ 1 from (3.121) and (3.122) to simplify these equations to

0=2¢(n,n+2)—Y(n+2,n+2)—(n,n) (3.123)
and

0 = a2¥(n,n+1)—=tYn+1,n+1)—1(n,n)) (3.124)
— y@Wh+2,n+1)—vn+1,n+2)+(n,n—1)—1p(n—1,n))

Physically what is happening depends on the reality of the relative momenta x and «’.

If both have a positive imaginary part then we are describing a superposition of two
bound states. In this case we must impose B = D = 0. Conditions (3.123) and (3.124) then
describe a homogenous linear system for A and C' whose characteristic determinant must
vanish to be able to have A, C' # 0. Thus for a fixed total momenta P this characteristic
equation plus (3.120) fixes completely x(P) and «/(P). This is probably the scenario which
is most studied in the literature [40, 41] but it is the least interesting for our discussion.

Next, consider x and r’ real. For a given total energy and momenta A and C' are not
fixed. There are therefore two natural choices for the wave function: A =0 or C'= 0. Let
C =0and A = 1. Then the wave function is describing the scattering of two magnons with
momenta k; and ko with normalized incoming flux. Upon collision, we obtain a reflected
state with momenta ko and £y plus two magnons with momenta k3 and k4 with the same
total energy and momenta as the original scattered magnons but with individual momenta
which are not a permutation of the original ones. The reflection and creation coefficients
associated to these processes are B and D as depicted in figure 3.9. They can easily be
computed from (3.123) and (3.124).

There is a third scenario — which will actually be the most relevant for our discussion
of the N = 4 spin chain — where we have a coexistence of two real momenta k; and ky and
a magnon bound state made out of k3 and k;. We will come back to it latter.

We will not consider the three magnon state for general a and v since this would be
an ultra tedious and absolutely not enlightening exercise. The model is not integrable
and therefore factorization does not hold and Bethe ansatz techniques can not be directly
applied.

3.5.2 Perturbative integrability and higher orders in SU(2)

At the light of what we have just seen, it might seem like terrible news the fact that the
dilatation operator for the SU(2) sector in N' = 4 supersymmetric Yang-Mills theory is
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precisely of the form of this non-integrable Hamiltonian! Namely it corresponds to [412]

2 2 2 2 2
9y uN 9yuN 9yuN
“ ( 82 ) ( 82 ) » ( 82 ) (3.125)

Notice that for finite g%,,N even the ground state might be quite nontrivial because the

ferromagnetic nature of the chain can change to anti-ferromagnetic for large enough cou-
pling. Single particle states are always easily found but two magnon states are already
quite non-trivial. Three body factorization is not present so we have no Bethe ansatz to
help us out.

The way out from this apparent dead end is the fact that we should always think
perturbatively in A = g%,,N. Therefore the next to nearest neighbors interaction (as well
as part of the contact term) is to be treated as a perturbation. More precisely at order A"
in perturbation theory we will have a range n Hamiltonian and we will be able to make
sense of the Bethe ansatz equations as a perturbative expansion provided the spin chain
length is larger than n.

Let us then understand what happens when v/ < 1. In this limit the r.h.s of (3.120)
is very large and thus if k is real the relative momenta s’ must be complex. Thus the
relevant wave functions in this regime are those describing the scattering of two particles
in the presence of a bound state and therefore we should consider (3.117) with, say, D = 0.
More precisely from (3.120) we obtain

o P P 2 3
¢'/2 = [ —cos Psec — | 1 + [ 2 cos® Psec? ~cos ™ (1> +0O (1) (3.126)
2 ) « 2 2 « «

Thus we conclude that perturbatively the effect of the magnon is solely to generate a fudge
factor (v/a)" ™™ for small [n —m)|. Since we work to leading order in v/« this means that
the effect of the magnon is to slightly renormalize the wavefunction v(n,n+1). Therefore,
inspired by this treatment, we try the ansatz

Y(n,m) = ¢(n,m)+ S(k,p)p(m,n) (3.127)
where
Sk, p) = SO 4 %S“’ , (3.128)
and
$(n,m) = eikntim (1 n % f(k, p)(sm,nﬂ) (3.129)

Here S(© is the leading value (3.109) while S corrects the magnon S-matrix. The function
f(k,p) is a local fudge factor or wave function renormalization which appears in the region
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where the magnons are interacting. If we plug this wave function into (3.116), (3.123) and
(3.124) and work always to order (v/a)? then we find that the ansatz does the job if we
fix

32isin® £ sin” £ (sinp — sin k)

SW(k,p)/SO(k,p) = 2cos(k) +2 cos(p2) —cos(k+p)—3 (3.130)

and

ko k
fp. k) = —4sin§sin§sec ;p.

In perturbation theory particle creation is suppressed and the two magnon problem be-

(3.131)

comes again more standard. The spectrum for the double magnon problem is then ob-
tained from summing the two dispersion relations €(p) and €(k) where the momenta are to
be quantized via the Bethe equations (3.110) with the S-matrix (3.128). All this should
be done working always to leading v/« order.

So far nothing that we did is especially remarkable since usually two body problems
are solvable. Integrability, or rather perturbative integrability, arises in its full splendor
when we consider the three magnon problem. It turns out that the ansatz (3.111) works if
we use the corrected S-matrix (3.128) and replace the bare ¢, in (3.111) by

¢ijk = eXp (Zk'lnl + ik‘j’l’bg + Zk’kng) X (3132)
X (1 + f(klv kj)énz,nhLl + f(kju kk)énsmfrl + g<k17 k27 k3)5ns=n2+15n2=n1+1) )

where g(k1, ko, k3) is easily fixed by the action of the Hamiltonian and both f and g are
defined as being completely symmetric with respect to permutations of their arguments,
f(p, k) = f(k,p), etc. Notice that (almost) all the needed ingredients are already contained
in the two magnon problem, namely the S-matrix and the renormalization functions f(k, p)
are precisely as before. To write the complete wave function we merely need to compute
a single triple contact term ¢(p,k,q) which we can then use to build the four magnon
scattering state. To find the four particle state we will again need to compute a single new
contact term which we can then use to write an ansatz for the five particles state, etc.

On the other hand, let us stress, none of these contact terms actually need to be
computed if we want to consider large enough chains! Having the ansatz (3.111) with a
large enough spin chain, we simply need to impose the periodicity condition ¥ (n,m,r) =
Y(m,r,n+ L) to find the Bethe equations

3
elij = Hsjka

kg

where the S-matrix is given by (3.128), and the momenta should be computed in small
v/« perturbation theory. The energy is then computed in perturbation theory from the
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sum dispersion relation (3.115)

3
E=% €(p;). (3.133)
k=1

To summarize, the setup to study the anomalous dimensions of large single trace operators
in N = 4 super symmetric Yang-Mills theory is as follows. At order ¢g*" we first consider
the single magnon state which will tell us what the dispersion relation €(p) is to this order.
Then we solve the two magnon problem from which we compute the S-matrix also up to

order ¢?*. Finally, to compute any M-magnon state we simply solve Bethe equations

M
1 = el H S(pk,pj)
jk

and read the spectrum from

E=S ep). (3.134)

M
k=1
In all intermediate steps we should work perturbatively up to order ¢g?*. These formulas
work for n < L otherwise the range of the spin chain Hamiltonian will be as large as the
spin chain length and there will be no asymptotic region for the magnons.

For example up to three loops the SYM spectrum can be found from the Beisert-Dippel-

Staudacher equations [43] which read
NL M : M
x, wp — uj+1/2 , L -1 1
ey _ E =29 — S — 3.135

where

wp +1i/2 + \/(uk +i/2)* — 4g2

29
Starting at four loops these equations fail to reproduce the correct spectrum and must be

(3.136)

xk:

replaced by the all-loop Beisert-Staudacher equations [35] described below. These equa-
tions are seven Nested Bethe ansatz equations (the PSU(2,2|4) symmetry group is of rank
7) but before introducing them it is instructive to make a small detour and consider first
a much simpler toy model which is what we will do in the next section.

3.6 SO(4) sigma model — Nested Algebraic Bethe Ansatz

In this section we review in great detail a particularly simple example of a relativistic
theory described by a set of asymptotic Nested Bethe equations: the SO(4) non-linear
sigma model or SU(2) principal chiral field.
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We introduce the rapidities 6 in terms of which we parametrize the energy and momen-
tum of the mass m particles

p=msinh7d , E = mcoshnf. (3.137)

Next we consider the two-to-two S-matrix. By relativistic invariance it must depend only
on the Mandelstam variables

0 0
s = (p1 +p2)* = 4m? cosh? % cu=(p — p2)? = —4m? sinh? % , =0 (3.138)

where we used the fact the initial and final momenta are only at most permuted to define
the Mandelstam variables using p; = p; for j = 1,2 and 6 = 6, —0,. Therefore the S-matrix
depends only of this difference of rapidities. It must be of the form

SE(0) = S2(0) [ 5105097 (0) + 0ij0u + 0ubji h(0)] (3.139)

because there are no more tensors we could build. Moreover since the model is integrable
this S-matrix must obey the YB equations (3.94) and thus the relative coefficients should
be as in (3.48) for M =4

b
-

because mathematically the YB relations (3.94) also appeared for the R-matrices in (3.33).

h(0) = g(ix — 0) (3.140)

Changing i <> j and the channel s = 4m2 cosh?(70/2) « u (i.e. & — i —60) should leave
the S-matrix invariant. This is crossing—symmetry. It implies

S5(6) = Sy(i — 0) (3.141)

and h(0) = g(i —0), or A = 1.
Finally we impose the most natural requirement, namely, unitarity. Setting

S (—0)SH™(0) = 646k Sa(—0)S,(6) (1+ W (—0)h ' (0)) + 6uwdji (..) + 8udi (...

to be equal to d;;0; one obtains 3 equations. The exact expressions inside the parentheses
are not relevant for our discussion. It suffices to say that, for the g and h we found (3.140),
(3.140), they vanish identically. Thus one is left with

92
From (3.141) and (3.142) it follows that Sy(#) is given by
0 r(-HriE+ 2
s20) . so() =i L LG+ 30) (3.143)
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times a Castillejo-Dalitz-Dyson factor

L .
inh 70 .
f(H)IHSIH w0 + 781N (g, (3.144)

i-o; sinh 0 — isin oy

where «y are arbitrary real numbers. The form (3.143) is needed to have the right pole
and zero structure according to (3.141) and (3.142) while the ambiguity (3.144) is unfixed
since f(0)/f(i—0) = f(0) f(—0) = 1. Absence of additional bound states forces one not
only to exclude this factor but also to introduce the i in Sy(0) [44, 45]. For the non-linear
sigma model the correct S-matrix is indeed given by the minimal choice (3.143). To verify
this claim some convincing cross checks are done [46, 47].

The power of integrability and symmetry is incredible. We did not even write the
Lagrangian of the theory! Of course this is also a drawback since many checks need to be
done to ensure we solved the correct theory.

Since SO(4) = SU(2) x SU(2) we can replace i, k, j,1 by («, &), (ﬁ,ﬁ), (o, d), (ﬁ’,ﬁ’)
and write (3.139) as

52(9) . o'8 &3 . o oo B 3/ . . Y o <&
(90—¢)2 <196aﬁ6d56 P (0 — 1) 03 03 07 8 —i(0 — i) 67 0 o %’)
- 53(9) o B p el & B B cd
- o (eaa 58 —usaaﬁ) (ead o —usd%) .

or

) ) A A . . 01 —iP
S(0) = Sa(0) x S100) . SLr(0) = SHUORO) . R=—5—

(3.145)

where P is the permutation operator in C2x C2. Notice that, since SO(4) = SU(2)x SU(2),
we could have started with this ansatz where

931’ <f—h‘1(9)15) .

S1.r(0) = So(6)

instead of starting with (3.139). The absence of the channel where two particles annihilate
is obvious since the particles are charged with left/right charge. The YB relation would
then fix both S;, and Sy to be proportional to the SU (2) R-matrix already encountered in
(3.38).

Let us now start from the obtained S-matrix (3.145) and carry out the algebraic Bethe
ansatz program [48]. We introduce a ghost particle in the auxiliary space 0 and scatter it
through the other particles. We want to diagonalize

T(9) W) = A(6)| ), (3.146)
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where the transfer matrix is given by

L
T(6) = Tro [ [ Sor(6 — 6x)
k=1
with the trace being over the auxiliary space. This is a relevant problem because, once
solved for any #, one can set # = 6, so that the ghost particle will exchange its quantum
numbers with particle k& as S’Ok(O) = — Py, X Pgi. In other words,

—TrT(6k) = Skr1(0r — Op—1) ... Sp1 (O — 01)Skn(0k — On) ... Skis1 (O — Opsr)

so that the periodicity condition on the wave function reads
— eimoLsinh(T0) Ty (9, ) |B) = W) (3.147)

Let us then consider (3.146). Notice that mathematically this is absolutely identical to
(3.50) appearing in the study of the Heisenberg spin chain and we can therefore easily adapt
all the steps in section 3.3 to the current problem. There are only two minor differences.
First here we have a tensor product of two identical S-matrices (right and left). Second, the
argument of the S-matrices is # — 6; whereas in (3.50) this was always the same argument
u for all R-matrices. Thus, technically, (3.146) is identical to the study of in-homogeneous
spin chains with SU(2) x SU(2) symmetry.

We consider

Ju Ju
|T) = HBL(ui) HBR(vj)| Q61,...,0.)) (3.148)

where () is the state with L particles, where the right and left spin of every particle is
pointing in the up direction, and

Lg(0) = HSR,OR(Q —0)) = ( gzggi gi((gg ) (3.149)

k=1
with a similar definition for the left sector. Acting on |Q2) one has

Rox(6)] €2) = ﬁ ( 0_%—(;“) 0+;(Z:3—1) ) = Gii ( (9—(1'))|Q> 9|*Q> )

The upper most right element is not important for our discussion. However the zero in
the left down corner is important. It implies that | €2) is eigenvalue of both A and D with
eigenvalues

AO)Q) = T] S0 —6.)19).

DO)|Q) = [[ 500 -0.)7———
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)

So now we only have to understand how A and D pass through the B’s. As in section 3.3,
the YB relations imply

o) [

L 1 (0) L, 1 (0) Saw (0 — 0) = Saur (0 — 0) L 1 (6) L, 1 (6),

where a and o' are two C? auxiliary spaces. This gives us the commutation relations
between the elements of the transfer matrix (3.149). In particular

[B(0), B(6)] = 0

A(0) B(©) = giggiBquwy+gieBwyua) (3.150)
D(O) B(#) — gi@%iBquwy—gieBwﬂxm (3.151)

for symbols in the same right or left sector. Symbols in different sectors commute to zero
of course. Then, acting on (3.148), one has

~TTO) ) = (An(O) + D(®) x (Ac(0) + Dy(6) [[ Buw) x [ Baw)| 201 ., 60)

L J. . J . L
Tu; — 60— T U —0+1 6—40
_ 20_0 U; % a
H%( ”GIW—9+H1WWQ1W%—J

i=1 i=1

J. . . L
v — 60— T v — 0+ 0—0,
<H7w_9 +]1] o al@_ea_i>|@)+...

i=1 i=1

X

where dots stand for undesirable terms which would make |¥) not to be an eigenvector of
Tr T while the displayed terms are the one we obtain ignoring the second term in the rhs
of both (3.150) and (3.151). The condition that these undesirable terms vanish gives us
a set of equations for u; and v;. There is however a shortcut to arrive at these equations
provided we know that these terms can indeed be killed. The argument is the following —
each of the two last terms inside the big parentheses came from the diagonalization of a
product of @ = # — iP. The diagonalization of such a product of operators must yield a
polynomial in 6 therefore the residues of the apparent poles which seem to be part of the
eigenvalue for § = u; (or v;) must vanish. This implies

J L
T U;— Uy — 1§ u; — 6

1 = L < 3.152
guj—ui—i-il;[luj—@a—i’ ( )

Ty L

v — v — 1 v; — 0
1 = I I 3.153
gvj—vm%l_[luj—@a—i ( )
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Furthermore (3.147) reads

L L 05— i+ i P O — v+
ezmoﬁsmhwﬁg H 502(05 _ ea) H 596 _Zu' H 596 _ZIU‘ =1. (3154)
a8 i=1 ' '

After the trivial shift (u,v) — (u+1i/2,v 4 i/2) we finally find the complete set of Bethe
equations

—iusi O —uj; +1/2 Op — v +1/2
ipsinhmfo 2 . J 1
e ﬁ|¢|a 52 (6 — 05) |j| Fr— |k| o B1)

0. —i/2 i
1 - Hu] O —i/ Hu] w; +1 ’ (3.156)

3 u]—ﬁg—i-z/Q#Ju]—ul—z’

vk—ﬁﬁ—i/Q Uk—Ul—i‘i
1 = . 3.157
E[vk—05+i/2ll;£vk—vl—i ( )

They have a clear physical meaning. u’s and v’s are the Bethe roots appearing from the
diagonalization of (3.146) and characterize each quantum state. A quantum state with no
such roots corresponds to the highest weight ferromagnetic state where all spins of both
kinds are up. In this case we can drop the last two equations and the first one is of the form
(3.97). Adding a u (v) root corresponds to flipping one of the right (left) SU(2) spins, thus
creating a magnon. This is particularly clear from equations (3.156,3.157) which in the
limit A — 0, when 6, ~ 0, are precisely the usual Bethe equations for the diagonalization
of an Heisenberg hamiltonian for the periodic chain of length L, originally solved by Hans
Bethe [39], provided we identify the momentum of magnons with

el-p_u+i/2
Cu—i/2°

(3.158)

The left and right charges of the wave function, associated with the two SU(2) spins are
given by
Qr=L-2J,, Qr=L-2J,. (3.159)

Thus, in sum, equations (3.155)-(3.156) describe the entangled scattering of physical par-
ticles and the corresponding isotopic spin waves.

3.7 Back to N =4 and Nested Bethe Ansatz

In the previous sections we encountered what are probably the two most important quan-
tities in quantum integrability — the R-matrix and the S-matrix. They are mathematically
very similar (if not equivalent) as they are both defined as operators acting on a product of
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two vector spaces and obeying the Yang-Baxter triangular relations (3.33) and (3.94). The
main difference is that for the S-matrix we often impose additional physical constraints
such as crossing symmetry with no (obvious) counterpart in the R-matrix construction.

As explained in the previous section the R-matrix can be used to build integrable spin
chain Hamiltonians. In particular, by taking n derivatives of the logarithm of the transfer
matrix we generate Hamiltonians of range n.

The S-matrix, on the other hand, describes the two body scattering of integrable the-
ories which, due to the factorizability property arising from a large number of conserved
charges, defines the scattering between any number of external particles. When M particles
are put in a big circle of perimeter L the quantization of the momentum of these particles
is given by (3.99) which can be reduced to a diagonalization problem absolutely equivalent
to the diagonalization of an inhomogenous spin chain as described in the previous section.

The obvious question:

How do these objects appear in the study of N/ =4 SYM at higher loops and for the full
set of PSU(2,2|4) operators?

3.7.1 R-matrix

The product of two SU(2) spin 1/2’s yields

1®1—0@1 (3.160)
2792 ’ '

while the product of two vector representations in SO(M) gives

M2—M M?-1
MeM=16 ——&—F—. (3.161)

From (3.160) we conclude that if we want to construct an operator with SU(2) sym-

metry acting on a product of two spin %’s it must be built out of the projectors

1 1
Z(1=-pP) . =
2( )72

into the anti-symmetric (spin 0) and symmetric (spin 1) spaces. Indeed the SU(2) Heisen-

(1+P), (3.162)

berg spin chain Hamiltonian (3.22) and the corresponding R-matrix (3.38) are constructed
precisely out of this two invariant tensors.
Similarly, the decomposition (3.161) implies the existence of three invariant tensors,

1 1 1 1
—K,-(1-P), =-(1+4P)——K 3.163
KL S(U=P) (4 P) - o (3163)
projecting into the trace, anti-symmetric and symmetric traceless spaces obtained from the
product of two vector representations. Once again the Minahan-Zarembo SO(6) Hamilto-

nian (3.16) and the corresponding R-matrix (3.48) are build out of these structures.
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The tensor structures available for the PSU (2, 2|4) spin chain appearing in N = 4 SYM
are in infinite number because the symmetry group is non-compact and the representation
is infinite dimensional. The product of two fields in the field strength multiplet decomposes
into an infinite sum of irreducible modules

Ve® Ve =V (3.164)

J=0

so that the 1-loop spin chain Hamiltonian and the corresponding R-matrix ought to be built
from the projectors P; into these modules. Indeed the full one-loop Dilatation operator
was found to be given as [19]

H=>" (XJ: %) Pl it (3.165)

and the R-matrix

R(u) = ;(—ngg:j ; 22;?8 j 237% (3.166)

obeys the Yang-Baxter relation (3.33) and reproduces — by a transfer matrix construction
as described in section 3.2 — the A’ = 4 1-loop Dilatation operator.

There are four type of R-matrices in the literature. Those of the type we have seen
so far where the ratios between the pre-factors of the several invariant tensors are ratio-
nal functions of the spectral parameter u are called rational R-matrices. Then we have
the trigonometric and elliptic R-matrices where these rations are expressed in terms of
trigonometric or elliptic functions. They will play no role whatsoever in our discussion.
Then there are all the other R-matrices which we group together and call exotic. The Shas-
try’s Hubbard R-matrix [50] and Beisert S-matrix [51, 52] based on the extended SU(2|2)
symmetry are examples of such exotic matrices (actually they can be closely related so
they are rather a single example of such matrices). To analyze the one-loop spectrum of
N = 4 and to study most spin chains models in condensed matter, the rational R-matrices
are enough and in this subsection we will stick to them.

Let us then consider with great generality the diagonalization of the transfer matrix

T(u) = TroRor(u) . .. Roy (u) (3.167)

for rational R-matrices symmetric with respect to some Lie (super) group of rank r with
Cartan matrix M,,. The physical space at each site 1,... L can be either the space where
the fundamental representation acts (as seen in the previous sections) or some other space
where a representation with Dynkin labels V, lives. Then each quantum state is param-
eterized by a set {u,;} of Bethe roots where a = 1,...,r refers to the Dynkin node and
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r=K+M-1

K+M

< o >

Figure 3.10: For su(K|M) super algebras the Dynkin diagram is not unique. The several possible
choices can be represented as the paths going from the up right corner (M, K) to the origin always
approaching this point with each step. The turns are the fermionic nodes whereas the straight
lines correspond to the usual bosonic nodes. Different paths will correspond to different sets of
Bethe equations which are related by fermionic dualities which flip a left—-down fermionic turn

into down-left turn or vice-versa [53].

7 =1,...,K, where K, is the excitation number of magnons of type a. The Bethe equa-
tions from which we find the position of these roots are then given by

N L r .
ua,j + %V;z) Qb (ua,j + %Mab) (
@- __ 2 3.168)
<ua,j - Qva ;)l;[l Qb (ua,j - §Mab)

where .
Qa(u) = J ] (v = uay)
j=1

are the Baxter polynomials. In fact, contrary to what happens for the usual Lie algebras,
for super algebras the Dynkin diagram (and thus the Cartan matrix) is not unique. Take
for example the su(K|M) super algebra. The different possible Dynkin diagrams can be
identified [53] as the different paths starting from (M, K) and finishing at (0,0) (always
approaching this point with each step) in a rectangular lattice of size M x K as in figure
3.10. The turns in this path represent the fermionic nodes whereas the bosonic nodes are
those which are crossed by a straight line — see figure 3.10 (the index a goes along the path
as indicated). The Cartan matrix M, is then given by

Moy = (pa + pa+1) Oab — pa+15a+1,b - pa5a,b+1

where p, is associated with the link between the node @ and a+ 1 and is equal to +1 (—1)
if this link is vertical (horizontal). The Bethe equations corresponding to the different
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choices of Cartan matrices are equivalent and related by the well known fermionic dualities
[54, 55, 53].

For example, for an SU(2) spin s chain we have a single Dynkin node with M;; = 2
and the spin s representation corresponds to the Dynkin labels V,, = 2s. Thus we get

\L M .
(uﬂrzs) :HM L j=1,.... M (3.169)

U; — 18 U; — Up — 1
7 2

and the equations we found in (3.77) are those where the physical space is in the funda-
mental representation for which s = 1/2.

Another example, the SO(6) spin chain with spins in the vector representation 6, is
obtained from

2 -1 0 0
My=[ -1 2 -1 ,v=[1 (3.170)
0o -1 2 0
so that
K1 . Ko i
QS | [ LR AP A (3.171)
AR S e et AU R CV R
N K K K :
(uzj + %) T Ve Mk T ﬁ Uz — Usk F1 ﬁ U2j Uk — 5 (3.172)
Uz j— 3 oo — Uk + g hy Ui T U2k Lo Ugg —Usk + g
K> i K3 .
1 = H Usj — U2k — 3 H Uz — Uzk +1 (3.173)
g1 Uy — Uzt Usg — Uk —

which are indeed precisely the Bethe equations diagonalizing the Minahan-Zarembo spin
chain Hamilonian (3.16) [56, 57, 9].

Finally, the seven (the rank of PSU(2,2[4)) one-loop N' = 4 Bethe equations which
particular diagonalize (3.165) follow from the Cartan matrix and Dynkin labels

My, = -1 2 -1 s Vo= 6aa, (3.174)
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and therefore read [58]

Ky i
Uig — U2+ 3
1= [/ (3.175)
Ko . Kg 1 K )
U — U2 — 1 Uz,k—U&'—i‘— Uk — Ul,“'——
1 =] 11 ~—2 1] 2 (3.176)
G U2k T U2, T Ug g — Ugj = g 5 Unk ULy T g
Ko i Ka i
Uz — U2t 3 U3k — Usj — 35
1 =1] — 11 L2 (3.177)
oy Usk — Uz — 5 50y Usk — Uaj + g
i\ L Ky K. i K ;
1 3 1 5 1
(U4,k + 5) _ H Uy — Ugj+ 1 Ugp — U35 — 3 H Ugr — Usj — 3 (3.178)
Ugg — 5 7& U = U — 05 Ugp — T35+ 5 55 Uak — Ts5 + 3
i Ka i
Usk — U6+ 5 T Usk —Udj — 3
1 = H 1] 2, (3.179)
o1 Usk — Ueg — g iy Usk T Ud +3
Kg . Ks i K7 i
1 — Huﬁk_u&j Huﬁk Us ; + §Hu67k‘_u7,j+§ (3.180)
- i i\
g Uk — Uej H U Uk — Usj — 5 T Uk~ UTj g
Ke i
Uz — Usj + 5
1= 2. (3.181)
i1 Ut — Usj — 3

from which the spectrum is obtained though

=S -9 (3.182)
i uj;+1/4

Of course, since this is a supergroup there are many possible choices of Dynkin diagram
(i.e. Cartan Matrix) which would give equivalent set of Bethe equations, related by the so
called fermionic dualities as described above.

Despite their apparent complexity we should keep in mind that by solving these equa-
tions we are obtaining the full 1-loop spectrum of N' = 4 supersymmetric Yang-Mills theory
avoiding the task of computing dozens of Feynman graphs which, even at 1-loop, is quite
an involved and painful task.

What about more loops? When we consider higher orders in perturbation theory we
obtain a next-to-nearest neighbors Hamiltonian. It would be excellent if such long range
would simply come from considering more derivatives of the log of the transfer matrix
like in (3.52). This optimistic scenario was not yet realized, certainly not for the full
supergroup, and not even for any of its smaller subsectors. So far, integrability is to be
thought perturbatively as explained in section 3.5.2.

Actually, the Dilatation operator itself is only known to a few loops, not many at all.
For the SU(2) sector it is known up to four loops [59] but this is absolutely exceptional
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compared to the remaining sectors. See [60, (1] for some very interesting works concerning
larger subsectors.

We could imagine that a fundamental R-matrix exists but it is not directly related
to the long-ranged Hamiltonian. A particularly appealing possibility would be that some
extra hidden local degrees of freedom exist and the long range interactions we perceive
would rather be the effect of integrating out these fundamental degrees of freedom. This
scenario finds compelling evidence at strong coupling in [62, 11, 63, 14], at weak coupling
in [64] and for general coupling in [65]. In [62, 11, 63, 14] quantum sigma models describing
the S™ subsector of AdSs x S° type IIB superstring were seen to reproduce the long range
conjectured AFS string Bethe equations [60] at strong coupling when the rapidities (6’s)
of the relativistic particles were integrated out thus leaving an effective Hamiltonian for
the isospin degrees of freedom. In [64] the BDS equations (3.135) [43], which are known to
describe the SU(2) sector of the supersymmetric gauge theory spectrum up to three loops,
were shown to be equivalent to the Hubbard model at half filling where again integrating
out the momenta (¢’s) of the electrons yields an effective long range Hamiltonian with
SU(2) symmetry for the spins of the electrons. No definite success was achieved so far for
the full PSU(2,2/4) group.

3.7.2 S-matrix

Let us now consider the diagonalization of

Since, as explained before, the R-matrix and the S-matrix are basically the same object
from the mathematical point of view, the periodicity equations (3.183) are equivalent to
the study of inhomogeneous spin chains where the inhomogeneities are the 6;.

When we analyze this problem we also find some equations for the diagonalization
of the transfer matrix — they are the same as in (3.167) except for the present of the
inhomogeneities — but what we do with the eigenvalue of the transfer matrix is completely
different. In (3.167) we typically take the logarithm of the eigenvalue of the transfer matrix
to read of the spectrum of a spin chain. In (3.183) we evaluate it at u = 6; and equal
this expression to e?®)£ to quantize in this way the momenta of the physical particles.
Obviously the length of the circle £ and the number of physical particles L should not be
confused. The spectrum is then given by a sum of dispersion relations €(6;).

Notice that there are two types of Bethe equations here: The genuine Bethe equations
which diagonalize the inhomogeneous transfer matrix and a last equation — called middle
node equation — obtained by equating the eigenvalue of the transfer matrix at v = 0; to
eP0)L  The genuine Bethe equations differ from the usual spin chain Bethe equations
(3.168) only by the fact that there are inhomogeneities which will appear in the potential
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terms. These Bethe equations are given by

L T
Uq,j — 0 + V Qb ua] + Mab)
. . 3.184
r:‘[ Uq,j — n H Qb Uq,j — ZMab) ( )

The middle node equation is less universal and is not completely fixed by symmetry. It
reads

Qb (0 + £V3)
sz On) 2%
| | So(0n, 0m) bl |1 b( ) _%. b) . (3.185)

For example in the SO(6) sigma model we have particles in the vector representation and,

m#n

using again (3.170) we trivially generalize the SO(6) spin chain equations to the asymptotic
Bethe ansatz equations for the relativistic particles of the sigma model:

Uy U+ 12w u
1,7 — ULk 1, — W2k — 5
1= ][> [ 2 (3.186)
Uy j — UL — 1@ - a
htj W13 1k pop Ut — U2kt g

K

L i i Ko . K3
HU2,j—9n+§ - Hu2,j_u1,k_§HUQJ‘_U2k+ZHu2,j_u3,k 2’3187)
——= =

i U2 = On — 5 b U2 ULk g g g T Uz T L Uay Uk
Ko Uz s — U o 1 K3
1 - H 3,J 2,k 2 H us,j — Ugk + i (3 188)
. — U — 1
k=1 u-?),] 2 k? + 2 k;ﬁ 7.] 37k
L K> u i
. . 25 T 3
eszSIHhGn —_ H So(em’Q H —3 (3189)
m;én 1 u27] 2

Yet another example, the SO(4) = SU(2) x SU(2) sigma model described in section 3.6 is
given precisely by two SU(2) inhomogeneous Bethe equations (3.155) and (3.156) plus a
middle node equation (3.157).

We will shortly see that this last example is highly instructive as it carries many resem-
blances with what we find in A/ = 4 SYM. Let us recall the spectacular successes which
arose from the S-matrix approach in N' =4 SYM. The key idea is to look at operators like

tr(Z2...ZXZ ... ZXZ ... 22) — |17...T11...111...11) (3.190)

as a vacuum (the Z fields) on top of which particles (in this example the X fields) propagate
[38]. The symmetry of the S-matrix scattering these particles, also known as magnons, is
the subgroup of the full PSU(2,2|4) symmetry which leave the vacuum invariant. Actually
the symmetry of N = 4 is the semi-direct product of PSU(2,2|4) with the several gauge
transformations. When we precisely keep track of these gauge transformations we arrive at
the symmetry group for the S-matrix as being SU(2[2)? extended by two central charges
51, 52, 67, 68].
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At 1-loop the central extension is irrelevant and therefore, before continuing, let us
take a second look at (3.175-3.181) and make the following observation. We can think
of these seven equations as two SU(2|2) wings plus a middle node equation — the first
three Bethe equations (3.175-3.177) and the last three (3.179-3.181) are the two SU(2|2)
inhomogeneous spin chain equations and the middle node equation (3.178) is the analogue
of (3.185). To compare (3.181) and (3.185) with (3.175-3.181) we identify

L & Ki, (3.191)
L & I, (3.192)
Qn U4y, (3 193)
o6, Or) o Lk T Maj T (3.194)

Ug e — Ugj — 2

On the other hand, at one loop we were also able to understand the seven N/ = 4 Bethe
equations as stemming from the diagonalization a spin chain Hamiltonian with symmetry

group PSU(2,2,|4) of rank seven. Obviously
T=14+2x3.

As already anticipated in the previous subsection we are able to understand the all loop
equations in the SU(2|2) language but to date no satisfactory all loop PSU(2,2|4) R-matrix
was found.

Let us continue our general discussion of the all loop S-matrix. To find this S-matrix we
would proceed like in the previous section — first we would start to write the most general
ansatz compatible with the index structure of the scattered states. This is the analogue of
(3.139). A proper contraction of all the indices involved can be translated into the fancier
statement that

[J,S]=0 (3.195)

where J are the residual bosonic generators (Lorentz and R-symmetry transformations)
of SU(2|2). Next we could try to constrain the several elements in the expression of the
S-matrix — the analogue of h and g in (3.139) — by imposing the same symmetry equation
(3.195) for the several fermionic generators. It turns out that this fixes (up to an overall
function) the (44)” entries of this matrix [51, 52, 68]! This S-matrix was directly computed
from worldsheet Feynmann diagrams at tree level in [69] and up to two loops in [70, 71]
in a particular scaling limit [72] with perfect agreement with the S-matrix guessed by the
bootstrap method based on the symmetries of the problem.

The next step in the study of the SO(4) sigma model in section 3.6 was to impose the
Yang-Baxter triangle relation on the S-matrix in order to constrain it even further. Notice
that here everything is fixed before the analogue step! The only thing we can do is to
check whether the SU(2|2) extended S-matrix obeys or not the YB equation. There are
two possible scenarios:
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1. If it does not, it would mean that there are no SU(2|2) extended integrable models
because YB is a necessary (although not sufficient) condition.

2. If we are lucky enough and the S-matrix does obey YB, then this means we have
a chance that the model is integrable. Notice that we have not proven in any way
that the many body scattering factorizes in a product of two body S-matrices and
thus we have not ensured the model to be integrable but rather we have checked an
important necessary condition for this to be the case. (See [73] for an explicit check
of factorizability of the S-matrix at strong coupling.)

Of course it is the second scenario which turns out to be realized [51, 52, 68].

The following step in the study of the SO(4) sigma model was to fix the overall dressing
factor multiplying the S-matrix. This is quite a subtle point from the N' = 4 point of view.
For example the existence of crossing symmetry for a spin chain model seems hard to
justify. On the other hand we have AdS/CFT. From this duality large spin chains with
L sites are dual to string states with angular momentum L. Such states are described in
the light cone gauge by a two dimensional field theory living in a large circle of length
proportional to L. This two dimensional theory is not relativistic and therefore crossing
symmetry, if it exists, will not be as simple as (3.141). The analogue of this relation was
found by Janik in [74]. The idea was to translate crossing relations like (3.141) into solid
Hopf-algebraic relations using the anti-pode. Then, when studying the light-cone gauged
string theory we realize that, although there is no obvious relativistic symmetry as for
SO(4) sigma model, the mathematical Hopf structure is still there and thus we can write
the analogous of the crossing relation for this theory.

To solve it is not at all a trivial business since, as for the SO(4) sigma model, there are
infinitely many solutions [75] and one of them must be singled out. A proposal for such
solution was made in [24]'.

Furthermore, the Dilatation operator is part of the symmetry algebra and it turns out
that symmetry alone fixes the dispersion relation to

€ (p) = \/1 + f(g) sin® g : (3.196)

and there is convincing evidence that

f(g) = 16¢ (3.197)

for all values of the t’Hooft coupling.
Knowing the S-matrix and the dispersion relation of the several magnons we simply
need to diagonalize (3.99) and read of the spectrum from (3.134). This was what we did to

LAt this point we must again again refer to the disclaimer at the end of section 1.3.
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arrive at (3.155)-(3.157). The same procedure applied to the Beisert S-matrix yields the
Beisert-Staudacher equations [35] yielding the full asymptotic spectrum of AdSs/CFTy.
These Bethe equations are a deformation of the one-loop Bethe equations through the

1 1 1 '
x+—:E,xi+—:—(uﬂ:1).
r g

The BS equations then read

introduction of the map

s ﬁulk u2]+;ﬁ1 1/:L’1ka:j{j
p V1= 1wy
Ak

K3 i Ki i
| - HUQk ZHU2,k—U3,j+§ Uk —U1j+ 5
= i )
U2k—u2va e Uzk—usvj—%:l Uk — U1j — 3
1 — Husk—u2] T T3k — $U4J
o i _
1 Usk — U2 — 5 55 I3k x4g

L
xik . us Ug — Uq,j +1 2
— = H — (T4, Ta,5) (3.198)

itk Uy — U4,J )

K - Ky — Ks — K+ -
o H 1— 1/374,;33717]' H Ly — X35 H Ly — L5, H 1— 1/374,k557,j
T T T T ;
oL Vg oy, — sy iy Ty — sy g 1= 1/ 00
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= i
i 1 Usk — Us,j — 2] 1 L5k —

7
Ugk — U7,j +

Kg . K
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ik 6,k 6,7 j=1 6,k 5,7
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i K4 +
1 — HU7k u67] %Hl_l/x7’kx4’j
= ; —= .
L Urk — U6y — 5 oy L= 1wty

The spectrum of all conserved charges is then given by the momentum carrying roots uy
alone from

ot i 1 1
= , = — 3.199
Z qn(u4,]) y dn n—1 ((er)nl (l’)nl) ( )
7=1
and the spectrum of anomalous dimensions (or string states energies) follows from
E=299Q,. (3.200)
The BES dressing kernel [24] can be written in a simple integral form as [70]

iij

s O = x(a, o) + x(@y, 2y) — x(af @) = x(z, 7)) — (k< )
(3.201)

UBES(“jauk) =e€
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with

dz [ d
X(z,y) = —zjf o f =2 log T(1 +ig(z1 + 1/21 — 20 — 1/25))  (3.202)
(x — 21)(y — 20)

integrated over the contours |z;| = |z3| = 1. This kernel interpolates between
A—0
ogrs(u,v) = 1, (3.203)

at weak coupling and

_ — (up—u;)
1—1/zfz; (zpz; —1afal —1
A—00 k< k< k< _
5 = Cug), (3.204
7oes(ti ) = T ( vty — lafa; —1 Tarsliy ) 5200

for large values of the t’Hooft coupling. oapg is the AFS dressing kernel proposed in [66]
in the study of the quantum string Bethe equations for the AdSs x S° string. The BES
kernel can be written in several ways. Above we used the integral representation of Dorey,
Hofman and Maldacena [76]. Another useful writing of the BES kernel in terms of the
charges introduced above (3.199) is

olujup) =™ =Y egla(@)as(e) — a(ze)as(z))] (3.205)

r=2,s=r+1
where the coefficients ¢, ; are given in [75, 24]

I+ (=1 (r—1)(s—1)
T (r+s—2)(s—r)

Crs = G0ry1,s + O(1/g) . (3.206)
The leading order yields the AFS phase [66] and the next to leading order produces the
HL factor [77]. Notice furthermore that the product of the BES kernel in (3.198) can be
written as [60]

Ky
[ omes (va, va;) = exp ( > e (q(zar) Qs — qs(564,k)Qr)> , (3.207)

7=1 r=2,s=r+1

Despite the fact that the S-matrix is known to all loops in the t’Hooft coupling we should
always keep in mind that these equations are asymptotic and do not capture wrapping
effects which start at order g2

In the next section we will study an important limit of Nested Bethe ansatz equations
and analyze some important dualities.
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3.8 Solutions of Nested Bethe ansatz equations

The goal of this section is to provide us with some intuition about what are the configu-
rations of Bethe roots emerging from systems of nested Bethe equations. We will see that
there is an interesting regime where the Bethe roots organize into single roots, stacks, cuts
and cuts of stacks. We shall consider two simple spin chain models which already capture
all the non-trivial features found in more complex equations such as the Beisert-Staudacher
Bethe ansatz.

3.8.1 SU(2), spin chain. Scaling limit and condensates.

In this section we will consider the solutions to an SU(2) spin s whose Bethe equations
are given in (3.169). The s = £1/2 cases appear in the study of N'=4 SYM at one loop.
The choice s = 1/2 appears in the study of the SU(2) sector in the computation of the
anomalous dimensions of operators of the form (3.190) while for s = —1/2 we obtain an
SL(2) non-compact spin chain relevant for the diagonalization of operators made out of a
complex scalar Z and covariant derivatives D in some chosen light-cone direction.

To study the solutions to (3.169) we take the log of these equations. Obviously

e’ =eY = x=y+2mn (3.208)

so that for each j = 1,..., M we have a possible choice of the branch log parameterized
by an integer n;. We can thus write the Bethe equations as

F(uj) = 2mn; + Y flu; —ug) =0 (3.209)
k#j
where I . . N
— 18 u 7
F Z1 -1 . 3.210
(u) = oguﬂs,f() - log —— (3.210)

In the definitions of f and F' we chose the branch of the log in such a way that these
functions decay for large real arguments. For example, f(u) is plotted in fig. 3.11a as a
solid line. The dashed line in this figure corresponds to the curve 2/u which can be clearly
seen to approximate f(u) for large |ul.

We can now use our physical intuition to understand where the Bethe roots will organize
themselves in the complex plane. To do so we think of (3.209) as the static equilibrium
condition for the positions u; of M particles. In this language F'(u;) is an external force
felt by each particle located at u; and —27n; is a constant force exerted on particle j.
Finally f(u; — ux) is an interaction force by particle k£ on particle j.

We first consider all mode numbers n; to be the same, n; = n > 0, and take s to be
negative. We also ignore the self-interactions f(u; —uy) in a first approach to the problem.
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Figure 3.11: a) Left: Plot of f(u) = ¥ log %t for real values of u. If we think of f(u) as a

force then it is repulsive and falls of at lz)g di:tz;nces as 2/u typical of 2d coulomb interactions.
b) Right: Vector plot of (R(f(u)),(f(u))) in the complex plane. We see that f(u) repels in the
horizontal direction and attracts in the vertical direction. Thus blobs of particles are squeezed
vertically and stretched horizontally leading to real cuts as described in the text. See figure 3.14
for an example of such cut distribution. If the force is instead —f(u) then it will create cuts
oriented vertically because all arrows in this figure are reversed. See figure 3.13 for some typical
configurations.

For negative s the plot of the external force F'(u) will look exactly like a rescaled version
of the plot of f(u) since F(u) = Lf(u/|s|) in this case. Thus, if we sprinkle some particles
in a region of positive u, say at u ~ 1, the external force F(u;) will tend to push these
particles and send them to u = +00. However each particle feels an additional force —27n
pushing it towards the origin and therefore an equilibrium is reached. In figure 3.12 we
plot the effective potential for n = 1 and L = 10. If there was no self interaction the
particles would simply move towards the solid point in figure 3.12. Notice that they would
stay in the real axis because the external force has negative/positive imaginary part in the
upper/lower half-planes as seen in the vector plot in figure 3.11. This force compresses in
the vertical direction while stretching in the horizontal one.

Now we turn on the self-interactions f(u; — uy). The particles will start to repel each
others with a force depicted in figure 3.11. This will spread the particles close to the equi-
librium point marked in figure 3.12. By the same line of reasoning as before, the interaction
between the several particles will distribute them along the real axis and constrain them
to have zero imaginary part. In figure 3.14a an example of such configuration is plotted.

After this analysis it is clear what happens in the generic situation with several mode
numbers. Let us group the M mode numbers {n;} into K large groups of identical integers
n4 with A =1,..., K. Then, particles belonging to the same group with the same integer
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VW=-fFu-2rn (L=10, s=—-1/2, n=1)
100

15}

—20L

Figure 3.12: The external coulomb force pushing the particles to infinity is balanced by the
constant force —27n coming from the mode numbers. In the figure we plot the effective potential
and the corresponding equilibrium point as a solid dot for L = 10 and n = 1.

n4 will feel the same external potential and therefore lie close the the same equilibrium
point. The self-interaction between them will simply stretch the Bethe roots in the real
direction close to this point. Thus, we will have K groups of Bethe roots distributed along
disjoint straight line segments in the real axis. As described below, when K is large, the
particles condense into K real cuts.

Let us now turn to the SU(2) case where s = 1/2 is positive. In this case we write the
equilibrium condition as

| Uj — U — 1
_O _ _—
i B, —i)2

~1
— 2 E —1
T L R T T

k]

—0 (3.211)

from which we see that the external force is the same as before. Therefore, in a first ap-
proximation, before considering the particle self-interactions everything is as above. Roots
with the same mode number will position themselves at a minimum like the solid dot in
figure 3.12.

However, when we bring the self-interaction between the roots u; and u; onto stage,
the situation is quite different compared to what we had in the SL(2) chain. Now, due to
the minus sign in the last term in (3.211), this force is obtained from the vector plot in
figure 3.11b by flipping the direction of all arrows. It is now attractive in the real direction
and repulsive in the imaginary one. Thus a blob of roots close to the solid point in figure
3.12 will be squeezed horizontally and stretched vertically — we will therefore obtain a cut
crossing the real axis perpendicular to it.

This cut will then bend and form an umbrella like shape as depicted in figure 3.13a
[78]. This is again clear from the static equilibrium picture: the roots close to the real axis
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Figure 3.13: In the SU(2) electrostatic pictures the particle attract in the horizontal direction and
repel in the vertical direction. They also feel an external force with opposite behavior. Therefore
the cuts will orient themselves vertically. When there is a single cut we find the umbrella shaped
cuts as depicted in the left. This is because the roots close to the real axis feel the horizontal
repulsive external force more strongly than the roots in the tails. For two cuts we obtain the
picture in the right. The roots attract one another horizontally and therefore the middle of both
cuts want to approach each other leading to the observed deformation of the cut to the right.

are closer to the origin and therefore feel a larger repulsive external force. Thus they will
be pushed to the right more that the endpoints of the cut.

For the generic situation where the Bethe roots are grouped into K sets of roots sharing
the same mode numbers, we obtain K umbrella cuts in the complex plane as represented
in figure 3.13b for K = 2.

A natural question one might pose is how bent are these umbrellas? It depends dramat-
ically on where we are trying to put these cuts. Recall that the position u (interception
with the real axis) of the cut is given in a first approximation by

L. u+i/2

| —9
i Bu—ip ™

: (3.212)

i.e. it is dictated by the choice of the mode number n. If L is large there are two natural
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choices for n:

n ~ L, Choice A,
n ~ 1, Choice B.

Choice A is the most common in the condensed matter literature. When n ~ L the
equilibrium position marked by the solid dot in fig. 3.12 is given by u* ~ 1 and the
umbrellas are almost absolutely straight vertical lines with Bethe roots separated by i. To
see this consider a configuration with two Bethe roots in the general spin s SU(2) system,

(u1+iS)L:u1—UQ+Z" (ugﬂ's)L:LW (3.213)

Uy — 18 U — Uy — ¢ Uy — 1S Uy — U] — ¢

Let us write u; 2 = u & vi where w,v > 0. Then it is clear that
U + 18 L
UL — 1S

where by > 1 (< 1) we mean exponentially divergent (suppressed) in the parameter L.

> 1, fors>0 (3.214)

< 1, fors<0

This means that the roots u; and us must be such that the r.h.s of the first equation in
(3.213) is also exponentially large (small) if s > 0 (s < 0). Thus we must have

lug —us —i| < 1, fors>0, (3.215)
or
lup —us+i| < 1, fors<0. (3.216)

Equation (3.215) means that the two Bethe roots in the SU(2) chain are very rigidly bound
and their separation is precisely u; —uy = ¢ with exponential precision. The same analysis
could be carried for more than two roots and the conclusion would be that we can have
bound states of M particles separated by ¢ up to exponentially suppressed corrections:

uj:u+ij,j:—%,...,%. (3.217)
Thus we see that the SU(2) umbrellas in case A are not bent at all.

On the other hand, equation (3.216) is impossible to satisfy because our starting hy-
pothesis was that w; — uy = 2v¢ with v > 0. This is precisely as predicted since for
non-compact spin chains we expect the solutions to be real as explained above.

Next we consider case B. The mere existence of another scenario might seem odd at
first since the argument leading to the conclusion that the roots must be separated by i
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seems spotless. It is not so. The key difference between case A and B is that in the former
the equilibrium position following from (3.212) is u ~ 1 whereas in the latter we have
u ~ L. In case B equation (3.214) does not follow and we have instead

(“1 i Z:S)L ~ exp (z@) —0(1). (3.218)

U — 18 U

Therefore the r.h.s of the first equation in (3.213) no longer needs to explode and we can
have complex roots which are not rigidly separated by .
These configurations are characterized by the fact that the Bethe roots scale with the

size of the chain,
u; ~ L. (3.219)

Moreover, for the particles to condense into cuts, we also need large number Bethe roots. If
M,, witha =1,..., K, is the number of roots on each cut, the scaling limit is characterized
by (3.219) together with

K,/L fixed. (3.220)

This scaling limit was first introduced by Sutherland [79] and rediscovered in the context
of the AdS/CFT correspondence in [78]. In this regime the momenta of the magnons is

very small
1 P41 2
Tlog 4t L 25 o)1) (3.221)
7

Uj — 1S Uj

and so is the total energy of the state

E~Zu +1/4 ZZ O(1/L) (3.222)

which means that we are studying some semi-classical limit of low-lying long wave length
fluctuations around the ferromagnetic vacuum with £ = 0. Indeed, in this limit, the theory
is well described by a Landau-Lifshistz model with coupling 1/L [80, 81, 82].

In the rest of this section we will consider a simple configuration of Bethe roots corre-
sponding to a single SL(2) cut in the scaling limit. We will solve this problem by several
different means, each of which will teach us something different, useful for the discussions
that will follow. In the scaling limit the Bethe equations (3.209) become

1 2 1

. L Zi — 2
7 hri Tk

= 27mn; (3.223)

where z; = u;/L and we consider n; = n for all j so that

1 2 1
_'_

— 2mn (3.224)
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and we will therefore obtain a single real cut as described above. Finally, the energy of the
corresponding state is read from

g B
j=1 ]

Laguerre Polynomials

A very elegant way to find the exact position of the Bethe roots {z;} solution of (3.224)
uses the baxter polynomial

M
Q) =T](z— =)
j=1
By virtue of (3.223), this function obeys
1Q"(z) 1en 2 1
2 —— =2 — — 3.226
LQ(z) L Z 2 — 2 o Z; ( )
k#j
which means that
R(z)=2Q"(z) = LQ'(2) (2mnz — 1) (3.227)
is zero at z = z; for j = 1,..., M. Since it is clearly an M-th order polynomial it must

be equal to Q(z) up to a multiplicative constant which can be easily fixed from the large
z asymptotics,
R(z) = —2mnLMQ(z) . (3.228)

and therefore, combining these two equations we obtain
2Q"(2) = LQ'(2) 2mnz — 1) + 2enLMQ(z) = 0 (3.229)

which is nothing but the defining differential equation for the generalized Laguerre poly-
nomials. Thus we obtain Q(z) = L (27nLz) so that the ezact positions of the Bethe
roots following from (3.224) are the zeros of the Laguerre polynomials,

L' (2mnLz) =0. (3.230)

Quadratic equation I

In this and the next subsections we will approach the solution of the electrostatic problem
(3.224) using the resolvent

G(z) = %Z ! (3.231)
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Figure 3.14: a) Left: Condensation of an SL(2) cut into a dense cut. The solid line is
the analytical prediction for the density of Bethe roots in the continuous limit whereas
the dots are the numerical values. b) Right: The exact positions of the Bethe roots
obeying % + %Zk oy zj—;zk = 27mn are the zeros of the generalized Laguerre polynomials,

LEt(2mnLz;) = 0.

instead of the Baxter polynomial Q(z), the reason being that this quantity turns out to
have a nicer large M, L limit. Notice that the Bethe roots which were encoded in the zeros
of Q(z) are now located at the poles of G(z). It is trivial to obtain a differential equation
for G(z). For example we can use the fact that

1Q'(2)

G(z) = — 3.232
©= 150 (3.232)

together with the differential equation (3.229) for Q(z) to obtain

1 2mnM 1
G(2)? — (27?71 - ;) G(2) + WIZ = —EG,(Z) (3.233)
In the large L limit we can simply drop the r.h.s. and solve the quadractic equation to get
1 1 1 9 8mnM

G(z) = 3 (27?71 - ;\/(27?712 - 1) — 7 z) (3.234)

Notice that in the continuous limit the poles in (3.231) condensed into the square root in
this expression. Indeed, we can easily obtain the density of Bethe roots. Since

1 1 .
i P; Fimd(x) (3.235)
we have o oG 0
o) = —GEH0) = Gz = i0) (3.236)
2mi
where
LM
o) =+ D 6(z—z). (3.237)
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The resolvent (3.234) is discontinuous between the two branch-points of the square root
and the discontinuity is

p(z) = L\/— (27nz —1)% + SWZMz. (3.238)

27z

This density is plotted in figure (3.14) and seen to fit perfectly the corresponding numerics.
Notice also that the energy (3.222) is simply given by

92 2
E= —%G'(O) (3.239)
so that using (3.234),
8g°n*m* M (M + L)
E= = . (3.240)

Before moving to the next subsection let us mention a lateral comment concerning the
square root in (3.234). It is always a delicate business to properly choose the square root
branches. We have a cut uniting the two branch points as in figure 3.14a. At z = 400 we

have
1\/(27mz 1) - 87TZMZ P — <% + 1) +0O(1/22) (3.241)
z Z
so that 1 M
G(z)=-—+0(1/2%) (3.242)

2 L
which is precisely what we should get from the definition (3.231). On the other hand, in
order to reach z = 0, we cross the cut in figure 3.14a and thus

1\/(27mz — 1)’ —4G(0)z = —é + (2mn — 2G(0)) + O(%) (3.243)

z

so that 1/z singularitiy does cancel in (3.234). Notice also that if we continue moving to
the left until z = —oo we find

%\/(27?712 —1)> —4G(0)z = 2mn — % (% + 1) +0(1/2%) (3.244)

precisely like as (3.241) which is what we expect since there should be no singularity at
z = oo and therefore G(z) should be analytic for large 2.

Quadratic equation II

In this section we will consider a slightly different derivation of the quadractic equation
(3.233) which does not rely on the differential equation (3.229) for (z). The idea is to
compute

1 ¢ 1
G(2) = Zk T (3.245)

J
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Using the identity
1 N 1 N 1
(z=ylz—2) (@-y)lz—y) y-2)(z-2

—0 (3.246)

and decomposing the sum in (3.245) into the diagonal j = k part and the rest we obtain

2—i§j Z i 2 (3.247)
N (z — z;) L z—z] 2 '

J=1

The first term is precisely —%G’ (z) and in the second term we can replace the last sum by
2mn — % using Bethe equations (3.224)

GeP = —1CE+ 7Y

J:1

<27m _ i) (3.248)

Z—Zj Zj

and using again (3.240) to massage the last term we find

Gl2)? — (27rn _ 1) Gy + SO _ —%G’(z) (3.249)

z z

where G(0) must be found by self-consistency. For example, plugging the large z asymp-
totics (3.242) into this expression and collecting the 1/z leading powers in this expression
we obtain

G(0) = 2rnM /L, (3.250)
and therefore (3.233) follows.

Hilbert problem

The Bethe equations (3.224) in the scaling limit can be written as

2/Pp(y) =V(2) 527m—l ,z2€C (3.251)
z—y z
c

with C begin the cut from z = (a, b) where the Bethe roots condensed. Notice that the fact
that in (3.224) we should not sum over k£ = j translates into the principal part prescription
in the scaling limit. Notice moreover that, in terms of the resolvent,

G(z) = / »ly) (3.252)

==Y

the above equation is simply
2G(2)=V(2), z€C (3.253)
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where the slash stands for average above and below the cut. This is obviously a consequence

of (3.235).

Before moving on let us point out that (3.234) clearly satisfies this equation because
when we average G(z) on the cut the square root cancels and we are left with 2mn — %
which is precisely V(z).

Equations of the form (3.251) are easily solved for a general V(z) in the r.h.s. The

b) V(y)
\/ ) y Ny (3.254)

First let us check that this indeed solves ( . We compute G(z+1i0) + G(z —1i0) so we
use (3.235) applied to the 1/(z — y) factor in (5.2< 4). Notice that since there is a square

solution is given by

root multiplying this factor, for G(z —i0) we obtain an extra minus sign and therefore it is
the delta function part in (3.235) that survives and not the principal part! More precisely,

2

G(z +140) + G(z +i0) = / @\/WV@)(—%O&@ —y) =V (z2)

a

and thus (3.254) is indeed the solution we seek.
Finally to find a and b we impose the asymptotics (3.242) on our solution to get

Cfw v M faei—a-bve
- T [ aw-n O

Since our potential is an extremely simple analytic function all integrals in this section are
trivially computed by first transforming the integral from a to b into a contour integral
around the cut and then deforming this contour and computing the integral by residues.
For example the last integral becomes

M 1 dy 2y —a —b)V
L 2 Ar \/(a —y)(y - b)
CoUCoo
where Cy and C,, are clockwise loops around z = 0 and z = oo. Thus we find
4M b
SM_ard o (3.257)
L vab
while the first integral in (3.255) gives
1
0=2mn— —. (3.258)

Vab



78 3. Integrability in N' = 4 and Bethe ansatz

These relations yield

b (1 2y MM (3.259)
s . L AT i3 '

which are indeed precisely the branch points for the resolvent (3.234). Finally the integral
(3.254) can be computed in the same way (there is simply an extra pole at y = z) yielding

G(z) = % <2m L 1\/W) (3.260)

z z

which for the branchpoints given by (3.259) is precisely (3.234) found in the previous
subsection.

Finite Gap

In this subsection we consider a last approach to the problem (3.224), based on the finite
gap method which was applied to the SU(2) spin chain in the KMMZ paper [83]. The idea
is to define a quasi-momenta

1

p(z) = G(2) + o
2)

(3.261)

and realize that in the scaling limit e??(*) and =) form a Riemann surface described by
an hyper-elliptic algebraic curve. This is true not only for the single cut problem we are
now interested in but also for a general K cut solution so let us consider for a moment this
more general scenario. For each cut C4 we have an integer mode number n and

1
20(z) =2 — = | zeC? (3.262)
z
or
p(z +140) + p(z — i0) = 27 | z € C*. (3.263)
This condition implies
P10 — op(H0) e oA (3.264)

which means that when we cross a cut e*”*) becomes eT() so that e} and e~?*)
are indeed the two branches of a single analytic function taking values in a two-sheeted
Riemann surface.

Notice also that another way to get rid of the mode numbers in (3.263) is to consider
the derivative of the quasimomenta,

p'(z—i0) — (—=p'(z+i0) =0, z € CA. (3.265)

and thus +p/'(z) also define a two sheeted Riemann surface.
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Before continuing the general discussion let us notice that (3.234) gives

1 1 M
pe) =5 (27rn . ;\/ (2mnz +1)° + 87”2 z) (3.266)

so that when computing p’(z) we kill the constant term outside the square root and there-

fore obtain an expression which simply changes sign when we cross the cut, exactly as
required.

In the general K cut scenario, p'(2) is a meromorphic function in the Riemann surface
with a double pole at z = 0 (by definition) which behaves as 1/1/z — xy, close to each of
the 2K branch points (because p(z) ~ v/z — x1). This means

/ 9(2)
z) = 3.267
P(2) =5 e (3.267)
where f(z) = Hffl(z —xp) and g(2) = ;V:O ¢;zN. Since at infinity, again by definition,
/ 1/2-L/M
we have p'(z) ~ ",
N=K.

In section 4.5.1 we will consider a very similar problem when studying the KMMZ
string finite gap treatment [83]. Here let us go back to the problem we are interested in
which corresponds to K =1,

PE) =5 (‘;Ojac)lé — (3.268)

This expression can be easily integrated and the several analytical properties following
from the definition of the quasi-momenta fix the values of the four unknown constants [83].
Actually, for such elementary one-cut solutions it is simpler to guess the solution (3.254)
without any computation, merely from the knowledge of the analytical properties of the
quasi-momentum p(z). Later in this thesis we will study the superstring algebraic curve
and its semi-classical quantization. By then, such reasonings which rely heavily on the
analytical properties of the quantities we aim at computing will be explained in detail.

3.8.2 SU(2,1) spin chain. Bosonic duality and cuts of stacks.

In the previous section we analyzed the solutions to the Bethe equations (3.169) and saw
that the Bethe roots can organize themselves into cuts and condensates. This qualitative
picture remains valid for most simple Bethe ansatz equations of the form

M
€ipj£ H S(p],pk) =1. (3269)
oy
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However, as explained before, in general we need to deal with several entangled equations
following from the diagonalization of (3.167) or (3.183). In particular the BS equations
(3.198) are a set of seven equations whose complexity clearly exceeds (3.269).

To understand the scaling limit for Nested Bethe equations we consider a SU(1,2)

spin chain in the fundamental representation described by the following system of NBA

equations’
giormies _ @l 1) Qa (uy — ?/2) ,j=1...K; (3.270)
Q1 (u1y — @) Q2 (ur; +i/2)
i L . .
ida—its <M) _ @y ) Oy —if2) o)
uj + 5 Q2 (u2,; — 1) Q1 (uz; +14/2)

Here we are considering twisted (quasi-periodic) boundary conditions. From an algebraic
Bethe ansatz point of view this corresponds to the diagonalization of a transfer matrix
with the insertion, inside the trace, of an additional diagonal matrix [84] parameterized by

g = diag (ewl, "7, e'%) € SU(1,2). (3.272)
The eigenvalues of the local conserved charges depend on sy ; only,

o 1 1
*=2 ((uz,j /2 (usy — z’/2)”1) | (3:273)

=1

We denote the uy roots by middle node roots and the u; roots by auxiliary roots.

First, consider only middle node excitations, K; = 0 # K in the scaling limit where
un~ Ky~ L>1. We use z,; = u,;/L to denote the rescaled Bethe roots. In the absence
of z1 ; roots, the Bethe equations for the roots x5 ; are precisely the same we discussed in
the previous section for the SL(2) spin chain apart from the presence of the extra twists.
The Bethe roots organize themselves into K cuts which we denote Cs} with A =1,..., K
and on each of these cuts we have

2mniy = o — Pfs , = € Coy. (3.274)

where we introduced the quasi-momenta

1
P = —2—+G1 — o1,
x
1
P2 = —2——G1+G2—¢27 (3.275)
x
3
ps = 5 — Gy — 93,
x

2These equations are exactly the same as for the su(3) spin chain except for the sign of the Dynkin
labels which makes the system simpler because the Bethe roots are in general real.
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Figure 3.15: The middle node Bethe roots us can condense into a line as depicted in figure
3.15a (The spins in this spin chain transform in a non-compact representation and thus the cuts
are tipically real. For the su(2) Heisenberg magnet the solutions are distributed in the complex
plane as some umbrella shaped curves [78] as described in the previous section.). Roots of different
types can form bound states, called stacks [19], as shown in figure 3.15b. The stacks behave as
fundamental excitations and can also form cuts of stacks as represented in figure 3.15c¢.

and the resolvents are defined as before,

Gl) [ 2 ) = 1Yo = ). (3.276)

r—Yy

Of course, since we are considering no roots x;; we have G; = 0 but for latter use we
already introduced the appropriate general definition (3.275).

Next let us consider a state with only two roots uy; = v and u;; = v with different
flavors, that is K1 = Ky = 1. Bethe equations then yield

1 ¢1 — @3+ 2mn o 1 ¢1 — P2
u = — cot , U =1+ —cot
2 2L 2 2

(3.277)

which tell us that if n ~ 1 we are in the scaling limit where v ~ v ~ L and v = u + O(1)
— the two Bethe roots form a bound state, called stack [19], and can be thought of as
a fundamental excitation — see figure 3.150. On the other hand we notice that, strictly
speaking, for the usual untwisted Bethe ansatz with ¢, = 0 the stack no longer exists.

Since the stack in figure 3.15b seems to behave as a fundamental excitation one might
wonder whether there exists a cut with K; = K5 roots of type u; and ws, like in figure
3.15¢, dual to the configuration plotted in figure 3.15a. To answer affirmatively to this
question let us introduce a novel kind of duality in the Bethe ansatz techniques which we
shall call bosonic duality.

Indeed, as we explain in detail in Appendix A, given a configuration of K; roots of type
uy and K roots of type uy, we can write

2isin (1/2) Qa(u) = ™2Qy (u —i/2)Q1 (u+i/2) — e Q1 (u +i/2)Q1(u —i/2), (3.278)
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Figure 3.16: In the scaling limit, to the leading order, the bosonic duality reads Qs ~ Q1Q;
with Q, = f;l(u — ug). Thus, suppose we start with the configuration in figure 3.16a. Here
the K4 roots uy form a cut of stacks together with Ky out of the K5 middle node roots us. If we
apply the bosonic duality to this configuration, the K9 — K7 new roots #; must be close to the
roots ue which were previously single while the cut of stacks in figure 3.16a will become, after
the duality, a cut of simple roots as depicted in figure 3.16b.

where
K
Q1(u) = H(U— yj) , K1 =Ky — Ky,
j=1
and 7 = ¢ — ¢o. Moreover this decomposition is unique and thus defines unambiguously
the position of the new set of roots @;. Then, as we explain in Appendix A, the new set of

roots {1y, us} is a solution of the same set of Bethe equations (3.168) with

1< P2

Let us then apply this duality to a configuration like the one in figure 3.15a where the
roots us ~ L are in the scaling limit and where there are no roots of type u;, K1 = 0. To
the leading order, we see that the @ in (3.278) will scale like L so that the +i/2 inside the
Baxter polynomials can be dropped and we find )5 >~ Q1, that is

lNLLj = Uz + O(l)

and therefore we will indeed obtain a configuration like the one depicted in figure 3.15¢.
Moreover the local charges (3.273) of this dual cut are exactly the same as those of the
original cut 3.15a since they are carried by the middle node roots us which are untouched
during the duality transformation.

Finally, if we apply the duality transformation to some configuration in the scaling
limit as represented in figure 3.16a, we find, by the same reasoning as above, Qs(u) =~
Q1(u)Q1(u). Thus the dual roots @; will be close to the roots u; which were not yet part
of a stack (the ones making the cut in the right in figure 3.16a). Hence, after the duality,
we will obtain a configuration like the one in figure 3.160.
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Figure 3.17: 1In the scaling limit the configurations in figure 3.16 condense into some disjoint

segments, cuts, and we obtain a Riemann surface whose sheets are the quasi-momenta. In this
continuous limit the duality corresponds to the exchange of the Riemann sheets.

We conclude that, in the scaling limit with a large number of roots, the distributions of
Bethe roots condense into cuts in such a way that the quasi-momenta p; introduced above
become the three sheets of a Riemann surface, see figure 4a, obeying

2mnd = pi(w +i0) — py(x —i0) , = € . (3.279)

when x belongs to a cut joining sheets ¢+ and j with mode number n;j‘ The duality transfor-
mation amount to a reshuffling of sheets 1 and 2 of this Riemann surface’ so that a surface
like the one plotted in figure 3.17a transforms into the one indicated in figure 3.170.

3.9 BS equations in the scaling limit

In this section we will consider the scaling limit of the full Beisert-Staudacher equations.
Stacks will be again the fundamental excitations and therefore we will also have cuts
made out of stacks as in the previous section. Each stack corresponds to a different YM
field or, in the dual theory language, to a string polarization. We represent the sixteen
(physical) momentum carrying excitations in figure 3.18. In figure 3.19 we depict a possible
configuration where the Bethe roots condensed into two square root cuts.

To make this pictures solid we should construct eight quasi-momenta such that the
seven BS Bethe equations follow simply from

pi(x +10) — pj(x —i0) = 27m£- ,

x €Cj) (3.280)

As described in the previous sections, if we find such quasi-momenta then {p;} or {e¢i}
will define an eight-sheeted algebraic curve.

At weak coupling the definition of such quasi-momenta is absolutely obvious as it
mimics the one in the previous section without any conceptual modification. We will

3This interpretation needs not be restricted to the scaling limit and can be made exact [15].
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Figure 3.18: The several physical fluctuations in the string Bethe ansatz. The 16 elementary
physical excitations are the stacks (they strictly speaking not bound states but, as discussed
in the previous section, they behave like so in most aspects) containing the middle node root.
From the left to the right we have four S° fluctuations (scalars in N = 4), four AdSs modes
(covariant derivatives in N' = 4) and eight fermionic excitations (fermions in N = 4). The
bosonic (fermionic) stacks contain an even (odd) number of fermionic roots represented by a
cross in the psu(2,2]|4) Dynkin diagram in the left.

instead consider the appropriate strong coupling scaling limit
VA~u~s Ky~ L> 1.

which, as we will see latter, corresponds to the semi-classical string regime. In this limit
we have

xi:xi%a(:p)+(’)<§>

where

At a2

a2 —1°

Thus, if we define the resolvents GG, and H, for each type of roots

alr) =

Wes) | gy () = 5506 (3.281)

and denote H,(z) = H,(1/z) and J = L/v/)\, we have the eight quasi-momenta we were
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Figure 3.19: Cuts of stacks in the BS equations.
looking for as:
_ !/ _ _ _
ﬁ1=+2ﬁ‘7; _ﬁ4<0)x—Hl+H2+Hz—H3 ﬁ1:+2ﬁj;+_(f4<o> — H,— Hy+H,
p— / — —
m=+%ﬂ¢29ﬁmx—mﬁﬂﬁ4hf& m:+%ﬂi+?“m+ﬂy4ﬂ+ﬂl
, jaz —G/ . , jﬂf _G . (3.282)
Py =— T ZQ_— 14( )x—H5+H6+H6—H7 P3=— i ;t 14( )—H5+H4—H7
p— / — — —
m:_%j;:?@”_%+m+m—msmz—%ijf%m+m+&—m

The charges (3.199) in the scaling limit are then obtained from

G4(37) = - Z QnﬂiCn .
n=0

We can also write

2T
— 0D = Q,.
NG ’

For example let us consider p;(z 4 i0) — p1(z — i0) on a cut of roots u;. We have

G4(0) + G (0)x

_ 0) — B (x — d0) —
pi(z +1i0) — p1(z — i0) 21

— Hy— Hy+ H, | (3.283)
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which is precisely the expansion of the first equation in (3.198). Indeed

1K2 ul—U2k—|—Z/2 Kz 1
- lo ) ’ — ~ — = Hy(x1;) + Ho(z1; 3.284
- ; Cm—— ; T—— 2(21,5) + Ha(21,5) (3.284)

where in the last line we used the identity

1 _ o) a(ljz(w) (3.285)

u—v  z(u)—zv) 1/z(u) —z(v)’

This explains the combination Hs + Hy in (3.283). Then we have

Ky + Ky
1 1—1/z 2 G4(0) + G4 (0)x1; -
- E log —/ LAk () = — ( );— 1)z, — Hy(z1,;) (3.286)
[ 1 =1/ 2, 1 Tago(T1,Tak — 1) vy — 1

which matches the remaining terms in (3.283). In the same way we could check that
the remaining six equations follow from the pairs of quasimomenta (p1, ps), (P2, P1),- .. as
represented in figures 3.18, 3.19. In particular to obtain the expansion of the middle node
equation in (3.198) the strong coupling AFS asymptotics (3.204) is used.

These quasi-momenta, built from the BS equations, have some very precise analytical
properties which can be read from their definitions. For example, the large x asymptotics
of each quasi-momenta are easily obtained, e.g.

L 2nJ + Qs — K1 + Ko

P~ - +0O(1/2%). (3.287)

There are other properties which are less trivial to realize. For example, from the definition
of the quasi-momenta we see that these functions are swapped among themselves when
x — 1/x. We have

p2(1/z) = —pu(z), (3.288)
with similar expressions relating p,(1/z) with ps(z), p1(1/x) with pe(z) and py(1/z) with
]33(37)

It is also obvious that the quasi-momenta have simple poles at * = 41 because each
individual term in (3.282) has such poles. What is much less trivial but can be again
checked in a straightforward way is that the residues of the several quasi-momenta are
synchronized as

{0&, o+, By, ﬁi|04¢7 a+, By, 5¢}
r+1 '

{D1, D2, D3, Dalp1, Pa; P3; Pat =~ (3.289)

We will find all these analytical properties from a completely different starting point,
namely they will appear in the finite gap discussion of the superstring classical motion.
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The fact that they follow from the strong coupling limit of the N' = 4 SYM Bethe equations
is a spectacular indication of the validity of the AdS/CFT conjecture’.

To end this section let us mention a particular solution of the BS equations in the scaling
limit. We consider only roots w4 to be excited. Thus we set to zero all resolvents except
H, and Hy so that, from (3.282), we automatically find that the AdS quasi-momenta p;
are given by

p1 +1
Do 2k +1
bs =2 1| -1 (3.290)
Pa -1

where K = A/V/X with A = J 4 D being the total anomalous dimension (or energy
of the string state). To compute Hy(z) for a general choice of mode numbers is of course
unfeasible. However if we consider a simple scenario with for example a single mode number
this can be easily done using the techniques explained in section 3.8.1. In this case, the
Bethe equation we need to solve can be found from ps(x — i0) — ps(z — i0) and reads

AnJx +2G(0) 2, (x) = 21 ArJx; +2G(0) > o) g (3.291)

2 2
2 —1 rs—1 Ti— X
J Kty 0k

This can be solved by the methods used in the previous section. In the process of compu-
tation it becomes clear that, if G(0) = 2wm, the choice n = 2m greatly simplifies the final
expressions. Thus, let us consider n = 2m in what follows. Computing H, and plugging it
into the definitions of the sphere quasi-momenta we obtain:

]51 —|—x2x_1K<1/£L’)
5 T () —
Pof _gp | FEaE@mmo - e s (3.292)
P —mK(1/7)

Notice furthermore that the pole synchronization fixed the total anomalous dimension in
terms of the angular momentum J and the mode number m as

k=+vm?+ J?%. (3.293)

For now let us put these results aside. In the next chapter we will see that they reappear
nicely from a classical string integrability approach which is of course quite comforting.

4Although this is true, this is of course a huge distortion of the historical flow which mostly coincides
with the most natural logical flow. Quasi-momenta with the properties described in the text were first
found from string theory in [83, 85, 86, 87] and the SYM Bethe equations, in particular the BES kernel,
were tuned to fit all available data, in particular to match the string classical limit. In this first part of
the thesis we are assuming these equations to be derived/guessed without the knowledge of AdS/CFT and
string theory.
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3.10 Families of long-ranged integrable Hamiltonians

In this section we describe a spin chain toy model with long range interactions including
wrapping interactions. It is probably not directly relevant to the study of N'= 4 SYM but
it is a nice application of the algebraic Bethe ansatz formalism and simple enough to be
worth the detour.

Let us consider the standard SU(2) spin chain transfer matrix 7'(u) whose spectrum is
given by (3.76) where the Bethe roots obey the Bethe equations (3.77). Having diagonalized
T we have automatically diagonalized all Hamiltonians obtained from this transfer matrix
as explained in section 3.3. A particularly interesting choice is

L T(g*)

+hec. (3.294)

If we think of ¢ as being an expansion parameter then we have an infinite range Hamil-
tonian where, at each order ¢g*" in perturbation theory, the interaction range is n. In the
notations of [26] we have

2 c 4
A g ’lg
H(g) =5 D Higer+ = Y [Myjen M) + . (3.205)
j j

where H;;+1 = 1 — P, +1. The spectrum of this Hamiltonian is then given by (3.294)
where we simply replace the operators T'(-) by the corresponding eigenvalues 7'(+) to get

1 w;i+ L —g?u;— L
R N e el
4Zj:1 uj—a—g U]+§
1 2 LMU/A_&_ 2u,_i_ 2
+ 4 log 1+<Qg ) [[Z—=2—LY "9 e (3.296)
v g+ U39 ut;—yg

The first term comes from the first term in (3.76). It gives a contribution to the energy
of the form ) e(p;), that is a sum of the dispersion relations of M individual magnons
interacting through (3.77). When written in terms of p,

1 1 —2¢% 5 sin 2 2¢%)"

1 —2¢2etis sin 2 n

The second term in (3.296), which comes from the second term in (3.76), is identically
zero up to order g — precisely when wrapping interactions appear! Thus, at order g**
the energy is given by a sum of dispersion relations of the form (3.297) plus this wrapping
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term, which entangles all M magnons and is not writable as a sum of individual dispersion
relations. In terms of the several momenta we have

M 1 M
E = Z e(p;) + g** 5 [iL H (26771 —e7%i) — c.c.
: ey

J=1

+ O(g* ) . (3.298)

For example, for two magnons we get

5(0)

B k) = et) + ) + o (s00) +50) - °§

— 2s(p + k)) +O(g* %) | (3.299)
where s(z) = sin(p + k + Lw/2 + x). It is clear that this correction is not of the form
de(p) + de(k). This was expected since at order g*F the interaction range covers the entire
chain and the notion of asymptotic region where one can safely measure the dispersion
relation of each magnon is destroyed [38].

More generically we can easily generate (long-ranged) integrable Hamiltonians by con-
sidering

+ h.c. (3.300)

The spectrum of such Hamiltonians is immediately given by this expression with the opera-
tor T()\) replaced by the corresponding eigenvalue (3.76). At order g?" these Hamiltonians
are local with interactions of range n. If we truncate the expansion at a given order m by
setting a,~,, = 0, then for chains of length larger than m we have no wrapping interactions
and the energy is simply given by a sum of dispersion relations 3~ €(p;), with’

1 =2 an g2 1 B 1
oW =527 <(u—i/2)" (u+z’/2)") (3.301)

n=1

If, on the other hand, we consider an infinie sum or, alternatively, if we truncate the
expansion in g? at an order m > L, the spectrum (starting at wrapping order g**) will no
longer be a sum of individual dispersion relations. In particular, precisely at order ¢?* we
obtain

ap _ip o u; — 3i/2

E = A ;
il e uj+1/2

J

+ O(g*?) (3.302)

M
— C.C.

2L
g
e(u;) + 1

1

where the second term takes into account the wrapping interactions. It is interesting
to notice that for all these families of long ranged Hamiltonians the expression for the
wrapping interactions is quite simple and absolutely universal. The example (3.294) we

5If the a,, are not real — which from the definition 3.300 is a perfectly reasonable possibility — we should
take the real part of this expression.



90 3. Integrability in N' = 4 and Bethe ansatz

considered corresponds to a, = 1 but as we see any choice of a, will lead to a solvable
problem. A particularly funny example would be

2n 2n

7 1 & .
= 2—2_: @n Dl log T'(\)

with C), the Catalan numbers, for which we find the curious expression

e<u>:9( e ) xﬂu):“i%*Wi%f—‘lf
A\ X W) T 2%
for the dispersion relation. As a function of the Bethe roots this is precisely the dispersion
relation appearing in the BDS equations [43] and even in the full AdS/CFT Bethe equations
[35]. However, unfortunately, as a function of the magnon momenta this is not the same
as (3.196) because the relation between u and p in our toy models is always of the form
(3.78). In other words, although the desired dispersion relation can be easily obtained, the
Bethe roots are always quantized via the usual Heisenberg spin chain Bethe equations.
We can generalize this construction of long ranged Hamiltonians for other symmetry
groups as well. A particularly curious example arises when we consider non-compact spin
chains. For example, for the SL(2) spin chain we have [38, 30]

o0 L M N2
-85 55 (1) oo
_uj+z/2 in 4+ A jzl()\—ujJr =1i) (A — uy 4 2EL)
(3.303)
with the Bethe equations, following from canceling the poles in this expression, reading
uj —1i/2 ol Wi Uk

which differ from (3.77) by a simple sign in the r.h.s. Again, by expanding the log of the
transfer matrix around A = 0 we see that only the first term contributes until the L’th
derivative is taken. Thus if we consider an Hamiltonian of the form (3.300) we have, up
to order g?L, the energy as a sum of the same dispersion relations (3.301). In particular if
the constants a,, are algebraic numbers then so will be > ; €(u;) when truncated to order
g*F because the solutions to (3.304) are clearly also algebraic (complex) numbers.
However, precisely at order g the second term in (3.303) starts contributing and we

find

M [e%s) M . 2
aL o 1 (uj +1i/2)
E=> )+ P ZﬁH( — zn_ii) OEEEn (3.305)

J=1 n=1 j=1 uj 2
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This new wrapping term differs from the one computed for the compact groups SU(N) by
the fact that it is given by an infinite sum of terms. Thus even if u; and a, are perfectly
algebraic numbers the energy of this state will only be algebraic up to order g2/, when this
infinite sum will give a transcendental contribution!

Let us consider a few examples. We chose a;, = 1 for simplicity. For L = 4 the one
magnon state with momentum 27 /4 will be corrected to

E=¢(p) —g°(1-¢(3)) +0O(g")

while for example for a two magnon state with L = 5 and momenta’ p; = —py = p = 27/6
we get
10
g
E = e(p) + e(=p) + =~ (1 = 2¢(3) + 2¢(5)) + O(g")

In (3.306) we listed a couple of additional examples with a, = 1

L U2 e(p1) + €(p2) Esrapping(P1, P2)

3| B+a g | 13v5" _ 50" L (26 + 372 — 4¢(3)) ¢°

65 +0 [0+ % — 5 — V20® - M+ 2G5 | 55 (T - 4(3) — 2(5) 97
(3.306)

Although, this model is not immediately related to the non-compact sector of the
AdS/CFT Bethe equations which are much more complicated than (3.304), it is still in-
teresting to see that transcendentality very naturally appears due to the non-compact
character of the transfer matrix. In particular, if an extra level of hidden degrees of free-
dom is to be discovered then the transcendental numbers present in the dressing factor
could be an important hint. A more fundamental PSU(2,2|4) symmetric transfer matrix
in the field strength representation would also be given by an infinite sum of terms since
the representation is infinite dimensional. It would be spectacular if a relatively simple
extended transfer matrix with some extra degrees of freedom included and only simple
algebraic expressions could lead to the intricate structure of the full dressing factor where
transcendental numbers abound. Probably the correct place to try to reverse engineer
and find this extra level of hidden particles is the transfer matrix rather than the Bethe
equations.

SFor two magnon with opposite momenta the sl(2) equations are trivially solved. The effect of the

second magnon is simply to renormalize L — L + 1. Thus we obtain p; = —ps = %Lﬁ for the two magnon

state with opposite symmetric momenta.
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Algebraic curves and semi-classics






Chapter 4
Integrability in superstring theory and
algebraic curves

In this chapter we review classical superstring integrability. More precisely, in section 4.2,
we explain how classical integrability appears due to the existence of a flat connection
A(x) dependent on an arbitrary spectral parameter z € C [10]. Flatness of this current
will then allow us to build an infinite set of conserved charges encoded in some algebraic
curves [83, 85, 86, 87] (see also [89, 55] for more gauge theory oriented works). In section
4.3 we will present a short overview of the general physical picture inherent to the finite
gap construction and in section 4.4, we resume our rigorous treatment and describe the
algebraic curve construction. All the remaining sections rely heavily on this formalism so
it is important to review it in some detail. The last sections are devoted to the study of
the SU(2) sector consisting of strings moving in R x S® C AdSs x S®. In particular the
Giant Magnon solution [90] is discussed in sec. 4.5.2. Before all that, in the next section,
we will recall that the appearance of Rieman surfaces as the classical limit of a quantum
system is something rather universal and can be seen in the simplest examples.

4.1 1D Quantum Mechanics

As a warm-up for the forthcoming sections let us consider a one-dimensional non-relativistic
particle in a smooth potential V' (z). In terms of the quasi-momenta

_ hy'(x)
()

the Schrodinger equation for the wave function v takes the Riccati form

p(x)

p> —ihp =2m(E V). (4.1)

What do we know about p(x)? It is an analytical function which has, by definition, a pole

with residue
h

a=- (4.2)
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Figure 4.1: Analytical structure of a quasi-momenta p(z) of a one dimensional system. Left: for

low lying states p(z) is a collection of poles. Right: for high energy states the poles condense into
a square root branch cut.

at each of the zeros of the wave function. For the N-th excited state we will have N poles.
On the other hand, for very excited states, the right hand side in (4.1) is much larger than
h and

p~pa=+/2m(E-V)

describes now a two-sheet Riemann surface. What happened was that, as N — oo, the
poles in p(x) became denser and denser, condensing in a square root cut. Thus, in the
semiclassical limit we retrieve the Bohr-Sommerfeld quantization

1

1
57 § Pz 5 ple)dz =N, (4.3)
C

C

where C encircles the cut. The first integral is precisely the action variable of the classical

motion. To anticipate the forthcoming notation we name such integrals filling fractions.
Let us now consider the simplest possible potential, namely the harmonic oscillator for

which V' = m“’TQIQ From (4.1) it follows that p(x) = imwz + O(1/z). Since the quasi-

momentum is a meromorphic function with N poles on the real axis, it must be given

by

1

r — T

B
p(z) = imwz + n Z

=1

Then, from the large = behavior in (4.1) we read immediately

E = hw (N + %) (4.4)

while from the cancelation of each of the x; poles in the same equation we get

N

PR (4.5)

wm r; — Xj
gAY

which strongly resembles the equations one finds in the Bethe ansatz context. Its solution

mw

is given by the zeros of the Hermite polynomials, H N( 5 ;1:2) = 0, as can be easily
derived as in section 3.8.1.
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4.2 The AdS; x S° flat connection

In this section we review the work of [10] where integrability first arose for the full Ad.Ssx S°
string. To better understand how non-trivial the emergence of integrability is let us consider
a deformation of the Metseav-Tseytlin action (2.4) to

VA

T 4n

S str (J@ AxJ® — kIO A TO) 4 A Astr T (4.6)

where J™ are the Z, components of J = —g~'dg obtained explicitly using (2.2). The
equations of motion are still given by (2.7),

dxk=0, (4.7)
with k = ¢~ K¢ where now

K:J(2)+g*J(1)—g*J(3)—*A.

Since only the capital currents have a neat Z, decomposition as described in section (2.2)
it is useful to recast (4.7) using the large current K,

dx K =JNAN*xK+xKANJ. (4.8)
Moreover it will also be important to use the flatness of the PSU(2,2|4) current,
dJ=JNJ, (4.9)

which simply follows from the form of the current J = —¢g~'dg. Next we decompose these
relations using the Z4 grading so that (4.9) splits into four equations

dJ" =" JPAJ9 (4.10)

p+g=n mod 4

while (1.8) gives

0 = JOAxJD 45 JOAJO — g JO A JO _ g A JO) (4.11)
dx J? = JOA«JD L g@ A JO L g A JO _ o gB) A g6 (4.12)
0 = JOAJ® 45T AJO 4 g gD A JO 4 J@ A g (4.13)

where we already used (4.10) to eliminate dJ™® and dJ® in (4.11) and (4.13). Using
x AN B = —AA=xB, valid for one-forms, it is easy to see that the projection of (4.8) into
the zero-th component yields nothing.
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We now want to find a connection A(z) which should be flat on the equations of motion,
dA(z) = A(x) N A(x) , (4.14)

and depend on a generic complex number x which we denote by spectral parameter. Be-
fore delving into the technical details let us explain why finding such current is indeed
remarkable and indicates the model to be (at least classically) integrable. The key idea is
that, using this flat connection, we can define the monodromy matrix

Q(x) = Pexp fA(:L’) (4.15)

v

where v is any path starting and ending at some point (¢, 7) and wrapping the worldsheet
cylinder once. Fatness of the connection ensures path independence so we can choose 7 to

be the constant 7 path,
27

Q(z) = Pexp /daAo(:c) (4.16)

Moreover, placing this loop at some other value of 7 just amounts to a similarity transfor-
mation of the monodromy matrix. Thus we conclude that the eigenvalues of {2(x) are time
independent. Since they depend on a generic complex number x, we have obtained in this
way an infinite number of conserved charges (by, for example, taylor expanding the eigen-
values around a particular point x) thus assuring integrability! For example, as mentioned
in section 3.4, if these charges survive quantization — which is by now established beyond
reasonable doubt — they imply the S-matrix factorization for the worlsheet theory.

To find such current we start by writing down a fairly reasonable general ansatz'

A) =D an(@)J™ + Ba)(+JP — A). (4.17)

n=0

We now want to find «;(z) and () in such a way that (4.14) holds when the e.o.m. (4.7)
are satisfied. In the Lh.s. of (4.14) we eliminate the five terms with dJ™, d* J®?) using the
four equations (4.10) and (4.12). Thus the flatness equation becomes now a large linear
combination of current bilinears such as JM A J®&) JW A % J@ ete. Not all of them are
linearly independent since we still did not use (4.11) nor (4.13). Using these relations we

1We did not include in our ansatz *J1), *J®) or %J©  The component J©) was gauged out in our
sigma model so there is no equation governing its evolution. The same holds for J® and J®). They
are also unfixed because of the ungauged k-symmetry. (Actually, for k # 1 in (4.6) the action is not s
symmetric but in any case it still remains true that we do not have equations governing the evolution of
the fermionic currents.)
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eliminate for example JM A xJ®) and JW A «J@ . In the process one should keep in mind
the identities *xA A B = —A A *B and %+ = 1 which hold for 1-forms.
In doing all this one obtains the following expression for dA(z) — A(z) A A(x):

3
(1 - Oé()) %<J(0)7 J(O)> + Z ai<J(0)7 J(Z)> + ﬁ(‘](O)7 *J(2)> + (Oé() - 061043> <J(1)7 J(3)>
i=1
1 1 1
+ 3 (as — Br —a3) (JO, JO)) + 3 (ag + Bk — o) (JB, JD) + 3 (ap + 3% —a3) (J@,J@)
1 1
+ - (Bask + asay — ap) (JP xJO)) 4 - (Bayk — arag + ag) (JP xJWD) (4.18)
where

(A,BY= ANB+BAA (4.19)

was introduced to shorten the expression. Notice that there are seven coefficients which
must set to zero whereas we only have 5 functions «; and 3 to tune. The first three
coefficients in (4.18) yield

1
aozl,alzg—,agzangﬁ/{ (4.20)
3

and when plugging these into the fourth coefficient one gets

1 /1 9
=—|—— . 4.21
5= (- 3) (4.21)
So far all functions are expressed in terms of a3 and the last three terms in (4.18) are yet to
be set to zero. Remarkably, the last two drop out when we use (4.20) and (4.21). Finally,

1/1 1)?
S <? - 1) (1 — E) (J@, J@y . (4.22)
3

We see that if K = 1 then «j is unfixed, ag = f(z), and the desired flat connection A(z) is
obtained! If on the other hand k # 1 then a3 is fixed to a number and we simply obtain a
trivial flat current rather than a full family parametrized by a continuous parameter. The

the remaining term gives

model is therefore integrable only for x = 1 which is precisely the value for the Metseav-
Tseytlin action (2.4) [34]! In the derivation of this formula the authors fixed this coefficient
by imposing the action to be k-symmetric. It would be interesting to further explore the
connection between k-symmetry and integrability.

Particular choices of f(z) simply amount to redefinitions of the spectral parameter .

In the original work [10] f(x) = e” whereas for us the choice [87] f(z) = y/Z+ turns out

to be more convient. Hence

2 2x x+1 x—1
R gy [ JO ZA) 4 /2 g0 J® (423
+:L’2—1 x2—1(* )+ r—1 + x+1 ( )
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Figure 4.2: Examples of simple Riemann surfaces arising from solving the characteristic polyno-
mial equation appearing when computing the eigenvalues of the string monodromy matrix.

is flat for any complex number z [10]. As mentioned above this is the crucial observation
which indicates the model to be (at least classically) integrable with an infinite number of
conserved charges encoded in the eigenvalues of the monodromy matrix (4.16). Finally we
also notice that under periodic SP(2,2) x SP(4) gauge transformations we have (2.5) and
(2.6) so the monodromy matrix is simply conjugated and thus the eigenvalues are gauge
invariant. The same is true for x symmetry transformations.

In the next section let us make a short overview of the general physical picture behind
the algebraic construction of [83, 87] described in greater detail in the forthcoming sections.

4.3 Algebraic curves — Physical picture

The eigenvalues of the 8 x 8 monodromy matrix {2(x) will be of upmost important through-
out all this monograph. We denote them by

ip ip ip P4 | 1D ip2  ip ip
A= {6171’ep2’€P3’€p4‘ep1’€p2’eps’em}

where p; and p; are called quasi-momenta. We will explain below why some quasi-momenta
are hatted while others are tilded. For each classical solution we compute the eigenvalues
of the monodromy matrix by solving a polynomial characteristic equation. This defines
an eight-sheeted Riemann surface for the eigenvalues A with square root cuts uniting the
several sheets as represented in figure 4.2. For example when crossing a cut Cs; shared by
the eigenvalues €2 and e?* we simply change Riemann sheet,

(€7)" — (™) =0, x € Cu (4.24)
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where the superscript + indicates the function is evaluated immediately above/below the
cut. The quasi-momenta on the other hand are not exactly the eigenvalues but rather their
logarithms. Thus when crossing the very same cut the quasimomenta will in general also
gain an integer multiple of 2,

Py — b3 =2nn , x € Ca. (4.25)

In figure 4.2a we have a cut uniting these quasimomenta while in figure 4.2b we also have
an additional cut between p; and ps.

Notice that if we consider the derivative of the quasimomenta these extra constants
drop out so we obtain again a proper algebraic curve,

()" = ()" =0, z€Coy. (4.26)

All this will become quite clear in the next section when we consider a simple explicit
example of these algebraic curves.

Apart from the mode number n each cut will also be described by a filling fraction
as in (4.3) obtained by integrating the quasimomenta around each cut. The picture we
have in mind is that the cut is indeed the result of a condensation of a large number of
quantum poles as we saw in our simple quantum mechanics example in section 4.1 or in
the condensation of Bethe roots described in the end of the previous chapter starting from
section 3.8.1. That is we expect p;(z) to be the continuous limit of some discrete sum

an a(zy)
k
p_k:1x_x’f+”.’

as depicted in figure 4.1 or more generally in figure 3.19. The knowledge of the residues

a(z) is the most important information required to be able to quasi-classical quantize the
solutions. This is so because only by knowing «(x) can we choose the appropriate measure
in such a way that when integrating the quasi-momenta around the cut we count the
number of quantum excitations out of which the cut is made. In the next two chapters we
will explain why the correct choice for the residue is

A 22
Var?—1

so that the proper definition of the ﬁlling fractions should be

alx) = (4.27)

—i——— <1——> (z)dx. (4.28)

87?2

obtained by integrating the quasi-momenta around the square root cut. The indices run
over

A A

=1,2,1,2, j=3,4,3,4 (4.29)
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and we denote
Pi33i=D1234 Pis3i=D1234- (4.30)

In (4.28) we should choose the plus sign for i = 1,2 and the minus sign for the remaining
excitations with i = 1,2. We should mention that one can rigorously show that the filling
fractions defined as in (4.28) are indeed the action variables of the theory thus justifying
the choice (4.27) [91, 92]. Finally notice that if we change variable via the Zhukowsky map

1
— — 4.31
z=x+ » ( )

the filling fraction expression becomes simply

=+ %dzp, (4.32)

which seems to indicate that the z variables will be more suitable for quantization”.

So far we have see that, given a classical solution, we can compute and diagonalize
the monodromy matrix and its eigenvalues will describe some Riemann surface. Each cut
of the algebraic curve is characterized by a discrete label (i, ), corresponding to the two
sheets being united, an integer n, the multiple of 27r mention above, and a real filling
fraction. These three quantities are the analogues of the polarization, mode number and
amplitude of the flat space fourier decomposition of a given classical solution.

Therefore figure 4.2a would describe a string motion with a single polarization excited
and the filling fraction of the cut would correspond to the amplitude of the excitation.
Figure 4.2b would describe a string motion with two excited modes, each corresponding to
a different AdSs x S° polarization. To be more specific we must explain the significance
of the hats and tildes of the quasi-momenta. When we consider a classical string solution
we have a bosonic representative of the form (2.11). After all, the motion of the string is
obviously described by the (bosonic) embedding coordinates. Thus the currents J&) and
J®) will vanish and the flat connection will be of the form

A (zo7) [0
0 ‘ AS(z;0,7) .

A, (xy0,7) = ( (4.33)

The monodromy matrix will inherit this block diagonal form and therefore there will be two
groups of quasi-momenta, those coming from the diagonalization of the S° part and those
stemming from the AdSs part. The quasimomenta associated to the S° (AdSs) eigenvalues
are denoted by p; (p;).

Notice that we might expect that the algebraic curve obtained from a given classical
solution will be in fact decoupled into two four-sheeted algebraic curves, one for the sphere
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Figure 4.3: Classically the AdS5 x S° algebraic curve factorized into two separate groups of four
sheeted curves described by the S° quasimomenta p; and the AdSs quasi-momenta p;. These
curves are related to one another by the synchronization of the pole singularities at + = +1.

Physically this synchronization is a translation of the Virasoro constraints.

motion and another for the string movement in anti de-Sitter. This is almost true. However
the Virasoro constraints set the total stress energy tensor to zero and couple the S® and
AdS5 evolution. In the algebraic curve language this is manifest in the following way: As
we see from the form of the current (4.23) the points = £1 are potentially singular and
indeed the quasimomenta will have simple poles at this points. The Virasoro constraints
will synchronize the poles of the several quasimomenta and thus couple the two seemingly
disconnected curves [87]. This synchronization is schematically depicted in figure 4.3 where
we added the z = £1 poles to figure 4.2.

Now we can be more precise when describing figure 4.2 or its updated version 4.3. In
figure 4.3a we have a string which is point like with respect to the AdS space and has an
S5 mode excited. Figure 4.3b corresponds to a solution with two different polarizations
excited — one in S° and the other in AdS5.

What about fermions? Well, classically they don’t appear at all. This is simply be-
cause their amplitudes are described by fermionic excitations which only admit 0 or 1 as
occupation numbers by the Pauli exclusion principle whereas for the bosonic amplitudes
the classical limit is attained by condensation of a large number of excitations. A mathe-
matical way of seeing this is as follows. Bosonic branch cuts appear when two eigenvalues
with the same grading coincide. However when two eigenvalues with a different grading
coincide they do not develop a square root singularity but rather a pole divergency [37].

2This was first noticed in [33]. See also [11] for further evidence from this point of view.
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Figure 4.4: The several string polarizations are nothing but the several possible choices of which
Riemann sheets to connect. All fluctuations must cross the middle dashed line.

On the other hand fermions do appear very naturally in the algebraic curve when we
consider the semi-classical quantization of the theory. This will be described in the next
chapters. The idea is that if we want to study quantum fluctuations around a given classical
solution we should add extra singularities to the classical algebraic curve corresponding
to the classical solution in study [93, 13]. These singularities can be though as either
microscopic cuts or poles. The (sixteen) superstring physical polarizations correspond to
the pairing of sheets

$ . (1.3).(11).(3.3).(3.0)
4d55 - (1,9),(1,4),(23),2,4) (4.34)

Fermions : (1,3),(1,4),(2,3),(2,4)

(1,3),(1,4),(2,3),(2,4).

represented in figure 4.4. The rule — which will be explained in more detail in the following
chapters — is the following: We must always connect a sheet with index number 1 or 2
to another sheet with index 3 or 4. Graphically, we must connect one of the four upper
sheets in figure 4.4 with one of the bottom four. If we connect p; with p; we describe an
AdSs fluctuation, if the fluctuation is shared by p; and p; it corresponds to an S° mode
and finally if it connects quasimomenta p; and p; it is a fermionic excitation. Figure 4.5,
e.g., would correspond to a classical solution with two classical modes excited — one in
the sphere and the other in anti de-Sitter — plus three small (semi-classical) fluctuations.
Two of those are bosonic and live in S® and AdSs; whereas the third one is a fermionic
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Figure 4.5: Classical solution (the cuts) plus quantum fluctuations (poles) are described in the

same unifying formalism.

excitation.
In the next section we resume our rigorous analysis of the algebraic curve.

4.4 Classical algebraic curves

In this section we review the algebraic curve of Beisert, Kazakov, Sakai and Zarembo [37].
We will start by considering some particular - and simple - classical solutions which will
allow us to easily identify many of the universal features shared by all the algebraic curves
associated with the superstring classical motion. The most general curves are studied in
section 4.5.

4.4.1 Circular string solutions

In this section we consider an important class of rigid circular strings solutions studied in
[94]. In terms of the AdSs and S® embedding coordinates, we can represent this general
class of strings solutions with global charges E = VAE, J = VAT, ..., as [94]

: J5 : /S ;
Uy + iUy = ez(w37—+m30) A <2 ez(WQTJrkgo) ’
W2

wy
. S,
Uy +iug = 4/ J2 w2rtmao) gy g = 4 =% gl HRO) (4.35)
Wa Wi

. T , &
ug + tug = 1 = WM e s = \/;e“” )

w1
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The condition (2.10) that the embedding coordinates parametrize the sphere and anti-de
Sitter fixes

1:2& 1 _fov S (4.36)

2 3
2k? w? + m?
2 2 2 2 J 7 7
=Rtk K E S; W, + E Ji o (4.37)
7=1 =1
9 9 9 9 5 w? —m?
w; =vi4+m;, v = E — L
(3 1 A j wz

To build the corresponding quasi-momenta p;(x) associated with this class of solutions we
should

1. Translate the embedding coordinates into the group element g(o,7) € PSU(2,2[4);
2. Compute the current J = —g~'dg and project it into its Z, components J™:

3. Write the flat connection (4.23) ;

4. Compute the monodromy matrix (4.16);

5. Diagonalize (x) and read the quasi-momenta.

=

As for 1) we notice that the embedding coordinates (4.35) are found from the map (2.12)

if
Q | o
g=|———) | (4.38)
0 | R
with
3
R = H e% wiT+mio)®; RO € SU(4), (439>
=1
and
2
psRTOL He s(viTthio)®in L Q0 € ST7(2,2), (4.40)

3The Virasoro conditions are simply Ty = 0 where for this purely bosonic setup we can derive the

stress energy tensor from (2.9).
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where ®; are the Cartan generators,
(bl = dlag (+7 +7 S _) ) q)Q = dlag (+7 ) +7 _) ) (I)-?) = dlag (_7 +7 +7 _) 9

! ! . .
and R = e®129e®617 and Qy = e®42¥e®64” are constant matrices with

: . . T | T2 T3
(cos~y,sinycosf,sinysinf) = RPN V- I
w1 w2 w3
(cosh p, sinh p cos ¢, sinh psin¢) = <\/§, \/ ﬁ, A/ §> ,
K W1 Wy

and gy, Dy, D), Pg, given respectively by

0 -1 0 0 00 0 0 0 -1 0 0 00 0 1
11 0 0 0 00 -10f1l1 0o oof1]l0 o0 -10
210 0 o -1 |'lo1 o o200 o0 o 1]2(0-1 0 0

0 0 1 0 00 0 0 0 0 —10 1 0 0 0

This finishes point 1). What is remarkable about these solutions is that they are Abelian
with respect to the 7 and o evolution whereas the nontrivial nonabelian structure is simply
introduced by the constant matrices Rg and Qy. This is quite nice because this form of
representative immediately implies that

(4.41)

( Q'dQ| 0 )
J=—gldg=—

0 |R4WR

is a constant connection! The 7 and ¢ dependence immediately disappears from the current
and therefore the path order exponential in the definition of the monodromy will become
a simple exponential and the computation simplifies dramatically.

Next point 2). It requires (almost) no brain activity. We simply pick the group elements
above, plug them into the current (4.41) and plug the current into (2.2) to find the several
projections. Point 3) is equally straightfoward. Having the projections J™, we sum them
as in (4.23) to build the flat connection A(x). The general output for generic angular
momenta, spin and windings is presented in the appendix A.

4) is in general the only nontrivial step but for the solutions we chose this point is
also straightforward because, as explained above, the current A(x) — being made out of
the components of the constant connection J — does not depend on 7 or ¢. Thus the
computation of the path ordered exponential (4.16) is trivial and the quasi-momenta p(x)
are simply obtained from the eigenvalues of 2TWA(,(:E). Thus point 5) is equally immediate.

First let us consider the simplest solution in the family (4.35). It is the BMN string
[95] given by
Jt

ug + iug = €7 | vg + vy = 7 (4.42)
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For this solution the flat connection is the diagonal matrix

2 2
TA(2) = ;Tjﬁdiag(l, 1,-1,-1;1,1, -1, -1) (4.43)
2 xre —

so that the quasi-momenta are simply

- N R R 2nJx
P12 = —P34 =P12 = P34 = 21 (4-44)

This is the simplest possible algebraic curve. It has no cuts at all!

Let us now consider the next to the simplest circular string solution which corresponds
to a string rotating in S® and point like w.r.t. the AdS space. It will be very useful for
illustration purposes. After understanding the analytical properties of the quasi-momenta
for this simple case we shall come back to the general solution (4.35). We set

j1:j2:%7 mp = —Mg=1m (4-45)

with all other spins, angular momenta, mode numbers and frequencies being zero. The
classical energy is then given by £ = k with

k=VJI?>+m?. (4.46)

For this solution, following the steps described above, we find

KX
Kx 0
—Kx
2 2 —Kx
T A (z) = -2 (4.47)
x? —1 Jx —-m
0 Jr max?
maz? —Jx
—m —Jx
so that all eigenvalues corresponding to the AdSs part of the current are trivial,
p1 +1
j 2 1
P2 | _ ZTRT (4.48)
D3 2?—-11 —1

Pa -1
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Figure 4.6: Inversion symmetry x — 1/2z. To each physical cut outside the unit circle there is a

mirror cut inside the unit circle.

while the diagonalization of the S° part yields'

2 +mgK(1/2)

5 —z K(x) —

P2\ _op | To @ =m 1 ey = V1 72 (4.49)
Ps3 _12,1K("L‘)+m

D4 — =g K(1/z)

Let us now consider the analyticity structure of these quasi-momenta.

First look at po(z). It is an analytic function except for the square root cut. If we
enter the cut we change the sign of the square root, K(x) — —K(x). But this, apart from
a constant 4mm, transforms precisely ps(x) into ps3(x)! That is py and p3 are united by a
square root cut C~23,

i —p3 =2mn , z € Cy (4.50)

where the superscript £ means the function is evaluated immediately above/below the
cut. The integer n is in this case n = 2m. This is precisely (4.25) anticipated in our
physical discussion in the previous section. Notice also that when we exponentiate the
quasi-momenta the 27m constant drops and we find (4.24). The same holds when we
consider the derivative of the quasi-momenta; in this case we obtain (4.26). Thus pj, and
Py are the two branches of a single function taken values in a two-sheeted Riemann surface.

4We add the constant shifts £27m which 1) clearly does not change ei(*) and 2) yields p; ~ 1/z at
large x. We are always free to add such shift and we will always do so to ensure that the quasi-momenta
vanish for large x.
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Computing the filling fraction (4.28) we find
VA 1Y . VAT
iy < — ?> o) = — (4.51)
Cos

and, therefore, so far the physical picture is precisely as anticipated in the previous section.
The solution is excited in the sphere target space and indeed only for the tilded quasi-
momenta we obtain square root cuts. The discontinuity of the quasi-momenta is related
to mode numbers in (4.35) and the filling fraction is indeed measuring the amplitude of
the corresponding mode.

Next let us look at p; and ps. Again these quasimomenta share a square root cut whose
branchpoints are the image under x — 1/z of the previous cut Cs3. More than that, we
observe that there is a curious inversion symmetry

pi(x) = —2mm — po(1/x)
pa(z) = +2mm —p3(1/x), (4.52)

whose origin will be elucidated briefly. This symmetry, is also present, although in a much
more trivial incarnation, for the AdSs quasimomenta,

pi(r) = —pa(1/x)
pa(r) = —ps(1/x). (4.53)

Thus, in this more precise analysis we see that figure 4.3a should be replaced by figure
4.0a.

Next let us continue our enumeration of the analytic properties of the quasi-momenta
by looking at their asymptotics. Due to the x — 1/x symmetry it suffices to look at the
large x behavior. We notice that the quasimomenta vanish as 1/z with the residues being
the global charges of the solution,

D1 +&
Do +&
P3 -&
2N U P (4.54)
D1 ol +TJ
D2 0
D3 0
P4 -J

Finally we consider the only remaining singularities, the poles at x = +1. We easily see

that the AdSs and the S® poles are synchronized and

{k, K, —K, —K|K, K, —K, —K}
r+1

{P1, P2, P3, PalP1, Pa, P3, Pat =~ (4.55)
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This is again fairly generic as explained in the next section.

Let us now mention what we would obtain had we considered the generic solution in
our family of circular strings (4.35). Now the flat connection, presented in appendix A, is
a constant block diagonal matrix with constant entries,

A, (z) = A@| 0 (4.56)
’ 0 | AS() '

and the diagonalization of this matrix is of course more involved. In particular we will
have in general more cuts uniting the AdS quasimomenta,

A~

pi —p; =2mn; , v €Cy, (4.57)

and cuts shared by the sphere p;,

ﬁj_ — ﬁj_ = 27rnij , T € C@'j . (458)

In figure 4.6 we represented a possible configuration.
To find the analytical properties of the quasimomenta we don’t need to completely diag-
onalize the flat connection. It is easier to study the characteristic equation det (QT’TAU(x) — ]Ip) =

0. We find that

1. The inversion symmetry (4.52) and (4.53) holds without any change (m is in this
case a simple linear combination of the several windings m; and k;),

Dra(l/x) = F2mm — pas(x) , pra(l/z) = —pas(z). (4.59)

2. From the large = asymptotics we can again read the several global charges, more

precisely
D1 +E — S+ 5,
D2 +E+ 51 — 5,
P3 —FE -5 -5
Pt 2m | B (4.60)
D1 SL’\/X +Ji+ Jy— J3
D2 +J1—Jo+ J3
D3 -+ L+ Js
Pa —J1—Ja—J3

3. The quasimomenta have simple poles at x = £1 and the residues of the sphere and
anti de-Sitter quasimomenta are again synchronized

{O{i, Qy, —O4, _ai‘&i7 gy, —O4, —Oéi}

— (4.61)

{P1, D2, D3, Pa|D1, D2, P3, Pa}
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which is a slightly more general relation than (4.55). We will see that this relation
holds for all bosonic solutions whereas if we allow for fermionic excitations this ex-
pression still needs to be slightly modified. We also stress that the precise values of
the residues are in general not directly related to any physical quantity. The only
relevant information to retain is the synchronization between the AdSs and S® quasi-
momenta. As explained below this follows from the Virasoro constraints that couples
string motion in the two spaces.

In the next section we shall explain the origin of each of these analytical properties and
what to expect for the most general string solution.

4.5 General configurations

In this section we consider the analytical properties of the quasimomenta obtained for a
general classical solution. Hopefully, the discussion of the two previous sections will render
this general treatment quite digestible. The quasimomenta {p1, p2, Ps, Pa|p1, D2, D3, P4} are
obtained from the eigenvalues

{€ZP1’ €Zp2, 621737 elp4 ‘elm’ €2p2’ elps’ 62p4}

of the monodromy matrix (4.16) obtained by integrating the flat connection A(z) (4.23)
around the worldsheet cylinder. This connection is made out of the several components of
the psu(2,2[4) current J. The "p” in psu(2,2|4) means the current .J is supertraceless and
thus so is A(x). Thus we will always have

(D1 + P2+ P3+Ps) — (Pr+ P2 +pP3+ps) =0. (4.62)

Moreover for bosonic classical solutions A(z) will be block diagonal as in (4.33) with each
block being an element of su(2,2) and su(4). Therefore, for purely bosonic solutions, both
terms in the parentheses vanish separately. We can immediately check this property for
the quasi-momenta discussed in the previous section.

Next let us consider the inversion symmetry (4.59). It will hold precisely as it is for
any classical solution with m being an integer dependent on the classical solution. This
symmetry folows from the identity

o - oy, o (210
S Yo e )

where the supertranspose is defined as

(e1s) - i)
= —— (4.63)
C|D —BT | DT
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To prove it we simply need to understand what happens when we sandwich A(x) between
C and C™'. Using (2.2) it is easy to see that
)ST

clyme = —im (J™ (4.64)

Then we notice that each coefficient before J(™ in (4.23) gains such i factors under the
map = — 1/x! Thus
C'A(z)C = —A5T(1/x), (4.65)

so that (4.63) follows. Let us simply comment on the integers appearing in the identity
(4.59). For p there is no 2wrm imposed by requiring absence of time windings [85, 87]. As
for p; there is a single integer m because two integers would not be compatible with the
supertraceless condition (4.62).

Let us now revisit the large x asymptotics (4.60). Again this remains valid for the most
general solution. These asymptotics follow because at large x

2
Ay~ —g ! (8(, + p kT> g (4.66)

where k, appearing in (2.7), is the Noether current associated with the left global symmetry.
Thus, from the behavior at infinity we can read the conserved global charges’ as in (4.60).
In particular the classical energy of the string is obtained from

E = 4—\/X lim x (p1(z) + pa(z)) . (4.67)

T x—00

Finally the poles at x = 1. The fact that the quasimomenta have poles at these values
of the spectral parameter is a simple consequence of the form of the flat connection (4.23)
which has these singularities from the beginning. What is nontrivial is the fact that the
poles for the several quasimomenta are highly synchronized. Indeed naively one would
expect 8 different poles for z ~ 1. However the x — 1/z symmetry (4.59) immediately
reduces this number to 4, the supertraceless condition (4.62) following from

str J@ = 0,

to 3, and the virasoro contraints
2
str (J(z)) =0,

leave only 2 independent poles. In general we expect therefore

{aia a4, /le:a /8i|a:t7 a4, ﬁ:l:a ﬁ:l:}
rE1 )

{D1, D2, D3, DalP1, Pa, P3, Pa} =~ (4.68)

5These are the bosonic charges, the ones which are present for a classical solution. Latter we shall
consider all kind of fluctuations, including the fermionic ones. Then we shall slightly generalize this
expression to (5.8).
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For bosonic solutions one has not only the supertraceless condition but the tracelessness
of both the S® and AdSs quasimomenta so that (4.61) holds and B+ = —a..

An important side comment: All these analytic properties are precisely those of the
quasi-momenta obtained in section 3.9 when we considered the scaling limit of the Beisert-
Staudacher equations [35]! For example that the quasi-momenta (4.49) computed in this
section are precisely the same as (3.292) obtained from the Bethe ansatz computation.
This is of course a highly non-trivial test of the strong coupling limit of the BS equa-
tions. Actually, historically, when the Bethe equations were conjectured one of the main
constraints used to guess their form was the requirement that they would reproduce the
string finite-gap equations of [87]. This was also so concerning the AFS Bethe ansatz [(6]
describing the SU(2) sector of the theory at strong coupling. This ansatz is based on the
discretization of the KMMZ integral formulas [33].

So far we understood that given a generic classical solution we can compute the quasi-
momenta and are bound to find an eight-sheeted Riemann surface with some precise ana-
lytical properties”. One can now turn the problem around and use the power of complex
analysis to make an exhaustive catalogue of all possible Riemann surfaces given the pre-
dicted analytic behavior. In this way, analyticity is turned into a powerful tool to study
classical string motion in full generality! We will explain how this works in the next section
where we describe strings moving in Rx 5% C AdSs x S°, an important (classical) subsector
of the full sigma model.

Finally we should also mention that given a set of quasi-momenta it is possible to
consider the inverse map and reconstruct the classical motion. This is not surprising since
the quasi-momenta encode an infinite quantity of conserved charges. In [91] the inverse
map was studied for classical string moving in R x S3.

To finish this section let us mention a couple of generic features of the algebraic curves
corresponding to classical solutions of strings which move in S° and are point-like in AdSs
with

it —

et = vg + ivg = 7.

For these solutions the AdS quasi-momenta p; are always given by

) . 2n€x

Pra= "Psa= 57> (4.69)
where £ is the energy of the string with respect to the AdS global time ¢. This can be seen
from two ways:

1. First by simply computing the A2%(x) as in (4.33). It is clear that we will always have

SIn fact, as discussed in section 4.3, due the the mode numbers 27n gained by the quasimomenta as
they cross a cut, the quasimomenta describe an infinite genus surface. To obtain a good algebraic surface
we should consider either the eigenvalues e?? or the derivative of the quasimomenta p’.
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a b

Figure 4.7: For su(2) solutions we have {py, 2, p3, pat = 222{1.1, —1, —1} and {p1, po, 3, Pa} =

z2—-1

{2rm—p(1/x),p(z), —p(x), —2wm+p(1/x)} so that all information (in the left figure) is encoded
in a single quasi-momentum p(x) (see figure in the right).

2 A28 () = ZEL diag (1,1, —1,—1) as in (1.17). This matrix is already diagonal so

z2—1
the quasi-momenta (4.69) follow trivially.

2. Alternatively we can compute the AdS classical quasi-momenta from its analyticity
properties. Since we only excite S° modes, the AdSs quasi-momenta must have
no cuts and be therefore rational functions with simple poles at * = +1, large =

asymptotics
P12, =P34 ? ; (4.70)
and inversion symmetry
pra(l/z) = —pas(a). (4.71)

Clearly this fixes uniquely the quasi-momenta to be of the form (4.69).

4.5.1 The S? subsector — Moduli fixing

In this section we review the construction of the quasi-momenta for generic su(2) solutions
corresponding to strings vibrating in S® and point-like in the remaining space [33]. For
these configurations S; = Sy = J3 = 0 and the the two physical modes in the three sphere
S? correspond, in the algebraic curve language, to cuts uniting 23 and 14 as represented
in figure 4.7a.

For these configurations we have (4.69) and

po(z) = —p3(x) = p(x) , pi(x) = —pa(x) = 2mm — p(1/x) (4.72)
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so to completely analyze string solutions moving in R x S® we need only to study the two
sheeted Rieman surface generated by +p(x) as depicted in figure 4.7b.

More precisely, all the other quasi-momenta will only manifest themselves through the
several asymptotic properties to be imposed on p(z). For example, the poles at z = +1
must be synchronized as in (4.68) and thus, since the AdS quasi-momenta are given by
(4.69), p(z) will have two simple poles at © = £1 with the same residue corresponding to
the energy of the classical string configuration,

pr) = o (473)
At infinity, from (4.60),
plz) = M +0(1/2?) (4.74)
and finally at zero we must also fix its asymptotic behavior to
p(z) = 2mm — 27(J, + Jo)x + O(z?) (4.75)
in order to ensure the proper asymptotics for the quasi-momenta p; = —py = 2rm—p(1/x).

Having these analytical properties at hand we can forget about all other quasi-momenta
and work only with p(z). As explained before its derivative p/(x) will define a K-cut two-
sheeted Riemann surface with double poles at = +1. Therefore p'(z) must be of the

form [83]

(z) = 9(x) 4.76
ANk o

where f(z) = H?fl (x —x;) and g(z) = Zjvzl cjz?~1. Indeed, notice that close to a branch

point x; we have

1
(x) ~ 0T — ) ~ ——, 4.77
while close to the simple poles of the quasimomenta
1 1
p'(z) ~ Oy (4.78)

zt1  (zE£1)2’

thus our ansatz. To construct the quasimomenta p(z) we should start at x = oo in the
upper sheet and integrate p’(x) up to the point x without entering any cut as depicted in
figure 1.8.

Let us now explain how to determine all the unknown constants in (4.76). Since p(z)
falls as 1/x at large x, its derivative must decay as 1/z% which fixes the degree of the
polynomial g(z) to be K + 2 so that N = K + 3. Thus, we have the K + 3 constants ¢;
plus the 2K branch-points z; making a total of

3K + 3 constants to fix. (4.79)
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—p X X —p

Figure 4.8: To compute p(x) where z is the solid black dot in the figure we should integrate
p/(x) from x = oo in the upper shift to the point 2 without entering any cut. The two possible
paths represented in the figures must yield the same result and this translated into the A-cycle
integrals fcj p'(x)dx = 0 around each of the cuts of the algebraic curve. For the configuration in
the figure this would impose 2 constraints since the integral over the third cut can be blown into
the previously computed cycles plus the integral over the fixed singularities at x = +1.

We will explain how to reduce this number to zero. When we integrate from infinity to a
given point x to find the value of the quasimomenta the choice of path must not matter
and therefore the integrals of p’(x) around the several cuts must vanish

%p'(a:)da: =0 (4.80)

Cj

which yields K — 1 independent constraints. The discontinuity conditions (4.50) which are
now simply

p(x +i0) — (—p(x —i0)) = 27n; , v € (C; (4.81)
can be written as the K conditions

T+ie Tr—i€

2mn; = /p'(y)dy+ /p’(y)dy , T€C (4.82)

Moreover, each cut is also characterized by the filling fraction (4.28)
S; = — %(x +1/2)p (z)dx (4.83)
¢

where we integrated by parts. This imposes K — 1 constraints. Thus, at this point, one
has
3K + 3 — (3K — 2) = 5 constants to fix. (4.84)

Then there are the poles at x = £1. From (4.73),

p(z) = —% +0O(1). (4.85)
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Notice that we must have no 1/(x — 1) term because this would lead to log singularities
for p(x). Thus, at each of the two points x = 1, we have two conditions leaving us with
a single (5 — 2 x 2) constant to fix.

Finally the asymptotics at © = oo and at = 0 given by (4.74) and (4.75) yield (the
last) two extra conditions. One of them finishes fixing all constants in terms of the charges,
filling fractions and mode numbers of the solution, including the string energy. To solve
the last condition we will obtain the string energy as a function of the remaining moduli.

Thus the complete classical spectrum of the string in S was mapped to the study of
hyperelliptic two-sheeted Riemann surfaces [83]. Let us consider an example to see this at
work for a simple 2 cut solution in the next subsection.

4.5.2 Two-cut solution and the Giant Magnon

In this section we consider a generic 2 cut solution in the SU(2) sector. The ansatz (4.76)
is conveniently re-written as

T (&fQ) [ EFQ) | Ef(=D | Ef(-1)
7(2) ((x—1)2+ =1 @t Tt

p(z) = — +2(J; — j2)> . (4.86)

where

f@n/ (@ - a)(@ - a)(a - b)(x —b). (4.87)

The first four terms inside the paretheses ensure (41.85) whereas the last (constant) term
is engineered to ensure the correct large x asymptotics (4.60). Obviously this is just a
smarter way to write (4.76) since we now only need to fix the branch-points and the string
energy as a function of the charges J; and 7. To find them we should impose the several
A and B cycle integrals (4.80,4.82) and the filling fraction conditions (4.83).

Since the solution is a two cut solution we will obtain that the moduli are elliptic func-
tions of the branch-points. Finally to get the quasi-momenta we would have to integrate
the meromorphic differential p’dz. These last steps will again yield the quasi-momenta as
elliptic functions of x and of the branch-points.

In certain instances there can be considerable simplifications due to degenerate choice
of moduli of the curve. This is for example the case for the giant magnon [90, 96] solution
[97, 98, 99], where the two cuts are very close, a ~ b and @ ~ b. We will now consider this
singular limit. For that we parametrize the branch-points as

) 4]
a=X"+—-, b=X"T——. (4.88)
2 2
a and b are complex conjugates and we will denote X~ = (XT)*. We shall always work up

to second order in 9.
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Away from the branch-points the two-cuts become indistinguishable, a ~ b ~ X7 etc.,
and the quasi-momenta can be obtained from (1.86) as

_ _x+
2%(27?5:1:4_27&5 j—i—Q)lng X)7

4.
2 —1 Xt —X- z— X~ (4.89)

p'(x)
where we replaced J; — J and Jo — Q. We see that p(z) has a log-cut condensate
coming from the superposition of the two square root cuts with consecutive mode numbers
[97, 98, 99]. Indeed, as we cross the two cuts we have

p(x) "8 —p(w) + 2m(n + 1) S —(—p(x) + 2mn) + 2m(n + 1) = p(z) + 27, (4.90)
so that when the two square roots become coincident we jump directly from p(x) to p(z)+27
precisely as when changing log branch. From the algebraic curve construction it is also

L ~ -1 which integrated

clear that if two branch-points collide we have p’(x) ~ oo S e

leads to a log cut singularity.
Notice that since we must have a jump of 27 when we cross the cut the prefactor before
the log in (4.89) must be 1/i. This fixes the leading order expression

_ L 2
E-T+Q=-(X* = X7)+0() (4.91)

for the energy as a function of the log Branch-points. Therefore we have

d(ZmS'x 11 x—XT

E% +_ng_X_

+ _
221 ) 0= X*|Je— X7[>4. (492

P(x) 2 Py, (2)
Since the quantity inside brackets is already decaying as x — 1/z one might be tempted
to identify it with the quasi-momenta py,(x). Actually we need to be more careful. For
solutions with zero worldsheet momentum,

2 27
O:/g_ld,g = Pexp —/dag_lﬁog =g(2m)g'(0) = 1. (4.93)
0 0

Hence, from (4.66),

which means p;(z) — 0. However the GM solution describes an open string whose end-
points lie on the equator of S3, seperated by an angle p [90]. For this non-periodic solution,
the quasi-momenta at infinity are related to p and

A x 1 r—X

= —— 4] + 4.95
g —1 i ®r—x T (4.95)

pfar (.T)
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with [17] 7= —p/2 = Llog §—f Moreover the inversion symmetry reads

pi(x) = p2(0) + 7 — pa(1/x) (4.96)
where we recall that ps(z) = p(z) in this section.

Close to the branch-points a and b given in (4.88), the quasi-momentum (4.86) becomes

Piel) = .
V0@ =Xt =8 (x+ -2 )

P (z) ~ : - Xt <1, (4.97)

where we used again the leading order expression for the energy (4.91). Note that up to an
overall constant this expression is obvious, as this is the only function that has the correct
branch-cut. Imposing the same asymptotics for the overlap region 6 < x — X+ < 1 as ps
n (1.97) fixes the overall factor in this expression. Alternatively we could fix this constant
from p(b) — p(a) = ff p'dx = m which is precisely what we used above to find the prefactor
of the log.

As we explained below, the classical energy, total filling fraction and momenta of this
solution, obtained by integrating the quasi-momenta with suitable measures around the
two cuts, will be given by

g 1 52
A-J = 2| X, ——— —— .C.
/ z< e 8<X+>3)+“’
0= x4+ L ). (4.98)
= - SR TS aNE c.c., :
1 52
P = ;(10gX+—m)+C.C..

Finally, ¢ is fixed by imposing the B-cycle condition f; p' = mn, which yields [99]

(4.99)

4 A Xt
2 =16(X"T — X )exp < 27 — i 1)

X (X

These relations allow to parametrize the branch-points X* in terms of Q@ and P. In
particular, for @ = Q/v/A — 0 we obtain [100]

E~4g sing (1 — 4s1n212) o § A ) (4.100)

For general Q and to leading order we obtain the Dyonic Giant Magnon dispersion relation
[96]

\/Q2 sin = (4.101)
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Figure 4.9: Integration regions. In the yellow region (4.95) holds whereas in the blue region the

quasi-momenta is given by (4.97). In the overlapping green region both expressions can be used.

Derivations

We now provide the details for the results in the last subsection. First let us consider §2. It
is determined by fixing the B-cycle integral. We will compute this integral using different
approximations to the quasi-momentum, depending on how far the integration point is

™ = /p/ = /plfar _'_/plclose? <4102)

where ¢ = X + € is an arbitrary point in the overlapping region § < |r — X | < 1, i.e.
0 < € < 1 as depicted in figure 4.9. Evaluating the integrals yields

from the branch-point

2rEXT 1

1 o
™ =~ |:(X,+)72_1+;10gﬁ+7{| + |:_. log_:| . (4.103)

1 4e
Here 7 is the value of the quasi-momenta at infinity. As required, the dependence on €
cancels and we obtain ¢ as function of X in (4.99).

Next we derive the expressions for the charges from the general relations

A-J = L $anp(a) (x—%)

271

"The twist 7 is fixed as in the appendix of [17].
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= I ddep(a) (:c—i—%)

271

1
P = — '(z)1 . 4.104
i §dep (@) loga (1104)

For this purpose we write

%d:cp'(:c)f(:c) = %dxp}ar(x)f(az) + %dm (0 (2) = Plop(2)) f(2). (4.105)

The first term obviously yields the leading order charges (4.98). The second term can
be evaluated by deforming the contour to the region where the integrand is singular, i.e.
x ~ Xt In this region ps can be approximated by peose

e (4(0) — ) 1) = § ¢@ﬂw_;@ﬁj_@‘xiw fa)bec.

(4.106)
and the contour integral encircles all the poles of the integrand. The integrals can be easily
computed and yield (4.98).

This ends this chapter. We analyzed the general classical algebraic construction and

finished with an application of the formalism to the study of the classical Giant Magnon
solution including the exponential corrections in the angular momentum 7. In the next
chapter we move to the study of the string semi-classical quantization. As an example we
will come back to the Giant-Magnon solution and quantize the string around this classical
motion always keeping track of the exponential corrections. As explained in section 6.3
these exponential corrections can actually be used to check, in a very non-trivial way, the
world-sheet scattering S-matrix.



Chapter 5

Quantum Fluctuations

This chapter is devoted to the study of the semi-classical quantization of type IIB strings
in AdSs x S° around any possible classical motion.

When we expand the superstring action around some classical solution, characterized
by some conserved charges, we obtain, for the oscillations, a quadratic lagrangian whose
quantization yields the semiclassical spectrum

EAANan}) = Ea + Eo + Z Nan€an (5.1)
An

where Ny, is the number of excited quanta with energy €£4,. The subscript A labels the
several possible string polarizations we can excite while the mode number n is the Fourier
mode of the quantum fluctuation. The classical energy is is E; and FEj is the ground state
energy. The classical energy is of order v/ while the last two terms are of order 1 and are
the analogues of 1w and Nw in the Harmonic oscillator example (4.4).

Of course, the ground state and fluctuation energies in any quantum field theory are
related, in the same way that if we know the level spacing w for the Harmonic oscillator
we infer the ground state energy %w. For a field theory we have an infinite number of
fluctuation energies and thus the one loop shift is given by a (graded) sum of halved
fluctuation energies, .

F
By =3 ;(—1) A€ n (5.2)
where (—1)4 = 41 for a bosonic/fermionic excitation.

In this chapter we will concentrate on the problem of using the algebraic curve formalism
described in the previous chapter to compute the fluctuation energies around any classical
solution.

Let us explain the idea behind the computation. There are basically two main steps
involved. First we construct the curve associated with the classical trajectory around which
we want to consider the quantum fluctuations. This will be some Riemann surface with
some cuts uniting some of the eight sheets. The second step consist of considering the small
excitations around this classical solution in the spirit of [93]. In terms of the algebraic curve
this consists of adding microscopic cuts to this macroscopic background. These small cuts
can be treated as a finite number of poles whose residue we know [66, 35, 11], just like in
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Figure 5.1: Some configuration of poles on the algebraic curve corresponding to the S® excitations
(red) and AdSs excitations (blue). Black line denotes poles at £1, connecting 4 sheets with equal
residues. The crosses correspond to the residue +a(z), while circles to residue —a(z). Physical

domain of the surface lies outside the unit circle.

the simple example (4.2). Then, by construction, the energy of the perturbed configuration
is quantized as in (5.1). We must stress that the knowledge of the residue (4.27), of utmost
importance, is the only extra input we needed to compute the quasi-classical spectrum.

The several possible choices of sheets to be connected by these poles correspond to the
several possible polarizations of the superstring, i.e. to the different quantum numbers.
The 16 physical excitations are the 4+4 modes in AdSs and S® (fig 5.1) plus the 8 fermionic
fluctuations (fig 5.2).

Let us give a bit more of flavor to this discussion. As anticipated in the previous
chapter, the equations describing the eight sheet quasi-momenta can be discretized [66, 35]
yielding a set of Bethe ansatz equations for the roots x; making up the cuts. Roughly
speaking, the resulting equations resemble (4.5) with an extra 27n; in the left hand side

1

AT

This means that we can think of x; as being the position of a particle interacting with
many others via a two-dimensional Coulomb interaction, placed in an external potential
and feeling an external force 27n;. What we are then doing is first considering a large
number of particles which will condense in some disjoint supports — the cuts — with each
cut being made out of particles with the same mode number n;. Then we add an extra
particle with some other mode number n. At leading order, two things happen. The
particle will seek its equilibrium point in this background and will backreact, shifting the
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Figure 5.2: Some configuration of poles on the algebraic curve corresponding to the 8 fermionic
excitations. Black line denotes poles at 1, connecting 4 sheets with equal residues. The crosses
correspond to the residue a(x), while circles to residue —a(z). Physical domain of the surface

lies outside the unit circle.

background slightly by its presence [78, 93]. The (AdS global time) energy E of the new
configuration is then shifted. When adding N particles we get precisely the quantum steps
in the spectrum, i.e. (5.1).

Technically the computations can be divided into two main steps. In what follows we
will use the notation (4.30) intensively. One must satisfy

(pi+0pi)" — (pj +0p;)” =2mn , w € Cy (53)

for all cuts of the Riemann surface where p is the quasi-momenta associated with the
classical solution, dp is the perturbation and, therefore, p+ dp is the quasi-momenta of the
perturbed algebraic curve.

e When applied to the microscopic cut, i.e. pole, equation (5.3) gives us, to leading

order, the position z% of the pole,

pi(a]) = pi(2)]) = 2mn, |l > 1, (5.4)
where i < j take values 1,2,3,4,1,2,3,4 and indicate which two sheets share the
pole. We refer to domain |z| > 1 as physical domain. The interior of the unit circle
is just the mirror image of the physical domain, as we saw in the previous chapter,
(4.59).

e Then, to find dp and, in particular, the energy shift £, we must solve the same
equations but now in the macroscopic cuts

opf —dop; =0, zeCy. (5.5)
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This linear problem is to be supplemented with the known analytical properties of
dp(x) namely the asymptotic behavior presented below and the simple pole singular-
ities with residues (4.27). In this way we are computing the backreaction described
above.

Before proceeding it is useful to introduce some simple notation. We shall consider N
excitations with mode number n between sheet p; and p; such that

is the total number of poles connecting these two sheets. Moreover, each fluctuation has
its own quantum numbers according to the global symmetry. The S°, AdSs and fermionic
quanta can then be identified as the several possible choices of sheets to be connected, see
figs 5.1 and 5.2,

S° (6,5) = (1,3),(1,4),(2,3),(2,4)

AdSs , (i,7) = (1,3),(1,4),(2,3),(2,4)
Fermions , (i,7) = (1, f’)), (1, 21), (2, f’)), (2, 21), (5.6)

(1,3),(1,4),(2,3),(2,4)

The 16 physical degrees of freedom of the superstring are precisely these 16 elementary
fluctuations, also called momentum carrying excitations [55, 87].
When adding extra poles to the classical solutions its energy will be shifted by

1
AdS® Ferm

where we isolated the anomalous part dA of the energy shift from the trivial bare part.
Then, it is convenient to recast (4.60), for the quantum perturbations, as

1 +0A/2 +Nijz+ Nig +Niz+ Nig
D2 +0A/2 +Ns3+ Ny; +Nsz + Nig
s —6A/2 —Ny — Ny —Ni; — Naa
5 Pa | dm | DO0A/2 =Ny — Ny =Ny — Ny (5.8)
b zVA —Niz — Niz —Nig — Ny
P2 —Nsz — N3z —N3; — Nag
Ps +Ns53 + Nz +Njg + N
P4 +Nii+ Nsg +Na; + Nij

These filling fractions Nj; are not independent. Any algebraic curve must obey the Riemann
bilinear identity (see eqs. 3.38 and 3.44 in [87]). Since this was already the case for the
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classical solution around which we are expanding, the new filling fractions are constrained

by
> nd Ni=0, (5.9)
n Allij
which is nothing but the string level matching condition in the algebraic curve language.
It is also important to note that the sign of the residues can be summarized by the
following formula
res Dk = (% - %) a(@)N,  ves Br = (0;5 — 0) ala )N (5.10)

=z r=x;)

AA A A~ ~ o~ o~

with £ =1,2,3,4 and ¢ < j taking values 1,2,3,4,1,2,3,4, as summarized in figs 5.1 and
5.2.

The poles of the shifted quasi-momenta must still be synchronized as in (4.68) which
means

{6as,day, 60,00+ |00, day, 6By, 004}
r+1 ’

{513175]5275p375ﬁ4‘5ﬁ175ﬁ275p375ﬁ4} = (511)

and the inversion symmetry (4.59) must hold for the perturbed curve so that

{0p1(1/),0pa(1/2)[0p1(1/ ), 6pa(1/2)} = —{0pa(x), 5ps(x)|0pa(x), 0ps(x)} . (5.12)

We must stress again than when we add a quantum fluctuation to the curve only two
quasi-momenta get a pole (in the physical region) but in general, all the quasi-momenta
will be shifted because of the back-reaction. This shift must be such that the analytical
properties just enumerated are satisfied.

We can already notice that, using this procedure, one relies uniquely on considerations
of analyticity and need not introduce any particular parametrization of the group element
g(o, 1) for the fluctuations around the classical solution, contrary to what is usually done
in this type of analysis [101, 102, 94, 103]. Tt is also nice to see that the fermionic and
bosonic frequencies appear, in our approach, on a completely equal footing, both corre-
sponding to simple poles which differ only by the sheets they unite - see figs 5.1 and 5.2.
Finally, in principle, we can apply our method to any classical solution whereas the same
generalization seems to be highly non-trivial to do directly from the string action since
we no longer have a simple field redefinition to make it time and space independent as in
[102, 103]. Instead, from the action point of view, we must consider the generalization of
the fluctuation energies to what is called the stability angles and the treatment quickly
becomes highly involved.

In the next sections we will compute the fluctuations energies around the BMN point like
string and around the simple circular string described in section 4.4. This will illustrate
the kind of analyticity arguments involved in this sort of computations. In section 5.5
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we present a more powerful (complementary) method based on the notion of off-shell
fluctations energies. We will explain that for most classical solutions of interest — including
in particular all SU(2) solutions — we can obtain the full semi-classical spectrum with all
the sixteen excitations from the knowledge of two fluctuation energies alone (for example
one in S and another in AdSs). In the last section we apply this efficient method to the
study of the SU(2) two cut solution considered before in section 4.5.2.

5.1 The BMN string

In this section we shall consider the simplest possible solution amongst the family of circular
strings presented in section 4.4.1 — the rotating point like BMN string [104] moving around
a big circle of S°. For this solution the quasi-momenta are given by (4.44). This is indeed
the simplest 8 sheet algebraic curve we could have built — it has neither poles nor cuts
connecting its sheets other than the trivial ones at x = £1 (1.68).

We shall now study the quantum fluctuations around this solution. We will do it using
a few different methods which will be useful for latter discussions of the string quantization
around more complicated classical configurations.

To consider the 16 types of physical excitations we add all types of poles on the fig 5.1
and 5.2. From (5.4) we find that the poles in the physical domain with || > 1, for this
simple case, are all located at the same position

xﬁlj:xn:%<J+\/j2+n2>, (5.13)

which follows from

=27mn. (5.14)

Now we must find the quasi-momenta p(z) 4+ dp(x). About dp(z) we know that

e it has poles located at (5.13) with residues (5.10) connecting the several sheets,
e must obey the z — 1/x inversion symmetry property (5.12),
e must have simple poles at x = +1 with residues grouped as in (5.11),

e decays as 1/x at large = as prescribed in (5.8).

Notice that for this simple solution there are no singularities other than poles so the dp;
are simple rational functions which (as any rational function) are uniquely fixed by their
asymptotics and singularities.

We will first do this computation considering only the S? fluctuations corresponding to
the polarization 23. Next we will study the AdSs ones with polarization 23 and finally we
will consider the general case.
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5.1.1 S® excitations

Here we consider only excitations between p, and ps. To render the expressions simpler we
can now drop the polarization index in N and z¥ because they are always ij = 23. The
quasi-momenta can have poles at * = £1, and = = z,, and must decay as 1/z at infinity.

The most general expression we can write is

_ oy da_ a(x,)N,
0P () = r—1 +:1c+1 _Z T — X,

Sps(z) = 20+ 4 0P +27a£’”_")f"

r—1 x+1

. da dor_
Opa(e) = x —+1 r+1
R 00 00—
ops(r) = - _+1 + 1

where the residues at * = 41 were already synchronized as in (5.11). The remaining
quasi-momenta are not free but given by the inversion symmetry (5.12). Now we will fix
all these constants from the several asymptotics. From (5.8) we see that

2mHE

T

(5.15)

5ﬁ2(l‘), —5ﬁ3(l‘) ~
which means
day +0a_ = =00, —00_ = 2mw€ . (5.16)

The same asymptotics must hold for 0p;(x) = —dp2(1/z) and for dps(x) = —dp3(1/x) and
this yields da, = da_ and 63, = §3_ so that'

_ . 2no€x a(x,)N,
G7a(x) = ~bn(a) = ot 37 A (5.17)
2m0€x

0pa() = —0ps(x) = (5.18)

x?2—1"

Now we consider the large x asymptotics of the sphere quasi-momenta. From (5.8), one

has
Gin(a), ~Spala) = 30 T2 (519)

n

"When we only add 52 quantum fluctuations to the BMN string we are simply studying a solution
in the S3 sector and therefore the hatted quasi-momenta ought to be as in (4.69) and py = —p3 as
explained in section 4.5.1. Thus (5.17) and (5.18) could have well been our starting point. We chose to
do some unnecessary and repeated work in order to provide us with some training concerning the kind of
manipulations involved in the study of algebraic curves.
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which leads to 4
T
2mo€ = E N, | alz,) — — 5.20
~ < (&) \/X> (5-20)

so we could be tempted stop here and move to the AdS; fluctuations. This would be
premature since, as we will soon see, the remaining conditions still have some juice to
extract. For example notice that we already anticipated in (4.27) what the function «(z)
is but we will see that this can actually be derived.

Let us check the asymptotics of dp;(z) = —dpa(1/x) and 0py(z) = —dps(1/x). For the

former one finds
1
— 21
) . (5.21)

but from (5.8) we see that dp; should decay as 1/z*! From the cancelation of the 1/z term,

Spi(x) = =y Nno‘i%) + (27T6E -y Nno‘iﬁ")

combined with (5.20), we get

S,

n

ai:;n) _ ;Nn (a<xn) _ %) (5.22)

from which we derive )
4 =z

a(r) = —=——— 5.23
@)= s (5.2
which is precisely the residue condition (4.27). The algebraic curve knows about how to
quantize itself! The cancelation of the constant term in (5.21) can be written as

Y Nyt =0 (5.24)

=
xi —1

but, from (5.14), this is nothing but the string level matching condition

> Nan=0. (5.25)

Thus we get
0A =" N.Qpun(z,) (5.26)

where

(5.27)

Qpun(z) = 21

5A:2Nn<,/1+;—22—1> (5.28)

where we recognize the famous BMN frequencies [104] in the anomalous part of the energy
shift.

Using (5.13) one finds
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5.1.2 AdS; excitations

Let us now consider excitations connecting p, and ps. Again we omit the polarization
index and write the ansatz

50[+ 50[_

Opa(r) = 5+ (5.29)
5p3(z) = ;f +1 + ;i - (5.30)
ps(z) = ;%1 + ;i‘l -y % (5.32)

The computation of the AdS fluctuations is actually much more trivial than the one in the
previous section and

50@: :5ﬁ:|: =0

because we need dp; for j = 1,2,3,4 to decay as 1/2? at infinity. Physically this is quite
clear. We add a fluctuation inside AdSs so there is no shift for the S° quasi-momenta,
dp; = 0. Notice that the reverse is not true because of the Virasoro constraints. There are
physical fluctuations which live purely in the AdS space but not in the sphere due to the
signatures of both spaces.

As before, from the asymptotics of the hatted quasi-momenta we would derive again
the value of a(z), the level matching condition and, for the spectrum, we would get exactly
the same expressions (5.26) and (5.28).

5.1.3 Full spectrum

From the requirements listed in the beginning of this section, one can easily write the form
of dp; for a general perturbation of the BMN quasi-momenta. For example

5 ZZNz 12 le
0ps = a+ ‘iJrl x+1+ Z Z Z Zl/az (5.33)

1’21 SL’M

i=3,434 n i=3,4,34 n

. . 5ﬁ+ 557 4z N4z

0ps =b+ r — 1 Z Z x3z Z Z /3j whi (5.34)
i=1,212 n i=1,212 n

where a, b and dag, 03+ are constants to be fixed and the last terms ensure the right poles
in physical domain for dp; 4(z) = —dp23(1/x). Notice that it is no longer true that the
quasi-momenta automatically decay as 1/z at large x and that is why constant terms need
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to be included. Similar expressions can be immediately written down for dp, 3 with the
introduction of two new constants a and b,

Sty sy et

+ >y /xZNZ (5.35)

— 1’21 xrli
i=3,4,34 n i=3,4,34 n
~ ~ ) ﬁ+ ) ﬁ, 3z N3z 4z N4z
0ps = b+ — e > Z . /x . (5.36)
i=1,212 n i=1,2,1,2 n

and 0py4(z) = —0p23(1/).
At this point we are left with the problem of fixing the eight constants

a,b,a,b, 00, 6a_, 00,06 .

This is precisely the number of conditions one obtains by imposing the 1/z behavior at
large x for the quasi-momenta (5.8) . The asymptotic of ps, ps, P, ps fix the first four
constants,

_ Z 2mn Z 12 _ Z 2mn Z A

23434 11212
zz —zzmz*i
a=+ , =

13434 21212

while the remaining four equations, solvable only if the level matching condition (5.9) is
satisfied, fix the remaining coefficients,

5a+ :—Z 2mn Z ZNZj,

i=3,4,3,4 j=12

o5 = ng Z > v

yielding

Allij n

which using (5.13) gives

SF — ZZ \/n2 —|—j jNZ] + Z Nz] 4+ = ZNZ] (538)

Allij n AdS® Ferm
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5.1.4 BMN string fluctuation energies and analyticity

It is possible to derive the fluctuation energies from simple analyticity arguments and that
is what we shall now do. This method can be generalized to more complicated solutions
and we will exemplify it on the circular string studied in the next section.

The idea is that we should think of the fluctuation energies as

511'1]' = Qij (y) ij . (539)

Y=xn

In other words, we first compute the energy shift when we perturb the algebraic curve by
adding an extra pole at « = y shared between the quasi-momenta p; and p; to find

QY (y) (5.40)

which depends only on the choice of sheets (7,j). We denote these quantities by off-shell

fluctuation energies. Then we fix the position of the fluctuation y by the map (5.13)

pi(y) — pi(y) = 2mn (5.41)

which gives
y =1, (5.42)

n

and thus (5.39).

From the definition of Q% (y) it is clear that this quantity will have no singularity as a
function of y unless y approaches some dangerous points like £1 or some of the branch-
points of the classical algebraic curve. Thus, the singularities in £ as a function of n must
come from the map (5.41). For example the loci n* where

pi(y*) — p;i(y") = 2mn’
with
pi(y™) —pi(y") =0 (5.43)
are examples of such singular points of the map n — z%. For n ~ n* one has
n—nt e~y -y (5.44)
while in the y plane nothing special happens when we pass this point so that

Qi (y) ~ QY (y*) + dg Te— (5.45)

which means that

EY ~ A+ Byn—n*, (5.46)
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v

Figure 5.3: Typical analytical structure of the excitation energies as a function of the
mode number n. The branchpoints associated to the cuts going to infinity are large if
some charge of the classical solution is large. There could also be extra cuts in the n plane.

as n approaches n*.

Let us apply these considerations to the BMN string described by the quasi-momenta
(4.44). Here there are no cuts at all so the singularities must come from the points where
(5.43) holds which in this case means

d( ° ):0:>x:ii (5.47)

dr \z2 — 1

which for the quasi-momenta yields
pi(£i) — pj(Ei) = £2miT (5.48)

so that n* = +¢.7.

If the world-sheet time 7 and the target-space global time ¢ are related by t = k7 then,
for large n, all fluctuation energies must behave like %\/ﬁ For solutions moving in the
sphere only we have moreover k = £, the energy of the string. For the BMN string we have
k=& = J. This large n behavior means that there should always exist two branch-points
somewhere in the complex n plane. Adding to these there could in general exist more
branch cuts as depicted in figure 5.3.

For the BMN string we found no extra singularities apart from the two branch points
at n* =1J and thus we conclude that

.. n2
EF=1/1+ 73 1 (5.49)
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where the constant term was added to have Séj = 0 — a property we expect for the
fluctuation energies since for n = 0 they should correspond to the zero modes associated
with the PSU(2,2|4) global symmetries of the theory. Expression (5.49) yields precisely
the BMN spectrum we found in the previous section.

5.1.5 BMN SU(2) frequencies from quasi-energy.

So far we explained how the quasi-momenta can be used to compute the fluctuation ener-
gies. In [105] Vicedo explained how the quasi-energy can be used to find the S fluctuation
energies for string solutions moving in the three-sphere and point-like w.r.t the AdS space.
In this case we have py = —p3 = p as explained in section (4.5.1). This is of course the case
for the BMN string. The formalism in [105] is based on an extra function, the quasi-energy
q(z). This function is characterized by having the same cuts as the classical quasi-momenta
p(z) and also two simple poles at x = £1. The key difference is that the residues at these
points should be given by

(%

«
~ if ~ . .
o) = F i pla) ~ (5.50)
Then, according to [105], the fluctuation energies are simply
gt L q(zn) (5.51)
" 2n€
where the position z,, is fixed by the usual relation
p(z,) =mn. (5.52)
For the BMN string we have
2nJx
= 5.5

and to find the quasi-energy we simply take out the x in the numerator so that the residues
at x = £1 become of opposite signs,
2nJ

o) =57 (5.54)

Then, from (5.51) and (5.52),

ES = /14— —1 (5.55)

2 —1 J?

as found in the previous sections.
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5.2 Physical polarizations

In this section we will explain why (5.6) corresponds to the proper choice of physical
polarizations. This section can be skipped in a first reading but it might be useful as a
companion to section 6.2.2 in the last chapter.

In the previous section we computed the full set of sixteen physical fluctuations around
the BMN point-like string. Each physical fluctuation is obtained by adding a pole at
position z,, found from

pi(xn) — pi(z,) = 2mn (5.56)
to a given pair of quasi-momenta p; and p;. Physical polarizations are obtained when p;
belongs to the set {p1, Pa, P1, P2} whereas p; is a quasi-momenta in the list {Ds, pa, Ps, Pa},
see table (5.6).

A simple reason for choosing these pairing of quasi-momenta is because no other choice
is possible as we will now explain. First of all, if the quasi-momenta p; and p; belong to
the sets we just mentioned, one has

dn Sz,
2 —1

n

pi(zn) — pj(zn) = (5.57)
and p;(z,) — pj(x,) = 2mn can be solved for any n. On the other hand, if the two quasi-
momenta belong to the same set, for example {py, pa, 1, P2}, we obtain

pi(xy) —pj(x,) =0, (5.58)

and there is no background potential to fix the position of the particle. Thus the only
possible choices are indeed those listed in (5.6).

An alternative way to see that other polarizations are not compatible with the algebraic
curve is to try to compute dp; for unphysical polarizations and obtain some impossible
conditions. For example, if we try to repeat the computation in section 5.1.2 for fluctuations
connecting p; and ps. For such fluctuations we expect

D1 +5A/2 + Njs
Do +5A/2 — Njs
22 —0A/2
5 P4 N 47 —0A/2
D1 VAN I
D2 0
D3 0
Pa 0

which is impossible to satisfy: Since we do not want to perturb the tilded sphere quasi-
momenta 0p;, we should not have poles at x = =£1 for the anti-de-Sitter hatted 0p;’s
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because this would induce a perturbation in the former through (5.11). Moreover, since
there are no fluctuation poles connecting ps or p4, they should have no poles at all. But
rational functions with no pole singularities and 1/x behavior at infinity do not exist and
we arrive at the above mentioned inconsistency.

All this discussion concerns the BMN point-like string corresponding to the vacuum
algebraic curve with no cuts at all. When we start exciting some cuts we will no longer
have (5.58) for unphysical polarizations. Still, by continuity, this difference will be bounded
around zero and we will still find no solutions to p;(z,) — p;(z,) = 2mn if we chose an
unphysical polarization (7, j). On the other hand, if the cuts are big enough, it might well
be that the unphysical difference p;(z) — p;(z) will touch 27 or —27 for some z. In this
case a physical fluctuation connecting this pair of sheets would exist at this point x. What
happens is that as we increase the filling fraction of the cuts, a physical fluctuation which
was connecting a pair of physical momenta can enter the cut and become what we would
normally call an unphysical polarization as depicted in figure 6.2, see also [15]. Note that
going through a cut is an absolutely smooth procedure and therefore no non-analyticity
arises at all.

Anyway, in the worst case scenario we will have a finite number of fluctuations connect-
ing such unphysical pairs of sheets. Most fluctuation energies will still be obtained when
considering the physical polarizations (5.6). For each choice in this list we will always find
an infinite number of physical fluctuations obtained by adding extra poles to the algebraic
curve at the positions found from (5.56). In particular, in principle we can use this infinite
set of fluctuation energies to compute £Y as an analytic function of n. Thus, do we need
to care if, for a finite number of mode numbers n, the fluctuations actually went through
some of the cuts and now connect unphysical pairs of quasi-momenta? No. If we already
have £ we simply evaluate this function at those values of n.

So, when do we need to take into account these unphysical fluctuations? For example,
if we are using the algebraic curve to sum all fluctuation energies to compute the one-
loop shift (5.2). As explained in the next chapter this sum can be transformed into the
computation of some contour integrals in the algebraic curve encircling the positions of
all fluctuations. These integrals can then be deformed and in doing so we compute the
one-loop shift in a very efficient way. In this setup we must start off with the correct
integration contour and thus we should be careful about the possible existence of these
unphysical fluctuations, see section 6.2.2.

5.3 AdS fluctuations around strings moving in S°.

In this section we want to point out that for any solution with energy £ moving in S° and
point-like in AdS with ¢ = E7 (or in terms of the AdS embedding coordinates vg + ivs =
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e®7) the AdS fluctuation energies are always trivial to compute and simply given by

EAIS — 1+"—2—1 (5.59)
i \/ e L .

Let us explain why this is so from several equivalent arguments, one of them relying on the
direct expansion of the string action and the other two using the algebraic curve language:

e First of all (5.59) is clear from the expansion of v; — v; + dv; in the action (2.9).
From the Virasoro coupling of the AdSs and S° motion it is easy to see that the
Lagrange multiplier before the v - v — 1 constraint is given by £? and therefore the
expansion gives v/n2 + €2 for the world-sheet energies in static gauge. Since t = E7
we obtain the announced expression for the target space energy.

e From the point of view of the algebraic curve this is equally manifest. Since the
AdS coordinates are simply vg + ivs = €7, the AdS quasi-momenta read (4.69) as
explained in the end of section 4.5. To compute AdS fluctuation energies we add a
pole shared by two of the hatted quasi-momenta. We do not want dp; to have poles
at x = £1 because due to the Virasoro contrains (5.11) this would lead to ép; # 0.
Moreover (4.69) have no cuts at all. Thus, for example for a 23 excitation we can
only have poles at x = z,, and therefore we are lead to

0pa(x) = —6ps(z) = ) P (5.60)
as for the BMN string. Hence, as before,
0A = NQpun () (5.61)
where 5
Qpun(z) = =1 (5.62)

The only difference is that when computing x,, we now have (5.14) with J replaced
by € and therefore (5.59) follows.

e Finally we could use the analyticity reasoning described for the BMN string in section
5.1.4. The singularities of the AdS frequencies
EJ =Q(y) _ 4 (5.63)

Y=Tn

will follow from the singularities of the map n — % which for the AdS quasi-momenta
is the same as for the BMN string with J — £. Thus, as in section 5.1.4, we conclude
that the fluctuation energies have no singularities apart from two branch-points at
n* = +i€ and together with the known large n asymptotics this fixes (5.59).
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5.4 SU(2) Circular string

The next less trivial example is the simple su(2) rigid circular string [101] already encoun-
tered in the previous chapter. The quasi-momenta associated with this classical solution
are given by (4.48) and (4.49),

p1 +K(1) 0

J2 +K (1) 0

Ps —K(1) 0

o :Jj”_xl é&) + % L K@) = Ve 7 (5.64)
Do +K(x) —2mm

D3 —K(z) +2mm

P4 —K(1/x) 0

In this section we will compute two fluctuation energies associated with the S® and
the AdSs excitations. We will not compute the remaining fourteen (16 — 2) polarizations
for two reasons. On the one hand because after the computation of the two fluctuation
energies the remaining excitations are easily found with only some very minor differences
in the actual computations. On the other hand, and more importantly, because as we will
explain in the next section it is possible to obtain all other fourteen fluctuation energies —
including the fermionic ones — from the knowledge of the S® and AdSs excitations alone.

5.4.1 Standard Computation Method

Suppose we want to compute the variation of the quasi-momenta dp(x) when a small pole is
added to a generic finite gap solution with some square root cuts. Since the branch points
will be slightly displaced we conclude that op(z) behaves like 0,,v/x — ¢ ~ 1/3/x — 29
near each such point.

Here we are dealing with a 1-cut finite gap solution. Then, for dps, we can assume the
most general analytical function with one branch cut, namely f(z) + g(z)/K(x) where f
and ¢ are some rational functions and K (z) is the square root in (5.64). To obtain dps it
suffices to notice that (5.5) is simply telling us that dp3 is the analytical continuation of §p,
through the cut. This is a fancy way of saying that K (z) — —K(z). The remaining quasi-
momenta dp; 4 can then be obtained from these ones by the inversion symmetry (5.12).
We conclude that

opn —f(1/z) = Fe7

|| @G (5.65)
N N ENIORS < |
bs YT K@)

0p4 —f(1/z) + Ig(((ll//:l;))
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The only singularities of dp, apart from the branch cut are eventual simple poles at £1
and z, and so the same must be true for f(z) and g(z). Then, just like in the previous
example, these functions are uniquely fixed by the large x asymptotics (5.8) and by the
residues at z,, (5.10) of the quasi-momenta.

Finally, since the AdSs; part of the quasi-momenta of the non-perturbed finite gap
solution has no branch-cuts, their variations dp; have the same form (5.33),(5.34) as for
the simplest BMN string.

The AdS; fluctuations were already treated in a much more general setup in the previous

section. We find
gAdS
n

= Qpun (@) , Qun(y) = (5.66)

y?—1
or (5.59).

Next we consider the S° fluctuations. We must now analyze the shift in quasi-momenta
due to the excitation of the algebraic curve by the four type of poles (13,24, 23, 14). We will
only study the excitation 23 in detail. As mentioned above we will be able to reproduce all
these fluctuations together with the fermionic ones from the knowledge of the single AdS
fluctuation energy determined above plus the S® excitation 23 which we will now compute.

As for the BMN string we omit the polarization superscript 23 from the occupation
23

numbers N23 and from the pole positions z23.
Since the AdS quasi-momenta are trivial, with no cuts, we obtain for dp the same kind
of expression we had for the BMN string (4.44), that is
2roFE

Due to the Virasoro constraints, the poles at z = %1 in the AdSs and S° sectors are
synchronized as in (4.68). Thus, we merely need to fix f(x) and g(z) from the large
x asymptotics (5.8) and the residue condition (5.10) and then extract, from these two
functions, the residues at x = +1.

For fluctuations connecting ps to p3 the symmetry of the problem constrains dps, = —dp3
and therefore f(z) = 0 as mentioned in section (4.5.1). Alternatively we can derive this
from the following simple reasoning:

fx) =

which means f(x) has no pole at = x,,. Moreover since the residues of dp, 3 at x = £1 are
synchronized to those of d0ps 3 as in (5.11) we see that f(z) has no poles at x = %1 either.
Thus f(z) has no poles at all. Since it must vanish at infinity we conclude f(z) = 0.

(0pa(x) + 0ps())

| —

The remaining function g(z) will then be given by

g(z) = —4%” S N+ Wf[_“f) + W‘Zile) -y N, U)K (@) (5.68)

n
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All prefactors were fixed so that the residues at x = %1 for dps 3 are synchronized with
the AdS quasi-momenta as in (5.11) and in order to have the proper residues Fa(x,) at
x = x, as required from (5.10). Finally, the first constant term was fixed by the large =
asymptotics for dps(z).

Next we impose the large x asymptotics for dp; () = —dp2(1/x). This quasi-momentum
must decay at least at 1/2%. The cancelation of the 1/z term fixes the fluctuation energies

to be
L ~ 22+ J2 2
EB Q) . Qy) = Y 5.69
n (y)y (y) m2 ¥ j2 y2 -1 ( )

and setting the constant term to zero yields the level matching condition ) N,n = 0.

To find £2 as a function of the mode number n we simply need to solve iy (i, ) —ps (2 ) =
2mn and plug x, into the off-shell fluctuation energies to obtain

EB = \/2j2 + (n+2m)? —2/J* + (n + 2m)2(J% + m?) (5.70)

reproducing the result of [106].

In a similar way we could compute all the other fluctuation energies. Let us just
provide a glimpse of the reasonings involved. Take for example the fluctuations 13. Since
the difference

ops = f(x) — g(x)/K(x)

must have a single pole at :L’}L with residue a(z,°), whereas the sum

0p2 = f(x) + g(x)/K(z)

must be analytical, we infer the value of the residues of both f and g at this point. This line
of thought should be carried over for all the other excitations and for the points x = +1.
Knowing the positions and residues of all possible poles we would write a similar ansatz
as in (5.68) for both f(x) and g(z) and the large = asymptotics would fix the energy as
above.

In similar lines we could study fermionic fluctuations. We would find the full spectrum

as
ROE = S (N4 N2 (Wi, = ) + NEwy,, + NI (0 - 27)
NI 2 S N4i> ( F_ E)
+zn:(n+n+n+n wy =T+
+ ;( n + n + n + n wn-l—m 2
i3 i1 23 24 A
+ Z(Nn + NI N2 4 N2 >wn, (5.71)
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Table 5.1: Simple su(2) frequencies computed in [101]

‘ eigenmodes ‘ notation
g5 \/2j2+n2i2\/j4+n2j2+m2n2 wS*
N S
Fermions ‘ VI?+n2 ‘ wk
AdSs | VTP +nP+m? | w

with the notation introduced in the table. We notice the appearance of some minor constant
shifts and relabeling of the frequencies when compared to those in table 5.1. This point is
briefly discussed in appendix C.

5.4.2 Analytical power

In this section let us revisit the arguments in section (5.1.4) applied to this SU(2) circular
string. Again, we can find the singularities of the map p;(z) — p;(x) = 27n by computing
the values of z* (and corresponding n*) so that pj(z*) — p(z*) = 0. We obtain

+i +/T2+m? | (1,3),(1,4),(2,3),(2,4)
+iJ /\/m? + J? m+iJ (1,3),(2,3),(2,3),(2,4) (5.72)
+iv/m?2 +J2/T 2m +iJ (1,4),(2,4),(1,3),(1,4)

+i m iV J? —m? (1,3), (2,4)

which covers fourteen out of sixteen fluctuation energies. It is easy to see that for those
fluctuations no more singularities arise. Thus, for example, from the last two lines we
conclude that there are two S° fluctuation energies given by

1 J

Which is precisely the value in (5.71). In this way we can derive fourteen fluctuations
energies with almost no work at alll As for the BMN string there are two constants
in this expressions which we had to fix: the one multiplying the square-root and the
constant outside the square root. They are fixed so that E; = 0 (zero mode condition)
and E% ~ |n|/k for large n.

Vn—m)2+ 7% —m? — (5.73)

The remaining two fluctuation energies corresponding to the polarizations 23 and 14
would require some more gymnastics. From (5.71) we see that these last two fluctuation
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energies are given by

5 1

£ = g\/w? + (n+2m)? = 20/ T + (n+ 2m)*(J2 +m?) . (5.74)

and

i L (TR ). e

We can check that the small square root inside the large square in each of these expressions
has branch-points for n* which precisely correspond to the loci where p; — p; = 0.
Additional singularities should be expected for x approaching the branch-points of the
classical quasi-momenta. Close to these points p; —p; ~ /& — z* so that x —z* ~ (n—n*)?.
Thus if the fluctuation energies are a regular function of x close to x = x* we will have

Q9 (z9) ~ A+ B(n —n*)? (5.76)
which means p
— QY (29 =0 5.7
nED| (5.77)
which can be easily checked. For example for 23 the branch point is at © = +i.J/m and
corresponds to n = —2m. Indeed
d ==
— &% =0. 5.78
| (5.78)

It is curious that the analytical properties of the classical quasi-momenta can tell us much
about the analytical structure of the fluctuation energies without the need to preform any
explicit perturbation analysis. It would be interesting to try to completely constrain £
from the several asymptotics of the classical quasi-momenta and thus to formulate some
sort of finite gap problem for the fluctuation energies.

5.4.3 Quasi-energy

In this section we repeat the analysis of section 5.1.5 applied to the circular string. The

quasi-momenta py, = —p3 = p is in this case
2rx K ()

and to obtain the quasi-energy we must find a function with almost the same analytical
properties as p(z) but with opposite residues at © = £1 [105]. As in section (5.1.5) this is
simply obtained by taking out the x from the numerator in the quasi-momentum,

21K (x)

q(x) = 21 (5.80)
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We also eliminated the constant 27m because without the z in the numerator the quasi-
energy automatically decays as 1/z at large 2. Thus, the S? fluctuation energies are simply
given from (5.51) which yields precisely (5.69) found before,

o B B /o2 2L 72 2
EF = Qe Q) = Ve (5.81)

or, using the explicit expression for the pole position,

2 = \/252 +(n+2m)? = 23/ J* + (n+2m)2(J2 + m?) . (5.82)

This end our discussion of the single cut solution.

5.5 Off-shell method

In this section we describe an efficient quantization method which allows us to determine
the several fluctuation energies from the knowledge of two excitations alone. Since we will
work with relations connecting the several fluctuations energies for different polarizations
(,7) it is important to be more rigorous with the indices than in the previous sections.
For example when adding a fluctuation with polarization (7, j) and mode number n to the
algebraic curve we shift the quasi-momenta as

pir(x) = pi(@) + 6 pi(2)

where 09p. () is constrained by the analytical properties mentioned in the beginning of
the chapter. Let us stress again that even though we are considering a polarization (i, 7), in
general all quasi-momenta py, are shifted because of the back-reaction of the curve upon the
addition of the extra pole. The quasi-momenta 6%/p; and §%p; which are the quasi-momenta
connected by the fluctuation at stake must behave as

g ij
51y () = iM
T — Ty
close to the pole position % which is determined by (5.4),

pi(x?) — pi(z) = 2mn. (5.83)

The physical poles correspond to solutions of this equation with |2%| > 1. The precise
choice of signs above as well as a(y) is given in (5.10) and (4.27), see also figures 5.1
and 5.2. Having found §%p, we read off the fluctuation energy with mode number n and

polarization (i, j) from the large z asymptotics

EJ =—-20,5+ 2£ lim x 67 p1(z) . (5.84)

’ T x—00
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We will now explain that in fact we need not compute separately each of the sixteen
physical fluctuations corresponding to the various string polarizations (4.34) but that it
suffices to compute two of them, at least for a huge number of interesting solutions. In
particular we shall see that the fermionic fluctuations can be obtained from the S® and
AdSs fluctuation energies.

Notice that the dependence in n for the shift in the quasi-momenta §%p; only appears
through z% determined in (5.83). In other words the shift in the quasi-momenta is actually
a function of the position of the pole,

0 pr(x) = 8 pi(w;y)] - (5.85)

Moreover the off-shell quantity 6“py(z;y) is a well defined function of y. It is determined
by the same asymptotics as for the on-shell shift of quasi-momenta §%py(r) except that
the position of the pole is left unfixed. An obvious consequence is that the fluctuation
energies read from (5.84) are, by construction, of the form
g = Qij(?/)}y:ggif (5.86)
where the function Q% (y) is independent of the mode number n. We call Q¥ (y) the off-shell
fluctuation energies, see section (5.1.4).
Given an on-shell fluctuation energy £7 as a function of the mode number n we can

always reconstruct the off-shell frequencies by first computing the quasi-momenta p;(z) for
the underlying classical solution and then simply replace n using (5.83), that is

D (y) = | rw-nw - (5.87)
27

We will now explain how, using the inversion symmetry (5.12), we can relate the several
off-shell fluctuation energies.

Frequencies from inversion symmetry

An important property of the quasi-momenta, which follows from the Zj-grading of the
su(2,2]4) superalgebra, is the inversion symmetry (4.59) under x — 1/z, which exchanges
the quasi-momenta pj ; < ps 5 and likewise for the AdS hatted quasi-momenta. Thereby, a
pole connecting the sheets (2,3) at position g, always comes with an image pole at position
1/y connecting the sheets (1,4). We can obtain a physical frequency QM (y), by analytically
continuing the off-shell frequency Qi’g(y), inside the unit circle. This is because when we
cross the unit-circle, the physical pole for (23) becomes unphysical, thereby rendering its
image, which lies now outside the unit-circle, a physical pole for (i, Zl) as depicted in figure
5.4.
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Figure 5.4: As we analytically continue a fluctuation energy %3 (y) from a point |y| > 1 to the

interior of the unit circle we see that its mirror image becomes physical.

Let us consider in detail how this works for the AdS fluctuations. As we will now
demonstrate

QM(y) = —0P(1/y) - 2. (5.88)

Thus, suppose we know 923(y) This fluctuation energy appears in the asymptotics of the
shifted quasi-momenta §%3py(z;y) defined by the analytic properties listed in Appendix B.
Consider now —%py(x;1/y). From the analytic properties of 6**py,(z;y) we conclude that

e (Close to x = y we have

— §Bpi(a;1/y) ~ ;g/)y , —0Ppy(a; 1Y) ~ _;g/; (5.89)

e The poles at « = +1 for these functions —62py,(x;1/y) are also synchronized as in
equation (5.11).

e Close to the branch points of the original solution these functions exhibit inverse
square root singularities.

These are precisely the required properties for 5mpk (x;y)! Therefore
M pi(ry) = =07 pi(a; 1/y) - (5.90)
From the large x asymptotics we have

— g lim xéégﬁi(:c; l/y) = —M (5.91)

T T—00 2
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Figure 5.5: Algebraic curve for classical superstrings on AdSs x S°. If the configuration is
symmetric under reflection w.r.t to horizontal dashed line then we can obtain the full spectrum

of all excitations from the knowledge of two fluctuation energies alone.

while by definition Q'4(y) can be read off from

) i Qi
£ lim o 8"p;(a;y) = )

41 z—o0 2

+1 (5.92)

From the identification (5.90) we thus conclude (5.88).

Similarly we can proceed for the S5 frequencies and relate Q23 (y) with Q¥ (y). It is
clear that Q% (y) = —Q2(1/y) + constant and to find these constant we can either repeat
the analysis we just did applied to the sphere fluctuations or we can be smarter and fix it
from Qﬂ(oo) = 0. This must of course hold since the energy shift when we add an extra
root at infinity is obviously zero, in other words, roots at infinity are zero modes. Thus,
the relation we find is similar to (5.88), except that the constant term differs:

QM (y) = QB (1/y) + 9*0). (5.93)

Obviously for the purpose of computing the one-loop shift these constants are irrelevant
as they will cancel in the sum.

So far we have obtained the frequencies (1,4) from (2, 3). In the next subsection we will
show how to derive all remaining frequencies. For a very large class of classical solutions
we will be able to extract all fluctuation energies, including the fermionic ones, from the
knowledge of a single S® and a single AdS; fluctuation energy.
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Figure 5.6: Depiction of equation (5.98). On top: we see that for symmetric configurations we
can obtain the off-shell fluctuation frequency 022 = 033 from the knowledge of the two S° and
AdS5 frequencies. On bottom: With this unphysical excitation at hand we can compute the
fermionic fluctuation frequency 02 = 02 + 022 in terms of the two bosonic fluctuations.

Basis of fluctuation energies

For simplicity let us consider only symmetric classical configurations that have pairwise
symmetric quasi-momenta

Pisiz = —Pisij; (5.94)
as depicted in figure 5.5. This is in particular the case for all rank one solutions, i.e. for
the su(2) and sl(2) sectors.

Consider e.g. the fermionic frequency Qég(y). This energy can be thought of as a
linear combination of the physical fluctuation 923 (y) and an unphysical fluctuation Q*2(y),
which in particular does not appear in the table (4.34) of physical, momentum-carrying
polarisations:

0B (y) = OB (y) + Q2 (y) . (5.95)

Since we are considering symmetric configurations, this unphysical fluctuation energy is
identical to Q33(y), i.e.

O2(y) = QP(y) . (5.96)

As in (5.95), these unphysical fluctuations can be linearly combined in terms of physical
fluctuations

OB(y) = Q2 (y) + 03 (y) + BB (y). (5.97)
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Combining all these relations we obtain

(2% +9%w) . (5.98)

as depicted in figure 5.6.
Proceeding in a similar fashion we can derive all frequencies as linear combinations of
0%(y) and Q*(y). (5.101) summarizes all these relations.

Final result

The physical frequencies are labeled by the eight bosonic and eight fermionic polarizations
(5.6), so we can write them as

0 where i=(1,2,1,2) j=1(3,4,3,4). (5.99)

To construct the complete set of off-shell frequencies for a symmetric solution (5.94) in
terms of the two fundamental S* and AdSs ones Q2?3(y) and Q?3(y) and their images under
y — 1/y, we first construct by inversion

O (y) = —0%(1/y) + Q2(0)

N N (5.100)
QM (y) = -9%(1/y) - 2.
The remaining frequencies are then obtained by linear combination of these four fluctuation

frequencies. In this way we obtain the following concise form for all off-shell frequencies

() = 3 (27 () + () (5.101)

where

(1,2,1,2,3,4,3,4) = (4,3,4,3,2,1,2,1). (5.102)
This generalizes (5.98).

For the general case of non symmetric solutions, we can repeat the above analysis,
however the minimal set of required off-shell fluctuation frequencies will generically be
larger than two.

In the rest of the chapter we consider only SU(2) solutions as described in section
(4.5.1), see figure 4.7. From the symmetry of the problem it is clear that we generically
have 6 different frequencies, namely

1. One internal fluctuation corresponding to a pole shared by p, and p3 which we denote
by
Qs(y) = Q*(y) (5.103)
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2. Another S? fluctuation connecting p; and p,

Qs(y) = Q" (y) (5.104)

Qs, (y) = 2 (y) = Q*(y) (5.105)

4. Four AdS5 fluctuations

Qa(y) = QB (y) = QM (y) = 93(y) = Q*(y) (5.106)

5. Four fermionic excitations which end on either ps; or p; (which are the sheets where
there are cuts outside the unit circle),

Qr(y) = QB (y) = Q3(y) = Q3 (y) = Q*(y) (5.107)

6. Four fermionic poles which end on either p; or p; (which are the sheets where there
are cuts inside the unit circle)

Qp(y) = A(y) = 0¥ (y) = QB (y) = (). (5.108)

These fluctuations are depicted in figure 5.5 from left to right.

5.6 Quantization of the two-cut solution

In this section we explain how to compute the fluctuation energies around a general 2-cut
su(2) solution (4.86) with branch points a,a,b,b. We will find out that the fluctuation
energies can be obtained by the surprisingly simple expressions

) £ = £(=1)
Qu(y) = 21 (1 LETEyn f(—1)> (5.109)
o) — 4 ( /() _1) '

F)+ (1) \y? -1

with the remaining fluctuation energies obtained through table 5.100. Note that this is
a very simple elegant expression for the off-shell fluctuation energies. All the intricate
structure that appears for the on-shell frequencies is hidden in the equation for the pole
positions z% (5.83).

The computation is very similar to the one in section 5.4.1 so we can be brief and omit
the details. To find the fluctuation frequencies we perturb the quasi-momenta (4.86) and
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fix dp by the required asymptotics (5.8). We consider only the (2,3) and (2, 3) fluctuations
with Ns3 = N33 = 1, located at x = z and x = y respectively. The most general ansatz for
the shift in quasi-momenta is then

a(z) da_ dag

Ops (x; =
1 a da_f(1)  daif(—1 4m

f(z) x—y x—1 r+1 vV
where the asymptotics at large x for dps, dps, and also dpj, dp; obtained by inversion
symmetry (5.12) fix the constants day, A and JA. The result is

(5.110)

SA = Qs(y) + Qu(2), (5.111)

with (5.109).

Now that we have found the two off-shell frequencies (25 and €24 we can construct the
remaining frequencies from (5.101). In this way we obtain the complete set of fluctuation
energies around the generic two cut solution. As an application we consider in the next
section the Giant Magnon solution which corresponds to a particular (singular) limit of
the general treatment we considered so far.

Notice also that our simple treatment can be trivially generalized for K > 3 cuts.

5.7 Quantum wrapped giant magnon

In the previsous section we have determined the off-shell frequencies for the most general
two-cut solution. In this section we consider the singular limit discussed in section 4.5.2
where the two cuts collide and we obtain a condensate curve describing the giant magnon
solution.

To obtain the on-shell frequencies £ we simply need to compute the positions of the
poles % from (5.83) and plug them in (5.86). There are two case we have to consider.
Mainly x% are situated relatively far from the branch points of the two cuts and we can
expand the off-shell frequencies

Quy) = Q) - (y2y_ - (Xi)i+1())§3(:)(1) Y 5% + c.c.) (5.112)
1 X, —X_

Os(y) = Quly) - ( 5+ ) |

y— X 4(X2-D)(X_ Xy +1)
The first term is the leading order frequency, as determined in [17],

2 X, +X_
QO (y) = l—gy—tF "= 5.113
W= (L (5,113
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The remaining frequencies are of course determined as in (5.101).

However there are fluctuations corresponding to the variations of the filling fractions of
the two cuts. These are situated right at the branch points. To compute their contributions
to the 1-loop energy shift we have to expand §EBY = %Qég(a) + %Qig(b). That leads to

1—- X_X,
AX_X, +1)2(X2 1)

SEBY ~ QO(X ) + ( 6% + c.c.) : (5.114)
Except for these two fluctuations the positions of the excitations are along the real axis.

We found all fluctuation energies around the general two-cut configuration and in par-
ticular around the GM solution. In the next chapter we will focus on a very important
quantity in the semi-classical quantization of a physical system — the one-loop shift (5.2).
Notice that even though we have the fluctuation energies at hand it is by no means trivial
to sum them as in (5.2). For that we need to find the position of each fluctuation which
will depend on the mode number n and the polarization A = (i, j) through (5.4), plug the
position into the off-sheel fluctuation energies Q% (y) and sum the result over n and ij with
some minus signs for the fermionic fluctuations. We will explain in the next chapter how
the algebraic curve formalism can be of great help to preform this complicated task.



Chapter 6

One—loop shift

This chapter is devoted to the study of the one-loop shift (5.2) around generic classical
solutions. We start with a general discussion in section 6.1. In section 6.2 we consider a
very illustrative example where we will compute this quantity for the giant magnon two-cut
solution studied before. Finally, in section 6.4, we will come back to the general discussion
and consider an application of our method to derive the semi-classical Hernandez-Lopez
dressing factor in the Beisert-Staudacher equations. This is the universal dressing factor
which renders the correct semi-classical quantization around any classical solution.

6.1 Splitting of one loop shift into two contributions

So far we computed the semi-classical spectrum around generic classical solutions, that is
we computed the level spacing £¥ for excitations with mode number n and polarization 7j
in terms of which
E{NY) - E({}) =) _NJEI +0(1/VN) (6.1)
n,ij
As mentioned in the beginning of the chapter, another quantity of main interest is the
1-loop shift
1 Fyj oij
By =3 Z(—n T (6.2)
ij,m

appearing in the expansion of the energy of the string state,
E({}) = Ea+ Ey+ O(1/V)) (6.3)

where F, = O(\/X) is the energy of the classical string around which we quantize.

It is important to understand a trivial point. We can use the algebraic curve to find
the ground state energy because we can compute all fluctuation energies by perturbing
the algebraic curve and then sum them by hand. But, if we take the algebraic curve
corresponding to some classical solution and compute its energy we will obviously only get
E.. It would be nice if we could upgrade the algebraic curve equations so that the energy

)

of a given configuration would automatically yield (6.3). After all, the proper quantum



154 6. One—loop shift

equations must capture the full 1/ VX expansion. This is what we will consider in the last
section 6.4.

In this section we will continue our general description of the one-loop shift. First of
all to operate with the sum (6.2) we write it as

1 5 i dn

Ey = 3 Z(—l)F” fé'nj cot o (6.4)
ij

where the integration path encircles all integers n. This is true because the function cot mn

has poles precisely at the integers,

D
cot mn 1 T

A N (6.5)

21 i x2—n?’
n o0

Next let us change variables in this integral. For each polarization ij we change from the
mode number variable n to the position of the corresponding fluctuation 2% found from

pi(x)) — pi(x) = 2mn (6.6)
which means that

Bo= Y1) f 0o (PR U B0y

2 2m 4i "’

i g
Uxﬁf

where we used
£ = () (6.8)
as explained in the previous sections.
The contour integral in the x plane encircles now all the excitation points z}/. Then we

do the most obvious thing — we blow up the contours. We choose to keep the integration
contour always outside the unit circle. Thus we are left with two type of contour integrals:

1. The obvious contribution is an integral over the unit circle for each polarization ij.
We denote this contribution to the one-loop shift by Ipnaese-

2. The less obvious part is everything else. What do we mean by everything else?
Suppose we consider a generic non-singular classical configuration whose algebraic
curve contains some square root cuts uniting some of the sheets. Then, if we consider
the contribution of a polarization 45 for which the classical solution has cuts ending on
either p; or p; (or both), we will also get additional integrals around the corresponding
classical cuts. If we are considering some singular configuration such as the Giant-
Magnon then everything else stands for the integral over all possible singularities we
might encounter when deforming the contour. This contribution to the one-loop shift
from all integrals other than that over the unit circle is denoted by I,pnomaiy-
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Figure 6.1: Splitting in the n plane. a) Typical analytical structure of the excitation energies
as a function of the mode number n, see section 5.1.4. The branchpoints associated to the cuts
going to infinity are large if some charge of the classical solution is large. There could also be
extra cuts in the n plane. The integral (6.4) can then be split into two contributions Ippese and
Ionomaly as depicted in the figure. b) The contour Ipp.se going along the large cuts in the n plane
is mapped into some ellipsoidal form in the x plane. The contours around the extra cuts in the n
plane are mapped to the cycles around the cuts of the classical solution which we are quantizing.

If the classical solution contains some large charge, say J, then

o (PO 69

on the upper/lower half of the unit circle. This is valid with exponential precision in
the large charge we consider. Thus, the constribution I,,.s. can be approximated with
exponential precision by

o i Pily) = p5(y) dy
I ~ Iy = —)Fu ) Qi) TSP 1
e = I = 3(=1) § 9 (y) PRI (6.10)
iJ U+
where the contour is over the upper half of the unit circle from x = —1 to x = +1.

As explained in the last section, from the Bethe ansatz point of view, what happens is
that the contribution I,,emaiy is reproduced exactly (no exponential errors) by the finite
size corrections — called anomalies — present in these equations [15]. The contribution
Ihase 1s not obtained but instead the Hernandez-Lopez phase [77] reproduces precisely the
integral Iy, [14]. In other words, the Beisert-Staudacher equations yield

E(])BS = ]HL + Ianomaly (611)
which approximates with exponential precision the correct 1-loop shift

Ey = phase + [anomaly . (612)
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In the next section we take (6.4) as our starting point and compute the one-loop shift
around the Giant-Magnon classical solution. In the last section we focus on the derivation
of the Hernandez-Lopez phase.

6.2 One-loop shift around the Giant Magnon solution

In this section we shall compute the ground state energy FEj, around the Giant-Magnon
solution studied in sections 4.5.2 and 5.7. In doing so we will keep track of the leading
and subleading exponential corrections in the large angular momentum J. The one-loop
energy shift is obtained by the weighted sum over all fluctuation frequencies

Eo=5Y (1) (27) . (6.13)

n,ij

To deal with this sum we first split it into the fluctuation energies § EBY corresponding to
a variation of the filling fractions of the two cuts (5.114) and the remaining fluctuations.
To deal with the latter we transform the sum over n into an integral with cot7n and
then pass from the n to the z plane using the map (5.83) as explained in the previous
section. Actually, as explained later there is an additional third contribution coming from
fluctuations which got trapped between the two cuts when these collapsed into the log cut.
This contribution, denoted by dEYF is considered in section 6.2.2 (see also section 5.2).

Thus we have | y
ij Y BP UP
FEy=— —DF ¢ Q¥ i —— 4+ 0F E 14
0= 3 (1) f ) oty 5L+ 5B 4 GE (6.14)
ij Cr
where

cot;; = 0y log sin (]%) : (6.15)

and the contour Cg encircles all the fluctuations on the real axis. Our goal will be to
deform this contour to the unit circle, where the argument of the cot has a large imaginary
component and the integral can be computed by standard saddle point method.

However, when deforming the contour we will obtain several poles from cot;; located
close to the points z = X, X and x = 1/X,1/X_. The contribution from these poles
is computed in the next section and is denoted by §EYY. We find therefore

Ey = 6E™T 4 6EPY + 6EPY 4 6B (6.16)

where

SENT = 7§ (% > (-1)F QY () Cotij> %. (6.17)

Cy Y
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Notice that since we have already dealt with the zero mode contribution 6§ EF separately
we can (and will) now use the far away quasi-momenta (4.95) in the rest of the paper. In
the following four sections we will consider each of these four contributions in detail.

In the language of the previous section

Lohase = 0E™" | Linomary =~ 6E™" + §EBY + 6EUF (6.18)

The difference is that in what follows we will always drop any contributions much smaller
than O (6%) with (4.99). The notation E is used to stress that we are working in this
singular limit.

6.2.1 Extracting poles

We now determine the positions of the poles mentioned above. Consider first the polariza-
tion (2,3). We have
L . TA N\ (= X)?
exp(—ips + ip3) = exp (—17 — 2@7’) —_—
g(z? = 1) (z — X)?
so there is an obvious pole from (6.15) at x = X*. However there are also some less
obvious poles if the denominator in (6.15) vanishes, i.e. for exp(—ips + ip3) = 1,
zA (r — X _)?
e ——— = 2T | ————= =1.
Xp ( gla® = 1) ) (r = X7
The first factor is exponentially small. When x ~ X, the exponent is of order §% as one

can see from (4.99). However we can compensate that if the second factor diverges. To do
so look for 2 — X, ~ §. One then finds poles at z — X, = €}, where

o ié+5_2(¥+ A&)

! 1716\ X, —x_ g (x2 — 1)

5_3( 1 L O3AY(XE +1) éQXijLXX?;—3Xi+3XX+—3>+O(54)
64 \ (X- —X;)? 8A(XP—-1)* 29 (X = X)(XE -1)°

Proceeding in the same way for the different polarizations we find the position of all existing

+

poles. We have summarized all poles, and whether they are physical or unphysical (around
X, or 1/X ., respectively), in table 6.1. In Appendix E we listed the explicit values of the
small deviations ¢;.
In summary, the contribution to the contour integral from these singularities is
SEPL — ( e’ n 2—- X, (X_+X,) iA (Xo— X ) (X2 +1) )
(XX, +1)(X2-1) (X_X;+1)(X3-1) 4q (X_X, +1)(X2 —1

6.19)
which for small ) values becomes

PL s 2. 2P
JE™™ ~8e ™2 gin 3 (6.20)
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Polarization Poles around X, Poles around 1/X,

A x4
F x4 r— Xy =063
F x4 1)z — X, =0,¢6
S r— X, =¢,0,¢
S 1z — X, =¢,0,¢
S; x2 r— Xy =06 1/z — X, =0,6

Table 6.1: Poles of different cot;; in the upper half plane close to the logarithm branch
points

6.2.2 Unphysical fluctuations

Next we consider the contribution from the unphysical frequencies discussed in section 5.2.
As explained in section 5.2, if we consider a general finite gap solution with small enough
filling fractions, we know that the equation

pi(ay]) = pj()]) = 2mn (6.21)
for a physical pair (i5) in (5.6) is always solvable'. When we gradually start increasing the
filling fractions, the cuts become bigger and, at some point, a cut could collide with some
x,,. After this point we will not be able to find solutions to (6.21) for some values of n. This
however does not imply any non-analyticity of the fluctuation energies Q% (x%) as a function
of the filling fractions and we can analytically continue the fluctuation energies below this
point. What happens is that the fluctuation x, passes through a cut and afterwards is
connecting two different sheets. This will generically yield unphysical fluctuations. We
have depited this process in figure 6.2.

Indeed for each missing solution of (6.21) one could find the corresponding unphysical
fluctuation. We conclude that we also have to consider all possible solutions of (6.21) for
unphysical pairs (ij).

There are 2 + 4 unphysical fluctuations (1,2), (3,4) and (12), (22), (33), (43), which by
the above reasoning we also need to take into account. We denote these fluctuations by S,
and F,

s, () = 5 5 (@) | (6.22)
Qr,(z) = Al ;QS(w) te, (6.23)

'In fact one should add twists to properly ensure this statement.
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Figure 6.2: When increasing the filling fraction of a cut, the fluctuation could pass through
the cut and reappear uniting different sheets. The physical fluctuation 23 could become
the unphysical one 12.

where the specific values of the constant ¢ and of the position of the fluctuations # and
xf are collected in Appendix E.
Combining this together with the branch-point contribution (5.114) one obtains

205, (0) — 4Qp, (z™) 1- /X /X,
EUP | §EBP _ §EBP Su u — >+ ce, (624
) +0 J + ) 4(X,X+—|—1)(X3L—1)5 +c.c., (6.24)

where in particular the leading order term correctly cancels! In the @ — 0 limit we obtain

for this combined contribution

Y
5

which precisely cancels the contribution of §EY in (6.20). Thus, for the simple giant-

g
SEUP 4+ GEPP ~ —8¢ wwE gin (6.25)

magnon solution the only contribution is given by the integral over the unit circle (6.17)
which we will consider in the next section.

6.2.3 Unit circle and final result

In the two previous sections we took into account the extra poles in the complex x plane,
the branch-point fluctuations and the unphysical excitations. For a general dyonic magnon
these contributions are given by (6.19) added to (6.24) while for a simple giant-magnon
this sum vanishes.

In this section we consider the remaining contribution given by the integral (6.17) over
the unit circle. There are three contributions into which this integral is naturally split. On
the upper/lower half of the unit circle we have

ot (pi ;pj) = i (14 2R 0P 4 ) (6.26)

while the fluctuation energies are given by

Q) = QO (y) + 6% (y) . (6.27)
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e Thus the we can pick the leading term in (6.26) times the leading term in (6.27) to

get
dy } p; — P}
SEINTO) _ 7{ Y, \rig O ()PP
)
where the integral goes over the upper half of the unit circle from z = —1 to x = +1.

Since E?:l p; — P; = 0 this contribution vanishes and therefore the one-loop shift
around the infinite volume giant magnon is zero [107, 108]. This is precisely what we
expect from the infinite volume dispersion relation

VA

eoo(p)z\/Q2+%sin28:_Sm?_9+0+@(1/\/§).
m 2 T 2

We are therefore left with the exponentially suppressed contributions.

e The second contribution comes from picking the subleading term in (6.27) and the
leading value in (6.26). This gives

SN g f M) MU o) do

(X2 - )Xo X_+1) 2m O ©
g
where
hz) P X.—-X, +X,—2X++X,Xi 1 1
€T = —_— —
16 [ (x — X4)? X (X_X;—1) r—Xy v—X_
52 X, —X_)?
g(:c) — ( + )

8 (z X, —1)(zX_—1)X,
This integral can be computed yielding

SENT.() ~ @ X, - X N (X? — 1)(arccoth X, — arccoth X )
CdAr (X X+ 1)(X3 —1)2 (X2 —1)(X2X2 —1)
Expanding this result in the @ — 0 limit we obtain
N S in3 2 in 2
SEWT) ~ 16 2nE (gsg 2 _ Sl; 2) . (6.29)

Notice that this contribution is singular in the @ — 0 limit. This singularity will
cancel however with the third contribution we will now analyze.

e Finally we have the contribution coming from picking the leading term in (6.27)
multiplied by the subleading term in (6.26). This was the contribution analyzed in
[17] and [109]. It gives

SENT@) _ ]é 4z 5 o)

271

<x—X_ r—1/X,

2 -
; — 18— 2t
2e"” (2-1) 6.30
l‘—X++ZL‘—1/X_ 6>69 (6.30)

U+

} + c.d6.28)
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which in the small Q limit is divergent and becomes

_ 2 . J+4gsin &
5EINT,(2) ~ V.P. %Qd_xamQ(O) (QM _ 2) e—l$ g(zg271)7 (631)

™

N A 16gsin®2  4iJcosZ
4+ e 2onb (_ 9 2 4 2—8ising+8isinp),

where V.P. stands for the principal value of the integral.

Finally, we can combine (6.29) and (6.31) to obtain the final result

dx X, —1 2 _jptaesing
Ey ~ V.P. ¢ —9,00 (27=F_— _92) ¢ o> (6.32)
2mi r— X4
U+
— 9 16 sing 42Jcos—
+ e %3 — + —8@51n—+8zsmp
s g 2

We will show in the next section that this is in precise agreement with the F' and p
terms of the Liischer-Klassen-Melzer formulas! Note that the expression above is real by
construction and the divergences at Q = 0 cancelled among the various contributions.

Notice that the two exponentially suppressed contributions clearly have distinct phys-
ical meaning. The first one comes from taking into account the fine-structure of the con-
densate cut. That is it steams from the finite size corrections to the giant magnon we are
quantizing. The latter is obtained by properly summing the leading frequencies as opposed
to approximating them by an integral over their momenta as done in infinite volume J
[17, 110]. In particular the integral in (6.32) comes from this last contribution. It can be
trivially evaluated by saddle point at z = ¢ yielding

2
V.P. 7{ g@ﬁ(o) (QM _ 2) —

m x— Xy
U+
8sin?2 e VA T+4sinp —4cosp+sin £
= 1 1— - ~——+O0|——=| |+
1) (2 1/2 167?(5111%—1)\/—X (A)
7 (sin 2 — 7 75
which is clearly leading compared to the second line in (6.32).
More generally, as explained in [17], the correction to the dispersion relation of the

magnon in infinite volume is given by an expansion of the form

§E—loor — Zanm (P, 7, \/_)( 2wj>n(eizjg>m. (6.33)
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_2nJ m
Classically we only obtain corrections of the form (e Si“%> [100], i.e.

nm = Ono VXA (P, J) + ab 1P (P, T) + O(1/V/N).

In [17] we determined the complete set of a,%lool’ coefficients (see also [109]), which correct

the one-loop shift of the giant magnon in finite volume, by properly summing the leading
frequencies as opposed to approximating them by an integral over their momenta. They
simply come from keeping the next terms in the expansion (6.26) multiplied by the leading
order frequencies Q® (y) in (6.27) so they read

1—loop *%)n —V.P da ) Q(O) -1 Fij ,—in(pi—pj) 6.34
ang” (e P 50,00 () 3 (-1)e . (6.34)
U+ (i)
From the second line in (6.32) we read aﬁlwp , which is the leading correction to the one-

loop shift due to the fine-structure of the condensate cut. Obviously, we have all ingredients
needed to compute a; ,. It could be interesting to do so to see if some simple structure is
found.

6.2.4 Combined energy shift for a generic dyonic magnon

Notice that we are by no means obliged to take the simple magnon and our previous
formulas are absolutely general and also yield the finite size 1-loop shift around a generic
dyonic magnon. Combining all the contributions computed in the previous sections we get

dl‘ . 'Z‘—X_ . l‘—l/X+ 2 __dzA
Ey ~ ¢ —0,0 (e irZ L2k g 2D .
0 %Qﬂ'lx 0(6 IL'—X++€ {L‘—l/X_ ) e 9 (635)
U+
2 X, —X_ AXZ+D)(X,-X_
+ 0 i 1—X,X+—|—’l + —Z—( ++ )2( + )
(X X, + D)(X2 — 1) ig X2 1
X2 -1)(X2 -1 X HX_ -1
N JXZ - DX >log (X5 + 1)( N see)
(X Xy — 1) X, —D(X_+1)

6.3 Luscher-Klassen-Melzer formulas

Finally we compute the finite-size correction (6.32) using the Liischer-Klassen-Melzer for-
mulas [111, 112, 113, 114, 109, 17, 110]. There are two contributions, the F- and the
p-term

= — @ _& e~ (0L _1\F qba,*
5 a VP]R/QT(_ <1 el(q*(Q))) ;( ]') Sba(q (Q)vp) (636)

et = —i (1— (o) ) e Res, g (Z<—1>Fbszg<q*<q>,p>) . (637)

) b
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which describe the corrections to the dispersion relation of a single magnon with momentum
p due to virtual particles running in the loop, and bound state formation, respectively. We
have used the notation for the on-shell momentum

q2 + e(q*)Q = 0 )

and ¢ denotes the Euclidean energy of the bound state. Inserting the all-loop AdS/CFT S-
matrix [51, 52, 68, 75, 24], one can expand to arbitrary order and obtain the leading-volume
correction.

Through a trivial change of variables, the F-term can be written as [17]

2
il @ g WA=D) _a r—X_ | X
—V.P —89 4”\/—902—1 R, e 2 ) 3
% o e ( x_X+1/X . (6.38)

where /3
A
A=J+sinl (6.39)
m 2
In the limit of @ — 0, X, ~ 1/X_ and thus the F-term agrees precisely with the first line
n (6.32)!

For the p-term we have to evaluate the residue at the bound states, as done in [109],
to subleading order. Since the computation is exactly as done in this paper we omit the
details. There are three contributions: The contribution of the classical S-matrix, the
effect from the one-loop dressing factor and the higher-loop contributions. In summary we

obtain .
et = 6_ VAsin b 51(5253 y (640)
where
0 = —4gsin®Z+i| —cosz —2sinz +sinp | +0 | - (6.41)
2 g 2 2 g
1 1 1 icost 1
by = —+-— — : o= 6.42
? 2+g(27rsin2§ 431112§>+ (92) (6.42)
8 1
so that the p-term up to this order is
-2t ) 16 . , . . 1
de, = —e VAsing ? 16951113]—) + —smz—g — 4 (jCOSZ—) — 2SII1]—) +281np) +0| -
2 o7 2 2 2 g
(6.44)

The leading O(g) contribution to the u-term yields the classical correction (4.100) [109].
The subleading terms are in complete agreement with the corrections appearing in the
second line of our result (6.32).
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. D, — —
wo = R — b
/ CCCCCCCCCCCC / p2

we = S
u4 Ez / CCCCCCCCCCC(C /
we D S -
u / CCCCCCCCCCCC / p3
u6 — — D,
7 D, = —

Figure 6.3: Discretization of the algebraic curve. Only the exterior of the unit circle is
represented.

Thus we have successfully demonstrated the agreement of our result (6.32) with the
Liischer-Klassen-Melzer approach of computing finite-size effects. It would be interesting
to reproduce from a Luscher like approach the full result (6.35) for the finite size corrections
to the Dyonic magnon.

6.4 Semi-classical dressing phase

In this section we consider a last application of our formalism. We will understand how to
modify the finite gap equations in such a way that the universal contribution Iy, (6.10) to
the one-loop shift around any classical solution is reproduced. The remaining contributions,
discussed in section 6.1, are reproduced by the finite size corrections to the scaling limit of
the BS equations and were analyzed in [15].

To proceed we need to discretize the algebraic curve. We will do it in several steps,
gradually moving towards the final discretization. Of course we already know the result. It
is given by (3.282) as already checked in section 4.5 (see discussion after equation (4.68)).
However it is instructive to re-derive this result because in section 3.9 the quasi-momenta
(3.282) were computed in order to reproduce the Bethe equations whereas here we want
to explain how they can be naturally found from the algebraic curve alone.

The picture we have in mind is figure 6.3 (except that in this figure we are representing
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only the exterior of the unit circle). Cuts uniting p; to ps as depicted in this figure are
cuts of stacks made out of roots us, us, us and us as described in section 3.9. Let us then
consider pp, the quasi-momentum on top of figure 6.3. It contains poles at the positions of
the roots of type u;. These can then condense into cuts as explained in chapter 3. Thus
we start discretizing as

pi(z) = —Gi(z) + ... (6.45)
or
pi(z) = —Hy(z) +... (6.46)
where
Ka Ka
Go(z) = ;) , Hy(z) = a(z) (6.47)
j:1 €T — ya,j _]Zl X yad
with

are the resolvents introduced before. We chose these resolvents because as explained in the
previous chapters we want the residues to be —a(y, ;). Notice that H(z) has also poles
at x = £1 but this is perfectly consistent with the algebraic curve so (6.45) and (6.46)
are equally good starting points. We will choose to work with (6.46). The dots in this
expression mean it is still under construction.

Let us now give a sneak peak at po(x). It should have poles at z = x3; with residue
+a(xs;) and poles at = x4 ; with residue —a(xs ;). Therefore

Now we recall that the algebraic curve should obey the inversion symmetry p;(1/z) =
2mm — pa(z). For the moment we ignore the momentum P = 27m — we will restore it
latter. The x — 1/x symmetry leads us to upgrade (6.46) and (6.48) to

where H,(z) = H,(1/x). When we consider no roots at all these expressions would be zero.

However we know that the vacuum algebraic curve corresponds to the BMN quasi-momenta
and thus we have

hi(z) = % Hy(2) — Hs(x) + Hi(2), (6.51)
Po(z) = nJr—F | Hy(z) — Hu(z) + Hy(z), (6.52)

2 —1
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where we now took into account the P = 27m in a way consistent with the large x
asymptotics. Notice that we no longer put any dots in this expressions because as we
explain below they already yield the proper curve discretization. Similarly we would write

pr(z) = Z{ﬁ—muwfu@+muyjmw+m
pa(x) :iiﬁ-ﬂﬂ@+mumfm@—mwﬂnw

but since we need to have (4.60) for large x we slightly improve this expressions to

pi@) = TIEEEPE )k i)+ F(e) - Fy(e) (659
m@::%ﬁiTM_m@+m@+m@—m@, (6.54)

Expressions (6.51),(6.52), (6.53), (6.54) are almost perfect but there are still things to
be understood. To check that this descritization works nicely we should check that the
residues at © = £1 are the same for p; and p; for example, see (41.68). In other words

. - 2nDx+ P - _

p(z) =p(r) = —5—— —Hi+ Ho+ Hy (6.55)
should be regular for x = £1. It is easy to see that the last two terms Hy + Hy =Gy + Gy
and have therefore no poles at x = +1. If we impose that the remaining terms are also
regular we obtain a relation between the total momenta P and the anomalous dimensions
D appearing in the quasi-momenta and the momentum carrying roots x4 ;. More precisely

we find

S S ICT) , 27D = 4 O‘(“Z“J) (6.56)
=1 Y4 1 Y
which is exactly the same as
P=Qi. A=20Q, (6.57)
where
Gy(x) = — i Qni1x" . (6.58)
n=0

Using these relations we can follow the exact same reasonings as above and write all quasi-
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momenta as

R 2nJxr — G (0)x _ _ | 2n T x + G4(0 _
p1=+ ﬂ-j 4< ) —H1+H2+H2—H3 p1:+ ﬂ-j 4< >—H1—H3—|—H4
2 —1 2 —1
R 2 -G (0 | 2 + G4(0
p2=+ ﬂ-jx 4( )x—HQ—FHg‘i‘Hl—HQ p2:+ ﬂ-jx 4( )+H3—H4—|—H1
R 2nJx — G4 (0)x — 2n Tz + G4(0 .
P3=— 1,2_14( ) —Hs+He+He— H7 | p3=— x2_14( )—H5+H4—H7
R 2rJxr — G (0)z _ _ | 2T x + G4(0 _
pPa=— e 14( ) —He+Hr+ Hs—Hg | pr=— o ol )+H7+H5—H4

which are precisely the quasi-momenta (3.282) following from the scaling limit of the
Beisert-Staudacher equations with the AFS phase! This very simple sequence of steps
can be used to discretize other integrable models and are a precious help in guessing the
form of the full quantum equations. See for example [20] where the algebraic curve in [19]
together with the weak coupling results of [115] allowed for a conjecture for the all-loop
Bethe equations yielding the asymptotic spectrum of the ABJM theory [116] in the planar
limit.
The Bethe equations in the scaling limit coincide with the finite gap equations

pi —p; = 27y (6.60)

on a cut shared by the quasi-momenta p; and p;.

We now arrive at the most interesting part. We want to understand how to modify
these equations in such a way that the semi-classical effects are automatically included. In
particular we want to be able to compute the energy around a general classical solution
and obtain the correct semi-classical result (6.3).

If we add a stack connecting sheets ¢ and j to some configuration of Bethe roots with
all roots condensed into some cuts as described above, the position of the new stack will
be given by (2.12) and all the other roots will be slightly shifted u; — @;. Then the energy
of the new configuration will be given by the energy of the original configuration plus the
fluctuation energy with mode number n associated to the corresponding string polarization

A=A+E7. (6.61)

Let us now perform a simple rewriting exercise and treat each of the roots of this new stack
separately in pg. That is, if the stack contains a root associated with the Dynkin node a

we write
Cale) = Cal) + 2 g 2) ) 2D
a x) — a X 9 a x)— a X
T — T, T — T,
where G, and H, are now defined with the sum over roots going only over j =1,..., K,

where K, is the original number of roots of type u, ; before adding the extra fluctuation.
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Then, with this new stack, each quasi-momentum p; can be written as before but using
the new resolvents G, and H, containing only the K, original roots plus an extra term V"’
which we call potential and read *

ij

Vi() +1 +03; +0s
V() | _ | +1 |z al@d) | 40y | a@) | 40 | _a(l/2)
Vi() =1 [ 22 =1 (212 —03; | @ — i —03; | 1z —ai’
Vi(z) —1 —03; 03;

(6.62)

and

Vi) \7 [ -1 +0, +03,
G | _ | ot | L et | 4 | a@ | e | e/
V3(z) +1 | 22— 1 o —03; | z—a¥ 03 | /o —ai’
V}l(x) +]- _521]' _53j

(6.63)

Two trivial observations: First, even though we are treating the roots of the fluctuation
stack separately by hiding them into the potentials, they also contribute to the charges
(because every stack contains a u4 root)

Qm = 7{ ﬁ G4(:E) + a(xn) . (6.64)

2mi o™ T

Second, the potentials Vkij are different for different quasi-momenta.
Now suppose that instead of (6.61) we want

A=A+1TIy (6.65)

with Iy, given in (6.10). By linearity, we need only to replace V,:j by

1 A i Piy) = i) dy

Vi(z) = =) (=1)" ¢ v’ s 6.66

(o) = 5 S Ve B (6.66)
1] U+

That is we add the appropriate sea of virtual particles. Let us now show that all the

potentials Vj are the same up to a sign and are equal to

Ve = [0, - Gy (221 - 20 ) (6.67)

1

or

Indeed

2For example, consider a fermionic stack i, j = 2,3 connecting j» and ps. As we see from figure 3.18

this stack is made of two almost coincident u4 and wus roots. The first term in the potentials comes from
the resolvent of the middle node though the G4(0) and G/(0) terms present in all quasimomenta (3.282).
The new terms in p1, po, P3, p4 come from the resolvents Hy and Hy which, for the other quasimomenta,
are either not present or appear with opposite signs.
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. n ? X

+1 +1+E€

Re=x

C-C,uC,
a b

Figure 6.4: a) The “non-analytic” contribution I, is given by the integral (6.28) whose inte-
gration path goes along the large cuts discussed in section 2. The difference in orientations with
respect to figure 6.1a is due to the absence of cot in expression (6.10) compared to (6.7). b) In
the x plane the integral can be safely deformed to go over the upper and lower halves of the unit
circle. In the main text we use the shorthand fjll to denote % fCl —}—% fCQ' The relation between
the large IV regularization in the n plane and the e regularization in the x plane is discussed in
14, 15].

1. The first terms in (6.62) and (6.63) do not contribute to Vj. The reason being that,
if we integrate some function of %/ summed over the 16 possible excitations listed in
figure 3.18 with a (—1)% weight

N
S " [ faiyn,
iJ N
we obtain’,
+1+4-€ J
/f(y)[ S B8+ B -85 — (B — ) — (8 — 1) 5 =0. (6.68)
. i=1,2,j=34

3We can as well use the quasi-momenta with the resolvents G, and H, summed only over the original
roots because the inclusion of the potentials in (5.4) is an higher order effect.
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2. Finally, consider for example V;. We have

1+e€

Vi) = / (B, — )+ (B — 3 — @ — 1) — (B —

—1—e
1+e€

—1—e¢

= 5 [ W)+ ) — G ) — (-

7]

7]

afz) dy

T —y2w

a(l/z) dy
/e —y2m

We see that p; and ps drop out so that the expression simplifies considerably. The

same happens for the other V; and moreover, due to the super-tracelessness of the
monodromy matrix, p; + p1 + p1 + Pa = P1 + P1 + P1 + P4, and all the potentials are
equal. Using (6.59) we have

Visis(r) = —Vi;5:()

14ty ) Ey

)

=V(z) = jﬁy [Ga(y) — Ga(1/y)] (x

-1

alz)  ol/x)

—y 1ljr—y

) %{(6.69)

Notice also that due to 1) the extra terms in the charges (6.64) give no contribution! This

is a huge difference compared with the usual addition of a single stack and has remarkable

consequences. If we re-define the quasi-momenta in (6.59) by adding these new potentials

y41

2 + G4(0 —
+ Wj:g al >—H1—H3+H4
¢ —1
2rJx + G4(0 -
+ jg 4l )+H3—H4+H1
¢ —1
2rJx + G4(0
- jg 4l )—H5+H4—H7
¢ —1
2 + G4(0 _
B ﬂjxﬂg_ld )+H7—|—H5—H4

+V

+V

and solve (6.60) as usual but for the new quasi-momenta, then, by construction, the energy

as obtained from the physical charges (6.58) will automatically reproduce the contribution

(6.10). Let us stress out once again the importance of the fact that the contribution of the

virtual particles to the physical charges vanishes. Only because of this can we think of the

potential as a mere deformation of the quasi-momenta and simply use the original roots

to compute the energy from (6.58). The seven Beisert-Staudacher equations correspond

to considering the difference of the several consecutive quasi-momenta (pi,p1), (p1,p2),

(P2, P2), etc. We see that the addition of these potentials only changes the middle mode

equations obtained from

Py — D3 =270,

(6.70)
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when written in terms of the resolvents of the several Bethe roots. In all other differences
the potentials cancel out! Thus this potential corresponds precisely to a correction to the
AFS dressing factor,

H Tars(Tak, az) — €V 4k H Oars(Taj, Taj) - (6.71)
7k i#k
Since .
Gi(y) == Quiry", (6.72)
n=0

we can also write

V(z) = a(z) ZQ %(S(i;)g(j;i)@ (% - %) (6.73)

r+s € Odd

where we recognize precisely the Hernandez-Lopez coefficients [77]! To obtain the values
of the potential for |z| < 1 we can simply use the exact symmetry

V(1/z) = =V(x) (6.74)
which is obvious from (6.69) but not manifest in the form (6.73).
If we want, on the other hand, to write
Ky
eV (War) — H e10(Wa,:y4,5)
ik

where the factorized scattering property is manifest we just need to use the definition (6.47)
and integrate over y to get”

oo == | (e s (F105) + ==t

The real scattering phase, the phase that describes the scattering between two magnons in

the Bethe ansatz equation, must inherit the explicit = to 1/x oddness (6.74) of the potential.
To obtain the values of the phase for |z| < 1 we use 0(1/z,y) = —0(z,y). Alternatively,
we recall that the contour in figure 6.4b tells us that to be completely rigorous we should
replace the log in (6.75) by % (log,(...) +log_(...)) where log, has a branchcut in the
upper/lower half of the unit circle — see figure 6.4b. Then the expression for §(z, y) becomes
explicitly x to 1/z odd and is discontinuous on the unit circle. If, on the other hand, we

4By resuming the Hernandez-Lopez coefficients the phase 6(x,y) was written down in [117], see also
the appendix B in [118].
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analytically continue the expression (6.75) from some point x outside the unit circle up to
some point 1/x inside the unit circle we get 27i from one of the log, so that we trivially

find

i0(x,y) +i0(1/z,y) = —a(z) aly) <<x _1 D2 (wy 1— 1)2) ’

which is precisely Janik’s crossing relation [74] for the dressing factor at 1/v/X order [117].
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Chapter 7

Conclusions, State of the Art and Future
Directions

No non-trivial field theory in d > 3 space-time dimensions was ever solved. Optimistically,
one might expect that if we solve one we will open a Pandora box in the same way that
Lars Onsager solution of the two dimension Ising model did.

We seem to be approaching such remarkable point. It is now clear that the techniques
of Integrability, normally used in the two dimensional realm, can sometime play a key role
in the study of higher dimensional super-conformal gauge theories [9, 115]. N =4 SYM,
studied in this thesis, is probably just the most well known example out of many which can
be attacked by Bethe ansatz techniques. More examples known to date are deformations of
N = 4 and three dimensional super Chern-Simons conformal theories [116, 119, 115, 120].
All these share some common freatures:

They are super-conformal gauge theories with a gravity dual.

Integrability arises for these conformal theories when we try to compute the spectrum of
single trace gauge invariant operators. The dilatation operator turns out to be equivalent
to an integrable spin chain Hamiltonian. The planar limit is crucial to be able to interpret
the single trace operators as spin chains.

These theories admit simple gravity duals. For N’ = 4 we have type IIB superstrings on
AdSs5 x S° while for ABJM we have type IIA on AdS,; x CP3. These dual two dimensional
theories are quite simple and symmetric and thus, not surprisingly, they are classically
integrable. Moreover they are super-symmetric. The rule of thumb is that two dimensional
super-symmetric classically integrable theories are quantum mechanically integrable. This
is often not the case for purely bosonic models though [121, 122 123]. This means we
will probably find many more examples of integrable gauge theories from the duals of
superstring theory on simple AdS; x X backgrounds. It is crucial to search for these
theories and corresponding gravity duals.

The Gauge symmetry was another important feature in these recent advances. The
reason is that when we have a supersymmetric gauge theory the supersymmetry transfor-
mations are usually non-linearly realized. Often the commutator of two supersymmetry
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transformations yields something of the form
[0c, ¢ Flield = 0, Field + [®, Field| (7.1)

which means that the fermionic transformations commute to the momentum generator up
to somehow unusual gauge transformations where the gauge parameter is one of the fields
®. This will imply that the symmetry algebra transforming the elementary fields into one
another should be thought as some centrally extended (super)algebra. In particular, in
all examples we mentioned there exists a subset of fields which transform under SU(2|2)
extended. Theories based on such extensions are highly constrained [51, 52] and this was
quite important to help understand the finite coupling regime interpolating between the
CFT and the dual AdS theories [51, 68, 115, 124, 20, 125].

On the other hand we can also play the devil’s advocate. First of all we are always
working in the strict planar limit with N = oo and moreover we are computing only the
spectrum of the conformal theory. To completely solve it we would also need the three
point couplings. Integrability should play a important role to tackle this problem. It would
be vital to understand how.

Furthermore, so far only the spectrum of large operators is properly understood. This
limitation will probably be surpassed in the short term. More precisely, Bethe equations
are valid when we consider single trace operators made out of a large enough number
of fields [38]. When we start considering small operators (or string states with small
angular momentum in the light-cone gauge), wrapping effects corresponding to virtual
particles winding around the spin chain (or world-sheet) become relevant [111, 114]. The
effects were studied at strong coupling [109, 126, 99, 17, 110, 21] with great success in
reproducing the finite size corrections to the so called Giant Magnon [90]. The Giant
magnon is the dual string state corresponding to a single spin flip in the dual gauge theory.
These computations are quite interesting for two reasons. On the one hand they give us
the leading finite size corrections and are therefore a first window towards the finite size
spectrum of the theory. On the other hand these computations can be used to check the
validity of the AdS/CFT S-matrix [51, 68, 75, 24]. In particular, in [109, 21], the all loop
dressing kernel of [24] was probed.

In [127] Bajnok and Janik performed an impressive computation. They generalized
the Luscher formulas for many particle states and applied this to the computation of the
finite size corrections to a two magnon state in string theory. When the length of the state
(angular momentum of the string) is taken to be 4 and small t’"Hooft coupling is considered
(highly quantum string) we are, by the AdS/CFT duality, studying the Konishi operator,

Tr(ZXZX) - Te(ZZXX), (7.2)

in the perturbative SYM regime. Remarkably, the string computation in this very rough
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limit — highly quantum string and very small angular momentum — reproduces precisely
the weak coupling direct Feynman diagramatic computation of [128, 129]!

All these advances indicate that the finite size limitation will be overcome. More
precisely all the above mentioned works are based on the Luscher formulas which only yield
the leading finite size corrections to the anomalous dimensions. Such Luscher formulas are
usually (or at least often) the large volume limit of some exact Thermodynamical Bethe
Ansatz equations. To write down such equations, and to be able to plot the anomalous
dimensions of simple operators such (7.2) as a function of the t’Hooft coupling, is of utmost
importance. Some first steps of this very non-trivial program were made in [130, 131].

Finally, optimistically, if we find the full spectrum of these gauge theories and, even
more optimistically, manage to compute the three point couplings and thus obtain all
the correlation functions, fundamental questions still remain. Why are these theories
integrable? What is the landscape of integrable theories? Can one turn the problem
around and build the field theories starting from the integrable structures? How close to
QCD can we get? Are all integrable theories dual to some string theory? If so, what can
we learn about quantum gravity? Is the planar limit an absolute limitation or will we be
able to overcome this obstacle for some theories?

A probably more pragmatic approach would be to try to merge the very developed field
of Integrability in AdS/CFT with the computation of Scattering Amplitudes and Wilson
Loops, which has also developed enormously in the last few years (see [132] for a very nice
review and references). Such symbiosis would probably greatly expand our understanding
of the subject and most likely shed light over some of the just posed questions.

Certainly, the days to come will be at least as exciting as the last few years in theoretical
physics. This thesis ends here.
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Appendix A

Bosonic duality

In this Appendix we discuss in detail the bosonic duality (3.278) mentioned in section
3.8.2. There are two main steps to be considered.

On the one hand we have to prove that for a set of Ky generic complex numbers
us and K7 roots u; obeying the auxiliary Bethe equations (3.270) it is possible to write

(7= 01— ¢2)
2isin (7/2) Qa(u) = 2Q1(u—i/2)Q1(u+1/2) — e 2Q (u+i/2)Q1(u —i/2), (A.1)

and that, in doing so, we define the position of a new set of numbers ;. A priori this is not
at all a trivial statement because we have a polynomial of degree K, on the left whereas
on the right hand side we have only Ky — K; parameters to fix. However, as we will see,
if K, equations (3.270) are satisfied it is possible to write Q2(u) in this form. This will be
the subject of the section A.1.

The second step is the trivial one. Assuming (A.1) to be proved we can use this relation
to show that in the original Bethe equations we can replace the roots u; by the new roots
@; with the simultaneous exchange ¢, < ¢,. Indeed if we evaluate the duality at u = us;

we find

Qi (ug; —i/2) ei(qsrqsl)é?l(uzg —1/2)
Q1(uz; +1i/2) @1(“2,1 +i/2)

meaning that in the equation (3.271) for the us roots we can replace the roots u; by the
dual roots @; provided we replace ¢; < ¢o. Moreover if we take u = @y ; +i/2 we will get

piva—ion _ _ Q01 +1) Qa(tn —i/2)

Q1 (T — 1) Q2(t1 +14/2)

which we recognize as equation (3.270) with Ky — K roots @; in place of the K original
roots u; and with ¢; < ¢o. Finally evaluating (A.1) at u = uy; = /2 we will get the
original equation (3.270) so that we see that it must be satisfied in order to equation (A.1)
to be valid.
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A.1 Decomposition proof

In this section we shall prove that one can always decompose @Q2(u) as in (A.1) and that
this decomposition uniquely fixes the position of the new set of roots ;. In other words,
let us show that we can set the polynomial

P(u) = 3 Qi(u—i/2)Qa(u+/2) — e Qu(u+1/2)Qu(u — i/2) — 2isin 5 Qa(u)
to zero through a unique choice of the dual roots ;.
e Consider first the case K; = 0. Then it is trivial to see that we can always find
unique polynomial Q; = u*? + 325 a,u""! such that
et 50 (u+1/2) — e 3 Q1 (u — i/2) = 2isin %cgg(u) .

because this amounts to solving K> linear equations for K, coefficients a,, with non-
degenerate triangular matrix.

e Next let us consider K; < K,/2. First we choose Ql to satisfy K equations

1 .
= 1 o .3 . TQQ(up - 2/2) _ _
Ql(up)—Q'le QSlnim:C}o 5 p—l,...,Kl

these conditions will define @1(u) up to a homogeneous solution proportional to

Q1(U)a

p=1

where G (u) is some polynomial of the degree Ky —2K;. Now from (3.270) we notice
that with this choice of (); we have

P(uy, +1i/2) P(uy, —i/2)

Qauy +i/2) ~ Qaluf—i/2)

=0 s pzl,...,Kg

and thus
Pu) = Q1(u+1/2)Q1(u —i/2)p(u)
where
plu) = i (u+i/2) — e Fqu(u —i/2) - 2isin 5 qu(u)

and ¢ is a polynomial. Thus we are left to the same problem as above where K; = 0.
For completeness let us note that we can write go(u) explicitly in terms of the original

_ Qa(u)
Q1(u+1i/2)Q1(u—1i/2)

where the last term is a simple collection of poles at u = u;, +4/2 whose residues are

roots uq and us,

G2 (u) — poles

such that ¢o(u) is indeed a polynomial.
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e We can see that the number of the solutions of (3.270) with K; = K and K; = Ky— K
is the same (see [30] for examples of states counting). Thus for each solution with
K, > K5/2 we can always find one dual solution with K; < K5/2 and in this way
we prove our statement for Ky > Ky/2

e Finally let us stress the uniqueness of the @1. If K; > K 1 we have nothing to show
since we saw explicitly above how the bosonic duality constrains uniquely the dual
polynomial Q1. Let us then consider K; < K; and assume we have two different
solutions Q1 and Q2. Then from the duality relation (A.1) for either solution we find

3Qu(u—i/2) (Qlu+i/2) — Qhlu+i/2)) =
Qi +1/2) (@l —i/2) - Giu—i/2)) .

Evaluating this expression at u = u; ; 4 i/2 we find that Q}(uy ;) — Q3(uy,) = 0 so
that Q! (u1) — Q%(u1) = Q1 (u)h(u) and therefore

eh(u+1i/2) = e 2h(u—i/2)

which is clearly impossible for polynomial h(u) — for large u we can neglect the i/2’s
to obtain e” = 1 thus leading to a contradiction.

A.2 Transfer matrix invariance and the bosonic dual-
ity for SU(K|M)

In this section we review the formalism of [53] which allows one to derive the transfer
matrices of usual (super) spin chains in any representation. In this work Kazakov, Sorin
and Zabrodin reduce the Bethe ansatz quantum problem to the study of classical discrete
dynamics in the space (a, s, K, M) where (a, s) are labels of the representation of the super-
group SU(K|M). To derive such dynamics — which will in particular yield the main formula
(A.2) considered below — the starting point is the conjectured Bazhanov-Reshitikhin de-
terminant relation [133] recently derived in [16]. We will the general formalism of [53] to
prove the invariance of all possible transfer matrices under the bosonic dualities.

For the standard SU(K|M) super spin chains (based on the standard R-matrix R(u) =
u—+1iP with P the super permutation) we can find the (twisted) transfer matrix eigenvalues
for the single column young tableau with a boxes through the non-commutative generating
functions [53, 84]

[e.e]

. To(u) ; ~_
_1)® 100y, a iady _ 1 A2
Zao( S et e K+ M+ 1)i/D° [eme Ve (@) (A.2)
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where 7 is a path starting from (M, K) and finishing at (0,0) (always approaching this

point with each step) in a rectangular lattice of size M x K as in figure 3.10", z = (m, k) is

point in this path and n = (0, —1) or (—1,0) is the unit vector looking along the next step

of the path. Each path describes in this way a possible Dynkin diagram of the SU(K|M)

super group with corners denoting fermionic nodes and straight lines bosonic ones, see

figure 3.10. Finally,

-1 (u) = ik Qrm(u+i(m —Fk —1)/2) Qp_1m(u+i(m -k +2)/2) _ o0
(m.k),(0,-1) Qrm(u+i(m —k+1)/2) Qp-1m(u+i(m —k +0)/2)

V-1 (u) = (61‘% Qrm—(u+i(m —k—2)/2) Qem(u+i(m—k+1)/2) ez‘au) -
(m.k).(~1.0) Qrm1(t+i(m —k +0)/2) Qum(u + i(m — k — 1)/2)

where Q. ,,, is the Baxter polynomial for the roots of the corresponding node” and {¢x, @ }

are twists introduced in the transfer matrix [34].

Let us then consider a bosonic node like the one in the middle of figure 3.10 (the vertical
bosonic node is treated in the same fashion). If the position of this node on the M x K
lattice is given by (m, k) then it is obvious that the only combination containing @,k
in the right hand side of (A.2) comes from the product of V(:nl,k),(q,o) (u)‘%;ﬂﬂrl’k)’(fl’o) (u)
which reads

[\

Qrm1(u+i(m —k+2)/2) Qpm-1(u+i(m — k —2)/2)
Qrmy1(u+i(m —k +0)/2) Qpm-1(u+i(m —k+0)/2)
3 <ewm+1 Qem(u+i(m —k —1)/2) Qg1 (u+i(m —k +2)/2)
Qrm(u+i(m —k+1)/2) Qrmi1(u+i(m —k+0)/2)
@m4w+dm—k+®ﬂﬂ%mw+dm—k+$ﬂve@I4 "
Qrm—1(u+i(m —k+2)/2) Qpm(u+i(m—k+1)/2) )

So, if we want to study the bosonic duality on the node (k,m) and its relation with

4 @2i0u _

|:€Z<Pm +Pm+1

+

+elpm

the invariance of several transfer matrices we need to study the last two lines of this
expression. For simplicity let us shift u, omit the subscript k& in the Baxter polynomials
Qrk.m—1, Qk,ms Qk,m+1 and define the reduced transfer matrix as

o O = 8) Qi (4 /2) | Qi (4= i/2) Qi+ 1)
s o Qi) = @) Qi —i/2)  Qua(utif2) Qulu)

Notice that the absence of poles at the zeros of @), yields precisely the Bethe equations

. (A4)

for this auxiliary node.

!Notice that the path goes in opposite direction compared to the labelling a of the Baxter polynomial
Q. used before. In the notation of this section Qy, ., corresponds to the node is at position (m,k) in this
lattice.

2Q070 is normalized to 1. If we are considering a spin in the representation where the first Dynkin node
has a nonzero Dynkin label then @Qar,x will play the role of the potential term. In general the situation is
more complicated, see [53]. In any case we are mainly interested in the dualization of roots which are not
momentum carrying thus we need not care about such matters.



A.2. Transfer matriz invariance and the bosonic duality for SU(K|M) 185

Bosonic duality = Transfer matrices invariance

Thus, to check the invariance of the transfer matrices in all representations it suffices to
verify that the reduced transfer matrix t(u, Y., Pms1) is invariant under ¢, < @41 and

Qm — Q. where

2isin (W) Q1 () Qo (1) = (A5)

i<ﬂm+1—<ﬂm - Pm+1—Pm

e Quu—i/2)Qmu+i/2) —e T Qulu+1/2)Qm(u—1i/2).

which can be easily verified. If suffices to replace, in ¢(u, Y, @mi1) in (A1),

Qm(M — Z) s e*i(‘Pm-H*%@m) an<u _ Z)

Qm(u) Qm(u)
1250 din <“0m+1 — ‘p’”) Qo1 (U i/2)Qmia(u+7/2)
] 2 Qm(1)Qu(v)
Qum(u+1) O W“ +1)
Qm(u) Qm(u)
_2l,e_i¢m+12""m sin <S0m+1 - Spm) Qm—l(u - 2/2)C?m+1(u - 2/2) ’
2 Qum(u)Qm(u)

which are obvious consequences of the bosonic duality.

Transfer matrix invariance = Bosonic duality

On the other hand suppose we have two solutions of Bethe equations, one of them character-
ized by the Baxter polynomials {..., Qmn_1, Qm, Qmi1, - -} with twists {..., ©m, ©ma1, - --
and another with {..., Q_1, Qs Qi - - - } with twists {..., ©mi1, Pm,- .- } for which the
transfer matrices are the same, that is

t(ua Spma @m—i—l) = E(U, 90771-1-17 cpm) N (AG)

Then we can show that these two solutions are related by the bosonic duality (A.5). Indeed
if we build the Wronskian like object

§Emrlzom Qm(u — Z/2>Qm(u +1i/2) _ pitmitm Qm(u + Z/2)(D~2m<u —i/2)
Qm-1(1) Q1 (u) Qm—1(1) Qi1 (u) .

we can easily check that

W(u) =e

Wu+i/2) —W(u—1i/2) =

_jEmtitem Qm (U)Qm(u)
Qm-1(u —/2) Qi1 (u +1/2

—€ ) (t(ua Pm, me—I—l) - f(u, ©m+1, (Pm)) =0
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Since by definition W (u) is a rational function this means it must be a constant. Thus
if 0, # ©me1 we must have K, + f(m = K,, + K,,+1 and the value of W can be read
from the large u behavior. In this way we obtain precisely the bosonic duality (A.5). If
Om = Pm+1 then we see that K, + f(m = K,, + K11 + 1 and we will obtain a different
value for the constant W which will correspond to the untwisted bosonic duality described

in [15].



Appendix B

Explicit expressions for the flat connection
for circular strings

In this appendix we present the general expressions obtained for the constant flat connec-
tions associated with the circular string solutions (4.35) discussed in section 4.4.1. The S®
components p; are given in terms of the eigenvalues of the symmetric matrix

o () b 1)) d()
27 b a.(x) d(1/x) é(x)
22 AS(g) = + o N B.1
FAD =T ey d ) a(a) b (B-1)
d(z) é(x) b —a_(1/x)
with
at(x) = =Za(x) —mszcosd
- my — w1 + (my — wyx) cos @ + x cos 2y(—wy + myx + (ws — mox) cos )
alr) = - 2 -1
by = (mg F m3) cosysin 6
2 _ _ _
o) = (mg + mg)z 2(m2 ms) — 2wsx Sin ~ sin 8
¢ —1
d(r) = —my + wix +2(m21— wy ) cos f in 2
'r _—

while the AdS quasi-momenta p; are the eigenvalues of

—ay(1/z) by —é(x)
by iy
c(z) -

27 0245 () = :
—d(z) —éx)  b.  —a_(1/2)

1

(B.2)

™

)
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with

21K — ky (22 — 1) cos @
x?—1

by = (kgcoshpF ki)siny
ko (22 + 1) — 2wox

at(x) = =+ cosh p + kg cos ¢

élx) = T sin ¢ sinh p

. k(22 4+1)—2

dz) = = (@ +2 ) : Wit cos ¢ sinh p
x —

For the simple su(2) or sl(2) solutions we have, amongst other conditions, # = ¢ = 0 which
simplifies the computation drastically.

Finally, let us comment on a subtle point ignored up to now— the periodicity of the
rotation matrices R (and Q) in (4.39). For some integers m; we see that this matrix could
become anti-periodic. This means that in principle we should use another representative,
Rreriedic for which we should still have (2.12) but which should be periodic. However, if
both R and RPeriedic yield the same embedding coordinated under (2.12) this means that
they are related by an anti-periodic SP(4) gauge transformation. This means that for the
purpose of computing the quasi-momenta p(x) we can indeed always use the element (4.38)
provided we keep in mind that if R is antiperiodic we can recover the real quasi-momenta
through

{6 1”1761727 ePS’ ep4|€p1’ ep2’€p3’ ep4} For the true
representative RPeriodic
= {c™ e, e, ePt] — o, =€, e~ Using the anti—periodic
R instead

The same kind of statement hold for the AdS element Q. Also, to each eigenvalues we
choose to add a multiple of 7 in such a way that the quasimomenta vanish at x = co. If R
is periodic this multiple should contain an even number of 7’s whereas if it is anti-periodic,
we should add 7mn with n odd to each quasi-momenta. Notice that since the eigenvalues
are ¢ and not p we are always free to perform these shifts.
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Shifts in fluctuation energies

In this section we discuss the origin of the constant shifts in the fluctuation energies ap-
pearing in section 5.4.1. Let us first look at the su(2) result (5.71) and pick one if the
frequencies, say the first one

werm -J. (Cl)
We find two kinds of shifts relatively to the frequencies listed in the table 5.1, namely the
constant shift J and the shift in the fourier mode n — n + m.
Let us understand the origin of this shifts. For that purpose consider a system of two
harmonic oscillators,

22y 52 2
r]+x, w

and suppose that, instead of quantizing this system, we chose to quantize the system
obtained by rotating xq, x5 with angular velocity J, i.e. we move to the y frame

Ty +izy = (Y1 +iys) V',

Then, we obtain'
Hy=H,+JL.,
where L, is the usual angular momentum, so that
By, =wt(w—=T)m+ (w+JT)n,.

Thus for the radially symmetric wave function, for which ny = ny (and in particular for
the ground state energy), the constant shifts cancel and we obtain the same energies as for
the first system. That, in general, the two results are different is obvious since the energy
depends on the observer.

The constant shifts mentioned above have exactly this origin. In fact, when expanding
the Metsaev-Tseytlin string action around the classical su(2) circular string one obtains

I In the y frame the Lagrangian takes the form 2L, = 93+ — (W= T?) (x% + x%) +2T Y192 — 2T 41y2 -
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an effective time and space dependent Lagrangian whose o, 7 dependence can be killed by
a change of frame

0X = R(o, 7)Y

where 0.X are the (bosonic) components of the fluctuations and R is a time and space
dependent rotation matrix — see for instance expression (2.14) in [102]. The same kind
of field redefinitions are also present for the fermion fields. The time dependence of the
rotation matrix gives the constant shifts as in the simple example we just considered while
the space dependence in this change of frame is responsible for the relabeling of the mode
numbers.

To make contact with the algebraic curve let us return to the frequency (C.1) we picked
as illustration. It corresponds to a pole from sheet p; to ps (or from p, to ps) whose position
is fixed by (5.4). The result in the rotated frame, w?

n

would correspond to a pole with
mode number n 4+ m whose position is given by

ﬁl(xi ) —ﬁg(l‘i ) =2mn 4+ 2mm.
When plugging the actual expressions (4.49) for p; and p3 in this equation we see that
the 2m disappears and the equation looks simpler than (5.4). However, for several cut
solutions there is no such obvious choice of mode numbers (or field redefinition which kills
the time dependence in the Lagrangian).



Appendix D
Details of the one-loop shift computation

In this appendix we collect some intermediate formulas related to the computations of
section 6.2.

D.1 Extra poles

Solving exp(ip; — ip3) = 1 we get

X (X2 - 1)
_ 52 ki
N 16X (X, — X )(X X —1) (D.1)
(X2 - (XX2 22X+ X X, - X P+ )X? o)
+ 256 X2(X, — X_ (X, X_—1) )
A (X2 +1)X_2 5
TR, xR x ) TO) (D.3)

while from exp(ip; — ip3) = 1 we get

eiT 54 ( 62@'7 ZA (XJQF + 1)621'7'
(X,

=0, ) s X g (Ko 1(X, - X_)Q) +O). (04

D.2 Unphysical fluctuations

We have ) (1 XX
— X, X
= — 0+ c.c. D.5

¢ XX++1+(4(X+X+1)2(X3—1) +CC) ’ (D-3)

and 1/2 1/2
X, X77-X X
X=Xy
The weighted sum of the unphysical fluctuations becomes therefore
20, (0) — 4Qp, (aF) 2 XVPX? _ox, x_ 4 x['PX!P 2
= — c.c.
2 X X, +1 4(X2 —1)(X X_+1)2

(D.7)
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