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1 Introduction

The AdS/CFT correspondence is a fascinating duality

relating string theory in Anti de Sitter backgrounds and

gauge theories. It provides a nonperturbative formula-

tion of quantum gravity and a new framework to un-

derstand strong coupling phenomena of gauge theories,

such as confinement and the QCD mass gap.

Fig. 1: The basic map of AdS/CFT. String amplitudes in AdS (left) are

dual to SYM correlation functions (right).

At CFP this duality has been explored to understand the

integrability of planarN = 4 SYM (gluons+matter) and

the high energy limit of QCD.

2 Integrability and AdS/CFT

The appearance of integrable structures, in both planar

N = 4 SYM and free type IIB superstrings in AdS5×S5,

leads to the belief that they are exactly solvable.

2.1 Perturbative CFT

N = 4 is a (super) conformal field theory. The compu-
tation of the spectrum of anomalous dimensions of local

single trace operators in the planar limit is therefore the

first nontrivial step towards the solution of the theory.

The dilatation operator HAB is the matrix, acting on the

Hilbert space of single trace operators

OB = Tr
(

DµΦiΨ
a
αF

2
µν . . .

)

, (1)

whose eigenvectors are states with a definite anomalous

dimension, given by the corresponding eigenvalue. The

key observation is that, thinking of the operator (1) as

a state in a 1D spin chain, the dilatation operator is the

Hamiltonian of an integrable spin chain! This Hamilto-

nian can be computed in perturbation theory and it is a

nearest neighbors Hamiltonian at leading order, next-to-

nearest neighbors at next to leading order, etc...

The Bethe ansatz techniques, often used in condensed

matter physics, are the key players in solving this non-

trivial 4D field theory. Focusing on operators of the type

O↑↑↓... = Tr (ZZX . . .) , Z = φ1 + iφ2 , X = φ3 + iφ4 ,

the dilatation operator is the Heisemberg hamiltonian at

1-loop and a long range Hamiltonian at higher orders in
perturbation theory. Then, Bethe equations quantizing

the momenta pi of the spin chain magnons read

eipjL
∏

k $=j

S(pk, pj) = 1 . (2)

The trivial phase acquired by the particle as it is car-

ried around the chain equals the free propagation plus

the sum of phase shifts due to scattering with the other

particles.

2.2 Classical Strings in AdS

Classicaly, there is a worldsheet connection A(x) which
depends on an arbitrary complex number x and which
is flat on the equations of motion. This means that

strings in AdS5 × S5 are described by a 2D integrable

field theory. Indeed, the eigenvalues {eipj}(x) of the
monodromy matrix Ω(x) ≡ P exp

∫ 2π
0 A(x)τdσ are in-

dependent of τ and thus define an infinite set of con-
served charges! Since these eigenvalues are obtained by

solving characteristic equations, they define some Rie-

mann surface. This surface will have several cuts unit-

ing sheets pi and pj where the quasimomenta may jump

by 2πnij. Different choices of sheets ij correspond to
several string polarizations. The mode number nij and

the size of the cut are the analogues of the Fourier modes

in flat space for the string in AdS5 × S5.

The integral equations for the quasimomenta pi(x) were
descritized into a set of Bethe equations which were

conjectured to describe the strings quantum dynamics.

It is indeed expectable to find such Bethe ansatz descrip-

tion in the limit of some large R-charge where the string
proper length is very large and one can have worldsheet

solitons moving and scattering along the string.

2.3 In between

Presently, the conjectured Bethe ansatz equations –

whose natural appearance for very small or very large

’t Hooft coupling λ was explained above – are expected
to hold for any finite λ interpolating between classical
string theory and perturbative gauge theory. A few spec-

tacular checks were recently done, indicating that these

equations are indeed the correct ones. However, in gen-

eral these checks are either performed in rank one sub-

sectors of the theory or in the near flat-space limit.

In a recent set of papers [1] we studied the semi-classical

quantization of AdS5 × S5 strings around any classical

solution. The idea was that, to consider quantum fluc-

tuations around a particular solution, we must add small

cuts, i.e. poles, to the corresponding classical Riemann

surface described above. We were then able to derive

(or check) the next-to-leading corrections to the Bethe

ansatz equations for large ’t Hooft coupling and, in par-

ticular, to derive the Hernandez-Lopez phase.
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Fig. 2: Two quantum fluctuations (poles) added to a classical solution

(Riemann Surface). From the Bethe ansatz point of view the Riemann

surface cuts are the condensation of a large number of Bethe roots.

3 High Energy Scattering

At high energies, scattering amplitudes have universal

behaviors related to general properties of the underly-

ing theories. In particular, for gauge theories gluon ex-

change dominates the scattering process, independently

of their matter content. For CFTs, we showed [2] that

the analogue of the high energy 2 → 2 scattering am-
plitude is the small cross ratios limit, z, z̄ → 0, of the
Lorentzian 4pt function. In this limit, the 4pt function is

controled by the leading Regge pole,

A(x1, · · · , x4) ∼
∫

dν α(ν)
(√

zz̄
)1−j(ν)

Ων (z̄/z) ,

where α(ν) encodes the coupling of the external states
to the exchanged effective particle of spin j(ν) and
Ων (z̄/z) is a convenient basis for functions of z̄/z.

3.1 Pomeron & Graviton

In perturbative gauge theory, it is known that the leading

log s approximation resums to an effective exchange a
colorless particle - the pomeron. In the language of con-

formal Regge theory, the BFKL pomeron corresponds

to the effective spin trajectory

j(ν) = 1 +
λ

4π2

(

2Ψ(1) − Ψ
(

1+iν
2

)

− Ψ
(

1−iν
2

))

+ · · ·

On the other hand, for large ’t Hooft coupling we can

use the dual gravitational description to compute the 4pt

function. Then, the scattering process is dominated by

the exchange of the graviton’s Regge trajectory, yielding

an effective spin

j(ν) = 2 − 4 + ν2

2
√

λ
+ · · ·

In summary, the AdS/CFT correspondence allows us

to study the interpolation from pomeron exchange in

weakly coupled gauge theories to graviton exchange in

the strongly coupled regime.

3.2 Eikonalization

The cross section increase at high energy predicted by

single pomeron exchange violates the Froissart unitar-

ity bound. Indeed, at sufficiently high energies multi-

pomeron exchange becomes relevant, taming the cross

section growth. In [2], we were able to understand this

phenomena for large ’t Hooft coupling as the eikonal

approximation for multi-graviton exchange in AdS. The

eikonalized 4pt amplitude is then simply obtained by ex-

ponentiating the single-graviton exchange phase shift in

impact parameter space.
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Resumé

Dans cette thèse l’intégrabilité dans AdS / CFT est passée en revue. La technique de

l’ansatz de Bethe est presentée et les équations de Bethe à toutes les boucles sont discutées.

Du coté de la théorie des cordes, la méthode classique des bandes-finies est revisitée et une

attention particulière est accordée à la quantification semi-classique de la supercorde. Les

méthodes basées sur la courbe algébrique sont très générales et fournissent des contraintes

fortes sur les équations quantiques. De telles contraintes sont explorées en detail pour la

dualité AdS5/CFT4 bien qu’elles soient générales et valables, entre autres, pour le système

AdS4/CFT3. Ces techniques permettent aussi d’étudier le système au delà de la limite de

volume infini quand l’ansatz de Bethe asymptotique n’est plus valable.

Abstract

In this thesis Integrability in AdS/CFT is reviewed. Bethe ansatz techniques are presented

and the all loop Bethe equations are discussed. From the string side of the correspondence,

the classical finite-gap method is revisited and special emphasis is given to the super-string

semi-classical quantization. The algebraic curve methods are quite general and provide very

important constraints on the full quantum equations. The formalism is extremely versatile

and can be applied to the AdS5/CFT4 duality – the most studied case in this work – as

well as to other integrable systems like e.g. the AdS4/CFT3 correspondence. Furthermore,

these techniques yield valuable information about the spectrum of finite charge states when

the asymptotic Bethe ansatz is no longer valid.
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Resumé detailé

Resumé detailé

Cette thèse est consacrée à l’étude de intégralité et de son application à la dualitéAdS5/CFT4

[1, 2, 3, 4, 5]. Cette dualité est une des nombreuses correspondances jauge/gravité entre

les théories de la gravitation quantique et la physique des particules. Ils sont certainement

parmi les plus fascinants sujets dans la science moderne. L’intégrabilité, pour resumer

une longue histoire (au détriment de la rigueur), est la structure mathématique qui per-

met souvent de résoudre une théorie physique. Ainsi, lorsqu’on parle de l’intégrabilité

dans AdS/CFT nous parlons de comprendre les caractéristiques de la gravité quantique et

théories de jauge en les résoudrant. Il est de toute évidence un Saint Graal des physiciens

théoriques.

Theorie des cordes et AdS/CFT

La théorie des cordes n’est pas seulement l’approche la plus développée de la gravité quan-

tique, mais un candidat pour une théorie du tout. Les correspondences jauge/cordes

mentionnées ci-dessus s’incarnent dans la théorie des cordes comme des dualités cordes

ouvertes/fermées. L’idée de base est que la somme sur les trous de la surface de l’univers

de la corde peut être remplacées par un fond nontrivial sur lequel la corde se propage.

Nous allons nous déplacer lentement vers cette image mais on peut déjà dire qu’il n’y a

rien d’extravagant dans ce suject. Prenons la difusion d’un electron par un proton lourde

en QED. À l’ordre dominant, l’electron jette un photon au proton (fig 1a) et cette échange

virtuelle donne lieu à l’interaction de Coulomb. À l’ordre suivante on a les diagrammes de

Bremsstrahlung (fig 1b), les corrections provues des photons virtuelles (fig 1c) et, le plus

important, l’auto-energie du photon (fig 1d). Ce dernier effet polarise le vide renormalisant
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a b c d

Tree level Bremsstrahlung diagrams Vertex correction Vacuum polarization

Figure 1: Processus virtuels qui contribuent pour la diffusion d’un electron par un photon lourd.

la charge du proton et corrige le potentiel de Coulomb en le potentiel de Uehling

V (r) = −α
r

(

1 +
α

4
√
π

e−2mer

(mer)3/2
+ . . .

)

. (1)

En ajoutant de plus en plus de diagrammes de Feynman, on peut en principe améliorer (1)

en n’importe quelle précision2. Ainsi on a deux descriptions alternatives pour le passage de

l’électron par la région contenant le proton lourd. D’un côté on peut considérer l’électron

et le proton comme étant dans un vide parfait et sommer sur les processus virtuelles

(diagrammes de Feynman) qui deflectent la trajectoire de l’électron. De l’autre côté on

peut oublier le proton et dire que l’électron se bouge dans une région non trivial où il y a

un potentiel V (r) donné par (1.1). Comme expliqué ci-dessous l’approche diagramatique

de Feynman sera l’analogue de la somme sur les trous dans la surface d’univers de la corde

tandis que le remplacement des trous par un fond nontrivial est précisément ce qu’on fait

quand on remplace les diagrammes par le potentiel V (r).

Dans la théorie des cordes les particules fondamentales ne sont pas des objects ponctuels

mais des petites cordes vibrantes. En effet la caractéristique la plus attractive de la

théorie des cordes est la proposition qui nous dit que toutes les particules sont en effet

la même corde. L’excitations des diffèrents modes de la corde pourraient correspondre

aux diffèrentes particules fondamentales observées dans la nature. Les cordes peuvent soit

former des boucles fermés soit avoir ces extrémités attachées à des (hyper)-surfaces comme

est representé dans la figure 2. Dans le premier cas, les cordes sont appelées de cordes

fermées tandis que dans le dernier scénario elles sont appelées de cordes ouvertes et les

planes dont elles finissent s’appellent branes.

Examinons maintenant une situation analogue à la dispersion de l’électron par un pro-

ton lourd mentionné ci-dessous, à savoir une corde fermée en passant par une D-brane.

Comme d’habitude, la propagation quantique sera décrite par la somme sur les histoires

et la surface d’univers d’une histoire typique sera une surface de Riemann avec h poignés

et n trous (lorsque la cordes touche la brane ou les cordes ouvertes que l’y sont attachées)

2Comme anticipée ci-dessous on n’est pas concernée au rigueur mathématique sinon une note sure la

nature asymptotique de l’expansion perturbative serait approprié à ce point-là.
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Figure 2: Dans la théorie des cordes on a des cordes fermées qui se bougent partout et des cordes

ouvertes, attachées à des hyper-planes appelés branes. Dans cette figure, une corde fermée évolue

vers deux cordes ouvertes dans la présence d’une brane. On peut aussi regarder ce processus dans

la direction opposée comme décrivant la fusion de deux cordes ouvertes en une corde fermée.

Quand deux points coincident dans l’espace-temps les cordes peuvent se fusionner ou séparer.

Étant un processus local, on voit qu’une théorie des cordes fermées est possible mais une theorie

des cordes ouvertes automatiquement requis la présence de cordes fermées.

intégrés dans l’espace-temps telle qu’elle est représentée dans la figure 3a. Si on somme

sur tous les trous possibles il nous reste une propagation non triviale de la corde mais

sans brane[6, 7, 8]. La description en des termes de la brane et de ses cordes ouvertes est

échangée par un fond non-trivial sur lequel la corde fermée se propage comme l’illustre la

figure 3b. C’est l’image derrière AdS/CFT.

L’exemple le plus connu de cette dualité se dégage lorsque l’on applique cette image

à une configuration de N D3 branes coincidents dans la theorie de cordes type IIB en

espace plate a dix dimensions. Comme il est expliqué dans la section 1.2 ceci nous amène

à une correspondance précise entre N = 4 U(N) SYM et theorie des cordes type IIB en

AdS5 × S5.

Contemplation, désespoir et intégrabilité

La conjecture entre N = 4 U(N) SYM et théories de cordes type IIB en AdS5 × S5 est

absolument remarquable et il existe de nombreux angles différents à partir desquels nous

pouvons la contempler:

• D’une part, nous pouvons dire que, plus d’une dualité entre une théorie de jauge qua-

tre dimensionnelle et une théorie de la gravitation quantique, cette correspondance

est une definition non-perturbative d’une théorie nontrivial de la gravitat. En effet la

théorie des cordes est à ce jour seulement définie perturbativement et cette définition
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Figure 3: Quand une corde fermée se propage dans une région où il y a une brane, son évolution

est décrite par une somme d’histoires qui comprend toutes les interactions possibles avec cet objet.

Au contraire, nous pouvons remplacer toutes ces interactions avec la brane par un fond sur laquel

la corde fermée se propage. C’est analogue de l’électron se déplaçant dans la présence du proton

lourd - soit on somme tous les diagrammes de Feynman soit on considère son mouvement en

présence d’un potentiel V (r) non-trivial.

dual par moyen d’une théorie de jauge quantique unitaire et bien définie pourrait

fournir la complétion non-perturbative de la théorie de la gravité. Ce point de vue a

des conséquences immédiates. Par exemple, l’information ne peut pas être perdue si

l’on considère des trous noirs dans AdS. En effet, en principe, nous pouvons préparer

l’état qui permettra de créer le TN, on l’identifie dans la théorie dual, on l’évolue

dans cette description explicitement unitaire et on l’identifie à nouveau dans le côté

de gravité. Il ne s’agit que d’un exemple, parmi nombreux, de la grande puissance

des dualités AdS / CFT comme des outils pour comprendre les mystères de la gravité

quantique.

• Cette dualité est la plus aboutie réalisation du principe holographique. Gravité dans

AdSd+1 est encodée dans une théorie des champs vivant dans Md, la frontière de

AdSd+1! Il est remarquable qu’une théorie de jauge quatre dimensionnelle puisse

encoder la dynamique d’une gravité dans un nombre de dimensions plus élevé. Plus

remarquable encore, la dualité AdS/CFT est une dualité entre la théorie de jauge

sur la frontière et la gravité quantique dans son intérieure décrite par une somme de

géométries qui sont simplement tenus d’être asymptotiquement anti-de Sitter.

• AdS / CFT est une dualité strictus sensus comme il relie des théories de jauge faible-

ment/fortement couplées et des théories des cordes fortement/faiblement couplées.
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Cela signifie que nous pouvons accéder à des territoires précédemment inexpugnables

de chaque théorie avec une relative facilité. Des cordes extrêmement quantiques avec

une longueur beaucoup plus vaste que le radius de AdS5 ont une description dual

en termes de la théorie N = 4 libre! Sur l’autre extrême, les effets dans théorie de

jauge fortement couplés (et non-perturbative) peuvent être accessibles par des calculs

classiques dans la théorie des cordes. La puissance de la dualité comme un outil de

calcul peut difficilement être surestimée.

Toutes ces caractéristiques sont bien sur remarquables, mais il y a aussi un grand in-

convénient dans tout cela relative au dernier point mentionné - sans le développement

de quelques très puissantes techniques, le contrôle de n’importe quelle calcul devient une

tache pratiquement impossible. Les calculs dans le régime perturbative dans la théorie de

jauge correspondent aux calculs quantiques en interaction fort dans le côté des cordes tandis

que des cordes classiques sont associées au régime non-perturbative fortement couplée de la

théorie de jauge! Dans la limite deN infinie, quand on considère la théorie de jauge planaire

et des cordes libres - ces techniques puissantes apparaissent - l’intégrabilité [9, 10]. Il est

maintenant largement reconnu que dans cette limite les deux théories sont complètement

intégrables et, par conséquent, disposent de solution analytique! L’ intégrabilité et, en

particulier, des applications d’intégrabilité à AdS / CFT seront couvertes de manière ap-

profondie dans tous les chapitres de cette thèse.

Sur la thèse

Pendant les trois dernières années, la période de ma thèse, j’ai été plutôt a Paris avec des

longues périodes à Porto. Ce pendant j’ai été co-auteur dans les articles [11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21] et procédures [22, 23]. Cette these ne couvrira pas [12, 23]. Les

resultats en [11, 16, 19, 20, 22] sont utilisés mais ne sont pas à ce qu l’on donne le plus

d’attention. De l’autre côté, la plupart des resultats presentés ici font partie des articles

[13, 14, 15, 17, 18, 21]. Le texte principal est divisé en 2 parties. La partie II regarde plutôt

l’ ansatz de Bethe et le côté CFT de la correspondance. La partie III est dédié à l’étude

du côté cordes de la correspondance. Cordes classiques sont étudiés dans le chapitre 4, le

spectrum semi-classique est analisé dans le chapitre 5 et, finalement, dans le chapitre 6 on

considère l’énergie du vide à une boucle au tour des solutions classiques génériques et on

établisse le contact avec l’ansatz de Bethe étudié dans la partie II. Regardez l’appendix

pour une description plus détaillé ou l’image 4 pour un plan moins detaille de la thèse.

On doit aussi inclure la note suivante. Due aux limitations d’espace, on a décidé de

plutôt nous focaliser dans le limite d’échelle des équations de Bethe et dans les aspects de

l’intégrabilité dans les cordes semi-classiques. En particulier, les développements les plus

importants qui ont amené au très connu facteur scalaire de Beiser-Eden-Staudacher [24] ne

seront pas développés en detail dans cette monographie. Par example, dans la section 3.7
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on saute du traitment à une boucle des sections précédentes vers les conjectures à toutes

les boucles laissant une grande bande de matérielle non couverte. Pour plus d’articles de

révision sur le sujet de intégrabilité en AdS/CFT voir [25, 26, 27, 28, 29, 30, 31].
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Figure 4: Plan générale de la thèse et organisation logique. Seuls les principaux sujets sont

représentés, de nombreuses sections sont omises. Les parties II et III sont essentiellement

indépendantes, sauf pour la dernière section du chapitre 6.4 qui exige les résultats de la sec-

tion 3.7 dans la partie II
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Chapter 1

Introduction

This thesis is devoted to the study of integrability and its application to Maldacena’s

AdS5/CFT4 duality [1, 2, 3, 4, 5]. This duality is one of many gauge/gravity corre-

spondences between theories of quantum gravity and particle physics. They are certainly

amongst the most fascinating topics in modern science. Integrability, to make a long story

short (at the expense of rigor), is the mathematical structure which often allows one to

solve a given physical theory. Thus, when speaking about integrability in AdS/CFT we

speak about understanding features of quantum gravity and gauge theories by actually

solving them. It is obviously a holy grail for theoretical physicists.

In this introduction we will constantly hand wave and rigor will never come along.

Experts might consider completely jumping the first few sections.

1.1 String theory and AdS/CFT

String theory is not only the most developed approach to quantum gravity but a candi-

date for a theory of everything. The above mentioned gauge/gravity correspondences are

incarnated in string theory as open/closed dualities. The basic idea is that the sum over

the string worldsheet holes can be traded by a nontrivial background on which the string

propagates.

We will move slowly towards this picture but we can already advance that there is

nothing conceptually extravagant about it. Take the scattering of an electron by a heavy

proton in QED. To leading order the electron throws a photon at the proton (fig 1.1a)

and this virtual exchange leads to the Coulomb interaction. At next to leading order we

have the Bremsstrahlung diagrams (fig 1.1b), the corrections from the virtual photons (fig

1.1c) and most importantly the photon self-energy (fig 1.1d). This latter effect screens the

proton charge and corrects the Coulomb potential to the Uehling potential

V (r) = −α
r

(

1 +
α

4
√
π

e−2mer

(mer)3/2
+ . . .

)

. (1.1)

By summing more and more Feynman diagrams we could in principle improve (1.1) to
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a b c d

Tree level Bremsstrahlung diagrams Vertex correction Vacuum polarization

Figure 1.1: Virtual processes contributing to the scattering of an electron by an heavy proton.

any precision1. Thus we have two alternative descriptions for the passage of the electron

by a region containing a heavy proton. On the one hand we can consider the electron

and proton to be in a perfect vacuum and sum the virtual processes (Feynman diagrams)

which will deflect the electron trajectory. On the other hand we can forget about the

proton and say that the electron moves in a nontrivial region where there is a potential

V (r) given by (1.1). As explained bellow the Feynman diagramatic approach will be the

analogous of summing over the worldsheet holes whereas the replacement of the holes by

a nontrivial background is precisely what is done when we replace the Feynman diagrams

by the potential V (r).

In string theory fundamental particles are not point like objects but rather small vi-

brating strings. In fact the most attractive feature of string theory is the proposal that all

particles are indeed the very same string. The excitation of different string modes would

correspond to the several fundamental particles observed in nature. Strings can either

form a closed loop or have its extremities attached to some (hyper)-surfaces as depicted in

figure 1.2. In the former case the strings are denoted by closed strings while in the latter

they are called open strings and the planes on which they end go by the name of branes2.

When two points of the string overlap in space they can merge or split and thus open and

closed strings can split and fuse between themselves as represented in the same figure 1.2.

In particular by locality we see that, while we can have a theory of closed strings alone, a

theory of open strings automatically contains closed strings.

Let us now consider a situation analogue to scattering of the electron by an heavy proton

mentioned above, namely a closed string passing by a D-brane. The quantum propagation

will be described by the usual sum over histories and the worldsheet of a typical history

will be a Riemann surface with h handles and n holes (when the string meets the brane

or the open strings attached to the brane) embedded in the spacetime as represented in

1As antecipated above we are not pretending to be rigorous, otherwise a note about the asymptotic

nature of the perturbative expansion would be appropriate here.
2Today, String theory is actually the theory of strings and branes with a plethora of beautiful dualities

between these objects.
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Figure 1.2: In String theory we have closed strings moving everywhere and open strings, attached

to hyper-surfaces called branes. In this figure we depicted a possible evolution of a closed string

into two open strings in the presence of a brane. We can also look at the process in the opposite

direction as describing the fusion of two open strings into a single closed string. When two points

are coincident in space-time the strings can merge or split. Since this is a local process, we see

that a theory of closed string alone is possible but a theory of open strings automatically requires

the presence of closed string.

figure 1.3a. If we sum over all the possible holes we are left with a non-trivial closed string

propagation but without any brane [6, 7, 8]. The description in terms of the brane and its

open strings is traded by a non-trivial background on which the closed string propagates

as depicted in figure 1.3b. This is the picture behind AdS/CFT.

Technically what we do in figure 1.3a is to integrate over the moduli of such Riemann

surfaces with h handles and n holes as represented in figure 1.4a. The crosses are the

vertex operators representing the initial and final closed string states whereas the holes are

described by boundary states. By the operator/state correspondence we can always replace

these states by local operators and vice-versa. To replace a vertex operator by a boundary

state we compute the path integral around the vertices up to some desired radius whereas

to close a boundary state into a vertex operator we preform the path integral inside the

hole. In this way we can close each of the h holes and replace them by local operator

insertions as represented in figure 1.4b. Schematically [8]

∫

dρρL0 |B〉k ↔ Vk . (1.2)
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Figure 1.3: When a closed string propagates in a region where there is a brane its evolution is

described by a sum of histories which comprises all possible interactions with this object. Instead

we can sum over all this interactions and replace the brane by a non-trivial background on which

the closed string propagates. This is the analogue of the electron moving in the presence of the

heavy proton – either we sum all possible Feynman diagrams or we consider its movement in the

presence of a non-trivial potential.

The Riemann surface with h holes is replaced by a closed string with h extra closed string

insertions. This is precisely consistent with our pictures – branes are not only the basis for

propagation of open strings but also (or rather alternatively) a source of closed strings. This

sea of closed strings – which in particular contains gravitons – emitted by the brane can

be interpreted as a deformation of the background on which the closed string propagates.

Indeed since we should in principle sum over the position of the vertex operators we will

obtain something like

∞
∑

n=0

1

n!

∫ n
∏

i=1

d2σiVi = exp

(
∫

d2σV
)

(1.3)

which will precisely deform the closed string action! This is schematized in figure 1.3c.

There are by now a few well understood examples where this picture was made rigorous

and quite a lot of examples where this duality is a conjecture. We should add that these
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Figure 1.4: Technically the amplitude associated to the evolution of a closed string from one

asymptotic state to another leaving as track a worlsheet with h handle and n holes is given by a

path integral over the moduli space of Riemann surfaces of genus h and n holes with the insertion

of two vertex operators accounting for the initial and final closed string states. The boundary

states at the n holes can be traded by the insertions of n local operators by simply completing the

path integral to the interior of the hole (this is the open-closed duality). These local operators

are thought of as closed string vertices and we can replace the sum over all such vertices by a

non-trivial background on which the path integral should be performed.

conjectures are most surely correct given the enormous quantity of highly nontrivial checks

which have been preformed. The AdS5/CFT4 duality, which will be thoroughly analyzed in

this thesis from the integrability point of view, is among such conjectured correspondences.

1.2 AdS5/CFT4

A particular fascinating duality emerges when we try to apply the pictures of the previous

section to a configuration of N coincident D3 branes in type IIB string theory in flat ten

dimensional Minkowski space. The D3 branes extend along a (3+1) dimensional plane and

their excitations are the open strings while the excitations of the empty (9+1) dimensional

spacetime are the closed strings. Taking the low energy limit of this system only massless

string modes survive and the complete effective action reduces to

S = Sbrane + Sbulk + Sinteraction (1.4)

where Sbrane describes the massless string states – which organize into an N = 4 supermul-

tiplet in (3+1) dimensions – by an N = 4 U(N) Super Yang-Mills Lagrangian plus higher

derivative corrections and Sbulk governs the closed massless states – which make a gravity

ten dimensional supermultiplet – and is simply the type IIB supergravity effective action.

Sinteraction couples both systems.

When we take the low energy limit by taking α′ → 0 while keeping all dimensionless

parameter fixed we see that the interaction lagrangian drops out and so do the higher

derivative terms in the brane action. We obtain therefore a decoupled system of

4D N = 4 U(N) SYM
⊗

free 10D N = 2 Chiral (IIB) supergravity (1.5)
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This description corresponds to the summing over holes picture of the previous section.

As the string tension 1/α′ →∞ the holes will occupy almost all open string disk diagrams

and we will recover t’Hooft fat graph for the U(N) gauge theory. A thick line corresponds

to the propagation of an open string. The two end-points of the string can end on either

of the N branes and thus this endows the thick line with the two color indices. This is the

Chan Patton mechanism.

Let us now consider the background language where we sum over all holes – i.e., we

compute the backreaction of the brane on the geometry – to generate a nontrivial back-

ground. To find this deformation at low energies we can consider ten dimensional type IIB

supergravity. In this language the brane is an heavy charged hyper-plane deforming the

geometry to

ds2 =
ds2

M4
√

1 +
l4

r4

+

√

1 +
l4

r4

(

dr2 + r2dΩ2
S5

)

, l4 = 4πgsNα
′2 . (1.6)

From the point of view of the observer at infinity there are two kinds of low energy exci-

tations: low energy massless excitations propagating away from the horizon at r = 0 and

excitations of arbitrary energy as measured by an observer close to the horizon due to the

huge red-shift typical of black hole horizons. Introducing U = r/l2 we see that the near

horizon geometry reduces to

ds2 = l2
(

dU2

U2
+ U2ds2

M4

)

+ l2dΩ2
S5 (1.7)

which corresponds to the product space AdS5×S5, both with radius l. We stress again that

when taking the low energy limit, all string excitations in the near horizon limit survive.

Thus, we obtained again two decoupled systems,

type IIB superstring in AdS5×S5
⊗

free 10D N = 2 Chiral (IIB) supergravity (1.8)

and therefore, comparing (1.8) and (1.5) we are lead to conjecture the equivalence between

N = 4 SYM and string theory in AdS5 × S5. The precise mapping of parameters is sum-

marized in table 1.1.

1.3 Contemplation, despair and integrability

The conjecture between N = 4 U(N) SYM and type IIB superstring theory in AdS5×S5 is

absolutely remarkable and there are many different angles from which we can contemplate

it:
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Table 1.1: AdS5/CFT4 map

N = 4 U(N) SYM type IIB superstrings in AdS5 × S5

λ = g2
YMN λ =

R4

α′2

N Number of colours gs =
R4

4πα′2
1

N

N →∞ with λ fixed planar theory free strings

N →∞ and λ ∼ 0 perturbative regime highly quantum free strings

N →∞ and λ≫ 1 strongly coupled SYM classical free strings

Anomalous dimensions ∆ Energies of the string states E

• On the one hand we can say that, more than a duality between a 4D gauge theory

and a nontrivial theory of quantum gravity, this correspondence is a non-perturbative

definition of a nontrivial theory of quantum gravity. Indeed string theory is to date

only defined perturbatively and this dual definition by means of a well defined unitary

quantum gauge theory might provide the necessary non-perturbative completion of

the theory. This point of view has immediate consequences. For example, information

can not be lost if we consider black holes inside AdS. Indeed, in principle, we can

prepare the state which will create the BH, relate it to the dual theory, evolve it in

this explicitly unitary description and map it back to the gravity side. This is just

an example, out of many, of the great power of the AdS/CFT dualities as tools to

understand the mysteries of quantum gravity.

• This duality is the most successful realization of the holographic principle. Gravity

in the AdSd+1 bulk is encoded in a field theory living in Md, the boundary of AdSd+1!

It is remarkable that a four dimensional gauge theory might encode the dynamics of

a higher dimensional gravity system. Even more remarkably, the AdS/CFT duality

is a duality between the gauge theory on the boundary and quantum gravity in the

bulk described by a sum of geometries which are only required to be asymptotically

anti de-Sitter.

• AdS/CFT is a duality strictus sensus as it maps weakly/strongly coupled gauge

theory to strongly/weakly coupled string theory. This means that we can access pre-

viously impregnable territories of each theory with relative ease. Extremely quantum

strings with string length much larger than the AdS5 radius have a dual description

as free N = 4! On the other extreme, strongly coupled (and non-perturbative) gauge
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theory effects can be accessed by classical string computations. The power of the

duality as a computational tool can hardly be overestimated.

All these features are of course remarkable but there is also a big drawback in all

this related to the last item mentioned – without the development of some quite powerful

techniques, checking any computation becomes a virtually impossible task. Perturbative

CFT computations correspond to highly quantum interacting strings and classical strings

are mapped to the non-perturbative strong coupled regime of the gauge theory!

In the limit of infinite N , when we consider planar gauge theory and free strings –

such powerful techniques appear – integrability [9, 10]. It is now widely believed that in

this limit both theories are fully integrable and thus amenable of analytic solution! In

this introduction we will not dwell into this direction since integrability and in particular

applications of integrability to AdS/CFT will be thoroughly covered in all the subsequent

chapters of this thesis.

1.4 About the thesis

During the last three years, the period of my PhD, I was mostly localized in Paris with

some large periods of time in Porto. During this period I was co-author in the papers

[11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and proceedings [22, 23]. This thesis will not

cover at all [12, 23]. The results in [11, 16, 19, 20, 22] are used but certainly not the main

emphasis of this monograph. On the other hand, most of the results presented here are

contained in the articles [13, 14, 15, 17, 18, 21].

The main text is split into two main parts. Part II deals mostly with Bethe Ansatz

and with the CFT side of the correspondence. Part III is devoted to the study of the

string side of correspondence. Classical strings are studied in chapter 4, the semiclassical

spectrum is analyzed is chapter 5 and in the last chapter 6 we consider the one-loop shift

around generic classical solutions and make contact with the Bethe ansatz studied in part

II. See the appendix for a fine grained description or figure 1.5 for a course grained plan

of the thesis.

We should also include the following disclaimer. For the lack of space we chose to

concentrate mostly on the scaling limit of Bethe equations and on aspects of semi-classical

string integrability. In particular, most important developments leading to the famous

Beiser-Eden-Staudacher dressing factor [24] are not properly covered in this monograph.

For example, in section 3.7 we basically jump from the one-loop treatment of the previous

sections to the all-loop conjectured equations leaving a huge pedagogical gap in between

which would well deserve a monograph of its own. We refer the reader to [25, 26, 27, 28,

29, 30, 31] for more reviews on Integrability in AdS/CFT.
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Figure 1.5: Course grained plan of the thesis and logical flow. Only main subjects are represented,

many sections are omitted. Parts II and III are basically independent except for the last section

in chapter 6.4 which requires the results of section 3.7 in part II





Chapter 2

Lagrangians of the AdS and CFT theories

In this section we will write down the Lagrangian of four dimensional N = 4 U(N) super

symmetric Yang-Mills theory [32, 33] and the Metsaev-Tseytlin action for type IIB free

strings in AdS5 × S5 [34].

2.1 N = 4 SYM

The fundamental fields in N = 4 SYM are six real scalars, four dimensional gluons, and

sixteen component Majorana spinors, all of them matrices of size N ×N ,

Φi = Φa
i T

a , Aµ = Aaµ T
a , Ψ = Ψa T a , (2.1)

Figure 2.1: Component Feynman rules for N = 4 super symmetric Yang-Mills theory. Solid,

wavy, dashed and pointed lines represent scalars, gluons, fermions and ghosts respectively and

their propagators are canonically normalized to
g2Y M

2
δij

p2
,
g2Y M

2

(

ηµν

p2
− (1− ζ)pµpν

p4

)

,
g2Y M

2
Γ·p
p2

and

g2Y M

2
1
p2

. Obvious indices and delta functions are omitted and all vertices should be multiplied by

1/g2. For example the fourth vertex in the first row corresponds to − 2
g2Y M

Γµ, the last vertex in

the second row yields − 2
g2Y M

(pµ− kµ)δij , etc. The trivial U(N) indices are omitted and fermionic

loops should be accompanied by an extra factor of minus one.
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where T a are the N generators of U(N) normalized as Tr
(

T aT b
)

= 1
2
δab. The Lagrangian

of N = 4 SYM reads

L =
1

g2
YM

Tr

[

1

2
[Dµ,Dν ]

2+ (DµΦi)
2−1

2
[Φi,Φj]

2 + iΨ̄
(

ΓµDµΨ+Γi[Φi,Ψ]
)

+∂µc̄Dµc+ζ (∂µAµ)
2

]

where the covariant derivative is defined as usual

Dµ · = ∂µ · −i [Aµ, ·]

and (Γµ,Γi) are ten real 16×16 Dirac matrices normalized to Tr
(

ΓAΓB
)

= 16 δAB. Finally,

c and c̄ are the Faddeev-Popov ghosts. The Feynman rules for this theory are summarized

in figure 2.1. This is a superconformal field theory and its symmetry is PSU(2, 2|4) together

with the gauge transformations.

This is quite a minimalistic description of this very rich field theory but it is actually

more or less all we need for the moment. As we proceed we will introduce the several

needed ingredients.

2.2 Superstring in AdS5 × S5

We want to study superstrings moving in AdS5×S5. The isometry group of the AdS5 part

is

SO(4, 2) ≃ SU(2, 2)

while the symmetry of the five sphere is

SO(6) ≃ SU(4) .

Each of these spaces is the coset between the corresponding isometry groups and the

symmetry group which leaves a fixed point (isotropy group) which is

SO(4, 1) ≃ SP (2, 2)

for anti de-Siter and

SO(5) ≃ SP (4)

for the S5 factor. The bosonic part of the supercoset where the string moves is therefore

AdS5 × S5 =
SU(2, 2)× SU(4)

SP (2, 2)× SP (4)
.

The full super space where the string moves has this bosonic part completed to the super-

coset
PSU(2, 2|4)

SP (2, 2)× SP (4)
.
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In order to write down the string action it is useful to recall a couple of facts about the

several ingredients in this coset. The matrix superalgebra su(2, 2|4) is spanned by the 8×8

supertraceless supermatrices

M =

(

A B

C D

)

where A and B belong to u(2, 2) and u(4) respectively while the fermionic components are

related by

C = B†
(

I2×2 0

0 −I2×2

)

.

The supertraceless condition means

strM ≡ TrA− TrD = 0 .

The psu(2, 2|4) superalgebra is the quotient of this algebra by the matrices proportional

to the identity. Since the su(2, 2|4) algebra enjoys the automorphism1

Ω ◦M =

(

EATE −ECTE

EBTE EDTE

)

, E =











0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0











,

with

Ω4 = 1 ,

the algebra is endowed with a Z4 grading. This means that any algebra element can be

decomposed into

M =
3
∑

i=0

M (i)

where Ω ◦M (n) = inM (n). Explicitly

M (0,2) =
1

2

(

A± EATE 0

0 D ± EDTE

)

,M (1,3) =
1

2

(

0 B ± iECTE

C ∓ iEBTE 0

)

.(2.2)

Elements of M (0) are invariant under the action of the automorphism meaning that B = 0,

C = 0 and

A = EATE , D = EDTD

which are precisely the defining relations for the denominator algebra sp(2, 2) × sp(4) of

the coset. Therefore the M (0) elements span this part of the coset which we want to gauge

1Meaning Ω ◦ [M1,M2] = [Ω ◦M1,Ω ◦M2] as can be easily checked.
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away. The remaining bosonic elements, M (2), orthogonal to the former, must generate the

(orthogonal) complement of sp(2, 2)× sp(4) in su(2, 2)× su(4) which is precisely what we

want to keep. M (1) and M (3) are the fermionic components of the current.

Finally, the Metsaev-Tseytlin action for the GS superstring in AdS5× S5 is then given

in terms of the algebra current

J = −g−1dg , (2.3)

where g(σ, τ) is a group element of PSU(2, 2|4), by

S =

√
λ

4π

∫

str
(

J (2) ∧ ∗J (2) − J (1) ∧ J (3)
)

+ Λ ∧ str J (2) , (2.4)

where the last term ensures that J (2) is supertraceless2. In section 4.2 where the emergence

of classical integrability is studied, we will discuss this action further. Besides the obvious

global PSU(2, 2|4) left multiplication symmetry the action (2.4) possesses a local gauge

symmetry, g → gH with H ∈ SP (2, 2)× SP (4), under which

J (i) → H−1J (i)H , i = 1, 2, 3 (2.5)

while J (0) transforms as a connection,

J (0) → H−1J (0)H −H−1dH . (2.6)

The equations of motion following from (2.4) are equivalent to the conservation of the

Noether current associated with the global left multiplication symmetry

d ∗ k = 0 (2.7)

where k = gKg−1 and

K = J (2) +
1

2
∗ J (1) − 1

2
∗ J (3) − 1

2
∗ Λ .

Just a few words on how to easily derive this equation just by looking at the action

(2.4): The supertrace of a product of algebra components with different grading is not zero

only if the total grading vanishes:

str
(

M (m)N (n)
)

= 0 , if n +m 6= 0 mod 4 . (2.8)

Thus suppose we make an infinitesimal left multiplication transformation under which

δJ = g−1dGg and want to see how the action changes. When varying each J (n) in (2.4)

2Obviously all components J (i) must be supertraceless since they are elements of PSU(2, 2|4). However,

as manifest from (2.2), all other components are automatically supertraceless and thus require no Lagrange

multipliers.
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we can replace its variation by simply δJ =
∑

δJ (n) since the superstrace will project

back to the original component δJ (n). Then we get δS =
∫

str g−1dGg ∧K and therefore,

integrating by parts and using the cyclicity of the trace we obtain (2.7).

When we restrict ourselves to purely bosonic fields we should recover the usual sigma

model action

Sb =

√
λ

4π

2π
∫

0

dσ

∫

dτ
√
h (hµν ∂µu · ∂νu+ λu (u · u− 1)− (u→ v)) , (2.9)

where the lagrange multipliers constrain the embedding coordinates

1 = u · u ≡ u2
6 + u2

5 + u2
4 + u3

3 + u2
2 + u2

1 ,

1 = v · v ≡ v2
6 + v2

5 − v2
4 − v2

3 − v2
2 − v2

1 . (2.10)

This restriction works as follows. For a purely bosonic representative g we can write

g =

(

Q 0

0 R

)

. (2.11)

where R ∈ SU(4) and Q ∈ SU(2, 2). Then we see that RERT is a good parametrization

of

SU(4)/SP (4) = S5

because, by definition, it is invariant under R → RH with H ∈ SP (4). In the same way

QEQT describes the AdS space. Then we can define the embedding coordinates u and v

by the simple relations

ujΣS
j = RERT , vjΣA

j = QEQT (2.12)

where ΣS,ΣA are the gamma matrices of SO(6) and SO(4, 2). By construction these

coordinates will automatically satisfy (2.10) and then the bosonic part of the action can be

expressed in the usual non–linear σ model form (2.9). For future convenience let us render

the matrix form of the above relations explicit:

ujΣ
S
j =











0 −u6 − iu5 −u4 − iu3 −u2 − iu1

u6 + iu5 0 −u2 − iu1 u4 + iu3

u4 + iu3 u2 + iu1 0 −u6 − iu5

u2 + iu1 −u4 − iu3 u6 + iu5 0











(2.13)

vjΣ
A
j =











0 −v6 − iv5 v4 + iv3 −v2 − iv1

v6 + iv5 0 v2 + iv1 v4 + iv3

−v4 − iv3 −v2 − iv1 0 −v6 − iv5

v2 + iv1 −v4 − iv3 v6 + iv5 0











(2.14)

At this point we end our introduction. In the next chapter integrability comes onto stage.
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Chapter 3

Integrability in N = 4 and Bethe ansatz

In this chapter we will start by reviewing the seminal work of Minahan and Zarembo [9]

where integrability first appeared in N = 4 SYM. We will then introduce the algebraic and

coordinate Bethe ansatz formalism. In section 3.6 we will study the SO(4) which shares

many features with the N = 4 Bethe equations proposed by Beisert and Staudacher (BS)

[35] presented in section 3.7. In the remaining section we analyze the solutions to Bethe

equations and in particular consider in detail the scaling limit of (nested) Bethe ansatz

equations. We finish the chapter with a simple toy model as a curious application of the

algebraic Bethe ansatz.

3.1 Spin chains

N = 4 SYM is a superconformal field theory and therefore there is a basis of renormalized

operators such that

〈OA(x)OB(0)〉 =
δAB
|x|2∆A

(3.1)

where ∆A are the anomalous dimensions. The renormalized operators are related to the

bare ones through

OA(x) =
(

eĤ log Λ
)

AB
O0
B(x) (3.2)

where Ĥ is the mixing matrix chosen in such a way that the correlation functions of OA
with arbitrary probes are finite.

Notice that to arrive at (3.1) we perform two non-trivial steps:

1. First we compute the mixing matrix Ĥ which acts on a family of bare operators

yielding renormalized operators out of which we can construct (finite) correlation

functions.

2. Next we find linear combinations of bare operators which are eigenvectors of the

mixing matrix Ĥ with eigenvalues ∆A. These linear combinations of bare operators

now renormalize trivially. Namely to render such operator finite we simply multiply

it by Λ∆A. These renormalized operators are the ones entering in (3.1).
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in in+1

jn jn+1

q-p q-kq

d1 d2
d3 d4

Figure 3.1: Non self-energy graphs contributing to the one loop mixing matrix for the SO(6)

scalars of planar N = 4 SYM. The operator we renormalize is in the bottom and the trace is

represented by the solid horizontal line. The probes, on the other hand, have free indices and are

represented by the orange small tick marks on top.

Let us carefully review [9] how the computation of Ĥ goes for the SO(6) sector of the

theory where we consider operators of length L made of the form

O0
A(x) = Tr (Φi1 . . .ΦiL) . (3.3)

In the planar limit we need to evaluate the diagrams listed in figures 3.1 and 3.2. The

diagrams in figure 3.2 are of self-energy type and also renormalize the external legs so, to

compute the total log Λ divergence, we must sum all diagrams in figure 3.1 plus half of the

contribution of summing over the diagrams in figure 3.2. Since we only want to compute

the Λ diverging contributions, this computation is quite trivial. The first diagram d1, for

example, is given by

d1 = δinjnδ
in+1

jn+1

(

g2
YM

2

)3(
1

g2
YM

)2

N

∫

d4q

(2π)4

[−2 (2pµ − qµ)][−2 (qν − 2kν)]

(q − p)2(q − k)2q2

(

ηµν + (1− ζ)q
µqν

q2

)

where we used the Feynman rules of figure 2.1. This diagram diverges logarithmically with

the cut-off and we can therefore expand the integrand at large q to obtain

d1 = δinjnδ
in+1

jn+1
(1 + (1− ζ)) g

2
YMN

16π2
log Λ + finite (3.4)

Before computing the remaining diagrams let us introduce some notation which will make

the forthcoming expressions much more eye friendly. First of all we introduce the t’Hooft

coupling λ ≡ g2
YMN and g as

g2 ≡ λ

16π2
≡ g2

YMN

16π2
(3.5)
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q-p

p

q

in in+1

jn jn+1

d5 d6
d7 d8 d9 d10

Figure 3.2: Self energy contribution to the dilatation operator.

Then we define the integrals

I1 ≡ g2 log Λ =
λ

2

∫

d4q

(2π)4

1

(q2)2
, I2 ≡

g2

2

Λ2

p2
=
λ

2

∫

d4q

(2π)4

1

q2p2
(3.6)

and ξ ≡ 1− ζ in terms of which the previous result reads

d1 = (1 + ξ)I1 δinjnδ
in+1

jn+1
. (3.7)

In the same way we find

d2 = −I1 δjnjn+1δilil+1
, d3 = −I1 δjnin δ

jn+1

in+1
, d4 = 2 I1 δjn+1

in δjnin+1
(3.8)

while the self energy type diagrams of figure 3.2 yield

d5 = δjnin δ
jn+1

in+1
(2 (1− ξ)I1 + (1 + ξ)I2)

d6 = δjnin δ
jn+1

in+1
( −4 I1 + 8 I2) (3.9)

d7 = δjnin δ
jn+1

in+1
( − (4 + ξ)I2) (3.10)

d8 + d9 + d10 = δjnin δ
jn+1

in+1
( −5 I2) (3.11)

Now we must add up all divergencies. Notice that the external probes are also renormalized

by ZΦ so we should sum

d1 + · · ·+ d4 +
1

2
(d5 + · · ·+ d10) (3.12)

which yields

+
g2N

16π2
log(Λ)

(

2 δjnin δ
jn+1

in+1
+ δinin+1δ

jnjn+1 − 2 δ
jn+1

in δjnin+1

)

(3.13)
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The fact that both the gauge dependence ξ and the Λ2 divergencies dropped out is a good

indication that no mistake was done. From this result we see that we should take

(

eĤ log Λ
)...,in,in+1,...

...,jn,jn+1,...
= 1− g2N

16π2
log(Λ)

(

2 δjnin δ
jn+1

in+1
+ δinin+1δ

jnjn+1 − 2 δ
jn+1

in
δjnin+1

)

(3.14)

for each pair of consecutive indices. To write this in a more compact form we regard the

operators of the form (3.3) as spin chain states

| ↑i1 . . . ↑iL〉 (3.15)

with the only difference compared with the usual Heisenberg spin chain being that here

one has six possible polarizations ↑1, . . . , ↑6 for each individual spin. We can then write

the full SO(6) one-loop dilatation operator – now regarded as a spin chain Hamiltonian –

as

Ĥ = g2

L
∑

n=1

(2In,n+1 +Kn,n+1 − 2Pn,n+1) (3.16)

where the identity, permutation and trace operators act on the correspondent two sites as

I| . . . ↑i↑j . . . 〉 = | . . . ↑i↑j . . . 〉 (3.17)

P | . . . ↑i↑j . . . 〉 = | . . . ↑j↑i . . . 〉 (3.18)

K| . . . ↑i↑j . . . 〉 = δij

6
∑

k=1

| . . . ↑k↑k . . . 〉 (3.19)

A particularly important (perturbatively) closed sector is obtained when considering op-

erators made out of the two complex scalars

Z = φ1 + iφ2 , X = φ3 + iφ4 (3.20)

which can be in this case mapped to usual SU(2) spins

Tr (ZZX . . .)↔ | ↑↑↓ . . . 〉 . (3.21)

The Hamiltonian acting on this states reduces the usual Heisenberg Hamiltonian

Ĥxxx = 2g2
L
∑

n=1

(In,n+1 − Pn,n+1) (3.22)

This spin chain is also known as XXX spin chain, hence the subscript. We observe that

the BPS protected state Tr(ZL) ↔ | ↑ . . . ↑〉, is an eigenvector of this Hamiltonian with

zero eigenvalue. This again indicates that no mistake was done in the diagrammatics.

As explained in the beginning, by computing Ĥ we have done half of the job, namely

we rendered the theory finite. That is the action of eĤ log(Λ) – which to this order in
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perturbation theory reduces to 1+ Ĥ log(Λ) – on any linear combination of bare operators

such as

|Ψ〉0 = | ↑1↑1↑2〉+ | ↑1↑1↑2〉 (3.23)

yields a renormalized operator

|Ψ〉 =
(

1 + Ĥ log Λ
)

|Ψ〉0 . (3.24)

Correlation functions between renormalized operators are finite and thus what we have

done so far is already quite interesting. As mentioned in the beginning, to go further and

compute the renormalized operators which moreover have a precise anomalous dimension

we must diagonalize Ĥ . For example we can check that

Ĥ

(

6
∑

i=1

| ↑i↑i〉
)

= 12g2

(

6
∑

i=1

| ↑i↑i〉
)

(3.25)

and

Ĥ (|ZXZX〉 − |ZZXX〉) = 12g2 (|ZXZX〉〉 − |ZZXX〉) (3.26)

which is precisely the anomalous dimension of the Konishi operator. Moreover the opera-

tors
∑6

i=1 Tr (ΦiΦi) and Tr [Z,X]2 belong to the same supermultiplet and therefore should

have the same anomalous dimension, precisely as observed here.

It is when we try to go beyond these simple examples and compute the full spectrum

of the one loop dilatation operator that integrability comes into play. Namely, it turns out

that the Hamiltonian (3.16) is quite special.

3.2 Algebraic Bethe ansatz

In this section we will understand how to construct and automatically compute the spec-

trum of families of integrable Hamiltonians. Remarkably the hamiltonians (3.16) and (3.22)

belong to such families.

For that purpose let us review the logic behind the Leningrad school algebraic Bethe

ansatz formalism ( for nice reviews and references see e.g. [36, ?]). We will try to describe

this beautiful and general mathematical construction with some detail with the drawback

of obliging us to hold our breath for quite a while before the connection with physics and

the spin chain Hamiltonians which we found in the previous section appears.

We consider the Hilbert space H of some spin chain of length L which will typically be

given by a tensor product of L copies of some fixed space h,

H = h1 ⊗ · · · ⊗ hL . (3.27)
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i
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u

0

R (u) =ij L(u) = u

0
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0

2

0

1

T(u) = u
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0
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Figure 3.3: R-matrix, monodromy matrix L(u) and transfer matrix, the fundamental building

blocks of quantum integrability.

We assume (normally this is the case) that all sites are equal and thus all hj are isomorphic

to the same vector space. For concreteness let us consider SU(M) models for which

hj ≃ CM . We also consider an auxiliary space h0, also isomorphic to CM .

Next there are three fundamental objects in the algebraic Bethe ansatz construction:

1. An R-matrix which acts in

Rij(u) : hi ⊗ hj → hi ⊗ hj (3.28)

where in particular hi or hj can be the auxiliary space (if i = 0 or j = 0). This

operator also depends on a complex number u called the spectral parameter.

2. A monodromy matrix

L̂(u) ≡ R0L(u) . . .R02(u)R01(u) (3.29)

which acts on the product of all spaces,

L̂(u) : h0 ⊗H → h0 ⊗H . (3.30)

Notice that we can think of L̂(u) as being a M ×M matrix in the auxiliary space

with each entry being an operator acting on the physical Hilbert space H.

3. A transfer matrix which is the trace of the monodromy matrix with respect to the

auxiliary space,

T̂ (u) ≡ Tr0L̂(u) . (3.31)
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Figure 3.4: Yang Baxter relation.

Since the trace is taken over the auxiliary space we are left with an operator acting

on the full spin chain Hilbert space,

T̂ (u) : H → H . (3.32)

These operators can be graphically represented as in figure 3.3.

For the construction that follows to go through the R-matrices must obey the triangular

Yang-Baxter (YB) relation

R12(u)R13(u+ w)R23(w) = R23(w)R13(u+ w)R12(u) , (3.33)

depicted in figure 3.4. This is basically the single restriction on the operators above but it

is already quite constraining. For example, in SU(M) we have only two invariant tensors

acting on the product h1 × h2, the identity

1 , (1)j1,j2i1,i2
= δj1i1 δ

j2
i2
, (3.34)

and the permutation operator

P , (P )j1,j2i1,i2
= δj2i1 δ

j1
i2
. (3.35)

Therefore, to construct an SU(M) symmetric R-matrix we write

R(u) = h(u)1 + f(u)P . (3.36)

Then plugging the R-matrix into (3.33) we obtain

h(u+ w)

f(u+ w)
=
h(u)

f(v)
+
h(w)

f(w)
(3.37)

which means that we can set h(u)/f(u) = u/i. Obviously, relation (3.33) does not fix the

normalization of the R-matrix and we can chose h(u) so that

R(u) =
u1 + iP

u+ i
, (3.38)
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Figure 3.5: By successive application of the Yang Baxter relation we prove R0102(u −
v)L̂1(u)L̂2(v) = L̂2(v)L̂1(u)R0102(u − v) which trivially implies

[

T̂ (u), T̂ (v)
]

= 0. This com-

mutation relation is of great importance and ensures quantum integrability of the Hamiltonians

built out of the transfer matrix T̂ (u).

which is the standard SU(M) R-matrix.

So far we built a transfer matrix T̂ (u) made out of R-matrices obeying the YB equation.

Let us now continue our general considerations and understand why such transfer matrix is

at all related with the Hamiltonians of the previous section or, more generically, to physical

systems with integrable Hamiltonians. To do so we need to slightly enlarge our setup and

include an extra auxiliary space. We denote the auxiliary spaces by 01 and 02 and add a

subscript 1 or 2 to the monodromy matrix L(u) to indicate which auxiliary space is being

used. Then

R0102(u− v)L̂1(u)L̂2(v) = L̂2(v)L̂1(u)R0102(u− v) , (3.39)

is a trivial consequence of the YB relation as explained in figure 3.5.

Multiplying this equation by R−1
0102

(u− v) = R0102(v − u) from the right we obtain

R0102(u− v)L̂1(u)L̂2(v)R0102(v − u) = L̂2(v)L̂1(u) , (3.40)

so that taking the trace of this equality over both auxiliary spaces yields
[

T̂ (u), T̂ (v)
]

= 0 , (3.41)

where we used the obvious relations

Tr(RMR−1) = Tr(M) , Trh01⊗h02
(L̂1 ⊗ L̂2) = Trh01

(L̂1)Trh02
(L̂2) . (3.42)

Notice that since we take the trace over the auxiliary spaces the indices 1 and 2 can now

be dropped. Obviously, for T̂ (u) in (3.31) the choice of auxiliary space is irrelevant since

we end up taking a trace over this space.
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Figure 3.6: Transfer matrix and spin chain Hamiltonians.

Now, relation (3.41) tells us that the transfer matrices commute for different values of

the spectral parameters which is most interesting. If we construct a spin chain Hamiltonian

H from the transfer matrix (usually by taking derivatives of its logarithm at a particular

point u∗) then, by construction,

[H, T̂ (u)] = 0 ,

and we immediately obtain a huge number of conserved charges and hence quantum inte-

grability!

Indeed, let us compute

(

d

du
log T̂ (u)

)

u=0

= T̂−1(0) T̂ ′(0) (3.43)

At u = 0 the R-matrix (3.38) is nothing but the permutation operator and therefore

T̂ (0) = Tr0 (P0L . . . P01) = PL,L−1 . . . P32P21 (3.44)

is the shift operator as clearly seen from figure 3.6 while

T̂ ′(0) =
1

i

∑

k

Tr0

(

P0L . . . P̂0k . . . P01

)

− L

i
T̂ (0) , (3.45)

where the hatted permutation means this permutation is absent inside the trace. The

first and second terms come respectively from the derivative acting on the numerator and

denominator of one of the R-matrices (3.38) in the definition of the transfer matrix. As

above, the first term shifts everything by one unit to the right while leaving k untouched

– see figure 3.6. Thus, when multiplying by T̂−1(0) which shifts everything one unit to the

left, we almost arrive to the starting configuration apart from a permutation of sites k and
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k+ 1. But a sum of such permutations is precisely the non-trivial part of the Hamiltonian

(3.22)! Putting all the constants in the right place we conclude that the N = 4 SYM

dilatation operator in the SU(2) sector is described in this language as

Hxxx = 2g2

L
∑

n=1

(1− Pn,n+1) =
2g2

i

(

d

du
log T̂ (u)

)

u=0

. (3.46)

Note that this Hamiltonian is actually slightly more general than (3.22) because here we

are working in SU(M) and SU(2) is just a particular case.

We could repeat our analysis for SO(M). The only difference would be that instead of

(3.36) we would write

R(u) = h(u)1 + f(u)P + g(u)K (3.47)

because for SO(M) there are these three invariant tensors. Then we would impose the YB

relation to fix these functions up to a normalization which we can freely chose. We would

in this case find

R(u) ∼ u1− P +
2u

2u+ 2−MK (3.48)

and proceeding as before

1

i

(

d

du
log T̂ (u)

)

u=0

∼
L
∑

n=1

(

Kn,n+1 +
M − 2

2
− M − 2

2
Pn,n+1

)

+ constant . (3.49)

The constant term depends on the normalization of R(u) but is of course irrelevant for our

discussion of integrable vs non-integrable Hamiltonians. On the other hand the relative

coefficient between the trace and the permutation operators is fixed in our construction.

What is absolutely remarkable and noticed by Minahan and Zarembo [9] is that the SO(6)

spin chain Hamiltonian (3.16) has precisely the correct relative factor for M = 6! One

dimensional integrability fits in this way in the four dimensional N = 4 super-symmetric

gauge theory.

So far we explained how to construct integrable Hamiltonians and realized that those

appearing in N = 4 SYM are precisely of this type. As it is, all this sounds like a

mathematicians proof of the existence of the solution to the problem of computing the

complete spectrum of these Hamiltonians. Of course our goal is to actually compute the

spectrum. The diagonalization of these Hamiltonians will be the subject of the next section.

3.3 SU(2) spin chain spectrum

The program of the algebraic Bethe ansatz is designed to diagonalize not only the Hamil-

tonian but also the transfer matrix T̂ (u),

T̂ (u)|Ψ〉 = T (u)|Ψ〉 . (3.50)
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This is quite interesting because the spectrum of the Hamiltonian (3.46) is then simply

obtained by taking the logarithmic derivative of this eigenvalue.

Exxx =
2g2

i

(

d

du
logT (u)

)

u=0

. (3.51)

However, we can immediately obtain the spectrum of many more Hamiltonians. For ex-

ample, following the same reasoning as above, it is easy to see that

Hα,β ≡
(

α

i

d

du
log T̂ (u) +

β

2i

d2

du2
log T̂ (u)

)

u=0

=
L
∑

n=1

α (1− Pn,n+1) + β
i

2
[Pn−1,n, Pn,n+1]

(3.52)

and therefore the spectrum of this Hamiltonian is trivially obtained replacing the operator

T̂ by the corresponding eigenvatue T ,

Eα,β =

(

α

i

d

du
log T (u) +

β

2i

d2

du2
log T (u)

)

u=0

. (3.53)

By considering more and more derivatives we can obtain longer and longer ranged Hamil-

tonians together with their complete spectrum.

To compute T (u) we will again follow a path where the physics might be a bit obscured.

We will consider the symmetry group to be SU(2) for simplicity.

The idea is to use the monodromy matrix L(u) defined in (3.29) to build our creation

operators. For that we recall that this object acts on h0 ⊗H and thus can the thought of

as being a 2× 2 matrix in the auxiliary space where each entry is an operator in the full

Hilbert space,

L̂(u) =

(

Â(u) B̂(u)

Ĉ(u) D̂(u)

)

(3.54)

Notice that with this notation

T̂ (u) = Â(u) + D̂(u) .

The R-matrix R0j can also be written as a 2× 2 matrix with entrances acting on hj ,

R0j =
1

u+ i

(

u+ i
2

(

1 + σzj
)

i σ−
j

i σ+
j u+ i

2

(

1− σzj
)

)

(3.55)

To obtain this expression from (3.38) we simply recall that the permutation operator can

be written in terms of the Pauli matrices as

P =











1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1











=
1

2
(1 + ~σ ⊗ ~σ) .
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Acting with a state with a ket | ↑〉j and a generic state in the auxiliary space we obtain

R0j | ↑〉j ⊗ |Φ〉 =

(

| ↑〉 i
u+i
| ↓〉

0 u
u+i
| ↑〉

)

|Φ〉 (3.56)

and therefore the monodromy L̂(u) acts on the ferromagnetic vacuum

|Ω〉 = | ↑ . . . ↑〉 = | ↑〉L ⊗ · · · ⊗ | ↑〉1 (3.57)

as

L̂(u)|Ω〉 ⊗ |Φ〉 =

(

| ↑〉L i
u+i
| ↓〉L

0 u
u+i
| ↑〉L

)

⊗ · · · ⊗
(

| ↑〉1 i
u+i
| ↓〉1

0 u
u+i
| ↑〉1

)

|Φ〉 (3.58)

=

(

|Ω〉 |non trivial〉
0

(

u
u+i

)L |Ω〉

)

|Φ〉 (3.59)

where the triangular nature of the matrix result (3.56) was crucial. Here |non trivial〉
represents some complicated (entangled) state whose explicit expression is not important.

From this expression we read

Â(u)|Ω〉 = |Ω〉 , D̂(u)|Ω〉 =

(

u

u+ i

)L

|Ω〉 , Ĉ(u)|Ω〉 = 0 , B̂(u)|Ω〉 = |non trivial〉 .(3.60)

So in particular we found the action of T̂ (u) on the ferromagnetic vacuum. The idea is now

to use the B̂(u) operators as creation operators acting on this non-trivial vacuum. That is

we propose the ansatz

|Ψ〉 = B̂(u1) . . . B̂(uM)|Ω〉 . (3.61)

Since we already know how Â(u) and D̂(u) act on the vacuum, we only need to understand

how they pass through the B̂(uj) operators. To compute the algebra of the Â, B̂, Ĉ, D̂

operators we simply need to evaluate (3.39). Recall that in this equation we have introduced

two isomorphic auxiliary spaces 01 and 02 so that instead of (3.54)

L̂(u) = Â(u)⊗ | ↑〉〈↑ |+ B̂(u)⊗ | ↑〉〈↓ |+ Ĉ(u)⊗ | ↓〉〈↑ |+ D̂(u)⊗ | ↓〉〈↓ |

we have two equivalent transfer matrices

L̂1(u) = Â(u)⊗ | ↑〉〈↑ | ⊗ 1 + B̂(u)⊗ | ↑〉〈↓ | ⊗ 1 + Ĉ(u)⊗ | ↓〉〈↑ | ⊗ 1 + D̂(u)⊗ | ↓〉〈↓ | ⊗ 1

L̂2(v) = Â(v)⊗ 1⊗ | ↑〉〈↑ |+ B̂(v)⊗ 1⊗ | ↑〉〈↓ |+ Ĉ(v)⊗ 1⊗ | ↓〉〈↑ |+ D̂(v)⊗ 1⊗ | ↓〉〈↓ |



3.3. SU(2) spin chain spectrum 35

which can be written as 4× 4 matrices with operators as entrances

L̂1(u) =











Â(u) B̂(u) 0 0

Ĉ(u) D̂(u) 0 0

0 0 Â(u) B̂(u)

0 0 Ĉ(u) D̂(u)











, L̂2(v) =











Â(v) 0 B̂(v) 0

0 Â(v) 0 B̂(v)

Ĉ(v) 0 D̂(v) 0

0 Ĉ(v) 0 D̂(v)











.(3.62)

The R-matrix appearing in (3.39) can also be explicitly written as a 4× 4 matrix

R0102(u) =
1

u+ i











u+ i 0 0 0

0 u i 0

0 i u 0

0 0 0 u+ i











(3.63)

where of course each entry is a simple number and not an operator. Now we simply need

to multiply these three matrices as in (3.39) and compare the sixteen entrances in the left

and right hand sides to obtain the algebra of the monodromy matrix elements. We will

only require the following relations among all those:

Â(u)B̂(v) =
u− v − i
u− v B̂(v)Â(u) +

i

u− v B̂(u)Â(v) (3.64)

D̂(u)B̂(v) =
u− v + i

u− v B̂(v)D̂(u)− i

u− v B̂(u)D̂(v) (3.65)

B̂(u)B̂(v) = B̂(v)B̂(u) (3.66)

Thus when we act with Â(u) on our ansatz (3.61) and consecutively use (3.64) this operator

will arrive at the vacuum either with the same argument u or with the argument of one of

the parameters uj of the original B̂(u). That is

Â(u)|Ψ〉 = A(u)|Ψ〉+
M
∑

k=1

αkB̂(u)B̂(u1) . . . B̂(uk−1)B̂(uk+1) . . . B̂(uM)|Ω〉 (3.67)

To compute A(u) is a trivial task. Namely it comes from always using the first term in

(3.64) when passing through each of the M B̂’s and by then hitting the vacuum with Â(u)

using (3.60) so

A(u) =

M
∏

j=1

u− uj − i
u− uj

. (3.68)

It is also trivial to find αk by the following argument. We need to understand which

terms in (3.64) were used when Â(u) jumps through the B̂ operators until it meets the

vacuum. To find the coefficient αk we first arrange all the B̂’s in the product (3.61) so that

the leftmost creation operator is B̂(uk). We can clearly do so because the B̂’s commute
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between themselves. Then, since we want Â(u) to exchange arguments with this first B̂(uk)

it is clear that in the first jump we use the second term in (3.64),

Â(u)B̂(uk)
∏

j 6=k
B̂(uj)|Ω〉 =

i

u− uk
B̂(u)Â(uk)

∏

j 6=k
B̂(uj)|Ω〉+ . . . (3.69)

but now we no longer want to swap arguments because we are already in the form (3.67)!

Therefore we will continue to move Â(u) until it hits |Ω〉 using the first term in (3.64) in

each step. Thus we find

αk =
i

u− uk

M
∏

j 6=k

uk − uj − i
uk − uj

. (3.70)

In the same way we obtain

D̂(u)|Ψ〉 = D(u)|Ψ〉+
M
∑

k=1

δkB̂(u)B̂(u1) . . . B̂(uk−1)B̂(uk+1) . . . B̂(uM)|Ω〉 (3.71)

where

D(u) =

M
∏

j=1

u− uj + i

u− uj

(

u

u+ i

)L

. (3.72)

and

δk = − i

u− uk

M
∏

j 6=k

uk − uj + i

uk − uj

(

uk
uk + i

)L

. (3.73)

We see that if we properly fix the Bethe roots uj it is possible to cancel the second term in

(3.67) with the second term in (3.71) thus leaving us with a correct eigenvalue equation!

More precisely, let us shift uj → uj − i/2 so that our wave function reads

|Ψ〉 = B̂(u1 − i/2) . . . B̂(uM − i/2)|Ω〉 . (3.74)

Then we found that

T̂ (u)|Ψ〉 = T (u)|Ψ〉 , (3.75)

where T (u) = A(u) +D(u) is given by

T (u) =

M
∏

j=1

u− uj − i/2
u− uj + i/2

+

(

u

u+ i

)L M
∏

j=1

u− uj + 3i/2

u− uj + i/2
, (3.76)

if we cancel αk and δk which amounts to quantizing the Bethe roots uk according to the

so called Bethe equations

(

uk + i/2

uk − i/2

)L

=

M
∏

j 6=k

uk − uj + i

uk − uj − i
. (3.77)



3.3. SU(2) spin chain spectrum 37

Figure 3.7: The Bethe ansatz equation quantized the momenta of the excitations by imposing

that the phase pkL due to the free propagation plus the phase shifts due to the scattering with

each of the other magnons is a multiple of 2π.

This is the main result of this section.

In practice there is a shortcut to arrive at this result. We simply compute the eigenvalue

T (u) = A(u) + D(u) using the first terms in (3.64) and (3.65) to find (3.76). We know

that the other terms in the algebra (3.64) and (3.65) will give something which will not

be proportional to the original vector and which we will therefore want to cancel. We

know that the cancelation of these terms will constrain the positions of the Bethe roots via

some Bethe equations. To find these equations we make the following observation: Since

the transfer matrix is obtained from the trace of a product of operators like (3.38) it can

never have poles at u = ui but (3.76) seems to have such poles! The only way out is if the

Bethe roots are such that the residues of the poles in (3.76) vanish. This condition yields

precisely Bethe equations.

A remark: Notice that this reasoning also explains why we can not have coincident

Bethe roots. If we set u1 = u2 then we still have M conditions on the Bethe roots (from

M − 2 simple poles and 1 double pole) while having only M − 1 positions u2, . . . , uM to

fix.

It is easy to see from the v → ∞ limit of (3.39) that
[

∑

j σ
z
j , B̂(u)

]

= B(u) and

therefore our ansatz corresponds to a state with M spin flips in a ferromagnetic vacuum.

Equation (3.77) has then a simple physical picture behind it. If we define

eip =
u+ i/2

u− i/2 , u =
1

2
cot

p

2
(3.78)

then this equation can be written as

eipkL
M
∏

j 6=k
S(pk, pj) = 1 . (3.79)

Thus, state (3.74) should be pictured as a collection of M spin down excitations – called

magnons – moving with momenta pk in the spin chain and scattering between themselves
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as represented in figure 3.7. More precisely the Bethe equations tell us that if we pick one

particle and carry it around the spin chain, the phase pkL due to the free propagation plus

the phase shifts due to the scattering with each of the other magnons must give a trivial net

result. From this description we clearly see the manifestation of integrability as factorized

scattering. The fact that the scattering of one magnon with all the other magnons is given

by a simple sequence of two-to-two scattering processes is not at all generic. In the next

section we will explore this more physical approach to quantum integrability using the

coordinate Bethe ansatz formalism.

Having quantized the momenta {pk} or alternatively the Bethe roots {uk} we compute

the spectrum from (3.51) which yields

Exxx =
M
∑

j=1

2g2

u2
j + 1/4

(3.80)

which is of the form Exxx =
∑M

j=1 ǫ(pj) with

ǫ(p) = 8g2 sin2 p

2
(3.81)

being the dispersion relation for each individual magnon. As mentioned in the beginning

of this section one of the main advantages of the algebraic Bethe ansatz approach is that

we can at once diagonalize large families of integrable Hamiltonians. For example, to find

the spectrum of (3.52) we simply need to solve the same BAE (3.77) and then evaluate

(3.53) using (3.76) to find

Eα,β =

M
∑

j=1

α

u2
j + 1

4

+
β

(

u2
j + 1

4

)2 , (3.82)

that is Eα,β =
∑M

j=1 ǫ(pj) with

ǫ(p) = 4 sin2 p

2
(α + β sin p) . (3.83)

3.4 Quantum integrability and factorizable scattering

In 1 + 1 dimensions, when two particles of equal mass scatter, momenta and energy con-

servation imply that the final set of individual momenta is equal to the original set,

{p′1, p′2} = {p1, p2} (3.84)

When we consider three or more particles the final set of momenta is in general not a simple

rearrangement of the original one. On the other hand for systems with many conserved
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charges this can be the case. For example, if we consider the scattering of three particles

in a theory where not only the momenta and energy,

Q1 =
∑

j

pj , Q2 =
∑

j

p2
j , (3.85)

are conserved but where there is also an extra charge

Q3 =
∑

j

p3
j , (3.86)

then the conservation of these three charges does imply that the final set of momenta is

equal to the original set,

{p′1, p′2, p′3} = {p1, p2, p3} . (3.87)

In the same way, the existence of N relatively generic independent charges Qj would imply

that the effect of a multiple particle scattering with original momenta {pj} would be to

simply rearrange the individual momenta between the several particles. In this kind of

theories, if we prepare the in-coming particles and collect them after the collision we would

conclude that, since the momenta were simply interchanged, the scattering was effectively

factorized into a sequence of many pairwise scattering processes.

Notice also that there is no solution to

pn1 + pn2 + pn3 = p′
n
1 + p′

n
2 , n = 1, 2, 3 . (3.88)

In integrable theories there is no particle creation or annihilation.

Let us review an argument due to Shankar and Witten [37] where factorizability is very

clearly related to the existence of higher charges. Suppose we consider a superposition of

plane waves

ψ(x, t) = eip(x−x0)+ip2(t−t0) (3.89)

into a wave packet of well definite momenta p ≃ p0,

Ψ(x, t) =

∫

dpe−α(p−p0)2eip(x−x0)−i p2

2
(t−t0) (3.90)

This wave packet is localized where the phase is stationary for p ≃ p0 that is

x = x0 + p0(t− t0) . (3.91)

Now suppose the theory admits higher charges of the type mentioned above. If we act on

this wave packet with a charge eiβQn = eiβp
n

we get

eiβQn Ψ(x, t) =

∫

dpe−α(p−p0)2eip(x−x0)−i p2

2
(t−t0)+iβpn

(3.92)
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Figure 3.8: The action of Higher charges shifts each wave packet by a momentum depen-

dent amount. This it implies factorized scattering and the Yang-Baxter relation Ŝ12Ŝ13Ŝ23 =

Ŝ23Ŝ13Ŝ12t.

and therefore the stationary phase condition telling us where the wave function is localized

becomes now

x = x0 + p0(t− t0) + β n pn−1
0 . (3.93)

Now suppose we prepare three wave packets like (3.90) in such a way that they will

scatter almost simultaneously in the future as in figure 3.8a. The probability amplitude

for this process is the same as the probability amplitude for the process related to this one

by application of the symmetry generated by any of the charges Qn – after all this is the

definition of symmetry.

A symmetry transformation generated by the momenta or the energy corresponds to

putting n = 1, 2 in (3.93). This simply means that we simply effectuate a global translation

in space or time respectively.

Things are much more interesting for n ≥ 3. When n ≥ 3 each wave packet is shifted

by an amount which depends on its momentum and thus the process in figure 3.8a can be

transformed into that in figure 3.8b with the three wave packets scattering in a sequence

of arbitrarily separated pairwise collisions. This shows that the existence of higher charges

implies factorized scattering.

Furthermore since we could apply a symmetry transformation with a positive or neg-

ative deformation parameter β we find out that not only the three-to-three scattering

factorizes into a sequence of three chronologically ordered two-to-two scattering events but
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also the order of these evens can be interchanged by applying the symmetry transformation

generated by the higher charges as represented in figure 3.8c. Mathematically this means

that for integrable theories

Ŝ12(p1, p2)Ŝ13(p1, p3)Ŝ23(p2, p3) = Ŝ23(p2, p3)Ŝ13(p1, p3)Ŝ12(p1, p2) . (3.94)

If the S-matrix is a simple phase shift like in our previous example then of course this

equation is empty. This is the case when we consider theories with a single type of particles

without any internal degrees of freedom. On the other hand, in general particles have

polarizations and/or spins which can change in a scattering process. In other words the

S-matrices appearing in (3.94) are matrices. When this is the case equation (3.94) provides

strong constraints on the form of the S-matrix.

The spectrum of integrable theories put in a large circle of perimeter L can easily be

found. Let us consider particles without internal structure first. Since there is no particle

creation we can consider a wave function with a precise number of particles. For simplicity

let us consider three particles, the generalization will be obvious. Since the circle is large

there is a region where x1 ≪ x2 ≪ x3 which we denote by asymptotic region. In this region

the wave function will be

ψ(x1, x2, x3) ≃ φ123 + φ213 S12 + φ132 S23 + φ312 S13 S23 + φ231 S13 S12 + φ321 S23 S13 S12 ,

(3.95)

where Sij ≡ S(pi, pj) and

φijk ≡ exp (ipix1 + ipjx2 + ipkx3) .

We are assuming the particles to be bosons so that the wave function in the other asymp-

totic regions such as x2 ≪ x1 ≪ x3 can be trivially obtained from (3.95) from

ψ(x1, x2, x3) = ψ(x2, x1, x3) .

Obviously, when writing (3.95) we already used the factorizability property to decompose

some three body S-matrices into products of two-to-two scattering processes.

Next we pick a particle and carry it around the circle. More rigorously, we impose the

periodicity of the wave function

ψ(x1 + L, x2, x3) = ψ(x1, x2, x3)

or, using the bosonic symmetry of the wave function,

ψ(x2, x3, x1 + L) = ψ(x1, x2, x3) (3.96)
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The advantage of this second expression is that the arguments are ordered so that we can

use the wave function in (3.95). When comparing the several exponentials we find that

this condition implies the quantization conditions

eipjL =

M
∏

k 6=j
S(pj, pk) (3.97)

with M = 3. Physically these equations translates the fact that the free phase acquired

by a particle when carried around the ring plus the phase shifts due to the scattering with

each of the other particles must be a trivial multiple of 2π.

Having quantized the momenta of every individual particle by solving the Bethe equa-

tions we compute the spectrum of the theory from

E =

M
∑

j=1

ǫ(pj) (3.98)

where ǫ(p) is the dispersion relation.

Notice that in all this discussion it was crucial to have enough space for an asymptotic

region to exist. Such asymptotic region was used in (3.96) to obtain Bethe equations.

It was also implicitly used in (3.98) where we used the fact that there is a region where

the wave function is given by a superposition of M plane waves with precise individual

momenta used to measure the energy of the state.

So far we studied Bethe equations of the form (3.97) which appear for example in the

study of spin chains with SU(2) symmetry. In this model the particles are down spins and

hence have no internal structure. For the SO(6) spin chain which we already described it

is clear that we will have to find something more sophisticated.

In general, when particles transform under some nontrivial symmetry group with rank

r we must solve the diagonalization problem

|ψ〉 = eiLpk

←−
k−1
∏

j=1

Ŝ (pk, pj)

−−→
k+1
∏

j=M

Ŝ (pk, pj) |ψ〉 (3.99)

where Ŝ(pk, pj) is now a matrix and |ψ〉 is the multi-particle wave function. We will in

general obtain not just one equation like (3.97) but rather a set of r+1 equations entangling

the scattering of particles with momenta pk and pj in space-time with the scattering of

spin waves in the isotopic space. These so called Nested Bethe ansatz equations will be of

key importance throughout this monograph. In the next section they will appear for the

first time in the study of the SO(4) sigma model, an extremely instructive toy model for

what follows.
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Notice the striking mathematical similarity between equations (3.94) and (3.4). Thus of-

ten S-matrices andR-matrices will have exactly the same form (apart from normalizations).

Obviously their physical meaning is completely different – S-matrices describe scattering

of particles whereas R-matrices are used to construct integrable spin chain Hamiltonians

(or integrable 2d statistical models).

3.5 Coordinate Bethe ansatz and higher loops.

In this section we will introduce the notion of perturbative integrability or more precisely

perturbative asymptotic Bethe ansatz [38] and recognize the appearance of integrability in

N = 4 SYM from the factorized scattering perspective described in the previous section.

For that purpose we will first review the coordinate Bethe ansatz description of integrable

systems.

Let us consider again the diagonalization of the Heisenberg Hamiltonian

Hxxx =
L
∑

n=1

1− Pn,n+1 (3.100)

and construct single, double and triple spin flip excitations moving on the ferromagnetic

vacuum. To construct the single spin flip excitation, called magnon, we construct a plane

|k〉 =

L
∑

n=1

ψ(n)|n〉 , ψ(n) = eikn (3.101)

where |n〉 = σ−
n | ↑ . . . ↑〉 is the state with all spins pointing up except for that in site n.

Acting with the Hamiltonian on this state we find

Hxxx|k〉 = ǫ(k)|k〉 (3.102)

where

ǫ(k) = 2− 2 cos(k) = 4 sin2 k

2
(3.103)

which, apart from the normalization factor of 2g2 is precisely what we found in (3.81) from

our general treatment in the algebraic Bethe ansatz formalism. Periodicity of the wave

function quantizes k = 2πn
L

.

Next let us consider two excitations. This is of course more interesting because now

the two magnons might scatter between themselves. Acting on the state

|ψ〉 =
∑

n<m

ψ(n,m)|n,m〉 , |n,m〉 = σ−
n σ

−
m| ↑ . . . ↑〉 (3.104)
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with the Heisenberg Hamiltonian and imposing
(

Ĥxxx − E
)

|ψ〉 = 0 yields

E ψ(n,m) = 4ψ(n,m)− ψ(n + 1, m)− ψ(n− 1, m)− ψ(n,m+ 1)− ψ(n,m− 1) (3.105)

for m > n+ 1 and

E ψ(n, n+ 1) = 2ψ(n, n+ 1)− ψ(n− 1, n+ 1)− ψ(n, n+ 2) (3.106)

when the spin flips meet. Any superposition of plane waves

ψ(n,m) = eikn+ipm + S(k, p)eipn+ikm (3.107)

solves the first equation describing the free propagation and gives

E = ǫ(k) + ǫ(p) (3.108)

while the second condition governs the scattering between the magnons and fixes

S(p, k) =
1
2
cot k

2
− 1

2
cot p

2
− i

1
2
cot k

2
− 1

2
cot p

2
+ i

(3.109)

Periodicity of the wave function ψ(n,m) = ψ(m,n + L) now yields

eikLS(p, k) = eipLS(k, p) = 1 (3.110)

which under the transformation (3.78) reduce precisely to the Bethe equations (3.77) for

M = 2 found previously. Let us then consider three particle states where, as mentioned

in the previous section, integrability can play a key role. Indeed, it is trivial to check

(specially with Mathematica) that

|ψ〉 =
∑

n1<n2<n2

ψ(n1, n2, n3)|n1, n2, n3〉 ,

with

ψ(n1, n2, n3) = φ123 + φ213 S12 + φ132 S23 + φ312 S13 S23 + φ231 S13 S12 + φ321 S23 S13 S12 ,

(3.111)

Sij ≡ S(pi, pj) and

φijk ≡ exp (ikin1 + ikjn2 + ikkn3) , (3.112)

is an eigenstate of Hxxx with energy

E =
3
∑

k=1

ǫ(pj) . (3.113)
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Periodicity of the wave function ψ(n1, n2, n3) = ψ(n2, n3, n1 + L) then yields the Bethe

equations (3.77),

eipjL

3
∏

k 6=j
Sjk = 1 ,

Of course the fact that the ansatz worked is nontrivial but not surprising as we already

solved this model explicitly by the algebraic Bethe ansatz.

The wave functions for many magnon states are obtained following the obvious pattern

in (3.111). This ansatz for the wave function is of course far from obvious and was the

key observation of Bethe in 1931 to realize it would work [39]. As we saw in the previous

section such ansatz will generically work if there are a lot of extra conserved charges which

is of course a priori not obvious when we look at a given Hamiltonian.

Let us now consider an SU(2) Hamiltonian with also next to nearest neighbors local

interactions. The most general ansatz for such Hamiltonian with zero energy for the

ferromagnetic state is of the form

Hα,β,γ = α

L
∑

n=1

(1− Pn,n+1) + β

L
∑

n=1

i

2
[Pn,n+1, Pn+1,n+2] + γ

L
∑

n=1

(1− Pn,n+2) . (3.114)

If γ = 0 we obtain an Hamiltonian which we already encountered in our algebraic Bethe

ansatz treatment (3.52). In the algebraic Bethe ansatz approach we diagonalized the

SU(2) transfer matrix T̂ (u). Since
[

T̂ (u), T̂ (v)
]

= 0, the eigenvector basis is independent

of the spectral parameter u. The first and second terms in (3.114) are the first and second

derivative of the logarithm of the transfer matrix at u = 0, see (3.52). Thus each of them

– and therefore their sum – is diagonalized by the same set of eigenvectors which is of

course not obvious at all from the coordinate Bethe ansatz perspective. For example, the

ansatz (3.111) still diagonalizes Ĥα,β,0 with exactly the same α and β independent S-matrix

(3.109). Therefore the Bethe equations quantizing the magnon momenta are precisely the

same since they follow from imposing periodicity for the wave function. The spectrum, on

the other hand is trivially changed by the replacement of the dispersion relation by (3.83)

which can be read from the single magnon wave function as before.

In the next subsection we will consider the last term to be present, γ 6= 0 and find out

that there is a right structure to be studied in this case.

3.5.1 Two magnons in non-integrable models.

Let us now consider γ 6= 0 in (3.114). For simplicity we take β = 0 and, for the moment,

we consider an infinite spin chain. Single particle states (3.101) are eigenstates with energy

E = ǫ(k) where

ǫ(p) = 4 sin2 p

2

(

α+ 4γ cos2 p

2

)

. (3.115)
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Figure 3.9: In a non integrable spin chain Hamiltonian the total energy and momenta conserva-

tion is not enough to ensure that the individual incoming momenta are simply interchanged. For

example, in the model we consider we can create a pair of particles with the same total energy

and momenta but different individual momenta as depicted by the red arrows. The wave function

is then given by ψ(n,m) = eik1n+ik2m +Beik2n+ik1m +Deik4n+ik3m.

Two magnon states with wave function (3.107) are not eigenstates and therefore we must

find a better ansatz for ψ(n,m). For m − n > 2 the free propagation equation (3.105) is

simply replaced by the homogeneous equation

(E − 4α− 4γ) ψ(n,m) = −α (ψ(n+ 1, m) + ψ(n− 1, m) + ψ(n,m+ 1) + ψ(n,m− 1))

−γ (ψ(n+ 2, m) + ψ(n− 2, m) + ψ(n,m+ 2) + ψ(n,m− 2)) .(3.116)

The solution to this equation for fixed total momentum P and energy E is given by

ψ(n,m) = eiP
n+m

2

(

Aeiκ
n−m

2 +B e−iκ
n−m

2 + C eiκ
′ n−m

2 +D e−iκ
′ n−m

2

)

(3.117)

where k1,2 = 1
2
(P ± κ) and k3,4 = 1

2
(P ± κ′) are the four solutions to

ǫ(k1) + ǫ(k2) = E , k1 + k2 = P , (3.118)

ǫ(k3) + ǫ(k4) = E , k3 + k4 = P . (3.119)

In particular we can easily see that

cos
(κ

2

)

+ cos

(

κ′

2

)

= −α cos
(

P
2

)

2γ cos(P )
. (3.120)

Notice that while before we could find an eigenstate with only A,B 6= 0 we now need to

consider this more generic ansatz. Luckily this ansatz works not only for m > n + 2 but

also for m = n+2 and m = n+1. For these spin flip separations the Schrodinger equation

gives

(E − 2γ − 4α)ψ(n, n+ 2) = γ (ψ(n− 2, n+ 2) + ψ(n, n+ 4)) (3.121)

−α (ψ(n + 1, n+ 2) + ψ(n− 1, n+ 2) + ψ(n, n+ 3) + ψ(n, n+ 1))

and

(E − 2α− 4γ) ψ(n, n + 1) = −α (ψ(n− 1, n+ 1) + ψ(n, n+ 2)) (3.122)

−γ (ψ(n, n + 3) + ψ(n− 1, n) + ψ(n+ 1, n+ 2) + ψ(n− 2, n+ 1))
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which constrains the several coefficients of the wave function. Since the free propagation

equation is solved by (3.117) for any n and m we can substract it for m = n + 2 and

m = n+ 1 from (3.121) and (3.122) to simplify these equations to

0 = 2ψ(n, n+ 2)− ψ(n+ 2, n+ 2)− ψ(n, n) (3.123)

and

0 = α (2ψ(n, n+ 1)− ψ(n+ 1, n+ 1)− ψ(n, n)) (3.124)

− γ (ψ(n+ 2, n+ 1)− ψ(n + 1, n+ 2) + ψ(n, n− 1)− ψ(n− 1, n))

Physically what is happening depends on the reality of the relative momenta κ and κ′.

If both have a positive imaginary part then we are describing a superposition of two

bound states. In this case we must impose B = D = 0. Conditions (3.123) and (3.124) then

describe a homogenous linear system for A and C whose characteristic determinant must

vanish to be able to have A,C 6= 0. Thus for a fixed total momenta P this characteristic

equation plus (3.120) fixes completely κ(P ) and κ′(P ). This is probably the scenario which

is most studied in the literature [40, 41] but it is the least interesting for our discussion.

Next, consider κ and κ′ real. For a given total energy and momenta A and C are not

fixed. There are therefore two natural choices for the wave function: A = 0 or C = 0. Let

C = 0 and A = 1. Then the wave function is describing the scattering of two magnons with

momenta k1 and k2 with normalized incoming flux. Upon collision, we obtain a reflected

state with momenta k2 and k1 plus two magnons with momenta k3 and k4 with the same

total energy and momenta as the original scattered magnons but with individual momenta

which are not a permutation of the original ones. The reflection and creation coefficients

associated to these processes are B and D as depicted in figure 3.9. They can easily be

computed from (3.123) and (3.124).

There is a third scenario – which will actually be the most relevant for our discussion

of the N = 4 spin chain – where we have a coexistence of two real momenta k1 and k2 and

a magnon bound state made out of k3 and k4. We will come back to it latter.

We will not consider the three magnon state for general α and γ since this would be

an ultra tedious and absolutely not enlightening exercise. The model is not integrable

and therefore factorization does not hold and Bethe ansatz techniques can not be directly

applied.

3.5.2 Perturbative integrability and higher orders in SU(2)

At the light of what we have just seen, it might seem like terrible news the fact that the

dilatation operator for the SU(2) sector in N = 4 supersymmetric Yang-Mills theory is
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precisely of the form of this non-integrable Hamiltonian! Namely it corresponds to [42]

α =

(

g2
YMN

8π2

)

− 4

(

g2
YMN

8π2

)2

, γ =

(

g2
YMN

8π2

)2

. (3.125)

Notice that for finite g2
YMN even the ground state might be quite nontrivial because the

ferromagnetic nature of the chain can change to anti-ferromagnetic for large enough cou-

pling. Single particle states are always easily found but two magnon states are already

quite non-trivial. Three body factorization is not present so we have no Bethe ansatz to

help us out.

The way out from this apparent dead end is the fact that we should always think

perturbatively in λ = g2
YMN . Therefore the next to nearest neighbors interaction (as well

as part of the contact term) is to be treated as a perturbation. More precisely at order λn

in perturbation theory we will have a range n Hamiltonian and we will be able to make

sense of the Bethe ansatz equations as a perturbative expansion provided the spin chain

length is larger than n.

Let us then understand what happens when γ/α≪ 1. In this limit the r.h.s of (3.120)

is very large and thus if κ is real the relative momenta κ′ must be complex. Thus the

relevant wave functions in this regime are those describing the scattering of two particles

in the presence of a bound state and therefore we should consider (3.117) with, say, D = 0.

More precisely from (3.120) we obtain

eiκ
′/2 =

(

− cosP sec
P

2

)

γ

α
+

(

2 cos2 P sec2 P

2
cos

κ

2

)

(γ

α

)2

+O
(

(γ

α

)3
)

(3.126)

Thus we conclude that perturbatively the effect of the magnon is solely to generate a fudge

factor (γ/α)|n−m| for small |n−m|. Since we work to leading order in γ/α this means that

the effect of the magnon is to slightly renormalize the wavefunction ψ(n, n+1). Therefore,

inspired by this treatment, we try the ansatz

ψ(n,m) = φ(n,m) + S(k, p)φ(m,n) (3.127)

where

S(k, p) = S(0) +
γ

α
S(1) , (3.128)

and

φ(n,m) = eikn+ipm
(

1 +
γ

α
f(k, p)δm,n+1

)

(3.129)

Here S(0) is the leading value (3.109) while S(1) corrects the magnon S-matrix. The function

f(k, p) is a local fudge factor or wave function renormalization which appears in the region
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where the magnons are interacting. If we plug this wave function into (3.116), (3.123) and

(3.124) and work always to order (γ/α)2 then we find that the ansatz does the job if we

fix

S(1)(k, p)/S(0)(k, p) =
32i sin2 k

2
sin2 p

2
(sin p− sin k)

2 cos(k) + 2 cos(p)− cos(k + p)− 3
(3.130)

and

f(p, k) = −4 sin
p

2
sin

k

2
sec

k + p

2
. (3.131)

In perturbation theory particle creation is suppressed and the two magnon problem be-

comes again more standard. The spectrum for the double magnon problem is then ob-

tained from summing the two dispersion relations ǫ(p) and ǫ(k) where the momenta are to

be quantized via the Bethe equations (3.110) with the S-matrix (3.128). All this should

be done working always to leading γ/α order.

So far nothing that we did is especially remarkable since usually two body problems

are solvable. Integrability, or rather perturbative integrability, arises in its full splendor

when we consider the three magnon problem. It turns out that the ansatz (3.111) works if

we use the corrected S-matrix (3.128) and replace the bare φijk in (3.111) by

φijk = exp (ikin1 + ikjn2 + ikkn3)× (3.132)

× (1 + f(ki, kj)δn2,n1+1 + f(kj, kk)δn3,n2+1 + g(k1, k2, k3)δn3=n2+1δn2=n1+1) ,

where g(k1, k2, k3) is easily fixed by the action of the Hamiltonian and both f and g are

defined as being completely symmetric with respect to permutations of their arguments,

f(p, k) = f(k, p), etc. Notice that (almost) all the needed ingredients are already contained

in the two magnon problem, namely the S-matrix and the renormalization functions f(k, p)

are precisely as before. To write the complete wave function we merely need to compute

a single triple contact term g(p, k, q) which we can then use to build the four magnon

scattering state. To find the four particle state we will again need to compute a single new

contact term which we can then use to write an ansatz for the five particles state, etc.

On the other hand, let us stress, none of these contact terms actually need to be

computed if we want to consider large enough chains! Having the ansatz (3.111) with a

large enough spin chain, we simply need to impose the periodicity condition ψ(n,m, r) =

ψ(m, r, n+ L) to find the Bethe equations

eipjL =

3
∏

k 6=j
Sjk ,

where the S-matrix is given by (3.128), and the momenta should be computed in small

γ/α perturbation theory. The energy is then computed in perturbation theory from the
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sum dispersion relation (3.115)

E =

3
∑

k=1

ǫ(pj) . (3.133)

To summarize, the setup to study the anomalous dimensions of large single trace operators

in N = 4 super symmetric Yang-Mills theory is as follows. At order g2n we first consider

the single magnon state which will tell us what the dispersion relation ǫ(p) is to this order.

Then we solve the two magnon problem from which we compute the S-matrix also up to

order g2n. Finally, to compute any M-magnon state we simply solve Bethe equations

1 = eipkL
M
∏

j 6=k
S(pk, pj)

and read the spectrum from

E =

M
∑

k=1

ǫ(pk) . (3.134)

In all intermediate steps we should work perturbatively up to order g2n. These formulas

work for n < L otherwise the range of the spin chain Hamiltonian will be as large as the

spin chain length and there will be no asymptotic region for the magnons.

For example up to three loops the SYM spectrum can be found from the Beisert-Dippel-

Staudacher equations [43] which read

(

x+
k

x−k

)L

=
M
∏

j 6=k

uk − uj + i/2

uk − uj − i/2
, E = 2gi

M
∑

k=1

(

x+
k − x−k −

1

x+
k

+
1

x−k

)

, (3.135)

where

x±k =
uk ± i/2 +

√

(uk ± i/2)2 − 4g2

2g
. (3.136)

Starting at four loops these equations fail to reproduce the correct spectrum and must be

replaced by the all-loop Beisert-Staudacher equations [35] described below. These equa-

tions are seven Nested Bethe ansatz equations (the PSU(2, 2|4) symmetry group is of rank

7) but before introducing them it is instructive to make a small detour and consider first

a much simpler toy model which is what we will do in the next section.

3.6 SO(4) sigma model – Nested Algebraic Bethe Ansatz

In this section we review in great detail a particularly simple example of a relativistic

theory described by a set of asymptotic Nested Bethe equations: the SO(4) non-linear

sigma model or SU(2) principal chiral field.
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We introduce the rapidities θ in terms of which we parametrize the energy and momen-

tum of the mass m particles

p = m sinh πθ , E = m cosh πθ . (3.137)

Next we consider the two-to-two S-matrix. By relativistic invariance it must depend only

on the Mandelstam variables

s = (p1 + p2)
2 = 4m2 cosh2 πθ

2
, u = (p1 − p2)

2 = −4m2 sinh2 πθ

2
, t = 0 (3.138)

where we used the fact the initial and final momenta are only at most permuted to define

the Mandelstam variables using p′j = pj for j = 1, 2 and θ = θ1−θ2. Therefore the S-matrix

depends only of this difference of rapidities. It must be of the form

Sj lik (θ) = S2(θ)
[

δikδjl g
−1(θ) + δijδlk + δilδjk h

−1(θ)
]

(3.139)

because there are no more tensors we could build. Moreover since the model is integrable

this S-matrix must obey the YB equations (3.94) and thus the relative coefficients should

be as in (3.48) for M = 4

h(θ) = g(iλ− θ) =
iθ

λ
. (3.140)

because mathematically the YB relations (3.94) also appeared for the R-matrices in (3.33).

Changing i↔ j and the channel s = 4m2
0 cosh2(πθ/2)↔ u (i.e. θ → i−θ) should leave

the S-matrix invariant. This is crossing–symmetry. It implies

S2(θ) = S2(i− θ) (3.141)

and h(θ) = g(i− θ), or λ = 1.

Finally we impose the most natural requirement, namely, unitarity. Setting

Sj lmn(−θ)Smnik (θ) = δijδkl S2(−θ)S2(θ)
(

1 + h−1(−θ)h−1(θ)
)

+ δikδjl (. . .) + δilδkj (. . .)

to be equal to δijδkl one obtains 3 equations. The exact expressions inside the parentheses

are not relevant for our discussion. It suffices to say that, for the g and h we found (3.140),

(3.140), they vanish identically. Thus one is left with

S2(−θ)S2(θ) =
θ2

θ2 + 1
. (3.142)

From (3.141) and (3.142) it follows that S2(θ) is given by

θ

θ − i S
2
0(θ) , S0(θ) = i

Γ
(

− θ
2i

)

Γ
(

1
2

+ θ
2i

)

Γ
(

θ
2i

)

Γ
(

1
2
− θ

2i

) (3.143)
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times a Castillejo-Dalitz-Dyson factor

f(θ) =

L
∏

k=1

sinh πθ + i sinαk
sinh πθ − i sinαk

(3.144)

where αk are arbitrary real numbers. The form (3.143) is needed to have the right pole

and zero structure according to (3.141) and (3.142) while the ambiguity (3.144) is unfixed

since f(θ)/f(i− θ) = f(θ) f(−θ) = 1 . Absence of additional bound states forces one not

only to exclude this factor but also to introduce the i in S0(θ) [44, 45]. For the non-linear

sigma model the correct S-matrix is indeed given by the minimal choice (3.143). To verify

this claim some convincing cross checks are done [46, 47].

The power of integrability and symmetry is incredible. We did not even write the

Lagrangian of the theory! Of course this is also a drawback since many checks need to be

done to ensure we solved the correct theory.

Since SO(4) = SU(2) × SU(2) we can replace i, k, j, l by (α, α̇), (β, β̇), (α′, α̇′), (β ′, β̇ ′)

and write (3.139) as

S2
0(θ)

(θ − i)2

(

iθ ǫαβǫα̇β̇ǫ
α′β′

ǫα̇
′β̇′

+ θ(θ − i) δα′
α δ

α̇′
α̇ δ

β′

β δ
β̇′

β̇
− i(θ − i) δβ′

α δ
β̇′

α̇ δ
α′
β δ

α̇′

β̇

)

=
S2

0(θ)

(θ − i)2

(

θ δα
′

α δ
β′

β − iδβ
′

α δ
α′
β

)(

θ δα̇
′

α̇ δ
β̇′

β̇
− iδβ̇′

α̇ δ
α̇′

β̇

)

.

or

Ŝ(θ) = ŜR(θ)× ŜL(θ) , ŜL,R(θ) = S0(θ) R̂(θ) , R̂ =
θÎ − iP̂
θ − i (3.145)

where P̂ is the permutation operator in C2×C2. Notice that, since SO(4) = SU(2)×SU(2),

we could have started with this ansatz where

ŜL,R(θ) = Ŝ0(θ)
θ

θ − i
(

Î − h−1(θ) P̂
)

.

instead of starting with (3.139). The absence of the channel where two particles annihilate

is obvious since the particles are charged with left/right charge. The YB relation would

then fix both ŜL and ŜR to be proportional to the SU(2) R-matrix already encountered in

(3.38).

Let us now start from the obtained S-matrix (3.145) and carry out the algebraic Bethe

ansatz program [48]. We introduce a ghost particle in the auxiliary space 0 and scatter it

through the other particles. We want to diagonalize

T̂ (θ) |Ψ〉 = Λ(θ)|Ψ〉 , (3.146)
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where the transfer matrix is given by

T̂ (θ) = Tr0

L
∏

k=1

Ŝ 0k(θ − θk) ,

with the trace being over the auxiliary space. This is a relevant problem because, once

solved for any θ, one can set θ = θk so that the ghost particle will exchange its quantum

numbers with particle k as Ŝ 0k(0) = −P 0k × P 0k. In other words,

−Tr T̂ (θk) = Ŝ k,k−1(θk − θk−1) . . . Ŝ k,1(θk − θ1)Ŝ k,N(θk − θN) . . . Ŝ k,k+1(θk − θk+1)

so that the periodicity condition on the wave function reads

− eim0L sinh(πθk) Tr T̂ (θk) |Ψ〉 = |Ψ〉 . (3.147)

Let us then consider (3.146). Notice that mathematically this is absolutely identical to

(3.50) appearing in the study of the Heisenberg spin chain and we can therefore easily adapt

all the steps in section 3.3 to the current problem. There are only two minor differences.

First here we have a tensor product of two identical S-matrices (right and left). Second, the

argument of the S-matrices is θ− θj whereas in (3.50) this was always the same argument

u for all R-matrices. Thus, technically, (3.146) is identical to the study of in-homogeneous

spin chains with SU(2)× SU(2) symmetry.

We consider

|Ψ〉 =
Ju
∏

i=1

B̂L(ui)
Jv
∏

j=1

B̂R(vj)|Ω(θ1, . . . , θL)〉 (3.148)

where Ω is the state with L particles, where the right and left spin of every particle is

pointing in the up direction, and

L̂R(θ) =

L
∏

k=1

ŜR, 0k(θ − θk) =

(

ÂR(θ) B̂R(θ)

ĈR(θ) D̂R(θ)

)

(3.149)

with a similar definition for the left sector. Acting on |Ω〉 one has

R0k(θ)|Ω〉 =
1

θ − i

(

θ − i
2
(τ 3 + 1) −iτ−
−iτ+ θ + i

2
(τ 3 − 1)

)

|Ω〉 =
1

θ − i

(

(θ − i) |Ω〉 ∗
0 θ|Ω〉

)

The upper most right element is not important for our discussion. However the zero in

the left down corner is important. It implies that |Ω〉 is eigenvalue of both A and D with

eigenvalues

Â(θ)|Ω〉 =

L
∏

α=1

S0(θ − θα) |Ω〉 ,

D̂(θ)|Ω〉 =
L
∏

α=1

S0(θ − θα)
θ − θa

θ − θa − i
|Ω〉 .



54 3. Integrability in N = 4 and Bethe ansatz

So now we only have to understand how A and D pass through the B’s. As in section 3.3,

the YB relations imply

L̂aR,L(θ) L̂a
′
R,L(θ

′)Saa′(θ′ − θ) = Saa′(θ′ − θ) L̂a
′
R,L(θ′) L̂aR,L(θ) ,

where a and a′ are two C2 auxiliary spaces. This gives us the commutation relations

between the elements of the transfer matrix (3.149). In particular

[B(θ), B(θ′)] = 0

A(θ)B(θ′) =
θ′ − θ − i
θ′ − θ B(θ′)A(θ) +

i

θ′ − θ B(θ)A(θ′) (3.150)

D(θ)B(θ′) =
θ′ − θ + i

θ′ − θ B(θ′)D(θ)− i

θ′ − θ B(θ)D(θ′) (3.151)

for symbols in the same right or left sector. Symbols in different sectors commute to zero

of course. Then, acting on (3.148), one has

−Tr T̂ (θ) |Ψ〉 = (ÂR(θ) + D̂R(θ))× (ÂL(θ) + D̂L(θ))
Ju
∏

i=1

B̂L(ui)×
Jv
∏

j=1

B̂R(vj)|Ω(θ1, . . . , θL)〉

=
L
∏

α=1

S2
0(θ − θa)

(

Ju
∏

i=1

ui − θ − i
ui − θ

+
Ju
∏

i=1

ui − θ + i

ui − θ
L
∏

α=1

θ − θa
θ − θα − i

)

×
(

Jv
∏

i=1

vi − θ − i
vi − θ

+

Jv
∏

i=1

vi − θ + i

vi − θ
L
∏

α=1

θ − θa
θ − θα − i

)

|Ψ〉+ . . .

where dots stand for undesirable terms which would make |Ψ〉 not to be an eigenvector of

Tr T̂ while the displayed terms are the one we obtain ignoring the second term in the rhs

of both (3.150) and (3.151). The condition that these undesirable terms vanish gives us

a set of equations for ui and vj . There is however a shortcut to arrive at these equations

provided we know that these terms can indeed be killed. The argument is the following –

each of the two last terms inside the big parentheses came from the diagonalization of a

product of Q = θ − iP . The diagonalization of such a product of operators must yield a

polynomial in θ therefore the residues of the apparent poles which seem to be part of the

eigenvalue for θ = ui (or vj) must vanish. This implies

1 =
Ju
∏

i6=j

uj − ui − i
uj − ui + i

L
∏

α=1

uj − θa
uj − θa − i

, (3.152)

1 =

Jv
∏

i6=j

vj − vi − i
vj − vi + i

L
∏

α=1

vj − θa
uj − θa − i

. (3.153)
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Furthermore (3.147) reads

eim0L sinhπθβ

L
∏

α6=β
S2

0(θβ − θa)
Ju
∏

i=1

θβ − ui + i

θβ − ui

Jv
∏

i=1

θβ − vi + i

θβ − vi
= 1 . (3.154)

After the trivial shift (u, v)→ (u + i/2, v + i/2) we finally find the complete set of Bethe

equations

e−iµ sinhπθα =
∏

β 6=α
S 2

0 (θα − θβ)
∏

j

θα − uj + i/2

θα − uj − i/2
∏

k

θα − vk + i/2

θα − vk − i/2
, (3.155)

1 =
∏

β

uj − θβ − i/2
uj − θβ + i/2

∏

i6=j

uj − ui + i

uj − ui − i
, , (3.156)

1 =
∏

β

vk − θβ − i/2
vk − θβ + i/2

∏

l 6=k

vk − vl + i

vk − vl − i
. (3.157)

They have a clear physical meaning. u’s and v’s are the Bethe roots appearing from the

diagonalization of (3.146) and characterize each quantum state. A quantum state with no

such roots corresponds to the highest weight ferromagnetic state where all spins of both

kinds are up. In this case we can drop the last two equations and the first one is of the form

(3.97). Adding a u (v) root corresponds to flipping one of the right (left) SU(2) spins, thus

creating a magnon. This is particularly clear from equations (3.156,3.157) which in the

limit λ→ 0, when θα ≃ 0, are precisely the usual Bethe equations for the diagonalization

of an Heisenberg hamiltonian for the periodic chain of length L, originally solved by Hans

Bethe [39], provided we identify the momentum of magnons with

eip =
u+ i/2

u− i/2 . (3.158)

The left and right charges of the wave function, associated with the two SU(2) spins are

given by

QL = L− 2Ju , QR = L− 2Jv . (3.159)

Thus, in sum, equations (3.155)-(3.156) describe the entangled scattering of physical par-

ticles and the corresponding isotopic spin waves.

3.7 Back to N = 4 and Nested Bethe Ansatz

In the previous sections we encountered what are probably the two most important quan-

tities in quantum integrability – the R-matrix and the S-matrix. They are mathematically

very similar (if not equivalent) as they are both defined as operators acting on a product of
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two vector spaces and obeying the Yang-Baxter triangular relations (3.33) and (3.94). The

main difference is that for the S-matrix we often impose additional physical constraints

such as crossing symmetry with no (obvious) counterpart in the R-matrix construction.

As explained in the previous section the R-matrix can be used to build integrable spin

chain Hamiltonians. In particular, by taking n derivatives of the logarithm of the transfer

matrix we generate Hamiltonians of range n.

The S-matrix, on the other hand, describes the two body scattering of integrable the-

ories which, due to the factorizability property arising from a large number of conserved

charges, defines the scattering between any number of external particles. WhenM particles

are put in a big circle of perimeter L the quantization of the momentum of these particles

is given by (3.99) which can be reduced to a diagonalization problem absolutely equivalent

to the diagonalization of an inhomogenous spin chain as described in the previous section.

The obvious question:

How do these objects appear in the study of N = 4 SYM at higher loops and for the full

set of PSU(2, 2|4) operators?

3.7.1 R-matrix

The product of two SU(2) spin 1/2’s yields

1

2
⊗ 1

2
= 0⊕ 1 , (3.160)

while the product of two vector representations in SO(M) gives

M ⊗M = 1⊕ M2 −M
2

⊕ M2 − 1

2
. (3.161)

From (3.160) we conclude that if we want to construct an operator with SU(2) sym-

metry acting on a product of two spin 1
2
’s it must be built out of the projectors

1

2
(1− P ) ,

1

2
(1 + P ) , (3.162)

into the anti-symmetric (spin 0) and symmetric (spin 1) spaces. Indeed the SU(2) Heisen-

berg spin chain Hamiltonian (3.22) and the corresponding R-matrix (3.38) are constructed

precisely out of this two invariant tensors.

Similarly, the decomposition (3.161) implies the existence of three invariant tensors,

1

M
K ,

1

2
(1− P ) ,

1

2
(1 + P )− 1

M
K (3.163)

projecting into the trace, anti-symmetric and symmetric traceless spaces obtained from the

product of two vector representations. Once again the Minahan-Zarembo SO(6) Hamilto-

nian (3.16) and the corresponding R-matrix (3.48) are build out of these structures.
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The tensor structures available for the PSU(2, 2|4) spin chain appearing in N = 4 SYM

are in infinite number because the symmetry group is non-compact and the representation

is infinite dimensional. The product of two fields in the field strength multiplet decomposes

into an infinite sum of irreducible modules

VF ⊗ VF =
∞
⊕

j=0

Vj (3.164)

so that the 1-loop spin chain Hamiltonian and the corresponding R-matrix ought to be built

from the projectors Pj into these modules. Indeed the full one-loop Dilatation operator

was found to be given as [49]

H =

L
∑

n=1

(

j
∑

k=1

1

k

)

Pjn,n+1 , (3.165)

and the R-matrix

R(u) =
∞
∑

j=0

(−1)j
Γ(−j − iu)Γ(1 + iu)

Γ(−j + iu)Γ(1− iu)Pj (3.166)

obeys the Yang-Baxter relation (3.33) and reproduces – by a transfer matrix construction

as described in section 3.2 – the N = 4 1-loop Dilatation operator.

There are four type of R-matrices in the literature. Those of the type we have seen

so far where the ratios between the pre-factors of the several invariant tensors are ratio-

nal functions of the spectral parameter u are called rational R-matrices. Then we have

the trigonometric and elliptic R-matrices where these rations are expressed in terms of

trigonometric or elliptic functions. They will play no role whatsoever in our discussion.

Then there are all the other R-matrices which we group together and call exotic. The Shas-

try’s Hubbard R-matrix [50] and Beisert S-matrix [51, 52] based on the extended SU(2|2)

symmetry are examples of such exotic matrices (actually they can be closely related so

they are rather a single example of such matrices). To analyze the one-loop spectrum of

N = 4 and to study most spin chains models in condensed matter, the rational R-matrices

are enough and in this subsection we will stick to them.

Let us then consider with great generality the diagonalization of the transfer matrix

T̂ (u) = Tr0R0L(u) . . .R01(u) (3.167)

for rational R-matrices symmetric with respect to some Lie (super) group of rank r with

Cartan matrix Mab. The physical space at each site 1, . . . L can be either the space where

the fundamental representation acts (as seen in the previous sections) or some other space

where a representation with Dynkin labels Va lives. Then each quantum state is param-

eterized by a set {ua,j} of Bethe roots where a = 1, . . . , r refers to the Dynkin node and
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Figure 3.10: For su(K|M) super algebras the Dynkin diagram is not unique. The several possible

choices can be represented as the paths going from the up right corner (M,K) to the origin always

approaching this point with each step. The turns are the fermionic nodes whereas the straight

lines correspond to the usual bosonic nodes. Different paths will correspond to different sets of

Bethe equations which are related by fermionic dualities which flip a left–down fermionic turn

into down–left turn or vice-versa [53].

j = 1, . . . , Ka where Ka is the excitation number of magnons of type a. The Bethe equa-

tions from which we find the position of these roots are then given by

(

ua,j + i
2
Va

ua,j − i
2
Va

)L

= −
r
∏

b=1

Qb

(

ua,j + i
2
Mab

)

Qb

(

ua,j − i
2
Mab

) (3.168)

where

Qa(u) =
Ka
∏

j=1

(u− ua,j)

are the Baxter polynomials. In fact, contrary to what happens for the usual Lie algebras,

for super algebras the Dynkin diagram (and thus the Cartan matrix) is not unique. Take

for example the su(K|M) super algebra. The different possible Dynkin diagrams can be

identified [53] as the different paths starting from (M,K) and finishing at (0, 0) (always

approaching this point with each step) in a rectangular lattice of size M ×K as in figure

3.10. The turns in this path represent the fermionic nodes whereas the bosonic nodes are

those which are crossed by a straight line – see figure 3.10 (the index a goes along the path

as indicated). The Cartan matrix Mab is then given by

Mab = (pa + pa+1) δab − pa+1δa+1,b − paδa,b+1

where pa is associated with the link between the node a and a+ 1 and is equal to +1 (−1)

if this link is vertical (horizontal). The Bethe equations corresponding to the different
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choices of Cartan matrices are equivalent and related by the well known fermionic dualities

[54, 55, 53].

For example, for an SU(2) spin s chain we have a single Dynkin node with M11 = 2

and the spin s representation corresponds to the Dynkin labels Vp = 2s. Thus we get

(

uj + is

uj − is

)L

=

M
∏

k 6=j

uj − uk + i

uj − uk − i
, j = 1, . . . ,M (3.169)

and the equations we found in (3.77) are those where the physical space is in the funda-

mental representation for which s = 1/2.

Another example, the SO(6) spin chain with spins in the vector representation 6, is

obtained from

Mab =





2 −1 0

−1 2 −1

0 −1 2



 , Va =





0

1

0



 (3.170)

so that

1 =

K1
∏

k 6=j

u1,j − u1,k + i

u1,j − u1,k − i

K2
∏

k=1

u1,j − u2,k − i
2

u1,j − u2,k + i
2

(3.171)

(

u2,j + i
2

u2,j − i
2

)L

=

K1
∏

k=1

u2,j − u1,k − i
2

u2,j − u1,k + i
2

K2
∏

k 6=j

u2,j − u2,k + i

u2,j − u2,k − i

K3
∏

k=1

u2,j − u3,k − i
2

u2,j − u3,k + i
2

(3.172)

1 =

K1
∏

k 6=j

u1,j − u1,k + i

u1,j − u1,k − i
K2
∏

k=1

u3,j − u2,k − i
2

u3,j − u2,k + i
2

K3
∏

k 6=j

u3,j − u3,k + i

u3,j − u3,k − i
(3.173)

which are indeed precisely the Bethe equations diagonalizing the Minahan-Zarembo spin

chain Hamilonian (3.16) [56, 57, 9].

Finally, the seven (the rank of PSU(2, 2|4)) one-loop N = 4 Bethe equations which

particular diagonalize (3.165) follow from the Cartan matrix and Dynkin labels

Mab =























0 1

1 −2 1

1 0 −1

−1 2 −1

−1 0 1

1 −2 1

1 0























, Va = δa,4 , (3.174)
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and therefore read [58]

1 =

K2
∏

j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

(3.175)

1 =
K2
∏

j 6=k

u2,k − u2,j − i
u2,k − u2,j + i

K3
∏

j=1

u2,k − u3,j + i
2

u2,k − u3,j − i
2

K1
∏

j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

, (3.176)

1 =

K2
∏

j=1

u3,k − u2,j + i
2

u3,k − u2,j − i
2

K4
∏

j=1

u3,k − u4,j − i
2

u3,k − u4,j + i
2

, (3.177)

(

u4,k + i
2

u4,k − i
2

)L

=

K4
∏

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i
K3
∏

j=1

u4,k − u3,j − i
2

u4,k − x3,j + i
2

K5
∏

j=1

u4,k − u5,j − i
2

u4,k − x5,j + i
2

(3.178)

1 =

K6
∏

j=1

u5,k − u6,j + i
2

u5,k − u6,j − i
2

K4
∏

j=1

u5,k − u4,j − i
2

u5,k − u4,j + i
2

, (3.179)

1 =
K6
∏

j 6=k

u6,k − u6,j − i
u6,k − u6,j + i

K5
∏

j=1

u6,k − u5,j + i
2

u6,k − u5,j − i
2

K7
∏

j=1

u6,k − u7,j + i
2

u6,k − u7,j − i
2

, (3.180)

1 =

K6
∏

j=1

u7,k − u6,j + i
2

u7,k − u6,j − i
2

, (3.181)

from which the spectrum is obtained though

E =

K4
∑

j=1

2g2

u2
4,j + 1/4

. (3.182)

Of course, since this is a supergroup there are many possible choices of Dynkin diagram

(i.e. Cartan Matrix) which would give equivalent set of Bethe equations, related by the so

called fermionic dualities as described above.

Despite their apparent complexity we should keep in mind that by solving these equa-

tions we are obtaining the full 1-loop spectrum ofN = 4 supersymmetric Yang-Mills theory

avoiding the task of computing dozens of Feynman graphs which, even at 1-loop, is quite

an involved and painful task.

What about more loops? When we consider higher orders in perturbation theory we

obtain a next-to-nearest neighbors Hamiltonian. It would be excellent if such long range

would simply come from considering more derivatives of the log of the transfer matrix

like in (3.52). This optimistic scenario was not yet realized, certainly not for the full

supergroup, and not even for any of its smaller subsectors. So far, integrability is to be

thought perturbatively as explained in section 3.5.2.

Actually, the Dilatation operator itself is only known to a few loops, not many at all.

For the SU(2) sector it is known up to four loops [59] but this is absolutely exceptional
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compared to the remaining sectors. See [60, 61] for some very interesting works concerning

larger subsectors.

We could imagine that a fundamental R-matrix exists but it is not directly related

to the long-ranged Hamiltonian. A particularly appealing possibility would be that some

extra hidden local degrees of freedom exist and the long range interactions we perceive

would rather be the effect of integrating out these fundamental degrees of freedom. This

scenario finds compelling evidence at strong coupling in [62, 11, 63, 14], at weak coupling

in [64] and for general coupling in [65]. In [62, 11, 63, 14] quantum sigma models describing

the Sn subsector of AdS5×S5 type IIB superstring were seen to reproduce the long range

conjectured AFS string Bethe equations [66] at strong coupling when the rapidities (θ’s)

of the relativistic particles were integrated out thus leaving an effective Hamiltonian for

the isospin degrees of freedom. In [64] the BDS equations (3.135) [43], which are known to

describe the SU(2) sector of the supersymmetric gauge theory spectrum up to three loops,

were shown to be equivalent to the Hubbard model at half filling where again integrating

out the momenta (q’s) of the electrons yields an effective long range Hamiltonian with

SU(2) symmetry for the spins of the electrons. No definite success was achieved so far for

the full PSU(2, 2|4) group.

3.7.2 S-matrix

Let us now consider the diagonalization of

T̂ (u, {θi}) = Tr0S0L(u− θi) . . . S01(u− θi) (3.183)

Since, as explained before, the R-matrix and the S-matrix are basically the same object

from the mathematical point of view, the periodicity equations (3.183) are equivalent to

the study of inhomogeneous spin chains where the inhomogeneities are the θi.

When we analyze this problem we also find some equations for the diagonalization

of the transfer matrix – they are the same as in (3.167) except for the present of the

inhomogeneities – but what we do with the eigenvalue of the transfer matrix is completely

different. In (3.167) we typically take the logarithm of the eigenvalue of the transfer matrix

to read of the spectrum of a spin chain. In (3.183) we evaluate it at u = θi and equal

this expression to eip(θi)L to quantize in this way the momenta of the physical particles.

Obviously the length of the circle L and the number of physical particles L should not be

confused. The spectrum is then given by a sum of dispersion relations ǫ(θi).

Notice that there are two types of Bethe equations here: The genuine Bethe equations

which diagonalize the inhomogeneous transfer matrix and a last equation – called middle

node equation – obtained by equating the eigenvalue of the transfer matrix at u = θj to

eip(θj)L. The genuine Bethe equations differ from the usual spin chain Bethe equations

(3.168) only by the fact that there are inhomogeneities which will appear in the potential
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terms. These Bethe equations are given by

L
∏

n=1

ua,j − θn + i
2
Va

ua,j − θn − i
2
Va

= −
r
∏

b=1

Qb

(

ua,j + i
2
Mab

)

Qb

(

ua,j − i
2
Mab

) . (3.184)

The middle node equation is less universal and is not completely fixed by symmetry. It

reads

eiLp(θn) =

L
∏

m6=n
S0(θn, θm)

r
∏

b=1

Qb

(

θn + i
2
Vb
)

Qb

(

θn − i
2
Vb
) . (3.185)

For example in the SO(6) sigma model we have particles in the vector representation and,

using again (3.170) we trivially generalize the SO(6) spin chain equations to the asymptotic

Bethe ansatz equations for the relativistic particles of the sigma model:

1 =
K1
∏

k 6=j

u1,j − u1,k + i

u1,j − u1,k − i
K2
∏

k=1

u1,j − u2,k − i
2

u1,j − u2,k + i
2

(3.186)

L
∏

n=1

u2,j − θn + i
2

u2,j − θn − i
2

=

K1
∏

k=1

u2,j − u1,k − i
2

u2,j − u1,k + i
2

K2
∏

k 6=j

u2,j − u2,k + i

u2,j − u2,k − i

K3
∏

k=1

u2,j − u3,k − i
2

u2,j − u3,k + i
2

(3.187)

1 =

K1
∏

k 6=j

u1,j − u1,k + i

u1,j − u1,k − i

K2
∏

k=1

u3,j − u2,k − i
2

u3,j − u2,k + i
2

K3
∏

k 6=j

u3,j − u3,k + i

u3,j − u3,k − i
(3.188)

eimL sinh θn =
L
∏

m6=n
S0(θm, θn)

K2
∏

j=1

θn − u2,j + i
2

θn − u2,j − i
2

(3.189)

Yet another example, the SO(4) = SU(2)×SU(2) sigma model described in section 3.6 is

given precisely by two SU(2) inhomogeneous Bethe equations (3.155) and (3.156) plus a

middle node equation (3.157).

We will shortly see that this last example is highly instructive as it carries many resem-

blances with what we find in N = 4 SYM. Let us recall the spectacular successes which

arose from the S-matrix approach in N = 4 SYM. The key idea is to look at operators like

tr (ZZ . . . ZXZ . . . ZXZ . . . ZZ) ←→ | ↑↑ . . . ↑↓↑ . . . ↑↓↑ . . . ↑↑ 〉 (3.190)

as a vacuum (the Z fields) on top of which particles (in this example theX fields) propagate

[38]. The symmetry of the S-matrix scattering these particles, also known as magnons, is

the subgroup of the full PSU(2, 2|4) symmetry which leave the vacuum invariant. Actually

the symmetry of N = 4 is the semi-direct product of PSU(2, 2|4) with the several gauge

transformations. When we precisely keep track of these gauge transformations we arrive at

the symmetry group for the S-matrix as being SU(2|2)2 extended by two central charges

[51, 52, 67, 68].
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At 1-loop the central extension is irrelevant and therefore, before continuing, let us

take a second look at (3.175-3.181) and make the following observation. We can think

of these seven equations as two SU(2|2) wings plus a middle node equation – the first

three Bethe equations (3.175-3.177) and the last three (3.179-3.181) are the two SU(2|2)

inhomogeneous spin chain equations and the middle node equation (3.178) is the analogue

of (3.185). To compare (3.184) and (3.185) with (3.175-3.181) we identify

L ↔ K4 , (3.191)

L ↔ L , (3.192)

θn ↔ u4,j , (3.193)

S0(θn, θm) ↔ u4,k − u4,j + i

u4,k − u4,j − i
. (3.194)

On the other hand, at one loop we were also able to understand the seven N = 4 Bethe

equations as stemming from the diagonalization a spin chain Hamiltonian with symmetry

group PSU(2, 2, |4) of rank seven. Obviously

7 = 1 + 2× 3 .

As already anticipated in the previous subsection we are able to understand the all loop

equations in the SU(2|2) language but to date no satisfactory all loop PSU(2, 2|4)R-matrix

was found.

Let us continue our general discussion of the all loop S-matrix. To find this S-matrix we

would proceed like in the previous section – first we would start to write the most general

ansatz compatible with the index structure of the scattered states. This is the analogue of

(3.139). A proper contraction of all the indices involved can be translated into the fancier

statement that

[J, S] = 0 (3.195)

where J are the residual bosonic generators (Lorentz and R-symmetry transformations)

of SU(2|2). Next we could try to constrain the several elements in the expression of the

S-matrix – the analogue of h and g in (3.139) – by imposing the same symmetry equation

(3.195) for the several fermionic generators. It turns out that this fixes (up to an overall

function) the (44)
2

entries of this matrix [51, 52, 68]! This S-matrix was directly computed

from worldsheet Feynmann diagrams at tree level in [69] and up to two loops in [70, 71]

in a particular scaling limit [72] with perfect agreement with the S-matrix guessed by the

bootstrap method based on the symmetries of the problem.

The next step in the study of the SO(4) sigma model in section 3.6 was to impose the

Yang-Baxter triangle relation on the S-matrix in order to constrain it even further. Notice

that here everything is fixed before the analogue step! The only thing we can do is to

check whether the SU(2|2) extended S-matrix obeys or not the YB equation. There are

two possible scenarios:
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1. If it does not, it would mean that there are no SU(2|2) extended integrable models

because YB is a necessary (although not sufficient) condition.

2. If we are lucky enough and the S-matrix does obey YB, then this means we have

a chance that the model is integrable. Notice that we have not proven in any way

that the many body scattering factorizes in a product of two body S-matrices and

thus we have not ensured the model to be integrable but rather we have checked an

important necessary condition for this to be the case. (See [73] for an explicit check

of factorizability of the S-matrix at strong coupling.)

Of course it is the second scenario which turns out to be realized [51, 52, 68].

The following step in the study of the SO(4) sigma model was to fix the overall dressing

factor multiplying the S-matrix. This is quite a subtle point from the N = 4 point of view.

For example the existence of crossing symmetry for a spin chain model seems hard to

justify. On the other hand we have AdS/CFT . From this duality large spin chains with

L sites are dual to string states with angular momentum L. Such states are described in

the light cone gauge by a two dimensional field theory living in a large circle of length

proportional to L. This two dimensional theory is not relativistic and therefore crossing

symmetry, if it exists, will not be as simple as (3.141). The analogue of this relation was

found by Janik in [74]. The idea was to translate crossing relations like (3.141) into solid

Hopf-algebraic relations using the anti-pode. Then, when studying the light-cone gauged

string theory we realize that, although there is no obvious relativistic symmetry as for

SO(4) sigma model, the mathematical Hopf structure is still there and thus we can write

the analogous of the crossing relation for this theory.

To solve it is not at all a trivial business since, as for the SO(4) sigma model, there are

infinitely many solutions [75] and one of them must be singled out. A proposal for such

solution was made in [24]1.

Furthermore, the Dilatation operator is part of the symmetry algebra and it turns out

that symmetry alone fixes the dispersion relation to

ǫ∞(p) =

√

1 + f(g) sin2 p

2
, (3.196)

and there is convincing evidence that

f(g) = 16g2 (3.197)

for all values of the t’Hooft coupling.

Knowing the S-matrix and the dispersion relation of the several magnons we simply

need to diagonalize (3.99) and read of the spectrum from (3.134). This was what we did to

1At this point we must again again refer to the disclaimer at the end of section 1.3.
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arrive at (3.155)-(3.157). The same procedure applied to the Beisert S-matrix yields the

Beisert-Staudacher equations [35] yielding the full asymptotic spectrum of AdS5/CFT4.

These Bethe equations are a deformation of the one-loop Bethe equations through the

introduction of the map

x+
1

x
=
u

g
, x± +

1

x±
=

1

g

(

u± i

2

)

.

The BS equations then read

1 =

K2
∏

j=1

u1,k − u2,j + i
2

u1,k − u2,j − i
2

K4
∏

j=1

1− 1/x1,kx
+
4,j

1− 1/x1,kx
−
4,j

,

1 =

K2
∏

j 6=k

u2,k − u2,j − i
u2,k − u2,j + i

K3
∏

j=1

u2,k − u3,j + i
2

u2,k − u3,j − i
2

K1
∏

j=1

u2,k − u1,j + i
2

u2,k − u1,j − i
2

,

1 =

K2
∏

j=1

u3,k − u2,j + i
2

u3,k − u2,j − i
2

K4
∏

j=1

x3,k − x+
4,j

x3,k − x−4,j
,

(

x+
4,k

x−4,k

)L

=

K4
∏

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i
σ2(x4,k, x4,j) (3.198)

×
K1
∏

j=1

1− 1/x−4,kx1,j

1− 1/x+
4,kx1,j

K3
∏

j=1

x−4,k − x3,j

x+
4,k − x3,j

K5
∏

j=1

x−4,k − x5,j

x+
4,k − x5,j

K7
∏

j=1

1− 1/x−4,kx7,j

1− 1/x+
4,kx7,j

,

1 =

K6
∏

j=1

u5,k − u6,j + i
2

u5,k − u6,j − i
2

K4
∏

j=1

x5,k − x+
4,j

x5,k − x−4,j
,

1 =

K6
∏

j 6=k

u6,k − u6,j − i
u6,k − u6,j + i

K5
∏

j=1

u6,k − u5,j + i
2

u6,k − u5,j − i
2

K7
∏

j=1

u6,k − u7,j + i
2

u6,k − u7,j − i
2

,

1 =

K6
∏

j=1

u7,k − u6,j + i
2

u7,k − u6,j − i
2

K4
∏

j=1

1− 1/x7,kx
+
4,j

1− 1/x7,kx
−
4,j

.

The spectrum of all conserved charges is then given by the momentum carrying roots u4

alone from

Qn =

K4
∑

j=1

qn(u4,j) , qn =
i

n− 1

(

1

(x+)n−1
− 1

(x−)n−1

)

(3.199)

and the spectrum of anomalous dimensions (or string states energies) follows from

E = 2gQ2 . (3.200)

The BES dressing kernel [24] can be written in a simple integral form as [76]

σBES(uj, uk) = eiθjk , θjk = χ(x+
j , x

+
k ) + χ(x−j , x

−
k )− χ(x+

j , x
−
k )− χ(x−j , x

+
k )− (k ↔ j)

(3.201)
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with

χ(x, y) = −i
∮

dz1
2π

∮

dz2
2π

1

(x− z1)(y − z2)
log Γ(1 + ig(z1 + 1/z1 − z2 − 1/z2)) (3.202)

integrated over the contours |z1| = |z2| = 1. This kernel interpolates between

σBES(u, v)
λ→0→ 1 , (3.203)

at weak coupling and

σBES(uj, uk)
λ→∞→ 1− 1/x+

k x
−
j

1− 1/x−k x
+
j

(

x−k x
−
j − 1

x−k x
+
j − 1

x+
k x

+
j − 1

x+
k x

−
j − 1

)i(uk−uj)

≡ σAFS(uj, uk) , (3.204)

for large values of the t’Hooft coupling. σAFS is the AFS dressing kernel proposed in [66]

in the study of the quantum string Bethe equations for the AdS5 × S5 string. The BES

kernel can be written in several ways. Above we used the integral representation of Dorey,

Hofman and Maldacena [76]. Another useful writing of the BES kernel in terms of the

charges introduced above (3.199) is

σ(uj, uk) = eiθjk , θjk =
∑

r=2,s=r+1

cr,s [qr(xj)qs(xk)− qr(xk)qs(xj)] (3.205)

where the coefficients cr,s are given in [75, 24]

cr,s = gδr+1,s +
1 + (−1)r+s

π

(r − 1)(s− 1)

(r + s− 2)(s− r) +O (1/g) . (3.206)

The leading order yields the AFS phase [66] and the next to leading order produces the

HL factor [77]. Notice furthermore that the product of the BES kernel in (3.198) can be

written as [66]

K4
∏

j=1

σBES(u4,k, u4,j) = exp

(

∑

r=2,s=r+1

i cr,s (qr(x4,k)Qs − qs(x4,k)Qr)
)

, (3.207)

Despite the fact that the S-matrix is known to all loops in the t’Hooft coupling we should

always keep in mind that these equations are asymptotic and do not capture wrapping

effects which start at order g2L.

In the next section we will study an important limit of Nested Bethe ansatz equations

and analyze some important dualities.
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3.8 Solutions of Nested Bethe ansatz equations

The goal of this section is to provide us with some intuition about what are the configu-

rations of Bethe roots emerging from systems of nested Bethe equations. We will see that

there is an interesting regime where the Bethe roots organize into single roots, stacks, cuts

and cuts of stacks. We shall consider two simple spin chain models which already capture

all the non-trivial features found in more complex equations such as the Beisert-Staudacher

Bethe ansatz.

3.8.1 SU(2)s spin chain. Scaling limit and condensates.

In this section we will consider the solutions to an SU(2) spin s whose Bethe equations

are given in (3.169). The s = ±1/2 cases appear in the study of N = 4 SYM at one loop.

The choice s = 1/2 appears in the study of the SU(2) sector in the computation of the

anomalous dimensions of operators of the form (3.190) while for s = −1/2 we obtain an

SL(2) non-compact spin chain relevant for the diagonalization of operators made out of a

complex scalar Z and covariant derivatives D in some chosen light-cone direction.

To study the solutions to (3.169) we take the log of these equations. Obviously

eix = eiy ⇒ x = y + 2πn (3.208)

so that for each j = 1, . . . ,M we have a possible choice of the branch log parameterized

by an integer nj . We can thus write the Bethe equations as

F (uj)− 2πnj +
∑

k 6=j
f(uj − uk) = 0 (3.209)

where

F (u) =
L

i
log

u− is
u+ is

, f(u) =
1

i
log

u+ i

u− i . (3.210)

In the definitions of f and F we chose the branch of the log in such a way that these

functions decay for large real arguments. For example, f(u) is plotted in fig. 3.11a as a

solid line. The dashed line in this figure corresponds to the curve 2/u which can be clearly

seen to approximate f(u) for large |u|.
We can now use our physical intuition to understand where the Bethe roots will organize

themselves in the complex plane. To do so we think of (3.209) as the static equilibrium

condition for the positions uj of M particles. In this language F (uj) is an external force

felt by each particle located at uj and −2πnj is a constant force exerted on particle j.

Finally f(ui − uk) is an interaction force by particle k on particle j.

We first consider all mode numbers nj to be the same, nj = n > 0, and take s to be

negative. We also ignore the self-interactions f(uj−uk) in a first approach to the problem.
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Figure 3.11: a) Left: Plot of f(u) = 1
i log u+i

u−i for real values of u. If we think of f(u) as a

force then it is repulsive and falls of at log distances as 2/u typical of 2d coulomb interactions.

b) Right: Vector plot of (ℜ(f(u)),ℑ(f(u))) in the complex plane. We see that f(u) repels in the

horizontal direction and attracts in the vertical direction. Thus blobs of particles are squeezed

vertically and stretched horizontally leading to real cuts as described in the text. See figure 3.14

for an example of such cut distribution. If the force is instead −f(u) then it will create cuts

oriented vertically because all arrows in this figure are reversed. See figure 3.13 for some typical

configurations.

For negative s the plot of the external force F (u) will look exactly like a rescaled version

of the plot of f(u) since F (u) = Lf(u/|s|) in this case. Thus, if we sprinkle some particles

in a region of positive u, say at u ∼ 1, the external force F (uj) will tend to push these

particles and send them to u = +∞. However each particle feels an additional force −2πn

pushing it towards the origin and therefore an equilibrium is reached. In figure 3.12 we

plot the effective potential for n = 1 and L = 10. If there was no self interaction the

particles would simply move towards the solid point in figure 3.12. Notice that they would

stay in the real axis because the external force has negative/positive imaginary part in the

upper/lower half-planes as seen in the vector plot in figure 3.11. This force compresses in

the vertical direction while stretching in the horizontal one.

Now we turn on the self-interactions f(uj − uk). The particles will start to repel each

others with a force depicted in figure 3.11. This will spread the particles close to the equi-

librium point marked in figure 3.12. By the same line of reasoning as before, the interaction

between the several particles will distribute them along the real axis and constrain them

to have zero imaginary part. In figure 3.14a an example of such configuration is plotted.

After this analysis it is clear what happens in the generic situation with several mode

numbers. Let us group the M mode numbers {nj} into K large groups of identical integers

nA with A = 1, . . . , K. Then, particles belonging to the same group with the same integer
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Figure 3.12: The external coulomb force pushing the particles to infinity is balanced by the

constant force −2πn coming from the mode numbers. In the figure we plot the effective potential

and the corresponding equilibrium point as a solid dot for L = 10 and n = 1.

nA will feel the same external potential and therefore lie close the the same equilibrium

point. The self-interaction between them will simply stretch the Bethe roots in the real

direction close to this point. Thus, we will have K groups of Bethe roots distributed along

disjoint straight line segments in the real axis. As described below, when K is large, the

particles condense into K real cuts.

Let us now turn to the SU(2) case where s = 1/2 is positive. In this case we write the

equilibrium condition as

L

i
log

uj + i/2

uj − i/2
− 2πnj +

∑

k 6=j

−1

i
log

uj − uk − i
uj − uk + i

= 0 (3.211)

from which we see that the external force is the same as before. Therefore, in a first ap-

proximation, before considering the particle self-interactions everything is as above. Roots

with the same mode number will position themselves at a minimum like the solid dot in

figure 3.12.

However, when we bring the self-interaction between the roots uj and uk onto stage,

the situation is quite different compared to what we had in the SL(2) chain. Now, due to

the minus sign in the last term in (3.211), this force is obtained from the vector plot in

figure 3.11b by flipping the direction of all arrows. It is now attractive in the real direction

and repulsive in the imaginary one. Thus a blob of roots close to the solid point in figure

3.12 will be squeezed horizontally and stretched vertically – we will therefore obtain a cut

crossing the real axis perpendicular to it.

This cut will then bend and form an umbrella like shape as depicted in figure 3.13a

[78]. This is again clear from the static equilibrium picture: the roots close to the real axis
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Figure 3.13: In the SU(2) electrostatic pictures the particle attract in the horizontal direction and

repel in the vertical direction. They also feel an external force with opposite behavior. Therefore

the cuts will orient themselves vertically. When there is a single cut we find the umbrella shaped

cuts as depicted in the left. This is because the roots close to the real axis feel the horizontal

repulsive external force more strongly than the roots in the tails. For two cuts we obtain the

picture in the right. The roots attract one another horizontally and therefore the middle of both

cuts want to approach each other leading to the observed deformation of the cut to the right.

are closer to the origin and therefore feel a larger repulsive external force. Thus they will

be pushed to the right more that the endpoints of the cut.

For the generic situation where the Bethe roots are grouped into K sets of roots sharing

the same mode numbers, we obtain K umbrella cuts in the complex plane as represented

in figure 3.13b for K = 2.

A natural question one might pose is how bent are these umbrellas? It depends dramat-

ically on where we are trying to put these cuts. Recall that the position u (interception

with the real axis) of the cut is given in a first approximation by

L

i
log

u+ i/2

u− i/2 = 2πn, (3.212)

i.e. it is dictated by the choice of the mode number n. If L is large there are two natural
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choices for n:

n ∼ L , Choice A ,

n ∼ 1 , Choice B .

Choice A is the most common in the condensed matter literature. When n ∼ L the

equilibrium position marked by the solid dot in fig. 3.12 is given by u∗ ∼ 1 and the

umbrellas are almost absolutely straight vertical lines with Bethe roots separated by i. To

see this consider a configuration with two Bethe roots in the general spin s SU(2) system,

(

u1 + is

u1 − is

)L

=
u1 − u2 + i

u1 − u2 − i
,

(

u2 + is

u2 − is

)L

=
u2 − u1 + i

u2 − u1 − i
(3.213)

Let us write u1,2 = u± vi where u, v > 0. Then it is clear that

∣

∣

∣

∣

∣

(

u1 + is

u1 − is

)L
∣

∣

∣

∣

∣

≫ 1 , for s > 0 (3.214)

≪ 1 , for s < 0

where by ≫ 1 (≪ 1) we mean exponentially divergent (suppressed) in the parameter L.

This means that the roots u1 and u2 must be such that the r.h.s of the first equation in

(3.213) is also exponentially large (small) if s > 0 (s < 0). Thus we must have

|u1 − u2 − i| ≪ 1 , for s > 0 , (3.215)

or

|u1 − u2 + i| ≪ 1 , for s < 0 . (3.216)

Equation (3.215) means that the two Bethe roots in the SU(2) chain are very rigidly bound

and their separation is precisely u1−u2 = i with exponential precision. The same analysis

could be carried for more than two roots and the conclusion would be that we can have

bound states of M particles separated by i up to exponentially suppressed corrections:

uj = u+ ij , j = −M
2
, . . . ,

M

2
. (3.217)

Thus we see that the SU(2) umbrellas in case A are not bent at all.

On the other hand, equation (3.216) is impossible to satisfy because our starting hy-

pothesis was that u1 − u2 = 2vi with v > 0. This is precisely as predicted since for

non-compact spin chains we expect the solutions to be real as explained above.

Next we consider case B. The mere existence of another scenario might seem odd at

first since the argument leading to the conclusion that the roots must be separated by i
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seems spotless. It is not so. The key difference between case A and B is that in the former

the equilibrium position following from (3.212) is u ∼ 1 whereas in the latter we have

u ∼ L. In case B equation (3.214) does not follow and we have instead

(

u1 + is

u1 − is

)L

≃ exp

(

i
2sL

u

)

= O(1) . (3.218)

Therefore the r.h.s of the first equation in (3.213) no longer needs to explode and we can

have complex roots which are not rigidly separated by i.

These configurations are characterized by the fact that the Bethe roots scale with the

size of the chain,

uj ∼ L . (3.219)

Moreover, for the particles to condense into cuts, we also need large number Bethe roots. If

Ma, with a = 1, . . . , K, is the number of roots on each cut, the scaling limit is characterized

by (3.219) together with

Ka/L fixed . (3.220)

This scaling limit was first introduced by Sutherland [79] and rediscovered in the context

of the AdS/CFT correspondence in [78]. In this regime the momenta of the magnons is

very small
1

i
log

uj + is

uj − is
≃ 2s

uj
= O(1/L) (3.221)

and so is the total energy of the state

E ≃
M
∑

j=1

1

u2
j + 1/4

∼
∑

M
∑

j=1

1

u2
j

= O(1/L) (3.222)

which means that we are studying some semi-classical limit of low-lying long wave length

fluctuations around the ferromagnetic vacuum with E = 0. Indeed, in this limit, the theory

is well described by a Landau-Lifshistz model with coupling 1/L [80, 81, 82].

In the rest of this section we will consider a simple configuration of Bethe roots corre-

sponding to a single SL(2) cut in the scaling limit. We will solve this problem by several

different means, each of which will teach us something different, useful for the discussions

that will follow. In the scaling limit the Bethe equations (3.209) become

1

zj
+

2

L

∑

k 6=j

1

zj − zk
= 2πnj (3.223)

where zj = uj/L and we consider nj = n for all j so that

1

zj
+

2

L

∑

k 6=j

1

zj − zk
= 2πn (3.224)
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and we will therefore obtain a single real cut as described above. Finally, the energy of the

corresponding state is read from

E =
2g2

L2

M
∑

j=1

1

z2
j

(3.225)

Laguerre Polynomials

A very elegant way to find the exact position of the Bethe roots {zj} solution of (3.224)

uses the baxter polynomial

Q(z) =
M
∏

j=1

(z − zj) .

By virtue of (3.223), this function obeys

1

L

Q′′(zj)

Q′(zj)
=

1

L

M
∑

k 6=j

2

zj − zk
= 2πn− 1

zj
(3.226)

which means that

R(z) = z Q′′(z)− LQ′(z) (2πnz − 1) (3.227)

is zero at z = zj for j = 1, . . . ,M . Since it is clearly an M-th order polynomial it must

be equal to Q(z) up to a multiplicative constant which can be easily fixed from the large

z asymptotics,

R(z) = −2πnLMQ(z) . (3.228)

and therefore, combining these two equations we obtain

zQ′′(z)− LQ′(z) (2πnz − 1) + 2πnLMQ(z) = 0 (3.229)

which is nothing but the defining differential equation for the generalized Laguerre poly-

nomials. Thus we obtain Q(z) = LL−1
M (2πnLz) so that the exact positions of the Bethe

roots following from (3.224) are the zeros of the Laguerre polynomials,

LL−1
M (2πnLzj) = 0 . (3.230)

Quadratic equation I

In this and the next subsections we will approach the solution of the electrostatic problem

(3.224) using the resolvent

G(z) ≡ 1

L

M
∑

j=1

1

z − zj
(3.231)
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Figure 3.14: a) Left: Condensation of an SL(2) cut into a dense cut. The solid line is

the analytical prediction for the density of Bethe roots in the continuous limit whereas

the dots are the numerical values. b) Right: The exact positions of the Bethe roots

obeying 1
zj

+ 2
L

∑

k 6=j
1

zj−zk
= 2πn are the zeros of the generalized Laguerre polynomials,

LL−1
M (2πnLzj) = 0.

instead of the Baxter polynomial Q(z), the reason being that this quantity turns out to

have a nicer large M,L limit. Notice that the Bethe roots which were encoded in the zeros

of Q(z) are now located at the poles of G(z). It is trivial to obtain a differential equation

for G(z). For example we can use the fact that

G(z) =
1

L

Q′(z)

Q(z)
(3.232)

together with the differential equation (3.229) for Q(z) to obtain

G(z)2 −
(

2πn− 1

z

)

G(z) +
2πnM

Lz
= − 1

L
G′(z) (3.233)

In the large L limit we can simply drop the r.h.s. and solve the quadractic equation to get

G(z) =
1

2

(

2πn− 1

z
− 1

z

√

(2πnz − 1)2 − 8πnM

L
z

)

(3.234)

Notice that in the continuous limit the poles in (3.231) condensed into the square root in

this expression. Indeed, we can easily obtain the density of Bethe roots. Since

1

x± i0 = P
1

x
∓ iπδ(x) (3.235)

we have

ρ(z) = −G(z + i0)−G(z − i0)

2πi
(3.236)

where

ρ(z) ≡ 1

L

M
∑

j=1

δ(z − zj) . (3.237)
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The resolvent (3.234) is discontinuous between the two branch-points of the square root

and the discontinuity is

ρ(z) =
1

2πz

√

− (2πnz − 1)2 +
8πnM

L
z . (3.238)

This density is plotted in figure (3.14) and seen to fit perfectly the corresponding numerics.

Notice also that the energy (3.222) is simply given by

E = −2g2

L
G′(0) (3.239)

so that using (3.234),

E =
8g2n2π2M(M + L)

L2
. (3.240)

Before moving to the next subsection let us mention a lateral comment concerning the

square root in (3.234). It is always a delicate business to properly choose the square root

branches. We have a cut uniting the two branch points as in figure 3.14a. At z = +∞ we

have
1

z

√

(2πnz − 1)2 − 8πnM

L
z = 2πn− 1

z

(

M

L
+ 1

)

+O(1/z2) (3.241)

so that

G(z) =
1

z

M

L
+O(1/z2) (3.242)

which is precisely what we should get from the definition (3.231). On the other hand, in

order to reach z = 0, we cross the cut in figure 3.14a and thus

1

z

√

(2πnz − 1)2 − 4G(0)z = −1

z
+ (2πn− 2G(0)) +O(z) (3.243)

so that 1/z singularitiy does cancel in (3.234). Notice also that if we continue moving to

the left until z = −∞ we find

1

z

√

(2πnz − 1)2 − 4G(0)z = 2πn− 1

z

(

M

L
+ 1

)

+O(1/z2) (3.244)

precisely like as (3.241) which is what we expect since there should be no singularity at

z =∞ and therefore G(z) should be analytic for large z.

Quadratic equation II

In this section we will consider a slightly different derivation of the quadractic equation

(3.233) which does not rely on the differential equation (3.229) for Q(z). The idea is to

compute

G(z)2 =
1

L2

M
∑

j,k

1

(z − zj)(z − zk)
. (3.245)
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Using the identity

1

(z − y)(z − x) +
1

(x− y)(z − y) +
1

(y − x)(z − x) = 0 (3.246)

and decomposing the sum in (3.245) into the diagonal j = k part and the rest we obtain

G(z)2 =
1

L2

M
∑

j=1

1

(z − zj)2
+

1

L

M
∑

j=1

1

z − zj
1

L

M
∑

k 6=j

2

zj − zk
(3.247)

The first term is precisely − 1
L
G′(z) and in the second term we can replace the last sum by

2πn− 1
zj

using Bethe equations (3.224)

G(z)2 = − 1

L
G′(z) +

1

L

M
∑

j=1

1

z − zj

(

2πn− 1

zj

)

(3.248)

and using again (3.246) to massage the last term we find

G(z)2 −
(

2πn− 1

z

)

G(z) +
G(0)

z
= − 1

L
G′(z) (3.249)

where G(0) must be found by self-consistency. For example, plugging the large z asymp-

totics (3.242) into this expression and collecting the 1/z leading powers in this expression

we obtain

G(0) = 2πnM/L , (3.250)

and therefore (3.233) follows.

Hilbert problem

The Bethe equations (3.224) in the scaling limit can be written as

2

∫

C

P
ρ(y)

z − y = V (z) ≡ 2πn− 1

z
, z ∈ C (3.251)

with C begin the cut from z = (a, b) where the Bethe roots condensed. Notice that the fact

that in (3.224) we should not sum over k = j translates into the principal part prescription

in the scaling limit. Notice moreover that, in terms of the resolvent,

G(z) =

∫

C

ρ(y)

z − y (3.252)

the above equation is simply

2 /G(z) = V (z) , z ∈ C (3.253)
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where the slash stands for average above and below the cut. This is obviously a consequence

of (3.235).

Before moving on let us point out that (3.234) clearly satisfies this equation because

when we average G(z) on the cut the square root cancels and we are left with 2πn − 1
z

which is precisely V (z).

Equations of the form (3.251) are easily solved for a general V (z) in the r.h.s. The

solution is given by

G(z) =

b
∫

a

dy

2π

√

(z − a)(z − b)
(a− y)(y − b)

V (y)

z − y (3.254)

First let us check that this indeed solves (3.253). We compute G(z+ i0) +G(z− i0) so we

use (3.235) applied to the 1/(z − y) factor in (3.254). Notice that since there is a square

root multiplying this factor, for G(z− i0) we obtain an extra minus sign and therefore it is

the delta function part in (3.235) that survives and not the principal part! More precisely,

G(z + i0) +G(z + i0) =

b
∫

a

dy

2π

√

(z − a)(z − b)
(a− y)(y − b)V (y)(−2πi)δ(z − y) = V (z)

and thus (3.254) is indeed the solution we seek.

Finally to find a and b we impose the asymptotics (3.242) on our solution to get

0 =

b
∫

a

dy

2π

V (y)
√

(a− y)(y − b)
,
M

L
=

b
∫

a

dy

4π

(2y − a− b)V (y)
√

(a− y)(y − b)
(3.255)

Since our potential is an extremely simple analytic function all integrals in this section are

trivially computed by first transforming the integral from a to b into a contour integral

around the cut and then deforming this contour and computing the integral by residues.

For example the last integral becomes

M

L
=

1

2

∮

C0∪C∞

dy

4π

(2y − a− b)V (y)
√

(a− y)(y − b)
(3.256)

where C0 and C∞ are clockwise loops around z = 0 and z =∞. Thus we find

4M

L
=
a + b√
ab
− 2 , (3.257)

while the first integral in (3.255) gives

0 = 2πn− 1√
ab
. (3.258)
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These relations yield

a, b =
1

2πn

(

1 +
2M

L
∓ 2

√

M

L

(

1 +
M

L

)

)

(3.259)

which are indeed precisely the branch points for the resolvent (3.234). Finally the integral

(3.254) can be computed in the same way (there is simply an extra pole at y = z) yielding

G(z) =
1

2

(

2πn− 1

z
− 1

z

√

(z − a)(z − b)
ab

)

(3.260)

which for the branchpoints given by (3.259) is precisely (3.234) found in the previous

subsection.

Finite Gap

In this subsection we consider a last approach to the problem (3.224), based on the finite

gap method which was applied to the SU(2) spin chain in the KMMZ paper [83]. The idea

is to define a quasi-momenta

p(z) = G(z) +
1

2z
(3.261)

and realize that in the scaling limit eip(z) and e−ip(z) form a Riemann surface described by

an hyper-elliptic algebraic curve. This is true not only for the single cut problem we are

now interested in but also for a general K cut solution so let us consider for a moment this

more general scenario. For each cut CA we have an integer mode number nA and

2 /G(z) = 2πnA − 1

z
, z ∈ CA (3.262)

or

p(z + i0) + p(z − i0) = 2πnA , z ∈ CA . (3.263)

This condition implies

eip(z−i0) = e−p(z+i0) , z ∈ CA , (3.264)

which means that when we cross a cut e±ip(z) becomes e∓ip(z) so that eip(z) and e−ip(z)

are indeed the two branches of a single analytic function taking values in a two-sheeted

Riemann surface.

Notice also that another way to get rid of the mode numbers in (3.263) is to consider

the derivative of the quasimomenta,

p′(z − i0)− (−p′(z + i0)) = 0 , z ∈ CA . (3.265)

and thus ±p′(z) also define a two sheeted Riemann surface.
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Before continuing the general discussion let us notice that (3.234) gives

p(z) =
1

2

(

2πn− 1

z

√

(2πnz + 1)2 +
8πnM

L
z

)

(3.266)

so that when computing p′(z) we kill the constant term outside the square root and there-

fore obtain an expression which simply changes sign when we cross the cut, exactly as

required.

In the general K cut scenario, p′(z) is a meromorphic function in the Riemann surface

with a double pole at z = 0 (by definition) which behaves as 1/
√
z − xk close to each of

the 2K branch points (because p(z) ∼ √z − xk). This means

p′(z) =
g(z)

z2
√

f(z)
(3.267)

where f(z) =
∏2K

j=1(z − xk) and g(z) =
∑N

j=0 cjz
N . Since at infinity, again by definition,

we have p′(z) ≃ 1/2−L/M
z2

,

N = K .

In section 4.5.1 we will consider a very similar problem when studying the KMMZ

string finite gap treatment [83]. Here let us go back to the problem we are interested in

which corresponds to K = 1,

p′(z) =
c0 + c1z

z2
√

(z − a)(z − b)
. (3.268)

This expression can be easily integrated and the several analytical properties following

from the definition of the quasi-momenta fix the values of the four unknown constants [83].

Actually, for such elementary one-cut solutions it is simpler to guess the solution (3.254)

without any computation, merely from the knowledge of the analytical properties of the

quasi-momentum p(z). Later in this thesis we will study the superstring algebraic curve

and its semi-classical quantization. By then, such reasonings which rely heavily on the

analytical properties of the quantities we aim at computing will be explained in detail.

3.8.2 SU(2, 1) spin chain. Bosonic duality and cuts of stacks.

In the previous section we analyzed the solutions to the Bethe equations (3.169) and saw

that the Bethe roots can organize themselves into cuts and condensates. This qualitative

picture remains valid for most simple Bethe ansatz equations of the form

eipjL
M
∏

k 6=j
S(pj, pk) = 1 . (3.269)
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However, as explained before, in general we need to deal with several entangled equations

following from the diagonalization of (3.167) or (3.183). In particular the BS equations

(3.198) are a set of seven equations whose complexity clearly exceeds (3.269).

To understand the scaling limit for Nested Bethe equations we consider a SU(1, 2)

spin chain in the fundamental representation described by the following system of NBA

equations2

eiφ1−iφ2 = −Q1 (u1,j + i)

Q1 (u1,j − i)
Q2 (u1,j − i/2)

Q2 (u1,j + i/2)
, j = 1 . . .K1 (3.270)

eiφ2−iφ3

(

u2,j − i
2

u2,j + i
2

)L

= −Q2 (u2,j + i)

Q2 (u2,j − i)
Q1 (u2,j − i/2)

Q1 (u2,j + i/2)
, j = 1 . . .K2 (3.271)

Here we are considering twisted (quasi-periodic) boundary conditions. From an algebraic

Bethe ansatz point of view this corresponds to the diagonalization of a transfer matrix

with the insertion, inside the trace, of an additional diagonal matrix [84] parameterized by

g = diag
(

eiφ1 , eiφ2, eiφ3
)

∈ SU(1, 2) . (3.272)

The eigenvalues of the local conserved charges depend on u2,j only,

Qr =
Ka
∑

j=1

i

r − 1

(

1

(u2,j + i/2)r−1
− 1

(u2,j − i/2)r−1

)

. (3.273)

We denote the u2 roots by middle node roots and the u1 roots by auxiliary roots.

First, consider only middle node excitations, K1 = 0 6= K2 in the scaling limit where

u ∼ K2 ∼ L≫ 1. We use xa,j = ua,j/L to denote the rescaled Bethe roots. In the absence

of x1,j roots, the Bethe equations for the roots x2,j are precisely the same we discussed in

the previous section for the SL(2) spin chain apart from the presence of the extra twists.

The Bethe roots organize themselves into K cuts which we denote CA23 with A = 1, . . . , K

and on each of these cuts we have

2πnA23 = p/2 − p/3 , x ∈ CA23 . (3.274)

where we introduced the quasi-momenta

p1 = − 1

2x
+G1 − φ1 ,

p2 = − 1

2x
−G1 +G2 − φ2 , (3.275)

p3 = − 3

2x
−G2 − φ3 ,

2These equations are exactly the same as for the su(3) spin chain except for the sign of the Dynkin

labels which makes the system simpler because the Bethe roots are in general real.
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Figure 3.15: The middle node Bethe roots u2 can condense into a line as depicted in figure

3.15a (The spins in this spin chain transform in a non-compact representation and thus the cuts

are tipically real. For the su(2) Heisenberg magnet the solutions are distributed in the complex

plane as some umbrella shaped curves [78] as described in the previous section.). Roots of different

types can form bound states, called stacks [49], as shown in figure 3.15b. The stacks behave as

fundamental excitations and can also form cuts of stacks as represented in figure 3.15c.

and the resolvents are defined as before,

Ga(x)

∫

ρa(y)

x− y , ρa(y) =
1

L

Ka
∑

j=1

δ(x− xa,j) . (3.276)

Of course, since we are considering no roots x1,j we have G1 = 0 but for latter use we

already introduced the appropriate general definition (3.275).

Next let us consider a state with only two roots u2,1 ≡ u and u1,1 ≡ v with different

flavors, that is K1 = K2 = 1. Bethe equations then yield

u =
1

2
cot

φ1 − φ3 + 2πn

2L
, v = u+

1

2
cot

φ1 − φ2

2
(3.277)

which tell us that if n ∼ 1 we are in the scaling limit where v ∼ u ∼ L and v = u +O(1)

– the two Bethe roots form a bound state, called stack [49], and can be thought of as

a fundamental excitation – see figure 3.15b. On the other hand we notice that, strictly

speaking, for the usual untwisted Bethe ansatz with φa = 0 the stack no longer exists.

Since the stack in figure 3.15b seems to behave as a fundamental excitation one might

wonder whether there exists a cut with K1 = K2 roots of type u1 and u2, like in figure

3.15c, dual to the configuration plotted in figure 3.15a. To answer affirmatively to this

question let us introduce a novel kind of duality in the Bethe ansatz techniques which we

shall call bosonic duality.

Indeed, as we explain in detail in Appendix A, given a configuration of K1 roots of type

u1 and K2 roots of type u2, we can write

2i sin (τ/2)Q2(u) = eiτ/2Q1(u− i/2)Q̃1(u+ i/2)− e−τ/2Q1(u+ i/2)Q̃1(u− i/2) , (3.278)
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Figure 3.16: In the scaling limit, to the leading order, the bosonic duality reads Q2 ≃ Q1Q̃1

with Qa =
∏Ka

k=1(u − ua). Thus, suppose we start with the configuration in figure 3.16a. Here

the K1 roots u1 form a cut of stacks together with K1 out of the K2 middle node roots u2. If we

apply the bosonic duality to this configuration, the K2 −K1 new roots ũ1 must be close to the

roots u2 which were previously single while the cut of stacks in figure 3.16a will become, after

the duality, a cut of simple roots as depicted in figure 3.16b.

where

Q̃1(u) =

K̃1
∏

j=1

(u− ũ1,j) , K̃1 = K2 −K1 ,

and τ = φ1 − φ2. Moreover this decomposition is unique and thus defines unambiguously

the position of the new set of roots ũ1. Then, as we explain in Appendix A, the new set of

roots {ũ1, u2} is a solution of the same set of Bethe equations (3.168) with

φ1 ↔ φ2 .

Let us then apply this duality to a configuration like the one in figure 3.15a where the

roots u2 ∼ L are in the scaling limit and where there are no roots of type u1, K1 = 0. To

the leading order, we see that the ũ1 in (3.278) will scale like L so that the ±i/2 inside the

Baxter polynomials can be dropped and we find Q2 ≃ Q̃1, that is

ũ1,j = u2,j +O(1)

and therefore we will indeed obtain a configuration like the one depicted in figure 3.15c.

Moreover the local charges (3.273) of this dual cut are exactly the same as those of the

original cut 3.15a since they are carried by the middle node roots u2 which are untouched

during the duality transformation.

Finally, if we apply the duality transformation to some configuration in the scaling

limit as represented in figure 3.16a, we find, by the same reasoning as above, Q2(u) ≃
Q1(u)Q̃1(u). Thus the dual roots ũ1 will be close to the roots u2 which were not yet part

of a stack (the ones making the cut in the right in figure 3.16a). Hence, after the duality,

we will obtain a configuration like the one in figure 3.16b.
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Figure 3.17: In the scaling limit the configurations in figure 3.16 condense into some disjoint

segments, cuts, and we obtain a Riemann surface whose sheets are the quasi-momenta. In this

continuous limit the duality corresponds to the exchange of the Riemann sheets.

We conclude that, in the scaling limit with a large number of roots, the distributions of

Bethe roots condense into cuts in such a way that the quasi-momenta pi introduced above

become the three sheets of a Riemann surface, see figure 4a, obeying

2πnAij = pi(x+ i0)− pj(x− i0) , x ∈ CAij . (3.279)

when x belongs to a cut joining sheets i and j with mode number nAij . The duality transfor-

mation amount to a reshuffling of sheets 1 and 2 of this Riemann surface3 so that a surface

like the one plotted in figure 3.17a transforms into the one indicated in figure 3.17b.

3.9 BS equations in the scaling limit

In this section we will consider the scaling limit of the full Beisert-Staudacher equations.

Stacks will be again the fundamental excitations and therefore we will also have cuts

made out of stacks as in the previous section. Each stack corresponds to a different YM

field or, in the dual theory language, to a string polarization. We represent the sixteen

(physical) momentum carrying excitations in figure 3.18. In figure 3.19 we depict a possible

configuration where the Bethe roots condensed into two square root cuts.

To make this pictures solid we should construct eight quasi-momenta such that the

seven BS Bethe equations follow simply from

pi(x+ i0)− pj(x− i0) = 2πnAij , x ∈ CAij (3.280)

As described in the previous sections, if we find such quasi-momenta then {p′i} or {eipi}
will define an eight-sheeted algebraic curve.

At weak coupling the definition of such quasi-momenta is absolutely obvious as it

mimics the one in the previous section without any conceptual modification. We will

3This interpretation needs not be restricted to the scaling limit and can be made exact [15].
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Figure 3.18: The several physical fluctuations in the string Bethe ansatz. The 16 elementary

physical excitations are the stacks (they strictly speaking not bound states but, as discussed

in the previous section, they behave like so in most aspects) containing the middle node root.

From the left to the right we have four S5 fluctuations (scalars in N = 4), four AdS5 modes

(covariant derivatives in N = 4) and eight fermionic excitations (fermions in N = 4). The

bosonic (fermionic) stacks contain an even (odd) number of fermionic roots represented by a

cross in the psu(2, 2|4) Dynkin diagram in the left.

instead consider the appropriate strong coupling scaling limit

√
λ ∼ u ∼ Ka ∼ L≫ 1 .

which, as we will see latter, corresponds to the semi-classical string regime. In this limit

we have

x± = x± i

2
α(x) +O

(

1

λ

)

where

α(x) ≡ 4π√
λ

x2

x2 − 1
.

Thus, if we define the resolvents Ga and Ha for each type of roots

Ga(x) =
Ka
∑

j=1

α(ya,j)

x− ya,j
, Ha(x) =

Ka
∑

j=1

α(x)

x− ya,j
, (3.281)

and denote H̄a(x) = Ha(1/x) and J = L/
√
λ, we have the eight quasi-momenta we were
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Figure 3.19: Cuts of stacks in the BS equations.

looking for as:

p̂1 =+
2πJ x−G′

4(0)x

x2 − 1
−H1+H2+H̄2−H̄3 p̃1 =+

2πJ x+G4(0)

x2 − 1
−H1−H̄3+H̄4

1
2
1
2

p̂2 =+
2πJ x−G′

4(0)x

x2 − 1
−H2+H3+H̄1−H̄2 p̃2 =+

2πJ x+G4(0)

x2 − 1
+H3−H4+H̄1

1
2
1
2

p̂3 =−2πJ x−G′
4(0)x

x2 − 1
−H5+H6+H̄6−H̄7 p̃3 =−2πJ x+G4(0)

x2 − 1
−H5+H4−H̄7

1
2
1
2

p̂4 =−2πJ x−G′
4(0)x

x2 − 1
−H6+H7+H̄5−H̄6 p̃4 =−2πJ x+G4(0)

x2 − 1
+H7+H̄5−H̄4

(3.282)

The charges (3.199) in the scaling limit are then obtained from

G4(x) = −
∞
∑

n=0

Qn+1x
n .

We can also write
2π√
λ
δD = Q2 .

For example let us consider p̃1(x+ i0)− p̂1(x− i0) on a cut of roots u1. We have

p̃1(x+ i0)− p̂1(x− i0) =
G4(0) +G′

4(0)x

x2 − 1
−H2 − H̄2 + H̄4 , (3.283)
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which is precisely the expansion of the first equation in (3.198). Indeed

1

i

K2
∑

k=1

log
u1,j − u2,k + i/2

u1,j − u2,k − i/2
≃

K2
∑

k=1

1

u1,j − u2,k
= H2(x1,j) + H̄2(x1,j) (3.284)

where in the last line we used the identity

1

u− v =
α(x(u))

x(u)− x(v) +
α(1/x(u))

1/x(u)− x(v) . (3.285)

This explains the combination H2 + H̄2 in (3.283). Then we have

1

i

K4
∑

k=1

log
1− 1/x1,jx

+
4,k

1− 1/x1,jx
−
4,k

≃
K4
∑

k=1

α(x4,k)

x4,k(x1,jx4,k − 1)
= −G4(0) +G′

4(0)x1,j

x2
1,j − 1

− H̄4(x1,j) (3.286)

which matches the remaining terms in (3.283). In the same way we could check that

the remaining six equations follow from the pairs of quasimomenta (p̂1, p̂2), (p̂2, p̃1), . . . as

represented in figures 3.18, 3.19. In particular to obtain the expansion of the middle node

equation in (3.198) the strong coupling AFS asymptotics (3.204) is used.

These quasi-momenta, built from the BS equations, have some very precise analytical

properties which can be read from their definitions. For example, the large x asymptotics

of each quasi-momenta are easily obtained, e.g.

p̂1 ≃
2πJ +Q2 −K1 +K2

x
+O(1/x2) . (3.287)

There are other properties which are less trivial to realize. For example, from the definition

of the quasi-momenta we see that these functions are swapped among themselves when

x→ 1/x. We have

p̂2(1/x) = −p̂1(x) , (3.288)

with similar expressions relating p̂4(1/x) with p̂3(x), p̃1(1/x) with p̃2(x) and p̃4(1/x) with

p̃3(x).

It is also obvious that the quasi-momenta have simple poles at x = ±1 because each

individual term in (3.282) has such poles. What is much less trivial but can be again

checked in a straightforward way is that the residues of the several quasi-momenta are

synchronized as

{p̂1, p̂2, p̂3, p̂4|p̃1, p̃2, p̃3, p̃4} ≃
{α±, α±, β±, β±|α±, α±, β±, β±}

x± 1
. (3.289)

We will find all these analytical properties from a completely different starting point,

namely they will appear in the finite gap discussion of the superstring classical motion.
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The fact that they follow from the strong coupling limit of the N = 4 SYM Bethe equations

is a spectacular indication of the validity of the AdS/CFT conjecture4.

To end this section let us mention a particular solution of the BS equations in the scaling

limit. We consider only roots u4 to be excited. Thus we set to zero all resolvents except

H4 and H̄4 so that, from (3.282), we automatically find that the AdS quasi-momenta p̂i
are given by











p̂1

p̂2

p̂3

p̂4











=
2πκx

x2 − 1











+1

+1

−1

−1











(3.290)

where κ = ∆/
√
λ with ∆ = J + δD being the total anomalous dimension (or energy

of the string state). To compute H4(x) for a general choice of mode numbers is of course

unfeasible. However if we consider a simple scenario with for example a single mode number

this can be easily done using the techniques explained in section 3.8.1. In this case, the

Bethe equation we need to solve can be found from p̃2(x− i0)− p̃3(x− i0) and reads

4πJ x+ 2G(0)

x2 − 1
− 2/H4(x) = 2πn ⇔ 4πJ xj + 2G(0)

x2
j − 1

− 2
∑

k 6=j

α(xj)

xj − xk
= 2πn . (3.291)

This can be solved by the methods used in the previous section. In the process of compu-

tation it becomes clear that, if G(0) = 2πm, the choice n = 2m greatly simplifies the final

expressions. Thus, let us consider n = 2m in what follows. Computing H4 and plugging it

into the definitions of the sphere quasi-momenta we obtain:










p̃1

p̃2

p̃3

p̃4











= 2π











+ x
x2−1

K(1/x)

+ x
x2−1

K(x)−m
− x
x2−1

K(x) +m

− x
x2−1

K(1/x)











, K(x) ≡
√

m2x2 + J 2. (3.292)

Notice furthermore that the pole synchronization fixed the total anomalous dimension in

terms of the angular momentum J and the mode number m as

κ =
√

m2 + J 2 . (3.293)

For now let us put these results aside. In the next chapter we will see that they reappear

nicely from a classical string integrability approach which is of course quite comforting.

4Although this is true, this is of course a huge distortion of the historical flow which mostly coincides

with the most natural logical flow. Quasi-momenta with the properties described in the text were first

found from string theory in [83, 85, 86, 87] and the SYM Bethe equations, in particular the BES kernel,

were tuned to fit all available data, in particular to match the string classical limit. In this first part of

the thesis we are assuming these equations to be derived/guessed without the knowledge of AdS/CFT and

string theory.
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3.10 Families of long-ranged integrable Hamiltonians

In this section we describe a spin chain toy model with long range interactions including

wrapping interactions. It is probably not directly relevant to the study of N = 4 SYM but

it is a nice application of the algebraic Bethe ansatz formalism and simple enough to be

worth the detour.

Let us consider the standard SU(2) spin chain transfer matrix T̂ (u) whose spectrum is

given by (3.76) where the Bethe roots obey the Bethe equations (3.77). Having diagonalized

T̂ we have automatically diagonalized all Hamiltonians obtained from this transfer matrix

as explained in section 3.3. A particularly interesting choice is

Ĥ(g) =
1

4i
log

T̂ (g2)

T̂ (0)
+ h.c. (3.294)

If we think of g2 as being an expansion parameter then we have an infinite range Hamil-

tonian where, at each order g2n in perturbation theory, the interaction range is n. In the

notations of [26] we have

Ĥ(g) =
g2

2

∑

j

Hj,j+1 +
ig4

4

∑

j

[Hj,j+1,Hj+1,j+2] + . . . (3.295)

where Hj,j+1 = 1 − Pj,j+1. The spectrum of this Hamiltonian is then given by (3.294)

where we simply replace the operators T̂ (·) by the corresponding eigenvalues T (·) to get

E =
1

4i

M
∑

j=1

log

(

uj + i
2
− g2

uj − i
2
− g2

uj − i
2

uj + i
2

)

+
1

4i
log

[

1 +

(

g2

g2 + i

)L M
∏

j=1

uj − 3i
2
− g2

uj − i
2
− g2

uj − i
2
− g2

uj + i
2
− g2

]

+ c.c. . (3.296)

The first term comes from the first term in (3.76). It gives a contribution to the energy

of the form
∑

ǫ(pj), that is a sum of the dispersion relations of M individual magnons

interacting through (3.77). When written in terms of p,

ǫ(p) =
1

2i
log

(

1− 2g2e−i
p
2 sin p

2

1− 2g2e+i
p
2 sin p

2

)

= 2g2 sin2 p

2
+ · · ·+ (2g2)

n

n
sin

np

2
sinn

p

2
+ . . . (3.297)

The second term in (3.296), which comes from the second term in (3.76), is identically

zero up to order g2L – precisely when wrapping interactions appear! Thus, at order g2L

the energy is given by a sum of dispersion relations of the form (3.297) plus this wrapping
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term, which entangles all M magnons and is not writable as a sum of individual dispersion

relations. In terms of the several momenta we have

E =

M
∑

j=1

ǫ(pj) + g2L 1

4i

[

i−L
M
∏

j=1

(

2e−2ipj − e−ipj
)

− c.c.
]

+O(g2L+1) . (3.298)

For example, for two magnons we get

E(p, k) = ǫ(p) + ǫ(k) + g2L

(

s(p) + s(k)− s(0)

2
− 2s(p+ k)

)

+O(g2L+2) , (3.299)

where s(x) ≡ sin(p + k + Lπ/2 + x). It is clear that this correction is not of the form

δǫ(p) + δǫ(k). This was expected since at order g2L the interaction range covers the entire

chain and the notion of asymptotic region where one can safely measure the dispersion

relation of each magnon is destroyed [38].

More generically we can easily generate (long-ranged) integrable Hamiltonians by con-

sidering

Ĥ =
1

4i

∞
∑

n=1

an
g2n

n!

dn

dλn
log T̂ (λ)

∣

∣

∣

∣

∣

λ=0

+ h.c. (3.300)

The spectrum of such Hamiltonians is immediately given by this expression with the opera-

tor T̂ (λ) replaced by the corresponding eigenvalue (3.76). At order g2n these Hamiltonians

are local with interactions of range n. If we truncate the expansion at a given order m by

setting an>m = 0, then for chains of length larger than m we have no wrapping interactions

and the energy is simply given by a sum of dispersion relations
∑

j ǫ(pj), with5

ǫ(u) =
1

2i

∞
∑

n=1

an g
2n

n

(

1

(u− i/2)n
− 1

(u+ i/2)n

)

(3.301)

If, on the other hand, we consider an infinie sum or, alternatively, if we truncate the

expansion in g2 at an order m > L, the spectrum (starting at wrapping order g2L) will no

longer be a sum of individual dispersion relations. In particular, precisely at order g2L we

obtain

E =
M
∑

j=1

ǫ(uj) +
g2L

4i

[

aL
iL
e−iP

M
∏

j=1

uj − 3i/2

uj + i/2
− c.c.

]

+O(g2L+2) (3.302)

where the second term takes into account the wrapping interactions. It is interesting

to notice that for all these families of long ranged Hamiltonians the expression for the

wrapping interactions is quite simple and absolutely universal. The example (3.294) we

5If the an are not real – which from the definition 3.300 is a perfectly reasonable possibility – we should

take the real part of this expression.
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considered corresponds to an = 1 but as we see any choice of an will lead to a solvable

problem. A particularly funny example would be

Ĥ =
1

2i

∞
∑

n=1

Cn
g2n

(2n− 1)!

d2n

dλ2n
log T̂ (λ)

∣

∣

∣

∣

∣

λ=0

+ h.c. ,

with Cn the Catalan numbers, for which we find the curious expression

ǫ(u) =
g

i

(

1

X+(u)
− 1

X−(u)

)

, X±(u) ≡
u± i

2
+
√

(

u± i
2

)2 − 4g2

2g

for the dispersion relation. As a function of the Bethe roots this is precisely the dispersion

relation appearing in the BDS equations [43] and even in the full AdS/CFT Bethe equations

[35]. However, unfortunately, as a function of the magnon momenta this is not the same

as (3.196) because the relation between u and p in our toy models is always of the form

(3.78). In other words, although the desired dispersion relation can be easily obtained, the

Bethe roots are always quantized via the usual Heisenberg spin chain Bethe equations.

We can generalize this construction of long ranged Hamiltonians for other symmetry

groups as well. A particularly curious example arises when we consider non-compact spin

chains. For example, for the SL(2) spin chain we have [88, 36]

Tsl(2)(λ) =
M
∏

j=1

λ− uj − i/2
λ− uj + i/2

+
∞
∑

n=1

(

λ

in+ λ

)L M
∏

j=1

(λ− uj − i/2)2

(

λ− uj + 2n−1
2
i
) (

λ− uj + 2n+1
2
i
)

(3.303)

with the Bethe equations, following from canceling the poles in this expression, reading

(

uj + i/2

uj − i/2

)L

=
M
∏

k 6=j

uj − uk − i
uj − uk + i

(3.304)

which differ from (3.77) by a simple sign in the r.h.s. Again, by expanding the log of the

transfer matrix around λ = 0 we see that only the first term contributes until the L’th

derivative is taken. Thus if we consider an Hamiltonian of the form (3.300) we have, up

to order g2L, the energy as a sum of the same dispersion relations (3.301). In particular if

the constants an are algebraic numbers then so will be
∑

j ǫ(uj) when truncated to order

g2L because the solutions to (3.304) are clearly also algebraic (complex) numbers.

However, precisely at order g2L the second term in (3.303) starts contributing and we

find

E =

M
∑

j=1

ǫ(uj) +
g2L

4i

[

aL
iL
e−iP

∞
∑

n=1

1

nL

M
∏

j=1

(uj + i/2)2

(

uj − 2n−1
2
i
) (

uj − 2n+1
2
i
) − c.c.

]

. (3.305)
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This new wrapping term differs from the one computed for the compact groups SU(N) by

the fact that it is given by an infinite sum of terms. Thus even if uj and an are perfectly

algebraic numbers the energy of this state will only be algebraic up to order g2L, when this

infinite sum will give a transcendental contribution!

Let us consider a few examples. We chose aL = 1 for simplicity. For L = 4 the one

magnon state with momentum 2π/4 will be corrected to

E = ǫ(p)− g6 (1− ζ(3)) +O(g8)

while for example for a two magnon state with L = 5 and momenta6 p1 = −p2 = p = 2π/6

we get

E = ǫ(p) + ǫ(−p) +
g10

4
(1− 2ζ(3) + 2ζ(5)) +O(g12)

In (3.306) we listed a couple of additional examples with an = 1

L u1,2 ǫ(p1) + ǫ(p2) Ewrapping(p1, p2)

3
√

3
5
±

√
7

10
11g2

8
+ 13

√
3g4

32
− 5g6

6
1
32

(−26 + 3π2 − 4ζ(3)) g6

4 1
3
±

√
7

6
5g2

4
− g4

8
− 19g6

24
+ 3g8

2

(

41
32
− 5π2

48
− π4

360

)

g8

6 ±1
2

+
√

2
2

g2 + g4√
2
− g6

3
−
√

2g8 − 4g10

5
+ 5

√
2g12

3
−1
2
√

2
(7− 4ζ(3)− 2ζ(5)) g12

.

(3.306)

Although, this model is not immediately related to the non-compact sector of the

AdS/CFT Bethe equations which are much more complicated than (3.304), it is still in-

teresting to see that transcendentality very naturally appears due to the non-compact

character of the transfer matrix. In particular, if an extra level of hidden degrees of free-

dom is to be discovered then the transcendental numbers present in the dressing factor

could be an important hint. A more fundamental PSU(2, 2|4) symmetric transfer matrix

in the field strength representation would also be given by an infinite sum of terms since

the representation is infinite dimensional. It would be spectacular if a relatively simple

extended transfer matrix with some extra degrees of freedom included and only simple

algebraic expressions could lead to the intricate structure of the full dressing factor where

transcendental numbers abound. Probably the correct place to try to reverse engineer

and find this extra level of hidden particles is the transfer matrix rather than the Bethe

equations.

6For two magnon with opposite momenta the sl(2) equations are trivially solved. The effect of the

second magnon is simply to renormalize L→ L+ 1. Thus we obtain p1 = −p2 = 2πn
L+1 for the two magnon

state with opposite symmetric momenta.





Part III

Algebraic curves and semi-classics





Chapter 4

Integrability in superstring theory and
algebraic curves

In this chapter we review classical superstring integrability. More precisely, in section 4.2,

we explain how classical integrability appears due to the existence of a flat connection

A(x) dependent on an arbitrary spectral parameter x ∈ C [10]. Flatness of this current

will then allow us to build an infinite set of conserved charges encoded in some algebraic

curves [83, 85, 86, 87] (see also [89, 55] for more gauge theory oriented works). In section

4.3 we will present a short overview of the general physical picture inherent to the finite

gap construction and in section 4.4, we resume our rigorous treatment and describe the

algebraic curve construction. All the remaining sections rely heavily on this formalism so

it is important to review it in some detail. The last sections are devoted to the study of

the SU(2) sector consisting of strings moving in R × S3 ⊂ AdS5 × S5. In particular the

Giant Magnon solution [90] is discussed in sec. 4.5.2. Before all that, in the next section,

we will recall that the appearance of Rieman surfaces as the classical limit of a quantum

system is something rather universal and can be seen in the simplest examples.

4.1 1D Quantum Mechanics

As a warm-up for the forthcoming sections let us consider a one-dimensional non-relativistic

particle in a smooth potential V (x). In terms of the quasi-momenta

p(x) ≡ ~

i

ψ′(x)

ψ(x)
,

the Schrodinger equation for the wave function ψ takes the Riccati form

p2 − i~p′ = 2m (E − V ) . (4.1)

What do we know about p(x)? It is an analytical function which has, by definition, a pole

with residue

α =
~

i
(4.2)
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Figure 4.1: Analytical structure of a quasi-momenta p(x) of a one dimensional system. Left: for

low lying states p(x) is a collection of poles. Right: for high energy states the poles condense into

a square root branch cut.

at each of the zeros of the wave function. For the N -th excited state we will have N poles.

On the other hand, for very excited states, the right hand side in (4.1) is much larger than

~ and

p ≃ pcl ≡
√

2m (E − V )

describes now a two-sheet Riemann surface. What happened was that, as N → ∞, the

poles in p(x) became denser and denser, condensing in a square root cut. Thus, in the

semiclassical limit we retrieve the Bohr-Sommerfeld quantization

1

2π~

∮

C

pcl(z) dz ≃
1

2π~

∮

C

p(z) dz = N , (4.3)

where C encircles the cut. The first integral is precisely the action variable of the classical

motion. To anticipate the forthcoming notation we name such integrals filling fractions.

Let us now consider the simplest possible potential, namely the harmonic oscillator for

which V = mω2x2

2
. From (4.1) it follows that p(x) = imωx + O(1/x). Since the quasi-

momentum is a meromorphic function with N poles on the real axis, it must be given

by

p(x) = imωx+
~

i

N
∑

i=1

1

x− xi
.

Then, from the large x behavior in (4.1) we read immediately

E = ~ω

(

N +
1

2

)

(4.4)

while from the cancelation of each of the xi poles in the same equation we get

xi =
~

ωm

N
∑

j 6=i

1

xi − xj
(4.5)

which strongly resembles the equations one finds in the Bethe ansatz context. Its solution

is given by the zeros of the Hermite polynomials, HN

(√

mω
~
xi
)

= 0 , as can be easily

derived as in section 3.8.1.
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4.2 The AdS5 × S5 flat connection

In this section we review the work of [10] where integrability first arose for the full AdS5×S5

string. To better understand how non-trivial the emergence of integrability is let us consider

a deformation of the Metseav-Tseytlin action (2.4) to

S =

√
λ

4π

∫

str
(

J (2) ∧ ∗J (2) − κJ (1) ∧ J (3)
)

+ Λ ∧ strJ (2) , (4.6)

where J (n) are the Z4 components of J = −g−1dg obtained explicitly using (2.2). The

equations of motion are still given by (2.7),

d ∗ k = 0 , (4.7)

with k = g−1Kg where now

K = J (2) +
κ

2
∗ J (1) − κ

2
∗ J (3) − ∗Λ .

Since only the capital currents have a neat Z4 decomposition as described in section (2.2)

it is useful to recast (4.7) using the large current K,

d ∗K = J ∧ ∗K + ∗K ∧ J . (4.8)

Moreover it will also be important to use the flatness of the PSU(2, 2|4) current,

dJ = J ∧ J , (4.9)

which simply follows from the form of the current J = −g−1dg. Next we decompose these

relations using the Z4 grading so that (4.9) splits into four equations

dJ (n) =
∑

p+q=n mod 4

J (p) ∧ J (q) (4.10)

while (4.8) gives

0 = J (3) ∧ ∗J (2) + ∗J (2) ∧ J (3) − κJ (3) ∧ J (2) − κJ (2) ∧ J (3) (4.11)

d ∗ J (2) = J (0) ∧ ∗J (2) + ∗J (2) ∧ J (0) + κJ (1) ∧ J (1) − κJ (3) ∧ J (3) (4.12)

0 = J (1) ∧ ∗J (2) + ∗J (2) ∧ J (1) + κJ (1) ∧ J (2) + κJ (2) ∧ J (1) (4.13)

where we already used (4.10) to eliminate dJ (1) and dJ (3) in (4.11) and (4.13). Using

∗A ∧ B = −A ∧ ∗B, valid for one-forms, it is easy to see that the projection of (4.8) into

the zero-th component yields nothing.
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We now want to find a connection A(x) which should be flat on the equations of motion,

dA(x) = A(x) ∧A(x) , (4.14)

and depend on a generic complex number x which we denote by spectral parameter. Be-

fore delving into the technical details let us explain why finding such current is indeed

remarkable and indicates the model to be (at least classically) integrable. The key idea is

that, using this flat connection, we can define the monodromy matrix

Ω(x) = Pexp

∮

γ

A(x) (4.15)

where γ is any path starting and ending at some point (σ, τ) and wrapping the worldsheet

cylinder once. Fatness of the connection ensures path independence so we can choose γ to

be the constant τ path,

Ω(x) = Pexp

2π
∫

0

dσAσ(x) (4.16)

Moreover, placing this loop at some other value of τ just amounts to a similarity transfor-

mation of the monodromy matrix. Thus we conclude that the eigenvalues of Ω(x) are time

independent. Since they depend on a generic complex number x, we have obtained in this

way an infinite number of conserved charges (by, for example, taylor expanding the eigen-

values around a particular point x) thus assuring integrability! For example, as mentioned

in section 3.4, if these charges survive quantization – which is by now established beyond

reasonable doubt – they imply the S-matrix factorization for the worlsheet theory.

To find such current we start by writing down a fairly reasonable general ansatz1

A(x) =
3
∑

n=0

αn(x)J
(n) + β(x)(∗J (2) − Λ) . (4.17)

We now want to find αi(x) and β(x) in such a way that (4.14) holds when the e.o.m. (4.7)

are satisfied. In the l.h.s. of (4.14) we eliminate the five terms with dJ (n), d∗J (2) using the

four equations (4.10) and (4.12). Thus the flatness equation becomes now a large linear

combination of current bilinears such as J (1) ∧ J (3), J (1) ∧ ∗J (2) etc. Not all of them are

linearly independent since we still did not use (4.11) nor (4.13). Using these relations we

1We did not include in our ansatz ∗J (1), ∗J (3) or ∗J (0). The component J (0) was gauged out in our

sigma model so there is no equation governing its evolution. The same holds for J (1) and J (3). They

are also unfixed because of the ungauged κ-symmetry. (Actually, for κ 6= 1 in (4.6) the action is not κ

symmetric but in any case it still remains true that we do not have equations governing the evolution of

the fermionic currents.)
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eliminate for example J (1) ∧ ∗J (3) and J (1) ∧ ∗J (2). In the process one should keep in mind

the identities ∗A ∧B = −A ∧ ∗B and ∗∗ = 1 which hold for 1-forms.

In doing all this one obtains the following expression for dA(x)− A(x) ∧A(x):

(1− α0)

[

α0

2
〈J (0), J (0)〉+

3
∑

i=1

αi〈J (0), J (i)〉+ β〈J (0), ∗J (2)〉
]

+ (α0 − α1α3) 〈J (1), J (3)〉

+
1

2

(

α2 − βκ− α2
3

)

〈J (3), J (3)〉+ 1

2

(

α2 + βκ− α2
1

)

〈J (1), J (1)〉+ 1

2

(

α0 + β2 − α2
2

)

〈J (2), J (2)〉

+
1

κ
(βα3κ+ α3α2 − α1) 〈J (2), ∗J (3)〉+ 1

κ
(βα1κ− α1α2 + α3) 〈J (2), ∗J (1)〉 (4.18)

where

〈A,B〉 ≡ A ∧B +B ∧A (4.19)

was introduced to shorten the expression. Notice that there are seven coefficients which

must set to zero whereas we only have 5 functions αi and β to tune. The first three

coefficients in (4.18) yield

α0 = 1 , α1 =
1

α3

, α2 = α2
3 + βκ (4.20)

and when plugging these into the fourth coefficient one gets

β =
1

2κ

(

1

α2
3

− α2
3

)

. (4.21)

So far all functions are expressed in terms of α3 and the last three terms in (4.18) are yet to

be set to zero. Remarkably, the last two drop out when we use (4.20) and (4.21). Finally,

the remaining term gives

1

8

(

1

κ2
− 1

)(

1− 1

α4
3

)2

〈J (2), J (2)〉 . (4.22)

We see that if κ = 1 then α3 is unfixed, α3 = f(x), and the desired flat connection A(x) is

obtained! If on the other hand κ 6= 1 then α3 is fixed to a number and we simply obtain a

trivial flat current rather than a full family parametrized by a continuous parameter. The

model is therefore integrable only for κ = 1 which is precisely the value for the Metseav-

Tseytlin action (2.4) [34]! In the derivation of this formula the authors fixed this coefficient

by imposing the action to be κ-symmetric. It would be interesting to further explore the

connection between κ-symmetry and integrability.

Particular choices of f(x) simply amount to redefinitions of the spectral parameter x.

In the original work [10] f(x) = ex whereas for us the choice [87] f(x) =
√

x−1
x+1

turns out

to be more convient. Hence

A(x) = J (0) +
x2 + 1

x2 − 1
J (2) − 2x

x2 − 1

(

∗J (2) − Λ
)

+

√

x+ 1

x− 1
J (1) +

√

x− 1

x+ 1
J (3) (4.23)



100 4. Integrability in superstring theory and algebraic curves

Figure 4.2: Examples of simple Riemann surfaces arising from solving the characteristic polyno-

mial equation appearing when computing the eigenvalues of the string monodromy matrix.

is flat for any complex number x [10]. As mentioned above this is the crucial observation

which indicates the model to be (at least classically) integrable with an infinite number of

conserved charges encoded in the eigenvalues of the monodromy matrix (4.16). Finally we

also notice that under periodic SP (2, 2)×SP (4) gauge transformations we have (2.5) and

(2.6) so the monodromy matrix is simply conjugated and thus the eigenvalues are gauge

invariant. The same is true for κ symmetry transformations.

In the next section let us make a short overview of the general physical picture behind

the algebraic construction of [83, 87] described in greater detail in the forthcoming sections.

4.3 Algebraic curves – Physical picture

The eigenvalues of the 8×8 monodromy matrix Ω(x) will be of upmost important through-

out all this monograph. We denote them by

λ = {eip̂1, eip̂2, eip̂3 , eip̂4|eip̃1, eip̃2, eip̃3, eip̃4}

where p̂j and p̃j are called quasi-momenta. We will explain below why some quasi-momenta

are hatted while others are tilded. For each classical solution we compute the eigenvalues

of the monodromy matrix by solving a polynomial characteristic equation. This defines

an eight-sheeted Riemann surface for the eigenvalues λ with square root cuts uniting the

several sheets as represented in figure 4.2. For example when crossing a cut C̃23 shared by

the eigenvalues eip̃2 and eip̃3 we simply change Riemann sheet,

(

eip̃2
)+ −

(

eip̃3
)−

= 0 , x ∈ C̃23 (4.24)
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where the superscript ± indicates the function is evaluated immediately above/below the

cut. The quasi-momenta on the other hand are not exactly the eigenvalues but rather their

logarithms. Thus when crossing the very same cut the quasimomenta will in general also

gain an integer multiple of 2π,

p̃+
2 − p̃−3 = 2πn , x ∈ C̃23 . (4.25)

In figure 4.2a we have a cut uniting these quasimomenta while in figure 4.2b we also have

an additional cut between p̂1 and p̂3.

Notice that if we consider the derivative of the quasimomenta these extra constants

drop out so we obtain again a proper algebraic curve,

(p̃′2)
+ − (p̃′3)

−
= 0 , x ∈ C̃23 . (4.26)

All this will become quite clear in the next section when we consider a simple explicit

example of these algebraic curves.

Apart from the mode number n each cut will also be described by a filling fraction

as in (4.3) obtained by integrating the quasimomenta around each cut. The picture we

have in mind is that the cut is indeed the result of a condensation of a large number of

quantum poles as we saw in our simple quantum mechanics example in section 4.1 or in

the condensation of Bethe roots described in the end of the previous chapter starting from

section 3.8.1. That is we expect pi(x) to be the continuous limit of some discrete sum

p ≃
Sn
∑

k=1

α(xk)

x− xk
+ . . . ,

as depicted in figure 4.1 or more generally in figure 3.19. The knowledge of the residues

α(x) is the most important information required to be able to quasi-classical quantize the

solutions. This is so because only by knowing α(x) can we choose the appropriate measure

in such a way that when integrating the quasi-momenta around the cut we count the

number of quantum excitations out of which the cut is made. In the next two chapters we

will explain why the correct choice for the residue is

α(x) =
4π√
λ

x2

x2 − 1
. (4.27)

so that the proper definition of the filling fractions should be

Sij = ±
√
λ

8π2i

∮

Cij

(

1− 1

x2

)

pi(x)dx. (4.28)

obtained by integrating the quasi-momenta around the square root cut. The indices run

over

i = 1̃, 2̃, 1̂, 2̂ , j = 3̃, 4̃, 3̂, 4̂ (4.29)
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and we denote

p1̃,2̃,3̃,4̃ ≡ p̃1,2,3,4 , p1̂,2̂,3̂,4̂ ≡ p̂1,2,3,4 . (4.30)

In (4.28) we should choose the plus sign for i = 1̂, 2̂ and the minus sign for the remaining

excitations with i = 1̃, 2̃. We should mention that one can rigorously show that the filling

fractions defined as in (4.28) are indeed the action variables of the theory thus justifying

the choice (4.27) [91, 92]. Finally notice that if we change variable via the Zhukowsky map

z = x+
1

x
(4.31)

the filling fraction expression becomes simply

Sij = ±
√
λ

8π2i

∮

Cij

dz pi(z) (4.32)

which seems to indicate that the z variables will be more suitable for quantization2.

So far we have see that, given a classical solution, we can compute and diagonalize

the monodromy matrix and its eigenvalues will describe some Riemann surface. Each cut

of the algebraic curve is characterized by a discrete label (i, j), corresponding to the two

sheets being united, an integer n, the multiple of 2π mention above, and a real filling

fraction. These three quantities are the analogues of the polarization, mode number and

amplitude of the flat space fourier decomposition of a given classical solution.

Therefore figure 4.2a would describe a string motion with a single polarization excited

and the filling fraction of the cut would correspond to the amplitude of the excitation.

Figure 4.2b would describe a string motion with two excited modes, each corresponding to

a different AdS5 × S5 polarization. To be more specific we must explain the significance

of the hats and tildes of the quasi-momenta. When we consider a classical string solution

we have a bosonic representative of the form (2.11). After all, the motion of the string is

obviously described by the (bosonic) embedding coordinates. Thus the currents J (1) and

J (3) will vanish and the flat connection will be of the form

Aσ(x; σ, τ) =

(

AAdSσ (x; σ, τ) 0

0 ASσ(x; σ, τ)

)

. (4.33)

The monodromy matrix will inherit this block diagonal form and therefore there will be two

groups of quasi-momenta, those coming from the diagonalization of the S5 part and those

stemming from the AdS5 part. The quasimomenta associated to the S5 (AdS5) eigenvalues

are denoted by p̃i (p̂j).

Notice that we might expect that the algebraic curve obtained from a given classical

solution will be in fact decoupled into two four-sheeted algebraic curves, one for the sphere
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Figure 4.3: Classically the AdS5×S5 algebraic curve factorized into two separate groups of four

sheeted curves described by the S5 quasimomenta p̃i and the AdS5 quasi-momenta p̂i. These

curves are related to one another by the synchronization of the pole singularities at x = ±1.

Physically this synchronization is a translation of the Virasoro constraints.

motion and another for the string movement in anti de-Sitter. This is almost true. However

the Virasoro constraints set the total stress energy tensor to zero and couple the S5 and

AdS5 evolution. In the algebraic curve language this is manifest in the following way: As

we see from the form of the current (4.23) the points x = ±1 are potentially singular and

indeed the quasimomenta will have simple poles at this points. The Virasoro constraints

will synchronize the poles of the several quasimomenta and thus couple the two seemingly

disconnected curves [87]. This synchronization is schematically depicted in figure 4.3 where

we added the x = ±1 poles to figure 4.2.

Now we can be more precise when describing figure 4.2 or its updated version 4.3. In

figure 4.3a we have a string which is point like with respect to the AdS space and has an

S5 mode excited. Figure 4.3b corresponds to a solution with two different polarizations

excited – one in S5 and the other in AdS5.

What about fermions? Well, classically they don’t appear at all. This is simply be-

cause their amplitudes are described by fermionic excitations which only admit 0 or 1 as

occupation numbers by the Pauli exclusion principle whereas for the bosonic amplitudes

the classical limit is attained by condensation of a large number of excitations. A mathe-

matical way of seeing this is as follows. Bosonic branch cuts appear when two eigenvalues

with the same grading coincide. However when two eigenvalues with a different grading

coincide they do not develop a square root singularity but rather a pole divergency [87].

2This was first noticed in [83]. See also [11] for further evidence from this point of view.
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Figure 4.4: The several string polarizations are nothing but the several possible choices of which

Riemann sheets to connect. All fluctuations must cross the middle dashed line.

On the other hand fermions do appear very naturally in the algebraic curve when we

consider the semi-classical quantization of the theory. This will be described in the next

chapters. The idea is that if we want to study quantum fluctuations around a given classical

solution we should add extra singularities to the classical algebraic curve corresponding

to the classical solution in study [93, 13]. These singularities can be though as either

microscopic cuts or poles. The (sixteen) superstring physical polarizations correspond to

the pairing of sheets

S5 : (1̃, 3̃) , (1̃, 4̃) , (2̃, 3̃) , (2̃, 4̃)

AdS5 : (1̂, 3̂) , (1̂, 4̂) , (2̂, 3̂) , (2̂, 4̂)

Fermions : (1̃, 3̂) , (1̃, 4̂) , (2̃, 3̂) , (2̃, 4̂)

(1̂, 3̃) , (1̂, 4̃) , (2̂, 3̃) , (2̂, 4̃) .

(4.34)

represented in figure 4.4. The rule – which will be explained in more detail in the following

chapters – is the following: We must always connect a sheet with index number 1 or 2

to another sheet with index 3 or 4. Graphically, we must connect one of the four upper

sheets in figure 4.4 with one of the bottom four. If we connect p̂i with p̂j we describe an

AdS5 fluctuation, if the fluctuation is shared by p̃i and p̃i it corresponds to an S5 mode

and finally if it connects quasimomenta p̂i and p̃j it is a fermionic excitation. Figure 4.5,

e.g., would correspond to a classical solution with two classical modes excited – one in

the sphere and the other in anti de-Sitter – plus three small (semi-classical) fluctuations.

Two of those are bosonic and live in S5 and AdS5 whereas the third one is a fermionic
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Figure 4.5: Classical solution (the cuts) plus quantum fluctuations (poles) are described in the

same unifying formalism.

excitation.

In the next section we resume our rigorous analysis of the algebraic curve.

4.4 Classical algebraic curves

In this section we review the algebraic curve of Beisert, Kazakov, Sakai and Zarembo [87].

We will start by considering some particular - and simple - classical solutions which will

allow us to easily identify many of the universal features shared by all the algebraic curves

associated with the superstring classical motion. The most general curves are studied in

section 4.5.

4.4.1 Circular string solutions

In this section we consider an important class of rigid circular strings solutions studied in

[94]. In terms of the AdS5 and S5 embedding coordinates, we can represent this general

class of strings solutions with global charges E =
√
λ E , J1 =

√
λJ1, . . . , as [94]

u2 + iu1 =

√

J3

w3
ei(w3τ+m3σ) , v2 + iv1 =

√

S2

w2
ei(w2τ+k2σ) ,

u4 + iu3 =

√

J2

w2
ei(w2τ+m2σ) , v4 + iv3 =

√

S1

w1
ei(w1τ+k1σ) , (4.35)

u6 + iu5 =

√

J1

w1
ei(w1τ+m1σ) , v6 + iv5 =

√

E
κ
eiκτ .
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The condition (2.10) that the embedding coordinates parametrize the sphere and anti-de

Sitter fixes

1 =

3
∑

i=1

Ji
wi

, 1 =
E
κ
−

2
∑

j=1

Sj
wj

(4.36)

while the equations of motion and Virasoro constraints3 yield

w2
j = κ2 + k2

j , κ
2 =

2
∑

j=1

Sj
2k2

j

wj
+

3
∑

i=1

Ji
w2
i +m2

i

wi
, (4.37)

w2
i = ν2 +m2

i , ν
2 ≡

3
∑

i=1

Ji
w2
i −m2

i

wi
.

To build the corresponding quasi-momenta pi(x) associated with this class of solutions we

should

1. Translate the embedding coordinates into the group element g(σ, τ) ∈ PSU(2, 2|4);

2. Compute the current J = −g−1dg and project it into its Z4 components J (n);

3. Write the flat connection (4.23) ;

4. Compute the monodromy matrix (4.16);

5. Diagonalize Ω(x) and read the quasi-momenta.

As for 1) we notice that the embedding coordinates (4.35) are found from the map (2.12)

if

g =

(

Q 0

0 R

)

, (4.38)

with

R =

3
∏

i=1

e
i
2
(wiτ+miσ)Φi · R0 ∈ SU(4) , (4.39)

and

Q = e
i
2
κτΦ1 ·

2
∏

i=1

e−
i
2
(wiτ+kiσ)Φi+1 · Q0 ∈ SU(2, 2) , (4.40)

3The Virasoro conditions are simply Tµν = 0 where for this purely bosonic setup we can derive the

stress energy tensor from (2.9).
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where Φi are the Cartan generators,

Φ1 = diag (+,+,−,−) , Φ2 = diag (+,−,+,−) , Φ3 = diag (−,+,+,−) ,

and R0 = eΦ42θeΦ64γ and Q0 = eΦ
′
42ψeΦ

′
64ρ are constant matrices with

(cos γ, sin γ cos θ, sin γ sin θ) =

(

√

J1

w1
,

√

J2

w2
,

√

J3

w3

)

,

(cosh ρ, sinh ρ cosψ, sinh ρ sinψ) =

(
√

E
κ
,

√

S1

w1
,

√

S2

w2

)

,

and Φ42,Φ64,Φ
′
42,Φ

′
64 given respectively by

1

2











0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0











,











0 0 0 0

0 0 −1 0

0 1 0 0

0 0 0 0











,
1

2











0 −1 0 0

1 0 0 0

0 0 0 1

0 0 −1 0











,
1

2











0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0











.

This finishes point 1). What is remarkable about these solutions is that they are Abelian

with respect to the τ and σ evolution whereas the nontrivial nonabelian structure is simply

introduced by the constant matrices R0 and Q0. This is quite nice because this form of

representative immediately implies that

J = −g−1dg = −
(

Q−1dQ 0

0 R−1dR

)

(4.41)

is a constant connection! The τ and σ dependence immediately disappears from the current

and therefore the path order exponential in the definition of the monodromy will become

a simple exponential and the computation simplifies dramatically.

Next point 2). It requires (almost) no brain activity. We simply pick the group elements

above, plug them into the current (4.41) and plug the current into (2.2) to find the several

projections. Point 3) is equally straightfoward. Having the projections J (n), we sum them

as in (4.23) to build the flat connection A(x). The general output for generic angular

momenta, spin and windings is presented in the appendix A.

4) is in general the only nontrivial step but for the solutions we chose this point is

also straightforward because, as explained above, the current A(x) – being made out of

the components of the constant connection J – does not depend on τ or σ. Thus the

computation of the path ordered exponential (4.16) is trivial and the quasi-momenta p(x)

are simply obtained from the eigenvalues of 2π
i
Aσ(x). Thus point 5) is equally immediate.

First let us consider the simplest solution in the family (4.35). It is the BMN string

[95] given by

u6 + iu5 = eiJ τ , v6 + iv5 = eiJ τ (4.42)
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For this solution the flat connection is the diagonal matrix

2π

i
Aσ(x) =

2πJ x
x2 − 1

diag (1, 1,−1,−1; 1, 1,−1,−1) (4.43)

so that the quasi-momenta are simply

p̃1,2 = −p̃3,4 = p̂1,2 = −p̂3,4 =
2πJ x
x2 − 1

. (4.44)

This is the simplest possible algebraic curve. It has no cuts at all!

Let us now consider the next to the simplest circular string solution which corresponds

to a string rotating in S3 and point like w.r.t. the AdS space. It will be very useful for

illustration purposes. After understanding the analytical properties of the quasi-momenta

for this simple case we shall come back to the general solution (4.35). We set

J1 = J2 =
J
2
, m1 = −m2 = m (4.45)

with all other spins, angular momenta, mode numbers and frequencies being zero. The

classical energy is then given by E = κ with

κ =
√

J 2 +m2 . (4.46)

For this solution, following the steps described above, we find

2π

i
Aσ(x) =

2π

x2 − 1





























κ x

κ x

−κ x
−κ x

0

0

J x −m
J x mx2

mx2 −J x
−m −J x





























(4.47)

so that all eigenvalues corresponding to the AdS5 part of the current are trivial,











p̂1

p̂2

p̂3

p̂4











=
2πκ x

x2 − 1











+1

+1

−1

−1











(4.48)
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Figure 4.6: Inversion symmetry x→ 1/x. To each physical cut outside the unit circle there is a

mirror cut inside the unit circle.

while the diagonalization of the S5 part yields4











p̃1

p̃2

p̃3

p̃4











= 2π











+ x
x2−1

K(1/x)

+ x
x2−1

K(x)−m
− x
x2−1

K(x) +m

− x
x2−1

K(1/x)











, K(x) ≡
√

m2x2 + J 2. (4.49)

Let us now consider the analyticity structure of these quasi-momenta.

First look at p̃2(x). It is an analytic function except for the square root cut. If we

enter the cut we change the sign of the square root, K(x)→ −K(x). But this, apart from

a constant 4πm, transforms precisely p̃2(x) into p̃3(x)! That is p̃2 and p̃3 are united by a

square root cut C̃23,
p̃+

2 − p̃−3 = 2πn , x ∈ C̃23 (4.50)

where the superscript ± means the function is evaluated immediately above/below the

cut. The integer n is in this case n = 2m. This is precisely (4.25) anticipated in our

physical discussion in the previous section. Notice also that when we exponentiate the

quasi-momenta the 2πm constant drops and we find (4.24). The same holds when we

consider the derivative of the quasi-momenta; in this case we obtain (4.26). Thus p̃′2 and

p̃′3 are the two branches of a single function taken values in a two-sheeted Riemann surface.

4We add the constant shifts ±2πm which 1) clearly does not change eipj(x) and 2) yields pj ∼ 1/x at

large x. We are always free to add such shift and we will always do so to ensure that the quasi-momenta

vanish for large x.
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Computing the filling fraction (4.28) we find

−
√
λ

8π2i

∮

C23

(

1− 1

x2

)

p̃2(x) =

√
λJ
2

(4.51)

and, therefore, so far the physical picture is precisely as anticipated in the previous section.

The solution is excited in the sphere target space and indeed only for the tilded quasi-

momenta we obtain square root cuts. The discontinuity of the quasi-momenta is related

to mode numbers in (4.35) and the filling fraction is indeed measuring the amplitude of

the corresponding mode.

Next let us look at p̃1 and p̃4. Again these quasimomenta share a square root cut whose

branchpoints are the image under x → 1/x of the previous cut C̃23. More than that, we

observe that there is a curious inversion symmetry

p̃1(x) = −2πm− p̃2(1/x)

p̃4(x) = +2πm− p̃3(1/x), (4.52)

whose origin will be elucidated briefly. This symmetry, is also present, although in a much

more trivial incarnation, for the AdS5 quasimomenta,

p̂1(x) = −p̂2(1/x)

p̂4(x) = −p̂3(1/x). (4.53)

Thus, in this more precise analysis we see that figure 4.3a should be replaced by figure

4.6a.

Next let us continue our enumeration of the analytic properties of the quasi-momenta

by looking at their asymptotics. Due to the x → 1/x symmetry it suffices to look at the

large x behavior. We notice that the quasimomenta vanish as 1/x with the residues being

the global charges of the solution,




























p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4





























≃ 2π

x





























+E
+E
−E
−E
+J
0

0

−J





























. (4.54)

Finally we consider the only remaining singularities, the poles at x = ±1. We easily see

that the AdS5 and the S5 poles are synchronized and

{p̂1, p̂2, p̂3, p̂4|p̃1, p̃2, p̃3, p̃4} ≃
{κ, κ,−κ,−κ|κ, κ,−κ,−κ}

x± 1
. (4.55)
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This is again fairly generic as explained in the next section.

Let us now mention what we would obtain had we considered the generic solution in

our family of circular strings (4.35). Now the flat connection, presented in appendix A, is

a constant block diagonal matrix with constant entries,

Aσ(x) =

(

AAdSσ (x) 0

0 ASσ(x)

)

(4.56)

and the diagonalization of this matrix is of course more involved. In particular we will

have in general more cuts uniting the AdS quasimomenta,

p̂+
i − p̂−j = 2πnij , x ∈ Ĉij , (4.57)

and cuts shared by the sphere p̃i,

p̃+
i − p̃−j = 2πnij , x ∈ C̃ij . (4.58)

In figure 4.6 we represented a possible configuration.

To find the analytical properties of the quasimomenta we don’t need to completely diag-

onalize the flat connection. It is easier to study the characteristic equation det
(

2π
i
Aσ(x)− Ip

)

=

0. We find that

1. The inversion symmetry (4.52) and (4.53) holds without any change (m is in this

case a simple linear combination of the several windings mi and ki),

p̃1,4(1/x) = ∓2πm− p̃2,3(x) , p̂1,4(1/x) = −p̂2,3(x) . (4.59)

2. From the large x asymptotics we can again read the several global charges, more

precisely




























p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4





























≃ 2π

x
√
λ





























+E − S1 + S2

+E + S1 − S2

−E − S1 − S2

−E + S1 + S2

+J1 + J2 − J3

+J1 − J2 + J3

−J1 + J2 + J3

−J1 − J2 − J3





























. (4.60)

3. The quasimomenta have simple poles at x = ±1 and the residues of the sphere and

anti de-Sitter quasimomenta are again synchronized

{p̂1, p̂2, p̂3, p̂4|p̃1, p̃2, p̃3, p̃4} ≃
{α±, α±,−α±,−α±|α±, α±,−α±,−α±}

x± 1
. (4.61)
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which is a slightly more general relation than (4.55). We will see that this relation

holds for all bosonic solutions whereas if we allow for fermionic excitations this ex-

pression still needs to be slightly modified. We also stress that the precise values of

the residues are in general not directly related to any physical quantity. The only

relevant information to retain is the synchronization between the AdS5 and S5 quasi-

momenta. As explained below this follows from the Virasoro constraints that couples

string motion in the two spaces.

In the next section we shall explain the origin of each of these analytical properties and

what to expect for the most general string solution.

4.5 General configurations

In this section we consider the analytical properties of the quasimomenta obtained for a

general classical solution. Hopefully, the discussion of the two previous sections will render

this general treatment quite digestible. The quasimomenta {p̂1, p̂2, p̂3, p̂4|p̃1, p̃2, p̃3, p̃4} are

obtained from the eigenvalues

{eip̂1, eip̂2, eip̂3, eip̂4 |eip̃1, eip̃2, eip̃3, eip̃4}

of the monodromy matrix (4.16) obtained by integrating the flat connection A(x) (4.23)

around the worldsheet cylinder. This connection is made out of the several components of

the psu(2, 2|4) current J . The ”p” in psu(2, 2|4) means the current J is supertraceless and

thus so is A(x). Thus we will always have

(p̂1 + p̂2 + p̂3 + p̂4)− (p̃1 + p̃2 + p̃3 + p̃4) = 0 . (4.62)

Moreover for bosonic classical solutions A(x) will be block diagonal as in (4.33) with each

block being an element of su(2, 2) and su(4). Therefore, for purely bosonic solutions, both

terms in the parentheses vanish separately. We can immediately check this property for

the quasi-momenta discussed in the previous section.

Next let us consider the inversion symmetry (4.59). It will hold precisely as it is for

any classical solution with m being an integer dependent on the classical solution. This

symmetry folows from the identity

C−1 Ω(x)C = Ω−ST (1/x), C =

(

E 0

0 −iE

)

,

where the supertranspose is defined as

(

A B

C D

)ST

=

(

AT CT

−BT DT

)

(4.63)
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To prove it we simply need to understand what happens when we sandwich A(x) between

C and C−1. Using (2.2) it is easy to see that

C−1J (n)C = −in
(

J (n)
)ST

. (4.64)

Then we notice that each coefficient before J (n) in (4.23) gains such i factors under the

map x→ 1/x! Thus

C−1A(x)C = −AST (1/x) , (4.65)

so that (4.63) follows. Let us simply comment on the integers appearing in the identity

(4.59). For p̂ there is no 2πm imposed by requiring absence of time windings [85, 87]. As

for p̃i there is a single integer m because two integers would not be compatible with the

supertraceless condition (4.62).

Let us now revisit the large x asymptotics (4.60). Again this remains valid for the most

general solution. These asymptotics follow because at large x

Aσ ≃ −g−1

(

∂σ +
2

x
kτ

)

g (4.66)

where k, appearing in (2.7), is the Noether current associated with the left global symmetry.

Thus, from the behavior at infinity we can read the conserved global charges5 as in (4.60).

In particular the classical energy of the string is obtained from

E =

√
λ

4π
lim
x→∞

x (p̂1(x) + p̂2(x)) . (4.67)

Finally the poles at x = ±1. The fact that the quasimomenta have poles at these values

of the spectral parameter is a simple consequence of the form of the flat connection (4.23)

which has these singularities from the beginning. What is nontrivial is the fact that the

poles for the several quasimomenta are highly synchronized. Indeed naively one would

expect 8 different poles for x ≃ 1. However the x → 1/x symmetry (4.59) immediately

reduces this number to 4, the supertraceless condition (4.62) following from

str J (2) = 0 ,

to 3, and the virasoro contraints

str
(

J (2)
)2

= 0 ,

leave only 2 independent poles. In general we expect therefore

{p̂1, p̂2, p̂3, p̂4|p̃1, p̃2, p̃3, p̃4} ≃
{α±, α±, β±, β±|α±, α±, β±, β±}

x± 1
. (4.68)

5These are the bosonic charges, the ones which are present for a classical solution. Latter we shall

consider all kind of fluctuations, including the fermionic ones. Then we shall slightly generalize this

expression to (5.8).
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For bosonic solutions one has not only the supertraceless condition but the tracelessness

of both the S5 and AdS5 quasimomenta so that (4.61) holds and β± = −α±.

An important side comment: All these analytic properties are precisely those of the

quasi-momenta obtained in section 3.9 when we considered the scaling limit of the Beisert-

Staudacher equations [35]! For example that the quasi-momenta (4.49) computed in this

section are precisely the same as (3.292) obtained from the Bethe ansatz computation.

This is of course a highly non-trivial test of the strong coupling limit of the BS equa-

tions. Actually, historically, when the Bethe equations were conjectured one of the main

constraints used to guess their form was the requirement that they would reproduce the

string finite-gap equations of [87]. This was also so concerning the AFS Bethe ansatz [66]

describing the SU(2) sector of the theory at strong coupling. This ansatz is based on the

discretization of the KMMZ integral formulas [83].

So far we understood that given a generic classical solution we can compute the quasi-

momenta and are bound to find an eight-sheeted Riemann surface with some precise ana-

lytical properties6. One can now turn the problem around and use the power of complex

analysis to make an exhaustive catalogue of all possible Riemann surfaces given the pre-

dicted analytic behavior. In this way, analyticity is turned into a powerful tool to study

classical string motion in full generality! We will explain how this works in the next section

where we describe strings moving in R×S3 ⊂ AdS5×S5, an important (classical) subsector

of the full sigma model.

Finally we should also mention that given a set of quasi-momenta it is possible to

consider the inverse map and reconstruct the classical motion. This is not surprising since

the quasi-momenta encode an infinite quantity of conserved charges. In [91] the inverse

map was studied for classical string moving in R × S3.

To finish this section let us mention a couple of generic features of the algebraic curves

corresponding to classical solutions of strings which move in S5 and are point-like in AdS5

with

eit ≡ v6 + iv5 = eiEτ .

For these solutions the AdS quasi-momenta p̂j are always given by

p̂1,2 = −p̂3,4 =
2πEx
x2 − 1

, (4.69)

where E is the energy of the string with respect to the AdS global time t. This can be seen

from two ways:

1. First by simply computing the AAdSσ (x) as in (4.33). It is clear that we will always have

6In fact, as discussed in section 4.3, due the the mode numbers 2πn gained by the quasimomenta as

they cross a cut, the quasimomenta describe an infinite genus surface. To obtain a good algebraic surface

we should consider either the eigenvalues eip or the derivative of the quasimomenta p′.
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Figure 4.7: For su(2) solutions we have {p̂1, p̂2, p̂3, p̂4} = 2πEx
x2−1
{1, 1,−1,−1} and {p̃1, p̃2, p̃3, p̃4} =

{2πm−p(1/x), p(x),−p(x),−2πm+p(1/x)} so that all information (in the left figure) is encoded

in a single quasi-momentum p(x) (see figure in the right).

2π
i
AAdSσ (x) = 2πEx

x2−1
diag (1, 1,−1,−1) as in (4.47). This matrix is already diagonal so

the quasi-momenta (4.69) follow trivially.

2. Alternatively we can compute the AdS classical quasi-momenta from its analyticity

properties. Since we only excite S5 modes, the AdS5 quasi-momenta must have

no cuts and be therefore rational functions with simple poles at x = ±1, large x

asymptotics

p̂1,2,−p̂3,4 ≃
2πE
x

, (4.70)

and inversion symmetry

p̂1,4(1/x) = −p̂2,3(x) . (4.71)

Clearly this fixes uniquely the quasi-momenta to be of the form (4.69).

4.5.1 The S3 subsector – Moduli fixing

In this section we review the construction of the quasi-momenta for generic su(2) solutions

corresponding to strings vibrating in S3 and point-like in the remaining space [83]. For

these configurations S1 = S2 = J3 = 0 and the the two physical modes in the three sphere

S3 correspond, in the algebraic curve language, to cuts uniting 2̃3̃ and 1̃4̃ as represented

in figure 4.7a.

For these configurations we have (4.69) and

p̃2(x) = −p̃3(x) ≡ p(x) , p̃1(x) = −p̃4(x) = 2πm− p(1/x) (4.72)
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so to completely analyze string solutions moving in R× S3 we need only to study the two

sheeted Rieman surface generated by ±p(x) as depicted in figure 4.7b.

More precisely, all the other quasi-momenta will only manifest themselves through the

several asymptotic properties to be imposed on p(x). For example, the poles at x = ±1

must be synchronized as in (4.68) and thus, since the AdS quasi-momenta are given by

(4.69), p(x) will have two simple poles at x = ±1 with the same residue corresponding to

the energy of the classical string configuration,

p(x) ≃ πE
x± 1

. (4.73)

At infinity, from (4.60),

p(x) =
2π(J1 − J2)

x
+O(1/x2) (4.74)

and finally at zero we must also fix its asymptotic behavior to

p(x) = 2πm− 2π(J1 + J2)x+O(x2) (4.75)

in order to ensure the proper asymptotics for the quasi-momenta p̃1 = −p̃4 = 2πm−p(1/x).
Having these analytical properties at hand we can forget about all other quasi-momenta

and work only with p(x). As explained before its derivative p′(x) will define a K-cut two-

sheeted Riemann surface with double poles at x = ±1. Therefore p′(x) must be of the

form [83]

p′(x) =
g(x)

(x2 − 1)2
√

f(x)
, (4.76)

where f(x) =
∏2K

j=1(x− xj) and g(x) =
∑N

j=1 cjx
j−1. Indeed, notice that close to a branch

point xk we have

p′(x) ∼ ∂x
√
x− xk ∼

1√
x− xk

, (4.77)

while close to the simple poles of the quasimomenta

p′(x) ∼ ∂x
1

x± 1
∼ 1

(x± 1)2
, (4.78)

thus our ansatz. To construct the quasimomenta p(x) we should start at x = ∞ in the

upper sheet and integrate p′(x) up to the point x without entering any cut as depicted in

figure 4.8.

Let us now explain how to determine all the unknown constants in (4.76). Since p(x)

falls as 1/x at large x, its derivative must decay as 1/x2 which fixes the degree of the

polynomial g(x) to be K + 2 so that N = K + 3. Thus, we have the K + 3 constants cj
plus the 2K branch-points xk making a total of

3K + 3 constants to fix. (4.79)
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Figure 4.8: To compute p(x) where x is the solid black dot in the figure we should integrate

p′(x) from x = ∞ in the upper shift to the point x without entering any cut. The two possible

paths represented in the figures must yield the same result and this translated into the A-cycle

integrals
∮

Cj
p′(x)dx = 0 around each of the cuts of the algebraic curve. For the configuration in

the figure this would impose 2 constraints since the integral over the third cut can be blown into

the previously computed cycles plus the integral over the fixed singularities at x = ±1.

We will explain how to reduce this number to zero. When we integrate from infinity to a

given point x to find the value of the quasimomenta the choice of path must not matter

and therefore the integrals of p′(x) around the several cuts must vanish

∮

Cj

p′(x)dx = 0 (4.80)

which yields K−1 independent constraints. The discontinuity conditions (4.50) which are

now simply

p(x+ i0)− (−p(x− i0)) = 2πnj , x ∈ Cj (4.81)

can be written as the K conditions

2πnj =

x+iǫ
∫

∞

p′(y)dy +

x−iǫ
∫

∞

p′(y)dy , x ∈ Cj (4.82)

Moreover, each cut is also characterized by the filling fraction (4.28)

Sj = −
∮

C|

(x+ 1/x)p′(x)dx (4.83)

where we integrated by parts. This imposes K − 1 constraints. Thus, at this point, one

has

3K + 3− (3K − 2) = 5 constants to fix. (4.84)

Then there are the poles at x = ±1. From (4.73),

p′(x) = − πE
(x± 1)2

+O(1) . (4.85)
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Notice that we must have no 1/(x − 1) term because this would lead to log singularities

for p(x). Thus, at each of the two points x = ±1, we have two conditions leaving us with

a single (5− 2× 2) constant to fix.

Finally the asymptotics at x = ∞ and at x = 0 given by (4.74) and (4.75) yield (the

last) two extra conditions. One of them finishes fixing all constants in terms of the charges,

filling fractions and mode numbers of the solution, including the string energy. To solve

the last condition we will obtain the string energy as a function of the remaining moduli.

Thus the complete classical spectrum of the string in S3 was mapped to the study of

hyperelliptic two-sheeted Riemann surfaces [83]. Let us consider an example to see this at

work for a simple 2 cut solution in the next subsection.

4.5.2 Two-cut solution and the Giant Magnon

In this section we consider a generic 2 cut solution in the SU(2) sector. The ansatz (4.76)

is conveniently re-written as

p′(x) = − π

f(x)

( Ef(1)

(x− 1)2
+
Ef ′(1)

x− 1
+
Ef(−1)

(x+ 1)2
+
Ef ′(−1)

x+ 1
+ 2(J1 − J2)

)

. (4.86)

where

f(x)
√

(x− a)(x− ā)(x− b)(x− b̄) . (4.87)

The first four terms inside the paretheses ensure (4.85) whereas the last (constant) term

is engineered to ensure the correct large x asymptotics (4.60). Obviously this is just a

smarter way to write (4.76) since we now only need to fix the branch-points and the string

energy as a function of the charges J1 and J2. To find them we should impose the several

A and B cycle integrals (4.80,4.82) and the filling fraction conditions (4.83).

Since the solution is a two cut solution we will obtain that the moduli are elliptic func-

tions of the branch-points. Finally to get the quasi-momenta we would have to integrate

the meromorphic differential p′dx. These last steps will again yield the quasi-momenta as

elliptic functions of x and of the branch-points.

In certain instances there can be considerable simplifications due to degenerate choice

of moduli of the curve. This is for example the case for the giant magnon [90, 96] solution

[97, 98, 99], where the two cuts are very close, a ∼ b and ā ∼ b̄. We will now consider this

singular limit. For that we parametrize the branch-points as

a = X+ +
δ

2
, b = X+ − δ

2
. (4.88)

ā and b̄ are complex conjugates and we will denote X− ≡ (X+)∗. We shall always work up

to second order in δ.
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Away from the branch-points the two-cuts become indistinguishable, a ≃ b ≃ X+ etc.,

and the quasi-momenta can be obtained from (4.86) as

p′(x) ≃ d

dx

(

2πEx
x2 − 1

+
2π(E − J +Q)

X+ −X− log
x−X+

x−X−

)

, (4.89)

where we replaced J1 → J and J2 → Q. We see that p(x) has a log-cut condensate

coming from the superposition of the two square root cuts with consecutive mode numbers

[97, 98, 99]. Indeed, as we cross the two cuts we have

p(x)
first cut−→ −p(x) + 2π(n+ 1)

second cut→ −(−p(x) + 2πn) + 2π(n+ 1) = p(x) + 2π , (4.90)

so that when the two square roots become coincident we jump directly from p(x) to p(x)+2π

precisely as when changing log branch. From the algebraic curve construction it is also

clear that if two branch-points collide we have p′(x) ∼ 1√
(x−a)(x−b)

≃ 1
x−a which integrated

leads to a log cut singularity.

Notice that since we must have a jump of 2π when we cross the cut the prefactor before

the log in (4.89) must be 1/i. This fixes the leading order expression

E − J +Q =
1

2πi
(X+ −X−) +O(δ2) (4.91)

for the energy as a function of the log Branch-points. Therefore we have

p′(x) ≃ p′far(x) ≡
d

dx

(

2πEx
x2 − 1

+
1

i
log

x−X+

x−X−

)

, |x−X+|, |x−X−| ≫ δ . (4.92)

Since the quantity inside brackets is already decaying as x → 1/x one might be tempted

to identify it with the quasi-momenta pfar(x). Actually we need to be more careful. For

solutions with zero worldsheet momentum,

0 =

2π
∫

0

g−1∂σg ⇒ P exp



−
2π
∫

0

dσg−1∂σg



 = g(2π)g−1(0) = 1 . (4.93)

Hence, from (4.66),

Ω(x)
x→∞−→ 1 (4.94)

which means pi(x) → 0. However the GM solution describes an open string whose end-

points lie on the equator of S3, seperated by an angle p [90]. For this non-periodic solution,

the quasi-momenta at infinity are related to p and

pfar(x) =
∆

2g

x

x2 − 1
+

1

i
log

x−X+

x−X−
+ τ (4.95)
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with [17] τ = −p/2 = i
2
log X+

X− . Moreover the inversion symmetry reads

p̃1(x) = p̃2(0) + τ − p̃2(1/x) (4.96)

where we recall that p̃2(x) = p(x) in this section.

Close to the branch-points a and b given in (4.88), the quasi-momentum (4.86) becomes

p′(x) ≃ p′close(x) ≡
1

√

(x−X+ − δ
2
)(X+ − δ

2
− x)

, |x−X+| ≪ 1 , (4.97)

where we used again the leading order expression for the energy (4.91). Note that up to an

overall constant this expression is obvious, as this is the only function that has the correct

branch-cut. Imposing the same asymptotics for the overlap region δ ≪ x−X+ ≪ 1 as p2̃

in (4.97) fixes the overall factor in this expression. Alternatively we could fix this constant

from p(b)− p(a) =
∫ b

a
p′dx = π which is precisely what we used above to find the prefactor

of the log.

As we explained below, the classical energy, total filling fraction and momenta of this

solution, obtained by integrating the quasi-momenta with suitable measures around the

two cuts, will be given by

∆− J =
g

i

(

X+ −
1

X+
− δ2

8(X+)3

)

+ c.c. ,

Q =
g

i

(

X+ +
1

X+
+

δ2

8(X+)3

)

+ c.c. , (4.98)

P =
1

i

(

logX+ −
δ2

16(X+)2

)

+ c.c. .

Finally, δ is fixed by imposing the B-cycle condition
∫ a

∞ p′ = πn, which yields [99]7

δ2 = 16(X+ −X−)2 exp

(

−2iτ − i4π∆√
λ

X+

(X+)2 − 1

)

. (4.99)

These relations allow to parametrize the branch-points X± in terms of Q and P . In

particular, for Q = Q/
√
λ→ 0 we obtain [100]

E ≃ 4g sin
p

2

(

1− 4 sin2 p

2
e
− ∆

2g sin
p
2 + . . .

)

(4.100)

For general Q and to leading order we obtain the Dyonic Giant Magnon dispersion relation

[96]

ǫ∞(p) =

√

Q2 +
λ

π2
sin2 p

2
. (4.101)
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Figure 4.9: Integration regions. In the yellow region (4.95) holds whereas in the blue region the

quasi-momenta is given by (4.97). In the overlapping green region both expressions can be used.

Derivations

We now provide the details for the results in the last subsection. First let us consider δ2. It

is determined by fixing the B-cycle integral. We will compute this integral using different

approximations to the quasi-momentum, depending on how far the integration point is

from the branch-point

πn =

a
∫

∞

p′ =

c
∫

∞

p′far +

a
∫

c

p′close , (4.102)

where c = X+ + ǫ is an arbitrary point in the overlapping region δ ≪ |x −X+| ≪ 1, i.e.

δ ≪ ǫ≪ 1 as depicted in figure 4.9. Evaluating the integrals yields

πn ≃
[

2πEX+

(X+)2 − 1
+

1

i
log

ǫ

X+ −X− + τ

]

+

[

1

i
log

δ

4ǫ

]

. (4.103)

Here τ is the value of the quasi-momenta at infinity. As required, the dependence on ǫ

cancels and we obtain δ as function of X± in (4.99).

Next we derive the expressions for the charges from the general relations

∆− J =
g

2πi

∮

dx p′(x)

(

x− 1

x

)

7The twist τ is fixed as in the appendix of [17].
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Q =
g

2πi

∮

dx p′(x)

(

x+
1

x

)

P =
1

2πi

∮

dx p′(x) log x . (4.104)

For this purpose we write

∮

dx p′(x)f(x) =

∮

dx p′far(x)f(x) +

∮

dx
(

p′(x)− p′far(x)
)

f(x) . (4.105)

The first term obviously yields the leading order charges (4.98). The second term can

be evaluated by deforming the contour to the region where the integrand is singular, i.e.

x ∼ X+. In this region p2̃ can be approximated by pclose

∮

dx
(

p′2̃(x)− p′far(x)
)

f(x) ≃
∮





1
√

(x−X+ − δ
2
)(X+ − δ

2
− x)

− i

x−X+



 f(x)+c.c. ,

(4.106)

and the contour integral encircles all the poles of the integrand. The integrals can be easily

computed and yield (4.98).

This ends this chapter. We analyzed the general classical algebraic construction and

finished with an application of the formalism to the study of the classical Giant Magnon

solution including the exponential corrections in the angular momentum J . In the next

chapter we move to the study of the string semi-classical quantization. As an example we

will come back to the Giant-Magnon solution and quantize the string around this classical

motion always keeping track of the exponential corrections. As explained in section 6.3

these exponential corrections can actually be used to check, in a very non-trivial way, the

world-sheet scattering S-matrix.



Chapter 5

Quantum Fluctuations

This chapter is devoted to the study of the semi-classical quantization of type IIB strings

in AdS5 × S5 around any possible classical motion.

When we expand the superstring action around some classical solution, characterized

by some conserved charges, we obtain, for the oscillations, a quadratic lagrangian whose

quantization yields the semiclassical spectrum

E(λ, {NA,n}) = Ecl + E0 +
∑

A,n

NA,n EA,n , (5.1)

where NA,n is the number of excited quanta with energy EA,n. The subscript A labels the

several possible string polarizations we can excite while the mode number n is the Fourier

mode of the quantum fluctuation. The classical energy is is Ecl and E0 is the ground state

energy. The classical energy is of order
√
λ while the last two terms are of order 1 and are

the analogues of 1
2
ω and Nω in the Harmonic oscillator example (4.4).

Of course, the ground state and fluctuation energies in any quantum field theory are

related, in the same way that if we know the level spacing ω for the Harmonic oscillator

we infer the ground state energy 1
2
ω. For a field theory we have an infinite number of

fluctuation energies and thus the one loop shift is given by a (graded) sum of halved

fluctuation energies,

E0 =
1

2

∑

A,n

(−1)FAEA,n (5.2)

where (−1)FA = ±1 for a bosonic/fermionic excitation.

In this chapter we will concentrate on the problem of using the algebraic curve formalism

described in the previous chapter to compute the fluctuation energies around any classical

solution.

Let us explain the idea behind the computation. There are basically two main steps

involved. First we construct the curve associated with the classical trajectory around which

we want to consider the quantum fluctuations. This will be some Riemann surface with

some cuts uniting some of the eight sheets. The second step consist of considering the small

excitations around this classical solution in the spirit of [93]. In terms of the algebraic curve

this consists of adding microscopic cuts to this macroscopic background. These small cuts

can be treated as a finite number of poles whose residue we know [66, 35, 11], just like in
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Figure 5.1: Some configuration of poles on the algebraic curve corresponding to the S5 excitations

(red) and AdS5 excitations (blue). Black line denotes poles at ±1, connecting 4 sheets with equal

residues. The crosses correspond to the residue +α(x), while circles to residue −α(x). Physical

domain of the surface lies outside the unit circle.

the simple example (4.2). Then, by construction, the energy of the perturbed configuration

is quantized as in (5.1). We must stress that the knowledge of the residue (4.27), of utmost

importance, is the only extra input we needed to compute the quasi-classical spectrum.

The several possible choices of sheets to be connected by these poles correspond to the

several possible polarizations of the superstring, i.e. to the different quantum numbers.

The 16 physical excitations are the 4+4 modes in AdS5 and S5 (fig 5.1) plus the 8 fermionic

fluctuations (fig 5.2).

Let us give a bit more of flavor to this discussion. As anticipated in the previous

chapter, the equations describing the eight sheet quasi-momenta can be discretized [66, 35]

yielding a set of Bethe ansatz equations for the roots xi making up the cuts. Roughly

speaking, the resulting equations resemble (4.5) with an extra 2πni in the left hand side

∑

j 6=i

1

xi − xj
= 2πni + V (xi) .

This means that we can think of xi as being the position of a particle interacting with

many others via a two-dimensional Coulomb interaction, placed in an external potential

and feeling an external force 2πni. What we are then doing is first considering a large

number of particles which will condense in some disjoint supports – the cuts – with each

cut being made out of particles with the same mode number ni. Then we add an extra

particle with some other mode number n. At leading order, two things happen. The

particle will seek its equilibrium point in this background and will backreact, shifting the
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Figure 5.2: Some configuration of poles on the algebraic curve corresponding to the 8 fermionic

excitations. Black line denotes poles at ±1, connecting 4 sheets with equal residues. The crosses

correspond to the residue α(x), while circles to residue −α(x). Physical domain of the surface

lies outside the unit circle.

background slightly by its presence [78, 93]. The (AdS global time) energy E of the new

configuration is then shifted. When adding N particles we get precisely the quantum steps

in the spectrum, i.e. (5.1).

Technically the computations can be divided into two main steps. In what follows we

will use the notation (4.30) intensively. One must satisfy

(pi + δpi)
+ − (pj + δpj)

− = 2πn , x ∈ Cij (5.3)

for all cuts of the Riemann surface where p is the quasi-momenta associated with the

classical solution, δp is the perturbation and, therefore, p+ δp is the quasi-momenta of the

perturbed algebraic curve.

• When applied to the microscopic cut, i.e. pole, equation (5.3) gives us, to leading

order, the position xijn of the pole,

pi(x
ij
n )− pj(xijn ) = 2πn, |xijn | > 1 , (5.4)

where i < j take values 1̂, 2̂, 3̂, 4̂, 1̃, 2̃, 3̃, 4̃ and indicate which two sheets share the

pole. We refer to domain |x| > 1 as physical domain. The interior of the unit circle

is just the mirror image of the physical domain, as we saw in the previous chapter,

(4.59).

• Then, to find δp and, in particular, the energy shift δE, we must solve the same

equations but now in the macroscopic cuts

δp+
i − δp−j = 0 , x ∈ Cijn . (5.5)
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This linear problem is to be supplemented with the known analytical properties of

δp(x) namely the asymptotic behavior presented below and the simple pole singular-

ities with residues (4.27). In this way we are computing the backreaction described

above.

Before proceeding it is useful to introduce some simple notation. We shall consider N ij
n

excitations with mode number n between sheet pi and pj such that

Nij ≡
∑

n

N ij
n

is the total number of poles connecting these two sheets. Moreover, each fluctuation has

its own quantum numbers according to the global symmetry. The S5, AdS5 and fermionic

quanta can then be identified as the several possible choices of sheets to be connected, see

figs 5.1 and 5.2,

S5 , (i, j) = (1̃, 3̃), (1̃, 4̃), (2̃, 3̃), (2̃, 4̃)

AdS5 , (i, j) = (1̂, 3̂), (1̂, 4̂), (2̂, 3̂), (2̂, 4̂)

Fermions , (i, j) = (1̃, 3̂), (1̃, 4̂), (2̃, 3̂), (2̃, 4̂), (5.6)

(1̂, 3̃), (1̂, 4̃), (2̂, 3̃), (2̂, 4̃)

The 16 physical degrees of freedom of the superstring are precisely these 16 elementary

fluctuations, also called momentum carrying excitations [55, 87].

When adding extra poles to the classical solutions its energy will be shifted by

δE = δ∆ +
∑

AdS5

Nij +
1

2

∑

Ferm

Nij , (5.7)

where we isolated the anomalous part δ∆ of the energy shift from the trivial bare part.

Then, it is convenient to recast (4.60), for the quantum perturbations, as

δ





























p̂1

p̂2

p̂3

p̂4

p̃1

p̃2

p̃3

p̃4





























≃ 4π

x
√
λ





























+δ∆/2 +N1̂4̂ +N1̂3̂ +N1̂3̃ +N1̂4̃

+δ∆/2 +N2̂3̂ +N2̂4̂ +N2̂4̃ +N2̂3̃

−δ∆/2 −N2̂3̂ −N1̂3̂ −N1̃3̂ −N2̃3̂

−δ∆/2 −N1̂4̂ −N2̂4̂ −N2̃4̂ −N1̃4̂

−N1̃4̃ −N1̃3̃ −N1̃3̂ −N1̃4̂

−N2̃3̃ −N2̃4̃ −N2̃4̂ −N2̃3̂

+N2̃3̃ +N1̃3̃ +N1̂3̃ +N2̂3̃

+N1̃4̃ +N2̃4̃ +N2̂4̃ +N1̂4̃





























(5.8)

These filling fractionsNn
ij are not independent. Any algebraic curve must obey the Riemann

bilinear identity (see eqs. 3.38 and 3.44 in [87]). Since this was already the case for the
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classical solution around which we are expanding, the new filling fractions are constrained

by
∑

n

n
∑

All ij

N ij
n = 0 , (5.9)

which is nothing but the string level matching condition in the algebraic curve language.

It is also important to note that the sign of the residues can be summarized by the

following formula

res
x=xij

n

p̂k =
(

δik̂ − δjk̂
)

α(xijn )N ij
n , res

x=xij
n

p̃k =
(

δjk̃ − δik̃
)

α(xijn )N ij
n , (5.10)

with k = 1, 2, 3, 4 and i < j taking values 1̂, 2̂, 3̂, 4̂, 1̃, 2̃, 3̃, 4̃, as summarized in figs 5.1 and

5.2.

The poles of the shifted quasi-momenta must still be synchronized as in (4.68) which

means

{δp̂1, δp̂2, δp̂3, δp̂4|δp̃1, δp̃2, δp̃3, δp̃4} ≃
{δα±, δα±, δβ±, δβ±|δα±, δα±, δβ±, δβ±}

x± 1
, (5.11)

and the inversion symmetry (4.59) must hold for the perturbed curve so that

{δp̂1(1/x), δp̂4(1/x)|δp̃1(1/x), δp̃4(1/x)} = −{δp̂2(x), δp̂3(x)|δp̃2(x), δp̃3(x)} . (5.12)

We must stress again than when we add a quantum fluctuation to the curve only two

quasi-momenta get a pole (in the physical region) but in general, all the quasi-momenta

will be shifted because of the back-reaction. This shift must be such that the analytical

properties just enumerated are satisfied.

We can already notice that, using this procedure, one relies uniquely on considerations

of analyticity and need not introduce any particular parametrization of the group element

g(σ, τ) for the fluctuations around the classical solution, contrary to what is usually done

in this type of analysis [101, 102, 94, 103]. It is also nice to see that the fermionic and

bosonic frequencies appear, in our approach, on a completely equal footing, both corre-

sponding to simple poles which differ only by the sheets they unite - see figs 5.1 and 5.2.

Finally, in principle, we can apply our method to any classical solution whereas the same

generalization seems to be highly non-trivial to do directly from the string action since

we no longer have a simple field redefinition to make it time and space independent as in

[102, 103]. Instead, from the action point of view, we must consider the generalization of

the fluctuation energies to what is called the stability angles and the treatment quickly

becomes highly involved.

In the next sections we will compute the fluctuations energies around the BMN point like

string and around the simple circular string described in section 4.4. This will illustrate

the kind of analyticity arguments involved in this sort of computations. In section 5.5
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we present a more powerful (complementary) method based on the notion of off-shell

fluctations energies. We will explain that for most classical solutions of interest – including

in particular all SU(2) solutions – we can obtain the full semi-classical spectrum with all

the sixteen excitations from the knowledge of two fluctuation energies alone (for example

one in S5 and another in AdS5). In the last section we apply this efficient method to the

study of the SU(2) two cut solution considered before in section 4.5.2.

5.1 The BMN string

In this section we shall consider the simplest possible solution amongst the family of circular

strings presented in section 4.4.1 – the rotating point like BMN string [104] moving around

a big circle of S5. For this solution the quasi-momenta are given by (4.44). This is indeed

the simplest 8 sheet algebraic curve we could have built – it has neither poles nor cuts

connecting its sheets other than the trivial ones at x = ±1 (4.68).

We shall now study the quantum fluctuations around this solution. We will do it using

a few different methods which will be useful for latter discussions of the string quantization

around more complicated classical configurations.

To consider the 16 types of physical excitations we add all types of poles on the fig 5.1

and 5.2. From (5.4) we find that the poles in the physical domain with |x| > 1, for this

simple case, are all located at the same position

xijn = xn =
1

n

(

J +
√

J 2 + n2
)

, (5.13)

which follows from
4πJ xn
x2
n − 1

= 2πn . (5.14)

Now we must find the quasi-momenta p(x) + δp(x). About δp(x) we know that

• it has poles located at (5.13) with residues (5.10) connecting the several sheets,

• must obey the x→ 1/x inversion symmetry property (5.12),

• must have simple poles at x = ±1 with residues grouped as in (5.11),

• decays as 1/x at large x as prescribed in (5.8).

Notice that for this simple solution there are no singularities other than poles so the δpi
are simple rational functions which (as any rational function) are uniquely fixed by their

asymptotics and singularities.

We will first do this computation considering only the S3 fluctuations corresponding to

the polarization 2̃3̃. Next we will study the AdS3 ones with polarization 2̂3̂ and finally we

will consider the general case.
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5.1.1 S3 excitations

Here we consider only excitations between p̃2 and p̃3. To render the expressions simpler we

can now drop the polarization index in N ij
n and xijn because they are always ij = 2̃3̃. The

quasi-momenta can have poles at x = ±1, and x = xn and must decay as 1/x at infinity.

The most general expression we can write is

δp̃2(x) =
δα+

x− 1
+

δα−
x+ 1

−
∑

n

α(xn)Nn

x− xn

δp̃3(x) =
δβ+

x− 1
+

δβ−
x+ 1

+
∑

n

α(xn)Nn

x− xn

δp̂2(x) =
δα+

x− 1
+

δα−
x+ 1

δp̂3(x) =
δβ+

x− 1
+

δβ−
x+ 1

where the residues at x = ±1 were already synchronized as in (5.11). The remaining

quasi-momenta are not free but given by the inversion symmetry (5.12). Now we will fix

all these constants from the several asymptotics. From (5.8) we see that

δp̂2(x),−δp̂3(x) ≃
2πδE
x

(5.15)

which means

δα+ + δα− = −δβ+ − δβ− = 2πδE . (5.16)

The same asymptotics must hold for δp1(x) = −δp2(1/x) and for δp4(x) = −δp3(1/x) and

this yields δα+ = δα− and δβ+ = δβ− so that1

δp̃2(x) = −δp̃3(x) =
2πδEx
x2 − 1

−
∑

n

α(xn)Nn

x− xn
, (5.17)

δp̂2(x) = −δp̂3(x) =
2πδEx
x2 − 1

. (5.18)

Now we consider the large x asymptotics of the sphere quasi-momenta. From (5.8), one

has

δp̃2(x),−δp̃3(x) ≃
∑

n

4πNn√
λ

1

x
(5.19)

1When we only add S3 quantum fluctuations to the BMN string we are simply studying a solution

in the S3 sector and therefore the hatted quasi-momenta ought to be as in (4.69) and p̃2 = −p̃3 as

explained in section 4.5.1. Thus (5.17) and (5.18) could have well been our starting point. We chose to

do some unnecessary and repeated work in order to provide us with some training concerning the kind of

manipulations involved in the study of algebraic curves.
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which leads to

2πδE =
∑

n

Nn

(

α(xn)−
4π√
λ

)

(5.20)

so we could be tempted stop here and move to the AdS3 fluctuations. This would be

premature since, as we will soon see, the remaining conditions still have some juice to

extract. For example notice that we already anticipated in (4.27) what the function α(x)

is but we will see that this can actually be derived.

Let us check the asymptotics of δp̃1(x) = −δp̂2(1/x) and δp̃4(x) = −δp̂3(1/x). For the

former one finds

δp̃1(x) ≃ −
∑

n

Nn
α(xn)

xn
+

(

2πδE −
∑

n

Nn
α(xn)

x2
n

)

1

x
(5.21)

but from (5.8) we see that δp1 should decay as 1/x2! From the cancelation of the 1/x term,

combined with (5.20), we get

∑

n

Nn
α(xn)

x2
n

=
∑

n

Nn

(

α(xn)−
4π√
λ

)

(5.22)

from which we derive

α(x) =
4π√
λ

x2

x2 − 1
(5.23)

which is precisely the residue condition (4.27). The algebraic curve knows about how to

quantize itself! The cancelation of the constant term in (5.21) can be written as
∑

n

Nn
xn

x2
n − 1

= 0 (5.24)

but, from (5.14), this is nothing but the string level matching condition
∑

n

Nnn = 0 . (5.25)

Thus we get

δ∆ =
∑

n

NnΩBMN (xn) (5.26)

where

ΩBMN (x) =
2

x2 − 1
(5.27)

Using (5.13) one finds

δ∆ =
∑

n

Nn

(

√

1 +
n2

J 2
− 1

)

(5.28)

where we recognize the famous BMN frequencies [104] in the anomalous part of the energy

shift.
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5.1.2 AdS3 excitations

Let us now consider excitations connecting p̂2 and p̂3. Again we omit the polarization

index and write the ansatz

δp̃2(x) =
δα+

x− 1
+

δα−
x+ 1

(5.29)

δp̃3(x) =
δβ+

x− 1
+

δβ−
x+ 1

(5.30)

δp̂2(x) =
δα+

x− 1
+

δα−
x+ 1

+
∑

n

α(xn)Nn

x− xn
(5.31)

δp̂3(x) =
δβ+

x− 1
+

δβ−
x+ 1

−
∑

n

α(xn)Nn

x− xn
(5.32)

The computation of the AdS fluctuations is actually much more trivial than the one in the

previous section and

δα± = δβ± = 0

because we need δp̃j for j = 1, 2, 3, 4 to decay as 1/x2 at infinity. Physically this is quite

clear. We add a fluctuation inside AdS5 so there is no shift for the S5 quasi-momenta,

δp̃j = 0. Notice that the reverse is not true because of the Virasoro constraints. There are

physical fluctuations which live purely in the AdS space but not in the sphere due to the

signatures of both spaces.

As before, from the asymptotics of the hatted quasi-momenta we would derive again

the value of α(x), the level matching condition and, for the spectrum, we would get exactly

the same expressions (5.26) and (5.28).

5.1.3 Full spectrum

From the requirements listed in the beginning of this section, one can easily write the form

of δpj for a general perturbation of the BMN quasi-momenta. For example

δp̂2 = â+
δα+

x− 1
+

δα−
x+ 1

+
∑

i=3̂,4̂,3̃,4̃

∑

n

α(x2̂i
n )N 2̂i

n

x− x2̂i
n

−
∑

i=3̂,4̂,3̃,4̃

∑

n

α(x1̂i
n )N 1̂i

n

1/x− x1̂i
n

(5.33)

δp̂3 = b̂+
δβ+

x− 1
+

δβ−
x+ 1

−
∑

i=1̂,2̂,1̃,2̃

∑

n

α(x3̂i
n )N 3̂i

n

x− x3̂i
n

+
∑

i=1̂,2̂,1̃,2̃

∑

n

α(x4̂i
n )N 4̂i

n

1/x− x4̂i
n

(5.34)

where â, b̂ and δα±, δβ± are constants to be fixed and the last terms ensure the right poles

in physical domain for δp̂1,4(x) = −δp̂2,3(1/x). Notice that it is no longer true that the

quasi-momenta automatically decay as 1/x at large x and that is why constant terms need
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to be included. Similar expressions can be immediately written down for δp̂2,3 with the

introduction of two new constants ã and b̃,

δp̃2 = ã+
δα+

x− 1
+

δα−
x+ 1

−
∑

i=3̂,4̂,3̃,4̃

∑

n

α(x2̃i
n )N 2̃i

n

x− x2̃i
n

+
∑

i=3̂,4̂,3̃,4̃

∑

n

α(x1̃i
n )N 1̃i

n

1/x− x1̃i
n

(5.35)

δp̃3 = b̃+
δβ+

x− 1
+

δβ−
x+ 1

+
∑

i=1̂,2̂,1̃,2̃

∑

n

α(x3̃i
n )N 3̃i

n

x− x3̃i
n

−
∑

i=1̂,2̂,1̃,2̃

∑

n

α(x4̃i
n )N 4̃i

n

1/x− x4̃i
n

(5.36)

and δp̃1,4(x) = −δp̃2,3(1/x).

At this point we are left with the problem of fixing the eight constants

â, b̂, ã, b̃, δα+, δα−, δβ+, δβ− .

This is precisely the number of conditions one obtains by imposing the 1/x behavior at

large x for the quasi-momenta (5.8) . The asymptotic of p̂2, p̂3, p̃2, p̃3 fix the first four

constants,

â = −
∑

n

2πn√
λJ

∑

i=3̂,4̂,3̃,4̃

N 1̂i
n , b̂ = +

∑

n

2πn√
λJ

∑

i=1̂,2̂,1̃,2̃

N 4̂i
n ,

ã = +
∑

n

2πn√
λJ

∑

i=3̂,4̂,3̃,4̃

N 1̃i
n , b̃ = −

∑

n

2πn√
λJ

∑

i=1̂,2̂,1̃,2̃

N 4̃i
n ,

while the remaining four equations, solvable only if the level matching condition (5.9) is

satisfied, fix the remaining coefficients,

δα+ − δα− = −
∑

n

2πn√
λJ

∑

i=3̂,4̂,3̃,4̃

∑

j=1̂,2̂

N ij
n ,

δβ+ − δβ− = −
∑

n

2πn√
λJ

∑

i=3̂,4̂,3̃,4̃

∑

j=3̃,4̃

N ij
n .

yielding

δ∆ =
∑

All ij

∑

n

N ij
n ΩBMN (xijn ) (5.37)

which using (5.13) gives

δE =
∑

All ij

∑

n

√
n2 + J 2 − J
J N ij

n +
∑

AdS5

N ij +
1

2

∑

Ferm

N ij . (5.38)
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5.1.4 BMN string fluctuation energies and analyticity

It is possible to derive the fluctuation energies from simple analyticity arguments and that

is what we shall now do. This method can be generalized to more complicated solutions

and we will exemplify it on the circular string studied in the next section.

The idea is that we should think of the fluctuation energies as

E ijn = Ωij(y)y=xij
n
. (5.39)

In other words, we first compute the energy shift when we perturb the algebraic curve by

adding an extra pole at x = y shared between the quasi-momenta pi and pj to find

Ωij(y) (5.40)

which depends only on the choice of sheets (i, j). We denote these quantities by off-shell

fluctuation energies. Then we fix the position of the fluctuation y by the map (5.13)

pi(y)− pj(y) = 2πn (5.41)

which gives

y = xijn , (5.42)

and thus (5.39).

From the definition of Ωij(y) it is clear that this quantity will have no singularity as a

function of y unless y approaches some dangerous points like ±1 or some of the branch-

points of the classical algebraic curve. Thus, the singularities in E ijn as a function of n must

come from the map (5.41). For example the loci n∗ where

pi(y
∗)− pj(y∗) = 2πn∗

with

p′i(y
∗)− p′j(y∗) = 0 (5.43)

are examples of such singular points of the map n→ xijn . For n ≃ n∗ one has

n− n∗ ∼ (y − y∗)2 (5.44)

while in the y plane nothing special happens when we pass this point so that

Ωij(y) ≃ Ωij(y∗) +
dΩij

dy
(y∗)(y − y∗) (5.45)

which means that

E ijn ≃ A+B
√
n− n∗ , (5.46)
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Figure 5.3: Typical analytical structure of the excitation energies as a function of the

mode number n. The branchpoints associated to the cuts going to infinity are large if

some charge of the classical solution is large. There could also be extra cuts in the n plane.

as n approaches n∗.

Let us apply these considerations to the BMN string described by the quasi-momenta

(4.44). Here there are no cuts at all so the singularities must come from the points where

(5.43) holds which in this case means

d

dx

(

x

x2 − 1

)

= 0 ⇒ x = ±i (5.47)

which for the quasi-momenta yields

pi(±i)− pj(±i) = ±2πiJ (5.48)

so that n∗ = ±iJ .

If the world-sheet time τ and the target-space global time t are related by t = κτ then,

for large n, all fluctuation energies must behave like 1
κ

√
n2. For solutions moving in the

sphere only we have moreover κ = E , the energy of the string. For the BMN string we have

κ = E = J . This large n behavior means that there should always exist two branch-points

somewhere in the complex n plane. Adding to these there could in general exist more

branch cuts as depicted in figure 5.3.

For the BMN string we found no extra singularities apart from the two branch points

at n∗ = iJ and thus we conclude that

E ijn =

√

1 +
n2

J 2
− 1 (5.49)
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where the constant term was added to have E ij0 = 0 – a property we expect for the

fluctuation energies since for n = 0 they should correspond to the zero modes associated

with the PSU(2, 2|4) global symmetries of the theory. Expression (5.49) yields precisely

the BMN spectrum we found in the previous section.

5.1.5 BMN SU(2) frequencies from quasi-energy.

So far we explained how the quasi-momenta can be used to compute the fluctuation ener-

gies. In [105] Vicedo explained how the quasi-energy can be used to find the S3 fluctuation

energies for string solutions moving in the three-sphere and point-like w.r.t the AdS space.

In this case we have p̃2 = −p̃3 = p as explained in section (4.5.1). This is of course the case

for the BMN string. The formalism in [105] is based on an extra function, the quasi-energy

q(x). This function is characterized by having the same cuts as the classical quasi-momenta

p(x) and also two simple poles at x = ±1. The key difference is that the residues at these

points should be given by

q(x) ≃ ∓ α

x± 1
if p(x) ≃ α

x± 1
. (5.50)

Then, according to [105], the fluctuation energies are simply

ES3

n =
1

2πE q(xn) (5.51)

where the position xn is fixed by the usual relation

p(xn) = πn . (5.52)

For the BMN string we have

p(x) =
2πJ x
x2 − 1

(5.53)

and to find the quasi-energy we simply take out the x in the numerator so that the residues

at x = ±1 become of opposite signs,

q(x) =
2πJ
x2 − 1

. (5.54)

Then, from (5.51) and (5.52),

ES3

n =
1

x2
n − 1

=

√

1 +
n2

J 2
− 1 (5.55)

as found in the previous sections.
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5.2 Physical polarizations

In this section we will explain why (5.6) corresponds to the proper choice of physical

polarizations. This section can be skipped in a first reading but it might be useful as a

companion to section 6.2.2 in the last chapter.

In the previous section we computed the full set of sixteen physical fluctuations around

the BMN point-like string. Each physical fluctuation is obtained by adding a pole at

position xn found from

pi(xn)− pj(xn) = 2πn (5.56)

to a given pair of quasi-momenta pi and pj. Physical polarizations are obtained when pi
belongs to the set {p̃1, p̃2, p̂1, p̂2} whereas pj is a quasi-momenta in the list {p̃3, p̃4, p̂3, p̂4},
see table (5.6).

A simple reason for choosing these pairing of quasi-momenta is because no other choice

is possible as we will now explain. First of all, if the quasi-momenta pi and pj belong to

the sets we just mentioned, one has

pi(xn)− pj(xn) =
4πJ xn
x2
n − 1

(5.57)

and pi(xn) − pj(xn) = 2πn can be solved for any n. On the other hand, if the two quasi-

momenta belong to the same set, for example {p̃1, p̃2, p̂1, p̂2}, we obtain

pi(xn)− pj(xn) = 0 , (5.58)

and there is no background potential to fix the position of the particle. Thus the only

possible choices are indeed those listed in (5.6).

An alternative way to see that other polarizations are not compatible with the algebraic

curve is to try to compute δpi for unphysical polarizations and obtain some impossible

conditions. For example, if we try to repeat the computation in section 5.1.2 for fluctuations

connecting p̂1 and p̂2. For such fluctuations we expect

δ


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


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










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p̂1

p̂2

p̂3

p̂4

p̃1
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



























≃ 4π

x
√
λ
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
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




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





+δ∆/2 +N1̂2̂

+δ∆/2−N1̂2̂

−δ∆/2
−δ∆/2
0

0

0

0





























which is impossible to satisfy: Since we do not want to perturb the tilded sphere quasi-

momenta δp̃j, we should not have poles at x = ±1 for the anti-de-Sitter hatted δp̂j’s
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because this would induce a perturbation in the former through (5.11). Moreover, since

there are no fluctuation poles connecting p̂3 or p̂4, they should have no poles at all. But

rational functions with no pole singularities and 1/x behavior at infinity do not exist and

we arrive at the above mentioned inconsistency.

All this discussion concerns the BMN point-like string corresponding to the vacuum

algebraic curve with no cuts at all. When we start exciting some cuts we will no longer

have (5.58) for unphysical polarizations. Still, by continuity, this difference will be bounded

around zero and we will still find no solutions to pi(xn) − pj(xn) = 2πn if we chose an

unphysical polarization (i, j). On the other hand, if the cuts are big enough, it might well

be that the unphysical difference pi(x) − pj(x) will touch 2π or −2π for some x. In this

case a physical fluctuation connecting this pair of sheets would exist at this point x. What

happens is that as we increase the filling fraction of the cuts, a physical fluctuation which

was connecting a pair of physical momenta can enter the cut and become what we would

normally call an unphysical polarization as depicted in figure 6.2, see also [15]. Note that

going through a cut is an absolutely smooth procedure and therefore no non-analyticity

arises at all.

Anyway, in the worst case scenario we will have a finite number of fluctuations connect-

ing such unphysical pairs of sheets. Most fluctuation energies will still be obtained when

considering the physical polarizations (5.6). For each choice in this list we will always find

an infinite number of physical fluctuations obtained by adding extra poles to the algebraic

curve at the positions found from (5.56). In particular, in principle we can use this infinite

set of fluctuation energies to compute E ijn as an analytic function of n. Thus, do we need

to care if, for a finite number of mode numbers n, the fluctuations actually went through

some of the cuts and now connect unphysical pairs of quasi-momenta? No. If we already

have E ijn we simply evaluate this function at those values of n.

So, when do we need to take into account these unphysical fluctuations? For example,

if we are using the algebraic curve to sum all fluctuation energies to compute the one-

loop shift (5.2). As explained in the next chapter this sum can be transformed into the

computation of some contour integrals in the algebraic curve encircling the positions of

all fluctuations. These integrals can then be deformed and in doing so we compute the

one-loop shift in a very efficient way. In this setup we must start off with the correct

integration contour and thus we should be careful about the possible existence of these

unphysical fluctuations, see section 6.2.2.

5.3 AdS fluctuations around strings moving in S5.

In this section we want to point out that for any solution with energy E moving in S5 and

point-like in AdS with t = Eτ (or in terms of the AdS embedding coordinates v6 + iv5 =
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eiEτ ) the AdS fluctuation energies are always trivial to compute and simply given by

EAdSn =

√

1 +
n2

E2
− 1 . (5.59)

Let us explain why this is so from several equivalent arguments, one of them relying on the

direct expansion of the string action and the other two using the algebraic curve language:

• First of all (5.59) is clear from the expansion of vj → vj + δvj in the action (2.9).

From the Virasoro coupling of the AdS5 and S5 motion it is easy to see that the

Lagrange multiplier before the v · v − 1 constraint is given by E2 and therefore the

expansion gives
√
n2 + E2 for the world-sheet energies in static gauge. Since t = Eτ

we obtain the announced expression for the target space energy.

• From the point of view of the algebraic curve this is equally manifest. Since the

AdS coordinates are simply v6 + iv5 = eiEτ , the AdS quasi-momenta read (4.69) as

explained in the end of section 4.5. To compute AdS fluctuation energies we add a

pole shared by two of the hatted quasi-momenta. We do not want δp̂j to have poles

at x = ±1 because due to the Virasoro contrains (5.11) this would lead to δp̃j 6= 0.

Moreover (4.69) have no cuts at all. Thus, for example for a 2̂3̂ excitation we can

only have poles at x = xn and therefore we are lead to

δp̂2(x) = −δp̂3(x) =
∑

n

α(xn)Nn

x− xn
(5.60)

as for the BMN string. Hence, as before,

δ∆ =
∑

n

NnΩBMN (xn) (5.61)

where

ΩBMN (x) =
2

x2 − 1
. (5.62)

The only difference is that when computing xn we now have (5.14) with J replaced

by E and therefore (5.59) follows.

• Finally we could use the analyticity reasoning described for the BMN string in section

5.1.4. The singularities of the AdS frequencies

E ijn = Ωij(y)y=xij
n

(5.63)

will follow from the singularities of the map n→ xijn which for the AdS quasi-momenta

is the same as for the BMN string with J → E . Thus, as in section 5.1.4, we conclude

that the fluctuation energies have no singularities apart from two branch-points at

n∗ = ±iE and together with the known large n asymptotics this fixes (5.59).
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5.4 SU(2) Circular string

The next less trivial example is the simple su(2) rigid circular string [101] already encoun-

tered in the previous chapter. The quasi-momenta associated with this classical solution

are given by (4.48) and (4.49),

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2πx

x2 − 1





























+K(1)

+K(1)

−K(1)

−K(1)

+K(1/x)

+K(x)

−K(x)

−K(1/x)





























+





























0

0

0

0

0

−2πm
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, K(x) ≡
√

m2x2 + J 2. (5.64)

In this section we will compute two fluctuation energies associated with the S3 and

the AdS3 excitations. We will not compute the remaining fourteen (16− 2) polarizations

for two reasons. On the one hand because after the computation of the two fluctuation

energies the remaining excitations are easily found with only some very minor differences

in the actual computations. On the other hand, and more importantly, because as we will

explain in the next section it is possible to obtain all other fourteen fluctuation energies –

including the fermionic ones – from the knowledge of the S3 and AdS3 excitations alone.

5.4.1 Standard Computation Method

Suppose we want to compute the variation of the quasi-momenta δp(x) when a small pole is

added to a generic finite gap solution with some square root cuts. Since the branch points

will be slightly displaced we conclude that δp(x) behaves like ∂x0

√
x− x0 ∼ 1/

√
x− x0

near each such point.

Here we are dealing with a 1-cut finite gap solution. Then, for δp̃2, we can assume the

most general analytical function with one branch cut, namely f(x) + g(x)/K(x) where f

and g are some rational functions and K(x) is the square root in (5.64). To obtain δp̃3 it

suffices to notice that (5.5) is simply telling us that δp̃3 is the analytical continuation of δp̃2

through the cut. This is a fancy way of saying that K(x)→ −K(x). The remaining quasi-

momenta δp̃1,4 can then be obtained from these ones by the inversion symmetry (5.12).

We conclude that

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. (5.65)
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The only singularities of δp̃2 apart from the branch cut are eventual simple poles at ±1

and xn and so the same must be true for f(x) and g(x). Then, just like in the previous

example, these functions are uniquely fixed by the large x asymptotics (5.8) and by the

residues at xn (5.10) of the quasi-momenta.

Finally, since the AdS5 part of the quasi-momenta of the non-perturbed finite gap

solution has no branch-cuts, their variations δp̂i have the same form (5.33),(5.34) as for

the simplest BMN string.

The AdS5 fluctuations were already treated in a much more general setup in the previous

section. We find

EAdSn = ΩBMN (xijn ) , ΩBMN (y) =
2

y2 − 1
(5.66)

or (5.59).

Next we consider the S5 fluctuations. We must now analyze the shift in quasi-momenta

due to the excitation of the algebraic curve by the four type of poles (1̃3̃, 2̃4̃, 2̃3̃, 1̃4̃). We will

only study the excitation 2̃3̃ in detail. As mentioned above we will be able to reproduce all

these fluctuations together with the fermionic ones from the knowledge of the single AdS

fluctuation energy determined above plus the S3 excitation 2̃3̃ which we will now compute.

As for the BMN string we omit the polarization superscript 2̃3̃ from the occupation

numbers N 2̃3̃
n and from the pole positions x2̃3̃

n .

Since the AdS quasi-momenta are trivial, with no cuts, we obtain for δp̂ the same kind

of expression we had for the BMN string (4.44), that is

δp̂1,2 = −δp̂3,4 =
2πδE√

λ

x

x2 − 1
. (5.67)

Due to the Virasoro constraints, the poles at x = ±1 in the AdS5 and S5 sectors are

synchronized as in (4.68). Thus, we merely need to fix f(x) and g(x) from the large

x asymptotics (5.8) and the residue condition (5.10) and then extract, from these two

functions, the residues at x = ±1.

For fluctuations connecting p̃2 to p̃3 the symmetry of the problem constrains δp̃2 = −δp̃3

and therefore f(x) = 0 as mentioned in section (4.5.1). Alternatively we can derive this

from the following simple reasoning:

f(x) =
1

2
(δp̃2(x) + δp̃3(x))

which means f(x) has no pole at x = xn. Moreover since the residues of δp̃2,3 at x = ±1 are

synchronized to those of δp̂2,3 as in (5.11) we see that f(x) has no poles at x = ±1 either.

Thus f(x) has no poles at all. Since it must vanish at infinity we conclude f(x) = 0.

The remaining function g(x) will then be given by

g(x) = −4πm√
λ

∑

n

Nn +
πEK(1)

x− 1
+
πEK(−1)

x+ 1
−
∑

n

Nn
α(xn)K(xn)

x− xn
(5.68)
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All prefactors were fixed so that the residues at x = ±1 for δp̃2,3 are synchronized with

the AdS quasi-momenta as in (5.11) and in order to have the proper residues ∓α(xn) at

x = xn as required from (5.10). Finally, the first constant term was fixed by the large x

asymptotics for δp̃2(x).

Next we impose the large x asymptotics for δp̃1(x) = −δp̃2(1/x). This quasi-momentum

must decay at least at 1/x2. The cancelation of the 1/x term fixes the fluctuation energies

to be

E 2̃3̃
n = Ω̃(y)y=xn , Ω̃(y) =

√

m2y2 + J 2

√
m2 + J 2

2

y2 − 1
(5.69)

and setting the constant term to zero yields the level matching condition
∑

nNnn = 0.

To find E 2̃3̃
n as a function of the mode number n we simply need to solve p̃2(xn)−p̃3(xn) =

2πn and plug xn into the off-shell fluctuation energies to obtain

E 2̃3̃
n =

√

2J 2 + (n + 2m)2 − 2
√

J 4 + (n+ 2m)2(J 2 +m2) (5.70)

reproducing the result of [106].

In a similar way we could compute all the other fluctuation energies. Let us just

provide a glimpse of the reasonings involved. Take for example the fluctuations 1̃3̃. Since

the difference

δp̃3 = f(x)− g(x)/K(x)

must have a single pole at x1̃3̃
n with residue α(x1̃3̃

n ), whereas the sum

δp̃2 = f(x) + g(x)/K(x)

must be analytical, we infer the value of the residues of both f and g at this point. This line

of thought should be carried over for all the other excitations and for the points x = ±1.

Knowing the positions and residues of all possible poles we would write a similar ansatz

as in (5.68) for both f(x) and g(x) and the large x asymptotics would fix the energy as

above.

In similar lines we could study fermionic fluctuations. We would find the full spectrum

as

κ δE =
∑

n

(

N 1̃3̃
n +N 2̃4̃

n

)

(

ωSn+m − J
)

+N 2̃3̃
n ω

S−
n+2m +N 1̃4̃

n

(

ωS+
n − 2J

)

+
∑

n

(

N 1̂4̃
n +N 2̂4̃

n +N 3̂1̃
n +N 4̂1̃

n

)(

ωFn − J +
κ

2

)

+
∑

n

(

N 1̂3̃
n +N 2̂3̃

n +N 3̂2̃
n +N 4̂2̃

n

)(

ωFn+m −
κ

2

)

+
∑

n

(

N 1̂3̂
n +N 1̂4̂

n +N 2̂3̂
n +N 2̂4̂

n

)

ωAn , (5.71)
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Table 5.1: Simple su(2) frequencies computed in [101]

eigenmodes notation

S5

√

2J 2 + n2 ± 2
√
J 4 + n2J 2 +m2n2

√
J 2 + n2 −m2

ωS±
n

ωSn

Fermions
√
J 2 + n2 ωFn

AdS5

√
J 2 + n2 +m2 ωAn

with the notation introduced in the table. We notice the appearance of some minor constant

shifts and relabeling of the frequencies when compared to those in table 5.1. This point is

briefly discussed in appendix C.

5.4.2 Analytical power

In this section let us revisit the arguments in section (5.1.4) applied to this SU(2) circular

string. Again, we can find the singularities of the map pi(x)− pj(x) = 2πn by computing

the values of x∗ (and corresponding n∗) so that p′i(x
∗)− p′j(x∗) = 0. We obtain

x∗ n∗ (i, j)

±i ±
√
J 2 +m2 (1̂, 3̂), (1̂, 4̂), (2̂, 3̂), (2̂, 4̂)

±iJ /
√

m2 + J 2 m± iJ (1̂, 3̃), (2̂, 3̃), (2̃, 3̂), (2̃, 4̂)

±i
√

m2 + J 2/J 2m± iJ (1̂, 4̃), (2̂, 4̃), (1̃, 3̂), (1̃, 4̂)

±i m± i
√
J 2 −m2 (1̃, 3̃), (2̃, 4̃)

(5.72)

which covers fourteen out of sixteen fluctuation energies. It is easy to see that for those

fluctuations no more singularities arise. Thus, for example, from the last two lines we

conclude that there are two S5 fluctuation energies given by

1√
m2 + J 2

√

(n−m)2 + J 2 −m2 − J√
m2 + J 2

. (5.73)

Which is precisely the value in (5.71). In this way we can derive fourteen fluctuations

energies with almost no work at all! As for the BMN string there are two constants

in this expressions which we had to fix: the one multiplying the square-root and the

constant outside the square root. They are fixed so that Eij
0 = 0 (zero mode condition)

and Eij
n ≃ |n|/κ for large n.

The remaining two fluctuation energies corresponding to the polarizations 2̃3̃ and 1̃4̃

would require some more gymnastics. From (5.71) we see that these last two fluctuation
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energies are given by

E 2̃3̃
n =

1

E

√

2J 2 + (n + 2m)2 − 2
√

J 4 + (n+ 2m)2(J 2 +m2) . (5.74)

and

E 1̃4̃
n =

1

E

(
√

2J 2 + n2 + 2
√

J 4 + n2(J 2 +m2)− 2J
)

. (5.75)

We can check that the small square root inside the large square in each of these expressions

has branch-points for n∗ which precisely correspond to the loci where p̃′i − p̃′j = 0.

Additional singularities should be expected for x approaching the branch-points of the

classical quasi-momenta. Close to these points p̃i−p̃j ∼
√
x− x∗ so that x−x∗ ∼ (n−n∗)2.

Thus if the fluctuation energies are a regular function of x close to x = x∗ we will have

Ωij(xijn ) ≃ A+B(n− n∗)2 (5.76)

which means
d

dn
Ωij(xijn )

∣

∣

∣

∣

n=n∗
= 0 (5.77)

which can be easily checked. For example for 2̃3̃ the branch point is at x = ±iJ/m and

corresponds to n = −2m. Indeed

d

dn
E 2̃3̃
n

∣

∣

∣

∣

n=−2m

= 0 . (5.78)

It is curious that the analytical properties of the classical quasi-momenta can tell us much

about the analytical structure of the fluctuation energies without the need to preform any

explicit perturbation analysis. It would be interesting to try to completely constrain E ijn
from the several asymptotics of the classical quasi-momenta and thus to formulate some

sort of finite gap problem for the fluctuation energies.

5.4.3 Quasi-energy

In this section we repeat the analysis of section 5.1.5 applied to the circular string. The

quasi-momenta p̃2 = −p̃3 ≡ p is in this case

p(x) =
2πxK(x)

x2 − 1
− 2πm (5.79)

and to obtain the quasi-energy we must find a function with almost the same analytical

properties as p(x) but with opposite residues at x = ±1 [105]. As in section (5.1.5) this is

simply obtained by taking out the x from the numerator in the quasi-momentum,

q(x) =
2πK(x)

x2 − 1
. (5.80)
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We also eliminated the constant 2πm because without the x in the numerator the quasi-

energy automatically decays as 1/x at large x. Thus, the S3 fluctuation energies are simply

given from (5.51) which yields precisely (5.69) found before,

E 2̃3̃
n = Ω̃(y)y=xn , Ω̃(y) =

√

m2y2 + J 2

√
m2 + J 2

2

y2 − 1
(5.81)

or, using the explicit expression for the pole position,

E 2̃3̃
n =

√

2J 2 + (n+ 2m)2 − 2
√

J 4 + (n+ 2m)2(J 2 +m2) . (5.82)

This end our discussion of the single cut solution.

5.5 Off-shell method

In this section we describe an efficient quantization method which allows us to determine

the several fluctuation energies from the knowledge of two excitations alone. Since we will

work with relations connecting the several fluctuations energies for different polarizations

(i, j) it is important to be more rigorous with the indices than in the previous sections.

For example when adding a fluctuation with polarization (i, j) and mode number n to the

algebraic curve we shift the quasi-momenta as

pk(x)→ pk(x) + δijn pk(x)

where δijn pk(x) is constrained by the analytical properties mentioned in the beginning of

the chapter. Let us stress again that even though we are considering a polarization (i, j), in

general all quasi-momenta pk are shifted because of the back-reaction of the curve upon the

addition of the extra pole. The quasi-momenta δijn pi and δijn pj which are the quasi-momenta

connected by the fluctuation at stake must behave as

δijn pi(x) ≃ ±
α(xijn )

x− xijn
close to the pole position xijn which is determined by (5.4),

pi(x
ij
n )− pj(xijn ) = 2πn . (5.83)

The physical poles correspond to solutions of this equation with |xijn | > 1. The precise

choice of signs above as well as α(y) is given in (5.10) and (4.27), see also figures 5.1

and 5.2. Having found δijn pk we read off the fluctuation energy with mode number n and

polarization (i, j) from the large x asymptotics

E ijn = −2 δi,1̂ +

√
λ

2π
lim
x→∞

x δijn p̂1(x) . (5.84)
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We will now explain that in fact we need not compute separately each of the sixteen

physical fluctuations corresponding to the various string polarizations (4.34) but that it

suffices to compute two of them, at least for a huge number of interesting solutions. In

particular we shall see that the fermionic fluctuations can be obtained from the S3 and

AdS3 fluctuation energies.

Notice that the dependence in n for the shift in the quasi-momenta δijn pk only appears

through xijn determined in (5.83). In other words the shift in the quasi-momenta is actually

a function of the position of the pole,

δijn pk(x) = δijpk(x; y)
∣

∣

y=xij
n
. (5.85)

Moreover the off-shell quantity δijpk(x; y) is a well defined function of y. It is determined

by the same asymptotics as for the on-shell shift of quasi-momenta δijn pk(x) except that

the position of the pole is left unfixed. An obvious consequence is that the fluctuation

energies read from (5.84) are, by construction, of the form

E ijn = Ωij(y)
∣

∣

y=xij
n

(5.86)

where the function Ωij(y) is independent of the mode number n. We call Ωij(y) the off-shell

fluctuation energies, see section (5.1.4).

Given an on-shell fluctuation energy E ijn as a function of the mode number n we can

always reconstruct the off-shell frequencies by first computing the quasi-momenta pi(x) for

the underlying classical solution and then simply replace n using (5.83), that is

Ωij(y) = Ωij
n

∣

∣

n→ pi(y)−pj(y)

2π

. (5.87)

We will now explain how, using the inversion symmetry (5.12), we can relate the several

off-shell fluctuation energies.

Frequencies from inversion symmetry

An important property of the quasi-momenta, which follows from the Z4-grading of the

su(2, 2|4) superalgebra, is the inversion symmetry (4.59) under x→ 1/x, which exchanges

the quasi-momenta p1̃,4̃ ↔ p2̃,3̃ and likewise for the AdS hatted quasi-momenta. Thereby, a

pole connecting the sheets (2̃, 3̃) at position y, always comes with an image pole at position

1/y connecting the sheets (1̃, 4̃). We can obtain a physical frequency Ω1̃4̃(y), by analytically

continuing the off-shell frequency Ω2̃,3̃(y), inside the unit circle. This is because when we

cross the unit-circle, the physical pole for (2̃3̃) becomes unphysical, thereby rendering its

image, which lies now outside the unit-circle, a physical pole for (1̃, 4̃) as depicted in figure

5.4.
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Figure 5.4: As we analytically continue a fluctuation energy Ω2̃3̃(y) from a point |y| > 1 to the

interior of the unit circle we see that its mirror image becomes physical.

Let us consider in detail how this works for the AdS fluctuations. As we will now

demonstrate

Ω1̂4̂(y) = −Ω2̂3̂(1/y)− 2 . (5.88)

Thus, suppose we know Ω2̂3̂(y). This fluctuation energy appears in the asymptotics of the

shifted quasi-momenta δ2̂3̂pk(x; y) defined by the analytic properties listed in Appendix B.

Consider now −δ2̂3̂pk(x; 1/y). From the analytic properties of δ2̂3̂pk(x; y) we conclude that

• Close to x = y we have

− δ2̂3̂p1̂(x; 1/y) ≃
α(y)

x− y , −δ2̂3̂p4̂(x; 1/y) ≃ −
α(y)

x− y (5.89)

• The poles at x = ±1 for these functions −δ2̂3̂pk(x; 1/y) are also synchronized as in

equation (5.11).

• Close to the branch points of the original solution these functions exhibit inverse

square root singularities.

These are precisely the required properties for δ1̂4̂pk(x; y)! Therefore

δ1̂4̂pk(x; y) = −δ2̂3̂pk(x; 1/y) . (5.90)

From the large x asymptotics we have

−
√
λ

4π
lim
x→∞

x δ2̂3̂p̂1̂(x; 1/y) = −Ω2̂3̂(1/y)

2
(5.91)
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Figure 5.5: Algebraic curve for classical superstrings on AdS5 × S5. If the configuration is

symmetric under reflection w.r.t to horizontal dashed line then we can obtain the full spectrum

of all excitations from the knowledge of two fluctuation energies alone.

while by definition Ω1̂4̂(y) can be read off from

√
λ

4π
lim
x→∞

x δ1̂4̂p̂1̂(x; y) =
Ω1̂4̂(y)

2
+ 1 (5.92)

From the identification (5.90) we thus conclude (5.88).

Similarly we can proceed for the S5 frequencies and relate Ω2̃3̃(y) with Ω1̃4̃(y). It is

clear that Ω1̃4̃(y) = −Ω2̃3̃(1/y) + constant and to find these constant we can either repeat

the analysis we just did applied to the sphere fluctuations or we can be smarter and fix it

from Ω1̃4̃(∞) = 0. This must of course hold since the energy shift when we add an extra

root at infinity is obviously zero, in other words, roots at infinity are zero modes. Thus,

the relation we find is similar to (5.88), except that the constant term differs:

Ω1̃4̃(y) = −Ω2̃3̃(1/y) + Ω2̃3̃(0) . (5.93)

Obviously for the purpose of computing the one-loop shift these constants are irrelevant

as they will cancel in the sum.

So far we have obtained the frequencies (1, 4) from (2, 3). In the next subsection we will

show how to derive all remaining frequencies. For a very large class of classical solutions

we will be able to extract all fluctuation energies, including the fermionic ones, from the

knowledge of a single S3 and a single AdS3 fluctuation energy.
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Figure 5.6: Depiction of equation (5.98). On top: we see that for symmetric configurations we

can obtain the off-shell fluctuation frequency Ω2̂2̃ = Ω3̃3̂ from the knowledge of the two S5 and

AdS5 frequencies. On bottom: With this unphysical excitation at hand we can compute the

fermionic fluctuation frequency Ω2̂3̃ = Ω2̃3̃ + Ω2̂2̃ in terms of the two bosonic fluctuations.

Basis of fluctuation energies

For simplicity let us consider only symmetric classical configurations that have pairwise

symmetric quasi-momenta

p1̂,2̂,1̃,2̃ = −p4̂,3̂,4̃,3̃ , (5.94)

as depicted in figure 5.5. This is in particular the case for all rank one solutions, i.e. for

the su(2) and sl(2) sectors.

Consider e.g. the fermionic frequency Ω2̂3̃(y). This energy can be thought of as a

linear combination of the physical fluctuation Ω2̃3̃(y) and an unphysical fluctuation Ω2̂2̃(y),

which in particular does not appear in the table (4.34) of physical, momentum-carrying

polarisations:

Ω2̂3̃(y) = Ω2̃3̃(y) + Ω2̂2̃(y) . (5.95)

Since we are considering symmetric configurations, this unphysical fluctuation energy is

identical to Ω3̃3̂(y), i.e.

Ω2̂2̃(y) = Ω3̃3̂(y) . (5.96)

As in (5.95), these unphysical fluctuations can be linearly combined in terms of physical

fluctuations

Ω2̂3̂(y) = Ω2̂2̃(y) + Ω2̃3̃(y) + Ω3̃3̂(y) . (5.97)
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Combining all these relations we obtain

Ω2̂3̃(y) =
1

2

(

Ω2̃3̃(y) + Ω2̂3̂(y)
)

, (5.98)

as depicted in figure 5.6.

Proceeding in a similar fashion we can derive all frequencies as linear combinations of

Ω2̃3̃(y) and Ω2̂3̂(y). (5.101) summarizes all these relations.

Final result

The physical frequencies are labeled by the eight bosonic and eight fermionic polarizations

(5.6), so we can write them as

Ωij , where i = (1̂, 2̂, 1̃, 2̃) j = (3̂, 4̂, 3̃, 4̃) . (5.99)

To construct the complete set of off-shell frequencies for a symmetric solution (5.94) in

terms of the two fundamental S3 and AdS3 ones Ω2̃3̃(y) and Ω2̂3̂(y) and their images under

y → 1/y, we first construct by inversion

Ω1̃4̃(y) = −Ω2̃3̃(1/y) + Ω2̃3̃(0)

Ω1̂4̂(y) = −Ω2̂3̂(1/y)− 2 .
(5.100)

The remaining frequencies are then obtained by linear combination of these four fluctuation

frequencies. In this way we obtain the following concise form for all off-shell frequencies

Ωij(y) =
1

2

(

Ωii′(y) + Ωj′j(y)
)

, (5.101)

where

(1̂, 2̂, 1̃, 2̃, 3̂, 4̂, 3̃, 4̃)′ = (4̂, 3̂, 4̃, 3̃, 2̂, 1̂, 2̃, 1̃) . (5.102)

This generalizes (5.98).

For the general case of non symmetric solutions, we can repeat the above analysis,

however the minimal set of required off-shell fluctuation frequencies will generically be

larger than two.

In the rest of the chapter we consider only SU(2) solutions as described in section

(4.5.1), see figure 4.7. From the symmetry of the problem it is clear that we generically

have 6 different frequencies, namely

1. One internal fluctuation corresponding to a pole shared by p̃2 and p̃3 which we denote

by

ΩS(y) = Ω2̃3̃(y) (5.103)
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2. Another S3 fluctuation connecting p̃1 and p̃4

ΩS̄(y) = Ω1̃4̃(y) (5.104)

3. Two fluctuations which live in S5 but are orthogonal to the ones in S3,

ΩS⊥(y) = Ω1̃3̃(y) = Ω2̃4̃(y) (5.105)

4. Four AdS5 fluctuations

ΩA(y) = Ω1̂3̂(y) = Ω1̂4̂(y) = Ω2̂3̂(y) = Ω2̂4̂(y) (5.106)

5. Four fermionic excitations which end on either p2̃ or p3̃ (which are the sheets where

there are cuts outside the unit circle),

ΩF (y) = Ω1̂3̃(y) = Ω2̂3̃(y) = Ω2̃3̂(y) = Ω2̃4̂(y) (5.107)

6. Four fermionic poles which end on either p1̃ or p4̃ (which are the sheets where there

are cuts inside the unit circle)

ΩF̄ (y) = Ω1̂4̃(y) = Ω2̂4̃(y) = Ω1̃3̂(y) = Ω1̃4̂(y) . (5.108)

These fluctuations are depicted in figure 5.5 from left to right.

5.6 Quantization of the two-cut solution

In this section we explain how to compute the fluctuation energies around a general 2-cut

su(2) solution (4.86) with branch points a, ā, b, b̄. We will find out that the fluctuation

energies can be obtained by the surprisingly simple expressions

ΩA(y) =
2

y2 − 1

(

1 + y
f(1)− f(−1)

f(1) + f(−1)

)

ΩS(y) =
4

f(1) + f(−1)

(

f(y)

y2 − 1
− 1

)

.

(5.109)

with the remaining fluctuation energies obtained through table 5.100. Note that this is

a very simple elegant expression for the off-shell fluctuation energies. All the intricate

structure that appears for the on-shell frequencies is hidden in the equation for the pole

positions xijn (5.83).

The computation is very similar to the one in section 5.4.1 so we can be brief and omit

the details. To find the fluctuation frequencies we perturb the quasi-momenta (4.86) and
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fix δp by the required asymptotics (5.8). We consider only the (2̂, 3̂) and (2̃, 3̃) fluctuations

with N2̂3̂ = N2̃3̃ = 1, located at x = z and x = y respectively. The most general ansatz for

the shift in quasi-momenta is then

δp2̂(x; y, z) =
α(z)

x− z +
δα−
x− 1

+
δα+

x+ 1

δp2̃(x; y, z) =
1

f(x)

(

−f(y)α(y)

x− y +
δα−f(1)

x− 1
+
δα+f(−1)

x+ 1
− 4π√

λ
x+ A

) (5.110)

where the asymptotics at large x for δp2̂, δp2̃, and also δp1̂, δp1̃ obtained by inversion

symmetry (5.12) fix the constants δα±, A and δ∆. The result is

δ∆ = ΩS(y) + ΩA(z) , (5.111)

with (5.109).

Now that we have found the two off-shell frequencies ΩS and ΩA we can construct the

remaining frequencies from (5.101). In this way we obtain the complete set of fluctuation

energies around the generic two cut solution. As an application we consider in the next

section the Giant Magnon solution which corresponds to a particular (singular) limit of

the general treatment we considered so far.

Notice also that our simple treatment can be trivially generalized for K ≥ 3 cuts.

5.7 Quantum wrapped giant magnon

In the previsous section we have determined the off-shell frequencies for the most general

two-cut solution. In this section we consider the singular limit discussed in section 4.5.2

where the two cuts collide and we obtain a condensate curve describing the giant magnon

solution.

To obtain the on-shell frequencies E ijn we simply need to compute the positions of the

poles xijn from (5.83) and plug them in (5.86). There are two case we have to consider.

Mainly xijn are situated relatively far from the branch points of the two cuts and we can

expand the off-shell frequencies

ΩA(y) = Ω(0)(y)−
(

y

y2 − 1

X+(X2
− − 1)

2 (X2
+ − 1)(X+X− + 1)2

δ2 + c.c.

)

(5.112)

ΩS(y) = ΩA(y)−
(

1

y −X+

X+ −X−
4(X2

+ − 1)(X−X+ + 1)
δ2 + c.c.

)

.

The first term is the leading order frequency, as determined in [17],

Ω(0)(y) =
2

y2 − 1

(

1− y X+ +X−
X+X− + 1

)

. (5.113)
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The remaining frequencies are of course determined as in (5.101).

However there are fluctuations corresponding to the variations of the filling fractions of

the two cuts. These are situated right at the branch points. To compute their contributions

to the 1-loop energy shift we have to expand δEBP ≡ 1
2
Ω2̃3̃(a) + 1

2
Ω2̃3̃(b). That leads to

δEBP ≃ Ω(0)(X+) +

(

1−X−X+

4(X−X+ + 1)2(X2
+ − 1)

δ2 + c.c.

)

. (5.114)

Except for these two fluctuations the positions of the excitations are along the real axis.

We found all fluctuation energies around the general two-cut configuration and in par-

ticular around the GM solution. In the next chapter we will focus on a very important

quantity in the semi-classical quantization of a physical system – the one-loop shift (5.2).

Notice that even though we have the fluctuation energies at hand it is by no means trivial

to sum them as in (5.2). For that we need to find the position of each fluctuation which

will depend on the mode number n and the polarization A = (i, j) through (5.4), plug the

position into the off-sheel fluctuation energies Ωij(y) and sum the result over n and ij with

some minus signs for the fermionic fluctuations. We will explain in the next chapter how

the algebraic curve formalism can be of great help to preform this complicated task.



Chapter 6

One–loop shift

This chapter is devoted to the study of the one-loop shift (5.2) around generic classical

solutions. We start with a general discussion in section 6.1. In section 6.2 we consider a

very illustrative example where we will compute this quantity for the giant magnon two-cut

solution studied before. Finally, in section 6.4, we will come back to the general discussion

and consider an application of our method to derive the semi-classical Hernandez-Lopez

dressing factor in the Beisert-Staudacher equations. This is the universal dressing factor

which renders the correct semi-classical quantization around any classical solution.

6.1 Splitting of one loop shift into two contributions

So far we computed the semi-classical spectrum around generic classical solutions, that is

we computed the level spacing E ijn for excitations with mode number n and polarization ij

in terms of which

E({N ij
n })− E({}) =

∑

n,ij

N ij
n E ijn +O(1/

√
λ) (6.1)

As mentioned in the beginning of the chapter, another quantity of main interest is the

1-loop shift

E0 =
1

2

∑

ij,n

(−1)FijE ijn , (6.2)

appearing in the expansion of the energy of the string state,

E({}) = Ecl + E0 +O(1/
√
λ) (6.3)

where Ecl = O(
√
λ) is the energy of the classical string around which we quantize.

It is important to understand a trivial point. We can use the algebraic curve to find

the ground state energy because we can compute all fluctuation energies by perturbing

the algebraic curve and then sum them by hand. But, if we take the algebraic curve

corresponding to some classical solution and compute its energy we will obviously only get

Ecl. It would be nice if we could upgrade the algebraic curve equations so that the energy

of a given configuration would automatically yield (6.3). After all, the proper quantum
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equations must capture the full 1/
√
λ expansion. This is what we will consider in the last

section 6.4.

In this section we will continue our general description of the one-loop shift. First of

all to operate with the sum (6.2) we write it as

E0 =
1

2

∑

ij

(−1)Fij

∮

E ijn cotπn
dn

2i
, (6.4)

where the integration path encircles all integers n. This is true because the function cot πn

has poles precisely at the integers,

cotπn

2i
=

1

πi

∞
∑

n=−∞

x

x2 − n2
. (6.5)

Next let us change variables in this integral. For each polarization ij we change from the

mode number variable n to the position of the corresponding fluctuation xijn found from

pi(x
ij
n )− pj(xijn ) = 2πn (6.6)

which means that

E0 =
∑

ij

(−1)Fij

∮

∪xij
n

Ωij(y) cot

(

pi(y)− pj(y)
2

)

p′i(y)− p′j(y)
2π

dy

4i
, (6.7)

where we used

E ijn = Ωij(xijn ) (6.8)

as explained in the previous sections.

The contour integral in the x plane encircles now all the excitation points xijn . Then we

do the most obvious thing – we blow up the contours. We choose to keep the integration

contour always outside the unit circle. Thus we are left with two type of contour integrals:

1. The obvious contribution is an integral over the unit circle for each polarization ij.

We denote this contribution to the one-loop shift by Iphase.

2. The less obvious part is everything else. What do we mean by everything else?

Suppose we consider a generic non-singular classical configuration whose algebraic

curve contains some square root cuts uniting some of the sheets. Then, if we consider

the contribution of a polarization ij for which the classical solution has cuts ending on

either pi or pj (or both), we will also get additional integrals around the corresponding

classical cuts. If we are considering some singular configuration such as the Giant-

Magnon then everything else stands for the integral over all possible singularities we

might encounter when deforming the contour. This contribution to the one-loop shift

from all integrals other than that over the unit circle is denoted by Ianomaly.
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x

-1 +1

n=n=

n

a b

n=-N n=+N

Iphase

Ianomaly

Iphase

Ianomaly

Figure 6.1: Splitting in the n plane. a) Typical analytical structure of the excitation energies

as a function of the mode number n, see section 5.1.4. The branchpoints associated to the cuts

going to infinity are large if some charge of the classical solution is large. There could also be

extra cuts in the n plane. The integral (6.4) can then be split into two contributions Iphase and

Ianomaly as depicted in the figure. b) The contour Iphase going along the large cuts in the n plane

is mapped into some ellipsoidal form in the x plane. The contours around the extra cuts in the n

plane are mapped to the cycles around the cuts of the classical solution which we are quantizing.

If the classical solution contains some large charge, say J , then

cot

(

pi(y)− pj(y)
2

)

≃ ±i (6.9)

on the upper/lower half of the unit circle. This is valid with exponential precision in

the large charge we consider. Thus, the constribution Iphase can be approximated with

exponential precision by

Iphase ≃ IHL ≡
∑

ij

(−1)Fij

∮

U+

Ωij(y)
p′i(y)− p′j(y)

2π

dy

2
(6.10)

where the contour is over the upper half of the unit circle from x = −1 to x = +1.

As explained in the last section, from the Bethe ansatz point of view, what happens is

that the contribution Ianomaly is reproduced exactly (no exponential errors) by the finite

size corrections – called anomalies – present in these equations [15]. The contribution

Iphase is not obtained but instead the Hernandez-Lopez phase [77] reproduces precisely the

integral IHL [14]. In other words, the Beisert-Staudacher equations yield

EBS
0 = IHL + Ianomaly (6.11)

which approximates with exponential precision the correct 1-loop shift

E0 = Iphase + Ianomaly . (6.12)
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In the next section we take (6.4) as our starting point and compute the one-loop shift

around the Giant-Magnon classical solution. In the last section we focus on the derivation

of the Hernandez-Lopez phase.

6.2 One-loop shift around the Giant Magnon solution

In this section we shall compute the ground state energy E0 around the Giant-Magnon

solution studied in sections 4.5.2 and 5.7. In doing so we will keep track of the leading

and subleading exponential corrections in the large angular momentum J . The one-loop

energy shift is obtained by the weighted sum over all fluctuation frequencies

E0 =
1

2

∑

n,ij

(−1)FijΩij

(

xijn
)

. (6.13)

To deal with this sum we first split it into the fluctuation energies δEBP corresponding to

a variation of the filling fractions of the two cuts (5.114) and the remaining fluctuations.

To deal with the latter we transform the sum over n into an integral with cotπn and

then pass from the n to the x plane using the map (5.83) as explained in the previous

section. Actually, as explained later there is an additional third contribution coming from

fluctuations which got trapped between the two cuts when these collapsed into the log cut.

This contribution, denoted by δEUP is considered in section 6.2.2 (see also section 5.2).

Thus we have

E0 =
1

2

∑

ij

(−1)F
∮

CR

Ωij(y) cotij
dy

2πi
+ δEBP + δEUP , (6.14)

where

cotij ≡ ∂y log sin

(

pi − pj
2

)

, (6.15)

and the contour CR encircles all the fluctuations on the real axis. Our goal will be to

deform this contour to the unit circle, where the argument of the cot has a large imaginary

component and the integral can be computed by standard saddle point method.

However, when deforming the contour we will obtain several poles from cotij located

close to the points x = X+, X− and x = 1/X+, 1/X−. The contribution from these poles

is computed in the next section and is denoted by δEPL. We find therefore

E0 = δEINT + δEPL + δEBP + δEUP , (6.16)

where

δEINT =

∮

CU

(

1

2

∑

ij

(−1)FΩij(x) cotij

)

dx

2πi
. (6.17)
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Notice that since we have already dealt with the zero mode contribution δEBP separately

we can (and will) now use the far away quasi-momenta (4.95) in the rest of the paper. In

the following four sections we will consider each of these four contributions in detail.

In the language of the previous section

Iphase ≃ δEINT , Ianomaly ≃ δEPL + δEBP + δEUP . (6.18)

The difference is that in what follows we will always drop any contributions much smaller

than O (δ2) with (4.99). The notation δE... is used to stress that we are working in this

singular limit.

6.2.1 Extracting poles

We now determine the positions of the poles mentioned above. Consider first the polariza-

tion (2̃, 3̃). We have

exp(−ip̃2 + ip̃3) = exp

(

−i x∆

g(x2 − 1)
− 2iτ

)

(x−X−)2

(x−X+)2
,

so there is an obvious pole from (6.15) at x = X+. However there are also some less

obvious poles if the denominator in (6.15) vanishes, i.e. for exp(−ip̃2 + ip̃3) = 1,

exp

(

−i x∆

g(x2 − 1)
− 2iτ

)

(x−X−)2

(x−X+)2
= 1 .

The first factor is exponentially small. When x ∼ X+ the exponent is of order δ2 as one

can see from (4.99). However we can compensate that if the second factor diverges. To do

so look for x−X+ ∼ δ. One then finds poles at x−X+ = ǫ±1 , where

ǫ±1 = ±δ
4

+
δ2

16

(

1

X+ −X−
+ i

∆

2g

X2
+ + 1

(X2
+ − 1)2

)

± δ3

64

(

1

(X− −X+)2
− 3∆2(X2

+ + 1)2

8g2(X2
+ − 1)4

+
i∆

2g

2X4
+ +X−X

3
+ − 3X2

+ + 3X−X+ − 3

(X+ −X−)(X2
+ − 1)3

)

+O
(

δ4
)

Proceeding in the same way for the different polarizations we find the position of all existing

poles. We have summarized all poles, and whether they are physical or unphysical (around

X+ or 1/X+, respectively), in table 6.1. In Appendix E we listed the explicit values of the

small deviations ǫj .

In summary, the contribution to the contour integral from these singularities is

δEPL =

(

eiτ

(X−X+ + 1)(X2
+ − 1)

+
2−X+(X− +X+)

(X−X+ + 1)(X2
+ − 1)2

+
i∆

4g

(X− −X+)(X2
+ + 1)

(X−X+ + 1)(X2
+ − 1)3

)

δ2

4
+c.c. .

(6.19)

which for small Q values becomes

δEPL ≃ 8e
− J

2g sin
p
2
−2

sin2 p

2
. (6.20)
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Polarization Poles around X+ Poles around 1/X+

A× 4

F × 4 x−X+ = 0, ǫ3

F̄ × 4 1/x−X+ = 0, ǫ3

S x−X+ = ǫ−1 , 0, ǫ
+
1

S̄ 1/x−X+ = ǫ−1 , 0, ǫ
+
1

S⊥ × 2 x−X+ = 0, ǫ2 1/x−X+ = 0, ǫ2

Table 6.1: Poles of different cotij in the upper half plane close to the logarithm branch

points

6.2.2 Unphysical fluctuations

Next we consider the contribution from the unphysical frequencies discussed in section 5.2.

As explained in section 5.2, if we consider a general finite gap solution with small enough

filling fractions, we know that the equation

pi(x
ij
n )− pj(xijn ) = 2πn (6.21)

for a physical pair (ij) in (5.6) is always solvable1. When we gradually start increasing the

filling fractions, the cuts become bigger and, at some point, a cut could collide with some

xn. After this point we will not be able to find solutions to (6.21) for some values of n. This

however does not imply any non-analyticity of the fluctuation energies Ωij(xijn ) as a function

of the filling fractions and we can analytically continue the fluctuation energies below this

point. What happens is that the fluctuation xn passes through a cut and afterwards is

connecting two different sheets. This will generically yield unphysical fluctuations. We

have depited this process in figure 6.2.

Indeed for each missing solution of (6.21) one could find the corresponding unphysical

fluctuation. We conclude that we also have to consider all possible solutions of (6.21) for

unphysical pairs (ij).

There are 2 + 4 unphysical fluctuations (1̃, 2̃), (3̃, 4̃) and (1̂2̃), (2̂2̃), (3̂3̃), (4̂3̃), which by

the above reasoning we also need to take into account. We denote these fluctuations by Su
and Fu

ΩSu(x) =
ΩS̄(x)− ΩS(x)

2
+ c (6.22)

ΩFu(x) =
ΩA(x)− ΩS(x)

2
+ c , (6.23)

1In fact one should add twists to properly ensure this statement.
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~
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~

Figure 6.2: When increasing the filling fraction of a cut, the fluctuation could pass through

the cut and reappear uniting different sheets. The physical fluctuation 2̃3̃ could become

the unphysical one 1̃2̃.

where the specific values of the constant c and of the position of the fluctuations xSu and

xFu are collected in Appendix E.

Combining this together with the branch-point contribution (5.114) one obtains

δEUP + δEBP = δEBP +
2ΩSu(0)− 4ΩFu(xFu)

2
=

1−
√

X−/X+

4(X−X+ + 1)(X2
+ − 1)

δ2 + c.c. , (6.24)

where in particular the leading order term correctly cancels! In the Q → 0 limit we obtain

for this combined contribution

δEUP + δEBP ≃ −8e
− J

2g sin
p
2
−2

sin2 p

2
, (6.25)

which precisely cancels the contribution of δEPL in (6.20). Thus, for the simple giant-

magnon solution the only contribution is given by the integral over the unit circle (6.17)

which we will consider in the next section.

6.2.3 Unit circle and final result

In the two previous sections we took into account the extra poles in the complex x plane,

the branch-point fluctuations and the unphysical excitations. For a general dyonic magnon

these contributions are given by (6.19) added to (6.24) while for a simple giant-magnon

this sum vanishes.

In this section we consider the remaining contribution given by the integral (6.17) over

the unit circle. There are three contributions into which this integral is naturally split. On

the upper/lower half of the unit circle we have

cot

(

pi − pj
2

)

= ±i
(

1 + 2e∓i(pi−pj) + . . .
)

, (6.26)

while the fluctuation energies are given by

Ωij(y) = Ω(0)(y) + δΩij(y) . (6.27)



160 6. One–loop shift

• Thus the we can pick the leading term in (6.26) times the leading term in (6.27) to

get

δEINT,(0) =

∮

C+
U

dy

2i
(−1)Fij∂yΩ

(0)(y)
p′i − p′j

2π
,

where the integral goes over the upper half of the unit circle from x = −1 to x = +1.

Since
∑4

i=1 p̃i − p̂i = 0 this contribution vanishes and therefore the one-loop shift

around the infinite volume giant magnon is zero [107, 108]. This is precisely what we

expect from the infinite volume dispersion relation

ǫ∞(p) =

√

Q2 +
λ

π2
sin2 p

2
=

√
λ

π
sin

p

2
+ 0 +O(1/

√
λ) .

We are therefore left with the exponentially suppressed contributions.

• The second contribution comes from picking the subleading term in (6.27) and the

leading value in (6.26). This gives

δEINT,(1) ≃ 2

∮

C+
U

h(x)− h(1/x)/x2 + g(x)

(X2
+ − 1)(X+X− + 1)

dx

2πi
+ c.c.

where

h(x) =
δ2

16

[

X− −X+

(x−X+)2
+
X− − 2X+ +X−X

2
+

X+(X−X+ − 1)

(

1

x−X+
− 1

x−X−

)]

g(x) =
δ2

8

(X+ −X−)2

(xX+ − 1)(xX− − 1)X+
.

This integral can be computed yielding

δEINT,(1) ≃ iδ2

4π

[

X+ −X−
(X+X− + 1)(X2

+ − 1)2
+

(X2
− − 1)(arccothX+ − arccothX−)

(X2
+ − 1)(X2

+X
2
− − 1)

]

+ c.c. .(6.28)

Expanding this result in the Q → 0 limit we obtain

δEINT,(1) ≃ 16e
− J

2g sin
p
2
−2
(

g sin3 p
2

Q
− sin p

2

π

)

. (6.29)

Notice that this contribution is singular in the Q → 0 limit. This singularity will

cancel however with the third contribution we will now analyze.

• Finally we have the contribution coming from picking the leading term in (6.27)

multiplied by the subleading term in (6.26). This was the contribution analyzed in

[17] and [109]. It gives

δEINT,(2) =

∮

U+

dx

2πi
∂xΩ

(0)

(

x−X−
x−X+

+
x− 1/X+

x− 1/X−
− 2eiτ

)2

e
− ix∆

g(x2−1)
−2iτ

,(6.30)
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which in the small Q limit is divergent and becomes

δEINT,(2) ≃ V.P.

∮

U+

dx

2πi
∂xΩ

(0)

(

2
xX+ − 1

x−X+
− 2

)2

e
−ix J+4g sin

p
2

g(x2−1) (6.31)

+ e
− J

2g sin
p
2
−2
(

−16g sin3 p
2

Q
+

4iJ cos p
2

g
− 8i sin

p

2
+ 8i sin p

)

,

where V.P. stands for the principal value of the integral.

Finally, we can combine (6.29) and (6.31) to obtain the final result

E0 ≃ V.P.

∮

U+

dx

2πi
∂xΩ

(0)

(

2
xX+ − 1

x−X+

− 2

)2

e
−ix J+4g sin

p
2

g(x2−1) (6.32)

+ e
− J

2g sin
p
2
−2
(

−16 sin p
2

π
+

4iJ cos p
2

g
− 8i sin

p

2
+ 8i sin p

)

.

We will show in the next section that this is in precise agreement with the F and µ

terms of the Lüscher-Klassen-Melzer formulas! Note that the expression above is real by

construction and the divergences at Q = 0 cancelled among the various contributions.

Notice that the two exponentially suppressed contributions clearly have distinct phys-

ical meaning. The first one comes from taking into account the fine-structure of the con-

densate cut. That is it steams from the finite size corrections to the giant magnon we are

quantizing. The latter is obtained by properly summing the leading frequencies as opposed

to approximating them by an integral over their momenta as done in infinite volume J
[17, 110]. In particular the integral in (6.32) comes from this last contribution. It can be

trivially evaluated by saddle point at x = i yielding

V.P.

∮

U+

dx

2πi
∂xΩ

(0)

(

2
xX+ − 1

x−X+
− 2

)2

=

=
8 sin2 p

4
e
− 2π∆√

λ

π
(

sin p
2
− 1
)

(

∆√
λ

)1/2






1− 7+4 sin p−4 cos p+ sin p

2

16π
(

sin p
2
−1
)

∆√
λ

+O







1
(

∆√
λ

)2












+ . . . ,

which is clearly leading compared to the second line in (6.32).

More generally, as explained in [17], the correction to the dispersion relation of the

magnon in infinite volume is given by an expansion of the form

δE1−loop =
∑

n,m

an,m(P,J ,
√
λ)
(

e−2πJ
)n(

e
− 2πJ

sin
p
2

)m

. (6.33)
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Classically we only obtain corrections of the form
(

e
− 2πJ

sin
p
2

)m

[100], i.e.

an,m = δn,0
√
λacln (P,J ) + a1−loop

n,m (P,J ) +O(1/
√
λ) .

In [17] we determined the complete set of a1−loop
n,0 coefficients (see also [109]), which correct

the one-loop shift of the giant magnon in finite volume, by properly summing the leading

frequencies as opposed to approximating them by an integral over their momenta. They

simply come from keeping the next terms in the expansion (6.26) multiplied by the leading

order frequencies Ω(0)(y) in (6.27) so they read

a1−loop
n,0

(

e
− 2π∆√

λ

)n

= V.P.

∮

U+

dx

2πin
∂xΩ

(0)(x)
∑

(ij)

(−1)Fije−in(pi−pj) . (6.34)

From the second line in (6.32) we read a1−loop
1,1 , which is the leading correction to the one-

loop shift due to the fine-structure of the condensate cut. Obviously, we have all ingredients

needed to compute a1,n. It could be interesting to do so to see if some simple structure is

found.

6.2.4 Combined energy shift for a generic dyonic magnon

Notice that we are by no means obliged to take the simple magnon and our previous

formulas are absolutely general and also yield the finite size 1-loop shift around a generic

dyonic magnon. Combining all the contributions computed in the previous sections we get

E0 ≃
∮

U+

dx

2πi
∂xΩ0

(

e−iτ
x−X−
x−X+

+ e−iτ
x− 1/X+

x− 1/X−
− 2

)2

e
− ix∆

g(x2−1) (6.35)

+

(

δ2

4(X−X+ + 1)(X2
+ − 1)2

[

1−X−X+ + i
X+ −X−

π
− i ∆

4g

(X2
+ + 1)(X+ −X−)

X2
+ − 1

+ i
(X2

− − 1)(X2
+ − 1)

2π(X−X+ − 1)
log

(

(X+ + 1)(X− − 1)

(X+ − 1)(X− + 1)

)]

+ c.c.

)

.

6.3 Lüscher-Klassen-Melzer formulas

Finally we compute the finite-size correction (6.32) using the Lüscher-Klassen-Melzer for-

mulas [111, 112, 113, 114, 109, 17, 110]. There are two contributions, the F - and the

µ-term

δǫFa = −V.P.
∫

R

dq

2π

(

1− ǫ′(p)

ǫ′(q∗(q))

)

e−iq
∗(q)L

∑

b

(−1)FbSbaba(q
∗(q), p) (6.36)

δǫµa = −i
(

1− ǫ′(p)

ǫ′(q̃∗)

)

e−iq̃
∗LResq=q̃

(

∑

b

(−1)FbSbaba(q∗(q), p)

)

, (6.37)
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which describe the corrections to the dispersion relation of a single magnon with momentum

p due to virtual particles running in the loop, and bound state formation, respectively. We

have used the notation for the on-shell momentum

q2 + ǫ(q∗)
2 = 0 ,

and q̃ denotes the Euclidean energy of the bound state. Inserting the all-loop AdS/CFT S-

matrix [51, 52, 68, 75, 24], one can expand to arbitrary order and obtain the leading-volume

correction.

Through a trivial change of variables, the F-term can be written as [17]

δǫF = V.P.

∮

U+

dx

2πi
∂xΩ0(x) e

−4π iJ√
λ

x

x2−1 e
−4π

i(∆−J)√
λ

x

x2−1

(

2
x−X−
x−X+

√

X+

X−
− 2

)2

, (6.38)

where

∆ = J +

√
λ

π
sin

p

2
. (6.39)

In the limit of Q → 0, X+ ∼ 1/X− and thus the F-term agrees precisely with the first line

in (6.32)!

For the µ-term we have to evaluate the residue at the bound states, as done in [109],

to subleading order. Since the computation is exactly as done in this paper we omit the

details. There are three contributions: The contribution of the classical S-matrix, the

effect from the one-loop dressing factor and the higher-loop contributions. In summary we

obtain

δǫµ = e
− 2πJ√

λ sin
p
2 δ1δ2δ3 , (6.40)

where

δ1 = −4g sin3 p

2
+ i

(

J

g
cos

p

2
− 2 sin

p

2
+ sin p

)

+O
(

1

g

)

(6.41)

δ2 =
1

2
+

1

g

(

1

2π sin2 p
2

− i cos p
2

4 sin2 p
2

)

+O
(

1

g2

)

(6.42)

δ3 =
8

e2
+O

(

1

g2

)

, (6.43)

so that the µ-term up to this order is

δǫµ = −e−
2πJ√
λ sin

p
2
−2
(

16g sin3 p

2
+

16

π
sin

p

2
− 4i

(

J cos
p

2
− 2 sin

p

2
+ 2 sin p

)

)

+O
(

1

g

)

.

(6.44)

The leading O(g) contribution to the µ-term yields the classical correction (4.100) [109].

The subleading terms are in complete agreement with the corrections appearing in the

second line of our result (6.32).
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Figure 6.3: Discretization of the algebraic curve. Only the exterior of the unit circle is

represented.

Thus we have successfully demonstrated the agreement of our result (6.32) with the

Lüscher-Klassen-Melzer approach of computing finite-size effects. It would be interesting

to reproduce from a Luscher like approach the full result (6.35) for the finite size corrections

to the Dyonic magnon.

6.4 Semi-classical dressing phase

In this section we consider a last application of our formalism. We will understand how to

modify the finite gap equations in such a way that the universal contribution IHL (6.10) to

the one-loop shift around any classical solution is reproduced. The remaining contributions,

discussed in section 6.1, are reproduced by the finite size corrections to the scaling limit of

the BS equations and were analyzed in [15].

To proceed we need to discretize the algebraic curve. We will do it in several steps,

gradually moving towards the final discretization. Of course we already know the result. It

is given by (3.282) as already checked in section 4.5 (see discussion after equation (4.68)).

However it is instructive to re-derive this result because in section 3.9 the quasi-momenta

(3.282) were computed in order to reproduce the Bethe equations whereas here we want

to explain how they can be naturally found from the algebraic curve alone.

The picture we have in mind is figure 6.3 (except that in this figure we are representing
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only the exterior of the unit circle). Cuts uniting p̂1 to p̂3 as depicted in this figure are

cuts of stacks made out of roots u2, u3, u4 and u5 as described in section 3.9. Let us then

consider p̃1, the quasi-momentum on top of figure 6.3. It contains poles at the positions of

the roots of type u1. These can then condense into cuts as explained in chapter 3. Thus

we start discretizing as

p̃1(x) = −G1(x) + . . . (6.45)

or

p̃1(x) = −H1(x) + . . . (6.46)

where

Ga(x) =
Ka
∑

j=1

α(ya,j)

x− ya,j
, Ha(x) =

Ka
∑

j=1

α(x)

x− ya,j
. (6.47)

with

α(x) ≡ 4π√
λ

x2

x2 − 1
,

are the resolvents introduced before. We chose these resolvents because as explained in the

previous chapters we want the residues to be −α(ya,j). Notice that H(x) has also poles

at x = ±1 but this is perfectly consistent with the algebraic curve so (6.45) and (6.46)

are equally good starting points. We will choose to work with (6.46). The dots in this

expression mean it is still under construction.

Let us now give a sneak peak at p̃2(x). It should have poles at x = x3,j with residue

+α(x3,j) and poles at x = x4,j with residue −α(x3,j). Therefore

p̃2(x) = H3(x)−H4(x) + . . . . (6.48)

Now we recall that the algebraic curve should obey the inversion symmetry p̃1(1/x) =

2πm − p̃2(x). For the moment we ignore the momentum P ≡ 2πm – we will restore it

latter. The x→ 1/x symmetry leads us to upgrade (6.46) and (6.48) to

p̃1(x) = −H1(x)− H̄3(x) + H̄4(x) + . . . , (6.49)

p̃2(x) = +H3(x)−H4(x) + H̄1(x) + . . . , (6.50)

where H̄a(x) = Ha(1/x). When we consider no roots at all these expressions would be zero.

However we know that the vacuum algebraic curve corresponds to the BMN quasi-momenta

and thus we have

p̃1(x) =
2πJ x− P
x2 − 1

−H1(x)− H̄3(x) + H̄4(x) , (6.51)

p̃2(x) =
2πJ x− P
x2 − 1

+H3(x)−H4(x) + H̄1(x) , (6.52)
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where we now took into account the P = 2πm in a way consistent with the large x

asymptotics. Notice that we no longer put any dots in this expressions because as we

explain below they already yield the proper curve discretization. Similarly we would write

p̂1(x) =
2πJ x
x2 − 1

−H1(x) +H2(x) + H̄2(x)− H̄3(x) + . . .

p̂2(x) =
2πJ x
x2 − 1

−H2(x) +H3(x) + H̄1(x)− H̄2(x) + . . . ,

but since we need to have (4.60) for large x we slightly improve this expressions to

p̂1(x) =
2πJ x+ 2πDx

x2 − 1
−H1(x) +H2(x) + H̄2(x)− H̄3(x) (6.53)

p̂2(x) =
2πJ x+ 2πDx

x2 − 1
−H2(x) +H3(x) + H̄1(x)− H̄2(x) , (6.54)

Expressions (6.51),(6.52), (6.53), (6.54) are almost perfect but there are still things to

be understood. To check that this descritization works nicely we should check that the

residues at x = ±1 are the same for p̃1 and p̂1 for example, see (4.68). In other words

p̂1(x)− p̃1(x) =
2πDx+ P

x2 − 1
− H̄4 +H2 + H̄2 (6.55)

should be regular for x = ±1. It is easy to see that the last two terms H2 + H̄2 = G2 + Ḡ2

and have therefore no poles at x = ±1. If we impose that the remaining terms are also

regular we obtain a relation between the total momenta P and the anomalous dimensions

D appearing in the quasi-momenta and the momentum carrying roots x4,j . More precisely

we find

P =

K4
∑

j=1

α(x4,j)

x4,j
, 2πD =

K4
∑

j=1

α(x4,j)

x2
4,j

(6.56)

which is exactly the same as

P = Q1 , ∆ = 2gQ2 (6.57)

where

G4(x) ≡ −
∞
∑

n=0

Qn+1x
n . (6.58)

Using these relations we can follow the exact same reasonings as above and write all quasi-
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momenta as

p̂1 =+
2πJ x−G′

4(0)x

x2 − 1
−H1+H2+H̄2−H̄3 p̃1 =+

2πJ x+G4(0)

x2 − 1
−H1−H̄3+H̄4

1
2
1
2

p̂2 =+
2πJ x−G′

4(0)x

x2 − 1
−H2+H3+H̄1−H̄2 p̃2 =+

2πJ x+G4(0)

x2 − 1
+H3−H4+H̄1

1
2
1
2

p̂3 =−2πJ x−G′
4(0)x

x2 − 1
−H5+H6+H̄6−H̄7 p̃3 =−2πJ x+G4(0)

x2 − 1
−H5+H4−H̄7

1
2
1
2

p̂4 =−2πJ x−G′
4(0)x

x2 − 1
−H6+H7+H̄5−H̄6 p̃4 =−2πJ x+G4(0)

x2 − 1
+H7+H̄5−H̄4

(6.59)

which are precisely the quasi-momenta (3.282) following from the scaling limit of the

Beisert-Staudacher equations with the AFS phase! This very simple sequence of steps

can be used to discretize other integrable models and are a precious help in guessing the

form of the full quantum equations. See for example [20] where the algebraic curve in [19]

together with the weak coupling results of [115] allowed for a conjecture for the all-loop

Bethe equations yielding the asymptotic spectrum of the ABJM theory [116] in the planar

limit.

The Bethe equations in the scaling limit coincide with the finite gap equations

p+
i − p−j = 2πnij (6.60)

on a cut shared by the quasi-momenta pi and pj .

We now arrive at the most interesting part. We want to understand how to modify

these equations in such a way that the semi-classical effects are automatically included. In

particular we want to be able to compute the energy around a general classical solution

and obtain the correct semi-classical result (6.3).

If we add a stack connecting sheets i and j to some configuration of Bethe roots with

all roots condensed into some cuts as described above, the position of the new stack will

be given by (2.12) and all the other roots will be slightly shifted uj → ũj. Then the energy

of the new configuration will be given by the energy of the original configuration plus the

fluctuation energy with mode number n associated to the corresponding string polarization

∆̃ = ∆ + E ijn . (6.61)

Let us now perform a simple rewriting exercise and treat each of the roots of this new stack

separately in pk. That is, if the stack contains a root associated with the Dynkin node a

we write

Ga(x)→ Ga(x) +
α(xn)

x− xn
, Ha(x)→ Ha(x) +

α(x)

x− xn
where Ga and Ha are now defined with the sum over roots going only over j = 1, . . . , Ka

where Ka is the original number of roots of type ua,j before adding the extra fluctuation.



168 6. One–loop shift

Then, with this new stack, each quasi-momentum pk can be written as before but using

the new resolvents Ga and Ha containing only the Ka original roots plus an extra term V ij
k

which we call potential and read 2











V1̂(x)

V2̂(x)

V3̂(x)

V4̂(x)











ij

=











+1

+1

−1

−1











x

x2 − 1

α(xijn )

(xijn )2
+











+δ1̂i
+δ2̂i
−δ3̂j
−δ4̂j











α(x)

x− xijn
−











+δ2̂i
+δ1̂i
−δ4̂j
−δ3̂j











α(1/x)

1/x− xijn
,

(6.62)

and










V1̃(x)

V2̃(x)

V3̃(x)

V4̃(x)











ij

=











−1

−1

+1

+1











1

x2 − 1

α(xijn )

xijn
−











+δ1̃i
+δ2̃i
−δ3̃j
−δ4̃j











α(x)

x− xijn
+











+δ2̃i
+δ1̃i
−δ4̃j
−δ3̃j











α(1/x)

1/x− xijn
,

(6.63)

Two trivial observations: First, even though we are treating the roots of the fluctuation

stack separately by hiding them into the potentials, they also contribute to the charges

(because every stack contains a u4 root)

Qm =

∮

dx

2πi

G4(x)

xm
+
α(xn)

xmn
. (6.64)

Second, the potentials V ij
k are different for different quasi-momenta.

Now suppose that instead of (6.61) we want

∆̃ = ∆ + IHL (6.65)

with IHL given in (6.10). By linearity, we need only to replace V ij
k by

Vk(x) =
1

2

∑

ij

(−1)Fij

∮

U+

V ij
k (x, y)

p′i(y)− p′j(y)
2π

dy

2
. (6.66)

That is we add the appropriate sea of virtual particles. Let us now show that all the

potentials Vk are the same up to a sign and are equal to

V(x) ≡
1
∫

−1

∂y [G4(y)−G4(1/y)]

(

α(x)

x− y −
α(1/x)

1/x− y

)

dy

2π
. (6.67)

Indeed
2For example, consider a fermionic stack i, j = 2̃, 3̂ connecting p̃2 and p̂3. As we see from figure 3.18

this stack is made of two almost coincident u4 and u5 roots. The first term in the potentials comes from

the resolvent of the middle node though the G4(0) and G′

4(0) terms present in all quasimomenta (3.282).

The new terms in p̃1, p̃2, p̂3, p̂4 come from the resolvents H4 and H5 which, for the other quasimomenta,

are either not present or appear with opposite signs.
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x

-1 +1-1- +1+

C 1

C 2

C =C 1 C 2U

n

a

n=-N n=+N

b

Figure 6.4: a) The “non-analytic” contribution IHL is given by the integral (6.28) whose inte-

gration path goes along the large cuts discussed in section 2. The difference in orientations with

respect to figure 6.1a is due to the absence of cot in expression (6.10) compared to (6.7). b) In

the x plane the integral can be safely deformed to go over the upper and lower halves of the unit

circle. In the main text we use the shorthand
∫ +1
−1 to denote 1

2

∫

C1
+1

2

∫

C2
. The relation between

the large N regularization in the n plane and the ǫ regularization in the x plane is discussed in

[14, 15].

1. The first terms in (6.62) and (6.63) do not contribute to Vk. The reason being that,

if we integrate some function of xijn summed over the 16 possible excitations listed in

figure 3.18 with a (−1)F weight

∑

ij

(−1)F
N
∫

−N

f(xijn )dn ,

we obtain3,

+1+ǫ
∫

−1−ǫ

f(y)

[

∑

i=1,2 ,j=3,4

(p̃′i − p̃′j) + (p̂′i − p̂′j)− (p̃′i − p̂′j)− (p̂′i − p̃′j)
]

dy

2π
= 0 . (6.68)

3We can as well use the quasi-momenta with the resolvents Ga and Ha summed only over the original

roots because the inclusion of the potentials in (5.4) is an higher order effect.
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2. Finally, consider for example V1̂. We have

V1̂(x) =
1

2

1+ǫ
∫

−1−ǫ

[(p̂′1 − p̂′3) + (p̂′1 − p̂′4)− (p̂′1 − p̃′3)− (p̂′1 − p̃′4)]
α(x)

x− y
dy

2π

− 1

2

1+ǫ
∫

−1−ǫ

[(p̂′2 − p̂′3) + (p̂′2 − p̂′4)− (p̂′2 − p̃′3)− (p̂′2 − p̃′4)]
α(1/x)

1/x− y
dy

2π
.

We see that p̂1 and p̂2 drop out so that the expression simplifies considerably. The

same happens for the other Vi and moreover, due to the super-tracelessness of the

monodromy matrix, p̃1 + p̃1 + p̃1 + p̃4 = p̂1 + p̂1 + p̂1 + p̂4, and all the potentials are

equal. Using (6.59) we have

V1̂,2̂,1̃,2̃(x) = −V3̂,4̂,3̃,4̃(x) ≡ V(x) =

1
∫

−1

∂y [G4(y)−G4(1/y)]

(

α(x)

x− y −
α(1/x)

1/x− y

)

dy

2π
.(6.69)

Notice also that due to 1) the extra terms in the charges (6.64) give no contribution! This

is a huge difference compared with the usual addition of a single stack and has remarkable

consequences. If we re-define the quasi-momenta in (6.59) by adding these new potentials

p̃1 = +
2πJ x+G4(0)

x2 − 1
−H1−H̄3+H̄4

1
2
1
2

+ V
. . .

p̃2 = +
2πJ x+G4(0)

x2 − 1
+H3−H4+H̄1

1
2
1
2

+ V

p̃3 = −2πJ x+G4(0)

x2 − 1
−H5+H4−H̄7

1
2
1
2

− V
. . .

p̃4 = −2πJ x+G4(0)

x2 − 1
+H7+H̄5−H̄4

1
2
1
2

− V

and solve (6.60) as usual but for the new quasi-momenta, then, by construction, the energy

as obtained from the physical charges (6.58) will automatically reproduce the contribution

(6.10). Let us stress out once again the importance of the fact that the contribution of the

virtual particles to the physical charges vanishes. Only because of this can we think of the

potential as a mere deformation of the quasi-momenta and simply use the original roots

to compute the energy from (6.58). The seven Beisert-Staudacher equations correspond

to considering the difference of the several consecutive quasi-momenta (p̃1, p̂1), (p̂1, p̂2),

(p̂2, p̃2), etc. We see that the addition of these potentials only changes the middle mode

equations obtained from

p̃+
2 − p̃−3 = 2πn , (6.70)
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when written in terms of the resolvents of the several Bethe roots. In all other differences

the potentials cancel out! Thus this potential corresponds precisely to a correction to the

AFS dressing factor,

∏

j 6=k
σAFS(x4,k, x4,j)→ eiV(x4,k)

∏

j 6=k
σAFS(x4,k, x4,j) . (6.71)

Since

G4(y) = −
∞
∑

n=0

Qn+1y
n , (6.72)

we can also write

V(x) = α(x)
∞
∑

r, s = 2

r+s ∈ Odd

1

π

(r − 1)(s− 1)

(s− r)(r + s− 2)

(

Qr

xs
− Qs

xr

)

(6.73)

where we recognize precisely the Hernandez-Lopez coefficients [77]! To obtain the values

of the potential for |x| < 1 we can simply use the exact symmetry

V(1/x) = −V(x) (6.74)

which is obvious from (6.69) but not manifest in the form (6.73).

If we want, on the other hand, to write

eiV(y4,k) =

K4
∏

j 6=k
eiθ(y4,k ,y4,j)

where the factorized scattering property is manifest we just need to use the definition (6.47)

and integrate over y to get4

θ(x, y) = −α(x)α(y)

π

[(

1

(x− y)2
+

1

(xy − 1)2

)

log

(

x+ 1

x− 1

y − 1

y + 1

)

+
2

(x− y)(xy − 1)

]

(6.75)

The real scattering phase, the phase that describes the scattering between two magnons in

the Bethe ansatz equation, must inherit the explicit x to 1/x oddness (6.74) of the potential.

To obtain the values of the phase for |x| < 1 we use θ(1/x, y) = −θ(x, y). Alternatively,

we recall that the contour in figure 6.4b tells us that to be completely rigorous we should

replace the log in (6.75) by 1
2

(

log+(. . . ) + log−(. . . )
)

where log± has a branchcut in the

upper/lower half of the unit circle – see figure 6.4b. Then the expression for θ(x, y) becomes

explicitly x to 1/x odd and is discontinuous on the unit circle. If, on the other hand, we

4By resuming the Hernandez-Lopez coefficients the phase θ(x, y) was written down in [117], see also

the appendix B in [118].
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analytically continue the expression (6.75) from some point x outside the unit circle up to

some point 1/x inside the unit circle we get 2πi from one of the log± so that we trivially

find

iθ(x, y) + iθ̃(1/x, y) = −α(x)α(y)

(

1

(x− y)2
+

1

(xy − 1)2

)

,

which is precisely Janik’s crossing relation [74] for the dressing factor at 1/
√
λ order [117].
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Conclusion





Chapter 7

Conclusions, State of the Art and Future
Directions

No non-trivial field theory in d ≥ 3 space-time dimensions was ever solved. Optimistically,

one might expect that if we solve one we will open a Pandora box in the same way that

Lars Onsager solution of the two dimension Ising model did.

We seem to be approaching such remarkable point. It is now clear that the techniques

of Integrability, normally used in the two dimensional realm, can sometime play a key role

in the study of higher dimensional super-conformal gauge theories [9, 115]. N = 4 SYM,

studied in this thesis, is probably just the most well known example out of many which can

be attacked by Bethe ansatz techniques. More examples known to date are deformations of

N = 4 and three dimensional super Chern-Simons conformal theories [116, 119, 115, 120].

All these share some common freatures:

They are super-conformal gauge theories with a gravity dual.

Integrability arises for these conformal theories when we try to compute the spectrum of

single trace gauge invariant operators. The dilatation operator turns out to be equivalent

to an integrable spin chain Hamiltonian. The planar limit is crucial to be able to interpret

the single trace operators as spin chains.

These theories admit simple gravity duals. For N = 4 we have type IIB superstrings on

AdS5×S5 while for ABJM we have type IIA on AdS4×CP 3. These dual two dimensional

theories are quite simple and symmetric and thus, not surprisingly, they are classically

integrable. Moreover they are super-symmetric. The rule of thumb is that two dimensional

super-symmetric classically integrable theories are quantum mechanically integrable. This

is often not the case for purely bosonic models though [121, 122, 123]. This means we

will probably find many more examples of integrable gauge theories from the duals of

superstring theory on simple AdSd × X backgrounds. It is crucial to search for these

theories and corresponding gravity duals.

The Gauge symmetry was another important feature in these recent advances. The

reason is that when we have a supersymmetric gauge theory the supersymmetry transfor-

mations are usually non-linearly realized. Often the commutator of two supersymmetry
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transformations yields something of the form

[δǫ, δǫ′]Field = ∂µ Field + [Φ, F ield] (7.1)

which means that the fermionic transformations commute to the momentum generator up

to somehow unusual gauge transformations where the gauge parameter is one of the fields

Φ. This will imply that the symmetry algebra transforming the elementary fields into one

another should be thought as some centrally extended (super)algebra. In particular, in

all examples we mentioned there exists a subset of fields which transform under SU(2|2)

extended. Theories based on such extensions are highly constrained [51, 52] and this was

quite important to help understand the finite coupling regime interpolating between the

CFT and the dual AdS theories [51, 68, 115, 124, 20, 125].

On the other hand we can also play the devil’s advocate. First of all we are always

working in the strict planar limit with N = ∞ and moreover we are computing only the

spectrum of the conformal theory. To completely solve it we would also need the three

point couplings. Integrability should play a important role to tackle this problem. It would

be vital to understand how.

Furthermore, so far only the spectrum of large operators is properly understood. This

limitation will probably be surpassed in the short term. More precisely, Bethe equations

are valid when we consider single trace operators made out of a large enough number

of fields [38]. When we start considering small operators (or string states with small

angular momentum in the light-cone gauge), wrapping effects corresponding to virtual

particles winding around the spin chain (or world-sheet) become relevant [111, 114]. The

effects were studied at strong coupling [109, 126, 99, 17, 110, 21] with great success in

reproducing the finite size corrections to the so called Giant Magnon [90]. The Giant

magnon is the dual string state corresponding to a single spin flip in the dual gauge theory.

These computations are quite interesting for two reasons. On the one hand they give us

the leading finite size corrections and are therefore a first window towards the finite size

spectrum of the theory. On the other hand these computations can be used to check the

validity of the AdS/CFT S-matrix [51, 68, 75, 24]. In particular, in [109, 21], the all loop

dressing kernel of [24] was probed.

In [127] Bajnok and Janik performed an impressive computation. They generalized

the Luscher formulas for many particle states and applied this to the computation of the

finite size corrections to a two magnon state in string theory. When the length of the state

(angular momentum of the string) is taken to be 4 and small t’Hooft coupling is considered

(highly quantum string) we are, by the AdS/CFT duality, studying the Konishi operator,

Tr(ZXZX)− Tr(ZZXX) , (7.2)

in the perturbative SYM regime. Remarkably, the string computation in this very rough
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limit – highly quantum string and very small angular momentum – reproduces precisely

the weak coupling direct Feynman diagramatic computation of [128, 129]!

All these advances indicate that the finite size limitation will be overcome. More

precisely all the above mentioned works are based on the Luscher formulas which only yield

the leading finite size corrections to the anomalous dimensions. Such Luscher formulas are

usually (or at least often) the large volume limit of some exact Thermodynamical Bethe

Ansatz equations. To write down such equations, and to be able to plot the anomalous

dimensions of simple operators such (7.2) as a function of the t’Hooft coupling, is of utmost

importance. Some first steps of this very non-trivial program were made in [130, 131].

Finally, optimistically, if we find the full spectrum of these gauge theories and, even

more optimistically, manage to compute the three point couplings and thus obtain all

the correlation functions, fundamental questions still remain. Why are these theories

integrable? What is the landscape of integrable theories? Can one turn the problem

around and build the field theories starting from the integrable structures? How close to

QCD can we get? Are all integrable theories dual to some string theory? If so, what can

we learn about quantum gravity? Is the planar limit an absolute limitation or will we be

able to overcome this obstacle for some theories?

A probably more pragmatic approach would be to try to merge the very developed field

of Integrability in AdS/CFT with the computation of Scattering Amplitudes and Wilson

Loops, which has also developed enormously in the last few years (see [132] for a very nice

review and references). Such symbiosis would probably greatly expand our understanding

of the subject and most likely shed light over some of the just posed questions.

Certainly, the days to come will be at least as exciting as the last few years in theoretical

physics. This thesis ends here.





Part V

Appendices





Appendix A

Bosonic duality

In this Appendix we discuss in detail the bosonic duality (3.278) mentioned in section

3.8.2. There are two main steps to be considered.

On the one hand we have to prove that for a set of K2 generic complex numbers

u2 and K1 roots u1 obeying the auxiliary Bethe equations (3.270) it is possible to write

(τ = φ1 − φ2)

2i sin (τ/2)Q2(u) = eiτ/2Q1(u− i/2)Q̃1(u+ i/2)− e−iτ/2Q1(u+ i/2)Q̃1(u− i/2) , (A.1)

and that, in doing so, we define the position of a new set of numbers ũ1. A priori this is not

at all a trivial statement because we have a polynomial of degree K2 on the left whereas

on the right hand side we have only K2 −K1 parameters to fix. However, as we will see,

if K1 equations (3.270) are satisfied it is possible to write Q2(u) in this form. This will be

the subject of the section A.1.

The second step is the trivial one. Assuming (A.1) to be proved we can use this relation

to show that in the original Bethe equations we can replace the roots u1 by the new roots

ũ1 with the simultaneous exchange φ1 ↔ φ2. Indeed if we evaluate the duality at u = u2,j

we find

Q1(u2,j − i/2)

Q1(u2,j + i/2)
= ei(φ2−φ1) Q̃1(u2,j − i/2)

Q̃1(u2,j + i/2)
,

meaning that in the equation (3.271) for the u2 roots we can replace the roots u1 by the

dual roots ũ1 provided we replace φ1 ↔ φ2. Moreover if we take u = ũ1,j ± i/2 we will get

eiφ2−iφ1 = −Q̃1(ũ1 + i)

Q̃1(ũ1 − i)
Q2(ũ1 − i/2)

Q2(ũ1 + i/2)
,

which we recognize as equation (3.270) with K2 −K1 roots ũ1 in place of the K1 original

roots u1 and with φ1 ↔ φ2. Finally evaluating (A.1) at u = u1,j ± i/2 we will get the

original equation (3.270) so that we see that it must be satisfied in order to equation (A.1)

to be valid.
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A.1 Decomposition proof

In this section we shall prove that one can always decompose Q2(u) as in (A.1) and that

this decomposition uniquely fixes the position of the new set of roots ũ1. In other words,

let us show that we can set the polynomial

P (u) ≡ e+i
τ
2Q1(u− i/2)Q̃1(u+ i/2)− e−i τ

2Q1(u+ i/2)Q̃1(u− i/2)− 2i sin
τ

2
Q2(u)

to zero through a unique choice of the dual roots ũ1.

• Consider first the case K1 = 0. Then it is trivial to see that we can always find

unique polynomial Q̃1 = uK2 +
∑K2

n=1 anu
n−1 such that

e+i
τ
2 Q̃1(u+ i/2)− e−i τ

2 Q̃1(u− i/2) = 2i sin
τ

2
Q2(u) .

because this amounts to solving K2 linear equations for K2 coefficients an with non-

degenerate triangular matrix.

• Next let us consider K1 ≤ K2/2. First we choose Q̃1 to satisfy K1 equations

Q̃1(u
1
p) = 2ie−i

τ
2 sin

τ

2

Q2(u
1
p − i/2)

Q1(u1
p − i)

≡ cp , p = 1, . . . , K1

these conditions will define Q̃1(u) up to a homogeneous solution proportional to

Q1(u),

Q̃1(u) = Q1(u)q̃1(u) +

K1
∑

p=1

Q1(u)

Q′
1(u

1
p)(u− u1

p)
cp

where q̃1(u) is some polynomial of the degree K2− 2K1. Now from (3.270) we notice

that with this choice of Q̃1 we have

P (u1
p + i/2)

Q2(u1
p + i/2)

=
P (u1

p − i/2)

Q2(u1
p − i/2)

= 0 , p = 1, . . . , K3

and thus

P (u) = Q1(u+ i/2)Q1(u− i/2)p(u)

where

p(u) = ei
τ
2 q̃1(u+ i/2)− e−i τ

2 q̃1(u− i/2)− 2i sin
τ

2
q2(u)

and q2 is a polynomial. Thus we are left to the same problem as above where K1 = 0.

For completeness let us note that we can write q2(u) explicitly in terms of the original

roots u1 and u2,

q2(u) =
Q2(u)

Q1(u+ i/2)Q1(u− i/2)
− poles

where the last term is a simple collection of poles at u = u1
p± i/2 whose residues are

such that q2(u) is indeed a polynomial.
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• We can see that the number of the solutions of (3.270) with K1 = K andK1 = K2−K
is the same (see [36] for examples of states counting). Thus for each solution with

K1 ≥ K2/2 we can always find one dual solution with K1 ≤ K2/2 and in this way

we prove our statement for K1 ≥ K2/2

• Finally let us stress the uniqueness of the Q̃1. If K1 > K̃1 we have nothing to show

since we saw explicitly above how the bosonic duality constrains uniquely the dual

polynomial Q̃1. Let us then consider K1 < K̃1 and assume we have two different

solutions Q̃1
1 and Q̃2

1. Then from the duality relation (A.1) for either solution we find

ei
τ
2Q1(u− i/2)

(

Q̃1
1(u+ i/2)− Q̃2

1(u+ i/2)
)

=

e−i
τ
2Q1(u+ i/2)

(

Q̃1
1(u− i/2)− Q̃2

1(u− i/2)
)

.

Evaluating this expression at u = u1,j + i/2 we find that Q̃1
1(u1,j) − Q̃2

1(u1,j) = 0 so

that Q̃1
1(u1)− Q̃2

1(u1) = Q1(u)h(u) and therefore

ei
τ
2h(u+ i/2) = e−i

τ
2h(u− i/2)

which is clearly impossible for polynomial h(u) – for large u we can neglect the i/2’s

to obtain eiτ = 1 thus leading to a contradiction.

A.2 Transfer matrix invariance and the bosonic dual-

ity for SU(K|M)

In this section we review the formalism of [53] which allows one to derive the transfer

matrices of usual (super) spin chains in any representation. In this work Kazakov, Sorin

and Zabrodin reduce the Bethe ansatz quantum problem to the study of classical discrete

dynamics in the space (a, s,K,M) where (a, s) are labels of the representation of the super-

group SU(K|M). To derive such dynamics – which will in particular yield the main formula

(A.2) considered below – the starting point is the conjectured Bazhanov-Reshitikhin de-

terminant relation [133] recently derived in [16]. We will the general formalism of [53] to

prove the invariance of all possible transfer matrices under the bosonic dualities.

For the standard SU(K|M) super spin chains (based on the standard R–matrix R(u) =

u+ iP with P the super permutation) we can find the (twisted) transfer matrix eigenvalues

for the single column young tableau with a boxes through the non-commutative generating

functions [53, 84]

∞
∑

a=0

(−1)aeia∂u
Ta(u)

QK,M(u+ (a−K +M + 1) i/2)
eia∂u =

−→
∏

(x,n)∈γV̂
−1
x,n (u) (A.2)
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where γ is a path starting from (M,K) and finishing at (0, 0) (always approaching this

point with each step) in a rectangular lattice of size M×K as in figure 3.101, x = (m, k) is

point in this path and n = (0,−1) or (−1, 0) is the unit vector looking along the next step

of the path. Each path describes in this way a possible Dynkin diagram of the SU(K|M)

super group with corners denoting fermionic nodes and straight lines bosonic ones, see

figure 3.10. Finally,

V̂ −1
(m,k),(0,−1)(u) = eiφk

Qk,m(u+ i(m− k − 1)/2)

Qk,m(u+ i(m− k + 1)/2)

Qk−1,m(u+ i(m− k + 2)/2)

Qk−1,m(u+ i(m− k + 0)/2)
− ei∂u

V̂ −1
(m,k),(−1,0)(u) =

(

eiϕm
Qk,m−1(u+ i(m− k − 2)/2)

Qk,m−1(u+ i(m− k + 0)/2)

Qk,m(u+ i(m− k + 1)/2)

Qk,m(u+ i(m− k − 1)/2)
− ei∂u

)−1

where Qk,m is the Baxter polynomial for the roots of the corresponding node2 and {φk, ϕm}
are twists introduced in the transfer matrix [84].

Let us then consider a bosonic node like the one in the middle of figure 3.10 (the vertical

bosonic node is treated in the same fashion). If the position of this node on the M ×K
lattice is given by (m, k) then it is obvious that the only combination containing Qm,k

in the right hand side of (A.2) comes from the product of V̂ −1
(m,k),(−1,0)(u)V̂

−1
(m+1,k),(−1,0)(u)

which reads
[

eiϕm+ϕm+1
Qk,m+1(u+ i(m− k + 2)/2)

Qk,m+1(u+ i(m− k + 0)/2)

Qk,m−1(u+ i(m− k − 2)/2)

Qk,m−1(u+ i(m− k + 0)/2)
+ e2i∂u−

−
(

eiϕm+1
Qk,m(u+ i(m− k − 1)/2)

Qk,m(u+ i(m− k + 1)/2)

Qk,m+1(u+ i(m− k + 2)/2)

Qk,m+1(u+ i(m− k + 0)/2)
+

+eiϕm
Qk,m−1(u+ i(m− k + 0)/2)

Qk,m−1(u+ i(m− k + 2)/2)

Qk,m(u+ i(m− k + 3)/2)

Qk,m(u+ i(m− k + 1)/2)

)

ei∂u

]−1

(A.3)

So, if we want to study the bosonic duality on the node (k,m) and its relation with

the invariance of several transfer matrices we need to study the last two lines of this

expression. For simplicity let us shift u, omit the subscript k in the Baxter polynomials

Qk,m−1, Qk,m, Qk,m+1 and define the reduced transfer matrix as

t(u, ϕm, ϕm+1) ≡ eiϕm+1
Qm(u− i)
Qm(u)

Qm+1(u+ i/2)

Qm+1(u− i/2)
+ eiϕm

Qm−1(u− i/2)

Qm−1(u+ i/2)

Qm(u+ i)

Qm(u)
. (A.4)

Notice that the absence of poles at the zeros of Qm yields precisely the Bethe equations

for this auxiliary node.

1Notice that the path goes in opposite direction compared to the labelling a of the Baxter polynomial

Qa used before. In the notation of this section Qk,m corresponds to the node is at position (m,k) in this

lattice.
2Q̂0,0 is normalized to 1. If we are considering a spin in the representation where the first Dynkin node

has a nonzero Dynkin label then QM,K will play the role of the potential term. In general the situation is

more complicated, see [53]. In any case we are mainly interested in the dualization of roots which are not

momentum carrying thus we need not care about such matters.
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Bosonic duality ⇒ Transfer matrices invariance

Thus, to check the invariance of the transfer matrices in all representations it suffices to

verify that the reduced transfer matrix t(u, ϕm, ϕm+1) is invariant under ϕm ↔ ϕm+1 and

Qm → Q̃m where

2i sin

(

ϕm+1 − ϕm
2

)

Qm−1(u)Qm+1(u) = (A.5)

ei
ϕm+1−ϕm

2 Qm(u− i/2)Q̃m(u+ i/2)− e−i
ϕm+1−ϕm

2 Qm(u+ i/2)Q̃m(u− i/2) .

which can be easily verified. If suffices to replace, in t(u, ϕm, ϕm+1) in (A.4),

Qm(u− i)
Qm(u)

→ e−i(ϕm+1−ϕm) Q̃m(u− i)
Q̃m(u)

+2ie−i
ϕm+1−ϕm

2 sin

(

ϕm+1 − ϕm
2

)

Qm−1(u+ i/2)Qm+1(u+ i/2)

Qm(u)Q̃m(u)
,

Qm(u+ i)

Qm(u)
→ e+i(ϕm+1−ϕm) Q̃m(u+ i)

Q̃m(u)

−2ie−i
ϕm+1−ϕm

2 sin

(

ϕm+1 − ϕm
2

)

Qm−1(u− i/2)Qm+1(u− i/2)

Qm(u)Q̃m(u)
,

which are obvious consequences of the bosonic duality.

Transfer matrix invariance ⇒ Bosonic duality

On the other hand suppose we have two solutions of Bethe equations, one of them character-

ized by the Baxter polynomials {. . . , Qm−1, Qm, Qm+1, . . . } with twists {. . . , ϕm, ϕm+1, . . .

and another with {. . . , Qm−1, Q̃m, Qm+1, . . . } with twists {. . . , ϕm+1, ϕm, . . . } for which the

transfer matrices are the same, that is

t(u, ϕm, ϕm+1) = t̃(u, ϕm+1, ϕm) . (A.6)

Then we can show that these two solutions are related by the bosonic duality (A.5). Indeed

if we build the Wronskian like object

W (u) ≡ ei
ϕm+1−ϕm

2
Qm(u− i/2)Q̃m(u+ i/2)

Qm−1(u)Qm+1(u)
− e−i

ϕm+1−ϕm

2
Qm(u+ i/2)Q̃m(u− i/2)

Qm−1(u)Qm+1(u)
.

we can easily check that

W (u+ i/2)−W (u− i/2) =

−e−i
ϕm+1+ϕm

2
Qm(u)Q̃m(u)

Qm−1(u− i/2)Qm+1(u+ i/2)

(

t(u, ϕm, ϕm+1)− t̃(u, ϕm+1, ϕm)
)

= 0
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Since by definition W (u) is a rational function this means it must be a constant. Thus

if ϕm 6= ϕm+1 we must have Km + K̃m = Km + Km+1 and the value of W can be read

from the large u behavior. In this way we obtain precisely the bosonic duality (A.5). If

ϕm = ϕm+1 then we see that Km + K̃m = Km + Km+1 + 1 and we will obtain a different

value for the constant W which will correspond to the untwisted bosonic duality described

in [15].



Appendix B

Explicit expressions for the flat connection
for circular strings

In this appendix we present the general expressions obtained for the constant flat connec-

tions associated with the circular string solutions (4.35) discussed in section 4.4.1. The S5

components p̃i are given in terms of the eigenvalues of the symmetric matrix

2π

i
ASσ(x) = π











−ã+(1/x) b̃+ −c̃(1/x) d̃(x)

b̃+ ã+(x) d̃(1/x) c̃(x)

−c̃(1/x) d̃(1/x) ã−(x) b̃−
d̃(x) c̃(x) b̃− −ã−(1/x)











(B.1)

with

ã±(x) = ±ã(x)−m3 cos θ

ã(x) = −m1 − w1x+ (m2 − w2x) cos θ + x cos 2γ(−w1 +m1x+ (w2 −m2x) cos θ)

x2 − 1

b̃± = (m2 ∓m3) cos γ sin θ

c̃(x) =
(m2 +m3)x

2 − (m2 −m3)− 2w3x

x2 − 1
sin γ sin θ

d̃(x) =
−m1 + w1x+ (m2 − w2 x) cos θ

x2 − 1
sin 2γ

while the AdS quasi-momenta p̂i are the eigenvalues of

2π

i
AAdSσ (x) = π











−â+(1/x) b̂+ −ĉ(x) d̂(x)

b̂+ â+(x) d̂(x) ĉ(x)

ĉ(x) −d̂(x) â−(x) b̂−
−d̂(x) −ĉ(x) b̂− −â−(1/x)











(B.2)
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with

â±(x) = ±2πκ− k1 (x2 − 1) cos θ

x2 − 1
cosh ρ+ k2 cosψ

b̂± = (k2 cosh ρ∓ k1) sinψ

ĉ(x) =
k2 (x2 + 1)− 2w2x

x2 − 1
sinψ sinh ρ

d̂(x) =
k1 (x2 + 1)− 2w1x

x2 − 1
cosψ sinh ρ

For the simple su(2) or sl(2) solutions we have, amongst other conditions, θ = ψ = 0 which

simplifies the computation drastically.

Finally, let us comment on a subtle point ignored up to now– the periodicity of the

rotation matrices R (and Q) in (4.39). For some integers mi we see that this matrix could

become anti-periodic. This means that in principle we should use another representative,

Rperiodic, for which we should still have (2.12) but which should be periodic. However, if

both R and Rperiodic yield the same embedding coordinated under (2.12) this means that

they are related by an anti-periodic SP (4) gauge transformation. This means that for the

purpose of computing the quasi-momenta p(x) we can indeed always use the element (4.38)

provided we keep in mind that if R is antiperiodic we can recover the real quasi-momenta

through

{eip̂1, eip̂2, eip̂3 , eip̂4|eip̃1, eip̃2, eip̃3, eip̃4}
For the true

representative Rperiodic

= {eip̂1, eip̂2, eip̂3 , eip̂4| − eip̃1 ,−eip̃2,−eip̃3 ,−eip̃4}
Using the anti–periodic

R instead

.

The same kind of statement hold for the AdS element Q. Also, to each eigenvalues we

choose to add a multiple of π in such a way that the quasimomenta vanish at x =∞. If R
is periodic this multiple should contain an even number of π’s whereas if it is anti-periodic,

we should add πn with n odd to each quasi-momenta. Notice that since the eigenvalues

are eip and not p we are always free to perform these shifts.



Appendix C

Shifts in fluctuation energies

In this section we discuss the origin of the constant shifts in the fluctuation energies ap-

pearing in section 5.4.1. Let us first look at the su(2) result (5.71) and pick one if the

frequencies, say the first one

ωSn+m − J . (C.1)

We find two kinds of shifts relatively to the frequencies listed in the table 5.1, namely the

constant shift J and the shift in the fourier mode n→ n+m.

Let us understand the origin of this shifts. For that purpose consider a system of two

harmonic oscillators,

Lx =
ẋ2

1 + ẋ2
2

2
− ω2

2

(

x2
1 + x2

2

)

,

and suppose that, instead of quantizing this system, we chose to quantize the system

obtained by rotating x1, x2 with angular velocity J , i.e. we move to the y frame

x1 + ix2 = (y1 + iy2) e
iJ t .

Then, we obtain1

Hy = Hx + JLz ,

where Lz is the usual angular momentum, so that

Ey
n1,n2

= ω + (ω −J )n1 + (ω + J )n2 .

Thus for the radially symmetric wave function, for which n1 = n2 (and in particular for

the ground state energy), the constant shifts cancel and we obtain the same energies as for

the first system. That, in general, the two results are different is obvious since the energy

depends on the observer.

The constant shifts mentioned above have exactly this origin. In fact, when expanding

the Metsaev-Tseytlin string action around the classical su(2) circular string one obtains

1 In the y frame the Lagrangian takes the form 2Ly = ẏ2
1 + ẏ2

2−(ω2−J 2)
(

x2
1 + x2

2

)

+2J y1ẏ2−2J ẏ1y2 .
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an effective time and space dependent Lagrangian whose σ, τ dependence can be killed by

a change of frame

δX = R(σ, τ)δY

where δX are the (bosonic) components of the fluctuations and R is a time and space

dependent rotation matrix – see for instance expression (2.14) in [102]. The same kind

of field redefinitions are also present for the fermion fields. The time dependence of the

rotation matrix gives the constant shifts as in the simple example we just considered while

the space dependence in this change of frame is responsible for the relabeling of the mode

numbers.

To make contact with the algebraic curve let us return to the frequency (C.1) we picked

as illustration. It corresponds to a pole from sheet p̃1 to p̃3 (or from p̃2 to p̃4) whose position

is fixed by (5.4). The result in the rotated frame, ωSn , would correspond to a pole with

mode number n+m whose position is given by

p̃1(x
1̃3̃
n )− p̃3(x

1̃3̃
n ) = 2πn+ 2πm .

When plugging the actual expressions (4.49) for p̃1 and p̃3 in this equation we see that

the 2πm disappears and the equation looks simpler than (5.4). However, for several cut

solutions there is no such obvious choice of mode numbers (or field redefinition which kills

the time dependence in the Lagrangian).



Appendix D

Details of the one-loop shift computation

In this appendix we collect some intermediate formulas related to the computations of

section 6.2.

D.1 Extra poles

Solving exp(ip̃1 − ip̃3) = 1 we get

ǫ2 = δ2 X−(X2
+ − 1)

16X+(X+ −X−)(X+X− − 1)
(D.1)

+
δ4

256

(

(X2
+ − 1)(X−X

3
+ − 2X2

+ +X−X+ −X−
2 + 1)X−

2

X2
+(X+ −X−)3(X+X− − 1)3

(D.2)

+ i
∆

g

(X2
+ + 1)X−

2

X2
+(X+ −X−)2(X+X− − 1)2

)

+O(δ5) , (D.3)

while from exp(ip̂1 − ip̃3) = 1 we get

ǫ3 = δ2 eiτ

16(X+ −X−)
+

δ4

256

(

e2iτ

(X+ −X−)3
+
i∆

g

(X2
+ + 1)e2iτ

(X2
+ − 1)2(X+ −X−)2

)

+O(δ5) . (D.4)

D.2 Unphysical fluctuations

We have

c = − 2

X−X+ + 1
+

(

(1−X+X−)

4(X+X− + 1)2(X2
+ − 1)

δ + c.c.

)

, (D.5)

and

xSu = 0 , xFu =
X+X

1/2
− −X−X

1/2
+

X
1/2
− −X1/2

+

. (D.6)

The weighted sum of the unphysical fluctuations becomes therefore

2ΩSu(0)− 4ΩFu(xFu)

2
=

2

X−X+ + 1
−
(

X
1/2
+ X

3/2
− − 2X+X− +X

−1/2
+ X

1/2
−

4(X2
+ − 1)(X+X− + 1)2

δ2 + c.c.

)

.

(D.7)
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