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1 Introduction

The research presented in this dissertation is of interest due to the important result in string

theory and M-theory known as the AdS/CFT correspondence. The AdS/CFT correspon-

dence first came to light in 1998 [1], and has since been a very active area of research.

In [1] the AdS/CFT correspondence was proposed in the context of D3-branes in type IIB

superstring theory. In this case of the AdS/CFT correspondence, type IIB superstring theory

in the background geometry AdS5×S5 is conjectured to be dual to the four-dimensional U(N)

N = 4 super-Yang Mills theory that is known to live on the worldvolume of N coincident

D3-branes. When gsN , where gs is the string coupling constant, is very large, it can be

shown that the gauge theory becomes strongly coupled, and the string theory can be well-

approximated as a classical gravity theory, which means that stringy effects need not be

included. This case of the AdS/CFT correspondence is reviewed in detail in [2].

A concrete realization of the AdS/CFT correspondence in the context of M2 branes in

M-theory was given in [3]. This correspondence is known as ABJM theory. In this case of the

AdS/CFT correspondence, M-theory in the geometry AdS4×S7/Zk is conjectured to be dual

to the three-dimensional U(N) × U(N) Chern-Simons-matter theory at level k with N = 6

or 8 supersymmetry, that is known to live on the worldvolume of N coincident M2-branes.

This duality holds in the limit where N is very large. Additionally, when N � k5, M-theory

can be well-approximated as a classical gravity theory.

In light of ABJM theory, a natural question to ask was whether the correspondence could

be generalized to the case of Chern-Simons theories with less supersymmetry. See, e.g. [4, 5].
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In the case of Chern-Simons theories with N ≥ 2 supersymmetry it is known that if such a

theory has an M-theory dual, then the geometry of such a dual theory must be of the form

AdS4×SE7, where SE7 is a type of compact manifold known as a ‘Sasaki-Einstein manifold’.

The definition of a Sasaki-Einstein manifold and some important facts about them are given

in Appendix B.

It is known that supergravity theory on the background geometry AdS4 × SE7, which

is called the (‘skew-whiffed’) ‘Freund-Rubin’ background, can be continuously deformed to

supergravity theory on another AdS product space background known as the ‘Pope-Warner’

background, see, e.g., [6, 11]. In chapter 3 we give the Freund-Rubin, skew-whiffed Freund-

Rubin, and Pope-Warner background solutions explicitly. Whereas the supergravity theory

on the Freund-Rubin background was known to be stable [44], it was unknown whether the

theory on the Pope-Warner background was stable. The purpose of the research in this disser-

tation is to study the stability of Pope-Warner solutions on Sasaki-Einstein manifolds, which

in light of the AdS/CFT correspondence should correspond to vacua of 2 + 1-dimensional

field theories.

A major motivation for studying the AdS/CFT correspondence is its possible application

to condensed matter physics, see e.g. [7, 8, 9]. In this vein, it was found that in ‘top-down’

constructions of holographic superconductors, the Pope-Warner solution corresponds to a

zero-temperature quantum critical phase of a 2 + 1-dimensional superconductor [10, 11]. In

light of this promising find, it was of strong interest to determine the stability of Pope-

Warner solutions on Sasaki-Einstein manifolds. In section 1.1 of this introductory chapter

we further discuss the relevance of the Pope-Warner solution to superconductor solutions.
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Having discussed the broader context in which the research presented here is of interest,

we now go more directly into the research itself. The field equations of eleven-dimensional

supergravity [14, 15] in the bosonic sector are:1

RMN + gMNR =
1

3
FMPQRFNPQR , (1.1)

d ? F(4) + F(4) ∧ F(4) = 0 , (1.2)

where gMN is the metric, F(4) = dA(3) is the four form flux, and ? denotes the Hodge dual

in eleven dimensions. A simple and important class of solutions are the ones in which the

eleven-dimensional space time is a product AdS4 ×M7, where M7 is a seven-dimensional

Sasaki-Einstein (SE) manifold. Those manifolds are characterized by the existence of two

real Killing spinors (see, e.g., [23, 24, 26], Appendix B) and the corresponding Freund-

Rubin (FR) solutions [18] are N ≥ 2 supersymmetric. Solutions in which M7 is one of the

homogeneous SE manifolds:

S7 , N1,1 , M3,2 , Q1,1,1 , V 5,2 , (1.3)

were classified in the 1980s [22], but it is only quite recently that new solutions with nonho-

mogeneous SE metrics have been discovered [27, 28, 29].

It has also been known since the 1980s that given a SE manifold, M7, there are, in

addition to the supersymmetric FR solution, three non-supersymmetric solutions: the skew-

whiffed FR solution [18] obtained by the change of orientation on M7, and the Englert [19]

1We summarize our conventions in appendix A.
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and Pope-Warner (PW) [20, 21] solutions with nonvanishing internal fluxes constructed from

the geometric data on M7.

Quite generally, non-supersymmetric solutions in gauged supergravity tend to be unsta-

ble. Indeed, while the stability of an AdS-type solution is guaranteed if there are some

unbroken supersymmetries [36, 37], in non-supersymmetric backgrounds one expects to find

scalar fluctuations,

(2AdS4 −m2)ϕ = 0 , (1.4)

whose masses violate the Breitenlohner-Freedman (BF) bound [38]

m2L2 ≥ −9

4
, (1.5)

where L here is the radius of AdS4.

For the solutions above, the perturbative stability of the skew-whiffed FR solution in

eleven-dimensional supergravity was proved in [39]. It follows by a simple observation that

the mass spectrum of fluctuations that might produce an instability is invariant under the

change of orientation of M7 and hence is the same for the skew-whiffed and the supersym-

metric backgrounds.

The Englert solutions are more difficult to analyze because the background flux couples

the scalar and pseudoscalar fluctuations. The resulting perturbative instability for any SE

background, M7, can be shown by an explicit construction of unstable modes in terms of

the two Killing spinors [42]. The same instability is also visible in the massive truncation of

the eleven-dimensional supergravity on M7 [31, 11], and when M7 is the round seven-sphere,

S7, it corresponds to the instability of the SO(7)− critical point of N = 8, d = 4 gauged
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supergravity [40, 41].

Prior to the research presented in this dissertation, it was known from [32] that the PW

solution on S7 is in fact unstable. The question of the stability of the PW solution on other

SE manifolds is the main concern of the research presented here.

In the rest of this introductory chapter, we will do three things. First, we will discuss the

motivation for looking at the stability of PW solutions. Given that the PW solution was first

constructed in 1984, one may ask why its stability is a concern now, many years later. The

answer to this question lies in the context of AdS/CFT [2] and “top down” constructions

of holographic superconductors [10, 11, 12], as will be discussed in the following section.

Second, we will discuss prior results that are relevant to the research presented here, and

finally, we will discuss and summarize the main results of this research.

1.1 Motivation from holographic superconductors

AdS/CFT

It was proposed in [1] that supergravity in the background geometry AdS4 is dual to a

d = 3 dimensional CFT in flat space. As previously mentioned, such a duality was concretely

realized in [3]. Here, we discuss a basic aspect of the AdS/CFT correspondence. Namely, we

identify the space-time of the CFT theory with the radial slices of the AdS geometry, and

we identify the value of the radial coordinate in the AdS geometry as the energy scale of the

CFT.

The AdS4 metric can be written as

ds2 = −r2dt2 +
1

r2
dr2 + r2(dx2 + dy2). (1.6)
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Under the change of variable r = 1
z

it becomes

ds2 =
1

z2
(−dt2 + dz2 + dx2 + dy2). (1.7)

With this form of the metric it is easy to see that for each fixed value of the radial variable

z there is a copy of flat d = 3 Minkowski space. So AdS4 can be regarded as copies of d = 3

Minkowski space along a radial variable z. The Minkowski space variables t, x, and y of the

AdS4 space can be identified with the time and space variables of the d = 3 CFT. The radial

variable z of the AdS4 space is to be identified as the energy scale of the d = 3 CFT [16, 17].

This identification of z as the energy scale of the CFT simply follows from the fact that

the d = 4 and d = 3 theories are dual, and from the fact that the d = 3 theory is conformally

invariant [17]. To see how this identification follows from these facts, consider what happens

when changing the length scale of the d = 3 theory. Changing the length scale of the d = 3

theory amounts to making the transformation (t, x, y) → λ(t, x, y). Since the d = 3 theory

is conformally invariant this transformation has no effect. However this transformation will

clearly change the AdS4 metric. In order to maintain the equivalence, i.e. duality, of the

d = 4 and d = 3 theories, it is necessary to also simultaneously make the transformation

z → λz. With this additional transformation it is clear that the AdS4 metric stays the

same. Therefore, since energy goes as inverse length, changing the energy (length) scale of

the d = 3 theory amounts to moving along the radial direction as z → λz. And hence, the

radial direction of the d = 4 theory should be identified with the energy scale of the d = 3

theory.

Since energy goes as inverse length, larger λ should correspond to a smaller energy scale

and a smaller λ should correspond to a larger energy scale. In conjunction, taking the limit
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z → ∞ (or r → 0) corresponds to flowing to the IR of the d = 3 theory, and taking the

limit z → 0 (or r → ∞) corresponds to flowing to the UV of the d = 3 theory. For more

discussion on the identification of the radial variable as the energy scale, see section 12.3 of

[17].

It is important to note that in general, the supergravity solution to the kind of set-up

discussed below is only asymptotically AdS4, with the geometry in the bulk of the space-

time being more complicated. In this case it is difficult to rigorously prove that the radial

direction is to be identified with the field theory energy scale, however, it is nonetheless

taken to be so.

Holographic superconductors

Here, we discuss the basic idea of holographic superconductors. For more detailed dis-

cussions of this topic, see [7, 8, 9].

In the IR, many condensed matter systems of interest become strongly coupled and

therefore difficult to study using standard condensed matter techniques. The AdS/CFT

correspondence provides a way to possibly obtain valuable information about such systems.

Even though the AdS/CFT correspondence is only valid for a large number of gauge degrees

of freedom N , it is nonetheless hoped that by working at very large N it wil be possible

to obtain valuable information about strongly-coupled systems that is independent of N , or

that it will be possible to at least gain some hints as to how to proceed for small N .

Using the AdS/CFT correspondence one can consider the dual gravity theory of the

system of interest. In the dual gravity theory one can derive the equations of motion for the

relevant fields from an action and solve them, at least numerically.
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Since the energy scale of the condensed matter sytem is identified with the radial variable

z in the dual gravity system, to obtain the IR stongly coupled behavior of the condensed

matter system, one need only take the z →∞ limit of the gravity solution that was found,

and then use the AdS/CFT correspondence to obtain the IR strongly coupled condensed

matter system.

A holographic superconductor setup involves at least a U(1) gauge field and a complex

scalar field that is charged with respect to it. Above a critical temperature, the scalar field

has no expectation value, and is said to have ‘no hair’. If the scalar field develops a non-zero

expectation value, i.e. hair, below the critical temperature, then it comes to possess a definite

phase, thus breaking the U(1) symmetry. In such a case the gravity solution describing this

behavior is said to be a ‘holographic superconductor’.

In order to have a non-zero temperature and finite chemical potential, an electrically

charged black hole is placed at the center of the space-time. This black hole solution describes

the unbroken phase of the superconductor.

The gravity theory at the near-horizon limit of the black hole solution corresponds to the

IR of the field theory, and the z → 0 or r →∞ limit of the black hole solution corresponds

to the UV of the field theory. The space-time at the z → 0 or r →∞ limit is AdS4, and the

gravity theory at this limit is dual to the UV of the field theory.

The goal is to obtain the behavior of the system as the temperature is decreased from

above the critical temperature, where the superconductor is in an unbroken phase, to below

it, where the superconductor is in a broken phase. One is especially interested in what

happens at the z → ∞ or r → 0 limit. The gravity theory at this limit corresponds to the
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IR of the field theory, which is difficult to study using standard condensed matter techniques.

The system is set up in such a way that for all temperatures the spacetime at the z → 0

or r →∞ limit, which corresponds to the UV of the field theory, is AdS4. The system is set

up in this manner so that the AdS/CFT correspondence can be used.

Holographic superconductors from M-theory

In [8] the authors showed that many M-theory vacua corresponding to Freund-Rubin

compactifications on seven-dimensional Sasaki-Einstein manifolds provide holographic grav-

ity duals of d = 3 CFTs that exhibit superconductivity. Holographic superconductor solu-

tions are given in [8] for the linearized equations of motion of d = 11 supergravity. Much

information can be obtained from solutions to the linearized supergravity equations of mo-

tion, e.g., critical temperatures [8], but it is of course desireable to construct solutions for

the full nonlinear equations of motion.

In order to construct a holographic superconductor solution, one needs at least a metric,

a U(1) gauge field, and a charged scalar that can condense and break the U(1) symmetry.

However, finding holographic superconductor solutions for the full supergravity equations

of motion, involving at least these three fields, is in general a difficult task. Finding such

solutions is in general difficult because of the many types of couplings that can occur between

the few ‘desired’ fields and various other ‘undesireable’ fields that exist in the theory.

A way to avoid this difficulty is by working within a consistent truncation of the full

theory. Working within a consistent truncation of the full theory guarantees that the many

fields in the theory that are ‘undesireable’ can be consistently set to 0, without being sourced

in the course of the evolution of the system.
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Nonlinear D = 11 superfluid black brane solutions of [10] and [11]

Indeed, using the universal Sasaki-Einstein consistent truncation found in [31], the au-

thors of [10] and [11] were able to construct nonlinear black brane solutions of d = 11 su-

pergravity whose corresponding four-dimensional gravity theories are holographic supercon-

ductors. These black-brane solutions are particularly elegant because they apply universally

for all Sasaki-Einstein manifolds.

A notable feature of the holographic superconductor solutions found in [10] and [11] is

that the T → 0 limit of these solutions are charged domain wall solutions that interpolate

between the skew-whiffed Freund-Rubin vacuum in the UV and the Pope-Warner vacuum

in the IR. Since the Pope-Warner solution is a compactification to AdS4, it follows that

this T = 0 domain wall solution corresponds to a d = 3 CFT that has emergent conformal

symmetry in the far IR. However, in the case that the Pope-Warner vacuum is unstable

for a particular Sasaki-Einstein manifold, the viability of the corresponding superconductor

solution is put into question.

In such a case, it is reasonable to conclude that the Pope-Warner vacuum can not be

used as a viable ground state for a CFT at T = 0. Indeed, one would expect that a quantum

fluctuation of an unstable mode would grow exponentially and cause the system to flow to

a stable vacuum. However, it is not clear what to conclude for the superconductor solutions

at T > 0, whose T → 0 limits are the Pope-Warner vacuum. Perhaps it is possible that

thermal fluctuations could serve to stabilize the vacuum.

Instability of the Pope-Warner solution and its implications for holographic su-

perconductors
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At the time [11] was written it was unknown whether the Pope-Warner solution on any

Sasak-Einstein manifold is unstable. It was later found in [32] that the Pope-Warner solution

on S7 is unstable, and more recently in [33] it was shown that, in fact, the Pope-Warner

solution on any of the homogeneous Sasaki-Einstein spaces is unstable.

A consequence of the results of [32] and [33] on the program of constructing non-linear

superfluid black brane solutions is clear: the Pope-Warner solution likely cannot be used

as a viable T = 0 ground state if the compactifying manifold is taken to be a homogenous

Sasaki-Einstein manifold or an orbifold of one that is discussed in [33].

In conjuction, the results of [32] and [33] indicate that in constructing superfluid black

brane solutions, especially for T → 0, one should also utilize consistent truncations other than

the universal Sasaki-Einstein truncation, and perhaps focus on particular compactification

manifolds or restricted classes of them.

Nonlinear D = 11 superfluid black brane solutions of [13]

Interestingly, in [13] it was pointed out that the critical temperatures that were obtained

in [10] and [11] from using the universal Sasaki-Einstein truncation are not as high as those

discussed in [8], and that, therefore, the superconductor solutions of [10] and [11] are not

thermodynamically relevant. Motivated, at least in part, by this fact, and perhaps also by

the instability results of [32], the authors of [13] used several different consistent truncations

specific to S7 to construct a variety of superfluid black brane solutions.

Among these solutions are ones that in the T = 0 limit are domain wall solutions that

interpolate between the SO(8) AdS4 fixed point in the UV and the SU(3)×U(1) AdS4 fixed

point in the IR. Unlike the SU(4)− fixed point that uplifts to the Pope-Warner solution on
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S7, the SU(3)× U(1) fixed point in the IR is stable because it is supersymmetric.

1.2 Prior relevant results

Having discussed why the stability of the PW solution became a topic of interest, we now

want to discuss prior results that were relevant in carrying out the research presented in this

dissertation.

The first major result on the stability of the PW solution was given in [32]. In this paper,

the authors showed that the PW solution on S7 was in fact unstable. The authors showed

that in the S7 case the minimal sector of the SE truncation of [11, 31] coincides with the

SU(4)− sector of N = 8, d = 4 gauged supergravity. Then, expanding the N = 8 potential

to quadratic order about the critical point corresponding to the PW point, the authors found

that there are unstable scalars that transform in 20′ of SU(4)−.

The authors were able to uplift these unstable modes to eleven-dimensional supergravity,

where the SU(4) symmetry becomes the isometry of CP3, which is the KE base of S7. They

give a metric perturbation and 3-form perturbations that yield the unstable scalars under

reduction to four dimension. It is the discussion of the D = 11 picture in [32] that most

pertains to the research presented in this dissertation. In particular, looking carefully at the

structure of the metric perturbation given in [32] helped guide us toward a way to generalize

the results of [32], as will be discussed in chapter 3.

Given the results of [32], it was natural to ask what happens for PW solutions in the

case of SE manifolds other than S7. It is in fact this question that is the main topic of the

research presented here. A possible way to generalize the results of [32] was hinted at by the
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contents of the paper [42], on the instability of the Englert solution.

The Englert solution on the round S7 was first shown to be unstable in [41]. The results of

[41] were then generalized to Englert solutions on internal manifolds with two or more Killing

spinors in [42]. The key idea of [42] was to construct metric and 3-form perturbations about

the Englert background using two or more Killing spinors, and to see what the masses of

the resulting scalars were after dimensionally reducing to AdS4. Carrying out this procedure

yielded scalar masses that violate the BF bound. Since the construction of [42] only utilizes

two or more Killing spinors, its results apply universally to all SE manifolds.

In the case of the PW solution, we carried out an analogous construction using three

or more Killing spinors, and we likewise found that the construction yielded scalars whose

masses violate the BF bound. In this way we were able to generalize the results of [32]

to all tri-Sasaki manifolds, which are SE manifolds with three or more Killing spinors (see

Appendix B). This calculation is presented in chapter 2. It should be mentioned that this

calculation was carried out before the release of [34], which contained the same results.

In [34] the authors carried out a universal consistent truncation of eleven-dimensional

supergravity on tri-Sasakian manifolds. After presenting a solution to eleven-dimensional

supergravity based on seven-dimensional tri-Sasakian structure, the authors dimensionally

reduced the theory to four dimensions. The process of dimensional reduction yields a poten-

tial for the four-dimensional theory that has the PW solution as a critical point. Expanding

the potential about the PW critical point to quadratic order, the authors found that a scalar

contained in the truncation has a mass-value that violates the BF bound. As mentioned, we

were able to obtain the same unstable scalar using a construction analogous to that in [42].
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Having established that the PW solution on tri-Sasaki manifolds is unstable, one would

like to know what the situation is for non-tri-Sasaki SE manifolds, i.e., for SE manifolds with

exactly N = 2 supersymmetry. A possible way to proceed is by looking at consistent trun-

cations on SE manifolds, and expanding the corresponding potentials about the PW point

to see whether there exist any unstable modes. Indeed, additional consistent truncations on

N = 2 SE manifolds that generalize the consistent truncation of [11, 31] were carried out in

[35]. These truncations, however, do not yield unstable modes at the PW point.

Another possible way to proceed for the N = 2 case was provided by the key observations

we made that the metric perturbation that led to instability in the S7 case had components

only along the KE base, and furthermore, that it could be expressed in terms of a transverse,

primitive (1,1)-form and a certain canonical SE object. These observations led us to focus

our attention on transverse, primitive (1,1)-forms that are eigenfunctions of the Hodge-de

Rham Laplacian. In particular, we used such objects together with canonical SE objects to

construct metric and 3-form perturbations on SE manifolds. See chapter 4 for the details of

our construction.

An analogous construction is found in [58]. In this paper the authors examined the sta-

bility of AdS5 solutions of eleven-dimensional supergravity compactified on six-dimensional

Kähler-Einstein (KE) spaces. The main result of the paper is that the solution suffers a

bosonic instability if and only if there exists a transverse, primitive (1,1)-form that is an

eigenfunction of the Hodge-deRham Laplacian with eigenvalue within a certain given range

of values. In particular, such a (1,1)-form can be used to construct metric and 4-form

perturbations that reduce to unstable AdS5 scalars.
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Even though [58] deals with compactification on six-dimensional KE spaces, it contains

results that are applicable to the case of interest to us because regular SE manifolds can be

seen as U(1)-bundles over KE bases, see e.g. Appendix B. In particular, [58] contains explicit

(1,1)-forms that also exist on SE manifolds that we look at, and that are eigenfunctions of

the Hodge-de Rham Laplacian with eigenvalues that lead to instability. See subsection 1.3

and chapter 5 for details.

1.3 Summary of main results

In this research we identify a potential source of perturbative instability of the PW solution

on an arbitrary (regular) SE manifold. We show that starting with a basic, primitive,

transverse (1,1)-form ω on M7, which is an eigenform of the Hodge-de Rham Laplacian, ∆2,

with the eigenvalue λω ≥ 0, one can construct explicitly one metric and two flux harmonics,

which after diagonalization of the linearized equations of motion give rise to three modes in

the scalar spectrum with the following masses:

(i) supersymmetric FR

m2L2 :
λω
4
− 2 ,

λω
4

+
√
λω + 1− 1 ,

λω
4
−
√
λω + 1− 1 , (1.8)

(ii) skew-whiffed FR

m2L2 :
λω
4
− 2 ,

λω
4

+ 2
√
λω + 1 + 2 ,

λω
4
− 2
√
λω + 1 + 2 , (1.9)

(iii) PW

m2L2 :
3

8
λω ,

3

8
λω + 3

√
λω + 1 + 3 ,

3

8
λω − 3

√
λω + 1 + 3 . (1.10)
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M7 λω m2L2 # of modes KK spectra

S7 24 −3 20 [43, 44]

N1,1 24 −3 1 [45, 46, 47]

M3,2 16 9− 3
√

17 8 [48, 49, 50]

Q1,1,1 16 9− 3
√

17 9 [51]

V 5,2 32/3 7−
√

105 5 [52]

Table 1: Unstable modes for the PW solution on homogeneous SE manifolds.

For the first two solutions, all modes in (1.8) and (1.9) are stable with the lowest possible

masses saturating the BF-bound (1.5) when λω = 3 and λω = 15, respectively. However, for

the PW solution, the last mode in (1.10) becomes unstable when λω lies in the range

2(9− 4
√

3) < λω < 2(9 + 4
√

3) . (1.11)

In principle, all that remains then is to determine which SE manifolds admit such stability

violating (1, 1)-forms. Unfortunately, this appears to be a difficult problem since no general

bounds on the low lying eigenvalues of ∆2 on an arbitrary SE manifold are known.

In the absence of general results, we look at the homogeneous SE manifolds (1.3) for

which the spectra of the Hodge-de Rham Laplacians, ∆k, and of the Lichnerowicz operator,

∆L, have been calculated in the references listed in Table 1, either as part of the Kaluza-

Klein program in the 1980s,2 or, more recently, to test the AdS/CFT correspondence for

2For a review, see, e.g., [44] and [49].
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M2-branes at conical singularities [53, 54, 55]. Specifically, the eigenvalues of the Hodge-de

Rham Laplacian, ∆2, can be read-off from the masses of Z-vector fields that arise from the

Kaluza-Klein reduction of the three-form potential along two-form harmonics.

By examining the mass spectra of Z-vector fields, we conclude that on each homogeneous

SE manifold there are two-forms with the eigenvalues of ∆2 within the instability range

(1.11). One must then determine whether any of those forms are basic, transverse and

primitive. We found that, given the KK data for the two-form harmonics, which include

the representation and the R-charge, it is actually the easiest to construct those forms

explicitly and then verify that they indeed satisfy all the required properties. Our results

are summarized in Table 1, which shows that there are unstable modes for the PW solution

on all homogeneous SE manifolds.

The three harmonics for the scalar fields in (1.8)-(1.10) are related to the master (1, 1)-

form by operations (contractions and exterior products) that involve canonical objects of the

SE geometry: the metric and the forms, which can be expressed in terms of Killing spinors on

the SE manifold. From a general analysis of harmonics on coset spaces with Killing spinors

[56], it is reasonable to expect that, at the supersymmetric solution, the three scalar fields

and the Z-vector field should lie in the same N = 2 supermultiplet. Indeed, the pattern

of masses in (1.8) and the presence of the Z-vector field with the correct mass, and their

R-charges, suggest that it is a long Z-vector supermuliplet [57]. Ultimately, this observation

explains why we can diagonalize the mass operator for fluctuations around the PW solution

on such a small set of modes – the mixing due to the background flux involves only harmonics

within a single supermultiplet. It also suggests where to look for an instability of the PW
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solution on a general SE manifold.

A regular SE manifold, M7, is a U(1) fibration over its KE base, B6, so any (1,1)-

form, ω, as above is a pull-back of a transverse, primitive (1,1)-form on B6 with the same

eigenvalue of the corresponding Hodge-de Rham Laplacian, ∆(1,1). This shows that the

potential instability of the PW solution that we have identified resides in the spectrum of

∆(1,1) on KE manifolds. It also provides a link to a different class of solutions whose stability

has been analyzed recently. As discussed in the previous section, precisely the same type

(1,1)-forms, albeit with a different “window of instability,” were shown in [58] to destabilize

the AdS5 ×B6 solutions [59, 60] of eleven-dimensional supergravity.

Two results in [58] are directly applicable to our analysis. The first one is an explicit

construction of a (1, 1)-form ω, with λω = 16, on S2 × S2 × S2, which is the KE base for

Q1,1,1. The second one is more general and concerns the spectrum of ∆(1,1) on a product of

two Kähler manifolds, B6 = B2 × B4. It is shown that if B4 admits a continous symmetry,

then there exists a transverse, primitive (1, 1)-form ω on B6 with the eigenvalue λω = 16.

In particular, the unstable modes on M3,2, which is a U(1) fibration over S2 × CP2, arise in

this way. Another KE manifold that is covered by this construction is S2 × dP3, where dP3

is the del Pezzo surface. This gives us an example of an inhomogeneous SE manifold with

an unstable PW solution.

The rest of the dissertation is organized as follows. In chapter 2 we present the calculation

analogous to what was done in [42] showing that the PW solution on tri-Sasakian manifolds

is unstable. In chapter 3, we review the FR and PW solutions together with some pertinent

SE geometry. Even though the PW solution is given in chapter 2, we present it again in
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chapter 3, because the conventions in chapter 2 are different than they are in the rest of

this dissertation. We then in chapter 4 present the details of our calculation leading to the

mass formulae (1.8)-(1.10). In chapter 5 we construct explicitly the unstable modes for all

homogeneous examples. We conclude with some comments in chapter 6. Our conventions

and some useful identities are summarized in appendices.

2 Page-Pope-like construction

2.1 Introduction

In [42] Killing spinors on S7 were used to construct linearized modes about the Englert

solution of the bosonic field equations of d = 11 supergravity. In the Englert solution, the

4-form flux has two parts. One part is taken to be the volume form of AdS4, and the other

part is an internal flux that has components only along the compact S7 directions. The

internal 4-form flux is constructed as a spinor bilinear with four legs, using one of the eight

Killing spinors on the round S7. This single spinor is invariant under an SO(7) subgroup of

SO(8), the symmetry group of the round S7, while the other seven spinors transform as the

7 of this SO(7). Since the internal 4-form is constructed from an SO(7)-invariant spinor, it

itself is an SO(7)-invariant form. Therefore, since the round S7 is also SO(7)-invariant, the

Englert solution is SO(7)-invariant.

The S7 in the Englert solution is the round S7, which has SO(8) symmetry. Therefore,

all the spinors on the S7 are Killing spinors, satisfying ∇aη = αΓaη, where α is a constant.

Perturbations of the metric and 4-form are constructed from the 8 Killing spinors and d = 7
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gamma matrices. Since Killing spinors are used, the d = 11 linearized field equations reduce

to a much simpler set of differential equations on AdS4, from which the masses of AdS4

scalars can be easily obtained.

Here, we carry out an analogous procedure on the Pope-Warner solution on the stretched

S7 [20]. The Pope-Warner solution has SU(4) (SO(6)) invariance. Like the Englert solution

it has an internal 4-form flux, however in the Pope-Warner case it is constructed from two,

rather than one Killing spinor. These two spinors are singlets of the SU(4) invariance group,

while the other six spinors transform as the 6 of this SU(4). Analogously to the Englert

case, perturbations to the metric and 4-form flux are constructed from the eight spinors and

d = 7 gamma matrices, and the d = 11 linearized field equations are reduced to a simple set

of differential equations on AdS4, from which masses of AdS4 scalars are easily obtained.

However, the procedure in the Pope-Warner case is complicated by the fact that spinors

on the stretched S7 do not satisfy the equation ∇aη = αΓaη. We are able to deal with

this complication by rearranging the spinor covariant derivative in a convenient way. This

rearrangement of the spinor covariant derivative is carried out in section 2.2.

In section 2.3 the d = 11 bosonic field equations and their linearization are given. In

section 2.4 we discuss spinors and spinor bilinears. In section 2.5 we obtain the Pope-Warner

background solution. In section 2.6 we present the perturbation ansatz. In section 2.7 we plug

the Pope-Warner solution and our perturbation ansatz into the linearized field equations and

obtain simple differential equations in AdS4 for scalar fields. In section 2.8 we diagonalize the

AdS4 equations to obtain the masses of the scalar fields. Finally, in section 2.9 we compare

our results to known results.
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It is important to mention that the conventions used in this chapter are different from

those used in the rest of this work. The Dirac matrices are taken to be real and antisym-

metric, satisfying

{Γa,Γb} = −2δab.

Also, in the metric for the d = 11 compactified solution, the size of the KE base is held fixed

in going from the FR to the PW points. In the rest of this work, the size of the KE base

varies, whereas the AdS radius squared is taken to be L2.

2.2 Spinor covariant derivative

The spinor covariant derivative is [44]

∇mη = (∂m −
1

4
ωm

bcΓbc)η. (2.1)

The index ‘m’ is for the curved coordinates, and the ωm
ab are the spin connections.

The spinor covariant derivative can be expressed in terms of the frame coordinates simply

by contracting with the inverse frame ema. So

∇aη = (∂a −
1

4
ωa

bcΓbc)η, (2.2)

where

∂a = ema∂m (2.3)

ωa
bc = emaωm

bc. (2.4)

We are interested in S7 as a U(1) fibration over the KE space CP3. In this case the metric

can be written as [44]

ds2 = ds̄2 + c2(dτ − A)2, (2.5)
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where ds̄2 is the metric on CP3, and A is a 1-form potential on CP3 that gives rise to the

complex structure J . In the case that c = 1, the sphere is round. Otherwise the sphere is

said to be ‘stretched’.

For frames we take

ei = ēi, i = 1, . . . , 6 (2.6)

e7 = c(dτ − A) (2.7)

= cĕ7, (2.8)

where the ēi are frames on the CP 3, and ĕ7 is the frame for the fiber in the case that the

sphere is round. With this choice of frames, it is found that the spin connections are given

by

ωij = ω̄ij + cJ ije7 (2.9)

ω7i = −cJ ijej, (2.10)

where Jij = (dA)ij is the complex structure on CP 3.

Rearranging the spinor covariant derivative for the stretched sphere

In the case that the sphere is stretched, i.e. c 6= 1, we would like to rearrange the

spinor covariant derivative in such a way that the contribution made to it from stretching is

manifest.

First, we express the inverse frames on the stretched sphere in terms of those of the round

sphere. To do so we write

emaem
b = δbi e

m
aem

i + cδb7e
m
aĕ

7
m (2.11)

= δba. (2.12)
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From the above equation, it must be that

emi = ĕmi (2.13)

em7 =
1

c
ĕm7, (2.14)

where ĕma are the inverse frames on the round sphere.

Next, we express the partial derivatives on the stretched sphere in terms of those on the

round sphere. To do so we write

∂a = ema∂m (2.15)

= δiae
m
i∂m + δ7

ae
m

7∂m (2.16)

= δiaĕ
m
i∂m +

1

c
δ7
aĕ
m

7∂m. (2.17)

From the above equation we see that

∂i = ∂̆i (2.18)

∂7 =
1

c
∂̆7, (2.19)

where ∂̆a is the partial derivative for the round sphere, i.e. for c = 1.

Now, we express the spin connections on the stretched sphere in terms of those on the

round sphere. The spin connections are

ωij = ω̄ij + cJ ije7 (2.20)

ω7i = −cJ ijej. (2.21)
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From these we see that

ωk
ij = ω̄ ij

k (2.22)

ωk
7j = −cJ jk (2.23)

ω7
ij = cJ ij. (2.24)

So along the CP3 we have

1

4
ωk

bcΓbc =
1

4
ω̄ ij
k Γij +

1

2
ωk

7jΓ7j (2.25)

=
1

4
ω̄ ij
k Γij −

1

2
cJ jkΓ7j (2.26)

=
1

4
ω̄ ij
k Γij −

1

2
J jkΓ7j +

1

2
(1− c)J jkΓ7j (2.27)

=
1

4
ω̆ bc
k Γbc +

1

2
(1− c)J jkΓ7j, (2.28)

giving

1

4
ωk

bcΓbc =
1

4
ω̆ bc
k Γbc +

1

2
(1− c)J jkΓ7j. (2.29)

Along the fiber we have

1

4
ω7

bcΓbc =
1

4
cJ ijΓij (2.30)

=
1

4
J ijΓij +

1

4
(c− 1)J ijΓij (2.31)

=
1

4
ω̆ bc

7 Γbc +
1

4
(c− 1)J ijΓij, (2.32)

giving

1

4
ω7

bcΓbc =
1

4
ω̆ bc

7 Γbc +
1

4
(c− 1)J ijΓij, (2.33)

where ω̆bc are the spin connections on the round sphere.

The rearranged spinor covariant derivative
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Finally, putting together equations (2), (18), and (29) we have along the CP3

∇k = ∂k −
1

4
ωk

bcΓbc (2.34)

= ∇̆k +
1

2
(c− 1)J jkΓ7j, (2.35)

giving

∇k = ∇̆k +
1

2
(c− 1)J jkΓ7j, (2.36)

where ∇̆a is the spinor covariant derivative for the round sphere. And putting together

equations (2), (19), and (33) we have along the fiber

∇7 = ∂7 −
1

4
ω7

bcΓbc (2.37)

=
1

c
∂̆7 −

1

4
ω̆ bc

7 Γbc −
1

4
(c− 1)J ijΓij (2.38)

=
1

c
∇̆7 −

1

4
(1− 1

c
)ω̆ ij

7 Γij −
1

4
(c− 1)J ijΓij (2.39)

=
1

c
∇̆7 −

1

4

(
c2 − 1

c

)
J ijΓij, (2.40)

giving

∇7 =
1

c
∇̆7 −

1

4

(
c2 − 1

c

)
J ijΓij. (2.41)

In summary we have

∇a = λa∇̆a + Ea, (2.42)

where

λi = 1 (2.43)

λ7 =
1

c
, (2.44)
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Ei = βJ j iΓ7j (2.45)

E7 = µJ jkΓjk, (2.46)

and

β =
1

2
(c− 1) (2.47)

µ = −1

4

(
c2 − 1

c

)
. (2.48)

So if η is a Killing spinor on the S7, then

∇̆aη = αΓaη, (2.49)

where α = 1
2

for unit radius.

2.3 The D = 11 field equations and their linearization

The bosonic sector of d = 11 supergravity consists of a metric gAB and a 3-form potential

AABC . The exterior derivative of the 3-form potential gives a 4-form flux FABCD. Classically

these fields must satisfy the d = 11 supergravity bosonic field equations. These field equations

consist of an Einstein equation, a Maxwell equation, and the Bianchi identity for FABCD.

The Einstein equation is

RAB =
1

3
FACDEF

CDE
B − 1

36
gABFCDEFF

CDEF , (2.50)

the Maxwell equation is

∇AF
ABCD = − 1

576
εBCDEFGHIJKLFEFGHFIJKL, (2.51)
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and the Bianchi identity is

∇[AFBCDE] = 0. (2.52)

We would like to perturb the fields gAB and FABCD, in such a way that the perturbed

fields still satisfy the equations of motion. Let hAB and fMNPQ be the perturbations to the

metric and flux, respectively. The perturbed fields are then

gAB = gAB + hAB (2.53)

FABCD = FABCD + fMNPQ. (2.54)

We would like to put these perturbed fields into the equations of motion and determine

the equations the perturbations hAB and fABCD must satisfy to first order in order for gAB

and FABCD to be solutions. The equations hAB and fABCD must satisfy to first order are

the ‘linearized field equations’.

The d=11 linearized field equations

The linearized bosonic field equations of d = 11 supergravity are derived in Appendix F.

The linearized Einstein equation is

1

2
∆̂hAB + ∇̆(A∇̆ChB)C −

1

2
∇̆A∇̆Bh

C
C = −F CNP

A F M
B NPhMC −

1

36
hABFCDEFF

CDEF

+
1

9
gABh

CMFCDEFF
DEF
M +

2

3
F MNP

(A fB)MNP

− 1

18
gABF

MNPQfMNPQ, (2.55)

the linearized Maxwell equation is

∇̆Af
ABCD + 4∇̆A(FM [ABChD]

M)− 1

2
FBCDR∇̆RhA

A = − 1

288
εBCDEFGHIJKLFEFGHfIJKL

− 1

1152
Tr(g−1h)εBCDEFGHIJKLFEFGHFIJKL, (2.56)
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and the linearized Bianchi identity is

∇[AfBCDE] = 0. (2.57)

We want to plug the Pope-Warner background solution obtained in section 2.5 and the

perturbation ansatz given in section 2.6 into the linearized field equations and obtain field

equations for scalars in AdS4.

2.4 Spinor bilinears

The round S7, i.e. that with c = 1 in the metric (5), has symmetry group SO(8). When the

sphere is stretched, so that c 6= 1, the symmetry group SO(8) is broken to the symmetry

group of the CP3, which is SU(4). The group SO(8) has two 8-dimensional spinor irreps.

Under the subgroup SU(4) that is the symmetry group of the CP3 one of these spinor irreps

breaks as [80]

8→ 6 + 1 + 1. (2.58)

Let the singlet spinors be denoted by ζ and ψ, and the spinors that transform in the 6 be

denoted by ηi, i = 1, . . . , 6. Since ζ and ψ are invariant under SU(4), spinor bilinear forms

constructed from these spinors are invariant under SU(4).

Due to the antisymmetry of the gamma matrices in 7 dimensions, there is only one spinor

bilinear 1-form and only one spinor bilinear 2-form that can be constructed from ζ and ψ,

namely ζ̄Γaψ and ζ̄Γabψ, respectively. In fact the former is −e7, where e7 is the seventh

frame in section (I), and the latter is −J , where J is the complex structure.

The 3-forms ζ̄Γabcζ and ψ̄Γabcψ are used in the construction of the Pope-Warner back-
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ground solution in the next section. Their exterior derivatives ∼ ζ̄Γabcdζ and ∼ ψ̄Γabcdψ

along with the volume form of AdS4 make up the background 4-form flux.

Spinor bilinear forms can also be constructed from the spinors ηi that transform in the

6. These forms are clearly not SU(4)-invariant. It is convenient to define

Kij
abcd = η̄iΓabcdη

j, i, j = 1, . . . , 6. (2.59)

By antisymmetry of the gamma matrices, the Kij are symmetric under interchange of i and

j.

It is also convenient to define the 4-forms

Ka
abcd = ζ̄Γabcdζ + ψ̄Γabcdψ (2.60)

Kij
7,abcd = 4ζ̄Γ[aψK

ij
bcd]7. (2.61)

The latter is simply Kij
abcd with all component set equal to 0, except for those components

that have a direction along the fiber, i.e. along the ‘7’ direction.

The covariant derivatives of the various spinor bilinears are needed. They are obtained

using the Leibnitz rule with the spinor covariant derivative.

2.5 Pope-Warner background solution

The Pope-Warner solution is a compactification solution of the d = 11 supergravity bosonic

field equations with SU(4)-invariance [20]. The metric part of it is a product of the AdS4

metric and of the stretched S7 metric:

ds2 = l2ds2(AdS4) + ds2(S7), (2.62)
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where ds2(AdS4) is the metric for unit radius AdS4 and ds2(S7) is the metric (5) with the

size of the CP3 set so that R(CP3)ij = 8δij.

The background 4-form fluxes are taken to be

Fµνρσ = −2mεµνρσ (2.63)

Fabcd = s
(
ζ̄Γabcdζ − ψ̄Γabcdψ

)
, (2.64)

where Greek indices are used to label coordinates of AdS4 and Latin indices are used to label

coordinates of S7. All other components of the 4-form flux are 0, i.e. there is no mixing of

the AdS4 and S7 components.

The Einstein equation is

RAB =
1

3
FACDEF

CDE
B − 1

36
gABFCDEFF

CDEF . (2.65)

The Riemann tensor for the stretched S7 is given in [3]. It is

Rijkl = δikδjl − δilδjk + (1− c2)(JikJjl − JilJjk + 2JijJkl) (2.66)

R7i7j = c2Ji
kJjk = c2δij. (2.67)

Contracting the Riemann tensor gives the Ricci tensor, which can then be input into the

Einstein equation. It is

Rij = (8− 2c2)δ̄ij (2.68)

R77 = 6c2. (2.69)
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Putting the above metric and fluxes into the Einstein equation gives the equations

3

l2
=

8

3
(2m2 + 4s2) (2.70)

8− 2c2 =
4

3
(2m2 + 4s2) (2.71)

6c2 =
8

3
(m2 + 8s2), (2.72)

where l is the AdS radius.

The Maxwell equation is

∇aF
abcd = −1

6
mεbcdefghFefgh. (2.73)

Putting the flux (32) into the Maxwell equation gives, using the spinor covariant derivative,

sB
(
ζ̄Γbcdζ − ψ̄Γbcdψ

)
= 2ms

(
ζ̄Γbcdζ − ψ̄Γbcdψ

)
, (2.74)

where

B = α(λ7 + 3) + 3(β + 2µ). (2.75)

So the Maxwell equation gives

B = 2m. (2.76)

Solving the Einstein and Maxwell equations gives:

c =
√

2 (2.77)

m =
1√
2

(2.78)

s = ± 1√
2

(2.79)

l =

√
3

8
. (2.80)
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2.6 Perturbation ansatz

We want to perturb the Pope-Warner background solution obtained in the previous section.

We use the following perturbation ansatz:

hab = 2Gij(x)W ij
ab (2.81)

aabc = χij(x)X ij
abc + ξ(x)Yabc + ωij(x)Zij

abc, (2.82)

where

W ij
ab = ζ̄Γmη

(iζ̄Γnη
j) − ψ̄Γmη

(iψ̄Γnη
j) (2.83)

X ij
abc = 3

(
ζ̄Γ[mη

(iζ̄Γnp]η
j) + ψ̄Γ[mη

(iψ̄Γnp]η
j)
)

(2.84)

Yabc = 3ζ̄Γ[mψζ̄Γnp]ψ (2.85)

Zij
abc = 6

(
ζ̄Γ[mη

(iψ̄Γnη
j)ζ̄Γp]ψ

)
. (2.86)

Taking the exterior derivative of a gives

fabcd = (da)abcd

= χij(x)(dX ij)abcd + ξ(x)(dY )abcd + ωij(x)(dZij)abcd (2.87)

fαbcd = ∇αabcd

= ∇αχ
ij(x)X ij

abc +∇αξ(x)Yabc +∇αω
ij(x)Zij

abc, (2.88)

where

dX ij = −4(β − 2α)Kij + 2 [α(λ− 1) + β − 2µ]Kij
7 + 2(2α + β)δijKa (2.89)

dY = 4(α + β)Ka (2.90)

dZij = 2(α + β)Kij − 2(3α + β)Kij
7 − (α + β)δijKa. (2.91)
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We want to plug this perturbation ansatz, together with the Pope-Warner background

solution, into the linearized field equations given in section 2.3. To begin with, the linearized

field equations are unwieldy and contain many terms. However, due to the following facts,

which are straightforward to verify, they simplify considerably.

1. The metric fluctuation ansatz hab is traceless, i.e. haa = 0.

2. F abcdfabcd = 0.

3. F abc
n aabc = 0.

4.
(
ζ̄Γefgζ − ψ̄Γefgψ

)
aefg = 0.

5. ∇mf
mnpσ = 0. This is because the divergence operator is − ? d?, and d2 = 0.

6. ∇nh
n
a = 0. hab is transverse.

7. Fa
cnpFb

m
nphmc = 0.

8. FcdefFm
defhcm = 0. This follows from 7 by contracting the indices a and b.

2.7 AdS equations of motion

Using the perturbation ansatz and the facts given above, the linearized d = 11 field equations

reduce to

1

2
∆̂hmn =

2

3
F abc

(m fn)abc −
1

36
(384s2 − 96m2)hmn (2.92)

and

∇µf
µnpq +∇mf

mnpq + 4∇m(F a[mnphq]a) = −1

6
mεabcdnpqfabcd. (2.93)

These equations come from the Einstein and Maxwell field equations, respectively. The

linearized Bianchi identity is trivially satisfied by the fact that f = da in the perturbation

ansatz, so it yields no new information.
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We want to further simplify the linearized field equations so that all dependence on the

internal 7-dimensional coordinates disappers and we are left with equations that are only on

the AdS space.

Einstein equation

The Einstein equation is

1

2
∆̂hmn =

2

3
F abc

(m fn)abc −
1

36
(384s2 − 96m2)hmn. (2.94)

∆̂ is the Lichnerowitz operator and is defined as [44]

∆̂hmn = −2hmn − 2Rmpnqh
pq + 2R p

(m hn)p, (2.95)

where

2hmn = 24hmn + 27hmn, (2.96)

and

27 = ∇a∇a. (2.97)

The various terms in ∆̂hmn are found to be

27hmn = −8[α2(2λ2 + 5) + 2α(β + 4λµ) + β2 + 8µ2]hmn (2.98)

Rmpnqh
pq = (3c2 − 4)hmn (2.99)

R p
(mhn)p = −2(c2 − 4)hmn, (2.100)

giving

∆̂hmn = −24hmn + l hmn, (2.101)
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where

l = 8[α2(2λ2 + 5) + 2α(β + 4λµ) + β2 + 8µ2]− 10c2 + 24. (2.102)

The other term in the Einstein equation is found to be

F abc
(m fn)abc = −48s

[
(α(λ+ 3)− β − 2µ)χij − 2αωij

]
W ij
mn. (2.103)

Now the Einstein equation is

24hmn = κGhmn + 64s
[
(α(λ+ 3)− β − 2µ)χij − 2αωij

]
W ij
mn, (2.104)

giving

24G
ij = κGG

ij + 32s
[
(α(λ+ 3)− β − 2µ)χij − 2αωij

]
, (2.105)

where

κG = l +
1

18
(384s2 − 96m2). (2.106)

So the linearized Einstein equation is

24G
ij = M11G

ij +M12χ
ij +M14ω

ij, (2.107)

where the coefficients M1j are constants that will be part of a 4×4 matrix M called the ‘mass

matrix’. The rest of the elements of M will come from the linearized Maxwell equation.

Maxwell equation

The Maxwell equation is

∇µf
µnpq +∇mf

mnpq + 4∇m(F a[mnphq]a) = −1

6
mεabcdnpqfabcd. (2.108)

Expanded, the first term on the left hand side of the Maxwell equation is

∇µf
µ
npq = (24χ

ij)X ij
npq + (24ξ)Ynpq + (24ω

ij)Zij
npq, (2.109)
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and the second term on the left hand side is

∇mf
m
npq = −(?d ? f)npq (2.110)

= gij1 X
ij
npq + g2Ynpq + gij3 Z

ij
npq, (2.111)

where

gij1 = −4
[
α2(λ(λ+ 2) + 13)− 2αβ(λ+ 5)− 4α(λ+ 1)µ+ (β + 2µ)2

]
χij

+8α(α(λ− 3)− 3β − 2µ)ωij (2.112)

g2 = −16
(
α2(−λ) + α2 + 7αβ + 2αµ+ 2β2

)
Trχ− 64(α + β)2ξ

+16
(
−α2 + 2αβ + β2

)
Trω (2.113)

gij3 = 8(α(λ− 1) + β − 2µ)(−α(λ− 3) + 3β + 2µ)χij

−16
(
−α2(λ− 10) + α(5β + 2µ) + β2

)
ωij. (2.114)

In g2, Trχ =
∑6

i=1 χ
ii and Trω =

∑6
i=1 ω

ii.

One finds that in the third term on the left hand side of the Maxwell equation

4Fa[mnphq]
a = 4sGijKij

7,mnpq. (2.115)

So,

4∇m(Fa[mnphq]
a) = 4sGij(− ? d ? Kij

7 )npq (2.116)

= (κij1 X
ij
npq + κ2Ynpq + κij3 Z

ij
npq), (2.117)

(2.118)
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where

κij1 = −8s(α(λ− 1)− β − 2µ)Gij, (2.119)

κ2 = 32sαTr G, (2.120)

κij3 = −16s(α(λ− 7)− β − 2µ)Gij. (2.121)

The term on the right hand side is

εabcdnpqfabcd = 4!(?f)npq (2.122)

= 4!
(
hij1 X

ij
npq + h2Ynpq + hij3 Z

ij
npq

)
, (2.123)

where

hij1 = 2 (α(λ+ 3)− β − 2µ)χij − 4αωij (2.124)

h2 = 8βTrχ+ 8(α + β)ξ − 4(α + β)Trω (2.125)

hij3 = 4 (α(λ− 1) + β − 2µ)χij − 4(3α + β)ωij. (2.126)

Plugging the expansions of each of the terms into the linearized Maxwell equation yields

three equations for the scalar fields, one equation for each of X ij, Y , and Zij. They are

2χij = −gij1 − κ1G
ij − 4mhij1 (2.127)

2ξ = −g2 − κ2Tr G− 4mh2 (2.128)

2ωij = −gij3 − κ3G
ij − 4mhij3 . (2.129)
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Expanding these equations further in terms of the ansatz scalars Gij, χij, ξ, ωij gives

2χij = M21G
ij +M22χ

ij +M23ξ
ij +M24ω

ij (2.130)

2ξ = M31Tr G + M32Trχ+ M33ξ + M34Trω (2.131)

2ω = M41G
ij +M42χ

ij +M43ξ
ij +M44ω

ij. (2.132)

The Mij in the above equations, combined with the M1j in the linearized Einstein equation

give the 4× 4 mass matrix M.

2.8 Eigenmodes

Plugging our background and fluctuation ansatze into the linearized Einstein and Maxwell

equations yielded four equations for the four AdS scalars that were part of the fluctuation

ansatz. These four equations can be conveniently written as

(142−M)



Gij

χij

ξ

ωij


= 0. (2.133)

The matrix M is called the ‘mass matrix’.

If S is the matrix that diagonalizes M then we have

(142−D)



φij1

φij2

φ3

φij4


= 0, (2.134)
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where

D = SMS−1, (2.135)

and 

φij1

φij2

φ3

φij4


= S



Gij

χij

ξ

ωij


. (2.136)

The matrix D is diagonal and its entries are the eigenvalues of M, which are the squared

masses of the scalar fields φij1 , φij2 , φ3, and φij4 .

Explicitly, the mass matrix is

M =



24 32
√

2 0 −16
√

2

0 24− 16
√

2 0 8
√

2

−8
√

2δij 16(−1 +
√

2)δij 16 8δij

−24
√

2 16(−2 +
√

2) 0 8(5 + 2
√

2)


. (2.137)

By diagonalizing M one can find the φija , φ3, and the squared masses.

The φija and φ3 are found to be

φij1 = − 1

10
(2 + 3

√
2)Gij +

1

5
(−4 +

√
2)χij +

1

5
(3 +

√
2)ωij (2.138)

φij2 =
1

2
Gij + χij (2.139)

φ3 =
2

3
Trχ+ ξ − 1

3
Trω (2.140)

φij4 =
3

10
(−1 +

√
2)Gij − 1

5
(1 +

√
2)χij +

1

5
(2−

√
2)ωij. (2.141)

The squared mass values are 72, 24, 16, and −8, respectively. Multiplying the squared mass

values by the AdS radius squared gives the dimensionless squared mass values. The AdS

42



radius squared was found to be l2 = 3
8

in section 4, so the dimensionless squared mass values

are 27, 9, 6, and −3.

The Breitenlohner-Freedman bound is [32] m2l2 = −9
4
, so the eigenmode φij4 , which has

dimensionless squared mass value −3, is unstable.

Peeling off the different mass modes

Inverting the above equations gives

Gij =
1

7
(2− 3

√
2)φij1 + φij2 + (1 +

√
2)φij4 (2.142)

χij =
1

14
(3
√

2− 2)φij1 +
1

2
φij2 −

1

2
(1 +

√
2)φij4 (2.143)

ξ =
1

7
(3−

√
2)Trφ1 + φ3 +

1

3
(2 +

√
2)Trφ4 (2.144)

ωij = φij1 + φij2 + φij4 . (2.145)

These expressions can be plugged into the perturbation ansatz of section 5, and the different

mass modes can be ‘peeled off’.

The metric parts of the ‘peeled-off’ mass modes are

ha,mn = 2ca,1φ
ij
a (x)W ij

mn, a = 1, 2, 4 (2.146)

h3,mn = 0, (2.147)

and the 3-form potential parts of the ‘peeled-off’ mass modes are

aa,mnp = φija (x)Aija,mnp, a = 1, 2, 4 (2.148)

a3,mnp = φ3(x)Ymnp, (2.149)

where

Aija,mnp = ca,2X
ij
mnp + ca,3δ

ijYmnp + 2ca,4Z
ij
mnp. (2.150)
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The ca,i are the coefficients in equations (141)-(144), e.g.

c4,1 = 1 +
√

2 (2.151)

c4,2 = −1

2
(1 +

√
2) (2.152)

c4,3 =
1

3
(2 +

√
2) (2.153)

c4,4 = 1. (2.154)

Degeneracies of the masses

The spinors ηi, i = 1, . . . , 6, are used to construct the tensors W ij, X ij, and Zij that are

defined in section 5. W ij is symmetric in i and j, so there are at most 21 of them that are

linearly independent. In fact, Tr W =
∑6

i=1 Wii = 0, so there are actually at most 20 linearly

independent W ij. Likewise, the Aija are symmetric in i and j, and TrAa = 0, so there are

at most 20 linearly independent Aij1 , Aij2 , and Aij4 .

The ηi realize the 6 of SU(4), so W ij and Aija each realize the symmetric product 6×s 6.

This symmetric product breaks as [80]:

6×s 6→ 20′ + 1, (2.155)

where 1 is the trace part of 6 ×s 6 and 20′ is the symmetric traceless part. Since Tr W =

TrAa = 0, it follows that W ij and Aija each realize the 20′. So there are exactly 20 linearly

independent W ij and Aija .

Therefore, the squared mass values 27, 9, and −3 each have degeneracy 20, and the

squared mass value 6 has degeneracy 1.
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2.9 Comparison to known results

The instability of the Pope-Warner solution on S7 was first demonstrated in [32]. There it

was found that there are unstable modes with dimensionless squared mass −3 that realize

the 20′ of SU(4). These modes are recovered here.

The result of [32] was extended to tri-Sasakian manifolds in [34]. There a consistent

truncation of d = 11 supergravity was carried out on a 7-dimensional tri-Sasakian manifold

to give a d = 4 supergravity theory. In carrying out the truncation, a scalar potential for

the d = 4 theory was extracted. This potential has the Pope-Warner solution as a fixed

point. By computing the second derivatives of this potential at the Pope-Warner fixed

point, the squared masses of the scalars at the Pope-Warner fixed point can be found. These

masses are not given in [34], but we found them to be (27, 182, 92, 6, 2.252,−3, 07), where the

superscripts denote the degeneracies. Therefore, the mass values found here are a subset of

those found in [34].

In the special case where i and j are set equal to a fixed value, the perturbation ansatz

given in section 5 is contained in the consistent truncation ansatz of [34]. To go between

the ansatz of [34] and the one here it suffices to express the canonical 1-forms and 2-forms

of the tri-Sasakian structure used in [34] in terms of the spinors used here. In terms of the

spinors used here, the 1-forms of [34] are

ϑ1
a = ζ̄Γaη (2.156)

ϑ2 = ψ̄Γaη (2.157)

ϑ3 = −ζ̄Γaψ, (2.158)
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and the 2-forms of [34] are

J1
ab = −ζ̄Γabη − 2ψ̄Γ[aηζ̄Γb]ψ (2.159)

J2
ab = −ψ̄Γabη − 2ζ̄Γ[aψζ̄Γb]η (2.160)

J3
ab = ζ̄Γabψ + 2ζ̄Γ[aηψ̄Γb]η, (2.161)

where η is an arbitrary linear combination of the ηi with real coefficients and unit norm.

In [34] a single unstable mode with squared mass −3 was found. There it was supposed

that on S7 this single mode was one of the 20 unstable modes found in [32]. Here we have

explicitly shown that this is indeed the case.

3 The solutions

In this chapter we obtain the FR, skew-whiffed FR, and PW solutions of eleven-dimensional

supergravity. Even though we obtained the PW solution in chapter two, we obtain it again

here because the conventions used in chapter 2 are different from those used in the rest of

this dissertation.

The FR and PW solutions of eleven-dimensional supergravity on a SE manifold, M7, can

be derived from the following general Ansatz,

ds2
11 = ds2

AdS4(L) + a2 ds2
7 , (3.1)

F(4) = f0 volAdS4(L) + fi Φ(4) . (3.2)

A regular SE manifold, M7, is the total space of a U(1) fibration over a Kähler-Einstein (KE)
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base, B6, and the internal metric in (3.1) can be written locally as

ds2
7 = ds2

B6
+ c2

(
dψ + A

)2
, (3.3)

were A is the Kähler potential on B6, ψ is the angle along the fiber and c is the squashing

parameter. The potential for the internal flux in (3.2) is given by the real part of a canonical

complex three-form, Ω, on M7, such that

Φ(4) = d(Ω + Ω) . (3.4)

The constants, a, c, f0 and fi in (3.1)-(3.2) are fixed by the equations of motion in terms of

the AdS4 radius, L, which sets the overall scale of the solution:

• Supersymmetric and skew-whiffed FR solutions

a = 2L , c = 1 , f0 = κ
3

2L
, fi = 0 , (3.5)

where κ = −1 and +1, respectively.

• PW solution

a = 2

√
2

3
L , c =

√
2 , f0 =

√
3

2L
, fi =

4

3

√
2

3
L3 . (3.6)

In (3.1), we have factored out the overall scale, a2, of the internal metric so the KE

metric, gB6 , and the SE metric, gM7 , obtained by setting c = 1 in (3.3), are canonically

normalized with

RicB6 = 8 gB6 , RicM7 = 6 gM7 . (3.7)

In the following, we will refer to the SE metric on M7 as the “round” metric.
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The one form ϑ = dψ+A, called the contact form, is globally defined on M7, and is dual

to the Reeb vector field, ξ = ∂ψ, which is nowhere vanishing and has length one. The other

two globally defined forms of the SE geometry are the real two form, J , and a complex three

form, Ω, with its complex conjugate, Ω. They satisfy

dϑ = 2J , dΩ = 4i ϑ ∧ Ω . (3.8)

Note that the ansatz (3.1)-(3.4) is in fact written in terms of globally defined objects of the

SE geometry.

It is convenient to choose special frames,
◦
ea, a = 1, . . . , 7, on M7, that are orthonormal

with respect to the round metric and such that

J =
i

2

( ◦
ez1 ∧ ◦

ez̄1 +
◦
ez2 ∧ ◦

ez̄2 +
◦
ez3 ∧ ◦

ez̄3
)
, Ω = e4iψ ◦

ez1 ∧ ◦
ez2 ∧ ◦

ez3 , ϑ =
◦
e7 , (3.9)

where

◦
ez1 =

◦
e1 + i

◦
e2 ,

◦
ez2 =

◦
e3 + i

◦
e4 ,

◦
ez3 =

◦
e5 + i

◦
e6 , (3.10)

is a local holomorphic frame on the KE base. This shows that J is the pull-back of the

Kahler form, while Ω is, up to a phase along the fiber, the pull-back of the holomorphic

(3, 0)-form on B6. We will denote the components of the round metric by
◦
gab = δab and of

the squashed metric (3.3) by gab. Then the components of the eleven-dimensional metric

(3.1) along the internal manifold are gab = a2 gab.

One can also express ϑ, J and Ω as bilinears in Killing spinors, ηα,

◦
Daη

α =
i

2
Γaη

α , η̄αηβ = δαβ , α, β = 1, 2 , (3.11)
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that are globally defined on M7 and whose existence is equivalent to M7 being a SE manifold.

In terms of ηα’s we have (see, e.g., [61])

ϑa = i η̄1Γaη
2 , Jab = η̄1Γabη

2 , Ωabc = −1

2
(η̄1 + i η̄2)Γabc(η

1 + i η2) . (3.12)

Using this realization together with Fierz identities, it is straightforward to prove a number

of useful identities summarized in appendix B.

To verify the solutions (3.5) and (3.6), we note that the covariant derivatives for the

squashed and round metric are related by

DaVb =
◦
DaVb − 2 (c2 − 1)ϑ(aJb)

c Vc , (3.13)

where we have adopted a convention to raise and lower indices with the round metric,
◦
gab.

For the Ricci tensors, using identities in appendix B, we have

Rab =
◦
Rab + 2(1− c2)

◦
gab + 2(3c4 + c2 − 4)ϑaϑb . (3.14)

These are also the components of the Ricci tensor, Rab, along the internal manifold. The

Ricci tensor for AdS4 of radius, L, is

RicAdS4 = − 3

L2
gAdS4 . (3.15)

so that the eleven-dimensional Ricci scalar is

R = −12

L2
+

6

a2
(8− c2) . (3.16)

The energy momentum tensor in (1.1) has only diagonal contributions from the flux along

AdS4 and M7 that are straightforward to evaluate. Then the Einstein equations (1.1) reduce
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to three algebraic equations:

a2 =
4

3
(c2 − 4)L2 , f 2

0 =
3(7c2 − 16)

4L2(c2 − 4)
, f 2

i =
2

27
c2(c2 − 4)3(c2 − 1)L6 , (3.17)

for the size of the internal part of the metric and the parameters of the flux.

We now turn to the Maxwell equations (1.2). Let us denote by ∗ the Hodge dual on M7

with respect to the round metric with the volume form

volM7 =
1

6
J ∧ J ∧ J ∧ ϑ =

3

8
iΩ ∧ Ω ∧ ϑ , (3.18)

The volume form for the squashed metric is then c volM7 , while ca7volAdS4 ∧ volM7 is the

volume form in eleven-dimensions.

It follows from (3.8) and (3.18) that

∗ dΩ = 4 Ω , ∗Ω =
1

4
dΩ . (3.19)

Then for the flux, F(4), in (3.2) and (3.4), we have

? F(4) = f0 ? volAdS4 −
4fi
ac

volAdS4 ∧ (Ω + Ω) , (3.20)

so that

d ? F(4) = −4fi
ac

volAdS4 ∧ Φ(4) . (3.21)

The second term in (1.2) yields

F(4) ∧ F(4) = 2f0fi volAdS4 ∧ Φ(4) , (3.22)

which shows that the Maxwell equations reduce to a single equation

fi

(
f0 −

2

ac

)
= 0 . (3.23)
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Assuming that both a and c are positive, one verifies that (3.5) and (3.6) exhaust all

solutions to (3.17) and (3.23). Note that the only difference between the supersymmetric

and skew-whiffed FR solutions is the sign, κ, of the flux along AdS4. Equivalently, one could

reverse the orientation of the internal manifold, which changes the sign of the Hodge dual

in (1.2). Here, we will keep the orientation of M7 fixed as in (3.18).

4 The linearized analysis

We will not attempt here a complete analysis of the Kaluza-Klein spectrum around the PW

solution, but instead will identify a small set of harmonics for the low lying scalar modes

on which the scalar mass operator in the linearized expansions around both the FR and

PW backgrounds can be diagonalized. In doing that, we will be guided both by the explicit

structure of the linearized equations of motion and by the properties of unstable modes on

S7 that were identified in [32].

The scalar modes we want to consider correspond to fluctuations of the internal metric

and the internal three-form potential,

δgab = ϕ(x)hab , δA(3) = ϕ(x)α(3) , (4.1)

where ϕ(x) is a scalar field on AdS4, while hab and α(3) are, respectively, a symmetric tensor

and a three form harmonic on M7.
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4.1 Linearized Einstein equations

We begin with the metric harmonic and the linearization of the Einstein equations (1.1).

Following a crucial obervation in [32] for the unstable modes on S7, we will assume that

metric harmonic, hab, corresponds to a deformation of the internal metric along the (2, 0)

and (0, 2) components on the KE base. Specifically, hab is horizontal, that is ϑahab = 0,

and its only nonvanishing components in the basis (3.10) are hzizj and hz̄iz̄j . It is then

automaticaly traceless. Finally, we will assume that it is transverse with respect to the

round metric,
◦
Dahab = 0. It follows then from (3.13) that it is also transverse with respect

to the internal metric with any value of the squashing parameter, c.

With those assumptions, the metric fluctuation (4.1) is both transverse and traceless in

eleven dimensions, so that the expansion of the Ricci tensor in (1.1) yields only one term

with the Lichnerowicz operator (see, e.g., [62]), and there are no terms from the Ricci scalar

to linear order. The eleven-dimensional Lichnerowicz operator becomes then a sum,3

2AdS4 −
1

a2
∆c
L , (4.2)

where ∆c
L is the Lichnerowicz operator on M7 with respect to the squashed metric. Then on

the metric harmonics, hab, as above,

∆c
Lhab =

[
∆L + 4(1− c2) +

(
1− 1

c2

)
L2
ξ

]
hab , (4.3)

where ∆L is the Lichnerowicz operator for the round metric, and Lξ is the Lie derivative

along the Reeb vector.

3We use 2AdS4
= gµν∇µ∇µ, but ∆L = −gabDaDb + . . .
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Let’s denote the combination on the left hand side in (1.1) by EMN . After collecting all

the terms in the expansion and using (3.16), we obtain

δEab = −1

2

(
2AdS4 − ν2

)
ϕ(x)hab , (4.4)

where

ν2 =
1

a2
∆L +

(84

a2
− 24

L2

)
− 1

a2

(
1− 1

c2

)
(16c2 − L2

ξ) . (4.5)

Let us now turn to the expansion of the energy momentum tensor, TMN , on the right

hand side in (1.1). For the metric variation as above, the only terms that contribute to the

linear expansion of the energy momentum tensor come from the flux,

δTab =
fi

3a6
gcfgdggdh(dαacdeΦbfgh + dαbcdeΦafgh)ϕ(x) . (4.6)

Assuming that metric harmonic is an eigentensor of the Lichnerowicz operator in (4.5), we

see that in order to diagonalize the linearized Einstein equations we must find a flux harmonic

such that the symmetric tensor in (4.6) is proportional to hab.

4.2 Linearized Maxwell equations

The expansion of the Maxwell equations is

d ? δF(4) + 2F(4) ∧ δF(4) + d δ(?)F(4) = 0 , (4.7)

where

δF(4) = dϕ ∧ α(3) + ϕdα(3) , (4.8)

and δ(?) is the variation of the Hodge dual due to fluctuation of the metric. Define a four

form

(δg · F)MNPQ = gM
′M ′′δgMM ′FM ′′NPQ + . . .+ gQ

′Q′′δgQQ′FMNPQ′′ . (4.9)

53



Then for a traceless fluctuation of the metric,

δ(?)F(4) = − ? (δg · F(4)) . (4.10)

Specializing to the background flux (3.2) and the fluctuations (4.1), the linearization (4.7)

splits into terms that are one, three, and four forms along AdS4, respectively. They yield

the following equations

d ∗c α = 0 , α ∧ Φ(4) = 0 , (4.11)

and

(2AdS4ϕ) ∗c α(3) + ϕ

[
2f0

a
dα(3) −

1

a2
d ∗c dα(3) +

fi
a4
d ∗c (h · Φ(4))

]
= 0 , (4.12)

where ∗c denotes the dual with respect to the squashed metric and h · Φ(4) is defined as in

(4.9) using the round metric. The various factors of the internal radius, a, in (4.12) are

consistent with the overall 1/L2 dependence of the mass terms on the AdS4 radius.

4.3 The master harmonic

Our task now is to identify the smallest set of harmonics on which we can diagonalize the

Maxwell equation (4.12). The first step will be to streamline the evaluation of the Hodge

duals.

Any k-form, Ξk, on M7 can be uniquely decomposed into the sum,

Ξk = ωk + ϑ ∧ ωk−1 , (4.13)

where ωk and ωk−1 are horizontal forms, that is, ıξωk = ıξωk−1 = 0. Then

∗c Ξk = c ∗ ωk +
1

c
∗ (ϑ ∧ ωk−1) , (4.14)
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where ∗ is the Hodge dual with respect to the round metric. We may simplify this further by

introducing another Hodge dual, •, in the space perpendicular to the fiber, or, equivalently

on the KE base, B6. Then for a horizontal form, ω, using volM7 = volB6 ∧ ϑ, we have4

∗ ω = ϑ ∧ •ω , ∗ (ω ∧ ϑ) = •ω , (4.15)

and hence

∗c Ξk = c ϑ ∧ •ωk +
1

c
(−1)k−1 • ωk−1 . (4.16)

To further restrict the Ansatz for the flux harmonic, let us look at the last term in (4.12),

which is already constrained by the conditions we have imposed in section 4.1 on the metric

harmonic, hab. Since hab has nonvanishing components only along the KE base, we have

h · Φ(4) = 4i ϑ ∧ h · (Ω− Ω) , (4.17)

where all contractions between the metric harmonic and the background flux form are with

the round metric.

We can now evaluate the forms (4.17) on S7 using the metric harmonics given in [32].

It turns out that h · (Ω − Ω) is closed (!) and it is both horizontal and invariant along the

fiber. This means that it is a closed basic three-form with nonvanishing (2, 1) and (1, 2)

components. On S7, it is then a pull-back of the corresponding closed form on CP3 and thus

is exact. Indeed, we find that

h · (Ω− Ω) = −64 dω , (4.18)

where ω is a basic, primitive, transverse (1,1)-form, and an eigenform of the Laplacian, with

4Note that on a k-form, ∗2 = ∗2c = 1, while •2 = (−1)k.
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the eigenvalue 24. In the following we will show that a similar construction can be carried

out on a general SE manifold, M7.

We start with a primitive, (1, 1)-form, ω on the KE which is a transverse eigenform of

the Hodge-de Rham Laplacian with the eigenvalue λω. Its pull-back to M7 is then a basic

form, satisfying

ıξω = 0 , Lξω = 0 , (4.19)

which we also denote by ω. We will now discuss the conditions on ω and derive some

identities that are used later.

(i) The condition that ω is a primitive (1, 1)-form means that

Jabωab = 0 , Ja
cJb

dωcd = ωcd , (4.20)

where the first condition can be equivalently written as

J ∧ •ω = 0 or J ∧ J ∧ ω = 0 . (4.21)

It follows from (4.20) that on B6 and M7, respectively,5

J ∧ ω = −•ω and ∗(J ∧ ω) = −ϑ ∧ ω . (4.22)

(ii) Transversality on the KE base

d •ω = 0 , (4.23)

5The operator • J∧ on a six-dimensional Kahler manifold maps two-forms into two-forms. It has eigen-

values −1, 1 and 2 with degeneracies 8, 6 and 1, respectively, corresponding to the primitive (1, 1)-forms,

(2, 0) + (0, 2)-forms and (1, 1)-forms proportional to J .
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implies transversality on the SE manifold,

d ∗ω = d(ϑ ∧ •ω)

= 2J ∧ •ω − ϑ ∧ d •ω

= 0 ,

(4.24)

where the last step follows from (4.22) and (4.23).

By taking the exterior derivative of (4.22), we get

J ∧ dω = 0 , (4.25)

and a somewhat less obvious

J ∧ • dω = 0 . (4.26)

Since the last identity is on the KE base, upon taking a dual we obtain a 1-form with

components proportional to

2Jαβ∇αωβγ + Jαβ∇γωαβ . (4.27)

On a Kähler manifold, J is covariantly constant and the first term can be written as

Jαβ∇αωβγ = ∇α(Jα
βωβγ)

= −∇α(Jγ
βωαβ)

= 0 ,

(4.28)

where we used that ω is a transverse (1, 1)-form. The vanishing of the second term in (4.27)

is shown similarly.

(iii) Finally, ω is an eigenfunction of the Hodge-de Rham Laplacian operator, ∆(1,1) on B6,

which for a transverse form is simply,

∆(1,1)ω ≡ • d • dω = λω ω . (4.29)
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Then the Laplacian on M7, after using (4.15) and (4.26) is

∆ω ≡ −∗ d ∗ dω

= −∗ d(ϑ ∧ • dω)

= −∗(2J ∧ • dω − ϑ ∧ d • dω)

= λω ω .

(4.30)

Hence ω is also an eigenfunction of the Laplacian on M7 with the same eigenvalue, λω.

4.4 The metric harmonic

We now take the following Ansatz for the metric harmonic in terms of a pure imaginary

(1, 1)-form, ω,

hab = (dω)acd(Ωb
cd − Ωb

cd) + (a↔ b) . (4.31)

This tensor is manifestly horizontal and has only (2, 0) and (0, 2) components as we have

required in section 4.1. It also satisfies (4.18), as one can verify using identities in section 4.3

and appendix A. We will now show that hab is a transverse eigentensor of the Lichnerowicz

operator on M7,

∆Lhab = λhhab , λh = λω + 4 , (4.32)

with the eigenvalue, λh, fixed by λω.

Before we present a somewhat lengthy proof, let us note that the same relation between

the eigenvalues of the Hodge-de Rham Laplacian and the Lichnerowicz operator has been

derived in [56] through a general analysis of the fermion/boson mass relations on manifolds

with Killing spinors, see Appendix G. In particular, it was shown that if a two-form and
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a symmetric tensor harmonics arise from the same spin-3/2 harmonic by a supersymmetry

transformation generated by Killing spinors, the resulting shift of the eigenvalues is precisely

the one given in (4.32). While we have not derived the intermediate spin-3/2 harmonic in

general, some explicit checks on S7 (or, more generally on tri-Saskian manifolds), where

all the forms in (4.31) can be realized in terms of Killing spinors,6 have convinced us that

our construction here and in the following sections yields a subset of harmonics in a single

N = 2 supermultiplet as in [56]. We will discuss it further in chapter 5, where we identify

this supermultiplet as the long Z-vector multiplet [57].

We also note that a similar construction for tensor harmonics on a five-dimensional SE

manifolds has been recently carried out in [63] and it follows a much earlier construction for

four-dimensional Kahler manifolds in [64].

4.4.1 Proof of transversality

There are four types of terms in the transversality condition,7 Dahab = 0. First, we have

Da(dω)acdΩb
cd = −λωωcdΩb

cd = 0 , (4.33)

since ω is a (1, 1)-form. Secondly,

(dω)acdD
aΩb

cd = 4i (dω)acdϑ[aΩbcd] = 0 , (4.34)

since dω is horizontal, and hence dωabcϑa = 0. Similarly, the full contraction between dω,

which is a sum of a (2, 1) and a (1, 2) form, and the (3, 0) form, Ω, must vanish. The third

6See, section 5.1.
7Throughout this section, Da is the covariant derivative with respect to the round metric.

59



type of terms are

Da(dω)bcdΩa
cd = Da(dω)bcdΩ

acd . (4.35)

Since D[a(dω)bcd] = 0, we have

3Da(dω)bcdΩ
acd = Db(dω)acdΩ

acd

= Db

[
(dω)acdΩ

acd
]
− (dω)acdDbΩ

acd

= −4i (dω)acdϑ[bΩacd]

= 0 ,

(4.36)

as dω is either contracted with ϑ or fully contracted with Ω. Finally, the last type of terms

are

(dω)bcdD
aΩa

cd = 0 , (4.37)

since Ω is itself transverse, see, e.g., (C.12). Transversality of the terms with Ω is verified

similarly.

4.4.2 Proof of (4.32)

The Lichnerowicz operator,8 ∆L, on k-forms coincides with the Hodge-de Rham Laplacian,

∆ = dδ + δd , δ = (−1)k ∗ d ∗ . (4.38)

We have assumed that ∆ω = λωω. Using (3.19) we also find

∆Ω = 16 Ω . (4.39)

For an arbitrary tensor, the Lichnerowicz operator is defined by

∆LTa1...ak = −2Ta1...ak + (Ra
a1Ta a2...ak + . . .)− 2(Ra

a1
b
a2Ta b a3...ak + . . . ) , (4.40)

8For a list of properties of the Lichnerowicz operator, see, e.g., [62].
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where there are k-terms in the first bracket and 1
2
k(k − 1) in the second. An important

property, which we are going to exploit in the following, is that ∆L commutes with the

contraction.

Consider the tensor

tacdbef = (dω)acdΩbef , (4.41)

from which the (2, 0)-part of hab is obtained by contracting over the pairs ce and df and then

symmetrizing over ab. It follows from the definition (4.40) that

(∆Lt)acdbef = (∆Ldω)acdΩbef + (dω)acd(∆LΩ)bef − 2Dg(dω)acdDgΩbef +R-terms , (4.42)

where the R-terms involve split contractions with both dω and Ω,

R-terms = −2
[
(dω)gcdΩhefR

g
a
h
b + 8-terms

]
(4.43)

We will now show that all terms in (4.42) give contributions to ∆Lhab that are proportional

to hab and evaluate the proportionality constants.

From the first two terms we get (λω + 16)hab. Next, we consider the R-terms, which can

be traded for covariant derivatives acting on Ω using

[Da, Db]Ωcde = −ΩfdeR
f
cab − . . . . (4.44)

This gives

R-terms = 2
(
(dω)gcd[D

g, Da] + (dω)agd[D
g, Dc] + (dω)acg[D

g, Dd]
)
Ωbef . (4.45)

The covariant derivatives acting on Ω can be evaluated using (C.12). This yields terms that

are products of the form

dω×××J××Ω××× or dω×××ϑ×ϑ×Ω××× . (4.46)
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Performing the contractions as in the definition of hab, see (4.31), we are left with two free

indices with all other ones contracted. Because of the symmetrization, the free indices in the

terms of the first type in (4.46) must be on two different tensors. In particular, this implies

that J is always contracted with either Ω or dω or both. All terms in which J is contracted

with Ω are simplified using (C.7) and yield terms proportional to hab. This leaves terms in

which J is contracted with dω. By inspection, in all those terms dω is doubly contracted

with Ω, which means that the contraction with J is once more a multiplication by i. The

second type terms in (4.46) all vanish except when the two ϑ’s are contracted. Collecting all

the terms we find that the total contribution from the R-terms to ∆Lhab is −10hab.

Finally, we consider the third term in (4.42). Since dω is closed, we rewrite this term as

−2Dg(dω)acdDgΩb
cd+(a↔ b) = −2Da(dω)gcdDgΩb

cd−4Dc(dω)agdD
gΩb

cd+(a↔ b) . (4.47)

Let’s start with the first term in (4.47). Since

(dω)gcdD
gΩb

cd = 4i (dω)gcdϑ[gΩbcd] = 0 , (4.48)

we have

Da(dω)gcdD
gΩb

cd = −(dω)gcdDaD
gΩb

cd . (4.49)

Expanding the covariant derivatives using (C.12), we find that all terms involving ϑ vanish.

The remaining terms have dω contracted with J and twice contracted with Ω, which reduces

the contraction with J to the multiplication by i. Then the net contribution from this term

to ∆Lhab is −6hab.

This leaves us with the second term in (4.47), which we once more rewrite using the Leib-

nitz rule. However, now the total derivative term does not vanish, but yields the derivative
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Dc of the following terms,

(dω)agdD
gΩbc

d = i(dω)agd(2ϑ
gΩbc

d + ϑbΩc
gd − ϑcΩb

gd) . (4.50)

The first term on the rhs vanishes as dω is horizontal. The second term can be rewritten as

i(dω)agdϑbΩc
gd = i hacϑb − i(dω)cgdΩ

gd
a ϑb . (4.51)

Acting with Dc and using

3DaD[aωbc] = Da(dω)abc = −λω ωbc , (4.52)

and the transversality of hab, we get

ihacJc
b − i(dω)cgdDcΩa

gdϑb − i(dω)cgdΩa
gdJ cb = hab + 0− (dω)bgdΩa

gd , (4.53)

which gives −4hab contribution in ∆Lhab. The last term in (4.50) is

− iDc(ϑc(dω)agdΩb
gd) = −iϑcDc(dω)agdΩb

gd − iϑc(dω)agdD
cΩb

gd . (4.54)

Using d2ω = 0, the first term on the right hand side above can be simplified using

−iϑcDc(dω)agd = −iϑcDa(dω)cgd − iϑcDg(dω)a
c
d − iϑcDd(dω)ag

c

= iJac(dω)cgd + iJgc(dω)a
c
d + iJdc(dω)ag

c

= (dω)agd ,

(4.55)

where the second line follows using the Leibnitz rule, horizontality of dω and (C.12). The

second in term (4.54), using (C.12), is

− iϑc(dω)agdD
cΩb

gd = (dω)agdΩb
gd . (4.56)
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Hence the last term in (4.50) is −2(dω)agdΩb
gd, and by (4.47) it contributes −8hab to ∆Lhab.

Finally, using the Leibnitz rule, we are left with

4(dω)agdDcDgΩbcd = 16hab . (4.57)

Hence all terms in (4.42) are indeed proportional to hab, with the net result

λh = λω + 16− 10− 6− 4− 8 + 16 = λω + 4 . (4.58)

This concludes the proof of (4.32).

4.5 The flux harmonics

We take as internal flux harmonic the linear combination

α(3) = t1 ϑ ∧ ω + t2 ∗ d (ϑ ∧ ω) , (4.59)

where t1 and t2 are arbitrary pure imaginary parameters.9

The harmonics that arise in the expansion of the Maxwell equation (4.12) are: dα , ∗cα,

and d ∗c dα. We will now show that for α given by (4.59), each of those terms is a linear

combination of the following two linearly independent harmonics:

Λ1 = ∗(ϑ ∧ ω) and Λ2 = d(ϑ ∧ ω) . (4.60)

Specifically, we find

dα = λω t2 Λ1 + (t1 − 2t2) Λ2 , (4.61)

∗cα =
1

c

(
t1 + 2 t2 (c2 − 1)

)
Λ1 + c t2 Λ2 , (4.62)

d ∗c dα =
λω
c

(t1 − 2t2) Λ1 + c (λωt2 − 2(t1 − 2t2)) Λ2 . (4.63)

9In the following, we denote this harmonic simply by α.
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The first identity follows from

d ∗ d(ϑ ∧ ω) = d ∗ (2J ∧ ω)− d ∗ (ϑ ∧ dω)

= −2 d(ϑ ∧ ω) + d • dω

= −2 d(ϑ ∧ ω) + λω •ω

= −2 d(ϑ ∧ ω) + λω ∗(ϑ ∧ ω) .

(4.64)

where we used (3.8), (4.15), (4.22) and (4.29). The second one is an immediate consequence

of (4.14), (3.8) and (4.22). For the third one, we have

d ∗c dα = t2λωd ∗c ∗(ϑ ∧ ω) + (t1 − 2t2) d ∗c d(ϑ ∧ ω)

= c λω t2 d(ϑ ∧ ω) + (t1 − 2t2)
1

c

[
d ∗ d(ϑ ∧ ω) + 2(c2 − 1) d(ϑ ∧ ω)

]
=
λω
c

(t1 − 2t2) ∗(ϑ ∧ ω)− c [2(t1 − 2t2)− λωt2] d(ϑ ∧ ω) .

(4.65)

In evaluating the contribution from the metric fluctuation to the linearized Maxwell

equations (4.12) we also need the indentity

h · Φ(4) = −128 i ϑ ∧ dω . (4.66)

To prove it, we note that by the second identity in (3.8),

Φ(4) = 4iϑ ∧ (Ω− Ω) . (4.67)

Since hab is horizontal,

h · Φ(4) = −i(h · Ω) ∧ ϑ+ i(h · Ω) ∧ ϑ , (4.68)

where (h ·Ω)abc = 3hd[aΩbc]
d. Using the definition (4.31) and the identity (C.8), we find that

only Ω terms in hab contribute to the contraction h ·Ω. The three terms in that contraction
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are then evaluated using (C.9) and (C.11). The result is given in (4.18), but now we have

shown that it holds on any SE manifold. Including the conjugate terms yields (4.66).

Finally,

d ∗c (ϑ ∧ dω) = −λω
c
∗(ϑ ∧ ω) = −λω

c
Λ1 . (4.69)

This proves that all terms in (4.12) are linear combinations of the two basis harmonics (4.60).

It also follows from (4.69) that dΛ1 = 0. Since dΛ2 = 0 as well, we have d ∗c α = 0 as

required by (4.11). The other equation in (4.11) is satisfied automatically.

We must also evaluate the linearized energy momentum tensor (4.6). To this end we note

that the two basis harmonics (4.60), using (3.8) and (4.22), can be written as

Λ1 = −J ∧ ω , Λ2 = −2Λ1 − ϑ ∧ dω . (4.70)

Hence dα in (4.61) is a linear combination of a horizontal (2, 2)-form J ∧ ω and a mixed

form ϑ ∧ dω. Given (4.67), the contraction in (4.6) with J ∧ ω must vanish. Similarly, the

only nonvanishing terms in the contraction with the second form are those in which the free

indices are along the base and the two ϑ’s are contracted. This gives

gcfgdggeh(ϑ ∧ ω)acdeΦfgh =
12 i

c2
(dω)ade(Ωb

de − Ωb
de) , (4.71)

where the indices on the right hand side are raised with the round metric. The full expansion

of (4.6) is then

δTab = − 4 i

a6c2
fi (t1 − 2t2)ϕ(x)hab , (4.72)

and is indeed proportional to the metric harmonic.
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4.6 The masses

For a scalar field, ϕ(x), satisfying (1.4) with mass, m, and the metric and flux harmonics as

above, the linearized Einstein equations (4.4)-(4.6) become diagonal,

− 1

2

[
m2 − 1

a2
(λω + 4) +

24

L2
+

4

a2

(
4c2 − 4

c2
− 21

)]
hab = −4i

fi
a6 c2

(t1 − 2 t2)hab . (4.73)

To evaluate the left hand side, we have used (4.32) and L2
ξhab = −16hab. The latter follows

from the observation that the R-charge of the metric harmonic is q = 4 and is the same as

of the background flux. The contraction in the fluctuation of the energy momentum tensor

on the right hand side has been evaluated in (4.72).

The linearized Maxwell equation (4.12) can be simplified using (4.61)-(4.63). After pro-

jecting onto the basis harmonics, Λ1 and Λ2, it yields two equations

1

c

(
m2 − λω

a2

)
t1 +

[
2

c
(c2 − 1)m2 + 2λω

( 1

a2c
+
f0

a

)]
t2 = −128 i

fi
a4

λω
c
,

2
( c
a2

+
f0

a

)
t1 +

[
c
(
m2 − λω

a2
− 4

a2

)
− 4

f0

a

]
t2 = 0 .

(4.74)

For the FR solutions (3.5) there is no internal flux, fi = 0, and the Einstein and Maxwell

equations decouple. From the first one we get the same mass,

m2
1L

2 =
λω
4
− 2, (4.75)

for both the supersymmetric and skew-whiffed solution. The other two masses in (1.8) and

(1.9) are then obtained by setting the determinant of the homogeneous system of equations

(4.74) for t1 and t2 to zero. This yields a quadratic equation for m2, whose solutions are

either

m2
2L

2 =
λω
4

+
√
λω + 1− 1 , m2

3L
2 =

λω
4
−
√
λω + 1− 1 , (4.76)
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for the supersymmetric or

m2
2L

2 =
λω
4

+ 2
√
λω + 1 + 2 , m2

3L
2 =

λω
4
− 2
√
λω + 1 + 2 , (4.77)

for the skew-whiffed solutions, respectively.

For the PW solution, all three equations are coupled by the non-vanishing internal flux.

Solving (4.74) for t1 and t2 and plaguing into (4.73) yields a cubic equation for m2, whose

solutions are

m2
1L

2 =
3

8
λω , m2

2L
2 =

3

8
λω + 3

√
1 + λω + 3 , m2

3L
2 =

3

8
λω− 3

√
1 + λω + 3 . (4.78)

For each of the masses there is a fluctuation of the metric and the flux that together di-

agonalize the linearized equations of motion around the PW solution. As we have already

discussed in section 1.3, the last mass will violate the BF bound when λω lies in the range

(1.11). One may note that the masses m2
2 and m2

3 for the PW solution are simply 3/2 of the

masses for the flux modes in the skew-whiffed FR solution.

4.7 Additional bosonic modes in the Z multiplet

In addition to the three scalar fields in the Z-vector multiplet, there are two additional scalar

fields that are associated with symmetric tensor harmonics, as seen in Table 2 below. It is

reasonable to ask what happens to these two scalar fields. In particular it would be nice to

know what the masses of these fields are at the FR and PW points.

In order to determine the masses of these two scalars, one needs to know the symmetric

tensor harmonics associated with them, and their eigenvalues under the Lichnerowitz opera-

tor. Since these two fields lie in the same supermultiplet as fields whose associated harmonics
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we know, it is in fact possible to construct their associated harmonics.

Key results useful for carrying out such a construction are provided in the paper [56]. In

[56] the authors provide a formula that gives a spinor-vector harmonic in terms of a 3-form

harmonic and a Killing spinor. In table I of [56] they give

Ξα = aταµνρηYµνρ + bτµνηYαµν + cτµνρηDαYµνρ, (4.79)

where Ξα is a spinor-vector harmonic, the τ are Dirac matrices, η is a Killing spinor, Yµνρ is

a 3-form harmonic, and a, b, and c are given constants. The relation between the eigenvalue

of the spinor-vector under the Rarita-Schwinger operator and the eigenvalue of the 3-form

under the ‘square root of the Hodge-de Rham operator’ is given to be

M(3/2)(1/2)2 = −4(M(1)3 + 1), (4.80)

where M(3/2)(1/2)2 is the eigenvalue of the spinor-vector, and M(1)3 is the eigenvalue of the

3-form.

In the same table, the authors provide a formula that gives a symmetric tensor harmonic

in terms of a spinor-vector harmonic. It is given by

Y(αβ) = aη̄τ{αΞβ} + bη̄D{αΞβ}, (4.81)

where Y(αβ) is a symmetric tensor harmonic. The relation between the eigenvalue of the

symmetric tensor under a Lichnerowicz-like operator and the eigenvalue of the spinor-vector

harmonic is given by

M(2)(0)2 = (M(3/2)(1/2)2 + 4)(M(3/2)(1/2)2 + 8). (4.82)
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In general, one can see that using these formulas to obtain harmonics from known har-

monics will give objects that will be unwieldy to deal with. However, in the special case

where the internal manifold is tri-Sasaki and the known harmonics are, as in Chapter 2, con-

structed only in terms of Killing spinors and Dirac matrices, it is expected that the resulting

objects will be easier to deal with.

In particular, in Chapter 2 we constructed two 3-form harmonics at the FR point, H1 =

X − 2
3
Y and H2 = X +Y + 5Z. Let H denote either of these 3-form harmonics. Then using

the formula from [56], one obtains the spinor-vector harmonics

Ξr = ΓrmnpζHmnp

Πr = ΓrmnpψHmnp. (4.83)

One finds, at least for the tri-Sasaki case, that in the formula provided in [56], all three terms

are proportional to each other, and so it is sufficient to keep only the first term.

In turn, one can use the formula given by [56] to obtain symmetric tensor harmonics from

these spinor-vectors. One obtains the symmetric tensor harmonics

h
(1)
(mn) = ζ̄Γ{mΞn} − ψ̄Γ{mΠn}

h
(2)
(mn) = ζ̄Γ{mΠn}

h
(3)
(mn) = ζ̄Γ{mΞn} + ψ̄Γ{mΠn} (4.84)

As in the formula for the spinor-vectors, one finds that the derivative terms are proportional

to the non-derivative terms, and so can be dropped.

The constructed symmetric tensor h(1) is actually proportional to the symmetric tensor

harmonic that we have already constructed in terms of the (1, 1)-form ω and the 3-form Ω.
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In fact, the other two symmetric tensors h(2) and h(3) are actually proportional to symmetric

tensor harmonics that are simply constructed from ω and J or Ω. It is found that, up to

constants,

h
(1)
(ab) = (dω)a

cd(Ωbcd − Ω̄bcd) + (a↔ b)

h
(2)
(ab) = (dω)a

cd(Ωbcd + Ω̄bcd) + (a↔ b)

h
(3)
(ab) = ωc(aJ

c
b). (4.85)

Even though these relations were found in the particular case where the internal manifold

is tri-Sasaki, it would not be surprising if these relations were true in general. That is, it

should be expected that, in general, the symmetric tensors h(2) and h(3) given above are

indeed the symmetric tensor harmonics that lie in the same supermultiplet as h(1).

To verify this expectation, one can first note that the U(1)R charges are in agreement

with what is given in table 2. In addition, one can show that the tensors are transverse, and

that they are eigenfunctions of the Lichnerowicz operator, with the correct eigenvalues, i.e.

λω + 4. Since h(2) is the same as h(1) except for a sign, the calculations for h(2) are the same

as those for h(1), which have already been done. Hence, we need only do the calculations for

h(3).

First, we show h(3) is transverse.

DaWab =
1

2
Da(ωcaJb

c + ωcbJa
c) (4.86)

The first term on the right-hand-side is

Da(ωcaJb
c) = ωcaD

aJb
c = ωca(−δabϑc + g̊acϑb) = −ωcbϑc + ωcag̊

acϑb = 0. (4.87)
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The first equality follows from transversality of ω, the second equality follows from (B.12),

and the third equality follows from the fact that ω is horizontal and traceless.

The second term on the right-hand-side is

Da(ωcbJa
c) = Da(Jc

eJb
fωefJa

c) = −Da(δa
eJb

fωef ) = Da(ωfaJb
f ) = 0. (4.88)

The last equality follows from the calculation for the first term on the right-hand-side.

Therefore, h(3) is indeed transverse.

Now we want to obtain the eigenvalue of h(3) under the Lichnerowicz operator. This

calculation follows in similar fashion to the same calculation for h(2).

Letting tabcd = ωabJcd, so that h(3) is obtained by the appropriate contraction and sym-

metrization, the action of the Lichnerowitz operator on this tensor is given by

(∆Lt)abcd = (∆ω)Jcd + ωab(∆J)cd − 2(Deωab)(DeJcd) + R-terms. (4.89)

One finds that the R-terms are given by

R-terms = 2(ωeb[D
e, Da] + ωae[D

e, Db])Jcd. (4.90)

Computing the second derivatives of J , one finds

[De, Da]Jcd = 2Je[cg̊d]a − 2Ja[cδd]
e. (4.91)

Plugging this into the expression for the R-terms gives

R-terms = 4(ωebJ
e
[cg̊d]a − Ja[cωd]b)− (a↔ b). (4.92)

Carrying out the appropriate contraction and symmetrization to obtain the symmetric

tensor h(3) from t gives that the contribution to ∆Lh
(3) from the R-terms is −6h(3).
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Next, we want to get the contribution to ∆Lh
(3) from the term −2(Deωab)(DeJcd). Using

(B.12) gives

(Deωab)(DeJcd) = −(Dcωab)ϑd + (Ddωab)ϑc (4.93)

In contracting the indices a and d, one uses the fact that ω is transverse and horizontal,

metric compatibilty, and (B.12) to find that

(Deωab)(DeJc
a) = ωabJc

a. (4.94)

So symmetrizing the indices to obtain h(3) from t gives that the contribution to ∆Lh
(3) from

the term −2(Deωab)(DeJcd) is −2h(3).

To obtain the contribution to ∆Lh
(3) from the term ωab(∆J)cd, one simply needs to know

the eigenvalue of J under the Hodge-de Rham Laplacian. The Hodge-de Rham Laplacian

on J is given by ∆J = dδJ . One uses (B.12) to find that

(δJ)m = −DlJlm = 6ϑm, (4.95)

so that ∆J = 6dϑ = 12J . Hence, the contribution to ∆Lh
(3) from the term ωab(∆J)cd is

12h(3).

Adding up the contributions from all the terms gives

∆Lh
(3) = (λω + 12− 2− 6)h(3) = (λω + 4)h(3), (4.96)

as expected.

The symmetric tensor harmonics h(2) and h(3) are associated with AdS4 scalars φ(2)

and φ(3), so that the eleven-dimensional metric fluctuations are φ(2)h
(2)
ab and φ(3)h

(3)
ab . The
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2-form harmonic ω is associated with an AdS4 vector field Z, so that the appropriate eleven-

dimensional object is the 3-form fluctuation Zµωmn. We would like to plug the metric

fluctuations φ(2)h
(2)
ab and φ(3)h

(3)
ab and the 3-form fluctuation Zµωmn into the linearized field

equations to obtain the masses of the scalars φ(2) and φ(3) at the PW point.

Plugging the fluctuations into the linearized Einstein equation

1

2
∆̂hAB + ∇̆(A∇̆ChB)C −

1

2
∇̆A∇̆Bh

C
C = −F CNP

A F M
B NPhMC −

1

36
hABFCDEFF

CDEF

+
1

9
gABh

CMFCDEFF
DEF
M +

2

3
F MNP

(A fB)MNP

− 1

18
gABF

MNPQfMNPQ (4.97)

gives the two equations

1

2
∆̂h

(2)
AB = − 1

36
h

(2)
ABFCDEFF

CDEF

1

2
∆̂h

(3)
AB = −F CNP

A F M
B NPh

(3)
MC −

1

36
h

(3)
ABFCDEFF

CDEF , (4.98)

one for each of the metric fluctuations. The first term on the right-hand-side of the equation

for h(3) is 0 for h(2) because h(2) has terms of type (2, 0) and (0, 2), whereas h(3) is of type

(1, 1).

From the first equation one finds that at the FR point the scalar φ(2) has mass m2L2 =

1
4
(λω − 8), as expected, and at the PW point it has mass 3

8
λω. From the second equation

one finds that at the FR point the scalar φ(3) has mass m2L2 = 1
4
(λω − 8), as expected, and

at the PW point it has mass 3
8
(λω − 8). Note that the masses of the scalars are larger at the

PW point than at the FR point, so their values are stable.
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The linearized Maxwell equation is

∇̆Af
ABCD + 4∇̆A(FM [ABChD]

M)− 1

2
FBCDR∇̆RhA

A = − 1

288
εBCDEFGHIJKLFEFGHfIJKL

− 1

1152
Tr(g−1h)εBCDEFGHIJKLFEFGHFIJKL (4.99)

Plugging the fluctuations into the linearized Maxwell equations, one finds that only the

first two terms on the left-hand-side are non-zero. The first term on the left-hand-side yields

the free massive vector field equation for Z. As expected, it gives that the mass of Z is

given by the eigenvalue of ω under the Hodge-de Rham operator. The first and second terms

together give that the divergence of Z, DµZ
µ is 0 at the FR point but proportional to the

scalar φ(2) away from it.

5 Examples

In this chapter we will construct explicitly the (1, 1)-form(s), ω, leading to an instability

of the PW solutions for two classes of SE manifolds: the tri-Sasakian manifolds and the

homogeneous manifolds (1.3). Throughout this section we take ω to be real. The unstable

modes in chapter 4 are then constructed using the form i ω.

5.1 Tri-Sasakian manifolds

The eleven-dimensional supergravity admits a consistent truncation on an arbitrary tri-

Sasakian manifold to a N = 3, d = 4 gauged supergravity [34]. As shown in [34], the

instability of the PW solution follows then from the existence of a single scalar mode with
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the mass m2 = −3 in the spectrum of fluctuations around the corresponding critical point

of the scalar potential.

Starting with that unstable scalar mode in the four-dimensional theory, one can follow the

truncation and reconstruct the unstable mode in eleven-dimensions. However, it is simpler to

look directly for a (1, 1)-form, ω, in terms of the geometric data on a tri-Sasakian manifold.

A tri-Sasakian manifold admits three globally defined orthonormal Killing spinors, ηi, in

terms of which the three one-forms, Ki, dual to the SU(2) Killing vectors, are given by

Ki
a =

i

2
εijk η̄jΓaη

k . (5.1)

Define

M i = −1

2
dKi , M i

ab = −1

2
εijk η̄jΓabη

k . (5.2)

The forms Ki and M i satisfy [65]

D̊aK
i
b = −M i

ab , (5.3)

D̊aM
i
bc = 2̊ga[bK

i
c] , (5.4)

Ki
aK

ja = δij , (5.5)

M i
abK

jb = εijkKk
a , (5.6)

M i
acM

jc
b = Ki

aK
j
b − δ

ij g̊ab + εijkMk
ab . (5.7)

Using those identities we show that the two-forms

ωi =
1

2
εijkKj ∧Kk +

1

3
M i , (5.8)

are transverse eigenforms of the Hodge-de Rham Laplacian,

∆ωi = 24ωi . (5.9)
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Indeed, the transversality follows directly from (5.3)-(5.6), which imply that

D̊aM i
ab = 6Ki

b , D̊a(Kj
[aK

k
b] ) = −εjkiKi

b . (5.10)

To prove (5.9), we note that on a transverse form, ωi,

∆ωiab = −D̊c(dωi)abc , (5.11)

where

dωi = −2εijkM j ∧Kk . (5.12)

The divergence in (5.11) is then evaluated by first using (5.3) and (5.4) and then simplifying

the resulting contractions using (5.5)-(5.7).

The PW solution is now obtained by choosing any two orthonormal Killing spinors that

fix a particular SE structure. Given the SU(2) isometry, we may simply take (ηα) = (η1, η2)

and set χ = η3 to be the additional Killing spinor. Then ϑ = K3 and J = −M3, see (3.12).

Consider the two form

ω = K1 ∧K2 − 1

3
J , (5.13)

with components

ωab = −2(η̄1Γ[aχ)(η̄2Γb]χ)− 1

3
η̄1Γabη

2 . (5.14)

It follows from (5.5) and (5.6) that ω is horizontal. Similarly, the form

d(K1 ∧K2) = −2(M1 ∧K2 −K1 ∧M2) , (5.15)

is horizontal, so that ω is in fact basic. Finally, by contracting with J , we check that ω is a

primitive (1,1)-form.
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We have checked that the unstable mode arising from ω in (5.13) reproduces precisely

the unstable mode in the truncation in [34]. We also note that a more complete construction

and classification of harmonics on N1,1 in terms of Killing spinors, including the forms above,

can be found in [66].

While the construction above gives an unstable mode on any tri-Sasakian manifold, there

will be additional modes if the manifold admits more than three Killing spinors.10 In par-

ticular, to construct the unstable modes on S7 found in [32], we can generalize the foregoing

as follows. Let χj be the additional six Killing spinors and let

Kαj
a = i η̄αΓaχ

j , α = 1, 2 , j = 1, . . . , 6 . (5.16)

Then

ωij =
1

2
(K1i ∧K2j +K1j ∧K2i)− 1

3
J δij , (5.17)

are symmetric, ωij = ωji, and traceless, ωijδij = 0, and transform in 20′ of SU(4), which

is the isometry of the KE base, CP3. In the same way as above, one checks that ωij are

basic (1,1)-forms and that the diagonal forms, ωjj, are transverse and ∆ωjj = 24ωjj. By the

SU(4) symmetry, the same holds for the remaining forms.

5.2 Homogeneous Sasaki-Einstein manifolds

The homogeneous SE manifolds (1.3) are given by G/H coset spaces, which is a conve-

nient realization for a calculation of the KK spectrum of the corresponding AdS4 × M7

compactification of the eleven dimensional supergravity. However, one can also realize any

10In fact, the only regular manifold with more than three Kiling spinors is S7 [23].
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Spin Field Energy U(1)R m2L2

1 Z E0 + 1 q 4E0(E0 − 1)

0 π E0 + 2 q (E0 + 2)(E0 − 1)

0 φ E0 + 1 q + 4 (E0 + 1)(E0 − 2)

0 φ E0 + 1 q (E0 + 1)(E0 − 2)

0 φ E0 + 1 q − 4 (E0 + 1)(E0 − 2)

0 π E0 q E0(E0 − 3)

Table 2: The bosonic sector of a Z-vector multiplet.

homogeneous SE manifold as a hypersurface in some CN , in some cases modded out by a

continous Abelian symmetry. This has been discussed in detail in [53, 54, 55, 46, 52, 67]. In

this section we use the latter construction to find explicitly stability violating (1, 1)-forms,

ω, on each of the spaces (1.3). An advantage of this method is that the required properties

of ω are either manifest or easy to verify.

In principle, one could try to identify (1, 1)-forms leading to instabilities of PW solutions

by examining the KK spectra that have been studied for all homogeneous SE manifolds

in references in Table 1. Indeed, in the KK reduction of the three-form potential, A(3),

a transverse two-form harmonic gives rise to a vector field whose mass is given by the

eigenvalue of the Hodge-de Rham Laplacian [68, 39]. In the terminology of [56], the vector

field is called the Z-vector field and it is present in the KK towers of the following N = 2

supermultiplets [57, 50]: the long and/or semi-long graviton multiplet, the two long and/or
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semi-long gravitino multiplets and the Z-vector multiplet.

However, the mere presence in the KK spectrum of a two-form harmonic, ω, whose mass,

λω, lies in the instability range (1.11), is not yet sufficient to conclude that the PW solution

is unstable. One must also show that ω is a transverse, primitive, basic, (1, 1)-form, which is

by no means obvious. For that reason, we first construct explicitly stability violating (1, 1)-

forms, ω, and then check whether both λω and the supersymmetric FR scalar masses (4.75)

and (4.76) agree with the known KK spectra, in particular, whether the corresponding fields:

the Z-vector field, the scalar and the two pseudo-scalar fields lie in a long Z-vector multiplet.

The comparison works perfectly for S7, N1,1 and M3,2, but reveals missing multiplets in the

published KK spectra for Q1,1,1 and V 5,2.

The bosonic fields of a long Z-multiplet are listed in Table 2 , with the R-charge in the

second column and the masses in the last column given in the conventions used in this paper.

Specifically, the R-charge is twice the charge in the original tables in the KK literature (see,

e.g., Table 3 in [50]). We define the mass of a Z-vector as the eigenvalue of the corresponding

Hodge-de Rham operator. This agrees with the usual definition used in the references in

Table 1, except that our normalization of the metric for the FR solution introduces a factor

of four difference,

m2
ZL

2 =
1

4

M2
Z

e2
. (5.18)

The masses of the scalar fields are related by

m2
φ,πL

2 =
1

16

(M2
φ,π

e2
− 32

)
, (5.19)

where e2 = 1/(16L2) is usually set to one.
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5.2.1 S7

We represent S7 as the unit sphere in C4,

|u1|2 + . . .+ |u4|2 = 1 . (5.20)

The U(1)R symmetry is the rotation by the phase. Let Φijk̄l̄ be a constant complex tensor

in C4 that is antisymmetric in [ij] and [k̄l̄], primitive with respect to the canonical complex

structure in C4, and satisfies the reality condition Φijk̄l̄ = −(Φkl̄ij̄)
∗. Then the pull-back onto

S7 of

ω = Φijk̄l̄ u
iūk̄ duj ∧ dūl̄ , (5.21)

yields 20 basic (1, 1)-forms with λω = 24, which give rise to the unstable modes obtained in

[32].

Our calculation agrees with the general result for the spectrum of the Hodge-de Rham

Laplacian on CP3 [43], conveniently summarized in Table 2 in [58]. There we find that there

is a single tower of (1, 1)-forms in [k, 2, k] irrep of SU(4) with the eigenvalues

λ(1,1) = 4(k + 2)(k + 3) , k = 0, 1, 2, . . . . (5.22)

The forms (5.21) lie at the bottom of the tower with k = 0. The higher level forms with

k ≥ 1 have λ(1,1) ≥ 48 and thus lie outside the instability bound (1.11).

One may note that those forms are not the lowest lying transverse two-forms on S7.

Indeed, the spectrum of the Laplacian on two-forms on S7 is [44]

λ(2) = (p+ 2)(p+ 4) , p = 1, 2, 3, . . . , (5.23)
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of which (5.22) is a subset. For p = 1 and 2, the eigenvalues are 15 and 24, respectively, and

satisfy (1.11). However, the two-forms with λ(2) = 15 are trilinear in ui and ūi, hence have

a nonzero R-charge and are not basic.

5.2.2 N1,1

The (hyper-)Kähler quotient construction for N1,1 [46, 67] starts with C3 ⊕ C
3

with coor-

dinates (uj, vj), j = 1, 2, 3, that transform as 3 and 3̄ under SU(3), respectively, and with

(uj,−v̄j) transforming as doublets under SU(2). The N1,1 manifold is then the surface

|uj|2 = |vj|2 = 1 , ujvj = 0 , (5.24)

modded by the U(1) action (ui, vi) ∼ (eiδui, e−iδvi). The standard metric [69, 70] is obtained

by a reduction from the flat metric in C6. We refer the reader to [67] for a detailed discussion

of the metrics and for explicit angular coordinates.

The three Killing forms in section 5.1 can be taken as

K1 =
1

2
(ujdvj + ūjdv̄

j) , K2 = − i
2

(ujdvj − ūjdv̄j) , K3 =
i

2
(ujdūj + vjdv̄

j) ,

(5.25)

in terms of which the form, ω, is given by (5.13). It is now manifest that ω is a (1, 1)-form,

which is invariant under the U(1) action of the K”ahler quotient, and hence a well-defined

form on N1,1. It is also a singlet of SU(3) and is invariant under the U(1)R ⊂ SU(2) isometry,

(uj, vj) → (eiψuj, eiψvj), along the SE fiber. Evaluating it in angular coordinates, we verify

that it is basic and primitive.

The complete KK spectrum on this space was obtained in [45] (see, also [71, 46, 47,

66]), where one finds 21 towers of two-form harmonics. Specifying to the (1,3) irreducible
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representation of SU(3) × SU(2), M1 = M2 = 0 and J = 1 in the notation in [45], leaves

two possible eigenvalues λ
(2)
12 = 96 and λ

(2)
21 = 48 lying in the series E8 with j = 0. The

first three forms are the ones constructed above in (5.8), one of which is the sought after

(1, 1)-form, ω, with λω = 24. The remaining three are the three canonical two-forms, M i, on

the tri-Sasakian manifold, one of which is the complex structure, and hence is not primitive,

while the other two are not basic.

In this example the N = 2 long Z-vector multiplet is a part of a long N = 3 gravitino

supermultiplet, see Table 4 in [66]. Following [56], all harmonics in this multiplet can be

constructed in terms of the three Killing spinors on N1,1 [66].

5.2.3 M3,2

The N = 2 supersymmetry of the FR solution on M3,2 was proved in [72]. The complete

Kaluza-Klein spectrum was obtained in [48] (see also [49]) and further analyzed more recently

in [50]. The KE base of M3,2 is CP2 × CP1 and the SE metric in the form (2.3) is given by

[73, 74]

ds2 =
3

4
ds2

CP2 +
1

2
ds2

CP1 + (dψ +
3

4
ACP2 +

1

2
ACP1)2, (5.26)

where the ds2
CPk

is the Fubini-Study metric and ACPk is the Kähler potential with dACPk =

2JCPk .

The Kähler quotient construction for this SE manifold is explained in Appendix H. See

also the references [54, 55]. The construction starts with C3 ⊕ C2 with coordinates, ui and

vα. In terms of these coordinates, M3,2 is the surface defined by the equations

2ujūj = 3vαv̄α = 1, (5.27)
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modded by the U(1) symmetry, (ui, vα) ∼ (e2iδui, e−3iδvα). Once more the U(1)R symmetry

is (ui, vα)→ (eiψui, eiψvα).

In light of what was discussed in Chapter 4, one would like to find or construct (1,1)-forms

on the space that are basic, primitive, and transverse, and that are eigenfunctions of the

Hodge-de Rham Laplacian with eigenvalues in the range between 2(9−4
√

3) and 2(9+4
√

3).

The condition that the (1, 1)-forms be basic amounts to imposing that they are invariant

under the U(1)R symmetry, or in other words, that they live on the KE base, and the

condition that the eigenvalues lie in the given range means that one should look for modes

of the Laplacian that are low-lying. As discussed, the existence of such a primitive and

transverse (1, 1)-form means that there is a scalar that causes instability.

Modes that satisfy the desired conditions were in fact constructed in [58], and the con-

struction of [58] relies upon an important result that was found in [75]. In [75] it is shown

that if there exists a Killing vector Ka on a KE space, then there exists a scalar ψ on the

space such that Ka = Jab∂bψ. The scalar ψ is shown to be an eigenfunction of the Laplacian

with eigenvalue 2Λ, i.e. 2ψ + 2Λψ = 0, where Λ is such that Rab = Λgab. The converse of

this statement is also shown to be true. That is, if a KE space has a scalar ψ that is an

eigenfunction of the Laplacian, with eigenvalue 2Λ, then the object Ka = Jab∂bψ is a Killing

vector on the space.

Therefore, if a KE space has a Lie group symmetry, then it is guaranteed to possess as

many scalar harmonics with eigenvalue 2Λ as there are dimensions in the group. For example,

since CP2 has symmetry group SU(3), it has eight scalar harmonics with eigenvalue 2Λ. Each

of the eight generators of SU(3) corresponds to a Killing vector on CP2, and each of these
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Killing vectors can be expressed in terms of a scalar harmonic in the way explained above.

For the KE space CPn it is shown in [75] that the scalar harmonics with eigenvalue 2Λ

that generate the Killing vectors are

ψ =
1

ZAZ̄A
TA

BZAZ̄B, (5.28)

where the ZA are the homogeneous coordinates on CPn and TA
B is an arbitrary Hermitian

traceless tensor.

In [58] the authors study the stability of AdS5 solutions of M-theory compactified on

six-dimensional KE spaces. Among other spaces, they look at the KE space CP2 × CP1,

which is the KE base of the SE manifold M3,2. On this space, they note that given a scalar

harmonic Y on CP2, one can construct a primitive transverse (1, 1)-form ω from it that is an

eigenfunction of the Hodge-de Rham Laplacian with the same eigenvalue as the scalar Y .

This (1, 1)-form ω is a linear combination of the forms ∂B∂̄BY , Y J (4), and Y J (2). It is

straightforward to see that each of these forms is an eigenfunction of the Hodge-de Rham

Laplacian ∆ = dδ + δd on the KE space, with the same eigenvalue as Y . For the first form,

the Dolbeault operators commute with ∆, so clearly it is an eigenfunction with the same

eigenvalue as Y . For the second and third forms, one notes that d and δ of the complex

structures are zero because their covariant derivatives are 0, and so ∆ only acts on Y . So it is

clear that the second and third forms are also eigenfunctions of ∆ with the same eigenvalue

as Y . The coefficients in ω are fixed by imposing that it be primitive and transverse.

In the special case where Y is taken to be a scalar harmonic that generates a Killing
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vector on CP2, which is given explicitly above, and where Λ = 8, one finds ω to be

ω = 2i∂B∂̄BY + 16Y J (4) − 16Y J (2), (5.29)

where the SE two form is J = J (4) + J (2) with J (4) = 3
4
JCP2 and J (2) = 1

2
JCP1 , and ∂B and

∂̄B are the Dolbeault operators (see, e.g., [6]).

In the notation and conventions used in this work,

Y = ti
juiūj, (5.30)

where tij is a constant hermitian, traceless matrix and

∆Y = 16Y. (5.31)

As discussed, this (1, 1)-form is primitive, transverse, and basic, and it is an eigenfunction

of ∆ with eigenvalue 16. It is thus associated with an unstable scalar at the Pope-Warner

point. Furthermore, there are eight such (1, 1)-forms because there are eight scalar harmonics

with eigenvalue 16, and thus there are eight unstable scalar modes at the Pope-Warner point

transforming in (8,1) of SU(3)× SU(2).

These eight unstable scalar modes have the mass

m2
3L

2 = 9− 3
√

17 ≈ −3.3693. (5.32)

In the KK spectrum for the supersymmetric solution, we should find a Z-vector multiplet

with the masses

m2
ZL

2 = 16, m2
φL

2 = 2 , m2
πL

2 = 3±
√

17 . (5.33)
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Indeed, there is such a multiplet given by eqs. (3.23) and (3.24) in [55]. In [55] an irrep of

G = SU(3)×SU(2)×U(1) is specified by (M1,M2, J, Y ), where M1 is the number of columns

in the SU(3) tableau with one box, M2 is the number of columns in the SU(3) tableau with

two boxes, J is the SU(2)-irrep ‘quantum’ number, and Y is the U(1) charge. In (3.23) and

(3.24) we must set M1 = M2 = 1 and J = 0. Doing so gives

E0 =
1

2
(1 +

√
17), (5.34)

which reproduces the masses (5.33) using formulae in table 2.

The space M3,2 and its complete KK spectrum were treated in much detail in [55]. It is

therefore appropriate to present the harmonics associated with the unstable scalars in the

language and conventions used in that paper.

Let

Φ = 1 3
2

Φi = 1 i
2

Φ∗i = εij j 3
3

,
(
ε12 = 1

)
Φij =

1

2

(
i j
3

+ j i
3

)
.

(5.35)

The two 3-form harmonics and the metric harmonic associated with the unstable scalars

will be constructed from these tensors.

The two 3-form harmonics are constructed from the five 3-forms Aj given below. These
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3-forms are pieces of the 3-form H decomposition given in [55].

A1
ABC = εABCD

(
λD3iΦi − λDi3Φ∗i

)
A2
Amn = εmn

(
λA3iΦi + λAi3Φ∗i

)
A3
AB3 = λ

[A
i3 λ

B]
3j ε

ikΦkj

A4
AB3 = λ

[A
i3 λ

B]
3i Φ

A5
mn3 = εmnΦ.

(5.36)

The remaining components of the Aj are 0.

The Aj close under the action of Q = ?d. (Note that d in [55] is defined differently than

usual, so that on 3-forms it is 1
4

of the usual one.)

QA1 = −i 4√
3
A5

QA2 = i
4√
3
A3 +

2√
3
A4

QA3 = −i
√

3

2
A2 + A3

QA4 =
1√
3
A2 − A4 + 2A5

QA5 = A4 + i
1√
3
A1.

(5.37)

For A = cjA
j we can use the above to determine the cj and µ such that

QA = µA. (5.38)

Solving these equations gives the eigenvalues µ = 1
2
(1 ±

√
17), 2, 0, and −3. These

eigenvalues agree with those listed in equation (6.37) of [55].

In particular the modes corresponding to µ = 1
2
(1 ±

√
17) are the ones associated with
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unstable scalars. For these the constants are found to be (fixing c1 = 1)

c1 = 1

c2 = −i

c3 =
1

6

(√
3±
√

51
)

c4 = −i
√

3

4

(
1±
√

17
)

c5 = −i1
2

(√
3±
√

51
)
.

(5.39)

The corresponding masses, in the conventions of [37], of these two modes are obtained

using the 3-form mass formula (equation B.3 of [37])

m2
f = 16(Q− 2)(Q− 1). (5.40)

They are m2
f = 16

(
5∓
√

17
)
. Note that these are the masses in the supersymmetric,

non-skew-whiffed case.

In going from the skew-whiffed Freund-Rubin solution to the Pope-Warner solution, the

two 3-form modes ‘mix’ with a metric mode to form a new mode. We obtain this metric

mode by contracting the 4-form f = dA = ?QA with the background internal flux over three

indices and symmetrizing over the remaining two indices.

Yαβ = F(α
γδεfβ)γδε, (5.41)

giving, without worrying about the overall constant,

Y1A = εij(λ
A
j3Φi + λA3jΦ

∗
i )

Y2A = iεij(λ
A
j3Φi − λA3jΦ∗i ),

(5.42)

with all other components equal to 0.
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5.2.4 Q1,1,1

Recall that Q1,1,1 is a U(1) bundle over CP1 × CP1 × CP1, with the metric (see, e.g., [74])

ds2 =
1

2
(ds2

CP1
(1)

+ ds2
CP1

(2)
+ ds2

CP1
(3)

) +

[
dψ +

1

2
(ACP1

(1)
+ ACP1

(2)
+ ACP1

(3)
)

]2

. (5.43)

The Kahler quotient construction for this manifold [54, 55], has three C2’s, with coordinates

uα, vα and wα, respectively, one for each CP1 factor in the KE base. Then Q1,1,1 is the

surface in C6,

uαūα = vαv̄α = wαw̄α = 1 , (5.44)

modded by two U(1) symmetries, (uα, vα, wα) ∼ (eiδuα, eiθvα, e−iδ−iθwα). In terms of the

projective coordinates, zi, on CP1
(i), and the fiber angle, ψ, we have

u1 =
z1e

2iψ/3

(1− |z1|)1/2
, v1 =

z2e
2iψ/3

(1− |z2|)1/2
, w1 =

z3e
2iψ/3

(1− |z3|)1/2
,

u2 =
e2iψ/3

(1− |z1|)1/2
, v2 =

e2iψ/3

(1− |z2|)1/2
, w2 =

e2iψ/3

(1− |z3|)1/2
.

(5.45)

The SU(2) Killing vectors on each CP1 yield triplets of scalar harmonics,

Y(1) = t(1)
α
βuαūβ , Y(2) = t(2)

α
βvαv̄β , Y(3) = t(3)

α
βwαw̄β , (5.46)

which are eigenfunctions of the Laplacian with the eigenvalue 16 [74]. The two forms

ω(1) = Y(1)(JCP1
(2)
− JCP1

(3)
) , ω(2) = Y(2)(JCP1

(3)
− JCP1

(1)
) , ω(3) = Y(3)(JCP1

(1)
− JCP1

(2)
) ,

(5.47)

are primitive, transverse (1, 1)-eigenforms of the Hodge-de Rham operator with the same

eigenvalue [58]. This gives nine unstable modes for the PW solution on Q1,1,1 in the adjoint

representation of SU(2)× SU(2)× SU(2).
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Clearly, numerical values of all the masses of the Z-vector field and the scalar and pseu-

doscalar fields at the FR solution are the same as for M3,2, and one expects to find a

similar structure of N = 2 supermultiplets as well. Hence it is surprising that the KK

spectrum in section 4 in [51] does not contain a long Z-vector multiplet in the adjoint of

SU(2) × SU(2) × SU(2) with the energy (5.34). In fact, there is also no graviton multiplet

corresponding to the scalar harmonics (5.46). However, a closer examination of the allowed

harmonics on Q1,1,1 and their masses, which are listed in section 3 of the same paper, shows

that the Z-multiplet we are looking for should have been included in the final “complete

classification.”

5.2.5 V 5,2

As discussed in [53] (see, also [52, 76, 77]), the Stiefel manifold, V 5,2, is the intersection of

the Kahler cone in C5,

(u1)2 + (u2)2 + (u3)2 + (u4)2 + (u5)2 = 0 , (5.48)

with the unit sphere,

|u1|2 + |u2|2 + |u3|2 + |u4|2 + |u5|2 = 1 . (5.49)
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Writing uj = xj + iyj, the real and imaginary part vectors (xj) and (yj) in R5 can be

parametrized by the Euler angles of the coset space SO(5)/SO(3), 11

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5


=

R3(α1, α2, α3) 0

0 R2(φ)





cos θ 0

0 cosµ

0 0

sin θ 0

0 sinµ


R2

(
4

3
ψ

)
, (5.50)

where

0 ≤ α1, α3 < 2π , 0 ≤ α2 , φ < π , −π
2
≤ µ , θ <

π

2
, 0 ≤ ψ <

3π

8
, (5.51)

andR2 andR3 are rotation matrices. In terms of the coordinates on the cone and the angles,

the SE metric on V 5,2 is

ds2 =
3

2
dujdūj − 3

16
|ujdūj|2

=
3

8

[
dµ2 + cos2 µσ2

1 + dθ2 + cos2 θ σ2
2

+
1

2
sin2(µ− θ)(σ3 + dφ)2 +

1

2
sin2(µ+ θ)(σ3 − dφ)2

]
+
[
dψ +

3

8
cos(µ− θ)(σ3 + dφ) +

3

8
cos(µ+ θ)(σ3 − dφ)

]2

,

(5.52)

where σi are the SO(3)-invariant forms, dσi = σj ∧ σk. The metric (5.52) is the canonical

SE form of the U(1) fibration over the KE base, which is the Grassmannian, Gr2(R5). The

volume of the space is computed from this metric in Appendix E.

The harmonics on V 5,2 are obtained by the pullback of tensors in C5 and decompose into

SO(5)× U(1)R. Here SO(5) acts on uj in the real vector representation, while U(1)R is the

11 A somewhat different explicit parametrization of V 5,2 is given in [76, 77].

92



phase rotation, uj → eiψuj.

The lowest lying scalar harmonic that is invariant under U(1)R is Φij = uiūj − ujūi. It

is an eigenfunction of the Laplacian with the eigenvalue 16 [52]. Similarly, the lowest lying

(1, 1)-forms that are not proportional to the Kahler form are

ωi = εijklmujūkduldūm . (5.53)

They transform as 5 of SO(5) and are invariant under U(1)R. Expanding those forms using

(5.50) confirms that they are basic. They satisfy

∆ωi =
32

3
ωi , (5.54)

and hence give rise to five unstable modes of the PW solution with the mass

m2
3L

2 = 7−
√

105 ≈ −3.2469 . (5.55)

The masses for the supersymmetric solution are

m2
ZL

2 =
32

3
, m2

φL
2 =

2

3
, m2

πL
2 =

5

3
±
√

35

3
. (5.56)

The Z-vector multiplet has then

E0 =
1

6
(3 +

√
105) . (5.57)

While such a multiplet is not listed in the tables in [52], the authors note at the end of

section 2 that there might be an additional vector supermultiplet with this energy.12 In

appendix C, we list all bosonic harmonics on V 5,2 that transform in 5 of SO(5) and show

that they decompose unambigously into N = 2 supermultiplets including a long Z-vector

multiplet in agreement with our construction.

12We thank A. Ceresole and G. Dall’Agata for correspondence, which clarified this point.
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5.3 Orbifolds

Homogeneous SE manifolds also admit discrete symmetries such that the quotient maniofld,

M7/Γ is still SE. The natural question is what happens to the master (1,1)-forms in this

projection and whether the PW solution for the quotient SE manifold is stable. We will

now examine this for some examples of SE discrete quotients that were considered in the

literature.

For S7, it has been shown in [32] that if the discrete symmetry group Γ is a subgroup

of SU(4), it will preserve some of the unstable modes. The same reasoning applies to the

(1,1)-forms (5.21) and shows that some of them will be well-defined on the quotient.

Orbifolds of M3,2, Q1,1,1, and S7, can be obtained as limits of the Y p,k Sasaki-Einstein

manifolds [78]. Specifically, when 2k = 3p and p = 2r, one has that Y 2r,3r(CP2) = M3,2/Zr,

where Zr is a finite subgroup of SU(2) acting on CP1. Since the master 2-forms for M3,2

are constructed from scalar harmonics on the CP2, see (5.30) and (5.29), they are preserved

under the orbifolding. Hence the instability persists for these orbifolds of M3,2.

Similarly, when k = p, one has Y p,p(CP1×CP1) = Q1,1,1/Zp, where Zp is a finite subgroup

of SU(2) acting on one of the three CP1’s. Each independent master (1,1)-form on Q1,1,1,

see (5.46) and (5.47), is constructed from a scalar harmonic on one of the CP1 factors. For

the SU(2) acting on CP1
(i), the forms ω(j), j 6= i, are invariant under Zp and hence are well

defined on the quotient Q1,1,1/Zp.

For k = 3p, one has that Y p,3p = S7/Z3p, where Z3p ⊂ SU(4) acts by

(u1, u2, u3, u4) −→ (e2πi/3pu1, e2πi/3pu2, e2πi/3pu3, e−2πi/pu4). (5.58)
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The six master (1, 1)-forms on S7 that contain precisely one u4 or ū4 are not invariant under

(5.58). This yields fourteen unstable modes on that space.

The orbifolds V 5,2/Zk have been discussed in [77]. The finite group here is Zk ⊂ U(1)b,

where U(1)b is a diagonal subgroup of the SO(2)×SO(2) rotation in the (12) and (34) planes

in C5. Clearly, the master 2-form ω5, see (5.53), is invariant under this action and yields one

unstable mode on V 5,2/Zk.

6 Conclusion

In the research presented in this dissertation we have analyzed a subset of scalar modes in

the linearized spectrum of eleven-dimensional supergravity around the Pope-Warner solution

on an arbitrary SE manifold and derived a condition under which the solution becomes

perturbatively unstable. Specifically, we have shown that when the manifold admits a basic,

transverse, primitive (1, 1)-form within a certain range of eigenvalues of the Hodge-de Rham

Laplacian, then there are scalar modes violating the BF bound. We have also constructed

such destabilizing (1, 1)-forms on all homogenous SE manifolds, and on their orbifolds, and

found that when viewed as harmonics for fluctuations around the supersymmetric solution,

those forms give rise to a long Z-long vector supermultiplet in the KK spectrum.

Using this fact it would be straightforward to rephrase the stability condition in terms of

spinor-vector harmonics on the SE manifold. To do so one could use the formulae given in,

e.g., [56], since by the construction in [56], spinor-vector harmonics give rise to long Z-vector

supermultiplets.
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Throughout this work we have assumed that the SE manifold was quasi-regular, i.e.

regular or non-regular, and the quasi-regularity was used explicitly in some of the proofs. In

particular quasi-regularity was used in establishing the shift between the eigenvalues of the

symmetric tensor and 2-form harmonics under their respective mass operators. However,

since this proof is local, one would expect that our construction should hold for an arbitrary

SE manifold. Indeed, the fact that this same shift was proven in [56] (see Appendix G)

for any internal manifold with a Killing spinor indicates that this expectation does actually

hold.

It remains an open problem to see whether stability violating 2-forms exist on any SE

manifold. In other words, even though the PW solution turned out to be unstable for all the

concrete SE manifolds we looked at, it is not yet known whether there exists an SE manifold

for which the PW solution is stable. It would be notable to find such a SE manifold. As

discussed, if the manifold is quasi-regular, the question of stability reduces to the problem of

determining the low lying spectrum of the Hodge-de Rham Laplacian on a six-dimensional

KE manifold, which in itself is a difficult problem with rather few explicit results (see, e.g.,

[81]). If the manifold is irregular, perhaps the results of [91] may be of use. In this paper

the author presents a generalization of the identity ∆ = 2∆∂̄ to SE manifolds.

There is also an analogue of the PW solution in type IIB supergravity [82], which is known

to be unstable within the N = 8 d = 5 supergravity [83, 84] obtained by compactification

on S5. It would be interesting, and perhaps simpler, to examine the stability of this type of

solutions for the new class of five-dimensional SE manifolds [27, 28] for which the spectra of

the scalar Laplacian were obtained in [85, 86].
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As discussed in the introduction, the main motivation for recent interest in PW solutions

came from the “top-down” construction of holographic models of superconductors in [10,

12, 11]. The PW solutions are then dual to zero entropy states with emergent conformal

invariance at T = 0. In light of this duality to a conformal theory, it would be nice to see

what the PW instability discussed here looks like in the dual CFT under the AdS/CFT

correspondence. A possible starting point for such an endeavor is provided in the papers

[66] and [47]. In these papers the authors discuss a special N = 3 long gravitino multiplet

that, in fact, contains the tri-Sasaki modes discussed here that lead to PW instability. In

particular, the authors give a composite CFT operator that they claim corresponds to this

long gravitino multiplet.

A Conventions

We use the same conventions as in [79] and [32], with the mostly plus space-time metric and

the bosonic field equations of eleven-dimensional supergravity given in (1.1) and (1.2), and

the gravitino supersymmetry transformations

δψM = DMε+
1

144

(
IΓM

NPQR − 8 δM
N IΓPQR

)
FNPQR ε . (A.1)

On a manifold with a Minkowski signature metric, g, we define the Hodge dual, ?, by

? Λ ∧ Λ = −|Λ|volg . (A.2)

The Hodge dual, ∗, for a riemannian metric, g, is then defined without the minus sign.
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The eleven-dimensional Dirac matrices in the 4 + 7 decomposition are

IΓµ = γµ−1 ⊗ 1 , µ = 1, . . . , 4 ,

IΓa+4 = −γ5 ⊗ Γa , a = 1, . . . , 7 ,

(A.3)

where

γ5 = iγ0γ1γ2γ3 , Γ7 = iΓ1 . . .Γ6 . (A.4)

Then

IΓ1IΓ2 . . . IΓ11 = ε12...11 1 = 1 . (A.5)

We use the representation in which the four-dimensional γ-matrices are real, while the seven-

dimensional Γ-matrices are pure imaginary and antisymmetric. For a real spinor, η, on the

internal manifold, we then have η̄ = ηT .

B Sasaki-Einstein manifolds: definitions and relevant

information

Due to their prominence in string theory and M-theory, it is worthwhile to properly define

what a Sasaki-Einstein manifold is.

In this appendix we define what a Sasaki-Einstein manifold is, and provide information

about them that is relevant in subsequent sections. The content of this section follow prin-

cipally from the contents of [23] and [26]. A thorough treatment of the subject is given in

[24].

Contact manifolds
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In defining what a Sasaki-Einstein manifold is, it is natural to start by first defining what

a contact manifold is. A contact manifold is a (2n−1)-dimensional manifold M such that

there exists a 1-form η on it, with the property that

η ∧ (dη)n 6= 0 (B.1)

at each point of M . Such a 1-form η is called a contact 1-form.

Given a contact manifold M with contact 1-form η, there is a unique vector field ξ called

the Reeb vector field. The Reeb vector field ξ is defined to be the unique vector field

satisfying the conditions

η(ξ) = 1, iξdη = 0. (B.2)

At each point p on the manifold M one can consider the hyperplane ker η(p). This

hyperplane is a (2n-2)-dimensional subspace of the tangent space TMp, and the bundle D

of all such hyperplanes, D = ker η, is a sub-bundle of the tangent bundle TM . In this way

the contact 1-form η specifies a distribution D of (2n-2)-dimensional hyperplanes on the

manifold M . D is called the contact distribution.

The contact distribution D is maximally non-integrable, which translates into the fact

that dη is nondegenerate, i.e. for every vector X on a hyperplane there exists a Y on the

hyperplane such that dη(X, Y ) 6= 0. Intuitively, the 2-form dη is a way to measure the failure

of the parallelogram, formed by the vectors X and Y in the hyperplane, to close in the Reeb

vector direction. For more details on contact manifolds see [87].

Since it is nondegenerate, the 2-form dη can be regarded as a symplectic form ω on D.

In addition to a symplectic form on D one would also like to have an almost complex
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structure J , which is a type (1,1) tensor, on D. Furthermore, one would like for this J

to be compatible with ω. Compatibility with ω means the relations d(JX, JY ) = ω(X, Y )

and ω(JX,X) > 0 are satisfied. In terms of indices, the first relation is equivalent to

J imJ
j
nωij = ωmn.

This J can be used to get a Riemannian metric on D, namely gD(X, Y ) = ω(JX, Y ),

where X and Y are smooth sections of D. This metric is compatible with the almost complex

structure J , which means that gD(JX, JY ) = gD(X, Y ). In terms of indices, this expression

is equivalent to J imJ
j
ngij = gmn.

Also, in terms of indices, the expression gD(JX, Y ) = −ω(X, Y ) is equivalent to gikJ
k
j =

ωij. So ω can be thought of as J with its index lowered with the metric.

J on D can be extended to a tensor Φ of type (1,1) on TM by letting Φ = J on D

and Φξ = 0. Also, the metric gD on D can be extended to a metric g on TM by letting

g(X, Y ) = gD(X, Y ) + η(X)η(Y ) = dη(ΦX, Y ) + η(X)η(Y ).

It is clear that under this metric the Reeb vector ξ is orthogonal to the vectors in D,

i.e. g(X, ξ) = 0 for any section X of D. The orthogonality follows from the definition of

D, i.e. D = ker η, and from the definition of the Reeb vector, which requires that iξdη =

0. Furthermore, this metric satisfies the compatibility condition g(ΦX,ΦY ) = g(X, Y ) −

η(X)η(Y ).

The above construction motivates the definition of a metric contact structure: If in

addition to the contact 1-form η and its associated Reeb vector field ξ, there is a tensor field

Φ of type (1,1) and a Riemannian metric g that satisfy

Φ2 = −1 + ξ ⊗ η, g(ΦX,ΦY ) = g(X, Y )− η(X)η(Y ), (B.3)
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then the contact manifold M is said to have a metric contact structure.

Sasakian and Sasaki-Einstein manifolds

Given a compact manifold M with Riemannian metric g, the metric cone over M is

defined to be the space R+ ×M with metric ds2 = dr2 + r2g. If the metric cone over M is

Kähler, then M is defined to be a Sasakian manifold.

A Sasakian manifold is automatically a contact manifold with a metric contact structure,

and its type (1,1) tensor Φ and metric g are as in the construction above, i.e. Φ = J on

D = ker η, Φξ = 0, and g(X, Y ) = gD(X, Y ) + η(X)η(Y ) = dη(ΦX, Y ) + η(X)η(Y ).

Finally, a Sasaki-Einstein manifold is defined to be a Sasakian manifold with Ricg =

2(n−1)g. The metric cone over a Sasaki-Einstein manifold is Ricci-flat Kähler, hence Calabi-

Yau. The converse of this statement is true, i.e. a manifold whose cone is Kähler Ricci-flat

is a Sasaki-Einstein manifold.

An interesting special type of Sasaki-Einstein manifold is a 3-Sasakian manifold. A 3-

Sasakian manifold is a Sasakian manifold whose metric cone is hyper-Kähler. This means

the holonomy of the cone metric is contained in Sp(p). Sp(p) ⊂ SU(2p), so a hyper-Kähler

manifold is a Calabi-Yau manifold, and a 3-Sasakian manifold is a Sasaki-Einstein manifold.

Reeb foliation

The Reeb vector field ξ was defined to be the unique vector field satisfying the conditions

η(ξ) = 1, iξdη = 0. (B.4)

From the first condition it is clear that ξ is nowhere vanishing. Since it is nowhere vanishing,

it can be used to generate a 1-parameter family of diffeomorphisms of the space on which it

is defined.
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Therefore, given a Sasakian manifold M with Sasakian structure (ξ,η,Φ,g), one can par-

tition M into disjoint orbits of the diffeomorphism generated by the Reeb vector ξ. Each

orbit is a 1-dimensional space. Partitioning M in this way is called the Reeb foliation, and

the orbits are the leaves of the Reeb foliation.

Sasakian manifolds split into three different classes, depending on the nature of the Reeb

foliation. If the leaves of the foliation close, so that they are circles, then the Sasakian man-

ifold is said to be quasi-regular. For a quasi-regular manifold, the Reeb vector generates

a U(1) action. This U(1) action is always locally free. If in addition the U(1) action is free

overall, then there is no point on the manifold that is fixed by a nontrivial element of the

U(1) action. In this case the Sasakian manifold is said to be regular.

If the U(1) action is not free overall, then it must ‘wrap around’ an orbit an integer

number of times, so that the orbit is fixed by a discrete subgroup of the U(1) action. In this

case the manifold is said to be non-regular.

If the leaves of the foliation do not close, then they are noncompact. In this case the

manifold is said to be irregular.

Transverse Kahler structure

Motivated by the definition of the distribution D = ker η and the form of the metric g,

the tangent bundle can be split into the direct sum TM = D⊕Lξ, so that at a point p on M ,

TMp = Dp⊕Lξ,p, where Dp is a (2n-2)-dimensional hyperplane, and Lξ,p is the 1-dimensional

line that is tangent to the Reeb vector at p. The spaces Dp and Lξ,p are orthogonal with

respect to the metric g.

As discussed previously D naturally has a (almost) complex structure J = Φ|D, a sym-
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plectic structure dη, and a metric gD(X, Y ) = dη(JX, Y ). (D, J, dη) gives the Sasakian

manifold M what is referred to in [23] as a transverse Kähler structure. It is important to

note that in general this (2n-2)-dimensional Kähler structure holds only locally. One would

like to know, however, when this Kähler structure holds globally.

For a Sasakian manifold M , let Z be the space of leaves of its Reeb foliation. Then if the

Reeb foliation is quasi-regular then the (2n-2)-dimensional Kähler structure holds globally.

In particular, if the Reeb foliation is regular then Z has the structure of Kahler manifold,

and if the Reeb foliation is non-regular then Z has the structure of an orbifolded Kahler

manifold. For necessary details about the orbifold structure in the non-regular case see [23]

and [26].

The converse of this statement holds true, i.e. given that Z is a Kahler manifold or a

proper orbifold of one, a principal U(1) bundle M over Z is a Sasakian orbifold with metric

π∗h+ η⊗ η, where π is the projection from M to Z, h is the metric on Z, and η is a 1-form

on M such that dη = 2π∗ω, where ω is the symplectic structure of Z. For necessary details

see [23] and [26].

If the Reeb foliation of a Sasakian manifold is irregular, then the situtation is more

complicated. However, it is known that in this case the closure of the group action generated

by the Reeb vector is isomorphic to a torus Tk, with k ≥ 2.

Finally, if M is 3-Sasakian, then it is an SU(2) bundle over a 4-dimensional quaternionic

Kähler manifold or orbifold. Accordingly, its metric can be written as g = gO + η1 ⊗ η1 +

η2 ⊗ η2 + η3 ⊗ η3, where gO is the metric of the 4-dimensional quaternionic Kahler manifold

or orbifold, and the ηi are 1-forms that are dual to a triplet of Reeb vectors ξi that form an
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su2 lie algebra. For more details see [25] and [26]. A nice fact about 3-Sasakian manifolds

is that they are automatically Einstein.

Homogeneous Sasaki-Einstein manifolds

There is a special type of Sasaki-Einstein manifold that has been well-known to super-

gravity theorists since the 1980s, namely homogeneous Sasaki-Einstein manifolds.

A Sasaki-Einstein manifold is homogeneous if there is a group of isometries G that acts

transitively on it and preserves the Sasakian structure. A group action is transitive if there

is a point in the space such that every other point in the space can be obtained via a group

action on that point; so there is only one orbit of the group action. Hence, a homogeneous

Sasaki-Einstein manifold can be expressed as a coset space.

There are in fact only five seven-dimensional homogeneous Sasaki-Einstein manifolds: S7,

N010, V 5,2, M32, and Q111 [CRW]. They are principal U(1) bundles over the Kähler-Einstein

spaces CP3, SU(3)/T 2, Gr2(R5), CP2 × CP1, and CP1 × CP1 × CP1, respectively.

The seven-dimensional homogeneous Sasaki-Einstein spaces have all been used to com-

pactify eleven dimensional supergravity to AdS4, and the complete Kaluza-Klein spectra of

these compactifications have been determined in [44], [45], [46], [52], [55], and [51].

Killing spinors

A Killing spinor is a spinor that satisfies the relation

∇Y ψ = αY · ψ (B.5)

for any vector field Y , where Y · ψ = Y mΓm and α is a constant. For applications in

supergravity, string theory, and M-theory, it is important to know when a Sasaki-Einstein

manifold admits Killing spinors and how many of them it possesses.
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If a seven-dimensional Sasaki-Einstein manifold is simply connected it admits at least

two Killing spinors, and both of them satisfy the defining relation with the same constant

α, with α > 0 [23, 26]. If a seven-dimensional 3-Sasakian manifold is simply connected it

admits at least three Killing spinors, and all of them of them satisfy the defining relation

with the same constant α, with α > 0 [23].

C Sasaki-Einstein identities

In the local frame

e1,2,3 = er/Ldx0,1,2 , e4 = dr , ea+4 = 2L e̊a , a = 1, . . . , 7 , (C.1)

on AdS4 ×M7, cf. (3.9), the unbroken supersymmetries are given by ε = ε⊗ η,

ε = er/Lε0 , γ012ε0 = ε0 , (C.2)

and

η = (cos(2ψ) + sin(2ψ)Γ12)η0 , Γ12η0 = Γ34η0 = Γ56η0 , (C.3)

where ε0 and η0 are constant spinors. We choose the two independent solutions, η1 and η2,

of (C.3) such that the components of the two SE tensors in (3.9) and (3.12) are the same.

Given the Reeb vector field of unit length, 13

ξaξa = ϑaϑ
a = 1 , (C.4)

the projection operator

πab = δab − ϑaϑb , (C.5)

13All indices are raised and lowered with the SE metric, g̊ab.
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is a map onto the subspace perpendicular to the Reeb vector. Any tensor Hab...c satisfying

ϑaHab...c = ϑbHab...c = . . . = ϑcHab...c = 0 , (C.6)

will be invariant under the projection, and, modulo its dependence on the fiber coordinate,

ψ, can be thought of as a tensor on the Kahler-Einstein base. We refer to such tensors as

horizontal.

For complex horizontal tensors of rank n there is a further decomposition into (p, q)-type

tensors, where p and q, p+ q = n, refer to the number of holomorphic and anti-holomorphic

indices according to the corresponding decomposition along the Kahler-Einstein base. In

particular, Jab and Ωabc, are horizontal tensors of type (1, 1) and (3, 0), respectively. A

contraction of J with a (p, 0)-type and (0, p)-type horizontal tensor is a multiplication by +i

and −i, respectively. For example,

Ja
d Ωbcd = iΩabc , Ja

d Ωbcd = −iΩabc . (C.7)

Horizontal tensors (forms) that are in addition invariant along the Reeb vector field are

called basic.

Using the explicit realization of the Sasaki-Einstein forms in terms of Killing spinors

(3.12), one can prove additional identities, which we use frequently. First, we have the

following “single contraction” identities

JacJbc = πab , ΩabeΩcde = 0 , (C.8)

Ωabe Ωcde = 4π[a
[cπ

b]
d] − 4 J [a

[cJ
b]
d] − 8i π[a

[cJ
b]
d] , (C.9)

from which the higher contractions follow,

JabJ
ab = 6 , Ωacd Ωbcd = 8πab − 8iJab , ΩabcΩabc = 48 . (C.10)

106



We also need the following uncontracted identity

Ωabc Ωdef = 6π[a
[dπ

b
eπ

c]
f ] − 18i π[a

[dπ
b
eJ

c]
f ] − 18 π[a

[dJ
b
eJ

c]
f ] + 6i J [a

[dJ
b
eJ

c]
f ] . (C.11)

and covariant derivatives of the Sasaki-Einstein forms that are given by

D̊aϑb = Jab , D̊aJbc = −2 g̊a[bϑc] , D̊aΩbcd = 4i ϑ[aΩbcd] . (C.12)

Identities (3.8) follow from (C.12) by antisymmetrization.

D Some harmonics on V 5,2

The classification of supermultiplets in the KK spectrum on V 5,2 given in Tables 2-6 in [52]

does not include any long Z-vector supermultiplet. However, the discussion in section 2 in

that paper suggests that some vector multiplets might be missing from the classification. In

this appendix, we use standard group theory methods (see, e.g., [49]) to list all harmonics

on V 5,2 that transform in 5 of SO(5). This allows us to determine unambigously that there

must be a long Z-vector supermultiplet in the KK spectrum consistent with the explicit

construction in section 5.2.5. We refer the reader to [52] and the references therein for the

group theoretic set-up of the harmonic analysis on this space.

The V 5,2 manifold is a G/H coset space,

V 5,2 =
SO(5)× U(1)

SU(2)× U(1)
, (D.1)

where the embeding of H in G is defined by the branching rule

5Q −→ 3Q + 1Q+1 + 1Q−1 . (D.2)
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It then follows that the embedding of H into the tangent SO(7) group is given by

1 −→ 10 , (D.3)

7 −→ 31 + 3−1 + 10 , (D.4)

8 −→ 31/2 + 3−1/2 + 13/2 + 1−3/2 . (D.5)

This shows that the embedding is through the chain

SU(2)× U(1) ⊂ SU(3)× U(1) ⊂ SU(4) ⊂ SO(7) , (D.6)

where SU(2) ⊂ SU(3) is the maximal embedding. The other two embeddings are regular,

except that the normalization of the U(1) charge is half the conventional one [80].

In addition to (D.4), we also need the branchings of 21, 35 and 27 of SO(7), which

determine the two-form, the three-form and the symmetric tensor harmonics, respectively,

21 −→ 10 + 32 + 31 + 30 + 3−1 + 3−2 + 50 ,

35 −→ 13 + 11 + 10 + 1−1 + 1−3 + 32 + 31 + 30 + 3−1 + 3−2 + 51 + 50 + 5−1 ,

27 −→ 12 + 10 + 1−2 + 31 + 30 + 3−1 + 52 + 50 + 5−2 .

(D.7)

We recall that each independent harmonic is completely specified by its G×H represen-

tation. It follows from (D.2) that only representations 3q and 1q in the branchings (D.3),

(D.4) and (D.7) give rise to harmonics in 5Q of SO(5)× U(1)R. Specifically, each 3q yields

a single harmonic, (5q,3q), while each 1q yields two harmonics, (5q−1,1q) and (5q+1,1q).

After compiling the list of all harmonics, one must identify the longitudinal ones, which

do not give rise to four-dimensional fields in the KK expansion. This can be done by

looking at the representation labels of the harmonics. For example, there are two scalar

108



Q = 4 3 2 1 0 −1 −2 −3 −4

h sg+ sg−

Z sg− sg+ Z sg− sg+

A sg+ sg−

W W+ W−

π W+ W−, H W+ Z, Z W− W+, H W−

φ Z W+ Z W− Z

Σ W+ W−

S H H

Table 3: The N = 2 supermultiplets on V 5,2 in 5 of SO(5).

harmonics in (51,10) and (5−1,10), and four vector harmonics in (51,31), (5−1,3−1), (51,10)

and (5−1,10). The last two are in the same representations as the scalar harmonics and are

longitudinal. Indeed, the scalar harmonics are the functions zi and z̄i, respectively, and the

corresponding longitudinal vector harmonics are dzi and dz̄i. The remaining two transverse

vector harmonics are obtained from zizjdz̄j and z̄iz̄jdzj. The same procedure is used to

count the two-form, the three-form, and the symmetric tensor longitudinal harmonics.

Using KK expansions in [56] (see also [66] for a succinct summary), it is then straightfor-

ward to identify the four dimensional fields corresponding to the transverse harmonics and

arrange them into N = 2 supermultiplets, whose field content is given, e.g., in Tables 1-9 in
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[50]. The result is summarized in Table 3, where the first column lists the four-dimensional

fields. The remaining columns are labelled by the U(1) charges of the R-symmetry subgroup

of G. The R-charge in [50] is y0 = 2Q/3. Each entry in those columns corresponds to a

transverse harmonic in the 5Q representation of SO(5)×U(1)R, with the symbol indicating

the N = 2 supermultiplet that the corresponding four-dimensional field belongs to: sg± –

short graviton multiplets, Z – a long Z-vector multiplet, W± – long W -vector multiplets,

and H – a hypermultiplet.

E Volume of V 5,2

The metric is

ds2 = ds2(KE) + [dψ +
3

8
cos(µ− θ)(σ3 + dφ) +

3

8
cos(µ+ θ)(σ3 − dφ)]2, (E.1)

where

ds2(KE) =
3

8
[dµ2 + cos2 µ σ2

1 + dθ2 + cos2 θ σ2
2

+
1

2
sin2(µ− θ)(σ3 + dφ)2 +

1

2
sin2(µ+ θ)(σ3 − dφ)2].

(E.2)

The σj are SO(3) left-invariant forms.

σ1 = cos γ dα + sin γ sinα dβ

σ2 = sin γ dα− cos γ sinα dβ

σ3 = dγ + cosα dβ,

(E.3)

where

0 ≤ α ≤ π, 0 ≤ β ≤ 2π, 0 ≤ γ ≤ 2π. (E.4)
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The ranges of the other angles in the metric are

0 ≤ φ < π, −π
2
≤ µ, θ <

π

2
, 0 ≤ ψ <

3π

8
. (E.5)

We find that the determinant of this metric is

Det g =

(
27

512

)2

sin2 α cos2 θ cos2 µ sin2(µ− θ) sin2(µ+ θ), (E.6)

so that

(Det g)1/2 =
27

512
sinα cos θ cosµ sin(µ− θ) sin(µ+ θ). (E.7)

Note that the quantity above will have both positive and negative (and 0) values in the

coordinate patch. So in computing the volume of the space, the absolute value of it must be

used.

The volume of the space is

Vol =

∫
|(Det g)1/2|dβ dγ dφ dψ dα dθ dµ

=

∫
dβ dγ dφ dψ

∫
(Det g)1/2 dα dθ dµ

=
3

2
π4

∫
|(Det g)1/2| dα dθ dµ

=
81

1024
π4

∫
sinαdα

∫
cos θ cosµ | sin(µ− θ) sin(µ+ θ)|dθ dµ

=
81

512
π4

∫
cos θ cosµ | sin(µ− θ) sin(µ+ θ)|dθ dµ.

(E.8)

The integrals are over the ranges of the coordinates given in (E.4) and (E.5).

To do the last integral it is convenient to re-write the expression inside the absolute value

as

sin(µ− θ) sin(µ+ θ) = (cos θ + cosµ)(cos θ − cosµ), (E.9)
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and let

f(θ, µ) = cos θ cosµ(cos θ + cosµ)(cos θ − cosµ). (E.10)

Then the volume is given by

Vol =
81

512
π4

∫
|f(θ, µ)|dθdµ. (E.11)

Computing this integral is a little tedious but straightforward. One must determine the

values of θ and µ for which f is positive and for which it is negative.

Since θ and µ are both in the interval [−π
2
, π

2
], we have

f(θ, µ) > 0, −|µ| < θ < |µ|

< 0, −π
2
< θ < −|µ|, |µ| < θ <

π

2
,

(E.12)

so that

|f(θ, µ)| = f(θ, µ), −|µ| < θ < |µ|

= −f(θ, µ), −π
2
< θ < −|µ|, |µ| < θ <

π

2
.

(E.13)

Therefore, ∫
|f(θ, µ)|dθ dµ =

∫
+

f −
∫
−
f, (E.14)

where the first integral is over the region where f is positive and the second integral is over

the region where f is negative. One can see that∫
+

f =

∫ π
2

−π
2

dµ

∫ |µ|
−|µ|

f(θ, µ)dθ, (E.15)

and that ∫
−
f =

∫ π
2

−π
2

dµ

(∫ −|µ|
−π

2

+

∫ π
2

|µ|

)
f(θ, µ)dθ. (E.16)
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These double integrals are readily computed by Mathematica. We find them to be∫
+

f =
2

3∫
−
f = −2

3
.

(E.17)

So the volume is found to be

Vol =
27

128
π4. (E.18)

This value for the volume is in agreement with what is calculated in [76].

F Linearized bosonic field equations of D = 11 super-

gravity

(I) The bosonic field equations of d=11 supergravity

The bosonic sector of d = 11 supergravity consists of a metric gAB and a 3-form potential

AABC . The exterior derivative of the 3-form potential gives a 4-form flux FABCD. Classically

these fields must satisfy the d = 11 supergravity bosonic field equations. These field equations

consist of an Einstein equation, a Maxwell equation, and the Bianchi identity for FABCD.

The Einstein equation is

RAB =
1

3
FACDEF

CDE
B − 1

36
gABFCDEFF

CDEF , (F.1)

the Maxwell equation is

∇AF
ABCD = − 1

576
εBCDEFGHIJKLFEFGHFIJKL, (F.2)
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and the Bianchi identity is

∇[AFBCDE] = 0. (F.3)

Let gAB and FABCD be a solution to the field equations. We take this solution to be the

‘background solution’. We would like to perturb the background fields, gAB and FABCD, in

such a way that the perturbed fields still satisfy the equations of motion.

Let hAB and fMNPQ be the perturbations to the metric and flux, respectively. The

perturbed fields are then

gAB = gAB + hAB

FABCD = FABCD + fMNPQ.

(F.4)

We would like to put these perturbed fields into the equations of motion and determine

the equations the perturbations hAB and fABCD must satisfy in order for gAB and FABCD

to be solutions. The equations hAB and fABCD must satisfy to first order are the ‘linearized

field equations’.

(II) Linearizing the Einstein equation

Let RAB be the Ricci tensor obtained from the perturbed metric gAB. Then the Einstein

equation is

RAB =
1

3
FACDEF CDE

B − 1

36
gABFCDEFFCDEF . (F.5)

We want to expand each of the terms to first order in the perturbations and obtain the

linearized Einstein equation.

(II.1) Linearizing RAB

Expanding RAB to first order gives

RAB = RAB + δRAB, (F.6)
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where

δRAB =
1

2
∆̂hAB + ∇̆(A∇̆ChB)C −

1

2
∇̆A∇̆Bh

C
C . (F.7)

∇̆A is the covariant derivative for the background metric. ∆̂hAB is called the ‘Lichnerowicz

operator’, and its action on hAB is

∆̂hAB = −∇̆C∇̆ChAB − 2RACBDh
CD + 2R C

(A hB)C . (F.8)

(II.2) Linearizing FACDEF CDE
B

Expanding FACDEF CDE
B gives

FACDEF CDE
B = gMCgNDgPEFACDEFBMNP

= (gMC − hMC) . . . (FBMNP + fBMNP )

= FACDEF
CDE

B +O(h) +O(f),

(F.9)

where

O(h) = −(hMCgNDgPE + gMChNDgPE + gMCgNDhPE)FACDEFBMNP

O(f) = gMCgNDgPEFACDEfBMNP + gMCgNDgPEfACDEFBMNP .

(F.10)

After some straightforward manipulations

O(h) = −3F CNP
A F M

B NPhMC

O(f) = 2F MNP
(A fB)MNP .

(F.11)

So

FACDEF CDE
B = FACDEF

CDE
B − 3F CNP

A F M
B NPhMC + 2F MNP

(A fB)MNP . (F.12)

(II.3) Linearizing gABFCDEFFCDEF
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Expanding gABFCDEFFCDEF gives

gABFCDEFFCDEF = gABg
CMgDNgEPgFQ FCDEFFMNPQ

= (gAB + hAB)(gCM − hCM) · · ·

(FCDEF + fCDEF )(FMNPQ + fMNPQ)

= gABFCDEFF
CDEF +O(h) +O(f).

(F.13)

O(h) is the part that is first order in the hAB. It is

O(h) = hABFCDEFF
CDEF

−gAB(hCMgDNgEPgFQ + gCMhDNgEPgFQ)FCDEFFMNPQ

−gAB(gCMgDNhEPgFQ + gCMgDNgEPhFQ)FCDEFFMNPQ.

(F.14)

After some straightforward manipulation

O(h) = hABFCDEFF
CDEF − 4gABh

CMFCDEFF
DEF
M . (F.15)

O(f) is the part that is first order in the fABCD. It is straighforward to obtain that

O(f) = 2gABF
MNPQfMNPQ. (F.16)

So

gABFCDEFFCDEF = gABFCDEFF
CDEF + hABFCDEFF

CDEF

−4gABh
CMFCDEFF

DEF
M + 2gABF

MNPQfMNPQ.

(F.17)

(II.4) The linearized Einstein equation

Putting together equations (F.5), (F.6), (F.7), (F.12), and (F.17) gives the linearlized
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Einstein equation. It is

1

2
∆̂hAB + ∇̆(A∇̆ChB)C −

1

2
∇̆A∇̆Bh

C
C = −F CNP

A F M
B NPhMC −

1

36
hABFCDEFF

CDEF

+
1

9
gABh

CMFCDEFF
DEF
M +

2

3
F MNP

(A fB)MNP

− 1

18
gABF

MNPQfMNPQ (F.18)

(III) Linearizing the Maxwell equation

The Maxwell equation is

∇AFABCD = − 1

576
εBCDEFGHIJKLFEFGHFIJKL. (F.19)

We want to expand each of the terms to first order in the perturbations and obtain the

linearized Maxwell equation.

(III.1) Linearizing ∇AFABCD

Expanding ∇AFABCD gives

∇AFABCD = gAMgBNgCPgDQ∇AFMNPQ

= (gAM − hAM) . . . (gDQ − hDQ)∇A(FMNPQ + fMNPQ)

= ∇̆AF
ABCD +O(f) +O(h) +O(∂h).

(F.20)

O(f) is the term that results from varying F , O(h) is the term that results from varying

the 4 inverse metrics gAM , and O(∂h) is the term that results from varying the Christoffel

symbols in the covariant derivative ∇A.

First, we obtain O(f). It is straightforward to see that

O(f) = ∇̆Af
ABCD. (F.21)
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Next, we obtain O(h). After shuffling terms around it is possible to obtain O(h) in a

nice, compact form.

O(h) = −(hAMgBNgCP gDQ + gAMhBNgCP gDQ

+gAMgBNhCP gDQ + gAMgBNgCPhDQ)∇̆AFMNPQ

= −hAM∇̆AFMBCD − hBN∇̆AFAN
CD − hCP ∇̆AFABP

D − hDQ∇̆AFABCQ

= −4hM [A∇̆AFBCD]
M

= 4∇̆AFM [ABChD]
M + 4(∇̆AhM [A)FM

BCD]

= 4∇̆AFM [ABChD]
M − FBCDM∇̆AhAM + 3FAM [BC∇̆AhD]

M

(F.22)

So

O(h) = 4∇̆AF
M [ABChD]

M − FBCDM∇̆Ah
A
M + 3FAM [BC∇̆Ah

D]
M . (F.23)

Now, we want to obtain O(∂h). This term arises from varying the Christoffel symbols.

ΓRAM =
1

2
gRS(∂AgMS + ∂MgAS − ∂SgAM)

=
1

2
(gRS − hRS)[∂A(gMS + hMS) + ∂M(gAS + hAS)− ∂S(gAM + hAM ]

= Γ̆RAM + γRAM ,

(F.24)

where Γ̆RAM is the Christoffel symbol for the background metric and

γRAM = −1

2
hRS(∂AgMS + ∂MgAS − ∂SgAM) +

1

2
gRS(∂AhMS + ∂MhAS − ∂ShAM). (F.25)

It is possible to express the first term of γRAM in terms of Γ̆KAM . Doing so gives

γRAM = −hRSgSKΓ̆KAM +
1

2
gRS(∂AhMS + ∂MhAS − ∂ShAM). (F.26)

Furthermore, using the fact that

∇̆AhMS = ∂AhMS − Γ̆KAMhKS − Γ̆KAShMK , (F.27)
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it is possible to show that

γRAM =
1

2
(∇̆AhM

R + ∇̆MhA
R − ∇̆RhAM). (F.28)

The covariant derivative of F is

∇AFMNPQ = ∂AFMNPQ + 4ΓRA[MFNPQ]R

= ∇̆AFMNPQ + 4γRA[MFNPQ]R,

(F.29)

so

O(∂h) = 4gAMgBNgCPgDQγRA[MFNPQ]R

= 2
[
(∇̆AhR

[A)FBCD]R + (∇̆[AhAR)FBCD]R − (∇̆RhA
[A)FBCD]R

]
.

(F.30)

Expanding the antisymmetrizations and simplifying gives

O(∂h) = FBCDR∇̆Ah
A
R − 3FAR[BC∇̆AhR

D] − 1

2
FBCDR∇̆RhA

A. (F.31)

Finally, we put the parts together to obtain

∇̆AFABCD = ∇̆AF
ABCD + ∇̆Af

ABCD + 4∇̆A(FM [ABChD]
M)− 1

2
FBCDR∇̆RhA

A (F.32)

(III.2) Linearizing εBCDEFGHIJKLFEFGHFIJKL

Expanding the right hand side of the Maxwell equation gives

εBCDEFGHIJKLFEFGHFIJKL = (−g)−1/2ε̃BCDEFGHIJKL

(FEFGH + fEFGH)(FIJKL + fIJKL)

= εBCDEFGHIJKLFEFGHFIJKL +O(f) +O(h),

(F.33)

where g is the determinant of the metric, O(f) is the term that arises from varying F , and

O(h) is the term that arises from varying the determinant of the metric g.
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It is straightforward to see that

O(f) = 2εBCDEFGHIJKLFEFGHfIJKL. (F.34)

To get O(h) one needs to use the fact that, to first order,

det(gAB) = det(gAB) + det(gAB)Tr(g−1h), (F.35)

where g−1h is the matrix multiplication of the inverse metric and the metric perturbation.

So

(−g)−1/2 = (−g − gTr(g−1h))−1/2

= (−g)−1/2(1 + Tr(g−1h))−1/2

= (−g)−1/2(1− 1

2
Tr(g−1h))

= (−g)−1/2 − 1

2
(−g)−1/2Tr(g−1h).

(F.36)

This gives

O(h) = −1

2
Tr(g−1h)εBCDEFGHIJKLFEFGHFIJKL. (F.37)

(III.3) The linearized Maxwell equation

Putting together equations (F.19), (F.32), (F.33), (F.34), and (F.37) gives the linearized

Maxwell equation. It is

∇̆Af
ABCD + 4∇̆A(FM [ABChD]

M)− 1

2
FBCDR∇̆RhA

A = − 1

288
εBCDEFGHIJKLFEFGHfIJKL

− 1

1152
Tr(g−1h)εBCDEFGHIJKLFEFGHFIJKL (F.38)

(IV) The linearized Bianchi identity

Expanding the Bianchi identity gives

∇[AFBCDE] = ∇[AFBCDE] +∇[AfBCDE] = 0. (F.39)
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So the linearized Bianchi identity is

∇̆[AfBCDE] = 0. (F.40)

Note that there is no need to consider the variation of the covariant derivative because

the Christoffel symbols vanish when taking an exterior derivative.

(V) Summary

So to summarize, the linearized field equations are the linearized Einstein equation

1

2
∆̂hAB + ∇̆(A∇̆ChB)C −

1

2
∇̆A∇̆Bh

C
C = −F CNP

A F M
B NPhMC −

1

36
hABFCDEFF

CDEF

+
1

9
gABh

CMFCDEFF
DEF
M +

2

3
F MNP

(A fB)MNP

− 1

18
gABF

MNPQfMNPQ (F.41)

the linearized Maxwell equation

∇̆Af
ABCD + 4∇̆A(FM [ABChD]

M)− 1

2
FBCDR∇̆RhA

A = − 1

288
εBCDEFGHIJKLFEFGHfIJKL

− 1

1152
Tr(g−1h)εBCDEFGHIJKLFEFGHFIJKL (F.42)

and the linearized Bianchi identity

∇̆[AfBCDE] = 0. (F.43)

G Conventions of [56] and [50]

In this appendix we translate the definition of the scalar mass used in [56] and [50] into the

definition of it used here. We also clarify the ‘Lichnerowicz-like’ operator used in [56] and

demonstrate that this paper agrees with our result that ∆L = ∆2 + 4.
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AdS Klein-Gordan equation and scalar field mass used here

Here the Klein-Gordan equation for a scalar field in AdS space is taken to be

2φ =
ν

L2
φ. (G.1)

2 is the Laplacian in AdS with the metric sign convention (− + ++), and L2 is the AdS

radius squared. ν = m2L2 is regarded as the dimensionless mass, and ν
L2 is regarded as

the mass. So the mass is the eigenvalue of the scalar field φ under the Laplacian, and the

dimensionless mass is obtained from the mass by multiplying by L2.

AdS Klein-Gordan equation and scalar field mass in [56] and [50]

In [56] and [50] the Klein-Gordan equation for a scalar field in AdS space is taken to be

(equations (3.22a) and (3.22b) of [56])

(2f − 32)φ = −m2
fφ. (G.2)

2f is the Laplacian in AdS with the metric sign convention (+−−−).

In [56] and [50] m2
f is regarded as the mass. This Klein-Gordan equation is obtained

from the one derived in [49], which is

(2f +
1

3
R)φ = −m2

fφ, (G.3)

where R is the Ricci scalar of AdS.

It is important to note that some authors have a denominator of 6 instead of 3 in the

Ricci scalar term in the Klein-Gordan equation, see e.g. [6]. In the Klein-Gordan equation

above the denominator is 3 because the authors define their Riemann tensor so that it is 1
2

of what it is traditionally ((A.1.28) of [7]).
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Using this convention, the Ricci tensor for AdS in [72] is given to be

Ra
c =

3

2
λδac . (G.4)

Comparing with (G.2) we see that in [56] and [50] the size of AdS is fixed so that λ = −16.

The mass here in terms of the mass of [56] and [50]

Here the traditional definition of the Riemann tensor is used, and the Ricci tensor is

Ra
c = − 3

L2
δac . (G.5)

Setting the the right-hand-side of (G.4) to 1
2

the right-hand-side of (G.5) gives

λ = − 1

L2
, (G.6)

so that the square of the AdS radius in [56] and [50] is

L2 =
1

16
. (G.7)

We would like to have the mass used here in terms the mass of [56] and [50]. To do this

we note that for a given AdS radius 2f = −2p because [56] and [50] uses the opposite metric

sign convention used here.

So the Klein-Gordan equation of [56] and [50] becomes

(−2− 32)φ = −m2
fφ, (G.8)

which with further massaging becomes

2φ = (m2
f − 32)φ. (G.9)

Comparing with (G.1), and setting L2 = 1
16

, gives

ν =
1

16
(m2

f − 32). (G.10)
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D’Auria and Fre’s ‘Lichnerowicz-like’ operator

In [56] the authors use what they call the ‘Lichnerowicz-like’ operator on symmetric

tensors. In equation (2.11e) of that reference they give it to be

M(2)(0)2Y(αβ) =
[
(2 + 40)δ

(αβ)
(λµ) − 4Cαλβµ

]
Y(λµ). (G.11)

The tensor Cαβµν is the Weyl tensor on the internal space, which is Einstein. In equation

(2.9a) of [56] give it to be

Cαβµν = Rαβ
µν − 4e2δαβµν , (G.12)

where the first term is the Riemann tensor and the second term is the antisymmetrized

product of δ’s, i.e.

δαβµν = δ[α
µ δ

β]
ν . (G.13)

Acting with the antisymmetrized δ’s on the symmetric tensor Y gives

δαλβµY(λµ) =
1

4
(δαβ δ

λ
µ − δλβδαµ)(Yλµ + Yµλ)

= −1

4
(Yβα + Yαβ)

= −1

2
Y(αβ). (G.14)

To get the second equality it is assumed that the symmetric tensor Y is traceless.

Therefore acting with the Weyl tensor on Y gives

CαλβµY(λµ) = Rαλ
βµY(λµ) + 2e2Y(αβ), (G.15)

and putting this, with e = 1, into the action of the Lichnerowicz-like operator given in

equation (G.11) gives

M(2)(0)2Y(αβ) = 2Y(αβ) − 4Rαλ
·βµY(λµ) + 32Y(αβ). (G.16)
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It is important to note that the above is not the usual Lichnerowicz operator, which is

given in equation (V.4.111e) of [49], but in the case of an Einstein space differs from it by a

constant.

The usual Lichnerowicz operator does not appear to be given in [56], but it is given in

equation (V.4.111e) of [49] to be

−∆LY(ab) =
[
(2 + 48)δ

(de)
(ab) − 4R·d·ea·b·

]
Y(de). (G.17)

(N.B. In equation (V.4.109) of the same publication, i.e. reference [49], the authors give the

same operator as above, but with the opposite sign in front of the Riemann tensor. The

operator above seems to be the correct one.)

Comparing equations (G.16) and (G.17) gives that

−∆L = M(2)(0)2 + 16, (G.18)

where the operator on the left-hand-side is the usual Lichnerowicz operator and the operator

on the right-hand-side is what the authors of [56] call the ‘Lichnerowicz-like’ operator.

From equations (4.27), (4.71), (3.23b), and (3.23g) of [56] one obtains

−M(2)(0)2 = M(1)2(0), (G.19)

where the operator on the right-hand-side is the Hodge-de-Rham operator on 2-forms.

This relation together with equation (G.18) gives

−∆L = −M(1)2(0) + 16, (G.20)

where the operator on the left-hand-side is the usual Lichnerowitz operator given in [49] and

the operator on the right-hand-side is the Hodge-de-Rham operator on 2-forms.
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Equations (2.11c) of [56] and (V.4.111c) of [49] both give

M(1)2(0)Y[αβ] = 3DµD[µYαβ]. (G.21)

Equation (G.20) is for the case when the size of the space is such that Rαβ = 24gαβ, for the

usual definition of the Riemann tensor. In the case when the size of the space is such that

Rαβ = 6gαβ the differential operators get scaled down by 1
4
.

Hence, in the case that size of the space is such that Rαβ = 6gαβ, the relation that is

equation (G.20) becomes

−∆L = −M(1)2(0) + 4, (G.22)

where the operator on the left-hand-side is the usual Lichnerowitz operator given in [56] and

the operator on the right-hand-side is the Hodge-de-Rham operator given in [56] and [49].

H Toric homogeneous Sasaki-Einstein manifolds via Kähler

quotient

The Kähler quotient provides a straightforward way to construct a Kähler manifold from a

higher-dimensional one. The higher-dimensional Kähler manifold is taken to be a simpler

space, e.g. typically Cn. As a result, objects in the constructed lower-dimensional space, e.g.

the metric and Kähler 2-form, can be more easily described in terms of those in this simpler

higher-dimensional space.

In this appendix, we explain the Kähler and hyper-Kähler quotients, and obtain the toric

homogeneous Sasaki-Einstein manifolds, M3,2, Q1,1,1, and N1,1 in terms of them.
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For more details on the Kähler and hyper-Kähler quotients, see [87], [88], [89], and [90].

Kähler quotient

Suppose a Lie group G acts on a symplectic manifold M . The basis elements of the Lie

algebra g are vector fields V a on M , where the index a runs from 1 to Dim(g). Each V a

is a vector field that can in turn be written in terms of the ∂/∂xi, where the xi are local

coordinates on M . These vector fields V a can be regarded as Hamiltonian vector fields that

generate Hamiltonian phase flows on the manifold M . In other words, a vector field V a on

M , which is a basis element of g, gives rise to a Hamiltonian µa on M given by

dµa = iV aω, (H.1)

where ω is the symplectic form on M . The µa are components of an object µ, which is called

a moment map, and is also known as a momentum map.

The moment map µ is to be regarded as a map from M to the dual of the Lie algebra,

i.e. µ : M → g∗. In other words, µ is to be regarded as a 1-form on M . µ can be written

as µ = µaVa, where Va is the 1-form dual to the vector field V a, so that Va(V
b) = δba. Given

any element ξ = ξaV
a of g one has that

d〈µ, ξ〉 = d(µaξa) = iξω, (H.2)

and so 〈µ, ξ〉 can be seen as a Hamiltonian on M with corresponding Hamiltonian vector

field ξ.

In the case of Euclidean three-dimensional configuration space, the phase space, i.e. the

space of positions together with momenta, is six-dimensional. In this case, M = C3. When

the group of symmetries is taken to be the group of spatial rotations about the origin, the
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components of the moment map are the values of the angular momentum, and when the

group of symmetries is taken to be spatial translations, the components of the moment map

are the values of the momentum [87]. Hence the name ‘moment map’ or ‘momentum map’.

Given an element in the dual of the Lie algebra p ∈ g∗, one can consider the set of points

in M defined by Mp = µ−1(p), which is the set of all the points in M that map under the

moment map to the dual Lie algebra element p. Such a set of points is called a level set.

In general, a group action will move a point in a level set into another level set, but it is

shown in [87] that Mp is fixed under the action of the subgroup Gp of G consisting of those

elements g ∈ G such that Ad∗gp = p. In the case that p = 0 one of course has that Gp is the

entire group G.

Since Mp is fixed under Gp one can mod out the action of Gp on Mp and consider the

space of Gp-orbits of Mp. This quotient space is called, e.g. in [87], a reduced phase space.

In the case that M is a Kähler manifold, the Kähler 2-form is the symplectic form and the

quotient is called a Kähler quotient.

The simplest example of the Kähler quotient construction is when the starting manifold

is M = Cn, the symmetry group is G = U(1)r, and the level set is taken for the dual Lie

algebra element p = 0. The subgroup that fixes the level set is of course Gp = G. The action

of the group G is given by

zi → eiξaQ
a
i zi, (H.3)

where ξ = (ξ1, . . . , ξr) is an element of the Lie algebra u(1)r ∼= Rr. To obtain the Lie algebra
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vector fields, consider a scalar function F (zi, z̄i) on M . Under the group action, one has

F (zi, z̄i) → F (eiξaQ
a
i zi, e

−iξaQai z̄i)

' F ((1 + iξaQ
a
i )zi, (1− iξaQa

i )z̄i)

' F (zi, z̄i) +
n∑
i=1

(iξaQ
a
i zi
∂F

∂zi
− iξaQa

i z̄i
∂F

∂z̄i
). (H.4)

From this one can see that the Lie algebra vectors are

V a =
∂

∂ξa
= i

n∑
i=1

Qa
i (zi

∂

∂zi
− z̄i

∂

∂z̄i
). (H.5)

Inserting this vector into the equation

dµa = iV aω,

with Kähler form

ω = −i
∑
i

dzi ∧ dz̄i, (H.6)

one can solve for the moment map. The right hand side of the equation gives

iV aω = −i
∑
i

dzi(V
a)dz̄i − dzidz̄i(V a)

=
∑
i

Qa
i (zidz̄i + z̄idzi)

=
∑
i

Qa
i d(ziz̄i). (H.7)

One can then see that the moment map is given by

µa =
∑
i

Qa
i |zi|2 − ta, (H.8)

where the ta are integration constants. Setting the integration constants equal to 0 and

restricting to the level set corresponding to the 0 element of g∗ gives the set of points defined
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by the r algebraic equations (a = 1, . . . , r)

∑
i

Qa
i |zi|2 = 0. (H.9)

The space of orbits obtained by further quotienting out by the group action zi → eiξaQ
a
i zi is

the Kähler quotient. An important fact is that if the charges satisfy the condition
∑

iQ
a
i = 0

for each a, then the resulting space is a toric Calabi-Yau manifold.

M3,2 and Q1,1,1 via Kähler quotients

If one starts with the spaceM = C5 parameterized by the complex coordinates (u1, u2, u3, v1, v2),

and takes the Kähler quotient by U(1), with charge 2 for the ui and charge −3 for the vi,

ui vi

U(1) charges 2 −3

then one obtains the space defined by the equation

2(|u1|2 + |u2|2 + |u3|2) = 3(|v1|2 + |v1|2), (H.10)

with the coordinates identified according to the U(1) action (ui, vi)→ (e2iξui, e−3iξvi).

This space is in fact the Calabi-Yau cone over the homogeneous Sasaki-Einstein manifold

M3,2. M3,2 is obtained by further restricting to a fixed radius in the cone, which is achieved

by setting

2(|u1|2 + |u2|2 + |u3|2) = 3(|v1|2 + |v1|2) = 1. (H.11)

The homogeneous Sasaki-Einstein manifold Q1,1,1 can also be obtained as a Kähler quo-

tient. If one starts with the space M = C6 parameterized by the complex coordinates

(a1, a2, b1, b2, c1, c2), and takes the Kähler quotient by U(1)2 with charges as given in the

table,
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ai bi ci

U(1)1 charges 1 0 −1

U(1)2 charges 0 1 −1

then one obtains the space defined by the equations

|a1|2 + |a2|2 = |b1|2 + |b2|2 = |c1|2 + |c2|2, (H.12)

with the coordinates identified according to the U(1)2 action (ai, bi, ci)→ (eiξ1ai, eiξ2bi, e−iξ1−iξ2ci).

This space is in fact the cone over the homogeneous Sasaki-Einstein manifold Q1,1,1. Q1,1,1

is obtained by further restricting to a fixed radius in the cone, which is achieved by setting

|a1|2 + |a2|2 = |b1|2 + |b2|2 = |c1|2 + |c2|2 = 1. (H.13)

Hyper-Kähler quotient

Whereas a Kähler manifold looks locally like Cn, a hyper-Kähler manifold looks locally

like Hn, where H is the space of quaternions q = a+ ib+jc+kd, a, b, c, d ∈ R. The imaginary

unit i in C gives rise in Kähler manifolds to the complex structure J , and analogously, in

hyper-Kähler manifolds the units i, j, and k in H give rise to three complex structures, I,

J , and K. Practically speaking, Kähler 2-forms are obtained by lowering the upper indices

on the complex structures with the metric. So a hyper-Kähler manifold has three Kähler

2-forms as well.

The space of quaternions H can be seen as R4, so the unit quaternions can be seen as

the 3-sphere S3. S3 is the same as the Lie group SU(2) when considered as a manifold, and

when considering the multiplication of quaternions, the unit quaternions can be identified

as SU(2).
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More concretely, a quaternion can be represented in terms of the Pauli matrices, and in

terms of two complex numbers as

q = q412 + i~σ · ~q =

 u v

−v̄ ū

 , (H.14)

where u = q4 + iq3 and v = q2 + iq1. The units i, j, and k are represented as the Pauli

matrices, iσ1, iσ2, and iσ3, respectively. This representation of the quaternions makes it

clear that the units i, j, and k transform as a triplet, i.e. in the adjoint representation,

under SU(2).

Since the unit quaternions i, j, and k transform as a triplet under SU(2), the three

complex structures and the three Kähler 2-forms do as well. The triplet of Kähler 2-forms

for H, which transform in the adjoint representation of SU(2), is given by the relation

i~ω · ~σ =
1

2
dq ∧ dq̄, (H.15)

which more explicitly is

i

 ω3 ω1 − iω2

ω1 + iω2 −ω3

 =

 du dv

−dv̄ dū

 ∧
dū −dv
dv̄ du

 . (H.16)

(Note that the conjugate of a quaterion is q̄ = a − ib − jc − kd.) This relation gives the

Kähler 2-forms to be

ω3 = − i
2

(du ∧ dū+ dv ∧ dv̄)

ω1 − iω2 = i(du ∧ dv). (H.17)

If there is a Lie group G that acts on a hyper-Kähler manifold M , then there is a

construction, called the hyper-Kähler quotient, that gives a hyper-Kähler manifold of
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lower dimension. In what follows, we assume that the starting hyper-Kähler manifold is

M = Hn, and that the Lie group is of the form G = U(1)r.

In particular, G is taken to act as

qi → qie
iQai σ

3ξa , (H.18)

which in terms of the ui and vi is

ui → uie
iQai ξa

vi → vie
−iQai ξa . (H.19)

In the same way that they were derived in the Kähler quotient case, i.e. by Taylor

expanding a scalar function to first order, one can derive the Lie algebra vector fields in the

hyper-Kähler case. They are found to be

V a =
∂

∂ξa
= i
∑
i

Qa
i (ui

∂

∂ui
− ūi

∂

∂ūi
− vi

∂

∂vi
+ v̄i

∂

∂v̄i
). (H.20)

In the Kähler case, each component of the moment map was a scalar. However, in the

hyper-Kähler case there is a triplet of Kähler 2-forms, so each component of the moment

map will be a triplet. In particular, the moment map is given by

d~µa = iV a~ω. (H.21)

Plugging the Lie algebra vector fields and the Kähler 2-forms into this equation, one can

obtain the moment map in the same way it was derived in the Kähler quotient case. One

finds

µa3 =
1

2

∑
i

Qa
i (|ui|2 − |vi|2)

µa1 − iµa2 = −
∑
i

Qa
i uivi. (H.22)
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As in the Kähler case, we care about the level set corresponding to the 0 element of the

dual Lie algebra. This set of points is the solution to the equations (a = 1, . . . , r)

∑
i

Qa
i (|ui|2 − |vi|2) = 0∑

i

Qa
i uivi = 0. (H.23)

The space obtained by further quotienting out by the group action qi → qie
iQai σ

3ξa is the

hyper-Kähler quotient.

N1,1 as a hyper-Kähler quotient

If one starts with the spaceM = H3 (or C6) parameterized by the coordinates (u1, v1, u2, v2, u3, v3),

and takes the hyper-Kähler quotient by U(1), with charge 1 for each qi = (ui, vi),

q1 q2 q3

U(1) charges 1 1 1

then one obtains the space defined by the equations

∑
i

|ui|2 − |vi|2 = 0∑
i

uivi = 0, (H.24)

with the coordinates identified according to the U(1) action (ui, vi)→ (eiξui, e−iξvi).

This space is in fact the Calabi-Yau cone over the homogeneous Sasaki-Einstein manifold

N1,1. N1,1 is obtained by further restricting to a fixed radius in the cone, which is achieved

by setting

∑
i

|ui|2 =
∑
i

|vi|2 = 1. (H.25)
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