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1 Introduction

The research presented in this dissertation is of interest due to the important result in string
theory and M-theory known as the AdS/CFT correspondence. The AdS/CFT correspon-
dence first came to light in 1998 [I], and has since been a very active area of research.

In [I] the AdS/CFT correspondence was proposed in the context of D3-branes in type I1B
superstring theory. In this case of the AdS/CFT correspondence, type IIB superstring theory
in the background geometry AdS; x S° is conjectured to be dual to the four-dimensional U(N)
N = 4 super-Yang Mills theory that is known to live on the worldvolume of N coincident
D3-branes. When g,N, where g, is the string coupling constant, is very large, it can be
shown that the gauge theory becomes strongly coupled, and the string theory can be well-
approximated as a classical gravity theory, which means that stringy effects need not be
included. This case of the AdS/CFT correspondence is reviewed in detail in [2].

A concrete realization of the AdS/CFT correspondence in the context of M2 branes in
M-theory was given in [3]. This correspondence is known as ABJM theory. In this case of the
AdS/CFT correspondence, M-theory in the geometry AdS, x S7/Zy is conjectured to be dual
to the three-dimensional U(N) x U(N) Chern-Simons-matter theory at level k& with N' = 6
or 8 supersymmetry, that is known to live on the worldvolume of N coincident M2-branes.
This duality holds in the limit where N is very large. Additionally, when N > k% M-theory
can be well-approximated as a classical gravity theory.

In light of ABJM theory, a natural question to ask was whether the correspondence could

be generalized to the case of Chern-Simons theories with less supersymmetry. See, e.g. [4,[5].



In the case of Chern-Simons theories with A/ > 2 supersymmetry it is known that if such a
theory has an M-theory dual, then the geometry of such a dual theory must be of the form
AdS, x SE;, where SE7 is a type of compact manifold known as a ‘Sasaki-Einstein manifold’.
The definition of a Sasaki-Einstein manifold and some important facts about them are given
in Appendix B.

It is known that supergravity theory on the background geometry AdS; x SE;, which
is called the (‘skew-whiffed’) ‘Freund-Rubin’ background, can be continuously deformed to
supergravity theory on another AdS product space background known as the ‘Pope-Warner’
background, see, e.g., [0 1I]. In chapter 3 we give the Freund-Rubin, skew-whiffed Freund-
Rubin, and Pope-Warner background solutions explicitly. Whereas the supergravity theory
on the Freund-Rubin background was known to be stable [44], it was unknown whether the
theory on the Pope-Warner background was stable. The purpose of the research in this disser-
tation is to study the stability of Pope-Warner solutions on Sasaki-Einstein manifolds, which
in light of the AdS/CFT correspondence should correspond to vacua of 2 + 1-dimensional
field theories.

A major motivation for studying the AdS/CFT correspondence is its possible application
to condensed matter physics, see e.g. [7, 8, 0]. In this vein, it was found that in ‘top-down’
constructions of holographic superconductors, the Pope-Warner solution corresponds to a
zero-temperature quantum critical phase of a 2 4+ 1-dimensional superconductor [10, [11]. In
light of this promising find, it was of strong interest to determine the stability of Pope-
Warner solutions on Sasaki-Einstein manifolds. In section 1.1 of this introductory chapter

we further discuss the relevance of the Pope-Warner solution to superconductor solutions.



Having discussed the broader context in which the research presented here is of interest,
we now go more directly into the research itself. The field equations of eleven-dimensional

supergravity [I4} [I5] in the bosonic sector aref]

1

3-FMPQR-FNPQR ; (1.1)

Run + gunR =

d*}—(4) + }—(4) A f(4) =0, (1.2)

where gy is the metric, F4) = d Ags) is the four form flux, and * denotes the Hodge dual
in eleven dimensions. A simple and important class of solutions are the ones in which the
eleven-dimensional space time is a product AdSy x My, where M7 is a seven-dimensional
Sasaki-Einstein (SE) manifold. Those manifolds are characterized by the existence of two
real Killing spinors (see, e.g., [23, 24, 26], Appendix B) and the corresponding Freund-
Rubin (FR) solutions [18] are A/ > 2 supersymmetric. Solutions in which M; is one of the

homogeneous SE manifolds:
g7 N1 32 QU V52 (1.3)

were classified in the 1980s [22], but it is only quite recently that new solutions with nonho-
mogeneous SE metrics have been discovered [27], 28] 29].

It has also been known since the 1980s that given a SE manifold, M7, there are, in
addition to the supersymmetric FR solution, three non-supersymmetric solutions: the skew-

whiffed FR solution [I8] obtained by the change of orientation on M7, and the Englert [19]

'We summarize our conventions in appendix A.



and Pope-Warner (PW) [20, 2] solutions with nonvanishing internal fluxes constructed from
the geometric data on M.

Quite generally, non-supersymmetric solutions in gauged supergravity tend to be unsta-
ble. Indeed, while the stability of an AdS-type solution is guaranteed if there are some
unbroken supersymmetries [36, [37], in non-supersymmetric backgrounds one expects to find
scalar fluctuations,

(Oaas, —m?)p =0, (1.4)
whose masses violate the Breitenlohner-Freedman (BF) bound [3§]

m?L* > —g, (1.5)

where L here is the radius of AdS}.

For the solutions above, the perturbative stability of the skew-whiffed FR solution in
eleven-dimensional supergravity was proved in [39]. It follows by a simple observation that
the mass spectrum of fluctuations that might produce an instability is invariant under the
change of orientation of M; and hence is the same for the skew-whiffed and the supersym-
metric backgrounds.

The Englert solutions are more difficult to analyze because the background flux couples
the scalar and pseudoscalar fluctuations. The resulting perturbative instability for any SE
background, M7, can be shown by an explicit construction of unstable modes in terms of
the two Killing spinors [42]. The same instability is also visible in the massive truncation of
the eleven-dimensional supergravity on My [31) [I1], and when M7 is the round seven-sphere,

ST, it corresponds to the instability of the SO(7)” critical point of N' = 8, d = 4 gauged



supergravity [40], 41].

Prior to the research presented in this dissertation, it was known from [32] that the PW
solution on S7 is in fact unstable. The question of the stability of the PW solution on other
SE manifolds is the main concern of the research presented here.

In the rest of this introductory chapter, we will do three things. First, we will discuss the
motivation for looking at the stability of PW solutions. Given that the PW solution was first
constructed in 1984, one may ask why its stability is a concern now, many years later. The
answer to this question lies in the context of AdS/CFT [2] and “top down” constructions
of holographic superconductors [10, 11, 12], as will be discussed in the following section.
Second, we will discuss prior results that are relevant to the research presented here, and

finally, we will discuss and summarize the main results of this research.

1.1 Motivation from holographic superconductors

AdS/CFT

It was proposed in [I] that supergravity in the background geometry AdS, is dual to a
d = 3 dimensional CFT in flat space. As previously mentioned, such a duality was concretely
realized in [3]. Here, we discuss a basic aspect of the AdS/CFT correspondence. Namely, we
identify the space-time of the CFT theory with the radial slices of the AdS geometry, and
we identify the value of the radial coordinate in the AdS geometry as the energy scale of the
CFT.

The AdS, metric can be written as
1
ds® = —r?dt® + < dr® + r*(da® + dy?). (1.6)
r
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Under the change of variable r = % it becomes

1
ds® = ;(—alt2 + dz* + d2® + dy?). (1.7)

With this form of the metric it is easy to see that for each fixed value of the radial variable
z there is a copy of flat d = 3 Minkowski space. So AdS, can be regarded as copies of d = 3
Minkowski space along a radial variable z. The Minkowski space variables ¢, z, and y of the
AdS, space can be identified with the time and space variables of the d = 3 CFT. The radial
variable z of the AdSy space is to be identified as the energy scale of the d = 3 CFT [16], [17].

This identification of z as the energy scale of the CF'T simply follows from the fact that
the d = 4 and d = 3 theories are dual, and from the fact that the d = 3 theory is conformally
invariant [I7]. To see how this identification follows from these facts, consider what happens
when changing the length scale of the d = 3 theory. Changing the length scale of the d = 3
theory amounts to making the transformation (¢,z,y) — A(t,z,y). Since the d = 3 theory
is conformally invariant this transformation has no effect. However this transformation will
clearly change the AdS; metric. In order to maintain the equivalence, i.e. duality, of the
d = 4 and d = 3 theories, it is necessary to also simultaneously make the transformation
z — Az. With this additional transformation it is clear that the AdS, metric stays the
same. Therefore, since energy goes as inverse length, changing the energy (length) scale of
the d = 3 theory amounts to moving along the radial direction as z — Az. And hence, the
radial direction of the d = 4 theory should be identified with the energy scale of the d = 3
theory.

Since energy goes as inverse length, larger A should correspond to a smaller energy scale
and a smaller A should correspond to a larger energy scale. In conjunction, taking the limit

9



z — oo (or 7 — 0) corresponds to flowing to the IR of the d = 3 theory, and taking the
limit z — 0 (or 7 — o0) corresponds to flowing to the UV of the d = 3 theory. For more
discussion on the identification of the radial variable as the energy scale, see section 12.3 of
1.

It is important to note that in general, the supergravity solution to the kind of set-up
discussed below is only asymptotically AdS,, with the geometry in the bulk of the space-
time being more complicated. In this case it is difficult to rigorously prove that the radial
direction is to be identified with the field theory energy scale, however, it is nonetheless
taken to be so.

Holographic superconductors

Here, we discuss the basic idea of holographic superconductors. For more detailed dis-
cussions of this topic, see [7, [8, [9].

In the IR, many condensed matter systems of interest become strongly coupled and
therefore difficult to study using standard condensed matter techniques. The AdS/CFT
correspondence provides a way to possibly obtain valuable information about such systems.
Even though the AdS/CFT correspondence is only valid for a large number of gauge degrees
of freedom N, it is nonetheless hoped that by working at very large N it wil be possible
to obtain valuable information about strongly-coupled systems that is independent of N, or
that it will be possible to at least gain some hints as to how to proceed for small N.

Using the AdS/CFT correspondence one can consider the dual gravity theory of the
system of interest. In the dual gravity theory one can derive the equations of motion for the

relevant fields from an action and solve them, at least numerically.
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Since the energy scale of the condensed matter sytem is identified with the radial variable
z in the dual gravity system, to obtain the IR stongly coupled behavior of the condensed
matter system, one need only take the z — oo limit of the gravity solution that was found,
and then use the AdS/CFT correspondence to obtain the IR strongly coupled condensed
matter system.

A holographic superconductor setup involves at least a U(1) gauge field and a complex
scalar field that is charged with respect to it. Above a critical temperature, the scalar field
has no expectation value, and is said to have ‘no hair’. If the scalar field develops a non-zero
expectation value, i.e. hair, below the critical temperature, then it comes to possess a definite
phase, thus breaking the U(1) symmetry. In such a case the gravity solution describing this
behavior is said to be a ‘holographic superconductor’.

In order to have a non-zero temperature and finite chemical potential, an electrically
charged black hole is placed at the center of the space-time. This black hole solution describes
the unbroken phase of the superconductor.

The gravity theory at the near-horizon limit of the black hole solution corresponds to the
IR of the field theory, and the z — 0 or » — oo limit of the black hole solution corresponds
to the UV of the field theory. The space-time at the z — 0 or r — oo limit is AdSy, and the
gravity theory at this limit is dual to the UV of the field theory.

The goal is to obtain the behavior of the system as the temperature is decreased from
above the critical temperature, where the superconductor is in an unbroken phase, to below
it, where the superconductor is in a broken phase. One is especially interested in what

happens at the z — oo or r — 0 limit. The gravity theory at this limit corresponds to the
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IR of the field theory, which is difficult to study using standard condensed matter techniques.

The system is set up in such a way that for all temperatures the spacetime at the z — 0
or r — oo limit, which corresponds to the UV of the field theory, is AdS;. The system is set
up in this manner so that the AdS/CFT correspondence can be used.
Holographic superconductors from M-theory

In [§] the authors showed that many M-theory vacua corresponding to Freund-Rubin
compactifications on seven-dimensional Sasaki-Einstein manifolds provide holographic grav-
ity duals of d = 3 CFTs that exhibit superconductivity. Holographic superconductor solu-
tions are given in [8] for the linearized equations of motion of d = 11 supergravity. Much
information can be obtained from solutions to the linearized supergravity equations of mo-
tion, e.g., critical temperatures [§], but it is of course desireable to construct solutions for
the full nonlinear equations of motion.

In order to construct a holographic superconductor solution, one needs at least a metric,
a U(1) gauge field, and a charged scalar that can condense and break the U(1) symmetry.
However, finding holographic superconductor solutions for the full supergravity equations
of motion, involving at least these three fields, is in general a difficult task. Finding such
solutions is in general difficult because of the many types of couplings that can occur between
the few ‘desired’ fields and various other ‘undesireable’ fields that exist in the theory.

A way to avoid this difficulty is by working within a consistent truncation of the full
theory. Working within a consistent truncation of the full theory guarantees that the many
fields in the theory that are ‘undesireable’ can be consistently set to 0, without being sourced

in the course of the evolution of the system.
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Nonlinear D = 11 superfluid black brane solutions of [10] and [11]

Indeed, using the universal Sasaki-Einstein consistent truncation found in [31], the au-
thors of [10] and [1I] were able to construct nonlinear black brane solutions of d = 11 su-
pergravity whose corresponding four-dimensional gravity theories are holographic supercon-
ductors. These black-brane solutions are particularly elegant because they apply universally
for all Sasaki-Finstein manifolds.

A notable feature of the holographic superconductor solutions found in [10] and [I1] is
that the T" — 0 limit of these solutions are charged domain wall solutions that interpolate
between the skew-whiffed Freund-Rubin vacuum in the UV and the Pope-Warner vacuum
in the IR. Since the Pope-Warner solution is a compactification to AdSy, it follows that
this T' = 0 domain wall solution corresponds to a d = 3 CF'T that has emergent conformal
symmetry in the far IR. However, in the case that the Pope-Warner vacuum is unstable
for a particular Sasaki-Einstein manifold, the viability of the corresponding superconductor
solution is put into question.

In such a case, it is reasonable to conclude that the Pope-Warner vacuum can not be
used as a viable ground state for a CFT at T'= 0. Indeed, one would expect that a quantum
fluctuation of an unstable mode would grow exponentially and cause the system to flow to
a stable vacuum. However, it is not clear what to conclude for the superconductor solutions
at T' > 0, whose T" — 0 limits are the Pope-Warner vacuum. Perhaps it is possible that
thermal fluctuations could serve to stabilize the vacuum.

Instability of the Pope-Warner solution and its implications for holographic su-

perconductors
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At the time [I1] was written it was unknown whether the Pope-Warner solution on any
Sasak-Einstein manifold is unstable. It was later found in [32] that the Pope-Warner solution
on S7 is unstable, and more recently in [33] it was shown that, in fact, the Pope-Warner
solution on any of the homogeneous Sasaki-Einstein spaces is unstable.

A consequence of the results of [32] and [33] on the program of constructing non-linear
superfluid black brane solutions is clear: the Pope-Warner solution likely cannot be used
as a viable T' = 0 ground state if the compactifying manifold is taken to be a homogenous
Sasaki-Einstein manifold or an orbifold of one that is discussed in [33].

In conjuction, the results of [32] and [33] indicate that in constructing superfluid black
brane solutions, especially for T — 0, one should also utilize consistent truncations other than
the universal Sasaki-Einstein truncation, and perhaps focus on particular compactification
manifolds or restricted classes of them.

Nonlinear D = 11 superfluid black brane solutions of [13]

Interestingly, in [13] it was pointed out that the critical temperatures that were obtained
in [10] and [I1] from using the universal Sasaki-Einstein truncation are not as high as those
discussed in [§], and that, therefore, the superconductor solutions of [10] and [I1I] are not
thermodynamically relevant. Motivated, at least in part, by this fact, and perhaps also by
the instability results of [32], the authors of [13] used several different consistent truncations
specific to S” to construct a variety of superfluid black brane solutions.

Among these solutions are ones that in the 7" = 0 limit are domain wall solutions that
interpolate between the SO(8) AdS, fixed point in the UV and the SU(3) x U(1) AdS, fixed

point in the IR. Unlike the SU(4)~ fixed point that uplifts to the Pope-Warner solution on
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ST, the SU(3) x U(1) fixed point in the IR is stable because it is supersymmetric.

1.2 Prior relevant results

Having discussed why the stability of the PW solution became a topic of interest, we now
want to discuss prior results that were relevant in carrying out the research presented in this
dissertation.

The first major result on the stability of the PW solution was given in [32]. In this paper,
the authors showed that the PW solution on S7 was in fact unstable. The authors showed
that in the S7 case the minimal sector of the SE truncation of [I1], 31] coincides with the
SU(4)™ sector of N' = 8, d = 4 gauged supergravity. Then, expanding the N' = 8 potential
to quadratic order about the critical point corresponding to the PW point, the authors found
that there are unstable scalars that transform in 20" of SU(4)".

The authors were able to uplift these unstable modes to eleven-dimensional supergravity,
where the SU(4) symmetry becomes the isometry of CP?, which is the KE base of S7. They
give a metric perturbation and 3-form perturbations that yield the unstable scalars under
reduction to four dimension. It is the discussion of the D = 11 picture in [32] that most
pertains to the research presented in this dissertation. In particular, looking carefully at the
structure of the metric perturbation given in [32] helped guide us toward a way to generalize
the results of [32], as will be discussed in chapter 3.

Given the results of [32], it was natural to ask what happens for PW solutions in the
case of SE manifolds other than S”. It is in fact this question that is the main topic of the

research presented here. A possible way to generalize the results of [32] was hinted at by the
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contents of the paper [42], on the instability of the Englert solution.

The Englert solution on the round S7 was first shown to be unstable in [41]. The results of
[41] were then generalized to Englert solutions on internal manifolds with two or more Killing
spinors in [42]. The key idea of [42] was to construct metric and 3-form perturbations about
the Englert background using two or more Killing spinors, and to see what the masses of
the resulting scalars were after dimensionally reducing to AdS,. Carrying out this procedure
yielded scalar masses that violate the BF bound. Since the construction of [42] only utilizes
two or more Killing spinors, its results apply universally to all SE manifolds.

In the case of the PW solution, we carried out an analogous construction using three
or more Killing spinors, and we likewise found that the construction yielded scalars whose
masses violate the BF bound. In this way we were able to generalize the results of [32]
to all tri-Sasaki manifolds, which are SE manifolds with three or more Killing spinors (see
Appendix B). This calculation is presented in chapter 2. It should be mentioned that this
calculation was carried out before the release of [34], which contained the same results.

In [34] the authors carried out a universal consistent truncation of eleven-dimensional
supergravity on tri-Sasakian manifolds. After presenting a solution to eleven-dimensional
supergravity based on seven-dimensional tri-Sasakian structure, the authors dimensionally
reduced the theory to four dimensions. The process of dimensional reduction yields a poten-
tial for the four-dimensional theory that has the PW solution as a critical point. Expanding
the potential about the PW critical point to quadratic order, the authors found that a scalar
contained in the truncation has a mass-value that violates the BF bound. As mentioned, we

were able to obtain the same unstable scalar using a construction analogous to that in [42].
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Having established that the PW solution on tri-Sasaki manifolds is unstable, one would
like to know what the situation is for non-tri-Sasaki SE manifolds, i.e., for SE manifolds with
exactly N’ = 2 supersymmetry. A possible way to proceed is by looking at consistent trun-
cations on SE manifolds, and expanding the corresponding potentials about the PW point
to see whether there exist any unstable modes. Indeed, additional consistent truncations on
N =2 SE manifolds that generalize the consistent truncation of [T, 1] were carried out in
[35]. These truncations, however, do not yield unstable modes at the PW point.

Another possible way to proceed for the N = 2 case was provided by the key observations
we made that the metric perturbation that led to instability in the S” case had components
only along the KE base, and furthermore, that it could be expressed in terms of a transverse,
primitive (1,1)-form and a certain canonical SE object. These observations led us to focus
our attention on transverse, primitive (1,1)-forms that are eigenfunctions of the Hodge-de
Rham Laplacian. In particular, we used such objects together with canonical SE objects to
construct metric and 3-form perturbations on SE manifolds. See chapter 4 for the details of
our construction.

An analogous construction is found in [58]. In this paper the authors examined the sta-
bility of AdSs solutions of eleven-dimensional supergravity compactified on six-dimensional
Kéhler-Einstein (KE) spaces. The main result of the paper is that the solution suffers a
bosonic instability if and only if there exists a transverse, primitive (1,1)-form that is an
eigenfunction of the Hodge-deRham Laplacian with eigenvalue within a certain given range
of values. In particular, such a (1,1)-form can be used to construct metric and 4-form

perturbations that reduce to unstable AdSs scalars.
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Even though [58] deals with compactification on six-dimensional KE spaces, it contains
results that are applicable to the case of interest to us because regular SE manifolds can be
seen as U(1)-bundles over KE bases, see e.g. Appendix B. In particular, [58] contains explicit
(1,1)-forms that also exist on SE manifolds that we look at, and that are eigenfunctions of
the Hodge-de Rham Laplacian with eigenvalues that lead to instability. See subsection (1.3

and chapter 5 for details.

1.3 Summary of main results

In this research we identify a potential source of perturbative instability of the PW solution
on an arbitrary (regular) SE manifold. We show that starting with a basic, primitive,
transverse (1,1)-form w on M7, which is an eigenform of the Hodge-de Rham Laplacian, A,,
with the eigenvalue A\, > 0, one can construct explicitly one metric and two flux harmonics,
which after diagonalization of the linearized equations of motion give rise to three modes in

the scalar spectrum with the following masses:

(i) supersymmetric FR
279 Aw A A
e T2 VR N VO VR I PR (B
(ii) skew-whiffed FR
272 Ay Aw Aw
m°L* : — =2, Z+2\/>\w+1+2, Z—zx/Aw+1+2, (1.9)
(ili) PW
- 3 3 3
m°L” : - A, g)‘w+3‘/)‘w+1+3’ g)\w—3\//\w+1+3. (1.10)
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M, Ao m2L? # of modes KK spectra

ST 24 -3 20 [43, 44]
NU1 24 -3 1 [45], 46, 47]
M32 16 9 — 317 8 [48, 49, 50]
QLL! 16 9 —3V17 9 [51]
V52 32/3 7 —+/105 5 [52]

Table 1: Unstable modes for the PW solution on homogeneous SE manifolds.

For the first two solutions, all modes in ([1.8]) and ([1.9) are stable with the lowest possible
masses saturating the BF-bound (|1.5) when A, = 3 and A\, = 15, respectively. However, for

the PW solution, the last mode in ([{1.10) becomes unstable when A, lies in the range
2(9 — 4V/3) < A, < 2(9 4 4V/3). (1.11)

In principle, all that remains then is to determine which SE manifolds admit such stability
violating (1, 1)-forms. Unfortunately, this appears to be a difficult problem since no general
bounds on the low lying eigenvalues of Ay on an arbitrary SE manifold are known.

In the absence of general results, we look at the homogeneous SE manifolds for
which the spectra of the Hodge-de Rham Laplacians, Ay, and of the Lichnerowicz operator,
Ay, have been calculated in the references listed in Table [I] either as part of the Kaluza-

Klein program in the 198OS,E| or, more recently, to test the AdS/CFT correspondence for

2For a review, see, e.g., [44] and [49)].
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Ms-branes at conical singularities [53), b4l [55]. Specifically, the eigenvalues of the Hodge-de
Rham Laplacian, As, can be read-off from the masses of Z-vector fields that arise from the
Kaluza-Klein reduction of the three-form potential along two-form harmonics.

By examining the mass spectra of Z-vector fields, we conclude that on each homogeneous
SE manifold there are two-forms with the eigenvalues of Ay within the instability range
. One must then determine whether any of those forms are basic, transverse and
primitive. We found that, given the KK data for the two-form harmonics, which include
the representation and the R-charge, it is actually the easiest to construct those forms
explicitly and then verify that they indeed satisfy all the required properties. Our results
are summarized in Table [T, which shows that there are unstable modes for the PW solution
on all homogeneous SE manifolds.

The three harmonics for the scalar fields in (L.8)-(L.10) are related to the master (1,1)-
form by operations (contractions and exterior products) that involve canonical objects of the
SE geometry: the metric and the forms, which can be expressed in terms of Killing spinors on
the SE manifold. From a general analysis of harmonics on coset spaces with Killing spinors
[56], it is reasonable to expect that, at the supersymmetric solution, the three scalar fields
and the Z-vector field should lie in the same N = 2 supermultiplet. Indeed, the pattern
of masses in (|1.8) and the presence of the Z-vector field with the correct mass, and their
R-charges, suggest that it is a long Z-vector supermuliplet [57]. Ultimately, this observation
explains why we can diagonalize the mass operator for fluctuations around the PW solution
on such a small set of modes — the mixing due to the background flux involves only harmonics

within a single supermultiplet. It also suggests where to look for an instability of the PW
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solution on a general SE manifold.

A regular SE manifold, M7, is a U(1) fibration over its KE base, Bg, so any (1,1)-
form, w, as above is a pull-back of a transverse, primitive (1,1)-form on Bg with the same
eigenvalue of the corresponding Hodge-de Rham Laplacian, A 1y. This shows that the
potential instability of the PW solution that we have identified resides in the spectrum of
A(1,1) on KE manifolds. It also provides a link to a different class of solutions whose stability
has been analyzed recently. As discussed in the previous section, precisely the same type
(1,1)-forms, albeit with a different “window of instability,” were shown in [58] to destabilize
the AdSs x Bg solutions [59, [60] of eleven-dimensional supergravity.

Two results in [58] are directly applicable to our analysis. The first one is an explicit
construction of a (1,1)-form w, with A\, = 16, on S% x S? x S%, which is the KE base for
Q". The second one is more general and concerns the spectrum of A 1) on a product of
two Kahler manifolds, Bs = By X By. It is shown that if By admits a continous symmetry,
then there exists a transverse, primitive (1,1)-form w on Bg with the eigenvalue A, = 16.
In particular, the unstable modes on M2, which is a U(1) fibration over S? x CP?, arise in
this way. Another KE manifold that is covered by this construction is S? x dPs, where dP;
is the del Pezzo surface. This gives us an example of an inhomogeneous SE manifold with
an unstable PW solution.

The rest of the dissertation is organized as follows. In chapter 2 we present the calculation
analogous to what was done in [42] showing that the PW solution on tri-Sasakian manifolds
is unstable. In chapter 3, we review the FR and PW solutions together with some pertinent

SE geometry. Even though the PW solution is given in chapter 2, we present it again in

21



chapter 3, because the conventions in chapter 2 are different than they are in the rest of
this dissertation. We then in chapter 4 present the details of our calculation leading to the
mass formulae —. In chapter 5 we construct explicitly the unstable modes for all
homogeneous examples. We conclude with some comments in chapter 6. Our conventions

and some useful identities are summarized in appendices.

2 Page-Pope-like construction

2.1 Introduction

In [42] Killing spinors on S7 were used to construct linearized modes about the Englert
solution of the bosonic field equations of d = 11 supergravity. In the Englert solution, the
4-form flux has two parts. One part is taken to be the volume form of AdS,, and the other
part is an internal flux that has components only along the compact S” directions. The
internal 4-form flux is constructed as a spinor bilinear with four legs, using one of the eight
Killing spinors on the round S7. This single spinor is invariant under an SO(7) subgroup of
SO(8), the symmetry group of the round S7, while the other seven spinors transform as the
7 of this SO(7). Since the internal 4-form is constructed from an SO(7)-invariant spinor, it
itself is an SO(7)-invariant form. Therefore, since the round S7 is also SO(7)-invariant, the
Englert solution is SO(7)-invariant.

The S7 in the Englert solution is the round S7, which has SO(8) symmetry. Therefore,
all the spinors on the S7 are Killing spinors, satisfying V,n = al'yn, where « is a constant.

Perturbations of the metric and 4-form are constructed from the 8 Killing spinors and d = 7
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gamma matrices. Since Killing spinors are used, the d = 11 linearized field equations reduce
to a much simpler set of differential equations on AdS,, from which the masses of AdSy
scalars can be easily obtained.

Here, we carry out an analogous procedure on the Pope-Warner solution on the stretched
ST [20]. The Pope-Warner solution has SU(4) (SO(6)) invariance. Like the Englert solution
it has an internal 4-form flux, however in the Pope-Warner case it is constructed from two,
rather than one Killing spinor. These two spinors are singlets of the SU(4) invariance group,
while the other six spinors transform as the 6 of this SU(4). Analogously to the Englert
case, perturbations to the metric and 4-form flux are constructed from the eight spinors and
d = 7 gamma matrices, and the d = 11 linearized field equations are reduced to a simple set
of differential equations on AdSy, from which masses of AdS, scalars are easily obtained.

However, the procedure in the Pope-Warner case is complicated by the fact that spinors
on the stretched S7 do not satisfy the equation V,n = al',n. We are able to deal with
this complication by rearranging the spinor covariant derivative in a convenient way. This
rearrangement of the spinor covariant derivative is carried out in section [2.2]

In section the d = 11 bosonic field equations and their linearization are given. In
section we discuss spinors and spinor bilinears. In section 2.5 we obtain the Pope-Warner
background solution. In section|2.6|we present the perturbation ansatz. In section|2.7|we plug
the Pope-Warner solution and our perturbation ansatz into the linearized field equations and
obtain simple differential equations in AdS, for scalar fields. In section [2.8we diagonalize the
AdS, equations to obtain the masses of the scalar fields. Finally, in section [2.9] we compare

our results to known results.
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It is important to mention that the conventions used in this chapter are different from
those used in the rest of this work. The Dirac matrices are taken to be real and antisym-
metric, satisfying

{Ta, Ty} = —20a.

Also, in the metric for the d = 11 compactified solution, the size of the KE base is held fixed
in going from the FR to the PW points. In the rest of this work, the size of the KE base

varies, whereas the AdS radius squared is taken to be L2

2.2 Spinor covariant derivative

The spinor covariant derivative is [44]

1
V) = (O — Zwmbcrbc)n. (2.1)

b are the spin connections.

The index ‘m’ is for the curved coordinates, and the w,,®
The spinor covariant derivative can be expressed in terms of the frame coordinates simply

by contracting with the inverse frame e™,. So

Van = (0a — iwabcl“bc)n, (2:2)

where
0, = €"u0n (2.3)
W = €M uwne. (2.4)

We are interested in S” as a U(1) fibration over the KE space CP?. In this case the metric
can be written as [44]
ds® = d5* + *(dr — A)?, (2.5)
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where d5? is the metric on CP?, and A is a 1-form potential on CP? that gives rise to the
complex structure J. In the case that ¢ = 1, the sphere is round. Otherwise the sphere is
said to be ‘stretched’.

For frames we take

e = ¢, i=1,...,6 (2.6)
e’ = c(dr — A) (2.7)
= ¢, (2.8)

where the & are frames on the CP3, and ¢7 is the frame for the fiber in the case that the
sphere is round. With this choice of frames, it is found that the spin connections are given

by
w9 =@ 4 cJeT (2.9)
W' = —cJ'el, (2.10)

where J;; = (dA);; is the complex structure on CP?.
Rearranging the spinor covariant derivative for the stretched sphere

In the case that the sphere is stretched, i.e. ¢ # 1, we would like to rearrange the
spinor covariant derivative in such a way that the contribution made to it from stretching is
manifest.

First, we express the inverse frames on the stretched sphere in terms of those of the round

sphere. To do so we write

e gem” = Ove™uen’ +cobe™ e, T (2.11)

= o (2.12)
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From the above equation, it must be that

e = ™ (2.13)
m ]'vm
e = —&%, (2.14)

where €™ are the inverse frames on the round sphere.
Next, we express the partial derivatives on the stretched sphere in terms of those on the

round sphere. To do so we write

0o = €"0n (2.15)
= 0e™iOp 4 6™ 0m (2.16)

1 ym 1 Tym
= 0,6 Zﬁm%—zéae 20m. (2.17)

From the above equation we see that

v

o = 0 (2.18)
1o
O, = =0, (2.19)
c
where J, is the partial derivative for the round sphere, i.e. for ¢ = 1.

Now, we express the spin connections on the stretched sphere in terms of those on the

round sphere. The spin connections are

w? = @9 et (2.20)

W't = —cJ'el. (2.21)
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From these we see that

W = (Dkij
wpl = —cdly,
w = eJY.
So along the CP? we have
1 1 1
Zwkb Pbc = Zwkjrz] + 2wk JP7]
1 1
= Z—l@k JFZ'j 2CJJ]€F7J
1_ 1 1 :
= z_la}kj ij 2J kF7] 2(1 - c)JJij
1. e 1 y
= Z—lwk Fbc + 2(1 — C)J kF7j7
giving
1 4 1. e 1 ,
Zwkb Fbc = Zwkb Fbc + 5(1 — C)J]kr7j.
Along the fiber we have
1 R
ZCU7b Fbc = ZCJ]FU
1. 1 i
1. e 1 B
= Z_lw7b Fbc + Z(C - 1)J]Fij7
giving
1 1. 1 i
Zw7bCFbc = Zw7b‘Tbc —f- Z(C — l)JJFZ-j,
where O are the spin connections on the round sphere.

The rearranged spinor covariant derivative
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(2.23)

(2.24)

(2.25)
(2.26)
(2.27)

(2.28)

(2.29)

(2.30)
(2.31)

(2.32)

(2.33)



Finally, putting together equations (2), (18), and (29) we have along the CP?

giving

where V, is the spinor covariant derivative for the round sphere.

1
O — ~wi"The

Vi = 1

% .

== Vk + i(C — 1)ijr7j,

o 1 .
Vk = Vk; + §(C - 1)ijr7j7

equations (2), (19), and (33) we have along the fiber

V7

giving

In summary we have

where

1
07 — —wr"Tye

(2.34)

(2.35)

(2.36)

And putting together

2.37
1 (2.37)
lg 1, 1
0 = 1”76 Ly — Z(c — 1)JYTy; (2.38)
1o 1 1o i 1 .
Vgl e e DTy (2.39)
1. 1/2-1 g
- - = J9T;, 2.40
e () iy (2.40)
v. o to. L (E21Y jup, (2.41)
Ty c Y '
Vo =MV + E,, (2.42)
A= 1 (2.43)
1
Aro= = 2.44
7 C7 ( )
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E;, = BJTy (2.45)

E; = pJiTy, (2.46)
and

B = %@—1) (2.47)

u o= —i(ggl). (2.48)

So if 7 is a Killing spinor on the S7, then

v

Van = al'an, (2.49)

where o = % for unit radius.

2.3 The D =11 field equations and their linearization

The bosonic sector of d = 11 supergravity consists of a metric gap and a 3-form potential
Aapc. The exterior derivative of the 3-form potential gives a 4-form flux Fapcp. Classically
these fields must satisfy the d = 11 supergravity bosonic field equations. These field equations
consist of an Einstein equation, a Maxwell equation, and the Bianchi identity for Fagcp.

The Einstein equation is

1 1
Rap = 3 woppFyPE — %QABFCDEFFCDEFa (2.50)
the Maxwell equation is
1
v  FABCD _ - (PBODEFGHIIKLp o (2.51)

29



and the Bianchi identity is

Vial'scpr = 0. (2.52)

We would like to perturb the fields g4p and Fagep, in such a way that the perturbed
fields still satisfy the equations of motion. Let hap and firnpg be the perturbations to the

metric and flux, respectively. The perturbed fields are then

8ap = Yap+hag (2.53)

Fapcp = Fapep + funpg- (2.54)

We would like to put these perturbed fields into the equations of motion and determine
the equations the perturbations hap and fapcp must satisfy to first order in order for g,z
and Fapcp to be solutions. The equations hap and fapcp must satisfy to first order are
the ‘linearized field equations’.

The d=11 linearized field equations
The linearized bosonic field equations of d = 11 supergravity are derived in Appendix F.

The linearized Einstein equation is

14 VI le o 1
§AhAB +VuVhpie — 5vAvBhCC = —F,NPEM ohye — %hABFCDEFFCDEF
1 2
+§9ABhCMFCDEFF]\/l[)EF t3 " feyane
1
_TSQABFMNPQfMNPQa (2.55)
the linearized Maxwell equation is
~ > ]_ ~ 1
VAfABCD + 4VA(FM[ABChD]M) . §FBCDRthAA — _ﬁEBCDEFGHIJKLFEFGHfIJKL

. 1152T7a(gflh)EBCDEFGHIJKLFEFGHFIJKL’ (256)
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and the linearized Bianchi identity is

Viafsepr = 0. (2.57)

We want to plug the Pope-Warner background solution obtained in section [2.5 and the
perturbation ansatz given in section [2.6| into the linearized field equations and obtain field

equations for scalars in AdS;.

2.4 Spinor bilinears

The round S7, i.e. that with ¢ = 1 in the metric (5), has symmetry group SO(8). When the
sphere is stretched, so that ¢ # 1, the symmetry group SO(8) is broken to the symmetry
group of the CP?, which is SU(4). The group SO(8) has two 8-dimensional spinor irreps.
Under the subgroup SU(4) that is the symmetry group of the CP? one of these spinor irreps
breaks as [80]

8 +6+1+1. (2.58)

Let the singlet spinors be denoted by ( and v, and the spinors that transform in the 6 be
denoted by 1, i = 1,...,6. Since ¢ and 1 are invariant under SU(4), spinor bilinear forms
constructed from these spinors are invariant under SU(4).

Due to the antisymmetry of the gamma matrices in 7 dimensions, there is only one spinor
bilinear 1-form and only one spinor bilinear 2-form that can be constructed from ¢ and v,
namely (I, and (Tg10, respectively. In fact the former is —e”, where €7 is the seventh
frame in section (I), and the latter is —.J, where J is the complex structure.

The 3-forms (g and ¥l are used in the construction of the Pope-Warner back-
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ground solution in the next section. Their exterior derivatives ~ (TgpeaC and ~ YT gpeqt)
along with the volume form of AdS; make up the background 4-form flux.
Spinor bilinear forms can also be constructed from the spinors 1’ that transform in the

6. These forms are clearly not SU(4)-invariant. It is convenient to define
K = N"Tabea?, 1,5 =1,...,6. (2.59)

By antisymmetry of the gamma matrices, the K% are symmetric under interchange of 7 and

It is also convenient to define the 4-forms

gbcd = 5Fabcd<u+1/_}1—‘abcd¢ (260)

K;{abcd = 45F[a¢KZid]7- (2.61)

The latter is simply KZJI;Cd with all component set equal to 0, except for those components
that have a direction along the fiber, i.e. along the ‘7’ direction.

The covariant derivatives of the various spinor bilinears are needed. They are obtained

using the Leibnitz rule with the spinor covariant derivative.

2.5 Pope-Warner background solution

The Pope-Warner solution is a compactification solution of the d = 11 supergravity bosonic
field equations with SU(4)-invariance [20]. The metric part of it is a product of the AdS,

metric and of the stretched S7 metric:

ds® = Ids*(AdS,) + ds*(S7), (2.62)
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where ds?(AdSy) is the metric for unit radius AdS,; and ds*(S7) is the metric (5) with the
size of the CP? set so that R(CP?);; = 83

The background 4-form fluxes are taken to be

Fope = —2me€upo (2.63)

Faped = s (EFadeC - &Fabcdw) ) (264)

where Greek indices are used to label coordinates of AdS, and Latin indices are used to label
coordinates of S7. All other components of the 4-form flux are 0, i.e. there is no mixing of
the AdS, and S” components.

The Einstein equation is

1 1
Rap = gFACDEFBCDE — %QABFCDEFFCDEF- (2.65)

The Riemann tensor for the stretched S7 is given in [3]. It is

Riji = Ol — Sudje + (1 — )Ty — Judje + 2Ji5n) (2.66)

Rrp; = I T = 26y (2.67)

Contracting the Riemann tensor gives the Ricci tensor, which can then be input into the

Einstein equation. It is

Rij = (8—2c%)0; (2.68)

Ry = 66 (2.69)
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Putting the above metric and fluxes into the Einstein equation gives the equations

3 8
7 = 5(2m? + 45?) (2.70)

4
8§ —2c% = 5(2m? + 45?) (2.71)

8
6% = g(m2 + 8s%), (2.72)

where [ is the AdS radius.
The Maxwell equation is
1

VaF“de = —ngdeefghFefgh. (273)

Putting the flux (32) into the Maxwell equation gives, using the spinor covariant derivative,

$B ((TheaC — YToeatt) = 2ms ((ToeaC — VT oeat)) (2.74)

where

B =a(\+3)+3(8+2u). (2.75)

So the Maxwell equation gives

B =2m. (2.76)

Solving the Einstein and Maxwell equations gives:

c = V2 (2.77)
1
m = 7 (2.78)
1
s = :I:ﬁ (2.79)
| = g. (2.80)
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2.6 Perturbation ansatz

We want to perturb the Pope-Warner background solution obtained in the previous section.

We use the following perturbation ansatz:

hay = 2G9 ()W

abe = XY (:U)Xg)c +&(x)Yape + wh (a:)Zij

abe
where
W = (L") = 9T T
Xohe = 3 (CTputt" Ty’ + Tt YTy
Yope = 3CTmtCTopt)
Zepe = 6 (CTpan" 0T CTy0) .
Taking the exterior derivative of a gives

fabcd = (da)ade
@)X e + €)Y Vet + 7 2) (A2
fabcd - vaabcd

= V" (x)Xij 4+ Vol (2)Yape + Vaw® (x)Zij

abc abe?

where

dX9 = —4(f—20)K7 +2[a(XA— 1)+ B — 2u] K¥ + 2(20 + B)67 K®

dY = 4(a+ B)K°
dzZ% = 2(a+ B)KY —2(3a+ B)KY — (a+ B)0VK®.
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We want to plug this perturbation ansatz, together with the Pope-Warner background
solution, into the linearized field equations given in section [2.3] To begin with, the linearized
field equations are unwieldy and contain many terms. However, due to the following facts,
which are straightforward to verify, they simplify considerably.

1. The metric fluctuation ansatz h,, is traceless, i.e. h*, = 0.

2. Fed f g = 0.

3. F, %y = 0.

4. (fFefQC — &Fefgw) Aefg = 0.

5. Vo f™° = 0. This is because the divergence operator is — x dx, and d? = 0.
6. V,h" = 0. hg is transverse.

7. FS PRy hme = 0.

8. chemedef he™ = 0. This follows from 7 by contracting the indices a and b.

2.7 AdS equations of motion

Using the perturbation ansatz and the facts given above, the linearized d = 11 field equations

reduce to
LAn F abe f ! (3845% — 96m?)h (2.92)
= mn — S n)abe — S A s — m mn .
9 3" (m Jnjabe ™ 34
and
1
Vuf*  V f 4 AV (FUR,) = et f g, (2.93)

These equations come from the Einstein and Maxwell field equations, respectively. The
linearized Bianchi identity is trivially satisfied by the fact that f = da in the perturbation
ansatz, so it yields no new information.
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We want to further simplify the linearized field equations so that all dependence on the

internal 7-dimensional coordinates disappers and we are left with equations that are only on

the AdS space.
Einstein equation

The Einstein equation is

A 2 abc 1
Ay, = 3 Fit™ fyabe — %(38432 — 96m?) hyn-

N | —

A is the Lichnerowitz operator and is defined as [44]

Ahpn = —=Ohumn = 2Rpngh? + 2R, Py,

where

Dhmn - I:|4hmn + D’?hmnv

and

O0; =V, V%

The various terms in Ahmn are found to be

Orhpn = —8[a?(202 + 5) 4 2a(B + 4 ) + 5% 4 8% hynn

Ropngh?® = (362 — 4)hun

Rophuyp = =2(c* = hpn,

giving

>>

hmn - _D4hmn + lhmna
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where

| = 8[a®(2)\% + 5) + 2a(B + 4A\p) + B* + 8p?] — 10¢* + 24. (2.102)

The other term in the Einstein equation is found to be
F(nfbcfn)abc = —48s [(a(A+3) — B —2u) X7 — 20w | W3 . (2.103)

Now the Einstein equation is

Oshimn = kghmn + 64s [((A+3) = 8 — 2u)x7 — 2aw” | W | (2.104)

giving
0,GY = kG + 325 [((A+3) — B — 2u)x"7 — 20wV ], (2.105)

where

1
kg =1+ 1—8(38452 — 96m?). (2.106)
So the linearized Einstein equation is

D4Gij = MHGU + Mlgxij + ]\414&}2‘]‘7 (2107)

where the coefficients M;; are constants that will be part of a 4 x4 matrix M called the ‘mass
matrix’. The rest of the elements of M will come from the linearized Maxwell equation.
Maxwell equation

The Maxwell equation is
1
YV, fimPe 4, P 4 4, (Femmrpd ) = —gmeabcd"f’q Fabed- (2.108)
Expanded, the first term on the left hand side of the Maxwell equation is

Vif upg = (Qax ) X, + (041) Yapg + (Baw?) 2,7 (2.109)

npqg npq npq’
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and the second term on the left hand side is

Vo " wpg = —d* fnpg (2.110)
= 9XD, 4 9Ype + 9720, (2.111)
where
g7 = —4[®(ANA+2) +13) = 2aB(\ +5) — da(A + D)p + (B + 2u)%] X7
+8a(a(X — 3) — 38 — 2u)w" (2.112)
g2 = —16 (a®(=A) + o + Taf + 20 + 267) Tr x — 64(a + B)*¢
+16 (—a? 4+ 2a8 + 5°) Trw (2.113)

gf = 8(a(N\=1)+ B —2u)(—a(X = 3) + 38 + 2)x"

—16 (—a®(A — 10) + (58 + 2u) + ) w”. (2.114)

In go, Try = Z?:l ' and Trw = 216:1 Wi,

One finds that in the third term on the left hand side of the Maxwell equation

AFyfnphq® = 4sGIKP . (2.115)
So,
AV™(Fupmmphg®) = 4G (— % d* KZ),pg (2.116)
= (KYXJ, + KaYopy + K5 Z02 ), (2.117)
(2.118)
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where

mij = —8s(a(A\—1)— B —2u)GY,
ke = 32saTrG,
kY = —16s(a(A—T7) = —2u)GY.
The term on the right hand side is
6abcdnquabcd — 4!(*f>npq
= A (h{ X7, + hoYopy + h5 Z17 ) |
where
hY = 2(a(A+3) — B —2u) XV — daw?
hy = 88Trx+8(a+p) —4(a+ f)Trw

hy = d(a\—1)+ 8 —2u) X7 — 4(3a + B)w".

(2.119)
(2.120)

(2.121)

(2.122)

(2.123)

(2.124)
(2.125)

(2.126)

Plugging the expansions of each of the terms into the linearized Maxwell equation yields

three equations for the scalar fields, one equation for each of X%, Y, and Z¥. They are

Ox7 = —g" — Kk GY — 4mh?
D§ = —0g2 — HQTFG — 4mh2
Ow”? = —g¥ — k3G — 4mhy.
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Expanding these equations further in terms of the ansatz scalars G¥, x¥, &, w¥ gives

DXU = leGU + Mggxij + Mggfij + M24wij (2130)
Df = M31T1" G + MgQTI X + M33§ + M34Trw (2131)
Ow = M41Gij + M42Xij + M43fij -+ M44wij. (2132)

The M;; in the above equations, combined with the A;; in the linearized Einstein equation

give the 4 x 4 mass matrix M.

2.8 Eigenmodes

Plugging our background and fluctuation ansatze into the linearized Einstein and Maxwell
equations yielded four equations for the four AdS scalars that were part of the fluctuation

ansatz. These four equations can be conveniently written as
G
X"
(1,0 — M) =0. (2.133)
3

w"
The matrix M is called the ‘mass matrix’.

If S is the matrix that diagonalizes M then we have

ij
1
éj
(1,0 -D) =0, (2.134)

¢3

]
4
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where

D =SMS !, (2.135)
and
ij G
';j Xij
=S . (2.136)
¢3 §
ij Wi

The matrix D is diagonal and its entries are the eigenvalues of M, which are the squared
masses of the scalar fields ¢/, ¢, ¢s, and ¢ .

Explicitly, the mass matrix is

24 32v/2 0 —16v2

0 24 — 1612 0 8v/2
M = . (2.137)

—8v/209  16(—1++/2)69 16 84

—244/2  16(=2+V2) 0 8(5+2V2)

By diagonalizing M one can find the ¢%, ¢35, and the squared masses.

The ¢% and ¢3 are found to be

g 1 | | i3

{o= R BVET + (4 VT + (B V2w (2.138)

g 1 .

- §GU + oy (2.139)
2 1

O3 = §TrX +&— §Trw (2.140)

g 1 | y

= (1 VRIGT - (1 VI 4 (2 VB, (2141)

The squared mass values are 72, 24, 16, and —8, respectively. Multiplying the squared mass
values by the AdS radius squared gives the dimensionless squared mass values. The AdS
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3

% in section 4, so the dimensionless squared mass values

radius squared was found to be [? =
are 27,9, 6, and —3.

The Breitenlohner-Freedman bound is [32] m?/? = —2, so the eigenmode ¢, which has
dimensionless squared mass value —3, is unstable.

Peeling off the different mass modes

Inverting the above equations gives

Gi = %(2—3\/5) 7+ oY+ (1+V2)¢yf (2.142)
N 1 1 1 -

X7 = ﬁ(3\/§—2) ’1]+§¢’2]—§(1+\/§) i (2.143)
£ = %(3—\/5)Tr¢1+¢3+é(2+\/§)Tf¢4 (2.144)
Wi = ¢ oY+ . (2.145)

These expressions can be plugged into the perturbation ansatz of section 5, and the different
mass modes can be ‘peeled off’.

The metric parts of the ‘peeled-off” mass modes are

ha,mn = 2Ca,1¢2j(x)wij

mn’

a=1,24 (2.146)

hgmn = 0, (2.147)

and the 3-form potential parts of the ‘peeled-off’ mass modes are

Gamnp = 05 (2) ATy 0 =1,2,4 (2.148)
agamnp = 03(2)Yinp, (2.149)

where
AY o = Cap X0+ 0307 Yoy + 2Caa Z (2.150)
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The ¢,; are the coefficients in equations (141)-(144), e.g.

i1 = 1+4V2 (2.151)
1
ap = —5(1+ V2) (2.152)
1
Ci3 = §(2 +2) (2.153)
Ci4 = 1. (2154)
Degeneracies of the masses
The spinors n*, i = 1,...,6, are used to construct the tensors W%, X% and Z¥ that are

defined in section 5. W% is symmetric in ¢ and j, so there are at most 21 of them that are
linearly independent. In fact, Tt W = 322 Wi = 0, so there are actually at most 20 linearly
independent W*%. Likewise, the A% are symmetric in 7 and j, and Tr A, = 0, so there are
at most 20 linearly independent A7, AY, and AY.

The 7' realize the 6 of SU(4), so W% and A% each realize the symmetric product 6 x 6.

This symmetric product breaks as [80]:
6x,6 20 +1, (2.155)

where 1 is the trace part of 6 x, 6 and 20’ is the symmetric traceless part. Since TrW =
Tr A, = 0, it follows that W% and AY each realize the 20'. So there are exactly 20 linearly
independent W% and A%.

Therefore, the squared mass values 27, 9, and —3 each have degeneracy 20, and the

squared mass value 6 has degeneracy 1.

44



2.9 Comparison to known results

The instability of the Pope-Warner solution on S was first demonstrated in [32]. There it
was found that there are unstable modes with dimensionless squared mass —3 that realize
the 20" of SU(4). These modes are recovered here.

The result of [32] was extended to tri-Sasakian manifolds in [34]. There a consistent
truncation of d = 11 supergravity was carried out on a 7-dimensional tri-Sasakian manifold
to give a d = 4 supergravity theory. In carrying out the truncation, a scalar potential for
the d = 4 theory was extracted. This potential has the Pope-Warner solution as a fixed
point. By computing the second derivatives of this potential at the Pope-Warner fixed
point, the squared masses of the scalars at the Pope-Warner fixed point can be found. These
masses are not given in [34], but we found them to be (27,182 92, 6,2.252, —3,07), where the
superscripts denote the degeneracies. Therefore, the mass values found here are a subset of
those found in [34].

In the special case where i and j are set equal to a fixed value, the perturbation ansatz
given in section 5 is contained in the consistent truncation ansatz of [34]. To go between
the ansatz of [34] and the one here it suffices to express the canonical 1-forms and 2-forms
of the tri-Sasakian structure used in [34] in terms of the spinors used here. In terms of the

spinors used here, the 1-forms of [34] are

9. = (Tyn (2.156)
9?2 = YTan (2.157)
P = (T, (2.158)
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and the 2-forms of [34] are

Jap = —CTapn — 20T ¢l (2.159)
Jzy = —Ulan —2(T by (2.160)
I3 = (Tath + 2CT Ty, (2.161)

where 7 is an arbitrary linear combination of the 1’ with real coefficients and unit norm.
In [34] a single unstable mode with squared mass —3 was found. There it was supposed
that on S7 this single mode was one of the 20 unstable modes found in [32]. Here we have

explicitly shown that this is indeed the case.

3 The solutions

In this chapter we obtain the FR, skew-whiffed FR, and PW solutions of eleven-dimensional
supergravity. Even though we obtained the PW solution in chapter two, we obtain it again
here because the conventions used in chapter 2 are different from those used in the rest of
this dissertation.

The FR and PW solutions of eleven-dimensional supergravity on a SE manifold, M, can

be derived from the following general Ansatz,
ds?, = d3,24454(L) + a?ds?, (3.1)
Fay = fovolaas,w) + [fi Pay - (3.2)

A regular SE manifold, Mz, is the total space of a U(1) fibration over a Kéhler-Einstein (KE)
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base, Bg, and the internal metric in (3.1]) can be written locally as
ds? = ds%y + A (dy + A)?, (3.3)

were A is the Kahler potential on Bg, 1 is the angle along the fiber and c¢ is the squashing
parameter. The potential for the internal flux in (3.2)) is given by the real part of a canonical

complex three-form, €2, on M7, such that
CI)(4) = d(Q + Q) . (3.4)

The constants, a, ¢, fo and f; in (3.1)-(3.2)) are fixed by the equations of motion in terms of

the AdS, radius, L, which sets the overall scale of the solution:

e Supersymmetric and skew-whiffed FR solutions

fi=0, (3.5)
where kK = —1 and +1, respectively.

e PW solution

2 3 4 2
a:2\/;L, c=2, foz;/—L_, fi:§\/;L3. (3.6)

In (3.1), we have factored out the overall scale, a?, of the internal metric so the KE
metric, gp,, and the SE metric, gy, obtained by setting ¢ = 1 in (3.3)), are canonically

normalized with

RiCB6 = 8936 y RiCM7 = 6gM7 . (37)

In the following, we will refer to the SE metric on M7 as the “round” metric.
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The one form ¥ = di) + A, called the contact form, is globally defined on M7, and is dual
to the Reeb vector field, £ = d,, which is nowhere vanishing and has length one. The other
two globally defined forms of the SE geometry are the real two form, J, and a complex three

form, ©, with its complex conjugate, 2. They satisfy
dy =2J, dQ2=4i9NQ. (3.8)

Note that the ansatz (3.1])-(3.4) is in fact written in terms of globally defined objects of the
SE geometry.
It is convenient to choose special frames, €%, a = 1,...,7, on My, that are orthonormal

with respect to the round metric and such that

J== (PN +E2NEZHEPNED), Q=€ NETANES, W

N | .

where

et =¢el yie?, é2 =¢34 iét, 3 =e54i6é", (3.10)

is a local holomorphic frame on the KE base. This shows that J is the pull-back of the
Kahler form, while €2 is, up to a phase along the fiber, the pull-back of the holomorphic
(3,0)-form on Bg. We will denote the components of the round metric by gu = dq4 and of
the squashed metric by ga. Then the components of the eleven-dimensional metric
along the internal manifold are g., = a2 gas.

One can also express 9, J and §2 as bilinears in Killing spinors, n,

~ (&7 Z (67 <8 (0]
Danf® = 5Tan®™, 00" =0, a,f=1.2, (3.11)
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that are globally defined on M, and whose existence is equivalent to M; being a SE manifold.

In terms of n®’s we have (see, e.g., [61])
1
Vo = i0'Ton?, Jup = 7 Tapn? Qupe = —5(771 + i 7°) Dape(nt +in?) . (3.12)

Using this realization together with Fierz identities, it is straightforward to prove a number
of useful identities summarized in appendix [B]

To verify the solutions (3.5) and (3.6), we note that the covariant derivatives for the

squashed and round metric are related by
DoV = DoVi — 2( = 1)9(a ) Vo, (3.13)

where we have adopted a convention to raise and lower indices with the round metric, Gqp.

For the Ricci tensors, using identities in appendix [B| we have
Rap = Rap +2(1 — )y + 23 + & — 4)9,0;. (3.14)

These are also the components of the Ricci tensor, R,;, along the internal manifold. The

Ricci tensor for AdS, of radius, L, is

) 3
RZCAd54 = —ﬁgAd54 . (315)
so that the eleven-dimensional Ricci scalar is
12 6
R:—EJFE(S—CQ). (3.16)

The energy momentum tensor in (1.1]) has only diagonal contributions from the flux along

AdSy and M that are straightforward to evaluate. Then the Einstein equations (|1.1]) reduce
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to three algebraic equations:

_ 3(7¢* —16)
C4L2(c2 —4)’

2

= —(*—4)L? 2 = —

7 2 43— 1)L°,  (3.17)

for the size of the internal part of the metric and the parameters of the flux.
We now turn to the Maxwell equations (|1.2)). Let us denote by * the Hodge dual on M5

with respect to the round metric with the volume form
1 3. —
V01M7:6J/\J/\J/\19:§ZQ/\Q/\19, (3.18)

The volume form for the squashed metric is then cvoly,, while ca’volags, A voly, is the

volume form in eleven-dimensions.

It follows from (3.8)) and (3.18]) that

«dQ=4Q, *Q:idQ. (3.19)

Then for the flux, F4), in (3.2) and (3.4)), we have
Afi =
*f(4) = fo *VOlAd54 — E VOlAd54 AN (Q + Q) , (3.20)
so that
Afi
d*f(4) = —E VOlAdS4 VAN (13(4) . (3.21)

The second term in (|1.2)) yields
Fay N Fray = 2fofivolaas, N Py, (3.22)

which shows that the Maxwell equations reduce to a single equation

fi (f — 3) =0. (3.23)

ac
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Assuming that both a and ¢ are positive, one verifies that and exhaust all
solutions to and . Note that the only difference between the supersymmetric
and skew-whiffed FR solutions is the sign, k, of the flux along AdSs. Equivalently, one could
reverse the orientation of the internal manifold, which changes the sign of the Hodge dual

in ((1.2). Here, we will keep the orientation of M7 fixed as in (3.18)).

4 The linearized analysis

We will not attempt here a complete analysis of the Kaluza-Klein spectrum around the PW
solution, but instead will identify a small set of harmonics for the low lying scalar modes
on which the scalar mass operator in the linearized expansions around both the FR and
PW backgrounds can be diagonalized. In doing that, we will be guided both by the explicit
structure of the linearized equations of motion and by the properties of unstable modes on
ST that were identified in [32].

The scalar modes we want to consider correspond to fluctuations of the internal metric

and the internal three-form potential,

5gab = QO(ZE)hab ) 6~’4(3) = 90(‘7:) a(3) (41)

where () is a scalar field on AdSy, while hg, and ays) are, respectively, a symmetric tensor

and a three form harmonic on M.
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4.1 Linearized Einstein equations

We begin with the metric harmonic and the linearization of the Einstein equations ([1.1).
Following a crucial obervation in [32] for the unstable modes on S7, we will assume that
metric harmonic, hgp, corresponds to a deformation of the internal metric along the (2,0)
and (0,2) components on the KE base. Specifically, hy, is horizontal, that is ¥°h, = 0,
and its only nonvanishing components in the basis are h., and hzz. It is then
automaticaly traceless. Finally, we will assume that it is transverse with respect to the
round metric, lo)“hab = 0. It follows then from that it is also transverse with respect
to the internal metric with any value of the squashing parameter, c.

With those assumptions, the metric fluctuation is both transverse and traceless in
eleven dimensions, so that the expansion of the Ricci tensor in yields only one term
with the Lichnerowicz operator (see, e.g., [62]), and there are no terms from the Ricci scalar

to linear order. The eleven-dimensional Lichnerowicz operator becomes then a sum[]
1 c
Oaas, — ?AL’ (4.2)

where A¢ is the Lichnerowicz operator on M7 with respect to the squashed metric. Then on

the metric harmonics, h,,, as above,
1
Azhab = AL + 4(1 — 02) + <1 — —2>£§:| hab, (43)
c

where Ay is the Lichnerowicz operator for the round metric, and L, is the Lie derivative

along the Reeb vector.

3We use Oags, = gV, V, but Ap = —g®DyDy + ...
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Let’s denote the combination on the left hand side in (|1.1)) by Eyn. After collecting all

the terms in the expansion and using ([3.16]), we obtain

1
0 = —3 (DAdS4 — 1/2> o(z) hap (4.4)
where
1 84 24 1 1
2 2 2
v :?AL—F(?—ﬁ) —9(1—6—2)(1& —r2). (4.5)

Let us now turn to the expansion of the energy momentum tensor, 7j;x, on the right
hand side in ([1.1)). For the metric variation as above, the only terms that contribute to the
linear expansion of the energy momentum tensor come from the flux,

0T = % 97 9% 9" (dtacae Py g + d0tbedePagon) o () - (4.6)

Assuming that metric harmonic is an eigentensor of the Lichnerowicz operator in (4.5)), we
see that in order to diagonalize the linearized Einstein equations we must find a flux harmonic

such that the symmetric tensor in (4.6)) is proportional to hgy.

4.2 Linearized Maxwell equations

The expansion of the Maxwell equations is
d* 5.7(4) + 2 ]:(4) N 5]:(4) + d5(*)f(4) =0, (4.7)

where
(5.7(4) = dgo AN o)+ @ da(g) , (4.8)

and d(*) is the variation of the Hodge dual due to fluctuation of the metric. Define a four

form

(09 - F)awrg = 6™ Sgrne Frrnpg + - - + 899 6900 Funpgr - (4.9)
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Then for a traceless fluctuation of the metric,
6()Fwy = —* (09 - Fa) - (4.10)

Specializing to the background flux (3.2]) and the fluctuations (4.1)), the linearization (4.7)
splits into terms that are one, three, and four forms along AdSy, respectively. They yield

the following equations

d*x.a=0, aAN®y =0, (4.11)
and
2 1 i
(DAdSLﬁO) *e O[(3) + (2 % 04(3) — ; d *e dO[(g) + % d *e (h . @(4)) = 0, (412)

where x. denotes the dual with respect to the squashed metric and h - @4 is defined as in
(4.9) using the round metric. The various factors of the internal radius, a, in (4.12) are

consistent with the overall 1/L? dependence of the mass terms on the AdS, radius.

4.3 The master harmonic

Our task now is to identify the smallest set of harmonics on which we can diagonalize the
Maxwell equation (4.12). The first step will be to streamline the evaluation of the Hodge
duals.

Any k-form, =, on M7 can be uniquely decomposed into the sum,
Ek = Wk + 9N WE—1 (413)
where wy, and wj,—; are horizontal forms, that is, 2¢wi = tewp—1 = 0. Then

1
*cEk:C *wk—l—z*(ﬁ/\wk,l), (414)
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where * is the Hodge dual with respect to the round metric. We may simplify this further by
introducing another Hodge dual, e, in the space perpendicular to the fiber, or, equivalently

on the KE base, Bs. Then for a horizontal form, w, using voly,, = volg, A ¥, we haveﬁ
xw=UNew, x(WAY) =ew, (4.15)

and hence

1
*e Ek =cUd A oW + — (—1>k_1 ® Wi 1. (416)
C

To further restrict the Ansatz for the flux harmonic, let us look at the last term in (4.12)),
which is already constrained by the conditions we have imposed in section |4.1| on the metric

harmonic, hgp. Since hy, has nonvanishing components only along the KE base, we have
h-q>(4):4i?9/\h-(9—ﬁ), (4.17)

where all contractions between the metric harmonic and the background flux form are with
the round metric.

We can now evaluate the forms on ST using the metric harmonics given in [32].
It turns out that & - (2 — Q) is closed (!) and it is both horizontal and invariant along the
fiber. This means that it is a closed basic three-form with nonvanishing (2,1) and (1,2)
components. On S7, it is then a pull-back of the corresponding closed form on CP? and thus

is exact. Indeed, we find that

h-(Q—Q)=—64dw, (4.18)

where w is a basic, primitive, transverse (1,1)-form, and an eigenform of the Laplacian, with

“Note that on a k-form, *? = %2 = 1, while ¢2 = (—1)*.
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the eigenvalue 24. In the following we will show that a similar construction can be carried
out on a general SE manifold, Mj.

We start with a primitive, (1,1)-form, w on the KE which is a transverse eigenform of
the Hodge-de Rham Laplacian with the eigenvalue \,. Its pull-back to M; is then a basic
form, satisfying

1ew =0, Lew =0, (4.19)

which we also denote by w. We will now discuss the conditions on w and derive some

identities that are used later.

(i) The condition that w is a primitive (1, 1)-form means that
J®wa =0, T Ty wed = Wed (4.20)
where the first condition can be equivalently written as
JANow=0 or JNITANw=0. (4.21)
It follows from that on Bg and M7, respectivelyﬂ
JANw=—ew and *(JAw)= -V Aw. (4.22)

(ii) Transversality on the KE base

dew=0, (4.23)

5The operator e JA on a six-dimensional Kahler manifold maps two-forms into two-forms. It has eigen-
values —1, 1 and 2 with degeneracies 8, 6 and 1, respectively, corresponding to the primitive (1,1)-forms,

(2,0) + (0,2)-forms and (1, 1)-forms proportional to J.
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implies transversality on the SE manifold,
dxw =d(VNew)
— 2] New—DAdew (4.24)

=0,
where the last step follows from (4.22)) and (4.23]).

By taking the exterior derivative of , we get
JNdw =0, (4.25)
and a somewhat less obvious
JANedw=0. (4.26)

Since the last identity is on the KE base, upon taking a dual we obtain a 1-form with

components proportional to

2J°PV gy + TPV s (4.27)
On a Kahler manifold, J is covariantly constant and the first term can be written as
TV awsy = VO (Ja"ws,)
V() (1.25)

=0,

where we used that w is a transverse (1, 1)-form. The vanishing of the second term in (4.27))

is shown similarly.
(iii) Finally, w is an eigenfunction of the Hodge-de Rham Laplacian operator, A 1) on Bg,
which for a transverse form is simply,

Aqgnyw=ededw =\, w. (4.29)
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Then the Laplacian on M5, after using (4.15)) and (4.26) is

Aw=—xdxdw

—xd(Y N edw) (4.30)

= —%(2J Nedw — 1V Ndedw)
= Ay Ww.

Hence w is also an eigenfunction of the Laplacian on M; with the same eigenvalue, A,,.

4.4 The metric harmonic

We now take the following Ansatz for the metric harmonic in terms of a pure imaginary
(1,1)-form, w,

hap = (dw)aca(2° — ) + (a <> b) . (4.31)

This tensor is manifestly horizontal and has only (2,0) and (0,2) components as we have
required in section . It also satisfies , as one can verify using identities in section
and appendix [A] We will now show that hg, is a transverse eigentensor of the Lichnerowicz
operator on Mz,

Arhay, = Apha A= Aw +4, (4.32)

with the eigenvalue, A\, fixed by A,.

Before we present a somewhat lengthy proof, let us note that the same relation between
the eigenvalues of the Hodge-de Rham Laplacian and the Lichnerowicz operator has been
derived in [56] through a general analysis of the fermion/boson mass relations on manifolds

with Killing spinors, see Appendix G. In particular, it was shown that if a two-form and
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a symmetric tensor harmonics arise from the same spin-3/2 harmonic by a supersymmetry
transformation generated by Killing spinors, the resulting shift of the eigenvalues is precisely
the one given in (4.32). While we have not derived the intermediate spin-3/2 harmonic in
general, some explicit checks on ST (or, more generally on tri-Saskian manifolds), where
all the forms in (4.31]) can be realized in terms of Killing spinorsﬁ have convinced us that
our construction here and in the following sections yields a subset of harmonics in a single
N = 2 supermultiplet as in [56]. We will discuss it further in chapter 5, where we identify
this supermultiplet as the long Z-vector multiplet [57].

We also note that a similar construction for tensor harmonics on a five-dimensional SE
manifolds has been recently carried out in [63] and it follows a much earlier construction for

four-dimensional Kahler manifolds in [64].

4.4.1 Proof of transversality
There are four types of terms in the transversality Condition,ﬂ D%y, = 0. First, we have
DUdw)aed ™ = —Aowea@ =0, (4.33)
since w is a (1, 1)-form. Secondly,
(dw)aea D % = 4i (dw)*““I1oQpeq) = 0, (4.34)

since dw is horizontal, and hence dw®, = 0. Similarly, the full contraction between dw,

which is a sum of a (2,1) and a (1,2) form, and the (3,0) form, €2, must vanish. The third

6See, section [5.1

"Throughout this section, D, is the covariant derivative with respect to the round metric.
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type of terms are
D(dw)pea™ = Dg(dw)pea2* . (4.35)
Since Diy(dw)peq = 0, we have
3D, (dw)pea2*? = Dy(dw)qea2*”
= Dy [(dw)aeaQ?] — (dw) qca Dp 2"
(4.36)

= —4i (dw)* I pQgcqy

=0,

as dw is either contracted with ¢ or fully contracted with 2. Finally, the last type of terms
are

(dw)peaD Q2 =0, (4.37)

since Q is itself transverse, see, e.g., (C.12)). Transversality of the terms with Q is verified
similarly.
4.4.2 Proof of (4.32)
The Lichnerowicz operatorﬂ Ay, on k-forms coincides with the Hodge-de Rham Laplacian,

A=ds+dd, S= (=1 xdx . (4.38)
We have assumed that Aw = A\, w. Using we also find

AQ=161. (4.39)
For an arbitrary tensor, the Lichnerowicz operator is defined by

ALTal...ak = _DTal...ak + (RaalTaaQ...ak + .. ) - 2<Ram1bagjﬁabag...a;C + ... ) ) (44())

8For a list of properties of the Lichnerowicz operator, see, e.g., [62].
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where there are k-terms in the first bracket and 1k(k — 1) in the second. An important
property, which we are going to exploit in the following, is that A; commutes with the
contraction.

Consider the tensor
tacdbef = (dw)achbefa (441)

from which the (2, 0)-part of hg, is obtained by contracting over the pairs ce and df and then

symmetrizing over ab. It follows from the definition that
(ALt)acaber = (ALdw)acaSesr + (dw)aca(ALQ)per — 2D (dw)geaDyg ey + R-terms,  (4.42)
where the R-terms involve split contractions with both dw and €2,
R-terms = —2 [(dw)ngQhengahb + 8—terms} (4.43)

We will now show that all terms in (4.42) give contributions to Aphg, that are proportional
to hg and evaluate the proportionality constants.
From the first two terms we get (A, + 16)hq. Next, we consider the R-terms, which can

be traded for covariant derivatives acting on {2 using
[Da, Dy)Qcte = =Qgac R cap — - . (4.44)
This gives
R-terms = 2((dw)gcd[D9, D,] + (dw)aga[D?, D] 4 (dw)aeq[ DY, Dd])Qbef. (4.45)

The covariant derivatives acting on 2 can be evaluated using ((C.12)). This yields terms that

are products of the form

AWy sox I s s e x or Awy s x U505 Qe o (4.46)
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Performing the contractions as in the definition of hg;,, see , we are left with two free
indices with all other ones contracted. Because of the symmetrization, the free indices in the
terms of the first type in must be on two different tensors. In particular, this implies
that J is always contracted with either €2 or dw or both. All terms in which J is contracted
with €2 are simplified using and yield terms proportional to hy,. This leaves terms in
which J is contracted with dw. By inspection, in all those terms dw is doubly contracted
with 2, which means that the contraction with J is once more a multiplication by i. The
second type terms in all vanish except when the two 1’s are contracted. Collecting all
the terms we find that the total contribution from the R-terms to Aphg, is —10hg,.

Finally, we consider the third term in . Since dw is closed, we rewrite this term as
—2Dy(dw) acaDy - (a < b) = —2D4(dw) gea Dy —4Do(dw) aga DI+ (a <> b) . (4.47)

Let’s start with the first term in . Since
(dw) gea DI = 4i (dw)? a1y peq) = 0, (4.48)

we have

Do(dw) gea DI = —(dw) gea Do DI . (4.49)

Expanding the covariant derivatives using , we find that all terms involving ¢ vanish.
The remaining terms have dw contracted with J and twice contracted with 2, which reduces
the contraction with J to the multiplication by i. Then the net contribution from this term
to Aphgy is —6hgy.

This leaves us with the second term in (4.47]), which we once more rewrite using the Leib-
nitz rule. However, now the total derivative term does not vanish, but yields the derivative
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D¢ of the following terms,

(dw)angngCd = i(dw)agd(Q 0ngcd + ﬁbQng — ﬁCngd) .

(4.50)

The first term on the rhs vanishes as dw is horizontal. The second term can be rewritten as

i(dw) aga®p QI = i haely — i(dw) cga20M, .
Acting with D¢ and using
3 D Digwie) = D(dw)abe = —Aw Whe
and the transversality of hy,, we get
ihaed " — i(dw) egaDe2a9 0y — 1(dw)ega§2 9T = hap + 0 — (dw)pgaf2,7%
which gives —4h,;, contribution in Aphg,. The last term in is
— iD(9o(dw) aga$%??) = =i, D(dw)aga?® — i9.(dw) aga D" .

Using d*w = 0, the first term on the right hand side above can be simplified using
—iﬁCDC(dCU)agd = —i??cDa<dw)ng — iﬁCDg(dCU)acd — i??CDd(dw)agc
= iJaC<dw)cgd + iJgC<dw)acd + inC(dw)agc

= (dw)agd )

(4.51)

(4.52)

(4.53)

(4.54)

(4.55)

where the second line follows using the Leibnitz rule, horizontality of dw and (C.12). The

second in term (4.54)), using (C.12)), is
— 10:(dw) aga DI = (dw) aga %" .
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Hence the last term in ([4.50]) is —2(dw)qga€2%%¢, and by (4.47) it contributes —8hqu, to Aphap.

Finally, using the Leibnitz rule, we are left with
4(dw)agaDeD g Qpeq = 16 hgy, - (4.57)
Hence all terms in are indeed proportional to hg,, with the net result
AM=A+16—-10—-6—-4—-8+16= )\, +4. (4.58)

This concludes the proof of (4.32)).

4.5 The flux harmonics

We take as internal flux harmonic the linear combination
&(3):t119Aw+t2 *d(’&/\(ﬂ), (459)

where t; and ¢, are arbitrary pure imaginary parameters.ﬂ
The harmonics that arise in the expansion of the Maxwell equation (4.12)) are: da , *.«,
and d *. da. We will now show that for a given by (4.59)), each of those terms is a linear

combination of the following two linearly independent harmonics:

AL = (9 Aw) and Ay =d(WAw). (4.60)
Specifically, we find
do = /\w t2 A1 + (tl - 2t2) A2 s (461)
1 2
Xt = — (tl + 2t2 (C — 1)) A1 + CtQ A2 s (462)
C
Aw
d *e do = T(tl — 2t2) Al +c ()\wtg — 2(t1 — 2t2)) AQ . (463)

9In the following, we denote this harmonic simply by «a.
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The first identity follows from

dxd(¥ANw)=dx*(2J Aw) —d* (I A dw)
= —-2d(V Aw)+ dedw
(4.64)
=-2d(VANw)+ N\, ow

= —2d(VANw)+ A, *(0 Aw).

where we used (3.8]), (4.15)), (4.22) and (4.29)). The second one is an immediate consequence
of (4.14)), (3.8) and (4.22)). For the third one, we have

d*.doa =tar,d *. x(V Aw) + (t1 — 2t2) d %, d(¥ A\ w)

= cAtad(I Aw)+ (t — 2232)% [dxd(0 A w)+2(c —1)d(9 Aw)] (4.65)

_ )\—:(tl —2ty) #(9 Aw) — ¢ [2(t — 2ty) — Auta] d(9 Aw).

In evaluating the contribution from the metric fluctuation to the linearized Maxwell

equations we also need the indentity
h-®yy=—12870 N dw. (4.66)
To prove it, we note that by the second identity in ,
Dy =4I A (2 —Q). (4.67)
Since hgy, is horizontal,
h-®uy =—i(h- QANI+i(h-Q) A, (4.68)

where (h - Q)ape = 3haue®. Using the definition ([4.31)) and the identity (C.8)), we find that

only Q terms in Ay, contribute to the contraction h - Q. The three terms in that contraction
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are then evaluated using (C.9)) and (C.11)). The result is given in (4.18), but now we have

shown that it holds on any SE manifold. Including the conjugate terms yields (4.66]).

Finally,

d*. (VN dw) = A *(0 A\ w) = A A;. (4.69)
c

c

This proves that all terms in (4.12]) are linear combinations of the two basis harmonics (4.60)).
It also follows from (4.69)) that dA; = 0. Since dAs = 0 as well, we have d *. a = 0 as
required by (4.11)). The other equation in (4.11)) is satisfied automatically.

We must also evaluate the linearized energy momentum tensor (4.6)). To this end we note

that the two basis harmonics (4.60)), using (3.8]) and (4.22), can be written as
A1:—J/\w, A2:—2A1—19/\dw (470)

Hence do in (4.61]) is a linear combination of a horizontal (2,2)-form J A w and a mixed
form ¥ A dw. Given (4.67)), the contraction in (4.6) with J A w must vanish. Similarly, the
only nonvanishing terms in the contraction with the second form are those in which the free

indices are along the base and the two 19’s are contracted. This gives

1214 _
g‘jfgdt"geh(f/l A W) acde® fgn = ?(dw)ade(ﬁbde — dee) , (4.71)

where the indices on the right hand side are raised with the round metric. The full expansion

of (4.6]) is then

44
0T = 52 fi (t1 = 2t2) () hey (4.72)

and is indeed proportional to the metric harmonic.
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4.6 The masses

For a scalar field, ¢(x), satisfying ((1.4) with mass, m, and the metric and flux harmonics as

above, the linearized Einstein equations (4.4))-(4.6)) become diagonal,

— % m? — —(A +4) + % + d (402 — % - 21)} hap = 4z fl (t1 —2t) hay . (4.73)
To evaluate the left hand side, we have used and Lghab = —16h,,. The latter follows
from the observation that the R-charge of the metric harmonic is ¢ = 4 and is the same as
of the background flux. The contraction in the fluctuation of the energy momentum tensor
on the right hand side has been evaluated in (4.72]).

The linearized Maxwell equation (4.12)) can be simplified using (4.61))-(4.63). After pro-

jecting onto the basis harmonics, A; and As, it yields two equations

1<m2—2—>t1+[2(c—1)m + 2\ (ac f“)] = —128i ﬁ—‘”,

c a at ¢

T Y

For the FR solutions (3.5 there is no internal flux, f; = 0, and the Einstein and Maxwell

(4.74)

equations decouple. From the first one we get the same mass,
miL? =2 — 2 (4.75)

for both the supersymmetric and skew-whiffed solution. The other two masses in ([1.8]) and
(1.9) are then obtained by setting the determinant of the homogeneous system of equations
([4.74) for ¢, and t, to zero. This yields a quadratic equation for m?, whose solutions are

either

Aw Aw
m%LQZZ—i— Ao +1-1, m%LQ:Z—\/)\UﬂLl—l, (4.76)
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for the supersymmetric or

Ao Aw
mﬁ?zi1+2dhw+1+2, m@?ziI—QMAM+1+2, (4.77)

for the skew-whiffed solutions, respectively.
For the PW solution, all three equations are coupled by the non-vanishing internal flux.
Solving (4.74]) for ¢; and ty and plaguing into (4.73) yields a cubic equation for m?, whose

solutions are

m§L2:§Aw, m§L2:§/\w+3\/1+)\w+3, m§L2:§/\w—3\/1+)\w+3.(4.78)

For each of the masses there is a fluctuation of the metric and the flux that together di-
agonalize the linearized equations of motion around the PW solution. As we have already
discussed in section 1.3, the last mass will violate the BF bound when A, lies in the range
(L.11). One may note that the masses m3 and m} for the PW solution are simply 3/2 of the

masses for the flux modes in the skew-whiffed FR solution.

4.7 Additional bosonic modes in the Z multiplet

In addition to the three scalar fields in the Z-vector multiplet, there are two additional scalar
fields that are associated with symmetric tensor harmonics, as seen in Table 2 below. It is
reasonable to ask what happens to these two scalar fields. In particular it would be nice to
know what the masses of these fields are at the FR and PW points.

In order to determine the masses of these two scalars, one needs to know the symmetric
tensor harmonics associated with them, and their eigenvalues under the Lichnerowitz opera-
tor. Since these two fields lie in the same supermultiplet as fields whose associated harmonics
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we know, it is in fact possible to construct their associated harmonics.
Key results useful for carrying out such a construction are provided in the paper [56]. In
[56] the authors provide a formula that gives a spinor-vector harmonic in terms of a 3-form

harmonic and a Killing spinor. In table I of [56] they give

Ea - aTcx,uz/pnY,uz/p + bT,uz/nYa;w + CT;wanaY,qua (479)

where =, is a spinor-vector harmonic, the 7 are Dirac matrices, n is a Killing spinor, Y),,, is
a 3-form harmonic, and a, b, and ¢ are given constants. The relation between the eigenvalue
of the spinor-vector under the Rarita-Schwinger operator and the eigenvalue of the 3-form

under the ‘square root of the Hodge-de Rham operator’ is given to be

Mz = —4(Mays + 1), (4.80)

where M(3/9)(1/2)2 is the eigenvalue of the spinor-vector, and Ms is the eigenvalue of the
3-form.
In the same table, the authors provide a formula that gives a symmetric tensor harmonic

in terms of a spinor-vector harmonic. It is given by

Yiap) = anTia=py + bDaZpy, (4.81)

where Y(,p) is a symmetric tensor harmonic. The relation between the eigenvalue of the
symmetric tensor under a Lichnerowicz-like operator and the eigenvalue of the spinor-vector

harmonic is given by

My = (Mz/2)(12)2 + 4) (M3/2)1/2)2 + 8)- (4.82)
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In general, one can see that using these formulas to obtain harmonics from known har-
monics will give objects that will be unwieldy to deal with. However, in the special case
where the internal manifold is tri-Sasaki and the known harmonics are, as in Chapter 2, con-
structed only in terms of Killing spinors and Dirac matrices, it is expected that the resulting
objects will be easier to deal with.

In particular, in Chapter 2 we constructed two 3-form harmonics at the FR point, H; =
X — %Y and Ho = X +Y +5Z. Let H denote either of these 3-form harmonics. Then using

the formula from [56], one obtains the spinor-vector harmonics

ET‘ = FrmanHmnp

H’/‘ - Frmnpmenp' (483)
One finds, at least for the tri-Sasaki case, that in the formula provided in [56], all three terms
are proportional to each other, and so it is sufficient to keep only the first term.

In turn, one can use the formula given by [50] to obtain symmetric tensor harmonics from

these spinor-vectors. One obtains the symmetric tensor harmonics

hin = (Tl

As in the formula for the spinor-vectors, one finds that the derivative terms are proportional
to the non-derivative terms, and so can be dropped.

The constructed symmetric tensor A" is actually proportional to the symmetric tensor
harmonic that we have already constructed in terms of the (1, 1)-form w and the 3-form €.
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In fact, the other two symmetric tensors A®) and h® are actually proportional to symmetric
tensor harmonics that are simply constructed from w and J or €. It is found that, up to

constants,

hg% = (dw)o“(Uea — Qbea) + (a <> b)
héii) = (dw) o (Qed + ea) + (a < b)
By = wetas (4.85)

Even though these relations were found in the particular case where the internal manifold
is tri-Sasaki, it would not be surprising if these relations were true in general. That is, it
should be expected that, in general, the symmetric tensors h(® and h® given above are
indeed the symmetric tensor harmonics that lie in the same supermultiplet as (V.

To verify this expectation, one can first note that the U(1)g charges are in agreement
with what is given in table 2. In addition, one can show that the tensors are transverse, and
that they are eigenfunctions of the Lichnerowicz operator, with the correct eigenvalues, i.e.
A\ +4. Since h? is the same as h(!) except for a sign, the calculations for A®) are the same
as those for AV, which have already been done. Hence, we need only do the calculations for
h®),

First, we show h(® is transverse.
1
DaWab == §Da<wcanC + (JJchac) (486)
The first term on the right-hand-side is

D (W) = Wea DTy = wea(—8°40° + §%0) = —wepd + wea§™Vy = 0. (4.87)
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The first equality follows from transversality of w, the second equality follows from (B.12),
and the third equality follows from the fact that w is horizontal and traceless.

The second term on the right-hand-side is
D*(wepJoa®) = DTy wep o) = =D (8.5 Ty  wep) = D (wyady’) = 0. (4.88)

The last equality follows from the calculation for the first term on the right-hand-side.
Therefore, h® is indeed transverse.

Now we want to obtain the eigenvalue of h‘® under the Lichnerowicz operator. This
calculation follows in similar fashion to the same calculation for h(®).

Letting taped = WapJeq, SO that A®) is obtained by the appropriate contraction and sym-

metrization, the action of the Lichnerowitz operator on this tensor is given by
(AL abed = (Aw) Jeg + Wap (AT ) g — 2(DWap) (DeJeq) + R-terms. (4.89)
One finds that the R-terms are given by
R-terms = 2(wep[ D¢, Dy] + wae[ D¢, Dp)) Jea- (4.90)
Computing the second derivatives of J, one finds
(D¢, Do) Jed = 2J°1cGdja — 2Jajc0a)”. (4.91)
Plugging this into the expression for the R-terms gives
R-terms = 4(wepJ “(cGdja — Jajewap) — (a <> b). (4.92)

Carrying out the appropriate contraction and symmetrization to obtain the symmetric
tensor A from ¢ gives that the contribution to A;h® from the R-terms is —6h().
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Next, we want to get the contribution to Azh®) from the term —2(D°wqp)(DeJ.q). Using

(B.12) gives
(Dewab)(DEch) = —(Dcwab)ﬁd —|— (deab)ﬁc (493)

In contracting the indices a and d, one uses the fact that w is transverse and horizontal,

metric compatibilty, and (B.12) to find that
(Dewab)(DeJca) = Wap " (494)

So symmetrizing the indices to obtain h(® from ¢ gives that the contribution to Az h® from
the term —2(DWga)(DeJeg) is —2h3).

To obtain the contribution to Aph® from the term wqy(AJ)eq, one simply needs to know
the eigenvalue of J under the Hodge-de Rham Laplacian. The Hodge-de Rham Laplacian

on J is given by AJ = dd.J. One uses (B.12) to find that
(6J)m = —D'Jppy = 60, (4.95)

so that AJ = 6d = 12.J. Hence, the contribution to Ay h®) from the term wey(AJ)eq is
12h®).

Adding up the contributions from all the terms gives
Aph® = (N, +12-2-6)A® = (), +4)h®, (4.96)

as expected.
The symmetric tensor harmonics h® and h(® are associated with AdS, scalars ¢®

and ¢®), so that the eleven-dimensional metric fluctuations are ¢(2)hﬁ) and gzﬁ(?’)hggb). The
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2-form harmonic w is associated with an AdS, vector field Z, so that the appropriate eleven-
dimensional object is the 3-form fluctuation Z,w,,,. We would like to plug the metric
fluctuations gb@)hﬁ) and ¢(3)h§’,) and the 3-form fluctuation Z,wy,, into the linearized field
equations to obtain the masses of the scalars ¢® and ¢ at the PW point.

Plugging the fluctuations into the linearized Einstein equation

%AhAB + 6(A¢ChB)C - %6A63h% = —F,NPR M ohye — %hABFCDEFFCDEF
+%QABhCMFCDEFF]\/[DEF + ; Y fyunpe
—1—18gABFMNPQfMNPQ (4.97)
gives the two equations
10 - _Yyop  poper
9 AB 36 AB CDEF
SRR = CE OV M b — S Feppr PP, (1.98)

one for each of the metric fluctuations. The first term on the right-hand-side of the equation
for h® is 0 for h® because h(® has terms of type (2,0) and (0,2), whereas h® is of type
(1,1).

From the first equation one finds that at the FR point the scalar ¢®) has mass m?L? =
}l()\w — 8), as expected, and at the PW point it has mass %)\w. From the second equation

one finds that at the FR point the scalar ¢(® has mass m?L? = 1(\, — 8), as expected, and

1
1
at the PW point it has mass %()\w —8). Note that the masses of the scalars are larger at the

PW point than at the FR point, so their values are stable.
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The linearized Maxwell equation is

1 1

vAfABCD + 4vA(FM[ABChD]M) . §FBCDRthAA — —@EBCDEFGHIJKLFEFGHJCIJKL
1
- 1152TT<gflh)EBCDEFGHIJKLFEFGHFIJKL (499)

Plugging the fluctuations into the linearized Maxwell equations, one finds that only the
first two terms on the left-hand-side are non-zero. The first term on the left-hand-side yields
the free massive vector field equation for Z. As expected, it gives that the mass of 7 is
given by the eigenvalue of w under the Hodge-de Rham operator. The first and second terms
together give that the divergence of Z, D, Z" is 0 at the FR point but proportional to the

scalar ¢(?) away from it.

5 Examples

In this chapter we will construct explicitly the (1,1)-form(s), w, leading to an instability
of the PW solutions for two classes of SE manifolds: the tri-Sasakian manifolds and the
homogeneous manifolds (1.3)). Throughout this section we take w to be real. The unstable

modes in chapter 4 are then constructed using the form 7 w.

5.1 Tri-Sasakian manifolds

The eleven-dimensional supergravity admits a consistent truncation on an arbitrary tri-
Sasakian manifold to a N' = 3, d = 4 gauged supergravity [34]. As shown in [34], the

instability of the PW solution follows then from the existence of a single scalar mode with

5



the mass m? = —3 in the spectrum of fluctuations around the corresponding critical point
of the scalar potential.

Starting with that unstable scalar mode in the four-dimensional theory, one can follow the
truncation and reconstruct the unstable mode in eleven-dimensions. However, it is simpler to
look directly for a (1,1)-form, w, in terms of the geometric data on a tri-Sasakian manifold.

A tri-Sasakian manifold admits three globally defined orthonormal Killing spinors, 1, in

terms of which the three one-forms, K, dual to the SU(2) Killing vectors, are given by

K. = %eijk AW (5.1)
Define

M= —%dKi, M}, = —%eij’f L an® . (5.2)

The forms K* and M* satisfy [65]
DK} =—M, (5.3)
DoM;, = 244K} | (5.4)
KiK9® = 5% (5.5)
M Kb = PR (5.6)
MMy = KLK] — 6 goy + €M, . (5.7)

Using those identities we show that the two-forms

A R 1.
W= R KI N KR 3 M, (5.8)

are transverse eigenforms of the Hodge-de Rham Laplacian,
Aw' =24 w'". (5.9)
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Indeed, the transversality follows directly from (5.3)-(5.6]), which imply that

DM}, = 6K, DKL Ky )=—¢"K]. (5.10)

[a

To prove ([5.9)), we note that on a transverse form, w',
AWtizb = _bc(dwi)abc ) (511)

where

dw' = =2 MI N KF (5.12)

The divergence in (5.11)) is then evaluated by first using (5.3) and (5.4 and then simplifying

the resulting contractions using ([5.5)-(5.7)).

The PW solution is now obtained by choosing any two orthonormal Killing spinors that
fix a particular SE structure. Given the SU(2) isometry, we may simply take (%) = (', n?)
and set x = n* to be the additional Killing spinor. Then ¢ = K* and J = —M?, see (3.12).
Consider the two form

1
w:Kl/\KQ—gJ, (5.13)

with components

1

Wap = —Q(ﬁlf[ax)(ﬁQFb]x) — gﬁlfaan ) (5.14)

It follows from (5.5) and (5.6 that w is horizontal. Similarly, the form
d(K' ANK?) = —2(M' AN K? — K' A M?), (5.15)

is horizontal, so that w is in fact basic. Finally, by contracting with J, we check that w is a

primitive (1,1)-form.
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We have checked that the unstable mode arising from w in reproduces precisely
the unstable mode in the truncation in [34]. We also note that a more complete construction
and classification of harmonics on N*! in terms of Killing spinors, including the forms above,
can be found in [66].

While the construction above gives an unstable mode on any tri-Sasakian manifold, there
will be additional modes if the manifold admits more than three Killing spinors["’| In par-
ticular, to construct the unstable modes on S” found in [32], we can generalize the foregoing

as follows. Let x’ be the additional six Killing spinors and let
K =in®To’, a=1,2, j=1,...,6. (5.16)

Then
g Lo 2j 1j 2y Lo
wjzi(K /\Kj—f—Kj/\K)—§J<W7 (5.17)
are symmetric, w” = w’, and traceless, w”d;; = 0, and transform in 20’ of SU(4), which
is the isometry of the KE base, CP?. In the same way as above, one checks that w” are

basic (1,1)-forms and that the diagonal forms, w?’, are transverse and Aw’/ = 24w’/. By the

SU(4) symmetry, the same holds for the remaining forms.

5.2 Homogeneous Sasaki-Einstein manifolds

The homogeneous SE manifolds (1.3) are given by G/H coset spaces, which is a conve-
nient realization for a calculation of the KK spectrum of the corresponding AdS,; x M7

compactification of the eleven dimensional supergravity. However, one can also realize any

10Tn fact, the only regular manifold with more than three Kiling spinors is S7 [23].
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Spin Field Energy U(l), m2L?

| 7z Eo+1 q 4Ey(Ey — 1)
0 s Ey+2 q (Eo+2)(Ey — 1)
0 0] Ey+1 qg+4 (Eoy+ 1)(Ey — 2)
0 ¢ By +1 q (Eo +1)(Eo —2)
0 0] Ey+1 q—4 (Eo+ 1)(Ey —2)
0 x By q Fo(Eo — 3)

Table 2: The bosonic sector of a Z-vector multiplet.

homogeneous SE manifold as a hypersurface in some CV, in some cases modded out by a
continous Abelian symmetry. This has been discussed in detail in [53] [54] 55 46, [52], 67]. In
this section we use the latter construction to find explicitly stability violating (1, 1)-forms,
w, on each of the spaces . An advantage of this method is that the required properties
of w are either manifest or easy to verify.

In principle, one could try to identify (1, 1)-forms leading to instabilities of PW solutions
by examining the KK spectra that have been studied for all homogeneous SE manifolds
in references in Table . Indeed, in the KK reduction of the three-form potential, A3,
a transverse two-form harmonic gives rise to a vector field whose mass is given by the
eigenvalue of the Hodge-de Rham Laplacian [68 [39]. In the terminology of [56], the vector
field is called the Z-vector field and it is present in the KK towers of the following N' = 2

supermultiplets [57, [50]: the long and/or semi-long graviton multiplet, the two long and/or
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semi-long gravitino multiplets and the Z-vector multiplet.

However, the mere presence in the KK spectrum of a two-form harmonic, w, whose mass,
Ao, lies in the instability range , is not yet sufficient to conclude that the PW solution
is unstable. One must also show that w is a transverse, primitive, basic, (1, 1)-form, which is
by no means obvious. For that reason, we first construct explicitly stability violating (1, 1)-
forms, w, and then check whether both A, and the supersymmetric FR scalar masses
and agree with the known KK spectra, in particular, whether the corresponding fields:
the Z-vector field, the scalar and the two pseudo-scalar fields lie in a long Z-vector multiplet.
The comparison works perfectly for S7, N'! and M3?2, but reveals missing multiplets in the
published KK spectra for Q%! and V52,

The bosonic fields of a long Z-multiplet are listed in Table [2| , with the R-charge in the
second column and the masses in the last column given in the conventions used in this paper.
Specifically, the R-charge is twice the charge in the original tables in the KK literature (see,
e.g., Table 3 in [50]). We define the mass of a Z-vector as the eigenvalue of the corresponding
Hodge-de Rham operator. This agrees with the usual definition used in the references in
Table [1, except that our normalization of the metric for the FR solution introduces a factor

of four difference,

1 M2

L = : 5.18
mz 4 e2 ( )
The masses of the scalar fields are related by
1, M?
2 72 _ &
mer = 1_6< 62 — 32) s (519)

where €? = 1/(16L?) is usually set to one.
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52.1 S7

We represent S” as the unit sphere in C*,
W'+ it =1 (5.20)

The U(1), symmetry is the rotation by the phase. Let ®,;z; be a constant complex tensor
in C* that is antisymmetric in [ij] and [kl], primitive with respect to the canonical complex
structure in C*, and satisfies the reality condition ®,i51 = —(®pz;)". Then the pull-back onto
ST of

w = &, ru'” du’ A did (5.21)

ijk
yields 20 basic (1, 1)-forms with A\, = 24, which give rise to the unstable modes obtained in
[32].

Our calculation agrees with the general result for the spectrum of the Hodge-de Rham

Laplacian on CP? [43], conveniently summarized in Table 2 in [58]. There we find that there

is a single tower of (1, 1)-forms in [k, 2, k] irrep of SU(4) with the eigenvalues
Ay =4(k+2)(k+3), k=012.... (5.22)

The forms (5.21)) lie at the bottom of the tower with & = 0. The higher level forms with
k > 1 have A¢1,1y > 48 and thus lie outside the instability bound ((1.11]).
One may note that those forms are not the lowest lying transverse two-forms on S”.

Indeed, the spectrum of the Laplacian on two-forms on S is [44]

Aoy=@+2)(p+4), p=123,..., (5.23)
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of which (5.22)) is a subset. For p = 1 and 2, the eigenvalues are 15 and 24, respectively, and
satisfy (1.11)). However, the two-forms with Ay = 15 are trilinear in «’ and @, hence have

a nonzero R-charge and are not basic.

5.2.2 NU

The (hyper-)Kahler quotient construction for N [46, [67] starts with C* @ C° with coor-
dinates (u’,v;), j = 1,2,3, that transform as 3 and 3 under SU(3), respectively, and with

(u?, —v7) transforming as doublets under SU(2). The N*!' manifold is then the surface
W |? = v =1, W, =0, (5.24)

modded by the U(1) action (u?,v;) ~ (e®u?, e ®v;). The standard metric [69, [70] is obtained
by a reduction from the flat metric in C6. We refer the reader to [67] for a detailed discussion
of the metrics and for explicit angular coordinates.

The three Killing forms in section [5.1] can be taken as

K'= %(uﬂ'dvj +u;dv’),  K*= —%(ujdvj —a;dv’), K= %(ujdaj + v;dv?)

(5.25)

in terms of which the form, w, is given by . It is now manifest that w is a (1, 1)-form,
which is invariant under the U(1) action of the K”ahler quotient, and hence a well-defined
form on N1, Tt is also a singlet of SU(3) and is invariant under the U(1), C SU(2) isometry,
(w,v;) = (e™u?, ev;), along the SE fiber. Evaluating it in angular coordinates, we verify
that it is basic and primitive.

The complete KK spectrum on this space was obtained in [45] (see, also |71} 46, 147,
60]), where one finds 21 towers of two-form harmonics. Specifying to the (1,3) irreducible
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representation of SU(3) x SU(2), M; = My = 0 and J = 1 in the notation in [45], leaves
two possible eigenvalues )\522) = 96 and /\g) = 48 lying in the series Eg with 7 = 0. The
first three forms are the ones constructed above in , one of which is the sought after
(1,1)-form, w, with A\, = 24. The remaining three are the three canonical two-forms, M*, on
the tri-Sasakian manifold, one of which is the complex structure, and hence is not primitive,
while the other two are not basic.

In this example the N' = 2 long Z-vector multiplet is a part of a long N' = 3 gravitino
supermultiplet, see Table 4 in [66]. Following [56], all harmonics in this multiplet can be

constructed in terms of the three Killing spinors on N [66].

5.2.3 M?3?

The N = 2 supersymmetry of the FR solution on M*? was proved in [72]. The complete
Kaluza-Klein spectrum was obtained in [48] (see also [49]) and further analyzed more recently
n [50]. The KE base of M?3? is CP? x CP! and the SE metric in the form (2.3) is given by
173, [74]

3

1 3 1
ds” = Tdsten + 5dspr + (A + TAcp + 5 Acpr)’, (5.26)

where the ds?,; is the Fubini-Study metric and Acpr is the Kéhler potential with dAcpr =
2Jcpk-

The Kahler quotient construction for this SE manifold is explained in Appendix H. See
also the references [54, 55]. The construction starts with C* & C? with coordinates, u’ and

v®. In terms of these coordinates, M3?2 is the surface defined by the equations

20l = 300, = 1, (5.27)
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modded by the U(1) symmetry, (uf,v®) ~ (e*9u?, e=3v,). Once more the U(1)g symmetry
is (ul,v®) — (e™ul, eVo®).

In light of what was discussed in Chapter 4, one would like to find or construct (1,1)-forms
on the space that are basic, primitive, and transverse, and that are eigenfunctions of the
Hodge-de Rham Laplacian with eigenvalues in the range between 2(9—4+/3) and 2(9+4+v/3).

The condition that the (1, 1)-forms be basic amounts to imposing that they are invariant
under the U(1)r symmetry, or in other words, that they live on the KE base, and the
condition that the eigenvalues lie in the given range means that one should look for modes
of the Laplacian that are low-lying. As discussed, the existence of such a primitive and
transverse (1, 1)-form means that there is a scalar that causes instability.

Modes that satisfy the desired conditions were in fact constructed in [58], and the con-
struction of [58] relies upon an important result that was found in [75]. In [75] it is shown
that if there exists a Killing vector K* on a KE space, then there exists a scalar 1 on the
space such that K¢ = J®@y). The scalar 1 is shown to be an eigenfunction of the Laplacian
with eigenvalue 2A, i.e. Oy + 2Ay) = 0, where A is such that R, = Agu. The converse of
this statement is also shown to be true. That is, if a KE space has a scalar ) that is an
eigenfunction of the Laplacian, with eigenvalue 2A, then the object K¢ = J®0y is a Killing
vector on the space.

Therefore, if a KE space has a Lie group symmetry, then it is guaranteed to possess as
many scalar harmonics with eigenvalue 2A as there are dimensions in the group. For example,
since CP? has symmetry group SU(3), it has eight scalar harmonics with eigenvalue 2A. Each

of the eight generators of SU(3) corresponds to a Killing vector on CP?, and each of these
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Killing vectors can be expressed in terms of a scalar harmonic in the way explained above.
For the KE space CP" it is shown in [75] that the scalar harmonics with eigenvalue 2A

that generate the Killing vectors are

1

= _T,B747 5.28
747, A B, ( )

(8

where the Z#4 are the homogeneous coordinates on CP™ and T4” is an arbitrary Hermitian
traceless tensor.

In [58] the authors study the stability of AdSs solutions of M-theory compactified on
six-dimensional KE spaces. Among other spaces, they look at the KE space CP? x CP!,
which is the KE base of the SE manifold M??2. On this space, they note that given a scalar
harmonic Y on CP?, one can construct a primitive transverse (1, 1)-form w from it that is an
eigenfunction of the Hodge-de Rham Laplacian with the same eigenvalue as the scalar Y.

This (1,1)-form w is a linear combination of the forms dpdpY, Y J@ and Y J®. It is
straightforward to see that each of these forms is an eigenfunction of the Hodge-de Rham
Laplacian A = dé + dd on the KE space, with the same eigenvalue as Y. For the first form,
the Dolbeault operators commute with A, so clearly it is an eigenfunction with the same
eigenvalue as Y. For the second and third forms, one notes that d and ¢ of the complex
structures are zero because their covariant derivatives are 0, and so A only acts on Y. So it is
clear that the second and third forms are also eigenfunctions of A with the same eigenvalue
as Y. The coefficients in w are fixed by imposing that it be primitive and transverse.

In the special case where Y is taken to be a scalar harmonic that generates a Killing
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vector on CP?, which is given explicitly above, and where A = 8, one finds w to be
w = 2i0p0gY + 16Y JW — 16Y J?), (5.29)

where the SE two form is J = J® 4+ J® with J® = 3 Jep2 and J? = $Jp1, and 9 and
Op are the Dolbeault operators (see, e.g., [6]).

In the notation and conventions used in this work,
Y = t/u'u, (5.30)

where ¢;; is a constant hermitian, traceless matrix and
AY = 16Y. (5.31)

As discussed, this (1, 1)-form is primitive, transverse, and basic, and it is an eigenfunction
of A with eigenvalue 16. It is thus associated with an unstable scalar at the Pope-Warner
point. Furthermore, there are eight such (1, 1)-forms because there are eight scalar harmonics
with eigenvalue 16, and thus there are eight unstable scalar modes at the Pope-Warner point
transforming in (8,1) of SU(3) x SU(2).

These eight unstable scalar modes have the mass
m3L? =9 — 3V17 ~ —3.3693. (5.32)

In the KK spectrum for the supersymmetric solution, we should find a Z-vector multiplet

with the masses

myL* =16, mjL*=2, mlL®=3+V1T. (5.33)
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Indeed, there is such a multiplet given by egs. (3.23) and (3.24) in [55]. In [55] an irrep of
G = SU(3) x SU(2) x U(1) is specified by (M;, M, J,Y), where M is the number of columns
in the SU(3) tableau with one box, M, is the number of columns in the SU(3) tableau with
two boxes, J is the SU(2)-irrep ‘quantum’ number, and Y is the U(1) charge. In (3.23) and

(3.24) we must set My = My =1 and J = 0. Doing so gives
1
Eo = 5(1+ V17), (5.34)

which reproduces the masses ((5.33)) using formulae in table 2.
The space M3? and its complete KK spectrum were treated in much detail in [55]. It is
therefore appropriate to present the harmonics associated with the unstable scalars in the

language and conventions used in that paper.

Let
_[1]3]
*= 2
= (5.35)
* z"3
@,:e{é t@”:@

N rimrn
ij = 2(3 HE '

The two 3-form harmonics and the metric harmonic associated with the unstable scalars
will be constructed from these tensors.

The two 3-form harmonics are constructed from the five 3-forms A’ given below. These
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3-forms are pieces of the 3-form H decomposition given in [55].

(5.36)

Ahpo = €apep (AP — \3®;)
Al = €mn (W03 + X397
Ay = /\Z[?/\3BJ] ety

AiB:s = )‘g)‘?ﬁ]@

A o= en®.

The remaining components of the A7 are 0.

The A7 close under the action of @ = xd. (Note that d in [55] is defined differently than

usual, so that on 3-forms it is § of the usual one.)

4
Al = —i—A
¢ 73
4 2
A= AP AY
RV, SV
QA® = —z‘?/x? + A3 (5.37)
1
A= AT AT 4248
“e
1
A= At4i—=A
¢ 73
For A = ¢;A7 we can use the above to determine the ¢; and u such that
QA = pA. (5.38)

Solving these equations gives the eigenvalues p =

1(1 4+ V17), 2, 0, and —3. These

eigenvalues agree with those listed in equation (6.37) of [55].

In particular the modes corresponding to p = %(1 + /17) are the ones associated with
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unstable scalars. For these the constants are found to be (fixing ¢; = 1)

cp= 1
e — % (V3 V5) (5.39)

3
e = —i\/T— (1 vi7)
1
Cy; = —Z§ <\/§j: \/51)
The corresponding masses, in the conventions of [37], of these two modes are obtained

using the 3-form mass formula (equation B.3 of [37])

mi =16(Q —2)(Q — 1). (5.40)

They are mfc = 16 (5 FV17 ) Note that these are the masses in the supersymmetric,
non-skew-whiffed case.

In going from the skew-whiffed Freund-Rubin solution to the Pope-Warner solution, the
two 3-form modes ‘mix’ with a metric mode to form a new mode. We obtain this metric
mode by contracting the 4-form f = dA = xQQ A with the background internal flux over three

indices and symmetrizing over the remaining two indices.

Yos = F"* fa)rse, (5.41)

giving, without worrying about the overall constant,

YlA = 61,]()\343®’L + )\3A](I):<)

(5.42)
Yoa = ie(AN5®; — Ay ®)),
with all other components equal to 0.
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5.2.4 QLU

Recall that Q! is a U(1) bundle over CP' x CP' x CP!, with the metric (see, e.g., [74])

2

12) + Acp<13)) . (543)

1 1
2 2 2 2
ds® = §(dscp%1) + dscp(12) + dsCP(13)) + |dy + 5 (Acp%l + ACP(

)

The Kahler quotient construction for this manifold [54, 55], has three C*’s, with coordinates

@ p® and w®, respectively, one for each CP' factor in the KE base. Then Q%! is the

u
surface in CS,
Uy = V0, = W, = 1, (5.44)
i, ,Q

modded by two U(1) symmetries, (u®, v w®) ~ (e®u®, ev® e~¥=% ). In terms of the

projective coordinates, z;, on CP%Z«), and the fiber angle, v, we have

, 2,€29/3 ) 2,e2¥/3 , g€/
U =, V= W =
(= [ (==l =07
o2i/3 e2i/3 o2i/3 )
U = — 5, 'UQI—, w2:—.
(1= [z (1 —[z2))"/2 (1 —[zs])/2
The SU(2) Killing vectors on each CP' yield triplets of scalar harmonics,
3/(1) — t(l)aﬁuaag y }/(2) = t(z)aﬂva@g 3 }/(3) = t(?’)aﬂwawg 3 (546)

which are eigenfunctions of the Laplacian with the eigenvalue 16 [74]. The two forms

— Jept
) CP(Q))v

(5.47)

W(l) = }/(1)(‘](:'3%2) - JCPI

L) we = Yo (Jery — Jept

W) we = Y (Jery,

are primitive, transverse (1, 1)-eigenforms of the Hodge-de Rham operator with the same
eigenvalue [58]. This gives nine unstable modes for the PW solution on @%"! in the adjoint

representation of SU(2) x SU(2) x SU(2).
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Clearly, numerical values of all the masses of the Z-vector field and the scalar and pseu-
doscalar fields at the FR solution are the same as for M32, and one expects to find a
similar structure of N' = 2 supermultiplets as well. Hence it is surprising that the KK
spectrum in section 4 in [51] does not contain a long Z-vector multiplet in the adjoint of
SU(2) x SU(2) x SU(2) with the energy (5.34). In fact, there is also no graviton multiplet
corresponding to the scalar harmonics . However, a closer examination of the allowed

1,1

harmonics on Q! and their masses, which are listed in section 3 of the same paper, shows

that the Z-multiplet we are looking for should have been included in the final “complete

classification.”

5.2.5 V52

As discussed in [53] (see, also [52, 76, [77]), the Stiefel manifold, V> is the intersection of

the Kahler cone in C?,
(uh)? + (u®)* + () + (u*)?* + (*)* =0, (5.48)

with the unit sphere,

i S e Sl A T Tl R F T I (5.49)
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Writing w/ = 27 + iy?, the real and imaginary part vectors (z7) and (y’) in R® can be

parametrized by the Euler angles of the coset space SO(5)/SO(3), [1]

b oyt cosf 0
22 9P 0 cospu
R3<a17a27a3) 0 4
0 Ra(0)
xt oyt sinf 0
x® y° 0 sinp
where
3
0<ap,a5<2r, 0<ay d<m, —ggu,9<g, 0§w<§, (5.51)

and R, and R3 are rotation matrices. In terms of the coordinates on the cone and the angles,

the SE metric on V°2 is

3 .3
ds? = Sduldi) — = |uldu |2
2 16

3
= - [du2 + cos® oy + df* + cos® 6 o5
8 (5.52)

+ % sin?(1 — 0) (s + dg)? + % sin (s + 0)(0; — o’
+ [dlﬁ + gcos(u —0)(o3 + do) + gcos(u +0) (o3 — dgb)] i :
where o; are the SO(3)-invariant forms, do; = o; A 0. The metric is the canonical
SE form of the U(1) fibration over the KE base, which is the Grassmannian, Gry(R®). The
volume of the space is computed from this metric in Appendix E.
The harmonics on V5?2 are obtained by the pullback of tensors in C> and decompose into

SO(5) x U(1) . Here SO(5) acts on w/ in the real vector representation, while U(1)p is the

1A somewhat different explicit parametrization of V5?2 is given in [76] [77].
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phase rotation, u/ — e™¥u/.
The lowest lying scalar harmonic that is invariant under U(1), is ¥ = vw'@/ —w/a’. It
is an eigenfunction of the Laplacian with the eigenvalue 16 [52]. Similarly, the lowest lying

(1,1)-forms that are not proportional to the Kahler form are
w' = My gt dutdu™ . (5.53)

They transform as 5 of SO(5) and are invariant under U(1),. Expanding those forms using
(5.50) confirms that they are basic. They satisfy

Aw' = %wz, (5.54)

and hence give rise to five unstable modes of the PW solution with the mass

m3L? =7 — V105 ~ —3.2469 . (5.55)

The masses for the supersymmetric solution are

32 2 5 35
2L = 2L =2 2= -4y = 5.56
Mz IR R Tl T (5.56)
The Z-vector multiplet has then
1
Ey = 6(3 + V105) . (5.57)

While such a multiplet is not listed in the tables in [52], the authors note at the end of
section 2 that there might be an additional vector supermultiplet with this energyE In
appendix , we list all bosonic harmonics on V2 that transform in 5 of SO(5) and show
that they decompose unambigously into N/ = 2 supermultiplets including a long Z-vector

multiplet in agreement with our construction.

12\We thank A. Ceresole and G. Dall’Agata for correspondence, which clarified this point.
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5.3 Orbifolds

Homogeneous SE manifolds also admit discrete symmetries such that the quotient maniofld,
M /T is still SE. The natural question is what happens to the master (1,1)-forms in this
projection and whether the PW solution for the quotient SE manifold is stable. We will
now examine this for some examples of SE discrete quotients that were considered in the
literature.

For S7, it has been shown in [32] that if the discrete symmetry group I' is a subgroup
of SU(4), it will preserve some of the unstable modes. The same reasoning applies to the
(1,1)-forms and shows that some of them will be well-defined on the quotient.

Orbifolds of M>2, Q. and S7, can be obtained as limits of the Y?* Sasaki-Einstein
manifolds [78]. Specifically, when 2k = 3p and p = 2r, one has that Y% (CP?) = M>?/Z,,
where Z, is a finite subgroup of SU(2) acting on CP'. Since the master 2-forms for M??
are constructed from scalar harmonics on the CP?, see and , they are preserved
under the orbifolding. Hence the instability persists for these orbifolds of M32.

Similarly, when k = p, one has Y??(CP' x CP') = QY11 /Z,,, where Z, is a finite subgroup
of SU(2) acting on one of the three CP;’s. Each independent master (1,1)-form on Q%!
see and , is constructed from a scalar harmonic on one of the CP! factors. For
the SU(2) acting on CP%Z-), the forms w;y, j # 7, are invariant under Z, and hence are well
defined on the quotient Q%'!/Z,,.

For k = 3p, one has that Y73 = S7/Z3, where Z3, C SU(4) acts by

(ul7 UQ’ u3’ u4) — (627ri/3pu1’ 627ri/3puZ7 627rz'/3pu3’ 6—27Ti/pu4)‘ (558)
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The six master (1, 1)-forms on S” that contain precisely one u* or 4* are not invariant under
(5.58). This yields fourteen unstable modes on that space.

The orbifolds V*2/Z,, have been discussed in [77]. The finite group here is Z; C U(1),,
where U(1), is a diagonal subgroup of the SO(2) x SO(2) rotation in the (12) and (34) planes
in C°. Clearly, the master 2-form w®, see , is invariant under this action and yields one

unstable mode on V2/Z;.

6 Conclusion

In the research presented in this dissertation we have analyzed a subset of scalar modes in
the linearized spectrum of eleven-dimensional supergravity around the Pope-Warner solution
on an arbitrary SE manifold and derived a condition under which the solution becomes
perturbatively unstable. Specifically, we have shown that when the manifold admits a basic,
transverse, primitive (1, 1)-form within a certain range of eigenvalues of the Hodge-de Rham
Laplacian, then there are scalar modes violating the BF bound. We have also constructed
such destabilizing (1, 1)-forms on all homogenous SE manifolds, and on their orbifolds, and
found that when viewed as harmonics for fluctuations around the supersymmetric solution,
those forms give rise to a long Z-long vector supermultiplet in the KK spectrum.

Using this fact it would be straightforward to rephrase the stability condition in terms of
spinor-vector harmonics on the SE manifold. To do so one could use the formulae given in,
e.g., [50], since by the construction in [50], spinor-vector harmonics give rise to long Z-vector

supermultiplets.
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Throughout this work we have assumed that the SE manifold was quasi-regular, i.e.
regular or non-regular, and the quasi-regularity was used explicitly in some of the proofs. In
particular quasi-regularity was used in establishing the shift between the eigenvalues of the
symmetric tensor and 2-form harmonics under their respective mass operators. However,
since this proof is local, one would expect that our construction should hold for an arbitrary
SE manifold. Indeed, the fact that this same shift was proven in [56] (see Appendix G)
for any internal manifold with a Killing spinor indicates that this expectation does actually
hold.

It remains an open problem to see whether stability violating 2-forms exist on any SE
manifold. In other words, even though the PW solution turned out to be unstable for all the
concrete SE manifolds we looked at, it is not yet known whether there exists an SE manifold
for which the PW solution is stable. It would be notable to find such a SE manifold. As
discussed, if the manifold is quasi-regular, the question of stability reduces to the problem of
determining the low lying spectrum of the Hodge-de Rham Laplacian on a six-dimensional
KE manifold, which in itself is a difficult problem with rather few explicit results (see, e.g.,
[81]). If the manifold is irregular, perhaps the results of [91] may be of use. In this paper
the author presents a generalization of the identity A = 2A; to SE manifolds.

There is also an analogue of the PW solution in type IIB supergravity [82], which is known
to be unstable within the A" = 8 d = 5 supergravity [83, 84] obtained by compactification
on S%. It would be interesting, and perhaps simpler, to examine the stability of this type of
solutions for the new class of five-dimensional SE manifolds [27, 28] for which the spectra of

the scalar Laplacian were obtained in [85], 86].
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As discussed in the introduction, the main motivation for recent interest in PW solutions
came from the “top-down” construction of holographic models of superconductors in [10),
12, [I1]. The PW solutions are then dual to zero entropy states with emergent conformal
invariance at T" = 0. In light of this duality to a conformal theory, it would be nice to see
what the PW instability discussed here looks like in the dual CFT under the AdS/CFT
correspondence. A possible starting point for such an endeavor is provided in the papers
[66] and [47]. In these papers the authors discuss a special N = 3 long gravitino multiplet
that, in fact, contains the tri-Sasaki modes discussed here that lead to PW instability. In
particular, the authors give a composite CF'T operator that they claim corresponds to this

long gravitino multiplet.

A Conventions

We use the same conventions as in [79] and [32], with the mostly plus space-time metric and
the bosonic field equations of eleven-dimensional supergravity given in (1.1)) and (1.2)), and

the gravitino supersymmetry transformations

1
5¢M = DME -+ m (EMNPQR - 85MNEPQR) FNPQRG . (Al)

On a manifold with a Minkowski signature metric, g, we define the Hodge dual, %, by
* ANA = —|Alvol,. (A.2)

The Hodge dual, *, for a riemannian metric, g, is then defined without the minus sign.
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The eleven-dimensional Dirac matrices in the 4 + 7 decomposition are

I ="1®1, p=1...,4,

(A.3)
=yl a=1,...,7,
where
7° =iy R I"=q4rt...1°%. (A.4)
Then
2. . rH =211 =1. (A.5)

We use the representation in which the four-dimensional y-matrices are real, while the seven-
dimensional [-matrices are pure imaginary and antisymmetric. For a real spinor, 7, on the

internal manifold, we then have 7 = n?.

B Sasaki-Einstein manifolds: definitions and relevant

information

Due to their prominence in string theory and M-theory, it is worthwhile to properly define
what a Sasaki-Einstein manifold is.

In this appendix we define what a Sasaki-Einstein manifold is, and provide information
about them that is relevant in subsequent sections. The content of this section follow prin-
cipally from the contents of [23] and [26]. A thorough treatment of the subject is given in
[24].

Contact manifolds
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In defining what a Sasaki-Einstein manifold is, it is natural to start by first defining what
a contact manifold is. A contact manifold is a (2n — 1)-dimensional manifold M such that

there exists a 1-form 7 on it, with the property that

n A (dn)" #0 (B.1)

at each point of M. Such a 1-form 7 is called a contact 1-form.
Given a contact manifold M with contact 1-form 7, there is a unique vector field ¢ called
the Reeb vector field. The Reeb vector field £ is defined to be the unique vector field

satisfying the conditions

n(§) =1, iedn=0. (B.2)

At each point p on the manifold M one can consider the hyperplane kern(p). This
hyperplane is a (2n-2)-dimensional subspace of the tangent space T'M,, and the bundle D
of all such hyperplanes, D = kern, is a sub-bundle of the tangent bundle T'M. In this way
the contact 1-form 7 specifies a distribution D of (2n-2)-dimensional hyperplanes on the
manifold M. D is called the contact distribution.

The contact distribution D is maximally non-integrable, which translates into the fact
that dn is nondegenerate, i.e. for every vector X on a hyperplane there exists a Y on the
hyperplane such that dn(X,Y") # 0. Intuitively, the 2-form dn is a way to measure the failure
of the parallelogram, formed by the vectors X and Y in the hyperplane, to close in the Reeb
vector direction. For more details on contact manifolds see [87].

Since it is nondegenerate, the 2-form dn can be regarded as a symplectic form w on D.

In addition to a symplectic form on D one would also like to have an almost complex
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structure J, which is a type (1,1) tensor, on D. Furthermore, one would like for this J
to be compatible with w. Compatibility with w means the relations d(JX, JY) = w(X,Y)
and w(JX,X) > 0 are satisfied. In terms of indices, the first relation is equivalent to
T nwij = Wi

This J can be used to get a Riemannian metric on D, namely gp(X,Y) = w(JX,Y),
where X and Y are smooth sections of D. This metric is compatible with the almost complex
structure J, which means that gp(JX, JY) = gp(X,Y). In terms of indices, this expression
is equivalent to J%,,J7,,Gii = Gmn-

Also, in terms of indices, the expression gp(JX,Y) = —w(X,Y) is equivalent to g, J*; =
wij. So w can be thought of as J with its index lowered with the metric.

J on D can be extended to a tensor ® of type (1,1) on T'M by letting & = J on D
and ®¢ = 0. Also, the metric gp on D can be extended to a metric g on TM by letting
G(X,Y) = gp(X,Y) + (X )(Y) = dy(@X,Y) + n(X)n(Y).

It is clear that under this metric the Reeb vector £ is orthogonal to the vectors in D,
ie. g(X,&) = 0 for any section X of D. The orthogonality follows from the definition of
D, ie. D = kern, and from the definition of the Reeb vector, which requires that icdn =
0. Furthermore, this metric satisfies the compatibility condition g(®X,®Y) = ¢(X,Y) —
n(X)n(Y).

The above construction motivates the definition of a metric contact structure: If in
addition to the contact 1-form 7 and its associated Reeb vector field &, there is a tensor field

® of type (1,1) and a Riemannian metric g that satisfy

P = —14+£@n, g(@X,Y)=g(X,Y)—n(X)n(Y), (B.3)
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then the contact manifold M is said to have a metric contact structure.
Sasakian and Sasaki-Einstein manifolds

Given a compact manifold M with Riemannian metric g, the metric cone over M is
defined to be the space R, x M with metric ds? = dr? + r2g. If the metric cone over M is
Kahler, then M is defined to be a Sasakian manifold.

A Sasakian manifold is automatically a contact manifold with a metric contact structure,
and its type (1,1) tensor ® and metric g are as in the construction above, i.e. ® = J on
D =kern, € =0, and g(X,Y) = gp(X, Y) + 5(X)n(Y) = dn(®X, V) + n(X)(Y).

Finally, a Sasaki-Einstein manifold is defined to be a Sasakian manifold with Ric, =
2(n—1)g. The metric cone over a Sasaki-Einstein manifold is Ricci-flat Kéhler, hence Calabi-
Yau. The converse of this statement is true, i.e. a manifold whose cone is Kéahler Ricci-flat
is a Sasaki-Einstein manifold.

An interesting special type of Sasaki-Einstein manifold is a 3-Sasakian manifold. A 3-
Sasakian manifold is a Sasakian manifold whose metric cone is hyper-Kahler. This means
the holonomy of the cone metric is contained in Sp(p). Sp(p) C SU(2p), so a hyper-Kéhler
manifold is a Calabi-Yau manifold, and a 3-Sasakian manifold is a Sasaki-Einstein manifold.
Reeb foliation

The Reeb vector field ¢ was defined to be the unique vector field satisfying the conditions

n(§) =1, iedn=0. (B.4)
From the first condition it is clear that £ is nowhere vanishing. Since it is nowhere vanishing,

it can be used to generate a 1-parameter family of diffeomorphisms of the space on which it

is defined.
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Therefore, given a Sasakian manifold M with Sasakian structure (£,7,9,g), one can par-
tition M into disjoint orbits of the diffeomorphism generated by the Reeb vector £. Each
orbit is a 1-dimensional space. Partitioning M in this way is called the Reeb foliation, and
the orbits are the leaves of the Reeb foliation.

Sasakian manifolds split into three different classes, depending on the nature of the Reeb
foliation. If the leaves of the foliation close, so that they are circles, then the Sasakian man-
ifold is said to be quasi-regular. For a quasi-regular manifold, the Reeb vector generates
a U(1) action. This U(1) action is always locally free. If in addition the U(1) action is free
overall, then there is no point on the manifold that is fixed by a nontrivial element of the
U(1) action. In this case the Sasakian manifold is said to be regular.

If the U(1) action is not free overall, then it must ‘wrap around’ an orbit an integer
number of times, so that the orbit is fixed by a discrete subgroup of the U(1) action. In this
case the manifold is said to be non-regular.

If the leaves of the foliation do not close, then they are noncompact. In this case the
manifold is said to be irregular.

Transverse Kahler structure

Motivated by the definition of the distribution D = kern and the form of the metric g,
the tangent bundle can be split into the direct sum T'M = D® L, so that at a point p on M,
TM, = D,® L¢,, where D, is a (2n-2)-dimensional hyperplane, and L¢ , is the 1-dimensional
line that is tangent to the Reeb vector at p. The spaces D, and L¢, are orthogonal with
respect to the metric g.

As discussed previously D naturally has a (almost) complex structure J = ®|p, a sym-
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plectic structure dn, and a metric gp(X,Y) = dn(JX,Y). (D, J,dn) gives the Sasakian
manifold M what is referred to in [23] as a transverse Kdhler structure. It is important to
note that in general this (2n-2)-dimensional Kéhler structure holds only locally. One would
like to know, however, when this Kahler structure holds globally.

For a Sasakian manifold M, let Z be the space of leaves of its Reeb foliation. Then if the
Reeb foliation is quasi-regular then the (2n-2)-dimensional Kéhler structure holds globally.
In particular, if the Reeb foliation is regular then Z has the structure of Kahler manifold,
and if the Reeb foliation is non-regular then Z has the structure of an orbifolded Kahler
manifold. For necessary details about the orbifold structure in the non-regular case see [23]
and [26].

The converse of this statement holds true, i.e. given that Z is a Kahler manifold or a
proper orbifold of one, a principal U(1) bundle M over Z is a Sasakian orbifold with metric
m*h 4+ n ®n, where 7 is the projection from M to Z, h is the metric on Z, and 7 is a 1-form
on M such that dn = 27*w, where w is the symplectic structure of Z. For necessary details
see [23] and [26].

If the Reeb foliation of a Sasakian manifold is irregular, then the situtation is more
complicated. However, it is known that in this case the closure of the group action generated
by the Reeb vector is isomorphic to a torus T*, with k > 2.

Finally, if M is 3-Sasakian, then it is an SU(2) bundle over a 4-dimensional quaternionic
Kéihler manifold or orbifold. Accordingly, its metric can be written as ¢ = go + 7' @ n' +
n? ®@n? +n3 ®@n3, where go is the metric of the 4-dimensional quaternionic Kahler manifold

or orbifold, and the 1 are 1-forms that are dual to a triplet of Reeb vectors £¢ that form an
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su2 lie algebra. For more details see [25] and [26]. A nice fact about 3-Sasakian manifolds
is that they are automatically Einstein.
Homogeneous Sasaki-Einstein manifolds

There is a special type of Sasaki-Einstein manifold that has been well-known to super-
gravity theorists since the 1980s, namely homogeneous Sasaki-Einstein manifolds.

A Sasaki-Einstein manifold is homogeneous if there is a group of isometries G that acts
transitively on it and preserves the Sasakian structure. A group action is transitive if there
is a point in the space such that every other point in the space can be obtained via a group
action on that point; so there is only one orbit of the group action. Hence, a homogeneous
Sasaki-Einstein manifold can be expressed as a coset space.

There are in fact only five seven-dimensional homogeneous Sasaki-Einstein manifolds: S7,
NOW V520 A32 and Q! [CRW]. They are principal U(1) bundles over the Kahler-Einstein
spaces CP?, SU(3)/T?, Gr,(R®), CP? x CP', and CP* x CP! x CP", respectively.

The seven-dimensional homogeneous Sasaki-Einstein spaces have all been used to com-
pactify eleven dimensional supergravity to AdS,, and the complete Kaluza-Klein spectra of
these compactifications have been determined in [44], [45], [46], [52], [55], and [51].

Killing spinors

A Killing spinor is a spinor that satisfies the relation
Vyp =aY -9 (B.5)

for any vector field Y, where Y - ¢ = Y™I',, and « is a constant. For applications in
supergravity, string theory, and M-theory, it is important to know when a Sasaki-Einstein
manifold admits Killing spinors and how many of them it possesses.
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If a seven-dimensional Sasaki-Einstein manifold is simply connected it admits at least
two Killing spinors, and both of them satisfy the defining relation with the same constant
a, with a > 0 [23], 26]. If a seven-dimensional 3-Sasakian manifold is simply connected it
admits at least three Killing spinors, and all of them of them satisfy the defining relation

with the same constant «, with a > 0 [23].

C Sasaki-Einstein identities

In the local frame

123 — /L g 012. = dr et oLt a=1,....7, (C.1)
on AdSy x Mz, cf. (3.9), the unbroken supersymmetries are given by € = ¢ ® 7,
e=e"le, A Me=¢0, (C.2)

and
n= (COS(QW + sin(2w)F12)n0, 1ﬂ12770 = F34?70 = F567707 (0-3)

where £y and 7y are constant spinors. We choose the two independent solutions, n' and n?,

of (C.3)) such that the components of the two SE tensors in (3.9) and (3.12]) are the same.

Given the Reeb vector field of unit length, [
§%, =100 =1, (C.4)

the projection operator

7Tab = 5ab — 19%9(, y (C5)

13 All indices are raised and lowered with the SE metric, §qs.
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is a map onto the subspace perpendicular to the Reeb vector. Any tensor H,, . satisfying
ﬁaHab...c = ﬁbHab...c = ... = 196Hab...c = 0, (CG)

will be invariant under the projection, and, modulo its dependence on the fiber coordinate,
1, can be thought of as a tensor on the Kahler-Einstein base. We refer to such tensors as
horizontal.

For complex horizontal tensors of rank n there is a further decomposition into (p, ¢)-type
tensors, where p and ¢, p + ¢ = n, refer to the number of holomorphic and anti-holomorphic
indices according to the corresponding decomposition along the Kahler-Einstein base. In
particular, J,, and 4., are horizontal tensors of type (1,1) and (3,0), respectively. A
contraction of J with a (p,0)-type and (0, p)-type horizontal tensor is a multiplication by +i

and —i, respectively. For example,
Jad chd = Z.Qabc 5 Jad ﬁbcd = —1 ﬁabc . (C7)

Horizontal tensors (forms) that are in addition invariant along the Reeb vector field are
called basic.

Using the explicit realization of the Sasaki-Einstein forms in terms of Killing spinors
, one can prove additional identities, which we use frequently. First, we have the
following “single contraction” identities

JJpe = 1%, QQu =0, (C.8)
Q" Qege = 47 gy — 4 T Ty — 8iml TPy (C.9)

from which the higher contractions follow,

Jabjab = 6, QaCd ﬁbcd = 87Tab — SiJab R Qabcﬁabc =48. (ClO)

106



We also need the following uncontracted identity
Q" Qgey = 6w qremdy — 18wy’ TNy — 18 7y I Ty + 60 Ty TP T (CL11)
and covariant derivatives of the Sasaki-Einstein forms that are given by
Dty = Jup,  Dade==2dup¥:  Daboa = 4 9aQpeay (C.12)

Identities (3.8)) follow from (C.12)) by antisymmetrization.

D Some harmonics on V°?2

The classification of supermultiplets in the KK spectrum on V%2 given in Tables 2-6 in [52]
does not include any long Z-vector supermultiplet. However, the discussion in section 2 in
that paper suggests that some vector multiplets might be missing from the classification. In
this appendix, we use standard group theory methods (see, e.g., [49]) to list all harmonics
on V>? that transform in 5 of SO(5). This allows us to determine unambigously that there
must be a long Z-vector supermultiplet in the KK spectrum consistent with the explicit
construction in section [5.2.5] We refer the reader to [52] and the references therein for the
group theoretic set-up of the harmonic analysis on this space.

The V>? manifold is a G/H coset space,

SO(5) x

(1)
06 (D.1)

V5,2 —

X
c <
=

where the embeding of H in G is defined by the branching rule

5Q — 3Q + 1Q+1 + 1Q71 . (D2)
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It then follows that the embedding of H into the tangent SO(7) group is given by

1 — 1, , (D3>
7 — 31 +3_1+ 10, (D4)
8 — 3Bip+3_1p+t13p+1 3. (D.5)

This shows that the embedding is through the chain
SU(2) x U(1) € SU(3) x U(1) € SU(4) C SO(7), (D.6)

where SU(2) € SU(3) is the maximal embedding. The other two embeddings are regular,
except that the normalization of the U(1) charge is half the conventional one [80].
In addition to (D.4), we also need the branchings of 21, 35 and 27 of SO(7), which

determine the two-form, the three-form and the symmetric tensor harmonics, respectively,

21 — 10+32+31+30+3_1+3_2+50,
35 — 1341, +10+1 141 35+3,+31+30+3.1+3 045 +5,+5_, (D7)

27 — 1o+104+12+31+30+3_1+52+5,+5_5.

We recall that each independent harmonic is completely specified by its G x H represen-
tation. It follows from that only representations 3, and 1, in the branchings ,
(D.4)) and give rise to harmonics in 55 of SO(5) x U(1),. Specifically, each 3, yields
a single harmonic, (54, 3,), while each 1, yields two harmonics, (5,-1,1,) and (5,41, 1,).

After compiling the list of all harmonics, one must identify the longitudinal ones, which
do not give rise to four-dimensional fields in the KK expansion. This can be done by

looking at the representation labels of the harmonics. For example, there are two scalar
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Q= 4 3 2 1 0 ~1 —2 B -
h o sg-

Z 59— 59+ Z 59— 59+

A 50+ 59—

W W, W

oW W.H W, Z7 W. W, H W
& A W, A A

5 W, W

S H H

Table 3:  The N = 2 supermultiplets on V°? in 5 of SO(5).

harmonics in (51, 1¢) and (5_1, 1p), and four vector harmonics in (51, 34), (5-1,3-1), (51, 1)
and (5_1,10). The last two are in the same representations as the scalar harmonics and are
longitudinal. Indeed, the scalar harmonics are the functions 2% and z‘, respectively, and the
corresponding longitudinal vector harmonics are dz® and dz‘. The remaining two transverse
vector harmonics are obtained from 2°2/dz’ and z'z’dz’. The same procedure is used to
count the two-form, the three-form, and the symmetric tensor longitudinal harmonics.
Using KK expansions in [56] (see also [66] for a succinct summary), it is then straightfor-
ward to identify the four dimensional fields corresponding to the transverse harmonics and
arrange them into N' = 2 supermultiplets, whose field content is given, e.g., in Tables 1-9 in
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[50]. The result is summarized in Table [3, where the first column lists the four-dimensional
fields. The remaining columns are labelled by the U(1) charges of the R-symmetry subgroup
of G. The R-charge in [50] is yo = 2Q)/3. Each entry in those columns corresponds to a
transverse harmonic in the 5 representation of SO(5) x U(1)g, with the symbol indicating
the N/ = 2 supermultiplet that the corresponding four-dimensional field belongs to: sg+ —
short graviton multiplets, Z — a long Z-vector multiplet, W, — long W-vector multiplets,

and H — a hypermultiplet.

E Volume of V°?2
The metric is
ds* = ds*(KE) + [dy + gcos(ﬂ —0)(o3+do) + g cos(p + 0) (o3 — do))?, (E.1)

where

3
ds*(KE) = g[d,u2 + cos® ju o} + df? + cos® 0 o

. X (E.2)
5 i’ (1 = 0) (0 + de)* + 5 sin*(p + ) (05 — do)°).
The o, are SO(3) left-invariant forms.
o1 = cosvyda+siny sina df
09 = sinyda — cosy sina df (E.3)
o3 = dy+cosadf,
where
0<a<m, 0<p <2, 0<~<2nm. (E.4)



The ranges of the other angles in the metric are
0<op<m, ——<u,9<2, 0<y < —. (E.5)

We find that the determinant of this metric is

97 \ 2
Det g = <5T72) sin® o cos® 6 cos? ju sin®(pu — 0) sin®(u + 0), (E.6)
so that
2
(Det g)1/? = 5T72 sina cosf cos p sin(pu — 0) sin(p + 0). (E.7)

Note that the quantity above will have both positive and negative (and 0) values in the
coordinate patch. So in computing the volume of the space, the absolute value of it must be
used.

The volume of the space is
Vol = / |(Det ¢)Y2|dB dv de dip dae df dp

= /dﬂd7d¢d¢ /(Detg)l/Qdadeu

= ot [ et )" da o dy E5)
81, [ | |

= 031" | sinada [ cosd cosp|sin(u —0) sin(u+ 0)|d6 du
81, ' |

= g7 | cos 6 cos | sin(p — ) sin(p + 0)|d6 dp.

The integrals are over the ranges of the coordinates given in (E.4) and (E.5).
To do the last integral it is convenient to re-write the expression inside the absolute value

as

sin(p — ) sin(p 4 0) = (cos O 4 cos u)(cos 6 — cos ), (E.9)
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and let
f(6, 1) = cos cos u(cos @ + cos p)(cos @ — cos ). (E.10)
Then the volume is given by

l = f E.11
Vol = ot [ 186, ) ld0ce (E.11)

Computing this integral is a little tedious but straightforward. One must determine the
values of 6 and p for which f is positive and for which it is negative.

Since ¢ and p are both in the interval [—7, 7], we have

f(ealu)> 07 _‘:u|<9< ’/’L’

(E.12)
T 0
< 0, =5 <O<—ful, [ul <8<,
so that
0. = f(0,p), —|ul <0 <|ul
(E.13)
7 T
Therefore,

[ 170.w1a8 = / -+ (E.14)

where the first integral is over the region where f is positive and the second integral is over

the region where f is negative. One can see that

/f /gdu/lijM (E.15)

and that

/_fz /Wdu (/W'“'+/|j) £(0, 10)do. (F.16)
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These double integrals are readily computed by Mathematica. We find them to be

fr= 3

(E.17)
2
/_ I= -3
So the volume is found to be
27,

This value for the volume is in agreement with what is calculated in [76].

F Linearized bosonic field equations of D = 11 super-
gravity

(I) The bosonic field equations of d=11 supergravity

The bosonic sector of d = 11 supergravity consists of a metric g4p and a 3-form potential
Aapc. The exterior derivative of the 3-form potential gives a 4-form flux Fapcp. Classically
these fields must satisfy the d = 11 supergravity bosonic field equations. These field equations
consist of an Einstein equation, a Maxwell equation, and the Bianchi identity for Fagcp.

The Einstein equation is

1 1
Rap = gFACDEFBCDE — %QABFCDEFFCDEFa (F.1)
the Maxwell equation is
1
v  FABCD _ - (BODEFGHIIKLp (F.2)
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and the Bianchi identity is

ViaFpepr = 0. (F.3)

Let gap and Fapcp be a solution to the field equations. We take this solution to be the
‘background solution’. We would like to perturb the background fields, gap and Fapcp, in
such a way that the perturbed fields still satisfy the equations of motion.

Let hap and fynpg be the perturbations to the metric and flux, respectively. The

perturbed fields are then

i = 9aB+hap
(F.4)

Fapecp = Fapep + funpo-

We would like to put these perturbed fields into the equations of motion and determine
the equations the perturbations hap and fapcp must satisty in order for g, and Fapcp
to be solutions. The equations hp and fapcp must satisfy to first order are the ‘linearized
field equations’.

(ITI) Linearizing the Einstein equation

Let R ap be the Ricci tensor obtained from the perturbed metric g 5. Then the Einstein

equation is

1 1
Rap = §FACDEFBCDE - %gAB]:CDEF}—CDEF- (F.5)

We want to expand each of the terms to first order in the perturbations and obtain the
linearized Einstein equation.
(I1.1) Linearizing R4p

Expanding R ap to first order gives

Rap = Rap + 0Rap, (F.6)
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where

1 N A= . ]_ > >
ORAp = éAhAB + V(AVChB)C — §VAVBh%.

(F.7)

V 4 is the covariant derivative for the background metric. Ah g is called the ‘Lichnerowicz

operator’, and its action on hup is
7

~

Ahap = —?CﬁchAB — QRACBDhCD + 2R(5h3)(j.

(I1.2) Linearizing FacppF s ¥

Expanding FacppF L PE gives

CDE MC _ND_PE
FacpeFg = g"'"g g "FacoeFBuNP

MC _ hMC) ... (Fpyunp + fBMNP)

= (9
= FacopF“"" +0(h) + O(f),
where
O(h) = —(WMCgNPglE 4 gMERNP gPE 1 MgV E) Fyopp Famnp
o(f) = 9" 9P g"F Facopfeune + 9" 9" 9" facoeFeunp.
After some straightforward manipulations

O(h) = —3F,“NPEM  Shyo

O(f) = 2F(AMNPfB)MNP-

So

FacpeFpPY = FacppFp®P? — 3F,“ NP M hare + 2F(AMNPfB)MNP-

(I1.3) Linearizing g,z FcopprF P Er
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Expanding g,z FoprerF PP gives

gapFoperF PPl = g, g@MgPNghlgl@ FeperFuNPQ

= (9B + hag)(g“™ — RO

(F.13)
(Feper + feper)(Fyunpg + funpeg)

= gaFeperF PP + O(h) + O(f).

O(h) is the part that is first order in the hyp. It is

O(h) = hapFopppF“PEr

RCM gDN EP FQ | gCM DN gEP gFQ)

9P g (F.14)

—QAB( FeperF, MNPQ

—gaB (gCMgDNhEPgFQ + gCMgDNgEPhFQ)FCDEFFMNPQ-

After some straightforward manipulation
O(h) = hapFepprFCPPY — 4gaph“™ FopprFyPPF. (F.15)
O(f) is the part that is first order in the fapcp. It is straighforward to obtain that
O(f) = 2948 F" "€ farnpq. (F.16)

So

guapFeperF PP = gapFopprFPEY 4+ hapFoppr FOPER : )
F.17

—4gaph“M FopprFy\ B + 2945 FMNFC fonpo.

(I1.4) The linearized Einstein equation

Putting together equations (F.5)), (F.6), (F.7), (F.12)), and (F.17)) gives the linearlized
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Einstein equation. It is

1. VA 1o o 1
iAhAB + V(AVChB)C - §VAVBhCC = —FACNPFBMNPhMC - %hABFCDEFFCDEF
1 2
+§9ABhCMFCDEFF]\/l[)EF + §F(AMNPfB)MNP
1
_TSQABFMNPQfMNPQ (F.18)
(III) Linearizing the Maxwell equation
The Maxwell equation is
1
VA;ABCD — _%EBCDEFGH[JKLIEFGHIIJK[p (Flg)

We want to expand each of the terms to first order in the perturbations and obtain the
linearized Maxwell equation.
(II1.1) Linearizing V 4, FAB¢P

Expanding V 4 FABCP gives

V4 FABCD — gAMgBNGCPoDQy T
(g™ = MY (gP9 = WPV a(Funpg + funpq) (F.20)
= VAFABCP L O(f) + O(h) + O(dh).

O(f) is the term that results from varying F, O(h) is the term that results from varying

the 4 inverse metrics g™, and O(Oh) is the term that results from varying the Christoffel

symbols in the covariant derivative V 4.

First, we obtain O(f). It is straightforward to see that

O(f) = Vaf*5eP. (F.21)
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Next, we obtain O(h). After shuffling terms around it is possible to obtain O(h) in a
nice, compact form.
O(h) — —(hAMgBNgCPgDQ + gAMhBNgCPgDQ

4 gAM gBNpCP (DQ | (AM (BN (CP hDQ)

g VaFunpg

_ _hAMNT  Fy BED — hBNﬁAFANCD o hCPﬁAFABPD _ hDQﬁAFABCQ

(F.22)
_ _4hM[A@AFECD]
_ A AFMABCYD] 4 (% pMIA) Fy, BOD)
_ 4V (FMIABCyD] _ pBODMSG pA 4 gpAMIBOS D]
So
O(h) = 4V JFMABCEDL  pBCDMYg A o 3pAMIBOYy pDl, (F.23)

Now, we want to obtain O(0h). This term arises from varying the Christoffel symbols.

1
Iy = §gRS(aAng + Omgas — Os€anr)
1

= 3 (g™ = W) [04(gars + hars) + Ori(gas + has) — Os(gans + hant]  (F24)

= Thu + 7
where ', is the Christoffel symbol for the background metric and

1

1
’VﬁM = _éhRS(aAgMS + aMgAS - aSQAM) + §gRS(8AhMS -+ 8MhAS — aShAM>- (F.25)

It is possible to express the first term of 4%, in terms of I'K,,. Doing so gives
9 1
YVinr = =095kl hy + 59" (ahus + Onhas — Osha). (F.26)
Furthermore, using the fact that

Vahars = Oahas — DXyhics — Dhghark, (F.27)
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it is possible to show that
1 ~ . %2
Vhn = §(VAhMR + Varha™ = VEhay). (F.28)

The covariant derivative of F' is

VaFunprg = 0aFunpg + 4F§[MFNPQ}R

(F.29)
= VaFunpo + 47f[MFNPQ]R,
SO
O(0h) = 4g™ g"Ng" gPCy 0 Fypoir
(F.30)
_ 9 <@AhR[A)FBCD}R i (v[AhAR)FBCD]R _ (@RhA[A)FBCD]R '
Expanding the antisymmetrizations and simplifying gives
o o 1 o
O(dh) = FBOPEY \pAp — 3FARIBOY  pp Pl — §FBCDRthAA. (F.31)

Finally, we put the parts together to obtain

9 > = = 1 >
VAJ—_-ABCD _ VAFABCD + VAfABCD + 4VA(FM[ABChD}M) . §FBCDRVR}LAA (F32)

(I11.2) Linearizing eBCPPFCHIIKL Tyt o yrer
Expanding the right hand side of the Maxwell equation gives

BCDEFGHIJKL _ —1/2~BCDEFGHIJKL
€ FereaFrikL = (—g) /6

(Ferau + feran)(Frixr + frikr) (F.33)
= POPEFCHIKL By Frykr + O(f) + O(h),
where ¢ is the determinant of the metric, O(f) is the term that arises from varying F, and

O(h) is the term that arises from varying the determinant of the metric g.
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It is straightforward to see that

O(f) = 25 PEFCHIRE By pap fraser. (F.34)

To get O(h) one needs to use the fact that, to first order,

det(g,p) = det(gag) + det(gap)Tr(g~'h), (F.35)

where g=!h is the matrix multiplication of the inverse metric and the metric perturbation.

So
(—g)*= (—g—gTr(g"'h)~"/?
= (—g) AL+ Tr(g 'h)~'?
1 (F.36)
= (=)™ (1 = STr(g™"h)
1 _ _
= (-9 == Tr(g D).
This gives
O(h) = _%TT(g_lh)EBCDEFGHIJKLFEFGHFIJKL- (F.37)

(III1.3) The linearized Maxwell equation

Putting together equations (F.19)), (F.32), (F.33), (F.34), and (F.37) gives the linearized

Maxwell equation. It is

g o 1 v 1
vAfABCD + 4VA(FM[ABChD]M) o 5PvBC’DRthAA — _T%EBCDEFGHIJKLFEFGHJCIJKL
1

1152

Tr(g='h)ePCPEFCIIEL g pay Frygr - (F.38)

(IV) The linearized Bianchi identity

Expanding the Bianchi identity gives

ViaFsepe) = ViaFepr + Viafsepr = 0. (F.39)
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So the linearized Bianchi identity is

Viafsepg = 0. (F.40)

Note that there is no need to consider the variation of the covariant derivative because
the Christoffel symbols vanish when taking an exterior derivative.
(V) Summary

So to summarize, the linearized field equations are the linearized Einstein equation

14 VI 1o o 1
EAhAB + V(AVChB)C — §vAvBh% = —F,NPEM ohye — %hABFCDEFFCDEF
1 2
+§QABhCMFCDEFF]\/l[)EF + §F(AMNPfB)MNP
1
_TSQABFMNPQfMNPQ (F.41)
the linearized Maxwell equation
% i~ ]_ ~ 1
VAfABCD + 4VA(FM[ABChD]M) . §FBCDRVRhAA — _ﬁEBCDEFGHIJKLFEFGHfIJKL
1
o 1152Tr(g—lh)GBCDEFGHIJKLFEFGHFIJKL (F42)
and the linearized Bianchi identity
Viafsepg = 0. (F.43)

G Conventions of [56] and [50]

In this appendix we translate the definition of the scalar mass used in [56] and [50] into the
definition of it used here. We also clarify the ‘Lichnerowicz-like’ operator used in [56] and
demonstrate that this paper agrees with our result that A;, = Ay + 4.
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AdS Klein-Gordan equation and scalar field mass used here

Here the Klein-Gordan equation for a scalar field in AdS space is taken to be

v

O¢ = 2% (G.1)

O is the Laplacian in AdS with the metric sign convention (— + ++), and L? is the AdS
radius squared. v = m?L? is regarded as the dimensionless mass, and 7z 1s regarded as
the mass. So the mass is the eigenvalue of the scalar field ¢ under the Laplacian, and the
dimensionless mass is obtained from the mass by multiplying by L2.
AdS Klein-Gordan equation and scalar field mass in [56] and [50]

In [56] and [50] the Klein-Gordan equation for a scalar field in AdS space is taken to be

(equations (3.22a) and (3.22b) of [56])
(05 —32)¢ = —m3¢. (G.2)

Oy is the Laplacian in AdS with the metric sign convention (+ — ——).
In [56] and [50] m? is regarded as the mass. This Klein-Gordan equation is obtained

from the one derived in [49], which is

(O + 5 R)6 = —mio, (G.3)

where R is the Ricci scalar of AdS.

It is important to note that some authors have a denominator of 6 instead of 3 in the
Ricci scalar term in the Klein-Gordan equation, see e.g. [6]. In the Klein-Gordan equation
above the denominator is 3 because the authors define their Riemann tensor so that it is %
of what it is traditionally ((A.1.28) of [7]).
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Using this convention, the Ricci tensor for AdS in [72] is given to be

R, = gmg. (G.4)

Comparing with (G.2)) we see that in [56] and [50] the size of AdS is fixed so that A = —16.
The mass here in terms of the mass of [56] and [50]

Here the traditional definition of the Riemann tensor is used, and the Ricci tensor is

Re, — —%53. (G.5)

Setting the the right-hand-side of (G.4) to % the right-hand-side of (G.5) gives

7
so that the square of the AdS radius in [56] and [50] is

1
2= —. G.7
16 (G.7)
We would like to have the mass used here in terms the mass of [56] and [50]. To do this
we note that for a given AdS radius Oy = —0, because [56] and [50] uses the opposite metric

sign convention used here.

So the Klein-Gordan equation of [56] and [50] becomes
(-0 = 32)¢ = —mjo, (G.8)

which with further massaging becomes

D¢ = (m} — 32)¢. (G.9)
Comparing with (G.1)), and setting L* = &, gives
1
v=—(m}—32). (G.10)
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D’Auria and Fre’s ‘Lichnerowicz-like’ operator
In [56] the authors use what they call the ‘Lichnerowicz-like’ operator on symmetric
tensors. In equation (2.11e) of that reference they give it to be
Mz)02Y(a8) = [(D +40)3(s) — 40”‘”“] Y- (G.11)
The tensor C*’* is the Weyl tensor on the internal space, which is Einstein. In equation

(2.9a) of [56] give it to be

Cofm = RoB. 42500 (G.12)

v
where the first term is the Riemann tensor and the second term is the antisymmetrized

product of §’s, i.e.
af _ slagB
00 = sleoll. (G.13)
Acting with the antisymmetrized ¢’s on the symmetric tensor Y gives
(63 1 (6 (64
%ij) = 1(56 53 - 5g5u)(YM + )
1
= —Z(Yﬁa + Yop)
1
=~V (G.14)

To get the second equality it is assumed that the symmetric tensor Y is traceless.

Therefore acting with the Weyl tensor on Y gives

Cw\ﬁuy(/\m - Ra)\ﬁuy(/\u) + 262}/(0@7 (G.15)
and putting this, with e = 1, into the action of the Lichnerowicz-like operator given in
equation (G.11)) gives

Mz)(02Y(ap) = DY (ap) — 4R, Yan) + 32Y(ap). (G.16)
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It is important to note that the above is not the usual Lichnerowicz operator, which is
given in equation (V.4.111e) of [49], but in the case of an Einstein space differs from it by a
constant.

The usual Lichnerowicz operator does not appear to be given in [56], but it is given in

equation (V.4.111e) of [49] to be
ALY = [(m +48)01%) — AR | Yiae). (G.17)

(N.B. In equation (V.4.109) of the same publication, i.e. reference [49], the authors give the
same operator as above, but with the opposite sign in front of the Riemann tensor. The

operator above seems to be the correct one.)

Comparing equations (G.16]) and (G.17)) gives that
—AL = M(z)(o)z —|— 16, (G18)

where the operator on the left-hand-side is the usual Lichnerowicz operator and the operator
on the right-hand-side is what the authors of [56] call the ‘Lichnerowicz-like’ operator.

From equations (4.27), (4.71), (3.23b), and (3.23g) of [56] one obtains
—Mp)02 = May ), (G.19)

where the operator on the right-hand-side is the Hodge-de-Rham operator on 2-forms.

This relation together with equation (G.18) gives
—AL — _M(I)Q(O) + ]_6, (G20)

where the operator on the left-hand-side is the usual Lichnerowitz operator given in [49] and
the operator on the right-hand-side is the Hodge-de-Rham operator on 2-forms.
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Equations (2.11c) of [56] and (V.4.111c) of [49] both give
M(1)2(0)Yv[am = 3DMD[MYQI3] (G21)

Equation ((G.20)) is for the case when the size of the space is such that R,z = 24¢,p, for the
usual definition of the Riemann tensor. In the case when the size of the space is such that
R,s = 69,5 the differential operators get scaled down by }1.

Hence, in the case that size of the space is such that R,3 = 6g,s, the relation that is

equation (G.20)) becomes
—Ap = —M(l)z(o) +4, (G22)

where the operator on the left-hand-side is the usual Lichnerowitz operator given in [56] and

the operator on the right-hand-side is the Hodge-de-Rham operator given in [56] and [49].

H Toric homogeneous Sasaki-Einstein manifolds via Kahler

quotient

The Kéahler quotient provides a straightforward way to construct a Kahler manifold from a
higher-dimensional one. The higher-dimensional Kahler manifold is taken to be a simpler
space, e.g. typically C". As a result, objects in the constructed lower-dimensional space, e.g.
the metric and Kéhler 2-form, can be more easily described in terms of those in this simpler
higher-dimensional space.

In this appendix, we explain the Kahler and hyper-Kéahler quotients, and obtain the toric
homogeneous Sasaki-Einstein manifolds, M32, Q%! and N'! in terms of them.
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For more details on the K&hler and hyper-Kéhler quotients, see [87], [88], [89], and [90].
Kahler quotient

Suppose a Lie group GG acts on a symplectic manifold M. The basis elements of the Lie
algebra g are vector fields V* on M, where the index a runs from 1 to Dim(g). Each V*
is a vector field that can in turn be written in terms of the 9/0x’, where the z' are local
coordinates on M. These vector fields V' can be regarded as Hamiltonian vector fields that
generate Hamiltonian phase flows on the manifold M. In other words, a vector field V¢ on

M, which is a basis element of g, gives rise to a Hamiltonian u* on M given by

dlLLa = ivaw, (Hl)

where w is the symplectic form on M. The u* are components of an object i, which is called
a moment map, and is also known as a momentum map.

The moment map g is to be regarded as a map from M to the dual of the Lie algebra,
ie. yu: M — g*. In other words, u is to be regarded as a 1-form on M. p can be written
as ji = pV,, where V, is the 1-form dual to the vector field V¢, so that V,(V?) = 6. Given

any element & = £,V of g one has that

d{p, &) = d(p*&a) = iew, (H.2)

and so (u,&) can be seen as a Hamiltonian on M with corresponding Hamiltonian vector
field &.

In the case of Euclidean three-dimensional configuration space, the phase space, i.e. the
space of positions together with momenta, is six-dimensional. In this case, M = C3. When
the group of symmetries is taken to be the group of spatial rotations about the origin, the
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components of the moment map are the values of the angular momentum, and when the
group of symmetries is taken to be spatial translations, the components of the moment map
are the values of the momentum [87]. Hence the name ‘moment map’ or ‘momentum map’.

Given an element in the dual of the Lie algebra p € g*, one can consider the set of points
in M defined by M, = p~'(p), which is the set of all the points in M that map under the
moment map to the dual Lie algebra element p. Such a set of points is called a level set.

In general, a group action will move a point in a level set into another level set, but it is
shown in [87) that M, is fixed under the action of the subgroup G, of G consisting of those
elements g € G such that Ad;p = p. In the case that p = 0 one of course has that G, is the
entire group G.

Since M, is fixed under G, one can mod out the action of G}, on M, and consider the
space of G,-orbits of M,,. This quotient space is called, e.g. in [87], a reduced phase space.
In the case that M is a Kahler manifold, the Kéahler 2-form is the symplectic form and the
quotient is called a Kahler quotient.

The simplest example of the Kahler quotient construction is when the starting manifold
is M = C", the symmetry group is G = U(1)", and the level set is taken for the dual Lie
algebra element p = 0. The subgroup that fixes the level set is of course G, = G. The action

of the group G is given by

2 — %0y, (H.3)

where £ = (£1,...,&,) is an element of the Lie algebra u(1)” = R". To obtain the Lie algebra
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vector fields, consider a scalar function F'(z;, z;) on M. Under the group action, one has

F(z,%) — F(%@y, e %z

~ F((141i8Q7)z, (1 — i6.Q7)z)
- OF OF
~ F(Zi, Zl) + ;(ZfaQ?,Zza—Zl — Zfa ?218_22) (H4)
From this one can see that the Lie algebra vectors are
0 = 0 0
Ve = = (2 Zi H.5
g, =12 Qi — ) (H.5)
Inserting this vector into the equation
du® = iyaw,
with Kahler form
w=—1 Z dz; N\ dz;, (H.6)

one can solve for the moment map. The right hand side of the equation gives
ivaw = — Z dZZ'(VUL)dZZ' — dzidZi(V“)
= Z Q?(Zidii —+ Eidzi)
= Z Qfd(zzil) (H?)

One can then see that the moment map is given by

ph = Qi -t (H.8)

where the t* are integration constants. Setting the integration constants equal to 0 and
restricting to the level set corresponding to the 0 element of g* gives the set of points defined
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by the r algebraic equations (a =1,...,7)

> Q) =0. (H.9)
The space of orbits obtained by further quotienting out by the group action z; — €*@ z; is
the Kéhler quotient. An important fact is that if the charges satisfy the condition >, Q¢ =0

for each a, then the resulting space is a toric Calabi-Yau manifold.

M?3? and QY!'! via Kiahler quotients

If one starts with the space M = C® parameterized by the complex coordinates (u'!, u?, u?, vt v?),
and takes the Kihler quotient by U(1), with charge 2 for the u’ and charge —3 for the v',
ut | vt
U(1) charges | 2 | —3
then one obtains the space defined by the equation
2(|u' [P+ [u?* + [W?) = 3([v' " + '), (H.10)

with the coordinates identified according to the U(1) action (uf,v?) — (e?®ut, e=3%v?).
This space is in fact the Calabi-Yau cone over the homogeneous Sasaki-Einstein manifold
M32. M3? is obtained by further restricting to a fixed radius in the cone, which is achieved

by setting
2(|u > 4 | * + W) = 3(|v*)? + [0'}) = 1. (H.11)

The homogeneous Sasaki-Einstein manifold Q*!! can also be obtained as a Kihler quo-
tient. If one starts with the space M = C°® parameterized by the complex coordinates
(a',a® b', 0%, ¢t c?), and takes the Kahler quotient by U(1)? with charges as given in the
table,
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U(1); charges | 1 [0 | —1

U(1)y charges | 0 |1 | —1

then one obtains the space defined by the equations
@' * + [a®]* = [b'* + 6% = |c']* + |c* %, (H.12)

with the coordinates identified according to the U(1)? action (af, b, ) — (e®1al, e®2h?, e =1 71820,
This space is in fact the cone over the homogeneous Sasaki-Einstein manifold Q1. QU1

is obtained by further restricting to a fixed radius in the cone, which is achieved by setting
la'|? + |a®]* = [b')* + [B?)? = | >+ |)F = 1. (H.13)

Hyper-Kahler quotient

Whereas a Kahler manifold looks locally like C", a hyper-Kahler manifold looks locally
like H", where H is the space of quaternions ¢ = a+1ib+ jc+kd, a,b,c,d € R. The imaginary
unit ¢ in C gives rise in Kahler manifolds to the complex structure J, and analogously, in
hyper-Kahler manifolds the units ¢, 7, and k£ in H give rise to three complex structures, I,
J, and K. Practically speaking, Kahler 2-forms are obtained by lowering the upper indices
on the complex structures with the metric. So a hyper-Kéahler manifold has three Kahler
2-forms as well.

The space of quaternions H can be seen as R%, so the unit quaternions can be seen as
the 3-sphere S®. S% is the same as the Lie group SU(2) when considered as a manifold, and
when considering the multiplication of quaternions, the unit quaternions can be identified
as SU(2).
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More concretely, a quaternion can be represented in terms of the Pauli matrices, and in

terms of two complex numbers as

A u v
g=q 1l +id-7= : (H.14)
—U U

where u = ¢* + i¢® and v = ¢®> + ig'. The units i, j, and k are represented as the Pauli

matrices, io!, io?, and io3, respectively. This representation of the quaternions makes it

clear that the units 7, j, and k transform as a triplet, i.e. in the adjoint representation,
under SU(2).

Since the unit quaternions 4, j, and k transform as a triplet under SU(2), the three

complex structures and the three Kahler 2-forms do as well. The triplet of Kahler 2-forms

for H, which transform in the adjoint representation of SU(2), is given by the relation

1
i@ﬁ:QMA@, (H.15)
which more explicitly is
w3 wh — jw? du dv di —dv
i = A : (H.16)
wt +iw? —wd —dv du dv  du

(Note that the conjugate of a quaterion is § = a — ib — jc — kd.) This relation gives the

Kahler 2-forms to be

—%MuAda+dvAdm

wh —iw® = i(duAdv). (H.17)
If there is a Lie group G that acts on a hyper-Kahler manifold M, then there is a
construction, called the hyper-Kahler quotient, that gives a hyper-Kéhler manifold of
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lower dimension. In what follows, we assume that the starting hyper-Kéhler manifold is
M = H", and that the Lie group is of the form G = U(1)".

In particular, G is taken to act as
g — qie' %, (H.18)
which in terms of the u; and v; is
u; — ue@ite
v; — e @ik (H.19)
In the same way that they were derived in the Kéahler quotient case, i.e. by Taylor

expanding a scalar function to first order, one can derive the Lie algebra vector fields in the

hyper-Kahler case. They are found to be

: W, 0 0 0 0
= ZZQi (uiam — ui@a, UZ@ -+ avz) (H.20)

Toe 'L
In the Kahler case, each component of the moment map was a scalar. However, in the

hyper-Kahler case there is a triplet of Kahler 2-forms, so each component of the moment

map will be a triplet. In particular, the moment map is given by
dﬁa = Z'Vau_j. <H21>

Plugging the Lie algebra vector fields and the Kahler 2-forms into this equation, one can
obtain the moment map in the same way it was derived in the Kéahler quotient case. One

finds
ps = Z Q7 (fuif” — [vil*)
— iy = Z Qfuv;. (H.22)
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As in the Kahler case, we care about the level set corresponding to the 0 element of the

dual Lie algebra. This set of points is the solution to the equations (a = 1,...,7)

ZQa |u2|2 |U,| ) =
Z Qiuiv; = 0. (H.23)

The space obtained by further quotienting out by the group action ¢; — ¢;¢’9*?°¢ is the
hyper-Kahler quotient.
NU! as a hyper-Kihler quotient

If one starts with the space M = H? (or C%) parameterized by the coordinates (u!, vt u? v?, u3, v?),

and takes the hyper-Kihler quotient by U(1), with charge 1 for each ¢* = (u’,v?),

U(1) charges

then one obtains the space defined by the equations

Z |u1]2 |UZ =

with the coordinates identified according to the U(1) action (u?,v?) — (e®uf, e=%v?).

This space is in fact the Calabi-Yau cone over the homogeneous Sasaki-Einstein manifold
N1 NL1is obtained by further restricting to a fixed radius in the cone, which is achieved
by setting

Sl =l =1 (H.25)

7 7
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