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Abstract The standard text-book Jacobi equation (equation of geodesic devia-
tion) arises by linearizing the geodesic equation around some chosen geodesic,
where the linearization is done with respect to the coordinates and the velocities.
The generalized Jacobi equation, introduced by Hodgkinson in 1972 and further
developed by Mashhoon and others, arises if the linearization is done only with
respect to the coordinates, but not with respect to the velocities. The resulting
equation has been studied by several authors in some detail for timelike geodesics
in a Lorentzian manifold. Here we begin by briefly considering the generalized
Jacobi equation on affine manifolds, without a metric; then we specify to lightlike
geodesics in a Lorentzian manifold. We illustrate the latter case by considering
particular lightlike geodesics (a) in Schwarzschild spacetime and (b) in a plane-
wave spacetime.

Keywords General relativity · Light rays · Jacobi equation

1 Introduction

The Jacobi equation, also known as the equation of geodesic deviation, describes
geodesics in the neighborhood of a reference geodesic. More precisely, the Jacobi
equation is the linearization of the geodesic equation around the reference geodesic,
where the linearization is done with respect to the coordinates and the velocities.
Thus, the Jacobi equation describes geodesics which are close to the reference
geodesic and whose velocities are close to the velocity of the reference geodesic.
The Jacobi equation has important applications to General Relativity: for time-
like geodesics, the Jacobi equation describes the relative acceleration of freely
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falling particles around a freely falling reference particle. This relative accelera-
tion, which is determined by the curvature tensor along the worldline of the ref-
erence particle, can be interpreted as the tidal force produced by the gravitational
field. For lightlike geodesics, the Jacobi equation determines the shape of light
bundles around a reference light ray. Again, the expansion and distortion of the
bundle is determined by the curvature tensor along the reference light ray. Detailed
discussions of the Jacobi equation (or geodesic deviation equation) can be found
in almost any text-book on General Relativity, see e.g. Synge [19], Misner et al.
[14] or Hawking and Ellis [8].

If a geodesic is close to a reference geodesic but its velocity is not, the Jacobi
equation does not give a valid approximation for it. Such a geodesic is properly
described by an equation which is linearized only with respect to the coordi-
nates but not with respect to the velocities. Such a generalized Jacobi equation
was brought forward, for timelike geodesics in a general-relativistic spacetime,
by Hodgkinson [9]. This equation describes tidal forces on particles whose rela-
tive velocity is not small. Applications to astrophysics were given by Mashhoon
[12; 13]. The generalized Jacobi equation was independently rediscovered by Ciu-
folini [6]. More recently, its implications were studied in a series of papers by
Chicone and Mashhoon [3; 4; 5].

In geometric terms, the ordinary Jacobi equation approximates the geodesic
flow on a tubular neighborhood of the reference geodesic in phase space (i.e., in
the cotangent bundle over the base manifold). By contrast, the generalized Jacobi
equation approximates the geodesic flow on a neighborhood in phase space that is
unrestricted in the fiber dimension.

All the references quoted above consider the generalized Jacobi equation for
timelike geodesics, which is physically of particular relevance because of its rela-
tion to tidal forces. In this article we want to discuss the generalized Jacobi equa-
tion for lightlike geodesics. Then it describes light rays around a reference light
ray. The domain where the generalized Jacobi equation is applicable but the Jacobi
equation is not encompasses all neighboring light rays that are close to the refer-
ence light ray but whose velocities are not.

Although we are mainly interested in lightlike geodesics, it is worthwile to
note that the geodesic equation and, hence, the Jacobi equation and the gener-
alized Jacobi equation can be formulated on an affine manifold, without a met-
ric. All that is needed is a connection. We begin by deriving the affine general-
ized Jacobi equation in Sect. 2. In Sect. 3 we specify to lightlike geodesics of
a Lorentzian metric. In this case, the generalized Jacobi equation can be used to
describe light bundles with arbitrarily large opening angle around a reference light
ray. Of course, if the opening angle is large, the light rays will leave the neighbor-
hood of the reference light ray soon, unless they are being refocused towards the
reference light ray. So the generalized Jacobi equation can be used, in general, as
a valid approximation only close to the vertex of the bundle. The general results
of this section are illustrated by considering a bundle around a circular light ray at
r = 3 m in Schwarzschild spacetime. In Sect. 4 we consider lightlike Fermi nor-
mal coordinates which allow to write the generalized Jacobi equation in terms of
the curvature tensor along the reference light ray. As an example, we consider a
bundle of light rays in a plane-wave spacetime.
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Throughout we work with the generalized Jacobi equation in the sense of
Hodgkinson, Mashhoon etc. This equation is linearized with respect to the coordinates
but retains full dependence of the velocities. As an alternative, one may approx-
imate with respect to the coordinates and the velocities up to common order N.
This approach, which dates back to Bażański [1], can be used to set up an itera-
tive scheme. One begins by solving the ordinary Jacobi equation, then calculates
the corrections due to second-order terms and so on. This method was applied to
particle motion in Schwarzschild and Kerr spacetimes by Kerner et al. [7; 10].

This paper is dedicated to Bahram Mashhoon on occasion of his 60th birth-
day. I have very much profited from discussions with him and from reading his
papers. In particular, I wish to thank him for introducing me to the subject of the
generalized Jacobi equation.

2 The generalized Jacobi equation in an affine manifold

An affine manifold is a manifold with an affine connection ∇. In local coordinates,
the connection is determined by its connection coefficients Γ

µ

νσ ,

∇∂ν
∂σ = Γ

µ

νσ ∂µ . (1)

Here and in the following, the dimension of the manifold is n, and we use the
summation convention for greek indices running from 1 to n.

Whenever we have an affine manifold, we can consider the geodesic equation

d2xµ

ds2 + Γ
µ

νσ (x)
dxν

ds
dxσ

ds
= 0 . (2)

The solution curves xµ(s) of (2) are the geodesics (autoparallels) of the affine
connection. As a geodesic remains a geodesic under affine reparametrization, s 7→
as + b, it is usual to refer to s as to an “affine parameter”. Note that only the
symmetric part of Γ

µ

νσ enters into the geodesic equation. The antisymmetric part

T µ

νσ := Γ
µ

νσ − Γ
µ

σν , (3)

which is called the “torsion”, drops out from the geodesic equation. As in the
following we are interested only in the geodesic equation, and in equations derived
thereof, we may replace any connection by its symmetrized version. Therefore we
will assume in the following that the connection is symmetric, Γ

µ

νσ = Γ
µ

σν (For
the Jacobi equation and some of its generalizations in terms of a non-symmetric
connection see, e.g., Swaminarayan and Safko [18]).

Now fix a geodesic X µ(s),

d2X µ

ds2 + Γ
µ

νσ (X)
dXν

ds
dXσ

ds
= 0 . (4)

We will call it the “reference geodesic”, and we will assume that it is known, i.e.,
that we have the X µ explicitly as functions of the curve parameter s. Then the
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geodesic equation for a neighboring curve xµ(s) = X µ(s) + ξ µ(s) results from
inserting xµ(s) = X µ(s) + ξ µ(s) into (2) and subtracting (4),

d2ξ µ

ds2 + Γ
µ

νσ (X +ξ )
(

dXν

ds
+

dξ ν

ds

) (
dXσ

ds
+

dξ σ

ds

)
− Γ

µ

νσ (X)
dXν

ds
dXσ

ds
= 0 . (5)

With X µ(s) known, (5) is a system of second order ordinary differential equations
for the n functions ξ µ(s). It is the exact geodesic equation, expressed in terms of
the coordinate difference ξ µ(s) with respect to the reference geodesic X µ(s).

If we linearize (5) with respect to ξ µ , but not with respect to dξ µ/ds, we get

d2ξ µ

ds2 + Γ
µ

νσ (X)
(

2
dξ ν

ds
dXσ

ds
+

dξ ν

ds
dξ σ

ds

)
+ ∂τΓ

µ

νσ (X)ξ
τ

(
dXν

ds
+

dξ ν

ds

) (
dXσ

ds
+

dξ σ

ds

)
= 0 . (6)

This is the generalized Jacobi equation, on an affine manifold, in arbitrary coordi-
nates.

By contrast, if we linearize (5) both with respect to ξ µ and with respect to
dξ µ/ds, we get

d2ξ µ

ds2 + Γ
µ

νσ (X)2
dξ ν

ds
dXσ

ds
+ ∂τΓ

µ

νσ (X)ξ
τ dXν

ds
dXσ

ds
= 0 . (7)

This is the ordinary Jacobi equation in arbitrary coordinates. To recover the stan-
dard text-book form, we have to introduce the covariant derivative along X(s),
which is defined by

Dηµ

ds
=

dηµ

ds
+Γ

µ

ρτ(X)η
ρ dXτ

ds
(8)

for any ην , and the curvature tensor

Rµ

τνσ = ∂νΓ
µ

τσ − ∂τΓ
µ

νσ + Γ
µ

νλ
Γ

λ
τσ − Γ

µ

τλ
Γ

λ
νσ . (9)

Then a straight-forward calculation reduces (7) to

D2ξ µ

ds2 + Rµ

τνσ (X)ξ
ν dXτ

ds
dXσ

ds
= 0 , (10)

which is, indeed, the standard text-book form of the ordinary Jacobi equation.
The generalized Jacobi equation (6) is a second order non-linear ordinary dif-

ferential equation for ξ µ(s). It is non-autonomous because the coefficients Γ
µ

νσ (X)
and ∂τΓ

µ

νσ (X) are functions of the curve parameter s. It gives a valid approxima-
tion for all those geodesics for which the ξ µ(s) are small, whereas the dξ µ(s)/ds
need not be small. Of course, if the dξ µ(s)/ds are not small, the ξ µ(s) will in
general remain small only for a small interval of the parameter s. Such geodesics
will leave the neighborhood of the reference geodesic soon and the generalized
Jacobi equation will, in general, give a valid approximation for them only on a
small interval of the parameter s.

The generalized Jacobi equation may be modified in two ways.
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− One may prefer to choose a different, non-affine, parametrization for the
(approximate) geodesics.

− One may wish to choose special coordinates such that the generalized Jacobi
equation takes a simpler form and that it can be easier compared for two
different geodesics.

Both is possible in an affine manifold, without refering to a metric.
As to the first item, it is often convenient to use on a geodesic a (non-affine)

parameter u which coincides with one of the coordinates, say u = xn. This is pos-
sible for all curves which are transverse to the hypersurfaces xn = constant. Then
the dependence of the xn coordinate on the parameter is known, xn(u) = u, and the
geodesic equation reduces to a system of differential equations for the remaining
coordinate functions

(
x1(u), . . . ,xn−1(u)

)
. The condition that two curves X(u) and

X(u)+ξ (u), both parametrized by u = xn, are geometrically close is equivalent to
the condition that the ξ i(u) are small for i = 1, . . . ,(n−1). By contrast, if an affine
parameter s is used it may be that not all of the ξ µ(s) are small even if the two
geodesics are geometrically close. This happens if the affine parameter on one of
the two geodesics lags behind or runs ahead of the other.

Therefore we will now rewrite the generalized Jacobi equation with respect to
the new curve parameter u = xn. We first observe that the µ = n component of the
geodesic equation (2) can be written in the form

d2u
ds2 + Γ

n
νσ (x)

dxν

du
dxσ

du

(
du
ds

)2

= 0 , (11)

and the remaining (n−1) components as

d
ds

(
du
ds

dxi

du

)
+ Γ

i
νσ (x)

dxν

du
dxσ

du

(
du
ds

)2

= 0 . (12)

Here and in the following, latin indices i, j, . . . take values 1 to (n−1). Calculating
the first term of (12) with the product rule and inserting (11) results in

d2xi

du2 − Γ
n

νσ (x)
dxν

du
dxσ

du
dxi

du
+ Γ

i
νσ (x)

dxν

du
dxσ

du
= 0 . (13)

Together with the equation xn(u) = u, (13) determines the geodesics (or, more pre-
cisely, those geodesics that are transverse to the surfaces xn = constant) with the
non-affine parametrization by u = xn. Equation (13) is a system of second order
ordinary differential equations for the (n−1) functions xi(u). Clearly, these differ-
ential equations are non-autonomous because the coefficients depend on u = xn.
Also, as a result of the reparametrization we have now got a system of equations
that is cubic, rather than quadratic, in the velocities.

In analogy to our earlier procedure we search for solutions of (13) in the form
xµ(u) = X µ(u)+ ξ µ(u), with X µ a known geodesic, now reparametrized by u =
xn. Of course, as xn(u) = Xn(u) = u, we have ξ n(u) = 0. Inserting xi(u) = X i(u)+
ξ i(u) into (13), and linearizing with respect to the ξ i, but not with respect to the
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dξ i/du, gives us the reparametrized version of the generalized Jacobi equation,

d2ξ i

du2 + Γ
i

νσ (X)
(

2
dXν

du
dξ σ

du
+

dξ ν

du
dξ σ

du

)
−Γ

n
νσ (X)

(
2

dXν

du
dξ σ

du
+

dξ ν

du
dξ σ

du

)
dX i

du

−Γ
n

νσ (X)
(

dXν

du
+

dξ ν

du

)(
dXσ

du
+

dξ σ

du

)
dξ i

du

+∂τΓ
i

νσ (X)ξ
τ

(
dXν

du
+

dξ ν

du

)(
dXσ

du
+

dξ σ

du

)
−∂τΓ

n
νσ (X)ξ

τ

(
dXν

du
+

dξ ν

du

)(
dXσ

du
+

dξ σ

du

)(
dX i

du
+

dξ i

du

)
= 0.

(14)

We now turn to the question of whether the generalized Jacobi equation can
be simplified by choosing special coordinates. To that end we will use Fermi
coordinates. Text-books on general relativity treat Fermi coordinates near a time-
like reference geodesic (or, more generally, near a timelike reference curve) in a
Lorentzian manifold, see e.g. Synge [19]. However, it is fairly obvious that, by
an analogous procedure, one can introduce Fermi coordinates near an arbitrary
reference geodesic in an affine manifold, without a metric. The construction is as
follows.

Let an affinely parametrized geodesic X(s) be given. Choose an n-bein (i.e.,
n linearly independent vectors) at one point of the geodesic, such that the nth
vector coincides with the tangent vector of the geodesic, and transport this n-bein
parallelly along X(s). Denote the n resulting vector fields along the geodesic by
E1(s), . . . ,En(s). As X(s) is an affinely parametrized geodesic, En(s) coincides
with the tangent vector dX(s)/ds for all s. Let exp denote the exponential map
of the given connection which, as indicated above, is assumed to be torsion-free.
Then every point in a sufficiently small tubular neighborhood of the given geodesic
can be written uniquely as expX(u)(x

iEi(u)). The n numbers (x1, . . . ,xn−1,u) are
the Fermi coordinates of this point. By definition of the exponential map, this
means that the Fermi coordinates are determined by the following property: The
point with Fermi coordinates (x1, . . . ,xn−1,u) can be reached by following the
geodesic with initial point X(u) and initial tangent vector xiEi(u) up to the affine
parameter 1. By construction, the Fermi coordinate u coincides along the geodesic
X(s) with the affine parameter s. Along neighboring geodesics, however, the Fermi
coordinate u will give a non-affine parametrization in general.

Note that Fermi coordinates are well-defined only on a (possibly small) tubular
neighborhood of a chosen geodesic X(s). Farther away from X(s) they need not
exist, because there may be points that cannot be reached by a geodesic starting
on X(s), and they need not be unique, because geodesics issuing from a point on
X(s) may intersect.

The crucial property of Fermi coordinates is that, in such coordinates, the
connection coefficients Γ

µ

νσ vanish on X(s). To prove this, we first observe that
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∇∂n∂µ = 0 along X(s) because the Eµ are parallelly transported, hence Γ
µ

nσ (X) = 0.
As the connection is symmetric, this implies that Γ

µ

σn(X) = 0. What remains to be
proven is that Γ

µ

i j (X) = 0. We use the fact that

∇(∂i+∂ j) (∂i +∂ j) = ∇∂i∂i + ∇∂ j ∂ j + ∇∂i∂ j + ∇∂ j ∂i . (15)

As for any (n−1)-tuple (x1, . . . ,xn−1) the integral curves of xi∂i that start on X(s)
are geodesics, the left-hand side and the first two terms on the right-hand side of
(15) vanish on X(s). Thus, (15) tells us that Γ

µ

i j (X)+Γ
µ

ji (X) = 0. As our connec-
tion is symmetric, this implies that, indeed, Γ

µ

i j (X) = 0.
If written in Fermi coordinates, the generalized Jacobi equation (14) simpli-

fies considerably because of Γ
µ

νσ (X) = 0. Moreover, the use of Fermi coordinates
reduces the generalized Jacobi equation to a standard form which facilitates com-
parison of this equation for two different geodesics. In Sect. 4 below we will make
this explicit for lightlike geodesics in a Lorentzian manifold, where the Fermi
coordinates can be further specified.

3 The generalized Jacobi equation for lightlike geodesics in arbitrary
coordinates

We now specify the results of the preceding section to the case that ∇ is the Levi-
Civita connection of a pseudo-Riemannian metric g = gµν dxµ dxν ,

Γ
µ

νσ =
1
2

gµρ
(

∂ν gσρ + ∂σ gνρ − ∂ρ gνσ

)
, (16)

where, as usual,

gµν gνσ = δ
µ

σ . (17)

We assume that the metric has Lorentzian signature (+, . . . ,+,−), and we want
to discuss the generalized Jacobi equation for the case of lightlike geodesics,

gµν

dxµ

ds
dxν

ds
= 0 . (18)

If the dimension n of the manifold is equal to 4, lightlike geodesics can be inter-
preted as light rays in a general-relarivistic spacetime. The mathematical results,
however, hold for any n.

Let us briefly recall the well-known fact that, if the connection coefficients Γ
µ

νσ

are given in terms of a metric via (16), the geodesic equation (2) can be derived
from a Hamiltonian. As a matter of fact, Hamilton’s equations for the Hamiltonian

H(x, p) =
1
2

gµν(x) pµ pν (19)

take the form
dxµ

ds
= pµ , (20)

d pµ

ds
=

1
2

(∂µ gρσ )(x) pρ pσ . (21)
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The derivative with respect to s of (21), together with (20) and (16), indeed repro-
duces the geodesic equation (2). By (20), the side-condition (18) takes the form

H(x, p) = 0 . (22)

A reparametrization of the solution curves can be achieved for lightlike geodesics
in a particularly convenient way: We just have to multiply the Hamiltonian with
an appropriate function of x and p. If we want to change from the affine parameter
s to the parameter u = xn, we can proceed in the following way. We first recall
that such a reparametrization is possible for all geodesics that are transverse to
the hypersurfaces xn = constant (This condition is true for all lightlike geodesics
if and only if the hypersurfaces xn = constant are spacelike. However, we may
also consider the case that these hypersurfaces are lightlike or timelike; then the
transversality condition only holds for some lightlike geodesics). By (20) and (18),
the transversality condition is true if gnσ (x)pσ 6= 0. This condition determines an
open subset of the cotangent bundle (phase space). On this subset we can switch
from the Hamiltonian (19) to the modified Hamiltonian

H̃(x, p) =
gµν(x) pµ pν

2gnσ (x) pσ

. (23)

Hamilton’s equation with the Hamiltonian H̃ read

dxµ

du
=− H̃(x, p)gnµ(x)

gnσ (x) pσ

+
gµν(x) pν

gnσ (x) pσ

, (24)

d pµ

du
=−

H̃(x, p)(∂µ gnρ)(x) pρ

gnσ (x) pσ

+
(∂µ gρτ)(x) pρ pτ

2gnσ (x) pσ

, (25)

and the side-condition (22) is equivalent to

H̃(x, p) = 0 . (26)

With (26), the µ = n component of (24) reduces to

dxn

du
= 1 , (27)

so the new curve parameter u coincides, indeed, with the coordinate xn (up to an
additive constant that can be chosen at will). The other components of (24) take
the form

dxi

du
=

giν(x) pν

gnσ (x) pσ

, (28)

where, as before, latin indices range from 1 to (n−1), and (25) reduces to

d pµ

du
=

(∂µ gρτ)(x) pρ pτ

2gnσ (x) pσ

. (29)

Applying the derivative operator d/du to (28), and using (29), reproduces the
equation (13) for u-parametrized geodesics. We have thus proven that the lightlike
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geodesics of the metric g = gµν(x)dxµ dxν , if reparametrized by u = xn, can be
derived from the Hamiltonian (23) together with the side-condition (26).

This gives us a convenient method of how to derive the generalized Jacobi
equation for lightlike geodesics parametrized by u = xn: Start out from the Hamil-
tonian (23). Write Hamilton’s equations with the side-condition (26). Rewrite this
as second-order equations for the xµ . Fix a solution X µ(u) to these equations, sub-
stitute xµ(u) = X µ(u)+ ξ µ(u), and linearize with respect to the ξ µ but not with
respect to the dξ µ/du.

The resulting set of equations describes lightlike geodesics X(u)+ξ (u) which
are close to the lightlike geodesic X(u) but whose tangent vectors need not be close
to the tangent vector of X(u). For n = 4 these equations can be used, by choosing
initial conditions appropriately, for describing a homocentric light bundle around a
central light ray X(u) in a general-relativistic spacetime. If the vertex of the bundle
is at u = u0, say, we have to choose the initial conditions as ξ i(u0) = 0. There are
only (n−2) = 2 independent solutions because the side-condition (18) fixes one of
the dξ i/du in terms of the others. This is in agreement with the intuitively obvious
fact that a homocentric light bundle has (n−2) = 2 dimensions transverse to the
propagation direction. In contrast to the ordinary Jacobi equation, the generalized
Jacobi equation can be used to describe homocentric bundles whose opening angle
is arbitrarily large but the approximation is valid, in general, only for small values
of u− u0, i.e., close to the vertex of the bundle. For larger values of u− u0, the
ξ i(u) will, in general, not be small, so the fact that we linearized with respect to
these quantities may produce large errors.

To be sure, there are special examples were the generalized Jacobi equation
holds for a large parameter interval. An example of this kind will be given in
Sect. 4; in this example even the Jacobi equation, the generalized Jacobi equation
and the exact geodesic equation coincide. In general, however, the generalized
Jacobi equation for lightlike geodesics is a short-time equation, describing the
temporal evolution of light bundles with arbitrarily large opening angles near their
vertex.

We illustrate the general results of this section with an example.

Example 1 We want to calculate, with the help of the generalized Jacobi equa-
tion, the evolution of a light bundle around a circular geodesic at r = 3 m in
Schwarzschild spacetime. The Schwarzschild metric is

gµν dxµ dxν = −
(

1− 2m
r

)
dt2 +

dr2

1− 2m
r

+ r2 dϑ
2 + r2 sin2

ϑ dϕ
2 . (30)

It is well-known that a lightlike geodesic that starts tangentially to the circle
r = 3m, ϑ = π/2, will stay on this circle. We want to write the generalized
Jacobi equation for lightlike geodesics near this circular geodesic. We will use the
azimuthal coordinate ϕ for the parameter, u = xn = ϕ . This excludes geodesics
tangent to a half-space ϕ = constant. Therefore, our parametrization allows us
to treat bundles with any opening angle smaller than π/2 around the circular
geodesic, but not the limiting case that the opening angle is equal to π/2. Using
ϕ for the parameter gives us directly the intersection of the bundle with any half-
plane ϕ = constant.
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After calculating the contravariant components gµν of the Schwarzschild met-
ric, we write the Hamiltonian (23) with xn = ϕ ,

H̃(x, p) =
1
2

(
pϕ +

sin2
ϑ

pϕ

(
p2

ϑ + r (r−2m) p2
r −

r3 p2
t

r−2m

))
. (31)

Using the side-condition H̃(x, p) = 0, Hamilton’s equations for the Hamiltonian
H̃ take the form

dϕ

du
= 1,

dt
du

= − r3sin2
ϑ pt

(r−2m)pϕ

,
dϑ

du
=

sin2
ϑ pϑ

pϕ

,

dr
du

=
r (r−2m)sin2

ϑ pr

pϕ

, (32)

d pϕ

du
= 0,

d pt

du
= 0,

d pϑ

du
=

cosϑ pϕ

sinϑ
,

d pr

du
= − (r−m)sin2

ϑ p2
r

pϕ

+
r2(r−3m)sin2

ϑ p2
t

(r−2m)2 pϕ

. (33)

If we apply the derivative d/du to the expressions for dϑ/du and dr/du from (32),
use (33) and the side-condition H̃(x, p) = 0, we arrive at the following second
order system for ϑ(u) and r(u).

d2ϑ

du2 =
2cosϑ

sinϑ

(
dϑ

du

)2

+ sinϑ cosϑ . (34)

d2r
du2 =

2cosϑ

sinϑ

dϑ

du
dr
du

+
2
r

(
dr
du

)2

+ (r−3m)

((
dϑ

du

)2

+ sin2
ϑ

)
. (35)

Obviously, this system of equations admits the solution

r(u) = 3m, ϑ(u) =
π

2
. (36)

In order to linearize around this circular lightlike geodesic, we write

r(u) = 3m +
1√
3

ξ
r(u), ϑ(u) =

π

2
+

1
3m

ξ
ϑ (u). (37)

The numerical factors are chosen such that

g(∂ξ r ,∂ξ r) = g(∂
ξ ϑ ,∂

ξ ϑ ) = 1 (38)

at r = 3m, ϑ = π/2. Inserting (37) into (34) and (35), and linearizing with respect
to ξ ϑ and ξ r, but not with respect to dξ ϑ /du and dξ r/du, gives us the generalized
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Fig. 1 Cross section of initially circular light bundle around a circular lightlike geodesic in
Schwarzschild spacetime, calculated with the generalized Jacobi equation. The point (ξ r,ξ ϑ ) =
(0,0) represents the circular geodesic at r = 3m and ϑ = π/2. The ξ r axis is in the equatorial
plane, pointing outwards. The ξ ϑ axis is perpendicular to the equatorial plane, pointing down-
wards. The picture shows the intersection with a half-plane ϕ = constant close to the vertex of
the bundle, for four different opening angles

Jacobi equation:

d2ξ ϑ

du2 =−ξ
ϑ − 2ξ ϑ

9m2

(
dξ ϑ

du

)2

, (39)

d2ξ r

du2 = ξ
r +

ξ r

9m2

((
dξ ϑ

du

)2

− 2
3

(
dξ r

du

)2
)

− 2ξ ϑ

9m2
dξ ϑ

du
dξ r

du
+

2
3
√

3m

(
dξ r

du

)2

. (40)

If we linearize also with respect to dξ ϑ /du and dξ r/du, only the first term on the
right-hand side of (39) and of (40) survives,

d2ξ ϑ

du2 = −ξ
ϑ , (41)

d2ξ r

du2 = ξ
r . (42)

This is the ordinary Jacobi equation.
If we solve (41) and (42) with initial conditions

ξ
ϑ (0) = 0, ξ

r(0) = 0, (43)

dξ ϑ

dϕ
(0) = −ε sin χ,

dξ r

dϕ
(0) = ε cos χ, (44)

with χ running from 0 to 2π and ε fixed, it gives us the cross-section of an initially
circular bundle with opening angle proportional to ε . Owing to the linearity of the
ordinary Jacobi equation, the cross-section of such a bundle will be elliptic for
all values of u = ϕ . As a consequence of the plus sign on the right-hand side of
(42), in contrast to the minus sign on the right-hand side of (41), the expansion
of the bundle will increase in the ξ r direction and decrease in the ξ ϑ direction;
hence the major axis of the ellipse is in the ξ r direction. This reflects the fact that
the circular geodesic at r = 3m is unstable with respect to perturbations in the ξ r

direction but stable with respect to perturbations in the ξ ϑ direction.
By contrast, if we solve the non-linear equations (39) and (40) with initial con-

ditions (43) and (44), the cross-section of the resulting bundle will not be elliptic.
The larger the opening angle ε , the stronger the deviation from the elliptic shape
due to the non-linearities, see Fig. 1.

This example demonstrates how the generalized Jacobi equation can be used
for calculating the shapes of light bundles, beyond the small-angle approximation
that is inherent in the standard treatment based on the ordinary Jacobi equation. Of



12 V. Perlick

course, one has to keep in mind that the generalized Jacobi equation is, in genetral,
a valid approximation only close to the vertex of the bundle.

4 The generalized Jacobi equation for lightlike geodesics in Fermi
coordinates

We have already discussed how, on an affine manifold, Fermi coordinates can be
introduced near a reference geodesic X(s). The construction involved the choice
of a parallely transported n-bein E1(s), . . . ,En(s) along the chosen geodesic which
was arbitrary apart from the fact that En(s) should coincide with the tangent vec-
tor dX(s)/ds of the reference geodesic. If our connection is the Levi-Civita con-
nection of a Lorentzian metric, we can further specify this n-bein. For a time-
like reference geodesic, it is usual to require that the n-bein be orthonormal.
Then E1(s), . . . ,En−1(s) span the spacelike orthocomplement of dX(s)/ds at each
value of s. Thus, in the Fermi coordinates (x1, . . . ,xn−1,u) the hypersurfaces u =
constant intersect the timelike reference geodesic X(s) orthogonally and are, there-
fore, spacelike near X(s) (Farther away from X(s) they need not be spacelike).
These are the Fermi normal coordinates treated in standard text-books on general
relativity. In these coordinates the metric attains a standard form if written up to
second order in the transverse coordinates. This standard form was derived by
Manasse and Misner [11] and can be found, e.g., in Misner et al. [14], p.332.

Whereas this standard text-book treatment of Fermi normal coordinates assumes
a timelike geodesic, here we are interrested in Fermi coordinates near a lightlike
reference geodesic X(s). Then the n-bein cannot be chosen orthonormal because
of the requirement that En(s) = dX(s)/ds. The best choice is to have En−1(s)
lightlike with

gµν (X(s)) Eµ

n−1(s)Eν
n (s) = −1 , (45)

and the remaining vectors E1(s), . . . ,En−2(s) orthonormal and perpendicular to
both En−1 and En. (Condition (45) assures that En−1 is future-pointing if En is
future-pointing.) With this choice, the resulting Fermi coordinates (x1, . . . ,xn−2,xn−1 =
v,u) yield hypersurfaces u = constant that are lightlike where they meet the ref-
erence geodesic X(s). The hypersurface v = 0 is lightlike along the reference
geodesic X(s) which is completely contained in this hypersurface. These light-
like Fermi normal coordinates were discussed in some detail in a recent article
by Blau et al. [2]. In that article, the authors derive the general expression for
the metric in lightlike Fermi normal coordinates, up to second order in the coor-
dinates away from the reference geodesic. This result is the lightlike analogue of
the above-mentioned Manasse–Misner representation of the metric near a timelike
geodesic. If adapted to our sign and index conventions, it reads

gµν dxµ dxν = −2dudv + δAB dxA dxB − Rin jn(u)xi x j du2

− 4
3

Rik jn(u)xi x j dxk du − 1
3

Rik jl(u)xi x j dxk dxl · · ·

(46)

Here the Fermi coordinates are denoted (x1, . . . ,xn−2,xn−1 = v,u), as outlined
above. As before, greek indices run from 1 to n and lower case latin indices
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i, j,k, l, . . . run from 1 to (n− 1). In addition, upper case latin indices A,B, . . .
run from 1 to (n− 2). As usual, δAB denotes the Kronecker delta. Rρνστ(u) =
gρµ(u)Rµ

νστ(u) is the purely covariant version of the curvature tensor (9), evalu-
ated at (x1 = 0, . . . ,xn−2 = 0,xn−1 = v = 0,u), i.e., along the reference geodesic.
The ellipses in (46) indicate terms of third and higher order with respect to the xi.

With the contravariant metric components gµν calculated, up to second order,
from (46), we can write the Hamiltonian (23) up to second order. This is enough
to write the pertaining Hamilton equations up to first order, which together with
the constraint (26) will give us the generalized Jacobi equation in lightlike Fermi
normal coordinates near an arbitrary lightlike reference geodesic.
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We will illustrate this with an example.

Example 2 Consider a plane-wave spacetime in Brinkmann coordinates (x1, . . . ,xn−2,v,u),

gµν dxµ dxν = −2dudv − hAB(u)xA xB du2 + δAB dxA dxB , (47)

where hAB(u) = hBA(u) has a non-negative trace,

δ
AB hAB(u) ≥ 0 , (48)

but is arbitrary otherwise. For n = 4, any such metric can be interpreted as a com-
bined gravitational and electromagnetic plane wave. If equality holds in (48), the
spacetime is Ricci-flat and, thus, a pure gravitational wave. For any choice of
hAB(u), the vector field ∂v is lightlike and absolutely parallel. For a discussion of
the geometry of plane-wave spacetimes the reader is refered to Penrose [15].

Plane-wave spacetimes have the following interesting property, first discov-
ered by Penrose [16]. Near any lightlike geodesic in any spacetime, the metric
takes the form of a plane wave in a well-defined limit, called the Penrose limit.
Thereby the original geodesic is represented as the curve (x1 = 0, . . . ,xn−2 = 0,v =
0,u) in the limiting plane-wave spacetime (47). The Penrose limit can be conve-
niently written in terms of lightlike Fermi normal coordinate, as recently demon-
strated by Blau, Frank and Weiss [2]. In particular, their analysis showed that
Brinkmann coordinates for plane waves are lightlike Fermi normal coordinates; in
this case all the higher-order terms, which are indicated in (46) by ellipses, vanish
exactly. The curvature tensor is given along the geodesic (x1 = 0, . . . ,xn−2 = 0,v =
0,u) by

RAnBn(u) = hAB(u) (49)

and Rµνστ(u) = 0 for all other index combinations, compare (46) with (47).
We want to write the generalized Jacobi equation near the lightlike geodesic

(x1 = 0, . . . ,xn−2 = 0,v = 0,u). We will use u = xn for the curve parameter. After
calculating the contravariant metric components from (47), we can write the Hamil-
tonian (23):

H̃(x, p) = pu −
1
2

hAB(u)xA xB pv −
δ AB pA pB

2 pv
. (50)

Note that this Hamiltonian is of second order with respect to the coordinates xA

and independent of the coordinate v. Hamilton’s equations with the Hamiltonian
(50) take the form

du
du

= 1,
dv
du

=− 1
2

hAB xA xB +
δ AB pA pB

2 p2
v

,
dxA

du
= − δ AB pB

pv
, (51)

d pu

du
=

1
2

dhAB

du
xA xB pv,

d pv

du
= 0,

d pA

du
= hAB xB pv. (52)
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Fig. 2 Past light cone of an event in a plane-wave spacetime (47). Three dimensions (x1,v,u)
are shown, with u future-pointing lightlike (from lower right to upper left), v future-pointing
lightlike (from lower left to upper right) , and x1 orthogonal to both. The picture is valid for the
case that x1 is an eigendirection of hAB(u) with positive eigenvalue. In this case in the three-
dimensional picture all the light rays issuing from an event into the past are refocused into
another event, with the exception of one single light ray that stays on an integral curve of the
absolutely parallel lightlike vector field ∂v. A colour version of this picture can be found online
in [17]. For a similar picture, hand-drawn by Roger Penrose, see [15]

Applying d/du to (51), and using (52), gives us the lightlike geodesic equation
in second-order form:

d2xA

du2 =−δ
ABhBCxC, (53)

d2v
du2 =−1

2
dhAB

du
xAxB−2hABxA dxB

du
. (54)

If we write

xA(u) = 0 + ξ
A(u), v(u) = 0 + ξ

v(u), (55)

and linearize with respect to ξ A and ξ v, we get the generalized Jacobi equation

d2ξ A

du2 = −δ
AB hBC ξ

C,
d2ξ v

du2 = −2hAB ξ
A dξ B

du
. (56)

For the transverse coordinates xA = ξ A, these equations are independent of the
velocities; hence, the generalized Jacobi equation coincides with the ordinary
geodesic equation. Moreover, the (generalized) Jacobi equation even coincides
with the exact geodesic equation (53). If we solve these equations with initial con-
ditions

xA(u0) = 0, δAB
dxA

du
(u0)

dxB

du
(u0) = ε

2, (57)

it gives us the cross-section of an initially circular light bundle around the geodesic
(x1 = 0, . . . ,xn−2 = 0,v = 0,u) with vertex at u = u0. Such a bundle will have an
elliptic cross-section, for arbitrarily large opening angle. The rate of expansion is
positive in eigen-directions of hAB(u) with negative eigenvalues and negative in
eigen-directions of hAB(u) with positive eigenvalues. Condition (48) makes sure
that at least one eigenvalue is positive (unless all are zero in which case (47) is
just the Minkowski metric). In directions with positive eigenvalue the light bundle
will be refocussed until a conjugate point is reached. This focusing property is
illustrated by Fig. 2 which displays the past-light cone of an event in a plane-wave
spacetime, with three dimensions (x1,v,u) shown.

The fact that, for the lightlike geodesic (x1 = 0, . . . ,xn−2 = 0,v = 0,u) in a
plane-wave spacetime, the generalized Jacobi equation coincides with the ordinary
Jacobi equation has the following interesting consequence: in the Penrose limit
the difference between the generalized Jacobi equation and the Jacobi equation
vanishes.
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5 Concluding remarks

In this article we have discussed a generalized Jacobi equation for lightlike geodesics,
following as closely as possible the approach that was brought forward by Hodgkin-
son, Mashhoon and others for timelike geodesics. As an alternative, one could also
apply the approach of Bażański [1], which was mentioned in the introduction, to
lightlike geodesics. In that case one would consider lightlike geodesics of the form
x(s) = X(s) + ε ξ (s), where X(s) is a lightlike reference geodesic, and solve the
geodesic equation for x(s) iteratively up to some order N with respect to ε . For
any finite order N, the resulting equation would not be valid for light bundles
of arbitrarily large opening angle, in contrast to the generalized Jacobi equation
treated here. On the other hand, for ε sufficiently small it would be valid for arbi-
trarily large parameter intervals. An interesting application of this Bażański-type
approach to lightlike geodesics, which apparently has not been considered in the
literature so far, could be to study the caustics of light bundles up to some order N
with respect to ε .
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