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Abstract: Quantum key distribution (QKD) allows two remote parties to share information-theoretic
secret keys. Many QKD protocols assume the phase of encoding state can be continuous randomized
from 0 to 2π, which, however, may be questionable in the experiment. This is particularly the case
in the recently proposed twin-field (TF) QKD, which has received a lot of attention since it can
increase the key rate significantly and even beat some theoretical rate-loss limits. As an intuitive
solution, one may introduce discrete-phase randomization instead of continuous randomization.
However, a security proof for a QKD protocol with discrete-phase randomization in the finite-key
region is still missing. Here, we develop a technique based on conjugate measurement and quantum
state distinguishment to analyze the security in this case. Our results show that TF-QKD with a
reasonable number of discrete random phases, e.g., 8 phases from {0, π/4, π/2, ..., 7π/4}, can achieve
satisfactory performance. On the other hand, we find the finite-size effects become more notable than
before, which implies that more pulses should be emit in this case. More importantly, as a the first
proof for TF-QKD with discrete-phase randomization in the finite-key region, our method is also
applicable in other QKD protocols.

Keywords: quantum key distribution; finite-key analysis; discrete-phase randomization

1. Introduction

Quantum key distribution (QKD) [1,2], one of the most successful and mature appli-
cations in quantum information science, allows for two legitimate parties (Alice and Bob)
to share information-theoretic secret keys. In theory, its security has been proved [3–5],
while experiments towards a higher key rate [6] and longer achievable distance [7–10] have
been demonstrated. Still, some large scale QKD networks are emerging [11–14]. However,
owing to the inherent photon-loss in the channel, it meets a vital bottleneck that limits the
communication distance and key generation rate. Specifically, some fundamental rate-loss
limits [15,16] impose a restriction on any point-to-point QKD without repeaters. More
precisely, the key rate R is bounded by the channel transmission probability η with the
linear PLOB bound R = − log2(1 − η) [16]. Delightfully, M.Lucamarini et al. made a
breakthrough by proposing twin-field (TF) QKD in 2018. The essential idea of TF-QKD is
in code mode extracting the key bit from a single-photon click event of the measurement
station located in the middle of channel, which happens with a probability proportional to√

η; thus, surpassing the linear PLOB bound becomes possible, and a so-called phase-error
rate may be estimated in decoy mode [17–19] to monitor security. Driven by this, several
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TF-type QKD protocols [20–26] were proposed later to complete security proofs and im-
prove performance. Based on these protocols, experimentalists also made great efforts to
realize TF-QKD [27–35].

Since TF-QKD inherits measurement-device-independent (MDI)-QKD’s [36] merit
that is immune to all side-channel attacks to measurement devices and all measurement-
device imperfections [37,38], one does not need to take the detection loopholes into account
within the TF-type QKD system. In spite of this, the security issues of the state preparation
in TF-QKD must be carefully considered. In practice, the laser source of TF-QKD is
usually a continuous source emitting coherent states with a fixed phase. Meanwhile,
continuous phase-randomization from 0 to π is required in the TF-QKD. More specifically,
this continuous phase-randomization is assumed in both the code and test modes in
Refs. [21,23,26], or at least in the test mode in Refs. [22,24,39]. To fulfill this requirement,
Alice and Bob must randomize the global phase continuously and uniformly. Unluckily,
two ways to achieve phase randomization introduce different problems in the experiment.
Passive randomization will lead to phase correlations between adjacent pulses [40,41],
while active randomization can only randomize the phase over discrete set of values.

To bridge this gap between theory and experiment, two works that analyzed the secu-
rity of fully discrete-phase randomization TF-QKD protocol have been proposed [42–44]
in these days. However, a security proof in the finite-key region is still missing. Hence,
one natural question is that whether TF-QKD with fully discrete-phase randomization can
work well non-asymptotically. This work affirms that it can.

In this paper, we analyze the security of TF-QKD protocol with fully discrete random-
ization in a finite-key region. Interestingly, our analysis leads to comparable performance
with the continuous one. Since taking the discrete phase into account, our results make
the TF-QKD more practical and can be applied to the future TF-QKD experiment. More
importantly, some techniques proposed here, e.g., Lemma A1 (introduced later), can be
utilized to analyze the security of other QKD protocols with discrete-phase randomization.

This work is organized as follows. In Section 2, we give a description of the TF-QKD
protocol with fully discrete-phase randomization, and the sketch of the security proof is
given in Section 3. Note that the proof is detailed in Appendix A. In Section 4, by the
numerical simulation, we show this protocol can still beat the linear PLOB bound [16] and
has satisfactory performance. Finally, a conclusion is given in Section 5.

2. Protocol Description

Indeed, the protocol analyzed here has been depicted in Ref. [43]. For ease of under-
standing, we illustrate the protocol as follows.

Step 1: Alice (Bob) chooses a label from {”µ”, ”0”, ”ν”} with probabilities Pµ, PO, Pν,
according to the label she (he) chooses, she (he) takes one of the following actions:

”µ”: she (he) randomly picks an integer lAc
(lBc ) from {0, 1, · · · , M − 1} with equal

probability 1
M where M is an even integer. This means that the phase 2π is divided into M

parts. Then, she (he) randomly chooses a key bit ka(kb) where ka(kb) ∈ {0, 1}. Finally, she

(he) sends a pulse with a coherent state |ei(
lAc
M 2π+πka)√µ〉(|ei(

lBc
M 2π+πkb)

√
µ〉 ).

”0”: she (he) sends the vacumm state.
”ν”: she (he) randomly picks an integer lAc

and lBc from {0, 1, · · · , M − 1} with
equal probability 1

M where M is an even integer. This means that the phase 2π is divided

into M parts. Then, she (he) sends a pulse with a coherent state |ei
lAc
M 2π√µ〉(|ei

lBc
M 2π√µ〉 ).

The first case is called code mode, while the other cases are decoy mode.
Step 2: Alice and Bob repeat Step 1 in total of Ntot times.
Step 3: After receiving Ntot pairs of pulses from Alice and Bob, interfering each pair at

a beamsplitter and measuring the two outputs with his single photon detectors (SPDs), an
honest Eve announces whether or not each measurement is successful. Here, ’successful’
means only one SPD (left SPD or right SPD) clicks in the corresponding measurement, and
if so, Eve reports the specific SPD clicked.
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Step 4: For those rounds Eve announcing successful click, Alice and Bob announce the
intensities they chose as well as the values of lAc

and lBc . Then, Alice and Bob only retain
those successful rounds in which the intensities of the coherent state they sent are same
while the in-phase (lAc

= lBc ) or anti-phase (|lAc
− lBc | = M/2) condition is also met. Let

n+
2β(n−

2β) be the number of the retained rounds when both Alice and Bob chose the same
intensity β of the coherent state and the in-phase (anti-phase) is also met. Note that we
assume lAc

= lBc = 0 always holds in the case of β = 0. Alice and Bob generate their sifted
keys from n2µ = n+

2µ + n−
2µ retained rounds in code mode, thus the length of sifted key bits

nbit = n2µ. Note that if it is an in-phase (anti-phase) round with right (left) SPD clicking,
Bob may flip his corresponding sifted key bit.

Step 5: With all of the quantities n2β = n+
2β + n−

2β, Alice and Bob use linear program-

ming to obtain an upper bound on the number of phase errors(defined later) nU
ph with a

failure probability no more than ε; then, they can calculate the upper bound eU
ph = nU

ph/nbit.
Step 6: Step 6 consists of error correction and privacy amplification.

Step 6a: Alice sends HEC bits of syndrome information of her sifted key bits to Bob
through an authenticated public channel. Then, Bob uses it to correct errors in his sifted
keys. Alice and Bob calculate a hash of their error-corrected keys with a random universal
hash function and check whether they are equal. If equal, they continue to the next step;
otherwise, they abort the protocol.

Step 6b: Alice and Bob apply the privacy amplification to obtain their final secret
keys. If the length of their secret key satisfies l = nbit(1 − h(eU

ph)) − HEC − log2
2

ǫcor
−

log2
1

4ǫ2
PA

where h(·) denotes the binary Shannon entropy, this protocol must be ǫcor-correct

and ǫsec-secret with ǫsec =
√

ε+ ǫPA. Here, ǫcor(ǫsec) represents the protocol is correct (secret)
with a failure probability no more than ǫcor(ǫsec). Hence, the total security parameter is ǫtol-
secure where ǫtol = ǫcor + ǫsec. It is elaborated thoroughly in the widely-used universally
composable security framework [45,46].

3. Security Proof

In this section, we present the security proof of this protocol. The main task of the
security proof is to bound the information Eve holds. To accomplish this task, one can
calculate a so-called phase-error rate. Firstly, we construct an equivalent virtual protocol,
in which Alice and Bob prepare some entangled states between local states and traveling
states, but traveling states must have the same density matrices as actual protocol in the
channel. The sifted key bits can be seen as the outputs of measurement with Z-basis on
local states made by Alice and Bob; then, the so-called phase-error rate is defined as the
error rate for the outputs of measurement with the X-basis made by them. According
to the complementarity argument [47], the phase-error rate can be used to bound Eve’s
information on the sifted keys. In the following, we give the virtual protocol and show
how to bound the phase-error rate.

3.1. Equivalent Virtual Protocol

In our virtual protocol, Alice generates secret keys from the code mode in which she
prepares the state

|ψ〉µ,Ac Aa =
M−1

∑
l=0

1√
M

|l〉Ac
(

1√
2
(|0〉A|ei 2π

M l√µ〉a + |1〉A| − ei 2π
M l√µ〉a)), (1)

where Ac and A are the local quantum systems in Alice’s side, and a is the traveling
quantum state Alice sent to Eve. Similarly, Bob prepares |ψ〉µ,BcBb defined analogously to
|ψ〉µ,Ac Aa. Obviously, Alice (Bob) measures A(B) with Z-basis to obtain sifted key, i.e., |0〉A

for bit 0 and |1〉A for bit 1. In order to obtain the phase-error rate, they measure A, B in
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X-basis {|+〉, |−〉} after Eve’s attack. As for the test mode, we assume Alice prepares the
following states

|ψ〉0,Ac Aa = |0〉Ac
|0〉A|0〉a, (2)

|ψ〉ν,Ac Aa =
M−1

∑
l=0

1√
M

|l〉Ac
|0〉A|ei 2π

M l
√

ν〉a.

Here, the local states of Ac are encoded in photon-number states, and Alice can measure
Ac’s photon-number to learn the phase of sent states.

Finally, we can describe the process of state preparation above with a single state,
namely,

|ψ〉As Ac Aa =
√

pµ|0〉As
|ψ〉µ,Ac Aa +

√
pO|1〉As

|ψ〉0,Ac Aa +
√

pν|2〉As
|ψ〉ν,Ac Aa (3)

where Alice’s additional local ancilla As is in the photon number states. Similarly, Bob
can prepare |ψ〉BsBcBb defined analogously to |ψ〉As Ac Aa. Though Alice (Bob) may measure
As(Bs),Ac(Bc), and A(B) after or before Eve announcing her measurement results, Alice
(Bob) must announce the measurement results after Eve’s announcement then post-select
the successful rounds. The following is a detailed illustration of our equivalent virtual
protocol.

Step 1:
Alice and Bob prepare a gigantic quantum state |Φ〉 = |φ〉⊗Ntot = (|ψ〉As Ac Aa ⊗

|ψ〉BsBcBb)
⊗Ntot and send all subsystems a and b to Eve through an insecure quantum

channel.
Step 2:
After performing an arbitrary quantum operation on all subsystems a and b from Alice

and Bob, Eve announces whether it has a successful click (only one of her SPDs clicks) or
not for each round. For a successful round, Eve continues to announce whether the left SPD
clicks or the right SPD clicks. We use M(M) to denote the set of successful (unsuccessful)
rounds.

Step 3:
For those rounds in which Eve announces success, Alice and Bob jointly measure the

subsystem Ac(Bc) and As(Bs) in the photon-number basis to learn whether the intensities
of the coherent state they send are same or not and whether it is in-phase or anti-phase.
Then, they only retain those rounds where in-phase or anti-phase is met, and they choose
the same intensities. Let Ms denote the set of those retained rounds, while M f denotes
those rounds that are in M but not in Ms.

Step 4:
For these rounds in Ms, Alice (Bob) measures the subsystem Ac As(BcBs) in Fock basis

to learn the phase and intensity of the coherent states she (he) sent . If the result of As(Bs) is
in state |0〉As

(|0〉Bs ), she (he) measures subsystems A(B) in the Z basis to decide her (his)
sifted key, respectively; otherwise, she (he) measures subsystem A(B) in the Z basis but
does not incorporate these measurement outcomes in her (his) sifted key.

Step 5 to Step 6:
Let n2β be the number of rounds in Ms satisfying that both Alice and Bob chose

the intensity β. With parameters n2β, perform the same operations as Step 5 to Step 6,
respectively, in the actual protocol given in Section 2.

3.2. Estimation of Phase-Error Rate

The essential of security proof is to estimate the upper-bound of the phase-error rate
eph of the sifted keys, i.e., how many same or different outcomes Alice and Bob have if they
measure A and B with X-basis hypothetically in the rounds where sifted keys are generated.
Specifically, in our protocol, we define the number of the same outcomes they have as
nph, i.e., the number of phase-error events. Provided that eph = nph/n2µ is bounded, one
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can generate the final secret key with an appropriate ǫtol value as given in Step6.b of the
actual protocol.

A detailed proof for how to estimate nph is present in Appendix A. Here, a sketch of
this proof is given.

Though analyzing the equivalent protocol, it is proven that if Alice and Bob both chose
intensity β, and in-phase or anti-phase is also met, they actually prepare a mixture τ2β,
which consists of component τj|2β, j = 0, 1, ..., M − 1. Moreover, each phase-error event is a
click by some particular components of that mixture τ2β, i.e., τj|2β, j = 0, 2, ..., M − 2. These
results imply that

n2µ = ∑
M
j=0 nj|2µ,

n2ν = ∑
M
j=0 nj|2ν, (4)

nph = ∑
M−2
j=0,j∈N0

nj|2µ,

where nj|2β denotes the number of rounds in Ms, in which Alice and Bob both chose
intensity β, but τ2β is actually τj|2β. Meanwhile, N0 is the set of even numbers. Now, the
hypothetical value nph is related to some experimentally observed values. However, just
with these equations it is difficult to bound nph tightly since nj|2β cannot be known directly.

On the other hand, both τj|2µ and τj|2ν are very close to Fock-state |j〉〈j|. Accordingly,
it is intuitive to consider if there are constraints on the gap between nj|2µ and nj|2ν. Then,
we developed Lemma A1 (see Appendix A for details) to bound the gap between the yields
of two distinct quantum states in a non-asymptotic situation. Applying this lemma, we
obtained a series of constraints on nj|2µ and nj|2ν. Finally, combined with Equation (5), an
analytical upper bound of nph (given in the end of the Appendix A) was calculated to find
the upper bound of phase-error rate eU

ph = nU
ph/n2µ.

4. Numerical Simulation

In this section, we simulate the final secret key rate with the parameters listed in Table 1.

Table 1. List of parameters uesd in the numerical simulations. Here, em is loss-independent misalign-
ment error rate due to optical imperfect interference, pd is dark counting probability for each SPD, ξ

is fiber loss constant, ηd denotes detection efficiency of each SPD, f is error-correction inefficiency,
and ǫtol denotes the total security coefficient.

em pd ξ (dB/km) ηd f ǫtol

0.03 1 × 10−8 0.2 0.3 1.1 4.6566 × 10−10

It is reasonable to simulate the experimentally observed values n2µ, n2ν and n0 with
their mean values. Let Qcorr|2β be the probability of only one click from left (right) SPD
when both Alice and Bob prepare coherent states with intensity β and a phase difference
of 0 (π), and Qerr|2β be the probability of only one click from left (right) SPD when both
Alice and Bob prepare coherent states with intensity β and phase difference of π (0). Then,
we have

Qcorr|2β = (1 − (1 − pd)e
−2η(1−em)β)e−2ηem β(1 − pd),

Qerr|2β = (1 − (1 − pd)e
−2ηem β)e−2η(1−em)β(1 − pd), (5)

where η = 10
−0.2L

20 and L is the channel distance between Alice and Bob. Accordingly,
in the simulation, we assume n2β = NtotP

2
β2(Qcorr|2β + Qerr|2β)/M for β = µ, ν. Note

that n0 = NtotP
2
O(Qcorr|0 + Qerr|0), nbit = n2µ and ebit = Qerr|2µ/(Qcorr|2µ + Qerr|2µ). With

these values, setting M = 8 and the failure probability of estimating phase error ε =
(6M + 12)εa = 4 × 10−20, one can obtain the upper-bound of phase-error rate eU

ph by
the linear programming given by (A41) in Appendix A. Moreover, the amount of HEC is
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HEC = Nbit f h(ebit), ǫcor = 1 × 10−10, and ǫPA = 1.6566 × 10−10, which leads to a secret key
of length l = nbit(1 − h(eU

ph))− HEC − log2
2

ǫcor
− log2

1
4ǫ2

PA

with ǫsec = ǫPA +
√

ε and the

total security parameter ǫtol = ǫcor + ǫsec = 4.6566 × 10−10.
Finally, we numerically optimize the intensities and corresponding probabilities to

maximize l in the cases of the total number of pulses is Ntot = 1 × 1017, 1 × 1014, 1 ×
1013, 1 × 1012. Note that because this numerical problem is very time-comsuming, these
intensities and probabilities are not optimized at each distance. Additionally, we use some
typical parameters instead. The simulate results (l/Ntot v.s. L) are illustrated below.

As Figure 1 shows, we obtain considerable secret key rates when the total number
of pulses is 1012, 1013 ,1014 or 1017. Through numerical simulations, it is confirmed that
TF-QKD with discrete-phase randomization has satisfactory performance. On the other
hand, it is verified that finite-size effects become more notable here compared with the
original protocol with continuous phase randomization; it seems that one has to prepare
1017 pulses to surpass the PLOB linear bound. This is because the statistical fluctuations in
Lemma A1 are proportional to the square root of the total number of emitting pulse Ntot,
which leads to alarge phase-error rate eph when nbit is not sufficiently large.

Figure 1. Secret key rate (l/Ntot) of fully discrete TF-QKD [43]. In this figure, the key rate correspond-
ing to the total number of pulses Ntot is 1 × 1012, 1 × 1013, 1 × 1014, 1 × 1017, plotted above. Note that
we set M = 8 in the simulation.

5. Conclusions

In real setups of TF-QKD, continuous randomization is usually realized by actively
adding a random signal to a phase modulator. On the other hand, random numbers are
generated discretely in most schemes. Therefore, TF-QKD with discrete-phase randomiza-
tion is more practical. It is necessary to analyze the security of TF-QKD with discrete-phase
randomization. Based on conjugate measurement, the security proof of a QKD protocol is
to estimate the phase-error rate. Then in case of discrete-phase randomization, a critical step
is knowing how to bound the gap between yields of two distinct but very close quantum
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states in a non-asymptotic situation. To achieve this goal, Lemma A1 is developed to find
the upper bound of this gap. With the help of Lemma 1, linear programming is proposed
to calculate the phase-error rate, and the key length is then straightforward. Through
numerical simulations, it is confirmed that TF-QKD with discrete-phase randomization
has satisfactory performance. On the other hand, we also find that more pulses should be
prepared to alleviate the finite-size effects than previous protocol.

Moreover, it is worth noting that Lemma A1 is quite useful in a variety of scenarios,
not just in the security proof of TF-QKD. For instance, if one considers the BB84 with
discrete-phase randomization [48], the Lemma A1 can be utilized to bound the yield of
single photon state, so then it is not difficult to give a relevant security proof. To summarize,
we give the first security proof for TF-QKD with finite discrete-phase randomization in
non-asymptotic scenarios. Although the proof is tailored for TF-QKD, the framework of
this proof, i.e. Lemma A1, can be adapted in other protocols.
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Appendix A

Appendix A.1. Formula for the Number of Phase-Error Events

In this section, we show how to obtain the relation between the hypothetical phase-
error events and some experimental observations.

The main result obtained here is that each key bit is a successful click from a mixed
state of τj|2µ, j = 0, 1, ..., M − 1 prepared by Alice and Bob. More importantly, the number of
phase-error events among these key bits corresponds to τj|2µ, j = 0, 2, ..., M− 2. Therefore, if
we denote the length of the raw key by nbit = n2µ and the number of successful clicks of τj|2µ

by nj|2µ, nbit = n2µ = ∑
M−1
j=0 nj|2µ, the number of phase-error events nph = ∑

M−2
j=0,j∈N0

nj|2µ

must hold, where N0 is the set of even integers. Next, a proof is present to show how to
obtain this result.

Following the symbols in [49], let us consider the evolution of the gigantic quantum
state |Φ〉 = |φ〉⊗Ntot = (|ψ〉As Ac Aa ⊗ |ψ〉BsBcBb)

⊗Ntot sent to Eve. After Step 2, where Eve
performs her measurement on the subsystem ab, the initial quantum state is transformed to
M̂eve|Φ〉, where M̂eve denotes the measurement operator of Eve. After measurement, Eve
announces whether the measurement outcome is successful or not for each round. Hence,
we reorder the quantum state as |Φ〉 = |φ〉⊗M|φ〉⊗M, where M(M) denotes the successful
(unsuccessful) rounds. Then, in Step 3 of the virtual protocol, using measurement op-
erators {Ôs = (|00〉AsBs

〈00|+ |11〉AsBs
〈11|+ |22〉AsBs

〈22|)⊗ ∑
M−1
l=0 (|l, l〉AcBc

〈l, l|+ |l, (l +
M/2)modM〉AcBc

〈l, (l + M/2)modM|), Ôd = Î − Ôs}, Alice and Bob measure the subsys-
tem As Ac and BsBc for those rounds that are announced successful in Step 2 and retain the
trials in which As Ac and BsBc are collapsed into Ôs as the final successful rounds. Hence,
we reorder |Φ〉 = |φ〉⊗Ms |φ〉⊗M f |φ〉⊗M where Ms(M f ) denotes the successful(unsuccessful)
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rounds finally. Before they measure the subsystem AB to generate their sifted key in Step 3,
the unnormalized quantum state is given by

ÔMs
s Ô

M f

d Î⊗M M̂eve|Φ〉 = M̂eveÔ
⊗Ms
s Ô

⊗M f

d Î⊗M|Φ〉 = M̂eve(Ôs|φ〉)⊗Ms(Ô f |φ〉)⊗M f (|φ〉)⊗M (A1)

Next, in Step 4, Alice and Bob measure the subsystem As, Bs Ac, Bc and A, B for all
rounds in Ms, one by one. We use α ∈ {1, · · · , Ms} to denote the different rounds in
Ms and ξα to denote the measurement outcome of the α-th subsystem. What is more,
M̂α is used to denote the associated operator. Hence, the unnormalized state before the
measurement of the α-th rounds in Ms is

|Φα〉 = M̂eve(⊗α−1
l=1 M̂l |φ〉)(Ôs|φ〉)(Ôs|φ〉)⊗Ms−α(Ô f |φ〉)⊗M f (|φ〉)⊗M. (A2)

Because we are only interested in the reduced state of the α-th round in Ms, we trace out
the other rounds which we denote by α and obtain

σ̂α = Trα[|Φα〉〈|Φα|] = ∑
−→
α

〈−→α |Φα〉〈Φα|
−→
α 〉 = ∑

−→
α

M̂−→
α

Ôs|φ〉〈φ|Ô†
s M̂†−→

α
(A3)

where

M̂−→
α
= 〈−→α |M̂eve|(⊗α−1

l=1 M̂l(Ôs|φ〉)(Ôs|φ〉)⊗Ms−α(Ô f |φ〉)⊗M f (|φ〉)⊗M. (A4)

and the quantum states {|−→α 〉} represent the basis for the subsystems As, Bs, Ac, Bc, A, B, a, b
of all rounds in the protocol except the α-th round in Ms.

Next, to derive the number of phase error, we expand the quantum state Ôs|φ〉 as

Ôs|φ〉 = pµ|00〉As Bs
|φ〉µ + pO|11〉As Bs

|φ〉0 + pν|22〉As Bs
|φ〉ν (A5)

where

|φ〉µ

= ∑
M−1
l=0

1
M [(|ll〉Ac Bc

1
2 (|0〉A|ei 2π

M l√µ〉a + |1〉A| − ei 2π
M l√µ〉a)(|0〉B|ei 2π

M l√µ〉b + |1〉B| − ei 2π
M l√µ〉b))

+(|l, (l + M
2 )modM〉Ac Bc

1
2 (|0〉A|ei 2π

M l√µ〉a + |1〉A| − ei 2π
M l√µ〉a)(|0〉B| − ei 2π

M l√µ〉b + |1〉B|ei 2π
M l√µ〉b)))],

|φ〉0 = |00〉Ac Bc
|00〉AB|00〉ab (A6)

and

|φ〉ν (A7)

= ∑
M−1
l=0

1
M [(|ll〉Ac Bc

(|00〉AB|ei 2π
M l√ν〉a|ei 2π

M l√ν〉b) + (|l, (l + M
2 )modM〉Ac Bc

|00〉AB(|ei 2π
M l√ν〉a| − ei 2π

M l√ν〉b))].

To summarize, each key bit can be viewed as an event in which Eve announces a successful
click conditioned by Alice and prepares |φ〉µ and measures AB with Z-basis . Since the
measurement on AB made by Alice and Bob can be delayed after Eve’s announcement of
a successful click, the phase error can be estimated by Alice and Bob measuring AB with
X-basis rather than Z-basis. To obtain the phase error of this part, we rewrite |φ〉µ under
X-bases of AB as

|φ〉µ =
M−1

∑
l=0

1
M

(|ll〉AcBc
|ψ〉l

µ,AaBb + |l, (l + M

2
)modM〉AcBc

|ψ′〉l
µ,AaBb) (A8)
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where

|ψ〉l
µ,AaBb

=
1
2
(|00〉AB|eiθl

√
µ〉a|eiθl

√
µ〉b + |01〉AB|eiθl

√
µ〉a| − eiθl

√
µ〉b)

+
1
2
(|10〉AB| − eiθl

√
µ〉a|eiθl

√
µ〉b + |11〉AB| − eiθl

√
µ〉a| − eiθl

√
µ〉b)

=
1
4
|++〉AB(|eiθl

√
µ〉a|eiθl

√
µ〉b + |eiθl

√
µ〉a| − eiθl

√
µ〉b + | − eiθl

√
µ〉a|eiθl

√
µ〉b + | − eiθl

√
µ〉a| − eiθl

√
µ〉b)

+
1
4
| − −〉AB(|eiθl

√
µ〉a|eiθl

√
µ〉b − |eiθl

√
µ〉a| − eiθl

√
µ〉b − | − eiθl

√
µ〉a|eiθl

√
µ〉b + | − eiθl

√
µ〉a| − eiθl

√
µ〉b)

+
1
4
|+−〉AB(· · · ) +

1
4
| −+〉AB(· · · )), (A9)

|ψ′〉l
µ,AaBb

=
1
2
(|00〉AB|eiθl

√
µ〉a| − eiθl

√
µ〉b + |01〉AB|eiθl

√
µ〉a|eiθl

√
µ〉b

+
1
2
|10〉AB| − eiθl

√
µ〉a| − eiθl

√
µ〉b + |11〉AB| − eiθl

√
µ〉a|eiθl

√
µ〉b)

=
1
4
|++〉AB(|eiθl

√
µ〉a| − eiθl

√
µ〉b + |eiθl

√
µ〉a|eiθl

√
µ〉b + | − eiθl

√
µ〉a| − eiθl

√
µ〉b + | − eiθl

√
µ〉a|eiθl

√
µ〉b)

+
1
4
| − −〉AB(|eiθl

√
µ〉a| − eiθl

√
µ〉b − |eiθl

√
µ〉a|eiθl

√
µ〉b − | − eiθl

√
µ〉a| − eiθl

√
µ〉b + | − eiθl

√
µ〉a|eiθl

√
µ〉b)

+
1
4
|+−〉AB(· · · ) +

1
4
| −+〉AB(· · · )), (A10)

and θl =
l

M 2π. For the purpose of clarification, we define some quantum states below:

|eiθ
√

2µ〉ab =
∞

∑
j=0

eijθ
√

Pj|2µ|j〉ab (A11)

and

|eiθ
√

2µ〉ab,even =
|eiθ√µ〉a|eiθ√µ〉b + | − eiθ√µ〉a| − eiθ√µ〉b

2
= ∑

j∈N0

eijθ
√

Pj|2µ|j〉ab, (A12)

where |j〉ab = ∑
j
i=0

√

j!
2ji!(j−i)!

|i〉a|j − i〉b and N0 is the set of even numbers. Indeed, |j〉 is a

quantum state satisfying that the total photon-number of a and b is j. Moreover, another
similar quantum state is defined below:

|eiθ
√

2µ〉′ab =
∞

∑
j=0

eijθ
√

Pj|2µ|j〉′ab (A13)

and

|eiθ
√

2µ〉′ab =
|eiθ√µ〉a| − eiθ√µ〉b + | − eiθ√µ〉a|eiθ√µ〉b

2
= ∑

j∈N0

eijθ
√

Pj|2µ|j〉′ab (A14)

where |j〉′ab,even = ∑
j
i=0(−1)i

√

j!
2ji!(j−i)!

|i〉a|j − i〉b. With these definitions, we can write the

quantum states |ψ〉l
µ,AaBb and |ψ′〉l

µ,AaBb in a more simplified way, namely
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|ψ〉l
µ,AaBb =

1
2
(|++〉AB(|eiθl

√

2µ〉ab,even + |eiθl
√

2µ〉′ab,even) + | − −〉AB(|eiθl
√

2µ〉ab,even − |eiθl
√

2µ〉′ab,even)

+ |+−〉AB(· · · ) + | −+〉AB(· · · )) (A15)

and

|ψ′〉l
µ,AaBb =

1
2
(|++〉AB(|eiθl

√

2µ〉ab,even + |eiθl
√

2µ〉′ab,even)− | −−〉AB(|eiθl
√

2µ〉ab,even − |eiθl
√

2µ〉′ab,even)

+ |+−〉AB(· · · ) + | −+〉AB(· · · )) (A16)

Obviously, the measurement outcome of |++〉AB and | − −〉AB can be defined as phase-
error event. Recall the whole density matrix |φ〉µ〈φ| given in Equation (A8); we can obtain
the ab part corresponding to the phase-error event,

ρ̂µ,ph =〈++ |ABtrAc Bc
(|φ〉µ〈φ|)|++〉AB + 〈− − |ABtrAc Bc

(|φ〉µ〈φ|)| − −〉AB

=
M−1

∑
l=0

〈ll|Ac Bc
(〈++ |AB + 〈− − |AB)|φ〉µ〈φ|(|++〉AB + | − −〉AB)|ll〉Ac Bc

+〈l, (l + M/2)modM|Ac Bc
(〈++ |AB + 〈− − |AB)|φ〉µ〈φ|(|++〉AB + | − −〉AB)|l, (l + M/2)modM〉Ac Bc

=
M−1

∑
l=0

1
M2 (|e

iθl
√

2µ〉ab〈eiθl
√

2µ|+ |eiθl
√

2µ〉′ab〈eiθl
√

2µ|) (A17)

According to Equations (2.5)–(2.7) of Ref [48], ρ̂µ,ph can be rewritten as

ρ̂µ,ph = 2
M ∑

M−2
j=0,j∈N0

P̃j|2µ(
1
2 | j̃2µ〉ab〈 j̃2µ|+ 1

2 | j̃2µ〉′ab〈 j̃2µ|)
= 2

M ∑
M−2
j=0,j∈N0

P̃j|2µτj|2µ, (A18)

where P̃j|2µ = ∑
∞
n=0 Pj+Mn|2µ, Pj|2µ is the the probability of finding j photons in a Poisson

source with mean photon-number 2µ, | j̃2µ〉 = ∑
∞
n=0

√
Pj+Mn|2µ
√

P̃j|2µ

|j + Mn〉ab and | j̃2µ〉′ =

∑
∞
n=0

√
Pj+Mn|2µ
√

P̃j|2µ

|j + Mn〉′ab, and τj|2µ = 1
2 | j̃2µ〉ab〈 j̃2µ|+ 1

2 | j̃2µ〉′ab〈 j̃2µ|.

For ease of understanding, we can easily interpret the formula of ρ̂µ,ph. It is easy to
see that ρ̂µ,ph is a mixture of τj|2µ, which consists of photon-number state |j + Mn〉ab, n =
0, 1, 2, ..., and the probability of finding j + Mn photons is proportional to Pj+Mn|2µ. Let
τeven|2µ be the normalized ρ̂µ,ph; then, a phase-error event for a key bit is equivalent to a suc-

cessful click announced by Eve on the condition that a mixture τeven|2µ = ∑
M−2
j=0,j∈N0

P̃j|2µτj|2µ/
Peven|2µ prepared by Alice and Bob, and the probability of preparing such a mixture is obvi-
ously P2

µ Peven|2µ2/M.
To find a way to estimate the number of phase errors, we can give the density matrices

Alice and Bob prepared in code mode and decoy mode. If we trace out ABAcBc of the
quantum state |φ〉µ〈φ|, i.e., regardless of whether the measurement outcome on AB is phase
error or not, we have

ρ̂µ = TrABAcBc
(|φ〉µ〈φ|)

= 2
M ∑

M−1
j=0 P̃j|2µ(

1
2 | j̃2µ〉〈 j̃2µ|+ 1

2 | j̃2µ〉′〈 j̃2µ|)
= 2

M ∑
M−1
j=0 P̃j|2µτj|2µ. (A19)

We define τ2µ = ∑
M−1
j=0 P̃j|2µτj|2µ as the normalized ρ̂µ. The generation of a key bit is

equivalent to a successful click announced by Eve conditioned on the premise that a mixture
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τ2µ = ∑
M−1
j=0 P̃j|2µτj|2µ is prepared by Alice and Bob, and the probability of preparing such

a mixture is obviously P2
µ2/M.

Now we are approaching a main result of above derivations. In the Ntot rounds, Alice
and Bob prepare τ2µ with the probability P2

µ2/M; the number of its successful rounds is
denoted by n2µ. Of course, the key bits are generated in these rounds, thus n2µ = nbit. Since
τ2µ is a mixture of τj|2µ, j = 0, 1..., , M − 1, the n2µ successful clicks are the sum of clicks

by τj|2µ, j = 0, 1, ..., M − 1. Then, n2µ = ∑
M−1
j=0 nj|2µ holds evidently, in which nj|2µ is the

number of successful clicks by τj|2µ. Recall that the phase errors for these events are from

clicks by τeven|2µ; one can assert that the number of phase-error events nph = ∑
M−2
j=0,j∈N0

nj|2µ

must hold. This is a main result we have so far.

Appendix A.2. The Upper Bound of the Number of Phase-Error Events

We have proved that nph = ∑
M−2
j=0,j∈N0

nj|2µ with the constraint n2µ = ∑
M−1
j=0 nj|2µ.

Obviously, this is not sufficient for estimating nph tightly. Here, we resort to decoy states to
obtain more constraints to bound nph.

Similarly with the analysis of clicks by ρ̂µ = TrABAcBc
(|φ〉µ〈φ|), a successful click from

decoy mode with intensity ν means that Alice and Bob prepare

ρ̂ν = TrABAcBc
(|φ〉ν〈φ|)

= 2
M ∑

M−1
j=0 P̃j|2ν(

1
2 | j̃2ν〉〈 j̃2ν|+ 1

2 | j̃2ν〉′〈 j̃2ν|)
= 2

M ∑
M−1
j=0 P̃j|2ντj|2ν. (A20)

Accordingly, we also have n2ν = ∑
M−1
j=0 nj|2ν. Here, n2ν and nj|2ν are defined analogously to

n2µ and nj|2µ, respectively. Intuitively, nj|2µ and nj|2µ are the numbers of successful clicks
for τj|2µ and τj|2ν respectively. Typically, µ < ν << 1 is satisfied; then both τj|2µ and τj|2ν

are very close to the photon-number state |j〉ab. This implies that the gap between nj|2µ and

nj|2ν can be bounded, and then we may estimate nph = ∑
M−2
j=0,j∈N0

nj|2µ. Indeed, with the
result in appendix B of ref [48], the gap between nj|2µ and nj|2ν in the asymptotic case can
be obtained. Here, we develop Lemma A1 to bound this gap in finite-key situations.

Lemma A1. If Alice prepares Ntot pairs of particles A and B with the quantum state (∑i

√
Pi|i〉A|φi〉B)

⊗Ntot where 〈i|j〉 = δij, |〈φi|φj〉| = Fij and she sends the B part in each pair to Eve. For every round,
Eve announces if the measurement is successful or unsuccessful, which is denoted by M = 1 or M = 0,
respectively. Then, Alice measures the subsystem A with projectors {|i〉〈i|, i = 0, 1, 2, ...} to which
quantum state she sent for the pairs that Eve announced M = 1. Let ni denote the number of yields for
the quantum state |i〉. If Pi > Pj, we have that the constraints between ni and nj, say,

|
Pj

Pi
ni − nj| ≤ N1

√

1 − F2
ij + 2δ(N1,

1 +
√

1 − F2
ij

2
, ε2

0)− 2δ(N2 − ni − nj,
1
2

, ε0) + δ(ni,
Pj

Pi
, ε2) (A21)

holds with a failure probability 2ε0 + 2ε1 + 2ε2, where

δ(x, y, z) =
√

3xy ln( 1
z )

N1 = 2PjNtot + δ(Ntot, 2Pj, ε1)

N2 = 2PjNtot − δ(Ntot, 2Pj, ε1) (A22)

Proof. Since we are only interested in the statistics of ni and nj, it is not restrictive to rewrite
the quantum state (∑i

√
Pi|i〉A|φi〉B)

⊗Ntot as

(∑
i

√

Pi|i〉A|φi〉B)
⊗Ntot = {

√

Pi − Pj|i′〉A|φi〉B +
√

2Pj
1√
2
(|i′′ 〉A|φi〉B + |j〉A|φj〉B) + ...}⊗Ntot . (A23)
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Here, we virtually define
√

Pi|i〉A =
√

Pi − Pj|i′〉A +
√

Pj|i′′〉A and 〈i′|i′′〉A = 0, which do
not change the density matrix of B; thus, have no impact on Eve’s operation and statistics
of ni and nj. Let ni′ (ni′′ ) denote the number of detection for the quantum state |i′〉A(|i′′〉A)
when Eve announces a successful measurement. Apparently, we know that ni = ni′ + ni′′ .

Let us focus on the state {√2Pj
1√
2
(|i′′〉A|φi〉B + |j〉A|φj〉B)}⊗Ntot , by which the relation

between ni′′ and nj can be analyzed. The essential idea is reinterpreting the detection of
B to a game of Eve guessing which states |φi〉B or |φj〉B Alice prepared for all of the Ntot

trials. Specifically, we consider a virtual experiment illustrated below.
Alice prepares the quantum state {√2Pj

1√
2
(|i′′〉A|φi〉B + |j〉A|φj〉B)}⊗Ntot ; then, she

sends the B part to Eve. Eve measures each B she received. If she obtains a successful
measurement, she will announce M = 1. Otherwise, she will announce M = 0. Up to
now, there is no difference from the previous protocol. A critical step is that for any trial
that Eve announces M = 0, Alice flips corresponding M with probability 1

2 . Finally, Alice
measures all partials A locally. It is obvious that if Alice prepares two quantum states
|φi〉 and |φj〉 at random, the maximal probability of Eve guessing correctly which state

is prepared is
1+

√

1−F2
ij

2 where Fij = |〈φi|φj〉|. With the flip operation, we can apply this
maximal probability to our analysis below. In this case, we reinterpret that M = 1 (M = 0)
means that Eve guessed the quantum state Alice prepared is |φi〉 (|φj〉), which justifies the
lossless assumption. Note that this does not compromise security because as an adversary,
Eve can guess in this way. In other words, we can now treat this virtual experiment as a
game where Eve tries to guess whether Alice is preparing |φi〉 or |φj〉. For each of all the
trials in such a game, it is well known that Eve’s maximal probability of guessing correctly

is
1+

√

1−F2
ij

2 . Now, we are ready to find the relation between ni′′ and nj by calculating how
many trials in which Eve’s guessing is correct. First, ni′′ means that announcing M = 1 at
first and Alice also preparing |φi〉B, which of course leads to guessing correctly. Then, let
Ni′′ (Nj) denote Alice preparing the state |φi〉(|φj〉), which implies that Ni′′ + Nj ≈ Ntot2Pj.
As a result, there are (Ni′′ + Nj − ni′′ − nj) trials in which Eve announces M = 0 at first
and then a random flipping operation on M follows; for every such trial, the probability of
guessing correctly is obviously 1/2. Further considering the potential statistical fluctuations
made by the random flipping, with a failure probability of ε′1, the number of Eve guessing
correctly in the Ni′′ + Nj trials is no larger than

ni′′ +
1
2
(Ni′′ − ni′′) +

1
2
(Nj − nj) + δ1, (A24)

where δ1 = δ(Ni′′ + Nj − ni′′ − nj, 1
2 , ε′1) is the upper bound of the statistical fluctuation

made by the random flipping of the (Ni′′ + Nj − ni′′ − nj) trials. We let ε′1 be the probability
of the amount of successful detection of quantum state |i′′〉 reach ni′′ . Hence the probability
that we get the quantity denoted by Eq (A24) is ε

′2
1 . On the other hand, in the Ni′′ + Nj trials

of guessing |φi〉 and |φj〉 prepared by Alice at random, the probability of Eve guessing

correctly is no larger than
1+

√

1−F2
ij

2 [50], because the fidelity of |φi〉 and |φj〉 is Fij, Hence,

one can assert that when ε
′2
1 ≤ ε2

0, In this case, we let ε′1 = ε0. Hence, one can assert that
with a failure probability ε0,

ni′′ − nj

2
+

Ni′′ + Nj

2
+ δ1 ≤ (Ni′′ + Nj)

1 +
√

1 − F2
ij

2
+ δ2 (A25)

holds, where δ2 = δ(Ni′′ + Nj,
1+

√

1−F2
ij

2 , ε2
0) is the upper bound of the statistical fluctuation

when Eve’s guessing probability for each trial achieves the upper-bound
1+

√

1−F2
ij

2 . Note
that because in such a guessing game, conditioned on other trials , the probability of
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guessing correctly for any fixed trial cannot be larger than
1+

√

1−F2
ij

2 , this lemma is applied
to any attack . Furthermore, the probability of guessing correctly reaches its maximum,
which equals a constant; then, the assumpution of iid holds and the Bernoulli distribution
is applied to this case. However, since it is hard to calculate the statistical fluctuation, we
use the Chernoff bound δ2 to approximate it [51].

According to Equation (A25), we can obtain an upper bound of ni′′ − nj with a failure
probability ε0, say

ni′′ − nj ≤ (Ni′′ + Nj)
√

1 − F2
ij + 2δ(Ni′′ + Nj,

1 +
√

1 − F2
ij

2
, ε2

0)− 2δ(Ni′′ + Nj − ni′′ − nj,
1
2

, ε0). (A26)

Similarly, if we redefine the guessing correctly as M = 1 corresponding to |φj〉 and M = 0
corresponding to |φi〉, we have that

nj − n′′
i ≤ (Ni′′ + Nj)

√

1 − F2
ij + 2δ(Ni′′ + Nj,

1 +
√

1 − F2
ij

2
, ε2

0)− 2δ(Ni′′ + Nj − ni′′ − nj,
1
2

, ε0). (A27)

Combining Equation (A26) and Equation (A27), we are clear that

|n′′
i − nj| ≤ (Ni′′ + Nj)

√

1 − F2
ij + 2δ(Ni′′ + Nj,

1 +
√

1 − F2
ij

2
, ε2

0)− 2δ(Ni′′ + Nj − ni′′ − nj,
1
2

, ε0) (A28)

holds with a failure probability 2ε0.
For simplicity’s sake, we enlarge the R.H.S of Equation (A28). Concretely, we replace

2δ(Ni′′ + Nj − ni′′ − nj, 1
2 , ε2

0) by 2δ(Ni′′ + Nj − ni − nj, 1
2 , ε2

0) in Equation (A28), say

|ni′′ − nj| ≤ (Ni′′ + Nj)
√

1 − F2
ij + 2δ(Ni′′ + Nj,

1 +
√

1 − F2
ij

2
, ε2

0)− 2δ(Ni′′ + Nj − ni − nj,
1
2

, ε0). (A29)

Note that these bounds of statistical fluctuations can be derived by the Chernoff bound [52].
Similarly, because of the probability that Alice sends the quantum state 1√

2
(|i′′〉A|φi〉B +

|j〉A|φj〉B) is 2Pj, using the well-known Chernoff bound [52], we know that

2NtotPj − δ(Ntot, 2Pj, ε1) ≤ Ni′′ + Nj ≤ 2NtotPj + δ(Ntot, 2Pj, ε1) (A30)

Combing Equation (A29) and Equation (A30), we know that

|ni′′ − nj| ≤ N1

√

1 − F2
ij + 2δ(N1,

1 +
√

1 − F2
ij

2
, ε2

0)− 2δ(N2 − ni − nj,
1
2

, ε0) (A31)

holds with a failure probability 2ε0 + 2ε1, where N1 = 2NtotPj + δ(Ntot, 2Pj, ε1) and N2 =
2NtotPj − δ(Ntot, 2Pj, ε1)

Finally, to derive the relation between ni and nj, we have to consider the relations

between niand ni′′ . It is easy to know that ni′′ =
Pj

Pi
ni on average since there is no way for

Eve to distinguish |i′〉 and |i′′〉. Hence, using the Chernoff bound [52] again, we know that

Pj

Pi
ni − δ(ni,

Pj

Pi
, ε2) ≤ ni′′ ≤

Pj

Pi
ni + δ(ni,

Pj

Pi
, ε2) (A32)

Combining Equation (A31) and Equation (A32), we can obtain the inequality Equation (A21).
In conclusion, we complete the proof.
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With Lemma A1, we can derive the constrains between ni|2µ and nj|2ν. Since Alice

and Bob send the quantum state τj|2µ (τj|2ν ) with the probability
2P2

µ

M P̃j|2µ( 2P2
ν

M P̃j|2ν) and the

fidelity between them is F
j
µν = ∑

∞
n=0

√
Pj+Mn|2µ

√
Pj+Mn|2ν

√

P̃j|2µ P̃j|2ν

. By Lemma A1, we can obtain the

relation between nj|2µ and nj|2ν which reads

|Cj|2µnj|2µ − Cj|2νnj|2ν| ≤ △j
µν. (A33)

We let P1 =
2P2

µ

M P̃j|2µ and P2 = 2P2
ν

M P̃j|2ν. If P1 > P2, we have Cj|2µ = P2
P1

,Cj|2ν = 1 and

△j
µν = N1

√

1 − (F
j
µν)2 + 2δ(N1,

1 +
√

1 − (F
j
µν)2

2
, ε2

0)− 2δ(N2 − nj|2µ − nj|2ν,
1
2

, ε0) + δ(nj|2µ,
P2

P1
, ε2) (A34)

where N1 = 2NtotP2 + δ(Ntot, 2P2, ε1) and N2 = 2NtotP2 − δ(Ntot, 2P2, ε1)
If P1 < P2, we have that Cj|2ν = P1

P2
,Cj|2µ = 1 and

△j
µν = N1

√

1 − (F
j
µν)2 + 2δ(N1,

1 +
√

1 − (F
j
µν)2

2
, ε2

0)− 2δ(N2 − nj|2µ − nj|2ν,
1
2

, ε0) + δ(nj|2ν,
P1

P2
, ε2) (A35)

where N1 = 2NtotP1 + δ(Ntot, 2P1, ε1) and N2 = 2NtotP1 − δ(Ntot, 2P1, ε1)
One can know that the constraints Equations (A34) and (A35) are nonlinear because of

the nj|2µ in δ(nj|2µ, P2
P1

, ε2) or nj|2ν in δ(nj|2ν, P1
P2

, ε2). To keep the linearity of these constraints
for ease of numerical calculations, we replace nj|2µ with n2µ and replace nj|2ν with n2ν in

△j
µν. That is to say, without compromising the security, we replace Equation (A34) by

△j
µν = N1

√

1 − (F
j
µν)2 + 2δ(N1,

1 +
√

1 − (F
j
µν)2

2
, ε2

0)− 2δ(N2 − n2µ − n2ν,
1
2

, ε0) + δ(n2µ,
P2

P1
, ε2) (A36)

and replace Equation (A35) by

△j
µν = N1

√

1 − (F
j
µν)2 + 2δ(N1,

1 +
√

1 − (F
j
µν)2

2
, ε2

0)− 2δ(N2 − n2µ − n2ν,
1
2

, ε0) + δ(n2ν,
P1

P2
, ε2) (A37)

Moreover, recalling Alice and Bob may both choose intensity 0 and obtain the correspond-
ing number of successful clicks n0, we have two additional constraints between n0 and
n0|2µ, n0|2ν which reads

|C0,µn0 − C0
2µn0|2µ| ≤ △0

0µ

|C0,νn0 − C0
2νn0|2ν| ≤ △0

0ν (A38)

Since the probability of both Alice and Bob sending the quantum state |0〉〈0| is P2
O and

the fidelity between |0〉〈0| and 1
2 |0̃2µ〉〈0̃2µ| + 1

2 |0̃2µ〉′〈0̃2µ| ( 1
2 |0̃2ν〉〈0̃2ν| + 1

2 |0̃2ν〉′〈0̃2ν| ) is

F0
µ0 =

P0|2µ

P̃0|2µ
(F0

ν0 =
P0|2ν

P̃0|2ν
), we can obtain the coefficients of these two constraints according to

Lemma A1. For simplicity’s sake’s sake, we let P1 = P2
O and P2 =

2P2
µ P̃0|2µ

M ; then, if P1 > P2,
we have C0,µ = P2

P1
, C0

2µ = 1 and

△0
0µ = N1

√

1 − (F0
µ0)

2 + 2δ(N1,
1 +

√

1 − (F0
µ0)

2

2
, ε2

0)− 2δ(N2 − n2µ − n0,
1
2

, ε0) + δ(n0,
P2

P1
, ε2)
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where N1 = 2NtotP2 + δ(Ntot, 2P2, ε1) and N2 = 2NtotP2 − δ(Ntot, 2P2, ε1); otherwise, we
have C0,µ = 1, C0

2µ = P1
P2

and C0,µ = P2
P1

, C0
2µ = 1 and

△0
0µ = N1

√

1 − (F0
µ0)

2 + 2δ(N1,
1 +

√

1 − (F0
µ0)

2

2
, ε2

0)− 2δ(N2 − n2µ − n0,
1
2

, ε0) + δ(n2µ,
P1

P2
, ε2) (A39)

where N1 = 2NtotP1 + δ(Ntot, 2P1, ε1) and N2 = 2NtotP1 − δ(Ntot, 2P1, ε1).

Similarly, we let P1 = P2
O and P2 =

2P2
ν P̃0|2ν

M ; then, if P1 > P2, we have C0,ν = P2
P1

, C0
2ν = 1

and

△0
0ν = N1

√

1 − (F0
ν0)

2 + 2δ(N1,
1 +

√

1 − (F0
ν0)

2

2
, ε2

0)− 2δ(N2 − n2ν − n0,
1
2

, ε0) + δ(n0,
P2

P1
, ε2)

where N1 = 2NtotP2 + δ(Ntot, 2P2, ε1) and N2 = 2NtotP2 − δ(Ntot, 2P2, ε1); otherwise, we
have C0,ν = 1, C0

2ν = P1
P2

and C0,ν = P2
P1

, C0
2ν = 1 and

△0
0ν = N1

√

1 − (F0
ν0)

2 + 2δ(N1,
1 +

√

1 − (F0
ν0)

2

2
, ε2

0)− 2δ(N2 − n2ν − n0,
1
2

, ε0) + δ(n2ν,
P1

P2
, ε2) (A40)

where N1 = 2NtotP1 + δ(Ntot, 2P1, ε1) and N2 = 2NtotP1 − δ(Ntot, 2P1, ε1).
Now the gaps between nj|2µ v.s. nj|2ν, n0|2µ v.s. n0, and n0|2ν v.s. n0 have been given.

To bound nph, we can now resort to linear programming below:

max nph =
M−2

∑
j=0,j∈N0

nj|2µ

s.t.
M−1

∑
j=0

nj|2µ = n2µ

M−1

∑
j=0

nj|2ν = n2ν

|C0,µn0 − C0
2µn0|2µ| ≤ △0

0µ

|C0,νn0 − C0
2νn0|2ν| ≤ △0

0ν

|Cj|2µnj|2µ − Cj|2νnj|2ν| ≤ △j
µν. (A41)

For ease of calculation, in all these constraints we let ε0 = ε1 = ε2 = εa; then, the total
failure probability that we obtain the bound △j

µν is 6εa. Meanwhile, the failure probability
that we obtain the last two bounds on is 2εa. Hence, the total failure probability of all
these constraints is 6(M + 2)εa. To conclude, with the help of the linear programming in
Equation (A41), one can calculate the upper-bound of nph.

For simplicity’s sake, we give the analytical solution of this linear programming below.
We divide nph into two parts, say

nph = n0|2µ + ∑
j=2,4,6

nj|2µ. (A42)
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According to the inequality |C0,µn0 − C0
2µn0|2µ| ≤ △0

0µ, we can obtain that the bounds of
n0|2µ are

n0|2µ =
C0,µn0 +△0

0µ

C0
2µ

, (A43)

n0|2µ =
C0,µn0 −△0

0µ

C0
2µ

. (A44)

Similarly, with the inequality |C0,νn0 − C0
2νn0|2ν| ≤ △0

0ν, we have the bounds of n0|2ν, i.e.,

n0|2ν =
C0,νn0 +△0

0ν

C0
2ν

, (A45)

n0|2ν =
C0,νn0 −△0

0ν

C0
2ν

. (A46)

Besides the bound n0|2µ, we need to calculate the upper bound of ∑j=2,4,6 nj|2µ which we
derive below. If we set µ > ν and Pµ > Pν, according to Eq A33, we have

Cj|2µ =
P2

ν P̃j|2ν

P2
µ P̃j|2µ

,

Cj|2ν = 1, (A47)

for j ≥ 1. Hence, nj|2ν ≤ P2
ν P̃j|2ν

P2
µ P̃j|2µ

nj|2µ +△j
µν where j ≥ 1 hold. Then, combing with the

equality n2ν = ∑
M
j=0 nj|2ν, we have

∑
j=1,3,5,7

P2
ν P̃j|2ν

P2
µ P̃j|2µ

nj|2µ + ∑
j=2,4,6

P2
ν P̃j|2ν

P2
µ P̃j|2µ

nj|2µ ≥ n2ν −
7

∑
j=1

△j
µν − n0|2ν. (A48)

It is easy to prove that

P2
ν P̃j|2ν

P2
µ P̃j|2µ

≥
P2

ν P̃j+1|2ν

P2
µ P̃j+1|2µ

(A49)

for j ≥ 1 holds in the case of µ > ν and Pµ > Pν. Consequently, we can know that

P2
ν P̃1|2ν

P2
µ P̃1|2µ

( ∑
j=1,3,5,7

nj|2µ) +
P2

ν P̃2|2ν

P2
µ P̃2|2µ

( ∑
j=2,4,6

nj|2µ) ≥ n2ν −
7

∑
j=1

△j
µν − n0|2ν. (A50)

Finally, combing with the equality ∑
M−1
j=0 nj|2µ = n2µ, Equations (A44) and (A46), we obtain

the upper bound given by

∑
j=2,4,6

nj|2µ ≤
P2

ν P̃1|2ν

P2
µ P̃1|2µ

n2µ − n2ν + ∑
7
j=1 △

j
µν +

C0,νn0+△0
0ν

C0
2ν

− C0,µn0−△0
0µ

C0
2µ

P2
ν P̃1|2ν

P2
µ P̃1|2µ

P2
ν P̃1|2ν

P2
µ P̃1|2µ

− P2
ν P̃2|2ν

P2
µ P̃2|2µ

. (A51)

Finally, we have the upper bound of nph, say

nU
ph =

P2
ν P̃1|2ν

P2
µ P̃1|2µ

n2µ − n2ν + ∑
7
j=1 △

j
µν +

C0,νn0+△0
0ν

C0
2ν

− C0,µn0−△0
0µ

C0
2µ

P2
ν P̃1|2ν

P2
µ P̃1|2µ

P2
ν P̃1|2ν

P2
µ P̃1|2µ

− P2
ν P̃2|2ν

P2
µ P̃2|2µ

+
C0,µn0 +△0

0µ

C0
2µ

. (A52)
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