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Abstract: Quantum key distribution (QKD) allows two remote parties to share information-theoretic
secret keys. Many QKD protocols assume the phase of encoding state can be continuous randomized
from 0 to 277, which, however, may be questionable in the experiment. This is particularly the case
in the recently proposed twin-field (TF) QKD, which has received a lot of attention since it can
increase the key rate significantly and even beat some theoretical rate-loss limits. As an intuitive
solution, one may introduce discrete-phase randomization instead of continuous randomization.
However, a security proof for a QKD protocol with discrete-phase randomization in the finite-key
region is still missing. Here, we develop a technique based on conjugate measurement and quantum
state distinguishment to analyze the security in this case. Our results show that TF-QKD with a
reasonable number of discrete random phases, e.g., 8 phases from {0, 7/4, 71/2, ...,77t/4}, can achieve
satisfactory performance. On the other hand, we find the finite-size effects become more notable than
before, which implies that more pulses should be emit in this case. More importantly, as a the first
proof for TF-QKD with discrete-phase randomization in the finite-key region, our method is also
applicable in other QKD protocols.

Keywords: quantum key distribution; finite-key analysis; discrete-phase randomization

1. Introduction

Quantum key distribution (QKD) [1,2], one of the most successful and mature appli-
cations in quantum information science, allows for two legitimate parties (Alice and Bob)
to share information-theoretic secret keys. In theory, its security has been proved [3-5],
while experiments towards a higher key rate [6] and longer achievable distance [7-10] have
been demonstrated. Still, some large scale QKD networks are emerging [11-14]. However,
owing to the inherent photon-loss in the channel, it meets a vital bottleneck that limits the
communication distance and key generation rate. Specifically, some fundamental rate-loss
limits [15,16] impose a restriction on any point-to-point QKD without repeaters. More
precisely, the key rate R is bounded by the channel transmission probability # with the
linear PLOB bound R = —1log,(1 — ) [16]. Delightfully, M.Lucamarini et al. made a
breakthrough by proposing twin-field (TF) QKD in 2018. The essential idea of TF-QKD is
in code mode extracting the key bit from a single-photon click event of the measurement
station located in the middle of channel, which happens with a probability proportional to
/7, thus, surpassing the linear PLOB bound becomes possible, and a so-called phase-error
rate may be estimated in decoy mode [17-19] to monitor security. Driven by this, several
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TF-type QKD protocols [20-26] were proposed later to complete security proofs and im-
prove performance. Based on these protocols, experimentalists also made great efforts to
realize TF-QKD [27-35].

Since TF-QKD inherits measurement-device-independent (MDI)-QKD’s [36] merit
that is immune to all side-channel attacks to measurement devices and all measurement-
device imperfections [37,38], one does not need to take the detection loopholes into account
within the TF-type QKD system. In spite of this, the security issues of the state preparation
in TF-QKD must be carefully considered. In practice, the laser source of TF-QKD is
usually a continuous source emitting coherent states with a fixed phase. Meanwhile,
continuous phase-randomization from 0 to 7t is required in the TF-QKD. More specifically,
this continuous phase-randomization is assumed in both the code and test modes in
Refs. [21,23,26], or at least in the test mode in Refs. [22,24,39]. To fulfill this requirement,
Alice and Bob must randomize the global phase continuously and uniformly. Unluckily,
two ways to achieve phase randomization introduce different problems in the experiment.
Passive randomization will lead to phase correlations between adjacent pulses [40,41],
while active randomization can only randomize the phase over discrete set of values.

To bridge this gap between theory and experiment, two works that analyzed the secu-
rity of fully discrete-phase randomization TF-QKD protocol have been proposed [42—44]
in these days. However, a security proof in the finite-key region is still missing. Hence,
one natural question is that whether TF-QKD with fully discrete-phase randomization can
work well non-asymptotically. This work affirms that it can.

In this paper, we analyze the security of TE-QKD protocol with fully discrete random-
ization in a finite-key region. Interestingly, our analysis leads to comparable performance
with the continuous one. Since taking the discrete phase into account, our results make
the TF-QKD more practical and can be applied to the future TF-QKD experiment. More
importantly, some techniques proposed here, e.g., Lemma A1l (introduced later), can be
utilized to analyze the security of other QKD protocols with discrete-phase randomization.

This work is organized as follows. In Section 2, we give a description of the TF-QKD
protocol with fully discrete-phase randomization, and the sketch of the security proof is
given in Section 3. Note that the proof is detailed in Appendix A. In Section 4, by the
numerical simulation, we show this protocol can still beat the linear PLOB bound [16] and
has satisfactory performance. Finally, a conclusion is given in Section 5.

2. Protocol Description

Indeed, the protocol analyzed here has been depicted in Ref. [43]. For ease of under-
standing, we illustrate the protocol as follows.
Step 1: Alice (Bob) chooses a label from {”u”,”0”,”v”} with probabilities Py, Po, Py,
according to the label she (he) chooses, she (he) takes one of the following actions:
"u”: she (he) randomly picks an integer I4_ (I.) from {0,1,--- , M — 1} with equal
probability ﬁ where M is an even integer. This means that the phase 27 is divided into M
parts. Then, she (he) randomly chooses a key bit k, (k;) where k;(k;) € {0,1}. Finally, she

(he) sends a pulse with a coherent state |ei(uﬁ2”+”k") \/ﬁ>(|ei(%2”+"kb) VI )

”0”: she (he) sends the vacumm state.

"v”: she (he) randomly picks an integer /4_and I, from {0,1,--- ,M — 1} with
equal probability % where M is an even integer. This means that the phase 277 is divided

into M parts. Then, she (he) sends a pulse with a coherent state |eiuﬁ2”\/ﬁ>(|ei’%2”\/ﬁ> )-

The first case is called code mode, while the other cases are decoy mode.

Step 2: Alice and Bob repeat Step 1 in total of Ny, times.

Step 3: After receiving Nt pairs of pulses from Alice and Bob, interfering each pair at
a beamsplitter and measuring the two outputs with his single photon detectors (SPDs), an
honest Eve announces whether or not each measurement is successful. Here, “successful’
means only one SPD (left SPD or right SPD) clicks in the corresponding measurement, and
if so, Eve reports the specific SPD clicked.
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Step 4: For those rounds Eve announcing successful click, Alice and Bob announce the
intensities they chose as well as the values of [ 4, and I,. Then, Alice and Bob only retain
those successful rounds in which the intensities of the coherent state they sent are same
while the in-phase (14, = Ip,) or anti-phase (|/4, — Ip,| = M/2) condition is also met. Let
nz+ ﬁ(n; /3) be the number of the retained rounds when both Alice and Bob chose the same
intensity B of the coherent state and the in-phase (anti-phase) is also met. Note that we
assume 4 = I, = 0 always holds in the case of 8 = 0. Alice and Bob generate their sifted
keys from ny;, = nzry + n,, retained rounds in code mode, thus the length of sifted key bits
nyit = nzy,. Note that if it is an in-phase (anti-phase) round with right (left) SPD clicking,
Bob may flip his corresponding sifted key bit.

Step 5: With all of the quantities ny5 = ny, FRECYY Alice and Bob use linear program-

ming to obtain an upper bound on the number of phase errors(defined later) ngh with a

failure probability no more than ¢; then, they can calculate the upper bound eyh = ”yh / M.
Step 6: Step 6 consists of error correction and privacy amplification.

Step 6a: Alice sends Hgc bits of syndrome information of her sifted key bits to Bob
through an authenticated public channel. Then, Bob uses it to correct errors in his sifted
keys. Alice and Bob calculate a hash of their error-corrected keys with a random universal
hash function and check whether they are equal. If equal, they continue to the next step;
otherwise, they abort the protocol.

Step 6b: Alice and Bob apply the privacy amplification to obtain their final secret
keys. If the length of their secret key satisfies | = n; (1 — h(e;fh)) — Hgc — log, % -

log, é where h(-) denotes the binary Shannon entropy, this protocol must be €.,-correct

and €,,c-secret with €sec = /€ + €pa. Here, €cor(€sec) represents the protocol is correct (secret)
with a failure probability no more than €. (€sec ). Hence, the total security parameter is €;,;-
secure where €;,) = €cor + €sec. 1t is elaborated thoroughly in the widely-used universally
composable security framework [45,46].

3. Security Proof

In this section, we present the security proof of this protocol. The main task of the
security proof is to bound the information Eve holds. To accomplish this task, one can
calculate a so-called phase-error rate. Firstly, we construct an equivalent virtual protocol,
in which Alice and Bob prepare some entangled states between local states and traveling
states, but traveling states must have the same density matrices as actual protocol in the
channel. The sifted key bits can be seen as the outputs of measurement with Z-basis on
local states made by Alice and Bob; then, the so-called phase-error rate is defined as the
error rate for the outputs of measurement with the X-basis made by them. According
to the complementarity argument [47], the phase-error rate can be used to bound Eve’s
information on the sifted keys. In the following, we give the virtual protocol and show
how to bound the phase-error rate.

3.1. Equivalent Virtual Protocol

In our virtual protocol, Alice generates secret keys from the code mode in which she
prepares the state

M-1 1

Wnasn= L Z=lDalZ(0alH e+ al=eHlyma),

1=0

where A. and A are the local quantum systems in Alice’s side, and a is the traveling
quantum state Alice sent to Eve. Similarly, Bob prepares |¢),, 5.5, defined analogously to
|#) 4, 4. Aa- Obviously, Alice (Bob) measures A(B) with Z-basis to obtain sifted key, i.e., [0) 4
for bit 0 and |1) 4 for bit 1. In order to obtain the phase-error rate, they measure A, B in
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X-basis {|+),|—)} after Eve’s attack. As for the test mode, we assume Alice prepares the
following states

[¥)0,4.40 = 10) 4.10) 4|0)q, ()
M-1 1 - 27
[¥)v,ac80 = ) M|1>AC|O>A\@lmlﬁ>a-

=0

Here, the local states of A, are encoded in photon-number states, and Alice can measure
A¢’s photon-number to learn the phase of sent states.

Finally, we can describe the process of state preparation above with a single state,
namely,

[¥) Acacaa = /Pul0) A ) u,ac4a + V/POIL) 4 19)0,4.40 + /Pu|2) 4 |¥) v, 4. 4 3)

where Alice’s additional local ancilla A; is in the photon number states. Similarly, Bob
can prepare ) p gy defined analogously to 1) o, 4. 4.- Though Alice (Bob) may measure
As(Bs),Ac(Bc), and A(B) after or before Eve announcing her measurement results, Alice
(Bob) must announce the measurement results after Eve’s announcement then post-select
the successful rounds. The following is a detailed illustration of our equivalent virtual
protocol.

Step 1:

Alice and Bob prepare a gigantic quantum state |®) = |p)®Net = (|P) 4 440 ®
|¥) B.5.8p) “Nt and send all subsystems a and b to Eve through an insecure quantum
channel.

Step 2:

After performing an arbitrary quantum operation on all subsystems a and b from Alice
and Bob, Eve announces whether it has a successful click (only one of her SPDs clicks) or
not for each round. For a successful round, Eve continues to announce whether the left SPD
clicks or the right SPD clicks. We use M (M) to denote the set of successful (unsuccessful)
rounds.

Step 3:

For those rounds in which Eve announces success, Alice and Bob jointly measure the
subsystem A.(B;) and A;(Bs) in the photon-number basis to learn whether the intensities
of the coherent state they send are same or not and whether it is in-phase or anti-phase.
Then, they only retain those rounds where in-phase or anti-phase is met, and they choose
the same intensities. Let M denote the set of those retained rounds, while M ¥ denotes
those rounds that are in M but not in M.

Step 4:

For these rounds in M, Alice (Bob) measures the subsystem A;A;(B.Bs) in Fock basis
to learn the phase and intensity of the coherent states she (he) sent . If the result of A;(B;) is
in state |0) 4,(|0) B,), she (he) measures subsystems A(B) in the Z basis to decide her (his)
sifted key, respectively; otherwise, she (he) measures subsystem A(B) in the Z basis but
does not incorporate these measurement outcomes in her (his) sifted key.

Step 5 to Step 6:

Let npp be the number of rounds in M; satisfying that both Alice and Bob chose
the intensity f. With parameters 1,5, perform the same operations as Step 5 to Step 6,
respectively, in the actual protocol given in Section 2.

3.2. Estimation of Phase-Error Rate

The essential of security proof is to estimate the upper-bound of the phase-error rate
ey, of the sifted keys, i.e.,, how many same or different outcomes Alice and Bob have if they
measure A and B with X-basis hypothetically in the rounds where sifted keys are generated.
Specifically, in our protocol, we define the number of the same outcomes they have as
Npp, €., the number of phase-error events. Provided that e, = ny;,/nz, is bounded, one
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can generate the final secret key with an appropriate €, value as given in Step6.b of the
actual protocol.

A detailed proof for how to estimate 1, is present in Appendix A. Here, a sketch of
this proof is given.

Though analyzing the equivalent protocol, it is proven that if Alice and Bob both chose
intensity f, and in-phase or anti-phase is also met, they actually prepare a mixture Tpg,
which consists of component Ti2ps j=0,1,.., M — 1. Moreover, each phase-error event is a
click by some particular components of that mixture T2p ie., Tij2ps j=0,2,..,M — 2. These
results imply that

_ M
Mo = Lj—oMjiou
M
Moy = Zj:O Mj2ys (4)
M2 '
Mph = LiZojen, Mlaus

where jj2p denotes the number of rounds in Mg, in which Alice and Bob both chose
intensity g, but 1,4 is actually 7j5. Meanwhile, N is the set of even numbers. Now, the
hypothetical value 1, is related to some experimentally observed values. However, just
with these equations it is difficult to bound 1, tightly since 1,5 cannot be known directly.

On the other hand, both 7j,, and T, are very close to Fock-state |f) (j|. Accordingly,
it is intuitive to consider if there are constraints on the gap between n;,, and 1;5,. Then,
we developed Lemma A1 (see Appendix A for details) to bound the gap between the yields
of two distinct quantum states in a non-asymptotic situation. Applying this lemma, we
obtained a series of constraints on 15, and 7, Finally, combined with Equation (5), an
analytical upper bound of 1, (given in the end of the Appendix A) was calculated to find

the upper bound of phase-error rate e;[h = n;;lh/ Moy

4. Numerical Simulation

In this section, we simulate the final secret key rate with the parameters listed in Table 1.

Table 1. List of parameters uesd in the numerical simulations. Here, ¢, is loss-independent misalign-
ment error rate due to optical imperfect interference, p; is dark counting probability for each SPD, ¢
is fiber loss constant, #; denotes detection efficiency of each SPD, f is error-correction inefficiency,
and €;,; denotes the total security coefficient.

em pa ¢ (dB/km) Na f Etol

0.03 1x108 0.2 0.3 1.1 4.6566 x 10710

It is reasonable to simulate the experimentally observed values 1y, 112, and ny with
their mean values. Let Q25 be the probability of only one click from left (right) SPD
when both Alice and Bob prepare coherent states with intensity § and a phase difference
of 0 (1), and Q.2 be the probability of only one click from left (right) SPD when both
Alice and Bob prepare coherent states with intensity  and phase difference of 7t (0). Then,
we have

Qcorr\2[3 = (1 - (1 - pd)672”(176m)ﬁ)eizmmﬁ(1 - pd)/
Qurrpp = (1= (1= pg)e21nP)e 210l (1 — py), ®)

where 11 = 1072 and L is the channel distance between Alice and Bob. Accordingly,
in the simulation, we assume ny5 = NtOfPl%Z(Qcorr\Zﬁ + Qerrjpp) /M for p = p,v. Note
that Ny = NtOtP(%(QCOW\O + Qerr\O)/ Npjt = N2y and €hit = Qerr‘2y/(Qcorr|2y + Qerr‘Zy)' With
these values, setting M = 8 and the failure probability of estimating phase error ¢ =
(6M +12)e, = 4 x 1072°, one can obtain the upper-bound of phase-error rate epuh by
the linear programming given by (A41) in Appendix A. Moreover, the amount of Hgc is



Entropy 2023, 25, 258

6 of 18

Secure key rate

10°

102

10~

10-8

Hec = Nyisfh(epir), €cor = 1 x 10719, and epy = 1.6566 x 1019, which leads to a secret key
of length I = ny;(1 — h(erb,lh)) — Hge —log, % —log, é with €sec = €pa + /€ and the

total security parameter €;,; = €cor + €sec = 4.6566 X 1010,

Finally, we numerically optimize the intensities and corresponding probabilities to
maximize [ in the cases of the total number of pulses is Nyt = 1 X 10171 x 1014,1 x
10'3,1 x 10'2. Note that because this numerical problem is very time-comsuming, these
intensities and probabilities are not optimized at each distance. Additionally, we use some
typical parameters instead. The simulate results (/N v.s. L) are illustrated below.

As Figure 1 shows, we obtain considerable secret key rates when the total number
of pulses is 1012, 103,10 or 10%7. Through numerical simulations, it is confirmed that
TF-QKD with discrete-phase randomization has satisfactory performance. On the other
hand, it is verified that finite-size effects become more notable here compared with the
original protocol with continuous phase randomization; it seems that one has to prepare
107 pulses to surpass the PLOB linear bound. This is because the statistical fluctuations in
Lemma Al are proportional to the square root of the total number of emitting pulse Njot,
which leads to alarge phase-error rate e,;, when ny; is not sufficiently large.

— Ntot=10"12
Ntot=10"13
Ntot=10~14
Ntot=10~17
PLOB bound

100 200 300 400
Distance (km)
Figure 1. Secret key rate (I/ Njot) of fully discrete TF-QKD [43]. In this figure, the key rate correspond-

ing to the total number of pulses Nyt is 1 X 1012,1 x 1013,1 x 10'4,1 x 1077, plotted above. Note that
we set M = 8 in the simulation.

5. Conclusions

In real setups of TF-QKD, continuous randomization is usually realized by actively
adding a random signal to a phase modulator. On the other hand, random numbers are
generated discretely in most schemes. Therefore, TF-QKD with discrete-phase randomiza-
tion is more practical. It is necessary to analyze the security of TF-QKD with discrete-phase
randomization. Based on conjugate measurement, the security proof of a QKD protocol is
to estimate the phase-error rate. Then in case of discrete-phase randomization, a critical step
is knowing how to bound the gap between yields of two distinct but very close quantum
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states in a non-asymptotic situation. To achieve this goal, Lemma Al is developed to find
the upper bound of this gap. With the help of Lemma 1, linear programming is proposed
to calculate the phase-error rate, and the key length is then straightforward. Through
numerical simulations, it is confirmed that TF-QKD with discrete-phase randomization
has satisfactory performance. On the other hand, we also find that more pulses should be
prepared to alleviate the finite-size effects than previous protocol.

Moreover, it is worth noting that Lemma A1 is quite useful in a variety of scenarios,
not just in the security proof of TF-QKD. For instance, if one considers the BB84 with
discrete-phase randomization [48], the Lemma A1 can be utilized to bound the yield of
single photon state, so then it is not difficult to give a relevant security proof. To summarize,
we give the first security proof for TF-QKD with finite discrete-phase randomization in
non-asymptotic scenarios. Although the proof is tailored for TF-QKD, the framework of
this proof, i.e. Lemma A1, can be adapted in other protocols.
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Appendix A
Appendix A.1. Formula for the Number of Phase-Error Events

In this section, we show how to obtain the relation between the hypothetical phase-
error events and some experimental observations.

The main result obtained here is that each key bit is a successful click from a mixed
state of Tijour j=0,1,.., M — 1 prepared by Alice and Bob. More importantly, the number of
phase-error events among these key bits corresponds to 7j5,,j = 0,2, ..., M — 2. Therefore, if
we denote the length of the raw key by n1;,;; = 12, and the number of successful clicks of 7j),,
by Mjjous Mpit = Nop = Zjl\ial il the number of phase-error events n,, = Zina,?eNo My
must hold, where N is the set of even integers. Next, a proof is present to show how to
obtain this result.

Following the symbols in [49], let us consider the evolution of the gigantic quantum
state |®) = |¢)®Net = () 4. 4,40 @ |¥)p.5.B) “N! sent to Eve. After Step 2, where Eve
performs her measurement on the subsystem ab, the initial quantum state is transformed to
Mgve|fb>, where M, denotes the measurement operator of Eve. After measurement, Eve
announces whether the measurement outcome is successful or not for each round. Hence,
we reorder the quantum state as |®) = |¢)®M|p)“M, where M (M) denotes the successful
(unsuccessful) rounds. Then, in Step 3 of the virtual protocol, using measurement op-
erators {Os = (|00) 4,5, (00| + [11) 4_p, (11| +122) a.5, (22]) @ =M (L 1) acs, (L1 + |1, (1 +
M/2)modM) 45, (1, (1 + M/2)modM|),O; = I — Os}, Alice and Bob measure the subsys-
tem AsA. and B; B, for those rounds that are announced successful in Step 2 and retain the
trials in which AsA. and BB, are collapsed into Os as the final successful rounds. Hence,

we reorder |®) = |¢)®Ms|p) M| )M where My(M ) denotes the successful(unsuccessful)
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rounds finally. Before they measure the subsystem AB to generate their sifted key in Step 3,
the unnormalized quantum state is given by

A AM¢ 2oV A ~ A ARM¢ noTr N A ~ -
OMsO; " I%M Moue | @) = MeoeOZM0, " T9M| @) = Move (Os]ep)) “M:= (O |p)) =™ (|gp)) M (A1)

Next, in Step 4, Alice and Bob measure the subsystem A, Bs A, B and A, B for all
rounds in M, one by one. We use &« € {1,---,M;} to denote the different rounds in
M; and ¢, to denote the measurement outcome of the a-th subsystem. What is more,
M, is used to denote the associated operator. Hence, the unnormalized state before the
measurement of the a-th rounds in M is

(@) = Neoe (@72 M119)) (Os19)) (Os9)) M=% (O l9)) ™ () M. (A2)

Because we are only interested in the reduced state of the a-th round in M, we trace out
the other rounds which we denote by @ and obtain

O = Trg[|Pu) (| Dul] =;< % | Py (@ T ) ; 70s19) (9| OI ML, (A3)
where
Nz = (T |Weoe| (@57 ¥11(05]9)) (Osl9) M=% (Oylg)) =M (1)) =M. (Ad)

ﬁ
and the quantum states {| @ ) } represent the basis for the subsystems As, Bs, Ac, B, A, B,a, b
of all rounds in the protocol except the a-th round in M.
Next, to derive the number of phase error, we expand the quantum state O;|¢) as

Os|¢) = pul00) a5, 10) + Pol11) 4., |P)0 + Pvl22) a8, [P (A5)

where

|¢>y
Va1 al — ) a) (00516 T /1)y + [1) 5] — €5 /7))
S ia + 1 al — T /m)a) (10)5] — e W /) + 1) ple T /7)),

2711

St (1) 4B, 5 (10) ale
+ (|1, (1 + 5 )modM) 4., 5 (|0) ale'

[¢)o = |00) 4,B,100) 45|00) 4p (A6)

and

lP)v (A7)
= MO L1311 4,5.(100) aple! 3 DYalel 3 DY) + (|1 (1 + Y )modM) ap, [00) ap (e 5! \/v)a| — €13 \/0);))].

To summarize, each key bit can be viewed as an event in which Eve announces a successful
click conditioned by Alice and prepares |¢), and measures AB with Z-basis . Since the
measurement on AB made by Alice and Bob can be delayed after Eve’s announcement of
a successful click, the phase error can be estimated by Alice and Bob measuring AB with
X-basis rather than Z-basis. To obtain the phase error of this part, we rewrite |¢), under
X-bases of AB as

11 M ,
|#)u = ;0 31 D A 19}, aqy + 11 (14 S modM) acs, 19}, aaps) (A8)
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where

|¢>;4AuBb

%(|00>AB|8'9’W> e /1) + 101) ap e /) a — € \/1)p)

43 (10) 2] — €% /el /RNy + [11) 5] — € Rl — €% /i)y)
1

g ) as (e Vale® /iy + e /ol — e /iy + | = e R)ale™ /iy + | = € /)al = € /i)
31— (1 Vale® VR — 1o YRl — € Ry — | — ¢ /el /ip + ] — ¢ yRdal — € i)
F31H as( )+ gl = Fhas)), (A9)

|9} Aabb
= 5 100) g e bl = ¢ )y + [01) ale® /el )
+3110) 4] — € bl — ¢ Ry + [11) 4] — € Dl /7))
= 1 s Ral = €y + € ale® Ry + | = e Rl — e Ry + | = € Rl /R)s)
1= s (16 R)al = 0y €9 ale® Ry — | = € Rl = ¢ Ry + | = € VRhale/E)s)
£ as( )+ gl = Fhas)), (A10)

and 6; = -271. For the purpose of clarification, we define some quantum states below:

|ei9 2V>ub: eije b; |j>ab (All)
\% ;f) Vil

and

j e /i)ale® i)y + | — e /f)a| — e
|619\/2H>ub,even = | vE vE > vE \/ ]|2y‘] abs (A12)

]GNO
where |j) = Z{::O /m| )alj — i)y and N is the set of even numbers. Indeed, |j) is a

quantum state satisfying that the total photon-number of 4 and b is j. Moreover, another
similar quantum state is defined below:

1€\ 2p)m, = Y €7 /Pyl (A13)
=0

and
: Yol —€*\/i)p + | — € /H)ale”
7 /2y, = 12l Z VR a0 AL = 3 Pl (A1
j€No
where [7)7) coen = Z{ZO(—l) 2!1'(] 7 | )alj — 7). With these definitions, we can write the

quantum states |zp>ly Aapp and [9)! 1, AaBp I @ MOTe simplified way, namely
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1 . A A ,
|1P>§4rAﬂBb :§(| + +>AB(|€19H/2],¢>M,€W” 4 |6191 /2]/l>,/1b,ev€n) + ‘ - 7>AB(‘6161 V 2]/‘>ab,even - ‘8191 V 2y>;b,even)

+1+=)as() + 1= +)as(-+)) (A15)
and
‘lp/);,,Ang (‘ + + ‘619, \/7 ab even + |€ i \/7 ah even - _>AB(|319[ \/ﬂ)ab,even - |81'9/ \/ﬂyﬂb,even)
+\+—>AB("')+|—+>AB("')) (Al6)
Obviously, the measurement outcome of | + +) 4p and | — —) 4p can be defined as phase-

error event. Recall the whole density matrix |¢), (¢| given in Equation (A8); we can obtain
the ab part corresponding to the phase-error event,

Pupn =+ + [aBtr a5 (19)u(P)| + +)aB + (— — |aBtraB. (19)u{P))| — —) aB
Z (Ua.((++1ap+ (== |ap)|P)u(@l(| + +)ap + | — =) aB)|I]) 4.5,
=0

+<l,( + M/2)modM| . ({+ + [ap + (— — [aB)[#)u(@|(| + +) ap + | — =) ap)|l, (I + M/2)modM) 5 g,
M-l

= mwr W)a (e /2] + e 200) iy (7 /20]) (A17)

fe=}

According to Equations (2.5)~(2.7) of Ref [48], p,, ,, can be rewritten as

A 2 v-M-2 B (1% z 17 z

OPuph = M ijo,je/\/o P]’\Zu(i T2p)ab Tl + 3 172 gy (2w )
2 vM-2 D

= 1 Lj=0,jen; iion Tz (A18)

where P; o = L0 Pit-Mnj2ps Pjjoy. is the the probability of finding j photons in a Poisson

source with mean photon-number 2y, [jo,) = Yo~ \;ﬂzy j + Mn) g and |fo,) =
Pz
Yoo VI | 4 M), and T

v v 1 v v
7, Tijop = 3172u)ab (ol + 3 o) o (2u |-
jlzn
For ease of understanding, we can easily interpret the formula of p,, ,y,. It is easy to

see that p,, ,, is a mixture of Tj,,, which consists of photon-number state |j + Mn)q, n =
0,1,2,..., and the probability of finding j + Mn photons is proportional to P; y,2,- Let
Teven|2u D the normalized p), y,; then, a phase-error event for a key bit is equivalent to a suc-
. e . v M-=2 ~
cessful click announced by Eve on the condition that a mixture T2, = ¥ 0Ny PioyTiou/
Pevenjou prepared by Alice and Bob, and the probability of preparing such a mixture is obvi-
ously Peyenjou2/ M.

To fmd a way to estimate the number of phase errors, we can give the density matrices
Alice and Bob prepared in code mode and decoy mode. If we trace out ABA:B, of the
quantum state |¢), (¢|, i.e., regardless of whether the measurement outcome on AB is phase
error or not, we have

P = Trapa.s.(|¢)u(9l)
= ):M ! P\Zy(%|]72y><]72y‘ + %|f2y>/<]72y|)
= M Zﬁal Py T (A19)

: _ vM-15.
We define 1, = Ej:o PiouTijou

equivalent to a successful click announced by Eve conditioned on the premise that a mixture

as the normalized p,. The generation of a key bit is



Entropy 2023, 25, 258

110f18

Ty = Z].Ai 61 Pj|2]4Tj|2]1 is prepared by Alice and Bob, and the probability of preparing such
a mixture is obviously P§2 /M.

Now we are approaching a main result of above derivations. In the Ny, rounds, Alice
and Bob prepare 12, with the probability P§2/ M; the number of its successful rounds is
denoted by ny,,. Of course, the key bits are generated in these rounds, thus 1y, = ny;;. Since
Ty, is a mixture of Tijous j=0,1..,,M—1, the ny, successful clicks are the sum of clicks
j|ou 1s the
number of successtful clicks by 7j5,,. Recall that the phase errors for these events are from

by lezy,j =0,1,..,M—1. Then, ny, = Z]'I\ial iy holds evidently, in which n

- ) : _ vM-2 '
clicks by T,y 2;,; One can assert that the number of phase-error events 1, = }_ j—0.7eN, 2

must hold. This is a main result we have so far.

Appendix A.2. The Upper Bound of the Number of Phase-Error Events

We have proved that n,, = Zj]\ia,?eNo njjp, with the constraint ny, = Z]-Aial Njjop-
Obviously, this is not sufficient for estimating 1, tightly. Here, we resort to decoy states to
obtain more constraints to bound #,,.

Similarly with the analysis of clicks by 9, = Trapa.s. (|9)u(¢|), a successful click from
decoy mode with intensity v means that Alice and Bob prepare

pl/ = TrABAch(|¢>V<(P|)
= % Zinal Pj|21/(%|]'2u><]'2u| + 31720) (vl

= % ):]Aial pj|2vTj\21/' (A20)

. e M-1 .
Accordingly, we also have 1y, =} =0 M2 Here, ny, and )5, are defined analogously to
nay and 1), respectively. Intuitively, n;,, and 15, are the numbers of successful clicks
for Ty, and Tj, respectively. Typically, p < v << 1is satisfied; then both 7, and 7,
are very close to the photon-number state |f) ;. This implies that the gap between n jlou and
1jlp, can be bounded, and then we may estimate 1), = Zj]\ia,?e A, Mjj2- Indeed, with the

result in appendix B of ref [48], the gap between 1, and 1), in the asymptotic case can
be obtained. Here, we develop Lemma A1 to bound this gap in finite-key situations.

Lemma A1. IfAlice prepares Ny pairs of particles A and B with the quantum state (Y_; /P;|i) a|$i) B)
©Niot where (i|j) = Sij, [{¢i|$;)| = Fij and she sends the B part in each pair to Eve. For every round,
Eve announces if the measurement is successful or unsuccessful, which is denoted by M = 1 or M = 0,
respectively. Then, Alice measures the subsystem A with projectors {|i)(i|,i = 0,1,2, ...} to which
quantum state she sent for the pairs that Eve announced M = 1. Let n; denote the number of yields for
the quantum state |i). If P; > P;j, we have that the constraints between n; and n;, say,

P; 1+,/1-F? 1 P
J / 2 ] 2
|Eni7ﬂ]’| <N l*Fl’jJrZ(S(Nl, ,80)72(5(N271’11'771]',5,80)‘%(5(1’11‘,*

j
A21
5 P,-’€2) (A21)

holds with a failure probability 2eq + 2e1 + 2¢5, where

o(x,y,2z) = 3xyIn(l)
Ny = 2PjNiot + 6(Niot, 2P;, 1)
Nz = 2PjNiot — 6(Ntot, 2P;, €1) (A22)

Proof. Since we are only interested in the statistics of n; and nj, itis not restrictive to rewrite
the quantum state (¥; v/P;|i) a|¢;)p) ©Net as

(; Vi) algiyp) Nt = { /P — Pili") al i) B + \/TPj%(|i”>A‘¢i>B + i) alg))p) + . ENer . (A23)
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Here, we virtually define \/Pj|i)4 = \/P; — P;|i') o + \/P;|i") o and (i’[i") o = 0, which do
not change the density matrix of B; thus, have no impact on Eve’s operation and statistics
of n; and n;. Let n;(1;r) denote the number of detection for the quantum state |i’) o(|i") 1)
when Eve announces a successful measurement. Apparently, we know that n; = ny + ny.

Let us focus on the state {\/TP]\% "y alpi) B+ 1j) a |¢].>B)}®Ntuf, by which the relation
between n;» and n; can be analyzed. The essential idea is reinterpreting the detection of
B to a game of Eve guessing which states |¢;)p or |¢;)p Alice prepared for all of the Ny
trials. Specifically, we consider a virtual experiment illustrated below.

Alice prepares the quantum state {\/2713]-%(|i”>14|4)i>3 + |7y alg;) ) }=Net; then, she
sends the B part to Eve. Eve measures each B she received. If she obtains a successful
measurement, she will announce M = 1. Otherwise, she will announce M = 0. Up to
now, there is no difference from the previous protocol. A critical step is that for any trial
that Eve announces M = 0, Alice flips corresponding M with probability % Finally, Alice
measures all partials A locally. It is obvious that if Alice prepares two quantum states
|¢;) and [¢;) at random, the maximal probability of Eve guessing correctly which state
is prepared is —5—— where F;; = [{¢;|$;)|. With the flip operation, we can apply this
maximal probability to our analysis below. In this case, we reinterpret that M = 1 (M = 0)
means that Eve guessed the quantum state Alice prepared is |¢;) (|¢;)), which justifies the
lossless assumption. Note that this does not compromise security because as an adversary,
Eve can guess in this way. In other words, we can now treat this virtual experiment as a
game where Eve tries to guess whether Alice is preparing |¢;) or |¢;). For each of all the
trials in such a game, it is well known that Eve’s maximal probability of guessing correctly

1+,/1—F?

is —5—. Now, we are ready to find the relation between 1;» and 1 by calculating how
many trials in which Eve’s guessing is correct. First, n;; means that announcing M = 1 at
first and Alice also preparing |¢;) g, which of course leads to guessing correctly. Then, let
Nj»(Nj) denote Alice preparing the state |¢;)(|¢;)), which implies that Nj» + N; & No2P;.
As a result, there are (Nj» + Nj—np—n ]-) trials in which Eve announces M = 0 at first
and then a random flipping operation on M follows; for every such trial, the probability of
guessing correctly is obviously 1/2. Further considering the potential statistical fluctuations
made by the random flipping, with a failure probability of €|, the number of Eve guessing
correctly in the N;» + N; trials is no larger than

1 1 —
nn + E(Ni// - Tli//) + E(N] - 1/1]) + 61, (A24)

where 6; = 6(Ny + N; —np —nj, %, ¢}) is the upper bound of the statistical fluctuation
made by the random flipping of the (Nj» + N; — ny» — n;) trials. We let €| be the probability
of the amount of successful detection of quantum state |i”’) reach n;#. Hence the probability
that we get the quantity denoted by Eq (A24) is 8/12. On the other hand, in the N;» + N; trials
of guessing |¢;) and |¢;) prepared by Alice at random, the probability of Eve guessing

| 1 iR . .
correctly is no larger than —5—— [50], because the fidelity of |¢;) and \q>j> is Fj, Hence,
one can assert that when 8/12 < s%, In this case, we let 8’1 = ¢9. Hence, one can assert that
with a failure probability ¢,

_ 2
Ry — 1 N + N] — A . T+ \/ 1 Fij _
3 + 5 +6; < (Nw + N])i2 + & (A25)

_ 1+,/1-F2
holds, where 6, = 6(N;» + Nj, f], s%) is the upper bound of the statistical fluctuation

14,/1-F2
when Eve’s guessing probability for each trial achieves the upper-bound —>—". Note
that because in such a guessing game, conditioned on other trials , the probability of
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14, /1-F2

guessing correctly for any fixed trial cannot be larger than fj, this lemma is applied
to any attack . Furthermore, the probability of guessing correctly reaches its maximum,
which equals a constant; then, the assumpution of iid holds and the Bernoulli distribution
is applied to this case. However, since it is hard to calculate the statistical fluctuation, we
use the Chernoff bound J, to approximate it [51].

According to Equation (A25), we can obtain an upper bound of n;» — n; with a failure
probability ¢q, say

14, /1-F

— 1
nin —7’[]' § (Nl//+N]) 1—F5+2(5(N1//+N], f,ﬁ%)—Z(s(Niu-‘rNj—niu —1’1]', 5,80). (A26)

Similarly, if we redefine the guessing correctly as M = 1 corresponding to |¢;) and M = 0
corresponding to |¢;), we have that

1+,/1-F2
/ ] 1
nj—n;’ < (Ni” +N]) 171:54*25(1\]1// +N], f’gﬁ) 72(5(Ni// +Nj*7’ll‘// 7711‘, E,EO). (A27)

Combining Equation (A26) and Equation (A27), we are clear that

1+ ,/1-F2
/ ] 1
|1’l:/—1’l'| S (Nl//+N]) 1—F5+2(5(N1//+N], 7,8%) _25(Ni”+Nj_ni” —n;, <

j ) jr bX SO) (AZS)

holds with a failure probability 2¢.
For simplicity’s sake, we enlarge the R.H.S of Equation (A28). Concretely, we replace
26(N + Nj —npp —n;, %,8(2)) by 26(Nj» + N; —n; —nj, %,e%) in Equation (A28), say

1+ ,/1—F2 1
nin — I’l]‘ < (Ni” -+ Nj)1/1 — F5 +25(Niu + N], fl]/f%) *25(1\[,’// + N] —ni—nj, 5,80). (A29)

Note that these bounds of statistical fluctuations can be derived by the Chernoff bound [52].
Similarly, because of the probability that Alice sends the quantum state % (1" al i) B +
/) al®;)B) is 2P;, using the well-known Chernoff bound [52], we know that

2Ntotpj — 5(Ntot/ 2P]‘,81) < Ni” + N] < ZNtotPj + 5(Ntot/ ZP]‘, 81) (A30)

Combing Equation (A29) and Equation (A30), we know that

1+ ,/1-F3
] 1
[ —n| < Niy/1— F}+20(Ny, ———— &5) —26(N, —n; — nj, 5:€)  (A31)

2

holds with a failure probability 2¢o + 2¢1, where Ny = 2Nyt P; + 8 (Niot, 2p;, g1)and N, =
2Nt P; — 8(Niot, 2P;, €1)

Finally, to derive the relation between n; and nj, we have to consider the relations
between n;and n;. It is easy to know that n;y = %ni on average since there is no way for
Eve to distinguish |i’) and |i"’). Hence, using the Chernoff bound [52] again, we know that

i i i i
P~ o(nj, Efﬁz) < np < B +d(n;, E'SZ) (A32)

Combining Equation (A31) and Equation (A32), we can obtain the inequality Equation (A21).
In conclusion, we complete the proof. [J
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With Lemma A1, we can derive the constrains between n

iy and 1y, Since Alice
2P% 2
and Bob send the quantum state Tjjp, (Tjj, ) with the probability W”Pﬂzy(z—]\]}Pj‘ »,) and the

v Py Mn LY, Py i Mujov .
fidelity between them is F},, = Y Y- H\;}f“ 5 M2 By Lemma Al, we can obtain the
jl2utjl2v

relation between n;,,, and n;,,, which reads

jl2u jl2v
Cilzuttjizn — Cizumjpay| < D (A33)
2P2
Welet Py = 5 Pjjpy and P, = 1\1;1 ijov- If P > P>, we have Cjp, = %,Cj‘zv =1land
; ; 1+ /1 (Ejy)? 1 P
A = N1y/ 1= (Fw)? +26(Ny, fﬁ%) = 26(N2 = 0 = Mjjay, 5,20) + (1), P%"EZ) (A34)

where N1 = ZNtotPZ + (S(Ntot,2P2,€1) and N2 = 2NtotP2 — 5(Nt0t,2P2,£1)
If Py < P,, we have that Cjp, = %,Cﬂzy =1land

1+ 1—(FZW)

Ay = N1\ 1= (Fly)? +25(Ny, 5 €) —

1 P,
25(N2 - n]\Zy j|21// 5/80) + ‘S(nj\Zw P72, 52) (A35)
where N1 = 2Ntotp1 + 5(Ntot/2P1/£1) and Nz = ZNtotpl — 5(Nt0t/ 2P1,81)

One can know that the constraints Equations (A34) and (A35) are nonlinear because of
the nj, in ‘5(”j|2w_ %, ) or Mjjoy in 0(n;p,, %, ). To k.eep the linearity of these Co-nstrain.ts
for ease of numerical calculations, we replace 1), with 11, and replace 75, with 1z, in

A]P'w. That is to say, without compromising the security, we replace Equation (A34) by

: - 1+4/1— (Fly)? 1 P
D = Niy/1 = ()2 4+ 26(N1, ———5— ) = 20(Np = 1oy, = 1y, 5,€0) + 6(nag, 3 e2) (A36)
and replace Equation (A35) by
» - 14+4/1- (Fj )2 1 P
Ay = NiyJ1 = (Fly)? +26(Ny, fwﬂ%) = 26(Np — oy — o, 5, €0) +0(nay, Pfﬂz) (A37)

Moreover, recalling Alice and Bob may both choose intensity 0 and obtain the correspond-
ing number of successful clicks np, we have two additional constraints between 7y and
1o|2- Mo|2v Which reads

|C0,]4n0 - Cg;ﬂo\zﬂ < Agy
|C0,Vn0 - Cgvn0\2v| < Agv (A38)

Since the probability of both Alice and Bob sending the quantum state |0) (0| is P3 and
the fidelity between [0)(0] and 3|02;,) (02| + 310241)" (O2ul (31020) (020 | + 51020)" (02| ) is
0 _ b 02
W~ B 0[2p

0\21/

(F? 0= ) we can obtain the coefficients of these two constraints according to

Lemma Al. For 51mp11c1ty s sake’s sake, we let P; = Pé and P, = Tw"; then, if P; > P,
we have Co, = %, ng =1land

1+ ,/1—(F%)2
uo 1 P
A, = Niy/1— (F) — €3) — 26(Ny — nay — o, 5-€0) +6(no, Fj,ez)

}10) + 2§(N1,
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where N1 = 2Nyt Py + 6(Niot, 2P5,€1) and Ny = 2Nyt Py — 5(Niot, 2P5, €1); otherwise, we
have Cou=1, ng = % and Cou = %,Cgu =1and

o e 1+ 17(1:}90)2 , 1 P,
AOI‘ =N; 1—(1:#0) +2(5(N1, f,&o) —25(N2—112H—7’10, 2,80)+5(112y, P72’£2) (A39)
where N7 = 2Nyt P; + 5(tht,2P1,£1) and Np = 2Nt P; — (S(Ntot,zpl,el).
2P2 By 5, .
Similarly, welet P} = P(% and P, = ”MO‘ZL ; then, if P, > P, wehave Cp, = %, Cgv =1

and

14+ 4/1— (F})? 1 P
Af, = N1y/1— (F%)2 +20(Ny, fv,g%) —26(Ny — 1, — 1, E,eo) + 6(ny, Fj,sz)

where N] = 2Nt0tP2 + (S(tht, 2P2,€1) and N2 = ZthtPZ — 5(Ntot, 2P2, 81),‘ otherwise, we
have Cp, =1, Cgv = 1% and Cp, = %,Cgv =1land

1+44/1—(F%)?2
AY, = Niy/1— (F9)2 + 25(Ny, ——— "

1 P,
,€3) —26(Ny — ngy — 1o, 5,€0) + 0(12y, ==, €2) (A40)
2 2 P,

where N1 = ZNtotpl + 5(Ntot72P1751) and Nz = ZNtotpl — 5(Ntot,2P1,81).

Now the gaps between 15, v.s. 12, ng|2,, V8. 119, and 1|y, V.s. 119 have been given.
To bound 7, we can now resort to linear programming below:

M-2
max nph = 4 Z n]-|2#
j=0,jeENy

M-1

st Y My, =Ny
j=0
M-1
Y My =y
j=0

0 0
|C0,}ln0 - C2;¢n0|2y‘ < AO;{

0 0
|Co,vm0 — C2vn0|2u‘ < Agy

ICjl2uttizn — Crpatjaul < D (Ad1)

For ease of calculation, in all these constraints we let ¢g = &1 = €3 = ¢&;; then, the total
failure probability that we obtain the bound A]W is 6¢,. Meanwhile, the failure probability
that we obtain the last two bounds on is 2¢,. Hence, the total failure probability of all
these constraints is 6(M + 2)e,. To conclude, with the help of the linear programming in
Equation (A41), one can calculate the upper-bound of 71,

For simplicity’s sake, we give the analytical solution of this linear programming below.
We divide 1, into two parts, say

nph = 7’10‘2;[ + Z n7|2}l' (A42)
j=24,6
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According to the inequality |Cp, ;19 — C2un0\zﬂ| < Al , we can obtain that the bounds of

Op”
7’10|2y are
Co o + AO ’
o2 = 7(:3 E, (A43)
M
COI},TIQ AO
o[y o £ (A44)
M

Similarly, with the inequality |Cy 1o — CzV”0|2v| < A, we have the bounds of Mojoy, i-€.,

Ov’

Coyng + Agv

Nojoy = '70, (A45)
| CZV
CO, no — AO
fopy = — g (A46)
B 2v
Besides the bound 715, we need to calculate the upper bound of };_5 4 ¢ 112, which we
derive below. If we set 4 > v and P, > P, according to Eq A33, we have
P2P;
— v
Ciop = 2P
Cw= 1L (A47)
) PP,
for j > 1. Hence, My < PZP\Z;l jlou + AHV where j > 1 hold. Then, combing with the
equality np, = E]-Aio 1jjy, We have
P2P; pZp 7.
]\21/ ]|21/ j _
Z M2 + |2 > Ny — Z A}W — Noj2y- (A48)
=1357 P PJW T j=24,6 Py 7P jl2u M = j=1
It is easy to prove that
P2Pp; P2Pp;
]\21/ j+12v (A49)

14 J’\Zu P P]+1|214

for j > 1 holds in the case of 4 > v and P, > P,. Consequently, we can know that

P3Py, PPy,

P2P (Y nj\z;:)"‘W( Y o) > oy — ZAW o2y - (A50)
on j=1357 i P2lon 12746

Finally, combing with the equality ij\ial Mjjop = Moy, Equations (A44) and (A46), we obtain

the upper bound given by
PPy, How — i 4 Z o Coumo+AY, Co,;mo—Agy sz?mv
T e 14 cy 3, Pihyy,
Moy < = k (A51)
=246 JI2H PPy, PiPyp,
7/ 2P 2D
PPy PiPyjay
Finally, we have the upper bound of 1, say
PPy, 7 j Covno+A),  Couto— Agy P2Dypy,
p2p.,. ep — Moy + Zj=1 A}ﬂ/ + 0 - o PP Coung + Y
u _ “HU12p 2v 2p w12 M Ou A
Moy = 53 T + 5 . (A52)
PiPyp,  Pibypy G

75 y)
PitPypy PiPyjay
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