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Abstract. We present exact solutions of the massless Klein-Gordon equation in a spacetime
in which an infinite straight cosmic string resides. The first solution represents a plane
wave entering perpendicular to the string direction. We also present and analyze a solution
with a static point-like source. In the short wavelength limit these solutions approach the
results obtained by using the geometrical optics approximation: magnification occurs if the
observer lies in front of the string within a strip of angular width 87Gu, where p is the
string tension. We find that when the distance from the observer to the string is less than
1073(Gp) > A ~ 150Mpc(A/AU)(Gp/1078) =2, where A is the wave length, the magnification is
significantly reduced compared with the estimate based on the geometrical optics due to the
diffraction effect.

1. Introduction
Typical wavelength of gravitational waves from astrophysical compact objects such as BH(black
hole)-BH binaries is in some cases very long so that wave optics must be used instead of
geometrical optics when we discuss gravitational lensing. More precisely, if the wavelength
becomes comparable or longer than the Schwarzschild radius of the lens object, the diffraction
effect becomes important and as a result the magnification factor approaches unity [1, 2, 3, 4, 5].
Mainly due to the possibility that the wave effects could be observed by future gravitational
wave observations, several authors [6, 7, 8, 9, 10, 11, 12, 13, 14, 15] have studied wave effects in
gravitational lensing in recent years.

In most of the works which studied gravitational lensing phenomenon in the framework of
wave optics, isolated and normal astronomical objects such as galaxies are concerned as lens
objects. Recently Yamamoto and Tsunoda[12] studied wave effects in gravitational lensing by
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an infinite straight cosmic string. The metric around a cosmic string is completely different from
that around a usual massive object.

Cosmic strings generically arise as solitons in a grand unified theory and could be produced
in the early universe as a result of symmetry breaking phase transition[16, 17]. If symmetry
breaking occurred after inflation, the strings might survive until the present universe. Recently,
cosmic strings attract a renewed interest partly because a variant of their formation mechanism
was proposed in the context of the brane inflation scenario[18, 19, 20, 21, 22, 23, 24]. In this
scenario inflation is driven by the attractive force between parallel D-branes and parallel anti
D-branes in a higher dimensional spacetime. When those brane-anti-brane pairs collide and
annihilate at the end of inflation, lower-dimensional D-branes, which behave like monopoles,
cosmic strings or domain walls from the view point of four-dimensional observers, are formed
generically [25, 26, 27, 28, 29].

For some time, cosmic string was a candidate for the seed of structure formation of
our universe, but this possibility was ruled out by the measurements of the spectrum of
cosmic microwave background (CMB) anisotropies[30, 31]. The current upper bound on the
dimensionless string tension G is around 10~7 ~ 107%, which comes from the observations of
CMBJ[32, 33, 34, 35] and/or the pulsar timing [36, 37, 38, 39]. Although cosmic string cannot
occupy dominant fraction of the energy density of the universe, its non-negligible population is
still allowed observationally[40, 41]. In fact, Sazhin et al.[42, 43] reported that CSL-1, which is
a double image of elliptical galaxies with angular separation 1.9 arcsec, could be the first case
of the gravitational lensing by a cosmic string with Gu ~ 4 x 1077,

We study in detail wave effects in the gravitational lensing by an infinite straight cosmic string.
In Ref. [12], wave propagation around a cosmic string was studied but they put the waveform
around the string by hand. Their prescription is correct only in the limit of geometrical optics,
which breaks down when the wavelength becomes longer than a certain characteristic length.
In this paper, we present exact solutions of the (scalar) wave equation in a spacetime with a
cosmic string. We analytically show that our solutions reduce to the results of the geometrical
optics in the short wavelength limit. We derive a simple analytic formula of the leading order
corrections to the geometrical optics due to the finite wavelength effects and also an expression
for the long wavelength limit. Interference caused by the lensing remains due to the diffraction
effects even when only a single image can be seen in the geometrical optics. This fact increases
the lensing probability by cosmic strings.

2. A solution of the wave equation around an infinite straight cosmic string
A solution of Einstein equations around an infinite straight cosmic string to first order in Gy is
given by [44]

d*s = —dt? + dr® + (1 — A)*r2db? + d2?, (1)

where (r,z,0) is a cylindrical coordinate(0 < @ < 27) and 27A =~ 87Gp is the deficit angle
around the cosmic string. Spatial part of the above metric describes the Euclidean space with
a wedge of angular size 2rA removed. Due to the deficit angle around a string, double images
of the source are observed with an angular separation 2rA when a source is located behind the
string in the limit of geometrical optics. In general for a wave with a finite wavelength, some
interference pattern appears. An exact solution of Einstein equations around a finite thickness
string has been already obtained [45], but we use the metric (1) as a background since the string
thickness is negligibly small compared with the Einstein radius, ~ 1DA, where D is the distance
from the observer to the string.

Throughout the paper, we consider waves of a massless scalar field instead of gravitational
waves for simplicity, but the wave equations are essentially the same in these two cases. An
extension to the cosmological setup is straightforwardly done by adding an overall scale factor.
In that case the time coordinate ¢ is to be understood as the conformal time. The wave equation
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remains unchanged if we consider a conformally coupled field, but it is modified for the other
cases due to curvature scattering. The correction due to curvature scattering of the Friedmann
universe is suppressed by the square of the ratio between the wavelength and the Hubble length,
which can be neglected in any situations of our interest.

Our goal of this section is to construct a solution of the wave equation which corresponds
to a plane wave injected perpendicularly to and scattered by the cosmic string. This situation
occurs if the distance between the source and the string is infinitely large. In order to construct
such a solution, we introduce a monochromatic source uniformly extended in the z-direction and

localized in r — 6 plane,
B »
S: mé(r—ro)(sw—w)e ZWt, (2)
where w is the frequency and we have introduced B, a constant independent of A, to adjust
the overall normalization when we later take the limit r, — co. The factor (1 — A)™! appears

because #-coordinate used in the metric (1) differs from the usual angle
p=(1-A)8. (3)

Here we consider a uniformly extended source instead of a point source since the former is easier
to hundle. When the limit r, — oo is taken, the answers are identical in these two cases. The
case with a point-like source at a finite distance can be treated in a similar way.

The solution of the wave equation for ¢(r,#) when r, — oo can be written as

¢(r,0) = 2\/{3_ ),/ To giwro—if Ze i"e 2i(Tfﬁ)J,,m(wr) cosmd. (4)

We determine the overall normalization of the source amplitude B, independently of Gy,
so that Eq. (4) becomes a plane wave ¢“75% when Gu = 0. This condition leads to

B=_9 27rw e—twro—im/4 Then, finally ¢ becomes

1 imAmT

o(r,0) = = ZEmZ e =2 J, (wr)cosmb. (5)

3. Limiting behaviors of the solution

3.1. Approximate waveform in the wave zone

The solution (5) describes the waveform propagating around a cosmic string. But it is not easy
to understand the behavior of the solution because it is given by a series. In fact, it takes much
time to perform the summation in Eq. (5) numerically for a realistic value of tension of the
string, say, Gu ~ 10~% because of slow convergence of the series. In particular it is not manifest
whether the amplification of the solution in the short wavelength limit coincides with the one
which is obtained by the geometrical optics approximation. Therefore it will be quite useful if
one can derive a simpler analytic expression. Here we only quote the final result which keeps

terms up to O(1/V/€),

P(£,0) ~ exp <7j§ cos @> O(a(h)) — # i€~ 50 (0) e (Mei”/‘*) +(0——6). (6)

VE ™ V2
where
(@) = (7A—(1—A)O)WE, (7)
o(0) := sign(a(0)), (8)
and oo
Erfe(x) :/ dte " 9)
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Figure 1. Configuration of the source, the cosmic string and the observer. A and B are
the positions of a source. O and P are the positions of the cosmic string and the observer,
respectively. In this figure, the wedge AOB is removed and thus A and B must be identified.

3.2. Geometrical optics limit

Geometrical optics limit corresponds to the limit £ — oo with A and 6 fixed. In this limit «(8)
also goes to 400, and hence the error function in Eq. (6) vanishes. Hence the waveform in the
geometrical optics limit, which we denote as ¢g,, becomes

Bgo(6,0) = e PTATAO(RA + ) + 4 PTETQ(rA — ), (10)

where ¢ is defined by Eq. (3).

Since ¢ and hence ¢y, are even in 6, it is sufficient to consider the case with 6 > 0. In Fig. 1,
the configuration of the source, the lense and the observer is drawn in the coordinates in which
the deficit angle 2w A is manifest, i.e., the wedge ADB is removed from the spacetime. Both points
A and B indicate the location of the source. The lines 0A and 0B are to be identified. The angle
made by these two lines is the deficit angle. The locations of the string and the observer are
represented by 0 and P, respectively. In our current setup the distance between 0 and A (= 1,)
is taken to be infinite. When ¢ > wA, only the source A can be seen from the observer. This
corresponds to the fact that only the first term remains for ¢ > 7A in Eq. (10). For ¢ > wA,
we have

Bgo(€,0) = e, (11)
This is a plane wave whose traveling direction is ¢ = —7 A, which is the direction of IP in Fig. 1
in the limit r, = [A0| — oo.
For |¢| < A, ¢go is
¢go (5,0) — ei{ cos(p—mA) + ezfcos(go—HTA). (12)

This is the superposition of two plane waves whose traveling directions are different by the deficit
angle 2rA. Hence amplification of the images and interference occur for |p| < mA as expected.

As we shall explain below, Eq. (10) coincides with the one derived under the geometrical
optics. In geometrical optics, wave form is given by [11]

bgo = D [u(@))|"/? expliwT (&) — imn;), (13)
J

where Z represents a two-dimensional vector on the lens plane and T'(#) represents the
summation of time of flight of the light ray from the source to the point Z on the lens plane
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and that from the point Z to the observer. Z; is a stationary point of T'(Z), and n; = 0,1/2,1
when Z; is a minimum, saddle and maximum point of T'(Z), respectively. The amplitude ratio

—

|u(:10)|1/2 is written as

u(@) = 1/ det(d — Budp (7)), (14)

where (%) in Eq. (14) is the deflection potential [46] which is the integral of the gravitational

potential of the lens along the trajectory between the source and the observer. Eq. (13) represents

that the wave form is obtained by taking the sum of the amplitude ratio |u(Z;) |1/ 2

iwT (&) —imn;

of each images
with the phase factor e If the lens is the straight string, the spacetime is locally flat
everywhere except for right on the string. This means that the deflection potential (&) is zero
and hence the amplitude ratio is unity for all images [46] and the trajectory where the time of
flight T'(%) takes the extremal value is a geodesic in the conical space, and T'(Z) of any geodesic
takes minimum, which means n; = 0. There are two geodesics if the observer is in the shaded
region in Fig. 1. The time of flight along the trajectory AP is

Ty = lim [RB| ~ 7, +rcos(rA + ), (15)

where r = |Eﬁ| The time of flight along the trajectory BP is obtained by just replacing ¢ with
—@. Hence, substituting (15) into (13), we find that the waveform in the geometrical optics is
the same as Eq. (12) except for an overall phase ¢/"¢. This factor has been already absorbed in
the choice of the normalization factor B in our formula (5).

We define the amplification factor

F(e.0) = -2&0) (16)

B ¢UL(£7 9) ’

where ¢uy, is the unlensed waveform. Using Eq. (12), the amplification factor of ¢g, for |p| < 7A
is given by
—i§(rA)?
Fyo(£,0) =~ 2e7"2 cos(TA&p), (17)

where we have assumed ¢ and A are small and dropped terms higher than quadratic order. It
might be more suggestive to rewrite the above formula into

|[Fgo(€,0)] ~ 2 cos(mAwy), (18)

where y = rsinp. The distance from a node to the next of when the observer is moved in
y-direction is A/wA, where X is a wavelength.

3.8. Quasi-geometical optics approximation
In the previous subsection, we have derived the waveform in the limit &, |a(£6)| — oo which
corresponds to the geometrical optics approximation. Here we expand the waveform (6) to the
lowest order in 1/a(=£6). This includes the leading order corrections to the geometrical optics
approximation due to the finite wavelength effects.

Using the asymptotic formula for the error function, the leading order correction due to the
finite wavelength, which we denote as d¢qgo, is obtained as

ei§+i7r/4 1 1 ei§+i7r/4 2mA
el Re) B v )

As is expected, the correction blows up for |p| &~ 7A, where «(6) or a(—6) vanishes, irrespectively
of the value of £. In such cases, we have to evaluate the error function directly, going back to

Eq. (6).
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The expression on the first line in Eq.(19) manifestly depends only on «(+6) aside from the
common phase factor ¢’6. This feature remains true even if we consider a small value of «(+£6).
This can be seen by rewriting Eq. (6) as

i€~ 5a%(0)

~ T e (220 _
HE0) = ( m>+(9—> 0). (20)

The common phase e does not affect the absolute magnitude of the wave. Except for this
unimportant overall phase, the waveform is completely determined by «(=+6).

The geometrical meaning of these parameters «(£6) is the ratio of two length scales defined on
the lens plane. To explain this, let us take the picture that a wave is composed of a superposition
of waves which go through various points on the lens plane. In the geometrical optics limit the
pathes passing through stationary points of 7'(Z), which we call the image points, contribute to
the waveform. The first length scale is 7y = |a(£60)|/v/€ x r which is defined as the separation
between an image point and the string on the lens plane. In this picture we expect that pathes
whose pathlength is longer or shorter than the value at an image point by about one wavelength
will not give a significant contribution because of the phase cancellation. Namely, only the
pathes which pass within a certain radius from an image point need to be taken into account.
Then such a radius will be given by rr = v/Ar, which we call Fresnel radius. Namely, a wave
with a finite wavelength can be recognized as an extended beam whose transverse size is given
by rr. The ratio of these two scales gives «(+6):

V27rg
la(£0)| = E—
F

When rg > rp , ie., a(£0) > 1, the beam width is smaller than the separation. In this case
the beam image is not shadowed by the string, and therefore the geometrical optics becomes a
good approximation. When ry; < rp, i.e.,

a(£0) < 1, (21)

we cannot see the whole image of the beam, truncated at the location of the string. Then
the diffraction effect becomes important. The ratio of the beam image eclipsed by the string
determines the phase shift and the amplification of the wave coming from each image. If we
substitute |p| &~ 0 as a typical value, we obtain a rough criterion that the diffraction effect
becomes important when

A > 271 (7A)?r, (22)

or £ < (rA)7? in terms of €.

The same logic applies for a usual compact lens object. In this case the Fresnel radius does
not change but the typical separation of the image from the lens is given by the Einstein radius
rg = VAGMr, where M is the mass of the lens. Then the ratio between rg and rp is given
by rg/rr = \/GM/\, which leads to the usual criterion that the diffraction effect becomes
important when A > GM|1, 2, 3, 4, 5].

From the above formula (19), we can read that the leading order corrections scales like
x y/A/r. This dependences on A and r differ from the cases that the lens is composed of a
normal localized object, in which the leading order correction due to the finite wavelength is
O(MN/M) [15].

The condition for the diffraction effect to be important (21) can be also derived directly from
Eq. (19). In order that the current expansion is a good approximation, ¢qe, must be smaller
than ¢g,. This requires that 1/a(£6) > 1, which is identical to (21).
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Figure 2. The absolute value of the amplification factor as a function of ¢ for 8 = 0. Black
line and dashed one correspond to Eq. (6) and the quasi-geometrical optics approximation,
respectively. The string tension is chosen to be Gu = 1072

We plot the absolute value of the amplification factor under the quasi-geometrical optics
approximation as dashed line in Fig. 2. We find that the quasi-geometrical optics approximation
is a good approximation for ¢ > A™2. For ¢ < A2, the quasi-geometrical optics approximation
gives a larger amplification factor than the exact one.

In the quasi-geometrical optics approximation, we find from Egs. (12) and (19) the absolute
value of the amplification factor for ¢ = 0 is

1/2
(23)

~ 2 £ 2, T
F(,0)] ~ 2 [1— e <§(m) + Z)

From this expression, we find that the position of the first peak of the amplification factor
lies at & ~ 4.25 x (ﬂ'A)iz, which can be also verified from Fig. 2. For ¢ < A~2 the present
approximation is not valid, but we know that the amplification factor should converge to unity
in the limit £ — 0, where rp is much larger than r;.

We show in Fig. 3 the absolute value of the amplification factor as a function of ¢ for four
cases of ¢ around A~2. Top left, top right, bottom left and bottom right pannels correspond
to 5(7TA)2 = 0.5,1,2 and 4, respectively. Black curves are plots for Eq. (6) and the dotted
ones are plots for the quasi-geometrical optics approximation. As is expected, the error of the
quasi-geometrical optics approximation becomes very large near ¢ = 7A, where «(f) vanishes.
As the value of ¢ increases, the angular region in which the quasi-geometrical optics breaks down
is reduced.

Interestingly, the absolute value of the amplification factor deviates from unity even for
@ > A which is not observed in the geometrical optics limit. This is a consequence of diffraction
of waves, the amplitude of oscillation of the interference pattern becomes smaller as @ becomes
larger, which is a typical diffraction pattern formed when a wave passes through a single slit.
The broadening of the interference pattern due to the diffraction effect means that the observers
even in the region |p| > mA can detect signatures of the presense of a cosmic string.

But the deviation of the amplification from unity outside the wedge ¢ > wA is rather small
except for the special case £(rA)% & 1: for £(mA)? < 1 the magnification is inefficient and for
¢ (7rA)2 > 1 the magnification itself does not occur. Hence the increase of the event rates of
lensing by cosmic strings compared with the estimate under the geometrical optics approximation
could be important only when the relation £(7A)? ~ 1 is satisfied. If we take D = 102%¢m and
w = 107*Hz which is in the frequency band of LISA(Laser Interferometer Space Antenna)[47],
we find that the typical value of G is ~ 2 x 107,
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Figure 3. Black line and dotted one correspond to Eq. (6) and the quasi-geometrical optics
approximation, respectively. The string tension is chosen to be Gu = 1073,

So far, we have considered the stringy source rather than a point source. Extension to a
point source can be doune in a similar manner to the case of the stringy source. The result is

$(r,0,2) ~ —— D F (“’””“,9) ,

47D D
where D = \/(r 4+ 1,)? + z? is the distance between the source and the observer and

Fla,0) = / T iy ! +(0— —0) (25)
ST 9= A) Joomin € | o i :

In particular, assuming that A, < 1, and keeping terms which could remain for wr,wr, > 1,
we have

(24)

wrry _iwrro A_)2 1 p—7mA [wrr,
F 0) ~ e 2 D (TA=9) ___Erf; <7 ) 9 — —0). 2
<D,>62D Tete (£ 22 2R ) + (6 o) (26)

3.4. Simpler derivation of Eq. (20).

We have derived an approximate waveform (20) which is valid in the wave zone from the exact
solution of the wave equation Eq. (5). Here we show that Eq. (20) can be obtained by a more
intuitive and simpler method. In the path integral formalism [11], the wave form is given by
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the sum of the amplitude exp (iwT'(s)) for all posibble pathes which connect the source and the
observer. Here T'(s) is the time of flight along the path s. If the cosmic string resides between
the source and the observer, the wave form will be given by the sum of two terms one of which
is obtained by the path integral over the pathes which pass through the upper side of the string
(y > 0) in Fig. 1, and the other through the lower side of it (y < 0). The waveform coming from
the formar contribution will be given by

A/ dzu/ dyq e(RUI+TB) 27)
—00 0

where Q = (0,yq, 2q) is a point on the lens plane specified by £ = 0. One can determine the
normalization constant A by a little more detailed analysis, but we do not persue it further here.
By integrating Eq. (27), we recover the first term in Eq. (20).

4. Summary

We have constructed a solution of the Klein-Gordon equation for a massless scalar field in the
flat spacetime with a deficit angle 27 A =~ 87Gu caused by an infinite straight cosmic string. We
showed analytically that the solution in the short wavelength limit reduces to the geometrical
optics limit. We have also derived the correction to the amplification factor obtained in the
geometrical optics approximation due to the finite wavelength effect and the expression in the
long wavelength limit.

The waveform is characterized by a ratio of two different length scales. One length scale r;
is defined as the separation between the image position on the lens plane in the geometrical
optics and the string. We have two r, since there are two images corresponding to which side
of the string the ray travels. (When the image cannot be seen directly, we asign a negative
number to rs.) The other length scale rr, which is called Fresnel radius, is the geometrical
mean of the wavelength and the typical separation among the source, the lens and the observer.
The waveform is characterized by the ratios between r; and rp. If rp > 1y, the diffraction
effect becomes important and the interference patterns are formed. Even when the image in
the geometrical optics is not directly seen by the observer, the interference patterns remain. In
contrast, in the geometrical optics magnification and interference occur only when the observer
can see two images which travel both sides of the string. Namely, the angular range where
lensing signals exist is broadened by the diffraction effect.
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