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A modification of the covariant theory based on the concept of the proper mass (mass distribution)
of the system is proposed. The proper mass is a special dynamic quantity that forms a fundamental
frame of reference for measuring proper time and spatial shifts without violating the theory’s covari-
ance. A simple model of an ingomogeneous system (universe, string) with two proper time parameters,
whose constraint algebra is isomorphic to SL2, is considered.
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Introduction ity and string theory with quadratic in momenta

The quantization of covariant theories, to (Hamiltonian) constraints, makes it necessary to
which we include gauge theories with constraints expand their phase space by including Lagrange
linear in momenta, as well as the theory of grav- multipliers and ghosts along with the correspond-
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ing canonical momenta [1 — 6]. However, in the
simplest case of the reparametrization-invariant
theory of a relativistic particle, all this construc-
tion is reduced to introducing the particles proper
time parameter into the initial action, followed by
integrating the wave function over this parameter
within [0, o) [7]. The result is a representation of
the Feynman propagator of a particle, which was
first proposed by V.A. Fock [8] and J. Schwing-
er [9]. Based on this, a simplified procedure for
quantizing the covariant theory was proposed in
Ref. [10], in which the parameters of finite sym-
metry transformations (including the proper time
in reparameterization-invariant theories) are in-
troduced into the classical theory as additional
coordinates.

The equations of constraints in quantum the-
ory with this modification take the form of evolu-
tion equations on a group space, and the invariant
propagator is obtained after integrating the wave
function over the group parameters over the en-
tire area of their variation (for proper time, these
are the functional space (FS) integrals within [0,
o0)) with a simple measure equal to 1. However,
in contrast to gauge theories with linear momen-
tum constraints, FS integrals are not removed by
delta functions from Hamiltonian constraints.
This means that in quantum theory there is no
time parameter. In Ref. [11], to solve the problem
of time in the case of a homogeneous isotropic
model of the universe, the second stage of modi-
fication is proposed, in which an additional con-
dition is imposed on the dynamics of proper time
as an independent dynamic variable. It consists in
adding to the initial action its small variation gen-
erated by the infinitesimal shift of proper time.
As a result, a new quantity arises in the theory —
mass-energy, which corresponds to its own time.
In a homogeneous universe, this quantity is an
integral of motion and must be added to the orig-
inal set of constants of the universe. In Ref. [11],
it was also suggested that the mass of the universe,
taking into account the multi-turnaround of time
in the general case [12], will have the character of
a distribution, which should be supplemented by
the corresponding mass flux density. The purpose
of this work is to substantiate this assumption by
the example of a simple dynamical system with

two proper time parameters and with the algebra
of constraints identical to SL (2, R). In this case,
we will have two components of its own mass and
a flow between them. These three parameters are
not integrals of motion. They are present in the
energy-momentum balance of the system (con-
straint equations), and should be considered as
observable quantities. Their equations of mo-
tion, together with the equations of constraints,
make it possible to remove integration over the
parameters of proper time and thereby solve the
problem of time in the quantum theory.

The first stage of modification
of SL (2, R)-model

The initial Lagrange function of the consid-
ered dynamic system has the form:

where the dot denotes derivatives with respect
to an arbitrary parameter t; N,, N, are the lapse
functions, N, is the shift function [12].

Minkowski indices Uy Vo M V= 0,1,2,3are
implied and abbreviated notation for the invari-
ants of the Minkowski space are used.

Hamilton’s function is reduced to a linear
combination of constraints

h=NH +N,H,+N,D, (2)
where
— 1 2 2 _ 2 2
H, —E(p -V ), Hz——(n —u ),
3)

D = pu—mv.

The Poisson brackets of these constraints form
the algebra SL(2, R) [13]:

{D,H }=2H,, {D,H,}=-2H,,

4
{H,.1,} = D, @
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This algebra will serve us as the simplest ana-
logue of the algebra of constraints of the theory
of gravity (and string [14]). The constraints are
generators of infinitesimal symmetry transforma-
tions of the canonical variables, which are com-
pensated by the transformation of the lapse and
shift functions [1],

ON, =¢,-C

Bro

Nge, )
which ensures the invariance of the action (in this
case C,,=2,C,,,=—=2,C,,= ).

At the first stage of the modification of the
dynamic theory, as additional generalized co-
ordinates, we introduce the parameters of finite
symmetry transformations that arise as a result of
the integration of the system of functional differ-
ential equations:

N [ = SGAQB s (6)
where the functions AaB obey the system of dif-
ferential equations [10]:

oA oA

B —— 2

Os Os

Y o

+ AOLSAWC&D[3 =0.

+

(7)

The modified theory is obtained by substitut-
ing (6) into the original Lagrange function (1).

The modified Hamilton function reduces to a
linear combination of modified constraints

by, — Ay H, -

A H —-A .D=0 ®)
Tty TR T

which form a closed algebra with trivial Poisson
brackets.

It is these constraints, in quantum theory that
have the form of evolution equations on a group
space with coordinates s . Since these coordinates
are not observable, one should take additional in-
tegrals over them of the wave function over the
entire range of their variation on the manifold
of the group. For the parameters of proper time,
these are the integrals of the FS within [0, o0). As
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a result of this integration, the wave function los-
es its dynamic meaning. It is necessary to take the
next step in modifying the original theory [11],
which will remove additional integrals.

Second stage of the theory modification

Considering the coordinates on the group
space as independent dynamic variables, we take
their classical equations of motion as additional
conditions. The latter are obtained as a result of
the infinitesimal shift of these variables s —s_+
+ ¢ in the action.

Thus, the finally modified Lagrange function
takes the form:

. 2
Z:l M_FVZNI +
2 N,
+l M+MZN2 —
2 N,
M. 2
1 wwz SN, - 9)
2 1
/. 2
1 (v+]\£3v) +u’ |8N, —
2 N;
_{u(u—N3u)_v(v+N3v)}8N3.
Nl N2

Below we will see that this modification sig-
nificantly changes the theory in the right direc-
tion — the removal of the integrals of the FS over
its group evolution parameters.

We turn to the Hamiltonian form of the mod-
ified theory. Let’s find the canonical momenta:

p:(u—zxgu) L _ON | BN, (10)
N] Nl N] ,
nz(v+N3v)(1—8N2]+v6N3, (1)

N2 N2 2

D :_HlAlﬁ_HZAg_

o



(12)

P, =—H A}~ H,A} - DAL, (13)

The Hamilton function, as expected, is re-
duced to a linear combination of new constraints,
which are here used by Egs. (12).

In these equations, velocities should be elim-
inated by expressing them in terms of canonical
momenta. First, eliminate the variation 6N, 3NV,
ON,. To do this, we use the old constraints that are
contained in Egs. (13) together with the new dy-
namic variables, which are the two components
of the mass distribution in our model universe
and the mass flow. We express the old connections
through new dynamic variables by solving Egs.
(13) using a triple of 3-vectors Qlﬁ,Qé,Qg, each
of which is orthogonal to the corresponding addi-
tional pair of column vectors AP, A%, A :

We find the variations NV,, 8N, from the Ha-
miltonian constraints:
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(15)

and for the variations SN3 the momentum con-
straint remains:

(16)

3N,
VI T—V
N2
N,
N2

which we cannot solve explicitly.

We only note that the variation 3N, is a
homogeneous function of the first degree of the
canonical momenta, as well as Egs. (15), which
contain square roots. After that, we can substitute
the velocities (10), (11) in Egs. (12) and obtain
the required equations of new constraints.

Leaving these constraints in the same implicit
form, we write the modified action in the cano-
nical form:

[=[ar| pi+mi+p, s, -

P&, N, (p, 1)) )

o

where Ea denotes the right hand side of the Egs.
(12).

Here we consider infinitesimal shifts as canoni-
cal momenta. We will see the solution to the prob-
lem of time in our “universe” when we exclude mo-
menta in this canonical form of action and write it
again in Lagrangian form. We can do this explicitly.
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Proper time

We will be the first to exclude the momenta
D, conjugated to the group parameters s . As a
result, we get N, =5, . Next we exclude infini-
tesimal shifts. This gives the equations of motion
in the form of the law of the change in time of
new dynamic variables:

0,=F +
P.Q') oAb . (P.Q%) oAl
+((Q1 A)) 35, Sﬁ+((Q2 A)) 5, (18
s 43 % s5R2 Y
P,Q%) A"
+ﬁaT3Sﬁ:0.
9423 Y

The last ones we exclude the canonical mo-
menta corresponding to the "physical”" degrees
of freedom — the Minkowski coordinates Uy Ve
Here the difficulty remains associated with the
absence of an explicit solution of the constraint
equations with respect to variations 6N,, ON,,
ON,. However, it is easy to see that the resulting
dependence of the modified Hamiltonian on the
canonical momenta is a homogeneous function
of the first degree. The consequence is that all
terms in the canonical action (17), depending on
the canonical momenta, disappear.

Thus, the dependence of the modified action
on all velocities disappears, except for the one
contained in the equations of motion (18), as
well as in the old constraints (4), which we must
now remember and add to the action as addi-
tional conditions. We also recall that the implicit
solution of these constraints involves the opera-
tion of extracting a square root with a choice of
the sign of this root. We must perform the same
operation under additional conditions, writing
down the Hamiltonian constraints with square
roots of the kinetic energies of the physical de-
grees of freedom. As a result, we get the modified
action in the form

fijdrx
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N, .. (P.@")
_ —:V(V+N3V)— Nlsz +
+N. @_vz +N (PS’QZ) —u?
1 QI,A]) ? (Qz,Az) ’

where additional conditions are included with
the corresponding Lagrange multipliers A, A,
Xy Infinitesimal shifts & also fulfill their original
function of the Lagrange multipliers.

Note that the modified Lagrange function is
a homogeneous first-order velocity function, so
that the theory remains explicitly reparameteri-
zation-invariant.

In the quantum theory, in the representation
of a propagator in the form of a functional in-
tegral, integration over the Lagrange multipliers
gives the product of the corresponding function-
al delta functions that remove functional inte-
gration over group parameters s , as well as over
additional parameters P, . The dynamics of the
latter, considered by us as observables, serves to
measure their proper time in the universe. If we
do not allow the introduction of new observables
and set P_= 0, the additional equations of mo-
tion for them also disappear. Then the FS inte-
grals are removed by d-functions from the initial
constraints, which have the same meaning as the
first integral,

(20)

d
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defining time in mechanics.
Any physical degree of freedom can play the
role of proper time in this case.

Conclusions

A modification of the covariant dynamical
theory with constraint algebra SL2 is inspired
by the problem of time in quantum theory. The
usual practice in this case of imposing addition-
al gauge conditions violating the covariance has
been replaced by a modification of the original
theory at the classical level, which does not vio-
late the covariance of the dynamics of the phys-
ical degrees of freedom. Additional conditions
in it are imposed on the physically unobserva-
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ble parameters of symmetry transformations —
proper time (for each point of the "universe" its
own) and the spatial shift between points. How-
ever, the modification turns out to be deeper,
adding new dynamical variables to the balance
of energy and momentum of physical degrees of
freedom, which should be considered observa-
ble. The dynamics of these observables can serve
to measure proper time and spatial shifts, form-
ing the fundamental frame of reference in the
universe.
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