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Theoretical physics

Introduction

The quantization of covariant theories, to 
which we include gauge theories with constraints 
linear in momenta, as well as the theory of grav-

ity and string theory with quadratic in momenta 
(Hamiltonian) constraints, makes it necessary to 
expand their phase space by including Lagrange 
multipliers and ghosts along with the correspond-
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ing canonical momenta [1 – 6]. However, in the 
simplest case of the reparametrization-invariant 
theory of a relativistic particle, all this construc-
tion is reduced to introducing the particles proper 
time parameter into the initial action, followed by 
integrating the wave function over this parameter 
within [0, ∞) [7]. The result is a representation of 
the Feynman propagator of a particle, which was 
first proposed by V.A. Fock [8] and J. Schwing-
er [9]. Based on this, a simplified procedure for 
quantizing the covariant theory was proposed in 
Ref. [10], in which the parameters of finite sym-
metry transformations (including the proper time 
in reparameterization-invariant theories) are in-
troduced into the classical theory as additional 
coordinates.

The equations of constraints in quantum the-
ory with this modification take the form of evolu-
tion equations on a group space, and the invariant 
propagator is obtained after integrating the wave 
function over the group parameters over the en-
tire area of their variation (for proper time, these 
are the functional space (FS) integrals within [0, 
∞)) with a simple measure equal to 1. However, 
in contrast to gauge theories with linear momen-
tum constraints, FS integrals are not removed by 
delta functions from Hamiltonian constraints. 
This means that in quantum theory there is no 
time parameter. In Ref. [11], to solve the problem 
of time in the case of a homogeneous isotropic 
model of the universe, the second stage of modi-
fication is proposed, in which an additional con-
dition is imposed on the dynamics of proper time 
as an independent dynamic variable. It consists in 
adding to the initial action its small variation gen-
erated by the infinitesimal shift of proper time. 
As a result, a new quantity arises in the theory – 
mass-energy, which corresponds to its own time. 
In a homogeneous universe, this quantity is an 
integral of motion and must be added to the orig-
inal set of constants of the universe. In Ref. [11], 
it was also suggested that the mass of the universe, 
taking into account the multi-turnaround of time 
in the general case [12], will have the character of 
a distribution, which should be supplemented by 
the corresponding mass flux density. The purpose 
of this work is to substantiate this assumption by 
the example of a simple dynamical system with 

two proper time parameters and with the algebra 
of constraints identical to SL (2, R). In this case, 
we will have two components of its own mass and 
a flow between them. These three parameters are 
not integrals of motion. They are present in the 
energy-momentum balance of the system (con-
straint equations), and should be considered as 
observable quantities. Their equations of mo-
tion, together with the equations of constraints, 
make it possible to remove integration over the 
parameters of proper time and thereby solve the 
problem of time in the quantum theory.

The first stage of modification  
of SL (2, R)-model

The initial Lagrange function of the consid-
ered dynamic system has the form:

where the dot denotes derivatives with respect 
to an arbitrary parameter τ; N

1
, N

2
 are the lapse 

functions, N
3
 is the shift function [12]. 

Minkowski indices uμ, vν, μ, ν = 0, 1, 2, 3 are 
implied and abbreviated notation for the invari-
ants of the Minkowski space are used. 

Hamilton’s function is reduced to a linear 
combination of constraints

where

The Poisson brackets of these constraints form 
the algebra SL(2, R) [13]:
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This algebra will serve us as the simplest ana-
logue of the algebra of constraints of the theory 
of gravity (and string [14]). The constraints are 
generators of infinitesimal symmetry transforma-
tions of the canonical variables, which are com-
pensated by the transformation of the lapse and 
shift functions [1],

which ensures the invariance of the action (in this 
case C

311
 = 2, C

322
 = –2, C

123
 = 1).

At the first stage of the modification of the 
dynamic theory, as additional generalized co-
ordinates, we introduce the parameters of finite 
symmetry transformations that arise as a result of 
the integration of the system of functional differ-
ential equations:

where the functions Λαβ obey the system of dif-
ferential equations [10]:

The modified theory is obtained by substitut-
ing (6) into the original Lagrange function (1). 

The modified Hamilton function reduces to a 
linear combination of modified constraints

which form a closed algebra with trivial Poisson 
brackets. 

It is these constraints, in quantum theory that 
have the form of evolution equations on a group 
space with coordinates sα. Since these coordinates 
are not observable, one should take additional in-
tegrals over them of the wave function over the 
entire range of their variation on the manifold 
of the group. For the parameters of proper time, 
these are the integrals of the FS within [0, ∞). As 

,N C Nα α βγα β γδ = ε − ε (5)

,N sβ α αβ= Λ (6)

(7)
0.

s s
C

αβ γβ

γ α

αδ γω δωβ

∂Λ ∂Λ
− +

∂ ∂

+ Λ Λ =

1 1

2 2 3 0,
sp H

H D
α α

α α

−Λ −

−Λ −Λ =
(8)

a result of this integration, the wave function los-
es its dynamic meaning. It is necessary to take the 
next step in modifying the original theory [11], 
which will remove additional integrals.

Second stage of the theory modification

Considering the coordinates on the group 
space as independent dynamic variables, we take 
their classical equations of motion as additional 
conditions. The latter are obtained as a result of 
the infinitesimal shift of these variables sα → sα + 
+ εα in the action. 

Thus, the finally modified Lagrange function 
takes the form:

Below we will see that this modification sig-
nificantly changes the theory in the right direc-
tion – the removal of the integrals of the FS over 
its group evolution parameters.

We turn to the Hamiltonian form of the mod-
ified theory. Let’s find the canonical momenta:
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The Hamilton function, as expected, is re-
duced to a linear combination of new constraints, 
which are here used by Eqs. (12). 

In these equations, velocities should be elim-
inated by expressing them in terms of canonical 
momenta. First, eliminate the variation δN

1
, δN

2
, 

δN
3
. To do this, we use the old constraints that are 

contained in Eqs. (13) together with the new dy-
namic variables, which are the two components 
of the mass distribution in our model universe 
and the mass flow. We express the old connections 
through new dynamic variables by solving Eqs. 
(13) using a triple of 3-vectors                      each 
of which is orthogonal to the corresponding addi-
tional pair of column vectors  

We find the variations δN
1
, δN

2
 from the Ha- 

miltonian constraints:
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and for the variations δN
3
 the momentum con-

straint remains:

which we cannot solve explicitly. 
We only note that the variation δN

3
 is a 

homogeneous function of the first degree of the 
canonical momenta, as well as Eqs. (15), which 
contain square roots. After that, we can substitute 
the velocities (10), (11) in Eqs. (12) and obtain 
the required equations of new constraints. 

Leaving these constraints in the same implicit 
form, we write the modified action in the cano- 
nical form:

where      denotes the right hand side of the Eqs. 
(12). 

Here we consider infinitesimal shifts as canoni-
cal momenta. We will see the solution to the prob-
lem of time in our “universe” when we exclude mo-
menta in this canonical form of action and write it 
again in Lagrangian form. We can do this explicitly.
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Proper time

We will be the first to exclude the momenta 
      conjugated to the group parameters sα. As a 
result, we get               . Next we exclude infini-
tesimal shifts. This gives the equations of motion 
in the form of the law of the change in time of 
new dynamic variables:

The last ones we exclude the canonical mo-
menta corresponding to the "physical" degrees 
of freedom – the Minkowski coordinates uμ, vν. 
Here the difficulty remains associated with the 
absence of an explicit solution of the constraint 
equations with respect to variations δN

1
, δN

2
, 

δN
3
. However, it is easy to see that the resulting 

dependence of the modified Hamiltonian on the 
canonical momenta is a homogeneous function 
of the first degree. The consequence is that all 
terms in the canonical action (17), depending on 
the canonical momenta, disappear. 

Thus, the dependence of the modified action 
on all velocities disappears, except for the one 
contained in the equations of motion (18), as 
well as in the old constraints (4), which we must 
now remember and add to the action as addi-
tional conditions. We also recall that the implicit 
solution of these constraints involves the opera-
tion of extracting a square root with a choice of 
the sign of this root. We must perform the same 
operation under additional conditions, writing 
down the Hamiltonian constraints with square 
roots of the kinetic energies of the physical de-
grees of freedom. As a result, we get the modified 
action in the form
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where additional conditions are included with 
the corresponding Lagrange multipliers λ

1
, λ

2
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λ
3
. Infinitesimal shifts εβ also fulfill their original 

function of the Lagrange multipliers. 
Note that the modified Lagrange function is 

a homogeneous first-order velocity function, so 
that the theory remains explicitly reparameteri-
zation-invariant.

In the quantum theory, in the representation 
of a propagator in the form of a functional in-
tegral, integration over the Lagrange multipliers 
gives the product of the corresponding function-
al delta functions that remove functional inte-
gration over group parameters sα, as well as over 
additional parameters     . The dynamics of the 
latter, considered by us as observables, serves to 
measure their proper time in the universe. If we 
do not allow the introduction of new observables 
and set Pε = 0, the additional equations of mo-
tion for them also disappear. Then the FS inte-
grals are removed by δ-functions from the initial 
constraints, which have the same meaning as the 
first integral,
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defining time in mechanics. 
Any physical degree of freedom can play the 

role of proper time in this case.

Conclusions

A modification of the covariant dynamical 
theory with constraint algebra SL2 is inspired 
by the problem of time in quantum theory. The 
usual practice in this case of imposing addition-
al gauge conditions violating the covariance has 
been replaced by a modification of the original 
theory at the classical level, which does not vio-
late the covariance of the dynamics of the phys-
ical degrees of freedom. Additional conditions 
in it are imposed on the physically unobserva-

ble parameters of symmetry transformations – 
proper time (for each point of the "universe" its 
own) and the spatial shift between points. How-
ever, the modification turns out to be deeper, 
adding new dynamical variables to the balance 
of energy and momentum of physical degrees of 
freedom, which should be considered observa-
ble. The dynamics of these observables can serve 
to measure proper time and spatial shifts, form-
ing the fundamental frame of reference in the 
universe.
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