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ABSTRACT 

The magnetic moment of an electron is (semiclassically) 

modeled by a loop of current threaded by a flux quantum 

+o=?ry The integral of the charge density involved in the 

current is taken to equal the electronic charge. It is shown that 

the assumption that the moment’s flux is quantized to a value Go 

implies that the size of the @are) electronic charge must be ex- 

tremely small (< 10 -57 cm) but the most appropriate loop radius 

is on the order of the electron Compton radius XeO Using these 

results, a classical calculation of the static electric and magnetic 

energies associated with the loop is shown to be in reasonable 

agreement with the physically observed electron mass o 
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It is often useful to construct classical or semiclassical models to assist 

in a conceptual understanding of various aspects of quantum mechanical sys- 

tems D One such model for the magnetic moment of an elementary particle is a 

rotating sphere with a uniform ratio of charge to mass density. This simple 

model’ gives the relationship between magnetic moment p and angular momen- 

tum Q 

which is only a factor of two different from the analogous quantum mechanical 

Bohr magnetic moment 

PB 
=-SE 

2mc l 
(2) 

(Recall that for the electron the projection of the spin angular momentum is 

equal to h/2, ) Gaussian units are used throughout this paper; e is the charge of 

the positron; the symbols Ii, m, and c have their usual meanings. 

Another semiclassical model of long standing2 describing the spin and 

magnetic moment of an electron considers the electron to move with the veloc- 

ity c in a circle of radius Xe/20 This model gives the correct (spin) angular 

momentum E/2, but gives pB/2 for the magnetic moment, again off by (only) a 

factor of two. A detailed quantum mechanical analysis of a free Dirac electron 

has been made by Huang, 3 leading to a remarkably similar picture. In this 

analysis it was shown that Zitterbewegung, a phenomenon first studied by 

Schrb’dinger , 4 causes the electron to circulate in a kind of orbital motion of 

radius X e’ This circulation is due to the components of the vacuum fluctuations 

of momentum less than mc, the total energy of which is essentially determined 

by the electron mass. Further, Huang has shown that the correct angular mo- 

mentum Ii/2 and magnetic moment pB are associated with this motion, The 
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success of the Fermi formula5 in describing the.hyperfine splitting of atoms 

with zero orbital angular momentum6 is strong experimental evidence that the 

magnetic moment of the electron is due to electric currents. 7 

From the above results it appears reasonable to (semiclassically) model 

the magnetic moment of an electron by a loop of conductor containing a current 

which generates the moment’s flux, We shall assume that the conductor con- 

tains a charge density, the integral of which is equal to the electronic charge. 

The motion of this charge gives the loop current. Conceptual contact between 

this model and quantum mechanics may be made by viewing the loop as the re- 

sult of an extended time average of the quantized circulatory motion of the 

electronic charge. The analysis in this paper, however, starts by considering 

the amount of flux associated with the moment rather than the current. Since 

superconductivity theory has predicted’ and experiment has established’ that 

magnetic flux is quantized (in units of $,), it is assumed here that the magnetic 

flux associated with the magnetic moment of the electron is similarly quan- 

tized. Of course, if the total flux of the electron is not quantized, or the quan- 

tum of flux differs significantly from $I,, then this semiclassical model does 

not approximate the quantum mechanical system and hence loses its logical 

basis 0 

For superconducting materials the flux quantum is given by 

cpo = 2,$ (3) 
where q is the charge of the current carrier; q = -2e and c$, N” 2 x 10 -7 Gcm2, 

indicating that the superconducting current is carried by Cooper pairs lo of 

electrons. This is considered a triumph in the theory of superconductivity and 

Eq. (3) applied to the ac Josephson effect has enabled a most precise 
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determinationI’ of the fine structure constant Q! .=e2/Ec. 

The loop of conductor of this model is depicted in Fig, la. A current I, 

due to a charge -e moving with a velocity v, is assumed to flow around the 

loop, creating and linking with a single flux quantum $oO There are obvious 

uncertainties of order two associated with this assumption, since we consider 

singly charged particles rather than Cooper pairs and the electron spin has a 

projection of h/2 rather than h. However, these two factors are in opposite 

sense. Moreover, uncertainties of this magnitude are inherent in any semi- 

classical model of a quantum system (in this analysis we shall consider agree- 

ment within a factor of two as satisfactory), and in any case are not large 

enough to materially alter the ensuing semiclassical results and their implica- 

tions O 

The magnetic moment of this configuration is given by 12 

p = IA/c (4) 

where A is the effective area of the loop. Classical electromagnetic calcula- 

tion13 shows the inductance L of such a loop to be 

L = 4~ k (ln y - z) g 47~ k ln(l.4 $) 
c2 c2 

(5) 

where a and +& are the loop radii as shown in Fig, lb, The relative permeabil- 

ity has been assumed to be unity; the 47r and factors of c are added to maintain 

appropriate Gaussian units. 14 Using the relationship 

# = LIC 

to eliminate the current in favor of its associated flux, one obtains 

(6) 

A+O 
I-1 =- 

Lc2 l 

(7) 



Using A = 7rg2 and substituting Eq. (5) into (7) yields 

P = W. (8) 

where 

K= 1 

4 In (I,4 6) a 
(9) 

One notes that the magnetic moment of the loop is proportional to its “size” 

(Le, , k) while its “shape” (i.e. , the ratio &/a) enters only in the argument of a 

logarithm, resulting in a very weak shape dependence--extremely weak for 

large d/(7. 

To show that relativistic considerations restrict the permissible range of 

the ratio a/l, we solve for the circulating charge velocity v required to main- 

tain one flux quantum $. through the loop. Noting that I = ev/2n6, one sees 

from Eqs. (5) and (6) that 

’ =2aln;C1.4d/n) ’ (10) 

If one assumes that the speed of light is the maximum realistically allowable 

velocity, then Eq. (10) immediately rules out a fat doughnut shape (a - d) for 

the loop configuration. For a = B, v = 640 c, Solving Eq. (10) for a/& and 

setting v = c yields 

s = 1.4 exp (-7rc/2crv) = 4.6 X 10 -94 . 

Allowing a factor two for semiclassical modeling errors (Le. , permitting 

v = 2c, c/2) yields 

P = 2.5X10 -47 , 1.5 x 1o-187 (12) 

respectively. It is seen from Eq. (11) that, as v is reduced yet further, the 

ratio a/k decreases exponentially, being infinitesimal for any v 5 c. 
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Eq. (8) is plotted in Fig. 2 for the above ratios of a/6; the values of v 

given by Eq, (10) are also indicated, To aid in orientation, the electron 

Compton wavelength Xe = 386 F, the classical electron radius re = 2.82 F, the 

muon Compton wavelength 3c 
P 

= 1.87 F, the nucleon Compton wavelength KN = 

0.21 F, and the nucleon radius RN = 0.7 F are indicated on the abscissa, while 

the Bohr moment pB, the muon moment p 
/J 

, and the nuclear moment pN are in- 

dicated on the ordinate, 

Settingp =pB and using Eqs. (8), (9), and (10) yields 

V 2 
c b (13) 

where X = h/me, Then taking 2c as a reasonable upper limit imposed by rel- 

ativity on the velocity (the factor 2 is to allow for modeling errors) will give k 

its smallest value, Xe/2. At this limit a has its largest value, 0.5 x 10 -57 cm 0 

The analysis of this loop model gives no indication of a maximum value for k. 

However, quantum mechanical considerations, specifically the Heisenberg un- 

certainty principle and also the detailed analysis of Huang, leave little motiva- 

tion for considering 6 to significantly exceed XeO If, motivated by quantum me- 

chanical considerations, one assumes k - Xe, then v ti c and the dimension a 

must be infinitesimal, going like 

dexp (-q/a) (14) 

where q is a number on the order of unity, Expression (14) is consistent with 

the premise of QED that the bare electron may be represented by a point 

charge, 15 To date experiments at either high energy 16 or low energy 17 reveal 

no violation of QED theory. 

Having a feel for the dimensions of the (semiclassical) loop which are ap- 

propriate to generate the electronic magnetic moment (& - se, a infinitesimal), 
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it is now of interest to calculate the static energies associated with its electric 

and magnetic fields D When the flux is quantized at 0, and ,n =pB, the magnetic 

energy 

2 2 

wm 
zz &I2 = - = $0 @O 

2Lc2 8nd ln(l. 44) 
(15) 

can, using Eqs. (2), (3), (8), and (9), be shown to be given by 

wm = & (J2 In (1.4 5 =$(+) 2, (16) 

The electrostatic energy associated with this loop is shown in Appendix A to be 

we = - &: In (81) -i;- o (17) 

Using Eqs D (8) and (9) to eliminate the ratio CZ,& yields 

(18) 

or approximately one-quarter of the electron mass. (The second term is < 1% 

of the electron mass for k - Xe., ) 

If one were now to view the electron as a small circulating sphere of radius 

a, rather than spread out over the loop, the energy would, of course, diverge 

like a-lo As an aside we remark that in this case, by taking motivation from 

the quantum mechanical results mentioned below, one may still retrieve the 

functional dependence of the energy upon cz and B exhibited in Eqs, (16) and (17), 

This can be done by taking the existence of the vacuum pairs into account (semi- 

classically) by means of the constitutive relations. 18 

The interesting features of Eqs. (16) and (17) are that they show that the 

electric and magnetic energies of the loop are comparable, can easily be made 

to total the electron mass for a value & near 3ieS and diverge in the same way as 
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a function of the parameters k and a: linearly divergent in k, but only logarith- 

mically divergent in a. It is well known that the classical electron self-mass 

diverges linearly, 19 while the quantum mechanical self-mass was shown by 

Weisskopf 20 to diverge logarithmically. This reduction of the divergence from 

linear to logarithmic comes about through the proper consideration of vacuum 

polarization due to electron-positron pairs which reside in the vacuum accord- 

ing to DiracPs positron theory. Weisskopf also noted that, if one were to as- 

cribe the entire electron mass to the logarithmically divergent quantum me- 

chanical self-mass, one would obtain the quantity Xe exp (-l/a) as the relevant 

“critical length” of the theory--a kind of quantum mechanical radius of the elec- 

tron, It is evident that the dimension a is the analogous quantity for this loop 

model, 

Referring again to Fig. 2, it is interesting to observe that any force which 

tends to increase k will likewise tend to increase ,LL. Now both the self-electric 

and -magnetic forces of the loop can be seen to operate in this sense, implying 

that these forces will tend to increase the static magnetic moment (presumably 

after the renormalization process has, through the electron mass, determined 

the loop size), A semiclassical study of this model has, in fact, already been 

made by Koba, 21 who showed that the loop expansion due to vacuum fluctuations 

gives an effect larger than the reduction (due to wobbling) found by Welton, 22 

yielding an overall increase in the magnetic moment equal to g PR, a result 

first derived by Schwinger. 23 These considerations may offer at least a partial 

answer to the general problem pointed out by Feynman, 24 i e D O , there is very 

little physical intuition associated with the calculations of QED - e, g. , even the 

reason for the positive sign of the anomalous magnetic moment is not known. 

This model may be applied to the muon as well as to the electron; the major 
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difference is the reduction of the dimension CE by the factor me/m O 
P 

The appro- 

priate change in the ratio a/4 is uncertain because of the insensitivity of this 

model to this ratio, However, because both muon and electron obey the same 

(Dirac) equation, appropriately modified by QED, one would expect the two 

ratios a/t4 (or at least their logarithms) to be nearly equal, 25 Due to the diffi- 

culties and uncertainties introduced by strong interactions, no attempt is made 

to apply this model to the nucleon, 

To summarize, this semiclassical analysis of a current loop, threaded by a 

quantum of flux eo, and having the magnetic moment of the electron, yields loop 

dimensions which are compatible with quantum mechanical ideas about electron 

structure. That is, the loop size should be no smaller than the Compton wave- 

length and the circulating charge must be of extremely small dimension.. Fur- 

ther, a calculation of the electric and magnetic energies associated with such a 

loop shows that they are comparable and their sum is equal to the electron mass 

for a loop radius on the order of the Compton wavelength. The model indicates, 

as does quantum mechanics, that there may be a critical length N X exp (-7 /a), 

where q - 1, pertinent to charged lepton structure. 

In conclusion, without an underlying quantum mechanical theory describing 

the structure of the electron, and giving meaning to the expression for its self- 

mass, the significance of these results is rather difficult to assess. However, 

the semiclassical loop model is simple and easy to visualize and it exhibits a 

mathematical behavior very similar to that of the quantum mechanical system it 

is to represent, Hopefully, then, through these features it can help furnish use- 

ful insights into the structure of the electron. 

The author thanks S. J, Brodsky for important discussions about this 

model and its possible interpretations and implications. 
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APPENDM A 
THE ENERGY TO CHARGE A RING IN FREE SPACE 

The charge Q on a conductor of (free space) capacitance C is given by 

Q = VC (A-1) 

where V is the potential. The energy W to charge the capacitor is 

Q2 w =z 0 (A-2) 

One may now use Eqs. (A-l), (A-2), and the expansion for the potential of a 

ring 26 to obtain the expression for the electrostatic energy, 

w = g ; (yqP,(O)]2 
n=O 

(A-3) 

where the origin has been placed at the center of the ring and the point at which 

the potential is calculated is that part nearest the origin (in e. , r = 4-a; cf, 

Fig. lb). Using the values for the Legendre polynomial for zero argument, 27 

n odd: Pn(0) = 0 

; 
(A-4) 

P,(O) = t-11 
n,P n even: 

and setting n = 2m yields 

w = g EJy)2m[*2]2 . (A-5) 

Eq. (A-5) may be made tractable by using the Sterling formula, 28 

(A-6) 

Substituting Eq. (A-6) in (A-5) and explicitly writing the m = 0 term yields 

Q” w =m r + ,4, &p$)m (1 - & + k2 - o o o ) 1 (A-7) 
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where y = &/Za >> 1. Using Peirce 29 766 for the first expansion and Jolley 30 

1133 for the second two (for which the factor y-i m 
( 1 - may be ignored) yields 

Y 

(A-8) 

which is the desired result, 
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FIGURE CAPTIONS 

1. Semiclassical loop model of the magnetic moment of an electron. 

(a) A current I flows around the loop linking a flux quantum $oO 

(b) The two radii of the loop are shown in a cross-sectional view. 

2. A plot of magnetic moment versus the radius I of a current loop which links 

a flux quantum $. for several values of the ratio a/+4 0 
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