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ABSTRACT

The magnetic moment of an electron is (semiclassically)
modeled by a loop of current threaded by a flux quantum
ol 0= T 1269_ . The integral of the charge density involved in the
current is taken to equal the electronic charge. It is shown that
the assumption that the moment's flux is quantized to a value ¢ 0
implies that the size of the (bare) electronic charge must be ex-
tremely small (< 10_57 cm) but the most appropriate loop radius
is on the order of the electron Compton radius Xea Using these
results, a classical calculation of the static electric and magnetic

energies associated with the loop is shown to be in reasonable

agreement with the physically observed electron mass.
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It is often useful to construct classical or semiclassical models to assist
in a conceptual understanding of various aspects of quantum mechanical sys-
tems. One such model for the magnetic moment of an elementary particle is a
rotating sphere with a uniform ratio of charge to mass density. This simple
model1 gives the relationship between magnetic moment p and angular momen-
tum ¢

el
~ 2mc )

which is only a factor of two different from the analogous quantum mechanical

Bohr magnetic moment

_ eh
B T 2me ° (2)

(Recall that for the electron the projection of the spin angular momentum is
equal to i/2.) Gaussian units are used throughout this paper; e is the charge of
the positron; the symbols i, m, and ¢ have their usual meanings.

Another semiclassical model of long s‘catnding2 describing the spin and
magnetic moment of an electron considers the electron to move with the veloc-
ity ¢ in a circle of radius Xe/ 2. This model gives the correct (spin) angular
momentum 1/2, but gives uB/ 2 for the magnetic moment, again off by (only) a
factor of two. A detailed quantum mechanical analysis of a free Dirac electron
has been made by Huang, 3 leading to a remarkably similar picture. In this
analysis it was shown that Zitterbewegung, a phenomenon first studied by
Sc.:h:c‘b’dinger,4 causes the electron to circulate in a kind of orbital motion of
radius Ke. This circulation is due to the components of the vacuum fluctuations
of momentum less than mec, the total energy of which is essentially determined
by the electron mass., Further, Huang has shown that the correct angular mo-

mentum fi/2 and magnetic moment Ky are associated with this motion. The
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success of the Fermi formu1a5 in describing the hyperfine splitting of atoms
with zero orbital angular momentum6 is strong experimental evidence that the
magnetic moment of the electron is due to electric currents. 7

From the above results it appears reasonable to (semiclassically) model
the magnetic moment of an electron by a loop of conductor containing a current
which generates the moment's flux. We shall assume that the conductor con-
tains a charge density, the integral of which is equal to the electronic charge.
The motion of this charge gives the loop current. Conceptual contact between
this model and quantum mechanics may be made by viewing the loop as the re-
sult of an extended time average of the quantized circulatory motion of the
electronic charge. The analysis in this paper, however, starts by considering
the amount of flux associated with the moment rather than the current. Since
superconductivity theory has predic:'ced8 and experiment has established9 that
magnetic flux is quantized (in units of qbo), it is assumed here that the magnetic
flux associated with the magnetic moment of the electron is similarly quan-
tized. Of course, if the total flux of the electron is not quantized, or the quan-
tum of flux differs significantly from ¢ 0’ then this semiclassical model does
not approximate the quantum mechanical system and hence loses its logical
basis,

For superconducting materials the flux quantum is given by

tic

3 3)

¢0=27r

where q is the charge of the current carrier; q = -2e and ¢O ~ 2 X 10_7 G cmz,

indicating that the superconducting current is carried by Cooper pairs10 of
electrons. This is considered a triumph in the theory of superconductivity and

Eq. (3) applied to the ac Josephson effect has enabled a most precise
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determinationll of the fine structure constant a = ez/’ﬁc.

The loop of conductor of this model is depicted in Fig. 1a. A currentI,
due to a charge -e moving with a velocity v, is assumed to flow around the
loop, creating and linking with a single flux quantum ¢Oo There are obvious
uncertainties of order two associated with this assumption, since we consider
singly charged particles rather than Cooper pairs and the electron spin has a
projection of /2 rather than i. However, these two factors are in opposite
sense. Moreover, uncertainties of this magnitude are inherent in any semi-
classical model of a quantum system (in this analysis we shall consider agree-
ment within a factor of two as satisfactory), and in any case are not large
enough to materially alter the ensuing semiclassical results and their implica-
tions.

The magnetic moment of this configuration is given by12

p o= IA/c (4)
where A is the effective area of the loop. Classical electromagnetic calcula-
tion13 shows the inductance L of such a loop to be

£ . 86 T _ é é
L=47T—2(1n—a——z) = 47!'—2-11'1(104 Zt—) (5)

c c
where « and ¢ are the loop radii as shown in Fig. 1b. The relative permeabil -
ity has been assumed to be unity; the 47 and factors of ¢ are added to maintain
appropriate Gaussian units, 14 Using the relationship

¢ = Llc (6)
to eliminate the current in favor of its associated flux, one obtains

A¢,
po= —s . (7)
102 .
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Using A = wéz and substituting Eq. (5) into (7) yields

b= Kép, (8)
where

K z____l___
41n (1.4 %)

° ®)
One notes that the magnetic moment of the loop is proportional to its "size"
(i.e., ¢) while its "shape' (i.e., the ratio é/«) enters only in the argument of a
logarithm, resulting in a very weak shape dependence--extremely weak for
large €/a.

To show that relativistic considerations restrict the permissible range of
the ratio «/¢ , we solve for the circulating charge velocity v required to main-
tain one flux quantum ¢0 through the loop. Noting that I =ev/27¢, one sees

from Egs. () and (6) that

_ mc
T 20 ln (1.4 é/a)

v (10)

If one assumes that the speed of light is the maximum realistically allowable
velocity, then Egq. (10) immediately rules out a fat doughnut shape (e« ~ 4) for
the loop configuration. For «=¢, v =640 c. Solving Eq. (10) for «/¢ and
setting v = ¢ yields

f = 1.4 exp (-mc/2av) = 4.6 X 10~94 . (11)

Allowing a factor two for semiclassical modeling errors (i.e., permitting
v =2¢c, ¢/2)yields

47 87

= 2.5%x107%", 1.5 x 10" (12)

Ny

respectively. It is seen from Eq. (11) that,as v is reduced yet further, the

ratio «/¢ decreases exponentially, being infinitesimal for any v < c.
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Eq. (8)is plotted in Fig. 2 for the above ratios of «/4; the values of v
given by Eq. (10) are also indicated. To aid in orientation, the electron
Compton wavelength Ke = 386 F, the classical electron radius r, =2.82F, the
muon Compton wavelength ?(“ =1.87 F, the nucleon Compton wavelength Ry =

N

0.21 F, and the nucleon radius R., = 0.7 F are indicated on the abscissa, while

N
the Bohr moment Ky the muon moment up{, and the nuclear moment N are in-
dicated on the ordinate,

Setting p =Hg and using Egs. (8), (9), and (10) yields

(13)

ol<
!
o>

where X = i/mc. Then taking 2¢ as a reasonable upper limit imposed by rel-
ativity on the velocity (the factor 2 is to allow for modeling errors) will give #

57
cm,

its smallest value, xe/z,, At this limit « has its largest value, 0.5 X 10
The analysis of this loop model gives no indication of a maximum value for 4,
However, quantum mechanical considerations, specifically the Heisenberg un-
certainty principle and also the detailed analysis of Huang, leave little motiva-
tion for considering ¢ to significantly exceed Xe, If, motivated by quantum me-
chanical considerations, one assumes 4 ~ Ke, then v =~ ¢ and the dimension «
must be infinitesimal, going like

éexp (-n/a) (14)
where n is a number on the order of unity. Expression (14) is consistent with
the premise of QED that the bare electron may be represented by a point
charge. 15 To date experiments at either high energy16 or low energy17 reveal
no violation of QED theory.

Having a feel for the dimensions of the (semiclassical) loop which are ap-

propriate to generate the electronic magnetic moment (¢ ~ Ke, « infinitesimal),
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it is now of interest to calculate the static energies associated with its electric

and magnetic fields. When the flux is quantized at ¢ 0 and p =Hhps the magnetic
energy

2
%% %%

I -
W, = 3Ll = 5 = y (15)
2Lc 87é In(1.4%)

can, using Egs. (2), (3), (8), and (9), be shown to be given by

e2 \4 2 £ mo::2 A 2
Wi =57 () In (L.42) =7 (7) - (16)
The electrostatic energy associated with this loop is shown in Appendix A to be

2
e

84
W, = 57 ln ) . (17)

Using Eqs. (8) and (9) to eliminate the ratio /¢ yields

2
_ me e 8
w, =5+ 1n(1—~°4> (18)

or approximately one-quarter of the electron mass. (The second term is <1%
of the electron mass for ¢ ~ Keo)

If one were now to view the electron as a small circulating sphere of radius
a, rather than spread out over the loop, the energy would, of course, diverge
like a_lo As an aside we remark that in this case, by taking motivation from
the quantum mechanical results mentioned below, one may still retrieve the
functional dependence of the energy upon « and ¢ exhibited in Eqs. (16) and (17).
This can be done by taking the existence of the vacuum pairs into account (semi-
classically) by means of the constitutive relations. 18

The interesting features of Eqs. (16) and (17) are that they show that the
electric and magnetic energies of the loop are comparable, can easily be made

to total the electron mass for a value ¢ near Ke, and diverge in the same way as
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a function of the parameters ¢ and «: linearly divergent in £, but only logarith-
mically divergent in . It is well known that the classical electron self-mass
diverges linearly, 19 while the quantum mechanical self-mass was shown by
Weisskopf20 to diverge logarithmically. This reduction of the divergence from
linear to logarithmic comes about through the proper consideration of vacuum
polarization due to electron-positron pairs which reside in the vacuum accord-
ing to Dirac’s positron theory. Weisskopf also noted that, if one were to as-
cribe the entire electron mass to the logarithmically divergent quantum me-
chanical self-mass, one would obtain the quantity Ke exp (-1/a) as the relevant
"eritical length" of the theory--a kind of quantum mechanical radius of the elec-
tron. It is evident that the dimension « is the analogous quantity for this loop
model,

Referring again to Fig. 2, it is interesting to observe that any force which
tends to increase £ will likewise tend to increase y. Now both the self-electric
and -magnetic forces of the loop can be seen to operate in this sense, implying
that these forces will tend to increase the static magnetic moment (presumably
after the renormalization process has, through the electron mass, determined
the loop size). A semiclassical study of this model has, in fact, already been
made by Koba,21 who showed that the loop expansion due to vacuum fluctuations
gives an effect larger than the reduction (due to wobbling) found by Welton,22
yielding an overall increase in the magnetic moment equal to —2% Hps @ result
first derived by Schwinger. 23 These considerations may offer at least a partial
answer to the general problem pointed out by Feynman,24 i.e., there is very
little physical intuition associated with the calculations of QED - e.g. , even the
reason for the positive sign of the anomalous magnetic moment is nbt known.

This model may be applied to the muon as well as to the electron; the major
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difference is the reduction of the dimension ¢ by the factor me/ m“, The appro-
priate change in the ratio «/¢ is uncertain because of the insensitivity of this
model to this ratio. However, because both muon and electron obey the same
(Dirac) equation, appropriately modified by QED, one would expect the two
ratios «/¢ (or at least their logarithms) to be nearly equal. 25 Due to the diffi-
culties and uncertainties introduced by strong interactions, no attempt is made
to apply this model to the nucleon.

To summarize, this semiclassical analysis of a current loop, threaded by a
quantum of flux ¢ 0 and having the magnetic moment of the electron, yields loop
dimensions which are compatible with quantum mechanical ideas about electron
structure. That is, the loop size should be no smaller than the Compton wave-
length and the circulating charge must be of extremely small dimension.. Fur-
ther, a calculation of the electric and magnetic energies associated with such a
loop shows that they are comparable and their sum is equal to the electron mass
for a loop radius on the order of the Compton wavelength, The model indicates,
as does quantum mechanics, that there may be a critical length ~ X exp (-n/a),
where n ~ 1, pertinent to charged lepton structure,

In conclusion, without an underlying quantum mechanical theory describing
the structure of the electron, and giving meaning to the expression for its self-
mass, the significance of these results is rather difficult to assess. However,
the semiclassical loop model is simple and easy to visualize and it exhibits a
mathematical behavior very similar to that of the quantum mechanical system it
is to represent. Hopefully, then, through these features it can help furnish use-
ful insights into the structure of the electron.

The author thanks S. J. Brodsky for important discussions about this

model and its possible interpretations and implications.
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APPENDIX A
THE ENERGY TO CHARGE A RING IN FREE SPACE

The charge Q on a conductor of (free space) capacitance C is given by
Q = VC (A-1)

where V is the potential, The energy W to charge the capacitor is

)
o

W = . (A-2)

Do
Q

One may now use Eqs. (A-1), (A-2), and the expansion for the potential of a
ring26 to obtain the expression for the electrostatic energy,
2 _\hy
w o= 3 T (£2) [p0) (A-3)
24 ¢ ) |I'n
n=0

where the origin has been placed at the center of the ring and the point at which

the potential is calculated is that part nearest the origin (i.e., r =¢£-«; cf.

Fig. 1b). Using the values for the Legendre polynomial for zero argument,27
n odd: Pn(O) =0
n (A-4)
_ 2 n!
n even: Pn(O) = (-1) YT 5
(3):
and setting n =2m yields
2 2m . 12
Wo=% T (é;_a) [ T 2} ' (A-5)
m=0 27 (m!)
Eq. (A-5) may be made tractable by using the Sterling formula,28
n\" 1 1
!~ — —_— -
n! =4 an(e) exp<12n 3 +) (A-6)

360n
Substituting Eq. (A-6) in (A-5) and explicitly writing the m =0 term yields

2 0 : m
W Q T + Z —l‘—(y—:l) (1 ——l—+ 1 - o o o)} (A_7)

2mé mo1 B\Yy 4m 32m2
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where y = /2« >> 1. Using Peirce29 766 for the first expansion and Jolley30
i1
1133 for the second two (for which the factor (5_%1) may be ignored) yields
2 2
- Q | 4 _m_ ,1.20]
W o= om " 0, "3t 5 |
(A-8)
2
~ 9, (84

which is the desired result.
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FIGURE CAPTIONS
1. Semiclassical loop model of the magnetic moment of an electron.
(@) A current I flows around the loop linking a flux quantum qboo
(b) The two radii of the loop are shown in a cross-sectional view.
2. A plot of magnetic moment versus the radius ¢ of a current loop which links

a flux quantum qbo for several values of the ratio /¢ .
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