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This thesis concerns itself with two seemingly disjoint topics that are interesting
on their own, but that come to their full bloom when combined. These two topics
are the violation of CP and the so-called flavour problem. CP violation is simply
necessary for all our existence, however currently no strong enough source of it
is known to ensure successful baryogenesis. The flavour problem on the other
hand is a loose collection of questions concerning fermions in the standard model,
especially why several flavours exist at all, and why their properties appear to be so
chaotic. The overlap between the two topics happens, as in the SM CP is violated
in the flavour sector. After an introduction, so-called residual flavour and CP
symmetries are explored as possible explanations of the parameter structure of the
lepton Yukawa sector. Such residual symmetries are embedded into larger groups
at high energy and from the breaking patterns constraints on observables are
derived. There it was found that an important class of subgroups of U(3), namely
A(6n?) groups, can indeed explain the observed lepton mixing. Several variations
of this approach, combining residual flavour and CP symmetries, are explored.
This was the first time that such an infinite series of finite groups was analysed
in this way. After this, motivated by the need for breaking of flavour and CP
symmetries and the search for additional sources of CP violation, a large number
of candidate scalar potentials are explored, especially for their CP properties. A
necessary tool for this are CP-odd Higgs basis invariants, the theory of which
was further developed to enable such analyses. Using this approach, many very
complicated potentials were tested for their CP properties for the first time and

new sources of CP violation were found in new and known potentials.






Contents

Declaration of Authorship XV
Acknowledgements xvii
1 Introduction 1
1.1 The flavour problem . . . . .. ... .. ... ... .. 2

1.2 Why we all should not exist . . . . . ... ... . ... ... .... 4

1.3 The standard model of particle physics . . . . ... ... ... ... 6
1.3.1 Relativity . . . .. ... 6

1.3.2  The gauge structure of the standard model . . . . . . . . .. 9

1.3.3  Symmetry breaking . . . . .. ... ... L. 12

1.3.4 Gauge boson masses . . . . . . .. ... 13

1.3.5 Charged fermion masses . . . . . .. .. ... ... ..... 15

1.3.6 Neutrinomasses . . . . . . . . . . . ... .. 16

1.4 Flavour symmetries . . . . . . . . .. ..o 20
1.4.1 Residual flavour symmetries of fermions . . . . . . . . . .. 20

1.4.2 Breaking of larger flavour symmetries . . . . . . . .. .. .. 27

1.5 CP .o 30
1.5.1 Residual CP symmetries of fermions . . . .. ... ... .. 34

1.5.2 CPasasymmetry . . .. ... ... ... ... ....... 39

1.6 Outline of the remainder of the thesis . . . . . . . ... ... .... 40

2 Lepton mixing predictions from direct models with a A(6n?) flavour

symmetry 41
2.1 From Gy to lepton mixing: A shortcut . .. ... ... ... .... 43
2.2 The group theory of A(6n?) . . . . . .. ... ... ... ... ... 44
2.3 Results . . . . . . 48
2.4 Conclusions . . . . . . . . . . e 50
3 Lepton mixing predictions including Majorana phases from A(6n?)

flavour symmetry and general CP 51
3.1 Introduction . . . . . . . . . .. 52
3.2 General CP transformations, flavour symmetries, automorphisms

and the character table . . . . . . . . . ... ... ... 53

3.2.1 General CP transformations and flavour symmetries . . . . . 53

3.2.2  The consistency equation . . . . . . .. ... ... 5Y)

A\



vi CONTENTS
3.2.3 Inner and outer automorphisms . . . . . .. ... %)
3.3 gCP Symmetries and A(6n2) groups . . . . . . ... ... ... 59
3.4 Conclusions . . . . . . ... 67

4 General CP and A(6n?) flavour symmetry in semi-direct models

of leptons 69
4.1 Introduction . . . . . . ... 70
4.2 General CP with A(6n%) . . . .. ... ... ... ... ... 72
4.3 Lepton mixing with residual symmetry Z, x C'P in the neutrino sector 74
4.3.1 Charged lepton sector . . . . . . ... ... ... .. .. .. 75
4.3.2 Neutrino sector . . . . . . . . .. ..o 76
4.3.3 Predictions for lepton flavour mixing . . . . . . ... .. .. 78
4.4 Lepton mixing with residual symmetry Z; x C'P in the charged
lepton sector . . . . . ... Lo 93
4.4.1 Neutrino sector . . . . . . .. ..o o 94
4.4.2 Predictions for lepton flavour mixing . . . . . . . .. .. .. 96
4.5 Neutrinoless double-beta decay . . . . . . . ... ... .. ... .. 99
4.6 Conclusions . . . . . . . .. 101

CP-odd invariants for multi-Higgs models and applications with

discrete symmetry 105
5.1 Introduction . . . . . . .. ... 107
5.2 CP-odd invariants for scalar potentials . . . . . .. . ... ... .. 110
5.2.1 General formalism . . . . ... ... L0 110
5.2.2 CP-odd invariants for explicit CP violation . . .. .. . .. 115
5.2.3 Diagrams for invariants . . . . . .. ... ... 119
5.2.4 Symmetries of invariants . . . . ... ... ..., 120
5.2.5 CP-odd invariants only built from Z tensors . . . . .. . .. 127
5.2.6 CP-odd invariants built from Y and Z tensors . . . . . . .. 129
5.3 Two Higgs doublet model potential . . . . . .. ... ... ... .. 131
5.4 A4 = A(12) invariant potentials . . . . .. ... 133
5.4.1 One flavour triplet . . . . . .. .. ... oL 134
5.4.2  One flavour triplet of Higgs doublets . . . . . . .. ... .. 135
5.4.3 Two flavour triplets . . . . . . . . . . . ... ... ... ... 136
5.4.4 Two flavour triplets of Higgs doublets . . . . . . . ... . .. 137
5.4.5 S4 invariant potentials . . . . . .. ..o 139
5.5  A(27) invariant potentials . . . . ... L0000 141
5.5.1 One flavour triplet . . . . . .. .. ... oL 142
5.5.2  One flavour triplet of Higgs doublets . . . ... .. ... .. 144
5.5.3 Two flavour triplets . . . . . . . .. ... ... ... ... .. 145
5.5.4 Two flavour triplets of Higgs doublets . . . . . . . ... . .. 146
5.5.5 A(54) invariant potentials . . . . . . ... 146
5.6 Summary of CPIs for explicit CP violation . . . . . .. .. .. ... 147
5.7 CP-odd invariants for spontaneous CP violation . . . . . ... . .. 149

5.7.1 Minimisation condition in terms of diagrams . . . . . . . . . 150



CONTENTS vii

5.7.2  Example applications . . . . . ... ..o L 152
5.7.2.1 Onetripletof Ay . . . ... ... ... ... ... 152
5.7.2.2  One triplet of A(27) . . . .. ... ... ... ... 152
5.8 Summary of CP-odd invariants . . . . .. ... ... ... ..... 153
6 Conclusions 157
7 Appendix 163
7.1 Full results for semidirect models . . . . . . . ... ... ... ... 163
7.1.1 Majorana mass and diagonalisation matrices for Neutrino-
semidirect models . . . . . .. ... 163
7.1.2  Charged lepton diagonalisation matrices in neutrino-semidirect
models . . . ... 169
7.1.3 Additional mixing results for neutrino-semi-direct models . . 172
7.1.4 Correlation plots for neutrino-semidirect models . . . . . . . 174
7.1.5 Charged lepton mass and diagonalisation matrices for charged-
lepton semi-direct models . . . . . . ... ... 176
7.1.6 Neutrino mass and diagonalisation matrices for charged-lepton-
semidirect models . . . . . .. ..o 185
7.1.7 Additional mixing results for charged-lepton-semidirect mod-
els . . 188
7.2 Analysing A(3n?) invariant potentials with n > 3 with CP-odd
invariants . . . . . .. L L 188
7.2.1 One flavour triplet . . . . ... ... . ... ... .. .. .. 190
7.2.2  One flavour triplet of Higgs doublets . . . . . . . ... ... 190
7.2.3 Two flavour triplets . . . . . . . .. ... 191
7.2.4 Two flavour triplets of Higgs doublets . . . . . . .. ... .. 193
7.2.5 A(6n?) invariant potentials withn >3 . . ... ... .. .. 193
7.3 List of invariants . . . . . . ... ... 194
7.3.1 Contraction matrices of ny = 5 invariants . . . . . . . . .. 194
7.3.2 Contraction matrices of nz = 6 invariants without Z-self-loops195
7.3.3 nyz = 6 invariants with self-loops . . . . . . . .. .. ... .. 197
7.3.4 Invariants with ny # 0 not listed in the main text . . . . . . 198
7.3.5 Lists of spontaneous CP-odd invariants . . . . . . .. .. .. 200
7.3.6 Larger CP-odd invariants . . . . . ... ... ... ... .. 201
7.4 More group theory of A(6n?) . . . .. ... ... .. ... ... 202

7.4.1 Clebsch-Gordan coefficients for A(6n?) group with n # 3Z . 207
7.4.2  A(6n?) potentials as particular cases of A(3n?) potentials 210

References 213






List of Figures

2.1

3.1

4.1

4.2

4.3

4.4

4.5

The possible values that |Vi3] can take in A(6n?) flavour symmetry
groups with even n. Examples include |V3] = 0.211,0.170,0.160, 0.154
for n = 4,10, 16, 22, respectively. The lines denote the present ap-
proximate 3o range of |Vis|. . . . . ... 49

Effective Mass of Ov3 decay. «/n is varied between the lower and
upper 3 sigma bound, z/n = 0,0.1,0.2,...,1. For the definition of
agy and agy cf. Egs. (3.40), (3.41). . . . . . ... 66

Numerical results for case I, 1st-3rd ordering with the PMNS matri-
ces given in Eq. (4.29): allowed values of sin? #}5, sin 613 and sin? 6,3
for different n, where the three lepton mixing angles are required
to lie in their 30 ranges. The 1o and 30 bounds of the mixing
parameters are taken from Ref. [78].. . . . . . . ... ... ... 82
Numerical results in case I, 1st-3rd ordering with the PMNS ma-
trices given in Eq. (4.29): the possible values of [sin dcp|, |sin ag |
and |[sin o, | for different n, where the three lepton mixing angles
are required to lie in the 30 ranges. The 1o and 30 bounds of the
mixing parameters are taken from Ref. [78]. . . ... ... ... .. 83
Numerical results in case I, 4th-6th ordering with the PMNS ma-
trices given in Eq. (4.32). The red filled regions denote the allowed
values of the mixing parameters if we take the parameters ¢; and @9
to be continuous (which is equivalent to taking the limit n — o),
where 015 and 6,3 are required to lie in their 30 ranges. The result-
ing predictions for #,3 are far beyond its 3o range. The 1o and 3o
bounds of the mixing parameters are taken from Ref. [78]. . . . .. 84
Numerical results in case I, 7th-9th ordering with the PMNS ma-
trices given in Eq. (4.38): the allowed values of sin? 65, sin #3 and
sin? @y5 for different n, where the three lepton mixing angles are
required to lie in their 30 ranges. The 1o and 30 bounds of the
mixing parameters are taken from Ref. [78]. . . . .. ... ... .. 86
Numerical results in case I, 7th-9th ordering with the PMNS ma-
trices given in Eq. (4.38): the allowed values of [sindop|, |sin ao ]
and [sin a4, | for different n, where the three lepton mixing angles
are required to lie in their 30 ranges. The 1o and 30 bounds of the
mixing angles are taken from Ref. [78]. . . . . . ... ... ... .. 87

X



LIST OF FIGURES

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Numerical results in case II: the allowed values of sin® 6, sinf;s
and sin® 093 for different n, where the three lepton mixing angles
are required to lie in their 3o ranges (the 3o lower bound of sin® 0y
is chosen to be 0.254 instead of 0.259 given in Ref. [78]). The lo
and 30 bounds of the mixing parameters are taken from Ref. [78]. .
Numerical results in case II: the allowed values of [sin dcp|, [sin a1 |
and [sin a4, | for different n, where the three lepton mixing angles
are required to lie in their 30 ranges (the 30 lower bound of sin 6,
is chosen to be 0.254 instead of 0.259 given in Ref. [78]). The lo
and 30 bounds of the mixing parameters are taken from Ref. [78].
Numerical results in case III: the allowed values of sin®#;,, sin 63
and sin? @5 for different n, where the three lepton mixing angles are
required to lie in their 3o regions. The 1o and 30 bounds of the
mixing parameters are taken from Ref. [78]. Note that n should be
even in thiscase. . . . . . . .. .. oo
Numerical results in case I1I: the allowed values of |sin d¢p/|, [sin ao |
and [sin a4, | for different n, where the three lepton mixing angles
are required to lie in their 3¢ ranges. The 1o and 30 bounds of the
mixing angles are taken from Ref. [78]. Note that n needs to be
even in thiscase. . . . . . . ... Lo
Numerical results in case V: the allowed ranges of sin” 6, sin 63
and sin? 03 for different n, where the three lepton mixing angles
are required to lie in the 30 regions. The 1o and 30 bounds of
the mixing angles are taken from Ref. [78]. Note that n should be
divisible by 2 in this case. . . . . . . . . ... L.
Numerical results in case V: the allowed ranges of [sin dcp|, |sin a1 |
and |[sin o, | for different n, where the three lepton mixing angles
are required to lie in the 30 regions. The 1o and 30 bounds of
the mixing angles are taken from Ref. [78]. Note that n should be
divisible by 2 in thiscase. . . . . . . . ... ... ... ... ....
The allowed ranges of the effective mass for neutrinoless double-
beta decay for all viable cases of lepton mixing in semidirect mod-
els with a A(6n?) flavour group in the limit of n — oo. The top
row corresponds to case I, with 1st-3rd ordering on the left and
7th to 9th ordering on the right, the middle row contains case II
and III, and the bottom row case IV and V. Light blue and yellow
areas indicate the currently allowed three sigma region for normal
and inverted hierarchy, respectively. Purple regions correspond to
predictions assuming inverted hierarchy, green regions to normal
hierarchy. The upper bound |m..| < 0.120 eV is given by mea-
surements by the EXO-200 [79, 100] and KamLAND-ZEN experi-
ments [101]. Planck data in combination with other CMB and BAO
measurements [80] provides a limit on the sum of neutrino masses
of my + my +mg < 0.230 eV from which the upper limit on the

89

90

mass of the lightest neutrino can be derived. . . . . . . . . . .. .. 102



LIST OF FIGURES

x1

4.13 The allowed ranges of the effective mass for neutrinoless double-beta

5.1
5.2

5.3

7.1

7.2

7.3

decay for all viable cases of lepton mixing in semidirect models with
a A(6n?) flavour group. The top row corresponds to case I, with
1st-3rd ordering on the left and 7th to 9th ordering on the right, the
middle row contains case II and III, and the bottom row case IV and
V. Light blue and yellow areas indicate the currently allowed three
sigma region for normal and inverted hierarchy, respectively. Purple
regions correspond to predictions assuming inverted hierarchy, green
regions to normal hierarchy in the limit of n — oo. Blue and red
regions represent predictions for normal and inverted hierarchy for
the value n = 8 (in the top-right panel, we choose n = 5 which is the
smallest viable value of n in that case). The upper bound |m..| <
0.120 eV is given by measurements by the EXO-200 [79, 100] and
KamLAND-ZEN experiments [101]. Planck data in combination
with other CMB and BAO measurements [80] provides a limit on
the sum of neutrino masses of m; +mo+ms < 0.230 eV from which
the upper limit on the mass of the lightest neutrino can be derived.

Example diagrams corresponding to small invariants. . . . . . . ..
Examples of contraction matrices for small invariants. All contrac-
tion matrices are symmetric except for the CPI. . . . . . . . . . ..
Examples for contraction matrices of CPIs for spontaneous CP vi-
olation. We draw each of the VEVs (as opposed to a single vertex
for the whole W tensor). . . . . . ... ... ... ...

The correlations among mixing parameters in case I for the 1st-
3rd ordering with the PMNS matrices given in Eq. (4.29). The red
filled regions denote the allowed values of the mixing parameters
if we take the parameters ¢; and ¢, to be continuous (which is
equivalent to taking the limit n — oco) and the three mixing angles
are required to lie in their 30 regions. Note that the three CP phases
dcp, agr and af; are not constrained in this limit. The black curves
represent the phenomenologically viable correlations for n = 8. The

1o and 30 bounds of the mixing parameters are taken from Ref. [78].

The possible values of sin?fy3 and sin ;5 for the 7th-9th ordering
with the PMNS matrices shown in Eq. (4.38) in case . The 1o and
30 bounds of the mixing angles are taken from Ref. [78]. . . . . ..
The correlations among mixing parameters in case II. The red filled
regions denote the allowed values of the mixing parameters if we
take the parameter 3 to be continuous (which is equivalent to
taking the limit n — oo0) and the three mixing angles are required
to lie in their 30 ranges (the 30 lower bound of sin® Ay, is chosen to
be 0.254 instead of 0.259 given in Ref. [78]). Note that the Majorana
phase a4, is not constrained in this limit. The black curves represent
the phenomenologically viable correlations for n = 8. The 1o and
30 bounds of the mixing parameters are taken from Ref. [78] . . .

103

126

175

177



X1l

LIST OF FIGURES

7.4

7.5

7.6

The correlations among mixing parameters in case I11. The red filled
regions denote the allowed values of the mixing parameters if we
take the parameters ¢, and 5 to be continuous (which is equivalent
to taking the limit n — oo) and the three mixing angles are required
to lie in their 30 ranges. Note that the three CP phases dcp, ag;
and o4, are not constrained in this limit. The black curves represent
the phenomenologically viable correlations for n = 8. The 1o and
30 bounds of the mixing parameters are taken from Ref. [78].

The correlations among mixing parameters in case IV. The red filled
regions denote the allowed values of the mixing parameters if we
take the parameters g and @7 to be continuous (which is equivalent
to taking the limit n — o0), where 615 and ;3 are required to lie in
their 30 ranges. The 1o and 30 bounds of the mixing parameters
are taken from Ref. [78]. . . . . .. ... ... ...
The correlations among mixing parameters in case V. The red filled
regions denote the allowed values of the mixing parameters if we
take the parameters @g and @9 to be continuous (which is equiva-
lent to taking the limit n — oo) and the three mixing angles are
required to lie in their 30 ranges. Note that the Majorana phase
o, is not constrained in this limit. The black curves represent the
phenomenologically viable correlations for n = 8. The 1o and 3o
bounds of the mixing parameters are taken from Ref. [78]. . . . ..

. 178



List of Tables

1.1

1.2

3.1

3.2

4.1

4.2

The fermions in the standard model of particle physics together with
their transformation properties under the factors of the symmetry
group. Here, the lower index ¢ = 1,2, 3 indicates flavour, and again
one can see that the different flavours are just copies of each other,
at least in terms of their gauge properties. \° denotes the Gell-
Mann matrices, which will not be needed again in this thesis are
just mentioned for completeness. Their values can be found e.g. in
[18]. 7 are Pauli matrices. . . . . . . . .. ... oL 12
The Higgs doublet of the standard model of particle physics to-
gether with its transformation properties under the factors of the
symmetry group. 7 is the second Pauli matrix. . . ... .. .. .. 12

Values of ¢; and @3 for gCP transformations consistent with the

residual Klein symmetry . . . . .. ... o000 60
Values of CP phases after reordering for different values of v/n in
UP();/[)K%H]. In each row, 7/n can take arbitrary values in the interval
indicated. U’ denotes the matrix after reordering. . . . . . . . . .. 63

The automorphism groups of the A(6n?) group series, where Inn(Gr)

and Out (Gr) denote inner automorphism group and outer auto-
morphism group of the flavour symmetry group Gg respectively.

The last column gives the number of class-inverting outer automor-
phisms. Note that the inner automorphism group of A(6n?) with

n = 3Z is isomorphic to A(6n?)/Z3 since its center is the Z3 sub-
group generated by c3 A5, 74
The form of the column of the PMNS matrix which is fixed for
different residual symmetries G, and G;. The symbol “X” denotes

that the resulting lepton mixing is ruled out since there is at least

one zero element in the fixed column, and the symbol “v” denotes

that the resulting mixing is experimentally still allowed. Note that

for G, = Z5"% | the cases of G; = (abc*d') and G; = (a®bc*d)

are not independent as b (abc®d')b = a?bc™'d~* and b (bc*d®)b =
e 79

xiil



X1iv

LIST OF TABLES

4.3 The form of the row of the PMNS matrix that is fixed for different

5.1

residual symmetries G, and G; which are K, and Z, subgroups of
A(6n?) flavour symmetry group respectively. The superscript “T”
means transpose. The symbol “X” denotes that the resulting lepton
mixing is ruled out since there is at least one zero element in the
fixed row, and the symbol “v/” denote that the resulting mixing is

. z! gz’ n/
viable. Note that for G; = Z5" 4" | the cases of G, = K° %abe?) ood

G, =K idnm’a%dz) are equivalent because the residual symmetries
are related by group conjugation as b(be® d* )b = be=*'d=*'| bd™/?b =
A% and b(a®bd*)b = abc™*. . ... ...

Summary of CPIs and (if applicable) CP symmetry transformations

for scalar potentials with discrete symmetry. . . . . . . . .. .. .. 148



Declaration of Authorship

I, Thomas Neder, declare that the thesis entitled Leptons and Higgs with Discrete

Flavour and Charge-Parity Symmetries and the work presented in the thesis are

both my own, and have been generated by me as the result of my own original

research. I confirm that:

this work was done wholly or mainly while in candidature for a research

degree at this University;

where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has

been clearly stated;

where I have consulted the published work of others, this is always clearly
attributed;

where I have quoted from the work of others, the source is always given.

With the exception of such quotations, this thesis is entirely my own work;
I have acknowledged all main sources of help;

where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed

myself;

parts of this work have been published as: [1, 2, 3, 4, 5, 6]

Signed: Thomas Neder

Date: Southampton, October 7, 2016

XV






Acknowledgements

The list of people I have to thank for the most various reasons is long and probably
[ am forgetting half of them but here we go:

First of all I would like to thank Steve F. King, formally, for being my PhD
supervisor, and also for being a mentor on the long way towards a PhD.

I am greatly indebted to the late Guido Altarelli. He recommended the Invisibles
scholarship to me and recommended me to the Invisibles network: Without him I
wouldn’t be here and I wish he could have lived to see this day.

I would like to thank the other members of the Invisibles network, especially
Belen Gavela for her support and patience, and Ferruccio Feruglio for being my
supervisor during the secondment to Padova. I am very thankful to have been
part of this great organisation.

I would like to thank Ivo de Medeiros Varzielas for his help, advice, and enduring
my questions, and particularly for all his help with this thesis.

I would like to thank my other collaborators, namely Alex Stuart, Gui-Jun Ding,
Christoph Luhn.

The PhD would have been much harder to endure without all my old and my new
friends (surprisingly mostly physicists), above all: Christoph Borschensky, Kirill
Kanshin, Ignacio Miguel Hierro Rodriguez, Luca Panizzi, Antonin Portelli, Patrick
Ludl, and many others (If I know and like you, consider yourself mentioned.)

An extra thanks goes to my fellow inmates in 4007 for some useful discussions but

mostly for the immense amounts of nonsense that came out of this office.

This goes to my girlfriend Elena: Thank you for your love and having the patience

of a saint.

Alles aufzulisten, wofiir ich meinen Eltern zu Dank verpflichtet bin, wiirde den
Rahmen dieser Doktorarbeit sprengen. Ohne eure jahrelange bedingungslose Un-

terstiitzung ware ich heute nicht, wo ich bin. Danke.

Xvii






Introduction

There is a theory which states that if ever anyone discovers exactly what
the Universe is for and why it is here, it will instantly disappear and be
replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

— Douglas Adams, The Restaurant at the End of the Universe

This thesis concerns itself with two topics that seem quite unconnected at first and
are indeed interesting on their own, but in addition, when looked at closely, have
interesting and intricate connections. These topics are the violation of combined
conjugation of charge and parity, and the so-called fermion flavour problem. The
central unanswered questions behind these topics could be (slightly polemically)
stated as ”Why does anything exist?“ and "Now that something exists, why are

there unnecessary copies of it?“, respectively.

Both topics will be introduced properly at a non-technical level in the next two
sections. Following these sections, what was until the discovery of neutrino oscil-

L champion of particle physics is introduced, namely the

lations [7] the unbeaten
standard model of particle physics. The conceptionally simplest explanation of
neutrino oscillations is that neutrino have small but finite masses. This is in con-
tradiction to the standard model in its original formulation, in which neutrinos
were massless by construction [8, 9]. There are various extensions of the standard
model that can explain these oscillations by the introduction of additional fields
such that the model allows for neutrino masses. All this is discussed after a review

of the remainder of the standard model, followed by sections containing technical

LAt least concerning the 5% of the universe that are described by it.
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2 1 Introduction

discussions of fermion flavour and CP, and an outline of the main chapters of the

thesis, which concludes the introduction.

1.1 The flavour problem

The standard model of particle physics is a relativistic quantum field theory. It is
probably safe to say that the latter is still the best known unification of special
relativity with quantum mechanics and at the same time the best description of
elementary particles available. The fact that it is a relativistic theory means that
the action is invariant under Poincare transformations whereas the fact that it is a
quantum theory means that symmetry transformations act on the quantum states

of the theory via unitary (or antiunitary) operators|10].

How quantum states transform under operators representing the Poincare group
induces transformations on operators generating the various quantum states. These
generators are then combined into fields that again form representations under the
Poincare group. These are in turn are combined into a Lagrangian covariant under
Poincare transformations which when integrated over spacetime yields an invariant

action.

The Poincare group has two parts, spacetime translations, and boosts and rota-
tions. Space-time translations are generated by the 4-momentum operator whose
square commutes with the other operators of the Poincare group. This causes
single-particle states to be characterized by their rest mass. The second part,
boosts and rotation, causes the representations to be characterized by two spin
quantum numbers. The reason for this is that the group formed by boosts and
rotations, the Lorentz group, is locally isomorphic to SU(2) x SU(2) and each rep-
resentation is labelled by the spin quantum number under each of the SU(2) fac-
tors. There are two representations that correspond to (constituents of) all known
fermions, (1/2,0) and (0,1/2), where this notation means that these representa-
tions are two-dimensional and transform either with a matrix from the first or the
second SU(2) factor, respectively. These 2-dimensional representations are often
called Weyl spinors and play an important role in the construction of the standard
model. Massive fermions are represented by Dirac or Majorana spinors, both of
which correspond to the direct sum of two Weyl spinors, (1/2,0) & (0,1/2), with
Majorana spinors fulfilling an additional reality condition. Note that this short ex-
position has completely ignored the gauge structure of the standard model, which

can easily be considered its most successful part and the same for any quantum



1 Introduction 3

field theory, but is entirely irrelevant to the essence of the flavour problem. The

gauge structure of the standard model will be summarized in subsection 1.3.2.

Fermions are distinguished by their quantum numbers under the various symme-
tries of the standard model, except for the fact that of each type, (at least) three
copies seem to exist that merely differ by their Yukawa couplings and thus, at
our low energies, their rest mass. These copies, one set of which is for example

electron, muon, and tauon, are called flavours.?

The flavour problem (or puzzle) is a loose collection of unsolved questions related
to the properties of fermions in the standard model among which the most fun-
damental ones are, Why are there even different flavours of fermions, and Why
is flavour even necessary?® From the point of view of the author, the essence of
the flavour problem can in the context of the above exposition be formulated as
follows: There is no such thing as flavour — in the Poincare group, by which is
meant that to describe several flavours, the particles of each flavour are just ad-
ditional copies of the representations of the Poincare group. (As are the fermions
within each generation, however, these are at least distinguished by gauge interac-
tions.) The question now is, could there be any symmetry principle that explains
why different flavours exist and why their properties and interactions are what
they are? Ideally, also the seemingly chaotic structure of the flavour sector of
the standard model would be explained too by this symmetry. Such a symmetry,
that extends the symmetry of the model in consideration and under which the

generations form a representation, is called a flavour symmetry.

The various no-go theorems about symmetries of the S-matrix [11, 12] are often
interpreted as stating that the only symmetries that act on spacetime of a quantum
field theory in flat space can be the Poincare group (or supersymmetry), and
that all other symmetries have to be internal, which means that while they may
depend on spacetime, spacetime itself is not transformed by these symmetries.
Mathematically this means that the possible symmetries of a quantum field theory
are a direct product of Poincare and internal symmetries, and that the internal
symmetries act trivially on spacetime. This is for example the case for the standard
model, where with P the Poincare group, (and the role of the remaining factors

explained in the following section,)

GSM =P x SU(3)C X SU(2)L X U(l)y (11)

2Equivalently flavours are sometimes called families or generations.
3And other question concerning their precise properties and interactions.
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These arguments have some loop-holes, as (among other things) the theorems only
concern themselves with symmetries of the S-matrix and a larger group containing
both Poincare and other symmetries might be broken spontaneously, such that at
the level of the S-matrix the only surviving symmetries are indeed a direct product

of the Poincare group and internal symmetries.

Nevertheless, apart from this loop-hole, any symmetries that could provide infor-
mation about the properties and origin of flavour have to be internal symmetries
that extend the usual standard model symmetries by relating different flavours
with each other. Technically this often means that the three generations trans-
form as some representation of a new group, Gplavouw that extends the symmetry
of the theory:

G = Gsu X Griavour- (1.2)

This new group will have to be broken, because, as will be shown in section 1.4.1,
the symmetries under transformations of fermion flavours that are present in the
standard model are fairly small and by themselves do not contain much information

about the flavour problem.

1.2 Why we all should not exist

The second topic of this thesis is a symmetry, that, if it was realized in the universe,
would make it impossible to distinguish between matter and antimatter. The
existence of a sufficient number of particles over antiparticles, and thus all our
existence, would be impossible. This symmetry is called charge-parity conjugation,

or in short CP, and its precise definition will have to wait until a later section.

The process by which matter is selected over antimatter during the evolution of
the universe is generically called baryogenesis. There are two main quantitative
observables that measure the effect of baryogenesis: the density of baryons minus

the density of antibaryons over the density of photons [13]
ng/n, = (6.10 & 0.04) x 10717 (1.3)

and the fraction of antibaryons over baryons. Concerning the latter, the fraction

of antiprotons in cosmic rays has been measured to [14]

np/n, ~ 107 (1.4)
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Note that the surplus of baryon over antibaryons is rather small.* It was real-
ized very early that four ingredients are needed for successful baryogenesis [15]:
departure from thermodynamic equilibrium, baryon number violation, violation
of charge conjugation, and violation of CP. The departure from thermodynamic
equilibrium is supplied by the expansion of the universe, out-of-equilibrium-decays
of heavy particles, first-order phase transitions or by other things, while the charge
conjugation symmetry is violated in the standard model by construction. Baryon
number is conserved by the renormalisable Lagrangian of the standard model but
violated at the perturbative level by an anomaly, the effect of which however is
almost vanishingly small, such that on one hand baryon number could safely be
considered a perturbative symmetry of the standard model. On the other hand,
there is a non-perturbative effect which is effected by certain non-local field config-
urations, called Sphalerons, that may be of considerable size. A reasonably large
baryon-number violating effect may occur if the phase transition from unbroken
to broken electroweak symmetry was of first order, which unfortunately is not the
case in the standard model with a single Higgs doublet because the mass of the
recently discovered Higgs boson is too large. And even if the phase transition was
of first order, it was shown that the amount of CP violation in the standard model

that is confirmed to this date is not sufficient to explain the baryon asymmetry.

A measure of the strength of CP violation at the phase transition is given by
the so-called Jarlskog invariant J divided by the Higgs vacuum expectation value
v squared. What both of these are will be explained later in the introduction.
Nevertheless, one obtains that

J Im[v;jvkl Z?V]:]] - 3x107°

~ R 10710 —2 1.
v? v2 (246 GeV)? 5 x 1077 Gev (1.5)

and all CP-violating observables have to be proportional to this number, which

will force the rates to be of a similar order of magnitude.

While it remains an interesting question what the precise origin of the violation
of baryon number is, this question will not be considered further in this work, but
the focus will lie on CP violation as such. An additional reason for this approach
is that while CP violation is necessary for dynamically generating the observed
baryon asymmetry, it might still even be the case that the universe was just started
(if it was started), or just exists with a positive baryon number. CP violation as
such would still be interesting because CP is violated in the standard model and

a question that remains is, Was CP ever a good symmetry of the universe? Via

4Although there is of course no second universe to compare with.
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the CPT theorem [16], CP violation is directly related to the violation of time
inversion invariance, such that the question becomes, Is the direction of increasing

time built into the universe, or the result of some dynamics?®

The last remark highlights another reason to study the violation of discrete sym-
metries generally. P and T are parts of the Poincare group and the question if
any of them had ever been conserved is actually a question about the fundamental
symmetries of nature. A similar argument can be found for C', as while it is not
included in the Poincare group, it arises as a symmetry of the theory when two
copies of a field with otherwise identical quantum numbers under the Poincare

group are combined to a complex field.

1.3 The standard model of particle physics

In this and the following sections concepts that were merely mentioned in the pre-
vious sections will be made precise, starting with relativistic invariance, followed
by gauge invariance, the breaking of the latter, the resulting masses of particles,
and eventually flavour and CP symmetries of the standard model and as an ex-

tension of the standard model.

1.3.1 Relativity

The starting point is the relativistic invariance of the theory. Technically this
means that the theory is to be invariant under Poincare transformations, often also
called inhomogeneous Lorentz transformations. In quantum mechanics, symmetry
transformations acting on states® have to be linear and unitary or antilinear and
antiunitary operators [10]. For this reason, in the following, first, the construction
of (anti-)unitary irreducible representations of the Poincare group will be outlined

and which transformation properties are induced onto field operators.

The defining representation of the Poincare group acts on flat spacetime in the
following way,
k= AP+ at (1.6)

5In addition, one could wonder if the arrow of time that is generated by the violation of CP
in the standard model is caused by the same dynamics as the macroscopic arrow of time, or if
they are different effects.

6Tt is a postulate of quantum mechanics that any complex multiple of a state in Hilbert
space will represent the same physical state. This has to be taken into account when discussing
symmetries on the state space. Sets of states that only differ by arbitrary phases are called rays.
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where a is a constant, real 4-vector and A is a constant, real 4 x 4 matrix that

leaves the flat Minkowski metric n invariant:
ATnA = . (1.7)

The Poincare group decays into four parts, namely those transformations that
can be reached from the identity transformations by continuously changing the
parameters in A and a, denoted by 731, and those that are only connected with
the identity via mirror operations acting on time, denoted 7', and acting on space,

denoted P, with the matrix A appearing in Eq. (1.6) taking the forms of
Ar = diag(~1,1,1,1) and Ap = diag(1, —1,—1, —1). (1.8)

P is also called parity and T' time-inversion. In the following, only 731 will be

considered and often just denoted by P.

To arrive at other representations than Eq. (1.6) of the Poincare group, one can

start with infinitesimal transformations,
h = (61, Fwhy)x” 4 €. (1.9)

As w is an antisymmetric” 4 x 4 matrix, an arbitrary infinitesimal Poincare trans-
formation has 10 free real parameters. In any other representation U(A) of the
group, an infinitesimal element can only depend on these parameters, and one can

expand this element in these parameters
UA) =1+ idw,, J" —ie, P* + ... (1.10)

If U(A) is a unitary representation, then J*” and P* are hermitian operators.

From the multiplication rules of A and the fact that U(A) is a representation, one

obtains the Lie algebra of the Poincare group [17],

Q[T TPT) = TR — I — TR P g (1.11)
i[pPr, JP7) =yt pe — o pr (1.12)
[P", P’] = 0. (1.13)

Because P? = P*P, commutes with all other generators, states can be classified

by their quantum number under it. For what will be single particle states, this

"From Eq. (1.7) follows w”n + nw = 0.
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will correspond to the square of the rest mass of the particle. To obtain the other

quantum numbers of states first define generators of rotations and boosts as
i _ Lk i i 0i
L 256] J?% and K' = J (1.14)
which can be combined to [18]
1 .
Ty = 5(L+iK) (1.15)

One can show now that J. fulfil separate spin algebras SU(2)+ and commute with
each other. Up to complications when considering states with p? = 0, this shows

that single-particle states are given by
’m27ﬁ7j1aj2> (116)

where j; and js are the spins under SU(2)x. A scalar has simply j; = j» = 0,
while a left-handed Weyl fermion has (1/2,0) and a right-handed Weyl fermion
has (0,1/2). Two Weyl fermions can be combined to a Dirac fermion, (1/2,0) &

(0,1/2).% The states transform with unitary operators acting on them,
‘m27ﬁ7j17j2> = U(A7&) |m27ﬁj17j2> (117>

and this induces transformations on the operators generating the states. These
generators are combined into fields and at the end of the day one obtains the

following transformation properties of scalars

¢(x) = H(A ), (1.18)

Dirac fermions,
d(x) = ALy(A™ ) (1.19)

where A% fulfils
AV = Ay (1.20)

Gamma matrix calculation rules can be found in most textbooks, but [19] and [20]

are particularly complete.

8Because T and P act as automorphisms on ’PL irreps of the full Poincare group are direct

sums of the irreps of 771. E.g. as P(1/2,0) x (0,1/2), Weyl fermions would be forced to combine
to a Dirac fermion.
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The fundamental fermionic irreducible representations are Weyl spinors, often de-
noted as ¢y, or ¥g. This notation is safe in the chiral basis of gamma matrices.

Dirac spinors are the direct sum of Weyl spinors,

wDiraC = ¢D = wL + ¢R- (121)

Vice versa, Weyl spinors can be extracted from a Dirac spinor using projectors
Yo/r = (14 75),
Yr/rR = YL/RYD (1.22)

and Majorana spinors fulfil an additional reality condition, ,
P° = e (1.23)

with some real phase (; additionally, in above equation, the charge conjugated

spinor was used which is defined via
—T
Ve =Cy (1.24)
with the charge conjugation operator or matrix, which is defined via
7.C = —Cr}. (1.25)

For now it is sufficient to have this definition of charge conjugation to be able
to mention what Majorana spinors are. Charge conjugation will be discussed in

greater detail in section 1.5.

1.3.2 The gauge structure of the standard model

The standard model gauge group is SU(3)¢c x SU(2), x U(1)y. The SU(3)¢
factor accounts for the strong nuclear interaction, while the SU(2), x U(1) factor is
responsible for the electroweak interactions. The SU(2), factor is sometimes called
weak isospin, and the U(1) factor (weak) hypercharge. First, the Lagrangian will
be stated and after that the properties of the various components under symmetry

transformations will be discussed.

The three ingredients in terms of physical fields are gauge fields for the three
types of interactions, fermions, and the Higgs fields. Consequently, the Lagrangian
consists of kinetic terms and self-interactions of gauge fields L£gy4e, kinetic terms,

which include the gauge interactions, of fermions Lfeymion, kinetic terms (again
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with built-in gauge interactions) of scalar fields Lpigs, self-interactions of the
Higgs fields Ly, and of fermions with the Higgs field, Lry (these are often called

Yukawa interactions),
['SM = Egauge + Efermion + L:Higgs + EV + LffH (126)

In the first three parts, the elegance of gauge, or local, invariance is expressed in
its fullest. For a single gauge group G in some representation with generators 72,

the covariant derivative is given by
D, =0, —igA}Tg. (1.27)
Define the field strength FJj, tensor via

D, D,] = —igFe, T8 (1.28)

which with the structure constant® f& expands to

Fo = 0,A% — 9,A% + gfar AL AC. (1.30)

From this field strength tensor, a gauge invariant and Lorentz covariant quantity
can be built, namely Fj F**. This quantity contains kinetic terms and self-
interactions of the gauge fields. In the standard model, the gauge group is a direct
product of three groups and the Lagrangian that accounts for the corresponding
gauge fields is a sum of three versions of the aforementioned invariant, one for each
multiplet of gauge fields. The number of gauge fields for each group equals the
number of generators, and apart from that the only difference lies in the structure
constant of the groups. With that the gauge Lagrangian becomes, with G, the
field strength of 8 SU(3) gauge bosons, called gluons, Wy, 3 SU(2) gauge bosons,
and 1 U(1) gauge boson B

nz
1 1
£gauge - _ZGC Gc,w/ — —

a auv 1 v
< Wi W — B, B (1.31)

The fields strength tensors appearing in the above Lagrangian are all of the form

as in Eq. (1.30). Note that gauge invariance of the theory does not allow for mass

9The structure constant specifies the algebraic relations between group generators,
[T, T = i febeTe. (1.29)

Inversely, if the group generators are known, the structure constants can be obtained using this
relation.
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terms of the gauge bosons.

Gluons are mentioned in this section for completeness only and will not play a
role in the remainder of this thesis. The kinetic terms and gauge interactions of
fermions are all given through the covariant derivative, for a gauge group with
G = ]] G; and the standard model respectively

Dy =8, + ) igiALTE, (1.32)
G;
. c e . aqa . /Y
= 8# + ngtrongGyTSU(g) + /LgW,LLTSU(Q) + (2% EB’U' (133)

where A7 denotes a generic gauge field, associated with a generator T¢, of the
group Gy, and for the standard model, G}, are the 8 gluon fields that come with
the 8 Gell-Mann matrices T, W are the SU(2) fields, associated with the
SU(2) generators T, =: T, and U(1)y gauge field B, with the generator Y/2.
The values of the generators of the three subgroups for the various kinds of fermion
fields in the standard model are summarised in Table 1.1. The kinetic terms and
gauge interactions of all standard model fermions can now be written using this

covariant derivative,
Licrmion = Y > Wby Db + h.c. (1.34)
flavours ¢=Q;r,uir,dir,EiL iR

The fermion fields of the standard model are listed in Table 1.1, together with the

values of the generators for each type of fermion.

The kinetic terms and gauge interactions of the Higgs fields are given by
LHiggs = (Du@T(DH@ (1.35)

with the values of the different generators given in Table 1.2 where for later use

also the charge-conjugate of the Higgs doublet is given.

There are further parts in the Lagrangian, which arise during the quantization
procedure but are nevertheless an essential part of the model, namely terms for
the so-called ghost fields, and gauge fix terms. They will not play a role in this

thesis and information about them can be found in [18, 17].
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Name Notation Tsve | Tsue) Y
left-handed quarks Qir = (Zi) A° = 1/3
right-handed up-quarks UiR A° 0 4/3
right-handed down-quarks dir A° 0 —2/3
left-handed leptons E;r = (IZLL) 0 % -1
right-handed charged leptons | [; 0 0 -2

Table 1.1: The fermions in the standard model of particle physics together
with their transformation properties under the factors of the symmetry
group. Here, the lower index i = 1,2, 3 indicates flavour, and again one
can see that the different flavours are just copies of each other, at least in
terms of their gauge properties. A° denotes the Gell-Mann matrices, which
will not be needed again in this thesis are just mentioned for completeness.
Their values can be found e.g. in [18]. 7% are Pauli matrices.

Name Notation T§U(3) TS0 Y
¢" a

Higgs Doublet O = ( ¢0) 0 5 1
. . 7 . * ¢O* Ta

charge-conjugated Higgs Doublet | ¢ = imp¢* = (qb_) 0 5 -1

Table 1.2: The Higgs doublet of the standard model of particle physics
together with its transformation properties under the factors of the sym-
metry group. 7o is the second Pauli matrix.

1.3.3 Symmetry breaking

The self-interactions of the Higgs doublet are
Ly = 12616 + A(8'0)". (1.36)

When the parameters in the above part of the Lagrangian fulfil 4? < 0 and A > 0,
then classically the value of ¢ which minimizes the potential energy is not ¢ =
(0,0)T as this would be unstable and would (now quantum-mechanically) decay

into a configuration that is more stable. The minimum of the potential Eq. 1.36 lies
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at o' = —pu?/(2)\) (u® was negative). The basis of the Higgs field can be chosen

such that the vacuum expectation value always lies in the lower component of the

doublet,
0
(0] ¢0) = (Wﬂ) (1.37)

with v = \/TQ/)\ Note that only in this basis the notation assigned to the
components of the fermion doublet in Table 1.1 makes sense, as in any other basis
they would be mixed accordingly. Before the phase transition, the components
of the fermion doublets are indistinguishable anyway. It was in a way already

assumed that the Higgs vev would appear in the lower component of ¢.

Note that the vacuum alignment in Eq. (1.37) does not break U(1)y. However, as
always some U(1) subgroup of SU(2), x U(1) would remain unbroken, this sub-
group would define what electric charge is and could always be chosen physically.
Only when additional Higgs doublets are considered, one has to make sure that
all their VEVs point in the same direction such that they leave the same U(1)
subgroup invariant. In this case it is simply practical to chose all VEVs to lie in

the lower components of their Higgs doublets.

1.3.4 (Gauge boson masses

As discussed, after EWSB!Y the Higgs field acquires a vacuum expectation value

and one can expand the Higgs doublet around its vacuum expectation value,

_ ¢
0= (\%(v + RO+ igbo)) (1.38)

The field components ¢+ and ¢° will become the longitudinal components of
charged and neutral massive gauge bosons. Their appearance in the above ex-
pansion is gauge dependent and the gauge in which they disappear and only h°
remains is called the unitary gauge. If one inserts the expansion of the field around

its vev into Ly, one obtains a mass term for A with mass

M2y = —2u°. (1.39)

®Normally, a phase transition requires first of all a macroscopic system that can undergo
phase changes when macroscopic observables change. The Lagrangian of the standard model as
formulated in Eq. (1.26) only considers the microscopic degrees of freedom at zero temperature.
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Note that the factor of 2 in above equation arises not from Ly, but from the fact
that the normalisation of h° when expanding ¢ in Lpizgs, Eq. (1.35), produces a
factor of 1/2 multiplying (8,h%)(9*h").

Next, via the Higgs-gauge interactions, Lpg4s, the vacuum expectation value of

the Higgs fields leads to the following mass terms for gauge bosons,
2 / 3 (¢')?
gWIW* + gg' B,W* + 1 B,B" (1.40)
Diagonalising these mass terms in W* and B leads to the physical fields

1
We=—
V2

Zﬂ . Cw SWw Wi
(o) 2)6)

/

g g

and Oy the weak mixing angle.!’ The masses of the physical physical gauge bosons

(W, £ W?) and (1.41)

with
(1.43)

cw = cos Oy = Sw = sin by =

then become

My = %, Mz = g Vg*+ g%, Ma=0. (1.44)

With these, the weak mixing angle can be expressed as

My
cw = —— 1.45
W= (1.45)
And the elementary electric charge becomes
/
e=—29 (1.46)

/g2 + gl2 '
With the Higgs field expanded in this way, the Lagrangian is now only invariant
under a subgroup of the original gauge group, namely SU(3)c X U(1)em, where

the generator of the remaining U(1) group corresponds to electric charge and can

be written as

Y
Q =Ty + 7 (1.47)

HSometimes Oy is wrongly called the Weinberg angle, despite the fact that it was first intro-
duced by Glashow [8].
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The weak hypercharge of the various particles was chosen exactly such that their
electromagnetic charges are reproduced via above charge operator. The elec-

troweak part of the covariant derivative becomes

! (WH(T +T%)+ W, (T' - T?)) - i—gz (T? — s3,Q) —iA,eQ.

D,=0,— —
w o \/§ \/§CW 2
(1.48)

1.3.5 Charged fermion masses

The weak interaction within the standard model is chiral, which means that left-
and right-handed fields transform differently under gauge interactions. This is
only possible if the fermions are Weyl spinors before EWSB. The Weyl nature of
fermions before EWSB taken together with their quantum numbers forbids mass
terms for all fermions in the standard model. Only after symmetry breaking,
they can acquire mass terms and after diagonalising their mass terms become of
definite Dirac or Majorana nature'?, as will be discussed a little later. In the
renormalisable standard model, no mass term is allowed for neutrinos, as they
have no partner to couple to the Higgs boson with and a Majorana mass term is
forbidden because of their hypercharge. This means that before EWSB, the only
parameter whose value has to be given in terms of a physical unit of energy, e.g.
GeV, is the Higgs mass, my. Experimentally it is known that at least without an

extended gauge or scalar sector, only 3 fermion flavours can exist [21].

The renormalisable interactions of the Higgs boson with fermions are
Lipn = —(QroYdr + QrdY "ug + Er¢Y'lp + h.c.) (1.49)

with the charge conjugated Higgs field, ¢ = im¢* = (¢°,¢")T. Expanding ¢
around its vev, they lead to the following mass terms of the standard model
fermions,

L — —(dp Mg + UM ug + 1, M'lR) (1.50)

with
M¢=Y%, M*=Y", M'=Y". (1.51)

12This is the normal explanation, however, the breaking is not really dynamically performed,
but the Higgs parameters are already chosen such that fermions are massive. As this also means
that external fermions are massive, the fields that generate them transform under a massive irrep
of the Poincare group.
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At this point, neutrinos are still forced to remain massless. Neutrino masses will
be discussed in the next subsection. The MY, (¢ = d,u, 1), are 3 x 3 matrices and

can be diagonalised via biunitary transformations in flavour space,

drjr = Uay,pdiyr, uryr = Uuyptnyrs dyr = Uy pleye (1.52)

and the only other place where these matrices show up in the standard model as

discussed so far is in the interactions of physical W boson with quarks,
Urd,W s agUlUgd W (1.53)

where one can drop the index indicating whether the field is left or right-handed
here because right-handed fields do not take part in gauge interactions. The matrix

appearing in the interaction of left-handed quarks and W boson,
Uckm := UlUy (1.54)

is called the CKM matrix after [22, 23] and is often also simply called the quark
mixing matrix. Because unitary matrices have fewer real degrees of freedom than
they have real entries (i.e. double the number of complex entries), in practice,
parametrizations of the CKM matrix are used that only depend on the relevant
degrees of freedom. The mostly commonly used such parametrization is the one
prescribed by the Particle Data Group (PDG). The quark mixing matrix will
not appear in the remainder, but only the equivalent matrices in the neutrino
sector and this parametrization will discussed in the next subsection together with
the complications that can arise from the fact that Neutrinos may be Majorana

fermions.

Finally, looking at Eq. 1.50, as (¢, +¥g) (¢ +r) = ¥rr + Yribr, one can see
that the Weyl fermions ¢;,r have combined to Dirac fermions ¢y, + . 13

1.3.6 Neutrino masses

One can see now that in the standard model left-handed neutrinos, vz, have no

mass term, essentially because of their hypercharge. However, when loosening

13This is not completely correct to say, because the external states of the SM after EWSB are
massive states and Weyl fields cannot act on these. The fields in the effective theory below EWSB
are massive irreps and chiral fields are projections of massive fields which are now different from
Weyl fields.
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the restriction of renormalisability, there is only one unique operator with mass

dimension 5, namely the so-called Weinberg operator,
Loy = —EoYMGTES + h.c. (1.55)

where with £f = CE_LT the charge-conjugated lepton doublet has been introduced.
Generally, Lorentz-invariant quantities can be constructed not only using 7o, which
is the Clebsch-Gordan coefficient for constructing a Lorentz-singlet out of fermion
and hermitian conjugate, but with the charge conjugation operator, singlets can
be constructed from fermion and transposed fermion field. Charge conjugation
will be discussed in detail in a later section, for now it is sufficient to know that
after EWSB this operator results among other things in a so-called Majorana mass

term for left-handed neutrinos,
Li—s = vpv?YMS + hee. (1.56)

Note that this operator has no UV completion within the standard model without
any other particles added onto it. The various see-saw models that are being dis-
cussed in the literature are essentially about obtaining this operator via processes
in renormalisable models. The Majorana mass matrix M := v*2Y™ in the mass
term in Eq. (1.56) is symmetric by construction and can thus be made diagonal
and real by a single unitary transformation of left-handed neutrinos in flavour
space,

vy = Uy . (1.57)

Similar to quarks, this matrix only shows up in the interaction term of W boson,

neutrinos and charged leptons,
T W s LU UL W (1.58)

with the matrix U; = U, from Eq. (1.52). The matrix Upyns = UJU; is called
the PMNS matrix after their discoverers, or simply the lepton mixing matrix.
Note that while the matrix U, was introduced here for a Majorana mass term,
Egs. (1.57) and (1.58) will be identical for Dirac neutrinos, as well as the definition
of the PMNS matrix. As mentioned before for the CKM matrix, the PMNS
matrix, being unitary, has fewer real degrees of freedom than it has real entries
and parametrizations in terms of mixing angles and relevant complex phases have
been introduced. The so-called PDG (Particle Data Group) parametrization has

4 degrees of freedom for Dirac fermions and 6 for Majorana fermions, out of which
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3 are mixing angles, and the remainder complex phases:

0

C12C13 $12C13 S13€
_ 1) 1)
Upmns = | —S12C23 — C12523513€" C12C23 — S12523513€" soscis | K (1-59)
) i6
512523 — C12€23513€ —C12523 — 512€23513€ C23C13

where ¢;; = cos(6;;) and s;; = sin(f;;). K is just the identity matrix for Dirac
fermions and K = (1,e*2/2 ¢@31/2) for Majorana fermions. The phase ¢ is
called CP or Dirac phase, and the phases a1, @31 Majorana phases. This is the

parametrization that will be used throughout this thesis.

From the existence of a Majorana mass term mv + h.c. for some field v follows
that those fields indeed have to be Majorana fermions, as for real mass m the mass

eigenstates become v + v°.

The maybe most minimal extension of the standard model is the addition of a num-
ber n,, of gauge singlets to the fermion content of the model.'* These fermionic
gauge singlets are often called right-handed neutrinos, vg, as they have the right
quantum numbers to appear in Yukawa couplings, analogously to right-handed
up-quarks,

EL¢Y"vg + h.c.. (1.60)

After EWSB this coupling results in a Dirac mass term for neutrinos,
Y vR + h.c. (1.61)

Such a mass term, if appearing on its own could, analogously to quarks, be made
diagonal and real by a biunitary transformation, which would result in a mixing
matrix in the Wiy interaction of the same form as in Eq. (1.58). In addition to
this, right-handed neutrinos, as they are gauge-singlets can have a Majorana mass

term by themselves, before, or rather, completely independently of EWSB,
Lyr = TRMEVS 4 hec. (1.62)

This mass term gives rise to the so-called see-saw mechanism of type 1 . Before ex-
plaining what is meant by that, note that even with the addition of gauge singlets,
left-handed neutrinos can still not have a Majorana mass term in a renormalis-

able model. Now, the mass matrix M? of right-handed neutrinos can be chosen

14Such singlets are in particular predicted by unified theories, where the standard model gauge
group is embedded into a larger gauge group, e.g. SO(10). They are also predicted in left-right-
symmetric models.
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diagonal and real. Then for each right-handed neutrino that is heavy enough such
that it is sufficient to take its effect on theory into account by adding effective
operators to the Lagrangian that arise when integrating this heavy neutrino out,

a contribution to a Majorana mass term arises,

1

My,

Acseefsa'w: Z m(YV)”

heavy v

(Y vy + hec. (1.63)

where the generated Majorana mass matrix of left-handed neutrinos has the form

—— (Y"1 (1.64)

where the index j runs over all integrated-out neutrinos. In the following MM will
be used to denote a generic left-handed Majorana mass matrix, not necessarily
generated by this see-saw mechanism. For this expansion to be valid, the mass of
right-handed neutrinos that are integrated out must be much larger than masses
or momenta that appear in the standard model, the mass terms generated for left-
handed neutrinos are very small and this is often explored as a possible explanation
of the smallness of the mass of the observed neutrinos. The mass of lightest
neutrino is not known experimentally yet, and only an upper limit is known. If
the lightest neutrino was massless, the minimal number of particles that is needed
as heavy partners in the above see-saw mechanism is thus 2, to account for the

masses of the two light non-massless neutrino.

Note that above procedure is equivalent to approximately diagonalising a combined
Majorana-Dirac mass term. Generally, not only in above approximation this also
shows that fermions that have both a Majorana and a Dirac mass term are of
Majorana nature. Furthermore, note that in a sufficiently complicated model,

both Dirac and Majorana neutrinos may appear.

In the standard model without additional particles that would allow Majorana
neutrino mass terms, there are two accidental global U(1) symmetries, namely
Lepton number, under which all leptons transform with a common phase, and
Baryon number, under which all Baryons transform with a common phase. Ma-
jorana mass terms violate Lepton number and vice versa, by enforcing Lepton
number and extending it to right-handed neutrinos, one can forbid Majorana mass

terms both for left- and right-handed neutrinos, even in models with appropriate
additional fields.
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Attempts to measure neutrino mass and mixing parameters are an active exper-
imental field and the status will be reviewed in the following chapters where ap-

propriate.

1.4 Flavour symmetries

As already hinted at earlier, a flavour symmetry is a symmetry under which the
fermion flavours form a representation. In the standard model, the kinetic terms
and gauge interactions of fermions are invariant under arbitrary transformations
in flavour space. However, this large symmetry is broken explicitly by the Yukawa
interactions. Nevertheless, even the Yukawa terms have small unbroken flavour
symmetries in each sector. These are the topic of subsection 1.4.1. Eventually,
relations between the different accidental flavour symmetries that stem from an
embedding into a larger flavour group determine the structure of the Yukawa
sector and some of the main results of this thesis (which will be discussed in later

chapters) are concerned with this.

1.4.1 Residual flavour symmetries of fermions

Previously, basis transformations in flavour space were used to diagonalise mass
matrices. The purpose of this subsection is to analyse for the different parts of
the Lagrangian which basis transformations in flavour space will actually leave
those parts unchanged. In other words, one would like to know what the acci-
dental flavour symmetries of the different fermionic parts of the Lagrangian are.
First, mass terms of several fermions will be analysed for both the Majorana and
the Dirac case and relations between these accidental flavour symmetries and the
matrices that diagonalise the mass matrices will be found. After that, accidental
flavour symmetries will be discussed for all parts of the standard model Lagrangian

that involve fermions and special emphasis will be put on the Yukawa sector.

To start with, consider n Majorana fermions v; = (v4,...,1,) with a Majorana

mass term,

EDV;‘FMMl/ijh.c.:(VlT VE;)MM c | +hec. (1.65)

)

Vn
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In a basis where M is diagonal, and assuming that all mass eigenvalues are
different, this term is invariant under individual sign changes of all fields, e.g.
vy — —vp. All of these sign changes can be written as diagonal matrices g}
multiplying the vector v;:

Vi = iV (1.66)

with e.g. for n = 3,

g = 1 : —1 : 1 (1.67)
1 1 —1

or all possible products of the matrices on the rhs of Eq. (1.67). These matrices
form a representation of a (Z3)" group. (So for n = 3 a (Z3)® group.) The group
formed by all of these 2" matrices shall be called the mazimally allowed residual
symmetry for Majorana fermions. One of these Z5 groups is generated just by an
overall sign change of all v; fields. The remaining (Z3)"~! group is then generated
by all diagonal matrices that have exactly one +1 on the diagonal and otherwise

only —1s, e.g. for n = 3:

—1 , 1 , 1 : (1.68)

The point of this division will be explained in the following. A non-diagonal
Majorana mass matrix M can be diagonalised by a unitary transformation of the
Majorana fermion fields, cf. Eq. (1.57). In this diagonal basis, the mass term has
the above-mentioned symmetry. In the non-diagonal basis, this symmetry exists
as well but with the group elements, in particular the generators, transformed into
the new basis. Call U the matrix that diagonalises M and u; the three columns
of U, U = (ujugus). If the basis of the fields is changed actively with U,

V; — Uijyja (169)

then the generators gy (where k enumerates the generators in some way) of the

(Z2)™ group transform in the following way:
(9) = U(gw)U". (1.70)

For those g, that are proportional to the identity matrix, this does not change
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anything, however, for those particular generators with only one +1 on the diago-
nal and otherwise only —1, one can expand U in its columns and obtains e.g. for

n=3,

U -1 Ut = 4wl — upud — ugud (1.71)
—1

and similarly for all matrices of this form, again for n = 3:

G| = +u1ui — ugu; — u3u;§ (1.72)
Gy = —uluJ{ + ung — u;z,u;g (1.73)
Gy = —ului - ugug + ugug. (1.74)

Note that because of the order in which a column w; is multiplied with its hermitian
conjugate, the G; of Egs. (1.72)-(1.74) are matrices.’> The matrices G; form
a Zy X Zy group for n = 3 and a (Z)"! group for arbitrary n. Their most
important property is that the i-th column of the matrix U, u; is the eigenvector

with eigenvalue +1 of the matrix G;:

Thus, knowing the form of all G; is equivalent to knowing U, except for the phases
of the columns u;. This (Z3)"~! group shall be called the minimally necessary
residual symmetry of Majorana fermions, simply because it is the smallest sym-
metry that if it is known completely, determines the form of the matrix U, up to
the ordering of the columns, and up to the phase of each column. Equivalently,
for arbitrary n, U is determined by the (Z5)"~! group of matrices that have only
one eigenvalue +1 and otherwise —1. 6 If one was to force the mass matrix to be
symmetric under a symmetry that is larger than the maximally allowed symme-
try, this would force some states to be massless or degenerate in mass, depending
on the nature of this symmetry. Note that vice versa, if the lightest state of a
flavour multiplet was massless, then the residual symmetry would be enhanced to
a U(1) factor for this field (keeping the Z, factors for the other fields). This was

considered in [24].17

15 These matrices are often in the literature called S, U, SU.

I6Note that this is true if those n Majorana fermions have identical gauge quantum numbers
under all other unbroken symmetries at low energies. For the SM that means that after elec-
troweak breaking, all Majorana fermions mix as the only left-over quantum number is electric
charge (and, technically, colour), which for Majorana fermions has to be zero.

17This is particularly interesting in light of the result of chapter 2.
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Often in the literature, when residual flavour symmetries are discussed, the min-
imally necessary residual symmetry or a subgroup of it is just called the residual
symmetry. Furthermore, often the residual symmetry is only considered when it
is actually embedded into a larger flavour group in the model in consideration.'®
The philosophy here however is that these symmetries are more of an accidental
nature and exist whether they are embedded into a larger group or not.'? In par-
ticular, the relation between residual symmetries always exists, such that through
knowledge of the residual symmetry information can be gained about the mixing

matrices.

2

Next, for n Dirac fermions that share a mass term 2°, where one now has to

distinguish left-handed and right-handed fields,

"L
LD VJ’RMZ?V]',L + h.c. = (V}L’R e V;R) MP |+ ke, (1.76)

Un,L

)

in a basis where MP? is diagonal, the mass term is invariant under a change of
the phase of each individual field, v; 1/ + ele Vi /R, Simultaneously for left- and
right-handed fields. These transformations form a U(1)™ group which constitutes
the maximally allowed residual symmetry for Dirac fermions. As an arbitrary
Dirac mass matrix is diagonalised by a bi-unitary transformation, v; 1, UZ-?% L
and v; p — Uffz/j,R, two seemingly different but isomorphic residual symmetry

groups exist for left- and right-handed Dirac fermions, namely those given by

Gt = {Urdiag(e™, ... ,em")ULT} and G = {U"diag(e™, ... ,em")URT}
(1.77)
for arbitrary «;. If the basis of right-handed fermions is not fixed by other consid-

erations, one can change the basis of right-handed fermions such that U® = U”.

Again, there are subgroups of these U(1)" groups G¥ and G that already com-
pletely determine the matrices U* and U%. For Dirac fermions, the smallest groups

that completely determine the diagonalisation matrices are Z3 and again Z5 X Z.

180ften such symmetries are also called remnant symmetries.

90ne could thus say that when for example no embedding of the residual symmetry is dis-
cussed that in a way existing accidental symmetry (even if only in separate sectors of the La-
grangian) is unaccounted for.

20Which again means that they have equal gauge quantum numbers after all symmetry break-
ing.
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In the basis where MP? is diagonal, the relevant generator of Z3 has the form

920 = (1.78)

|
o o =
o £ o

o o

S

with w = e2™/3 the third root of unity.?! The generators of the minimal Z x Z,
group have the same form in the basis where MP” is diagonal as for Majorana
fermions, cf. Eq. (1.68). For a residual symmetry Z3 or any other group of the
form Zj with k£ > 3, the columns of the corresponding mixing matrix are the

eigenvectors of an element g of the residual symmetry group:
gu; = € (1.79)

with u; a column of UX/®. Again, forcing the mass matrix to be invariant under a
symmetry larger than the maximally allowed symmetry would force the fermions to
be degenerate in mass or to be massless. On the other hand, because the maximally
allowed residual symmetry is larger for Dirac fermions than for Majorana fermions,
any discrete subgroup of U(1)" could serve as a subgroup that determines the

matrices UX/E,

Next, one can analyse what kind of residual flavour symmetries exist in the SM,
also allowing for Higgs transformations. While in the literature, as in chapters 2—4
of this thesis only residual symmetries of mass matrices are analysed, this is in
contrast to the also usual assumption that the flavour symmetry is broken above
the electroweak scale. This would mean that the flavour symmetry may be broken
to a much larger residual symmetry, enabled by Higgs transformations under the
flavour group, which is then only later broken to the residual symmetry of mass

matrices by the standard model Higgs.

Before EWSB, the fermionic degrees of freedom are, cf. Table 1.1, SU(2), doublets
Q1 = (ur,dy) of quarks and Ej = (vp,l;) of leptons as well as singlets ug, dg of
quarks and [g of charged leptons. One can add additional singlets vz and omit the
discussion of quarks, which will be analogous to the Dirac case in the following.
First of all, the pure kinetic terms without gauge interactions are invariant under
the largest possible unitary transformation of all fermions, namely U(48) if one
counts components of doublets separately (and even more, if one counts quark

colours). However, of course, fermions are partly distinguished from each other

21Tn the literature, such a generator is often denoted by 7.
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by their gauge interactions, and the respective flavour symmetries of the gauge

interaction terms are separate U(3)s for each of Qp, ug, dg, Er, lg, Vg.

The remaining terms of the Lagrangian up to mass dimension 5 that involve
fermions are the Yukawa interactions and the Weinberg operator, cf. Eqs. (1.49)
and (1.55), where now also the notation omits things that only play a role within

the spinor space of fermions, but not in flavour space,
LOUY'ELet + vl Y ELdt + vEMBug + EXQYMTEL + hec. (1.80)

Additionally, the Higgs field can contribute to transformations of the Yukawa

matrices. With the transformations
Ep = grEL, lr = Giglr, VR = GupVR, ¢ €900, ¢ s e 0, (1.81)

the following transformations of Majorana-type terms

YM s gty Mgpemi200 (1.82)
M" v gi M%qg,, (1.83)
and of Dirac-type terms
Y' gl Yigre oo, (1.84)
YY s gh YVgret (1.85)

are induced. More formally, above equations express the fact that the Yukawa
and Majorana-type couplings are tensors under the various residual symmetries
under which the fermions and the Higgs doublet transform. This formulation
may also be extended to allow for additional Higgs doublets and scalar singlets.
One should also mention that a potential of several scalars can have its own large
residual symmetries which are generally unrelated to the residual symmetries in

the Yukawa sector.

Taking into account the fact that an additional phase can be absorbed in the Higgs
field, but otherwise following the discussion at the beginning of this section, one

finds that the maximally allowed symmetries of the different terms are as follows:



26 1 Introduction

The Y™ term is in the basis where it is diagonal invariant under

+1
{gr} = {e"* +1 }~U(1) x (Z2)% (1.86)
+1

and the M term under a (Z,)™r, where n,,, is the number of vg, fields. The Y and
Y terms have each a symmetry under simultaneous U(1)? of eg and Ep, and vg
and E, respectively.?? After EWSB, as the Higgs field acquires a vacuum expecta-
tion value, (0| ¢]0) = (v,0), the components of doublets become separate degrees
of freedom. The fermionic degrees of freedom are now ur,ug,dr,dg,lr,lr, VL, VR.
The residual symmetries of the kinetic terms remain unchanged and correspond to
the largest possible unitary change of basis, while for gauge interactions, no longer
an U(3) symmetry for each of the degrees of freedom exists as was the case before
EWSB. In particular, the [vW interaction does not allow for arbitrary individual

basis transformations of [ and v.?3

The following mass terms arise from the interaction terms of Higgs field and

fermions, again only showing leptonic terms,
LD l};YllLv* - V}L%YVVLU* +vEMEBvg 4+ vI?YMup + hec. (1.87)
With the transformations

Vr Y= Gu VL, VR "> GurVR, lL — glLlLa lR — glRlR (188)

one can see firstly, that the Majorana mass terms have (Z)™r and (Z5)® symme-
tries, respectively. Secondly, the Dirac mass terms only have symmetries under
simultaneous transformations of left- and right-handed fields, which then again

correspond to arbitrary phase transformations, {g} = g} ~ U(1)3.%

22Tf there were, hypothetically, three Higgs doublets that in the basis where Y™ is diagonal
were to generate one dimension 5 operator for each generation, then the residual fermionic
symmetry of this Majorana mass term would become a U(1)? too, interestingly.

ZHowever, allowing for a phase to be absorbed in the W field (which would need to correctly
be accounted for in other places), one could imagine transformations where ng gy is a phase times
the identity.

24Tn principle one could allow for basis transformations of the Higgs vev v — e’ v to extend
the accidental symmetry to the same groups as before EWSB. Such transformations would need
to be accompanied with transformations of A and ¢° and thus also Z°. So what happens to the
accidental flavour symmetries in EWSB in a way is that they survive but get intertwined with
phase transformations of massive gauge fields.
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Note that all of the accidental flavour symmetry groups in the Yukawa sector
mentioned in this section so far are not really symmetries of the whole theory but
only remain unbroken in a small sector of the Lagrangian. The interaction term
of W boson, left-handed electron and neutrino, in the basis where both Y and

Y™ have been diagonalised, transforms as
WiLU U, + hee. — WiLgiUU, g4 v + h.c.. (1.89)

At this stage this just means that the mixing matrices UZTU,, and ggUlTUl,gZ are
physically equivalent, as the transformations ¢! and g% leave the remaining La-

grangian invariant.

1.4.2 Breaking of larger flavour symmetries

As already hinted at, a flavour symmetry relates some fermionic degrees of freedom
with each other (maybe even all of them). In practice however, flavour symmetries
are often subgroups of U(3). The reason for this is that as mentioned above,
before EWSB;, the residual flavour symmetry of the kinetic and gauge terms is an
individual U(3) for every flavour multiplet of each fermion type, except for vg,
for which a Majorana mass term is allowed, which reduces the residual flavour
symmetry in vg to (Z2)™r. If this mass term for vy is set to zero, then the n,,

singlets have an U(n,,) residual flavour symmetry.

Consider thus that at some higher energy the symmetry of the standard model
was extended by a group Gr C U(3) to Gy X G, such that the various fermion
multiplets 1 transform under G with some representation p,, of G (that acts in

flavour space),

w = p¢(g>¢ with ¢ = Q[n UR, dR7 EL> lR; VR, (190)

and ¢ € Gp. In addition, as this symmetry may be spontaneously broken, also

Higgs fields ¢; (of which now several might exist?®) are to transform under G,

¢i — py,(9)Pi- (1.91)

251f additional scalar fields exist, one has to be careful to avoid flavour-changing neutral cur-
rents, either by symmetry arguments, maybe contained in G or by suppressing the correspond-
ing parameters below the currently experimentally detectable level.
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Furthermore, there may be scalars which are singlets under the standard model
group but who still transform under G and may contribute to the spontaneous
breaking of Gr.2% As the scalar fields can be allowed to transform non-trivially

under G g, also the scalar potential is constrained by Gp.

G is then broken, for example spontaneously or radiatively, to subgroups in the
different sectors of the Lagrangian. Note that in the literature these unbroken sub-
groups of G are often called residual symmetries but do not have to be identical to
the residual flavour symmetries discussed in the previous subsection. In particular,

Gr might be broken completely in parts of or even the whole Lagrangian.

In fact, in the literature (e.g. [25]), models with flavour symmetries are often
classified by the subgroup of G that remains unbroken in the Majorana mass
term of left-handed neutrinos. If the whole minimally necessary Z, x Z5 subgroup
is contained in Gy, models would be called direct*”. If only one of the Z, factors
is considered to be part of G, a model would be called semi-direct®®, and indirect
if no part of the residual symmetry is part of Gg. Later in this thesis in chapter
4, a distinction between neutrino-semidirect, where G, = Z,, and charged-lepton-

semidirect, where GG; = Z, is introduced.

In any case, if the symmetry G was restored at some point, then whatever was
in the place of the Yukawa matrices Y',Y" and the Majorana type couplings
YM MP% had to transform accordingly under G (maybe by simply being zero).
Through some mechanism (e.g. by spontaneously or radiatively breaking Gr),
these couplings then acquired constant values that are no longer invariant under

the whole of G but only under the respective residual symmetries of each coupling.

The situation could arise that only parts of the maximally allowed residual sym-
metries at low energies are embedded as subgroups into G g, as would be the case
for G a discrete group as at least Y has a continuous maximally allowed residual
symmetry. At higher energies, when G is unbroken, whatever is to become Y at
low energies would in this case have to be invariant under G times the remainder

of the maximally allowed residual symmetry of Y.

If Gr # U(3) but is a proper subgroup of it, then flavour basis transformations

€ U(3) may change the form of the generators of Gr. However, the residual

26Note that to avoid additional massless Goldstone bosons, for which no experimental evidence
or hints exist, the scalar potential should after the breaking of G not be invariant under any
continuous symmetries, so also in particular no continuous subgroups of Gr. Furthermore one
should note that additional scalars could also be triplets, etc.

2TA Zy x Zy group is also called a Klein group and sometimes denoted by Kj.

28Not to be confused with the semidirect product between groups.
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symmetries to which G is broken in the different parts of the Lagrangian are
embedded in some fixed way in G and their relative orientation will not change
through flavour basis changes. If one basis exists in which G holds, then it is a

true symmetry of the Lagrangian.

The open question is now, which groups could be candidates for G, and as a con-
sequence of this, which representations of G the known and possible new fields
transform under. In this respect, already a lot of information can be gained by
specifying G and the subgroups it is broken to in the different parts of the La-
grangian without specifying a breaking mechanism or model, just by analysing and
exploiting the relations imposed onto the residual symmetries via their embedding

in GF.

While all subgroups of SU(3) are known, the subgroups of U(3) are not yet known
systematically. However, there has both been progress towards a classification
26, 27, 28], as well as searches using the group theory software GAP [29]. In
later chapters, more references concerning both approaches are given. As the
maximally allowed residual symmetry of a Majorana mass term is discrete, quite
a bit of attention has been given to discrete subgroups of U(3). Choosing a discrete
group for G has also additionally the advantage that no Goldstone bosons appear,

except when choosing the discrete group too restrictive.?

In chapters 2 and 4, analyses will be presented where all allowed subgroups that
could be preserved in the neutrino sector as they would appear in direct or semi-
direct model were systematically scanned for all possible choices of Gy = A(6n?)
for arbitrary n. It will be seen there that these groups are not as obscure as the
name suggests and that there are good reasons to believe that it is worth analysing

them thoroughly.

To summarize this section, first, in the previous subsection, residual residual sym-
metries of Dirac and Majorana mass terms have been discussed. These symmetries
are of residual nature and exist always, however only in parts of the Lagrangian,
namely the mass terms. After that, still in the previous subsection, such residual
residual symmetries of the various sectors of the Lagrangian were analysed, with
a particular focus on the Yukawa couplings and Majorana type couplings like the
Weinberg operator. Next, flavour symmetries that are symmetries of the whole

Lagrangian at some higher energy were discussed. These extend the symmetry

29A possible problem that might however arise are so-called domain walls, where different
parts of the universe end up in separate vacua which are not connected by a flat direction and
thus can coexist in a stable way.
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group to Ggyr X Gp. The breaking of Gz has been sketched and the relation be-
tween subgroups of G that remain unbroken in various sectors of the Lagrangian
with the residual flavour symmetries from the previous subsection was discussed,

which happens to not always be one-to-one.

The results of this section will come in useful again in the next section, when resid-
ual and larger CP symmetries will be analysed in a similar way after a thorough

introduction into the general properties of and puzzles associated with CP.

1.5 CP

CP conjugation, which is short for charge-parity conjugation, is a discrete symme-
try which is a combination of space parity and charge conjugation. In this section,
first, some general properties of CP will be analysed, starting from considering C
and P separately and combining them afterwards. After this, accidental residual
CP symmetries of the different sectors of the standard model will be discussed in
analogy to the discussion of accidental flavour symmetries in the previous section.
There, also relations between accidental residual flavour and accidental residual
CP symmetries are discussed. In the subsection following that one, CP as a sym-
metry of the theory at higher energies and its breaking will be discussed. There,
also the famous issue of consistency will be introduced. In later chapters, espe-
cially chapters 3-5, this will be discussed in greater detail, also concerning open

questions. In those chapters, also plenty of additional references can be found.

To start with, in the following the discrete symmetries space parity P, charge con-
jugation C, and their combination CP will be introduced and the transformation
properties of the different kinds of fields are listed by spin without considering
their gauge properties yet [20]. When fields appear in multiplets of symmetries,

slight additional complications arise which will be discussed after this first part.

Space parity, or often simply called parity and abbreviated as P, is a discrete
transformation of spacetime defined by changing the sign of all space components,

but not the time component,
P: atw—ux,=(t—72). (1.92)

This connects single-particle states with momentum p” with such with momen-

tum —p. Charge conjugation on the other hand does not arise as a symmetry
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of spacetime but is defined to connect single-particle states with opposite U(1)

charges.

The unitary and linear operator which implements the operation of space parity on
the Fock space of states is called P . (This is standard notation, cf. [20], but should
not be confused with the full Poincare group, which is often also denoted by P.)
Similarly, the linear and unitary operator which implements charge conjugation
on the Fock space is called C. The properties of the above operators P and C
induce the transformation properties of field operators under parity and charge

conjugation, which are listed in the following.
A scalar singlet transforms under parity as
Po(z*)Pt = e*? ¢(z,,) (1.93)

where €'®F is an arbitrary phase factor in between the definitions of P and how it

acts on field operators and under charge conjugation as
Co(x")CT = e ¢l (2, (1.94)

again with an arbitrary phase factor e®c. A CP transformation is the combination

of both of these operations.

For chiral spinors (so especially in the chiral basis also Weyl spinors) v /r, parity

transforms each of them as
P r(@)PT = PPy r(2,). (1.95)

Now, defining
[ ()] = 7 0(x,), (1.96)

then with 7%y, g = vr/7", it follows that parity turns a left-handed Weyl spinor

into a right-handed spinor and vice-versa,

(Yr/r)” = (W7 )RyL. (1.97)

As a Dirac spinor is the direct sum of two chiral spinors with opposite chiralities,

Yp =1+ Vg, (1.98)
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its transformation properties under parity follow to have the same form as for

chiral spinors

Pip ()Pt = 7Py p (). (1.99)
For a spinor with Majorana property, 1¢ = e, cf. Eq. (1.23), from which follows
that from any Dirac or Weyl spinor v¢1,/r/p, a Majorana spinor can be constructed
via

Yy = YrR/p + eiic(wL/R/D)ca (1.100)
and it obeys the normal transformation law under parity transformations, too:

Pous ()P = PPy Yy (x,). (1.101)

Under charge conjugation, chiral, Dirac and Majorana spinors behave the same,

Cryr/pmCl = € (Vi ryppar)° (1.102)

where for Dirac and Majorana spinors,
. —T
(Ypym)® = Cpyur - (1.103)
The charge conjugation matrix C'is defined via
7.C = —Cr}. (1.104)

For chiral spinors, (v1,r), the same transformation properties hold and the trans-

formation properties of Weyl spinors can be extracted.

Finally, for a vector field A*, as it is in particular a four-vector, parity acts on it

as on the spacetime vector z*,
PAM(z)PT = P A, (2,), (1.105)
while charge conjugation just adds a phase

CAM(zM)CT = e AF () (1.106)
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CP transformations combine the above transformations and one obtains

CPH(a")CP = ! (x,) (1.107)
CPY(z")CPT = P~ Cy " 1T () (1.108)
CPY(a")CPT = —e Py (,)C~'A° (1.109)
CPA*(z")CPT = e*4 A, (z,) ( )

The above transformations hold for chiral spinors, Dirac and Majorana spinors,
where additional constraints arise from the chirality or Majorana conditions, 1) =
Yr/RY, and ¢°© = e, respectively. In the chiral basis of gamma matrices also the

two-component conditions for Weyl spinors can be obtained immediately.3°

For a theory with many different fields, like especially the standard model, in a
basis where the fermion mass matrices are diagonal and real (and if there is only
one Higgs doublet), for each field a separate arbitrary phase appears in the P, C, or
CP transformation. A theory now conserves P, C, or CP, if at least one combination
of values of all these phases exists such that with these phases appearing in the
transformation, the Lagrangian is invariant under it. In the basis where the mass
matrices are diagonal and real the phases on CP transformations of W+, e*iw
(which are complex conjugated because W+ are related by C conjugation), i-th
up-type quark, e« and j-th down-type quark, €' appear in the Wud coupling.
From this follow conditions on the elements of the CKM matrix that needs to be
fulfilled for the theory to conserve CP,

‘/Z; _ ei(ﬁWJr&j*ﬁi)‘/;j_ (1.111)

In the standard model it so happens that all CP violation appears in the quark
mixing matrix and it is not necessary to take into account the possibility of flavour
basis transformations in CP transformations. However, the most general CP trans-
formations have to take these into account as CP conservation/violation does not
depend on these internal basis transformations that are possible in flavour space.
Furthermore, if several copies of Higgs fields with the same quantum numbers
are part of the model, then basis transformations that act on the copies of Higgs
fields are possible and in that case it is not a priory clear what a Higgs basis
is in which a reasonably simple condition like Eq. (1.111) holds. The most gen-

eral CP transformations in the standard model, now extended by n,, fermionic

30For spinors, note that the hermitian conjugation acts the whole of the field, in particular
the generators and annihilators in the field, while the transposition acts only within spinor space
but does not act on the generators.
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singlets and allowing for several Higgs doublets to exist, that take internal basis

transformations into account, are,

CPg;(")CP" = (X¢)ij¢;r'<xu) (1.112)
CPUi(a")CPY = (Xy) i7" Cy "yl (2,,) (1.113)

where before EWSB ¢ = Qp,ugr,dr, EL, g, Vg and similarly after EWSB ¢ =
ur,dr,ug, dg,lr,vr, g, vg.3'  Furthermore, after EWSB, the Higgs field is ex-
panded around its vev and the different components h°, #°, ¢* can have separate
transformations. While more complicated models, where it is entirely necessary to
use general CP transformations, do often not allow for simple relations indicating
CP violation, as Eq. (1.111), this role is not taken by CP-odd basis invariants.
The most famous of such invariants is the Jarlskog invariant. Similarly, invariants
exist for models with Majorana neutrinos. CP-odd invariants, in particular such
involving scalar parameters will be discussed in great detail in chapter 5, where

also plenty of references will be given.

Pure gauge theories can never violate CP. In the standard model, QED and QCD
are already CP-invariant (except for the strong CP problem, which unfortunately
will not be discussed here). The weak interactions violate both invariance un-
der space parity and charge conjugation. However, in a model with the standard
model gauge group but only a single generation of fermions and no additional neu-
trino, CP is not violated. The only CP violation that is currently experimentally
confirmed arises via quark mixing and is only possible if at least three generations

of fermions exist.

In the next subsection, it will be analysed in analogy to subsection 1.4.1 which
sets of matrices X appearing in general CP transformation still leave the various
part of the Lagrangian invariant, starting with Dirac and Majorana mass matrices

and after that focussing on the Yukawa couplings.

1.5.1 Residual CP symmetries of fermions

In the same way as the various terms of the fermion Lagrangian have different
residual flavour symmetries, parts of a Lagrangian of a model also have different

residual (general) CP symmetries. First, as earlier for flavour symmetries, the

31As ghost fields are an essential part of the theory, they also have definite transformation
properties.
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residual CP symmetries of fermion mass terms will be discussed as these will
correspond to the smallest residual symmetries, at least in the standard model.
Next, the residual CP symmetries of fermions in the standard model before and
after EWSB will be analysed.

To start with, consider again a mass term of several Majorana fermions, cf.
Eq. (1.65),

T A fM

= v MY v; — VJMZ]]M*VJ* (1.115)
where the minus sign in the second row results from the minus sign between the
two terms results from the fact that the spinors anticommute. (Everything not
necessary for the discussion which will essentially happen in flavour space has been

ignored.)

With transformations of the kind
V; — XijV;, (1116)

from which follows
v V;(‘XT)ji? (1.117)

in a basis where M is diagonal and real, the X matrices corresponding to the
maximally allowed residual CP symmetries are given by ¢ times independent sign
changes of each field ,
+1
X = . (1.118)
+i

Recall that the maximally allowed flavour symmetries for such a Majorana mass
term just corresponds to arbitrary sign changes of each field. Call these diagonal
flavour and CP transformation matrices G and X, respectively. In some other,
arbitrary, basis, v +— Uvr with a unitary matrix U, these transformations then

become
UtGU =: G (1.119)

and
UXU* =: X. (1.120)
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These residual flavour and CP symmetries fulfil the following consistency condi-

tions on flavour and CP transformations (as do the diagonal transformations):
XX*=1 (1.121)

and
XG*XT=aG. (1.122)

The first of above conditions is equivalent to X being symmetric and was found

already in [30].

Above consistency conditions are stricter than a similar set of conditions found
in the literature. Without wanting to anticipate the next subsection, here is a
good place to discuss this issue. In the literature, often some fixed general CP
transformation that is obtained in some way is imposed onto the mass matrix
to generate constrains that in contrast to normal residual flavour symmetries also
extend to the phases of the mass matrix. To not to overconstrain the mass matrix,

often it is demanded that X matrices only fulfil the following more loose conditions:
XX*=(G (1.123)

and

XG X' =¢ (1.124)

with G and G’ elements of the residual flavour symmetry. The precise statement
is that if for every G of the residual symmetry group a G’ is contained in the group
such that above equations hold, then X can be used in a residual CP symmetry
such that it does not enlarge the residual flavour symmetry. The origin of these
consistency conditions will be discussed in section 1.5.2. If the residual flavour
symmetry that is imposed onto the mass matrix gets larger than the maximally
allowed residual symmetry, then mass eigenvalues will be forced to vanish or to
be degenerate. However for every possible subgroup of the residual (Z3)™ that
is identified with a subgroup of a larger flavour symmetry G g there are examples
of X matrices which enlarge the residual flavour symmetry beyond the maximally
allowed one. First of all, for {G} = {£1}, all (anti-)orthogonal matrices X would
be candidates for residual CP transformations, which clearly enlarge the group
of residual flavour transformations. For {£1} # {G} ~ Z; one can see in a
diagonal basis that the looser consistency conditions allow permutation matrices
interchanging two equal eigenvalues. For larger groups {G} the situation only

gets worse. To summarize, the correct consistency conditions that residual CP
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and flavour symmetries on Majorana mass matrices have to fulfil are Eqgs. (1.121)
and (1.122). Unfortunately, also in some of the papers of the author which are
based on later chapters, the looser consistency conditions were used. Where this

happens, it will be clearly remarked and if possible corrected.

Now, for Dirac fermions with a mass term as in Eq. (1.76),

LD VJ,RMz‘?Vj,L — v MV, (1.125)

under transformations of the form

Vi,L/R F7 (XL/R)ijV;:L/Ra (1.126)

in a basis where MP is diagonal and real, the mass term has a symmetry again

under simultaneous phase changes of each field,
Vi - € (1.127)

and

Vi —€ Vg, (1.128)

The matrices X,/r then contain these phases on their diagonals. In an arbitrary
basis, the form of these CP transformations is obtained using similar transfor-
mations to Eqs. (1.119),(1.120), except that the basis of left- and right-handed

fermions may be chosen differently, vy /g = U,, ,,v1/r. In a basis where M D is di-

L/R
agonal and real, CP transformation matrices X g and residual symmetries G /r

fulfil the following consistency conditions,
X X] =XrX,p =1, Xp X5, =XgX] =-1 (1.129)

and a relation relating flavour and CP, with a minus sign on the rhs if one X and
one Xp appear on the lhs.
XGrrX" = Grg. (1.130)

In an arbitrary basis, transformation matrices U,, . need to be inserted in the
correct places. In those relations in which both left- and right-handed CP or
flavour matrices appear now products of basis transformation matrices can appear.
However, this is of little significance in the standard model as in this case, the right-

handed basis is arbitrary and can be chosen identical to the left-handed basis.

Next, the residual CP symmetries of different terms involving fermions in the
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standard model (and a little beyond) will be analysed. Again, similarly to the
discussion of residual flavour symmetries, CP could be violated at a scale above the
electroweak scale. Thus the residual CP symmetries of the Yukawa sector before
EWSB may be embedded into a larger CP symmetry. These larger residual CP
symmetries would then be broken to the residual symmetries of mass matrices by
the standard model Higgs doublet. To make the discussion slightly more general,
a number n,,, of fermionic standard model singlets are allowed as well as a number
ne of Higgs doublets instead of only one. Before EWSB, the fermionic degrees of
freedom relevant for the discussion here are Ej = (ep,vr), er, and vg, as the
quark sector will be analogous to Dirac leptons. The kinetic terms of fermions
are invariant under the most general CP transformation that mixes all fermionic
fields, but as fermions are distinguished by their gauge interactions, the relevant
transformations only transform fermions in identical gauge transformations into
fermions of the same type. Ignoring spinor indices, gamma matrices and charge
conjugation matrices, the Yukawa terms plus the Weinberg operator in such a

model can be written as

LD LY ELgl + viY VBl + vEM vg + EL oY) L Er
—(IEY By ol + vEY B oL + vEM™ vy, + ELgiY A VB (1.131)

As the index denoting different Higgs fields has been made explicit, possible trans-
position of the Higgs fields in only in the SU(2) space of Ey, and ¢; relevant. The
question is now again, which transformations can be applied to the various terms
that leave them invariant for fixed but arbitrary Yukawa and Majorana type cou-

pling matrices. With the transformations
Ep = X1E}, g = Xipeh, Ve Xoplh, ¢ X8, 6= X30" (1.132)

where the transformation of ¢ follows from the one of ¢, the following conditions

arise, for Majorana-type terms

Yol = = XJY N X1(X5)ae( X )ba (1.133)
M =-X! M"X,, (1.134)

and of Dirac-type terms
V= _XITR}/;XEL (X;)ab, (1.135)

Y = —XgRY;;XEL (Xg)ab. (1.136)
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The sets of maximally allowed symmetries CP of each term consist of those trans-
formation that fulfil above conditions for each of the involved fields in that term.

For M one obtains the same result as previously.

To avoid flavour-changing neutral currents (FCNC), all of the Yukawa matrices of
each fermion pair need to be diagonal in the same basis (or at least off-diagonal

elements need to be undetectably small).

After EWSB, the fermion and Higgs doublets are split into their components, and
similarly to flavour symmetries, the larger CP symmetries above EWSB are broken

to residual CP symmetries of mass terms

1.5.2 CP as a symmetry

Again similar to flavour symmetries, an unbroken CP symmetry at high energies
may relate some (or even all) fermionic degrees of freedom with each other, where
one is normally restricted to transforming fields with opposite U(1) charges into

each other and otherwise equivalent gauge quantum numbers.

This larger CP symmetry would then be broken in some way to the respective
residual CP symmetries of the various sectors of the standard model. By embed-
ding the residual CP symmetries into this larger CP symmetry, relations between
the various residual CP symmetries arise. If the CP symmetry is broken, then also
scalars transform under the CP symmetry and can obtain residual CP symmetries,

as mentioned in the previous section.

And again similarly to flavour symmetries, parts or all of the residual CP symme-

tries can be embedded into the larger CP symmetry.

Whatever is in place of the Yukawas at high energies must transform as tensors
under the unbroken transformations of fermions and scalars. If at the same time
at high energies an unbroken flavour symmetry is present, then whatever was in
place of the Yukawas must transform simultaneously as tensors under flavour and
CP transformations. From this normally the consistency condition between un-
broken flavour and CP transformations is derived, as will be done in chapters 3
and 4. However, as the only condition on flavour and CP transformations at high
energies is that the Yukawas or generally all parameters of the whole Lagrangian
transform as simultaneous tensors under flavour and CP, in principle arbitrary CP
transformations could be imposed as long as the residual flavour and CP symme-

tries fulfil the consistency conditions, Eqs. (1.121) and (1.122) at low energies. Of
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course when enforcing arbitrary flavour and CP symmetries to simultaneously hold
at high energies, one can end up forcing the Yukawa sector to vanish completely

and the normal consistency condition ensures that this does not happen.

To summarize, mass terms have not only residual flavour symmetries but also
residual general CP symmetries. These need to fulfil a rather strict consistency
condition. The residual flavour and CP symmetries of mass terms actually arise
from the spontaneous breaking via the standard model Higgs of larger residual
symmetries of the Yukawa sector that hold above EWSB. As the standard model
Higgs may not play a role in the breaking of flavour or CP symmetry (except this
last step), it is at least worth mentioning, even if in the remainder of this thesis

only residual symmetries of mass terms will be considered.

1.6 Outline of the remainder of the thesis

The following chapter analyses the mixing predictions in direct models with G =
A(6n?). This analysis is extended with consistent CP in chapter 3. In chapter 4,
the symmetry is weakened and the mixing predictions in semidirect models, again
with consistent CP are studied. Chapter 5 breaks away a little bit from the pure
study of fermion residual symmetries and the focus is put on CP odd invariants

for multi-Higgs models. Chapter 6 concludes the thesis.



Lepton mixing predictions from
direct models with a A(6n°)

flavour symmetry

This chapter presents results that had been partly published in [1] and [3]. The
results are significant, as for the first time, predictions of lepton mixing parameters
for Majorana neutrinos were obtained for direct models based on A(6n?) flavour
symmetry groups for arbitrarily large n. The contribution of the author of this
thesis to the research presented here lies in performing all necessary calculations,

and writing the majority of [1] and the entirety of [3].

Before the measurement of a rather large reactor mixing angle by the Daya
Bay [31], RENO [32], and Double Chooz [33] collaborations, all measurements
of this parameter were compatible with it being zero. In this case, the smallest
flavour symmetry that could explain the structure of the mixing matrix via resid-
ual symmetries of mass matrices in a direct model is Sy [34, 35]. This and all
other models that predicted 613 = 0 were ruled out by the clear evidence of the
contrary. Nevertheless, as has been emphasized in previous sections, a residual
symmetry of the neutrino mass matrix that can completely determine the diag-
onalisation matrix V" always exists. One can now ask which more complicated
flavour symmetry groups these residual symmetries could be part of and what
the predictions of such an embedding would be. It will be found then that many
members of the A(6n?) group series are good candidates for flavour symmetry
groups and especially that the middle column of the mixing matrix is trimaximal,

the mixing angle 6,3 is fixed up to a discrete choice, no CP violation would be

41
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allowed in the lepton sector (which is a great prediction as it is in conflict with
the emerging hints at non-zero CP leptonic violation), and that a sum rule holds,
namely 923 = 45° F 913/\/5.

As discussed in section 1.4.2, to obtain these predictions, this larger flavour symme-
try will then be spontaneously broken in order to generate the observed fermionic
masses and mixings [36]. However before even considering the construction of a
model, it may be insightful to know some of the possible candidate symmetries for
G and the goal of [1], was then to shed light on a particular class of candidates for
Gy, namely the A(6n?) groups. These groups are really not as obscure as the name
suggests, as will become clear when the group theory of A(6n?) groups will be re-
viewed and developed later this sections. Oversimplifying a little, these groups
can be thought of as a way of combining discrete phases multiplying flavours and

permutations acting on flavours.

These groups were chosen, partly due to the past and current popularity of
Sy =2 A(24) (n = 2) in flavour model building (see [25] and references contained
therein) but in particular publications that had appeared recently at the time,
demonstrating that A(96) (n = 4)[37, 38, 39, 40], A(150) (n = 5)[41, 42], A(600)
(n = 10)[42, 43] and A(1536) (n = 16)[43] generate phenomenologically viable
predictions for the lepton mixing angles, where [41, 42, 43] are numerical searches
using the program GAP [44, 45, 46, 47], that indicated that out of discrete groups
up to a certain size, only members of the A(6n?) series were able in direct models
to provide mixing matrices that were compatible with global fits taking the 63
measurement into account.! In contrast to the above computational studies or
studies of single groups, here, the whole of the infinite group series of A(6n?) will

be tested as flavour group candidates using analytical methods.

In the following, first, another derivation of the relation between diagonalisation
matrices and residual symmetries will be given. It will be found that only A(6n?)
groups with n even contain a full Zy x Z, subgroup, which, again, is the smallest
residual symmetry which for 3 Majorana neutrinos completely determines the
mixing matrix (up to Majorana phases). After that, the groups A(6n?) will be
introduced, where they will also be analysed for subgroups that may be identified
with residual symmetries, followed by an analysis of the representations of A(6n?).
Next, the lepton mixing results will be given, before the chapter concludes with a

summary and an outlook.

LA(6n2) flavour symmetry models in which not the complete Klein symmetry was identified
as a subgroup of the flavour symmetry had also been studied (see e.g. [48]).
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2.1 From Gy to lepton mixing: A shortcut

As previously mentioned, a discrete flavour symmetry will be introduced which is
spontaneously broken to different subgroups in the charged lepton and neutrino
sectors, thereby generating the observed lepton masses and mixings. The flavour
group is broken to some abelian subgroup Z. (m an integer) in the charged lepton

sector and to the Z5 x Z¥ Klein Symmetry Group in the neutrino sector.

The superscripts denote that S, T and U are the generators of their corresponding
Z,, group in the diagonal charged lepton basis. Hence, the Z5 x Z¥ transformations
on vy, and the Z! transformations on e g leave the Lagrangian invariant. This

implies that
(S, MM MM = [U, MM M™MT) = 0 and [T, M'M'T] = 0, (2.1)

where MM and M represent the mass matrices of left-handed Majorana neutrinos
and charged leptons, cf. section 1.3.5. Since S and U commute with M MMT (and
with each other), all three are diagonalised by the same matrix V. Similarly T
and M! are diagonalised by the same matrix V}. The PMNS matrix is then given
by

v =vivr (2.2)

To obtain the matrices V¥ and V', and hence the PMNS matrix, one only needs to
diagonalise the generators S, T, U. In practice, this amounts to finding the eigen-
vectors of S, U and T which form the columns of V¥ and V. This is straightfor-
ward for 7' since the eigenvalues are non-degenerate due to the fact that 7" must
be an element of G of order 3 or greater. However for the S and U generators
the situation is slightly different because they are 3 x 3 matrices of order 2. Thus,
each eigenvalue of S or U can only be +1. Without loss of generality, one can
choose det(S) = det(U) = +1, so that each generator has two —1 eigenvalues,
rendering the corresponding eigenvectors non-unique. Since the three matrices S,
U and SU each have one (unique) +1 eigenvalue this allows for the calculation of
three unique eigenvectors (one for each non-trivial Klein group generator), each

providing an ¢th column of the matrix V":
G,V =+VY for G, € {S,U,SU}. (2.3)

In this way all three columns of V¥ can be obtained.
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Again, this method enables the calculation of the lepton mixing matrix by only
considering the flavour group’s representation matrices [41, 43]. However, this
requires explicit representation matrices for the A(6n?) group’s representations.

These are given in the following.

2.2 The group theory of A(6n?)

The A(6n?) groups are finite non-Abelian subgroups of SU(3) (and thus also of
U(3)) of order 6n?. They are isomorphic to the semidirect product [49],

A(6n%) = (Z, X Z,) » Ss. (2.4)

The Klein group Z5 x ZY (in direct models) can either originate purely from the
Z, X Z, or it will involve the S5 generators as well, both possibilities requiring

even n. The S3 subgroup can be expanded in its factors to obtain
A(6n?) = (Z° x Z%) % (Z§ x Z3). (2.5)

Notice that in Eq. (2.5), (Z¢ x Z%) forms a normal, abelian subgroup of A(6n?),
generated by the elements ¢ and d, and (Z$ x Z3) is nothing more than Ss rewritten

in terms of its generators a and b. From Eq. (2.5) follows that a presentation of
A(6n2) is [49]:

ad=b=(ab)?=c"=d" =1, cd=dc
aca™t =c'd7t, ada”t =c, (2.6)

beb™ =dY, bdbt =L

An advantage of the presentation in Eqgs. (2.4)-(2.5) is that every group element
can be written as
g=ab’d, (2.7)

with « = 0,1,2, = 0,1 and 7,6 = 0,...,n — 1, making the computation of
all group elements for a certain representation/basis computationally simple. All

that needs to be known next is the explicit forms of generators.

In order to find the explicit forms for the generators, one can restrict oneself to
3-dimensional irreducible representations of A(6n?). Then, it can be shown that

A(6n?) has 2(n — 1) 3-dimensional irreducible representations denoted by 3! and
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explicitly generated by [49]:

010 001
a=100 1], b=(=D 101 0],
100 100
(2.8)
n 0 0 1 0 0
c=10 n , d=10 ot 0 |,
0 0 1 0 0 n

where n = e?™/™ k=1,2;and [ =1,...,n — 1.

One can restrict the analysis to faithful irreducible representations of A(6n?).
Thus, all representations in Eq. (2.8) where [ divides n can be excluded, as they
are unfaithful. Of the remaining representations, 3} and 3% are complex conjugates
of each other if [+ = n. Therefore, they will provide complex conjugated mixing
matrices. The remaining representations provide the same sets of mixing matrices

because the generators a and b are the same for all [ and
c(3%) = ¢(3;)" and d(3%) = d(3})". (2.9)

Then, from Eq. (2.7) and Eq. (2.9) follows that each power of the ¢ and d generators
will appear in every 3-dimensional irreducible representation. For these reasons,
it suffices if one only considers S, T, and U as representation matrices from 33.
Notice that & = 2 has been chosen because in this case the determinant of the

elements of order 2 is +1.

Having reduced the possible cases needed for consideration, the next step is to
calculate all Klein subgroups of A(6n?). This is accomplished by first calculating
all order two elements. From the generators and rules given in Eq. (2.6) it follows

that all order 2 elements in A(6n?) are given by:
A2 dM? PRI betde, abe?, and o?bd’, (2.10)

where €,7,0 =0,...,n— 1.

The order 2 elements found in Eq. (2.10) serve as a starting point for calculating
Klein Symmetry groups of A(6n?). Using Eq. (2.6) and Eq. (2.10), the Klein
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subgroups of A(6n?) for even n are:

{1,¢V2,dm2, a2y, (2.11)

{1,cY2, abc” , abc? 2}, (2.12)

{1,d"?, a*bd® | a?bd® +"/?}, (2.13)

{1, 2d™? bef' de | bes' ~2d¢ /2 (2.14)

where 7/, ¢ = 1,...,n/2. Notice that Eq. (2.11) corresponds to the Klein
symmetry originating completely from Z,, x Z,, whereas Eqs. (2.12)-(2.14) involve
also S3. In the basis of Eq. (2.8), one of the Klein generators (taken to be ) is
diagonal for all cases, while in the case of Eq. (2.11) both Klein generators S, U

are diagonal 2.

The T generator which controls the charged lepton sector must be at least of order
3 and only the minimal order 3 case is phenomenologically viable, thus only this
possibility is considered.® In A(6n?) groups where 3 does not divide n, all elements

of order 3 are expressible as [49]:

2As an example of the Klein subgroups in Eqgs. (2.11)-(2.14), in A(96)(n=4)[37, 38, 39, 40],
it was found that for the bi-trimaximal mixing example S = d? and U = a?bd?, implying that
these generators are contained in the Klein subgroups defined in Eq. (2.13).

3 T generators of order greater than 3 are not viable: Consider the order of T to be even.
Then, T™ = 1 with m = 2¢q where ¢ is an integer. Note that diagonal T' candidates in the basis of
Eq. (2.8) will not lead to acceptable mixing. After removing unphysical phases, all non-diagonal
T candidates of even order m = 2¢ can be written without loss of generality as,

T=bc"6=1,...,q— 1. (2.15)
The matrices of Eq. (2.15) are diagonalised by

1 0 e~ imé/a  _e—imé/q

Vi=—1v2 0 0 : (2.16)
V2 1 1

Applying the above matrix to ¢*/? results in:

1

U—Vie2yi=1 0 (2.17)
0

_ o O
o = O

The unique eigenvector of this generator is given by (0,1,1)/y/2. Picking the smallest element
of the mixing matrix as Vi3 gives Vi3 = 0. For n = 2 this results in a completely bimaximal
mixing matrix [50, 51]. If the order of T is not even but can be divided by 3, application of a
unitary transformation R = ¢®dY can remove all phases implying only 7" = a remains, yielding
the previously discussed predictions for T = a. Continuing the systematic consideration of
candidate T" generators leads to the case of a T generator in which the order is odd, not divisible
by 3 but larger than 3. A A(6n?) group can only contain such an element if m divides n. Then,
for this case the possible T' generators are given by

T = c#m/mgen/m (2.18)
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ac'd’, a*cd’ (2.19)
where 0,y =0...n— 1%

In [1], the order three generator was chosen to be
T = a, (2.20)

since a and a? only differ by a permutation of rows and columns and it was
assumed® there that in the basis of Eq. (2.8), multiplication by ¢’d® only yields
phases which may be absorbed into the charged lepton fields.

Notice that the 7" of Eq. (2.20) can be diagonalised by the matrix,
W w
w

2

7 , (2.21)

—_ = =

Vi=— | w
1 1

where w = €2™/3. The ordering of the columns and rows in the above V! determines

the ordering of the eigenvalues in 71"

w2 0 0
TViaVli=10 w 0 (2.22)
0 0 1

For example, changing the order of the eigenvalues of T by applying a* to T
by a®'Ta® (o = 1,2) changes V! to a®V'! which just permutes the rows of V in
Eq. (2.2).

Note that it is not always the case that the generators S,7T,U above generate
the full A(6n?) group. It turns out that the Klein subgroup in Eq. (2.12), in
combination with the residual Z7 in Eq. (2.20), will only generate the full A(6n?)
symmetry group if and only if 7' does not divide n. From the top down point of
view of choosing G this is acceptable since one is only interested in the possible

predictions that can arise from A(6n?).

where p, p = 0,...,m—1 and u, p are not simultaneously zero. These yield no phenomenologically
viable predictions. Therefore, only candidate T generators from Z3 subgroups of A(6n?) are
phenomenologically viable.

4When n is divisible by 3, there exist more order three elements given by ¢*/3, ¢2*/3 /3,
d2n/3, cn3qnls | 2n/3qnls n/3qn/3 (2n/3q2n/3  In the basis of Eq. (2.8), these are diagonal
matrices of phases. Since S is also diagonal in this basis, this would result in phenomenologically
unacceptable predictions for leptonic mixing.

>This second assumption was not correct, as was later seen in [4].
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2.3 Results

Using the results of the previous section one can compute the columns of the lepton
mixing matrix which correspond to each possible Klein subgroup of a certain
A(6n?) group where n is even with 7" = a. The steps for this procedure are

summarised as follows.

All Klein group elements in Eqs. (2.11)-(2.14) in the explicit 3} representation
matrices given in Eq. (2.8) are generated, then each Klein group’s elements are
transformed to the basis where T is diagonal via V!, cf. Eq. (2.22). Here, the
eigenvectors with eigenvalue 41 correspond to the columns of possible mixing
matrices as in Eq. (2.3). Since the ordering of the columns and rows of the mixing
matrix calculated this way is arbitrary, without loss of generality the smallest
absolute value from each mixing matrix is taken and assigned as Vi3 with its
corresponding column being the third column of V. This completed procedure is
unique up to interchanging the second and third rows of V', corresponding to two

predictions for the atmospheric angle.

Implementing the preceding procedure for calculating the mixing matrix resulting
from the Klein group in Eq. (2.11) with 7" = a yields the old trimaximal mixing
matrix [52, 53] which is given by the V! in Eq. (2.21) up to permutation of its rows
and columns. Clearly, this is not a phenomenologically viable mixing matrix, so

this possibility is discarded.

One does not have to consider all the Klein groups in Eqgs. (2.12)-(2.14) since they
all result in identical PMNS matrices up to permutations of rows and columns.
This is because the Klein group elements in Eq. (2.13) and Eq. (2.14) are related
to G; in Eq. (2.12) by a®G;a and aG;a? respectively, where a and a? from Eq. (2.8)

interchange rows and columns.

Thus, it is sufficient to consider the Klein subgroup given in Eq. (2.12), where

the element ¢/ becomes the “traditional” S generator in the basis in which T is
diagonal,
-1 2 2
S — Vien2yt = % 2 -1 2 (2.23)
2 2 -1

This predicts one trimaximal middle column (TM,), i.e. (1,1,1)7/v/3 [54, 55, 56],

in lepton mixing ®. This was also assumed in [43]. The other elements of the same

6Note that a Klein symmetry corresponding to V' with a fixed column of 1/v/6(2,—1,—1)T
(TM; mixing) cannot be identified as a subgroup of A(6n?).
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Klein subgroup also provide columns of V' which is then up to the order of rows

and columns given by

\/g cos(1) \/Lg 2 sin(¢)
V= —\/gsin (% + ) \/Lg \/gcos (z+9) |, (2.24)

%sin(%—fz?) —\/ig %cos(%—ﬁ)
where ¥ = 7//n (cf. [43]). Since 4" = 1,...,n/2, discrete predictions for the
mixing angles corresponding to ¢ = m/n,...,m/2 are obtained. In general one
cannot predict the order of the rows and columns with this method, so the entry
with the smallest absolute value is picked and assigned to be |Vi3]. Notice that for
the different values of ¥, different elements of Eq. (2.24) play the role of Vj3. After
Vi3 has been fixed, the second and third row can still be interchanged, leading
to two different predictions for the atmospheric angle, corresponding to dcp = 0
and §¢p = T, leading to the testable sum rules, a3 = 45° F 013/+/2, respectively
[25]. (Note that Klein subgroups do not predict Majorana phases which would
correspond to a matrix K = diag(1, e™21/2, ¢**31/2) multiplied onto Eq. 2.24 from
the right.) These sum rule relations follow from considering the atmospheric angle
sum rule given in [57] for the cases dcp = 0, 7. The sum rule 53 = 45° — 913/\/5

was also proposed in [58] in a different context.

- L popnpRERERREE
0 50 100 150

Figure 2.1: The possible values that [Vj3] can take in A(6n?)
flavour symmetry groups with even n. Examples include |Vi3] =
0.211,0.170,0.160, 0.154 for n = 4,10, 16, 22, respectively. The lines de-
note the present approximate 3o range of |Vi3].
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Fig. 2.1 shows all possible predictions for |V;3| corresponding to the different Klein
subgroups for each A(6n?) of even n one obtains using the method previously
discussed.” As n increases, the number of possible values of |Vi3| predicted by

A(6n?) also increases according to the above discussion.

2.4 Conclusions

In this chapter, predictions of lepton mixing parameters for direct models based
on A(6n?) flavour symmetry groups for arbitrarily large n in which the full Klein
symmetry is identified as a subgroup of the flavour symmetry were obtained. After
reviewing and developing the group theory associated with A(6n?), some known
results of the at the time recent numerical searches are reviewed here and many
new possible mixing patterns for large n able to yield lepton mixing angle pre-
dictions within 3¢ of recent global fits were found. Previously, A(6n?) had only
been analysed within particular scans up to a much lower order than considered
here. All the examples predict exact TMy mixing with oscillation phase zero or 7
corresponding to two possible predictions for the atmospheric angle but differ in
the prediction of |Vi3| as shown in FIG. 2.1.

For large n, it is clear that the predictions for |Vi3| densely fill the allowed range.
Nevertheless, this general method of analysing A(6n?) flavour symmetry groups
is of interest since it represents for the first time a model independent treatment
of an infinite class of theories. The general predictions for the considered class of
theories based on A(6n?) are Majorana neutrinos, trimaximal lepton mixing with
reactor angle fixed up to a discrete choice, an oscillation phase of either zero or
7 and sum rules fy3 = 45° F 613/ V2, respectively, which are consistent with the

recent global fits and will be tested in the near future.

Some time after [1] was published, it was shown, [60], using (even) more mathe-
matical methods, that for 3 Majorana neutrinos, in direct models indeed the only
remaining flavour symmetry groups in which the residual symmetries may be em-
bedded into are A(6n?) and (Z,, X Z,,/3) x Ss, depending on the choices of n and
m. For further details see [60].

"The group with n = 42 produces no predictions within the three sigma range, contrasting
well-regarded hints in the literature [59].



Lepton mixing predictions
including Majorana phases from
A(6n°) flavour symmetry and

general CP

The work presented in this chapter has been partially published in [2]. The con-
tribution of the author to the research presented here consisted in performing all
calculations and writing the majority of [2]. In the following, the results presented
in the previous chapter are extended by also considering the effect of residual CP
symmetries. For this, first an argument will be given concerning which general
CP transformations one should consider.! After that, the mixing matrices that

are allowed by the different cases of residual symmetries are presented.

This work is mostly motivated by the fact that general CP transformations are
the only known framework which allows to predict Majorana phases in a flavour
model purely from symmetry. Furthermore, it is the first time that general CP
transformations are investigated for an infinite series of finite groups, namely again
A(6n?) = (Z, x Z,) x S3. While in direct models the mixing angles and Dirac
CP phase are solely predicted from symmetry and A(6n?) flavour symmetry pro-
vides many examples of viable predictions for mixing angles, the Majorana phases

remain entirely unconstrained by the pure flavour symmetry.

!This argument as published in [2] turned out to be incomplete and it will be remarked where
necessary in the following, where gaps turned up. However, the mixing prediction remain valid.

51
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As in the previous chapter, for all groups the predicted mixing matrix has a tri-
maximal middle column and the Dirac CP phase is 0 or . The Majorana phases
are predicted from residual flavour and CP symmetries where as; can take several
discrete values for each n and the Majorana phase as; is a multiple of 7. In the
second half of this chapter, first, constraints constraints on the groups and CP
transformations from measurements of the neutrino mixing angles were discussed.
After that, as it is the most accessible observable for Majorana phases, also the

constraints from neutrinoless double-beta decay were analysed.

3.1 Introduction

The question of the origin of neutrino masses and mixing parameters is of funda-
mental importance. One approach are so-called direct models of neutrino masses
[25] where a discrete non-Abelian flavour symmetry group is broken to a Zs x Z
group in the Neutrino sector, and a Z3 subgroup in the charged lepton sector.
In such a model the lepton mixing angles and the lepton Dirac CP phase are

completely fixed by symmetry.

Recently such direct models have been analysed with the help of the group database
GAP [41, 43]. The only flavour groups that can produce viable mixing parame-
ters in a direct model belong to the group series A(6n?) or are subgroups of such
groups. The group theory of A(6n?) groups has been analysed in [49]. The con-
sequences for neutrino mixing from a A(6n?) flavour symmetry in direct models
have been studied in detail in [1] for arbitrary even n. Some examples of A(6n?)

groups or subgroups have previously been studied in [37, 38, 39, 40, 48, 61, 62, 63].

In the Standard Model, violation of CP occurs in the flavour sector. Promoting
CP to a symmetry at high energies which is then broken allows to impose fur-
ther constraints on mass matrices of charged leptons and Majorana neutrinos. In
this case the interplay between CP and flavour symmetries has to be carefully
discussed|[64, 65, 66, 30, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]. For direct mod-
els, especially with a flavour group from A(6n?), CP symmetries have not been

studied in detail yet.

In the following, first, a class of general CP (gCP) transformations consistent with
A(6n?) groups for arbitrary n will be examined. After reviewing flavour and gen-

eral CP transformations and stating their effect on mass matrices, in the following



3 Lepton mixing predictions including Majorana phases from A(6n?) flavour
symmetry and general CP 53

section the general theory of gCP transformations in the presence of flavour sym-
metries in a general context is reviewed and developed. Afterwards direct models
with A(6n?) as a flavour group are considered, where the lepton mixing matrix
including Majorana phases for arbitrary even n for all possible breaking patterns
of the flavour group and of the considered class of gCP transformations is com-
puted. Here also the constraints from measurements of the mixing angles and from
neutrinoless double-beta-decay on these models were analysed. The last section

concludes this chapter.

3.2 General CP transformations, flavour sym-
metries, automorphisms and the character
table

In this section the interplay between flavour symmetries and CP symmetries is
reviewed, which has especially been discussed in [64, 30, 68, 70, 73] and general
arguments are used to show that for a class of groups G, of which G = A(6n?) is
an example, physical CP transformations correspond to X, € G with o a real

number.2

3.2.1 General CP transformations and flavour symmetries

Consider a theory where generations of fermions are assigned to multiplets of
representations r of a flavour group GG and that is invariant under transformations

of the multiplets ¢, under the group G

©r = pr(9)er (3.1)

where p,(g) is the representation matrix for g € GG in the representation r.

Further consider the group G being broken to a Klein subgroup G, ~ Zs x Z, sub-
group in the neutrino sector and an abelian subgroup G, ~ Z,, with m > 2 in the

charged lepton sector. If these subgroups remain unbroken at all energies, in the

2The more correct way of stating this, is that X,. € e’*G are definitely consistent CP transfor-
mations. However, the argument is not complete in showing that these are in fact all consistent
CP transformations.
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low-energy-limit constraints on the mass matrices of charged leptons and neutri-
nos are imposed. Left-handed doublets transform under the same representation

r. The charged lepton mass matrix M' has to fulfil
pr(9)'M' (M) p,(g) = M'(M")! (3.2)

with p,(g) being the representation matrix of g € G, in the representation r. The

Majorana neutrino mass matrix is constrained by
pr(9)" M p(g) = MM (33)

with g € G,.

Define general CP (gCP) by

or > X (0r(27)) (3.4)

where 7 is the representation of G according to which ¢, transforms. ® X, is a
unitary matrix. One needs to find all matrices X, that are “allowed” in coexistence
with a flavour group GG. The aforesaid will be made a more precise statement in the
following section, where the conditions for the existence of gCP transformations

as well as their properties will be discussed.

If the theory at the low-energy end is invariant under residual gCP transformations
with matrices X! for charged leptons and X" for neutrinos then the mass matrices

will be constrained by
XU (MYYIXE = (M ()T (3.5)
for charged leptons and by
XTMMXY = (MM)* (3.6)
for Majorana neutrinos.

If X¥ € G, (X! € G.), no new constraints on the neutrino (charged lepton) mass
matrix follow but it being real. With g, h € (Zy x Z) from p,(g)X,p,(h) only the

same constraints as for X, follow for the mass matrix. This means only X, that

30ther Authors consider transformations of the type ¢, — ¢ where 7,7’ can be different.
In [64] has been shown that only gCP transformations where r = r/ actually make observables
(e.g. particle decays) conserve CP.
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are not in (Zy X Z,) allow for a mass matrix that is not real and at the same time

impose new constraints on it.

3.2.2 The consistency equation

One would like to know which transformations of the type
r = Xp07(2") (3.7)

can be applied to the theory without destroying the invariance under G, i.e. which
matrices X, can appear in Eq. (3.7) that preserve symmetry under G7? Consider
performing a gCP transformation followed by a flavour transformation followed by
the inverse gCP transformation. From invariance of the theory under G follows
that the matrix X, is allowed in a gCP transformation if for every g € G there is
a ¢ € G such that

X)X} = pr(9). (3.8)

Eq. (3.8) is called the consistency equation and an X, that fulfils it is called

consistent with G.

If r is a faithful representation, which is equivalent to saying that p, is injective,

one can define a bijective mapping ux : G — G between the elements of the group:

ux(9) = p; (X0 (9) X)), (3.9)

(One can drop the index r on uy, because for all faithful irreps the mapping
generated by Eq. (3.9) will be the same). For faithful representations r, ux(g) is

an automorphism of the group G.

3.2.3 Inner and outer automorphisms

Group automorphisms come in two kinds: Inner and outer automorphisms. Inner
automorphisms Inn(G) are such automorphisms v : G — G where for all g € G

one single group element h,, exists such that

u(g) = hy " ghu. (3.10)
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All inner automorphisms are given by Inn(G) = G/Z(G), where Z(G) is the
center of G, i.e. all elements of G' that commute with every other group element.

Outer automorphisms Out(G) are all automorphisms that are not inner.

An inner automorphism will map each element into its original conjugacy class.
An outer automorphism however is not inner which means that there is at least
one ¢’ € G for which with all h € G u(g) # h™*¢’h (compare with the definition of
inner automorphisms before Eq. (3.10)), i.e. there is at least one ¢’ € G which is
not mapped back into its original conjugacy class.* Also if ¢ is in the class C, and
it is mapped onto u(g) which is in the class Cj, every element in C} is mapped on

an element in Cj by wu.

This proves also that an automorphism that maps each element back into its
original conjugacy class is inner, as well that an automorphism that maps elements

from at least two conjugacy classes on each other is outer. °

Now return to the automorphism uy (3.9) that is induced by the consistency
equation (3.8). If p.(g) is real and X, € G then uyx will be an inner automorphism.
This is also true if X, € e*G.

4This argument neglects that in fact outer automorphisms can exist that map elements back
into the same class.

5 An outer automorphism u also generates mappings between different representations of G.
For two representations p, and ps define

Ugp = Ps OUO P+ (3.11)

with which follows
(usr 0 pr)(g) = ps(u(g))- (3.12)

The outer automorphism u acting inside the group thus interchanges columns of the character
table while when acting between representations via ug, interchanges rows of the character table.
We call a symmetry of the character table

Xjk = trp;j(gk), gk € Ck (3.13)

any transformation of the type
Xk — PijxrQri (3.14)

with permutation matrices P and @ that leaves y invariant, i.e.
PiixriQri = Xij (3.15)

and where only classes of the same size and element-order are interchanged, i.e |C)| = |C;| and
ordg; = ordg; for g; € C; and g; € C;. An outer automorphism will always generate a non-trivial
symmetry of the character table, just as a symmetry of the character table always gives rise to
an outer automorphism: Define the automorphism by the action on the conjugacy classes, a
corresponding permutation of the representations is always given by any outer automorphism
via Ug.
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If on the other hand u is an outer automorphism it follows that a matrix X, that

could mediate u & la Eq. (3.9) is not in G (if it exists).

One could ask now if there can be a matrix X, that is not in ¢?*G for that u ¢ only
connects elements within the same conjugacy class, i.e. that generates an inner
automorphism? As for an inner automorphism wu there always is a single h, € G

such that the automorphism is given by u(g) = h;*gh, it follows that

Xepi(gi) X = pr(h)pr(gi)pr (B ). (3.16)

For a real matrix p,(g) multiplying by X, from the right and by p,.(h;!) from the
left yields

pr(hijl)j(rpr(gk) = pr(Qk)p(hﬁIl)XT (317)
As gj can be every element of G, p,(h;, 1)5(7« commutes with every group element.

One can now apply Schur’s Lemma 6 to find that

where |\ = 1 to keep X, unitary. As X, was supposed to not be in e**G this

" For real p,(g) this proves that inner

is in contradiction to the assumptions.
automorphisms correspond to X € e®G. For real representations, there is always

a basis where this is the case, i.e where p,(g) is real for every g € G.

If p.(g) is complex one has to deal with complex conjugation: Assume there is
a matrix w, such that by applying complex conjugation and this matrix on an

element of GG, the element is mapped into the class of its inverse, C'(g!):

pr(g) = wip (9)w, € C(g™). (3.19)

This can be thought of as an automorphism mapping g + ¢! followed by an

1

automorphism that maps ¢~ onto another element in the same class. As in the

second step every element is sent into the original class, this second mapping is an

8

inner automorphism® and therefore by definition a single group element h exists

5To be precise one uses the second part of Schur’s Lemma which states that an operator that
in some representation commutes with every group element is proportional to the identity.

7Again, here it was neglected that outer automorphisms could exist that send every element
back into its class and the matrix X, could precisely correspond to such a class-preserving
outer automorphism. However, if one happens to know that the group G has actually no class-
preserving outer automorphisms, then the argument holds.

8 Again, also this mapping could be a class-preserving outer automorphism, in which case a
matrix facilitating the mapping (if it even exists) would not be in G.
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which inverts this step such that

pr () (w!p, () w,)pr(h) = g7 (3.20)

For this reason it is assumed in the following that the matrix w, maps elements
directly onto their inverses. Using this, the general mapping induced by the con-

sistency equation is given by:
ux(g) = pr (Xewnpy (g~ i X1) (3.21)

This mapping can be seen as an automorphism mapping g on g—* followed by an

automorphism given by X, w,.:

ux(g) = uxw(g™"). (3.22)

If both w, and X, are contained in e"“G, ux will map ¢ in the same conjugacy
class as g~!. For A(6n?), w, = p,(b) maps elements into the class of the inverse’

and is contained in the group. w, ¢ G was thus not considered further.

Analogous to real irreps above one can now ask if there can be matrices X, that
are not in e’“G but that with w, € e’*G will map ¢ in the conjugacy class of g=1?
This would be equivalent to ug, being an inner automorphism'® which would

mean that for each group element g € GG there is a single h,, € G such that
pr(ha)pr(g™ ) pr(hyh) = Xowrpe (g~ w! X (3.23)

Again one can use Schur’s Lemma and finds there is A € C\ {0} such that
X, = A\py(hy)w! (3.24)

with |A\| = 1 to make X, unitary. This contradicts X, ¢ ¢ *G. We have proved
now that if w, € €®G then if and only if X € €"“G ux(g) will be in the conjugacy
class of g71.1' 1In [64] it was shown that only gCP transformations that map

elements into the class of its inverse element make observables conserve CP.'2 Tt

9This was later found to only hold for 3 { n, as will be discussed in section 4.2. However by
excluding unfaithful 2-dimensional representations of A(6n?) from the discussion, the automor-
phism generated by b becomes class-inverting again.

10 Again, X, could be a class-preserving outer automorphism.

HTf G has no class-preserving outer automorphisms.

12This holds only if one considers all irreps of G simultaneously. For a specific model with a
limited representation content, further CP transformations can be consistent with G, especially
if the model is renormalisable and not even in Kronecker products all irreps have to appear.
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was thus proved here that such transformations are given by X, € e “G.13 4 In
the following G is specialised to be A(6n?).

3.3 gCP Symmetries and A(6n*) groups

In this section the effect of gCP transformations where X € G for G = A(6n?)
on mass and mixing matrices is considered. First the gCP transformations that are
consistent with G, = Zy x Z5 and Gy = Z3 are derived. Afterwards the constrained
mass matrices and the lepton mixing matrix are stated. After this constraints from
measurements of lepton mixing angles and from neutrinoless double-beta decay for

arbitrary n are discussed.

If one wants to break the flavour symmetry to G, = Zy x Zy and G, = Z3
subgroups, the residual flavour and residual gCP transformations are not indepen-
dent, as they still have to fulfil the consistency equation.'® If e.g. in one sector
pr(g) and X, are unbroken, then also X,p.(g)*X| must be unbroken. Thus the
allowed residual gCP transformations have to map elements from the Klein group

in consideration into said Klein group.

The Klein subgroups of A(6n?) are given by [1]

{1,c"2 d"? c*Pd Py, (3.25)

{1,¢"%, abc?, abc /2y, (3.26)

{1,d"?, a®bd’, a®bd® "%}, (3.27)
{1,c"2d"? besde, b d P, (3.28)

where 7,0, = 1,...,n/2. The group Eq. (3.25) will produce a mixing matrix
with |Vj;| = 1/4/3, and it will not be considered further. The bottom three
Klein subgroups will generate the same mixing matrix, thus it is sufficient to only
consider the mixing matrices generated by group Eq. (3.26). The allowed matrices
X, in the low-energy-limit have to be contained in e’*G,. A matrix X, is allowed
if for a Klein subgroup K holds that for each g € K also u(g) € K. For said

13Under the assumptions mentioned in the various remarks concerning things that were only
understood after [2] was published.

14 One would now be able to find all X, ¢ ¢‘“G by reading off all automorphisms from the
symmetries of the character table that do not map the class of g on the class of g=1. (This would
often contain the identity transformation on the character table.)

15As was shown in section 1.5.1, this condition is not strong enough and will still allow for
residual CP transformations that force mass eigenvalues to be zero or degenerate. As this is
unphysical
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Klein subgroup K = {1,c"/2, abc”,abc’*™?} one finds that the allowed matrices

X € €@ are given by the representation matrices for

X, = po (€@ a2, p (T dTEAN2) b (i€abetd?T), p, (e abctd2T )
(3.29)
withaeRand z=0,...,n—1.
Without loss of generality, left-handed doublets (v, er)? are assigned to the rep-
resentation 3} (cf.[1]). Invariance of the mass matrix under the Klein subgroup
in consideration plus invariance under one of the transformations from Eq. (3.29)

constrains the Majorana neutrino mass matrix to

199 €%m ei1 Mgy |71 0
L N o 0 (3.30)
0 0 mgs|e’?

where the values of ¢; and ¢3 can be found in table (3.1). In principle, sev-
eral gCP transformations can remain unbroken. However, the phases ¢1, @3 are
already fixed by one single unbroken transformation. Leaving a second gCP trans-
formation unbroken with incompatible constraints on the phase ¢; will force the
corresponding mass parameters |m_| to be zero. The masses of neutrinos are |mss|
and [|ma1| £ |mas||. Thus [mg1| = 0 or [mgy| = 0 will result in a pair of degenerate
neutrino states. It is not possible to have |ms3| = 0 without |mg;| = 0 or |mg| = 0.

Leaving a second gCP transformation unbroken is never physically viable.

[ X | o1 | 5 |
pr (et d* T2 —a—=27(y+1x)/n —a+4n(y+x)/n
pr(eectd? 222y | o — /2 = 2n(y+x)/n | —a+ 7 +4n(y+x)/n
pr(eabc®d>®) —a — 27wz /n —a+4mx/n
pr(e@abc®d®® /2 | —a — /2 — 27z /n —a+7m+4rx/n

Table 3.1: Values of ¢; and 3 for gCP transformations consistent with
the residual Klein symmetry

The neutrino mass matrix Eq. (3.30) will be diagonalised by a unitary matrix U,

via UE M,U,. A matrix U, such that the diagonalised mass matrix is real and
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positive is given by

o 2 2 0
v = EF)  JEF) (3.31)
V2 V2 .
0 0 e %
for |mai| > |maa| and by
JE-ges) (R
- 2 2 0
U = GOR-FE) (W) 0 (3.32)
V2 V2 i
0 0 e’

for |m21\ < ’mggy.

For charged leptons, the allowed gCP transformations with X, € e’“G have to be

consistent with G, = {1, a,a?} and are given by
X, =cdY, ac’dY,a*c?d™Y, bc?d™Y, abc’d ™Y, a*c?d Y (3.33)

where 3y = 0 mod n. Especially when 3 divides n there is a huge number of
allowed X matrices. But, as the charged lepton mass matrix is already invariant
under transformations with a and transformations with ¢?d~Y force it to be zero
(for 3y # 0 mod n) or produce no new constraint (for 3y = 0 mod n), the only

transformations that produce physical constraints are given by

For X, = p,(1) the mass matrix of charged leptons is restrained to

l ! !
mg My My

M“Mlle mh mk m} (3.35)
my my my

with all parameters being real or for X, = p,.(b) to

my - omy (my)*
MM} = | (mh)* m  ml (3.36)

my o (my)t my
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with m} complex and m} real. Both charged lepton mass matrices can be diago-

nalised by

Ul=—w o (3.37)

V3 e
W

—_ = =

w

Above charged lepton mass matrices only differ by unphysical phases which can
be absorbed into the charged lepton fields.

After removing an overall phase e~*1/2 to render the top left entry real, the phys-
U(-‘r)/ =) _

ical mixing matrix is given by USUS?) = (U)1USYC) (For U and UL cf.
Eq. (3.31) and Eq. (3.32)):

2 gin (”_7
n

5 cos (57 7 : ) 0
VRS = | =B G+d) & reos @) [ [0 mieeon
bsin(r(3-1) —% les(r(E-2) )00

(3.38)
where the additional factors of ¢ in square brackets only appear in UP(,;/[)NS. As the
ordering of the mixing matrix is arbitrary at this point, one would like to fix it
by requiring that the smallest entry of the matrix has to be the top-right entry,
i.e. Uy3. For small vv/n the first row and third column are in the right place in the

above matrix.

As this matrix is now in the PDG convention, the values of Majorana phases aag;
and as; as well as the Dirac CP phase d¢p for this ordering of the mixing matrix can
be read off the matrix. Recall that the PDG convention is Upyng = Ro3Uis R P
in terms of s;; = sin(6;;), ¢;; = cos(6;;), the Dirac CP violating phase dcp and

further Majorana phases contained in P = diag(1, eio%, ei%).

The Majorana phase as; is then given by

Qo1 = Y1 — ¥3 (3.39)
With table [3.1] follows that
01 — 3 = —M for X = *d**™7, abc®d*® (3.40)
or
Y1 — 3 = 3m Grly+2) for X = *d®T2Hn/2 qphetd?m 2, (3.41)

2 n

0
0

[i]i
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The values of all CP phases depend on the ordering of Eq. (3.38) which needs to
be changed for higher values of 7/n. The possible values of the CP phases can
be found in table (3.2). There, U’ denotes the mixing matrix after reordering
such that the entry with the smallest absolute value is in the top right corner.
As for every v/n the second and third row can be interchanged, which results in
changing dcp by 7 while changing the prediction for Us3 and Uss and thus the
prediction for #y3. The Dirac CP phase is hence predicted to be 0 or m, and since
the lepton mixing matrix has the tri-maximal form for the second column, referred
to as TM2, this leads to the mixing sum rules #,3 = 45° F 913/\/5 for 6cp = 0, m,

respectively, as previously noted in [1] (for a review of sum rules see [25]).

The prediction of as; also depends on the order of these rows. In the table (3.2)
the second row of the mixing matrix after reordering it is indicated in the column
Uls. Improved measurements of 53 will constrain this freedom of interchanging

the second and third row.

L/ | Uty [ Uy [ 662" [ ol o5 ERER
0/121/12 U13 U23 0 Y1 — @3 Y1 — @3 2T —T
Uiz | Usz | —m Y1 — 3 Y1 — 3 0 ™
1/12...2/12 || Us; | Uy | O 01— P3 ©o1—p3—T |27 |7
Usi | Un | —m v1— 3 pr—pz3—7m |0 -7
2/12...3/12 | Us; | Uy | O Y1 — ©3 pr—p3—7m |0 -
Usi | Ugy | — Y1 — ¥3 Y1 —p3— T |27 ™
3/124/12 U23 U13 0 @1—@3+2W ¢1—Q03+27T 0 ™
Usz | Usz | —m p1— 3+ 2T | p1 — p3+ 27 | 21 —T
4/12...5/12 || Ussz | Usz | O 01— Y3 +2m | Y1 —ws+21 | 27 | —7
Uss | Urg | —m w1 —p3+2m | o1 —p3+ 271 | 0 ™
5/126/12 U11 U31 0 301—903+27T p1 — 3+ T 2 s
U | Uy | = o1 —p3+2m | o1 —p3+7m |0 —T

Table 3.2: Values of CP phases after reordering for different values of /n

in UF(,;A)IG[S(H]. In each row, v/n can take arbitrary values in the interval
indicated. U’ denotes the matrix after reordering.

The key observable for Majorana phases is neutrino-less double beta decay (0v3[5).

The effective mass of neutrinoless double-beta decay is given by

e

T /

3

3

2 o '
= lgm cos? (L) 4+ Smae® 4 Sy sin?(TL )eilesi—29)]
n n

(3.42)
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my =my , mg = \/m}+ Am3, , m3 = /m?+ Am} (3.43)

for normal ordering and

my = \/m?+ Am3, , my = \/ml2 + Am3, + Am3, , mg =my (3.44)

for inverted ordering, where m; is the mass of the lightest neutrino and

with

1
7" =~ mod 5 (3.45)

The absolute values of the entries of the mixing matrix after reordering are periodic

in v/n which is why one can simplify the analysis by defining 4 in this way.

There are 8 cases to distinguish for combinations of phases. Adding a multiple of
27 will not change the effect of oy or az; —26. For this reason, for both Eq. (3.40)
and Eq. (3.41) the 12 cases in table (3.2) reduce to 8 cases of values for

YTz

Qo1 = Qo1 + 6m y Q31 = Qi3] — 20 (346)

that are given by

(o1, a31) = (0,0), (7/2,0), (m,0), (37/2,0), (0, 7), (7/2,7), (7w, 7), (37 /2, 7).
(3.47)
The by far most stringent constraint on 7/n comes from the measurement of 6;3.
The current 3 sigma range for 613 from [78] yields values of 4//n in the range
0.0460...0.0627.

It is generally fine to not only consider 4'/n in this range but even 7/n because
changing v by 1/6 only changes as; by 7, which is included in the four cases

discussed above.

In order to understand predictions of A(6n?) groups for Ov33 decay on a general
level, in Figure 3.1, the effective mass |me.| of Ov(3/ is plotted against the mass of
the lightest neutrino m; for all combinations of & and a3;. In these plots, models
defined by some values of «v/n and x/n correspond to single fine lines. v/n takes
11 values, starting with the 3 sigma lower bound and increases in 10 equal steps

until it reaches the 3 sigma upper bound. z/n takes values 0,0.1,0.2,...,1.
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Am3, and Am3, are not varied, as doing so only would almost unnoticeably

broaden each single line. Instead the best fit value from [78] was used:
Am3, = 7.54 x 107° eV?, (3.48)

Am3, =241 x 107° eV, (3.49)

In Figure 3.1, magenta lines correspond to predictions assuming inverted hierarchy;,
red lines to normal hierarchy. Dashed blue and yellow lines indicate the currently
allowed three sigma region for normal and inverted hierarchy, respectively. The
three sigma ranges for mixing angles are taken from [78]. The upper bound |m..| <
0.140 eV is given from measurements by the EXO-200 experiment [79]. Planck
data in combination with other CMB and BAO measurements [80] provides a limit
on the sum of neutrino masses of m; +my +m3 < 0.230 eV from which the upper

limit on the mass of the lightest neutrino can be derived.

The main features of the results from Figure 3.1 are as follows:

e For inverted hierarchy there is no particular structure visible. Additionally,
the predicted values for |m..| are well within the reach of e.g. phase III of
the GERDA experiment of |m&P| ~ 0.02...0.03 eV [81].

ee

e For normal ordering, it follows from Figure 3.1 that for the values of v/n
and x/n considered is always a lower limit on |m..| which means that these

parameters are accessible to future experiments.!'%

e Further for normal ordering, in the very low mijightest region, predicted values

of |me.| are closer to the upper end of the blue three sigma range.

e With the current data, no combination of @y, and as; is favoured. Only
for values of |me.| < 0.0001 eV and myightest S 0.01...0.001 eV it would be

~Y

possible to distinguish different values of as; and asg;.

The necessary precisions on |me.| and mygntest are unfortunately outside of the
range of any projected experiments known to the author. Nevertheless, the red
curves corresponding to fixed values of 7/n and x/n are often close to the blue
dashed three sigma range. With increasingly precise knowledge of the values

of the mixing angles, especially 6,3, the three sigma ranges will shrink, perhaps

6However, one can solve Eq. (3.42) either analytically or numerically to obtain solutions for
n, v, and z such that |m..| = 0.
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Figure 3.1: Effective Mass of Ov33 decay. «/n is varied between the lower
and upper 3 sigma bound, z/n = 0,0.1,0.2,...,1. For the definition of

a9 and agy cf. Egs. (3.40), (3.41).
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making it possible to draw conclusions about v/n and z/n without an overly

precise measurement of |m..| or of the mass of the lightest neutrino.

To recapitulate, the following assumptions went into producing these results:
There are 3 left-handed doublets of leptons, which in turn transform as a triplet
under a A(6n?) group. The neutrinos are Majorana fermions and A(6n?) is bro-
ken to a Zy X Z5 subgroup in the neutrino sector and to Z3 in the charged lepton
sector. The mixing angles are solely predicted from the aforementioned assump-
tions. There is a general CP symmetry consistent with A(6n?) which is broken
to one element in each sector. From this gCP symmetry the Majorana phases are

predicted.

If one of the mixing angles would be found to be incompatible with any of the
predictions this would mean that either A(6n?) is not broken to Z, x Z» or that
the flavour group is not A(6n?) or that one of the more fundamental assumptions
is wrong. The neutrinos could still be Majorana fermions as A(6n?) could still be

broken to a single Z, as discussed in the next chapter, or broken completely.

3.4 Conclusions

In this chapter the interplay of A(6n?) groups and general CP transformations
(gCP) in a direct model for three generations of Dirac charged leptons and Ma-
jorana neutrinos was examined. One finds that gCP transformations with X, €
e’ A(6n?) are physical CP transformations. Leaving a single gCP transformation
unbroken will constrain the mixing matrix such that all phases, Dirac and Majo-
rana are predicted and depend only on the A(6n?) group, the residual Zy x Z,
group (parametrised by ) and the residual gCP transformation (parametrised by
x) in the neutrino sector. Leaving two or more gCP transformations unbroken was

found not to be physically viable.!”

Comparing the predictions for the mixing angles with experimental data one finds
that the strongest constraint on v/n is imposed by the relatively precise measure-
ment of #13. The smallest group where 63 lies within three sigma of the central
value has n = 14. Furthermore, as the Majorana CP violating phases had been

predicted, predictions for neutrinoless double-beta decay were studied. One finds

1"This was only found because the residual general CP matrices that were analysed in this
paper did not fulfil the correct consistency condition, but one that is too loose and allowed for
some CP transformations to force mass eigenvalues to be zero or degenerate.
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that for inverted ordering, the predicted |m.| is within the reach of upcoming
experiments like GERDA III. (As is always the case in this scenario.) For normal
ordering, measuring |me.| down to 107%eV could exclude large regions of y/n and

x/n, depending on the value of dcp.

In conclusion, these results represent the first time that an infinite series of finite
groups has been examined for general CP transformations that are consistent with
it. The important role of A(6n?) among the subgroups of SU(3) with triplet ir-
reducible representations needs to be emphasized, especially in light of the results
which had appeared shortly after parts of the results in this chapter were pub-
lished in [2] that confirmed that A(6n?) groups are indeed among the last viable
flavour symmetries in direct models [60] . Moreover, as [60] does not consider CP
symmetries which in the opinion of the author of this thesis are entirely on the
same footing as pure flavour symmetries, the study in this chapter is not only the
first, but still remains the most complete study of direct models with general CP

of groups that are still experimentally viable.

If the Dirac CP phase is measured to differ from 0 or 7, or the mixing angles
deviate from the sum rules fo3 = 45° F 6,3/ V2, respectively, then this would mean
that in general a potential flavour group A(6n?) cannot be broken to Z, x Zs, as in
the case of the direct approach assumed here. However the semi-direct approach,
in which a Z5 subgroup is preserved, would remain a possibility for theories based

on A(6n?) and this is precisely the topic of the next chapter.



4

General CP and A(6n°) flavour
symmetry in semi-direct models

of leptons

In this chapter, a detailed analysis of A(6n?) flavour symmetry combined with a
general CP symmetry in the lepton sector in semi-direct models will be performed.
These results were previously published in [4] and discussed in [5]. The author
was sharing the computaional load with collaborator G.J. Ding and writing the

corresponding parts of [4]. In addition, [5] was completely written by the author.

This chapter is rather similar in methodology to the previous one and the difference
lies in the different choice of residual flavour symmetries that are embedded into
Gp. Again, flavour and CP symmetry are broken to different residual symmetries
G, in the neutrino and G; in the charged lepton sector, together with residual
CP symmetries in each sector. The mixing prediction for all possible breakings
of A(6n?) to G, = Zy with G| = Ky, Z,,p > 2 and to G, = K4 with G, = Z,
are analysed. Because of the large number of individual results, the more tedious
results will be exiled to an appendix, while this chapter only summarizes the most
important findings and small differences to the previous chapter. As the above-
mentioned breakings have a smaller preserved symmetry than the full Klein group,
predictions depend on additional undetermined parameters, which in most cases
depend on the reactor angle and the Majorana phases. Out of the large number
of combinations of charged lepton and neutrino residual symmetries, only five are

phenomenologically allowed and are studied in slightly greater detail.

69
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4.1 Introduction

The work in this chapter was mostly motivated by the fact that global fits of
lepton mixing parameters started showing a slight tendency towards a non-trivial
value of dcp [82, 78, 83]. While this could be caused by a statistical fluctuation
[84], a definite measurement confirming a non-trivial value of dcp would imme-
diately rule out all direct models with finite flavour groups, so in particular also
all direct models with A(6n?), which were the topic of the two previous chapters.
Measuring the Dirac CP phase is definitely one of the primary goals of the next
generation neutrino oscillation experiments. Furthermore, CP violation has been
firmly established in the quark sector and it would be surprising if no CP violation

was discovered in the lepton sector.!

As mentioned before, in semidirect models, not the entire minimally necessary
residual flavour symmetry is embedded into a larger flavour symmetry. Instead,
either only a Z, factor of the flavour group is preserved in the neutrino sector,
while the charged lepton sector is completely fixed by symmetry, or vice versa, a
Zy factor is preserved in the lepton sector, while the neutrino sector is completely
fixed. 2

One could argue that the most minimal extension of direct models is actually
given by semidirect models with residual CP symmetries, because in this way
fewer additional parameters that are not related to the breaking of the group
are introduced. In addition, residual CP symmetries also constrain the Majorana
phases, which currently may be far from being measured, however there is certain
hope that with Ov55 and v — v oscillation at least within the lifetime of the author
of this thesis these parameters will become accessible. Moreover, as fermion mass
terms always have some residual CP symmetry, one could adopt the viewpoint that
CP symmetries are on the same footing as flavour symmetries and that always some
CP symmetry might exist at high energies into which residual CP symmetries are
embedded.

In this chapter thus, after quickly recapitulating some notation, the analysis of
mappings facilitated by CP transformations within the flavour group will be ex-

tended, confirming a conjecture from the last chapter. The program GAP was used

! Although human intuition has not the best record concerning such things.
2There are also what could be called double-semidirect models, where in both sectors only a
Zy factor is preserved [85].
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to computationally generate the automorphisms of A(6n?) to obtain CP transfor-
mations consistent with the group. After this, residual CP transformations that

are consistent with residual flavour symmetries are given. 3

Concrete semi-direct Sy flavour models with a general CP symmetry had been
constructed in Refs. [30, 72, 86, 87, 67, 83, 71| where the spontaneous breaking of
the Sy ¥ Hep down to Zy x CP in the neutrino sector was implemented. Other
models with a flavour symmetry and a general CP symmetry can also be found in
Refs. [89, 90, 68, 66]. The interplay between flavour symmetries and CP symme-
tries has been generally discussed in [73, 64]. In addition, there are other theoreti-
cal approaches involving both flavour symmetry and CP violation [91, 92, 93, 65].
The work presented here follows on from a similar analysis of semi-direct models
based on the group A(96) [94]. While this paper was being prepared, a study of
general CP within the semi-direct approach appeared based on the infinite series
of finite groups A(6n?) and A(3n?) [95]. Where the results overlap for A(6n?) they
appear to be broadly in agreement, although the case that the residual symmetry
Zy x CP is preserved by the charged lepton sector was not considered in [95].
This work focuses exclusively on A(6n?), and, apart from considering extra cases
not previously considered, presents the numerical results in a quite different and
complementary way. Many of the numerical results contained here, for example,
the predictions for neutrinoless double beta decay, were not previously considered
at all.

The remainder of this chapter is organised as follows. In Section 4.2 the interplay of
general CP transformations with A(6n?) is analysed. In Section 4.3 lepton mixing
predictions in neutrino-semidirect models with residual symmetry Zs x C'P in the
neutrino sector are given. In Section 4.4 lepton mixing predictions in charged-
lepton-semidirect models with residual symmetry Zs x C'P in the charged lepton
sector are analysed. The phenomenological predictions of the neutrinoless double
beta decay for all the viable cases are presented in Section 4.5, Finally Section 4.6

concludes this chapter.

3Where unfortunately, again not the consistency conditions as discussed in section 1.5.1 were
used, resulting in too many CP candidates. This, however, does not invalidate the mixing results
obtained, as inconsistent residual CP symmetries can never produce a physically correct mass
spectrum.
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4.2 General CP with A(6n?)

As usual by now, consider a theory with both flavour symmetry G and general
CP symmetry at high energy scale. A field multiplet ¢, transforms under the

action of the flavour symmetry group G as

Pr 'i> pr(g)gpra g € GFv (41)

where p.(g) is the representation matrix of g in the representation r and a general

CP transformation acts on the field as:
cpr .
Pr Xr@r(‘ru)' (4'2)

The general CP symmetry has to be consistent with the flavour symmetry. In
[96, 70, 73, 30] it has been argued that the general CP symmetry can only be
compatible with the flavour symmetry if the following consistency equation is

satisfied:
er:(g)X;r = pr(gl)a 979/ € Gf' (4'3)

Hence a general CP transformation is related to an automorphism which maps ¢
into ¢’ as before. Furthermore, it was recently shown under some (fairly limiting)
assumptions that physical CP transformations have to be given by class-inverting
automorphism of G [64]. In this chapter the flavour symmetry is given by a
A(6n?) group for some n The group theory of A(6n?) is presented in Appendix 7.4.
With the help of the computer algebra program system GAP [44, 45, 46, 47] the
automorphism group of the A(6n?) until n = 19 was studied.*. The results are
collected in Table 4.1. One finds that the outer automorphism groups of members
of the A(6n?) series are generally non-trivial except for A(6) = S5 and A(24) = S,.
However, there is only one class-inverting outer automorphism for n # 3Z while no
class-inverting automorphism exists for n = 3Z. In fact, one finds a class-inverting

automorphism wu acting on the generators as:
a—a?, br—=b c——d, d—c. (4.4)

which confirms an assumption made in the previous chapter. It can be checked

that for n # 37Z this automorphism u maps each conjugacy class onto the class of

4The A(6n2) group with n > 19 are not available in GAP so far.
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inverse elements. In the case of n = 3Z,

2n?

u 2 2 -7 2 2 T - 2 2 T
=i H%Cé g (icg( )) — e r=01,2. (45)

3 3

Hence both %C’él) and %C’f) are not mapped into their inverse classes although

the latter is still true for the remaining classes. As a result, one can conjecture
that the A(6n?) group with n # 3Z admits a unique class-inverting automorphism
given by Eq. (4.4). One can nevertheless apply CP transformations obtained for
n # 37 to examples with n = 37 to see what kind of constraints are obtained, as,
although it is unclear what their precise relation to this particular group is at high
energies, they are definitely CP transformations. When it doubt, assume n # 37.
The general CP transformation corresponding to w, which is denoted by X, (u),
would be physically well-defined, as suggested in Ref. [64]. Its concrete form is

fixed by the consistency equations as follows:

(u) px(
Xe (u) pr(0) X[ (u) = pe (u (b)) = pr (b)
Xe (u) pi(e) X (u) = pe (u(€)) = pu (d)
Xy (u) pi(d) X (u) = pr (u(d)) = pe () (4.6)
In our basis, presented in section 7.4, we can determine that
X (u) = pr(b) - (4.7)

Furthermore, including inner automorphisms, the full® set of general CP transfor-

mations compatible with A(6n?) flavour symmetry is
X, =pe(g), g€ A6n%). (4.8)

Consequently the general CP transformations are of the same form as the flavour
symmetry transformations in the chosen basis. In particular, we see that the
conventional CP transformation with p,(1)=1 is allowed. As a consequence, all
coupling constants would be real in a A(6n?) model with imposed CP symmetry
since all the CG coefficients are real, as shown in Appendix 7.4.1. In the case of
n = 37, the consistency equations of Eq. (4.6) are also satisfied except when r is

the doublet representations 25, 23 or 24. Hence the general CP transformations

5class-inverting
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n GF GAP-Id Inn(GF) Out(GF) Num.
2 [A(24) = S, [24,12] Sy 7 1
31 AG4 [54,9] (Zs % Z3) X Zs S 0
1 A(9) [96,64] A(96) Zs 1
5 A(150) [150,5] A(150) Zs 1
6 | A(216) [216,95] (Zs < AL) % Zs Ss 0
71 A(204) [294,7] A(294) Zs 1
8| A(384) [334,568] A(384) K. 1
9 A(486) [486,61] ((Zg X Z3) X Z3) X Zy Z3 x S3 0
10| A(600) [600,179] A(600) 7 1
11| A(726) [726,5] A(726) Z1o 1
12 A(364) [864,701] (Zs x (Zo % Z3) % Z3)) % Z2 | Dro 0
13 A(1014) [1014,7] A(1014) Z1s 1
14| A(1176) [1176,243] A(1176) Zs 1
15 A(1350) [1350,46] (Zg X ((Z5 X Z5) X Zg)) X ZQ Z4 X Sg 0
16| A(1536) | [1536,408544632] A(1536) Zax 2y | 1
17| A(1734) [1734,5] A(1734) Z16 1
18| A(1944) [1944,849] (Zis % Zo) X Z3) X Zs Zyx S5 | 0
19| A(2166) [2166,15] A(2166) Z1s 1

Table 4.1: The automorphism groups of the A(6n?) group series, where
Inn(Gr) and Out (Gr) denote inner automorphism group and outer auto-
morphism group of the flavour symmetry group G respectively. The last
column gives the number of class-inverting outer automorphisms. Note
that the inner automorphism group of A(6n?) with n = 3Z is isomorphic

n .2n

to A(6n?)/Zs since its center is the Z3 subgroup generated by ¢3ds .

in Eq. (4.7) can also be imposed on a model with n = 37 if the fields transforming

as 29, 23 or 24 are absent.

4.3 Lepton mixing with residual symmetry 7, x

C P in the neutrino sector

In the following, all lepton mixing patterns in neutrino-semidirect models, ie. where
G, ~ Zs, will be listed. Examples had been considered in [25, 72, 86, 87, 71, 66, 94].
The full symmetry group is A(6n?) x Hep, which is broken down to G; x H: p and
Zy x H¢.p residual symmetries in the charged lepton and neutrino sectors respec-
tively. G is usually taken to be an abelian subgroup of A(6n?) of order larger than

2 to avoid degenerate charged lepton masses. The misalignment between the two
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residual symmetries generates the PMNS matrix. Again, only residual symmetries
are considered and how the required symmetry breaking is dynamically achieved is
not discussed, as there are generally more than one mechanism and many possible
specific model realizations. One column of the lepton mixing matrix can be fixed
and the resulting lepton mixing parameters are generally constrained to depend
on only one free parameter in this approach. As usual the three generation of the
left-handed lepton doublet fields are assigned to the faithful representation 3,
which is denoted by 3 in the following.

4.3.1 Charged lepton sector

From a residual symmetry G; follows that the charged lepton mass matrix is
invariant under the transformation ¢;, — p3(g;)¢r, where ¢ stands for the three
generations of left-handed lepton doublets, g; is the generator of Gy, and ps(g;) is
the representation matrix of g; in the triplet representation 3. As a consequence,

the charged lepton mass matrix satisfies

p(gymimips(gi) = mfmy, (4.9)

where the charged lepton mass matrix m; is defined in the convention, ¢“m;¢;. Let

us denote the diagonalization matrix of mzrml by Uy, i.e.

UlmlimU, = diag (m2, mi, m2) =m; . (4.10)
where m., m, and m, are the electron, muon and tau masses respectively. Sub-
stituting Eq. (4.10) into Eq. (4.9), we obtain

m; [UZTIO3(QZ)UZ} = [UIT/)3(QZ>UI} m; . (4.11)

One can see that U, lTp3 (91)U; has to be diagonal. Therefore U; not only diagonalizes
mjml but also the matrix p3(g;). As a result, the unitary diagonalization matrix
U, is completely fixed by the residual flavour symmetry G; once the eigenvalues of
p3(g;) are non-degenerate. In the present work, only the case that G; is a cyclic
subgroup of A(6n?) is considered. Hence the generator g; of G; could be of the
form c*dt, beddt, ac’dt, a’cidt, abcsdt or a’be*dt with s, t = 0,1,...,n — 1. If the
eigenvalues of p3(g;) are degenerate such that its diagonalization matrix U; can
not be fixed uniquely, one could extend G, from a single cyclic subgroup to the

product of several cyclic subgroups. This scenario is beyond the scope of this work
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except that the simplest K4 extension is included. (As has been before, in [97].)
Given the explicit form of the representation matrices listed in Appendix 7.4,
the charged lepton diagonalization matrices U; for different cases of G; can be
calculated, and the results are summarized in Appendix 7.1.2. Since the charged
lepton masses can not be constrained at all in the present approach (in other word,
the order of the eigenvalues of ps3(g;) is indeterminate), U; can undergo rephasing

and permutations from the left.

4.3.2 Neutrino sector

In the present work, we assume the light neutrinos are Majorana particles. As a
consequence, the residual flavour symmetry G, in the neutrino sector can only be
a Ky or Zy subgroup. The phenomenological consequence of G, = K, has been
studied in Refs. [2] by two of us. Here we shall concentrate on G, = Z; case with
general CP symmetry which allows us to predict CP phases. The Z; subgroups of
A(6n?) can be generated by

be*d®,  abc?, a*bd?, x,y,2=0,1...n—1 (4.12)

and additionally
Cn/27 dn/2, Cn/2dn/2 (413>

for n = 2Z. Tt is notable that the Zy elements in Eq. (4.12) and Eq. (4.13) are

conjugate to each other respectively:

() bemd® (d?) ™ = b= (b d) betd® (beVd®) T = be g

(ac”’d‘s) bc®d® (ac”d‘s)*l = a?bd T+, (aZCVd‘S) bc*d” (aZCWd‘S)_1 = abe T
(abd®) betd” (abc”d‘s)f1 = a?bd* 077, (abd’) be*d” (aQbCVd‘S)_l = abc* 077
(4.14a)
(c7dd) /2 (cvd‘s)_1 = 2, (b d) /2 (bc”d‘s)f1 = "2,
(ac”d‘s) 2 (ac”d‘s)_1 = V22, (CLQC“’d‘S) /2 (a2c7d5)_1 = d"?,
(abc’yd‘s) 2 (abc”d‘s)_l =2 (aQbCWd‘;) 2 (achwdé)_l = 22
(4.14D)

The residual general CP symmetry should be compatible with the residual Z5 sym-

metry in the neutrino sector, and therefore the corresponding consistency equation
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should be satisfied, i.e.,

X)X, = pe(g), g€ Zo, (4.15)

which means that the residual CP and residual flavour transformations are com-
mutable with each other [30, 72] in the neutrino sector. For a given solution
X, of Eq. (4.15), one can check that p.(g)X,, is also a solution. The residual
CP symmetries consistent with the Z, elements in Eq. (4.12) and Eq. (4.13) are
summarized as follows. Note that residual CP symmetries with permutations are
those that fulfil constency condition Eq. (4.3), but not the stricter actual condition
Eq. (1.122).

e g=0bc"d", r=0,1,2...n—1

Xoe = pe(d™77), pe(bc’d™), v=0,1,2...n—1. (4.16)

g=uabcy, y=0,1,2...n—1

Xy = pe(d? ™)), pe(abc’d®), v=0,1,2...n—1. (4.17)

g=a*d*, z=0,1,2...n—1

Xor = pe(ZT2d%), pp(a®bc®d®), 6=0,1,2...n—1. (4.18)
o g="?
X = pe(Ad), pe(abdd®), ~,6=10,1,2...n—1. (4.19)
P E
X = pe(Ad), pe(a®bd®), ~,6=0,1,2...n—1. (4.20)
o g =c"2dV?
X = pe(Ad), pe(bc?d®), 7,0 =0,1,2...n—1. (4.21)

As we shall demonstrate in the following, the residual CP symmetry should be
symmetric to avoid degenerate lepton masses. Then the viable CP transformations
would be constrained to be py(abc’d*), pr(a?bc®d’) and p,(bc’d~7) together with
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pe(c7d®) for g = ™2, d"/? and ¢"/2d™? respectively. The full symmetry A(6n?) x
Hep is broken down to Z; x Hfp in the neutrino sector. The invariance of the
light neutrino mass matrix m, under the residual flavour symmetry G, = Z, and

the residual CP symmetry H¢p leads to

pg(gl/)mVPS(gl/) =m,, g, €2y,
Xlm, X3 =m", X, € Hlp, (4.22)

1284

from which we can construct the explicit form of m, and then diagonalize it.
The Majorana mass matrices that fulfil these constraints and the diagonalisation

matrices U, that arise are listed in Appendix 7.1.1.

4.3.3 Predictions for lepton flavour mixing

With the possible forms of the neutrino and charged lepton mass matrices and
their diagonalization matrices worked out in previous sections, the lepton flavour

mixing matrix candidates are of course given by
Upnns = UjU, . (4.23)

Because the ordering of the charged-lepton and neutrino masses is not fixed by
the residual symmetries, the PMNS matrix Upy/nys is only determined up to in-
dependent permutations of rows and columns. From Eqs. (4.14a,4.14b), follows
that the residual Z, symmetries generated by bc*d®, abc?, a?bd* are conjugate to
each other, and the same is true for the Z, symmetry generated by ¢*/2, d*/? and
c/2d™/2. TIf a pair of residual flavour symmetries (G?,, G}) is conjugated to the pair
of groups (G,,G;) under the group element g € A(6n?), then both pairs lead to
the same result for Upy/ys even after the general CP symmetry is included [71].
As a consequence, one only needs to needs to consider the representative resid-
" and Gy = (¢*d), (besdt), (acsdt), (abesd!) and

(a*bc*d'). Because the residual flavour symmetry in the neutrino sector is taken

ual symmetries G, = 2% Z¢

to be a Z, instead of a K subgroup, only one column of the PMNS matrix can be
fixed up to permutation and rephasing of the elements in this scenario. The form
of the fixed columns for different choices of the residual flavour symmetry is sum-

marized in Table 4.2. The present 30 confidence level ranges for the magnitude of
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T dT Cn/
G, = zbd G, = 75"
0 0
G = (ed!) o I P 0| x
1 1
0 0
G, = (befd) cos (=22 m) | X \/Lﬁ -1 |X
sin (#-227) 1
sin (S;%T) 1
G, = (ac’d") 2| cos(2—=2m) |/ \/Lg 1| v
cos (X + =Z7) 1
1 0
G, = (abcd") 3 1 v 01X
—V2 1
1 0
G, = (a*besd) 2 1 v 1 -1 | X
V2
-2 1

Table 4.2: The form of the column of the PMNS matrix which is fixed
for different residual symmetries G, and G;. The symbol “X” denotes
that the resulting lepton mixing is ruled out since there is at least one
zero element in the fixed column, and the symbol “v” denotes that the
resulting mixing is experimentally still allowed. Note that for G, = 2%
the cases of G; = (abc*d’) and G; = (a?bc*d’) are not independent as
b(abc*d') b = a?bc™td~* and b (bc*d®) b = bc~*d°.

the elements of the leptonic mixing matrix are given by a global fit [78]:

0.789 — 0.853  0.501 — 0.594  0.133 — 0.172
|Upansllse = [ 0.194 — 0.558  0.408 — 0.735  0.602 — 0.784 | , (4.24)
0.194 — 0.558  0.408 — 0.735  0.602 — 0.784

for normal ordering of the neutrino mass spectrum, and a very similar result
is obtained for inverted ordering. No entry of the PMNS matrix can be zero.
As a result, the mixing patterns with a zero element have been ruled out by
experimental data of neutrino mixing. In the following, the viable cases in which
no element of the fixed column is zero are presented, and the predictions for the
lepton flavour mixing parameters will be investigated for the various residual CP
symmetries compatible with residual flavour symmetry. Only the mixing matrices
as such will be given with some discussion and with more detailed results listed in
Appendix 7.1.3.
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(D) G = (acd'), Gy = Z, X = {pelcd ), py (b d )}
The PMNS matrix is found to be

UIIDMNS =
) V2sin 1 €?2 cos 0 — /2 sin 6 cos 1 €?2 gin @ + /2 cos @ cos V1
7 V2 cos (2 — 1) — €2 cos @ — /2sin O sin (2 —¢1) — €2 gin f 4+ /2 cos f sin (2 — 1) ,
V2 cos (%+tp1) €2 cos 0 + /2 sin 0 sin (%+tp1) eiP2 siHOfﬁCOSQSin(%Jrgol)
(4.25)
where o 3 )
sS—x —s—9o(y+=x
Y1 = n T, Y2 = n . (426)

These two parameters ¢ and o are interdependent of each other, and they can
take the discrete values

1 2 n—1
p1=0,—7,£—m, ... &
n n n

1 2 2n — 1
w9 mod 27 =0, —m, —7, ... n
n'n

™,

—. (4.27)

Now concerning the permutations of the rows and the columns, the PMNS matrix
can be multiplied by a 3 x 3 permutation matrix from both the left- and the
right-hand side. There are six permutation matrices corresponding to six possible

orderings of rows (or columns):

10 1 00 0 1
Pios = 010 ]|, Ps2= 0 01|, Pisz= 1 0 ,
0 0 010 0 0
010 0 0 1 0 0
Pyagr=10011], Pa2=111001], Peor=]01
1 00 010 1 0

(4.28)

The atmospheric mixing angle 63 becomes m/2 — a3, the Dirac CP phases dcp
becomes 7 4 dcp and the other mixing parameters are unchanged if the second
and third row of the PMNS matrix are exchanged. The permutation of the second
and third row will not be given explicitly in the following. The PMNS matrix can

be rearranged as follows:

I1st 77l I2nd I 1,3rd I
UPMNS - UPMNS7 UPMNS - P231UPMNS7 UPMNS - P312UPMNS :
(4.29)
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The above three arrangements are related:

n . s ™ .
U£7]%4]C\lfs(97 ©1, 902) = dlag(L 17 _1)U£,;4§VS<W - 67 -+ ©1, 902)d1ag(17 17 _1>7

3
T . S m 4
UII;]:\S/[ifS(e? Y1, 902) = dlag(_L 17 1)UIID’]%4§VS(_97 _g + ¢1, ¢2)dlag(17 _17 1) )
(4.30)

where the phase factor diag(+1,+1,41) can be absorbed by the lepton fields.
Hence it is sufficient to only discuss the first PMNS matrix U é’jjfvs in detail,
the phenomenological predictions for the other two can be obtained by variable

substitution.

Taking into account measured values of 615 and 3 [78], we obtain the constraint

on p; as
0.4177 < 1 < 0.583, or —0.5831 < ¢ < —0.4177, (4.31)

which indicates that ¢; is around 4 /2. This mixing pattern can accommodate
the present neutrino oscillation data very well. The 30 allowed values of the lepton
mixing parameters for n = 2,3,...,100 are displayed in Fig. 4.1 and Fig. 4.2.
Analytic expressions for these parameters can be found in appendix 7.1.3. In the
case that n is divisible by 3, the doublet representations 24, 23 and 24 are assumed
to be absent such that the general CP symmetry in Eq. (4.8) is consistently
defined. If n is divisible by 3, the three permutations Upyiwg, Uprieg and Ui s
give rise to the same predictions for the mixing parameters. The observed values
of the three lepton mixing angles can not be achieved for n = 3. In case of n = 2
and n = 4, both the atmospheric mixing angle #»3 and the Dirac CP phase d¢p are
maximal while the Majorana phases are zero. It is remarkable that the three CP
phases can take any values for sufficiently large n, while 6,5 is always constrained
to be in the range of 0.313 < sin? 65 < 0.344. Hence this mixing pattern can be
tested by precisely measuring the solar mixing angle ;5. Notice that 6,5 can be

measured with rather good accuracy by JUNO experiment [98].

Correlations between mixing parameters for n — oo and n = 8 are shown in
Fig. 7.1 where only the phenomenologically viable cases are given for which the
observed values of 015, 613 and #53 can be accommodated for at least some values

of the parameter 6.

The vector /2/3 (sin ¢y, cos (7/6 — 1) , cos (1/6 + ¢1))" enforced by the residual

Zy symmetry could also be the second column of the PMNS matrix. Ignoring
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Figure 4.1: Numerical results for case I, 1st-3rd ordering with the PMNS
matrices given in Eq. (4.29): allowed values of sin? 65, sin A3 and sin® Oy
for different n, where the three lepton mixing angles are required to lie
in their 30 ranges. The 1o and 30 bounds of the mixing parameters are
taken from Ref. [78].

exchanging the second and the third rows, three rearrangements are possible,

L4th 1 1,5th I I1,6th I
UPMNS - UPMNSP213; UPMNS - P231UPMNSP2137 UPMNS - P312UPMNSP213 :

(4.32)
Analogously to Eq. (4.30), these three forms of the PMNS matrix are related by
parameter redefinition as follows
. ™ .
U#]?;%S(ev ¥1 @2) - dlag(L 17 _1)U]£7]4\l4t’]1\/5(7r - '97 g + 1, 902)dla’g<17 17 _1)7
. m .
UIGDZ\}ZNS(ev $1; 902) = dlag(_17 L, 1)U1{’7]Z\14H11VS(_97 _§ + ¢, 902)d1ag(_1’ L, 1) :
(4.33)
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Figure 4.2: Numerical results in case I, 1st-3rd ordering with the PMNS
matrices given in Eq. (4.29): the possible values of [sindcp|, [sin ao| and
|sin a4, | for different n, where the three lepton mixing angles are required
to lie in the 30 ranges. The 1o and 30 bounds of the mixing parameters
are taken from Ref. [78].
In this case, one finds the following relation,
3sin? 015 cos? O3 = 2sin” oy , (4.34)

which yields 0.614 < |siny| < 0.727 at 30 confidence level, and therefore the

parameter ¢; is to be in the range

o1 € £ ([0.2107,0.2597]) U [0.7417,0.7907]) .

(4.35)
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Figure 4.3: Numerical results in case I, 4th-6th ordering with the PMNS
matrices given in Eq. (4.32). The red filled regions denote the allowed
values of the mixing parameters if we take the parameters ¢; and @y to
be continuous (which is equivalent to taking the limit n — 00), where 6,5
and 63 are required to lie in their 30 ranges. The resulting predictions
for 0,3 are far beyond its 30 range. The 10 and 30 bounds of the mixing
parameters are taken from Ref. [78].

For the representative values /4 and +37/4 of 1, the relatively small 0,3 leads
to

s 3T T s 3T T 3T 3T
0) ~(+—,0, — +— — +—.0,— +— —). (4.36
(‘101a902> ) ( 4a ) 4)> ( 477‘"4)7 ( 4? >4>> ( 4>7T? 4) ( )

Accordingly the atmospheric mixing angle 03 would be
1 1
sin? fyg ~ iChe V3) ~0.067, or  sinf ~ 12+ V3) ~0.933, (4.37)

which is not compatible with the global analysis of neutrino oscillation data [78].
As a result, the three lepton mixing angles can not be accommodated simultane-
ously in this case, and this mixing pattern is not viable. The detailed numerical
results are presented in Fig. 4.3. The correct values of the atmospheric mixing

angle really cannot be achieved for realistic 615 and 6;3.

Finally the fixed column +/2/3 (sin ¢y, cos (7/6 — ¢1) ,cos (1/6 + ¢1))" can be
placed in the third column. Using the freedom of exchanging the rows of the
PMNS matrix, three equivalent configurations are found,

pLith

I 1,8th - 7l 1,9th . I
Puns = UpnnsPs21, Upyinvs = PestUppns P21, Upyns = P312Uppvs P21
(4.38)



4 General CP and A(6n?) flavour symmetry in semi-direct models of leptons 85

which are related by

. ™ .
Ufl;i/;ijl\fs(ea ©1, 902) = dlag(L 17 _1)U}I:"]T4t}]LVS<7T - 67 -+ ©1, %02)dlag(_17 17 1)7

3
. T .
U]I;]g\)/;}]l\fs(ea ©1, 902) = dlag(_L 17 1)U1137]T4ﬁ]LVS(_97 _g + ©1, ¢2)d1ag(17 _17 1) .
(4.39)

For the 30 interval 1.76 x 1072 < sin® #;3 < 2.95 x 1072 [78], one finds
0.378 < sin® fy3 < 0.406, or  0.594 <sin?fy3 < 0.622. (4.40)

This mixing pattern can be directly tested by future atmospheric neutrino oscilla-
tion experiments or long baseline neutrino oscillation experiments. If 3 is found
to be nearly maximal, this mixing would be ruled out. Furthermore, the precisely
measured 63 leads to 0.162 < |sin ;| < 0.210, and therefore p; has to be in the

following range
1 € £([0.05197,0.06757| U [0.9337, 0.9487]) | (4.41)

which implies that ¢ should be rather close to 0 or 7. To reproduce the observed
value of the reactor mixing angle, the two smallest values for n are 5 and 10, i.e.
at least A(150) or A(600) is needed to produce viable mixing in this case. The
admissible values of sin® 6,3 and sin 63 for n = 5, 10, 20 and 30 are plotted in
Fig. 7.2. Furthermore, the variation of the allowed values of the lepton mixing
parameters with respect to n are shown in Fig. 4.4 and Fig. 4.5. Compared with
previous cases, both 053 and 63 are predicted to take several discrete values until
n = 100 in this case. It is interesting that the Majorana phase o, is constrained
to be in the range of 0 < [sinaj,| < 0.91 while both dcp and ag; can take any

values between 0 and 27 for large n.

(I0) Gy = (abe'd), Gy = ZEF, Xw = {palcd ), po(be1d )}

In this case, the PMNS matrix is determined to be

—sinf — v/2¢"3 cos # 1 cos O — v/2¢3 sin 0
11 1 : i ips o
UPMNS:§ — sin 0 + 1/2¢%3 cos 0 1 cosf +v2e#3sinf |, (4.42)
—+/2sin 6 -2 V2 cos b

or the one obtained by exchanging the second and the third rows, where the

parameter 3 is
37 +2s—t+ 2z
— .

n

Y3 = (4.43)
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Figure 4.4: Numerical results in case I, 7th-9th ordering with the PMNS
matrices given in Eq. (4.38): the allowed values of sin® 6o, sinfy3 and
sin’ fy3 for different n, where the three lepton mixing angles are required
to lie in their 30 ranges. The 1o and 30 bounds of the mixing parameters
are taken from Ref. [78].

It can take 2n discrete values:

1 2 2n —1
w3 mod 27 =0,—m, —m,..., .y (4.44)
no'n n

The eigenvalues of abc®d® would be degenerate for ¢ = 0 such that the unitary
transformation U; can be made unique. If that is the case, one could choose
the residual symmetry to be G; = Kicn/Z’abcs) which leads to same PMNS ma-
trix shown in Eq. (4.42) with ¢ = 0. This mixing pattern has one column
(1/2,1/2,-1/ \/§)T which is the same as the first (second) column of the bimaxi-
mal mixing up to permutations. In order to in accordance with the experimental
data, the fixed vector (1/2,1/2, —1/\/§)T can only be the second column of the
PMNS matrix.
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Figure 4.5: Numerical results in case I, 7th-9th ordering with the PMNS
matrices given in Eq. (4.38): the allowed values of [sin d¢cp|, [sin ae;| and
|sin a4, | for different n, where the three lepton mixing angles are required
to lie in their 30 ranges. The 1o and 30 bounds of the mixing angles are
taken from Ref. [78].

The following correlation is found:
4sin? 015 cos® 013 = 1, (4.45)

which leads to 0.254 < sin?6#;5 < 0.258 for the measured value of the reactor
mixing angle [78]. Therefore sin® ;5 is predicted to be very close to its 3o lower
bound 0.259 [78] in this case. Furthermore, the expression for sin® 63 in Eq. (7.46)
yields

1
(3 — v/ 1+ 8cos? 4,03> < sin? 6,5 < 3 <3 + v/ 1+ 8cos? cp3> ) (4.46)

1
8
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In order to be in accordance with experimental data, the parameter ¢3 has to be

in the range
@3 € [0,0.1357] U [0.8657, 1.1357| U [1.8657, 27| . (4.47)

The allowed values of the mixing parameters with respect to n are shown in
Fig. 4.6 and Fig. 4.7, and the correlations between them are plotted in Fig. 7.3,
where the 30 lower bound of sin? 6,5 is chosen to be 0.254 instead of 0.259 given
in Ref. [78]. The values of @3 = 0, 7 are always acceptable, and the corresponding
Dirac and Majorana CP phases are conserved. Note that only CP conserving
cases are allowed for n = 2,3,...,7. Moreover, the CP violating phases dcp and
ag; are predicted to fulfil [sindcp| < 0.895 and [sin ag| < 0.545 while of; is not

constrained at all for large n.

n/2

(III) G, = (ac*d), G, = Z5"", Xyp = pe(c7d°)

This case is only possible if n is divisible by 2, and the PMNS matrix takes the

form
) €1 cos @ — €5 sin @ 1 €1 gin @ + %5 cos @
Uil e = 7 we¥tcos — we®ssingd 1 we®isind + w?es cosl |
w2et cos ) — wesinf 1 w?e™* sin f + we's cos
(4.48)
where o+ 2 20 2t
+0+2s -+
A I (4.49)
which can take the values
1 2 2n —1
04, 5 mod 27 = 0, ST T nn . (4.50)

Agreement with experimental data can be achieved only if the vector (1/v/3,1/v/3,1/v/3) g
is placed in the second column, which results in so-called TMy mixing [99]. There

are three independent arrangements up to the exchange of the second and the

third row,
II11st _ prIll IIT2nd 11 I113rd _ 11
Upnins = Upnns: Upnins = P231Uppns: Upnins = Ps12Uppns -

(4.51)



4 General CP and A(6n?) flavour symmetry in semi-direct models of leptons 89

0.5+ T 0.5—F—T—"—T T T T T
s mNOlor| 3 E mNO 1o ]
0.45:— NO 30 3 0.45:— E
0.4F —' 0.4F 3
o~ o~ - -
) < F E
L 0.35F 3 L o3sF E
7] k%)
0.3 0.3
0.25F -ttt t et e 3 0,25 L L U L L L L L L L L LU LU LU L L
0.2 1 1 P 0.2 1 1 1 1
5 10 15 20 20 40 60 80 100
n n
0.2 ; ; AR 0.2 : : : :
mNOlr| ] mNO 1o
0.18F NO 3o 3 0.18F NO 30 3
~ 0.16f ~ 0.16f
— —
< <
= F £ F
@ 0.14F @ 0.14F
0.12F . 0.12F 3
0.1 P S S S N TN SN T N A S S W O.l- PR R TR TR [ TR T TN SR NN TR S TR TR NN TR S SR T S T S S S
5 10 15 20 0 20 40 60 80 100
n n
g T e s ol
C mNOlor| 7 r mNO 1o
o7 NO3s| ] 07 NO 3¢
r =10 1o 1 C =10 1o
F 1 I 1 r II I
Q 0.6 @ 0.6
) )
N (Y]
= =
? 05 » 05
0.4 0.4
v 1 11 Lt
| N P T | P R B A R
0 5 10 15 20 0 20 40 60 80 100
n n

Figure 4.6: Numerical results in case II: the allowed values of sin?#;,,
sin f,5 and sin? A3 for different n, where the three lepton mixing angles
are required to lie in their 30 ranges (the 30 lower bound of sin®#y, is
chosen to be 0.254 instead of 0.259 given in Ref. [78]). The 1o and 3o
bounds of the mixing parameters are taken from Ref. [78].

They are related as follows,

2T 2
I112nd 111,
UPMZQ\;?S (0, ¢4, 05) = UPM}VS;(Q P4+ 3 Y5 — ?),
T s 2 27
Upiins (0: @1 05) = Upiins(6, 04 — 05+ 35) (4.52)
It is enough to study the phenomenological predictions of Uf;%,}vsé

All mixing parameters depend on the combination 5 — ¢4 except [tan ag|. Com-

mon to all TM, mixing, #13 and 0,5 are related with each other via:

3cos? O13sin Oy = 1. (4.53)
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Figure 4.7: Numerical results in case II: the allowed values of [sindcp|,
|sin a1 | and [sin o, | for different n, where the three lepton mixing angles
are required to lie in their 30 ranges (the 3o lower bound of sin? 6, is
chosen to be 0.254 instead of 0.259 given in Ref. [78]). The 1o and 30
bounds of the mixing parameters are taken from Ref. [78].

Therefore 65 admits a lower bound sin®6;, > 1/3. Given the 30 interval of
013 [78], we find 0.339 < sin® ;5 < 0.343. This prediction can be tested at JUNO
in the near future. In addition, #,5 and 63 are correlated as follows

3 COS2 013 Sil’l2 923 -1 \/g
+ 7 ta

= — . 4.54

N | —

The expression for 013 in Eq. (7.47) implies that

£(1 —|sin26]) < sin® 63 < £(1 + |sin 26]),
(1 = Jcos(ps — @a)|) < sin® 013 < 5(1 + [cos(ips — pa)l) (4.55)
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Figure 4.8: Numerical results in case III: the allowed values of sin® 6,
sin @13 and sin? B3 for different n, where the three lepton mixing angles
are required to lie in their 30 regions. The 1o and 30 bounds of the
mixing parameters are taken from Ref. [78]. Note that n should be even
in this case.

which yields

6 € [0.183m,0.3177] U [0.6837,0.8177] ,
05 — 4 € [—0.135m,0.1357] U [0.865m, 1.1357] . (4.56)

The allowed values of the mixing parameters for different n are shown in Fig 4.8
and Fig. 4.9. The case of ¢4 = 5 is always viable for any n, and the resulting
3 and dcp are maximal while the Majorana phase aj; is trivial. Correlations
among the mixing parameters are plotted in Fig. 7.4. The three CP phases can

take any values for large n.

n/2

(IV) G, = {ac*d"), G, = Z§""", X,r = pr(abc?d?)
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Figure 4.9: Numerical results in case III: the allowed values of [sindcp|,
|sin a1 | and [sin o, | for different n, where the three lepton mixing angles
are required to lie in their 30 ranges. The 10 and 30 bounds of the mixing
angles are taken from Ref. [78]. Note that n needs to be even in this case.

In this case, the PMNS matrix is of the form

iv/2e7sin (95 — %) 1 V2e7 cos (g — £
Uhivs =75 | VEcos(=g4F) 1 — Vsl — 3+
; —iv2e¥7cos (pg — 5 — %) 1 V267 sin (o5 — § — §)
(4.57)
with
PRk PR i L (4.58)

The constant vector (1 / V3,1 / V3,1 / \/g)T must be the second column to account
for the measured values of the lepton mixing angles. The PMNS matrices cor-

responding to other ordering of rows and columns are related to the above one
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through redefinition of the free parameter ¢. This case differs from case III in
the residual CP symmetry, and the resulting PMNS matrix in Eq. (4.57) is still

of TMy form. The associated lepton mixing parameters read as:

1
2 — cos(¢p — 2¢¢)

1
sin2 913 = g []. —+ COS(gb — 2306” s SiIl2 912 =

1 —sin (¢ — 296 + 7/6)
2 — cos(¢ — 2¢p)
tandcp = tanaly;, = Jop =0, [tan ;| = [tan(2¢7)] . (4.59)

sin2 023 =

The contribution of g can be absorbed into the free parameter ¢ via redefinition
® — ¢ + 2¢g, the reason for this is that the PMNS matrix in Eq. (4.57) and the
resulting mixing parameters in Eq. (4.59) depend on the combination ¢ — 2.
Regarding to the CP violating phases, both dcp and of, are always conserved
while a1 can be any value of 0, %7‘(‘, %7?, ey %W in this scenario. Furthermore,

the three mixing angles are strongly related with each other as follows:

1 1
3 COS2 013 SiIl2 612 = 1, sin2 923 = 5 + 5 tan 013 V 2 — tan2 913 . (460)

For the best fitting value of sin?#;3 = 0.0234 [78], the solar and atmospheric

angles are determined to be
sin® 015 ~ 0.341, sin® 03 ~ 0.391 or 0.609, (4.61)

which are compatible with the experimentally allowed regions. These correlations
between the three mixing angles are shown in Fig. 7.5. We see that both 6y,
and 63 are constrained to be in a narrow range. The deviation of 3 from
maximal mixing is somewhat large. Hence this mixing pattern can be checked or
ruled by precisely measuring 6,5 and 3 in next generation neutrino oscillation

experiments.

4.4 Lepton mixing with residual symmetry 2, X

CP in the charged lepton sector

In the previous section, a Zy X C'P residual symmetry was preserved in the neutrino
sector and an abelian subgroup of A(6n?) in the charged lepton sector. In this
section, the residual symmetry Zy x C'P is preserved in the charged lepton sector

and the full symmetry A(6n?) x Hop is broken down to Ky X HYp in the neutrino
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sector. The phenomenological consequences of this scenario have been analysed
for the simple flavour symmetry group A(24) = S, in Ref. [87], while an extensive
search in GAP was performed in [97]. All Z, subgroups of A(6n?) had been listed
in Eq. (4.12) and Eq. (4.13). The K, subgroups of A(6n?) can be classified as

follows:

K—icn/&dn/Q) _ {1,Cn/2,dn/2,0n/2dn/2},

Kicn/27abcy) = {1’ Cn/2’ abcy, abcy+n/2} ,

Kidn/&a?bdz) — {1,d”/2,a2bdz, a2bdz+n/2} ,

Kicn/an/abcxdx) — {17Cn/an/27bcmdz’bcx+n/2dm+n/2} 7 (462)
n/27dn/2)

where K ic

subgroups are conjugate to each other. This scenario is only possible if n is di-

is a normal subgroup of A(6n?), and the remaining three K,

visible by 2. Because of the relations relating conjugated elements, Eq. (4.14a),
and Eq. (4.14b), one only needs to consider the representative cases of G; =
Zé’czdz,ZQCn/Q and G, = Kic"/Q,d”/Z)’ Kic"/z,abcy)7 Kid"/Q,a%dz) and Kic"/Qd"/Q,bcmdz)'
Other possible choices of GG; and G, are related to these representative residual
symmetry by similarity transformations, and therefore the same lepton mixing

matrices are generated.

Following the same procedure as in section 4.3, the hermitian combination mlel

of the charged lepton mass matrix and its diagonalization matrix are calculated
from the invariance under the residual symmetry. Comparing with the scenario of
Zy x H.p preserved in the neutrino sector which had been studied in section 4.3.2,
we find that the unitary transformation U; is of the same form as U, listed in
section 4.3.2 if the both residual flavour symmetry and residual CP symmetry in
the two occasions are identical and they are listed for completeness in Appendix

7.1.5.

4.4.1 Neutrino sector

In this section, the A(6n?) flavour symmetry is broken down to Kj in the neu-
trino sector. Hence the neutrino diagonalization matrix U, is entirely fixed by
the residual Ky, and the residual CP symmetry allows to further determine the
three leptonic CP violating phases up to m. The residual CP symmetry Hfp in

the neutrino sector must be compatible with the residual K4 symmetry, and the
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consistency condition should be satisfied,®

Xopi(9) X = pe(d), 9.9 € Ky (4.63)

Solving this equation, we can find the consistent residual CP symmetries for dif-

ferent K, subgroups are as follows:

n/2 gn/2
° KZEC 7d )

Xoe = pe(h), h € A(6n?). (4.64)

o KN w01, n—1

Xor = pe(7dPF2), pe (7AW TF2) p(abc?d?), pe(abc?dP ) (4.65)
with v =10,1,...n— 1.
Kidnm’a%dz), z=0,1,...n—1

Xow = pe(¢FFBd0), pu(ZF2540205) 5 (a2beP D), pe(a?bc®+/2d%), (4.66)
where 6 =0,1,...n— 1.
KA 01, -1

with y=10,1,...n— 1.

The light neutrino mass matrix is again constrained by the residual flavour sym-

metry K4 and the residual CP symmetry H¢p:

3 (9)mups(gy) =m,, g, € Ky,

Xlm, X, =m’, X, € H:p. (4.68)

The mass and diagonalisation matrices are listed in Appendix 7.1.6 and in the

following directly the physical mixing results are given.
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Gl _ chx/dx/ Gl _ Z§7z/2
A 1 \” N7
. on , m 1
G, =K | X 0 X
0 0
., 1 \" 1\ "
Gz/ _ Kic ,abc¥) % 1 v/ 0 X
_\/§ 0
- 1 T 1 T
o d"/“ . a*bd? 1 1
G, = K| o N X
_\/§ 0
G, = Kic e —isin (“”;f, ) X \/Lﬁ -1 X
0 0

Table 4.3: The form of the row of the PMNS matrix that is fixed for dif-
ferent residual symmetries G, and G; which are K, and Zs subgroups of
A(6n?) flavour symmetry group respectively. The superscript “T” means
transpose. The symbol “X” denotes that the resulting lepton mixing is
ruled out since there is at least one zero element in the fixed row, and
the symbol “v” denote that the resulting mixing is viable. Note that for
G = ZSCI/‘F’, the cases of G, = K4Cn/2’abcy) and G, = Kidnp’a%dz) are
equivalent because the residual symmetries are related by group conjuga-

tion as b(bc™ d* )b = be=*'d=" | bd™/*b = ¢/ and b(a*bd*)b = abc ™.
4.4.2 Predictions for lepton flavour mixing

As the different residual symmetries related by group conjugation lead to the

same predictions for the lepton mixing matrix, one only needs to consider the
cases of G = 2% 7¢"? and G, = Kicnm’dnm), Kicn/27abcy), Kidnm’a%dz) and

icnmdn/z’bcwdw). Compared with section 4.3, one row instead of one column of
the PMNS matrix is fixed by residual flavour symmetry in this scenario.” The
explicit form of this row vector for different residual symmetry is summarized in
Table 4.3. Only one independent case is viable. Taking into account the residual
CP symmetry, both mixing angles and CP phases in terms of one free parameter
are predicted in terms of one free parameter that is not related to the choice of

the residual symmetry itself.

6 Again, as in the previous chapter, some of these CP symmetries are not constrained enough,
because the consistency condition used is not strict enough.
"This leads to a new sort of sum rules.
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(V) Gi={1,bc"d}, Xir = {pe(c”d™2"), pe(bc® T d=*=")}, G, = Kf"/ 2 abe)
and Xor = {pe(c'd?r+27), py(aberdPr+)}

Combining the unitary transformation U, in Eq. (7.51) and U, in Eq. (7.84), we

can pin down the lepton flavour mixing matrix as follows:

| sinf + v/2e%5 cos@  sinf — /2e8 cosf  /2e9 sin §
Upnns = B 1 1 —V/2e%0
cosf —\/2e¥ssinf  cosO + /2e5sinf /2™ cos
(4.69)
with
3 422 + 2y 3y + 22" + 2y
=",  gg=—-——"n.
n n

¥8 (4.70)

Here g and g are independent, they are determined by the residual symmetry,
and they can take the values,
1 2 2n —1

g, 09 mod 2w =0, —m, —7,..., . (4.71)
n'n n

In order to be in accordance with the present neutrino oscillation data, the vector
(1/2,1/2,—€'° /y/2) can only be the second or the third row. Note that as usual

permutation of the second and the third rows of Up,,yg is also viable.

The mixing angles #13 and Ay3 are related as follows
2 COS2 913 sin2 4923 = ]., or 2 0082 913 Sil’l2 923 =1-2 SiIl2 913 s (472)

where the second relation is for the PMNS matrix obtained by exchanging the

second and the third rows of Up,,yg. Moreover, 15 and 63 are related by

cos? 013 cos 2015 = 2 sin 0134/ cos 2015 cos @g , (4.73)

which is relevant to the parameter ¢g. The 30 bound of sin? 6,5 gives the limit on
0:
¢ € [0.0607,0.0787] U [0.9227,0.9407] . (4.74)

The equation for sin? 65 in Eq. (7.92) leads to

1
(1 — |cos s|) < sin® 6y < 5 (14 |cosgs|) , (4.75)

N | —

Hence g is constrained to lie in the region

ws € 10,0.4097] U [0.5917, 1.4097] U [1.5917, 27] . (4.76)
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The numerical results are displayed in Fig. 4.10 and Fig. 4.11. Note that con-
served CP corresponding to wg = 0,7 is always viable. If one requires that all
three mixing angles are in their 3¢ intervals, one finds that 0.141 < sin #,3 < 0.172,
0.328 < sin? 615 < 0.359, and sin? f,3 is around 0.488 and 0.512 due to the correla-
tion shown in Eq. (4.72). Note that 6,3 is very close to maximal mixing. Therefore
precisely measuring the lepton mixing angles at JUNO or long baseline neutrino
experiments can test this mixing pattern directly. For the CP phases, dcp and aw;
are predicted to be in the intervals of [sin dcp| < 0.586 and [sin ag;| < 0.396 while
o, can have any value for sufficient large n. The correlations between different

mixing parameters are shown in Fig. 7.6.
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Figure 4.10: Numerical results in case V: the allowed ranges of sin? s,
sin 615 and sin? A3 for different n, where the three lepton mixing angles
are required to lie in the 30 regions. The 1o and 30 bounds of the mixing
angles are taken from Ref. [78]. Note that n should be divisible by 2 in
this case.
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Figure 4.11: Numerical results in case V: the allowed ranges of [sindcp|,
|sin a1 | and [sin o, | for different n, where the three lepton mixing angles
are required to lie in the 30 regions. The 1o and 30 bounds of the mixing
angles are taken from Ref. [78]. Note that n should be divisible by 2 in

this case.

4.5 Neutrinoless double-beta decay

The very rare (if possible) process of neutrinoless double-beta decay (0v25), is an

important probe for the Majorana nature of neutrino and lepton number violation,

a sizeable number of new experiments are currently running, under construction,

or in the planing phase. In models where 0v23 is dominated by light Majorana

neutrinos, the particle physics contribution to the decay rate is parameterized by

the effective mass of neutrinoless double-beta decay, which is [36]

|Mee| =

2 2 1 2 2
(mycly + Mmasiee )iy + masize

s !
za31

(4.77)
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For normal hierarchy, the masses are

my =my, mg=/mi+om?, mgz\/m?+Am2+5m2/2, (4.78)

and for inverted hierarchy

mlz\/ml?—Amz—(sz/Z m2:\/ml2—Am2+5m2/2, ms =my, (4.79)

where m; denotes the lightest neutrino masses, and dm?* = m3 — m? and Am? =
m3 — (m} +m3)/2 as defined in Ref. [78]. The experimental error on the neutrino
mass splitting is not taken into account during the analysis, instead the best fit

values from [78] are used:
om* =754 x 107%eV?,  Am? =243 x 1073(=2.38 x 107%)eV?,  (4.80)

for normal (inverted) hierarchy. In the following, the properties of the effective
mass are examined for all viable cases of lepton mixing discussed in this chapter.
In Fig. 4.12 the allowed ranges of the effective mass are shown for each case in the
limit of n — 0o, where the three mixing angles are required to lie in the measured
30 intervals [78]. (As previously mentioned, the 30 lower bound of sin® 6, is
chosen to be 0.254 instead of 0.259 in case II.) Furthermore, the predictions for
the representative value n = 8 (n = 5 in case I, 7th-9th ordering) are plotted in
Fig. 4.13. The results for any finite value of n must be part of the ones shown,
which correspond to n — oco. Moreover, the plot would change very little if the
experimental errors on dm? and Am? were taken into account. Note that only one
distinct prediction for the effective mass arises except in case I. One reason for
this is that, as discussed before, many of the possible permutations of the mixing
matrix can be identified with each other. Furthermore, permuting the second and

third row has no effect on the effective mass as o3 does not appear in Eq. (4.77).

As shown in Fig. 4.12, for inverted hierarchy neutrino mass, almost all of the
allowed 30 range of the effective masses |me.| can be reproduced in the limit
n — oo in case I, case I1I and case IV. However, the predictions for |me.| are around
the upper bound (about 0.05eV) or lower bound (about 0.013 eV) in case V. The
reason is that the solar mixing angle is in a narrow region 0.328 < sin?#;, < 0.359
and the Majorana phase a9 is constrained to be |sinag| < 0.586 in this case,
as displayed in Fig. 4.10 and Fig. 4.11. Similarly |m..| is near the upper bound
and 0.025 eV in case II. Therefore if the effective mass is measured to be far from
0.013 eV, 0.025 eV and 0.05 eV for inverted hierarchy by future experiments, the
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mixing patterns in cases Il and V could be ruled out.

For normal hierarchy neutrino mass, a sizeable part of the experimentally allowed
30 region of |m..| can be generated in all cases, and the effective mass could be
rather small. In particular, the prediction in case I, 7th to 9th ordering approx-
imately coincides with the present 3¢ region. Unfortunately the predictions for
normal hierarchy are still out of reach of projected experiments known to the
author. As a result, it might turn out to be difficult to test the A(6n?) flavour
symmetry and general CP symmetry through neutrinoless double beta decay ex-

periments in the case of normal mass ordering.

4.6 Conclusions

In the results presented in this chapter, a detailed analysis of A(6n?) flavour sym-
metry combined with general CP symmetry Hcp in the lepton sector in semidirect
models was performed. The lepton mixing parameters obtained from flavour sym-
metry A(6n2) x Hep broken to different residual symmetries in the neutrino and

charged lepton sectors were investigated.

Mass and mixing predictions were discussed for all possible cases where the A(6n?)
flavour symmetry with general CP is broken to G, = Z, with G; = K4, Z,,p > 2
and G, = K, with G; = Z,. Five phenomenologically allowed cases survived and
the resulting predictions for the PMNS parameters were presented as a function

of n, as well as the predictions for neutrinoless double beta decay.

CP phases are predicted to take values different from 0, 7 or £7/2. In direct
models with A(6n?), |sindcp| = 0, which may contradict future measurements.
In addition, both charged-lepton-semidirect and neutrino-semidirect models open
up new large areas of parameter space. But still, as parts of the mixing matrix are
entirely fixed and relations following from this can be tested by testing the pre-
dictions of sum rules, all semidirect models with A(6n?) will eventually accessible

to experiment and cannot evade exclusion forever.
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Figure 4.12: The allowed ranges of the effective mass for neutrinoless
double-beta decay for all viable cases of lepton mixing in semidirect mod-
els with a A(6n?) flavour group in the limit of n — oo. The top row
corresponds to case I, with 1st-3rd ordering on the left and 7th to 9th
ordering on the right, the middle row contains case II and III, and the
bottom row case IV and V. Light blue and yellow areas indicate the cur-
rently allowed three sigma region for normal and inverted hierarchy, re-
spectively. Purple regions correspond to predictions assuming inverted hi-
erarchy, green regions to normal hierarchy. The upper bound |m..| < 0.120
eV is given by measurements by the EXO-200 [79, 100] and KamLAND-
ZEN experiments [101]. Planck data in combination with other CMB and
BAO measurements [80] provides a limit on the sum of neutrino masses of
my + ms + ms3 < 0.230 eV from which the upper limit on the mass of the
lightest neutrino can be derived.
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Figure 4.13: The allowed ranges of the effective mass for neutrinoless
double-beta decay for all viable cases of lepton mixing in semidirect mod-
els with a A(6n?) flavour group. The top row corresponds to case I, with
1st-3rd ordering on the left and 7th to 9th ordering on the right, the mid-
dle row contains case II and III, and the bottom row case IV and V. Light
blue and yellow areas indicate the currently allowed three sigma region for
normal and inverted hierarchy, respectively. Purple regions correspond to
predictions assuming inverted hierarchy, green regions to normal hierar-
chy in the limit of n — oo. Blue and red regions represent predictions
for normal and inverted hierarchy for the value n = 8 (in the top-right
panel, we choose n = 5 which is the smallest viable value of n in that
case). The upper bound |me.| < 0.120 eV is given by measurements by
the EXO-200 [79, 100] and KamLAND-ZEN experiments [101]. Planck
data in combination with other CMB and BAO measurements [80] pro-
vides a limit on the sum of neutrino masses of m; + mq + ms < 0.230 eV
from which the upper limit on the mass of the lightest neutrino can be
derived.






CP-odd invariants for multi-Higgs
models and applications with

discrete symmetry

This chapter presents results that were partly published previously in [6]. The
contribution of the author to [6] lies in the majority of the calculations, in particu-
lar in further developing invariants methods, pioneering the contraction matrices,
obtaining all invariants, evaluating invariants for example potentials, and addi-
tionally writing all relevant parts of [6], which happen to constitute the majority

of the paper.

In this chapter, so-called CP-odd flavour basis invariants will be constructed and
analysed. However, this was not done for fermions, where this problem is pretty
much solved by the existence of the Jarlskog invariant that indicates CP violation
by the Dirac CP phase and similar invariants which take into account Majorana
phases. The CP-odd invariants considered in this chapter are purely constructed
from the parameters of a model’s scalar potential. This topic seems to lie a little
out of the way of the previous development of this thesis, which it does to some
extent, but it should be seen as a building block that fits well into the general
effort which lies behind the previous chapters as well, namely broadly speaking
the origin of CP violation, which at the end of the day seems to be necessary for

all our existence.

As discussed before, only in the weak interactions of quarks in the standard model
CP violation has been proven [23], however, its magnitude is not sufficient to

generate the observed matter-antimatter asymmetry (among other reasons). Great

105
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hope is generally put into finding CP violation in the lepton sector. Now, the
original motivation to consider residual symmetries at the beginning of this thesis
was the flavour problem. With analysing direct models of A(6n?) groups and
finding that they can explain the currently measured lepton mixing (and later
finding that they are among the last groups that do so in a direct model) progress
was made. But a very important by-product was the finding that in direct models
with a finite flavour group, [60], dcp = 0 mod 27. If this would turn out to be
true, then this amount of CP violation in the light lepton sector, namely zero,
would certainly not be enough to explain our existence. This would require an

additional source of CP violation.

Approaching from a different direction: among the simplest expansions of the
standard model are models with additional scalar bosons, doublets or singlets.
And in fact, models with spontaneously broken flavour symmetries always require
additional scalar fields to facilitate this spontaneous breaking, and as fermions
are often to transform under 3-dimensional representations of the flavour group,
often scalars that transform under a three-dimensional representation as well are

required.t

In extensions with additional scalars, new sources of CP violation can arise from
the scalar potential already for only one additional Higgs doublet. However, such
models with two Higgs doublet are plagued with flavour-changing neutral currents
and when one forbids them with additional symmetries, also the new sources of CP
violation are eliminated.? Thus, the smallest number of Higgs doublets required
for a new source of CP violation in the scalar sector that does not cause flavour-
changing neutral currents is three, in line with the argument from the previous

paragraph.

The questions one has ask to a model where a flavour symmetry is spontaneously
broken are then, roughly in this order: Does it explain the mixing correctly? Is
there sufficient CP violation in the lepton sector? Is there CP violation in the
extended scalar sector? (Is there CP violation in the extended Yukawa sector?)
The previous chapters concerned themselves with the first two questions, while this
chapter attempts the third question, again as before not for a specific model, but

developing and using more general methods to analyse a large number of models

IThis is true for all models with spontaneously broken flavour symmetries, although in the
previous paragraph only direct models had been mentioned.

2The parameters responsible for FNCN could be rather small, but in this case it is not clear
if the CP violation in this case would be sufficient to explain the matter-antimatter asymmetry.
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simultaneously. (And the fourth question is the necessary next step, but one thing

at a time.)

CP-odd invariants provide a basis independent way of studying the CP properties
of Lagrangians. In this chapter, the known diagrammatic method for constructing
basis invariants is developed further. This method generally allows to determine
whether invariants are CP-odd or CP-even and to systematically construct all of
the simplest CP-odd invariants up to a given order, in the process of which many
previously unknown ones are found. Additionally, such CP-odd invariants are
valid for general potentials when expressed in a standard form. The diagrammatic
method allows for constructing invariants that are sensitive to both explicit as
well as spontaneous CP violation and can distinguish between the two kinds of
CP violation. Here one should mention that while a complete so-called basis
of invariants is known for models with two Higgs doublets, the invariants that
constitute this basis vanish for all example potentials considered in this chapter.
The newly found invariants are then used to test the CP properties of various
scalar potentials involving three (or six) Higgs fields which form irreducible triplets
under a discrete symmetry. The cases considered include one triplet of Standard
Model (SM) gauge singlet scalars, one triplet of SM Higgs doublets, two triplets
of SM singlets, and two triplets of SM Higgs doublets. For each case the potential
symmetric under one of the simplest discrete symmetries with irreducible triplet
representations, namely Ay, Sy, A(27) or A(54), as well as the infinite classes of

discrete symmetries A(3n?) or A(6n?) is studied.

5.1 Introduction

The origin of the observed SM quark CP violation (CPV) is a natural consequence
of three generations of quarks whose mixing is described by a complex CKM
matrix. Although the CKM matrix can be parametrised in different ways, it
was realised that the amount of CPV in physical processes always depends on a
particular weak basis invariant which can be expressed in terms of the quark mass
matrices [102]. In the SM the electroweak symmetry SU(2), x U(1)y is broken
to the electromagnetic gauge group U(1)g by a single Higgs doublet, resulting
in a single physical Higgs boson which has been observed with a mass near 125
GeV [103, 104]. Although CP is automatically conserved by the Higgs potential of
the SM, with more than one Higgs doublet it is possible that the Higgs potential

violates CP, providing a new source of CPV [105]. This is welcome since Sakharov
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discovered that CPV is a necessary condition for baryon asymmetry generation
[15] and CPV arising from the quark sector of the SM is insufficient [106].

It is also possible, indeed likely, that CP could be violated in the lepton sector, as is
hinted at by global fits [107, 83], and such a source of CPV could also contribute
to the baryon asymmetry via leptogenesis [108]. In this case one would like to
construct models that explain the structure of the lepton mass matrices, through
which CPV enters the processes for creating the baryon asymmetry. Typical ex-
amples of such models that use discrete symmetries to constrain the structure of
mass matrices need several multiplets of scalar fields that also transform under the
same symmetry (for reviews, cf. [109, 110, 27, 25, 111, 112]). Such models provide
a motivation to study multiple SM Higgs singlets (sometimes called “flavons” in
this context) as well as electroweak doublets. In the context of flavour models it
is natural to consider Higgs doublets or singlets which play the role of “flavons”
and form irreducible triplets under some spontaneously broken discrete flavour

symmetry.

As already mentioned in the context of the CKM matrix, the study of CP is a subtle
topic because of the basis dependent nature of the phases which control CPV.
Similar considerations also apply to the phases which appear in the parameters of

the potentials of multiple scalars.

An important tool to assist in determining whether CP is violated or not are basis
independent CP-odd invariants (CPIs), whose usefulness has been shown in the
SM in addressing CP violation arising from the CKM matrix, sourced from the
Yukawa couplings. The first example of the use of such invariants was the Jarlskog
invariant [102], which was reformulated in [113] in a form which is generally valid
for an arbitrary number of generations. Generalising the invariant approach [113]
and applying it to fermion sectors of theories with Majorana neutrinos [114] or

with discrete symmetries [115, 116] leads to other relevant CPIs.

In extensions of the Higgs sector of the SM, the CP violation arising from the
parameters of the scalar potential can be studied in a similar basis invariant way
as for the quark sector. For example, in the general two Higgs Doublet Model
(HDM) [105] (see [117] for a recent analysis) a CPI was identified in [118]. More
generally, applying the invariant approach to scalar potentials has revealed relevant
CPIs [119, 120, 121], including for the 2HDM [122, 123]. However, as mentioned
before, while these invariants even form a basis, which means that any possible
CP-odd invariant has to involve those invariant, they all vanish for more symmetric

models and therefore cannot indicate whether CP is violated or not. Thus the goal
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is to consider yet more general Higgs potentials and improve on the methods for
constructing CPIs, which subsequently are applied to potentials involving three or
six Higgs fields (which can be either electroweak doublets or singlets) which form

irreducible triplets under a discrete symmetry.

To begin with, the previous progress in developing a systematic approach to CPIs
for arbitrary scalar potentials is reviewed, focusing on renormalisable potentials
with quadratic and quartic couplings. The reader may be primarily interested in
cases where the Higgs fields are electroweak SU(2), doublets, but the formalism
can also be applied to more general scalar potentials including cases where the
Higgs fields are SM singlets. Methods where basis invariants [121, 122, 123] can be
represented pictorially by diagrams (introduced for the 2HDM in [122]) are further
developed and matrices are introduced later designated as contraction matrices,
that identify how the parameters in the potential are combined to form a basis
invariant. The diagrams and matrices are extremely helpful in distinguishing CPIs
from basis invariants that are CP-even, as well as cataloguing each CPI uniquely
in association with an element of a group of permutations. CPIs as defined via
such matrices are valid for any potential, and then take specific expressions when
specialising to a potential (often vanishing for cases where the potential is very
symmetric, even if the potential features explicit CP violation as shown by other

non-vanishing CPIs).

After that, the newly constructed CPIs are applied to physically interesting cases,
beginning with the familiar example of the general 2HDM. Following this, exam-
ples of potentials which involve three or six Higgs fields which fall into irreducible
triplet representations of discrete symmetries belonging to the A(3n?) and A(6n?)
series studied extensively in the context of flavour and CP models in [30, 72, 67,
1, 69, 71, 86, 66, 2, 94, 124, 3, 87, 95, 4, 125, 126, 127, 128, 5, 85, 129, 130, 131].
Specific cases of the 3HDM [91, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,
142, 143, 144, 145, 146, 147] and of the 6HDM [148, 149, 150, 151, 152, 153, 154]
where the three or six Higgses are related by the discrete symmetry as one or two
(flavour) triplets are considered. Although many of these cases have already been
studied in the literature, systematically exploiting the formalism yields many new
results. For example, although A(27) with a single triplet of Higgs doublets has
been extensively studied in the literature [91, 134, 135, 136, 139, 140, 145], using

the invariant approach and the CPIs produced several new results of interest.

Using the invariant approach, the considered cases include one triplet of SM gauge

singlets, one triplet of SM Higgs doublets, two triplets of SM singlets, and two
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triplets of SM Higgs doublets, where for each case the potential is symmetric
under one of the simplest discrete symmetries with irreducible triplet representa-
tions, namely Ay, Sy, A(27) or A(54), as well as the infinite classes of discrete
symmetries A(3n?) or A(6n?). In each case, it is shown which potentials are in
general CP conserving (all the CPIs vanish, and a CP symmetry that leaves the
potential invariant proves CP invariance) or in general CP violating (in which case
it is sufficient to show a single non-vanishing CPI). For the CP violating potentials
imposing specific CP symmetries, lead in constraining the parameters of the po-
tential in one way or the other to generally vanishing CPIs. As the formalism also
allows for Vacuum Expectation Values (VEVs), one can obtain Spontaneous CPIs
(SCPIs) that are non-vanishing if CP is spontaneously violated (as considered
earlier in [119, 120]). One of these SCPIs is applied to the better studied A(27)
potential, exploring different CP symmetries and VEVs that either conserve or

spontaneously violate the imposed CP symmetry.

The layout of this chapter is as follows. Section 5.2 reviews the general formalism.
In Section 5.3 the 2HDM potential is revisited where the formalism is applied
and small differences to earlier developments in the literature are shown. In Sec-
tion 5.4, 5.5 and 7.2 CPIs are applied toA(3n?) and A(6n?) groups with n = 2
(Ag, Si), n =3 (A(27), A(54)) and n > 3. A summary of the results obtained
for the potentials invariant under discrete symmetries is contained in Section 5.6
(including Table 5.1). Section 5.7 is dedicated to invariants that indicate sponta-
neous CP violation (SCPIs). Section 5.8 concludes the chapter. Further material
is included in Appendix 7.3 with a complete list of the CPIs and SCPIs found and
used throughout this chapter, and Appendix 7.4.2 discusses how to obtain results
for A(6n?) from the results of the A(3n?) potentials.

5.2 CP-odd invariants for scalar potentials

5.2.1 General formalism

One important aim of this chapter is to explore the CP properties of the Higgs
sector of models with several copies of SM Higgs doublets. Often, scalar potentials
can be confusingly complex and it can be unclear which parameters can contribute
to CP violation. This situation is made even more difficult by the possibility
of choosing different bases which modify the explicit form of the potential but
should not change the physics described by it. Both of these difficulties can be
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overcome by CPIs; in this case CP-odd (Higgs-) basis invariants, that, when non-
zero, indicate CP violation. A similar CPI for the Yukawa sector of the SM is the

well-known Jarlskog invariant [102].

Before defining and discussing CPIs of the scalar sector in detail, we first show
how to write any possible Higgs potential in a standard form which is suitable to
construct general basis invariants. This procedure has the advantage that basis
invariants only have to be derived once in the standard form; their explicit form for
any particular Higgs potential follows almost trivially by translating the latter into
the standard parametrisation. Furthermore, invariants that are CP-odd (CP1Is) for
the standard form of potentials are so by construction and, if non-zero, indicate

CP violation for all possible example potentials.

The relation between non-zero CPIs and CP violation can be formulated more
precisely as follows. If a potential conserves CP, then all CPIs vanish automat-
ically. Reversely, if one or several CPIs are non-zero, the potential violates CP.
This statement holds for both explicit and spontaneous CP violation, and the cor-
responding CPIs are introduced in Sections 5.2.2 and 5.7. Note that CPIs only
guarantee CP conservation if all of them vanish. This is equivalent to demanding a
finite set of CPIs, the so-called basis out of which all other CPIs can be produced,
to vanish. Such a basis of CPIs is known for the 2HDM [123], but, so far, not for

any other more complicated scalar potentials.

In the following, we first introduce the standard form for scalar potentials. In this
notation the effects of symmetry transformations, general basis transformations,
complex conjugation and CP transformations on the variables and parameters of
the standard form are analysed. Adopting the procedure and notation of [121, 122],
any even potential of N scalar fields ¢; can, with ¢ = (¢1,...,¢n) and ¢* =

(o, ..., 9N), be written as
V = (b*a Yab ¢b+¢*a¢*c ng (bb(bd; (51)

where the notation is such that lower indices on Y and Z are always contracted
with ¢* and upper indices with ¢. Y and Z are tensors that contain all possible
couplings and are subject to possible symmetries acting on ¢, as will be explained

below.?

30ne could also add a term such as e.g. T%¢,d,¢*¢ + h.c. to the potential to account for
trilinear couplings and the discussion could be extended in this way.
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Any potential of several Higgs doublets can be brought into this standard form by
¢ not containing doublets as such, but instead directly containing the components
of the doublets: for n Higgs doublets H;, = (hi1, hi2), where a = 1,2 denotes the
SU(2)r index and i goes from 1 to n,

(b = (gplv P2, Pan—1, 302n) = (hl,h h1,27 ey hn,17 h‘n,2) ; (52>

and the invariance of the potential under SU(2), x U(1)y will be directly reflected
in the structure of Y and Z in a component-wise way. This convention, which

differs from the notation of [121, 122], will be very useful later on.*

More explicitly, if the theory is invariant under symmetry transformations of
a group G such that ¢ transforms in some (maybe reducible) representation p(g)
of that group, where p(g) is the matrix that corresponds to the group element
g €G,

ba = [p(9)]% s | (5.3)
o™ = 0" [ (9)]% (5.4)

then the invariance of the potential imposes the following constraints on the cou-

pling tensors:

a ’ b
Yab = Pa Y;b’ pr’ ) (55)
2 = ot ot ZU o o (5.6)
where we have written p? = [p(g)]¢ and so on. In addition to that, the quartic

coupling tensor Z%¢ is by construction invariant under exchanging a < ¢ as well
as b <» d. The reason for this is that ¢, and ¢, commute so that the indices b and
d can be renamed into each other to restore the original ordering of the ¢’s, and

equivalently for ¢* with a and c.

While the theory is invariant under symmetry transformations, one also has the
possibility of applying basis transformations under which the Lagrangian is not
invariant. Of course, such a basis transformation should not change physics. A
simple example is the transformation that diagonalises the bilinear mass terms

¢**Y? ¢y. As Z is generally only invariant under a smaller group than that of all

4In [122], for example, the SU(2)y, indices are summed over outside of Z. Our definition of Z
tensors can be related to [122] by explicitly highlighting the SU(2)r, subindices, {1,2,...,2n —
1,2n} = {(1,1),(1,2),...,(n,1),(n,2)}. With this, the Z tensors in used here become Z% =
Z(&,a)(E,,B) _ Z&l}da

ErI(d®) g 75?, where Z denotes the coupling tensors of [122].
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basis changes, diagonalising Y would change Z.> Adopting our notation for the
standard form of Higgs potentials, a unitary basis transformation in the space

of the N dimensional vector ¢, i.e. with U € U(N) a unitary N x N matrix, maps

b Ul b (5.7)
¢* s U, (5.8)

With this definition, the kinetic terms remain unchanged while Y and Z transform

to

YP e UY Y UT (5.9)

Zb vy e ye zbd Uty Ut | (5.10)

Complex conjugation is an essential part of CP transformations and in the

notation used here, changes the vertical position of the index of a field so that

Ga > (o) = 0™, (5.11)
o= (") = @y - (5.12)

Complex conjugating the Y term of the potential then results in
Y by ba (V)0 =07 (V) b= 0" (V) . (5.13)

Comparing this to the original term in the potential and demanding V* = V shows
that
(¥ = ) (5.14)

A similar result is obtained for the quartic coupling, i.e.
(Zig)" = Zae . (5.15)

Note that because both indices of a contracted pair interchange position under
complex conjugation, no situation can arise where one would need to sum over two
upper or two lower indices. However, expressions as e.g. Egs. (5.14) and (5.15)

where indices appear with exchanged vertical positions without being summed

5Except in the case where the components of Y conspire in such a way that the required basis
transformation coincides with a symmetry transformation. Furthermore, a general basis trans-
formation changes the form of the potential, while only transformations in the automorphism
group Aut(G) leave the potential form-invariant.
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over need to be understood as conditions on the components of the tensors and

not the tensors themselves.

Finally, all pieces are in place to define a (general) CP transformation® with

a unitary matrix X on the fields as

ba > FC X (5.16)

[

¢ X1 . (5.17)

Again, this leaves the kinetic terms invariant, while applying the CP transforma-

tion to the fields in the potential results for the Y term in

¢*a Y;Lb ¢b — XTZ ¢a/ Y;Lb ¢*b’Xll))l — XTZ ¢a’ (Y;)a)* ¢*b’X£/
= ¢V X0 (V) X2 b
= "X (Y)Y X1 . (5.18)

Comparing this to the original term in the potential shows that a CP transforma-
tion acting on the fields can be equally understood as the following change of Y
(likewise for Z),

Yi e X (vl Xty (5.19)
AR G CHVALARD U G (5.20)

The condition for CP invariance of the standard form of the potential V' in
Eq. (5.1), and thus any example potential that can be brought into this stan-
dard form, can then be phrased as follows: CP is conserved if there is an X such
that the left- and right-hand sides of Eqs. (5.19) and (5.20) are identical. As a
special case of that, if the tensors Y and Z are real, the potential is invariant

under a CP transformation, which we refer to as C'F,

C'F, is often referred to as trivial or canonical CP.

In doing so, we note that a physical CP transformation will have to treat the two
components of an SU(2), doublet consistently with that symmetry, i.e. both must

transform identically under the CP symmetry [70].

6This is often referred to as a general CP transformation.
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In preparation for Section 5.7, where CPIs for spontaneous CP violation will be

constructed, we define how VEVs behave under basis transformations:

Vg = U vy | (5.22)
0¥ s v* UTY (5.23)

where v = (vy,...) with v; = (p;), and U denotes the transformation matrix of

the fields ¢. Similarly, under CP transformations, they become

Vg — U XE (5.24)
v X, (5.25)

5.2.2 CP-odd invariants for explicit CP violation

In the previous subsection, the standard form for even scalar potentials was in-
troduced and the effects of symmetry transformations, basis transformations and
CP transformations has been analysed. This subsection starts with a discussion of
simple basis invariants constructed from Y and Z tensors. After that, the general
definition of CP-odd basis invariants (CPIs) that contain Y and Z is given.

Finally, the CP properties of such invariants will be analysed. CPIs of this type,
that only consist of parameters of the potential and in particular do not contain
VEVs, indicate explicit violation of CP. The exact statement is that if all possible
CPIs are zero, then the theory is CP conserving. Vice-versa, if at least one CPI is
non-zero, the theory violates CP explicitly. Invariants including VEVs, such that

they indicate spontaneous violation of CP, will be introduced in Section 5.7.

Any product of Y and Z tensors where all indices are correctly contracted forms
a basis invariant. Starting with Y and considering Z a little later, the simplest

invariant (that is however not CP-odd) is

Yo (5.26)

a

For products of two Y tensors, the only possible contractions are

YV and Y2V (5.27)
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The above contractions correspond to the two different permutations of the two

upper indices, namely firstly the identity:

YV e arsaandb— b, (5.28)
and secondly the transposition:

VY e arsband b a . (5.29)

More formally, one can thus also express all invariants that consist of two Y tensors
by

o o

Y Yoy with 0 € Sy | (5.30)

where o is now one of the two elements of the permutation group Sy. The invariant
built from two Y tensors that corresponds to the identity of S5 is the square of the
simplest invariant. Thus, only the second invariant is irreducible, which for our

purposes will be defined as not being a product or power of smaller invariants.

It is generally true that all possible invariants can be obtained through permuta-

tions of indices: all conceivable invariants built from 3 Y tensors are given by

[

or explicitly
VAVIYE, YOVIVE, YOVIVE VRVEYE, YOVPYE, YOYYE. (5.32)

Here, only the last two invariants are new and irreducible, i.e. not products of
smaller invariants. Additionally, they turn out to be equivalent as can be seen by

renaming the indices b <+ ¢ into each other.

The identification of invariants with elements of permutation groups will be used
later to systematically identify all irreducible invariants of a given order. Beyond
that, it is this formalism that is going to make it possible to determine which

invariants are CP-even and which are not.

But before that, some more examples are in order, as the situation is more com-
plicated for invariants containing Z tensors. There are already two invariants that

could be built from a single Z tensor that again correspond to the two possible
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permutations of positions of the two upper indices:
Z3om With o € Sy, (5.33)

or explicitly:
Z% and Z;° . (5.34)

Because the Z tensor of potentials considered here is symmetric under exchanging
both upper or both lower indices, cf. below Eq. (5.6), both invariants built from one
Z tensor are equivalent. For larger numbers of tensors, the number of permutations
grows quickly, however, luckily, many invariants do not need to be considered either
because they are products of smaller invariants, or because they are equivalent due
to the symmetry of single tensors themselves or the symmetries of the invariant.
For example, for two Z tensors, generally all invariants would be given by

Zab (b)Zg'?c)a(d) Wlth o€ S4 y (535)

o(a)o

but the only new invariants can be chosen to be
Z2 7 and 2572 (5.36)

All other 22 invariants that correspond to the remaining elements of S, are prod-

ucts of smaller invariants or equivalent to the invariants in Eq. (5.36).

n m
LS Z,my

Generally, a basis invariant ) built from my Y tensors and ny Z tensors

can be written as’

]’(nz,my) =yu Amy b1bo ban z—1b2n
o =

o) Yoty ) Zalbr)n(bs) ** Latban 1) (ban,) VIO E Smyons

(5.37)
Again, o is a permutation of my + 2nz objects, i.e. 0 € S, 12,,. However, not
all basis invariants are CP-odd, and in fact, all of the examples in Eqs. (5.26)-
(5.36) turn out to be CP-even. To be able to make such statements, one needs
to know how basis invariants behave under CP. Under a general CP transforma-
tion, a coupling tensor is replaced by its complex conjugate multiplied by unitary
basis transformations, earlier denoted by X. But, as a basis invariant is, by defi-
nition, invariant under basis transformations, the X matrices cancel, leaving only
the original product of coupling tensors with tensors replaced by their complex

conjugates. The complex conjugate of a coupling tensor on the other hand can

"Often, not the full permutation ¢ will be indicated when referring to invariants, but e.g.

12(3’1) would be the second invariant that was found with nz = 3 and my = 1.
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be obtained by interchanging upper with lower indices, cf. Egs. (5.14) and (5.15).

For the simplest example, Y%, this works out in the following way:
a CP a'\* v ya’ _ a'\*x ca’’ __ a\*x __ va
Y:; __—>( a”) Xa’Xa _( a”) 5@’ _(Y;l) _Y;z’ (538)

where in the last step Eq. (5.14) was used. As the right-hand side is the CP
conjugate of the left-hand side and is identical to the latter, this shows that this
invariant is even under CP transformations. Similarly, and using Eqgs. (5.14) and
(5.15), one can show that the CP conjugate of a general basis invariant can be
obtained by interchanging upper and lower indices:
(nz,m ): al amy b1ba b2nZ—1b2nZ
1 =Y 0y Yotam ) Zob)o(bs) - Lolban 1) (ban,)
CcP ola J(am ) o(by)o(b U(b ny— )U(b n ) nyz,m *
gl oy ggete) g e Vel [z (5.39)
If one has found an invariant I that is not CP-even, i.e. that does not equal its CP
conjugate I*, one can extract the CP-odd part by subtracting the CP-conjugated
from the original invariant:

I=1-1". (5.40)

As a CPI is already completely defined by stating half of it, I, in the following often
I* will be omitted or abbreviated. When Z is given, it is implied that the quantity

to follow is the difference between a basis invariant I and its CP conjugate.

For the example invariants in Eqs. (5.26)-(5.36), interchanging upper and lower
indices and possibly renaming indices shows that all of them are equal to their
CP conjugate and thus CP-even. For larger invariants, this process can become
quite cumbersome. Even worse, in order to show that an invariant is not CP-
even, one would have to test all possible renamings of the indices, which at some
point becomes too difficult. Luckily, the symmetry properties of invariants can
be analysed and visualised using diagrams that encode which tensors are used
and how their indices are contracted with each other. These diagrams are the
topic of the next subsection. As the diagrams become more complicated, a more
powerful technique relies on analysing so-called contraction matrices that also
encode information about the basis invariant and reveal whether it is a CPI. We
heavily rely on the contraction matrices for our systematic searches that revealed

many new CPIs. These contraction matrices are introduced in section 5.2.4.
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5.2.3 Diagrams for invariants

Any basis invariant consisting of contractions of Y and Z can be expressed by a
diagram [122]. We use a slightly different notation from the one present in [122].
For each Y or Z draw a vertex and for any contraction of an upper index on
a tensor with a lower index of a tensor draw an arrow connecting the vertices
corresponding to the tensors. With X =Y, Z, the only rule for drawing diagrams
is

XX, = @0——e (5.41)

Additionally, as Z% is symmetric under exchange of a <+ b and/or ¢ <+ d, two
lines can be attached to a vertex corresponding to a Z tensor without having to

distinguish them in the diagram:
27y, = « (5.42)

Contracting two indices on the same tensor with each other produces a loop:

X = Q (5.43)

Diagrams drawn following these rules make it possible to check if an invariant is
CP-even: from Eq. (5.39) follows that the CP conjugate of an invariant produces
exactly the same diagram but with inverted directions of arrows as all upper indices
have been turned into lower indices and vice versa. An invariant is identical to its
CP conjugate, i.e. CP-even, if the diagrams of the invariant and its CP conjugate
are identical up to the positions of the vertices. The reason for this is that in a
product of Y and Z tensors, their position in the product is arbitrary and thus

also the position of vertices (except for the type of tensor).®

A few small example diagrams for small invariants mentioned earlier in the text
are shown in Figure 5.1. One can see there that for each of them, inverting the
direction of the arrows produces the same diagram and thus the same invariant.
This is the case for all of the small examples in Eqgs. (5.26)-(5.36). The simplest
invariant, Y,* produces the diagram in Eq. (5.43).

8The internal symmetry of Zgé’ under a <> b and/or ¢ > d is taken into account by Eq. (5.42).
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Figure 5.1: Example diagrams corresponding to small invariants.

7 74

All invariants discussed so far were CP-even. The smallest CP-odd invariant was

already found in [121] and is given by the difference Z; = I — I{ of

I, = ZabZCdY Yf = m (544)

and its CP conjugate

I = 7o 2y ey = m (5.45)

In whatever ways one tries to interchange the positions of vertices and arrows, it

is impossible to make the diagrams equivalent.

Additionally, out of all possible contractions of coupling tensors, many will be
related by interchanging the positions of tensors. The symmetries of the diagrams
can be used to classify invariants and search for CPIs in a systematic way as will
be explained in the next section. The results of this systematic search are listed

in the subsequent section.

5.2.4 Symmetries of invariants

Invariants both without and with VEVs were defined via permutations of indices,
cf. Egs. (5.37) and (5.165). Firstly, it might seem as if there is a huge number

of invariants, one for each possible permutation of indices, whose number grows
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as the factorial of the number of indices. But luckily, as already hinted at in
subsection 5.2.2, invariants have symmetries which will reduce the number of in-
equivalent invariants. Secondly, one still has to find those index permutations

which correspond to CPIs. This section concerns itself with these two issues.

Invariants were defined in the following way via index permutations o € S,, where
n is the total number of upper indices coming from all involved tensors and VEVs:

for invariants without VEVs,

(mynz) _ ya am bib ban ,—1b2n .
[mynz) — Yo(lal) . o(ariy) O'l(bf)a(bg) . U(b;Z*l)‘f(b%z) with o € Sy 120,
(5.46)
where n = my + 2ny, and for invariants containing VEVs,
(n'u;m ,n ) _ W1 ... Wny,, al Amy b1bo b2nzflb2nz
Jo‘ Y = Wa(wl)...a(wnv)ya(al) C T o(amy )T a(br)o(be) T Fo(ban,—1)a(b2ny,)
o(wi)...o(wn, )y o(a o(amy ) o (b1)o(bz) o(ban,,—1)o(ban )
> Wt eton Y)Y Tz T gy, )
_ (J(gnmmyynz))*, (5.47)

where now n = n, + my + 2nz and W as defined in Eq. (5.164).

There are the following sources of symmetries of invariants: renaming of indices,
permutations of tensors of the same type, and internal symmetries of tensors.
Internal symmetries of tensors can refer to symmetries under exchanging indices
on the tensor, and symmetries induced by the symmetry of the Lagrangian. Ex-
cept for the latter, which are not discussed here, all of these symmetries exist
for arbitrary invariants corresponding to arbitrary potentials. These sources of
symmetries will now be discussed. To streamline notation, write all indices into a

multi-index,
a=(ay,...,a,), (5.48)

where now permutations act on « by acting on each index as usual:
ola) = (o(ay),...,o(ay)). (5.49)

Also, let Z stand for the product of tensors (both Y and Z) and VEVs appropriate

to the invariant in discussion, then any invariant can be written as

_[0— - Zo_a(a) (550)
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Renaming indices into each other corresponds to another permutation of all in-
dices. For a; — 7(a;) with m € S,,, the invariant becomes

L5 25 (5.51)

The original invariant and the invariant with indices renamed into each other have

the same value.

Next, some elements of invariants are symmetric under independent permutations
of upper and lower indices. For example, as discussed in section 5.2.2, the following

four versions of the Z tensor are equal,
Zig = Zog = Zg. = Zge, (5.52)

because Z% is symmetric under a <> b and/or ¢ <> d. This means that for each Z
tensor in the invariant there are 4 equivalent ways of connecting it to the rest of
the invariant and thus for ny Z tensors, there would be 4”4 ¢ matrices producing
the same invariant and diagram. Similarly, in the tensor W that summaries the
product of all VEVs and complex conjugates of VEVs, all upper and lower indices
can be permuted independently of each other. Denoting any such permutation of
indices that is allowed by internal symmetries of tensors by 7, then this condition
becomes

a _ =7 _ za _ ~7(®) .
ZU(CV) =2Z — “1(o(a)) — ZT(J(Q)) = I,. (553)

These internal symmetries can be taken into account in the actual search for
CPIs by defining a new matrix that is produced from one of the equivalent o
matrices, which maps all invariants that are related by transformations of the type
7 onto a single matrix that also uniquely corresponds to the diagram corresponding
to all these invariants. (In the diagram the symmetries are taken into account
automatically.) This new matrix will be called contraction matrix and denoted by

m. Define the following submatrices of o and m:

Oy Ovy Oyvz My myy Myz
0= |0yy Oyy Oyz M= | My, Myy Myz|, (5-54)
Ozy Ozy Ozz Mmzy Mzy Mzz

where now the vv parts correspond to contractions between VEVs, vY between
VEVs and Y tensors, and so on, until ZZ, which corresponds to contractions
between Z tensors. While ¢ is an n x n matrix with n the number of indices, m

will be an N x N matrix where N is the number of tensors in the invariant. W
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would only be counted once. The relations between the submatrices of o and m

are as follows:
Moy = Z(va)ij )

2%

(va)j = Z(UUY)ij )

(Myz); = Z(Uuz)m’q,j + Z(Uvz)m',j ;

(Mmyy); = Z(JYv)ij )
J

(Mmzy)i = Z(UZv)i,Zj—l + Z(UZv)i,Qj ;
J J

(5.55)

mYY)ij = 045 ,

)

(
(myz)ij = Tigj—1 + 0igj ,
(

~

Mzy)ij = O2i—1; + 02 j ,

(Mz2)ij = 02i—1,2j—1 + O2i—12j + 0221 + 0295 -

The element m;; denotes how many arrows are pointing from the i-th tensor in the
invariant to the j-th tensor. What is happening in Eq. (5.55) is that all equivalent
ways of contracting the i-th and j-th tensor are summarised in m;; which means
that e.g. for a contraction from a Y tensor to a Z tensor, one has to add the two
elements corresponding to the two possible permutations of the lower index of Z,
out of which only one can be non-zero in ¢. Similarly, for contractions of a Z
tensor with another Z tensor (or itself), one has to add all entries in the 2 x 2
submatrix that corresponds to the four involved indices, out of which only two can

be non-zero in o.

For an invariant that only consists of Y tensors, the contraction matrix m is
identical to o. For invariants only consisting of Z tensors, the situation also
becomes a little simpler, as the full contraction matrix is given by the last line of
Eq. (5.55). As o is a permutation matrix, in a 2 X 2 submatrix only either the two
diagonal or the two off-diagonal elements can be non-zero at the same time and
the contraction matrix decays into the sum of two smaller permutation matrices

of only ny elements, i.e. with 0,07 € S,,,:

mi; = (07)ij + (0F)s5. (5.56)
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Now, one can discuss the last source of symmetry, namely permutations of tensors

of the same type. Interchanging the position of two Z tensors in an invariant,

a1a2 a3zaq azaq a1a2
Zo(a)r(az)Zolas)otar) -~ Lolag)otas) Zolariotaz) -~ (5.57)

induces simultaneous permutations of both upper and lower indices of the form

1
10 10
- _ ® , 5.58
S R Y P 559

such that an invariant transforms as
I, 5zl (5.59)

For larger invariants that also contain Y tensors and VEVs the index transforma-
tion induced by permutations of tensors of equal type works similarly. Now one

can rename 7(a) = o such that the invariant becomes
IO' — Z?(O’(’F*l(a/))) 5 (560)

which shows that permutations of tensors relate different o matrices in a way
similar to conjugacy class transformations, except that the index permutations
induced by tensor permutations do not generate the full permutation group 5,, of
the n indices. To summarise the symmetries of o, all permutation matrices that
are related to o by conjugation with transformations of type 7, Eq. (5.53) and

transformations of type 7, Eq. (5.60),
Forooor oF (5.61)

where 7 and 7’ can be two different transformations, produce the same invariant

as o.

On a contraction matrix m, the permutations on tensors act in a simpler way. For

all 0¥ € S,,, and 07 € S,,, all of the contraction matrices, first for invariants

without VEVs,
T
0 0
o o , (5.62)
0 Oz 0 Oz
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and for invariants with VEVs,

10 0 10 0
0 oy 0]|m|O oy O , (5.63)
0 0 oy 0 0 oy

will produce equivalent invariants. Similarly, for invariants only involving Z ten-
sors, all 0?m(0?)T will produce equivalent invariants. Applying this to Eq. (5.56),
this means that one of the two summands can be chosen to be a conjugacy class
representative of S,,, which reduces the number of invariants that need to be

considered.

Finally, all pieces are in place to discuss the CP properties first of o and after that
of m. The CP conjugate of an invariant can be obtained by interchanging upper
and lower indices, or in the shorthand notation introduced in Eq. (5.50),

I, =z <5 zol), (5.64)

o(a)

One can now rename o(a) = o’ and subsequently drop the prime to obtain

CP. q
I, = Z00 - (5.65)
Naively, an invariant is CP-even if it equals its CP conjugate which leads to the

condition
o? =1. (5.66)

However, one has to take into account also all permutation matrices that are

equivalent to ¢ such that the condition becomes

cl=Foro0007 077, (5.67)
which means that as soon as any 7,7, 7 exist such that the above condition can

be fulfilled, o produces a CP-even invariant.

For contraction matrices, the condition testing if an invariant is CP-even simplifies.
With ¢~! = o7, from which follows that m Py T and if oy and oy exist, such
that the right-hand side is fulfilled, then the condition for invariants without VEVs

to be CP-even becomes

T
0 0
Invariant CP-even < m” = (UOY ) m (JY ) ; (5.68)

Oz 0 Oy
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Y:=©=(1>
Y;Y;ZQ ©: ((1) ?)

o P

10

-
Ziey? SEX (7 1)

11

ze s = (5 9)

22235 - (1 1)
L= 702yl = C : C =

Figure 5.2: Examples of contraction matrices for small invariants. All
contraction matrices are symmetric except for the CPI.

_— o O O
_ o O O
S = O =
O = = O

and for invariants with VEVs

1 0 0 1 0 0
spont. Invariant CP-even @ m” = [0 oy 0 |m |0 oy 0 . (5.69)
0 0 Oy 0 0 Oy

where the actions of 7 and 7" are absorbed in m. Figures 5.2 and 5.3 contain ex-
amples of contraction matrices for small diagrams. There, all contraction matrices

happen to be trivially symmetric except for the CPIs.

It is condition Eq. (5.69) that was used to find CP-odd invariants. In the ac-

tual search, first all ¢ matrices for a certain number of Y and Z tensors, and
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VEVs was generated. This list of ¢ matrices was then reduced to a list of con-
traction matrices, which was condensed using Eq. (5.63) to classes of equivalent
contraction matrices, out of which a representative was tested for CP-oddness
using Eq. (5.69). This search was performed for invariants without VEVs for
my = 0 up to ny = 6, where it was found that all invariants without Y ten-
sors until ny; = 4 are CP even. Furthermore, CP-odd invariants were found
for (my,nz) = (1,3),(1,4),(2,2),(2,3),(3,3). For invariants with VEVs, only a
search for invariants with my = 0 was performed, where CP-odd invariants were
found for (n,,nz) = (1,3),(2,3),(1,4). All inequivalent invariants from these

classes are listed in section 5.2 or in appendix 7.3.

As one progresses to more complicated invariants, one has to make sure not to
count invariants that are products or powers of smaller invariants. An invariant
that is a product of two smaller invariants will correspond to a diagram that decays
into two separate graphs. As this means that some vertices are only connected
among each other while being unconnected to the rest of the diagram, such a
reducible invariant will be described by a contraction matrix that can be brought
to block-diagonal form only using permutation matrices. This means in particular,
as for invariants with VEVs, m,, denotes the number of VEVs that are only
connected to other VEVs, that m,, # 0 would mean that the diagram would

contain graphs for v,v** that are unconnected to the rest of the diagram.

Finally, there is one last condition that relates invariants, namely the minimisation
condition Eq. (5.173). In the contraction matrix for an invariant with VEVs this

can be used if there is an 7 such that
miy; = 1 and m;1 = 2 5 (570)

or
miy; = 2 and m;1 = 1. (571)

In both cases, the Z tensor at position ¢ in the invariant is connected to three

VEVs.

5.2.5 CP-odd invariants only built from Z tensors

It is interesting to consider invariants that are only built from Z tensors, as these
indicate CP violation that is mediated purely through the interaction of fields

and does not e.g. depend on a mass splitting. One could now wonder if for a
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Figure 5.3: Examples for contraction matrices of CPIs for spontaneous CP
violation. We draw each of the VEVs (as opposed to a single vertex for
the whole W tensor).

non-diagonal Y tensor CP violating effects could be shifted between Y and Z by
diagonalising Y. However, because this is just another basis change, it drops out

in any basis invariants, including also CPIs.

In Appendix 7.3, we list the representative CPIs with up to nz = 6 Z tensors. All

other CPIs are related to these representatives by symmetries or CP conjugation.

An important first result is that all invariants up to ny = 4 are CP-even. For
ny = 5, three different CPIs exist:

1(5) — Zala2Za3044 Za5GGZa7a8Za9a10 — (572)

arag “—asalo azae T aqag T aia2

[( ) — paias yasas yasag aras yagazo _ (5.73)

asa7 "~ agag " aszae T a4aip T a1a2
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] — ya2 yazas yasag 7a7as yagalo _ (5.74)

asag "~ aszar “Taeag T aialp T a2a4

For nz = 6, in total 56 different invariants exist out of which three are products of
the nz = 5 invariants with a completely self-contracted Z tensor, Z%. These will
not provide any new information. Next, of particular interest are those invariants
that contain no self-loops, as we found that invariants with self-loops, i.e. Z$ often
vanish for the example potentials considered in this work. With ny = 6, only 5

invariants without self-loops remain:

(6) — rrajaz a3a4 70506 70708 79410 77411012 ( )
[1 ZanamZasas Za7a12Za9a6 Za3a4 Za1a2 ) 5.75
(6) — r7a1as r7asas r7asag r7aras r7agaig 77a11a12 ( )
] Za?MOZallanagas Za3t112Ztl5a4 Ztlmz ? 576
(6) — rra1as r7asas r7asas r7aras r7agaio 77ai1aiz ( )
] Za?leZagae Za11asza3a12Zaaa4 Za1a2 ’ 577
(6) — r7ataz a30G4 70506 70708 79410 77011012 ( )
[4 ZanamZasas Za7a12Za9ae Za1a4 Za3a2 ) 5.78
(6) _ r7atas r7asas r7asas r7azas rzagaig 77ai11a12 ( )
[ Za7a12Za5a10Za9a8 Zana4Za1a6 Za3a2 : 579

The diagrams that correspond to the above invariants with ny = 6 and the re-

maining representative CPIs with up to ny = 6 are listed in Appendix 7.3.

5.2.6 CP-odd invariants built from Y and Z tensors

Mixed invariants consisting of Y and Z tensors can be CP-odd at lower numbers
of Z tensors than ny = 5. The reason for this is that additional asymmetries can
be introduced in the diagrams. The smallest CPI found in [121], Eqgs. (5.44) and
(5.45), is of this type with my = 2,nz = 2 and will not be repeated here. There are
no other CPIs for my = 2,n,; = 2 that are not equivalent to the aforementioned
one. The next smallest CPIs are found for ny; = 3 and my = 1. There are two

different classes with the following representatives:

[(3 1) Yal 74203 70405 70647 _ (5.80)

aear “—azas " aiaz
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1§ = Y“lzs;sgzssﬁzsfsgzm (5.81)

However, both invariants in Eqgs. (5.80) and (5.81) contain self-loops. As these

often vanish in examples, one would preferably like to find invariants without self-
loops. Such invariants can already be found for ny; = 3,my = 2. There are in
total 13 invariants with this number of Y and Z tensors, out of which 2 have no
Z-self-loops. In one of them, the Y tensor is inserted in a Z loop and will only
make a difference if Y is not proportional to the identity, while the other invariant

has genuinely no Z-self-loops. These invariants and diagrams are

I = Yy e gasa gasa gares (5.82)

aear " azaq " a1az

[ = vy, e gases gasas gares . (5.83)

aear “—a4qag " aiaz

Naively, there are 53 classes of invariants with my = 3,n, = 3. However, many of
these will be products of smaller CPIs with small CP-even invariants. Eventually,
there are 10 invariants without Z-self loops which are not products of smaller

invariants, the representatives of which are listed in the following:

I = YRV Zun 2 i (584)
L = YOV s 2 2 (5.85)
I89 = Yoy ey m zue Zue 2o (5.86)
( ) a a a, aqa, aea aga

L7 =YY RY e 2o Zeett Zases (5.87

[$Y) = vy ey s geas gasar gasas (5.88

ag ~ a4 ~ar TUagag T azas " aiaz

I = yayoey s goss gosa gasa (5.89

arag " a4as " a1az

I = yoryaey e gaias gaser gasas (5.90

arag T a4qas " a1az

I = yary ey s gaaas gasar asas (5.91)

arag —asag T aia2

[P = vy ey s geaas gasar gasas (5.92)

arag ~—aiag " azas
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1Y = vy ey s geas gasar gasa (5.93)

agag “—aias T azay

Finally, we have also analysed invariants with ny = 4 and my = 1. Naively, there
are 18 different invariants with this number of Z and Y tensors. However, there

is only one invariant with this number of coupling tensors without self-loops,

I8 = Yo Zaaas gases gacar asas . (5.94)

asar “agag “azas “aiaz

This concludes our list of CPIs for explicit CP violation used in the main text of
this chapter. Following our systematic approach, we have also calculated larger

invariants and the obtained CPIs are collected in Appendix 7.3.

5.3 Two Higgs doublet model potential

As a first example for an application of CPIs that is well known in the literature
we consider the most general potential of two copies of SM Higgs bosons. For this
potential, a complete basis of CPIs is known [123]. All of these four CPIs have
also been produced in our systematic search. Using a slightly modified version of
the notation in [121], the general 2HDM potential takes the form

V(H,,Hy) = m? HIH, +m?, % HIH, +m2, e7% HIH, +m2 HiH, +
) tr )
tay (H1H1> +a (HQHQ)
+b (HjHl) <H§H2) Ty (H}ff?) (Hgfh) +
161 T T —1i61 T T
tep e <H1H1> (HQHl) tee <H1H1> (HlHQ) +
ey e (HgHQ) (Hng) Yoy e (HgHQ) (H{HQ) +
. 2 . 2
+d ¢ (HIHQ) 4 d e (Hng) . (5.95)

Here Hy = (h11,h12) and Hy = (ha 1, hoo) and the SU(2), invariant contractions
are indicated by the brackets e.g. (H]H;)? = (h}lhl,l + h12h1,2)2. Eq. (5.2)
becomes

¢ = (1,02, 3,04) = (h11, b1 2, ha1, hap) (5.96)
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such that the Z tensor corresponding to the quartic terms of the scalar potential
has 4* = 256 components. It is straightforward to determine these explicitly for

the potential of Eq. (5.95). In the following, we display the non-vanishing ones,

Zy =2y =27 =a, (
733 = Zyy = 2734 = a (5.98
4714 =473 =1, (
Ay =AZE =V, (
AZ\3 =AZ3 =b+ 1, (
AZ\2 = AZ53 = 2713 = 2732 = ¢ | (5.102
173 =75 =27 = 273 = o™ (
200y = I3} = Zyy = de'™ (
and remind the reader of the general relations Z% = 7% = 73 = Zba and

Z¢ = (Z%)*. Having determined the Z tensor in terms of the parameters of the

potential, we can calculate CPIs explicitly.

As a first illustration, we show the results of CPIs for this potential. In our

notation, the smallest one becomes
Iy = — 9imi, (m; — m3) [02(2611 —b—1b")sin(fy + 62) + c1(2a2 — b — b') sin(Gy + 6;)
+ 2d(eq sin(fy — 61 — 03) + cosin(fp — O — 93))}
— 9im?, [4d(a2 — ay)sin(20y — 03) + Asin(2(6 + 6,))
— 2(2¢y sin(6y — 0s) + cosin(2(6y + 92)))}
— 9icrey (m? —m32)*sin(6; — 6,). (5.105)

There are many ways of setting this expression to zero, the simpler ones involve
m?, = 0 which leaves only the last line in the expression, which vanishes either for
m?2 —m3 or sin(f; —60y). Alternatively, if m? —m3 = 0 there are other combinations
of constraints that make this CPI vanish, including sin(260y—63) = sin(2(6y+6,)) =
0. However, at this stage it is not clear if any of these constraints are sufficient to
guarantee conservation of CP, as other CPIs could still be non-zero. The invariant

7, being non-zero always requires myy # 0 or m% #* m%.
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As already mentioned, a complete basis of CPIs is known for the 2HDM poten-
tial, cf. [123]. Of the four invariants given in that paper, three are equivalent to

invariants given in Section 5.2 of this thesis (GH denotes the invariant in [123]):

180 = =1 (5.106)
LGy =, (5.107)
and
GH 3,3)\ %
Iy = (I89)" . (5.108)

The fourth invariant listed in [123] has nz = 6 and has not been given here yet as
it contains Z-self-loops. For completeness, we present it here following our general

notation as well as diagrammatically:

R VA A A A (5.109)

n

All CP-odd invariants with 5 Z tensors, cf. Egs. (5.72)-(5.74), vanish for this poten-
tial. For this potential, Z% is non-diagonal, which is why the CPIs found in [123]
produce interesting results. While the invariants from [123] form a complete basis
of CPIs for the 2HDM, all of them are zero for the potentials considered in the
remainder of this chapter. It is our systematic search that reveals new non-zero

CPIs in those situations.

5.4 A4 = A(12) invariant potentials

In this section we study potentials invariant under the discrete group A4s. We start
with a field content of a single triplet of SM singlets, then consider a triplet of
SU(2), doublets, two triplets of SM singlets and two triplets of SU(2);, doublets.
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Ay contains a real triplet and three one-dimensional representations. The product

of two triplets decomposes as
3®3 = (1g+11+1,+3):+3, . (5.110)

Symmetric and antisymmetric combinations are denoted by subscripts s and a,
respectively. Throughout this section we work in the basis of [155] which can be
easily generalised to A(27) and the complete A(3n?) series [156, 110] studied in
the Sections 5.5 and 7.2.

5.4.1 One flavour triplet

With one triplet field, only the symmetric contribution in Eq. (5.110) matters. It

is convenient to define

2
Volp) == m2 ) o™ +r (Z %-90“) +5) (pig™)? (5.111)

where one notes that the first two terms are SU(3) invariant. We consider ¢ to
be additionally charged under some U(1) symmetry (or an appropriate discrete
subgroup) such that terms of the form ¢;p; or @;p;p;, for example, are not allowed.
This leads to a more direct generalisation of the case where the SM gauge group

applies.
The resulting renormalisable scalar potential for A4 reads

Va,(0) = Vo) + ¢ (9191900* + 02020* 0™ + 30030™0™?)

+c (e psps + 000 + 000 00p)  (5.112)

noting that this includes, as expected, four independent quartic terms. Henceforth
we use the convenient abbreviations cycl. to denote the cyclic permutations, and
h.c. to indicate the hermitian conjugate. We thus write the A, invariant potential

of Eq. (5.112) in the compact form:

Va(0) =Vo(o) + [c (1199 +cycl) + hel] . (5.113)
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The A4 symmetric potential respects the general CP symmetry with a 2-3 swap,

namely the CP symmetry with unitary matrix X3

1
Xos= |0 (5.114)
0

_ o O
o = O

for arbitrary coefficients r, s € R and ¢ € C. Hence, despite the occurrence of the
complex coupling ¢ the A, symmetric potential of one triplet is invariant under
this general CP symmetry. For this reason, all possible CPIs for this potential will

be zero.

5.4.2 One flavour triplet of Higgs doublets

If each component of the Ay triplet is an SU(2); doublet,
H == (h1a7 hgﬁ, hgy) y (5115)

the potential is rather similar to the previous case. Indeed there is one additional
invariant, due to the two different ways to perform the SU(2), contraction on the

A, invariant (3 ©i*)?, when the ¢ are replaced by Higgs doublets®
> [ri(hiah ) (high®?) + ra(hiah™) (hjsh®)] . (5.116)
i7j7a7/8

Here we highlight the SU(2)., indices to clarify the distinct SU(2), contractions.
We define V(H) in analogy with Eq. (5.111):

Vo(H) = = mp Y hiah™ + Y [r1(hiah™®) (hjgh") + ra(hiah™) (h;sh™®)]
7,0 i,5,0,0
+5 > (hiah™®)(high™?) | (5.117)
i,

9Since the doublet 2 of SU(2), is a pseudoreal representation, it is also possible to combine
(Riahjpe®)(R* Y h*I%¢ ) using the antisymmetric e tensor. However, such a term is not linearly
independent of the two terms in Eq. (5.116) as can be easily seen in an explicit calculation or by
noting that 2 x 2 = 1 + 3 which entails only two independent SU(2),, invariant quartic terms.
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and the Ay potential is then

Vi, (H) = Vo(H) + Y [e (hiahaph™*h*¥ + cyel) + hee] . (5.118)
a,

This potential is also invariant under a CP transformation that involves swapping
the second and third component in flavour space while keeping SU(2)., contrac-

tions unchanged, i.e. hoq — h*3® etc.:

100
X5=100 1] ®d5. (5.119)
010

Therefore, CP is conserved automatically for this potential and all possible CPIs

necessarily vanish.

5.4.3 Two flavour triplets

Typically, realistic models of flavour require more than just one triplet flavon. We
therefore consider the potential involving two physically different flavon fields ¢
and ¢’ which both transform in the triplet representation of A4. In the case of
two Ay triplets distinguished by additional symmetries so that the total symmetry
is Ay x U(1) x U(1)’, the potential includes a total of seven independent mixed

quartic invariants of the form ¢ ¢’ p* ¢*. It is convenient to define:

Vilp,¢) =+ 7 (Z soiso*i> (Z ™ ) + 7y (Z @i@/*i) (Z o™ )

7

*1 1 _1%2 *2 1 _I%3 *3, /

+ 55 (010™1 b + 020" + 30" 1)

%1 7

+ 183 [(cmso phe™? + cycl.) — (™1 % ps + cycl-)} : (5.120)

Note that in this definition, the term multiplied by 7, contains the term multiplied
by 35 as well as the term obtained from the latter by interchanging ¢ with ¢:

(1™ 020™ + D039 + 319" (5.121)
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which is not included separately in §,.

The A, symmetric renormalisable potential takes the following explicit form, with

Vo as defined in Eq. (5.111),

Vay (o, ¢') =Vo() + Vo (¢') + Vilp, @)+
+ [c (pr1p10™%0™ + cycl) + hee] + [¢ (9119 + cycl.) + h.c]

+ [¢ (p119*2¢"™? + cycl) + hoe ], (5.122)

where V{ (') has the same functional form as V5(¢) with different coefficients m/,,,

r’, s and depends on ¢'.

Unlike the previous A4 invariant potentials, this potential in general violates CP, as
confirmed by the non-zero CPIs listed in Table 5.1 of Section 5.6. The expressions
are cumbersome and we do not reproduce them here. The non-vanishing CPIs
IéG),I?E@,IiG),IéG) (Egs. (5.76,5.77,5.78,5.79)) all factorise as a product of 5, with
different complicated functions of the remaining parameters, for example, Iéﬁ)

takes the form:
9 = 5f(.) (5.123)

where f is a complicated function of the other parameters. Such a dependence on
So is expected because it corresponds to a CP symmetry, where one imposes Xo3

of Eq. (5.114) on both triplets, corresponding to the block matrix:

. [ Xy 0
Xg¢ = ( oy > . (5.124)
23

This CP symmetry constrains the potential such that sy = 0, which forces all
CPIs to vanish as expected from the presence of a CP symmetry. Furthermore,
applying instead the trivial CP symmetry C'F, forces §3 = 0 and all other complex
parameters (¢, ¢, €) to be real. As expected, this renders f(...) = 0 in Eq. (5.123),

an makes all other CPIs vanish as well.

5.4.4 Two flavour triplets of Higgs doublets

Earlier, when considering a potential of an Ay triplet of SU(2); doublets, the
only difference was that the term with coefficient r split into two different invari-

ants corresponding to two different possible SU(2),, contractions, cf. Eq. (5.116).
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Similarly, the potential of two triplets of SM doublets:
H = (hlaa hag, h3’Y) ) H' = (hllom 12,6’7 hg’y) ) (5'125>

can be obtained from the corresponding potential of singlets, Eq. (5.122). In the
first two parts of the potential, V;(p) and Vy(¢'), as earlier, there are two different
ways of SU(2)-contracting the invariants with coefficients r and 7. In the part of
the potential with A4 contractions as in Vi (¢, ¢'), for all A4 invariants two possible

ways of SU(2),, contracting the fields exists and this part of the potential becomes

Vi(H, H') = 37 [Firhiah™ Rjgh'™? 4 Frohiah'° b 5h™]

i,5,0,8
+ > [Farhiah™ B gh™? + Foghio h™* B g7
i7j7a7ﬁ
+ 3 [Birhiah™ ™ high™® + &1ahio ' 1 gh* ]
i,0,03
+ ) [Sa1(haah™  hhygh™*? + cycl) + Sap(hiah"*** Bygh™® + cycl.)]
a,
+iSg1 Y [(haah™“hhysh™ + cycl) — ('R} B hyg + cycl.)]
a’/B
+idsn Y [(hiah®*hygh"™' + cycl.) — (W™ hah™**h] 4 + cycl.)].
a?/B

(5.126)

Finally, of the remainder of the potential, only the invariant with coefficient ¢ from
Eq. (5.122) needs to be doubled:

D [ (b k"3 + cyel) + éa(hiah**Hy k™ + cycl) + hee] . (5.127)
a,B

We therefore write

Va,(H, H') = Vo(H) + Vo (H') + Vi(H, H') (5.128)
+ ) e (hahigh™*h*¥ + cyel) + ¢ (h 2y h" 2B + cycl.) + h.c.]
a.f

+ ) [ (k™ By gh™** + cyel) + éa(haah™** By gh**" + cycl) + hue] .
a,B
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We note that due to SU(2), not allowing cubic invariants of H and/or H', it is

sufficient to use a Z3 symmetry to distinguish the A, triplets.!”

This potential generally violates CP. This can be seen from the CP-odd invariants
calculated, as I§6),I§6),Ii6),fé6) (Egs. (5.76,5.77,5.78,5.79)) are non-zero (see Ta-
ble 5.1) but with too large expressions to display here. However, it is possible to

impose a CP symmetry with

;[ Xes O
XHH [ % ® 6% 5.129
2 ( 0 X i (5.129)

which, similarly to previous examples, restricts the coefficients in the potential,

namely
So1 =522 =0, (5.130)

thereby forcing all CPIs to vanish. Imposing, alternatively, the canonical CP

symmetry C'Py leads to §31 = §30 = 0 as well as ¢, ', ¢, ¢ € R.

5.4.5 S, invariant potentials

The transition from A(3n?) invariant potentials with arbitrary n € N to potentials
which are symmetric under the larger group A(6n?) is discussed in Appendix 7.4.2.
The corresponding basis of Sy = A(6 x 2%) can be found in [157, 49, 110]. For the
Ay potential with one triplet of singlets as well the A, potential with a triplet of

doublets, the corresponding S, invariant potentials are obtained by setting

- =c, (5.131)
so that
Vs, (@) = Vo(p) + c[(pre19™290* + cycl.) + h.c], (5.132)
and
Vi, (H) = Vo(H) + 3 ¢ [(hrahish™h™? + cyel) +hic.] (5.133)

a?/B

19The potential invariant under a Z [154] would additionally allow for invariants of the form
hiah™h;gh/*38 and h;oh"*Ph;sh*I® where the conjugated fields are both related to H'.
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where the potentials Vj were defined in Eq. (5.111) and Eq. (5.117). For the

potential of two triplets of A4, the S; invariant potential arises via setting
§0=35=0, (5.134)
and additionally
cF=c, =, cf=c. (5.135)

Defining the following abbreviation,

Va(io, ') =1 (Z %-so”) (Z o™ > + 7 (Z SOiSO/*Z) (Z ™ >

+ 5 Z (gpigo*icpgcp'*i) , (5.136)

7

the full potential of two Sy triplets becomes

Vau(p, ") =Vol) + V5(¢') + Vale, )+
+ c[(prp19™%9™ + cycl) + he] + ¢ [(ple1¢™?¢™*® + cycl.) + h.c]

+ ¢ [(erp1e*?¢™ + cyel) + hee] . (5.137)

The S, potential with two triplets generally conserves CP. This can be understood
from the non-vanishing CPIs obtained for A, which were proportional to $y (see
Eq. (5.123)) which is zero in the case of S;. Indeed, one CP symmetry present
in Vg, (p,¢') is Xé’g"/ in Eq. (5.124), because Sy enforces §5 = 0 and therefore
the Vs, (p, ') potential is invariant under simultancous CP transformations with

2-3-swap on ¢ and ¢’.

Turning to the case of Higgs doublets of SU(2)y, for Va,(H, H'), enlarging the

symmetry to Sy constrains the potential parameters as follows:

* /x /

cf=c d=d, =&, & =20y (5.138)

and

521 - 522 - 531 - 532 - O . (5139)
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Again, introducing an abbreviation,

Va(H, H') = > [Frhiah ™ sh™P + Fiohioh™® g h*i?]
i,5,0,
+ ) [Farhiah B gh P 4 Fophi B g b
i7j7a16
+ ) [Binhiah R gh P + E5hio k" Bgh ] (5.140)
i,

the Sy invariant potential of two triplets of doublets becomes

Vs,(H, H') = Vo(H) + V5 (H') + Va(H, H')
+ e [(hiahagh™ h* + cycl.) + h.c]
a,B

+ Z d [(h’la ’1/3}1’*30%’*3’6 + cycl.) + h,c,]
a,B

+ ) e [(hah™* By gh™* 4 cycl) + h.c.]
o,

+ ) e [(hah™Hy ;™ 4 cycl) + he] . (5.141)
.p

As in Eq. (5.137), the potential Vg, (H, H') conserves CP. As all parameters of this

potential are real, it is not surprising, that it is invariant under trivial CP, C'F,.

5.5 A(27) invariant potentials

In this section we concern ourselves with potentials invariant under A(27). As in
the A, case, we consider the field content of a single triplet of SM singlets, then
a single triplet which is also an SU(2);, doublet, then two triplets of SM singlets,
and finally two A(27) triplets of SU(2)., doublets.

The group A(27) has one irreducible triplet representation 3, its conjugate 3, and

nine one-dimensional representations. The product of two triplets decomposes as

3®3 = (3+3), + 3., (5.142)

where the subscripts s and a denote symmetric and antisymmetric combinations,
respectively. In the following we adopt the basis of [158, 156, 110].
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5.5.1 One flavour triplet

Having only one triplet field, the antisymmetric contribution in Eq. (5.142) van-
ishes identically. As a consequence there are four independent quartic A(27) in-
variants of type 3 ® 3 ® 3 ® 3. Writing the components of the triplet field as ¢;,

with ¢ = 1,2, 3, we can easily derive the renormalisable scalar potential,

Vaen (@) =Vole) + [d (pr1o19™¢™ + cycl) +he] . (5.143)

The coefficients inside V() (cf. Eq. (5.111)) are real but d € C. The number of
independent real parameters is therefore four. Va(ar)(¢) is accidentally also the

potential for a single A(54) triplet [134], as discussed also in Appendix 7.4.2.

The potential of Eq. (5.143) in its most general form violates CP as can be seen
from the construction of CPIs which do not vanish for general choices of the coeffi-
cients in the potential (see Table 5.1). Calculating the CPIs Ifg (Egs. (5.78,5.79))

explicitly yields the same non-zero result for this potential:
) = — o (d® — d*®) (& + 6dd*s + d** — 85°) (5.144)

while the other explicit CPIs that are listed throughout Section 5.2 are zero for this
potential. The potential in Eq. (5.143) is known to be CP conserving in the cases
Arg(d) = 0,27/3,4m /3. Indeed this is reflected in the CPIs which are proportional
to

(d® —d*%) . (5.145)

This factor vanishes for Arg(d) = 0,27/3,47/3, where each case corresponds to a
distinct CP symmetry, defined by a 3 x 3 matrix X. In the following, we explicitly
list the CP transformations that enforce various parameter relations. The Xj;-

notation we use in our work matches the indices of the CP transformations listed
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in [68],
1 00 1 00
Arg(d)=0<=Xo=|0 1 0| or X3=10 0 1], (5.146)
0 01 010
100 w 0 0
Arg(d) =4n/3<=X,=|0 1 0| or Xg=|0 0 1], (5.147)
0 0 w 010
10 0 w2 0 0
Arg(d)=21/3<=X3=X;=(0 1 0| or Xo=X;=]0 0 1
0 0 w? 0 10

(5.148)

We recall that for each CP transformation an equivalent one can be obtained by
multiplying it by an element of A(27). Note also that X; = X3 from Eq. (5.114).
Focusing on the other factor of Eq. (5.144), all CPIs we have identified vanish if
we set

(d* + 6dd*s + d** — 8s*) =0 . (5.149)

This is a strong hint that there are CP symmetries that make the potential CP
conserving, not by fixing the phase of d but by imposing specific relations between
the parameters d and s. Indeed, there are three solutions to Eq. (5.149) which are

listed with the corresponding CP transformations from [68],



5 CP-odd invariants for multi-Higgs models and applications with discrete

144 symmetry
2s = (d+ d*) = 2Re(d)
. 1 1 1 ) 1 1 1
S Xy=— |1 w |l o Xs=X,Xi=X]=—F7] 1 ?* w [,
1 w w 1l w w
(5.150)
25 = —Re(d) — v/3Im(d)
, 1l w w , 1 w
—1 —1
<— Xg=—=| w 1 or Xjo=XeX1=—7| w 1 w |, 5.151
6 73 10 6X1 73 ( )
w w w w 1
25 = —Re(d) + V/3Im(d)
‘ 1 w? w? . 1 w? W?
X=X —| w1 o X=X W1 W
V3 2 2 V3 2,2
w1 w w* w1
(5.152)

We conclude that there exist 12 CP symmetries, listed in [68], which correspond
to two CP symmetries for each of the 6 CP conserving conditions that make either
(d*—d*3) = 0or (d* + 6dd*s + d** — 8s%) = 0. The fact that there are two distinct
classes of CP symmetries, unrelated by A(27) transformations, for each of the 6
CP conserving conditions is due to the A(27) potential being accidentally invariant
under A(54) [134]. The two classes of CP symmetries in each case are related to

each other by a A(54) transformation.

5.5.2 One flavour triplet of Higgs doublets

If each component of the A(27) triplet is an SU(2), doublet, the potential is
rather similar to the previous case, and in analogy with the A, potential there
is one additional invariant which is contained in Vj(H). The resulting potential

reads
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Vaen(H) =Vo(H) + Y [d (hiahigh™*h™ 4 cycl) + he] . (5.153)
a,B

In general the potential explicitly violates CP. It is possible to impose CP conser-

vation as in the previous case, as follows.

Calculating the CPIs, we see that up to a prefactor, Ifg have the same form as in

Eq. (5.144) for the previous potential:

B12 () _ 1024 () 5 _ 3 (3 3o

—71, = ——7I; = —(d°—d”) (d°+6dd"s +d* — 8s”) . 5.154

31574 495 5 ( ) ( + s+ s ) ( )
This means that the same conditions ensure CP conservation as in the previous
A(27) invariant potential. They are associated to CP symmetries with the X;
matrices discussed in the previous subsection, simply multiplied by 0§ acting on

SU(2)r, indices (similarly to Eq. (5.119)).

5.5.3 Two flavour triplets

As for the A, case, we consider the potential involving two physically different
flavon fields ¢ and ¢’ which both transform in the triplet representation of A(27).
Note that the triplet representation of A(27) is unique up to complex conjugation.
In addition to the invariants of each field, the full potential contains also mixed
terms. Confining ourselves to quartic terms of the form ¢ ¢’ ¢* ™ (which can
be enforced e.g. by U(1) symmetries, such that the imposed symmetry is really
A(27)xU(1)x U(1)"), we obtain nine independent mixed invariants. The resulting

renormalisable potential is then given by
Vaen (e, @)F0(0) + Vi(¢) + Vile, ¢') (5.155)

+ [d (101920 + cycl.) + h.c.] + [d ("™ + cycl.) + h.c.]

+ [Czl (90180/190*2()0/*3 -+ cycl.) + h.C.} + [JQ (@1@/190*3@/*2 + Cycl.) + h.C}.
Here the masses as well as the coupling constants inside Vp, Vi and V; are all real
(note the explicit factor of ¢ multiplying §3), while the couplings d, d’, dy and ds

are generally complex.

This potential explicitly violates CP, since several of the CPIs are non-zero as can

be seen in Table 5.1 of Section 5.6, but the expressions are cumbersome. However
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it is possible to impose CP conservation. For example, imposing trivial CP (C'F)
enforces the 4 complex coefficients d, d’, dy,d> to be real and 53 = 0. We have
verified explicitly that all CPIs vanish in this case. Alternatively, imposing Xg’?f&/
Eq. (5.124) enforces 3, = 0 and relates d; = dj as well as d* = d, d"* = d’, which
implies that all the CPIs vanish as expected.

5.5.4 Two flavour triplets of Higgs doublets

As earlier, a potential for two triplets of SU(2);, doublets can be obtained by
including all possible SU(2), contractions of the fields in the A(27) invariants.
The only difference of this potential to earlier Higgs potentials lies in the invariants
with d-coefficients, out of which only the invariants corresponding to d; and ds in
Eq. (5.155) need to be doubled. Therefore the potential is in this case:

Vaen(H,H') =Vo(H) + Vo (H') + Vi(H, H')+ (5.156)
+> [d (haahigh™* b + cycl) + d’ (il b "B + cyel.) + h.c.]
o

+ [Jn(hlah*%‘h’wh’*?’ﬁ + eyel) + dio(hiah™*H, gh* + cyel.) + h.c.]
a,B

+y [ng(hlah*?""h’wh’*% + cyel.) + das(hanh" 2By sh™ + cyel.) + h.c.] .
a,B

The potential Vaer (H, H') is CP violating in general. Of the CPIs calculated,
of. Table 5.1, Z.?, 79 79 79 (Eqs. (5.76,5.77,5.78,5.79)) are non-zero, but the

expressions are too large to display here.

5.5.5 A(54) invariant potentials

Working in the basis of [49, 159, 110], the potentials of one triplet of singlets or
SU(2)r, doublets are both identical for A(27) and A(54). The A(54) symmetric
potential of two triplets of SU(2), singlets is obtained from the corresponding
A(27) potential by imposing the constraint of Eq. (5.134),

So=83=0, (5.157)
as well as

dy =dy | (5.158)
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from which Va(27)(¢, ¢’) becomes

Vasa (@, ©') =Vole) + V5 (¢) + Valp, ¢')
+ |d (301g01¢*2g0*3 + cycl.) + h.c.} + [d’ (gp’lcplgol*ng’*?’ + cycl.) + h.c.}
+

—

1 [(e1019720™% + cyel) + (191" "™ + cycl.)] + hec..

(5.159)

S

The A(54) potential with two triplets does not conserve CP in general, as seen
in Table 5.1. The potential in Eq. (5.159) is obtained from Eq. (5.155) in the
So = 83 = 0, d} = czg limit, which makes it rather similar to the CP conserving
Vagn (g, ¢') after imposing the X5 (cf. Eq. (5.124)), but note that Va s (2, ')

does not have d* = dy, d* = d nor d* = d’. Therefore, even though CPI 256)

vanishes, I§6),I£6),Ié6) are non-zero.

For the potential of two triplets of Higgs doublets, the following conditions on the

parameters arise when enlarging the symmetry to A(54):
dyy =dy, dp=di, 8 =35m=>5y=28p=0. (5.160)
The potential becomes

Vaea(H, H') = Vo(H) + V5 (H') + Va(H, H') (5.161)
+ Z (hiahigh™ B 4 cycl) + d' (B 1y gh™ B3 4 cycl.) + h.c.]

[ (haah™2 ]y g1 4 cyel.) + dyg(hyoh"™ 1, 3h*™® + cycl.) + h, c]

[ (e W h"2 4 cyel) + dia(han b2 B sh™ + cyel.) + h.c.].

This potential is also generally CP violating and 13 ,I4 ),Iéﬁ) are non-zero but

too large to display here.

5.6 Summary of CPIs for explicit CP violation

In this section, we collect our results of Sections 5.4, 5.5 and 7.2. We have calcu-
lated CPIs for a number of different potentials which are invariant under either of
the following discrete symmetries Ay, Sy, A(27), A(54), A(3n?) and A(6n?) with

n > 3. All these symmetries have irreducible triplet representations. Choosing
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| | =¥ 1] z7 ¥ ] CP
Bass Lsu(2),) 0 0 0 0 Eq. (5.114)
(8445 250(2),) 0 0 0 0 Eq. (5.119)
2% (34,,1s0(2),) * * * * NA
2% (34,,250(2).) * * * * NA
(3A 27); Lsu(2),) 0 0 [ Eq. (5.144) [ Eq. (5.144) NA
2 X (3A(27) ]-SU(Q)L) * * * * NA
2 x (3a@27), 250(2),.) * * * * NA
(8a@n2), Lsu@),) 0 0 0 0 Eq. (5.114)
(Ba@n2), 250(2),) 0 0 0 0 Eq. (5.119)
2 X <3A(3n2) 1SU(2) ) Eq. (797) * * * NA
2 X (3a@n), 2502).) * * * ¥ NA
1> Lsu(),) 0 0 0 0 CPy & Eq. (5.114
(354,2SU ) 0 0 0 0 CP & Eq. (5.119
2 X (3s,, 1SU(2)L) 0 0 0 0 CP, & Eq. (5.124
2 X (3s,,250(2),.) 0 0 0 0 CPy & Eq. (5.129
(Bas; lsu@,) 0 0 * * NA
(3a(54), 250(2),.) 0 0 * * NA
2 X (3A(54) 1SU(2)L> 0 * * * NA
2 X (3a(54), 250(2),.) 0 * * * NA
(3a(en2), Lsu(),) 0 0 0 0 CPy & Eq. (5.114)
(3a(n?), 250(2),) 0 0 0 0 CPy & Eq. (5.119)
2 X (3a(6n2), Lsu(2),) 0 0 0 0 CPy & Eq. (5.124)
2 X (3a(6n2): 250(2),. ) 0 0 0 0 CPy, & Eq. (5.129)

Table 5.1: Summary of CPIs and (if applicable) CP symmetry transfor-
mations for scalar potentials with discrete symmetry.

Higgs fields in a faithful triplet, we have determined the potential for one triplet
of SU(2),, singlets, one triplet of SU(2), doublets, two triplets of SU(2);, singlets
and finally two triplets of SU(2), doublets. The (scalar) particle content for each

of these 6 x 4 cases is listed intuitively in the leftmost column of Table 5.1.

Many of the CPIs defined in Section 5.2 vanish for all of these 24 potentials. We
have checked explicitly that Z\*%, 73V (3D 732 762 7@ 76) 75 7(6)
IfG) vanish in all cases. Table 5.1 shows the relevant invariants Iéﬁ), I?EG), 14(6),
I§6), evaluated for each potential. A 0O-entry means that the corresponding CPI
was found to be zero. A non-vanishing CPI is indicated by either an asterisk or an
equation number, where the latter refers to the position in this thesis where the
corresponding expression for the CPI is given. The asterisk is used for non-zero
CPIs which we have calculated analytically but whose expressions are too large to

display in the text.
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We observe from Table 5.1 that 12 potentials feature explicit CP violation. On
the other hand, all four CPIs shown in the table vanish for the other 12 potentials,
which suggests CP is conserved in those cases. Indeed, as listed in the rightmost
column, one can easily identify CP transformations which leave the potential un-
changed, thereby explicitly proving that CP is conserved. We recall that trivial
CP (C'P,) means complex conjugation on all scalar fields, cf. Eq. (5.21). “NA”
stands for “Not Applicable” and is used for CP violating cases.

5.7 CP-odd invariants for spontaneous CP vio-

lation

So far we have discussed CPIs that signal explicit CP violation in scalar potentials.
It is also useful to consider CPIs that indicate the presence of spontaneous CP
violation. In order to extend our formalism (which is applicable to any potentials

once translated into the standard form) we need to include also VEVs.

Recall that VEVs transform as vectors under basis transformations, cf. Egs. (5.22)
and (5.23):
Vg — V¥, (5.162)

TR 7 (5.163)

When used in invariants, first, if the potential does not contain trilinear couplings,
VEVs can only appear in pairs of v and corresponding v* because otherwise indices
would remain uncontracted. Furthermore, all VEVs commute and thus can be

combined into one large tensor,
T = Uy Uy, O (5.164)

where n, is the number of v, v* pairs.!! Using W, all invariants with n, pairs of

VEV and conjugated VEV can be written using

(n'u;m ,n ) — W1 ... Wny, al Amy b1bo b2nzflb2nz
Jo T Z W) own) Yotar) - Yotamy) Zotor)ow) - * Lolbany-1)0(bany)
o(wi)...o(wn, )y o(a o(amy ) o(b1)o(bs) o(ban,—1)o(ban )
= le('-}“)’nv ( )Yal( v T Yamy N Zb1b21 R szn;—zlbzlnz "
= (Jiromyra)yr (5.165)

HTn [122], VEVs are always assigned in pairs to matrices Vit = v*®uy, however, since all VEVs
commute, even for four or more VEVs, also all V; commute and can be summarised in one large
totally symmetric tensor.
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with ¢ € S, +my+2n,. When drawing diagrams, there are additional rules for

contractions with VEVs, again with X =Y, Z:
X", = &—>—X (5.166)

and
X; v = @&—<—X (5.167)

Invariants containing only Y tensors and VEVs are always CP-even. The smallest

examples of CPIs for spontaneous CP violation built from Z tensors and VEVs

J(2 2) = = 2yl Lyt 0,y U, UV = é—}_x (5.168)

(5.169)

are

J( 1) Za1a22a3a4za5aeva4 xar _

asae “—aiaz —azar

3
>

J( 1) Za1aQZa5a4Za5%Ua4 *a7 __ m > ©4 (5170)

aias “—aszae " aay

where the superscripts on J indicate the number of Z tensors and pairs of VEVs in
the invariant. A complete search for invariants with (nz, n,) = (2,2),(3,1),(3,2), (4,1)
was performed. The method is explained in Appendix 5.2.4 and the invariants not

given in the main text are listed in Appendix 7.3.4.

5.7.1 Minimisation condition in terms of diagrams

The minima of the a potential written as in Eq. (5.1) fulfil

ov

0=> 5= Y 4 20 2%, | (5.171)
and
oV b xc r7bd
0= a(b*e = Y; ¢b + 2¢ Zec¢b¢d 3 (5172)

where the factor of 2 appears because of the symmetry of Z% under b <+ d and

a <> c. Replacing the fields by their VEVs, these minimisation conditions can be
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expressed in terms of diagrams:

0=X>o——+2 (5.173)

and

0= X <@ —<— +2 (5.174)

This can be used later to simplify CPlIs, as can be seen by applying

X = 2 (5.175)

in Eq. (5.168). Using the minimisation condition Eq. (5.175), the invariant J\>?

can be simplified to!?

(5.176)

N —

This can only be CP-odd if Y is not proportional to the identity. One can now
search for more complicated invariants built from Z tensors and VEVs that will
not simplify like this. The smallest CPIs for spontaneous CP violation without
self-loops which also cannot be simplified using the minimisation condition for

ny = 3,4 respectively are

J1(3’2) = 70102 70304 0500, g, q)K0T 508 (5.177)

a40a5 " a206 “a7ay

12The resulting expression corresponds to the invariant J; in Eq. (26) of [120].
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and

T = gaae gases gases garasy, ges — . (5.178)

azas “—arag “ajaq T a2a9

5.7.2 Example applications
5.7.2.1 One triplet of Ay

As we have seen, the potential in Eq. (5.118) conserves CP explicitly. By an
analysis of all VEVs, it has been shown [143] that CP cannot be spontaneously
broken. Using our approach we have verified that the low order invariants vanish.
In particular, all spontaneous invariants up to ny = 3,n, = 2 are found to vanish

for this potential.

5.7.2.2 One triplet of A(27)

One can now calculate SCPIs for this potential for arbitrary VEVs and the smallest
non-zero SCPI found is j1(3’2), as defined via Eq. (5.177). For the general potential
Va@n (@) (which we note is CP violating), it takes the value

]' *
T =2 (d® = ) (or]* + ool + [os]* = 2lenPloal® = 2forPlos]* — 2fallos]?)
1
+ §(dd*2 —2d*s* + d?s) (V20301 + V1V3VE° + V1VVSY)

1
— §(d2d* — 2ds® + d*?s)(vivivl + vivivs + vivivs) (5.179)

In order to demonstrate the usefulness of SCPIs, let us consider the following
special cases of Var) () where we impose different CP symmetries. We start
by considering trivial CP (C'Fp), which in this case is the X, matrix, forcing
Arg(d) = 0 which simplifies the SCPI expression to

j1(3’2) = %(d3—2d82+d28) [(v2030]2 + V103037 + v109057) — (VsvsvT + vivivs + vivses)].
(5.180)

It is known [91, 134, 135, 136] that the complex VEV (1, w,w?) is not CP violating

when starting with trivial CP. This can be confirmed easily by using the SCPI

above. Instead, the geometrically CP violating VEV (w, 1, 1) does give non-zero
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when plugged into the SCPI. Let us consider now the CP symmetry X3, forc-
ing Arg(d) = 27/3. Because d remains complex, even a real VEV like (1,1,1)
spontaneously violates CP [145] and this is shown by the SCPI:

1
T8 = Im(dd™® — 2d"s* + d*s) [(307)] (5.181)

Another interesting case is the CP symmetry Xy, forcing 2s = (d + d*) = 2Re(d).
This simplifies Eq. (5.179) to

T = i(d*g — d®)(Jua]" + v + Jus]* = 2[va[*[va]® — 2[va[*[os]* — 2[vaf*[vs]?) -
(5.182)
It is interesting that in this case the SCPI indicates that spontaneous CP violation
is independent of the phases of the VEV. Indeed, the known VEVs for the X
symmetric potential, such as (0,0,1), (1,1,1) (which are real) and (w, 1, 1) are still
candidate VEVs of the X, symmetric potential and all violate CP spontaneously,
as indicated by the SCPI.

5.8 Summary of CP-odd invariants

This chapter has been concerned with CPV arising from scalar potentials which
go beyond the one Higgs doublet of the SM. Powerful new tools that allow to
systematically find CPIs that are valid for any scalar potential have been reviewed
and further developed, and which provide a reliable indicator for whether CP is
explicitly violated by the parameters of the potential. Spontaneous CPIs involving
the VEVs were also considered, in order to reliably determine whether CP is

spontaneously violated.

In order to illustrate the usefulness of the CPI approach, we then applied our
results to multi-Higgs scalar potentials of physical interest. We first considered
the general 2HDM case which was known to be CP violating, with a complete
basis of CPIs known, with several small CPIs being non-zero. We then considered
3HDM and 6HDM which are symmetric under A(3n?) and A(6n?) groups. Many
of these potentials had not been studied before and the new CPIs we found with
our systematic search were needed as the previously known ones vanish even for

potentials where the new CPIs reveal the presence of explicit CP violation.

For each potential, we either determined the lowest order non-zero CPIs (thereby

proving that potential is CP violating) or, in cases where all the considered CPIs
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vanish, we derived the explicit CP symmetries that leave the potential invariant
(thereby proving that potential is CP conserving). Since the potentials considered
were very symmetric, we found that most of the smaller CPIs vanish. Although
the CPIs apply to any potential, they take different expressions as functions of
the parameters of the potential, as clearly illustrated in the 2HDM example. Fur-
thermore, CPIs that are useful for one potential can vanish for other CP violating

potentials.

We found that the A4 potentials, although generally CP conserving for one triplet
of Higgs doublets or singlets, are no longer CP conserving in general when two Ay
triplets are present (either doublets or singlets). By contrast we find that A(27)
potentials are all CP violating in general. Although the A(27) potentials with a
single triplet (whether the scalars are Higgs doublets or not) had previously been
studied extensively, by using the calculated expression for a CPI we completely
mapped specific CP symmetries to different ways to make the CPI expression
vanish. For such potentials, we further analysed spontaneous CP violation when
considering different CP symmetries by using a non-trivial SCPI. The potentials
with A(3n?) with n > 3 turn out to be particular cases of A, potentials. For such
cases it is notable that the expressions for the non-zero CPI become manageable
for the case with two triplets (non-Higgs), which allowed to find a CP symmetry
that relates two of the real parameters of the potential. Moreover, we found that
all of the A(6n?) potentials are special cases of the respective A(3n?) potentials.
In the S, case, this makes even the potentials with two triplets automatically CP
conserving. Although the A(54) potential for one triplet (whether the scalars are
Higgs doublets or not) coincides with the A(27) potential, this is no longer the
case when two triplets are present, but they still generally violate CP. A(6n?) with
n > 3 is a particular case of S; and therefore the potentials considered are again

automatically CP conserving.

Finally, we briefly showed how our approach may also be applied to spontaneous
CPV. As an illustration of this we calculated the SCPIs which are relevant for a
A(27) potential showing how it reveals the CP properties of candidate VEVs.

In conclusion, the invariant approach to CP violation provides a reliable method
for studying the CP properties of multi-Higgs potentials. We have developed
a systematic formalism for determining the CPIs for multi-Higgs potentials in
general, and have extensively applied this formalism to both the familiar general
2HDM as well as many examples in which the Higgs fields fall into irreducible

triplet representations of a discrete symmetry. We considered not only SM Higgs
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doublets, but also SM singlets which play the role of flavons in flavour models.
In each case we catalogued all the lowest order CPIs, many of which previously
unknown, thereby elucidating the CP properties of the considered potentials and

finding the relevant CP symmetry transformations where applicable.

Furthermore, invariants may provide an interesting theoretical tool. It is for exam-
ple topic of debate if there is a relation between spontaneous CPV and suppressed
explicit CPV, [160]. Using the equations of motion to relate spontaneous CPIs

with explicit CPIs may give some insight and could be worth considering.






Conclusions

The purpose of this final chapter is to first succinctly summarize the contents of
this thesis and after that to put them in the wider context of the current state of

particle physics.

In the Standard Model, quark masses and mixing, charged-lepton masses, as well as
CP violation are merely parametrised, whereas neutrino masses, mixing and dark
matter are even entirely unexplained. Thus any explanation of these phenomena
will have to involve physics beyond the Standard Model. Furthermore, in the
SM, CP violation seems to be related to the flavour sector which is why studying
one necessitates studying the other. Next, new physics can often involve new

symmetries that require breaking by which additional scalars can come into play.

While typical explanation attempts point towards high energies (RHv, GUT,
Planck), it is worth studying these topics now because related observable phe-
nomena occur at low energies and corresponding experiments are on the way or

will be in the near future.

Whatever may be the correct theory of flavour and CPV, two reasons make flavour
and CP symmetries either as fundamental symmetries or at least as an interme-
diate, effective symmetry, attractive: The general success of symmetries as an or-
ganizing principle in particle physics and the fact that in the SM fermion species

already have (separate) residual flavour and CP symmetries.

This thesis started by stating the flavour problem in terms of one of the most
fundamental principles in physics, namely relativistic invariance. To repeat it
here, from the point of view of the author, the flavour problem can be formulated

in this context as: There is no such thing as flavour — in the Poincare group, and

157
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what was meant by that is that to describe the several flavours of the standard

model, several copies of representations of the Poincare group are needed.

This already reflects the philosophy behind this thesis, namely that unsolved
problems should be considered as questions about the fundamental symmetries

of physics. (For lack of better guiding principles.)

After that, the problem of CP violation is introduced. And while CP violation
seems to be necessary for all our existence and the standard model not providing
enough of it, it was again attempted to look at it also from a fundamental symme-
try perspective. It is the point of view of the author that no fundamental difference

exists between flavour, general C, P, T symmetries or combinations thereof.

The remainder of the introduction then worked its way from these open questions
and ideas to observable predictions, namely such as would be produced by residual
symmetries in various parts of the Lagrangian, especially in the Yukawa sector and

eventually lepton mixing matrices.

Three chapters then analyse different incarnations of residual symmetries in the
lepton sector. The flavour group assumed was always a member of A(6n?) which
is an important series of subgroups of U(3). These groups are similar in structure
and can be analysed simultaneously for arbitrary n, which was done for the first

time for such an infinite series of discrete groups.

Potentials with several Higgs doublets or singlets, that may be invariant under
some discrete group can spontaneously break both flavour and CP. Furthermore,
CP can be violated geometrically which means that the symmetry of the potential

is so constraining that the CP phases can only take certain discrete values.

In complicated scalar potentials with additional symmetries, it is often unclear if
CP is violated or not, both explicitly and spontaneously. However, CP-odd in-
variants can be constructed, similar to the Jarlskog invariant, that clearly indicate

CP violation.

Thus, in the subsequent chapter, motivated by both the fact that flavour and CP
symmetries need to broken, and the search for additional CP violation, various
potentials invariant under candidates of flavour groups were studied with a focus
on the possible CP violation they might introduce. The tool used for this were

CP-odd Higgs basis invariants.

Among the open questions that are touched upon by the work in this thesis are

the following:
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e Why do fermions mix as they do? Why are the masses of fermions what

they are?

e [s there CP violation in the lepton sector? In a Higgs sector? Is CP violated

spontaneously? Geometrically in potentials with discrete symmetries?
e Are neutrinos Dirac or Majorana fermions?
In particular concerning the flavour symmetries examined in this thesis, experi-
ments will soon be able to test their parameter space.

However, it is probably a good idea to look out into the future and to remind
oneself of a small part of the questions that haven’t been answered or addressed
by the research in this thesis, starting with those that lie closer to the thesis but

also slowly moving away from it:

e Could the CP violation found above explain the baryon asymmetry?

e Why do quarks and leptons mix differently? What is the difference between
quarks and leptons? Are GUTSs the answer?

e How is the flavour symmetry broken? Through additional scalars? Or maybe

through extra dimensions?

e What are phenomenological consequences of flavour symmetries and their

breaking? In rare decays of Higgs bosons or fermions? At colliders?

e Which mechanism generates neutrino masses? Is it one of the already pro-

posed ones or something else?

e Could flavour symmetries help with explaining dark matter by explaining its

stability or its weak interactions?

e If neutrinos are Dirac, could maybe continuous flavour symmetry groups

help explain the flavour structure?
e What is the significance of the larger residual symmetries above EWSB?

e Could similar methods be applied to the strong CP problem? I.e. what is
the origin of the CP symmetry that forbids the #-term?

e Are there any additional light neutrinos? Could these be dark matter? Warm
dark matter?
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e What is the nature and origin of dark matter? Is there a warm dark matter
component? Does dark matter communicate with ordinary matter (besides

gravity)? What is the portal? What can neutrinos tell us about dark matter?

e Can the cosmic neutrino background be detected? The supernova neutrino

background?

e What could be learned about inflation from the CvB? About baryogenesis?

The statistical nature of neutrinos?

e Are there consequences for inflation in flavour models? Could a flavon be an

inflaton?

e s there a connection between gauge group (SM/GUT) and flavour group
breaking?

e [s there a theoretical principle that determines what the correct description

of particle physics is?
e Do flavour and gauge symmetries originate from quantum gravity?
e [s there a geometrical aspect to flavour?

e [s there a symmetry representation of quantum gravity via the representa-

tions of the diffeomorphism group?

e As quantum mechanics requires (anti)unitary representations, are symme-

tries a gate to testing quantum mechanics?
e [s flavour the gate to testing quantum mechanics?

e What is the nature of quantum gravity?

Clearly the research presented in this thesis only corresponds to a small technical

step in the epic endeavour of mankind to uncover the laws of nature.

Particle physics as a whole is currently in a weird state: evidence of phenomena
that cannot be explained by the standard model is accumulating, however when
testing the standard model at the LHC, it holds up as well as always throughout
its history.

However, even if the LHC doesn’t find anything, there is still hope! First of all,
there are other experiments, namely the various low-energy experiments attempt-

ing to detect Ovp and dark matter. There is now such a plethora of reactor and



6 Conclusions 161

accelerator neutrino experiments that one could easily lose track of them. These
will measure the various unknown neutrino parameters, and in addition will give
clues about sterile neutrinos. On the other side, cosmology has long entered the
precision era, and while there are no new general purpose satellite experiments
coming soon, cosmology will have no longer only to rely on light as the only mes-
senger. A variety of experiments are being planned that may detect the cosmic
neutrino background. Furthermore and more concrete, gravitational waves from
colliding black holes have been detected! This proves their existence and opens the
door for detecting the gravitational wave background. Beyond that, experiments
are being planned to perform precision measurements of the behaviour of strong

gravitational fields, e.g. the Einstein telescope [161].

On the other hand, as enough things are theoretically far from well-understood,
the author is convinced that theoretical progress is necessary and possible! What
seems to be needed are not only better experiments but better theoretical under-
standing by tying together all the bits and pieces and to find out where precisely
logical gaps appear, even if this means that one has to take a step back and that
one has to delve into more formal aspects of the theory. The only thing one has to
fear is that no scientist can be found with the courage to do this, or even worse,
that the whole of the scientific community gets distracted from having the pa-
tience for this by economical dynamics, or still worse, that mankind as a whole

loses interest in the pursuit of science.

Fundamental science in particular that does not produce immediately profitable
results is dependent on the goodwill of governments and eventually of the people.
As science is becoming more and more expensive, it is turning from something that
individuals can pursue on their own into projects that sometimes require several
states to fund them. Only by abandoning the slight elitism that maybe was always
part of science and returning knowledge and enthusiasm to the people that pay

for it, a crisis of science can be averted.

And when you finish reading this book, tie a stone to it and cast it into
the midst of the Fuphrates.

— Jeremiah 51.63






Appendix

7.1 Full results for semidirect models

7.1.1 Majorana mass and diagonalisation matrices for Neutrino-
semidirect models

(i) Gy = 257" = {1,b"d"}, Xow = {pe(7d™277), pu(bed 7))

The light neutrino mass matrix satisfying Eq. (4.22) is of the following form
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where mq1, mqa, mq3 and Moy are real parameters. This neutrino mass matrix is
diagonalized by the unitary transformation U, via

Ul'm,U, = diag (m1, mg, ms) ,
where U, is

(7.2)
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\/§ _eiﬂ-%% _eiﬂ.2z+"/ .

KV?
n o sin @

2ty
el

(7.3)
cos

where K, is a diagonal unitary matrix with entries £1 and +¢ which encode the

CP parity of the neutrino states and renders the light neutrino masses positive.
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We shall omit the factor K, in the following cases for simplicity of notation. The

angle 6 is given by

24/2
tan 20 = V2, : (7.4)
my1 + M3 — Mao

The light neutrino masses are

my = ’mn - m13| )

)

1 3 2 2
My = 5 |Mar + Mg + map — sign ((ma1 + mag — mag) cos 26) \/(mu + Mz — ma2)? + 8mi,

1 : 2 2
m3 = 5 M + ma3 + Mmoo + sign ((may + mag — Mag) cos 20) \/ (M1 + maz — ma2)? + 8mi,

Here the order of the three eigenvalues mq, mo and mgs can not be pinned down,
consequently the unitary matrix U, is determined up to permutations of the
columns (the same turns out to be true in the following cases), and the neutrino
mass spectrum can be either normal ordering or inverted ordering. Moreover, as
four parameters myy, mi2, mi3 and moy are involved in the neutrino masses, the

measured mass squared splitting can be accounted for easily.

(ii) G, = 78 = {1,abc?}, X,p = {pe(d? 1), pp(abcdT7d?9+27)}

In this case, the light neutrino mass matrix takes the form:

_9in P, Y e e i 2yt
myie 2w Mse 2im =~ mlgem n
[ Y T i 95 2yt i Y
m, = Mmige 2im = myie Zim = m13€7,7rn ’ (75)
i 2yty i iyt
m13em - m13e“r - m33€4z7r -

where myy, mi2, mi3 and ma3 are real. The unitary matrix U, which diagonalizes

the above neutrino mass matrix is given by

I .y P S
. e e cosd e™n sin 6
. 2yt 2yt io2yty .
U, = | ¢ e cos €™ sin 6 ; (7.6)
o uty . oyt
0 —e 257 /2sinf e 257\ /2cos

with
2v/2m3

mg3 — Mi1 — M2

tan 260 =
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The light neutrino mass eigenvalues are determined to be

my = ’mn - m12‘ )

1 .
moy = 5 ‘mu + Mg + M3z + S1g1 ((mu + Mo — m33) COS 26) \/(TTLH + Mo — m33)2 + 8m%3

1 : 2 2
mo = 5 m11 + 12 =+ m3zs — 51gn ((mn + mio — m33) COS 28) (mu + mio — m33) —|— 8m13

(111) G, = Zéz%dz = {1,a2bdz}, X, = {pr(022+25d5),pr(a2b62z+25dz+6)}

The light neutrino mass matrix, which is invariant under both residual flavour

symmetry and residual CP symmetry, is of the form:

A 210 a0 _ ;2240
mye 4 mige” " myge "
. . 2z+44 . 2448
m, = Mmise Tn  moee?™ n mgge? ™ n : (7.8)
2240 . z+98 oy
mige ™ n Mmaze®™ Mag€® ™ n

where my1, mia, mos and msy3 are real parameters. The neutrino diagonalization

matrix U, is given by

2t . s
) 0 — 250 /2sinf 2T \/2cosh
_ 2246 52246 _ 2246
U, = E e e "™ cos O e 8ind , (7.9)
) ) P R
—e e "n cos e "nsinf

where the angle 6 fulfils

2v/2m;

tan 20 = .
mi1 — Mag — M23

(7.10)

Finally the light neutrino masses are

my = ’mzz - m23\ )

1 .
mo = 5 ‘mn + Mag + Mg — sign ((my1 — Moy — Mag) cos 20) \/(mn — Mgy — Ma3)? + 8m%2

1 .
ms = ‘mu + Mags + Moz + sign ((my — Mg — Mag3) cos 20) \/(mn — Mgy — Ma3)? + 8mi,

(iv) G, = 25" = {1,¢"2}, X = {pe(7d%), pr(abcd®) }

o Xy = Pr(cwdé)
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The light neutrino mass matrix is constrained to be of the following form

il

— 2 X _
mii€ Zimn mis€ n 0
—inl —oipd=x
m, = | mie™™n moge 3 0 , (7.11)
Sy}
0 0 m3362m5

where my1, mia2, Moo and mgz are real. The unitary transformation U, is

'™ cos 0 €™ sin 6 0
U = | —e™Fsinf ™5 cosf 0 : (7.12)
0 0 e~
where 5

tan20 = —— 12 (7.13)

Moz — M1

The light neutrino masses are determined to be
mq = 5 ‘mn + Moo — Sign ((mgg — mn) COS 20) \/(mgg — m11)2 + 4m%2 s

1 ; 2 2

Mz = 5 [may + Moz + sign ((mag — mqy) cos 20) \/ (Mmag — my1)? + 4mi, |,
ma = [ma3] . (7.14)

o X, = pe(abc’d®)
For the case of 0 # 2y mod n, the light neutrino masses would be partially
degenerate. This is unviable. The reason is that the corresponding general
CP transformation matrix is not symmetric !. Therefore we shall concentrate

on the case of § = 2y mod n in the following. The neutrino mass matrix is

given by
1 — 2t
mlle“b mis€e Zimn 0
— X —3 X
m, = myse 2im mye i(4r I +9) 0 , (715)
il
0 0 m33€4mn

'In the basis in which the neutrino mass matrix is diagonal with m, = diag(mi,ma, ms),
the general CP transformation X which leaves m, invariant: X Tmmu)? = m},, should be of
the form X = diag(+1,+1,+1). One can go to an arbitrary basis and define the corresponding
CP symmetry transformation X = UTXU* as a symmetry of the general neutrino mass matrix,
where U is the basis transformation. As a result, the residual CP symmetry X in the neutrino
sector should be symmetric. The same conclusion has been obtained in Ref. [30].
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where mq1, mi2, ms3 and ¢ are real free parameters. The neutrino diagonal-

ization matrix is

) e et 0
U, = 7 _eilgHml) iS4 ]) 0 . (7.16)
2 4
0 0 \/5672171'%
The light neutrino mass eigenvalues are
my = |my —mu|, mg = |my +mi|, mz=|mass|. (7.17)

The ordering of the neutrino masses can not be determined as well.
(v) G, = Z;W = {l,d”/z}, X, = {pr(cvd‘s),pr(azbc'yd‘s)}

o X, = pr(cvdé)
The light neutrino mass matrix is constrained by residual flavour and residual

CP symmetries to be

— %X
mi1€e Zimn 0 0
— 2= i X
m, = 0 Mase 2™ mgge’™n ; (7.18)
-y s
Moas el m33€2wr -

where myq, Moy, maz and mgz are real. The neutrino diagonalization matrix

18 A
el 0 0
U, = 0 e cosh e sing || (7.19)
P 6
—e "ngind e “wcosf
with 5
tan20 = — 1% (7.20)
ms33 — Ma2
The light neutrino masses take the form
my = |m11| ,
1 )
me = 5 ‘mgg + mg3 — sign ((mss — mag) cos 26) \/(m33 — mgg)? + 4m3,|,
1 .
ms = 3 ’mm + mg3 + sign ((mg3z — mag) cos 20) \/(mgg — Migg)? + 4m3,| .
(7.21)

o X, = pe(a?bc’d?)
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As has been shown above, X, has to be symmetric. Then the requirement
v = 26 mod n follows immediately, otherwise the light neutrino masses

would be partially degenerate. In this case, the neutrino mass matrix takes

the form:
—dixd
mii€ n 0 0
. .5
m, = 0 M€’ M€ ™ ) (7.22)
i s (A S _
0 m236217rn m22ez(47rn )

where mq1, mag, Moz and ¢ are real. It is diagonalized by the unitary matrix

) V2e¥mn 0 0
U,, = E 0 671% 671% (723)
_ei(8-2mE)  i(3-2et)
The light neutrino masses are
my = |mai|, Mo = |may —mag|, ms3 = |ma + mas| . (7.24)

(vi) G, = 75" = {1,"2d"?}, Xop = {pe(d), pu(bc7d®) }

Xor = pe(c7d®)
The light neutrino mass matrix invariant under both the residual flavour and

residual CP symmetries is

Y el ]
myie 2im ) 0 mise 2
9 S=y
m, = O mooe 2im n 0 5 (725)
=6 -
mise i 0 m3362”rn

where mq1, my3, Moy and ms3 are real parameters. The unitary transforma-

tion U, is given by

e cos 6 0 e sin 0
U, = 0 i 0 : (7.26)
e~ sin @ 0 e~ cos 0
with 5
tan20 = — 13 (7.27)
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The light neutrino mass eigenvalues are

1 .
my = 5 |+ Mg = sign ((mg3 — mq1) cos 20) \/(m33 —map)? + dmiy|
my = |masl,

1 .
mg = o [ma + mgs + sign ((mss — mq1) cos 20) \/(m33 —mun)? +4mi,| .

(7.28)

o X, = p(bc"d?)
In the case of v+ & # 0 mod n, the general CP transformation p,(bc’d’)
is not symmetric. As a consequence, the light neutrino masses are partially
degenerate. In the following, we shall focus on the case of v+ ¢ = 0 mod n.

The neutrino mass matrix is determined to be of the following form:

. oy
mlle’¢ 0 mise Zim
il
my, = O m22€4”r’ﬂ O 5 (729)
—2it X —3 X
mise 2> 0 myie i(p+4ml)

where mq1, my3, Moy and ¢ are real. The neutrino diagonalization matrix is

_i® _i®
1 e '2 0 e "2
U, = E 0 \/56_2i7r% 0 . (730)
_eil$+2rY) 0 ei(%ﬂw%)

Finally the light neutrino masses are given by

my = |my —mag|, Mo = |ma|, mg = |my +mis| . (7.31)

7.1.2 Charged lepton diagonalisation matrices in neutrino-

semidirect models

[ ] Gl = <Csdt>

U, = (7.32)

o O =
o = O
_ o O



170

7 Appendix

Note that the parameters s and ¢ should be subject to the following con-

straints
s+t # 0 mod n, s — 2t # 0 mod n, t—2s#0modn, (7.33)

otherwise the eigenvalues of ¢*d* would be degenerate and consequently U;
can not be determined uniquely. For the value of s = ¢t = n/2, the residual
"2 2) E{l, 2 dn?, c”/zd"/z} instead,

and then corresponding unitary transformation U is still a unit matrix. The

symmetry could be chose to be K ic

constraints of Eq. (7.33) will be assumed for the subgroup G; = (¢*d") in the

following.
Gl = <bcsdt>
. e—iw% 0 e—'iﬂ'%
U=— 0 V2 0 : (7.34)
\/§ imStt imStt
—€ 2n 0 [ 2n

To avoid degenerate eigenvalues, we should exclude the values
s—t=0,n/3,2n/3 mod n . (7.35)

For the case of s = t, the order of the element bc*d® is two and one could ex-
tend G from (bc*d®) = {1,bc*d*} to the Klein four subgroup K. icnmdnm’bcsds) =
{1, 2dn2 besds, bes T2zt 2}. Then the unitary transformation U is still
of the form in Eq. (7.34) with s = t.

G, = (ac’d")
. e 247 > w2672i7rn wefQiﬂ'%
U = % 6_%”% we_%’r% w26_2”% , (736)
1 1 1
where w = €%™/3 = —1 4 z‘/Tg is the third root of unity. Notice that the

order of the element ac®d’ is three regardless of the values of s and ¢, and its

eigenvalues are 1, w and w?.
G, = (a*c*d")

_9ixt _ 9t 9t
217rn w2€ 2z7rn we 2z7rn

s—t s—t . s—t
AT we w2er ™S | (7.37)

Sl
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Note that because (ac’d™*)* = a2¢°d’ holds, this U; can be obtained from
the one in Eq. (7.36) by the replacement s — ¢, t — t — s.

o G = (abctd)

U=— | —eints2  ini52 o || (7.38)
0 0 V2

Non-degeneracy of the eigenvalues of abc®d’ requires ¢ # 0,n/3, 2n/3. In the
case of t = 0, the degeneracy can be avoided by expanding G; to the Klein
four subgroup K ic”/Q,ach) ={1, ¢"/?, abc®, abc*™/?}, whose diagonalization

matrix is of the same form as Eq. (7.38) with ¢ = 0.

o G = (a*bc*d")

1 . s—2t . s—2t

Ul = — O elﬂ- 2n elﬂ' 2n . <739)

. s—2t . s—2t
_ e*Zﬂ' 5 67

Here the parameter s can not be equal to 0, n/3 or 2n/3, otherwise two
eigenvalues of a?bc®d® would be identical. For the extended residual symme-
try G, = K idn/g’agbdt) ={1, d"/?, a*bd', a®bd'"*"/?}, the corresponding unitary
transformation is still given by Eq. (7.39) with s = 0.
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7.1.3 Additional mixing results for neutrino-semi-direct

models

(I) In this case, the lepton mixing parameters are predicted to be

1
sin? 6,3 = 3 (1 + cos? 6 cos 2 + V/2sin 26 cos (V9 COS gol) ,

1 + sin? 0 cos 21 — /2 sin 26 cos s, cos @1

sin2 912 = 9
2 — cos?fcos2p; — V/2sin 20 cos (P2 COS Y1

1 — cos? @ sin (7/6 + 2¢,) — v/2sin 20 cos @, sin (71/6 — 1)
2 — cos2 6 cos 291 — /2 sin 26 cos s cos @
[tan ¢ p| = ’2\/§sin 20 sin o(1 + 2 cos 2¢4) (2 — cos? 0 cos 20, — V/2sin 26 cos s cos 901) /

sin2 923 = )

{2 sin® 26 cos 25 (cos 31 — 2 cos 1) + cos 1 (9 — 4cos 20 + 3 cos 40 — 16 cos” § cos 2¢1)

—2v/25in 20 cos o [2 — cos? 0(5 4 cos 2¢; + cos 4901)} H

1
|Jep| = _6 |sin 26 sin ¢4 sin 3|

6v/6

2 sin o (COS P9 — \/§ cos 1 tan 9)
[tan ag; | = :
cos 29 — 2 cos pq tan (\/5 COS (Py — COS (1 tan «9)
't ' 2 sin o (COS @2 + V2 cos p; cot 9) (7.40)
an ag, | = , .
3 cos 2y + 2 cos 1 cot (\/§ COS (g + €OS 1 cot 6)

where af; = a3 —2dcp, dcp is the Dirac CP phase, ao; and gy are the Majorana
CP phases in the standard parametrisation [36]. If we embed the three generations
of left-handed lepton doublets into the triplet 3, ,,_; which is the complex conjugate
representation of 3;;, all three CP phases dcp, as; and asz; would become their
opposite numbers modulo 27. Furthermore, the overall sign of tan as; and tan o,
depends on the CP parity of the neutrino states which is encoded in the matrix
K, (please see Eq. (7.3)), and the sign of the Jarlskog invariant Jop depends on
the ordering of rows and columns. As a result, all these quantities are presented

in terms of absolute values here.

It is notable that all three CP phases depend on both the free continuous parameter
6 and the discrete parameters ; and @9 associated with flavour and CP symme-
tries. Both Dirac CP and Majorana CP are conserved for ¢, = 0. Furthermore,

the solar mixing angle 0,5 and reactor angle 6,3 are related by

3 cos? 015 cos® H13 = 2sin® ¢ , (7.41)
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which is independent of the free parameter 6.

o . . 4th ..
For the lepton flavour mixing matrix Upj;yg, One can extract the flavour mixing

parameters:
-2 ]- 2 .
sin“ 03 = 3 (1 + cos” 6 cos 2¢1 + V2 sin 26 cos (V9 COS gol) ,
. 9 B 2 sin? 1
sin” 05 = ; ’
2 — cos? 6 cos 2¢1 — /2 sin 26 cos s cos ¢
5, 1—cos?@sin (7/6 + 2p1) — /2 sin 26 cos py sin (7/6 — 1)
Sin 923 = . ’
2 — cos2 6 cos 291 — /2 sin 26 cos s cos @
1
Jop| = ——= |sin 260 sin p, sin 3 ,
| el NG | a2 sin 3¢ |

[tan ¢ p| = ’4\/5 sin 26 sin 5 sin 3y csc <2 — 08 21 cos? O — V2 cos (g COS (P71 SIN 29) /
{ — 16 cos 31 cos? O + 8(1 — 3 cos 26) cos ¢y sin? § + 4 cos 2 (cos 31 — 2 cos ¢y ) sin® 26
+v/2 cos py [8(cos 21 + cos 4y sin @ cos® 6 + 2sin 260 + 5 sin 46 } ’ ,

2 sin o (cos s — \/2cos 1 tan 9)
coS 2(py — 2 cos 1 tan (\/§ COS (g — COS Y1 tan «9)

[tan ag; | =

Y

[tan o, | = ‘8 Cos 1 (\/5 oS 2(p1 sin 26 sin o — 2 cos 26 cos ¢4 sin 2(,02> /{4(3 + cos 40)

X €08 25 c0s% 1 — 4V/2 cos (0o COS (1 €OS 2001 sin 46 — (3 — cos 4y + 4 cos 21 ) sin® 20} ‘ :
(7.42)

The lepton mixing parameters for U]ID’E}]V ¢ are determined to be

. 9 2 ., . 9 1+sin26c082g01—\/§sin29(:osg02czosg01
sin” 13 = — sin” ¢y, sin® 019 = ,

3 2 4 cos 2¢p,
) 1+ sin (7/6 + 2¢1) 1 . ) .

2
sin” g3 = , Jop| = sin 26 sin 4 sin 3 ,
23 2 o2 | Jopl NG | (2 sin 31 |
i 2 2
tan dep| = sin o(2 + cos 2¢1) |
oS Py c0s 201 — 24/2 cot 260 cos

[tan ag| = ‘4\/5 cos 1 <cos 201 sin 20 sin s — v/2 cos 20 cos oy sin 2g02) /{2(003 460 + 3)
X €08 29 08 01 — 2V/2 08 (g €OS 07 cos 207 sin 46 + (cos2 2, — 4 cos® gol) sin? 29} ‘ ,

2 sin py sin 6 (\/§ cos # cos 1 + cos py sin 0)

tan o, | =
| dl 2 cos2 0 cos? ¢ + /2 cos @5 cos @1 sin 260 + cos 2, sin? 6

. (7.43)

s 1,8th 1.9th :
The lepton mixing parameters for Upsrag and Upyrvs can be obtained from

Eq. (7.43) by the replacement § — 7 —0, o1 — Z+p1and 6 — —0, o1 — —Z+ @1
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respectively. We see that both 6,3 and 53 are only determined by the discrete
group parameter 1, and they are related by

11
sin? O3 = 5+ tan 013v/2 — tan? ;3 (7.44)

which yields

>

By = Z + (7.45)

7
(IT)
2

1
sin? 63 = 3 (3 — 08 20 — 2v/2sin 20 cos g03> . sin?6, =

o 3—00820+2\/§sin20(:osap3 1 i i
sin® fa3 = . , |Jop| = ——= [sin 260 sin 5],
5 + cos 26 + 24/2 sin 26 cos V3 8v/2
tan O] 8 cos 0 sin? 0 sin 23 + \/5(9 sin @ + sin 360) sin 3
an =
or 4cos 30 + cos 6 (4 — 8sin 0 cos 23) + v/2(3sin 30 — 5sin ) cos 3
2 cos? 6 sin 23 + /2 sin 260 sin 3
tan agy | = | —— , ;
sin @ + 2 cos? 0 cos 23 + /2 sin 26 cos 3
. 16 cos 20 sin 25 — 8+/2 sin 20 sin g
[tan o) | = | —— :
6sin% 20 + 41/2sin 46 cos 3 — 4(3 + cos 46) cos 23

IIT The lepton mixing parameters are given by

1 1
5 . .9
013 =—11 20 - 0o =
sin” 13 = 3 [1+sin26 cos(ps — @a)],  sin b2 2 — sin 260 cos(ps — p4)
1 — sin 26 si — 6 1
SiIl2 023 = o . o (905 P il 7T/ )7 |JCP| = = |COS 20| )
2 — sin 26 cos(¢s — 4) 6v/3
tan | = | = cot 20 [2 — sin‘ 20 co§(¢5 — ¢4)] |
sin(ps — @4) — sin 20sin(2p5 — 2¢p4)
t | cos? 0 sin 24 + sin? 0 sin 25 — sin 26 sin (5 + @4)
an ag| = ,
2 cos? 6 cos 24 + sin? 6 cos 25 — sin 20 cos(ps + ©4)
4 cos 20 sin(2p5 — 2¢4)
el — | 7AT
[tan o ’ 1 — 3cos(2p5 — 2¢4) — 2 cos 46 cos?(p5 — p4) (747)

7.1.4 Correlation plots for neutrino-semidirect models

Figures 7.1-7.5 contain correlation plots between lepton mixing parameters for the

various cases.

5 + cos 20 + 24/2 sin 26 cos (,037

(7.46)
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Figure 7.1: The correlations among mixing parameters in case I for the
1st-3rd ordering with the PMNS matrices given in Eq. (4.29). The red
filled regions denote the allowed values of the mixing parameters if we
take the parameters ¢; and ¢y to be continuous (which is equivalent to
taking the limit n — oo) and the three mixing angles are required to lie in
their 30 regions. Note that the three CP phases dcp, a1 and of, are not
constrained in this limit. The black curves represent the phenomenologi-
cally viable correlations for n = 8. The 1o and 30 bounds of the mixing
parameters are taken from Ref. [78].
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N L Sl U

i [
i | n_10. ® (mNO1r| e
O30
o

¢ o
o]
TT T T [rrrr

™ 0.6 )
) &)
N N
c c
%) 0.4_ T ‘@ 0. B T
L ° ] L ]
C ° N N ]
0.2~ - 0.2~ —
[ ° ] r ]
r | ° ] | | ® ° ]
C'..nil....l....f.....l....' O-II 1 NIRRT ARTETETIS ST YORY N ATRT A
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
sin6’13 sin913
I

;EIIIIIIIIIILI'I'I..IIIII

i L

i | n—30. ® (mNO1r| e
i | ° NO 30

i S miOlo | o

[ A
o
o]

o

sin2023
o

[
o
N
TTTT T T

sin2923

il ® °
0 ol Bt P eae L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
sin013 sin913

Figure 7.2: The possible values of sin?#y; and sinfy3 for the 7th-9th
ordering with the PMNS matrices shown in Eq. (4.38) in case I. The lo
and 30 bounds of the mixing angles are taken from Ref. [78].

7.1.5 Charged lepton mass and diagonalisation matrices

for charged-lepton semi-direct models

The full symmetry A(6n?) x Hep is broken down to Zy x HLp in the charged
lepton sector. Similar to section 4.3, the hermitian combination mlel of the
charged lepton mass matrix can be constructed from its invariance under the

residual flavour symmetry Z, and the residual CP symmetry H.p,

ph(g)mimups(g) = mimi, g € Zs,
Xlgmjlelg = (mlml) , X € HICP. (7.48)

—+

(i) Gi=Z¥", Xip = {pe(c7d™>77), pp (b 7d—77) }
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Figure 7.3: The correlations among mixing parameters in case II. The red
filled regions denote the allowed values of the mixing parameters if we
take the parameter ¢3 to be continuous (which is equivalent to taking the
limit n — oo) and the three mixing angles are required to lie in their 3o
ranges (the 30 lower bound of sin® 0y, is chosen to be 0.254 instead of 0.259
given in Ref. [78]). Note that the Majorana phase o4, is not constrained
in this limit. The black curves represent the phenomenologically viable
correlations for n = 8. The 1o and 3¢ bounds of the mixing parameters
are taken from Ref. [7§]
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Figure 7.4: The correlations among mixing parameters in case III. The red
filled regions denote the allowed values of the mixing parameters if we take
the parameters ¢4 and @5 to be continuous (which is equivalent to taking
the limit n — oo) and the three mixing angles are required to lie in their 3¢
ranges. Note that the three CP phases d¢p, a9 and o, are not constrained
in this limit. The black curves represent the phenomenologically viable
correlations for n = 8. The 1o and 3¢ bounds of the mixing parameters
are taken from Ref. [78].
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Figure 7.5: The correlations among mixing parameters in case IV. The
red filled regions denote the allowed values of the mixing parameters if we
take the parameters ¢g and @7 to be continuous (which is equivalent to
taking the limit n — oo), where 615 and 6,3 are required to lie in their 3o
ranges. The 1o and 30 bounds of the mixing parameters are taken from
Ref. [78].

In this case, mzrml is determined to be of the form

~ ~ . 2x+3y ~ Y, Yo
miy mige'™ = misé 2,
- i 2z43y — ~ _ s 4dz+3y
mlel = | mpe " Moo mige” "™ n ) (7.49)
~ T ~ i dz+3y ~
Myze®™n  Mype™ mi

where my1, mya, M3 and Mgy are real parameters, and they have mass dimension

of 2. This charged lepton mass matrix is diagonalized by a unitary transformation

Ul via
UlmimU, = diag (mi,mi,m) (7.50)
with
e —e™ sin 6 '™ cos
U, = % 0 e~2m5 2 cosf e /2sind | (7.51)
2 ™ ™ ging ei™ 2 cos 0

where the angle 0 is

2/2m
tan 26 = — \/:mw —. (7.52)
mi1 + Mg — Moo

It is remarkable that the unitary transformation U in Eq. (??) coincides with U,

in Eq. (7.3). The reason is that the two cases share the same residual symmetry.
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The charged lepton masses are given by

my, =M — Mg,
L. ~ ~ . N ~ ~ — — — —

mlzz =3 |:m11 + Mg + Moz — sign ((Ma1 + Maz — Maa) cos 26) \/(mll + g — Mag)? + 8m%2] ’
1] - - , - ~ ~ — ~ — —

mi, = 2 [mn + M3 + Moy + sign (M1 + M3 — Magg) cos 20) \/(mn g = Ma)” + Sm%} .

In the present framework, we can not determine the order of m7 , my, and mj,, i.e.

we don’t know which one of m7 , mj,, mf,

is electron (muon or tau) mass squared.
As a result, the diagonalization matrix U; in Eq. (??) is also determined up to
rephasing and permutations of its column vectors. The same holds true for the

following cases.

(if) G, =25, Xpp = {pe(7d®+?7),  pp(abcy™d?+27)}

The charged lepton mass matrix satisfying the invariant conditions of Eq. (7.48)

takes the form

~ ~ 9 Y ~ . 2y+3y
mn myze€ 2 myze’™ n
T ~ 2 Y ~ ~ w3y
mym; = My mi Myze’™ n : (7.53)
~ _ i 2y+3y ~ _ i 4y+3y ~
mige” """ myze” m33

where mq1, M2, M3 and ma3 are real. The charged lepton diagonalization matrix

U, is given by

i 2L i Y P S
) e e™n cos e™n sin 0
i 2yt i 2yt i 2yty .
U = E —e e cos e T 8ind , (7.54)
o ¥ty . oty
0 —e 25T /2sinf e HT5T /2 cos b
with

24/2m
tan 20 = — \/: 13~ )
mg33 — 1My11 — Mi2

(7.55)

The charged lepton masses are determined to be

ml21 = M1y — Mo,
1. - - . - ~ - ~ ~ ~

mli =3 {mﬂ + Mg + Mgz + sign ((Mq1 + my2 — mg3) cos 20) \/(mn + myy — mg3)? + 8m%3] ,
1. - - . - - - — ~ —

leS = 5 |:m11 + Mg + M3z — sS1gn ((mn + Mo — m33) COS 29) \/(mu + Mo — m33)2 + Sm%3:| .

(iii) Gy = Z¢", Xie = {pe(F+2d), pp(abc?+ 2> +7)}
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The charged lepton mass matrix invariant under both residual flavour and residual

CP symmetries is

~ ~ - 42436 ~ . 2z+38
mi myge'™ myge'™
~ _ i 42438 ~ ~ 95 2
mlel = | mpe " Moo Mage™ 2™ ) (7.56)
~ _ 522436 ~ . Z ~
mige” " m23€2m” Mmoo

where mq1, mi2, Moy and mag are real. The unitary transformation U; follows

immediately,
P ) . P )
. 0 — e2m52/2sinf €257 \/2 cos
. 2246 . 2246 ;2246
U, = E eI e~ cos 6 e ™% sinf , (7.57)
) ) -5,
—e e " n cosf e " n sinf

with the angle 6 specified by

24/ 2m
tan 20 = — \/:mm — (7.58)

mi1 — Mag — M23

Finally the charged lepton mass eigenvalues are

My, = May — Mag,
P _ _ : _ _ _ ~ ~ —

mj, = 2 {mu + Mgy + Mgy — sign (M1 — Mgy — Mag) cos 26) \/(mn = fizz = Tias)? + 8mf2} 7
L] _ _ : _ _ _ — ~ ~

mi, = 5 [mn + Mgz + Mg + sign (a1 — Mgy — Mag) cos 20) \/(m11 = Mz — Miza)? + Sm%} '

(iv) Gi=25" = {1,c"?}, Xip = {pe(c?d®), pe(abcrd®)}

o Xpp = pe(d°)
The charged lepton mass matrix is constrained to be of the following form

2v—46

77111 7/7V’L126i7T n 0
~ _ i 279 ~
mlel = | mpe " M2 0 ; (7.59)
0 0 ms3s3

where mq1, mi2, Mas and mgs are real. It is diagonalized by the unitary

matrix U; with

e cos 0 ™ sin O 0
U=| - sing e 5 cosh 0 , (7.60)
0

(@]

gV
J
N

3|
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where o
tan 20 = # (761>

Moo — Mi11

The charged lepton masses are determined to be

1 ~ . ~ ~ ~ ~
my, = 2 [mu + Mgz — sign ((Ma2 — May) cos 26) \/(m22 — )+ 4m%2} ’
1 - . ~ ~ ~ ~
m, = 2 [mu + Maa + sign ((maz — may) cos 20) \/(mz2 ~ )+ 4m%2} ’
m123 — a3 . (7.62)

o X = pr(abc¥d?)
Similar to the discussed situation that Zy x C'P is preserved in the neutrino
sector, the CP transformation should be symmetric as well otherwise the
charged lepton masses would be at least partially degenerate 2. Therefore
we shall focus on the case of & = 2y mod n in the following. Then the

charged lepton mass matrix is fixed to be
T7L11 ﬁllgei(z) 0
mlel = | mpe ™ mny 0 ) (7.63)

0 0 M33

where mq1, M2, Ms3 and ¢ are free real parameters. Notice that mlel is

independent of the parameter +. The unitary matrix U; is of the form

e e 0
Ui=—1] -1 1 0 : (7.64)
0 0 V2
The charged lepton masses are given by
= M1 — Mia,

2
mll

2 ~ ~
my, = mi + Mia,

my, = Mas . (7.65)

(v) Gy =2¢" = {1,d"?}, X = {pe("d%), pe(abcrd’) }

o X = pe(cd?)

2From the residual symmetry invariant conditions in Eq. (7.48), we can derive that UZTX 13U
should be a diagonal matrix. As a consequence, the CP transformation X;3 is symmetric.
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In this case, the charged lepton mass matrix takes the form

mn 0 0
~ _ i y—28
m}ml = 0 Mo Mmaze™ "™ n ) (7.66)
0 ~ ir1=2% ~
moz€™ n mss

where mq1, mas, Mmeg and mgs are real. The charged lepton diagonalization

matrix is '
e 0 0
U = 0 e cosh e isingd || (7.67)
P .5
—e "ngingd e “w cosf
with o
tan20 = —— 2 (7.68)
ms33 — Ma2

The mass eigenvalues of the charged lepton are found to be

m121 - mllv
I - . - ~ ~ ~

ml22 = 5 |:TTI,22 + ms3z — S1gn ((m33 — m22) COS 29) \/<m33 — m22)2 -+ 4m%3] s
1| - . ~ ~ ~ ~

leS =5 lmm + mg3 + sign ((mg3 — Mmag) cos 20) \/(m33 — Mag9)? + 4m§3} )

(7.69)

o X = pr(a®bcd?)
This general CP transformation is symmetric only if v = 26 mod n. One
can easily find that the charged lepton mass matrix is constrained to be of

the form
mi 0 0

mlT mp = 0 Moy Mase’® |, (7.70)
0 oge ™ Mgy

where mq1, Moo, Mo3 and ¢ are real. It is diagonalized by the unitary matrix

V2 0 0
U =—= 0 €% % |. (7.71)
0 -1 1
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The charged lepton masses are

my, = M,
my, = Mo — Mg,
= Mg + M3 . (772)

(Vi) Gi= 25" = {1 Pd Y, Xie = {pu(@d), pu(be7d”) }

L4 Xlr = Pr(Cvdé)

Remnant symmetry leads to the following charged lepton mass matrix

~ ~ i 1S
mi1 0 mlge” n
mlel = 0 Moo 0 ; (7.73)
~ _ i td ~
mise T 0 mss

where my1, mq3, Moo and mgs are real parameters. The unitary transforma-

tion U is of the form

e cos 0 ¢ sin 0
U, = 0 e 0 : (7.74)
— e~ sin 0 0 e~ cos 0
with _
tan 260 = NQLKL . (7.75)
m33 — M1

The charged lepton mass eigenvalues are given by

1 [ - . - - — — ]
ml21 =5 |mu + mg3 — sign ((mss — mq1) cos 26) \/<m33 —my)? +4m3, |,
ml22 = My,

1. - . - - — — ]
leS =5 | + mas + sign ((mss — M) cos 20) \/(m33 — map)? + 4m?,

(7.76)

o X = pe(bd?)
The non-degeneracy of the charged lepton masses requires v+ 6 = 0 mod n
for which the general CP transformation matrix py.(bc’d®) is symmetric. The

charged lepton mass matrix fulfilling the invariant condition in Eq. (7.48) is
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of the form

mi 0 77”613€i¢
mymy; = 0 A 0 |, (7.77)
mize” @ 0 mi1

where mq1, my3, Mmoo and ¢ are real. The charged lepton diagonalization

matrix is
] e 0 e
U =— 0 2 0 . 7.78
=z V2 (7.78)
-1 0 1

Finally the charged lepton masses are

2 ~ ~
my, = M1 — s,
2 o~
m[2 = Ma2,
2 ~ ~
mls = M1 + M3 . (779)

Comparing with phenomenological predictions of Z; x C'P in the neutrino sector
analysed in section 4.3.2, we see that the diagonalization matrix U is of the same
form as U, provided the residual flavour and residual CP symmetries are the same

in the two occasions.

7.1.6 Neutrino mass and diagonalisation matrices for charged-

lepton-semidirect models

(1) Gz/ _ Kicn/27dn/2)’ XZ/I' — {pr(cfydé)}

Since the representation matrices of both ¢? and d™/? are diagonal, the light
neutrino mass matrix is constrained to be diagonal as well. Including the residual

CP symmetry, we find

mne_z”% 0 0
m, = 0 Mg 2™ 0 , (7.80)
0 0 m33€2m%

where my1, maos and mgs are real parameters. The neutrino diagonalization matrix

can be read out
~Y—04

U, = diag (e”%, e e_“rH) K,, (7.81)
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where K, is a diagonal matrix with element +1 or 44 to set the light neutrino

masses being positive. The light neutrino masses are
my = |mul, my = |[masl, mz = |ma3] . (7.82)

We see that the light neutrino masses depend on only three real parameters,
and we would like to stress again that the order of the light neutrino masses
can not be fixed here, and therefore U, here and henceforth is determined up
to column permutations. For other residual CP symmetries X,, = pr(bc“/d‘s),
pr(ac’d®), pe(a?cd?), pe(abc’d®) and p.(a®bc?d®) with v,8 = 0,1,...n — 1, the

light neutrino masses are partially degenerate such that they are not viable.

(11) Gu _ Kicn/Q,abcy)’ Xyr — {pr(CVde-l—Q'y)’ pr<abcy+7d2y+27)}

In this case, the light neutrino mass matrix takes the form

—%rX 9yt
myie 2z7rn myge 29 - 0
—2im ¥ty — 2 2ty
my, = | mie " mye n 0 : (7.83)
Yty
0 0 m3364“’ n

where my1, mis and mgz are real. It is diagonalized by the unitary matrix U,
with

inX inX
. e e’ 0
U, = NG _eim T gin 0 : (7.84)
0 0 V2 2m
The light neutrino masses are given by
my = |my — masl, my = |ma1 + myo|, ms = |mss] . (7.85)

For the case of X, = {p(7d* /%) p, (abctT7d?+271/2)} " the light neutrino
masses are degenerate, and therefore are not discussed here.
(iii) GV _ [(—id"/Q,tﬂbdz)7 X, = {pr(C2Z+2§d5), pr(a2662z+2§dz+6)}

The light neutrino mass matrix, which is invariant under both residual flavour

and residual CP symmetry, is determined to be

A 210
miie dim = 0 0

. S5 - 2+448
m, = 0 m226217r = m23627,7r = ’ (786)

) i S
0 m2362wr - m2262mn
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where mq1, Mmoo and mag are real. The unitary matrix U, is

, V2e2m 5t 0 0
U, = — 0 emim I gmim It | (7.87)
\/§ —ind —ind
0 —e e

The light neutrino mass eigenvalues are given by
my = |mu|, my = |May — Mag|, mg = |may + Mmag| . (7.88)

For the value of X, = {p(c**21/2d%), p,(a®bc®*T25+/2d=+9)} | the neutrino

masses are degenerate.

Cn/Zdn/Q,bCIdz

(iV) G, = KAE )7 Xor = {pr(C'Yd—QI—’Y)’ pr(bcm+'yd_"3_7)}

In this case, we find the light neutrino mass matrix is of the form

—2ir L i Tty
myie 217rn 0 Mmise 2im -
i Ty
m, = O m22€4’t7T n 0 5 (789)
9Tty _ i 2Tty
mise 2im - 0 mye 24w -

where mqy, mq3 and moy are real. The unitary matrix U, diagonalizing this

neutrino mass matrix is

imL il
. e 0 e
U, = — 0 V2e it . (7.90)
\/§ im 2ty i 2ety
— n 0 e
Finally the neutrino masses are
my = |my — ms|, my = |may|, mg = [myy + mas| . (7.91)

For the remaining value of X,, = {pr(c“/d_Qx_7+"/2),pr(bczﬂd_”_wnﬁ)}, the

light neutrino masses are degenerate.
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7.1.7 Additional mixing results for charged-lepton-semidirect

models
. 1 . . 1 +/2sin 26 cos Vs . 2
2 2 2 2
013 = = 0 O = = — Qoo = — =
SHE i = 5 S, St =g 3tcos20 0 o BT 3 s 20
(3 4 cos 20) tan ¢y 1. ,
tan dop| = : Jop| = ——=[sin 26 :
[tan dc| 1+ 3 cos 20 [ Jer 82 sin 20 sin x|
8v/2(1 + 3 cos 26) sin 26 sin g
[tan g | = — ,
7+ 12 cos 20 + 13 cos 40 + 8 sin” 26 cos 2¢g
tam ol | sin? 0 sin 2 + /2 sin 20 sin(2pg — g) + 2 cos? O sin(2py — 2¢s)
an oy, | = :
3 sin? 6 cos 29 4 v/25in 260 cos(2pg — ) + 2 cos2 6 cos(2pg — 25)

(7.92)

All mixing parameters depend on 6 and ps except |tanaj,| which involves g

additionally.

7.2 Analysing A(3n?) invariant potentials with
n > 3 with CP-odd invariants

So far we have considered the finite groups 4, = A(3 - 2?) and A(27) = A(3 - 3%)
which correspond to the first two non-Abelian members of the series A(3n?) with
n € N. In this section we derive renormalisable potentials which are invariant
under A(3n?) with n > 3. The field contents considered are a single triplet of
SM singlets, then one triplet of SU(2);, doublets, then two triplets of SM singlets
and finally two triplets of SU(2); doublets. Following [156], a triplet of A(3n?)
can be written as 3, where k,[ = 0,1,...,n — 1. The complex conjugate of
3k, is given by 3(_j _;), which we sometimes denote as 3, dropping the indices.
The cyclic permutation symmetry included in A(3n?) entails an ambiguity in
labelling the same triplet representation such that 3. = 3 -x—1) = 3(r-1.0)-
With these preliminary remarks, we can determine the product of two identical

triplet representations [156]

Bb) @3y = Bk + 3—k—0))s + [B—k-n]a - (7.93)
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Figure 7.6: The correlations among mixing parameters in case V. The red
filled regions denote the allowed values of the mixing parameters if we
take the parameters ¢g and @9 to be continuous (which is equivalent to
taking the limit n — oo) and the three mixing angles are required to lie
in their 30 ranges. Note that the Majorana phase a4, is not constrained
in this limit. The black curves represent the phenomenologically viable
correlations for n = 8. The 1o and 3¢ bounds of the mixing parameters
are taken from Ref. [78].
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Again the subscripts s and a denote symmetric and antisymmetric combinations.
Assuming the original triplet 3(;; to be a faithful (and thus irreducible) rep-
resentation of A(3n?), all representations on the right-hand side are irreducible
for n # 2. Excluding moreover the case with n = 3, the triplets 3(a;,2) and
3(—k,—1) denote different representations. Throughout this section we adopt the
basis of [156, 110].

7.2.1 One flavour triplet

With one triplet field, only the symmetric part of Eq. (7.93) is relevant for con-
structing quartic terms of the form 3 ® 3 ® 3 ® 3. Considering n > 3, the two
triplets in the symmetric contraction of Eq. (7.93) are distinct, so that only two
independent quartic invariants can be constructed. The renormalisable scalar po-
tential, which is additionally invariant under a U(1) symmetry, thus takes the

form

Va@n2) (@) =Vo(e) | (7.94)

where the explicit form of V;(¢) is given in Eq. (5.111). This potential always
explicitly conserves CP. It is a reduced version of the A symmetric potential
Va, (@) of Eq. (5.113) which generally conserves CP. Therefore it is clear that
Va@n2y () is left invariant under the same CP symmetry, i.e. the one defined with
a 2-3 swap, Xos. In addition, Vasn2)(p) respects the trivial CP symmetry CP,
(which V4, () in general does not).

7.2.2 One flavour triplet of Higgs doublets

If each component of the faithful A(3n?) triplet transforms as an SU(2);, doublet,
the corresponding renormalisable potential consists of four independent terms. As
described in Section 5.4, the different ways of contracting the SU(2), indices entail
a doubling of the A(3n?) invariant term in Eq. (7.94) which is proportional to 7.
The resulting Higgs potential then takes the form

Vagne) (H) = Vo(H) (7.95)

with the right-hand side defined in Eq. (5.117). This potential always conserves

CP explicitly (for any choice of parameters). Similar to the corresponding A,
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case, Vaen2)(H) is left invariant under a CP transformation with a 2-3 swap.

Additionally, it also respects the trivial CP symmetry C'F,.

7.2.3 Two flavour triplets

We now turn to the case of two flavour multiplets, ¢ and ¢’, in the same faithful
triplet representation. The potential can be simplified by imposing individual
U(1) symmetries for each of the scalar fields, such that the actual symmetry of
the potential is given by A(3n?) x U(1) x U(1)". In addition to the potential of
the individual (non-interacting) fields, only mixed terms of the form ¢ ¢ ¢* ©"*
are possible; in particular cubic terms are absent. In order to construct the mixed
quartic terms, we consider the Kronecker product given in Eq. (7.93), now also
including the antisymmetric combination. Multiplying the right-hand side with its
complex conjugate, we see that there are five independent mixed quartic A(3n?)

invariants if n > 3. The renormalisable potential can be written as follows,

V(@? (p/)A(SnQ) :‘/0<§0) + VE)/(QO/) + ‘/1<907 90/) ) (796>

where the individual contributions to the right-hand side are defined in Egs. (5.111)
and (5.120).

Unlike the previous A(3n?) invariant potentials for n > 3, this potential generally
violates CP, as confirmed by the non-zero CPI 12(6) (Eq. (5.76)) which for this
potential becomes

- 3 9 9~~~ - -

7 = 5325233(—37“% + 83)(—58] + 8189 + 7o (=258, + 39) + 53) . (7.97)
Imposing the trivial CP symmetry C'Py entails §3 = 0, whereas the U$¢ 2-3 swap
CP symmetry constrains the potential such that s, = 0. As expected, both CP
symmetries enforce 12(6) = 0 (and make any other CPIs vanish), but they are

distinct CP symmetries with distinct effects on the potential.

Inspection of other CPIs reveals that also the factor (—373 + §3) is present in
each non-vanishing CPI we found. This raises the question if there exists a CP
symmetry which is associated with setting this factor to zero. Such a symmetry

must relate different terms of the potential in Eq. (7.96), namely

f2<290z’90/*i> (Z%@”) + 083 [(90190’*190’2@*2+cy01-)—( "2y 4 cycl)|
( J
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(Clearly, the term proportional to 75 is invariant under a general CP transformation
where the unitary matrix X is block diagonal and the blocks are the same for both
triplets ¢ and ¢'. Hence, we are led to more general choices with different 3 x 3

blocks X, and X for ¢ and ¢', respectively. Pursuing the simple ansatz

% 0 1 0 O 1 0 O
X = ( v > ., with Xo=10 w 0], Xy=1]0 w? 0],
0 X,
v 0 0 w? 0 0 w

(7.98)
we find that the potential remains invariant under the corresponding general CP

transformation if and only if

53 = 7o i(w—w?) . (7.99)

2mi/3 we get §3 = —\/37 which corresponds to one solution of the

Inserting w = e
quadratic equation 372 — 52 = 0. The other solution, 83 = /375, is related to
the CP transformation where the roles of the explicit matrices in Eq. (7.98) are
exchanged. Imposing either of the two CP symmetries guarantees that all CPIs

vanish.

An example of a larger non-trivial CPI is provided by Ifm), defined in Eq. (7.241)
of Appendix 7.3.6. Explicit evaluation in the parametrisation of Eq. (7.96) yields

7 _ 9

! 8192
+ 8r(2s + 8') + 8r'(28' + s) + & + 55 — 55 — 5182 + 72(25; — 52)] :

(7.100)

15253 (37 — 33) (2 — m2)" (71 + 72+ 51) x [16(s + 5+ 5)+

While this more complicated CPI vanishes for m, = m,/, we already know that
such a relation is not a consequence of any CP symmetry because the simpler CPI
derived above does not depend on the masses. In other words, any CP symmetry
that would relate the masses by m, = my would have to impose additional

constraints on the other parameters of the potential.

Having identified the CP symmetries corresponding to the zeros of 3,55 (373 — §3),
one may wonder about the consequences of imposing other CP symmetries on
the potential of Eq. (7.96). As an example, one could for instance consider the
situation where X is given by the block matrix where X, and X/, are both given
by one of the matrices of Eq. (5.150). A straightforward but somewhat tedious

calculation reveals that such a “general” CP symmetry would require vanishing
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coefficients for all non-SU (3) type terms. In other words s = s’ = §; = 55 = §3 = 0.
The symmetry of the resulting potential would therefore be enhanced from A(3n?)
to SU(3) in addition to preserving CP.

7.2.4 Two flavour triplets of Higgs doublets

The potential of two triplets of SU(2),, doublets can be deduced from the potential
of two flavour triplets of SU(2),, singlets. It is a particular case of the correspond-

ing A, potential. We therefore write the potential in terms of the expressions
defined in Egs. (5.117) and (5.126),

We note again that due to the SU(2), x U(1)y gauge group, the potential cannot
contain any cubic terms. In fact, each term must have an equal number of Higgs
and complex conjugate Higgs fields. Hence it is sufficient to impose e.g. a Z3
symmetry with non-trivial charge for only one of the two triplets of Higgs doublets
in order to enforce the potential of Eq. (7.101). This potential in Eq. (7.101)
generally violates CP explicitly. Of the CP-odd invariants calculated, cf. Table 5.1,
Iéﬁ),I;gG)?IiG),Zéﬁ) (Egs. (5.76,5.77,5.78,5.79)) are non-zero, but the expressions are
too large to display here.

7.2.5 A(6n?) invariant potentials with n > 3

Working in the basis of [49, 110], it is straightforward to enhance the symmetry
of A(3n?) invariant potentials to A(6n?) by imposing extra constraints, see Ap-
pendix 7.4.2. With only one flavour triplet ¢ or H, the renormalisable potentials

are automatically symmetric under A(6n?), i.e.

Vaen2)(#) = Vagn2) (@) = Vole) , Vaen2)(H) = Va@nz) (H) = Vo(H) ,
(7.102)
where Vj(¢) and V(H) are defined in Egs. (5.111) and (5.117), respectively. With
two flavour triplets, it is necessary to impose 5, = 53 = 0 for Van2) (¢, ¢') and
91 = 892 = 831 = 832 = 0 for Vaen2)(H, H'). Using the definitions of Eqs. (5.136)
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and (5.140), we then have

Vaen2) (¢, ¢') =Volp) + V5 (¢') + Vale, ¢') (7.103)

Ve (H, H') =Vo(H) + VJ(H') + Va(H, H') . (7.104)

All of the above A(6n?) invariant potentials (with n > 3) conserve CP explicitly.
For instance, one can easily show that the respective trivial CP transformations
CP, as well as the respective CP transformations with a 2-3 swap (X3, X2, X;Ef,,

XZH") do not constrain the parameters of the potentials as they are all real.

7.3 List of invariants

7.3.1 Contraction matrices of ny = 5 invariants

0000 2
00110
(5) aja aza asa ara agalo __ _
I Za;asZa:afozaiagzzzzgggzafagm - — O 1 1 0 0
10010
11000
(7.105)
000 0 2
00110
LY = Zg 2 2 2, 2o = — {10100
11000
01 010
(7.106)
00011
01 001
() aia asaq r7asa ara a9a10 _ _
[ Zasag le;lw Zaesag Zafalso Za§a40 — 1 0 1 0 0
01 100
10010
(7.107)
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7.3.2 Contraction matrices of ny = 6 invariants without Z-

self-loops

I Za1a2 Za3a4Za5a6 Za7a8Za9a10Za11(112 —

aliaio “~asag “araiz “agas ~aszasa aia2

I Za1a2 Za3a4 Za5a62a7a8 Za9a102a11a12 —

araijp  aiiae— agas a3a12 "~ a5a4 aia2

(6) __ rraraz r7asas r7asae r7aras r7agaio ;7a11a12
I Za7a10 Zagaa Za11(l8 Za3a12 Za5a4 Za1a2
]( ) _ garaz gasas yasag yarag yagaig yaiiary _

a11010°a5a8 " a7a12° A9Ge T aA1a4 azaz

I( Za1a2 Za3a4 Za5(162(17(18 Za9alozalla12 —

aral12°"asalp’agag T al1a4"alag azaz

7

{

7

}

O = = O O O

)

@»

7

_ = O O O O

—_ = 0 O o o S = = O O O

_ o = O O O

— ~—~ —~
Yo —ror oo door —rooddJorroroodI—r oo r oo No or — oo
— — —

—
—_

—
—_

O m o0 OoOfrrorRrocoocO0OBERORRr OO0 O0ROo R OO0 O~ o~ o oo
N— N— N— N—

—
N
~—

o R O = O O _— O © © = O _ o o O = O o R o = O ©

_ o O O = O

o i s R s T e R T G Y o O O = = O O O O = = O O O O O N O

S O O = O =

= i T o o o o o W o o o o o W o o o0 o o N

S O O O = =
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7.3.3 nz = 6 invariants with self-loops

Za1a2 Za3a4Za5a6 Za’?as ZGQGIOZCHIGIQ

agal2 " asag " a110e6 " aralo aza4 aiaz

Zala2 Za3a4 Za5a6 Za7a8Za9aIOZa11a12

aralz2 " ailag T as5a10 T ag9ae T aza4 aiaz

Za1a2 Za3a4Za5a6 Za7a8 Za9a10Za11a12

a11a10°arag " a5a12" ag9aes " aza4 aiaz

ZalaZ Za3a4 Za5a6 Za7a82a9alOZa11al2

aijlag —aralp a5a12°a9ae T azaq aipaz

Zala2 Za3a4 Z¢15a6 ZG7GSZGQGIOZG11012

aralp - allag T as5al12” agaes T azaq ai1a2

Zala2 Za3a4 ZQSGG Za7UfSZa9a10Zallal2

agal2”—aralp T a11ae6 — aszag " asa4 aja2

Za1a2 Za3a4 ZGBUGZG’?(ZES ZQQGIOZGM(MQ

aiiag —agal2 " arae T aA3a10" aA5a4 aiaz

Za1a2 Za3@4 Za5a6Za7a8 ZGQGIOZG11a12

agalz " ajilag T arae T a3a10 asa4 aiaz

ZCLICLQZU«SCM Za5a6 Za7a8 ZG«QG«IOZCHICLIQ

agag "—arai2"a1106 " a3a10" as5a4 aiaz

Zala2 Za3a4Za5a6 Za7a8 ZGQGIOZalla12

aralz2 " agag "—a1106 " a3a10" a5a4 aiaz

ZalaQ Za3a4 2051162(17@8 Zagaloza11a12

agalp - ailag T arae T a3a12” asaq aiaz

ZQIQQ Za3a4 ZQSQ6ZQ7QS ZGQQIOZ(lllalQ

agag "~ ailalp arae T a3al2” asaq ai1az

Za1a2 Za3a4 ZGSGGZOWGS ZQQGIOZG11G12

araip T a11a8 " agae "~ a3a12" as50a4 aija2

Za1a2 Za3a4Za5a6 Za’?as ZGQ(IIOZ(IllCLlQ

aralp - agag " a1106 " a3a12" aA5a4 aiaz

Za1a2 Za3a4 Za5a6 Za7a82a9aIOZa11a12

agal12°"asaip’ 41106 A3a8 " ara4 aiaz

Zala2Za3a4 Za5a6 Za7a8 ZO«QGIOZ@HGIQ

agag "~ asal2°a1106 " a3a10° aAra4 aiaz

ZalaZZCLSC’A Za5a6 Za7a8 ZGQGIOZallaJQ

agag "~ asaip T a1106 " a3a12° araq aiaz

Zala2 203@4 Za5a6 Za7a8 Zagaloza11a12

a11010°a5a12" arag " a3zag " agaq airaz

ZCIIQQ Za3a4 Za5a6 Za7a8 ZGQGIOZCL11G12

a5a12°-a11aip " arae "~ azag " agaq ai1a2

Za1a2 Za3a4 Za5‘16 ZG7GSZGQGIOZG11G12

as5a1p0” 1106 aA7a12° A3a8 " a9a4 ai1a2

ZalaQ Za3a4 Za5a6 Za'?aSZaQalOZallalQ

aralp asal2"—a1106 " a3ag " agaq aiaz

Zala2 Za3a4 Za5a6 Za7a8Za9aIOZa11a12

as5a10"aral2"a1106 " a3a8 " agaq aiaz

Zala2 Za3a4 Za5a6Za7a8 ZagalOZa11a12

asajp —aiilag T arae azal2 " agaq aia2

Z(ZI(ZQ Za3a4Za5a6 ZCL?CLS ZCLgCLl()Z(l11Il12

agal2™—arag " asalp azag T allaq T aiaz

Za1a2 Za3a4Z(15&6 Za708 Zagalozalla12

agalp - aras T asal2” azag T al1aq T alaz

ZQIGQ Za3a4 Za5a6 Za7a8 ZQQGIOZallal2

as5a10"a9a12"—arae " a3ag " ail1a4 " a1a2

Zala2 Za3a4 Za5a6 Za7a8 ZQQ(IIOZG11G12

a7a10”asal2”—agae " a3zag " aliaq4 " a1az

Za1a2 Za3a4 Za5a6 Za'?aS Za9alOZa11a12

a5a10°aral2"—agae " azag " aiia4 " aiaz

Za1a2 Za3a4 Za5a6Za7a8 ZG«QG«IOZCHIGIQ

agasg asa10 " arae agzal2"—aiia4 aija2

Za1a2 Za3a4 Za5a6 Za7a8 ZagalOZa11a12

agag “—aszal2” asalp T arae T a1104 T a1az

Zala2 Za3a4Za5a6 Z(l7a8 Zagaloza11a12

agal2""asag T a11a6 " aral0T a1aq azaz

Za1a2 Z(l3a4 Z(I5a6 Za7GSZGQGIOZ(l11a12

aijilag T aralpo a5a12° ag9ae T a1aq azaz

7.113
7.114
7.115
7.116
7.117
7.118
7.119
7.120
7.121
7.122
7.123
7.124
7.125
7.126
7.127
7.128
7.129
7.130
7.131
7.132
7.133
7.134
7.135
7.136
7.137
7.138
7.139
7.140
7.141
7.142
7.143
7.144

o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~ o~~~ o~ o~ o~~~ o~~~ o~ o~~~ o~~~ o~~~
R S S N i N N S N N N R N I I D N N N N N
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ZaIU«Q Za3a4 ZGSQGZGWZS Z09a102a11a12

agail2”—aralp T asag " a1104-—aiae azaz

Zala2 Za3a4 Za5a6Za7a8 Za9a10Za11‘112

aralp agal2"asag " a11a4"—aiae azaz

Zala2 ZGSUA Za5a6 ZG7QSZGQ(Z102a11a12

aral12”—asa1p " a11a6 - ag9a4 " aiasg azaz

ZalaQ Za304Za5a6 Za7a8 Za9a102a11a12

aralp”agas T asal2"-a1104"-alasy azaz

Za1a2 Za3a4Za506 ZG7G8ZGQGIOZG11GI2

ailjag - agas —asai2—araq T aialpg T azaz

Za1a2 Za3a4Za5a6 Za7a8 ZGQGlozallaIZ

agal2”—asag " aiiae  ara4 " a1a1o T azaz

Za1a2Za3a4 Za5a6 Za7a8 Z(IQalOZallalQ

agag “—asal2"al1i1ae T ara4 " ai1alp T azaz

7.151
70102 170304 170506 70708 7a9010 7a11012

agag “~asa4 “Tallae T aral12” - a1al1p T azaz 7152

(7.145)
(7.146)
(7.147)
(7.148)
(7.149)
(7.150)
(7.151)
(7.152)
garas gases gases garas yasaio yanars (7.153)
(7.154)
(7.155)
(7.156)
(7.157)
(7.158)
(7.159)
(7.160)
(7.161)

7.146
7.147
7.148
7.149
7.150

aral12"— agae asasg aila4-—aialo aza2
7.154

Za1a2 Za3a4 Za5a6 Za7a8 ZQQ(ZIO Za11a12
7.155

agag "~ arae T as5a12” a11a4°"—aialp T asza
7.156

7.157
7.158
7.159
7.160
7.161

Za1a2 ZC13a4 Za5a62a7a8 ZQQQIO Za11a12

agag “—asal2’arae T a11a4°a1a10 T azaz

Za1a2 Za3a4Za5a6 ZG7G8 ZGQCLIOZG11GI2

araip —agaq " al1106 a5a8 " A1a12 " A3a2

Za1a2 Za3a4Za5a6 Za7a8 ZGQ(llOZallalQ

a11G10° a5a8 "~ a9ae T A7G4 " QA10G12 T A3042

Za1a2 Za3a4 Za5a6 Za7a8 ZG/QQIOZallalQ

aiiag " asaip”agae T ara4 " aial12 T azaz

Za1a2 Za3a4 Za5a6 Za7a8 Za9a1()ZG,11a12

agag "~ asalpal11ae T ara4 T al1al12 " azaz

Za1a2 Za3a4Za5a6 Za'TaS Za9a10 ZallalQ

aiiag —agaq T asalparae T al1al12 T azaz

7.3.4 Invariants with ny # 0 not listed in the main text

ny = 2,ny = 3 invariants with self-loops

Y a1y az 7a3aq 7asae ;7a7as

a7 ~as “azag “asas “aiaz

aiy/saz r7azaq r7as5a6 r7a7ag
Yy, Zas0 zases 7

aszag “aqag “ajaz

Y01Y¢12 Z¢130«4ZGBGGZG7GS
as ©as

arag " a4ae " a1a2

(7.162)
(7.163)
(7.164)
Yy, 2 zases gasas garas (7.165)
(7.166)
(7.167)
(7.168)
(7.169)

agar " aeag " a1az

Yaa71 Y;la32 74304 ;70506 770708

asag —a2a6 T aiaq

Y;la; Y;gz 74304 ;70506 770708

aga7 “agzas “aiag

Y a1y az 7asas 7asas r7aras
as ~as

arag “azag “aiaa

Y a1y az 7a3a4 7asa6 r7a7as
as ~as

azar —asag " aiaq
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ny = 3,nz = 3 Invariants with self-loops

Y a1y a2y as ya4as ;7asar r7agag

ag “ag a4 “asag “azar “aiaz

Ya1 Y(ZQ Ya3 Za4a5 Za6a7 ZCLgCLg

asar —azag “Taiaz

)/&1}/a2}/a323a4a523a5a727a3a9

asag “—azag T aijaz

Ya1 Ya2 Yag 74405 7a6a7 770809

asag “—azar T aiaz

Ya1 Ya2 Ya3 74405 74647 770809

asay “—azag T aia2

Ya1 YCLQ Ya3 74405 174647 770809

asag “azar “ajas

Ya1 Ya2 Ya3 74405 174647 70849

asa7 “azag “ajas

Ya1 Yag Ya3 74405 74647 ;70809

asag “—agzag T aiaz

Ya1 Y(lg Ya3 Za4a5 Za6a7 Zagag

aqag “asar “ajas

Ya1 Yag Yag 74405 70647 774809

agar “—asag T aiaz

Ya1 Yag Yag 74405 7a6a7 170809

aqag —asay —aijaz

Ya1 Ya2 Yag 74405 174647 770809

aqay —asag T aiaz

Ya1 Yag Ya3 74405 174647 770849

agag “—asa7 " aia2

Ya1 Ya2 Ya3 74405 174647 70849

asag “—avag T aiaz

(
(
(
(
(
(
(
(
(
(
(
(
(
(
Vo Y s 2 2t (
VY s 2 2 (7.185

(

(

(

(

(

(

(

(

(

(

(

(

(

(

Ya1 Yag Yag 74405 70607 770809

arag “—azas " aijag

Y a1y azy as yasas yasar r7asag

ag ~ a3z " ae a4qar T aza9 T aijas

ya Yag Yag 74405 174647 770849
ag

asag “agsar “ajas

Y @1y azy as yasas 7asar r7asag

ag “ a3z ~ a4 “agag “azar “aias

Y a1y a2y as 7a4as ;7asar r7agag

ag —az ~ a4 agag “—azar T aias

}fal}/GQ}/GS2Za4a5éza6a7éga8a9

arag “asas “ajag

}/al)/a2}/a3£za405£za6a727a8a9

asag “—azag “—aiar

Ya1 Ya2 Yag 74405 70607 770809

asag “asar “ajag

Ya1 Ya2 Ya3 74405 74647 770809

asar T a2ag8 " aiay9

Ya1 Yag Ya3 74405 174647 70849

arag “asas “ajag

Ya1 Ya2 Ya3 74405 174647 70849

agag "Taqa7 "aias

Ya1 Yag Yag 74405 174647 70809

aqag “—avag T aias

Ya1 Y(lg Ya3 Za4a5 Za6a7 Zagag

agag “asar “ajas

Ya1 Y(ZQ Yag 74405 70647 ;74809

aqag “arag “ajas
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ny = 1,nz = 4 Invariants with self-loops

Yal ZCLQCLS Za4a5 Za6a7 Zagag

asg agar "—aqa9 " az2as5 " aiasz

Yal ZCL2CL3 ZCL40«5 Zaea7za8a9

agag —aqav T azas “—a1as

}/al23a2a323040523a6a723a8a9

aqae “asag “agay “aijas

Yal Za2a3 Z(14(15 Z(I@(JL? Zagag

a4qag —asag —aza7 “—ajas

Yal Za2a3 Za4a5 Za6a7 Zagag

ajqag —asay T aa9 T a1as

Yal Za2a3 Za4a5 Za6a7 Zagag

a4qay7 T asag “—aza9 —ajas

Yal Za2a3 Za4a5 ZGGa7 Zagag

(7.200)
(7.201)
(7.202)
(7.203)
(7.204)
(7.205)
Yoi Zagas Zasaq Zasar Laras (7.207)
(7.208)

(7.209)

(7.210)

(7.211)

(7.212)

(7.213)

(7.214)

Yal ZCLQCLS ZCL4CL5 Za6a7 Z(lgag

agag “~asag “agzay “~aijas

}/al23a2a323040523a6a72308a9

agag —asar —aza9 —aijas

Yal Za2a3 Z(l4(15 Za6a7 Zagag

asar “asag “azag “aiaz

Yal Za2a3 Za4a5 Za6a7 Zagag

a4qag “—asag T aza3z “—aijar

Ya1 74203 170445 ;70647 770849

agag “—asar T aza3z —aiayg

Yal ZGQGS ZCL4CL5 Za6a7 Zagag

agag “aqag9 “asay “aijasz

Yal Za2a3 Za40«5 Za6a7zaga9

az2a4 “asag “arag “aias

7.3.5 Lists of spontaneous CP-odd invariants

n,=1nz =3

*Gl a2a3 r7a4as5 r7a6a7

VayV Za6a7 Za2ar Za1a3 (7215)
*al a2a3 r7a4as5 r7a6a7

Ua4 Zaza() Za5a7 Za1a3 (7216)
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Ny =2,z =3

*aq ,,*xa2 a3za4 asae arag
UG5UG7U v Zagag Za3a4 Za1a2

*aq ,,xa a3zaq asae arag
Ua5 U“?” v Zagag Za4a6 Za1 as

*aq ,,*%a a3a4 a5ae6 arag
Ua5 U(I?U v Zagaﬁ Za4ag Za1 as
*aq ,, ka2 a3zaq asae arag

v Za3¢14 Za6118 Z(ll az

*a1,,*%a2 r7a3a4 704506 74708
,Ua3 UGSU v Za7a8 Za4a6 Za1a2

*a1,,%a2 704304 70506 70708
Ua3’l)a51) v Za6a7 Za4ag Zalag

*aq ,,*xa2 a3z a4 asae arag
vasvasv v Za4a7 Zagag Za1a2

*aq ,,*xa a3za4 asae arag
’Ua31)a71} v Za5a8 Za1a6 Za2a4

Va5 Vg,V

*aq a2a3 aqas asar agag
vasv Za6a7 Za4a9 Za2a5 Za1a3

*aq a2a3 aqas asat agag
UGGU Zagag Za4a7 Za2a5 Za1 as

*a1 r7a203 70405 704607 704809
UGGU Za4a7 Z(Lg(lg Za2a5 Za1a3

*Q| 70203 704045 7046047 74809
va8v Za4a6 Zasag Za2a7 Za1a3

*Q1 r7a2a3 74405 746047 74809
Uaﬁv Za4a8 Za5ag Za2a7 Za1a3

*a1 r7a2a3 70405 746047 74809
U%’U Za4ag Za5a7 Za2a9 Zalas

*aq a2a3 aqas asar agag
’UaGU Za4a7 Za5ag Zagag Za1a3

*aq a2a3 aqas asar agag
U“GU Za4a5 Zagag Za2 a7 Za1 as

*A1 70203 74405 70607 70809
Uflélv Zagag Za5a6 Za2a7 Z(l1 as

*Qaq a2a3 aqas asar agag
UG4U Zaeag Z(l5(l9 Za2a7 Za1a3

*Q1 r7a2a3 74405 7046047 74809
’Ua4U Za6a8 Za5a7 Zagag Za1a3

*aq a2a3 aqas asar agag
'Ua4’U Za6a7 Zasag Zazag Za1a3

*aq a2a3 aqas asar agag
Ua(iv Za4a3 Za5a9 Zagag Za1a7

*aq a2a3 aqas asar agag
UGGU Za4a3 Za5 a7 Zag as Za1 ag

*aq a2a3 aqas asat agag
UG6U Zagag Za4a9 Za5 a7 Za1 as

*aq a2a3 aqas asat agag
/UGGU Za2a4 Za5 asg Z(l7(l9 Z(l1 as

7.3.6 Larger CP-odd invariants

In addition to the smaller invariants discussed previously, we also found some
larger CPIs with up to 9 Z tensors. Using the notation established in Eq. (5.40),
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we show only half of the CPI | which is sufficient to uniquely define it.

7,2) bsb b,a bya Cal c.a Caa ala a a

172 _ghsbs ghias gbate gese, gejay geyay gasa, yo yts 241

1 byb, bya, bya, ci1Cy Caaq cy ay asag *a} al (7 )
8) b,b b, b, byar b-a caC c.a coa o

I® —gbsbs ghibe 7bots 7bsde gese, gejay geyay gasay .242
1 biby baby bya, bgag ciCqy [N (AN asag (7 )
(9) _ r7bsby bibg boby Fbsas brag rrese, rreia; rreqay rragay

Il _Zblb2 Zb3b5 Zb4b7 Zb6a1 Zb8a2 Zc102 cha3 Zc4a4 Za5a6 . (7243)

The respective CPlIs 11(7’2), Il(s), If)) can be obtained by subtracting from the [
above the I* obtained by swapping the upper and lower indices, as described in

general in Section 5.2.2.

7.4 More group theory of A(6n?)

A(6n?) is non-abelian finite subgroup of SU(3). The A(6n?) is isomorphic to
(Zy X Zp) x S3, where S3 is isomorphic to Z3 X Zs, and it can be conveniently

defined by four generators a, b, ¢ and d obeying the relations [49]:

a® =0 = (ab)* =1,
A"=d"=1, cd = dc,
“l=¢, beb'=d7', bdbl=ct. (7.244)

aca” ' =c'd7t,  ada

The elements a and b are the generators of S3 while ¢ and d generate Z,, x Z,,
and the last line defines the semidirect product “ x ”. Note that the generator

d = bc'b~! is not independent. All the group elements can be written into the

form
g=a*t’d’, (7.245)

where a = 0,1,2, 8 = 0,1, 7,0 = 0,1,2,...n — 1. In the following we list the
elements of A(6n?) by order of the generated cyclic subgroup.

e Elements of order 2, if n even:

2 qr g2 (7.246)
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e Elements of order 2, always:
besde, abc”, a*bd® (7.247)
with €,v,6 =0,...,n— 1.
e Elements of order 3, if 3 divides n:
A3 (7.248)

where the dots indicate all possible products and powers of the two first

elements.

e Elements of order 3, always:
ac'd’, a*cd’ (7.249)
with v,0 =0,...,n—1
e Elements of order m where m divides n, if m and n are even:
b THENIm A abe dPn/™ | o2hPRnm e (7.250)
with 7,6 =0,...,n—1and 0 < k <m/2
e Elements of order m where m divides n, always:
crn/min/m (7.251)

with £,0=0,...,n— 1.

The A(6n?) group have been thoroughly studied in Ref. [49]. In the following,
we shall review the basic aspects, which is relevant to our present work. The

conjugacy classes of A(6n?) group are of the following forms:
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e n#37Z
1 . 10 = {1}, (7.252a)
n—1 : 3¢ :{cpd—P,c—QPd—P,cﬂdZP}, p=1,2,...,n—1, (7.252b)
2 _3n+42
roonTE 6"+ 6C7) = {Pd”, T PdP AP ¢, P, P dPF.252c)

1 : 2n%Cy = {ac*d?, a’cYd |2,y =0,1,...,n —1}, (7.252d)
n: 3nC = {bc"T*d", a*bc™Pd"* P, abe d’|lx = 0,1,...,n—1},p=0,1,..(712524)

The convention used here is that the quantity left of the colon is the number
of classes of the kind on the right of the colon. In Eq. (7.252c), the parameter
oc=0,1,....,n — 1, but excluding possibilities given by

pt+o=0modn, 2p—0c= O0Omodn, p—20c= 0modn. (7.253)
e n=32%Z
1 101 = {1}, (7.254a)
2 . 10Y) = {Fd¥}, v=12, (7.254b)
n—3 : C’{p = {cpd p,c_zpd_p,cde”}, p# %,%”, (7.254c¢)
2 _
noonTe 2" 0 60T = [P, P, TP AP, P, AP0}, (7.254d)

9 2
3: iC'(T) = {ac™ VP, @?c YV y = 0,1, ...,n— 1,2 =0,1,..., "T%},T =0,1,2,
n: 3nC {bc’””dx a’be=Pd="P abe” xdp\:(:—O,l,...,n—1},p:0,1,...,n—1.
(7.254e)

In Eq. (7.254d), p,o = 0,1, ...,n—1, again excluding possibilities given by Eq. (7.253).

The irreducible representations and their representation matrices of the A(6n?)

group are as follows [49]:
(i) n#32Z
e One-dimensional representations

1, : a=b=c=d=1, (7.255a)
1, : a=c=d=1, b=-1, (7.255b)
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e Two-dimensional representation

o 1(-1 =3 (1 0 (10
vt ( )y ) ema(10) eom

which is related to the basis chosen in Ref. [49] by a unitary transformation

U with
1 1 2
U=— . 7.257
V2 (1 —i) ( )

In our new basis, all the Clebsch-Gordan (CG) coefficients are real, as is
shown in the Appendix 7.4.1. Hence our basis is the so-called the “CP”
basis. The conventional CP transformation ¢ — ¢* can be consistently
imposed onto the theory in our basis, and all the coupling constant would

be constrained to be real.

e Three-dimensional representations

010 001 " 0 0 1 0 0
ip:a= 10 1f,b=]0 1 0],c=[0 np* o], d=[0on* 0 [,
100 100 0 0 1 00 n*
(7.258a)
010 001 "0 1 0 0
3r:a=|0 1l,b=—=1010],¢c=|0 n7* ,d=10 2o 0 [,
100 100 0 0 1 00 n*
(7.258b)

where n = e2™/™ and k= 1,2,...n — 1.

e Six-dimensional representations

0 0 W
6.5 1 a= “ , b= 5 ,
(k.0) 0 as “43 0

C1 0 7 d— d1 0 ’
0 Co 0 d2

(7.259)
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with
010 0 0 1
agr=10 0 1], aa=1|11 0 0], (7.260)
1 00 010
nl 0 0 ,,7l+k 0
a=dy'=10 2o 0 |, co=di = 0 nt 0 |(7261)
0 0 77_1_"“‘ 0 0 77_’C

Here " denotes the mapping

()=o) () () () () (2)

(7.262)
k,l=0,1,...n — 1, and the following cases are forbidden.
=0, k=0, k+1l=0modn. (7.263)
(ii) n=32
e One-dimensional representations
1, : a=b=c=d=1, (7.264a)
1, : a=c=d=1, b=-1, (7.264D)

e Two-dimensional representation

(7.265b)

10 gL -3
o —1) """ 2\yz -1 )¢

(7.265c¢)

(10 (1 0 B Y VA
A R L

1 (-1 =3 (1 0 L -1 V3
22‘a_§<\/§ _1>’b_<0 —1>’C_d_ (—\/3 —1)’
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They are related to the representation matrices of Ref. [49] by the unitary
transformation U in Eq. (7.257).

e Three-dimensional representations

010 00 1 n* 0 1 0 0
3ik:a= |0 1{,b=[010],c=10 n* 0],d=[0n* 0 [,
1 0 100 0 0 0 0 n*
(7.266a)
010 00 1 n" 0 1 0 0
3r:a=10 1l,b=—1010],¢c=|0 n* ,d=10 2o o0 [,
1 0 100 0 0 1 0 0 n*
(7.266b)

where k =1,2,...n— 1.

e Six-dimensional representations

0 0 W 0 d 0
6/1;1/ La= “ y b= ’ , C= “ , d= ! .
(k.0) 0 ay ¥ 0 0 0 do
(7.267)

The 3 x 3 unitary matrices a; 2, ¢12 and d;  are given in Eq. (7.260). Again

the following values are prohibited:

=0, k=0, k=1=n/3, k=1=2n/3, k+1=0modn. (7.268)

7.4.1 Clebsch-Gordan coefficients for A(6n?) group with
n # 37

In the following, we shall present all the CG coefficients in the form of x ® y in our
chosen basis, x; denotes the element of the left base vectors x, and y; is the element
of the right base vectors y. We shall see explicitly that all the CG coefficients are

real.

[ ] 2®2:11€B12@2
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TalY2 — T1Y1
2~ ' . 1y ~xyn 4 20y, 1o ~miys —zoyr . (7.269)
T1Y2 + Tl

¢ 2®31 k=311 D3
(:vl — \/gl’g) Y1 (\/gl”l + $2) Y
31k~ —211Ys . 3ok~ — 2T . (7.270)
(351 +\/§IE2) Y3 (—\/§$1 +$2) Y3
¢ 232, =31% D32k
(\/3.%1 + 332) U1 (331 - \/§$2) n
31k~ —291s ;o Bk~ —221Yo . (7.271)

(—\/§$1 + $2) Y3 ($1 + \/§I2) Y3

® 2® 6 =6k D 6y

(\/§x1 + xg) Y1 22911
—222y2 (V3z1 — 2) yo
6 (i) ~ (—\/§I1 + 5E2) Y3 L B ~ - (\/3901 + $2) Y3
7 (\/§x1 - xz) Y4 7 —2%2Ys

2x5Ys5 (\/§$1 + 56'2) Ys
- (\/5151 +1'2) Yo (—\/55171 +$2) Yo

(7.272)
© 31,031y =311 D 6(7_7)
T1Y2
T2Y3
11 sy
3Y1
31,l+l' ~ | T2Y2 | > 6(—l,l—l’) ~ sy ) (7-273>
3Y2
T3Ys
T2l
T1Y3

® 31, ®32y =324 D 6(1/317)
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® 31, ®6 =6

® 3, @30y =314/ D6

® 3, ®6(4) =6

® 6 @601y =

3141 ~

e~

()

©6

)

1l
TaY2 | »

T3Y3

©6

k=1

6(11-1)~ :

1+ K
ll

T1Y2

T2Ys

T3y
—T3Y2
—T2Y1

—I1Y3

T1Y3 11
T2Y1 T2Y2
T3Yo L3Ys
y 6k;/—l ~ 5 6 K — ~
T3Ye (z’+z> T3Y4 ( I+ & )
T2l4 T2Y5
T1Ys T1Ye
(1,1
T1Y2
T2Y3
11 3y
3Y1
B0 ~ | way2 |, G-y ~
T3Y2
T3Y3
T2Y1
T1Y3
— D6 ®6 —

()

T1Ys

T2l

T3Y2
—Z3Ye
—X2Y4

—T1Ys

Y

=)

(v=)

K =1

6<,;,;;> ~

—

+MP (’j,' ))

I+ K
l/

T1

T2Y2

T3Ys
—T3Y4
—T2Ys

—T1Ys

(7.274)

T1Y2
T2Ys3
T3Y1
T3Ys
T2Ye

T1Y4

(7.275)

(7.276)

T1Y2

T2Ys3

T3l
—I3Ys
—T2Ye

—T1Y4

(7.277)
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11 T1Y2 T1Y3
T2Y2 T2Y3 T2l
T3Ys3 T3y T3lY2
6<k+k’) ~ ) 6<k—k/—l’) ~ ) 6( k+ U ) ~ )
L+l T4aYa L+ & T4aYs L= — & T4aYs
Ts5Ys5 Ts5Ye T5Y4
TeYe TeY4 Tels
T1Ya T1Ys T1Ye
T2Ye TolYa T2lYs5
T3Ys T3Ye T3Y4
6 k— K ~ , 6 kw0 , 6 -1\
(z + K+ V) 41 ( - ) TalY2 (z - k’) T4Y3
Ts5Y3 Ts5Y1 Ts5lY2
TeY2 TeY3 Tel1
(7.278)

For the case of n = 3Z, the CG-coeflicients can be calculated although it is some-
what lengthy. Part of the CG coefficients are complex numbers in our chosen basis,
the explicit form would not be reported here since general CP transformations can
not be consistently defined in generic settings based on such groups unless the

doublet representations 24, 23 and 24 are not introduced in a specific model.

7.4.2 A(6n?) potentials as particular cases of A(3n?) po-

tentials

The triplet generators of A(6n?) with n € N are [49]

010 001 n 0
a={00 1], b=+|0 1 0], c=|0 npt o], (7279
100 100 0 0
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where n = €>/" and | € N. If the field transforms as a faithful triplet, any

c-invariant operator O will also be invariant under the phase transformation®

n 0 0
co=10 nt 0], (7.280)
0O 0 1
and therefore also under
nt 0 0 nt 0
a'=10 7o o and =10 n* 0f . (7.281)
0 1 0O 0 1

Imposing additionally invariance under a, we quickly find that the operator O is

also invariant under

0
nt 0 . (7.282)
0 n’k

1.2

1.2 _ 2 k
acy a” =

and a“cya =

o O =

As a result, the operator O is symmetric under the successive application of ac; lg?

and a’cfa, i.e.

n 0 0
ot o0 |- (7.283)
0 0 T/fkfl

Demanding invariance under a and ¢ of Eq. (7.279) therefore leads to the set of

A(3n?) invariant operators where the triplet generators are given by [156]

0
n* 0 : (7.284)
0 nfkfl

g\
I
_— o O
[ e R
S = O
Q\
I

We thus conclude that the A(6n?) symmetric potential can be deduced from the
A(3n?) invariant potential by simply dropping all terms which are not symmetric
under b of Eq. (7.279). Therefore, in each of these cases it is sufficient to use the
already obtained expressions for the CPIs and set constraints on the coefficients

to make all the terms in the potential invariant under the b generator.

3For faithful representations, ! and n have to be coprime. As a consequence, there must be
an integer p such that c? = cg.
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