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This thesis concerns itself with two seemingly disjoint topics that are interesting

on their own, but that come to their full bloom when combined. These two topics

are the violation of CP and the so-called flavour problem. CP violation is simply

necessary for all our existence, however currently no strong enough source of it

is known to ensure successful baryogenesis. The flavour problem on the other

hand is a loose collection of questions concerning fermions in the standard model,

especially why several flavours exist at all, and why their properties appear to be so

chaotic. The overlap between the two topics happens, as in the SM CP is violated

in the flavour sector. After an introduction, so-called residual flavour and CP

symmetries are explored as possible explanations of the parameter structure of the

lepton Yukawa sector. Such residual symmetries are embedded into larger groups

at high energy and from the breaking patterns constraints on observables are

derived. There it was found that an important class of subgroups of U(3), namely

∆(6n2) groups, can indeed explain the observed lepton mixing. Several variations

of this approach, combining residual flavour and CP symmetries, are explored.

This was the first time that such an infinite series of finite groups was analysed

in this way. After this, motivated by the need for breaking of flavour and CP

symmetries and the search for additional sources of CP violation, a large number

of candidate scalar potentials are explored, especially for their CP properties. A

necessary tool for this are CP-odd Higgs basis invariants, the theory of which

was further developed to enable such analyses. Using this approach, many very

complicated potentials were tested for their CP properties for the first time and

new sources of CP violation were found in new and known potentials.
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terstützung wäre ich heute nicht, wo ich bin. Danke.

xvii





1

Introduction

There is a theory which states that if ever anyone discovers exactly what

the Universe is for and why it is here, it will instantly disappear and be

replaced by something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

– Douglas Adams, The Restaurant at the End of the Universe

This thesis concerns itself with two topics that seem quite unconnected at first and

are indeed interesting on their own, but in addition, when looked at closely, have

interesting and intricate connections. These topics are the violation of combined

conjugation of charge and parity, and the so-called fermion flavour problem. The

central unanswered questions behind these topics could be (slightly polemically)

stated as ”Why does anything exist?“ and ”Now that something exists, why are

there unnecessary copies of it?“, respectively.

Both topics will be introduced properly at a non-technical level in the next two

sections. Following these sections, what was until the discovery of neutrino oscil-

lations [7] the unbeaten1 champion of particle physics is introduced, namely the

standard model of particle physics. The conceptionally simplest explanation of

neutrino oscillations is that neutrino have small but finite masses. This is in con-

tradiction to the standard model in its original formulation, in which neutrinos

were massless by construction [8, 9]. There are various extensions of the standard

model that can explain these oscillations by the introduction of additional fields

such that the model allows for neutrino masses. All this is discussed after a review

of the remainder of the standard model, followed by sections containing technical

1At least concerning the 5% of the universe that are described by it.

1
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discussions of fermion flavour and CP, and an outline of the main chapters of the

thesis, which concludes the introduction.

1.1 The flavour problem

The standard model of particle physics is a relativistic quantum field theory. It is

probably safe to say that the latter is still the best known unification of special

relativity with quantum mechanics and at the same time the best description of

elementary particles available. The fact that it is a relativistic theory means that

the action is invariant under Poincare transformations whereas the fact that it is a

quantum theory means that symmetry transformations act on the quantum states

of the theory via unitary (or antiunitary) operators[10].

How quantum states transform under operators representing the Poincare group

induces transformations on operators generating the various quantum states. These

generators are then combined into fields that again form representations under the

Poincare group. These are in turn are combined into a Lagrangian covariant under

Poincare transformations which when integrated over spacetime yields an invariant

action.

The Poincare group has two parts, spacetime translations, and boosts and rota-

tions. Space-time translations are generated by the 4-momentum operator whose

square commutes with the other operators of the Poincare group. This causes

single-particle states to be characterized by their rest mass. The second part,

boosts and rotation, causes the representations to be characterized by two spin

quantum numbers. The reason for this is that the group formed by boosts and

rotations, the Lorentz group, is locally isomorphic to SU(2)×SU(2) and each rep-

resentation is labelled by the spin quantum number under each of the SU(2) fac-

tors. There are two representations that correspond to (constituents of) all known

fermions, (1/2, 0) and (0, 1/2), where this notation means that these representa-

tions are two-dimensional and transform either with a matrix from the first or the

second SU(2) factor, respectively. These 2-dimensional representations are often

called Weyl spinors and play an important role in the construction of the standard

model. Massive fermions are represented by Dirac or Majorana spinors, both of

which correspond to the direct sum of two Weyl spinors, (1/2, 0)⊕ (0, 1/2), with

Majorana spinors fulfilling an additional reality condition. Note that this short ex-

position has completely ignored the gauge structure of the standard model, which

can easily be considered its most successful part and the same for any quantum
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field theory, but is entirely irrelevant to the essence of the flavour problem. The

gauge structure of the standard model will be summarized in subsection 1.3.2.

Fermions are distinguished by their quantum numbers under the various symme-

tries of the standard model, except for the fact that of each type, (at least) three

copies seem to exist that merely differ by their Yukawa couplings and thus, at

our low energies, their rest mass. These copies, one set of which is for example

electron, muon, and tauon, are called flavours.2

The flavour problem (or puzzle) is a loose collection of unsolved questions related

to the properties of fermions in the standard model among which the most fun-

damental ones are, Why are there even different flavours of fermions, and Why

is flavour even necessary?3 From the point of view of the author, the essence of

the flavour problem can in the context of the above exposition be formulated as

follows: There is no such thing as flavour — in the Poincare group, by which is

meant that to describe several flavours, the particles of each flavour are just ad-

ditional copies of the representations of the Poincare group. (As are the fermions

within each generation, however, these are at least distinguished by gauge interac-

tions.) The question now is, could there be any symmetry principle that explains

why different flavours exist and why their properties and interactions are what

they are? Ideally, also the seemingly chaotic structure of the flavour sector of

the standard model would be explained too by this symmetry. Such a symmetry,

that extends the symmetry of the model in consideration and under which the

generations form a representation, is called a flavour symmetry.

The various no-go theorems about symmetries of the S-matrix [11, 12] are often

interpreted as stating that the only symmetries that act on spacetime of a quantum

field theory in flat space can be the Poincare group (or supersymmetry), and

that all other symmetries have to be internal, which means that while they may

depend on spacetime, spacetime itself is not transformed by these symmetries.

Mathematically this means that the possible symmetries of a quantum field theory

are a direct product of Poincare and internal symmetries, and that the internal

symmetries act trivially on spacetime. This is for example the case for the standard

model, where with P the Poincare group, (and the role of the remaining factors

explained in the following section,)

GSM = P × SU(3)C × SU(2)L × U(1)Y . (1.1)

2Equivalently flavours are sometimes called families or generations.
3And other question concerning their precise properties and interactions.
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These arguments have some loop-holes, as (among other things) the theorems only

concern themselves with symmetries of the S-matrix and a larger group containing

both Poincare and other symmetries might be broken spontaneously, such that at

the level of the S-matrix the only surviving symmetries are indeed a direct product

of the Poincare group and internal symmetries.

Nevertheless, apart from this loop-hole, any symmetries that could provide infor-

mation about the properties and origin of flavour have to be internal symmetries

that extend the usual standard model symmetries by relating different flavours

with each other. Technically this often means that the three generations trans-

form as some representation of a new group, GFlavour that extends the symmetry

of the theory:

G = GSM ×GFlavour. (1.2)

This new group will have to be broken, because, as will be shown in section 1.4.1,

the symmetries under transformations of fermion flavours that are present in the

standard model are fairly small and by themselves do not contain much information

about the flavour problem.

1.2 Why we all should not exist

The second topic of this thesis is a symmetry, that, if it was realized in the universe,

would make it impossible to distinguish between matter and antimatter. The

existence of a sufficient number of particles over antiparticles, and thus all our

existence, would be impossible. This symmetry is called charge-parity conjugation,

or in short CP, and its precise definition will have to wait until a later section.

The process by which matter is selected over antimatter during the evolution of

the universe is generically called baryogenesis. There are two main quantitative

observables that measure the effect of baryogenesis: the density of baryons minus

the density of antibaryons over the density of photons [13]

nB/nγ = (6.10± 0.04)× 10−10 (1.3)

and the fraction of antibaryons over baryons. Concerning the latter, the fraction

of antiprotons in cosmic rays has been measured to [14]

np̄/np ≈ 10−4. (1.4)
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Note that the surplus of baryon over antibaryons is rather small.4 It was real-

ized very early that four ingredients are needed for successful baryogenesis [15]:

departure from thermodynamic equilibrium, baryon number violation, violation

of charge conjugation, and violation of CP. The departure from thermodynamic

equilibrium is supplied by the expansion of the universe, out-of-equilibrium-decays

of heavy particles, first-order phase transitions or by other things, while the charge

conjugation symmetry is violated in the standard model by construction. Baryon

number is conserved by the renormalisable Lagrangian of the standard model but

violated at the perturbative level by an anomaly, the effect of which however is

almost vanishingly small, such that on one hand baryon number could safely be

considered a perturbative symmetry of the standard model. On the other hand,

there is a non-perturbative effect which is effected by certain non-local field config-

urations, called Sphalerons, that may be of considerable size. A reasonably large

baryon-number violating effect may occur if the phase transition from unbroken

to broken electroweak symmetry was of first order, which unfortunately is not the

case in the standard model with a single Higgs doublet because the mass of the

recently discovered Higgs boson is too large. And even if the phase transition was

of first order, it was shown that the amount of CP violation in the standard model

that is confirmed to this date is not sufficient to explain the baryon asymmetry.

A measure of the strength of CP violation at the phase transition is given by

the so-called Jarlskog invariant J divided by the Higgs vacuum expectation value

v squared. What both of these are will be explained later in the introduction.

Nevertheless, one obtains that

J

v2
=

Im[VijVklV
∗
ilV
∗
kj]

v2
≈ 3× 10−5

(246 GeV)2
≈ 5× 10−10 GeV−2 (1.5)

and all CP-violating observables have to be proportional to this number, which

will force the rates to be of a similar order of magnitude.

While it remains an interesting question what the precise origin of the violation

of baryon number is, this question will not be considered further in this work, but

the focus will lie on CP violation as such. An additional reason for this approach

is that while CP violation is necessary for dynamically generating the observed

baryon asymmetry, it might still even be the case that the universe was just started

(if it was started), or just exists with a positive baryon number. CP violation as

such would still be interesting because CP is violated in the standard model and

a question that remains is, Was CP ever a good symmetry of the universe? Via

4Although there is of course no second universe to compare with.
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the CPT theorem [16], CP violation is directly related to the violation of time

inversion invariance, such that the question becomes, Is the direction of increasing

time built into the universe, or the result of some dynamics?5

The last remark highlights another reason to study the violation of discrete sym-

metries generally. P and T are parts of the Poincare group and the question if

any of them had ever been conserved is actually a question about the fundamental

symmetries of nature. A similar argument can be found for C, as while it is not

included in the Poincare group, it arises as a symmetry of the theory when two

copies of a field with otherwise identical quantum numbers under the Poincare

group are combined to a complex field.

1.3 The standard model of particle physics

In this and the following sections concepts that were merely mentioned in the pre-

vious sections will be made precise, starting with relativistic invariance, followed

by gauge invariance, the breaking of the latter, the resulting masses of particles,

and eventually flavour and CP symmetries of the standard model and as an ex-

tension of the standard model.

1.3.1 Relativity

The starting point is the relativistic invariance of the theory. Technically this

means that the theory is to be invariant under Poincare transformations, often also

called inhomogeneous Lorentz transformations. In quantum mechanics, symmetry

transformations acting on states6 have to be linear and unitary or antilinear and

antiunitary operators [10]. For this reason, in the following, first, the construction

of (anti-)unitary irreducible representations of the Poincare group will be outlined

and which transformation properties are induced onto field operators.

The defining representation of the Poincare group acts on flat spacetime in the

following way,

xµ 7→ Λµ
νx

ν + aµ (1.6)

5In addition, one could wonder if the arrow of time that is generated by the violation of CP
in the standard model is caused by the same dynamics as the macroscopic arrow of time, or if
they are different effects.

6It is a postulate of quantum mechanics that any complex multiple of a state in Hilbert
space will represent the same physical state. This has to be taken into account when discussing
symmetries on the state space. Sets of states that only differ by arbitrary phases are called rays.
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where a is a constant, real 4-vector and Λ is a constant, real 4 × 4 matrix that

leaves the flat Minkowski metric η invariant:

ΛTηΛ = η. (1.7)

The Poincare group decays into four parts, namely those transformations that

can be reached from the identity transformations by continuously changing the

parameters in Λ and a, denoted by P↑+, and those that are only connected with

the identity via mirror operations acting on time, denoted T , and acting on space,

denoted P , with the matrix Λ appearing in Eq. (1.6) taking the forms of

ΛT = diag(−1, 1, 1, 1) and ΛP = diag(1,−1,−1,−1). (1.8)

P is also called parity and T time-inversion. In the following, only P↑+ will be

considered and often just denoted by P .

To arrive at other representations than Eq. (1.6) of the Poincare group, one can

start with infinitesimal transformations,

xµ 7→ (δµν + ωµν)x
ν + εµ. (1.9)

As ω is an antisymmetric7 4× 4 matrix, an arbitrary infinitesimal Poincare trans-

formation has 10 free real parameters. In any other representation U(Λ) of the

group, an infinitesimal element can only depend on these parameters, and one can

expand this element in these parameters

U(Λ) = 1 + iωµνJ
µν − iεµP µ + . . . (1.10)

If U(Λ) is a unitary representation, then Jµν and P µ are hermitian operators.

From the multiplication rules of Λ and the fact that U(Λ) is a representation, one

obtains the Lie algebra of the Poincare group [17],

i[Jµν , Jρσ] = ηνρJµσ − ηµρJνσ − ησµJρν + ησνJρµ (1.11)

i[P µ, Jρσ] = ηµrhoP σ − ηµσP ρ (1.12)

[P µ, P ρ] = 0. (1.13)

Because P 2 = P µPµ commutes with all other generators, states can be classified

by their quantum number under it. For what will be single particle states, this

7From Eq. (1.7) follows ωT η + ηω = 0.
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will correspond to the square of the rest mass of the particle. To obtain the other

quantum numbers of states first define generators of rotations and boosts as

Li =
1

2
εijkJ jk and Ki = J0i (1.14)

which can be combined to [18]

J± =
1

2
(L± iK) (1.15)

One can show now that J± fulfil separate spin algebras SU(2)± and commute with

each other. Up to complications when considering states with p2 = 0, this shows

that single-particle states are given by

∣∣m2, ~p, j1, j2
〉

(1.16)

where j1 and j2 are the spins under SU(2)±. A scalar has simply j1 = j2 = 0,

while a left-handed Weyl fermion has (1/2, 0) and a right-handed Weyl fermion

has (0, 1/2). Two Weyl fermions can be combined to a Dirac fermion, (1/2, 0) ⊕
(0, 1/2).8 The states transform with unitary operators acting on them,

∣∣m2, ~p, j1, j2
〉
7→ U(Λ, a)

∣∣m2, ~p, j1, j2
〉

(1.17)

and this induces transformations on the operators generating the states. These

generators are combined into fields and at the end of the day one obtains the

following transformation properties of scalars

φ(x) 7→ φ(Λ−1x), (1.18)

Dirac fermions,

ψ(x) 7→ Λ 1
2
ψ(Λ−1x) (1.19)

where Λ 1
2

fulfils

Λ−1
1
2

γµΛ 1
2

= Λµ
νγ

ν (1.20)

Gamma matrix calculation rules can be found in most textbooks, but [19] and [20]

are particularly complete.

8Because T and P act as automorphisms on P↑+, irreps of the full Poincare group are direct

sums of the irreps of P↑+. E.g. as P (1/2, 0) ∝ (0, 1/2), Weyl fermions would be forced to combine
to a Dirac fermion.
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The fundamental fermionic irreducible representations are Weyl spinors, often de-

noted as ψL or ψR. This notation is safe in the chiral basis of gamma matrices.

Dirac spinors are the direct sum of Weyl spinors,

ψDirac = ψD = ψL + ψR. (1.21)

Vice versa, Weyl spinors can be extracted from a Dirac spinor using projectors

γL/R = (1± γ5),

ψL/R = γL/RψD (1.22)

and Majorana spinors fulfil an additional reality condition, ,

ψc = eiζψ (1.23)

with some real phase ζ; additionally, in above equation, the charge conjugated

spinor was used which is defined via

ψc = Cψ
T

(1.24)

with the charge conjugation operator or matrix, which is defined via

γµC = −CγTµ . (1.25)

For now it is sufficient to have this definition of charge conjugation to be able

to mention what Majorana spinors are. Charge conjugation will be discussed in

greater detail in section 1.5.

1.3.2 The gauge structure of the standard model

The standard model gauge group is SU(3)C × SU(2)L × U(1)Y . The SU(3)C

factor accounts for the strong nuclear interaction, while the SU(2)L×U(1) factor is

responsible for the electroweak interactions. The SU(2)L factor is sometimes called

weak isospin, and the U(1) factor (weak) hypercharge. First, the Lagrangian will

be stated and after that the properties of the various components under symmetry

transformations will be discussed.

The three ingredients in terms of physical fields are gauge fields for the three

types of interactions, fermions, and the Higgs fields. Consequently, the Lagrangian

consists of kinetic terms and self-interactions of gauge fields Lgauge, kinetic terms,

which include the gauge interactions, of fermions Lfermion, kinetic terms (again
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with built-in gauge interactions) of scalar fields LHiggs, self-interactions of the

Higgs fields LV , and of fermions with the Higgs field, LffH (these are often called

Yukawa interactions),

LSM = Lgauge + Lfermion + LHiggs + LV + LffH . (1.26)

In the first three parts, the elegance of gauge, or local, invariance is expressed in

its fullest. For a single gauge group G in some representation with generators T aG,

the covariant derivative is given by

Dµ = ∂µ − igAaµT aG. (1.27)

Define the field strength F a
µν tensor via

[Dµ, Dν ] = −igF a
µνT

a
G (1.28)

which with the structure constant9 fabcG expands to

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcG AbµA

c
ν . (1.30)

From this field strength tensor, a gauge invariant and Lorentz covariant quantity

can be built, namely F a
µνF

aµν . This quantity contains kinetic terms and self-

interactions of the gauge fields. In the standard model, the gauge group is a direct

product of three groups and the Lagrangian that accounts for the corresponding

gauge fields is a sum of three versions of the aforementioned invariant, one for each

multiplet of gauge fields. The number of gauge fields for each group equals the

number of generators, and apart from that the only difference lies in the structure

constant of the groups. With that the gauge Lagrangian becomes, with Gc
µν the

field strength of 8 SU(3) gauge bosons, called gluons, W a
µν 3 SU(2) gauge bosons,

and 1 U(1) gauge boson Bµν ,

Lgauge = −1

4
Gc
µνG

cµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν (1.31)

The fields strength tensors appearing in the above Lagrangian are all of the form

as in Eq. (1.30). Note that gauge invariance of the theory does not allow for mass

9The structure constant specifies the algebraic relations between group generators,

[T a, T b] = ifabcT c. (1.29)

Inversely, if the group generators are known, the structure constants can be obtained using this
relation.
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terms of the gauge bosons.

Gluons are mentioned in this section for completeness only and will not play a

role in the remainder of this thesis. The kinetic terms and gauge interactions of

fermions are all given through the covariant derivative, for a gauge group with

G =
∏
Gi and the standard model respectively

Dµ = ∂µ +
∑
Gi

igiA
a
µT

a
Gi

(1.32)

= ∂µ + igstrongG
c
µT

c
SU(3) + igW a

µT
a
SU(2) + ig′

Y

2
Bµ (1.33)

where Aaµ denotes a generic gauge field, associated with a generator T aGi of the

group Gi, and for the standard model, Gc
µ are the 8 gluon fields that come with

the 8 Gell-Mann matrices T cSU(3), W
a
µ are the SU(2) fields, associated with the

SU(2) generators T aSU(2) =: T a, and U(1)Y gauge field Bµ with the generator Y/2.

The values of the generators of the three subgroups for the various kinds of fermion

fields in the standard model are summarised in Table 1.1. The kinetic terms and

gauge interactions of all standard model fermions can now be written using this

covariant derivative,

Lfermion =
∑

flavours

∑
ψ=QiL,uiR,diR,EiL,liR

iψ̄γµDµψ + h.c. (1.34)

The fermion fields of the standard model are listed in Table 1.1, together with the

values of the generators for each type of fermion.

The kinetic terms and gauge interactions of the Higgs fields are given by

LHiggs = (Dµφ)†(Dµφ) (1.35)

with the values of the different generators given in Table 1.2 where for later use

also the charge-conjugate of the Higgs doublet is given.

There are further parts in the Lagrangian, which arise during the quantization

procedure but are nevertheless an essential part of the model, namely terms for

the so-called ghost fields, and gauge fix terms. They will not play a role in this

thesis and information about them can be found in [18, 17].
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Name Notation T cSU(3) T aSU(2) Y

left-handed quarks QiL =

(
uiL
diL

)
λc τa

2
1/3

right-handed up-quarks uiR λc 0 4/3

right-handed down-quarks diR λc 0 −2/3

left-handed leptons EiL =

(
νiL
liL

)
0 τa

2
−1

right-handed charged leptons liR 0 0 −2

Table 1.1: The fermions in the standard model of particle physics together
with their transformation properties under the factors of the symmetry
group. Here, the lower index i = 1, 2, 3 indicates flavour, and again one
can see that the different flavours are just copies of each other, at least in
terms of their gauge properties. λc denotes the Gell-Mann matrices, which
will not be needed again in this thesis are just mentioned for completeness.
Their values can be found e.g. in [18]. τa are Pauli matrices.

Name Notation T cSU(3) T aSU(2) Y

Higgs Doublet φ =

(
φ+

φ0

)
0 τa

2
1

charge-conjugated Higgs Doublet φ̃ = iτ2φ
∗ =

(
φ0∗

φ−

)
0 τa

2
−1

Table 1.2: The Higgs doublet of the standard model of particle physics
together with its transformation properties under the factors of the sym-
metry group. τ2 is the second Pauli matrix.

1.3.3 Symmetry breaking

The self-interactions of the Higgs doublet are

LV = µ2φ†φ+ λ(φ†φ)2. (1.36)

When the parameters in the above part of the Lagrangian fulfil µ2 < 0 and λ > 0,

then classically the value of φ which minimizes the potential energy is not φ =

(0, 0)T as this would be unstable and would (now quantum-mechanically) decay

into a configuration that is more stable. The minimum of the potential Eq. 1.36 lies
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at φ†φ = −µ2/(2λ) (µ2 was negative). The basis of the Higgs field can be chosen

such that the vacuum expectation value always lies in the lower component of the

doublet,

〈0|φ |0〉 =

(
0

v/
√

2

)
(1.37)

with v =
√
−µ2/λ. Note that only in this basis the notation assigned to the

components of the fermion doublet in Table 1.1 makes sense, as in any other basis

they would be mixed accordingly. Before the phase transition, the components

of the fermion doublets are indistinguishable anyway. It was in a way already

assumed that the Higgs vev would appear in the lower component of φ.

Note that the vacuum alignment in Eq. (1.37) does not break U(1)Q. However, as

always some U(1) subgroup of SU(2)L × U(1) would remain unbroken, this sub-

group would define what electric charge is and could always be chosen physically.

Only when additional Higgs doublets are considered, one has to make sure that

all their VEVs point in the same direction such that they leave the same U(1)

subgroup invariant. In this case it is simply practical to chose all VEVs to lie in

the lower components of their Higgs doublets.

1.3.4 Gauge boson masses

As discussed, after EWSB10, the Higgs field acquires a vacuum expectation value

and one can expand the Higgs doublet around its vacuum expectation value,

φ =

(
φ+

1√
2
(v + h0 + iφ0)

)
(1.38)

The field components φ+ and φ0 will become the longitudinal components of

charged and neutral massive gauge bosons. Their appearance in the above ex-

pansion is gauge dependent and the gauge in which they disappear and only h0

remains is called the unitary gauge. If one inserts the expansion of the field around

its vev into LV , one obtains a mass term for h0 with mass

M2
h0 = −2µ2. (1.39)

10Normally, a phase transition requires first of all a macroscopic system that can undergo
phase changes when macroscopic observables change. The Lagrangian of the standard model as
formulated in Eq. (1.26) only considers the microscopic degrees of freedom at zero temperature.
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Note that the factor of 2 in above equation arises not from LV , but from the fact

that the normalisation of h0 when expanding φ in LHiggs, Eq. (1.35), produces a

factor of 1/2 multiplying (∂µh
0)(∂µh0).

Next, via the Higgs-gauge interactions, LHiggs, the vacuum expectation value of

the Higgs fields leads to the following mass terms for gauge bosons,

g2W a
µW

aµ + gg′BµW
3µ +

(g′)2

4
BµB

µ (1.40)

Diagonalising these mass terms in W a and B leads to the physical fields

W±
µ =

1√
2

(W 1
µ ±W 2

µ) and (1.41)(
Zµ

Aµ

)
=

(
cW sW

−sW cW

)(
W 3
µ

Bµ

)
(1.42)

with

cW = cos θW =
g√

g2 + g′2
, sW = sin θW =

g′√
g2 + g′2

(1.43)

and θW the weak mixing angle.11 The masses of the physical physical gauge bosons

then become

MW =
gv

2
, MZ =

v

2

√
g2 + g′2, MA = 0. (1.44)

With these, the weak mixing angle can be expressed as

cW =
MW

MZ

(1.45)

And the elementary electric charge becomes

e =
gg′√
g2 + g′2

. (1.46)

With the Higgs field expanded in this way, the Lagrangian is now only invariant

under a subgroup of the original gauge group, namely SU(3)C × U(1)em, where

the generator of the remaining U(1) group corresponds to electric charge and can

be written as

Q = T 3
SU(2) +

Y

2
. (1.47)

11Sometimes θW is wrongly called the Weinberg angle, despite the fact that it was first intro-
duced by Glashow [8].
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The weak hypercharge of the various particles was chosen exactly such that their

electromagnetic charges are reproduced via above charge operator. The elec-

troweak part of the covariant derivative becomes

Dµ = ∂µ −
1√
2

(W+
µ (T 1 + T 2) +W−

µ (T 1 − T 2))− ig√
2cW

Zµ(T 3 − s2
WQ)− iAµeQ.

(1.48)

1.3.5 Charged fermion masses

The weak interaction within the standard model is chiral, which means that left-

and right-handed fields transform differently under gauge interactions. This is

only possible if the fermions are Weyl spinors before EWSB. The Weyl nature of

fermions before EWSB taken together with their quantum numbers forbids mass

terms for all fermions in the standard model. Only after symmetry breaking,

they can acquire mass terms and after diagonalising their mass terms become of

definite Dirac or Majorana nature12, as will be discussed a little later. In the

renormalisable standard model, no mass term is allowed for neutrinos, as they

have no partner to couple to the Higgs boson with and a Majorana mass term is

forbidden because of their hypercharge. This means that before EWSB, the only

parameter whose value has to be given in terms of a physical unit of energy, e.g.

GeV, is the Higgs mass, mH . Experimentally it is known that at least without an

extended gauge or scalar sector, only 3 fermion flavours can exist [21].

The renormalisable interactions of the Higgs boson with fermions are

LffH = −(QLφY
ddR +QLφ̃Y

uuR + ELφY
llR + h.c.) (1.49)

with the charge conjugated Higgs field, φ̃ = iτ2φ
∗ = (φ0∗, φ−)T . Expanding φ

around its vev, they lead to the following mass terms of the standard model

fermions,

LffH → −(dLM
ddR + uLM

uuR + lLM
llR) (1.50)

with

Md = Y dv, Mu = Y uv, M l = Y lv. (1.51)

12This is the normal explanation, however, the breaking is not really dynamically performed,
but the Higgs parameters are already chosen such that fermions are massive. As this also means
that external fermions are massive, the fields that generate them transform under a massive irrep
of the Poincare group.



16 1 Introduction

At this point, neutrinos are still forced to remain massless. Neutrino masses will

be discussed in the next subsection. The Mψ, (ψ = d, u, l), are 3× 3 matrices and

can be diagonalised via biunitary transformations in flavour space,

dL/R 7→ UdL/RdL/R, uL/R 7→ UuL/RuL/R, dl/R 7→ UlL/RlL/R (1.52)

and the only other place where these matrices show up in the standard model as

discussed so far is in the interactions of physical W boson with quarks,

uLdLW 7→ uLU
†
uUddLW (1.53)

where one can drop the index indicating whether the field is left or right-handed

here because right-handed fields do not take part in gauge interactions. The matrix

appearing in the interaction of left-handed quarks and W boson,

UCKM := U †uUd (1.54)

is called the CKM matrix after [22, 23] and is often also simply called the quark

mixing matrix. Because unitary matrices have fewer real degrees of freedom than

they have real entries (i.e. double the number of complex entries), in practice,

parametrizations of the CKM matrix are used that only depend on the relevant

degrees of freedom. The mostly commonly used such parametrization is the one

prescribed by the Particle Data Group (PDG). The quark mixing matrix will

not appear in the remainder, but only the equivalent matrices in the neutrino

sector and this parametrization will discussed in the next subsection together with

the complications that can arise from the fact that Neutrinos may be Majorana

fermions.

Finally, looking at Eq. 1.50, as (ψ̄L + ψ̄R)(ψL + ψR) = ψ̄LψR + ψ̄RψL, one can see

that the Weyl fermions ψL/R have combined to Dirac fermions ψL + ψR. 13

1.3.6 Neutrino masses

One can see now that in the standard model left-handed neutrinos, νL, have no

mass term, essentially because of their hypercharge. However, when loosening

13This is not completely correct to say, because the external states of the SM after EWSB are
massive states and Weyl fields cannot act on these. The fields in the effective theory below EWSB
are massive irreps and chiral fields are projections of massive fields which are now different from
Weyl fields.
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the restriction of renormalisability, there is only one unique operator with mass

dimension 5, namely the so-called Weinberg operator,

Ld=5 = −ELφ̃Y M φ̃TEc
L + h.c. (1.55)

where with Ec
L = CEL

T
the charge-conjugated lepton doublet has been introduced.

Generally, Lorentz-invariant quantities can be constructed not only using γ0, which

is the Clebsch-Gordan coefficient for constructing a Lorentz-singlet out of fermion

and hermitian conjugate, but with the charge conjugation operator, singlets can

be constructed from fermion and transposed fermion field. Charge conjugation

will be discussed in detail in a later section, for now it is sufficient to know that

after EWSB this operator results among other things in a so-called Majorana mass

term for left-handed neutrinos,

Ld=5 = νLv
∗2Y MνcL + h.c. (1.56)

Note that this operator has no UV completion within the standard model without

any other particles added onto it. The various see-saw models that are being dis-

cussed in the literature are essentially about obtaining this operator via processes

in renormalisable models. The Majorana mass matrix MM := v∗2Y M in the mass

term in Eq. (1.56) is symmetric by construction and can thus be made diagonal

and real by a single unitary transformation of left-handed neutrinos in flavour

space,

νL 7→ UνLνL. (1.57)

Similar to quarks, this matrix only shows up in the interaction term of W boson,

neutrinos and charged leptons,

νLlLW 7→ νLU
†
νUllLW (1.58)

with the matrix Ul = UlL from Eq. (1.52). The matrix UPMNS = U †νUl is called

the PMNS matrix after their discoverers, or simply the lepton mixing matrix.

Note that while the matrix Uν was introduced here for a Majorana mass term,

Eqs. (1.57) and (1.58) will be identical for Dirac neutrinos, as well as the definition

of the PMNS matrix. As mentioned before for the CKM matrix, the PMNS

matrix, being unitary, has fewer real degrees of freedom than it has real entries

and parametrizations in terms of mixing angles and relevant complex phases have

been introduced. The so-called PDG (Particle Data Group) parametrization has

4 degrees of freedom for Dirac fermions and 6 for Majorana fermions, out of which
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3 are mixing angles, and the remainder complex phases:

UPMNS =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

K (1.59)

where cij = cos(θij) and sij = sin(θij). K is just the identity matrix for Dirac

fermions and K = (1, eiα21/2, eiα31/2) for Majorana fermions. The phase δ is

called CP or Dirac phase, and the phases α21, α31 Majorana phases. This is the

parametrization that will be used throughout this thesis.

From the existence of a Majorana mass term νmν + h.c. for some field ν follows

that those fields indeed have to be Majorana fermions, as for real mass m the mass

eigenstates become ν + νc.

The maybe most minimal extension of the standard model is the addition of a num-

ber nνR of gauge singlets to the fermion content of the model.14 These fermionic

gauge singlets are often called right-handed neutrinos, νR, as they have the right

quantum numbers to appear in Yukawa couplings, analogously to right-handed

up-quarks,

ELφ̃Y
ννR + h.c.. (1.60)

After EWSB this coupling results in a Dirac mass term for neutrinos,

νLv
∗Y ννR + h.c. (1.61)

Such a mass term, if appearing on its own could, analogously to quarks, be made

diagonal and real by a biunitary transformation, which would result in a mixing

matrix in the Wlν interaction of the same form as in Eq. (1.58). In addition to

this, right-handed neutrinos, as they are gauge-singlets can have a Majorana mass

term by themselves, before, or rather, completely independently of EWSB,

LMR = νRM
RνcR + h.c. (1.62)

This mass term gives rise to the so-called see-saw mechanism of type 1 . Before ex-

plaining what is meant by that, note that even with the addition of gauge singlets,

left-handed neutrinos can still not have a Majorana mass term in a renormalis-

able model. Now, the mass matrix MR of right-handed neutrinos can be chosen

14Such singlets are in particular predicted by unified theories, where the standard model gauge
group is embedded into a larger gauge group, e.g. SO(10). They are also predicted in left-right-
symmetric models.
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diagonal and real. Then for each right-handed neutrino that is heavy enough such

that it is sufficient to take its effect on theory into account by adding effective

operators to the Lagrangian that arise when integrating this heavy neutrino out,

a contribution to a Majorana mass term arises,

Lsee−saw =
∑

heavy ν

νiL(Y ν)ij
1

mνjR

(Y νT )jkν
c
jL + h.c. (1.63)

where the generated Majorana mass matrix of left-handed neutrinos has the form

MM =
∑
j

(Y ν)ij
1

mνjR

(Y νT )jk (1.64)

where the index j runs over all integrated-out neutrinos. In the following MM will

be used to denote a generic left-handed Majorana mass matrix, not necessarily

generated by this see-saw mechanism. For this expansion to be valid, the mass of

right-handed neutrinos that are integrated out must be much larger than masses

or momenta that appear in the standard model, the mass terms generated for left-

handed neutrinos are very small and this is often explored as a possible explanation

of the smallness of the mass of the observed neutrinos. The mass of lightest

neutrino is not known experimentally yet, and only an upper limit is known. If

the lightest neutrino was massless, the minimal number of particles that is needed

as heavy partners in the above see-saw mechanism is thus 2, to account for the

masses of the two light non-massless neutrino.

Note that above procedure is equivalent to approximately diagonalising a combined

Majorana-Dirac mass term. Generally, not only in above approximation this also

shows that fermions that have both a Majorana and a Dirac mass term are of

Majorana nature. Furthermore, note that in a sufficiently complicated model,

both Dirac and Majorana neutrinos may appear.

In the standard model without additional particles that would allow Majorana

neutrino mass terms, there are two accidental global U(1) symmetries, namely

Lepton number, under which all leptons transform with a common phase, and

Baryon number, under which all Baryons transform with a common phase. Ma-

jorana mass terms violate Lepton number and vice versa, by enforcing Lepton

number and extending it to right-handed neutrinos, one can forbid Majorana mass

terms both for left- and right-handed neutrinos, even in models with appropriate

additional fields.
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Attempts to measure neutrino mass and mixing parameters are an active exper-

imental field and the status will be reviewed in the following chapters where ap-

propriate.

1.4 Flavour symmetries

As already hinted at earlier, a flavour symmetry is a symmetry under which the

fermion flavours form a representation. In the standard model, the kinetic terms

and gauge interactions of fermions are invariant under arbitrary transformations

in flavour space. However, this large symmetry is broken explicitly by the Yukawa

interactions. Nevertheless, even the Yukawa terms have small unbroken flavour

symmetries in each sector. These are the topic of subsection 1.4.1. Eventually,

relations between the different accidental flavour symmetries that stem from an

embedding into a larger flavour group determine the structure of the Yukawa

sector and some of the main results of this thesis (which will be discussed in later

chapters) are concerned with this.

1.4.1 Residual flavour symmetries of fermions

Previously, basis transformations in flavour space were used to diagonalise mass

matrices. The purpose of this subsection is to analyse for the different parts of

the Lagrangian which basis transformations in flavour space will actually leave

those parts unchanged. In other words, one would like to know what the acci-

dental flavour symmetries of the different fermionic parts of the Lagrangian are.

First, mass terms of several fermions will be analysed for both the Majorana and

the Dirac case and relations between these accidental flavour symmetries and the

matrices that diagonalise the mass matrices will be found. After that, accidental

flavour symmetries will be discussed for all parts of the standard model Lagrangian

that involve fermions and special emphasis will be put on the Yukawa sector.

To start with, consider n Majorana fermions νi = (ν1, . . . , νn) with a Majorana

mass term,

L ⊃ νTi M
M
ij νj + h.c. =

(
νT1 . . . νTn

)
MM


ν1

...

νn

+ h.c.. (1.65)
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In a basis where MM is diagonal, and assuming that all mass eigenvalues are

different, this term is invariant under individual sign changes of all fields, e.g.

ν1 7→ −ν1. All of these sign changes can be written as diagonal matrices gνij

multiplying the vector νi:

νi 7→ gνijνj (1.66)

with e.g. for n = 3,

gν =

−1

1

1

 ,

1

−1

1

 ,

1

1

−1

 (1.67)

or all possible products of the matrices on the rhs of Eq. (1.67). These matrices

form a representation of a (Z2)n group. (So for n = 3 a (Z2)3 group.) The group

formed by all of these 2n matrices shall be called the maximally allowed residual

symmetry for Majorana fermions. One of these Z2 groups is generated just by an

overall sign change of all νi fields. The remaining (Z2)n−1 group is then generated

by all diagonal matrices that have exactly one +1 on the diagonal and otherwise

only −1s, e.g. for n = 3:1

−1

−1

 ,

−1

1

−1

 ,

−1

−1

1

 . (1.68)

The point of this division will be explained in the following. A non-diagonal

Majorana mass matrix MM can be diagonalised by a unitary transformation of the

Majorana fermion fields, cf. Eq. (1.57). In this diagonal basis, the mass term has

the above-mentioned symmetry. In the non-diagonal basis, this symmetry exists

as well but with the group elements, in particular the generators, transformed into

the new basis. Call U the matrix that diagonalises MM , and ui the three columns

of U , U = (u1u2u3). If the basis of the fields is changed actively with U ,

νi 7→ Uijνj, (1.69)

then the generators gk (where k enumerates the generators in some way) of the

(Z2)n group transform in the following way:

(gk) 7→ U(gk)U
†. (1.70)

For those gk that are proportional to the identity matrix, this does not change
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anything, however, for those particular generators with only one +1 on the diago-

nal and otherwise only −1, one can expand U in its columns and obtains e.g. for

n = 3,

U

1

−1

−1

U † = +u1u
†
1 − u2u

†
2 − u3u

†
3 (1.71)

and similarly for all matrices of this form, again for n = 3:

G1 = +u1u
†
1 − u2u

†
2 − u3u

†
3 (1.72)

G2 = −u1u
†
1 + u2u

†
2 − u3u

†
3 (1.73)

G3 = −u1u
†
1 − u2u

†
2 + u3u

†
3. (1.74)

Note that because of the order in which a column ui is multiplied with its hermitian

conjugate, the Gi of Eqs. (1.72)-(1.74) are matrices.15 The matrices Gi form

a Z2 × Z2 group for n = 3 and a (Z2)n−1 group for arbitrary n. Their most

important property is that the i-th column of the matrix U , ui is the eigenvector

with eigenvalue +1 of the matrix Gi:

Giui = +ui. (1.75)

Thus, knowing the form of all Gi is equivalent to knowing U , except for the phases

of the columns ui. This (Z2)n−1 group shall be called the minimally necessary

residual symmetry of Majorana fermions, simply because it is the smallest sym-

metry that if it is known completely, determines the form of the matrix U , up to

the ordering of the columns, and up to the phase of each column. Equivalently,

for arbitrary n, U is determined by the (Z2)n−1 group of matrices that have only

one eigenvalue +1 and otherwise −1. 16 If one was to force the mass matrix to be

symmetric under a symmetry that is larger than the maximally allowed symme-

try, this would force some states to be massless or degenerate in mass, depending

on the nature of this symmetry. Note that vice versa, if the lightest state of a

flavour multiplet was massless, then the residual symmetry would be enhanced to

a U(1) factor for this field (keeping the Z2 factors for the other fields). This was

considered in [24].17

15These matrices are often in the literature called S,U, SU .
16Note that this is true if those n Majorana fermions have identical gauge quantum numbers

under all other unbroken symmetries at low energies. For the SM that means that after elec-
troweak breaking, all Majorana fermions mix as the only left-over quantum number is electric
charge (and, technically, colour), which for Majorana fermions has to be zero.

17This is particularly interesting in light of the result of chapter 2.
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Often in the literature, when residual flavour symmetries are discussed, the min-

imally necessary residual symmetry or a subgroup of it is just called the residual

symmetry. Furthermore, often the residual symmetry is only considered when it

is actually embedded into a larger flavour group in the model in consideration.18

The philosophy here however is that these symmetries are more of an accidental

nature and exist whether they are embedded into a larger group or not.19 In par-

ticular, the relation between residual symmetries always exists, such that through

knowledge of the residual symmetry information can be gained about the mixing

matrices.

Next, for n Dirac fermions that share a mass term 20, where one now has to

distinguish left-handed and right-handed fields,

L ⊃ ν†i,RM
D
ij νj,L + h.c. =

(
ν†1,R . . . ν†n,R

)
MD


ν1,L

...

νn,L

+ h.c., (1.76)

in a basis where MD is diagonal, the mass term is invariant under a change of

the phase of each individual field, νi,L/R 7→ eiαiνi,L/R, simultaneously for left- and

right-handed fields. These transformations form a U(1)n group which constitutes

the maximally allowed residual symmetry for Dirac fermions. As an arbitrary

Dirac mass matrix is diagonalised by a bi-unitary transformation, νi,L 7→ UL
ijνj,L

and νi,R 7→ UR
ij νj,R, two seemingly different but isomorphic residual symmetry

groups exist for left- and right-handed Dirac fermions, namely those given by

GL = {ULdiag(eiα1 , . . . , eiαn)UL†} and GR = {URdiag(eiα1 , . . . , eiαn)UR†}
(1.77)

for arbitrary αi. If the basis of right-handed fermions is not fixed by other consid-

erations, one can change the basis of right-handed fermions such that UR = UL.

Again, there are subgroups of these U(1)n groups GL and GR that already com-

pletely determine the matrices UL and UR. For Dirac fermions, the smallest groups

that completely determine the diagonalisation matrices are Z3 and again Z2×Z2.

18Often such symmetries are also called remnant symmetries.
19One could thus say that when for example no embedding of the residual symmetry is dis-

cussed that in a way existing accidental symmetry (even if only in separate sectors of the La-
grangian) is unaccounted for.

20Which again means that they have equal gauge quantum numbers after all symmetry break-
ing.
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In the basis where MD is diagonal, the relevant generator of Z3 has the form

gZ3 =

1 0 0

0 ω 0

0 0 ω2

 (1.78)

with ω = e2πi/3 the third root of unity.21 The generators of the minimal Z2 × Z2

group have the same form in the basis where MD is diagonal as for Majorana

fermions, cf. Eq. (1.68). For a residual symmetry Z3 or any other group of the

form Zk with k ≥ 3, the columns of the corresponding mixing matrix are the

eigenvectors of an element g of the residual symmetry group:

gui = eiαiui (1.79)

with ui a column of UL/R. Again, forcing the mass matrix to be invariant under a

symmetry larger than the maximally allowed symmetry would force the fermions to

be degenerate in mass or to be massless. On the other hand, because the maximally

allowed residual symmetry is larger for Dirac fermions than for Majorana fermions,

any discrete subgroup of U(1)n could serve as a subgroup that determines the

matrices UL/R.

Next, one can analyse what kind of residual flavour symmetries exist in the SM,

also allowing for Higgs transformations. While in the literature, as in chapters 2–4

of this thesis only residual symmetries of mass matrices are analysed, this is in

contrast to the also usual assumption that the flavour symmetry is broken above

the electroweak scale. This would mean that the flavour symmetry may be broken

to a much larger residual symmetry, enabled by Higgs transformations under the

flavour group, which is then only later broken to the residual symmetry of mass

matrices by the standard model Higgs.

Before EWSB, the fermionic degrees of freedom are, cf. Table 1.1 , SU(2)L doublets

QL = (uL, dL) of quarks and EL = (νL, lL) of leptons as well as singlets uR, dR of

quarks and lR of charged leptons. One can add additional singlets νR and omit the

discussion of quarks, which will be analogous to the Dirac case in the following.

First of all, the pure kinetic terms without gauge interactions are invariant under

the largest possible unitary transformation of all fermions, namely U(48) if one

counts components of doublets separately (and even more, if one counts quark

colours). However, of course, fermions are partly distinguished from each other

21In the literature, such a generator is often denoted by T .
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by their gauge interactions, and the respective flavour symmetries of the gauge

interaction terms are separate U(3)s for each of QL, uR, dR, EL, lR, νR.

The remaining terms of the Lagrangian up to mass dimension 5 that involve

fermions are the Yukawa interactions and the Weinberg operator, cf. Eqs. (1.49)

and (1.55), where now also the notation omits things that only play a role within

the spinor space of fermions, but not in flavour space,

L ⊃ l†RY
lELφ

† + ν†RY
νELφ̃

† + νTRM
RνR + ET

L φ̃Y
M φ̃TEL + h.c. (1.80)

Additionally, the Higgs field can contribute to transformations of the Yukawa

matrices. With the transformations

EL 7→ gLEL, lR 7→ glRlR, νR 7→ gνRνR, φ 7→ eiαφφ, φ̃ 7→ e−iαφφ̃, (1.81)

the following transformations of Majorana-type terms

Y M 7→ gTLY
MgLe

−i2αφ , (1.82)

MR 7→ g†νRM
RgνR (1.83)

and of Dirac-type terms

Y l 7→ g†lRY
lgLe

−iαφ , (1.84)

Y ν 7→ g†νRY
νgLe

iαφ (1.85)

are induced. More formally, above equations express the fact that the Yukawa

and Majorana-type couplings are tensors under the various residual symmetries

under which the fermions and the Higgs doublet transform. This formulation

may also be extended to allow for additional Higgs doublets and scalar singlets.

One should also mention that a potential of several scalars can have its own large

residual symmetries which are generally unrelated to the residual symmetries in

the Yukawa sector.

Taking into account the fact that an additional phase can be absorbed in the Higgs

field, but otherwise following the discussion at the beginning of this section, one

finds that the maximally allowed symmetries of the different terms are as follows:
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The Y M term is in the basis where it is diagonal invariant under

{gL} = {eiαφ

±1

±1

±1

} ' U(1)× (Z2)2. (1.86)

and theMR term under a (Z2)nνR , where nνR is the number of νR fields. The Y l and

Y ν terms have each a symmetry under simultaneous U(1)3 of eR and EL, and νR

and EL, respectively.22 After EWSB, as the Higgs field acquires a vacuum expecta-

tion value, 〈0|φ |0〉 = (v, 0), the components of doublets become separate degrees

of freedom. The fermionic degrees of freedom are now uL, uR, dL, dR, lL, lR, νL, νR.

The residual symmetries of the kinetic terms remain unchanged and correspond to

the largest possible unitary change of basis, while for gauge interactions, no longer

an U(3) symmetry for each of the degrees of freedom exists as was the case before

EWSB. In particular, the l̄νW interaction does not allow for arbitrary individual

basis transformations of l and ν.23

The following mass terms arise from the interaction terms of Higgs field and

fermions, again only showing leptonic terms,

L ⊃ l†RY
llLv

∗ + ν†RY
ννLv

∗ + νTRM
RνR + νTLv

2Y MνL + h.c. (1.87)

With the transformations

νL 7→ gνLνL, νR 7→ gνRνR, lL 7→ glLlL, lR 7→ glRlR (1.88)

one can see firstly, that the Majorana mass terms have (Z2)nνR and (Z2)3 symme-

tries, respectively. Secondly, the Dirac mass terms only have symmetries under

simultaneous transformations of left- and right-handed fields, which then again

correspond to arbitrary phase transformations, {glL = gR} ' U(1)3.24

22If there were, hypothetically, three Higgs doublets that in the basis where YM is diagonal
were to generate one dimension 5 operator for each generation, then the residual fermionic
symmetry of this Majorana mass term would become a U(1)3 too, interestingly.

23However, allowing for a phase to be absorbed in the W field (which would need to correctly

be accounted for in other places), one could imagine transformations where g†l gν is a phase times
the identity.

24In principle one could allow for basis transformations of the Higgs vev v 7→ eiαvv to extend
the accidental symmetry to the same groups as before EWSB. Such transformations would need
to be accompanied with transformations of h0 and φ0 and thus also Z0. So what happens to the
accidental flavour symmetries in EWSB in a way is that they survive but get intertwined with
phase transformations of massive gauge fields.
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Note that all of the accidental flavour symmetry groups in the Yukawa sector

mentioned in this section so far are not really symmetries of the whole theory but

only remain unbroken in a small sector of the Lagrangian. The interaction term

of W boson, left-handed electron and neutrino, in the basis where both Y l and

Y M have been diagonalised, transforms as

Wl̄LU
†
l UννL + h.c. 7→ Wl̄Lg

l†
LU
†
l Uνg

ν
LνL + h.c.. (1.89)

At this stage this just means that the mixing matrices U †l Uν and gl†LU
†
l Uνg

ν
L are

physically equivalent, as the transformations glL and gνL leave the remaining La-

grangian invariant.

1.4.2 Breaking of larger flavour symmetries

As already hinted at, a flavour symmetry relates some fermionic degrees of freedom

with each other (maybe even all of them). In practice however, flavour symmetries

are often subgroups of U(3). The reason for this is that as mentioned above,

before EWSB, the residual flavour symmetry of the kinetic and gauge terms is an

individual U(3) for every flavour multiplet of each fermion type, except for νR,

for which a Majorana mass term is allowed, which reduces the residual flavour

symmetry in νR to (Z2)nνR . If this mass term for νR is set to zero, then the nνR
singlets have an U(nνR) residual flavour symmetry.

Consider thus that at some higher energy the symmetry of the standard model

was extended by a group GF ⊂ U(3) to GSM ×GF , such that the various fermion

multiplets ψ transform under GF with some representation ρψ of GF (that acts in

flavour space),

ψ 7→ ρψ(g)ψ with ψ = QL, uR, dR, EL, lR, νR, (1.90)

and g ∈ GF . In addition, as this symmetry may be spontaneously broken, also

Higgs fields φi (of which now several might exist25) are to transform under GF ,

φi 7→ ρφi(g)φi. (1.91)

25If additional scalar fields exist, one has to be careful to avoid flavour-changing neutral cur-
rents, either by symmetry arguments, maybe contained in GF or by suppressing the correspond-
ing parameters below the currently experimentally detectable level.
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Furthermore, there may be scalars which are singlets under the standard model

group but who still transform under GF and may contribute to the spontaneous

breaking of GF .26 As the scalar fields can be allowed to transform non-trivially

under GF , also the scalar potential is constrained by GF .

GF is then broken, for example spontaneously or radiatively, to subgroups in the

different sectors of the Lagrangian. Note that in the literature these unbroken sub-

groups of GF are often called residual symmetries but do not have to be identical to

the residual flavour symmetries discussed in the previous subsection. In particular,

GF might be broken completely in parts of or even the whole Lagrangian.

In fact, in the literature (e.g. [25]), models with flavour symmetries are often

classified by the subgroup of GF that remains unbroken in the Majorana mass

term of left-handed neutrinos. If the whole minimally necessary Z2×Z2 subgroup

is contained in GF , models would be called direct27. If only one of the Z2 factors

is considered to be part of GF , a model would be called semi-direct28, and indirect

if no part of the residual symmetry is part of GF . Later in this thesis in chapter

4, a distinction between neutrino-semidirect, where Gν = Z2, and charged-lepton-

semidirect, where Gl = Z2 is introduced.

In any case, if the symmetry GF was restored at some point, then whatever was

in the place of the Yukawa matrices Y l, Y ν and the Majorana type couplings

Y M , MR had to transform accordingly under GF (maybe by simply being zero).

Through some mechanism (e.g. by spontaneously or radiatively breaking GF ),

these couplings then acquired constant values that are no longer invariant under

the whole ofGF but only under the respective residual symmetries of each coupling.

The situation could arise that only parts of the maximally allowed residual sym-

metries at low energies are embedded as subgroups into GF , as would be the case

for GF a discrete group as at least Y l has a continuous maximally allowed residual

symmetry. At higher energies, when GF is unbroken, whatever is to become Y l at

low energies would in this case have to be invariant under GF times the remainder

of the maximally allowed residual symmetry of Y l.

If GF 6= U(3) but is a proper subgroup of it, then flavour basis transformations

∈ U(3) may change the form of the generators of GF . However, the residual

26Note that to avoid additional massless Goldstone bosons, for which no experimental evidence
or hints exist, the scalar potential should after the breaking of GF not be invariant under any
continuous symmetries, so also in particular no continuous subgroups of GF . Furthermore one
should note that additional scalars could also be triplets, etc.

27A Z2 × Z2 group is also called a Klein group and sometimes denoted by K4.
28Not to be confused with the semidirect product between groups.
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symmetries to which GF is broken in the different parts of the Lagrangian are

embedded in some fixed way in GF and their relative orientation will not change

through flavour basis changes. If one basis exists in which GF holds, then it is a

true symmetry of the Lagrangian.

The open question is now, which groups could be candidates for GF , and as a con-

sequence of this, which representations of GF the known and possible new fields

transform under. In this respect, already a lot of information can be gained by

specifying GF and the subgroups it is broken to in the different parts of the La-

grangian without specifying a breaking mechanism or model, just by analysing and

exploiting the relations imposed onto the residual symmetries via their embedding

in GF .

While all subgroups of SU(3) are known, the subgroups of U(3) are not yet known

systematically. However, there has both been progress towards a classification

[26, 27, 28], as well as searches using the group theory software GAP [29]. In

later chapters, more references concerning both approaches are given. As the

maximally allowed residual symmetry of a Majorana mass term is discrete, quite

a bit of attention has been given to discrete subgroups of U(3). Choosing a discrete

group for GF has also additionally the advantage that no Goldstone bosons appear,

except when choosing the discrete group too restrictive.29

In chapters 2 and 4, analyses will be presented where all allowed subgroups that

could be preserved in the neutrino sector as they would appear in direct or semi-

direct model were systematically scanned for all possible choices of GF = ∆(6n2)

for arbitrary n. It will be seen there that these groups are not as obscure as the

name suggests and that there are good reasons to believe that it is worth analysing

them thoroughly.

To summarize this section, first, in the previous subsection, residual residual sym-

metries of Dirac and Majorana mass terms have been discussed. These symmetries

are of residual nature and exist always, however only in parts of the Lagrangian,

namely the mass terms. After that, still in the previous subsection, such residual

residual symmetries of the various sectors of the Lagrangian were analysed, with

a particular focus on the Yukawa couplings and Majorana type couplings like the

Weinberg operator. Next, flavour symmetries that are symmetries of the whole

Lagrangian at some higher energy were discussed. These extend the symmetry

29A possible problem that might however arise are so-called domain walls, where different
parts of the universe end up in separate vacua which are not connected by a flat direction and
thus can coexist in a stable way.
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group to GSM ×GF . The breaking of GF has been sketched and the relation be-

tween subgroups of GF that remain unbroken in various sectors of the Lagrangian

with the residual flavour symmetries from the previous subsection was discussed,

which happens to not always be one-to-one.

The results of this section will come in useful again in the next section, when resid-

ual and larger CP symmetries will be analysed in a similar way after a thorough

introduction into the general properties of and puzzles associated with CP.

1.5 CP

CP conjugation, which is short for charge-parity conjugation, is a discrete symme-

try which is a combination of space parity and charge conjugation. In this section,

first, some general properties of CP will be analysed, starting from considering C

and P separately and combining them afterwards. After this, accidental residual

CP symmetries of the different sectors of the standard model will be discussed in

analogy to the discussion of accidental flavour symmetries in the previous section.

There, also relations between accidental residual flavour and accidental residual

CP symmetries are discussed. In the subsection following that one, CP as a sym-

metry of the theory at higher energies and its breaking will be discussed. There,

also the famous issue of consistency will be introduced. In later chapters, espe-

cially chapters 3-5, this will be discussed in greater detail, also concerning open

questions. In those chapters, also plenty of additional references can be found.

To start with, in the following the discrete symmetries space parity P, charge con-

jugation C, and their combination CP will be introduced and the transformation

properties of the different kinds of fields are listed by spin without considering

their gauge properties yet [20]. When fields appear in multiplets of symmetries,

slight additional complications arise which will be discussed after this first part.

Space parity, or often simply called parity and abbreviated as P , is a discrete

transformation of spacetime defined by changing the sign of all space components,

but not the time component,

P : xµ 7→ xµ = (t,−~x). (1.92)

This connects single-particle states with momentum ~p with such with momen-

tum −~p. Charge conjugation on the other hand does not arise as a symmetry
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of spacetime but is defined to connect single-particle states with opposite U(1)

charges.

The unitary and linear operator which implements the operation of space parity on

the Fock space of states is called P . (This is standard notation, cf. [20], but should

not be confused with the full Poincare group, which is often also denoted by P .)

Similarly, the linear and unitary operator which implements charge conjugation

on the Fock space is called C. The properties of the above operators P and C
induce the transformation properties of field operators under parity and charge

conjugation, which are listed in the following.

A scalar singlet transforms under parity as

Pφ(xµ)P† = eiαPφ(xµ) (1.93)

where eiαP is an arbitrary phase factor in between the definitions of P and how it

acts on field operators and under charge conjugation as

Cφ(xµ)C† = eiαCφ†(xµ), (1.94)

again with an arbitrary phase factor eiαC . A CP transformation is the combination

of both of these operations.

For chiral spinors (so especially in the chiral basis also Weyl spinors) ψL/R, parity

transforms each of them as

PψL/R(xµ)P† = eiβP γ0ψL/R(xµ). (1.95)

Now, defining

[ψ(xµ)]P := γ0ψ(xµ), (1.96)

then with γ0γL/R = γR/Lγ
0, it follows that parity turns a left-handed Weyl spinor

into a right-handed spinor and vice-versa,

(ψL/R)P = (ψP )R/L. (1.97)

As a Dirac spinor is the direct sum of two chiral spinors with opposite chiralities,

ψD = ψL + ψR, (1.98)
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its transformation properties under parity follow to have the same form as for

chiral spinors

PψD(xµ)P† = eiβP γ0ψD(xµ). (1.99)

For a spinor with Majorana property, ψc = eiζψ, cf. Eq. (1.23), from which follows

that from any Dirac or Weyl spinor ψL/R/D, a Majorana spinor can be constructed

via

ψM = ψL/R/D + e−iζ(ψL/R/D)c, (1.100)

and it obeys the normal transformation law under parity transformations, too:

PψM(xµ)P† = eiβP γ0ψM(xµ). (1.101)

Under charge conjugation, chiral, Dirac and Majorana spinors behave the same,

CψL/R/D/MC† = eiβC (ψL/R/D/M)c (1.102)

where for Dirac and Majorana spinors,

(ψD/M)c = CψD/M
T
. (1.103)

The charge conjugation matrix C is defined via

γµC = −CγTµ . (1.104)

For chiral spinors, (ψL/R), the same transformation properties hold and the trans-

formation properties of Weyl spinors can be extracted.

Finally, for a vector field Aµ, as it is in particular a four-vector, parity acts on it

as on the spacetime vector xµ,

PAµ(xµ)P† = eiξPAµ(xµ), (1.105)

while charge conjugation just adds a phase

CAµ(xµ)C† = eiξCAµ(xµ) (1.106)
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CP transformations combine the above transformations and one obtains

CPφ(xµ)CP† = eiαφ†(xµ) (1.107)

CPψ(xµ)CP† = eiβγ0Cγ0Tψ†T (xµ) (1.108)

CPψ̄(xµ)CP† = −e−iβψT (xµ)C−1γ0 (1.109)

CPAµ(xµ)CP† = eiξAAµ(xµ) (1.110)

The above transformations hold for chiral spinors, Dirac and Majorana spinors,

where additional constraints arise from the chirality or Majorana conditions, ψ =

γL/Rψ, and ψc = eiζψ, respectively. In the chiral basis of gamma matrices also the

two-component conditions for Weyl spinors can be obtained immediately.30

For a theory with many different fields, like especially the standard model, in a

basis where the fermion mass matrices are diagonal and real (and if there is only

one Higgs doublet), for each field a separate arbitrary phase appears in the P, C, or

CP transformation. A theory now conserves P, C, or CP, if at least one combination

of values of all these phases exists such that with these phases appearing in the

transformation, the Lagrangian is invariant under it. In the basis where the mass

matrices are diagonal and real the phases on CP transformations of W±, e±iξW ,

(which are complex conjugated because W± are related by C conjugation), i-th

up-type quark, eiξui , and j-th down-type quark, eiξdj appear in the Wud coupling.

From this follow conditions on the elements of the CKM matrix that needs to be

fulfilled for the theory to conserve CP,

V ∗ij = ei(ξW+ξj−ξi)Vij. (1.111)

In the standard model it so happens that all CP violation appears in the quark

mixing matrix and it is not necessary to take into account the possibility of flavour

basis transformations in CP transformations. However, the most general CP trans-

formations have to take these into account as CP conservation/violation does not

depend on these internal basis transformations that are possible in flavour space.

Furthermore, if several copies of Higgs fields with the same quantum numbers

are part of the model, then basis transformations that act on the copies of Higgs

fields are possible and in that case it is not a priory clear what a Higgs basis

is in which a reasonably simple condition like Eq. (1.111) holds. The most gen-

eral CP transformations in the standard model, now extended by nνR fermionic

30For spinors, note that the hermitian conjugation acts the whole of the field, in particular
the generators and annihilators in the field, while the transposition acts only within spinor space
but does not act on the generators.
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singlets and allowing for several Higgs doublets to exist, that take internal basis

transformations into account, are,

CPφi(xµ)CP† = (Xφ)ijφ
†
j(xµ) (1.112)

CPψi(xµ)CP† = (Xψ)ijγ
0Cγ0Tψ†Tj (xµ) (1.113)

where before EWSB ψ = QL, uR, dR, EL, lR, νR and similarly after EWSB ψ =

uL, dL, uR, dR, lL, νL, lR, νR.31 Furthermore, after EWSB, the Higgs field is ex-

panded around its vev and the different components h0, φ0, φ± can have separate

transformations. While more complicated models, where it is entirely necessary to

use general CP transformations, do often not allow for simple relations indicating

CP violation, as Eq. (1.111), this role is not taken by CP-odd basis invariants.

The most famous of such invariants is the Jarlskog invariant. Similarly, invariants

exist for models with Majorana neutrinos. CP-odd invariants, in particular such

involving scalar parameters will be discussed in great detail in chapter 5, where

also plenty of references will be given.

Pure gauge theories can never violate CP. In the standard model, QED and QCD

are already CP-invariant (except for the strong CP problem, which unfortunately

will not be discussed here). The weak interactions violate both invariance un-

der space parity and charge conjugation. However, in a model with the standard

model gauge group but only a single generation of fermions and no additional neu-

trino, CP is not violated. The only CP violation that is currently experimentally

confirmed arises via quark mixing and is only possible if at least three generations

of fermions exist.

In the next subsection, it will be analysed in analogy to subsection 1.4.1 which

sets of matrices X appearing in general CP transformation still leave the various

part of the Lagrangian invariant, starting with Dirac and Majorana mass matrices

and after that focussing on the Yukawa couplings.

1.5.1 Residual CP symmetries of fermions

In the same way as the various terms of the fermion Lagrangian have different

residual flavour symmetries, parts of a Lagrangian of a model also have different

residual (general) CP symmetries. First, as earlier for flavour symmetries, the

31As ghost fields are an essential part of the theory, they also have definite transformation
properties.
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residual CP symmetries of fermion mass terms will be discussed as these will

correspond to the smallest residual symmetries, at least in the standard model.

Next, the residual CP symmetries of fermions in the standard model before and

after EWSB will be analysed.

To start with, consider again a mass term of several Majorana fermions, cf.

Eq. (1.65),

L ⊃ νTi M
M
ij νj + h.c. (1.114)

= νTi M
M
ij νj − ν

†
iM

M∗
ij ν∗j (1.115)

where the minus sign in the second row results from the minus sign between the

two terms results from the fact that the spinors anticommute. (Everything not

necessary for the discussion which will essentially happen in flavour space has been

ignored.)

With transformations of the kind

νi 7→ Xijν
∗
j , (1.116)

from which follows

νTi 7→ ν†j (X
T )ji, (1.117)

in a basis where MM is diagonal and real, the X matrices corresponding to the

maximally allowed residual CP symmetries are given by i times independent sign

changes of each field ,

X =


±i

. . .

±i

 . (1.118)

Recall that the maximally allowed flavour symmetries for such a Majorana mass

term just corresponds to arbitrary sign changes of each field. Call these diagonal

flavour and CP transformation matrices G̃ and X̃, respectively. In some other,

arbitrary, basis, ν 7→ Uν with a unitary matrix U , these transformations then

become

U †G̃U =: G (1.119)

and

U †X̃U∗ =: X. (1.120)
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These residual flavour and CP symmetries fulfil the following consistency condi-

tions on flavour and CP transformations (as do the diagonal transformations):

XX∗ = 1 (1.121)

and

XG∗X† = G. (1.122)

The first of above conditions is equivalent to X being symmetric and was found

already in [30].

Above consistency conditions are stricter than a similar set of conditions found

in the literature. Without wanting to anticipate the next subsection, here is a

good place to discuss this issue. In the literature, often some fixed general CP

transformation that is obtained in some way is imposed onto the mass matrix

to generate constrains that in contrast to normal residual flavour symmetries also

extend to the phases of the mass matrix. To not to overconstrain the mass matrix,

often it is demanded thatX matrices only fulfil the following more loose conditions:

XX∗ = G (1.123)

and

XG∗X† = G′ (1.124)

with G and G′ elements of the residual flavour symmetry. The precise statement

is that if for every G of the residual symmetry group a G′ is contained in the group

such that above equations hold, then X can be used in a residual CP symmetry

such that it does not enlarge the residual flavour symmetry. The origin of these

consistency conditions will be discussed in section 1.5.2. If the residual flavour

symmetry that is imposed onto the mass matrix gets larger than the maximally

allowed residual symmetry, then mass eigenvalues will be forced to vanish or to

be degenerate. However for every possible subgroup of the residual (Z2)nν that

is identified with a subgroup of a larger flavour symmetry GF there are examples

of X matrices which enlarge the residual flavour symmetry beyond the maximally

allowed one. First of all, for {G} = {±1}, all (anti-)orthogonal matrices X would

be candidates for residual CP transformations, which clearly enlarge the group

of residual flavour transformations. For {±1} 6= {G} ' Z2 one can see in a

diagonal basis that the looser consistency conditions allow permutation matrices

interchanging two equal eigenvalues. For larger groups {G} the situation only

gets worse. To summarize, the correct consistency conditions that residual CP
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and flavour symmetries on Majorana mass matrices have to fulfil are Eqs. (1.121)

and (1.122). Unfortunately, also in some of the papers of the author which are

based on later chapters, the looser consistency conditions were used. Where this

happens, it will be clearly remarked and if possible corrected.

Now, for Dirac fermions with a mass term as in Eq. (1.76),

L ⊃ ν†i,RM
D
ij νj,L − νTi,LMD∗

ij ν
∗
j,R (1.125)

under transformations of the form

νi,L/R 7→ (XL/R)ijν
∗
j,L/R, (1.126)

in a basis where MD is diagonal and real, the mass term has a symmetry again

under simultaneous phase changes of each field,

νi,L 7→ eiαiν∗i,L (1.127)

and

νi,R 7→ −eiαiν∗i,R. (1.128)

The matrices XL/R then contain these phases on their diagonals. In an arbitrary

basis, the form of these CP transformations is obtained using similar transfor-

mations to Eqs. (1.119),(1.120), except that the basis of left- and right-handed

fermions may be chosen differently, νL/R 7→ UνL/RνL/R. In a basis where MD is di-

agonal and real, CP transformation matrices XL/R and residual symmetries GL/R

fulfil the following consistency conditions,

XLX
∗
L = XRX

∗
R = 1, XLX

∗
R = XRX

∗
L = −1 (1.129)

and a relation relating flavour and CP, with a minus sign on the rhs if one XL and

one XR appear on the lhs.

XGL/RX
† = GL/R. (1.130)

In an arbitrary basis, transformation matrices UνL/R need to be inserted in the

correct places. In those relations in which both left- and right-handed CP or

flavour matrices appear now products of basis transformation matrices can appear.

However, this is of little significance in the standard model as in this case, the right-

handed basis is arbitrary and can be chosen identical to the left-handed basis.

Next, the residual CP symmetries of different terms involving fermions in the
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standard model (and a little beyond) will be analysed. Again, similarly to the

discussion of residual flavour symmetries, CP could be violated at a scale above the

electroweak scale. Thus the residual CP symmetries of the Yukawa sector before

EWSB may be embedded into a larger CP symmetry. These larger residual CP

symmetries would then be broken to the residual symmetries of mass matrices by

the standard model Higgs doublet. To make the discussion slightly more general,

a number nνR of fermionic standard model singlets are allowed as well as a number

nφ of Higgs doublets instead of only one. Before EWSB, the fermionic degrees of

freedom relevant for the discussion here are EL = (eL, νL), eR, and νR, as the

quark sector will be analogous to Dirac leptons. The kinetic terms of fermions

are invariant under the most general CP transformation that mixes all fermionic

fields, but as fermions are distinguished by their gauge interactions, the relevant

transformations only transform fermions in identical gauge transformations into

fermions of the same type. Ignoring spinor indices, gamma matrices and charge

conjugation matrices, the Yukawa terms plus the Weinberg operator in such a

model can be written as

L ⊃ l†RY
l
aELφ

†
a + ν†RY

ν
a ELφ̃

†
a + νTRM

RνR + ET
L φ̃aY

M
ab φ̃

T
b EL

−(lTRY
l∗
a E

∗
Lφ

T
a + νTRY

ν∗
a E∗Lφ̃

T
a + ν†RM

R∗ν∗R + E†Lφ̃
∗
aY

M∗
ab φ̃†bE

∗
L) (1.131)

As the index denoting different Higgs fields has been made explicit, possible trans-

position of the Higgs fields in only in the SU(2) space of EL and φi relevant. The

question is now again, which transformations can be applied to the various terms

that leave them invariant for fixed but arbitrary Yukawa and Majorana type cou-

pling matrices. With the transformations

EL 7→ XLE
∗
L, lR 7→ XlRe

∗
R, νR 7→ XνRν

∗
R, φ 7→ Xφφ

†, φ̃ 7→ X∗φφ̃
∗ (1.132)

where the transformation of φ̃ follows from the one of φ, the following conditions

arise, for Majorana-type terms

Y M∗
cd = −X†LY

M
ab XL(X∗φ)ac(X

∗
φ)bd (1.133)

MR∗ = −X†νRM
RXνR (1.134)

and of Dirac-type terms

Y l∗
b = −X†lRY

l
aXEL(X†φ)ab, (1.135)

Y ν∗
b = −X†νRY

ν
a XEL(XT

φ )ab. (1.136)



1 Introduction 39

The sets of maximally allowed symmetries CP of each term consist of those trans-

formation that fulfil above conditions for each of the involved fields in that term.

For MR one obtains the same result as previously.

To avoid flavour-changing neutral currents (FCNC), all of the Yukawa matrices of

each fermion pair need to be diagonal in the same basis (or at least off-diagonal

elements need to be undetectably small).

After EWSB, the fermion and Higgs doublets are split into their components, and

similarly to flavour symmetries, the larger CP symmetries above EWSB are broken

to residual CP symmetries of mass terms

1.5.2 CP as a symmetry

Again similar to flavour symmetries, an unbroken CP symmetry at high energies

may relate some (or even all) fermionic degrees of freedom with each other, where

one is normally restricted to transforming fields with opposite U(1) charges into

each other and otherwise equivalent gauge quantum numbers.

This larger CP symmetry would then be broken in some way to the respective

residual CP symmetries of the various sectors of the standard model. By embed-

ding the residual CP symmetries into this larger CP symmetry, relations between

the various residual CP symmetries arise. If the CP symmetry is broken, then also

scalars transform under the CP symmetry and can obtain residual CP symmetries,

as mentioned in the previous section.

And again similarly to flavour symmetries, parts or all of the residual CP symme-

tries can be embedded into the larger CP symmetry.

Whatever is in place of the Yukawas at high energies must transform as tensors

under the unbroken transformations of fermions and scalars. If at the same time

at high energies an unbroken flavour symmetry is present, then whatever was in

place of the Yukawas must transform simultaneously as tensors under flavour and

CP transformations. From this normally the consistency condition between un-

broken flavour and CP transformations is derived, as will be done in chapters 3

and 4. However, as the only condition on flavour and CP transformations at high

energies is that the Yukawas or generally all parameters of the whole Lagrangian

transform as simultaneous tensors under flavour and CP, in principle arbitrary CP

transformations could be imposed as long as the residual flavour and CP symme-

tries fulfil the consistency conditions, Eqs. (1.121) and (1.122) at low energies. Of
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course when enforcing arbitrary flavour and CP symmetries to simultaneously hold

at high energies, one can end up forcing the Yukawa sector to vanish completely

and the normal consistency condition ensures that this does not happen.

To summarize, mass terms have not only residual flavour symmetries but also

residual general CP symmetries. These need to fulfil a rather strict consistency

condition. The residual flavour and CP symmetries of mass terms actually arise

from the spontaneous breaking via the standard model Higgs of larger residual

symmetries of the Yukawa sector that hold above EWSB. As the standard model

Higgs may not play a role in the breaking of flavour or CP symmetry (except this

last step), it is at least worth mentioning, even if in the remainder of this thesis

only residual symmetries of mass terms will be considered.

1.6 Outline of the remainder of the thesis

The following chapter analyses the mixing predictions in direct models with GF =

∆(6n2). This analysis is extended with consistent CP in chapter 3. In chapter 4,

the symmetry is weakened and the mixing predictions in semidirect models, again

with consistent CP are studied. Chapter 5 breaks away a little bit from the pure

study of fermion residual symmetries and the focus is put on CP odd invariants

for multi-Higgs models. Chapter 6 concludes the thesis.
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Lepton mixing predictions from

direct models with a ∆(6n2)

flavour symmetry

This chapter presents results that had been partly published in [1] and [3]. The

results are significant, as for the first time, predictions of lepton mixing parameters

for Majorana neutrinos were obtained for direct models based on ∆(6n2) flavour

symmetry groups for arbitrarily large n. The contribution of the author of this

thesis to the research presented here lies in performing all necessary calculations,

and writing the majority of [1] and the entirety of [3].

Before the measurement of a rather large reactor mixing angle by the Daya

Bay [31], RENO [32], and Double Chooz [33] collaborations, all measurements

of this parameter were compatible with it being zero. In this case, the smallest

flavour symmetry that could explain the structure of the mixing matrix via resid-

ual symmetries of mass matrices in a direct model is S4 [34, 35]. This and all

other models that predicted θ13 = 0 were ruled out by the clear evidence of the

contrary. Nevertheless, as has been emphasized in previous sections, a residual

symmetry of the neutrino mass matrix that can completely determine the diag-

onalisation matrix V ν always exists. One can now ask which more complicated

flavour symmetry groups these residual symmetries could be part of and what

the predictions of such an embedding would be. It will be found then that many

members of the ∆(6n2) group series are good candidates for flavour symmetry

groups and especially that the middle column of the mixing matrix is trimaximal,

the mixing angle θ13 is fixed up to a discrete choice, no CP violation would be

41
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allowed in the lepton sector (which is a great prediction as it is in conflict with

the emerging hints at non-zero CP leptonic violation), and that a sum rule holds,

namely θ23 = 45◦ ∓ θ13/
√

2.

As discussed in section 1.4.2, to obtain these predictions, this larger flavour symme-

try will then be spontaneously broken in order to generate the observed fermionic

masses and mixings [36]. However before even considering the construction of a

model, it may be insightful to know some of the possible candidate symmetries for

Gf and the goal of [1], was then to shed light on a particular class of candidates for

Gf , namely the ∆(6n2) groups. These groups are really not as obscure as the name

suggests, as will become clear when the group theory of ∆(6n2) groups will be re-

viewed and developed later this sections. Oversimplifying a little, these groups

can be thought of as a way of combining discrete phases multiplying flavours and

permutations acting on flavours.

These groups were chosen, partly due to the past and current popularity of

S4
∼= ∆(24) (n = 2) in flavour model building (see [25] and references contained

therein) but in particular publications that had appeared recently at the time,

demonstrating that ∆(96) (n = 4)[37, 38, 39, 40], ∆(150) (n = 5)[41, 42], ∆(600)

(n = 10)[42, 43] and ∆(1536) (n = 16)[43] generate phenomenologically viable

predictions for the lepton mixing angles, where [41, 42, 43] are numerical searches

using the program GAP [44, 45, 46, 47], that indicated that out of discrete groups

up to a certain size, only members of the ∆(6n2) series were able in direct models

to provide mixing matrices that were compatible with global fits taking the θ13

measurement into account.1 In contrast to the above computational studies or

studies of single groups, here, the whole of the infinite group series of ∆(6n2) will

be tested as flavour group candidates using analytical methods.

In the following, first, another derivation of the relation between diagonalisation

matrices and residual symmetries will be given. It will be found that only ∆(6n2)

groups with n even contain a full Z2 × Z2 subgroup, which, again, is the smallest

residual symmetry which for 3 Majorana neutrinos completely determines the

mixing matrix (up to Majorana phases). After that, the groups ∆(6n2) will be

introduced, where they will also be analysed for subgroups that may be identified

with residual symmetries, followed by an analysis of the representations of ∆(6n2).

Next, the lepton mixing results will be given, before the chapter concludes with a

summary and an outlook.

1∆(6n2) flavour symmetry models in which not the complete Klein symmetry was identified
as a subgroup of the flavour symmetry had also been studied (see e.g. [48]).
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2.1 From Gf to lepton mixing: A shortcut

As previously mentioned, a discrete flavour symmetry will be introduced which is

spontaneously broken to different subgroups in the charged lepton and neutrino

sectors, thereby generating the observed lepton masses and mixings. The flavour

group is broken to some abelian subgroup ZT
m (m an integer) in the charged lepton

sector and to the ZS
2 × ZU

2 Klein Symmetry Group in the neutrino sector.

The superscripts denote that S, T and U are the generators of their corresponding

Zm group in the diagonal charged lepton basis. Hence, the ZS
2×ZU

2 transformations

on νL and the ZT
m transformations on eL,R leave the Lagrangian invariant. This

implies that

[S,MMMM†] = [U,MMMM†] = 0 and [T,M lM l†] = 0, (2.1)

where MM and M l represent the mass matrices of left-handed Majorana neutrinos

and charged leptons, cf. section 1.3.5. Since S and U commute with MMMM† (and

with each other), all three are diagonalised by the same matrix V ν
L . Similarly T

and M l are diagonalised by the same matrix V l
L. The PMNS matrix is then given

by

V = V l†
L V

ν
L . (2.2)

To obtain the matrices V ν and V l, and hence the PMNS matrix, one only needs to

diagonalise the generators S, T, U . In practice, this amounts to finding the eigen-

vectors of S, U and T which form the columns of V ν and V l. This is straightfor-

ward for T since the eigenvalues are non-degenerate due to the fact that T must

be an element of Gf of order 3 or greater. However for the S and U generators

the situation is slightly different because they are 3× 3 matrices of order 2. Thus,

each eigenvalue of S or U can only be ±1. Without loss of generality, one can

choose det(S) = det(U) = +1, so that each generator has two −1 eigenvalues,

rendering the corresponding eigenvectors non-unique. Since the three matrices S,

U and SU each have one (unique) +1 eigenvalue this allows for the calculation of

three unique eigenvectors (one for each non-trivial Klein group generator), each

providing an ith column of the matrix V ν :

GiV
ν
i = +V ν

i , for Gi ∈ {S, U, SU}. (2.3)

In this way all three columns of V ν can be obtained.
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Again, this method enables the calculation of the lepton mixing matrix by only

considering the flavour group’s representation matrices [41, 43]. However, this

requires explicit representation matrices for the ∆(6n2) group’s representations.

These are given in the following.

2.2 The group theory of ∆(6n2)

The ∆(6n2) groups are finite non-Abelian subgroups of SU(3) (and thus also of

U(3)) of order 6n2. They are isomorphic to the semidirect product [49],

∆(6n2) ∼= (Zn × Zn) o S3. (2.4)

The Klein group ZS
2 × ZU

2 (in direct models) can either originate purely from the

Zn × Zn or it will involve the S3 generators as well, both possibilities requiring

even n. The S3 subgroup can be expanded in its factors to obtain

∆(6n2) ∼= (Zc
n × Zd

n) o (Za
3 o Zb

2). (2.5)

Notice that in Eq. (2.5), (Zc
n × Zd

n) forms a normal, abelian subgroup of ∆(6n2),

generated by the elements c and d, and (Za
3 oZb

2) is nothing more than S3 rewritten

in terms of its generators a and b. From Eq. (2.5) follows that a presentation of

∆(6n2) is [49]:

a3 = b2 = (ab)2 = cn = dn = 1, cd = dc,

aca−1 = c−1d−1, ada−1 = c,

bcb−1 = d−1, bdb−1 = c−1.

(2.6)

An advantage of the presentation in Eqs. (2.4)-(2.5) is that every group element

can be written as

g = aαbβcγdδ, (2.7)

with α = 0, 1, 2, β = 0, 1 and γ, δ = 0, . . . , n − 1, making the computation of

all group elements for a certain representation/basis computationally simple. All

that needs to be known next is the explicit forms of generators.

In order to find the explicit forms for the generators, one can restrict oneself to

3-dimensional irreducible representations of ∆(6n2). Then, it can be shown that

∆(6n2) has 2(n− 1) 3-dimensional irreducible representations denoted by 3lk and
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explicitly generated by [49]:

a =

0 1 0

0 0 1

1 0 0

 , b = (−1)k+1

0 0 1

0 1 0

1 0 0

 ,

c =

η
l 0 0

0 η−l 0

0 0 1

 , d =

1 0 0

0 ηl 0

0 0 η−l

 ,

(2.8)

where η = e2πi/n; k = 1, 2; and l = 1, . . . , n− 1.

One can restrict the analysis to faithful irreducible representations of ∆(6n2).

Thus, all representations in Eq. (2.8) where l divides n can be excluded, as they

are unfaithful. Of the remaining representations, 3lk and 3l
′

k are complex conjugates

of each other if l+ l′ = n. Therefore, they will provide complex conjugated mixing

matrices. The remaining representations provide the same sets of mixing matrices

because the generators a and b are the same for all l and

c(3lk) = c(31
k)
l and d(3lk) = d(31

k)
l. (2.9)

Then, from Eq. (2.7) and Eq. (2.9) follows that each power of the c and d generators

will appear in every 3-dimensional irreducible representation. For these reasons,

it suffices if one only considers S, T , and U as representation matrices from 31
2.

Notice that k = 2 has been chosen because in this case the determinant of the

elements of order 2 is +1.

Having reduced the possible cases needed for consideration, the next step is to

calculate all Klein subgroups of ∆(6n2). This is accomplished by first calculating

all order two elements. From the generators and rules given in Eq. (2.6) it follows

that all order 2 elements in ∆(6n2) are given by:

cn/2, dn/2, cn/2dn/2, bcεdε, abcγ, and a2bdδ, (2.10)

where ε, γ, δ = 0, . . . , n− 1.

The order 2 elements found in Eq. (2.10) serve as a starting point for calculating

Klein Symmetry groups of ∆(6n2). Using Eq. (2.6) and Eq. (2.10), the Klein
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subgroups of ∆(6n2) for even n are:

{1, cn/2, dn/2, cn/2dn/2}, (2.11)

{1, cn/2, abcγ′ , abcγ′+n/2}, (2.12)

{1, dn/2, a2bdδ
′
, a2bdδ

′+n/2}, (2.13)

{1, cn/2dn/2, bcε′dε′ , bcε′−n/2dε′−n/2}, (2.14)

where γ′, δ′, ε′ = 1, . . . , n/2. Notice that Eq. (2.11) corresponds to the Klein

symmetry originating completely from Zn×Zn whereas Eqs. (2.12)-(2.14) involve

also S3. In the basis of Eq. (2.8), one of the Klein generators (taken to be S) is

diagonal for all cases, while in the case of Eq. (2.11) both Klein generators S, U

are diagonal 2.

The T generator which controls the charged lepton sector must be at least of order

3 and only the minimal order 3 case is phenomenologically viable, thus only this

possibility is considered.3 In ∆(6n2) groups where 3 does not divide n, all elements

of order 3 are expressible as [49]:

2As an example of the Klein subgroups in Eqs. (2.11)-(2.14), in ∆(96)(n=4)[37, 38, 39, 40],
it was found that for the bi-trimaximal mixing example S = d2 and U = a2bd3, implying that
these generators are contained in the Klein subgroups defined in Eq. (2.13).

3 T generators of order greater than 3 are not viable: Consider the order of T to be even.
Then, Tm = 1 with m = 2q where q is an integer. Note that diagonal T candidates in the basis of
Eq. (2.8) will not lead to acceptable mixing. After removing unphysical phases, all non-diagonal
T candidates of even order m = 2q can be written without loss of generality as,

T = bcξn/q, ξ = 1, . . . , q − 1. (2.15)

The matrices of Eq. (2.15) are diagonalised by

V l =
1√
2

 0 e−iπξ/q −e−iπξ/q√
2 0 0

0 1 1

 . (2.16)

Applying the above matrix to cn/2 results in:

U → V l†cn/2V l =

−1 0 0
0 0 1
0 1 0

 . (2.17)

The unique eigenvector of this generator is given by (0, 1, 1)/
√

2. Picking the smallest element
of the mixing matrix as V13 gives V13 = 0. For n = 2 this results in a completely bimaximal
mixing matrix [50, 51]. If the order of T is not even but can be divided by 3, application of a
unitary transformation R = cxdy can remove all phases implying only T = a remains, yielding
the previously discussed predictions for T = a. Continuing the systematic consideration of
candidate T generators leads to the case of a T generator in which the order is odd, not divisible
by 3 but larger than 3. A ∆(6n2) group can only contain such an element if m divides n. Then,
for this case the possible T generators are given by

T = cµn/mdρn/m (2.18)
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acγdδ, a2cγdδ (2.19)

where δ, γ = 0 . . . n− 1 4.

In [1], the order three generator was chosen to be

T = a, (2.20)

since a and a2 only differ by a permutation of rows and columns and it was

assumed5 there that in the basis of Eq. (2.8), multiplication by cγdδ only yields

phases which may be absorbed into the charged lepton fields.

Notice that the T of Eq. (2.20) can be diagonalised by the matrix,

V l =
1√
3

ω
2 ω 1

ω ω2 1

1 1 1

 , (2.21)

where ω = e2πi/3. The ordering of the columns and rows in the above V l determines

the ordering of the eigenvalues in T :

T → V l†aV l =

ω
2 0 0

0 ω 0

0 0 1

 . (2.22)

For example, changing the order of the eigenvalues of T by applying aα to T

by aα†Taα (α = 1, 2) changes V l to aαV l which just permutes the rows of V in

Eq. (2.2).

Note that it is not always the case that the generators S, T, U above generate

the full ∆(6n2) group. It turns out that the Klein subgroup in Eq. (2.12), in

combination with the residual ZT
3 in Eq. (2.20), will only generate the full ∆(6n2)

symmetry group if and only if γ′ does not divide n. From the top down point of

view of choosing GF this is acceptable since one is only interested in the possible

predictions that can arise from ∆(6n2).

where µ, ρ = 0, . . . ,m−1 and µ, ρ are not simultaneously zero. These yield no phenomenologically
viable predictions. Therefore, only candidate T generators from Z3 subgroups of ∆(6n2) are
phenomenologically viable.

4When n is divisible by 3, there exist more order three elements given by cn/3, c2n/3, dn/3,
d2n/3, cn/3dn/3, c2n/3dn/3, cn/3d2n/3, c2n/3d2n/3. In the basis of Eq. (2.8), these are diagonal
matrices of phases. Since S is also diagonal in this basis, this would result in phenomenologically
unacceptable predictions for leptonic mixing.

5This second assumption was not correct, as was later seen in [4].
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2.3 Results

Using the results of the previous section one can compute the columns of the lepton

mixing matrix which correspond to each possible Klein subgroup of a certain

∆(6n2) group where n is even with T = a. The steps for this procedure are

summarised as follows.

All Klein group elements in Eqs. (2.11)-(2.14) in the explicit 31
2 representation

matrices given in Eq. (2.8) are generated, then each Klein group’s elements are

transformed to the basis where T is diagonal via V l, cf. Eq. (2.22). Here, the

eigenvectors with eigenvalue +1 correspond to the columns of possible mixing

matrices as in Eq. (2.3). Since the ordering of the columns and rows of the mixing

matrix calculated this way is arbitrary, without loss of generality the smallest

absolute value from each mixing matrix is taken and assigned as V13 with its

corresponding column being the third column of V . This completed procedure is

unique up to interchanging the second and third rows of V , corresponding to two

predictions for the atmospheric angle.

Implementing the preceding procedure for calculating the mixing matrix resulting

from the Klein group in Eq. (2.11) with T = a yields the old trimaximal mixing

matrix [52, 53] which is given by the V l in Eq. (2.21) up to permutation of its rows

and columns. Clearly, this is not a phenomenologically viable mixing matrix, so

this possibility is discarded.

One does not have to consider all the Klein groups in Eqs. (2.12)-(2.14) since they

all result in identical PMNS matrices up to permutations of rows and columns.

This is because the Klein group elements in Eq. (2.13) and Eq. (2.14) are related

to Gi in Eq. (2.12) by a2Gia and aGia
2 respectively, where a and a2 from Eq. (2.8)

interchange rows and columns.

Thus, it is sufficient to consider the Klein subgroup given in Eq. (2.12), where

the element cn/2 becomes the “traditional” S generator in the basis in which T is

diagonal,

S → V l†cn/2V l =
1

3

−1 2 2

2 −1 2

2 2 −1

 (2.23)

This predicts one trimaximal middle column (TM2), i.e. (1, 1, 1)T/
√

3 [54, 55, 56],

in lepton mixing 6. This was also assumed in [43]. The other elements of the same

6Note that a Klein symmetry corresponding to V with a fixed column of 1/
√

6(2,−1,−1)T

(TM1 mixing) cannot be identified as a subgroup of ∆(6n2).
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Klein subgroup also provide columns of V which is then up to the order of rows

and columns given by

V =


√

2
3

cos(ϑ) 1√
3

√
2
3

sin(ϑ)

−
√

2
3

sin
(
π
6

+ ϑ
)

1√
3

√
2
3

cos
(
π
6

+ ϑ
)√

2
3

sin
(
π
6
− ϑ
)
− 1√

3

√
2
3

cos
(
π
6
− ϑ
)
 , (2.24)

where ϑ = πγ′/n (cf. [43]). Since γ′ = 1, . . . , n/2, discrete predictions for the

mixing angles corresponding to ϑ = π/n, . . . , π/2 are obtained. In general one

cannot predict the order of the rows and columns with this method, so the entry

with the smallest absolute value is picked and assigned to be |V13|. Notice that for

the different values of ϑ, different elements of Eq. (2.24) play the role of V13. After

V13 has been fixed, the second and third row can still be interchanged, leading

to two different predictions for the atmospheric angle, corresponding to δCP = 0

and δCP = π, leading to the testable sum rules, θ23 = 45◦ ∓ θ13/
√

2, respectively

[25]. (Note that Klein subgroups do not predict Majorana phases which would

correspond to a matrix K = diag(1, eiα21/2, eiα31/2) multiplied onto Eq. 2.24 from

the right.) These sum rule relations follow from considering the atmospheric angle

sum rule given in [57] for the cases δCP = 0, π. The sum rule θ23 = 45◦ − θ13/
√

2

was also proposed in [58] in a different context.
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Figure 2.1: The possible values that |V13| can take in ∆(6n2)
flavour symmetry groups with even n. Examples include |V13| =
0.211, 0.170, 0.160, 0.154 for n = 4, 10, 16, 22, respectively. The lines de-
note the present approximate 3σ range of |V13|.
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Fig. 2.1 shows all possible predictions for |V13| corresponding to the different Klein

subgroups for each ∆(6n2) of even n one obtains using the method previously

discussed.7 As n increases, the number of possible values of |V13| predicted by

∆(6n2) also increases according to the above discussion.

2.4 Conclusions

In this chapter, predictions of lepton mixing parameters for direct models based

on ∆(6n2) flavour symmetry groups for arbitrarily large n in which the full Klein

symmetry is identified as a subgroup of the flavour symmetry were obtained. After

reviewing and developing the group theory associated with ∆(6n2), some known

results of the at the time recent numerical searches are reviewed here and many

new possible mixing patterns for large n able to yield lepton mixing angle pre-

dictions within 3σ of recent global fits were found. Previously, ∆(6n2) had only

been analysed within particular scans up to a much lower order than considered

here. All the examples predict exact TM2 mixing with oscillation phase zero or π

corresponding to two possible predictions for the atmospheric angle but differ in

the prediction of |V13| as shown in FIG. 2.1.

For large n, it is clear that the predictions for |V13| densely fill the allowed range.

Nevertheless, this general method of analysing ∆(6n2) flavour symmetry groups

is of interest since it represents for the first time a model independent treatment

of an infinite class of theories. The general predictions for the considered class of

theories based on ∆(6n2) are Majorana neutrinos, trimaximal lepton mixing with

reactor angle fixed up to a discrete choice, an oscillation phase of either zero or

π and sum rules θ23 = 45◦ ∓ θ13/
√

2, respectively, which are consistent with the

recent global fits and will be tested in the near future.

Some time after [1] was published, it was shown, [60], using (even) more mathe-

matical methods, that for 3 Majorana neutrinos, in direct models indeed the only

remaining flavour symmetry groups in which the residual symmetries may be em-

bedded into are ∆(6n2) and (Zm×Zm/3)o S3, depending on the choices of n and

m. For further details see [60].

7The group with n = 42 produces no predictions within the three sigma range, contrasting
well-regarded hints in the literature [59].



3

Lepton mixing predictions

including Majorana phases from

∆(6n2) flavour symmetry and

general CP

The work presented in this chapter has been partially published in [2]. The con-

tribution of the author to the research presented here consisted in performing all

calculations and writing the majority of [2]. In the following, the results presented

in the previous chapter are extended by also considering the effect of residual CP

symmetries. For this, first an argument will be given concerning which general

CP transformations one should consider.1 After that, the mixing matrices that

are allowed by the different cases of residual symmetries are presented.

This work is mostly motivated by the fact that general CP transformations are

the only known framework which allows to predict Majorana phases in a flavour

model purely from symmetry. Furthermore, it is the first time that general CP

transformations are investigated for an infinite series of finite groups, namely again

∆(6n2) = (Zn × Zn) o S3. While in direct models the mixing angles and Dirac

CP phase are solely predicted from symmetry and ∆(6n2) flavour symmetry pro-

vides many examples of viable predictions for mixing angles, the Majorana phases

remain entirely unconstrained by the pure flavour symmetry.

1This argument as published in [2] turned out to be incomplete and it will be remarked where
necessary in the following, where gaps turned up. However, the mixing prediction remain valid.
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3 Lepton mixing predictions including Majorana phases from ∆(6n2) flavour

symmetry and general CP

As in the previous chapter, for all groups the predicted mixing matrix has a tri-

maximal middle column and the Dirac CP phase is 0 or π. The Majorana phases

are predicted from residual flavour and CP symmetries where α21 can take several

discrete values for each n and the Majorana phase α31 is a multiple of π. In the

second half of this chapter, first, constraints constraints on the groups and CP

transformations from measurements of the neutrino mixing angles were discussed.

After that, as it is the most accessible observable for Majorana phases, also the

constraints from neutrinoless double-beta decay were analysed.

3.1 Introduction

The question of the origin of neutrino masses and mixing parameters is of funda-

mental importance. One approach are so-called direct models of neutrino masses

[25] where a discrete non-Abelian flavour symmetry group is broken to a Z2 × Z2

group in the Neutrino sector, and a Z3 subgroup in the charged lepton sector.

In such a model the lepton mixing angles and the lepton Dirac CP phase are

completely fixed by symmetry.

Recently such direct models have been analysed with the help of the group database

GAP [41, 43]. The only flavour groups that can produce viable mixing parame-

ters in a direct model belong to the group series ∆(6n2) or are subgroups of such

groups. The group theory of ∆(6n2) groups has been analysed in [49]. The con-

sequences for neutrino mixing from a ∆(6n2) flavour symmetry in direct models

have been studied in detail in [1] for arbitrary even n. Some examples of ∆(6n2)

groups or subgroups have previously been studied in [37, 38, 39, 40, 48, 61, 62, 63].

In the Standard Model, violation of CP occurs in the flavour sector. Promoting

CP to a symmetry at high energies which is then broken allows to impose fur-

ther constraints on mass matrices of charged leptons and Majorana neutrinos. In

this case the interplay between CP and flavour symmetries has to be carefully

discussed[64, 65, 66, 30, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77]. For direct mod-

els, especially with a flavour group from ∆(6n2), CP symmetries have not been

studied in detail yet.

In the following, first, a class of general CP (gCP) transformations consistent with

∆(6n2) groups for arbitrary n will be examined. After reviewing flavour and gen-

eral CP transformations and stating their effect on mass matrices, in the following
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section the general theory of gCP transformations in the presence of flavour sym-

metries in a general context is reviewed and developed. Afterwards direct models

with ∆(6n2) as a flavour group are considered, where the lepton mixing matrix

including Majorana phases for arbitrary even n for all possible breaking patterns

of the flavour group and of the considered class of gCP transformations is com-

puted. Here also the constraints from measurements of the mixing angles and from

neutrinoless double-beta-decay on these models were analysed. The last section

concludes this chapter.

3.2 General CP transformations, flavour sym-

metries, automorphisms and the character

table

In this section the interplay between flavour symmetries and CP symmetries is

reviewed, which has especially been discussed in [64, 30, 68, 70, 73] and general

arguments are used to show that for a class of groups G, of which G = ∆(6n2) is

an example, physical CP transformations correspond to Xr ∈ eiαG with α a real

number.2

3.2.1 General CP transformations and flavour symmetries

Consider a theory where generations of fermions are assigned to multiplets of

representations r of a flavour group G and that is invariant under transformations

of the multiplets ϕr under the group G

ϕr 7→ ρr(g)ϕr (3.1)

where ρr(g) is the representation matrix for g ∈ G in the representation r.

Further consider the group G being broken to a Klein subgroup Gν ' Z2×Z2 sub-

group in the neutrino sector and an abelian subgroup Ge ' Zm with m > 2 in the

charged lepton sector. If these subgroups remain unbroken at all energies, in the

2The more correct way of stating this, is that Xr ∈ eiαG are definitely consistent CP transfor-
mations. However, the argument is not complete in showing that these are in fact all consistent
CP transformations.
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low-energy-limit constraints on the mass matrices of charged leptons and neutri-

nos are imposed. Left-handed doublets transform under the same representation

r. The charged lepton mass matrix M l has to fulfil

ρr(g)†M l(M l)†ρr(g) = M l(M l)† (3.2)

with ρr(g) being the representation matrix of g ∈ Ge in the representation r. The

Majorana neutrino mass matrix is constrained by

ρr(g)TMMρr(g) = MM (3.3)

with g ∈ Gν .

Define general CP (gCP) by

ϕr 7→ Xr(ϕ
∗
r(x

P )) (3.4)

where r is the representation of G according to which ϕr transforms. 3 Xr is a

unitary matrix. One needs to find all matrices Xr that are “allowed” in coexistence

with a flavour group G. The aforesaid will be made a more precise statement in the

following section, where the conditions for the existence of gCP transformations

as well as their properties will be discussed.

If the theory at the low-energy end is invariant under residual gCP transformations

with matrices X l
r for charged leptons and Xν

r for neutrinos then the mass matrices

will be constrained by

X l†
r M

l(M l)†X l
r = (M l)∗(M l)T (3.5)

for charged leptons and by

XνT
r MMXν

r = (MM)∗ (3.6)

for Majorana neutrinos.

If Xν
r ∈ Gν (X l

r ∈ Ge), no new constraints on the neutrino (charged lepton) mass

matrix follow but it being real. With g, h ∈ (Z2×Z2) from ρr(g)Xrρr(h) only the

same constraints as for Xr follow for the mass matrix. This means only Xr that

3Other Authors consider transformations of the type ϕr 7→ ϕ∗r′ where r, r′ can be different.
In [64] has been shown that only gCP transformations where r = r′ actually make observables
(e.g. particle decays) conserve CP.
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are not in (Z2×Z2) allow for a mass matrix that is not real and at the same time

impose new constraints on it.

3.2.2 The consistency equation

One would like to know which transformations of the type

ϕr 7→ Xrϕ
∗
r(x

P ) (3.7)

can be applied to the theory without destroying the invariance under G, i.e. which

matrices Xr can appear in Eq. (3.7) that preserve symmetry under G? Consider

performing a gCP transformation followed by a flavour transformation followed by

the inverse gCP transformation. From invariance of the theory under G follows

that the matrix Xr is allowed in a gCP transformation if for every g ∈ G there is

a g′ ∈ G such that

Xrρ
∗
r(g)X†r = ρr(g

′). (3.8)

Eq. (3.8) is called the consistency equation and an Xr that fulfils it is called

consistent with G.

If r is a faithful representation, which is equivalent to saying that ρr is injective,

one can define a bijective mapping uX : G→ G between the elements of the group:

uX(g) := ρ−1
r (Xrρ

∗
r(g)X†r ). (3.9)

(One can drop the index r on uXr because for all faithful irreps the mapping

generated by Eq. (3.9) will be the same). For faithful representations r, uX(g) is

an automorphism of the group G.

3.2.3 Inner and outer automorphisms

Group automorphisms come in two kinds: Inner and outer automorphisms. Inner

automorphisms Inn(G) are such automorphisms u : G → G where for all g ∈ G
one single group element hu exists such that

u(g) = h−1
u ghu. (3.10)
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All inner automorphisms are given by Inn(G) = G/Z(G), where Z(G) is the

center of G, i.e. all elements of G that commute with every other group element.

Outer automorphisms Out(G) are all automorphisms that are not inner.

An inner automorphism will map each element into its original conjugacy class.

An outer automorphism however is not inner which means that there is at least

one g′ ∈ G for which with all h ∈ G u(g) 6= h−1g′h (compare with the definition of

inner automorphisms before Eq. (3.10)), i.e. there is at least one g′ ∈ G which is

not mapped back into its original conjugacy class.4 Also if g is in the class Ck and

it is mapped onto u(g) which is in the class Cl, every element in Ck is mapped on

an element in Cl by u.

This proves also that an automorphism that maps each element back into its

original conjugacy class is inner, as well that an automorphism that maps elements

from at least two conjugacy classes on each other is outer. 5

Now return to the automorphism uX (3.9) that is induced by the consistency

equation (3.8). If ρr(g) is real and Xr ∈ G then uX will be an inner automorphism.

This is also true if Xr ∈ eiαG.

4This argument neglects that in fact outer automorphisms can exist that map elements back
into the same class.

5 An outer automorphism u also generates mappings between different representations of G.
For two representations ρr and ρs define

usr = ρs ◦ u ◦ ρ−1r (3.11)

with which follows
(usr ◦ ρr)(g) = ρs(u(g)). (3.12)

The outer automorphism u acting inside the group thus interchanges columns of the character
table while when acting between representations via usr interchanges rows of the character table.
We call a symmetry of the character table

χjk = trρj(gk), gk ∈ Ck (3.13)

any transformation of the type
χjk 7→ PijχklQkl (3.14)

with permutation matrices P and Q that leaves χ invariant, i.e.

PijχklQkl = χij (3.15)

and where only classes of the same size and element-order are interchanged, i.e |Cl| = |Cj | and
ordgl = ordgj for gl ∈ Cl and gj ∈ Cj . An outer automorphism will always generate a non-trivial
symmetry of the character table, just as a symmetry of the character table always gives rise to
an outer automorphism: Define the automorphism by the action on the conjugacy classes, a
corresponding permutation of the representations is always given by any outer automorphism
via usr.



3 Lepton mixing predictions including Majorana phases from ∆(6n2) flavour
symmetry and general CP 57

If on the other hand u is an outer automorphism it follows that a matrix Xr that

could mediate u á la Eq. (3.9) is not in eiαG (if it exists).

One could ask now if there can be a matrix X̃r that is not in eiαG for that uX̃ only

connects elements within the same conjugacy class, i.e. that generates an inner

automorphism? As for an inner automorphism u there always is a single hu ∈ G
such that the automorphism is given by u(g) = h−1

u ghu it follows that

X̃rρ
∗
r(gk)X̃

†
r = ρr(hu)ρr(gk)ρr(h

−1
u ). (3.16)

For a real matrix ρr(g) multiplying by X̃r from the right and by ρr(h
−1
u ) from the

left yields

ρr(h
−1
u )X̃rρr(gk) = ρr(gk)ρ(h−1

u )X̃r. (3.17)

As gk can be every element of G, ρr(h
−1
u )X̃r commutes with every group element.

One can now apply Schur’s Lemma 6 to find that

X̃r = λρr(hu) (3.18)

where |λ| = 1 to keep X̃r unitary. As X̃r was supposed to not be in eiαG this

is in contradiction to the assumptions.7 For real ρr(g) this proves that inner

automorphisms correspond to X ∈ eiαG. For real representations, there is always

a basis where this is the case, i.e where ρr(g) is real for every g ∈ G.

If ρr(g) is complex one has to deal with complex conjugation: Assume there is

a matrix wr such that by applying complex conjugation and this matrix on an

element of G, the element is mapped into the class of its inverse, C(g−1):

ρr(g) 7→ w†rρr(g)∗wr ∈ C(g−1). (3.19)

This can be thought of as an automorphism mapping g 7→ g−1 followed by an

automorphism that maps g−1 onto another element in the same class. As in the

second step every element is sent into the original class, this second mapping is an

inner automorphism8 and therefore by definition a single group element h exists

6To be precise one uses the second part of Schur’s Lemma which states that an operator that
in some representation commutes with every group element is proportional to the identity.

7Again, here it was neglected that outer automorphisms could exist that send every element
back into its class and the matrix X̃r could precisely correspond to such a class-preserving
outer automorphism. However, if one happens to know that the group G has actually no class-
preserving outer automorphisms, then the argument holds.

8Again, also this mapping could be a class-preserving outer automorphism, in which case a
matrix facilitating the mapping (if it even exists) would not be in G.
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which inverts this step such that

ρr(h)†(w†rρr(g)∗wr)ρr(h) = g−1. (3.20)

For this reason it is assumed in the following that the matrix wr maps elements

directly onto their inverses. Using this, the general mapping induced by the con-

sistency equation is given by:

uX(g) = ρ−1
r (Xrwrρr(g

−1)w†rX
†
r ) (3.21)

This mapping can be seen as an automorphism mapping g on g−1 followed by an

automorphism given by Xrwr:

uX(g) = uXw(g−1). (3.22)

If both wr and Xr are contained in eiαG, uX will map g in the same conjugacy

class as g−1. For ∆(6n2), wr = ρr(b) maps elements into the class of the inverse9

and is contained in the group. wr /∈ G was thus not considered further.

Analogous to real irreps above one can now ask if there can be matrices X̃r that

are not in eiαG but that with wr ∈ eiαG will map g in the conjugacy class of g−1?

This would be equivalent to uX̃w being an inner automorphism10 which would

mean that for each group element g ∈ G there is a single hu ∈ G such that

ρr(hu)ρr(g
−1)ρr(h

−1
u ) = Xrwrρr(g

−1)w†rX
†
r . (3.23)

Again one can use Schur’s Lemma and finds there is λ ∈ C \ {0} such that

Xr = λρr(hu)w
†
r (3.24)

with |λ| = 1 to make Xr unitary. This contradicts Xr /∈ eiαG. We have proved

now that if wr ∈ eiαG then if and only if X ∈ eiαG uX(g) will be in the conjugacy

class of g−1.11 In [64] it was shown that only gCP transformations that map

elements into the class of its inverse element make observables conserve CP.12 It

9This was later found to only hold for 3 - n, as will be discussed in section 4.2. However by
excluding unfaithful 2-dimensional representations of ∆(6n2) from the discussion, the automor-
phism generated by b becomes class-inverting again.

10Again, X̃r could be a class-preserving outer automorphism.
11If G has no class-preserving outer automorphisms.
12This holds only if one considers all irreps of G simultaneously. For a specific model with a

limited representation content, further CP transformations can be consistent with G, especially
if the model is renormalisable and not even in Kronecker products all irreps have to appear.
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was thus proved here that such transformations are given by Xr ∈ eiαG.13 14 In

the following G is specialised to be ∆(6n2).

3.3 gCP Symmetries and ∆(6n2) groups

In this section the effect of gCP transformations where X ∈ eiαG for G = ∆(6n2)

on mass and mixing matrices is considered. First the gCP transformations that are

consistent with Gν = Z2×Z2 and G2 = Z3 are derived. Afterwards the constrained

mass matrices and the lepton mixing matrix are stated. After this constraints from

measurements of lepton mixing angles and from neutrinoless double-beta decay for

arbitrary n are discussed.

If one wants to break the flavour symmetry to Gν = Z2 × Z2 and Ge = Z3

subgroups, the residual flavour and residual gCP transformations are not indepen-

dent, as they still have to fulfil the consistency equation.15 If e.g. in one sector

ρr(g) and Xr are unbroken, then also Xrρr(g)∗X†r must be unbroken. Thus the

allowed residual gCP transformations have to map elements from the Klein group

in consideration into said Klein group.

The Klein subgroups of ∆(6n2) are given by [1]

{1, cn/2, dn/2, cn/2dn/2}, (3.25)

{1, cn/2, abcγ, abcγ+n/2}, (3.26)

{1, dn/2, a2bdδ, a2bdδ+n/2}, (3.27)

{1, cn/2dn/2, bcεdε, bcε−n/2dε−n/2}, (3.28)

where γ, δ, ε = 1, . . . , n/2. The group Eq. (3.25) will produce a mixing matrix

with |Vij| = 1/
√

3, and it will not be considered further. The bottom three

Klein subgroups will generate the same mixing matrix, thus it is sufficient to only

consider the mixing matrices generated by group Eq. (3.26). The allowed matrices

Xr in the low-energy-limit have to be contained in eiαGϕ. A matrix Xr is allowed

if for a Klein subgroup K holds that for each g ∈ K also u(g) ∈ K. For said

13Under the assumptions mentioned in the various remarks concerning things that were only
understood after [2] was published.

14 One would now be able to find all Xr /∈ eiαG by reading off all automorphisms from the
symmetries of the character table that do not map the class of g on the class of g−1. (This would
often contain the identity transformation on the character table.)

15As was shown in section 1.5.1, this condition is not strong enough and will still allow for
residual CP transformations that force mass eigenvalues to be zero or degenerate. As this is
unphysical
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Klein subgroup K = {1, cn/2, abcγ, abcγ+n/2} one finds that the allowed matrices

X ∈ eiαG are given by the representation matrices for

Xr = ρr(e
iαcxd2x+2γ), ρr(e

iαcxd2γ+2x+n/2), ρr(e
iαabcxd2x), ρr(e

iαabcxd2x+n/2)

(3.29)

with α ∈ R and x = 0, . . . , n− 1.

Without loss of generality, left-handed doublets (νL, eL)T are assigned to the rep-

resentation 31
2 (cf.[1]). Invariance of the mass matrix under the Klein subgroup

in consideration plus invariance under one of the transformations from Eq. (3.29)

constrains the Majorana neutrino mass matrix to

Mν =

|m22|e2iπ γ
n eiϕ1 |m21|eiϕ1 0

|m21|eiϕ1 |m22|e−2iπ γ
n eiϕ1 0

0 0 |m33|eiϕ3

 (3.30)

where the values of ϕ1 and ϕ3 can be found in table (3.1). In principle, sev-

eral gCP transformations can remain unbroken. However, the phases ϕ1, ϕ3 are

already fixed by one single unbroken transformation. Leaving a second gCP trans-

formation unbroken with incompatible constraints on the phase ϕi will force the

corresponding mass parameters |m..| to be zero. The masses of neutrinos are |m33|
and ||m21| ± |m22||. Thus |m21| = 0 or |m22| = 0 will result in a pair of degenerate

neutrino states. It is not possible to have |m33| = 0 without |m21| = 0 or |m22| = 0.

Leaving a second gCP transformation unbroken is never physically viable.

Xr ϕ1 ϕ3

ρr(e
iαcxd2x+2γ) −α− 2π(γ + x)/n −α + 4π(γ + x)/n

ρr(e
iαcxd2γ+2x+n/2) −α− π/2− 2π(γ + x)/n −α + π + 4π(γ + x)/n

ρr(e
iαabcxd2x) −α− 2πx/n −α + 4πx/n

ρr(e
iαabcxd2x+n/2) −α− π/2− 2πx/n −α + π + 4πx/n

Table 3.1: Values of ϕ1 and ϕ3 for gCP transformations consistent with
the residual Klein symmetry

The neutrino mass matrix Eq. (3.30) will be diagonalised by a unitary matrix Uν

via UT
ν MνUν . A matrix Uν such that the diagonalised mass matrix is real and
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positive is given by

U (+)
ν =


− e

i(−πγn −
ϕ1
2 )

√
2

e
i(−πγn −

ϕ1
2 )

√
2

0

e
i(πγn −

ϕ1
2 )

√
2

e
i(πγn −

ϕ1
2 )

√
2

0

0 0 e−
iϕ3
2

 (3.31)

for |m21| > |m22| and by

U (−)
ν =


− e

i(−πγn −ϕ12 +π2 )
√

2
e
i(−πγn −

ϕ1
2 )

√
2

0

e
i(πγn −

ϕ1
2 +π2 )

√
2

e
i(πγn −

ϕ1
2 )

√
2

0

0 0 e−
iϕ3
2

 (3.32)

for |m21| < |m22|.

For charged leptons, the allowed gCP transformations with Xr ∈ eiαG have to be

consistent with Ge = {1, a, a2} and are given by

Xr = cyd−y, acyd−y, a2cyd−y, bcyd−y, abcyd−y, a2cyd−y (3.33)

where 3y = 0 mod n. Especially when 3 divides n there is a huge number of

allowed X matrices. But, as the charged lepton mass matrix is already invariant

under transformations with a and transformations with cyd−y force it to be zero

(for 3y 6= 0 mod n) or produce no new constraint (for 3y = 0 mod n), the only

transformations that produce physical constraints are given by

Xr = ρr(1), ρr(b). (3.34)

For Xr = ρr(1) the mass matrix of charged leptons is restrained to

Ml1M
†
l1 =

m
l
3 ml

1 ml
2

ml
2 ml

3 ml
1

ml
1 ml

2 ml
3

 (3.35)

with all parameters being real or for Xr = ρr(b) to

MlbM
†
lb =

 ml
3 ml

1 (ml
1)∗

(ml
1)∗ ml

3 ml
1

ml
1 (ml

1)∗ ml
3

 (3.36)
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with ml
1 complex and ml

3 real. Both charged lepton mass matrices can be diago-

nalised by

U l =
1√
3

 1 1 1

ω ω2 1

ω2 ω 1

 . (3.37)

Above charged lepton mass matrices only differ by unphysical phases which can

be absorbed into the charged lepton fields.

After removing an overall phase e−iϕ1/2 to render the top left entry real, the phys-

ical mixing matrix is given by U
(+)/(−)
PMNS = (Ue)

†U
(+)/(−)
ν (For U

(+)
ν and U

(−)
ν cf.

Eq. (3.31) and Eq. (3.32)):

U
(+)/(−)
PMNS =


√

2
3

cos
(
πγ
n

)
1√
3

√
2
3

sin
(
πγ
n

)
−
√

2
3

sin
(
π
(
γ
n

+ 1
6

))
1√
3

√
2
3

cos
(
π
(
γ
n

+ 1
6

))√
2
3

sin
(
π
(

1
6
− γ

n

))
− 1√

3

√
2
3

cos
(
π
(

1
6
− γ

n

))

1 0 0

0 [i]ie−i6π(γ+x)/n 0

0 0 [i]i


(3.38)

where the additional factors of i in square brackets only appear in U
(−)
PMNS. As the

ordering of the mixing matrix is arbitrary at this point, one would like to fix it

by requiring that the smallest entry of the matrix has to be the top-right entry,

i.e. U13. For small γ/n the first row and third column are in the right place in the

above matrix.

As this matrix is now in the PDG convention, the values of Majorana phases α21

and α31 as well as the Dirac CP phase δCP for this ordering of the mixing matrix can

be read off the matrix. Recall that the PDG convention is UPMNS = R23U13R12P

in terms of sij = sin(θij), cij = cos(θij), the Dirac CP violating phase δCP and

further Majorana phases contained in P = diag(1, ei
α21
2 , ei

α31
2 ).

The Majorana phase α21 is then given by

α21 = ϕ1 − ϕ3 (3.39)

With table [3.1] follows that

ϕ1 − ϕ3 = −6π(γ + x)

n
for X = cxd2x+2γ, abcxd2x (3.40)

or

ϕ1 − ϕ3 = −3π

2
− 6π(γ + x)

n
for X = cxd2x+2γ+n/2, abcxd2x+n/2. (3.41)
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The values of all CP phases depend on the ordering of Eq. (3.38) which needs to

be changed for higher values of γ/n. The possible values of the CP phases can

be found in table (3.2). There, U ′ denotes the mixing matrix after reordering

such that the entry with the smallest absolute value is in the top right corner.

As for every γ/n the second and third row can be interchanged, which results in

changing δCP by π while changing the prediction for U23 and U33 and thus the

prediction for θ23. The Dirac CP phase is hence predicted to be 0 or π, and since

the lepton mixing matrix has the tri-maximal form for the second column, referred

to as TM2, this leads to the mixing sum rules θ23 = 45◦ ∓ θ13/
√

2 for δCP = 0, π,

respectively, as previously noted in [1] (for a review of sum rules see [25]).

The prediction of α31 also depends on the order of these rows. In the table (3.2)

the second row of the mixing matrix after reordering it is indicated in the column

U ′23. Improved measurements of θ23 will constrain this freedom of interchanging

the second and third row.

γ/n U ′13 U ′23 δ
(−)/(+)
CP α

(−)
21 α

(+)
21 α

(−)
31 α

(+)
31

0/12 . . . 1/12 U13 U23 0 ϕ1 − ϕ3 ϕ1 − ϕ3 2π −π
U13 U33 −π ϕ1 − ϕ3 ϕ1 − ϕ3 0 π

1/12 . . . 2/12 U31 U21 0 ϕ1 − ϕ3 ϕ1 − ϕ3 − π 2π π
U31 U11 −π ϕ1 − ϕ3 ϕ1 − ϕ3 − π 0 −π

2/12 . . . 3/12 U31 U11 0 ϕ1 − ϕ3 ϕ1 − ϕ3 − π 0 −π
U31 U21 −π ϕ1 − ϕ3 ϕ1 − ϕ3 − π 2π π

3/12 . . . 4/12 U23 U13 0 ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + 2π 0 π
U23 U33 −π ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + 2π 2π −π

4/12 . . . 5/12 U23 U33 0 ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + 2π 2π −π
U23 U13 −π ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + 2π 0 π

5/12 . . . 6/12 U11 U31 0 ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + π 2π π
U11 U21 −π ϕ1 − ϕ3 + 2π ϕ1 − ϕ3 + π 0 −π

Table 3.2: Values of CP phases after reordering for different values of γ/n

in U
(−)/[(+)]
PMNS . In each row, γ/n can take arbitrary values in the interval

indicated. U ′ denotes the matrix after reordering.

The key observable for Majorana phases is neutrino-less double beta decay (0νββ).

The effective mass of neutrinoless double-beta decay is given by

|mee| = |
2

3
m1 cos2(

πγ′

n
) +

1

3
m2e

iα21 +
2

3
m3 sin2(

πγ′

n
)ei(α31−2δ)| (3.42)
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with

m1 = ml , m2 =
√
m2
l + ∆m2

21 , m3 =
√
m2
l + ∆m2

31 (3.43)

for normal ordering and

m1 =
√
m2
l + ∆m2

31 , m2 =
√
m2
l + ∆m2

21 + ∆m2
31 , m3 = ml (3.44)

for inverted ordering, where ml is the mass of the lightest neutrino and

γ′ = γ mod
1

6
. (3.45)

The absolute values of the entries of the mixing matrix after reordering are periodic

in γ/n which is why one can simplify the analysis by defining γ′ in this way.

There are 8 cases to distinguish for combinations of phases. Adding a multiple of

2π will not change the effect of α21 or α31−2δ. For this reason, for both Eq. (3.40)

and Eq. (3.41) the 12 cases in table (3.2) reduce to 8 cases of values for

ᾱ21 = α21 + 6π
γ + x

n
, ᾱ31 = α31 − 2δ (3.46)

that are given by

(ᾱ21, ᾱ31) = (0, 0), (π/2, 0), (π, 0), (3π/2, 0), (0, π), (π/2, π), (π, π), (3π/2, π).

(3.47)

The by far most stringent constraint on γ/n comes from the measurement of θ13.

The current 3 sigma range for θ13 from [78] yields values of γ′/n in the range

0.0460 . . . 0.0627.

It is generally fine to not only consider γ′/n in this range but even γ/n because

changing γ by 1/6 only changes α21 by π, which is included in the four cases

discussed above.

In order to understand predictions of ∆(6n2) groups for 0νββ decay on a general

level, in Figure 3.1, the effective mass |mee| of 0νββ is plotted against the mass of

the lightest neutrino ml for all combinations of ᾱ21 and ᾱ31. In these plots, models

defined by some values of γ/n and x/n correspond to single fine lines. γ/n takes

11 values, starting with the 3 sigma lower bound and increases in 10 equal steps

until it reaches the 3 sigma upper bound. x/n takes values 0, 0.1, 0.2, . . . , 1.
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∆m2
21 and ∆m2

31 are not varied, as doing so only would almost unnoticeably

broaden each single line. Instead the best fit value from [78] was used:

∆m2
21 = 7.54× 10−5 eV2, (3.48)

∆m2
31 = 2.41× 10−3 eV2. (3.49)

In Figure 3.1, magenta lines correspond to predictions assuming inverted hierarchy,

red lines to normal hierarchy. Dashed blue and yellow lines indicate the currently

allowed three sigma region for normal and inverted hierarchy, respectively. The

three sigma ranges for mixing angles are taken from [78]. The upper bound |mee| <
0.140 eV is given from measurements by the EXO-200 experiment [79]. Planck

data in combination with other CMB and BAO measurements [80] provides a limit

on the sum of neutrino masses of m1 +m2 +m3 < 0.230 eV from which the upper

limit on the mass of the lightest neutrino can be derived.

The main features of the results from Figure 3.1 are as follows:

• For inverted hierarchy there is no particular structure visible. Additionally,

the predicted values for |mee| are well within the reach of e.g. phase III of

the GERDA experiment of |mexp
ee | ∼ 0.02 . . . 0.03 eV [81].

• For normal ordering, it follows from Figure 3.1 that for the values of γ/n

and x/n considered is always a lower limit on |mee| which means that these

parameters are accessible to future experiments.16

• Further for normal ordering, in the very low mlightest region, predicted values

of |mee| are closer to the upper end of the blue three sigma range.

• With the current data, no combination of ᾱ21 and ᾱ31 is favoured. Only

for values of |mee| . 0.0001 eV and mlightest . 0.01 . . . 0.001 eV it would be

possible to distinguish different values of ᾱ21 and ᾱ31.

The necessary precisions on |mee| and mlightest are unfortunately outside of the

range of any projected experiments known to the author. Nevertheless, the red

curves corresponding to fixed values of γ/n and x/n are often close to the blue

dashed three sigma range. With increasingly precise knowledge of the values

of the mixing angles, especially θ13, the three sigma ranges will shrink, perhaps

16However, one can solve Eq. (3.42) either analytically or numerically to obtain solutions for
n, γ, and x such that |mee| = 0.
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Figure 3.1: Effective Mass of 0νββ decay. γ/n is varied between the lower
and upper 3 sigma bound, x/n = 0, 0.1, 0.2, . . . , 1. For the definition of
ᾱ21 and ᾱ31 cf. Eqs. (3.40), (3.41).
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making it possible to draw conclusions about γ/n and x/n without an overly

precise measurement of |mee| or of the mass of the lightest neutrino.

To recapitulate, the following assumptions went into producing these results:

There are 3 left-handed doublets of leptons, which in turn transform as a triplet

under a ∆(6n2) group. The neutrinos are Majorana fermions and ∆(6n2) is bro-

ken to a Z2 × Z2 subgroup in the neutrino sector and to Z3 in the charged lepton

sector. The mixing angles are solely predicted from the aforementioned assump-

tions. There is a general CP symmetry consistent with ∆(6n2) which is broken

to one element in each sector. From this gCP symmetry the Majorana phases are

predicted.

If one of the mixing angles would be found to be incompatible with any of the

predictions this would mean that either ∆(6n2) is not broken to Z2 × Z2 or that

the flavour group is not ∆(6n2) or that one of the more fundamental assumptions

is wrong. The neutrinos could still be Majorana fermions as ∆(6n2) could still be

broken to a single Z2, as discussed in the next chapter, or broken completely.

3.4 Conclusions

In this chapter the interplay of ∆(6n2) groups and general CP transformations

(gCP) in a direct model for three generations of Dirac charged leptons and Ma-

jorana neutrinos was examined. One finds that gCP transformations with Xr ∈
eiα∆(6n2) are physical CP transformations. Leaving a single gCP transformation

unbroken will constrain the mixing matrix such that all phases, Dirac and Majo-

rana are predicted and depend only on the ∆(6n2) group, the residual Z2 × Z2

group (parametrised by γ) and the residual gCP transformation (parametrised by

x) in the neutrino sector. Leaving two or more gCP transformations unbroken was

found not to be physically viable.17

Comparing the predictions for the mixing angles with experimental data one finds

that the strongest constraint on γ/n is imposed by the relatively precise measure-

ment of θ13. The smallest group where θ13 lies within three sigma of the central

value has n = 14. Furthermore, as the Majorana CP violating phases had been

predicted, predictions for neutrinoless double-beta decay were studied. One finds

17This was only found because the residual general CP matrices that were analysed in this
paper did not fulfil the correct consistency condition, but one that is too loose and allowed for
some CP transformations to force mass eigenvalues to be zero or degenerate.
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that for inverted ordering, the predicted |mee| is within the reach of upcoming

experiments like GERDA III. (As is always the case in this scenario.) For normal

ordering, measuring |mee| down to 10−4eV could exclude large regions of γ/n and

x/n, depending on the value of δCP .

In conclusion, these results represent the first time that an infinite series of finite

groups has been examined for general CP transformations that are consistent with

it. The important role of ∆(6n2) among the subgroups of SU(3) with triplet ir-

reducible representations needs to be emphasized, especially in light of the results

which had appeared shortly after parts of the results in this chapter were pub-

lished in [2] that confirmed that ∆(6n2) groups are indeed among the last viable

flavour symmetries in direct models [60] . Moreover, as [60] does not consider CP

symmetries which in the opinion of the author of this thesis are entirely on the

same footing as pure flavour symmetries, the study in this chapter is not only the

first, but still remains the most complete study of direct models with general CP

of groups that are still experimentally viable.

If the Dirac CP phase is measured to differ from 0 or π, or the mixing angles

deviate from the sum rules θ23 = 45◦∓ θ13/
√

2, respectively, then this would mean

that in general a potential flavour group ∆(6n2) cannot be broken to Z2×Z2, as in

the case of the direct approach assumed here. However the semi-direct approach,

in which a Z2 subgroup is preserved, would remain a possibility for theories based

on ∆(6n2) and this is precisely the topic of the next chapter.



4

General CP and ∆(6n2) flavour

symmetry in semi-direct models

of leptons

In this chapter, a detailed analysis of ∆(6n2) flavour symmetry combined with a

general CP symmetry in the lepton sector in semi-direct models will be performed.

These results were previously published in [4] and discussed in [5]. The author

was sharing the computaional load with collaborator G.J. Ding and writing the

corresponding parts of [4]. In addition, [5] was completely written by the author.

This chapter is rather similar in methodology to the previous one and the difference

lies in the different choice of residual flavour symmetries that are embedded into

GF . Again, flavour and CP symmetry are broken to different residual symmetries

Gν in the neutrino and Gl in the charged lepton sector, together with residual

CP symmetries in each sector. The mixing prediction for all possible breakings

of ∆(6n2) to Gν = Z2 with Gl = K4, Zp, p > 2 and to Gν = K4 with Gl = Z2

are analysed. Because of the large number of individual results, the more tedious

results will be exiled to an appendix, while this chapter only summarizes the most

important findings and small differences to the previous chapter. As the above-

mentioned breakings have a smaller preserved symmetry than the full Klein group,

predictions depend on additional undetermined parameters, which in most cases

depend on the reactor angle and the Majorana phases. Out of the large number

of combinations of charged lepton and neutrino residual symmetries, only five are

phenomenologically allowed and are studied in slightly greater detail.

69
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4.1 Introduction

The work in this chapter was mostly motivated by the fact that global fits of

lepton mixing parameters started showing a slight tendency towards a non-trivial

value of δCP [82, 78, 83]. While this could be caused by a statistical fluctuation

[84], a definite measurement confirming a non-trivial value of δCP would imme-

diately rule out all direct models with finite flavour groups, so in particular also

all direct models with ∆(6n2), which were the topic of the two previous chapters.

Measuring the Dirac CP phase is definitely one of the primary goals of the next

generation neutrino oscillation experiments. Furthermore, CP violation has been

firmly established in the quark sector and it would be surprising if no CP violation

was discovered in the lepton sector.1

As mentioned before, in semidirect models, not the entire minimally necessary

residual flavour symmetry is embedded into a larger flavour symmetry. Instead,

either only a Z2 factor of the flavour group is preserved in the neutrino sector,

while the charged lepton sector is completely fixed by symmetry, or vice versa, a

Z2 factor is preserved in the lepton sector, while the neutrino sector is completely

fixed. 2

One could argue that the most minimal extension of direct models is actually

given by semidirect models with residual CP symmetries, because in this way

fewer additional parameters that are not related to the breaking of the group

are introduced. In addition, residual CP symmetries also constrain the Majorana

phases, which currently may be far from being measured, however there is certain

hope that with 0νββ and ν → ν̄ oscillation at least within the lifetime of the author

of this thesis these parameters will become accessible. Moreover, as fermion mass

terms always have some residual CP symmetry, one could adopt the viewpoint that

CP symmetries are on the same footing as flavour symmetries and that always some

CP symmetry might exist at high energies into which residual CP symmetries are

embedded.

In this chapter thus, after quickly recapitulating some notation, the analysis of

mappings facilitated by CP transformations within the flavour group will be ex-

tended, confirming a conjecture from the last chapter. The program GAP was used

1Although human intuition has not the best record concerning such things.
2There are also what could be called double-semidirect models, where in both sectors only a

Z2 factor is preserved [85].
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to computationally generate the automorphisms of ∆(6n2) to obtain CP transfor-

mations consistent with the group. After this, residual CP transformations that

are consistent with residual flavour symmetries are given. 3

Concrete semi-direct S4 flavour models with a general CP symmetry had been

constructed in Refs. [30, 72, 86, 87, 67, 88, 71] where the spontaneous breaking of

the S4 o HCP down to Z2 × CP in the neutrino sector was implemented. Other

models with a flavour symmetry and a general CP symmetry can also be found in

Refs. [89, 90, 68, 66]. The interplay between flavour symmetries and CP symme-

tries has been generally discussed in [73, 64]. In addition, there are other theoreti-

cal approaches involving both flavour symmetry and CP violation [91, 92, 93, 65].

The work presented here follows on from a similar analysis of semi-direct models

based on the group ∆(96) [94]. While this paper was being prepared, a study of

general CP within the semi-direct approach appeared based on the infinite series

of finite groups ∆(6n2) and ∆(3n2) [95]. Where the results overlap for ∆(6n2) they

appear to be broadly in agreement, although the case that the residual symmetry

Z2 × CP is preserved by the charged lepton sector was not considered in [95].

This work focuses exclusively on ∆(6n2), and, apart from considering extra cases

not previously considered, presents the numerical results in a quite different and

complementary way. Many of the numerical results contained here, for example,

the predictions for neutrinoless double beta decay, were not previously considered

at all.

The remainder of this chapter is organised as follows. In Section 4.2 the interplay of

general CP transformations with ∆(6n2) is analysed. In Section 4.3 lepton mixing

predictions in neutrino-semidirect models with residual symmetry Z2×CP in the

neutrino sector are given. In Section 4.4 lepton mixing predictions in charged-

lepton-semidirect models with residual symmetry Z2 × CP in the charged lepton

sector are analysed. The phenomenological predictions of the neutrinoless double

beta decay for all the viable cases are presented in Section 4.5, Finally Section 4.6

concludes this chapter.

3Where unfortunately, again not the consistency conditions as discussed in section 1.5.1 were
used, resulting in too many CP candidates. This, however, does not invalidate the mixing results
obtained, as inconsistent residual CP symmetries can never produce a physically correct mass
spectrum.



72 4 General CP and ∆(6n2) flavour symmetry in semi-direct models of leptons

4.2 General CP with ∆(6n2)

As usual by now, consider a theory with both flavour symmetry GF and general

CP symmetry at high energy scale. A field multiplet ϕr transforms under the

action of the flavour symmetry group GF as

ϕr
g7−→ ρr(g)ϕr, g ∈ GF , (4.1)

where ρr(g) is the representation matrix of g in the representation r and a general

CP transformation acts on the field as:

ϕr
CP7−→ Xrϕ

∗
r(xµ). (4.2)

The general CP symmetry has to be consistent with the flavour symmetry. In

[96, 70, 73, 30] it has been argued that the general CP symmetry can only be

compatible with the flavour symmetry if the following consistency equation is

satisfied:

Xrρ
∗
r(g)X†r = ρr(g

′), g, g′ ∈ Gf . (4.3)

Hence a general CP transformation is related to an automorphism which maps g

into g′ as before. Furthermore, it was recently shown under some (fairly limiting)

assumptions that physical CP transformations have to be given by class-inverting

automorphism of GF [64]. In this chapter the flavour symmetry is given by a

∆(6n2) group for some n The group theory of ∆(6n2) is presented in Appendix 7.4.

With the help of the computer algebra program system GAP [44, 45, 46, 47] the

automorphism group of the ∆(6n2) until n = 19 was studied.4. The results are

collected in Table 4.1. One finds that the outer automorphism groups of members

of the ∆(6n2) series are generally non-trivial except for ∆(6) ∼= S3 and ∆(24) ∼= S4.

However, there is only one class-inverting outer automorphism for n 6= 3Z while no

class-inverting automorphism exists for n = 3Z. In fact, one finds a class-inverting

automorphism u acting on the generators as:

a
u7−→ a2, b

u7−→ b, c
u7−→ d, d

u7−→ c . (4.4)

which confirms an assumption made in the previous chapter. It can be checked

that for n 6= 3Z this automorphism u maps each conjugacy class onto the class of

4The ∆(6n2) group with n > 19 are not available in GAP so far.
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inverse elements. In the case of n = 3Z,

2n2

3
C

(τ)
2

u7−→ 2n2

3
C

(−τ)
2 ,

(
2n2

3
C

(τ)
2

)−1

=
2n2

3
C

(τ)
2 , τ = 0, 1, 2 . (4.5)

Hence both 2n2

3
C

(1)
2 and 2n2

3
C

(2)
2 are not mapped into their inverse classes although

the latter is still true for the remaining classes. As a result, one can conjecture

that the ∆(6n2) group with n 6= 3Z admits a unique class-inverting automorphism

given by Eq. (4.4). One can nevertheless apply CP transformations obtained for

n 6= 3Z to examples with n = 3Z to see what kind of constraints are obtained, as,

although it is unclear what their precise relation to this particular group is at high

energies, they are definitely CP transformations. When it doubt, assume n 6= 3Z.

The general CP transformation corresponding to u, which is denoted by Xr(u),

would be physically well-defined, as suggested in Ref. [64]. Its concrete form is

fixed by the consistency equations as follows:

Xr (u) ρ∗r(a)X†r (u) = ρr (u (a)) = ρr(a
2) ,

Xr (u) ρ∗r(b)X
†
r (u) = ρr (u (b)) = ρr (b) ,

Xr (u) ρ∗r(c)X
†
r (u) = ρr (u (c)) = ρr (d) ,

Xr (u) ρ∗r(d)X†r (u) = ρr (u (d)) = ρr (c) . (4.6)

In our basis, presented in section 7.4, we can determine that

Xr (u) = ρr(b) . (4.7)

Furthermore, including inner automorphisms, the full5 set of general CP transfor-

mations compatible with ∆(6n2) flavour symmetry is

Xr = ρr(g), g ∈ ∆(6n2) . (4.8)

Consequently the general CP transformations are of the same form as the flavour

symmetry transformations in the chosen basis. In particular, we see that the

conventional CP transformation with ρr(1)=1 is allowed. As a consequence, all

coupling constants would be real in a ∆(6n2) model with imposed CP symmetry

since all the CG coefficients are real, as shown in Appendix 7.4.1. In the case of

n = 3Z, the consistency equations of Eq. (4.6) are also satisfied except when r is

the doublet representations 22, 23 or 24. Hence the general CP transformations

5class-inverting
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n GF GAP-Id Inn(GF) Out(GF) Num.

1 ∆(6) ≡ S3 [6,1] S3 Z1 1
2 ∆(24) ≡ S4 [24,12] S4 Z1 1
3 ∆(54) [54,8] (Z3 × Z3) o Z2 S4 0
4 ∆(96) [96,64] ∆(96) Z2 1
5 ∆(150) [150,5] ∆(150) Z4 1
6 ∆(216) [216,95] (Z3 × A4) o Z2 S3 0
7 ∆(294) [294,7] ∆(294) Z6 1
8 ∆(384) [384,568] ∆(384) K4 1
9 ∆(486) [486,61] ((Z9 × Z3) o Z3) o Z2 Z3 × S3 0
10 ∆(600) [600,179] ∆(600) Z4 1
11 ∆(726) [726,5] ∆(726) Z10 1
12 ∆(864) [864,701] (Z3 × ((Z4 × Z4) o Z3)) o Z2 D12 0
13 ∆(1014) [1014,7] ∆(1014) Z12 1
14 ∆(1176) [1176,243] ∆(1176) Z6 1
15 ∆(1350) [1350,46] (Z3 × ((Z5 × Z5) o Z3)) o Z2 Z4 × S3 0
16 ∆(1536) [1536,408544632] ∆(1536) Z4 × Z2 1
17 ∆(1734) [1734,5] ∆(1734) Z16 1
18 ∆(1944) [1944,849] ((Z18 × Z6) o Z3) o Z2 Z3 × S3 0
19 ∆(2166) [2166,15] ∆(2166) Z18 1

Table 4.1: The automorphism groups of the ∆(6n2) group series, where
Inn(GF) and Out(GF) denote inner automorphism group and outer auto-
morphism group of the flavour symmetry group GF respectively. The last
column gives the number of class-inverting outer automorphisms. Note
that the inner automorphism group of ∆(6n2) with n = 3Z is isomorphic

to ∆(6n2)/Z3 since its center is the Z3 subgroup generated by c
n
3 d

2n
3 .

in Eq. (4.7) can also be imposed on a model with n = 3Z if the fields transforming

as 22, 23 or 24 are absent.

4.3 Lepton mixing with residual symmetry Z2 ×
CP in the neutrino sector

In the following, all lepton mixing patterns in neutrino-semidirect models, ie. where

Gν ' Z2, will be listed. Examples had been considered in [25, 72, 86, 87, 71, 66, 94].

The full symmetry group is ∆(6n2)oHCP , which is broken down to GloH l
CP and

Z2 ×Hν
CP residual symmetries in the charged lepton and neutrino sectors respec-

tively. Gl is usually taken to be an abelian subgroup of ∆(6n2) of order larger than

2 to avoid degenerate charged lepton masses. The misalignment between the two
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residual symmetries generates the PMNS matrix. Again, only residual symmetries

are considered and how the required symmetry breaking is dynamically achieved is

not discussed, as there are generally more than one mechanism and many possible

specific model realizations. One column of the lepton mixing matrix can be fixed

and the resulting lepton mixing parameters are generally constrained to depend

on only one free parameter in this approach. As usual the three generation of the

left-handed lepton doublet fields are assigned to the faithful representation 31,1

which is denoted by 3 in the following.

4.3.1 Charged lepton sector

From a residual symmetry Gl follows that the charged lepton mass matrix is

invariant under the transformation `L → ρ3(gl)`L, where `L stands for the three

generations of left-handed lepton doublets, gl is the generator of Gl, and ρ3(gl) is

the representation matrix of gl in the triplet representation 3. As a consequence,

the charged lepton mass matrix satisfies

ρ†3(gl)m
†
lmlρ3(gl) = m†lml , (4.9)

where the charged lepton mass matrix ml is defined in the convention, `cml`L. Let

us denote the diagonalization matrix of m†lml by Ul, i.e.

U †lm
†
lmlUl = diag

(
m2
e,m

2
µ,m

2
τ

)
≡ m̂2

l . (4.10)

where me, mµ and mτ are the electron, muon and tau masses respectively. Sub-

stituting Eq. (4.10) into Eq. (4.9), we obtain

m̂2
l

[
U †l ρ3(gl)Ul

]
=
[
U †l ρ3(gl)Ul

]
m̂2
l . (4.11)

One can see that U †l ρ3(gl)Ul has to be diagonal. Therefore Ul not only diagonalizes

m†lml but also the matrix ρ3(gl). As a result, the unitary diagonalization matrix

Ul is completely fixed by the residual flavour symmetry Gl once the eigenvalues of

ρ3(gl) are non-degenerate. In the present work, only the case that Gl is a cyclic

subgroup of ∆(6n2) is considered. Hence the generator gl of Gl could be of the

form csdt, bcsdt, acsdt, a2csdt, abcsdt or a2bcsdt with s, t = 0, 1, . . . , n − 1. If the

eigenvalues of ρ3(gl) are degenerate such that its diagonalization matrix Ul can

not be fixed uniquely, one could extend Gl from a single cyclic subgroup to the

product of several cyclic subgroups. This scenario is beyond the scope of this work
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except that the simplest K4 extension is included. (As has been before, in [97].)

Given the explicit form of the representation matrices listed in Appendix 7.4,

the charged lepton diagonalization matrices Ul for different cases of Gl can be

calculated, and the results are summarized in Appendix 7.1.2. Since the charged

lepton masses can not be constrained at all in the present approach (in other word,

the order of the eigenvalues of ρ3(gl) is indeterminate), Ul can undergo rephasing

and permutations from the left.

4.3.2 Neutrino sector

In the present work, we assume the light neutrinos are Majorana particles. As a

consequence, the residual flavour symmetry Gν in the neutrino sector can only be

a K4 or Z2 subgroup. The phenomenological consequence of Gν = K4 has been

studied in Refs. [2] by two of us. Here we shall concentrate on Gν = Z2 case with

general CP symmetry which allows us to predict CP phases. The Z2 subgroups of

∆(6n2) can be generated by

bcxdx, abcy, a2bdz, x, y, z = 0, 1 . . . n− 1 (4.12)

and additionally

cn/2, dn/2, cn/2dn/2 (4.13)

for n = 2Z. It is notable that the Z2 elements in Eq. (4.12) and Eq. (4.13) are

conjugate to each other respectively:

(
cγdδ

)
bcxdx

(
cγdδ

)−1
= bcx−δ−γdx−δ−γ,

(
bcγdδ

)
bcxdx

(
bcγdδ

)−1
= bc−x+δ+γd−x+δ+γ ,(

acγdδ
)
bcxdx

(
acγdδ

)−1
= a2bd−x+δ+γ,

(
a2cγdδ

)
bcxdx

(
a2cγdδ

)−1
= abc−x+δ+γ ,(

abcγdδ
)
bcxdx

(
abcγdδ

)−1
= a2bdx−δ−γ,

(
a2bcγdδ

)
bcxdx

(
a2bcγdδ

)−1
= abcx−δ−γ .

(4.14a)

(
cγdδ

)
cn/2

(
cγdδ

)−1
= cn/2,

(
bcγdδ

)
cn/2

(
bcγdδ

)−1
= dn/2 ,(

acγdδ
)
cn/2

(
acγdδ

)−1
= cn/2dn/2,

(
a2cγdδ

)
cn/2

(
a2cγdδ

)−1
= dn/2 ,(

abcγdδ
)
cn/2

(
abcγdδ

)−1
= cn/2,

(
a2bcγdδ

)
cn/2

(
a2bcγdδ

)−1
= cn/2dn/2 .

(4.14b)

The residual general CP symmetry should be compatible with the residual Z2 sym-

metry in the neutrino sector, and therefore the corresponding consistency equation
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should be satisfied, i.e.,

Xνrρ
∗
r(g)X−1

νr = ρr(g), g ∈ Z2 , (4.15)

which means that the residual CP and residual flavour transformations are com-

mutable with each other [30, 72] in the neutrino sector. For a given solution

Xνr of Eq. (4.15), one can check that ρr(g)Xνr is also a solution. The residual

CP symmetries consistent with the Z2 elements in Eq. (4.12) and Eq. (4.13) are

summarized as follows. Note that residual CP symmetries with permutations are

those that fulfil constency condition Eq. (4.3), but not the stricter actual condition

Eq. (1.122).

• g = bcxdx, x = 0, 1, 2 . . . n− 1

Xνr = ρr(c
γd−2x−γ), ρr(bc

γd−γ), γ = 0, 1, 2 . . . n− 1 . (4.16)

• g = abcy, y = 0, 1, 2 . . . n− 1

Xνr = ρr(c
γd2y+2γ), ρr(abc

γd2γ), γ = 0, 1, 2 . . . n− 1 . (4.17)

• g = a2bdz, z = 0, 1, 2 . . . n− 1

Xνr = ρr(c
2z+2δdδ), ρr(a

2bc2δdδ), δ = 0, 1, 2 . . . n− 1 . (4.18)

• g = cn/2

Xνr = ρr(c
γdδ), ρr(abc

γdδ), γ, δ = 0, 1, 2 . . . n− 1 . (4.19)

• g = dn/2

Xνr = ρr(c
γdδ), ρr(a

2bcγdδ), γ, δ = 0, 1, 2 . . . n− 1 . (4.20)

• g = cn/2dn/2

Xνr = ρr(c
γdδ), ρr(bc

γdδ), γ, δ = 0, 1, 2 . . . n− 1 . (4.21)

As we shall demonstrate in the following, the residual CP symmetry should be

symmetric to avoid degenerate lepton masses. Then the viable CP transformations

would be constrained to be ρr(abc
γd2γ), ρr(a

2bc2δdδ) and ρr(bc
γd−γ) together with
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ρr(c
γdδ) for g = cn/2, dn/2 and cn/2dn/2 respectively. The full symmetry ∆(6n2) o

HCP is broken down to Z2 × Hν
CP in the neutrino sector. The invariance of the

light neutrino mass matrix mν under the residual flavour symmetry Gν = Z2 and

the residual CP symmetry Hν
CP leads to

ρT3 (gν)mνρ3(gν) = mν , gν ∈ Zν
2 ,

XT
ν3mνXν3 = m∗ν , Xν ∈ Hν

CP , (4.22)

from which we can construct the explicit form of mν and then diagonalize it.

The Majorana mass matrices that fulfil these constraints and the diagonalisation

matrices Uν that arise are listed in Appendix 7.1.1.

4.3.3 Predictions for lepton flavour mixing

With the possible forms of the neutrino and charged lepton mass matrices and

their diagonalization matrices worked out in previous sections, the lepton flavour

mixing matrix candidates are of course given by

UPMNS = U †l Uν . (4.23)

Because the ordering of the charged-lepton and neutrino masses is not fixed by

the residual symmetries, the PMNS matrix UPMNS is only determined up to in-

dependent permutations of rows and columns. From Eqs. (4.14a,4.14b), follows

that the residual Z2 symmetries generated by bcxdx, abcy, a2bdz are conjugate to

each other, and the same is true for the Z2 symmetry generated by cn/2, dn/2 and

cn/2dn/2. If a pair of residual flavour symmetries (G′ν , G
′
l) is conjugated to the pair

of groups (Gν , Gl) under the group element g ∈ ∆(6n2), then both pairs lead to

the same result for UPMNS even after the general CP symmetry is included [71].

As a consequence, one only needs to needs to consider the representative resid-

ual symmetries Gν = Zbcxdx

2 , Zcn/2

2 and Gl = 〈csdt〉, 〈bcsdt〉, 〈acsdt〉, 〈abcsdt〉 and

〈a2bcsdt〉. Because the residual flavour symmetry in the neutrino sector is taken

to be a Z2 instead of a K4 subgroup, only one column of the PMNS matrix can be

fixed up to permutation and rephasing of the elements in this scenario. The form

of the fixed columns for different choices of the residual flavour symmetry is sum-

marized in Table 4.2. The present 3σ confidence level ranges for the magnitude of



4 General CP and ∆(6n2) flavour symmetry in semi-direct models of leptons 79

Gν = Zbcxdx

2 Gν = Zcn/2

2

Gl = 〈csdt〉 1√
2

 0
−1
1

7

 0
0
1

 7

Gl = 〈bcsdt〉

 0
cos
(
s+t−2x

2n
π
)

sin
(
s+t−2x

2n
π
)
 7 1√

2

 0
−1
1

7

Gl = 〈acsdt〉
√

2
3

 sin
(
s−x
n
π
)

cos
(
π
6
− s−x

n
π
)

cos
(
π
6

+ s−x
n
π
)
 3 1√

3

 1
1
1

 3

Gl = 〈abcsdt〉 1
2

 1
1

−
√

2

 3

 0
0
1

 7

Gl = 〈a2bcsdt〉 1
2

 1
1

−
√

2

 3 1√
2

 0
−1
1

 7

Table 4.2: The form of the column of the PMNS matrix which is fixed
for different residual symmetries Gν and Gl. The symbol “7” denotes
that the resulting lepton mixing is ruled out since there is at least one
zero element in the fixed column, and the symbol “3” denotes that the
resulting mixing is experimentally still allowed. Note that for Gν = Zbcxdx

2 ,
the cases of Gl = 〈abcsdt〉 and Gl = 〈a2bcsdt〉 are not independent as
b (abcsdt) b = a2bc−td−s and b (bcxdx) b = bc−xd−x.

the elements of the leptonic mixing matrix are given by a global fit [78]:

||UPMNS||3σ =

 0.789→ 0.853 0.501→ 0.594 0.133→ 0.172

0.194→ 0.558 0.408→ 0.735 0.602→ 0.784

0.194→ 0.558 0.408→ 0.735 0.602→ 0.784

 , (4.24)

for normal ordering of the neutrino mass spectrum, and a very similar result

is obtained for inverted ordering. No entry of the PMNS matrix can be zero.

As a result, the mixing patterns with a zero element have been ruled out by

experimental data of neutrino mixing. In the following, the viable cases in which

no element of the fixed column is zero are presented, and the predictions for the

lepton flavour mixing parameters will be investigated for the various residual CP

symmetries compatible with residual flavour symmetry. Only the mixing matrices

as such will be given with some discussion and with more detailed results listed in

Appendix 7.1.3.
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(I) Gl = 〈acsdt〉, Gν = Zbcxdx

2 , Xνr = {ρr(cγd−2x−γ), ρr(bc
x+γd−x−γ)}

The PMNS matrix is found to be

U IPMNS =

1√
3


√

2 sinϕ1 eiϕ2 cos θ −
√

2 sin θ cosϕ1 eiϕ2 sin θ +
√

2 cos θ cosϕ1√
2 cos

(
π
6 − ϕ1

)
− eiϕ2 cos θ −

√
2 sin θ sin

(
π
6 − ϕ1

)
− eiϕ2 sin θ +

√
2 cos θ sin

(
π
6 − ϕ1

)
√

2 cos
(
π
6 + ϕ1

)
eiϕ2 cos θ +

√
2 sin θ sin

(
π
6 + ϕ1

)
eiϕ2 sin θ −

√
2 cos θ sin

(
π
6 + ϕ1

)
 ,

(4.25)

where

ϕ1 =
s− x
n

π, ϕ2 =
2t− s− 3(γ + x)

n
π . (4.26)

These two parameters ϕ1 and ϕ2 are interdependent of each other, and they can

take the discrete values

ϕ1 = 0,± 1

n
π,± 2

n
π, . . .± n− 1

n
π ,

ϕ2 mod 2π = 0,
1

n
π,

2

n
π, . . .

2n− 1

n
π . (4.27)

Now concerning the permutations of the rows and the columns, the PMNS matrix

can be multiplied by a 3 × 3 permutation matrix from both the left- and the

right-hand side. There are six permutation matrices corresponding to six possible

orderings of rows (or columns):

P123 =

 1 0 0

0 1 0

0 0 1

 , P132 =

 1 0 0

0 0 1

0 1 0

 , P213 =

 0 1 0

1 0 0

0 0 1

 ,

P231 =

 0 1 0

0 0 1

1 0 0

 , P312 =

 0 0 1

1 0 0

0 1 0

 , P321 =

 0 0 1

0 1 0

1 0 0

 .

(4.28)

The atmospheric mixing angle θ23 becomes π/2 − θ23, the Dirac CP phases δCP

becomes π + δCP and the other mixing parameters are unchanged if the second

and third row of the PMNS matrix are exchanged. The permutation of the second

and third row will not be given explicitly in the following. The PMNS matrix can

be rearranged as follows:

U I,1st
PMNS = U I

PMNS, U I,2nd
PMNS = P231U

I
PMNS, U I,3rd

PMNS = P312U
I
PMNS .

(4.29)
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The above three arrangements are related:

U I,2nd
PMNS(θ, ϕ1, ϕ2) = diag(1, 1,−1)U I,1st

PMNS(π − θ, π
3

+ ϕ1, ϕ2)diag(1, 1,−1),

U I,3rd
PMNS(θ, ϕ1, ϕ2) = diag(−1, 1, 1)U I,1st

PMNS(−θ,−π
3

+ ϕ1, ϕ2)diag(1,−1, 1) ,

(4.30)

where the phase factor diag (±1,±1,±1) can be absorbed by the lepton fields.

Hence it is sufficient to only discuss the first PMNS matrix U I,1st
PMNS in detail,

the phenomenological predictions for the other two can be obtained by variable

substitution.

Taking into account measured values of θ12 and θ13 [78], we obtain the constraint

on ϕ1 as

0.417π ≤ ϕ1 ≤ 0.583π, or − 0.583π ≤ ϕ1 ≤ −0.417π , (4.31)

which indicates that ϕ1 is around ±π/2. This mixing pattern can accommodate

the present neutrino oscillation data very well. The 3σ allowed values of the lepton

mixing parameters for n = 2, 3, . . . , 100 are displayed in Fig. 4.1 and Fig. 4.2.

Analytic expressions for these parameters can be found in appendix 7.1.3. In the

case that n is divisible by 3, the doublet representations 22, 23 and 24 are assumed

to be absent such that the general CP symmetry in Eq. (4.8) is consistently

defined. If n is divisible by 3, the three permutations U I,1st
PMNS, U I,2nd

PMNS and U I,3rd
PMNS

give rise to the same predictions for the mixing parameters. The observed values

of the three lepton mixing angles can not be achieved for n = 3. In case of n = 2

and n = 4, both the atmospheric mixing angle θ23 and the Dirac CP phase δCP are

maximal while the Majorana phases are zero. It is remarkable that the three CP

phases can take any values for sufficiently large n, while θ12 is always constrained

to be in the range of 0.313 ≤ sin2 θ12 ≤ 0.344. Hence this mixing pattern can be

tested by precisely measuring the solar mixing angle θ12. Notice that θ12 can be

measured with rather good accuracy by JUNO experiment [98].

Correlations between mixing parameters for n → ∞ and n = 8 are shown in

Fig. 7.1 where only the phenomenologically viable cases are given for which the

observed values of θ12, θ13 and θ23 can be accommodated for at least some values

of the parameter θ.

The vector
√

2/3 (sinϕ1, cos (π/6− ϕ1) , cos (π/6 + ϕ1))T enforced by the residual

Z2 symmetry could also be the second column of the PMNS matrix. Ignoring
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Figure 4.1: Numerical results for case I, 1st-3rd ordering with the PMNS
matrices given in Eq. (4.29): allowed values of sin2 θ12, sin θ13 and sin2 θ23

for different n, where the three lepton mixing angles are required to lie
in their 3σ ranges. The 1σ and 3σ bounds of the mixing parameters are
taken from Ref. [78].

exchanging the second and the third rows, three rearrangements are possible,

U I,4th
PMNS = U I

PMNSP213, U I,5th
PMNS = P231U

I
PMNSP213, U I,6th

PMNS = P312U
I
PMNSP213 .

(4.32)

Analogously to Eq. (4.30), these three forms of the PMNS matrix are related by

parameter redefinition as follows

U I,5th
PMNS(θ, ϕ1, ϕ2) = diag(1, 1,−1)U I,4th

PMNS(π − θ, π
3

+ ϕ1, ϕ2)diag(1, 1,−1),

U6th
PMNS(θ, ϕ1, ϕ2) = diag(−1, 1, 1)U I,4th

PMNS(−θ,−π
3

+ ϕ1, ϕ2)diag(−1, 1, 1) .

(4.33)
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Figure 4.2: Numerical results in case I, 1st-3rd ordering with the PMNS
matrices given in Eq. (4.29): the possible values of |sin δCP |, |sinα21| and
|sinα′31| for different n, where the three lepton mixing angles are required
to lie in the 3σ ranges. The 1σ and 3σ bounds of the mixing parameters
are taken from Ref. [78].

In this case, one finds the following relation,

3 sin2 θ12 cos2 θ13 = 2 sin2 ϕ1 , (4.34)

which yields 0.614 ≤ | sinϕ1| ≤ 0.727 at 3σ confidence level, and therefore the

parameter ϕ1 is to be in the range

ϕ1 ∈ ± ([0.210π, 0.259π]) ∪ [0.741π, 0.790π]) . (4.35)
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Figure 4.3: Numerical results in case I, 4th-6th ordering with the PMNS
matrices given in Eq. (4.32). The red filled regions denote the allowed
values of the mixing parameters if we take the parameters ϕ1 and ϕ2 to
be continuous (which is equivalent to taking the limit n→∞), where θ12

and θ13 are required to lie in their 3σ ranges. The resulting predictions
for θ23 are far beyond its 3σ range. The 1σ and 3σ bounds of the mixing
parameters are taken from Ref. [78].

For the representative values ±π/4 and ±3π/4 of ϕ1, the relatively small θ13 leads

to

(ϕ1, ϕ2, θ) ' (±π
4
, 0,

3π

4
), (±π

4
, π,

π

4
), (±3π

4
, 0,

π

4
), (±3π

4
, π,

3π

4
) . (4.36)

Accordingly the atmospheric mixing angle θ23 would be

sin2 θ23 '
1

4
(2−

√
3) ' 0.067, or sin2 θ23 '

1

4
(2 +

√
3) ' 0.933 , (4.37)

which is not compatible with the global analysis of neutrino oscillation data [78].

As a result, the three lepton mixing angles can not be accommodated simultane-

ously in this case, and this mixing pattern is not viable. The detailed numerical

results are presented in Fig. 4.3. The correct values of the atmospheric mixing

angle really cannot be achieved for realistic θ12 and θ13.

Finally the fixed column
√

2/3 (sinϕ1, cos (π/6− ϕ1) , cos (π/6 + ϕ1))T can be

placed in the third column. Using the freedom of exchanging the rows of the

PMNS matrix, three equivalent configurations are found,

U I,7th
PMNS = U I

PMNSP321, U I,8th
PMNS = P231U

I
PMNSP321, U I,9th

PMNS = P312U
I
PMNSP321 ,

(4.38)
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which are related by

U I,8th
PMNS(θ, ϕ1, ϕ2) = diag(1, 1,−1)U I,7th

PMNS(π − θ, π
3

+ ϕ1, ϕ2)diag(−1, 1, 1),

U I,9th
PMNS(θ, ϕ1, ϕ2) = diag(−1, 1, 1)U I,7th

PMNS(−θ,−π
3

+ ϕ1, ϕ2)diag(1,−1, 1) .

(4.39)

For the 3σ interval 1.76× 10−2 ≤ sin2 θ13 ≤ 2.95× 10−2 [78], one finds

0.378 ≤ sin2 θ23 ≤ 0.406, or 0.594 ≤ sin2 θ23 ≤ 0.622 . (4.40)

This mixing pattern can be directly tested by future atmospheric neutrino oscilla-

tion experiments or long baseline neutrino oscillation experiments. If θ23 is found

to be nearly maximal, this mixing would be ruled out. Furthermore, the precisely

measured θ13 leads to 0.162 ≤ |sinϕ1| ≤ 0.210, and therefore ϕ1 has to be in the

following range

ϕ1 ∈ ± ([0.0519π, 0.0675π] ∪ [0.933π, 0.948π]) , (4.41)

which implies that ϕ1 should be rather close to 0 or π. To reproduce the observed

value of the reactor mixing angle, the two smallest values for n are 5 and 10, i.e.

at least ∆(150) or ∆(600) is needed to produce viable mixing in this case. The

admissible values of sin2 θ23 and sin θ13 for n = 5, 10, 20 and 30 are plotted in

Fig. 7.2. Furthermore, the variation of the allowed values of the lepton mixing

parameters with respect to n are shown in Fig. 4.4 and Fig. 4.5. Compared with

previous cases, both θ23 and θ13 are predicted to take several discrete values until

n = 100 in this case. It is interesting that the Majorana phase α′31 is constrained

to be in the range of 0 ≤ |sinα′31| ≤ 0.91 while both δCP and α21 can take any

values between 0 and 2π for large n.

(II) Gl = 〈abcsdt〉, Gν = Zbcxdx

2 , Xνr = {ρr(cγd−2x−γ), ρr(bc
x+γd−x−γ)}

In this case, the PMNS matrix is determined to be

U II
PMNS =

1

2

 − sin θ −
√

2eiϕ3 cos θ 1 cos θ −
√

2eiϕ3 sin θ

− sin θ +
√

2eiϕ3 cos θ 1 cos θ +
√

2eiϕ3 sin θ

−
√

2 sin θ −
√

2
√

2 cos θ

 , (4.42)

or the one obtained by exchanging the second and the third rows, where the

parameter ϕ3 is

ϕ3 = −3γ + 2s− t+ 2x

n
π . (4.43)
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Figure 4.4: Numerical results in case I, 7th-9th ordering with the PMNS
matrices given in Eq. (4.38): the allowed values of sin2 θ12, sin θ13 and
sin2 θ23 for different n, where the three lepton mixing angles are required
to lie in their 3σ ranges. The 1σ and 3σ bounds of the mixing parameters
are taken from Ref. [78].

It can take 2n discrete values:

ϕ3 mod 2π = 0,
1

n
π,

2

n
π, . . . ,

2n− 1

n
π . (4.44)

The eigenvalues of abcsdt would be degenerate for t = 0 such that the unitary

transformation Ul can be made unique. If that is the case, one could choose

the residual symmetry to be Gl = K
(cn/2,abcs)
4 which leads to same PMNS ma-

trix shown in Eq. (4.42) with t = 0. This mixing pattern has one column(
1/2, 1/2,−1/

√
2
)T

which is the same as the first (second) column of the bimaxi-

mal mixing up to permutations. In order to in accordance with the experimental

data, the fixed vector
(
1/2, 1/2,−1/

√
2
)T

can only be the second column of the

PMNS matrix.
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Figure 4.5: Numerical results in case I, 7th-9th ordering with the PMNS
matrices given in Eq. (4.38): the allowed values of |sin δCP |, |sinα21| and
|sinα′31| for different n, where the three lepton mixing angles are required
to lie in their 3σ ranges. The 1σ and 3σ bounds of the mixing angles are
taken from Ref. [78].

The following correlation is found:

4 sin2 θ12 cos2 θ13 = 1 , (4.45)

which leads to 0.254 ≤ sin2 θ12 ≤ 0.258 for the measured value of the reactor

mixing angle [78]. Therefore sin2 θ12 is predicted to be very close to its 3σ lower

bound 0.259 [78] in this case. Furthermore, the expression for sin2 θ13 in Eq. (7.46)

yields

1

8

(
3−

√
1 + 8 cos2 ϕ3

)
≤ sin2 θ13 ≤

1

8

(
3 +

√
1 + 8 cos2 ϕ3

)
. (4.46)
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In order to be in accordance with experimental data, the parameter ϕ3 has to be

in the range

ϕ3 ∈ [0, 0.135π] ∪ [0.865π, 1.135π] ∪ [1.865π, 2π] . (4.47)

The allowed values of the mixing parameters with respect to n are shown in

Fig. 4.6 and Fig. 4.7, and the correlations between them are plotted in Fig. 7.3,

where the 3σ lower bound of sin2 θ12 is chosen to be 0.254 instead of 0.259 given

in Ref. [78]. The values of ϕ3 = 0, π are always acceptable, and the corresponding

Dirac and Majorana CP phases are conserved. Note that only CP conserving

cases are allowed for n = 2, 3, . . . , 7. Moreover, the CP violating phases δCP and

α21 are predicted to fulfil |sin δCP | ≤ 0.895 and |sinα21| ≤ 0.545 while α′31 is not

constrained at all for large n.

(III) Gl = 〈acsdt〉, Gν = Zcn/2

2 , Xνr = ρr(c
γdδ)

This case is only possible if n is divisible by 2, and the PMNS matrix takes the

form

U III
PMNS =

1√
3

 eiϕ4 cos θ − eiϕ5 sin θ 1 eiϕ4 sin θ + eiϕ5 cos θ

ωeiϕ4 cos θ − ω2eiϕ5 sin θ 1 ωeiϕ4 sin θ + ω2eiϕ5 cos θ

ω2eiϕ4 cos θ − ωeiϕ5 sin θ 1 ω2eiϕ4 sin θ + ωeiϕ5 cos θ

 ,

(4.48)

where

ϕ4 =
γ + δ + 2s

n
π, ϕ5 =

2δ − γ + 2t

n
π , (4.49)

which can take the values

ϕ4, ϕ5 mod 2π = 0,
1

n
π,

2

n
π, . . . ,

2n− 1

n
π . (4.50)

Agreement with experimental data can be achieved only if the vector
(
1/
√

3, 1/
√

3, 1/
√

3
)T

is placed in the second column, which results in so-called TM2 mixing [99]. There

are three independent arrangements up to the exchange of the second and the

third row,

U III,1st
PMNS = U III

PMNS, U III,2nd
PMNS = P231U

III
PMNS, U III,3rd

PMNS = P312U
III
PMNS .

(4.51)
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Figure 4.6: Numerical results in case II: the allowed values of sin2 θ12,
sin θ13 and sin2 θ23 for different n, where the three lepton mixing angles
are required to lie in their 3σ ranges (the 3σ lower bound of sin2 θ12 is
chosen to be 0.254 instead of 0.259 given in Ref. [78]). The 1σ and 3σ
bounds of the mixing parameters are taken from Ref. [78].

They are related as follows,

U III,2nd
PMNS (θ, ϕ4, ϕ5) = U III,1st

PMNS(θ, ϕ4 +
2π

3
, ϕ5 −

2π

3
),

U III,3rd
PMNS (θ, ϕ4, ϕ5) = U III,1st

PMNS(θ, ϕ4 −
2π

3
, ϕ5 +

2π

3
) . (4.52)

It is enough to study the phenomenological predictions of U III,1st
PMNS.

All mixing parameters depend on the combination ϕ5−ϕ4 except |tanα21|. Com-

mon to all TM2 mixing, θ13 and θ12 are related with each other via:

3 cos2 θ13 sin2 θ12 = 1. (4.53)
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Figure 4.7: Numerical results in case II: the allowed values of |sin δCP |,
|sinα21| and |sinα′31| for different n, where the three lepton mixing angles
are required to lie in their 3σ ranges (the 3σ lower bound of sin2 θ12 is
chosen to be 0.254 instead of 0.259 given in Ref. [78]). The 1σ and 3σ
bounds of the mixing parameters are taken from Ref. [78].

Therefore θ12 admits a lower bound sin2 θ12 > 1/3. Given the 3σ interval of

θ13 [78], we find 0.339 ≤ sin2 θ12 ≤ 0.343. This prediction can be tested at JUNO

in the near future. In addition, θ13 and θ23 are correlated as follows

3 cos2 θ13 sin2 θ23 − 1

1− 3 sin2 θ13

=
1

2
+

√
3

2
tan (ϕ5 − ϕ4) . (4.54)

The expression for θ13 in Eq. (7.47) implies that

1
3
(1− | sin 2θ|) ≤ sin2 θ13 ≤ 1

3
(1 + | sin 2θ|),

1
3
(1− |cos(ϕ5 − ϕ4)|) ≤ sin2 θ13 ≤ 1

3
(1 + |cos(ϕ5 − ϕ4)|) , (4.55)
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Figure 4.8: Numerical results in case III: the allowed values of sin2 θ12,
sin θ13 and sin2 θ23 for different n, where the three lepton mixing angles
are required to lie in their 3σ regions. The 1σ and 3σ bounds of the
mixing parameters are taken from Ref. [78]. Note that n should be even
in this case.

which yields

θ ∈ [0.183π, 0.317π] ∪ [0.683π, 0.817π] ,

ϕ5 − ϕ4 ∈ [−0.135π, 0.135π] ∪ [0.865π, 1.135π] . (4.56)

The allowed values of the mixing parameters for different n are shown in Fig 4.8

and Fig. 4.9. The case of ϕ4 = ϕ5 is always viable for any n, and the resulting

θ23 and δCP are maximal while the Majorana phase α′31 is trivial. Correlations

among the mixing parameters are plotted in Fig. 7.4. The three CP phases can

take any values for large n.

(IV) Gl = 〈acsdt〉, Gν = Zcn/2

2 , Xνr = ρr(abc
γdδ)
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Figure 4.9: Numerical results in case III: the allowed values of |sin δCP |,
|sinα21| and |sinα′31| for different n, where the three lepton mixing angles
are required to lie in their 3σ ranges. The 1σ and 3σ bounds of the mixing
angles are taken from Ref. [78]. Note that n needs to be even in this case.

In this case, the PMNS matrix is of the form

U IV
PMNS =

1√
3

 i
√

2eiϕ7 sin
(
ϕ6 − φ

2

)
1

√
2eiϕ7 cos

(
ϕ6 − φ

2

)
i
√

2eiϕ7 cos
(
ϕ6 − φ

2
+ π

6

)
1 −

√
2eiϕ7 sin

(
ϕ6 − φ

2
+ π

6

)
−i
√

2eiϕ7 cos
(
ϕ6 − φ

2
− π

6

)
1

√
2eiϕ7 sin

(
ϕ6 − φ

2
− π

6

)
 ,

(4.57)

with

ϕ6 =
s− t− γ

n
π, ϕ7 =

s+ t+ 3γ

n
π . (4.58)

The constant vector
(
1/
√

3, 1/
√

3, 1/
√

3
)T

must be the second column to account

for the measured values of the lepton mixing angles. The PMNS matrices cor-

responding to other ordering of rows and columns are related to the above one
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through redefinition of the free parameter φ. This case differs from case III in

the residual CP symmetry, and the resulting PMNS matrix in Eq. (4.57) is still

of TM2 form. The associated lepton mixing parameters read as:

sin2 θ13 =
1

3
[1 + cos(φ− 2ϕ6)] , sin2 θ12 =

1

2− cos(φ− 2ϕ6)
,

sin2 θ23 =
1− sin (φ− 2ϕ6 + π/6)

2− cos(φ− 2ϕ6)
,

tan δCP = tanα′31 = JCP = 0, |tanα21| = | tan(2ϕ7)| . (4.59)

The contribution of ϕ6 can be absorbed into the free parameter φ via redefinition

φ→ φ + 2ϕ6, the reason for this is that the PMNS matrix in Eq. (4.57) and the

resulting mixing parameters in Eq. (4.59) depend on the combination φ − 2ϕ6.

Regarding to the CP violating phases, both δCP and α′31 are always conserved

while α21 can be any value of 0, 1
n
π, 2

n
π, . . ., 2n−1

n
π in this scenario. Furthermore,

the three mixing angles are strongly related with each other as follows:

3 cos2 θ13 sin2 θ12 = 1, sin2 θ23 =
1

2
± 1

2
tan θ13

√
2− tan2 θ13 . (4.60)

For the best fitting value of sin2 θ13 = 0.0234 [78], the solar and atmospheric

angles are determined to be

sin2 θ12 ' 0.341, sin2 θ23 ' 0.391 or 0.609 , (4.61)

which are compatible with the experimentally allowed regions. These correlations

between the three mixing angles are shown in Fig. 7.5. We see that both θ12

and θ23 are constrained to be in a narrow range. The deviation of θ23 from

maximal mixing is somewhat large. Hence this mixing pattern can be checked or

ruled by precisely measuring θ12 and θ23 in next generation neutrino oscillation

experiments.

4.4 Lepton mixing with residual symmetry Z2 ×
CP in the charged lepton sector

In the previous section, a Z2×CP residual symmetry was preserved in the neutrino

sector and an abelian subgroup of ∆(6n2) in the charged lepton sector. In this

section, the residual symmetry Z2 ×CP is preserved in the charged lepton sector

and the full symmetry ∆(6n2)oHCP is broken down to K4 oHν
CP in the neutrino
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sector. The phenomenological consequences of this scenario have been analysed

for the simple flavour symmetry group ∆(24) = S4 in Ref. [87], while an extensive

search in GAP was performed in [97]. All Z2 subgroups of ∆(6n2) had been listed

in Eq. (4.12) and Eq. (4.13). The K4 subgroups of ∆(6n2) can be classified as

follows:

K
(cn/2,dn/2)
4 ≡

{
1, cn/2, dn/2, cn/2dn/2

}
,

K
(cn/2,abcy)
4 ≡

{
1, cn/2, abcy, abcy+n/2

}
,

K
(dn/2,a2bdz)
4 ≡

{
1, dn/2, a2bdz, a2bdz+n/2

}
,

K
(cn/2dn/2,bcxdx)
4 ≡

{
1, cn/2dn/2, bcxdx, bcx+n/2dx+n/2

}
, (4.62)

where K
(cn/2,dn/2)
4 is a normal subgroup of ∆(6n2), and the remaining three K4

subgroups are conjugate to each other. This scenario is only possible if n is di-

visible by 2. Because of the relations relating conjugated elements, Eq. (4.14a),

and Eq. (4.14b), one only needs to consider the representative cases of Gl =

Zbcxdx

2 , Zcn/2

2 and Gν = K
(cn/2,dn/2)
4 , K

(cn/2,abcy)
4 , K

(dn/2,a2bdz)
4 and K

(cn/2dn/2,bcxdx)
4 .

Other possible choices of Gl and Gν are related to these representative residual

symmetry by similarity transformations, and therefore the same lepton mixing

matrices are generated.

Following the same procedure as in section 4.3, the hermitian combination m†lml

of the charged lepton mass matrix and its diagonalization matrix are calculated

from the invariance under the residual symmetry. Comparing with the scenario of

Z2×Hν
CP preserved in the neutrino sector which had been studied in section 4.3.2,

we find that the unitary transformation Ul is of the same form as Uν listed in

section 4.3.2 if the both residual flavour symmetry and residual CP symmetry in

the two occasions are identical and they are listed for completeness in Appendix

7.1.5.

4.4.1 Neutrino sector

In this section, the ∆(6n2) flavour symmetry is broken down to K4 in the neu-

trino sector. Hence the neutrino diagonalization matrix Uν is entirely fixed by

the residual K4, and the residual CP symmetry allows to further determine the

three leptonic CP violating phases up to π. The residual CP symmetry Hν
CP in

the neutrino sector must be compatible with the residual K4 symmetry, and the
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consistency condition should be satisfied,6

Xνrρ
∗
r(g)X−1

νr = ρr(g
′), g, g′ ∈ K4 . (4.63)

Solving this equation, we can find the consistent residual CP symmetries for dif-

ferent K4 subgroups are as follows:

• K(cn/2,dn/2)
4

Xνr = ρr(h), h ∈ ∆(6n2) . (4.64)

• K(cn/2,abcy)
4 , y = 0, 1, . . . n− 1

Xνr = ρr(c
γd2y+2γ), ρr(c

γd2y+2γ+n/2), ρr(abc
γd2γ), ρr(abc

γd2γ+n/2) , (4.65)

with γ = 0, 1, . . . n− 1.

• K(dn/2,a2bdz)
4 , z = 0, 1, . . . n− 1

Xνr = ρr(c
2z+2δdδ), ρr(c

2z+2δ+n/2dδ), ρr(a
2bc2δdδ), ρr(a

2bc2δ+n/2dδ) , (4.66)

where δ = 0, 1, . . . n− 1.

• K(cn/2dn/2,bcxdx)
4 , x = 0, 1, . . . n− 1

Xνr = ρr(c
γd−2x−γ), ρr(c

γd−2x−γ+n/2), ρr(bc
γd−γ), ρr(bc

γd−γ+n/2) , (4.67)

with γ = 0, 1, . . . n− 1.

The light neutrino mass matrix is again constrained by the residual flavour sym-

metry K4 and the residual CP symmetry Hν
CP :

ρT3 (gν)mνρ3(gν) = mν , gν ∈ K4 ,

XT
ν3mνXν3 = m∗ν , Xν ∈ Hν

CP . (4.68)

The mass and diagonalisation matrices are listed in Appendix 7.1.6 and in the

following directly the physical mixing results are given.
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Gl = Zbcx
′
dx
′

2 Gl = Zcn/2

2

Gν = K
(cn/2,dn/2)
4

1√
2

 1
−1
0

T

7

 1
0
0

T

7

Gν = K
(cn/2,abcy)
4

1
2

 1
1

−
√

2

T

3

 1
0
0

T

7

Gν = K
(dn/2,a2bdz)
4

1
2

 1
1

−
√

2

T

3 1√
2

 1
−1
0

T

7

Gν = K
(cn/2dn/2,bcxdx)
4

 cos
(
x−x′
n
π
)

−i sin
(
x−x′
n
π
)

0

T

7 1√
2

 1
−1
0

T

7

Table 4.3: The form of the row of the PMNS matrix that is fixed for dif-
ferent residual symmetries Gν and Gl which are K4 and Z2 subgroups of
∆(6n2) flavour symmetry group respectively. The superscript “T” means
transpose. The symbol “7” denotes that the resulting lepton mixing is
ruled out since there is at least one zero element in the fixed row, and
the symbol “3” denote that the resulting mixing is viable. Note that for

Gl = Zbcx
′
dx
′

2 , the cases of Gν = K
(cn/2,abcy)
4 and Gν = K

(dn/2,a2bdz)
4 are

equivalent because the residual symmetries are related by group conjuga-
tion as b(bcx

′
dx
′
)b = bc−x

′
d−x

′
, bdn/2b = cn/2 and b(a2bdz)b = abc−z.

4.4.2 Predictions for lepton flavour mixing

As the different residual symmetries related by group conjugation lead to the

same predictions for the lepton mixing matrix, one only needs to consider the

cases of Gl = Zbcxdx

2 , Zcn/2

2 and Gν = K
(cn/2,dn/2)
4 , K

(cn/2,abcy)
4 , K

(dn/2,a2bdz)
4 and

K
(cn/2dn/2,bcxdx)
4 . Compared with section 4.3, one row instead of one column of

the PMNS matrix is fixed by residual flavour symmetry in this scenario.7 The

explicit form of this row vector for different residual symmetry is summarized in

Table 4.3. Only one independent case is viable. Taking into account the residual

CP symmetry, both mixing angles and CP phases in terms of one free parameter

are predicted in terms of one free parameter that is not related to the choice of

the residual symmetry itself.

6Again, as in the previous chapter, some of these CP symmetries are not constrained enough,
because the consistency condition used is not strict enough.

7This leads to a new sort of sum rules.
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(V) Gl =
{

1, bcx
′
dx
′}

, Xlr =
{
ρr(c

γ′d−2x′−γ′), ρr(bc
x′+γ′d−x

′−γ′)
}

, Gν = K
(cn/2,abcy)
4

and Xνr = {ρr(cγd2y+2γ), ρr(abc
y+γd2y+2γ)}

Combining the unitary transformation Ul in Eq. (7.51) and Uν in Eq. (7.84), we

can pin down the lepton flavour mixing matrix as follows:

UV
PMNS =

1

2

 sin θ +
√

2eiϕ8 cos θ sin θ −
√

2eiϕ8 cos θ
√

2eiϕ9 sin θ

1 1 −
√

2eiϕ9

cos θ −
√

2eiϕ8 sin θ cos θ +
√

2eiϕ8 sin θ
√

2eiϕ9 cos θ

 ,

(4.69)

with

ϕ8 =
3γ′ + 2x′ + 2y

n
π, ϕ9 = −3γ + 2x′ + 2y

n
π . (4.70)

Here ϕ8 and ϕ9 are independent, they are determined by the residual symmetry,

and they can take the values,

ϕ8, ϕ9 mod 2π = 0,
1

n
π,

2

n
π, . . . ,

2n− 1

n
π . (4.71)

In order to be in accordance with the present neutrino oscillation data, the vector(
1/2, 1/2,−eiϕ9/

√
2
)

can only be the second or the third row. Note that as usual

permutation of the second and the third rows of UV
PMNS is also viable.

The mixing angles θ13 and θ23 are related as follows

2 cos2 θ13 sin2 θ23 = 1, or 2 cos2 θ13 sin2 θ23 = 1− 2 sin2 θ13 , (4.72)

where the second relation is for the PMNS matrix obtained by exchanging the

second and the third rows of UV
PMNS. Moreover, θ12 and θ13 are related by

cos2 θ13 cos 2θ12 = ±2 sin θ13

√
cos 2θ13 cosϕ8 , (4.73)

which is relevant to the parameter ϕ8. The 3σ bound of sin2 θ13 gives the limit on

θ:

θ ∈ [0.060π, 0.078π] ∪ [0.922π, 0.940π] . (4.74)

The equation for sin2 θ12 in Eq. (7.92) leads to

1

2
(1− |cosϕ8|) ≤ sin2 θ12 ≤

1

2
(1 + |cosϕ8|) , (4.75)

Hence ϕ8 is constrained to lie in the region

ϕ8 ∈ [0, 0.409π] ∪ [0.591π, 1.409π] ∪ [1.591π, 2π] . (4.76)
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The numerical results are displayed in Fig. 4.10 and Fig. 4.11. Note that con-

served CP corresponding to ϕ8 = 0, π is always viable. If one requires that all

three mixing angles are in their 3σ intervals, one finds that 0.141 ≤ sin θ13 ≤ 0.172,

0.328 ≤ sin2 θ12 ≤ 0.359, and sin2 θ23 is around 0.488 and 0.512 due to the correla-

tion shown in Eq. (4.72). Note that θ23 is very close to maximal mixing. Therefore

precisely measuring the lepton mixing angles at JUNO or long baseline neutrino

experiments can test this mixing pattern directly. For the CP phases, δCP and α21

are predicted to be in the intervals of |sin δCP | ≤ 0.586 and |sinα21| ≤ 0.396 while

α′31 can have any value for sufficient large n. The correlations between different

mixing parameters are shown in Fig. 7.6.
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Figure 4.10: Numerical results in case V: the allowed ranges of sin2 θ12,
sin θ13 and sin2 θ23 for different n, where the three lepton mixing angles
are required to lie in the 3σ regions. The 1σ and 3σ bounds of the mixing
angles are taken from Ref. [78]. Note that n should be divisible by 2 in
this case.
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Figure 4.11: Numerical results in case V: the allowed ranges of |sin δCP |,
|sinα21| and |sinα′31| for different n, where the three lepton mixing angles
are required to lie in the 3σ regions. The 1σ and 3σ bounds of the mixing
angles are taken from Ref. [78]. Note that n should be divisible by 2 in
this case.

4.5 Neutrinoless double-beta decay

The very rare (if possible) process of neutrinoless double-beta decay (0ν2β), is an

important probe for the Majorana nature of neutrino and lepton number violation,

a sizeable number of new experiments are currently running, under construction,

or in the planing phase. In models where 0ν2β is dominated by light Majorana

neutrinos, the particle physics contribution to the decay rate is parameterized by

the effective mass of neutrinoless double-beta decay, which is [36]

|mee| =
∣∣∣(m1c

2
12 +m2s

2
12e

iα21)c2
13 +m3s

2
13e

iα′31

∣∣∣ . (4.77)
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For normal hierarchy, the masses are

m1 = ml, m2 =
√
m2
l + δm2, m3 =

√
m2
l + ∆m2 + δm2/2 , (4.78)

and for inverted hierarchy

m1 =
√
m2
l −∆m2 − δm2/2, m2 =

√
m2
l −∆m2 + δm2/2, m3 = ml , (4.79)

where ml denotes the lightest neutrino masses, and δm2 ≡ m2
2 −m2

1 and ∆m2 ≡
m2

3− (m2
1 +m2

2)/2 as defined in Ref. [78]. The experimental error on the neutrino

mass splitting is not taken into account during the analysis, instead the best fit

values from [78] are used:

δm2 = 7.54× 10−5eV2, ∆m2 = 2.43× 10−3(−2.38× 10−3)eV2 , (4.80)

for normal (inverted) hierarchy. In the following, the properties of the effective

mass are examined for all viable cases of lepton mixing discussed in this chapter.

In Fig. 4.12 the allowed ranges of the effective mass are shown for each case in the

limit of n→∞, where the three mixing angles are required to lie in the measured

3σ intervals [78]. (As previously mentioned, the 3σ lower bound of sin2 θ12 is

chosen to be 0.254 instead of 0.259 in case II.) Furthermore, the predictions for

the representative value n = 8 (n = 5 in case I, 7th-9th ordering) are plotted in

Fig. 4.13. The results for any finite value of n must be part of the ones shown,

which correspond to n → ∞. Moreover, the plot would change very little if the

experimental errors on δm2 and ∆m2 were taken into account. Note that only one

distinct prediction for the effective mass arises except in case I. One reason for

this is that, as discussed before, many of the possible permutations of the mixing

matrix can be identified with each other. Furthermore, permuting the second and

third row has no effect on the effective mass as θ23 does not appear in Eq. (4.77).

As shown in Fig. 4.12, for inverted hierarchy neutrino mass, almost all of the

allowed 3σ range of the effective masses |mee| can be reproduced in the limit

n→∞ in case I, case III and case IV. However, the predictions for |mee| are around

the upper bound (about 0.05eV) or lower bound (about 0.013 eV) in case V. The

reason is that the solar mixing angle is in a narrow region 0.328 ≤ sin2 θ12 ≤ 0.359

and the Majorana phase α21 is constrained to be |sinα21| ≤ 0.586 in this case,

as displayed in Fig. 4.10 and Fig. 4.11. Similarly |mee| is near the upper bound

and 0.025 eV in case II. Therefore if the effective mass is measured to be far from

0.013 eV, 0.025 eV and 0.05 eV for inverted hierarchy by future experiments, the
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mixing patterns in cases II and V could be ruled out.

For normal hierarchy neutrino mass, a sizeable part of the experimentally allowed

3σ region of |mee| can be generated in all cases, and the effective mass could be

rather small. In particular, the prediction in case I, 7th to 9th ordering approx-

imately coincides with the present 3σ region. Unfortunately the predictions for

normal hierarchy are still out of reach of projected experiments known to the

author. As a result, it might turn out to be difficult to test the ∆(6n2) flavour

symmetry and general CP symmetry through neutrinoless double beta decay ex-

periments in the case of normal mass ordering.

4.6 Conclusions

In the results presented in this chapter, a detailed analysis of ∆(6n2) flavour sym-

metry combined with general CP symmetry HCP in the lepton sector in semidirect

models was performed. The lepton mixing parameters obtained from flavour sym-

metry ∆(6n2) oHCP broken to different residual symmetries in the neutrino and

charged lepton sectors were investigated.

Mass and mixing predictions were discussed for all possible cases where the ∆(6n2)

flavour symmetry with general CP is broken to Gν = Z2 with Gl = K4, Zp, p > 2

and Gν = K4 with Gl = Z2. Five phenomenologically allowed cases survived and

the resulting predictions for the PMNS parameters were presented as a function

of n, as well as the predictions for neutrinoless double beta decay.

CP phases are predicted to take values different from 0, π or ±π/2. In direct

models with ∆(6n2), | sin δCP| = 0, which may contradict future measurements.

In addition, both charged-lepton-semidirect and neutrino-semidirect models open

up new large areas of parameter space. But still, as parts of the mixing matrix are

entirely fixed and relations following from this can be tested by testing the pre-

dictions of sum rules, all semidirect models with ∆(6n2) will eventually accessible

to experiment and cannot evade exclusion forever.
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Figure 4.12: The allowed ranges of the effective mass for neutrinoless
double-beta decay for all viable cases of lepton mixing in semidirect mod-
els with a ∆(6n2) flavour group in the limit of n → ∞. The top row
corresponds to case I, with 1st-3rd ordering on the left and 7th to 9th
ordering on the right, the middle row contains case II and III, and the
bottom row case IV and V. Light blue and yellow areas indicate the cur-
rently allowed three sigma region for normal and inverted hierarchy, re-
spectively. Purple regions correspond to predictions assuming inverted hi-
erarchy, green regions to normal hierarchy. The upper bound |mee| < 0.120
eV is given by measurements by the EXO-200 [79, 100] and KamLAND-
ZEN experiments [101]. Planck data in combination with other CMB and
BAO measurements [80] provides a limit on the sum of neutrino masses of
m1 +m2 +m3 < 0.230 eV from which the upper limit on the mass of the
lightest neutrino can be derived.
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Figure 4.13: The allowed ranges of the effective mass for neutrinoless
double-beta decay for all viable cases of lepton mixing in semidirect mod-
els with a ∆(6n2) flavour group. The top row corresponds to case I, with
1st-3rd ordering on the left and 7th to 9th ordering on the right, the mid-
dle row contains case II and III, and the bottom row case IV and V. Light
blue and yellow areas indicate the currently allowed three sigma region for
normal and inverted hierarchy, respectively. Purple regions correspond to
predictions assuming inverted hierarchy, green regions to normal hierar-
chy in the limit of n → ∞. Blue and red regions represent predictions
for normal and inverted hierarchy for the value n = 8 (in the top-right
panel, we choose n = 5 which is the smallest viable value of n in that
case). The upper bound |mee| < 0.120 eV is given by measurements by
the EXO-200 [79, 100] and KamLAND-ZEN experiments [101]. Planck
data in combination with other CMB and BAO measurements [80] pro-
vides a limit on the sum of neutrino masses of m1 +m2 +m3 < 0.230 eV
from which the upper limit on the mass of the lightest neutrino can be
derived.





5

CP-odd invariants for multi-Higgs

models and applications with

discrete symmetry

This chapter presents results that were partly published previously in [6]. The

contribution of the author to [6] lies in the majority of the calculations, in particu-

lar in further developing invariants methods, pioneering the contraction matrices,

obtaining all invariants, evaluating invariants for example potentials, and addi-

tionally writing all relevant parts of [6], which happen to constitute the majority

of the paper.

In this chapter, so-called CP-odd flavour basis invariants will be constructed and

analysed. However, this was not done for fermions, where this problem is pretty

much solved by the existence of the Jarlskog invariant that indicates CP violation

by the Dirac CP phase and similar invariants which take into account Majorana

phases. The CP-odd invariants considered in this chapter are purely constructed

from the parameters of a model’s scalar potential. This topic seems to lie a little

out of the way of the previous development of this thesis, which it does to some

extent, but it should be seen as a building block that fits well into the general

effort which lies behind the previous chapters as well, namely broadly speaking

the origin of CP violation, which at the end of the day seems to be necessary for

all our existence.

As discussed before, only in the weak interactions of quarks in the standard model

CP violation has been proven [23], however, its magnitude is not sufficient to

generate the observed matter-antimatter asymmetry (among other reasons). Great

105
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hope is generally put into finding CP violation in the lepton sector. Now, the

original motivation to consider residual symmetries at the beginning of this thesis

was the flavour problem. With analysing direct models of ∆(6n2) groups and

finding that they can explain the currently measured lepton mixing (and later

finding that they are among the last groups that do so in a direct model) progress

was made. But a very important by-product was the finding that in direct models

with a finite flavour group, [60], δCP = 0 mod 2π. If this would turn out to be

true, then this amount of CP violation in the light lepton sector, namely zero,

would certainly not be enough to explain our existence. This would require an

additional source of CP violation.

Approaching from a different direction: among the simplest expansions of the

standard model are models with additional scalar bosons, doublets or singlets.

And in fact, models with spontaneously broken flavour symmetries always require

additional scalar fields to facilitate this spontaneous breaking, and as fermions

are often to transform under 3-dimensional representations of the flavour group,

often scalars that transform under a three-dimensional representation as well are

required.1

In extensions with additional scalars, new sources of CP violation can arise from

the scalar potential already for only one additional Higgs doublet. However, such

models with two Higgs doublet are plagued with flavour-changing neutral currents

and when one forbids them with additional symmetries, also the new sources of CP

violation are eliminated.2 Thus, the smallest number of Higgs doublets required

for a new source of CP violation in the scalar sector that does not cause flavour-

changing neutral currents is three, in line with the argument from the previous

paragraph.

The questions one has ask to a model where a flavour symmetry is spontaneously

broken are then, roughly in this order: Does it explain the mixing correctly? Is

there sufficient CP violation in the lepton sector? Is there CP violation in the

extended scalar sector? (Is there CP violation in the extended Yukawa sector?)

The previous chapters concerned themselves with the first two questions, while this

chapter attempts the third question, again as before not for a specific model, but

developing and using more general methods to analyse a large number of models

1This is true for all models with spontaneously broken flavour symmetries, although in the
previous paragraph only direct models had been mentioned.

2The parameters responsible for FNCN could be rather small, but in this case it is not clear
if the CP violation in this case would be sufficient to explain the matter-antimatter asymmetry.
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simultaneously. (And the fourth question is the necessary next step, but one thing

at a time.)

CP-odd invariants provide a basis independent way of studying the CP properties

of Lagrangians. In this chapter, the known diagrammatic method for constructing

basis invariants is developed further. This method generally allows to determine

whether invariants are CP-odd or CP-even and to systematically construct all of

the simplest CP-odd invariants up to a given order, in the process of which many

previously unknown ones are found. Additionally, such CP-odd invariants are

valid for general potentials when expressed in a standard form. The diagrammatic

method allows for constructing invariants that are sensitive to both explicit as

well as spontaneous CP violation and can distinguish between the two kinds of

CP violation. Here one should mention that while a complete so-called basis

of invariants is known for models with two Higgs doublets, the invariants that

constitute this basis vanish for all example potentials considered in this chapter.

The newly found invariants are then used to test the CP properties of various

scalar potentials involving three (or six) Higgs fields which form irreducible triplets

under a discrete symmetry. The cases considered include one triplet of Standard

Model (SM) gauge singlet scalars, one triplet of SM Higgs doublets, two triplets

of SM singlets, and two triplets of SM Higgs doublets. For each case the potential

symmetric under one of the simplest discrete symmetries with irreducible triplet

representations, namely A4, S4, ∆(27) or ∆(54), as well as the infinite classes of

discrete symmetries ∆(3n2) or ∆(6n2) is studied.

5.1 Introduction

The origin of the observed SM quark CP violation (CPV) is a natural consequence

of three generations of quarks whose mixing is described by a complex CKM

matrix. Although the CKM matrix can be parametrised in different ways, it

was realised that the amount of CPV in physical processes always depends on a

particular weak basis invariant which can be expressed in terms of the quark mass

matrices [102]. In the SM the electroweak symmetry SU(2)L × U(1)Y is broken

to the electromagnetic gauge group U(1)Q by a single Higgs doublet, resulting

in a single physical Higgs boson which has been observed with a mass near 125

GeV [103, 104]. Although CP is automatically conserved by the Higgs potential of

the SM, with more than one Higgs doublet it is possible that the Higgs potential

violates CP, providing a new source of CPV [105]. This is welcome since Sakharov
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discovered that CPV is a necessary condition for baryon asymmetry generation

[15] and CPV arising from the quark sector of the SM is insufficient [106].

It is also possible, indeed likely, that CP could be violated in the lepton sector, as is

hinted at by global fits [107, 83], and such a source of CPV could also contribute

to the baryon asymmetry via leptogenesis [108]. In this case one would like to

construct models that explain the structure of the lepton mass matrices, through

which CPV enters the processes for creating the baryon asymmetry. Typical ex-

amples of such models that use discrete symmetries to constrain the structure of

mass matrices need several multiplets of scalar fields that also transform under the

same symmetry (for reviews, cf. [109, 110, 27, 25, 111, 112]). Such models provide

a motivation to study multiple SM Higgs singlets (sometimes called “flavons” in

this context) as well as electroweak doublets. In the context of flavour models it

is natural to consider Higgs doublets or singlets which play the role of “flavons”

and form irreducible triplets under some spontaneously broken discrete flavour

symmetry.

As already mentioned in the context of the CKM matrix, the study of CP is a subtle

topic because of the basis dependent nature of the phases which control CPV.

Similar considerations also apply to the phases which appear in the parameters of

the potentials of multiple scalars.

An important tool to assist in determining whether CP is violated or not are basis

independent CP-odd invariants (CPIs), whose usefulness has been shown in the

SM in addressing CP violation arising from the CKM matrix, sourced from the

Yukawa couplings. The first example of the use of such invariants was the Jarlskog

invariant [102], which was reformulated in [113] in a form which is generally valid

for an arbitrary number of generations. Generalising the invariant approach [113]

and applying it to fermion sectors of theories with Majorana neutrinos [114] or

with discrete symmetries [115, 116] leads to other relevant CPIs.

In extensions of the Higgs sector of the SM, the CP violation arising from the

parameters of the scalar potential can be studied in a similar basis invariant way

as for the quark sector. For example, in the general two Higgs Doublet Model

(HDM) [105] (see [117] for a recent analysis) a CPI was identified in [118]. More

generally, applying the invariant approach to scalar potentials has revealed relevant

CPIs [119, 120, 121], including for the 2HDM [122, 123]. However, as mentioned

before, while these invariants even form a basis, which means that any possible

CP-odd invariant has to involve those invariant, they all vanish for more symmetric

models and therefore cannot indicate whether CP is violated or not. Thus the goal



5 CP-odd invariants for multi-Higgs models and applications with discrete
symmetry 109

is to consider yet more general Higgs potentials and improve on the methods for

constructing CPIs, which subsequently are applied to potentials involving three or

six Higgs fields (which can be either electroweak doublets or singlets) which form

irreducible triplets under a discrete symmetry.

To begin with, the previous progress in developing a systematic approach to CPIs

for arbitrary scalar potentials is reviewed, focusing on renormalisable potentials

with quadratic and quartic couplings. The reader may be primarily interested in

cases where the Higgs fields are electroweak SU(2)L doublets, but the formalism

can also be applied to more general scalar potentials including cases where the

Higgs fields are SM singlets. Methods where basis invariants [121, 122, 123] can be

represented pictorially by diagrams (introduced for the 2HDM in [122]) are further

developed and matrices are introduced later designated as contraction matrices,

that identify how the parameters in the potential are combined to form a basis

invariant. The diagrams and matrices are extremely helpful in distinguishing CPIs

from basis invariants that are CP-even, as well as cataloguing each CPI uniquely

in association with an element of a group of permutations. CPIs as defined via

such matrices are valid for any potential, and then take specific expressions when

specialising to a potential (often vanishing for cases where the potential is very

symmetric, even if the potential features explicit CP violation as shown by other

non-vanishing CPIs).

After that, the newly constructed CPIs are applied to physically interesting cases,

beginning with the familiar example of the general 2HDM. Following this, exam-

ples of potentials which involve three or six Higgs fields which fall into irreducible

triplet representations of discrete symmetries belonging to the ∆(3n2) and ∆(6n2)

series studied extensively in the context of flavour and CP models in [30, 72, 67,

1, 69, 71, 86, 66, 2, 94, 124, 3, 87, 95, 4, 125, 126, 127, 128, 5, 85, 129, 130, 131].

Specific cases of the 3HDM [91, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141,

142, 143, 144, 145, 146, 147] and of the 6HDM [148, 149, 150, 151, 152, 153, 154]

where the three or six Higgses are related by the discrete symmetry as one or two

(flavour) triplets are considered. Although many of these cases have already been

studied in the literature, systematically exploiting the formalism yields many new

results. For example, although ∆(27) with a single triplet of Higgs doublets has

been extensively studied in the literature [91, 134, 135, 136, 139, 140, 145], using

the invariant approach and the CPIs produced several new results of interest.

Using the invariant approach, the considered cases include one triplet of SM gauge

singlets, one triplet of SM Higgs doublets, two triplets of SM singlets, and two
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triplets of SM Higgs doublets, where for each case the potential is symmetric

under one of the simplest discrete symmetries with irreducible triplet representa-

tions, namely A4, S4, ∆(27) or ∆(54), as well as the infinite classes of discrete

symmetries ∆(3n2) or ∆(6n2). In each case, it is shown which potentials are in

general CP conserving (all the CPIs vanish, and a CP symmetry that leaves the

potential invariant proves CP invariance) or in general CP violating (in which case

it is sufficient to show a single non-vanishing CPI). For the CP violating potentials

imposing specific CP symmetries, lead in constraining the parameters of the po-

tential in one way or the other to generally vanishing CPIs. As the formalism also

allows for Vacuum Expectation Values (VEVs), one can obtain Spontaneous CPIs

(SCPIs) that are non-vanishing if CP is spontaneously violated (as considered

earlier in [119, 120]). One of these SCPIs is applied to the better studied ∆(27)

potential, exploring different CP symmetries and VEVs that either conserve or

spontaneously violate the imposed CP symmetry.

The layout of this chapter is as follows. Section 5.2 reviews the general formalism.

In Section 5.3 the 2HDM potential is revisited where the formalism is applied

and small differences to earlier developments in the literature are shown. In Sec-

tion 5.4, 5.5 and 7.2 CPIs are applied to∆(3n2) and ∆(6n2) groups with n = 2

(A4, S4), n = 3 (∆(27), ∆(54)) and n > 3. A summary of the results obtained

for the potentials invariant under discrete symmetries is contained in Section 5.6

(including Table 5.1). Section 5.7 is dedicated to invariants that indicate sponta-

neous CP violation (SCPIs). Section 5.8 concludes the chapter. Further material

is included in Appendix 7.3 with a complete list of the CPIs and SCPIs found and

used throughout this chapter, and Appendix 7.4.2 discusses how to obtain results

for ∆(6n2) from the results of the ∆(3n2) potentials.

5.2 CP-odd invariants for scalar potentials

5.2.1 General formalism

One important aim of this chapter is to explore the CP properties of the Higgs

sector of models with several copies of SM Higgs doublets. Often, scalar potentials

can be confusingly complex and it can be unclear which parameters can contribute

to CP violation. This situation is made even more difficult by the possibility

of choosing different bases which modify the explicit form of the potential but

should not change the physics described by it. Both of these difficulties can be
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overcome by CPIs, in this case CP-odd (Higgs-) basis invariants, that, when non-

zero, indicate CP violation. A similar CPI for the Yukawa sector of the SM is the

well-known Jarlskog invariant [102].

Before defining and discussing CPIs of the scalar sector in detail, we first show

how to write any possible Higgs potential in a standard form which is suitable to

construct general basis invariants. This procedure has the advantage that basis

invariants only have to be derived once in the standard form; their explicit form for

any particular Higgs potential follows almost trivially by translating the latter into

the standard parametrisation. Furthermore, invariants that are CP-odd (CPIs) for

the standard form of potentials are so by construction and, if non-zero, indicate

CP violation for all possible example potentials.

The relation between non-zero CPIs and CP violation can be formulated more

precisely as follows. If a potential conserves CP, then all CPIs vanish automat-

ically. Reversely, if one or several CPIs are non-zero, the potential violates CP.

This statement holds for both explicit and spontaneous CP violation, and the cor-

responding CPIs are introduced in Sections 5.2.2 and 5.7. Note that CPIs only

guarantee CP conservation if all of them vanish. This is equivalent to demanding a

finite set of CPIs, the so-called basis out of which all other CPIs can be produced,

to vanish. Such a basis of CPIs is known for the 2HDM [123], but, so far, not for

any other more complicated scalar potentials.

In the following, we first introduce the standard form for scalar potentials. In this

notation the effects of symmetry transformations, general basis transformations,

complex conjugation and CP transformations on the variables and parameters of

the standard form are analysed. Adopting the procedure and notation of [121, 122],

any even potential of N scalar fields ϕi can, with φ = (ϕ1, . . . , ϕN) and φ∗ =

(ϕ∗1, . . . , ϕ
∗
N), be written as

V = φ∗a Y b
a φb + φ∗aφ∗c Zbd

ac φbφd , (5.1)

where the notation is such that lower indices on Y and Z are always contracted

with φ∗ and upper indices with φ. Y and Z are tensors that contain all possible

couplings and are subject to possible symmetries acting on φ, as will be explained

below.3

3One could also add a term such as e.g. T abc φaφbφ
∗c + h.c. to the potential to account for

trilinear couplings and the discussion could be extended in this way.
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Any potential of several Higgs doublets can be brought into this standard form by

φ not containing doublets as such, but instead directly containing the components

of the doublets: for n Higgs doublets Hiα = (hi,1, hi,2), where α = 1, 2 denotes the

SU(2)L index and i goes from 1 to n,

φ = (ϕ1, ϕ2, . . . , ϕ2n−1, ϕ2n) = (h1,1, h1,2, . . . , hn,1, hn,2) , (5.2)

and the invariance of the potential under SU(2)L×U(1)Y will be directly reflected

in the structure of Y and Z in a component-wise way. This convention, which

differs from the notation of [121, 122], will be very useful later on.4

More explicitly, if the theory is invariant under symmetry transformations of

a group G such that φ transforms in some (maybe reducible) representation ρ(g)

of that group, where ρ(g) is the matrix that corresponds to the group element

g ∈ G,

φa 7→ [ρ(g)]a
′

a φa′ , (5.3)

φ∗a 7→ φ∗a
′
[ρ†(g)]aa′ , (5.4)

then the invariance of the potential imposes the following constraints on the cou-

pling tensors:

Y b
a = ρa

′

a Y
b′

a′ ρ
†b
b′ , (5.5)

Zbd
ac = ρa

′

a ρ
c′

c Z
b′d′

a′c′ ρ
†b
b′ ρ
†d
d′ , (5.6)

where we have written ρa
′
a = [ρ(g)]a

′
a and so on. In addition to that, the quartic

coupling tensor Zbd
ac is by construction invariant under exchanging a ↔ c as well

as b↔ d. The reason for this is that φb and φd commute so that the indices b and

d can be renamed into each other to restore the original ordering of the φ’s, and

equivalently for φ∗ with a and c.

While the theory is invariant under symmetry transformations, one also has the

possibility of applying basis transformations under which the Lagrangian is not

invariant. Of course, such a basis transformation should not change physics. A

simple example is the transformation that diagonalises the bilinear mass terms

φ∗a Y b
a φb. As Z is generally only invariant under a smaller group than that of all

4In [122], for example, the SU(2)L indices are summed over outside of Z. Our definition of Z
tensors can be related to [122] by explicitly highlighting the SU(2)L subindices, {1, 2, . . . , 2n −
1, 2n} = {(1, 1), (1, 2), . . . , (n, 1), (n, 2)}. With this, the Z tensors in used here become Zabcd =

Z
(ã,α)(b̃,β)

(c̃,γ),(d̃,δ)
= Z̃ ãb̃

c̃d̃
δαγ δ

β
δ , where Z̃ denotes the coupling tensors of [122].



5 CP-odd invariants for multi-Higgs models and applications with discrete
symmetry 113

basis changes, diagonalising Y would change Z.5 Adopting our notation for the

standard form of Higgs potentials, a unitary basis transformation in the space

of the N dimensional vector φ, i.e. with U ∈ U(N) a unitary N ×N matrix, maps

φa 7→ Ua′

a φa′ , (5.7)

φ∗a 7→ φ∗a
′
U †

a

a′ . (5.8)

With this definition, the kinetic terms remain unchanged while Y and Z transform

to

Y b
a 7→ Ua′

a Y b′

a′ U
†b
b′ , (5.9)

Zbd
ac 7→ Ua′

a U c′

c Z
b′d′

a′c′ U
†b
b′ U

†d
d′ . (5.10)

Complex conjugation is an essential part of CP transformations and in the

notation used here, changes the vertical position of the index of a field so that

φa 7→ (φa)
∗ ≡ φ∗a , (5.11)

φ∗a 7→ (φ∗a)∗ ≡ φa . (5.12)

Complex conjugating the Y term of the potential then results in

φ∗a Y b
a φb 7→ φa (Y b

a )∗ φ∗b = φ∗b (Y b
a )∗ φa = φ∗a (Y a

b )∗ φb . (5.13)

Comparing this to the original term in the potential and demanding V ∗ = V shows

that

(Y a
b )∗ = Y b

a . (5.14)

A similar result is obtained for the quartic coupling, i.e.

(Zac
bd )∗ = Zbd

ac . (5.15)

Note that because both indices of a contracted pair interchange position under

complex conjugation, no situation can arise where one would need to sum over two

upper or two lower indices. However, expressions as e.g. Eqs. (5.14) and (5.15)

where indices appear with exchanged vertical positions without being summed

5Except in the case where the components of Y conspire in such a way that the required basis
transformation coincides with a symmetry transformation. Furthermore, a general basis trans-
formation changes the form of the potential, while only transformations in the automorphism
group Aut(G) leave the potential form-invariant.
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over need to be understood as conditions on the components of the tensors and

not the tensors themselves.

Finally, all pieces are in place to define a (general) CP transformation6 with

a unitary matrix X on the fields as

φa 7→ φ∗a
′
Xa
a′ , (5.16)

φ∗a 7→ X†
a′

a φa′ . (5.17)

Again, this leaves the kinetic terms invariant, while applying the CP transforma-

tion to the fields in the potential results for the Y term in

φ∗a Y b
a φb 7→ X†

a′

a φa′ Y
b
a φ
∗b′Xb

b′ = X†
a′

a φa′ (Y
a
b )∗ φ∗b

′
Xb
b′

= φ∗b
′
Xb
b′ (Y

a
b )∗X†

a′

a φa′

= φ∗aXa′

a (Y b′

a′ )
∗X†

b

b′φb . (5.18)

Comparing this to the original term in the potential shows that a CP transforma-

tion acting on the fields can be equally understood as the following change of Y

(likewise for Z),

Y b
a 7→ Xa′

a (Y b′

a′ )
∗X†

b

b′ , (5.19)

Zbd
ac 7→ Xa′

a X
c′

c (Zb′d′

a′c′ )
∗X†

b

b′X
†d
d′ . (5.20)

The condition for CP invariance of the standard form of the potential V in

Eq. (5.1), and thus any example potential that can be brought into this stan-

dard form, can then be phrased as follows: CP is conserved if there is an X such

that the left- and right-hand sides of Eqs. (5.19) and (5.20) are identical. As a

special case of that, if the tensors Y and Z are real, the potential is invariant

under a CP transformation, which we refer to as CP0,

Xa
a′ = δaa′ . (5.21)

CP0 is often referred to as trivial or canonical CP.

In doing so, we note that a physical CP transformation will have to treat the two

components of an SU(2)L doublet consistently with that symmetry, i.e. both must

transform identically under the CP symmetry [70].

6This is often referred to as a general CP transformation.
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In preparation for Section 5.7, where CPIs for spontaneous CP violation will be

constructed, we define how VEVs behave under basis transformations:

va 7→ Ua′

a va′ , (5.22)

v∗a 7→ v∗a
′
U †

a

a′ , (5.23)

where v ≡ (v1, . . .) with vi = 〈ϕi〉, and U denotes the transformation matrix of

the fields φ. Similarly, under CP transformations, they become

va 7→ v∗a
′
Xa
a′ , (5.24)

v∗a 7→ X†
a′

a va′ . (5.25)

5.2.2 CP-odd invariants for explicit CP violation

In the previous subsection, the standard form for even scalar potentials was in-

troduced and the effects of symmetry transformations, basis transformations and

CP transformations has been analysed. This subsection starts with a discussion of

simple basis invariants constructed from Y and Z tensors. After that, the general

definition of CP-odd basis invariants (CPIs) that contain Y and Z is given.

Finally, the CP properties of such invariants will be analysed. CPIs of this type,

that only consist of parameters of the potential and in particular do not contain

VEVs, indicate explicit violation of CP. The exact statement is that if all possible

CPIs are zero, then the theory is CP conserving. Vice-versa, if at least one CPI is

non-zero, the theory violates CP explicitly. Invariants including VEVs, such that

they indicate spontaneous violation of CP, will be introduced in Section 5.7.

Any product of Y and Z tensors where all indices are correctly contracted forms

a basis invariant. Starting with Y and considering Z a little later, the simplest

invariant (that is however not CP-odd) is

Y a
a . (5.26)

For products of two Y tensors, the only possible contractions are

Y a
a Y

b
b and Y a

b Y
b
a . (5.27)
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The above contractions correspond to the two different permutations of the two

upper indices, namely firstly the identity:

Y a
a Y

b
b ⇔ a 7→ a and b 7→ b , (5.28)

and secondly the transposition:

Y a
b Y

b
a ⇔ a 7→ b and b 7→ a . (5.29)

More formally, one can thus also express all invariants that consist of two Y tensors

by

Y a
σ(a)Y

b
σ(b) with σ ∈ S2 , (5.30)

where σ is now one of the two elements of the permutation group S2. The invariant

built from two Y tensors that corresponds to the identity of S2 is the square of the

simplest invariant. Thus, only the second invariant is irreducible, which for our

purposes will be defined as not being a product or power of smaller invariants.

It is generally true that all possible invariants can be obtained through permuta-

tions of indices: all conceivable invariants built from 3 Y tensors are given by

Y a
σ(a)Y

b
σ(b)Y

c
σ(c) with σ ∈ S3 , (5.31)

or explicitly

Y a
a Y

b
b Y

c
c , Y

a
a Y

b
c Y

c
b , Y

a
c Y

b
b Y

c
a , Y

a
b Y

b
a Y

c
c , Y

a
c Y

b
a Y

c
b , Y

a
b Y

b
c Y

c
a . (5.32)

Here, only the last two invariants are new and irreducible, i.e. not products of

smaller invariants. Additionally, they turn out to be equivalent as can be seen by

renaming the indices b↔ c into each other.

The identification of invariants with elements of permutation groups will be used

later to systematically identify all irreducible invariants of a given order. Beyond

that, it is this formalism that is going to make it possible to determine which

invariants are CP-even and which are not.

But before that, some more examples are in order, as the situation is more com-

plicated for invariants containing Z tensors. There are already two invariants that

could be built from a single Z tensor that again correspond to the two possible
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permutations of positions of the two upper indices:

Zab
σ(a)σ(b) with σ ∈ S2 , (5.33)

or explicitly:

Zab
ab and Zab

ba . (5.34)

Because the Z tensor of potentials considered here is symmetric under exchanging

both upper or both lower indices, cf. below Eq. (5.6), both invariants built from one

Z tensor are equivalent. For larger numbers of tensors, the number of permutations

grows quickly, however, luckily, many invariants do not need to be considered either

because they are products of smaller invariants, or because they are equivalent due

to the symmetry of single tensors themselves or the symmetries of the invariant.

For example, for two Z tensors, generally all invariants would be given by

Zab
σ(a)σ(b)Z

cd
σ(c)σ(d) with σ ∈ S4 , (5.35)

but the only new invariants can be chosen to be

Zab
bdZ

cd
ac and Zab

cdZ
cd
ab . (5.36)

All other 22 invariants that correspond to the remaining elements of S4 are prod-

ucts of smaller invariants or equivalent to the invariants in Eq. (5.36).

Generally, a basis invariant I
(nZ ,mY )
σ built from mY Y tensors and nZ Z tensors

can be written as7

I(nZ ,mY )
σ ≡ Y a1

σ(a1) . . . Y
amY
σ(amY )Z

b1b2
σ(b1)σ(b2) . . . Z

b2nZ−1b2nZ
σ(b2nZ−1)σ(b2nZ ) with σ ∈ SmY +2nZ .

(5.37)

Again, σ is a permutation of mY + 2nZ objects, i.e. σ ∈ SmY +2nZ . However, not

all basis invariants are CP-odd, and in fact, all of the examples in Eqs. (5.26)-

(5.36) turn out to be CP-even. To be able to make such statements, one needs

to know how basis invariants behave under CP. Under a general CP transforma-

tion, a coupling tensor is replaced by its complex conjugate multiplied by unitary

basis transformations, earlier denoted by X. But, as a basis invariant is, by defi-

nition, invariant under basis transformations, the X matrices cancel, leaving only

the original product of coupling tensors with tensors replaced by their complex

conjugates. The complex conjugate of a coupling tensor on the other hand can

7Often, not the full permutation σ will be indicated when referring to invariants, but e.g.

I
(3,1)
2 would be the second invariant that was found with nZ = 3 and mY = 1.
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be obtained by interchanging upper with lower indices, cf. Eqs. (5.14) and (5.15).

For the simplest example, Y a
a , this works out in the following way:

Y a
a

CP−−→ (Y a′

a′′ )
∗X†

a

a′X
a′′

a = (Y a′

a′′ )
∗δa

′′

a′ = (Y a
a )∗ = Y a

a , (5.38)

where in the last step Eq. (5.14) was used. As the right-hand side is the CP

conjugate of the left-hand side and is identical to the latter, this shows that this

invariant is even under CP transformations. Similarly, and using Eqs. (5.14) and

(5.15), one can show that the CP conjugate of a general basis invariant can be

obtained by interchanging upper and lower indices:

I(nZ ,mY )
σ ≡ Y a1

σ(a1) . . . Y
amY
σ(amY )Z

b1b2
σ(b1)σ(b2) . . . Z

b2nZ−1b2nZ
σ(b2nZ−1)σ(b2nZ )

CP−−→ Y σ(a1)
a1

. . . Y
σ(amY )
amY

Z
σ(b1)σ(b2)
b1b2

. . . Z
σ(b2nZ−1)σ(b2nZ )

b2nZ−1b2nZ
= [I(nZ ,mY )

σ ]∗ . (5.39)

If one has found an invariant I that is not CP-even, i.e. that does not equal its CP

conjugate I∗, one can extract the CP-odd part by subtracting the CP-conjugated

from the original invariant:

I = I − I∗. (5.40)

As a CPI is already completely defined by stating half of it, I, in the following often

I∗ will be omitted or abbreviated. When I is given, it is implied that the quantity

to follow is the difference between a basis invariant I and its CP conjugate.

For the example invariants in Eqs. (5.26)-(5.36), interchanging upper and lower

indices and possibly renaming indices shows that all of them are equal to their

CP conjugate and thus CP-even. For larger invariants, this process can become

quite cumbersome. Even worse, in order to show that an invariant is not CP-

even, one would have to test all possible renamings of the indices, which at some

point becomes too difficult. Luckily, the symmetry properties of invariants can

be analysed and visualised using diagrams that encode which tensors are used

and how their indices are contracted with each other. These diagrams are the

topic of the next subsection. As the diagrams become more complicated, a more

powerful technique relies on analysing so-called contraction matrices that also

encode information about the basis invariant and reveal whether it is a CPI. We

heavily rely on the contraction matrices for our systematic searches that revealed

many new CPIs. These contraction matrices are introduced in section 5.2.4.
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5.2.3 Diagrams for invariants

Any basis invariant consisting of contractions of Y and Z can be expressed by a

diagram [122]. We use a slightly different notation from the one present in [122].

For each Y or Z draw a vertex and for any contraction of an upper index on

a tensor with a lower index of a tensor draw an arrow connecting the vertices

corresponding to the tensors. With X = Y, Z, the only rule for drawing diagrams

is

Xa.
.. X

..
a. = (5.41)

Additionally, as Zab
cd is symmetric under exchange of a ↔ b and/or c ↔ d, two

lines can be attached to a vertex corresponding to a Z tensor without having to

distinguish them in the diagram:

Zab
.. Z

..
ab = (5.42)

Contracting two indices on the same tensor with each other produces a loop:

Xa.
a. = (5.43)

Diagrams drawn following these rules make it possible to check if an invariant is

CP-even: from Eq. (5.39) follows that the CP conjugate of an invariant produces

exactly the same diagram but with inverted directions of arrows as all upper indices

have been turned into lower indices and vice versa. An invariant is identical to its

CP conjugate, i.e. CP-even, if the diagrams of the invariant and its CP conjugate

are identical up to the positions of the vertices. The reason for this is that in a

product of Y and Z tensors, their position in the product is arbitrary and thus

also the position of vertices (except for the type of tensor).8

A few small example diagrams for small invariants mentioned earlier in the text

are shown in Figure 5.1. One can see there that for each of them, inverting the

direction of the arrows produces the same diagram and thus the same invariant.

This is the case for all of the small examples in Eqs. (5.26)-(5.36). The simplest

invariant, Y a
a produces the diagram in Eq. (5.43).

8The internal symmetry of Zabcd under a↔ b and/or c↔ d is taken into account by Eq. (5.42).
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Y a
b Y

b
a =

Zab
ab =

Zac
bc Y

b
a =

Zab
cdZ

cd
ab =

Zab
acZ

cd
bd =

Figure 5.1: Example diagrams corresponding to small invariants.

All invariants discussed so far were CP-even. The smallest CP-odd invariant was

already found in [121] and is given by the difference I1 = I1 − I∗1 of

I1 ≡ Zab
aeZ

cd
bfY

l
c Y

f
d = (5.44)

and its CP conjugate

I∗1 ≡ Zae
abZ

bf
cdY

c
e Y

d
f = . (5.45)

In whatever ways one tries to interchange the positions of vertices and arrows, it

is impossible to make the diagrams equivalent.

Additionally, out of all possible contractions of coupling tensors, many will be

related by interchanging the positions of tensors. The symmetries of the diagrams

can be used to classify invariants and search for CPIs in a systematic way as will

be explained in the next section. The results of this systematic search are listed

in the subsequent section.

5.2.4 Symmetries of invariants

Invariants both without and with VEVs were defined via permutations of indices,

cf. Eqs. (5.37) and (5.165). Firstly, it might seem as if there is a huge number

of invariants, one for each possible permutation of indices, whose number grows
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as the factorial of the number of indices. But luckily, as already hinted at in

subsection 5.2.2, invariants have symmetries which will reduce the number of in-

equivalent invariants. Secondly, one still has to find those index permutations

which correspond to CPIs. This section concerns itself with these two issues.

Invariants were defined in the following way via index permutations σ ∈ Sn where

n is the total number of upper indices coming from all involved tensors and VEVs:

for invariants without VEVs,

I(mY nZ)
σ = Y a1

σ(a1) . . . Y
amY
σ(amY )Z

b1b2
σ(b1)σ(b2) . . . Z

b2nZ−1b2nZ
σ(b2nZ−1)σ(b2nZ ) with σ ∈ SmY +2nZ ,

(5.46)

where n = mY + 2nZ , and for invariants containing VEVs,

J (nv ,mY ,nZ)
σ = W

w1...wnv
σ(w1)...σ(wnv )Y

a1
σ(a1) . . . Y

amY
σ(amY )Z

b1b2
σ(b1)σ(b2) . . . Z

b2nZ−1b2nZ
σ(b2nZ−1)σ(b2nZ )

7→ W σ(w1)...σ(wnv )
w1...wnv

Y σ(a1)
a1

. . . Y
σ(amY )
amY

Z
σ(b1)σ(b2)
b1b2

. . . Z
σ(b2nZ−1)σ(b2nZ )

b2nZ−1b2nZ

= (J (nv ,mY ,nZ)
σ )∗, (5.47)

where now n = nv +mY + 2nZ and W as defined in Eq. (5.164).

There are the following sources of symmetries of invariants: renaming of indices,

permutations of tensors of the same type, and internal symmetries of tensors.

Internal symmetries of tensors can refer to symmetries under exchanging indices

on the tensor, and symmetries induced by the symmetry of the Lagrangian. Ex-

cept for the latter, which are not discussed here, all of these symmetries exist

for arbitrary invariants corresponding to arbitrary potentials. These sources of

symmetries will now be discussed. To streamline notation, write all indices into a

multi-index,

α = (a1, . . . , an) , (5.48)

where now permutations act on α by acting on each index as usual:

σ(α) = (σ(a1), . . . , σ(an)). (5.49)

Also, let Z stand for the product of tensors (both Y and Z) and VEVs appropriate

to the invariant in discussion, then any invariant can be written as

Iσ = Zασ(α). (5.50)
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Renaming indices into each other corresponds to another permutation of all in-

dices. For ai 7→ π(ai) with π ∈ Sn, the invariant becomes

Iσ
π−→ Zπ(α)

σ(π(α)). (5.51)

The original invariant and the invariant with indices renamed into each other have

the same value.

Next, some elements of invariants are symmetric under independent permutations

of upper and lower indices. For example, as discussed in section 5.2.2, the following

four versions of the Z tensor are equal,

Zab
cd = Zba

cd = Zab
dc = Zba

dc , (5.52)

because Zab
cd is symmetric under a↔ b and/or c↔ d. This means that for each Z

tensor in the invariant there are 4 equivalent ways of connecting it to the rest of

the invariant and thus for nZ Z tensors, there would be 4nZ σ matrices producing

the same invariant and diagram. Similarly, in the tensor W that summaries the

product of all VEVs and complex conjugates of VEVs, all upper and lower indices

can be permuted independently of each other. Denoting any such permutation of

indices that is allowed by internal symmetries of tensors by τ , then this condition

becomes

Zασ(α) = Zτ(α)
σ(α) = Zατ(σ(α)) = Zτ(α)

τ(σ(α)) = Iσ. (5.53)

These internal symmetries can be taken into account in the actual search for

CPIs by defining a new matrix that is produced from one of the equivalent σ

matrices, which maps all invariants that are related by transformations of the type

τ onto a single matrix that also uniquely corresponds to the diagram corresponding

to all these invariants. (In the diagram the symmetries are taken into account

automatically.) This new matrix will be called contraction matrix and denoted by

m. Define the following submatrices of σ and m:

σ =

σvv σvY σvZ

σY v σY Y σY Z

σZv σZY σZZ

 , m =

mvv mvY mvZ

mY v mY Y mY Z

mZv mZY mZZ

 , (5.54)

where now the vv parts correspond to contractions between VEVs, vY between

VEVs and Y tensors, and so on, until ZZ, which corresponds to contractions

between Z tensors. While σ is an n × n matrix with n the number of indices, m

will be an N × N matrix where N is the number of tensors in the invariant. W
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would only be counted once. The relations between the submatrices of σ and m

are as follows:

mvv =
∑
i,j

(σvv)ij ,

(mvY )j =
∑
i

(σvY )ij ,

(mvZ)j =
∑
i

(σvZ)2i−1,j +
∑
i

(σvZ)2i,j ,

(mY v)i =
∑
j

(σY v)ij ,

(mZv)i =
∑
j

(σZv)i,2j−1 +
∑
j

(σZv)i,2j ,

(mY Y )ij = σij ,

(mY Z)ij = σi,2j−1 + σi,2j ,

(mZY )ij = σ2i−1,j + σ2i,j ,

(mZZ)ij = σ2i−1,2j−1 + σ2i−1,2j + σ2i,2j−1 + σ2i,2j .

(5.55)

The element mij denotes how many arrows are pointing from the i-th tensor in the

invariant to the j-th tensor. What is happening in Eq. (5.55) is that all equivalent

ways of contracting the i-th and j-th tensor are summarised in mij which means

that e.g. for a contraction from a Y tensor to a Z tensor, one has to add the two

elements corresponding to the two possible permutations of the lower index of Z,

out of which only one can be non-zero in σ. Similarly, for contractions of a Z

tensor with another Z tensor (or itself), one has to add all entries in the 2 × 2

submatrix that corresponds to the four involved indices, out of which only two can

be non-zero in σ.

For an invariant that only consists of Y tensors, the contraction matrix m is

identical to σ. For invariants only consisting of Z tensors, the situation also

becomes a little simpler, as the full contraction matrix is given by the last line of

Eq. (5.55). As σ is a permutation matrix, in a 2×2 submatrix only either the two

diagonal or the two off-diagonal elements can be non-zero at the same time and

the contraction matrix decays into the sum of two smaller permutation matrices

of only nZ elements, i.e. with σZ1 , σ
Z
2 ∈ SnZ :

mij = (σZ1 )ij + (σZ2 )ij. (5.56)
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Now, one can discuss the last source of symmetry, namely permutations of tensors

of the same type. Interchanging the position of two Z tensors in an invariant,

Za1a2
σ(a1)σ(a2)Z

a3a4
σ(a3)σ(a4) . . .→ Za3a4

σ(a3)σ(a4)Z
a1a2
σ(a1)σ(a2) . . . , (5.57)

induces simultaneous permutations of both upper and lower indices of the form

τ̃ =


0 1

1 0

1
. . .

⊗
(

1 0

0 1

)
, (5.58)

such that an invariant transforms as

Iσ
τ̃−→ Z τ̃(α)

τ̃(σ(α)). (5.59)

For larger invariants that also contain Y tensors and VEVs the index transforma-

tion induced by permutations of tensors of equal type works similarly. Now one

can rename τ̃(α) ≡ α′ such that the invariant becomes

Iσ → Zα
′

τ̃(σ(τ̃−1(α′))) , (5.60)

which shows that permutations of tensors relate different σ matrices in a way

similar to conjugacy class transformations, except that the index permutations

induced by tensor permutations do not generate the full permutation group Sn of

the n indices. To summarise the symmetries of σ, all permutation matrices that

are related to σ by conjugation with transformations of type τ , Eq. (5.53) and

transformations of type τ̃ , Eq. (5.60),

τ̃ ◦ τ ◦ σ ◦ τ ′ ◦ τ̃−1, (5.61)

where τ and τ ′ can be two different transformations, produce the same invariant

as σ.

On a contraction matrix m, the permutations on tensors act in a simpler way. For

all σY ∈ SmY and σZ ∈ SnZ , all of the contraction matrices, first for invariants

without VEVs, (
σY 0

0 σZ

)
m

(
σY 0

0 σZ

)T

, (5.62)
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and for invariants with VEVs,

1 0 0

0 σY 0

0 0 σZ

m

1 0 0

0 σY 0

0 0 σZ


T

, (5.63)

will produce equivalent invariants. Similarly, for invariants only involving Z ten-

sors, all σZm(σZ)T will produce equivalent invariants. Applying this to Eq. (5.56),

this means that one of the two summands can be chosen to be a conjugacy class

representative of SnZ which reduces the number of invariants that need to be

considered.

Finally, all pieces are in place to discuss the CP properties first of σ and after that

of m. The CP conjugate of an invariant can be obtained by interchanging upper

and lower indices, or in the shorthand notation introduced in Eq. (5.50),

Iσ = Zασ(α)
CP−−→ Zσ(α)

α . (5.64)

One can now rename σ(α) = α′ and subsequently drop the prime to obtain

Iσ
CP−−→ Zασ−1(α). (5.65)

Naively, an invariant is CP-even if it equals its CP conjugate which leads to the

condition

σ2 = 1. (5.66)

However, one has to take into account also all permutation matrices that are

equivalent to σ such that the condition becomes

σ−1 = τ̃ ◦ τ ◦ σ ◦ τ ′ ◦ τ̃−1, (5.67)

which means that as soon as any τ, τ ′, τ̃ exist such that the above condition can

be fulfilled, σ produces a CP-even invariant.

For contraction matrices, the condition testing if an invariant is CP-even simplifies.

With σ−1 = σT , from which follows that m
CP−−→ mT and if σY and σZ exist, such

that the right-hand side is fulfilled, then the condition for invariants without VEVs

to be CP-even becomes

Invariant CP-even⇔ mT =

(
σY 0

0 σZ

)
m

(
σY 0

0 σZ

)T

, (5.68)
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Y a
a = =

(
1
)

Y a
a Y

b
b = =

(
1 0
0 1

)

Y a
b Y

b
a = =

(
0 1
1 0

)

Zab
ab = =

(
2
)

Zac
bc Y

b
a = =

(
0 1
1 1

)

Zab
cdZ

cd
ab = =

(
0 2
2 0

)

Zab
acZ

cd
bd = =

(
1 1
1 1

)

I1 ≡ Zab
aeZ

cd
bfY

l
c Y

f
d = =


0 0 1 0
0 0 0 1
0 0 1 1
1 1 0 0


Figure 5.2: Examples of contraction matrices for small invariants. All
contraction matrices are symmetric except for the CPI.

and for invariants with VEVs

spont. Invariant CP-even⇔ mT =

1 0 0

0 σY 0

0 0 σZ

m

1 0 0

0 σY 0

0 0 σZ


T

, (5.69)

where the actions of τ and τ ′ are absorbed in m. Figures 5.2 and 5.3 contain ex-

amples of contraction matrices for small diagrams. There, all contraction matrices

happen to be trivially symmetric except for the CPIs.

It is condition Eq. (5.69) that was used to find CP-odd invariants. In the ac-

tual search, first all σ matrices for a certain number of Y and Z tensors, and
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VEVs was generated. This list of σ matrices was then reduced to a list of con-

traction matrices, which was condensed using Eq. (5.63) to classes of equivalent

contraction matrices, out of which a representative was tested for CP-oddness

using Eq. (5.69). This search was performed for invariants without VEVs for

mY = 0 up to nZ = 6, where it was found that all invariants without Y ten-

sors until nZ = 4 are CP even. Furthermore, CP-odd invariants were found

for (mY , nZ) = (1, 3), (1, 4), (2, 2), (2, 3), (3, 3). For invariants with VEVs, only a

search for invariants with mY = 0 was performed, where CP-odd invariants were

found for (nv, nZ) = (1, 3), (2, 3), (1, 4). All inequivalent invariants from these

classes are listed in section 5.2 or in appendix 7.3.

As one progresses to more complicated invariants, one has to make sure not to

count invariants that are products or powers of smaller invariants. An invariant

that is a product of two smaller invariants will correspond to a diagram that decays

into two separate graphs. As this means that some vertices are only connected

among each other while being unconnected to the rest of the diagram, such a

reducible invariant will be described by a contraction matrix that can be brought

to block-diagonal form only using permutation matrices. This means in particular,

as for invariants with VEVs, mvv denotes the number of VEVs that are only

connected to other VEVs, that mvv 6= 0 would mean that the diagram would

contain graphs for vav
∗a that are unconnected to the rest of the diagram.

Finally, there is one last condition that relates invariants, namely the minimisation

condition Eq. (5.173). In the contraction matrix for an invariant with VEVs this

can be used if there is an i such that

m1i = 1 and mi1 = 2 , (5.70)

or

m1i = 2 and mi1 = 1. (5.71)

In both cases, the Z tensor at position i in the invariant is connected to three

VEVs.

5.2.5 CP-odd invariants only built from Z tensors

It is interesting to consider invariants that are only built from Z tensors, as these

indicate CP violation that is mediated purely through the interaction of fields

and does not e.g. depend on a mass splitting. One could now wonder if for a
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J
(3,1)
1 = Za1a2

a5a6
Za3a4
a1a3

Za5a6
a2a7

va4v
∗a7 = =


0 0 0 1
0 0 1 1
1 0 1 0
0 2 0 0



J
(3,2)
1 ≡ Za1a2

a4a5
Za3a4
a2a6

Za5a6
a7a8

va1va3v
∗a7v∗a8 = =


0 0 0 2
1 0 1 0
1 1 0 0
0 1 1 0



Figure 5.3: Examples for contraction matrices of CPIs for spontaneous CP
violation. We draw each of the VEVs (as opposed to a single vertex for
the whole W tensor).

non-diagonal Y tensor CP violating effects could be shifted between Y and Z by

diagonalising Y . However, because this is just another basis change, it drops out

in any basis invariants, including also CPIs.

In Appendix 7.3, we list the representative CPIs with up to nZ = 6 Z tensors. All

other CPIs are related to these representatives by symmetries or CP conjugation.

An important first result is that all invariants up to nZ = 4 are CP-even. For

nZ = 5, three different CPIs exist:

I
(5)
1 ≡ Za1a2

a7a9
Za3a4
a5a10

Za5a6
a3a6

Za7a8
a4a8

Za9a10
a1a2

= (5.72)

I
(5)
2 ≡ Za1a2

a5a7
Za3a4
a8a9

Za5a6
a3a6

Za7a8
a4a10

Za9a10
a1a2

= (5.73)
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I
(5)
3 ≡ Za1a2

a5a9
Za3a4
a3a7

Za5a6
a6a8

Za7a8
a1a10

Za9a10
a2a4

= (5.74)

For nZ = 6, in total 56 different invariants exist out of which three are products of

the nZ = 5 invariants with a completely self-contracted Z tensor, Zab
ab . These will

not provide any new information. Next, of particular interest are those invariants

that contain no self-loops, as we found that invariants with self-loops, i.e. Za.
a. often

vanish for the example potentials considered in this work. With nZ = 6, only 5

invariants without self-loops remain:

I
(6)
1 ≡ Za1a2

a11a10
Za3a4
a5a8

Za5a6
a7a12

Za7a8
a9a6

Za9a10
a3a4

Za11a12
a1a2

, (5.75)

I
(6)
2 ≡ Za1a2

a7a10
Za3a4
a11a6

Za5a6
a9a8

Za7a8
a3a12

Za9a10
a5a4

Za11a12
a1a2

, (5.76)

I
(6)
3 ≡ Za1a2

a7a10
Za3a4
a9a6

Za5a6
a11a8

Za7a8
a3a12

Za9a10
a5a4

Za11a12
a1a2

, (5.77)

I
(6)
4 ≡ Za1a2

a11a10
Za3a4
a5a8

Za5a6
a7a12

Za7a8
a9a6

Za9a10
a1a4

Za11a12
a3a2

, (5.78)

I
(6)
5 ≡ Za1a2

a7a12
Za3a4
a5a10

Za5a6
a9a8

Za7a8
a11a4

Za9a10
a1a6

Za11a12
a3a2

. (5.79)

The diagrams that correspond to the above invariants with nZ = 6 and the re-

maining representative CPIs with up to nZ = 6 are listed in Appendix 7.3.

5.2.6 CP-odd invariants built from Y and Z tensors

Mixed invariants consisting of Y and Z tensors can be CP-odd at lower numbers

of Z tensors than nZ = 5. The reason for this is that additional asymmetries can

be introduced in the diagrams. The smallest CPI found in [121], Eqs. (5.44) and

(5.45), is of this type with mY = 2, nZ = 2 and will not be repeated here. There are

no other CPIs for mY = 2, nZ = 2 that are not equivalent to the aforementioned

one. The next smallest CPIs are found for nZ = 3 and mY = 1. There are two

different classes with the following representatives:

I
(3,1)
1 ≡ Y a1

a4
Za2a3
a6a7

Za4a5
a2a5

Za6a7
a1a3

= (5.80)
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I
(3,1)
2 ≡ Y a1

a4
Za2a3
a2a6

Za4a5
a5a7

Za6a7
a1a3

= (5.81)

However, both invariants in Eqs. (5.80) and (5.81) contain self-loops. As these

often vanish in examples, one would preferably like to find invariants without self-

loops. Such invariants can already be found for nZ = 3,mY = 2. There are in

total 13 invariants with this number of Y and Z tensors, out of which 2 have no

Z-self-loops. In one of them, the Y tensor is inserted in a Z loop and will only

make a difference if Y is not proportional to the identity, while the other invariant

has genuinely no Z-self-loops. These invariants and diagrams are

I
(3,2)
1 ≡ Y a1

a7
Y a2
a5
Za3a4
a6a7

Za5a6
a3a4

Za7a8
a1a2

= (5.82)

I
(3,2)
2 ≡ Y a1

a5
Y a2
a3
Za3a4
a6a7

Za5a6
a4a8

Za7a8
a1a2

= . (5.83)

Naively, there are 53 classes of invariants with mY = 3, nZ = 3. However, many of

these will be products of smaller CPIs with small CP-even invariants. Eventually,

there are 10 invariants without Z-self loops which are not products of smaller

invariants, the representatives of which are listed in the following:

I
(3,3)
1 ≡ Y a1

a8
Y a2
a6
Y a3
a4
Za4a5
a7a9

Za6a7
a3a5

Za8a9
a1a2

, (5.84)

I
(3,3)
2 ≡ Y a1

a6
Y a2
a7
Y a3
a4
Za4a5
a8a9

Za6a7
a3a5

Za8a9
a1a2

, (5.85)

I
(3,3)
3 ≡ Y a1

a8
Y a2
a4
Y a3
a6
Za4a5
a7a9

Za6a7
a3a5

Za8a9
a1a2

, (5.86)

I
(3,3)
4 ≡ Y a1

a6
Y a2
a4
Y a3
a8
Za4a5
a7a9

Za6a7
a3a5

Za8a9
a1a2

, (5.87)

I
(3,3)
5 ≡ Y a1

a6
Y a2
a4
Y a3
a7
Za4a5
a8a9

Za6a7
a3a5

Za8a9
a1a2

, (5.88)

I
(3,3)
6 ≡ Y a1

a8
Y a2
a3
Y a3
a6
Za4a5
a7a9

Za6a7
a4a5

Za8a9
a1a2

, (5.89)

I
(3,3)
7 ≡ Y a1

a6
Y a2
a3
Y a3
a8
Za4a5
a7a9

Za6a7
a4a5

Za8a9
a1a2

, (5.90)

I
(3,3)
8 ≡ Y a1

a6
Y a2
a3
Y a3
a4
Za4a5
a7a8

Za6a7
a5a9

Za8a9
a1a2

, (5.91)

I
(3,3)
9 ≡ Y a1

a6
Y a2
a3
Y a3
a4
Za4a5
a7a8

Za6a7
a1a9

Za8a9
a2a5

, (5.92)
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I
(3,3)
10 ≡ Y a1

a6
Y a2
a3
Y a3
a4
Za4a5
a8a9

Za6a7
a1a5

Za8a9
a2a7

. (5.93)

Finally, we have also analysed invariants with nZ = 4 and mY = 1. Naively, there

are 18 different invariants with this number of Z and Y tensors. However, there

is only one invariant with this number of coupling tensors without self-loops,

I
(4,1)
1 ≡ Y a1

a6
Za2a3
a4a7

Za4a5
a8a9

Za6a7
a2a5

Za8a9
a1a3

= . (5.94)

This concludes our list of CPIs for explicit CP violation used in the main text of

this chapter. Following our systematic approach, we have also calculated larger

invariants and the obtained CPIs are collected in Appendix 7.3.

5.3 Two Higgs doublet model potential

As a first example for an application of CPIs that is well known in the literature

we consider the most general potential of two copies of SM Higgs bosons. For this

potential, a complete basis of CPIs is known [123]. All of these four CPIs have

also been produced in our systematic search. Using a slightly modified version of

the notation in [121], the general 2HDM potential takes the form

V (H1, H2) = m2
1 H

†
1H1 +m2

12 e
iθ0 H†1H2 +m2

12 e
−iθ0 H†2H1 +m2

2 H
†
2H2 +

+a1

(
H†1H1

)2

+ a2

(
H†2H2

)2

+b
(
H†1H1

)(
H†2H2

)
+ b′

(
H†1H2

)(
H†2H1

)
+

+c1 e
iθ1
(
H†1H1

)(
H†2H1

)
+ c1 e

−iθ1
(
H†1H1

)(
H†1H2

)
+

+c2 e
iθ2
(
H†2H2

)(
H†2H1

)
+ c2 e

−iθ2
(
H†2H2

)(
H†1H2

)
+

+d eiθ3
(
H†1H2

)2

+ d e−iθ3
(
H†2H1

)2

. (5.95)

Here H1 = (h1,1, h1,2) and H2 = (h2,1, h2,2) and the SU(2)L invariant contractions

are indicated by the brackets e.g. (H†1H1)2 = (h†1,1h1,1 + h†1,2h1,2)2. Eq. (5.2)

becomes

φ = (ϕ1, ϕ2, ϕ3, ϕ4) = (h1,1, h1,2, h2,1, h2,2) , (5.96)
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such that the Z tensor corresponding to the quartic terms of the scalar potential

has 44 = 256 components. It is straightforward to determine these explicitly for

the potential of Eq. (5.95). In the following, we display the non-vanishing ones,

Z11
11 = Z22

22 = 2Z12
12 = a1 , (5.97)

Z33
33 = Z44

44 = 2Z34
34 = a2 , (5.98)

4Z14
14 = 4Z23

23 = b , (5.99)

4Z14
23 = 4Z23

14 = b′ , (5.100)

4Z13
13 = 4Z24

24 = b+ b′ , (5.101)

4Z12
14 = 4Z12

23 = 2Z11
13 = 2Z22

24 = c1e
iθ1 , (5.102)

4Z14
34 = 4Z23

34 = 2Z13
33 = 2Z24

44 = c2e
iθ2 , (5.103)

2Z34
12 = Z33

11 = Z44
22 = deiθ3 , (5.104)

and remind the reader of the general relations Zab
cd = Zba

cd = Zab
dc = Zba

dc and

Zcd
ab = (Zab

cd )∗. Having determined the Z tensor in terms of the parameters of the

potential, we can calculate CPIs explicitly.

As a first illustration, we show the results of CPIs for this potential. In our

notation, the smallest one becomes

I1 =− 9im2
12

(
m2

1 −m2
2

) [
c2(2a1 − b− b′) sin(θ0 + θ2) + c1(2a2 − b− b′) sin(θ0 + θ1)

+ 2d(c1 sin(θ0 − θ1 − θ3) + c2 sin(θ0 − θ2 − θ3))
]

− 9im4
12

[
4d(a2 − a1) sin(2θ0 − θ3) + c2

1 sin(2(θ0 + θ1))

− c2(2c1 sin(θ1 − θ2) + c2 sin(2(θ0 + θ2)))
]

− 9ic1c2

(
m2

1 −m2
2

)2
sin(θ1 − θ2). (5.105)

There are many ways of setting this expression to zero, the simpler ones involve

m2
12 = 0 which leaves only the last line in the expression, which vanishes either for

m2
1−m2

2 or sin(θ1−θ2). Alternatively, if m2
1−m2

2 = 0 there are other combinations

of constraints that make this CPI vanish, including sin(2θ0−θ3) = sin(2(θ0+θ1)) =

0. However, at this stage it is not clear if any of these constraints are sufficient to

guarantee conservation of CP, as other CPIs could still be non-zero. The invariant

I1 being non-zero always requires m12 6= 0 or m2
1 6= m2

2.
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As already mentioned, a complete basis of CPIs is known for the 2HDM poten-

tial, cf. [123]. Of the four invariants given in that paper, three are equivalent to

invariants given in Section 5.2 of this thesis (GH denotes the invariant in [123]):

I
(GH)
2Y 2Z = I1 = I

(2,2)
1 , (5.106)

I
(GH)
Y 3Z = I

(3,1)
2 , (5.107)

and

I
(GH)
3Y 3Z = (I

(3,3)
5 )∗ . (5.108)

The fourth invariant listed in [123] has nZ = 6 and has not been given here yet as

it contains Z-self-loops. For completeness, we present it here following our general

notation as well as diagrammatically:

I
(GH)
6Z ≡ Zac

bdZ
be
feZ

dg
hgZ

fj
akZ

km
jn Z

nh
mc = (5.109)

All CP-odd invariants with 5 Z tensors, cf. Eqs. (5.72)-(5.74), vanish for this poten-

tial. For this potential, Zab
ac is non-diagonal, which is why the CPIs found in [123]

produce interesting results. While the invariants from [123] form a complete basis

of CPIs for the 2HDM, all of them are zero for the potentials considered in the

remainder of this chapter. It is our systematic search that reveals new non-zero

CPIs in those situations.

5.4 A4 = ∆(12) invariant potentials

In this section we study potentials invariant under the discrete group A4. We start

with a field content of a single triplet of SM singlets, then consider a triplet of

SU(2)L doublets, two triplets of SM singlets and two triplets of SU(2)L doublets.
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A4 contains a real triplet and three one-dimensional representations. The product

of two triplets decomposes as

3⊗ 3 = (10 + 11 + 12 + 3)s + 3a . (5.110)

Symmetric and antisymmetric combinations are denoted by subscripts s and a,

respectively. Throughout this section we work in the basis of [155] which can be

easily generalised to ∆(27) and the complete ∆(3n2) series [156, 110] studied in

the Sections 5.5 and 7.2.

5.4.1 One flavour triplet

With one triplet field, only the symmetric contribution in Eq. (5.110) matters. It

is convenient to define

V0(ϕ) = − m2
ϕ

∑
i

ϕiϕ
∗i + r

(∑
i

ϕiϕ
∗i

)2

+ s
∑
i

(ϕiϕ
∗i)2 , (5.111)

where one notes that the first two terms are SU(3) invariant. We consider ϕ to

be additionally charged under some U(1) symmetry (or an appropriate discrete

subgroup) such that terms of the form ϕiϕi or ϕiϕiϕi, for example, are not allowed.

This leads to a more direct generalisation of the case where the SM gauge group

applies.

The resulting renormalisable scalar potential for A4 reads

VA4(ϕ) = V0(ϕ) + c
(
ϕ1ϕ1ϕ

∗3ϕ∗3 + ϕ2ϕ2ϕ
∗1ϕ∗1 + ϕ3ϕ3ϕ

∗2ϕ∗2
)

+ c∗
(
ϕ∗1ϕ∗1ϕ3ϕ3 + ϕ∗2ϕ∗2ϕ1ϕ1 + ϕ∗3ϕ∗3ϕ2ϕ2

)
, (5.112)

noting that this includes, as expected, four independent quartic terms. Henceforth

we use the convenient abbreviations cycl. to denote the cyclic permutations, and

h.c. to indicate the hermitian conjugate. We thus write the A4 invariant potential

of Eq. (5.112) in the compact form:

VA4(ϕ) = V0(ϕ) +
[
c
(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]
. (5.113)
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The A4 symmetric potential respects the general CP symmetry with a 2-3 swap,

namely the CP symmetry with unitary matrix X23

X23 =

1 0 0

0 0 1

0 1 0

 , (5.114)

for arbitrary coefficients r, s ∈ R and c ∈ C. Hence, despite the occurrence of the

complex coupling c the A4 symmetric potential of one triplet is invariant under

this general CP symmetry. For this reason, all possible CPIs for this potential will

be zero.

5.4.2 One flavour triplet of Higgs doublets

If each component of the A4 triplet is an SU(2)L doublet,

H = (h1α, h2β, h3γ) , (5.115)

the potential is rather similar to the previous case. Indeed there is one additional

invariant, due to the two different ways to perform the SU(2)L contraction on the

A4 invariant (
∑

i ϕiϕ
∗i)

2
, when the ϕ are replaced by Higgs doublets9

∑
i,j,α,β

[
r1(hiαh

∗iα)(hjβh
∗jβ) + r2(hiαh

∗iβ)(hjβh
∗jα)
]
. (5.116)

Here we highlight the SU(2)L indices to clarify the distinct SU(2)L contractions.

We define V0(H) in analogy with Eq. (5.111):

V0(H) = − m2
h

∑
i,α

hiαh
∗iα +

∑
i,j,α,β

[
r1(hiαh

∗iα)(hjβh
∗jβ) + r2(hiαh

∗iβ)(hjβh
∗jα)
]

+s
∑
i,α,β

(hiαh
∗iα)(hiβh

∗iβ) , (5.117)

9Since the doublet 2 of SU(2)L is a pseudoreal representation, it is also possible to combine
(hiαhjβε

αβ)(h∗iγh∗jδεγδ) using the antisymmetric ε tensor. However, such a term is not linearly
independent of the two terms in Eq. (5.116) as can be easily seen in an explicit calculation or by
noting that 2× 2 = 1 + 3 which entails only two independent SU(2)L invariant quartic terms.
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and the A4 potential is then

VA4(H) = V0(H) +
∑
α,β

[
c
(
h1αh1βh

∗3αh∗3β + cycl.
)

+ h.c.
]
. (5.118)

This potential is also invariant under a CP transformation that involves swapping

the second and third component in flavour space while keeping SU(2)L contrac-

tions unchanged, i.e. h2α → h∗3α etc.:

XH
23 =

1 0 0

0 0 1

0 1 0

⊗ δαβ . (5.119)

Therefore, CP is conserved automatically for this potential and all possible CPIs

necessarily vanish.

5.4.3 Two flavour triplets

Typically, realistic models of flavour require more than just one triplet flavon. We

therefore consider the potential involving two physically different flavon fields ϕ

and ϕ′ which both transform in the triplet representation of A4. In the case of

two A4 triplets distinguished by additional symmetries so that the total symmetry

is A4 × U(1) × U(1)′, the potential includes a total of seven independent mixed

quartic invariants of the form ϕϕ′ ϕ∗ ϕ′∗. It is convenient to define:

V1(ϕ, ϕ′) = + r̃1

(∑
i

ϕiϕ
∗i

)(∑
j

ϕ′jϕ
′∗j

)
+ r̃2

(∑
i

ϕiϕ
′∗i

)(∑
j

ϕ′jϕ
∗j

)

+ s̃1

∑
i

(
ϕiϕ

∗iϕ′iϕ
′∗i)

+ s̃2

(
ϕ1ϕ

∗1ϕ′2ϕ
′∗2 + ϕ2ϕ

∗2ϕ′3ϕ
′∗3 + ϕ3ϕ

∗3ϕ′1ϕ
′∗1)

+ i s̃3

[
(ϕ1ϕ

′∗1ϕ′2ϕ
∗2 + cycl.)− (ϕ∗1ϕ′1ϕ

′∗2ϕ2 + cycl.)
]
. (5.120)

Note that in this definition, the term multiplied by r̃1 contains the term multiplied

by s̃2 as well as the term obtained from the latter by interchanging ϕ with ϕ′:

(
ϕ′1ϕ

′∗1ϕ2ϕ
∗2 + ϕ′2ϕ

′∗2ϕ3ϕ
∗3 + ϕ′3ϕ

′∗3ϕ1ϕ
∗1) , (5.121)
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which is not included separately in s̃2.

The A4 symmetric renormalisable potential takes the following explicit form, with

V0 as defined in Eq. (5.111),

VA4(ϕ, ϕ
′) =V0(ϕ) + V ′0(ϕ′) + V1(ϕ, ϕ′)+

+
[
c
(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]

+
[
c′
(
ϕ′1ϕ

′
1ϕ
′∗3ϕ′∗3 + cycl.

)
+ h.c.

]
+
[
c̃
(
ϕ1ϕ

′
1ϕ
∗3ϕ′∗3 + cycl.

)
+ h.c.

]
, (5.122)

where V ′0(ϕ′) has the same functional form as V0(ϕ) with different coefficients m′ϕ′ ,

r′, s′ and depends on ϕ′.

Unlike the previous A4 invariant potentials, this potential in general violates CP, as

confirmed by the non-zero CPIs listed in Table 5.1 of Section 5.6. The expressions

are cumbersome and we do not reproduce them here. The non-vanishing CPIs

I(6)
2 , I(6)

3 , I(6)
4 , I(6)

5 (Eqs. (5.76,5.77,5.78,5.79)) all factorise as a product of s̃2 with

different complicated functions of the remaining parameters, for example, I(6)
2

takes the form:

I(6)
2 = s̃2f(...) , (5.123)

where f is a complicated function of the other parameters. Such a dependence on

s̃2 is expected because it corresponds to a CP symmetry, where one imposes X23

of Eq. (5.114) on both triplets, corresponding to the block matrix:

Xϕϕ′

23 =

(
X23 0

0 X23

)
. (5.124)

This CP symmetry constrains the potential such that s̃2 = 0, which forces all

CPIs to vanish as expected from the presence of a CP symmetry. Furthermore,

applying instead the trivial CP symmetry CP0 forces s̃3 = 0 and all other complex

parameters (c, c′, c̃) to be real. As expected, this renders f(...) = 0 in Eq. (5.123),

an makes all other CPIs vanish as well.

5.4.4 Two flavour triplets of Higgs doublets

Earlier, when considering a potential of an A4 triplet of SU(2)L doublets, the

only difference was that the term with coefficient r split into two different invari-

ants corresponding to two different possible SU(2)L contractions, cf. Eq. (5.116).
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Similarly, the potential of two triplets of SM doublets:

H = (h1α, h2β, h3γ) , H ′ = (h′1α, h
′
2β, h

′
3γ) , (5.125)

can be obtained from the corresponding potential of singlets, Eq. (5.122). In the

first two parts of the potential, V0(ϕ) and V0(ϕ′), as earlier, there are two different

ways of SU(2)L-contracting the invariants with coefficients r and r′. In the part of

the potential with A4 contractions as in V1(ϕ, ϕ′), for all A4 invariants two possible

ways of SU(2)L contracting the fields exists and this part of the potential becomes

V1(H,H ′) =
∑
i,j,α,β

[
r̃11hiαh

∗iαh′jβh
′∗jβ + r̃12hiαh

′∗jαh′jβh
∗iβ]

+
∑
i,j,α,β

[
r̃21hiαh

′∗iαh′jβh
∗jβ + r̃22hiαh

∗jαh′jβh
′∗iβ]

+
∑
i,α,β

[
s̃11hiαh

∗iαh′iβh
′∗iβ + s̃12hiαh

′∗iαh′iβh
∗iβ]

+
∑
α,β

[
s̃21(h1αh

∗1αh′2βh
′∗2β + cycl.) + s̃22(h1αh

′∗2αh′2βh
∗1β + cycl.)

]
+ is̃31

∑
α,β

[(h1αh
′∗1αh′2βh

∗2β + cycl.)− (h∗1αh′1αh
′∗2βh2β + cycl.)]

+ is̃32

∑
α,β

[(h1αh
∗2αh′2βh

′∗1β + cycl.)− (h∗1αh2αh
′∗2βh′1β + cycl.)].

(5.126)

Finally, of the remainder of the potential, only the invariant with coefficient c̃ from

Eq. (5.122) needs to be doubled:∑
α,β

[
c̃1(h1αh

∗3αh′1βh
′∗3β + cycl.) + c̃2(h1αh

′∗3αh′1βh
∗3β + cycl.) + h.c.

]
. (5.127)

We therefore write

VA4(H,H
′) = V0(H) + V ′0(H ′) + V1(H,H ′) (5.128)

+
∑
α,β

[
c
(
h1αh1βh

∗3αh∗3β + cycl.
)

+ c′
(
h′1αh

′
1βh
′∗3αh′∗3β + cycl.

)
+ h.c.

]
+
∑
α,β

[
c̃1(h1αh

∗3αh′1βh
′∗3β + cycl.) + c̃2(h1αh

′∗3αh′1βh
∗3β + cycl.) + h.c.

]
.
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We note that due to SU(2)L not allowing cubic invariants of H and/or H ′, it is

sufficient to use a Z3 symmetry to distinguish the A4 triplets.10

This potential generally violates CP. This can be seen from the CP-odd invariants

calculated, as I(6)
2 , I(6)

3 , I(6)
4 , I(6)

5 (Eqs. (5.76,5.77,5.78,5.79)) are non-zero (see Ta-

ble 5.1) but with too large expressions to display here. However, it is possible to

impose a CP symmetry with

XHH′

23 =

(
X23 0

0 X23

)
⊗ δαβ , (5.129)

which, similarly to previous examples, restricts the coefficients in the potential,

namely

s̃21 = s̃22 = 0 , (5.130)

thereby forcing all CPIs to vanish. Imposing, alternatively, the canonical CP

symmetry CP0 leads to s̃31 = s̃32 = 0 as well as c, c′, c̃1, c̃2 ∈ R.

5.4.5 S4 invariant potentials

The transition from ∆(3n2) invariant potentials with arbitrary n ∈ N to potentials

which are symmetric under the larger group ∆(6n2) is discussed in Appendix 7.4.2.

The corresponding basis of S4 = ∆(6× 22) can be found in [157, 49, 110]. For the

A4 potential with one triplet of singlets as well the A4 potential with a triplet of

doublets, the corresponding S4 invariant potentials are obtained by setting

c∗ = c , (5.131)

so that

VS4(ϕ) = V0(ϕ) + c [(ϕ1ϕ1ϕ
∗3ϕ∗3 + cycl.) + h.c.] , (5.132)

and

VS4(H) = V0(H) +
∑
α,β

c
[(
h1αh1βh

∗3αh∗3β + cycl.
)

+ h.c.
]
, (5.133)

10The potential invariant under a Z2 [154] would additionally allow for invariants of the form
hiαh

′∗iαhjβh
′∗jβ and hiαh

′∗iβhjβh
′∗jα where the conjugated fields are both related to H ′.
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where the potentials V0 were defined in Eq. (5.111) and Eq. (5.117). For the

potential of two triplets of A4, the S4 invariant potential arises via setting

s̃2 = s̃3 = 0 , (5.134)

and additionally

c∗ = c , c′∗ = c′ , c̃∗ = c̃ . (5.135)

Defining the following abbreviation,

V2(ϕ, ϕ′) =r̃1

(∑
i

ϕiϕ
∗i

)(∑
j

ϕ′jϕ
′∗j

)
+ r̃2

(∑
i

ϕiϕ
′∗i

)(∑
j

ϕ′jϕ
∗j

)

+ s̃1

∑
i

(
ϕiϕ

∗iϕ′iϕ
′∗i) , (5.136)

the full potential of two S4 triplets becomes

VS4(ϕ, ϕ
′) =V0(ϕ) + V ′0(ϕ′) + V2(ϕ, ϕ′)+

+ c
[(
ϕ1ϕ1ϕ

∗3ϕ∗3 + cycl.
)

+ h.c.
]

+ c′
[(
ϕ′1ϕ

′
1ϕ
′∗3ϕ′∗3 + cycl.

)
+ h.c.

]
+ c̃

[(
ϕ1ϕ

′
1ϕ
∗3ϕ′∗3 + cycl.

)
+ h.c.

]
. (5.137)

The S4 potential with two triplets generally conserves CP. This can be understood

from the non-vanishing CPIs obtained for A4, which were proportional to s̃2 (see

Eq. (5.123)) which is zero in the case of S4. Indeed, one CP symmetry present

in VS4(ϕ, ϕ
′) is Xϕϕ′

23 in Eq. (5.124), because S4 enforces s̃2 = 0 and therefore

the VS4(ϕ, ϕ
′) potential is invariant under simultaneous CP transformations with

2-3-swap on ϕ and ϕ′.

Turning to the case of Higgs doublets of SU(2)L, for VA4(H,H
′), enlarging the

symmetry to S4 constrains the potential parameters as follows:

c∗ = c, c′∗ = c′, c̃∗1 = c̃1, c̃∗2 = c̃2, (5.138)

and

s̃21 = s̃22 = s̃31 = s̃32 = 0 . (5.139)
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Again, introducing an abbreviation,

V2(H,H ′) =
∑
i,j,α,β

[
r̃11hiαh

∗iαh′jβh
′∗jβ + r̃12hiαh

′∗jαh′jβh
∗iβ]

+
∑
i,j,α,β

[
r̃21hiαh

′∗iαh′jβh
∗jβ + r̃22hiαh

∗jαh′jβh
′∗iβ]

+
∑
i,α,β

[
s̃11hiαh

∗iαh′iβh
′∗iβ + s̃12hiαh

′∗iαh′iβh
∗iβ] , (5.140)

the S4 invariant potential of two triplets of doublets becomes

VS4(H,H
′) = V0(H) + V ′0(H ′) + V2(H,H ′)

+
∑
α,β

c
[(
h1αh1βh

∗3αh∗3β + cycl.
)

+ h.c.
]

+
∑
α,β

c′
[(
h′1αh

′
1βh
′∗3αh′∗3β + cycl.

)
+ h.c.

]
+
∑
α,β

c̃1

[(
h1αh

∗3αh′1βh
′∗3β + cycl.

)
+ h.c.

]
+
∑
α,β

c̃2

[(
h1αh

′∗3αh′1βh
∗3β + cycl.

)
+ h.c.

]
. (5.141)

As in Eq. (5.137), the potential VS4(H,H
′) conserves CP. As all parameters of this

potential are real, it is not surprising, that it is invariant under trivial CP, CP0.

5.5 ∆(27) invariant potentials

In this section we concern ourselves with potentials invariant under ∆(27). As in

the A4 case, we consider the field content of a single triplet of SM singlets, then

a single triplet which is also an SU(2)L doublet, then two triplets of SM singlets,

and finally two ∆(27) triplets of SU(2)L doublets.

The group ∆(27) has one irreducible triplet representation 3, its conjugate 3̄, and

nine one-dimensional representations. The product of two triplets decomposes as

3⊗ 3 = (3̄ + 3̄)s + 3̄a , (5.142)

where the subscripts s and a denote symmetric and antisymmetric combinations,

respectively. In the following we adopt the basis of [158, 156, 110].
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5.5.1 One flavour triplet

Having only one triplet field, the antisymmetric contribution in Eq. (5.142) van-

ishes identically. As a consequence there are four independent quartic ∆(27) in-

variants of type 3⊗ 3⊗ 3̄⊗ 3̄. Writing the components of the triplet field as ϕi,

with i = 1, 2, 3, we can easily derive the renormalisable scalar potential,

V∆(27)(ϕ) =V0(ϕ) +
[
d
(
ϕ1ϕ1ϕ

∗2ϕ∗3 + cycl.
)

+ h.c.
]
. (5.143)

The coefficients inside V0(ϕ) (cf. Eq. (5.111)) are real but d ∈ C. The number of

independent real parameters is therefore four. V∆(27)(ϕ) is accidentally also the

potential for a single ∆(54) triplet [134], as discussed also in Appendix 7.4.2.

The potential of Eq. (5.143) in its most general form violates CP as can be seen

from the construction of CPIs which do not vanish for general choices of the coeffi-

cients in the potential (see Table 5.1). Calculating the CPIs I(6)
4,5 (Eqs. (5.78,5.79))

explicitly yields the same non-zero result for this potential:

I(6)
4,5 = − 3

32

(
d3 − d∗3

) (
d3 + 6dd∗s+ d∗3 − 8s3

)
, (5.144)

while the other explicit CPIs that are listed throughout Section 5.2 are zero for this

potential. The potential in Eq. (5.143) is known to be CP conserving in the cases

Arg(d) = 0, 2π/3, 4π/3. Indeed this is reflected in the CPIs which are proportional

to

(d3 − d∗3) . (5.145)

This factor vanishes for Arg(d) = 0, 2π/3, 4π/3, where each case corresponds to a

distinct CP symmetry, defined by a 3×3 matrix X. In the following, we explicitly

list the CP transformations that enforce various parameter relations. The Xi-

notation we use in our work matches the indices of the CP transformations listed
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in [68],

Arg(d) = 0⇐⇒X0 =

1 0 0

0 1 0

0 0 1

 or X1 =

1 0 0

0 0 1

0 1 0

 , (5.146)

Arg(d) = 4π/3⇐⇒X2 =

1 0 0

0 1 0

0 0 ω

 or X8 =

ω 0 0

0 0 1

0 1 0

 , (5.147)

Arg(d) = 2π/3⇐⇒X3 = X∗2 =

1 0 0

0 1 0

0 0 ω2

 or X9 = X∗8 =

ω
2 0 0

0 0 1

0 1 0

 .

(5.148)

We recall that for each CP transformation an equivalent one can be obtained by

multiplying it by an element of ∆(27). Note also that X1 = X23 from Eq. (5.114).

Focusing on the other factor of Eq. (5.144), all CPIs we have identified vanish if

we set (
d3 + 6dd∗s+ d∗3 − 8s3

)
= 0 . (5.149)

This is a strong hint that there are CP symmetries that make the potential CP

conserving, not by fixing the phase of d but by imposing specific relations between

the parameters d and s. Indeed, there are three solutions to Eq. (5.149) which are

listed with the corresponding CP transformations from [68],
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2s = (d+ d∗) = 2Re(d)

⇐⇒ X4 =
1√
3

1 1 1

1 ω ω2

1 ω2 ω

 or X5 = X4X1 = X∗4 =
1√
3

 1 1 1

1 ω2 ω

1 ω ω2

,
(5.150)

2s = −Re(d)−
√

3Im(d)

⇐⇒ X6 =
−i√

3

 1 ω ω

ω ω 1

ω 1 ω

 or X10 = X6X1 =
−i√

3

 1 ω ω

ω 1 ω

ω ω 1

, (5.151)

2s = −Re(d) +
√

3Im(d)

⇐⇒ X7 = X∗6 =
i√
3

 1 ω2 ω2

ω2 ω2 1

ω2 1 ω2

 or X11 = X7X1 =
i√
3

 1 ω2 ω2

ω2 1 ω2

ω2 ω2 1

.
(5.152)

We conclude that there exist 12 CP symmetries, listed in [68], which correspond

to two CP symmetries for each of the 6 CP conserving conditions that make either

(d3−d∗3) = 0 or (d3 + 6dd∗s+ d∗3 − 8s3) = 0. The fact that there are two distinct

classes of CP symmetries, unrelated by ∆(27) transformations, for each of the 6

CP conserving conditions is due to the ∆(27) potential being accidentally invariant

under ∆(54) [134]. The two classes of CP symmetries in each case are related to

each other by a ∆(54) transformation.

5.5.2 One flavour triplet of Higgs doublets

If each component of the ∆(27) triplet is an SU(2)L doublet, the potential is

rather similar to the previous case, and in analogy with the A4 potential there

is one additional invariant which is contained in V0(H). The resulting potential

reads
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V∆(27)(H) = V0(H) +
∑
α,β

[
d
(
h1αh1βh

∗2αh∗3β + cycl.
)

+ h.c.
]
. (5.153)

In general the potential explicitly violates CP. It is possible to impose CP conser-

vation as in the previous case, as follows.

Calculating the CPIs, we see that up to a prefactor, I(6)
4,5 have the same form as in

Eq. (5.144) for the previous potential:

512

315
I(6)

4 =
1024

495
I(6)

5 = −
(
d3 − d∗3

) (
d3 + 6dd∗s+ d∗3 − 8s3

)
. (5.154)

This means that the same conditions ensure CP conservation as in the previous

∆(27) invariant potential. They are associated to CP symmetries with the Xi

matrices discussed in the previous subsection, simply multiplied by δαβ acting on

SU(2)L indices (similarly to Eq. (5.119)).

5.5.3 Two flavour triplets

As for the A4 case, we consider the potential involving two physically different

flavon fields ϕ and ϕ′ which both transform in the triplet representation of ∆(27).

Note that the triplet representation of ∆(27) is unique up to complex conjugation.

In addition to the invariants of each field, the full potential contains also mixed

terms. Confining ourselves to quartic terms of the form ϕϕ′ ϕ∗ ϕ′∗ (which can

be enforced e.g. by U(1) symmetries, such that the imposed symmetry is really

∆(27)×U(1)×U(1)′), we obtain nine independent mixed invariants. The resulting

renormalisable potential is then given by

V∆(27)(ϕ, ϕ
′)=V0(ϕ) + V ′0(ϕ′) + V1(ϕ, ϕ′) (5.155)

+
[
d
(
ϕ1ϕ1ϕ

∗2ϕ∗3 + cycl.
)

+ h.c.
]

+
[
d′
(
ϕ′1ϕ

′
1ϕ
′∗2ϕ′∗3 + cycl.

)
+ h.c.

]
+
[
d̃1

(
ϕ1ϕ

′
1ϕ
∗2ϕ′∗3 + cycl.

)
+ h.c.

]
+
[
d̃2

(
ϕ1ϕ

′
1ϕ
∗3ϕ′∗2 + cycl.

)
+ h.c.

]
.

Here the masses as well as the coupling constants inside V0, V ′0 and V1 are all real

(note the explicit factor of i multiplying s̃3), while the couplings d, d′, d̃1 and d̃2

are generally complex.

This potential explicitly violates CP, since several of the CPIs are non-zero as can

be seen in Table 5.1 of Section 5.6, but the expressions are cumbersome. However
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it is possible to impose CP conservation. For example, imposing trivial CP (CP0)

enforces the 4 complex coefficients d, d′, d̃1, d̃2 to be real and s̃3 = 0. We have

verified explicitly that all CPIs vanish in this case. Alternatively, imposing Xϕϕ′

23

Eq. (5.124) enforces s̃2 = 0 and relates d̃1 = d̃∗2 as well as d∗ = d, d′∗ = d′, which

implies that all the CPIs vanish as expected.

5.5.4 Two flavour triplets of Higgs doublets

As earlier, a potential for two triplets of SU(2)L doublets can be obtained by

including all possible SU(2)L contractions of the fields in the ∆(27) invariants.

The only difference of this potential to earlier Higgs potentials lies in the invariants

with d-coefficients, out of which only the invariants corresponding to d̃1 and d̃2 in

Eq. (5.155) need to be doubled. Therefore the potential is in this case:

V∆(27)(H,H
′) =V0(H) + V ′0(H ′) + V1(H,H ′)+ (5.156)

+
∑
α,β

[
d
(
h1αh1βh

∗2αh∗3β + cycl.
)

+ d′
(
h′1αh

′
1βh
′∗2αh′∗3β + cycl.

)
+ h.c.

]
+
∑
α,β

[
d̃11(h1αh

∗2αh′1βh
′∗3β + cycl.) + d̃12(h1αh

′∗3αh′1βh
∗2β + cycl.) + h.c.

]
+
∑
α,β

[
d̃21(h1αh

∗3αh′1βh
′∗2β + cycl.) + d̃22(h1αh

′∗2αh′1βh
∗3β + cycl.) + h.c.

]
.

The potential V∆(27)(H,H
′) is CP violating in general. Of the CPIs calculated,

cf. Table 5.1, I(6)
2 , I(6)

3 , I(6)
4 , I(6)

5 (Eqs. (5.76,5.77,5.78,5.79)) are non-zero, but the

expressions are too large to display here.

5.5.5 ∆(54) invariant potentials

Working in the basis of [49, 159, 110], the potentials of one triplet of singlets or

SU(2)L doublets are both identical for ∆(27) and ∆(54). The ∆(54) symmetric

potential of two triplets of SU(2)L singlets is obtained from the corresponding

∆(27) potential by imposing the constraint of Eq. (5.134),

s̃2 = s̃3 = 0 , (5.157)

as well as

d̃1 = d̃2 , (5.158)
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from which V∆(27)(ϕ, ϕ
′) becomes

V∆(54)(ϕ, ϕ
′) =V0(ϕ) + V ′0(ϕ′) + V2(ϕ, ϕ′)

+
[
d
(
ϕ1ϕ1ϕ

∗2ϕ∗3 + cycl.
)

+ h.c.
]

+
[
d′
(
ϕ′1ϕ

′
1ϕ
′∗2ϕ′∗3 + cycl.

)
+ h.c.

]
+ d̃1

[(
ϕ1ϕ

′
1ϕ
∗2ϕ′∗3 + cycl.

)
+
(
ϕ1ϕ

′
1ϕ
∗3ϕ′∗2 + cycl.

)]
+ h.c..

(5.159)

The ∆(54) potential with two triplets does not conserve CP in general, as seen

in Table 5.1. The potential in Eq. (5.159) is obtained from Eq. (5.155) in the

s̃2 = s̃3 = 0, d̃1 = d̃2 limit, which makes it rather similar to the CP conserving

V∆(27)(ϕ, ϕ
′) after imposing the Xϕϕ′

23 (cf. Eq. (5.124)), but note that V∆(54)(ϕ, ϕ
′)

does not have d̃∗1 = d̃1, d∗ = d nor d′∗ = d′. Therefore, even though CPI I(6)
2

vanishes, I(6)
3 , I(6)

4 , I(6)
5 are non-zero.

For the potential of two triplets of Higgs doublets, the following conditions on the

parameters arise when enlarging the symmetry to ∆(54):

d̃21 = d̃11 , d̃22 = d̃12 , s̃21 = s̃22 = s̃31 = s̃32 = 0. (5.160)

The potential becomes

V∆(54)(H,H
′) = V0(H) + V ′0(H ′) + V2(H,H ′) (5.161)

+
∑
α,β

[
d
(
h1αh1βh

∗2αh∗3β + cycl.
)

+ d′
(
h′1αh

′
1βh
′∗2αh′∗3β + cycl.

)
+ h.c.

]
+
∑
α,β

[
d̃11(h1αh

∗2αh′1βh
′∗3β + cycl.) + d̃12(h1αh

′∗3αh′1βh
∗2β + cycl.) + h.c.

]
+
∑
α,β

[
d̃11(h1αh

∗3αh′1βh
′∗2β + cycl.) + d̃12(h1αh

′∗2αh′1βh
∗3β + cycl.) + h.c.

]
.

This potential is also generally CP violating and I(6)
3 , I(6)

4 , I(6)
5 are non-zero but

too large to display here.

5.6 Summary of CPIs for explicit CP violation

In this section, we collect our results of Sections 5.4, 5.5 and 7.2. We have calcu-

lated CPIs for a number of different potentials which are invariant under either of

the following discrete symmetries A4, S4, ∆(27), ∆(54), ∆(3n2) and ∆(6n2) with

n > 3. All these symmetries have irreducible triplet representations. Choosing
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I(6)
2 I(6)

3 I(6)
4 I(6)

5 CP

(3A4 ,1SU(2)L) 0 0 0 0 Eq. (5.114)
(3A4 ,2SU(2)L) 0 0 0 0 Eq. (5.119)

2× (3A4 ,1SU(2)L) * * * * NA
2× (3A4 ,2SU(2)L) * * * * NA

(3∆(27),1SU(2)L) 0 0 Eq. (5.144) Eq. (5.144) NA
(3∆(27),2SU(2)L) 0 0 Eq. (5.154) Eq. (5.154) NA

2× (3∆(27),1SU(2)L) * * * * NA
2× (3∆(27),2SU(2)L) * * * * NA

(3∆(3n2),1SU(2)L) 0 0 0 0 Eq. (5.114)
(3∆(3n2),2SU(2)L) 0 0 0 0 Eq. (5.119)

2× (3∆(3n2),1SU(2)L) Eq. (7.97) * * * NA
2× (3∆(3n2),2SU(2)L) * * * * NA

(3S4 ,1SU(2)L) 0 0 0 0 CP0 & Eq. (5.114)
(3S4 ,2SU(2)L) 0 0 0 0 CP0 & Eq. (5.119)

2× (3S4 ,1SU(2)L) 0 0 0 0 CP0 & Eq. (5.124)
2× (3S4 ,2SU(2)L) 0 0 0 0 CP0 & Eq. (5.129)

(3∆(54),1SU(2)L) 0 0 * * NA
(3∆(54),2SU(2)L) 0 0 * * NA

2× (3∆(54),1SU(2)L) 0 * * * NA
2× (3∆(54),2SU(2)L) 0 * * * NA

(3∆(6n2),1SU(2)L) 0 0 0 0 CP0 & Eq. (5.114)
(3∆(6n2),2SU(2)L) 0 0 0 0 CP0 & Eq. (5.119)

2× (3∆(6n2),1SU(2)L) 0 0 0 0 CP0 & Eq. (5.124)
2× (3∆(6n2),2SU(2)L) 0 0 0 0 CP0 & Eq. (5.129)

Table 5.1: Summary of CPIs and (if applicable) CP symmetry transfor-
mations for scalar potentials with discrete symmetry.

Higgs fields in a faithful triplet, we have determined the potential for one triplet

of SU(2)L singlets, one triplet of SU(2)L doublets, two triplets of SU(2)L singlets

and finally two triplets of SU(2)L doublets. The (scalar) particle content for each

of these 6× 4 cases is listed intuitively in the leftmost column of Table 5.1.

Many of the CPIs defined in Section 5.2 vanish for all of these 24 potentials. We

have checked explicitly that I(2,2)
1 , I(3,1)

1 , I(3,1)
2 , I(3,2)

1 , I(3,2)
2 , I(4,1)

1 , I(5)
1 , I(5)

2 , I(5)
3 ,

I(6)
1 vanish in all cases. Table 5.1 shows the relevant invariants I(6)

2 , I(6)
3 , I(6)

4 ,

I(6)
5 , evaluated for each potential. A 0-entry means that the corresponding CPI

was found to be zero. A non-vanishing CPI is indicated by either an asterisk or an

equation number, where the latter refers to the position in this thesis where the

corresponding expression for the CPI is given. The asterisk is used for non-zero

CPIs which we have calculated analytically but whose expressions are too large to

display in the text.
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We observe from Table 5.1 that 12 potentials feature explicit CP violation. On

the other hand, all four CPIs shown in the table vanish for the other 12 potentials,

which suggests CP is conserved in those cases. Indeed, as listed in the rightmost

column, one can easily identify CP transformations which leave the potential un-

changed, thereby explicitly proving that CP is conserved. We recall that trivial

CP (CP0) means complex conjugation on all scalar fields, cf. Eq. (5.21). “NA”

stands for “Not Applicable” and is used for CP violating cases.

5.7 CP-odd invariants for spontaneous CP vio-

lation

So far we have discussed CPIs that signal explicit CP violation in scalar potentials.

It is also useful to consider CPIs that indicate the presence of spontaneous CP

violation. In order to extend our formalism (which is applicable to any potentials

once translated into the standard form) we need to include also VEVs.

Recall that VEVs transform as vectors under basis transformations, cf. Eqs. (5.22)

and (5.23):

va 7→ V a′

a va′ , (5.162)

v∗a 7→ v∗a
′
V †aa′ . (5.163)

When used in invariants, first, if the potential does not contain trilinear couplings,

VEVs can only appear in pairs of v and corresponding v∗ because otherwise indices

would remain uncontracted. Furthermore, all VEVs commute and thus can be

combined into one large tensor,

W
w1...wnv
w′1...w

′
nv

= vw′1 . . . vw′nv v
∗w1 . . . v∗wnv . (5.164)

where nv is the number of v, v∗ pairs.11 Using W , all invariants with nv pairs of

VEV and conjugated VEV can be written using

J (nv ,mY ,nZ)
σ ≡ W

w1...wnv
σ(w1)...σ(wnv )Y

a1
σ(a1) . . . Y

amY
σ(amY )Z

b1b2
σ(b1)σ(b2) . . . Z

b2nZ−1b2nZ
σ(b2nZ−1)σ(b2nZ )

7→ W σ(w1)...σ(wnv )
w1...wnv

Y σ(a1)
a1

. . . Y
σ(amY )
amY

Z
σ(b1)σ(b2)
b1b2

. . . Z
σ(b2nZ−1)σ(b2nZ )

b2nZ−1b2nZ

≡ (J (nv ,mY ,nZ)
σ )∗ , (5.165)

11In [122], VEVs are always assigned in pairs to matrices V ab = v∗avb, however, since all VEVs
commute, even for four or more VEVs, also all V ab commute and can be summarised in one large
totally symmetric tensor.
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with σ ∈ Snv+mY +2nZ . When drawing diagrams, there are additional rules for

contractions with VEVs, again with X = Y, Z:

Xa..
.. va = (5.166)

and

X ..
a..v
∗a = (5.167)

Invariants containing only Y tensors and VEVs are always CP-even. The smallest

examples of CPIs for spontaneous CP violation built from Z tensors and VEVs

are

J
(2,2)
1 ≡ Za1a2

a1a3
Za3a4
a5a6

va2va4v
∗a5v∗a6 = (5.168)

J
(3,1)
1 ≡ Za1a2

a5a6
Za3a4
a1a3

Za5a6
a2a7

va4v
∗a7 = (5.169)

J
(3,1)
2 ≡ Za1a2

a1a5
Za3a4
a3a6

Za5a6
a2a7

va4v
∗a7 = (5.170)

where the superscripts on J indicate the number of Z tensors and pairs of VEVs in

the invariant. A complete search for invariants with (nZ , nv) = (2, 2), (3, 1), (3, 2), (4, 1)

was performed. The method is explained in Appendix 5.2.4 and the invariants not

given in the main text are listed in Appendix 7.3.4.

5.7.1 Minimisation condition in terms of diagrams

The minima of the a potential written as in Eq. (5.1) fulfil

0 =
∂V

∂φe
= φ∗aY l

a + 2φ∗aφ∗cZed
acφd , (5.171)

and

0 =
∂V

∂φ∗e
= Y b

e φb + 2φ∗cZbd
ecφbφd , (5.172)

where the factor of 2 appears because of the symmetry of Zbd
ac under b ↔ d and

a↔ c. Replacing the fields by their VEVs, these minimisation conditions can be
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expressed in terms of diagrams:

0 = + 2 (5.173)

and

0 = + 2 (5.174)

This can be used later to simplify CPIs, as can be seen by applying

= −2 (5.175)

in Eq. (5.168). Using the minimisation condition Eq. (5.175), the invariant J
(2,2)
1

can be simplified to12

J
(2,2)
1 ≡ −1

2
(5.176)

This can only be CP-odd if Y is not proportional to the identity. One can now

search for more complicated invariants built from Z tensors and VEVs that will

not simplify like this. The smallest CPIs for spontaneous CP violation without

self-loops which also cannot be simplified using the minimisation condition for

nZ = 3, 4 respectively are

J
(3,2)
1 ≡ Za1a2

a4a5
Za3a4
a2a6

Za5a6
a7a8

va1va3v
∗a7v∗a8 = (5.177)

12The resulting expression corresponds to the invariant J3 in Eq. (26) of [120].
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and

J
(4,1)
1 ≡ Za1a2

a3a5
Za3a4
a7a8

Za5a6
a1a4

Za7a8
a2a9

va6v
∗a9 = . (5.178)

5.7.2 Example applications

5.7.2.1 One triplet of A4

As we have seen, the potential in Eq. (5.118) conserves CP explicitly. By an

analysis of all VEVs, it has been shown [143] that CP cannot be spontaneously

broken. Using our approach we have verified that the low order invariants vanish.

In particular, all spontaneous invariants up to nZ = 3, nv = 2 are found to vanish

for this potential.

5.7.2.2 One triplet of ∆(27)

One can now calculate SCPIs for this potential for arbitrary VEVs and the smallest

non-zero SCPI found is J (3,2)
1 , as defined via Eq. (5.177). For the general potential

V∆(27)(ϕ) (which we note is CP violating), it takes the value

J (3,2)
1 =

1

4
(d∗3 − d3)(|v1|4 + |v2|4 + |v3|4 − 2|v1|2|v2|2 − 2|v1|2|v3|2 − 2|v2|2|v3|2)

+
1

2
(dd∗2 − 2d∗s2 + d2s)(v2v3v

∗2
1 + v1v3v

∗2
2 + v1v2v

∗2
3 )

− 1

2
(d2d∗ − 2ds2 + d∗2s)(v∗2v

∗
3v

2
1 + v∗1v

∗
3v

2
2 + v∗1v

∗
2v

2
3) . (5.179)

In order to demonstrate the usefulness of SCPIs, let us consider the following

special cases of V∆(27)(ϕ) where we impose different CP symmetries. We start

by considering trivial CP (CP0), which in this case is the X0 matrix, forcing

Arg(d) = 0 which simplifies the SCPI expression to

J (3,2)
1 =

1

2
(d3−2ds2+d2s)

[
(v2v3v

∗2
1 + v1v3v

∗2
2 + v1v2v

∗2
3 )− (v∗2v

∗
3v

2
1 + v∗1v

∗
3v

2
2 + v∗1v

∗
2v

2
3)
]
.

(5.180)

It is known [91, 134, 135, 136] that the complex VEV (1, ω, ω2) is not CP violating

when starting with trivial CP. This can be confirmed easily by using the SCPI

above. Instead, the geometrically CP violating VEV (ω, 1, 1) does give non-zero
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when plugged into the SCPI. Let us consider now the CP symmetry X3, forc-

ing Arg(d) = 2π/3. Because d remains complex, even a real VEV like (1, 1, 1)

spontaneously violates CP [145] and this is shown by the SCPI:

J (3,2)
1 =

1

2
Im(dd∗2 − 2d∗s2 + d2s)

[
(3v4

1)
]
. (5.181)

Another interesting case is the CP symmetry X4, forcing 2s = (d+ d∗) = 2Re(d).

This simplifies Eq. (5.179) to

J (3,2)
1 =

1

4
(d∗3 − d3)(|v1|4 + |v2|4 + |v3|4 − 2|v1|2|v2|2 − 2|v1|2|v3|2 − 2|v2|2|v3|2) .

(5.182)

It is interesting that in this case the SCPI indicates that spontaneous CP violation

is independent of the phases of the VEV. Indeed, the known VEVs for the X0

symmetric potential, such as (0, 0, 1), (1, 1, 1) (which are real) and (ω, 1, 1) are still

candidate VEVs of the X4 symmetric potential and all violate CP spontaneously,

as indicated by the SCPI.

5.8 Summary of CP-odd invariants

This chapter has been concerned with CPV arising from scalar potentials which

go beyond the one Higgs doublet of the SM. Powerful new tools that allow to

systematically find CPIs that are valid for any scalar potential have been reviewed

and further developed, and which provide a reliable indicator for whether CP is

explicitly violated by the parameters of the potential. Spontaneous CPIs involving

the VEVs were also considered, in order to reliably determine whether CP is

spontaneously violated.

In order to illustrate the usefulness of the CPI approach, we then applied our

results to multi-Higgs scalar potentials of physical interest. We first considered

the general 2HDM case which was known to be CP violating, with a complete

basis of CPIs known, with several small CPIs being non-zero. We then considered

3HDM and 6HDM which are symmetric under ∆(3n2) and ∆(6n2) groups. Many

of these potentials had not been studied before and the new CPIs we found with

our systematic search were needed as the previously known ones vanish even for

potentials where the new CPIs reveal the presence of explicit CP violation.

For each potential, we either determined the lowest order non-zero CPIs (thereby

proving that potential is CP violating) or, in cases where all the considered CPIs
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vanish, we derived the explicit CP symmetries that leave the potential invariant

(thereby proving that potential is CP conserving). Since the potentials considered

were very symmetric, we found that most of the smaller CPIs vanish. Although

the CPIs apply to any potential, they take different expressions as functions of

the parameters of the potential, as clearly illustrated in the 2HDM example. Fur-

thermore, CPIs that are useful for one potential can vanish for other CP violating

potentials.

We found that the A4 potentials, although generally CP conserving for one triplet

of Higgs doublets or singlets, are no longer CP conserving in general when two A4

triplets are present (either doublets or singlets). By contrast we find that ∆(27)

potentials are all CP violating in general. Although the ∆(27) potentials with a

single triplet (whether the scalars are Higgs doublets or not) had previously been

studied extensively, by using the calculated expression for a CPI we completely

mapped specific CP symmetries to different ways to make the CPI expression

vanish. For such potentials, we further analysed spontaneous CP violation when

considering different CP symmetries by using a non-trivial SCPI. The potentials

with ∆(3n2) with n > 3 turn out to be particular cases of A4 potentials. For such

cases it is notable that the expressions for the non-zero CPI become manageable

for the case with two triplets (non-Higgs), which allowed to find a CP symmetry

that relates two of the real parameters of the potential. Moreover, we found that

all of the ∆(6n2) potentials are special cases of the respective ∆(3n2) potentials.

In the S4 case, this makes even the potentials with two triplets automatically CP

conserving. Although the ∆(54) potential for one triplet (whether the scalars are

Higgs doublets or not) coincides with the ∆(27) potential, this is no longer the

case when two triplets are present, but they still generally violate CP. ∆(6n2) with

n > 3 is a particular case of S4 and therefore the potentials considered are again

automatically CP conserving.

Finally, we briefly showed how our approach may also be applied to spontaneous

CPV. As an illustration of this we calculated the SCPIs which are relevant for a

∆(27) potential showing how it reveals the CP properties of candidate VEVs.

In conclusion, the invariant approach to CP violation provides a reliable method

for studying the CP properties of multi-Higgs potentials. We have developed

a systematic formalism for determining the CPIs for multi-Higgs potentials in

general, and have extensively applied this formalism to both the familiar general

2HDM as well as many examples in which the Higgs fields fall into irreducible

triplet representations of a discrete symmetry. We considered not only SM Higgs
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doublets, but also SM singlets which play the role of flavons in flavour models.

In each case we catalogued all the lowest order CPIs, many of which previously

unknown, thereby elucidating the CP properties of the considered potentials and

finding the relevant CP symmetry transformations where applicable.

Furthermore, invariants may provide an interesting theoretical tool. It is for exam-

ple topic of debate if there is a relation between spontaneous CPV and suppressed

explicit CPV, [160]. Using the equations of motion to relate spontaneous CPIs

with explicit CPIs may give some insight and could be worth considering.





6

Conclusions

The purpose of this final chapter is to first succinctly summarize the contents of

this thesis and after that to put them in the wider context of the current state of

particle physics.

In the Standard Model, quark masses and mixing, charged-lepton masses, as well as

CP violation are merely parametrised, whereas neutrino masses, mixing and dark

matter are even entirely unexplained. Thus any explanation of these phenomena

will have to involve physics beyond the Standard Model. Furthermore, in the

SM, CP violation seems to be related to the flavour sector which is why studying

one necessitates studying the other. Next, new physics can often involve new

symmetries that require breaking by which additional scalars can come into play.

While typical explanation attempts point towards high energies (RHν, GUT,

Planck), it is worth studying these topics now because related observable phe-

nomena occur at low energies and corresponding experiments are on the way or

will be in the near future.

Whatever may be the correct theory of flavour and CPV, two reasons make flavour

and CP symmetries either as fundamental symmetries or at least as an interme-

diate, effective symmetry, attractive: The general success of symmetries as an or-

ganizing principle in particle physics and the fact that in the SM fermion species

already have (separate) residual flavour and CP symmetries.

This thesis started by stating the flavour problem in terms of one of the most

fundamental principles in physics, namely relativistic invariance. To repeat it

here, from the point of view of the author, the flavour problem can be formulated

in this context as: There is no such thing as flavour — in the Poincare group, and

157



158 6 Conclusions

what was meant by that is that to describe the several flavours of the standard

model, several copies of representations of the Poincare group are needed.

This already reflects the philosophy behind this thesis, namely that unsolved

problems should be considered as questions about the fundamental symmetries

of physics. (For lack of better guiding principles.)

After that, the problem of CP violation is introduced. And while CP violation

seems to be necessary for all our existence and the standard model not providing

enough of it, it was again attempted to look at it also from a fundamental symme-

try perspective. It is the point of view of the author that no fundamental difference

exists between flavour, general C, P, T symmetries or combinations thereof.

The remainder of the introduction then worked its way from these open questions

and ideas to observable predictions, namely such as would be produced by residual

symmetries in various parts of the Lagrangian, especially in the Yukawa sector and

eventually lepton mixing matrices.

Three chapters then analyse different incarnations of residual symmetries in the

lepton sector. The flavour group assumed was always a member of ∆(6n2) which

is an important series of subgroups of U(3). These groups are similar in structure

and can be analysed simultaneously for arbitrary n, which was done for the first

time for such an infinite series of discrete groups.

Potentials with several Higgs doublets or singlets, that may be invariant under

some discrete group can spontaneously break both flavour and CP. Furthermore,

CP can be violated geometrically which means that the symmetry of the potential

is so constraining that the CP phases can only take certain discrete values.

In complicated scalar potentials with additional symmetries, it is often unclear if

CP is violated or not, both explicitly and spontaneously. However, CP-odd in-

variants can be constructed, similar to the Jarlskog invariant, that clearly indicate

CP violation.

Thus, in the subsequent chapter, motivated by both the fact that flavour and CP

symmetries need to broken, and the search for additional CP violation, various

potentials invariant under candidates of flavour groups were studied with a focus

on the possible CP violation they might introduce. The tool used for this were

CP-odd Higgs basis invariants.

Among the open questions that are touched upon by the work in this thesis are

the following:
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• Why do fermions mix as they do? Why are the masses of fermions what

they are?

• Is there CP violation in the lepton sector? In a Higgs sector? Is CP violated

spontaneously? Geometrically in potentials with discrete symmetries?

• Are neutrinos Dirac or Majorana fermions?

In particular concerning the flavour symmetries examined in this thesis, experi-

ments will soon be able to test their parameter space.

However, it is probably a good idea to look out into the future and to remind

oneself of a small part of the questions that haven’t been answered or addressed

by the research in this thesis, starting with those that lie closer to the thesis but

also slowly moving away from it:

• Could the CP violation found above explain the baryon asymmetry?

• Why do quarks and leptons mix differently? What is the difference between

quarks and leptons? Are GUTs the answer?

• How is the flavour symmetry broken? Through additional scalars? Or maybe

through extra dimensions?

• What are phenomenological consequences of flavour symmetries and their

breaking? In rare decays of Higgs bosons or fermions? At colliders?

• Which mechanism generates neutrino masses? Is it one of the already pro-

posed ones or something else?

• Could flavour symmetries help with explaining dark matter by explaining its

stability or its weak interactions?

• If neutrinos are Dirac, could maybe continuous flavour symmetry groups

help explain the flavour structure?

• What is the significance of the larger residual symmetries above EWSB?

• Could similar methods be applied to the strong CP problem? I.e. what is

the origin of the CP symmetry that forbids the θ-term?

• Are there any additional light neutrinos? Could these be dark matter? Warm

dark matter?
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• What is the nature and origin of dark matter? Is there a warm dark matter

component? Does dark matter communicate with ordinary matter (besides

gravity)? What is the portal? What can neutrinos tell us about dark matter?

• Can the cosmic neutrino background be detected? The supernova neutrino

background?

• What could be learned about inflation from the CνB? About baryogenesis?

The statistical nature of neutrinos?

• Are there consequences for inflation in flavour models? Could a flavon be an

inflaton?

• Is there a connection between gauge group (SM/GUT) and flavour group

breaking?

• Is there a theoretical principle that determines what the correct description

of particle physics is?

• Do flavour and gauge symmetries originate from quantum gravity?

• Is there a geometrical aspect to flavour?

• Is there a symmetry representation of quantum gravity via the representa-

tions of the diffeomorphism group?

• As quantum mechanics requires (anti)unitary representations, are symme-

tries a gate to testing quantum mechanics?

• Is flavour the gate to testing quantum mechanics?

• What is the nature of quantum gravity?

Clearly the research presented in this thesis only corresponds to a small technical

step in the epic endeavour of mankind to uncover the laws of nature.

Particle physics as a whole is currently in a weird state: evidence of phenomena

that cannot be explained by the standard model is accumulating, however when

testing the standard model at the LHC, it holds up as well as always throughout

its history.

However, even if the LHC doesn’t find anything, there is still hope! First of all,

there are other experiments, namely the various low-energy experiments attempt-

ing to detect 0νββ and dark matter. There is now such a plethora of reactor and
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accelerator neutrino experiments that one could easily lose track of them. These

will measure the various unknown neutrino parameters, and in addition will give

clues about sterile neutrinos. On the other side, cosmology has long entered the

precision era, and while there are no new general purpose satellite experiments

coming soon, cosmology will have no longer only to rely on light as the only mes-

senger. A variety of experiments are being planned that may detect the cosmic

neutrino background. Furthermore and more concrete, gravitational waves from

colliding black holes have been detected! This proves their existence and opens the

door for detecting the gravitational wave background. Beyond that, experiments

are being planned to perform precision measurements of the behaviour of strong

gravitational fields, e.g. the Einstein telescope [161].

On the other hand, as enough things are theoretically far from well-understood,

the author is convinced that theoretical progress is necessary and possible! What

seems to be needed are not only better experiments but better theoretical under-

standing by tying together all the bits and pieces and to find out where precisely

logical gaps appear, even if this means that one has to take a step back and that

one has to delve into more formal aspects of the theory. The only thing one has to

fear is that no scientist can be found with the courage to do this, or even worse,

that the whole of the scientific community gets distracted from having the pa-

tience for this by economical dynamics, or still worse, that mankind as a whole

loses interest in the pursuit of science.

Fundamental science in particular that does not produce immediately profitable

results is dependent on the goodwill of governments and eventually of the people.

As science is becoming more and more expensive, it is turning from something that

individuals can pursue on their own into projects that sometimes require several

states to fund them. Only by abandoning the slight elitism that maybe was always

part of science and returning knowledge and enthusiasm to the people that pay

for it, a crisis of science can be averted.

And when you finish reading this book, tie a stone to it and cast it into

the midst of the Euphrates.

– Jeremiah 51.63
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Appendix

7.1 Full results for semidirect models

7.1.1 Majorana mass and diagonalisation matrices for Neutrino-

semidirect models

(i) Gν = Zbcxdx

2 ≡ {1, bcxdx}, Xνr = {ρr(cγd−2x−γ), ρr(bc
x+γd−x−γ)}

The light neutrino mass matrix satisfying Eq. (4.22) is of the following form

mν =

 m11e
−2iπ γ

n m12e
iπ 2x+γ

n m13e
−2iπ x+γ

n

m12e
iπ 2x+γ

n m22e
4iπ x+γ

n m12e
iπ γ
n

m13e
−2iπ x+γ

n m12e
iπ γ
n m11e

−2iπ 2x+γ
n

 , (7.1)

where m11, m12, m13 and m22 are real parameters. This neutrino mass matrix is

diagonalized by the unitary transformation Uν via

UT
ν mνUν = diag (m1,m2,m3) , (7.2)

where Uν is

Uν =
1√
2

 eiπ
γ
n −eiπ γn sin θ eiπ

γ
n cos θ

0 e−2iπ x+γ
n

√
2 cos θ e−2iπ x+γ

n

√
2 sin θ

−eiπ 2x+γ
n −eiπ 2x+γ

n sin θ eiπ
2x+γ
n cos θ

Kν , (7.3)

where Kν is a diagonal unitary matrix with entries ±1 and ±i which encode the

CP parity of the neutrino states and renders the light neutrino masses positive.
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We shall omit the factor Kν in the following cases for simplicity of notation. The

angle θ is given by

tan 2θ =
2
√

2m12

m11 +m13 −m22

. (7.4)

The light neutrino masses are

m1 = |m11 −m13| ,

m2 =
1

2

∣∣∣∣m11 +m13 +m22 − sign ((m11 +m13 −m22) cos 2θ)
√

(m11 +m13 −m22)2 + 8m2
12

∣∣∣∣ ,
m3 =

1

2

∣∣∣∣m11 +m13 +m22 + sign ((m11 +m13 −m22) cos 2θ)
√

(m11 +m13 −m22)2 + 8m2
12

∣∣∣∣ .
Here the order of the three eigenvalues m1, m2 and m3 can not be pinned down,

consequently the unitary matrix Uν is determined up to permutations of the

columns (the same turns out to be true in the following cases), and the neutrino

mass spectrum can be either normal ordering or inverted ordering. Moreover, as

four parameters m11, m12, m13 and m22 are involved in the neutrino masses, the

measured mass squared splitting can be accounted for easily.

(ii) Gν = Zabcy

2 ≡ {1, abcy}, Xνr = {ρr(cγd2y+2γ), ρr(abc
y+γd2y+2γ)}

In this case, the light neutrino mass matrix takes the form:

mν =

 m11e
−2iπ γ

n m12e
−2iπ y+γ

n m13e
iπ 2y+γ

n

m12e
−2iπ y+γ

n m11e
−2iπ 2y+γ

n m13e
iπ γ
n

m13e
iπ 2y+γ

n m13e
iπ γ
n m33e

4iπ y+γ
n

 , (7.5)

where m11, m12, m13 and m33 are real. The unitary matrix Uν which diagonalizes

the above neutrino mass matrix is given by

Uν =
1√
2

 eiπ
γ
n eiπ

γ
n cos θ eiπ

γ
n sin θ

−eiπ 2y+γ
n eiπ

2y+γ
n cos θ eiπ

2y+γ
n sin θ

0 −e−2iπ y+γ
n

√
2 sin θ e−2iπ y+γ

n

√
2 cos θ

 , (7.6)

with

tan 2θ =
2
√

2m13

m33 −m11 −m12

. (7.7)
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The light neutrino mass eigenvalues are determined to be

m1 = |m11 −m12| ,

m2 =
1

2

∣∣∣∣m11 +m12 +m33 + sign ((m11 +m12 −m33) cos 2θ)
√

(m11 +m12 −m33)2 + 8m2
13

∣∣∣∣ ,
m2 =

1

2

∣∣∣∣m11 +m12 +m33 − sign ((m11 +m12 −m33) cos 2θ)
√

(m11 +m12 −m33)2 + 8m2
13

∣∣∣∣ .
(iii) Gν = Za2bdz

2 ≡ {1, a2bdz}, Xνr =
{
ρr(c

2z+2δdδ), ρr(a
2bc2z+2δdz+δ)

}
The light neutrino mass matrix, which is invariant under both residual flavour

symmetry and residual CP symmetry, is of the form:

mν =

 m11e
−4iπ z+δ

n m12e
−iπ δ

n m12e
−iπ 2z+δ

n

m12e
−iπ δ

n m22e
2iπ 2z+δ

n m23e
2iπ z+δ

n

m12e
−iπ 2z+δ

n m23e
2iπ z+δ

n m22e
2iπ δ

n

 , (7.8)

where m11, m12, m22 and m23 are real parameters. The neutrino diagonalization

matrix Uν is given by

Uν =
1√
2

 0 − e2iπ z+δ
n

√
2 sin θ e2iπ z+δ

n

√
2 cos θ

e−iπ
2z+δ
n e−iπ

2z+δ
n cos θ e−iπ

2z+δ
n sin θ

−e−iπ δn e−iπ
δ
n cos θ e−iπ

δ
n sin θ

 , (7.9)

where the angle θ fulfils

tan 2θ =
2
√

2m12

m11 −m22 −m23

. (7.10)

Finally the light neutrino masses are

m1 = |m22 −m23| ,

m2 =
1

2

∣∣∣∣m11 +m22 +m23 − sign ((m11 −m22 −m23) cos 2θ)
√

(m11 −m22 −m23)2 + 8m2
12

∣∣∣∣ ,
m3 =

1

2

∣∣∣∣m11 +m22 +m23 + sign ((m11 −m22 −m23) cos 2θ)
√

(m11 −m22 −m23)2 + 8m2
12

∣∣∣∣ .
(iv) Gν = Zcn/2

2 ≡
{

1, cn/2
}

, Xνr =
{
ρr(c

γdδ), ρr(abc
γdδ)

}
• Xνr = ρr(c

γdδ)
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The light neutrino mass matrix is constrained to be of the following form

mν =

 m11e
−2iπ γ

n m12e
−iπ δ

n 0

m12e
−iπ δ

n m22e
−2iπ δ−γ

n 0

0 0 m33e
2iπ δ

n

 , (7.11)

where m11, m12, m22 and m33 are real. The unitary transformation Uν is

Uν =

 eiπ
γ
n cos θ eiπ

γ
n sin θ 0

−eiπ δ−γn sin θ eiπ
δ−γ
n cos θ 0

0 0 e−iπ
δ
n

 , (7.12)

where

tan 2θ =
2m12

m22 −m11

. (7.13)

The light neutrino masses are determined to be

m1 =
1

2

∣∣∣∣m11 +m22 − sign ((m22 −m11) cos 2θ)
√

(m22 −m11)2 + 4m2
12

∣∣∣∣ ,
m2 =

1

2

∣∣∣∣m11 +m22 + sign ((m22 −m11) cos 2θ)
√

(m22 −m11)2 + 4m2
12

∣∣∣∣ ,
m3 = |m33| . (7.14)

• Xνr = ρr(abc
γdδ)

For the case of δ 6= 2γ mod n, the light neutrino masses would be partially

degenerate. This is unviable. The reason is that the corresponding general

CP transformation matrix is not symmetric 1. Therefore we shall concentrate

on the case of δ = 2γ mod n in the following. The neutrino mass matrix is

given by

mν =

 m11e
iφ m12e

−2iπ γ
n 0

m12e
−2iπ γ

n m11e
−i(4π γ

n
+φ) 0

0 0 m33e
4iπ γ

n

 , (7.15)

1In the basis in which the neutrino mass matrix is diagonal with mν = diag(m1,m2,m3),

the general CP transformation X̂ which leaves mν invariant: X̂TmmuX̂ = m∗ν , should be of

the form X̂ = diag(±1,±1,±1). One can go to an arbitrary basis and define the corresponding

CP symmetry transformation X = U†X̂U∗ as a symmetry of the general neutrino mass matrix,
where U is the basis transformation. As a result, the residual CP symmetry X in the neutrino
sector should be symmetric. The same conclusion has been obtained in Ref. [30].
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where m11, m12, m33 and φ are real free parameters. The neutrino diagonal-

ization matrix is

Uν =
1√
2

 e−i
φ
2 e−i

φ
2 0

−ei(φ2 +2π γ
n

) ei(
φ
2

+2π γ
n

) 0

0 0
√

2 e−2iπ γ
n

 . (7.16)

The light neutrino mass eigenvalues are

m1 = |m11 −m12| , m2 = |m11 +m12| , m3 = |m33| . (7.17)

The ordering of the neutrino masses can not be determined as well.

(v) Gν = Zdn/2

2 ≡
{

1, dn/2
}

, Xνr =
{
ρr(c

γdδ), ρr(a
2bcγdδ)

}
• Xνr = ρr(c

γdδ)

The light neutrino mass matrix is constrained by residual flavour and residual

CP symmetries to be

mν =

 m11e
−2iπ γ

n 0 0

0 m22e
−2iπ δ−γ

n m23e
iπ γ
n

0 m23e
iπ γ
n m33e

2iπ δ
n

 , (7.18)

where m11, m22, m23 and m33 are real. The neutrino diagonalization matrix

is

Uν =

 eiπ
γ
n 0 0

0 eiπ
δ−γ
n cos θ eiπ

δ−γ
n sin θ

0 −e−iπ δn sin θ e−iπ
δ
n cos θ

 , (7.19)

with

tan 2θ =
2m23

m33 −m22

. (7.20)

The light neutrino masses take the form

m1 = |m11| ,

m2 =
1

2

∣∣∣∣m22 +m33 − sign ((m33 −m22) cos 2θ)
√

(m33 −m22)2 + 4m2
23

∣∣∣∣ ,
m3 =

1

2

∣∣∣∣m22 +m33 + sign ((m33 −m22) cos 2θ)
√

(m33 −m22)2 + 4m2
23

∣∣∣∣ .
(7.21)

• Xνr = ρr(a
2bcγdδ)
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As has been shown above, Xνr has to be symmetric. Then the requirement

γ = 2δ mod n follows immediately, otherwise the light neutrino masses

would be partially degenerate. In this case, the neutrino mass matrix takes

the form:

mν =

 m11e
−4iπ δ

n 0 0

0 m22e
iφ m23e

2iπ δ
n

0 m23e
2iπ δ

n m22e
i(4π δ

n
−φ)

 , (7.22)

where m11, m22, m23 and φ are real. It is diagonalized by the unitary matrix

Uν =
1√
2


√

2e2iπ δ
n 0 0

0 e−i
φ
2 e−i

φ
2

0 −ei(
φ
2
−2π δ

n) ei(
φ
2
−2π δ

n)

 . (7.23)

The light neutrino masses are

m1 = |m11| , m2 = |m22 −m23| , m3 = |m22 +m23| . (7.24)

(vi) Gν = Zcn/2dn/2

2 ≡
{

1, cn/2dn/2
}

, Xνr =
{
ρr(c

γdδ), ρr(bc
γdδ)

}
• Xνr = ρr(c

γdδ)

The light neutrino mass matrix invariant under both the residual flavour and

residual CP symmetries is

mν =

 m11e
−2iπ γ

n 0 m13e
−iπ γ−δ

n

0 m22e
−2iπ δ−γ

n 0

m13e
−iπ γ−δ

n 0 m33e
2iπ δ

n

 , (7.25)

where m11, m13, m22 and m33 are real parameters. The unitary transforma-

tion Uν is given by

Uν =

 eiπ
γ
n cos θ 0 eiπ

γ
n sin θ

0 eiπ
δ−γ
n 0

−e−iπ δn sin θ 0 e−iπ
δ
n cos θ

 , (7.26)

with

tan 2θ =
2m13

m33 −m11

. (7.27)



7 Appendix 169

The light neutrino mass eigenvalues are

m1 =
1

2

∣∣∣∣m11 +m33 − sign ((m33 −m11) cos 2θ)
√

(m33 −m11)2 + 4m2
13

∣∣∣∣ ,
m2 = |m22| ,

m3 =
1

2

∣∣∣∣m11 +m33 + sign ((m33 −m11) cos 2θ)
√

(m33 −m11)2 + 4m2
13

∣∣∣∣ .
(7.28)

• Xνr = ρr(bc
γdδ)

In the case of γ + δ 6= 0 mod n, the general CP transformation ρr(bc
γdδ)

is not symmetric. As a consequence, the light neutrino masses are partially

degenerate. In the following, we shall focus on the case of γ + δ = 0 mod n.

The neutrino mass matrix is determined to be of the following form:

mν =

 m11e
iφ 0 m13e

−2iπ γ
n

0 m22e
4iπ γ

n 0

m13e
−2iπ γ

n 0 m11e
−i(φ+4π γ

n
)

 , (7.29)

where m11, m13, m22 and φ are real. The neutrino diagonalization matrix is

Uν =
1√
2

 e−i
φ
2 0 e−i

φ
2

0
√

2e−2iπ γ
n 0

−ei(φ2 +2π γ
n

) 0 ei(
φ
2

+2π γ
n

)

 . (7.30)

Finally the light neutrino masses are given by

m1 = |m11 −m13| , m2 = |m22| , m3 = |m11 +m13| . (7.31)

7.1.2 Charged lepton diagonalisation matrices in neutrino-

semidirect models

• Gl = 〈csdt〉

Ul =

 1 0 0

0 1 0

0 0 1

 . (7.32)
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Note that the parameters s and t should be subject to the following con-

straints

s+ t 6= 0 mod n, s− 2t 6= 0 mod n, t− 2s 6= 0 mod n , (7.33)

otherwise the eigenvalues of csdt would be degenerate and consequently Ul

can not be determined uniquely. For the value of s = t = n/2, the residual

symmetry could be chose to be K
(cn/2,dn/2)
4 ≡

{
1, cn/2, dn/2, cn/2dn/2

}
instead,

and then corresponding unitary transformation Ul is still a unit matrix. The

constraints of Eq. (7.33) will be assumed for the subgroup Gl = 〈csdt〉 in the

following.

• Gl = 〈bcsdt〉

Ul =
1√
2

 e−iπ
s+t
2n 0 e−iπ

s+t
2n

0
√

2 0

−eiπ s+t2n 0 eiπ
s+t
2n

 . (7.34)

To avoid degenerate eigenvalues, we should exclude the values

s− t = 0, n/3, 2n/3 mod n . (7.35)

For the case of s = t, the order of the element bcsds is two and one could ex-

tendGl from 〈bcsds〉 = {1, bcsds} to the Klein four subgroupK
(cn/2dn/2,bcsds)
4 ≡{

1, cn/2dn/2, bcsds, bcs+n/2ds+n/2
}

. Then the unitary transformation Ul is still

of the form in Eq. (7.34) with s = t.

• Gl = 〈acsdt〉

Ul =
1√
3

 e−2iπ s
n ω2e−2iπ s

n ωe−2iπ s
n

e−2iπ t
n ωe−2iπ t

n ω2e−2iπ t
n

1 1 1

 , (7.36)

where ω = e2iπ/3 = −1
2

+ i
√

3
2

is the third root of unity. Notice that the

order of the element acsdt is three regardless of the values of s and t, and its

eigenvalues are 1, ω and ω2.

• Gl = 〈a2csdt〉

Ul =
1√
3

 e−2iπ t
n ω2e−2iπ t

n ωe−2iπ t
n

e2iπ s−t
n ωe2iπ s−t

n ω2e2iπ s−t
n

1 1 1

 . (7.37)
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Note that because (actdt−s)
2

= a2csdt holds, this Ul can be obtained from

the one in Eq. (7.36) by the replacement s→ t, t→ t− s.

• Gl = 〈abcsdt〉

Ul =
1√
2

 eiπ
t−2s
2n eiπ

t−2s
2n 0

−e−iπ t−2s
2n e−iπ

t−2s
2n 0

0 0
√

2

 . (7.38)

Non-degeneracy of the eigenvalues of abcsdt requires t 6= 0, n/3, 2n/3. In the

case of t = 0, the degeneracy can be avoided by expanding Gl to the Klein

four subgroup K
(cn/2,abcs)
4 ≡

{
1, cn/2, abcs, abcs+n/2

}
, whose diagonalization

matrix is of the same form as Eq. (7.38) with t = 0.

• Gl = 〈a2bcsdt〉

Ul =
1√
2


√

2 0 0

0 eiπ
s−2t
2n eiπ

s−2t
2n

0 − e−iπ s−2t
2n e−iπ

s−2t
2n

 . (7.39)

Here the parameter s can not be equal to 0, n/3 or 2n/3, otherwise two

eigenvalues of a2bcsdt would be identical. For the extended residual symme-

try Gl = K
(dn/2,a2bdt)
4 ≡

{
1, dn/2, a2bdt, a2bdt+n/2

}
, the corresponding unitary

transformation is still given by Eq. (7.39) with s = 0.
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7.1.3 Additional mixing results for neutrino-semi-direct

models

(I) In this case, the lepton mixing parameters are predicted to be

sin2 θ13 =
1

3

(
1 + cos2 θ cos 2ϕ1 +

√
2 sin 2θ cosϕ2 cosϕ1

)
,

sin2 θ12 =
1 + sin2 θ cos 2ϕ1 −

√
2 sin 2θ cosϕ2 cosϕ1

2− cos2 θ cos 2ϕ1 −
√

2 sin 2θ cosϕ2 cosϕ1

,

sin2 θ23 =
1− cos2 θ sin (π/6 + 2ϕ1)−

√
2 sin 2θ cosϕ2 sin (π/6− ϕ1)

2− cos2 θ cos 2ϕ1 −
√

2 sin 2θ cosϕ2 cosϕ1

,

|tan δCP | =
∣∣∣2√2 sin 2θ sinϕ2(1 + 2 cos 2ϕ1)

(
2− cos2 θ cos 2ϕ1 −

√
2 sin 2θ cosϕ2 cosϕ1

)/
{

2 sin2 2θ cos 2ϕ2(cos 3ϕ1 − 2 cosϕ1) + cosϕ1

(
9− 4 cos 2θ + 3 cos 4θ − 16 cos2 θ cos 2ϕ1

)
−2
√

2 sin 2θ cosϕ2

[
2− cos2 θ(5 + cos 2ϕ1 + cos 4ϕ1)

] }∣∣∣
|JCP | =

1

6
√

6
|sin 2θ sinϕ2 sin 3ϕ1| ,

|tanα21| =

∣∣∣∣∣ 2 sinϕ2

(
cosϕ2 −

√
2 cosϕ1 tan θ

)
cos 2ϕ2 − 2 cosϕ1 tan θ

(√
2 cosϕ2 − cosϕ1 tan θ

)∣∣∣∣∣ ,
|tanα′31| =

∣∣∣∣∣ 2 sinϕ2

(
cosϕ2 +

√
2 cosϕ1 cot θ

)
cos 2ϕ2 + 2 cosϕ1 cot θ

(√
2 cosϕ2 + cosϕ1 cot θ

)∣∣∣∣∣ , (7.40)

where α′31 = α31−2δCP , δCP is the Dirac CP phase, α21 and α31 are the Majorana

CP phases in the standard parametrisation [36]. If we embed the three generations

of left-handed lepton doublets into the triplet 31,n−1 which is the complex conjugate

representation of 31,1, all three CP phases δCP , α21 and α31 would become their

opposite numbers modulo 2π. Furthermore, the overall sign of tanα21 and tanα′31

depends on the CP parity of the neutrino states which is encoded in the matrix

Kν (please see Eq. (7.3)), and the sign of the Jarlskog invariant JCP depends on

the ordering of rows and columns. As a result, all these quantities are presented

in terms of absolute values here.

It is notable that all three CP phases depend on both the free continuous parameter

θ and the discrete parameters ϕ1 and ϕ2 associated with flavour and CP symme-

tries. Both Dirac CP and Majorana CP are conserved for ϕ2 = 0. Furthermore,

the solar mixing angle θ12 and reactor angle θ13 are related by

3 cos2 θ12 cos2 θ13 = 2 sin2 ϕ1 , (7.41)
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which is independent of the free parameter θ.

For the lepton flavour mixing matrix U4th
PMNS, one can extract the flavour mixing

parameters:

sin2 θ13 =
1

3

(
1 + cos2 θ cos 2ϕ1 +

√
2 sin 2θ cosϕ2 cosϕ1

)
,

sin2 θ12 =
2 sin2 ϕ1

2− cos2 θ cos 2ϕ1 −
√

2 sin 2θ cosϕ2 cosϕ1

,

sin2 θ23 =
1− cos2 θ sin (π/6 + 2ϕ1)−

√
2 sin 2θ cosϕ2 sin (π/6− ϕ1)

2− cos2 θ cos 2ϕ1 −
√

2 sin 2θ cosϕ2 cosϕ1

,

|JCP | =
1

6
√

6
|sin 2θ sinϕ2 sin 3ϕ1| ,

|tan δCP | =
∣∣∣4√2 sin 2θ sinϕ2 sin 3ϕ1 cscϕ1

(
2− cos 2ϕ1 cos2 θ −

√
2 cosϕ2 cosϕ1 sin 2θ

)/
{
− 16 cos 3ϕ1 cos2 θ + 8(1− 3 cos 2θ) cosϕ1 sin2 θ + 4 cos 2ϕ2(cos 3ϕ1 − 2 cosϕ1) sin2 2θ

+
√

2 cosϕ2

[
8(cos 2ϕ1 + cos 4ϕ1) sin θ cos3 θ + 2 sin 2θ + 5 sin 4θ

] }∣∣∣ ,
|tanα21| =

∣∣∣∣∣ 2 sinϕ2

(
cosϕ2 −

√
2 cosϕ1 tan θ

)
cos 2ϕ2 − 2 cosϕ1 tan θ

(√
2 cosϕ2 − cosϕ1 tan θ

)∣∣∣∣∣ ,
|tanα′31| =

∣∣∣8 cosϕ1

(√
2 cos 2ϕ1 sin 2θ sinϕ2 − 2 cos 2θ cosϕ1 sin 2ϕ2

)/{
4(3 + cos 4θ)

× cos 2ϕ2 cos2 ϕ1 − 4
√

2 cosϕ2 cosϕ1 cos 2ϕ1 sin 4θ − (3− cos 4ϕ1 + 4 cos 2ϕ1) sin2 2θ
}∣∣∣ .

(7.42)

The lepton mixing parameters for U I,7th
PMNS are determined to be

sin2 θ13 =
2

3
sin2 ϕ1, sin2 θ12 =

1 + sin2 θ cos 2ϕ1 −
√

2 sin 2θ cosϕ2 cosϕ1

2 + cos 2ϕ1

,

sin2 θ23 =
1 + sin (π/6 + 2ϕ1)

2 + cos 2ϕ1

, |JCP | =
1

6
√

6
|sin 2θ sinϕ2 sin 3ϕ1| ,

|tan δCP | =
∣∣∣∣ sinϕ2(2 + cos 2ϕ1)

cosϕ2 cos 2ϕ1 − 2
√

2 cot 2θ cosϕ1

∣∣∣∣ ,
|tanα21| =

∣∣∣4√2 cosϕ1

(
cos 2ϕ1 sin 2θ sinϕ2 −

√
2 cos 2θ cosϕ1 sin 2ϕ2

)/{
2(cos 4θ + 3)

× cos 2ϕ2 cos2 ϕ1 − 2
√

2 cosϕ2 cosϕ1 cos 2ϕ1 sin 4θ +
(
cos2 2ϕ1 − 4 cos2 ϕ1

)
sin2 2θ

}∣∣∣ ,
|tanα′31| =

∣∣∣∣∣ 2 sinϕ2 sin θ
(√

2 cos θ cosϕ1 + cosϕ2 sin θ
)

2 cos2 θ cos2 ϕ1 +
√

2 cosϕ2 cosϕ1 sin 2θ + cos 2ϕ2 sin2 θ

∣∣∣∣∣ . (7.43)

The lepton mixing parameters for U I,8th
PMNS and U I,9th

PMNS can be obtained from

Eq. (7.43) by the replacement θ → π−θ, ϕ1 → π
3

+ϕ1 and θ → −θ, ϕ1 → −π
3

+ϕ1
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respectively. We see that both θ13 and θ23 are only determined by the discrete

group parameter ϕ1, and they are related by

sin2 θ23 =
1

2
± 1

2
tan θ13

√
2− tan2 θ13 , (7.44)

which yields

θ23 '
π

4
± θ13√

2
. (7.45)

(II)

sin2 θ13 =
1

8

(
3− cos 2θ − 2

√
2 sin 2θ cosϕ3

)
, sin2 θ12 =

2

5 + cos 2θ + 2
√

2 sin 2θ cosϕ3

,

sin2 θ23 =
3− cos 2θ + 2

√
2 sin 2θ cosϕ3

5 + cos 2θ + 2
√

2 sin 2θ cosϕ3

, |JCP | =
1

8
√

2
|sin 2θ sinϕ3| ,

|tan δCP | =

∣∣∣∣∣ 8 cos θ sin2 θ sin 2ϕ3 +
√

2(9 sin θ + sin 3θ) sinϕ3

4 cos 3θ + cos θ
(
4− 8 sin2 θ cos 2ϕ3

)
+
√

2(3 sin 3θ − 5 sin θ) cosϕ3

∣∣∣∣∣ ,
|tanα21| =

∣∣∣∣∣ 2 cos2 θ sin 2ϕ3 +
√

2 sin 2θ sinϕ3

sin2 θ + 2 cos2 θ cos 2ϕ3 +
√

2 sin 2θ cosϕ3

∣∣∣∣∣ ,
|tanα′31| =

∣∣∣∣∣ 16 cos 2θ sin 2ϕ3 − 8
√

2 sin 2θ sinϕ3

6 sin2 2θ + 4
√

2 sin 4θ cosϕ3 − 4(3 + cos 4θ) cos 2ϕ3

∣∣∣∣∣ . (7.46)

III The lepton mixing parameters are given by

sin2 θ13 =
1

3
[1 + sin 2θ cos(ϕ5 − ϕ4)] , sin2 θ12 =

1

2− sin 2θ cos(ϕ5 − ϕ4)
,

sin2 θ23 =
1− sin 2θ sin (ϕ5 − ϕ4 + π/6)

2− sin 2θ cos(ϕ5 − ϕ4)
, |JCP | =

1

6
√

3
|cos 2θ| ,

|tan δCP | =
∣∣∣∣ cot 2θ [2− sin 2θ cos(ϕ5 − ϕ4)]

sin(ϕ5 − ϕ4)− sin 2θ sin(2ϕ5 − 2ϕ4)

∣∣∣∣ ,
|tanα21| =

∣∣∣∣ cos2 θ sin 2ϕ4 + sin2 θ sin 2ϕ5 − sin 2θ sin(ϕ5 + ϕ4)

cos2 θ cos 2ϕ4 + sin2 θ cos 2ϕ5 − sin 2θ cos(ϕ5 + ϕ4)

∣∣∣∣ ,
|tanα′31| =

∣∣∣∣ 4 cos 2θ sin(2ϕ5 − 2ϕ4)

1− 3 cos(2ϕ5 − 2ϕ4)− 2 cos 4θ cos2(ϕ5 − ϕ4)

∣∣∣∣ . (7.47)

7.1.4 Correlation plots for neutrino-semidirect models

Figures 7.1–7.5 contain correlation plots between lepton mixing parameters for the

various cases.
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Figure 7.1: The correlations among mixing parameters in case I for the
1st-3rd ordering with the PMNS matrices given in Eq. (4.29). The red
filled regions denote the allowed values of the mixing parameters if we
take the parameters ϕ1 and ϕ2 to be continuous (which is equivalent to
taking the limit n→∞) and the three mixing angles are required to lie in
their 3σ regions. Note that the three CP phases δCP , α21 and α′31 are not
constrained in this limit. The black curves represent the phenomenologi-
cally viable correlations for n = 8. The 1σ and 3σ bounds of the mixing
parameters are taken from Ref. [78].
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Figure 7.2: The possible values of sin2 θ23 and sin θ13 for the 7th-9th
ordering with the PMNS matrices shown in Eq. (4.38) in case I. The 1σ
and 3σ bounds of the mixing angles are taken from Ref. [78].

7.1.5 Charged lepton mass and diagonalisation matrices

for charged-lepton semi-direct models

The full symmetry ∆(6n2) o HCP is broken down to Z2 × H l
CP in the charged

lepton sector. Similar to section 4.3, the hermitian combination m†lml of the

charged lepton mass matrix can be constructed from its invariance under the

residual flavour symmetry Z2 and the residual CP symmetry H l
CP ,

ρ†3(gl)m
†
lmlρ3(gl) = m†lml, gl ∈ Z2 ,

X†l3m
†
lmlXl3 =

(
m†lml

)∗
, Xl ∈ H l

CP . (7.48)

(i) Gl = Zbcxdx

2 , Xlr = {ρr(cγd−2x−γ), ρr(bc
x+γd−x−γ)}
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Figure 7.3: The correlations among mixing parameters in case II. The red
filled regions denote the allowed values of the mixing parameters if we
take the parameter ϕ3 to be continuous (which is equivalent to taking the
limit n → ∞) and the three mixing angles are required to lie in their 3σ
ranges (the 3σ lower bound of sin2 θ12 is chosen to be 0.254 instead of 0.259
given in Ref. [78]). Note that the Majorana phase α′31 is not constrained
in this limit. The black curves represent the phenomenologically viable
correlations for n = 8. The 1σ and 3σ bounds of the mixing parameters
are taken from Ref. [78]
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Figure 7.4: The correlations among mixing parameters in case III. The red
filled regions denote the allowed values of the mixing parameters if we take
the parameters ϕ4 and ϕ5 to be continuous (which is equivalent to taking
the limit n→∞) and the three mixing angles are required to lie in their 3σ
ranges. Note that the three CP phases δCP , α21 and α′31 are not constrained
in this limit. The black curves represent the phenomenologically viable
correlations for n = 8. The 1σ and 3σ bounds of the mixing parameters
are taken from Ref. [78].
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Figure 7.5: The correlations among mixing parameters in case IV. The
red filled regions denote the allowed values of the mixing parameters if we
take the parameters ϕ6 and ϕ7 to be continuous (which is equivalent to
taking the limit n→∞), where θ12 and θ13 are required to lie in their 3σ
ranges. The 1σ and 3σ bounds of the mixing parameters are taken from
Ref. [78].

In this case, m†lml is determined to be of the form

m†lml =

 m̃11 m̃12e
iπ 2x+3γ

n m̃13e
−2iπ x

n

m̃12e
−iπ 2x+3γ

n m̃22 m̃12e
−iπ 4x+3γ

n

m̃13e
2iπ x

n m̃12e
iπ 4x+3γ

n m̃11

 , (7.49)

where m̃11, m̃12, m̃13 and m̃22 are real parameters, and they have mass dimension

of 2. This charged lepton mass matrix is diagonalized by a unitary transformation

Ul via

U †lm
†
lmlUl = diag

(
m2
l1
,m2

l2
,m2

l3

)
, (7.50)

with

Ul =
1√
2

 eiπ
γ
n −eiπ γn sin θ eiπ

γ
n cos θ

0 e−2iπ x+γ
n

√
2 cos θ e−2iπ x+γ

n

√
2 sin θ

−eiπ 2x+γ
n −eiπ 2x+γ

n sin θ eiπ
2x+γ
n cos θ

 , (7.51)

where the angle θ is

tan 2θ =
2
√

2m̃12

m̃11 + m̃13 − m̃22

. (7.52)

It is remarkable that the unitary transformation Ul in Eq. (??) coincides with Uν

in Eq. (7.3). The reason is that the two cases share the same residual symmetry.



180 7 Appendix

The charged lepton masses are given by

m2
l1

= m̃11 − m̃13,

m2
l2

=
1

2

[
m̃11 + m̃13 + m̃22 − sign ((m̃11 + m̃13 − m̃22) cos 2θ)

√
(m̃11 + m̃13 − m̃22)2 + 8m̃2

12

]
,

m2
l3

=
1

2

[
m̃11 + m̃13 + m̃22 + sign ((m̃11 + m̃13 − m̃22) cos 2θ)

√
(m̃11 + m̃13 − m̃22)2 + 8m̃2

12

]
.

In the present framework, we can not determine the order of m2
l1

, m2
l2

and m2
l3

, i.e.

we don’t know which one of m2
l1

, m2
l2

, m2
l3

is electron (muon or tau) mass squared.

As a result, the diagonalization matrix Ul in Eq. (??) is also determined up to

rephasing and permutations of its column vectors. The same holds true for the

following cases.

(ii) Gl = Zabcy

2 , Xlr = {ρr(cγd2y+2γ), ρr(abc
y+γd2y+2γ)}

The charged lepton mass matrix satisfying the invariant conditions of Eq. (7.48)

takes the form

m†lml =

 m̃11 m̃12e
−2iπ y

n m̃13e
iπ 2y+3γ

n

m̃12e
2iπ y

n m̃11 m̃13e
iπ 4y+3γ

n

m̃13e
−iπ 2y+3γ

n m̃13e
−iπ 4y+3γ

n m̃33

 , (7.53)

where m̃11, m̃12, m̃13 and m̃33 are real. The charged lepton diagonalization matrix

Ul is given by

Ul =
1√
2

 eiπ
γ
n eiπ

γ
n cos θ eiπ

γ
n sin θ

−eiπ 2y+γ
n eiπ

2y+γ
n cos θ eiπ

2y+γ
n sin θ

0 −e−2iπ y+γ
n

√
2 sin θ e−2iπ y+γ

n

√
2 cos θ

 , (7.54)

with

tan 2θ =
2
√

2 m̃13

m̃33 − m̃11 − m̃12

. (7.55)

The charged lepton masses are determined to be

m2
l1

= m̃11 − m̃12,

m2
l2

=
1

2

[
m̃11 + m̃12 + m̃33 + sign ((m̃11 + m̃12 − m̃33) cos 2θ)

√
(m̃11 + m̃12 − m̃33)2 + 8m2

13

]
,

m2
l3

=
1

2

[
m̃11 + m̃12 + m̃33 − sign ((m̃11 + m̃12 − m̃33) cos 2θ)

√
(m̃11 + m̃12 − m̃33)2 + 8m2

13

]
.

(iii) Gl = Za2bdz

2 , Xlr =
{
ρr(c

2z+2δdδ), ρr(a
2bc2z+2δdz+δ)

}
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The charged lepton mass matrix invariant under both residual flavour and residual

CP symmetries is

m†lml =

 m̃11 m̃12e
iπ 4z+3δ

n m̃12e
iπ 2z+3δ

n

m̃12e
−iπ 4z+3δ

n m̃22 m̃23e
−2iπ z

n

m̃12e
−iπ 2z+3δ

n m̃23e
2iπ z

n m̃22

 , (7.56)

where m̃11, m̃12, m̃22 and m̃23 are real. The unitary transformation Ul follows

immediately,

Ul =
1√
2

 0 − e2iπ z+δ
n

√
2 sin θ e2iπ z+δ

n

√
2 cos θ

e−iπ
2z+δ
n e−iπ

2z+δ
n cos θ e−iπ

2z+δ
n sin θ

−e−iπ δn e−iπ
δ
n cos θ e−iπ

δ
n sin θ

 , (7.57)

with the angle θ specified by

tan 2θ =
2
√

2m̃12

m̃11 − m̃22 − m̃23

. (7.58)

Finally the charged lepton mass eigenvalues are

m2
l1

= m̃22 − m̃23,

m2
l2

=
1

2

[
m̃11 + m̃22 + m̃23 − sign ((m̃11 − m̃22 − m̃23) cos 2θ)

√
(m̃11 − m̃22 − m̃23)2 + 8m2

12

]
,

m2
l3

=
1

2

[
m̃11 + m̃22 + m̃23 + sign ((m̃11 − m̃22 − m̃23) cos 2θ)

√
(m̃11 − m̃22 − m̃23)2 + 8m2

12

]
.

(iv) Gl = Zcn/2

2 =
{

1, cn/2
}

, Xlr =
{
ρr(c

γdδ), ρr(abc
γdδ)

}
• Xlr = ρr(c

γdδ)

The charged lepton mass matrix is constrained to be of the following form

m†lml =

 m̃11 m̃12e
iπ 2γ−δ

n 0

m̃12e
−iπ 2γ−δ

n m̃22 0

0 0 m̃33

 , (7.59)

where m̃11, m̃12, m̃22 and m̃33 are real. It is diagonalized by the unitary

matrix Ul with

Ul =

 eiπ
γ
n cos θ eiπ

γ
n sin θ 0

−eiπ δ−γn sin θ eiπ
δ−γ
n cos θ 0

0 0 e−iπ
δ
n

 , (7.60)
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where

tan 2θ =
2m̃12

m̃22 − m̃11

. (7.61)

The charged lepton masses are determined to be

m2
l1

=
1

2

[
m̃11 + m̃22 − sign ((m̃22 − m̃11) cos 2θ)

√
(m̃22 − m̃11)2 + 4m2

12

]
,

m2
l2

=
1

2

[
m̃11 + m̃22 + sign ((m̃22 − m̃11) cos 2θ)

√
(m̃22 − m̃11)2 + 4m2

12

]
,

m2
l3

= m̃33 . (7.62)

• Xlr = ρr(abc
γdδ)

Similar to the discussed situation that Z2×CP is preserved in the neutrino

sector, the CP transformation should be symmetric as well otherwise the

charged lepton masses would be at least partially degenerate 2. Therefore

we shall focus on the case of δ = 2γ mod n in the following. Then the

charged lepton mass matrix is fixed to be

m†lml =

 m̃11 m̃12e
iφ 0

m̃12e
−iφ m̃11 0

0 0 m̃33

 , (7.63)

where m̃11, m̃12, m̃33 and φ are free real parameters. Notice that m†lml is

independent of the parameter γ. The unitary matrix Ul is of the form

Ul =
1√
2

 eiφ eiφ 0

−1 1 0

0 0
√

2

 . (7.64)

The charged lepton masses are given by

m2
l1

= m̃11 − m̃12,

m2
l2

= m̃11 + m̃12,

m2
l2

= m̃33 . (7.65)

(v) Gl = Zdn/2

2 =
{

1, dn/2
}

, Xlr =
{
ρr(c

γdδ), ρr(a
2bcγdδ)

}
• Xlr = ρr(c

γdδ)

2From the residual symmetry invariant conditions in Eq. (7.48), we can derive that U†l Xl3U
∗
l

should be a diagonal matrix. As a consequence, the CP transformation Xl3 is symmetric.
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In this case, the charged lepton mass matrix takes the form

m†lml =

 m̃11 0 0

0 m̃22 m̃23e
−iπ γ−2δ

n

0 m̃23e
iπ γ−2δ

n m̃33

 , (7.66)

where m̃11, m̃22, m̃23 and m̃33 are real. The charged lepton diagonalization

matrix is

Ul =

 eiπ
γ
n 0 0

0 eiπ
δ−γ
n cos θ eiπ

δ−γ
n sin θ

0 −e−iπ δn sin θ e−iπ
δ
n cos θ

 , (7.67)

with

tan 2θ =
2m̃23

m̃33 − m̃22

. (7.68)

The mass eigenvalues of the charged lepton are found to be

m2
l1

= m̃11,

m2
l2

=
1

2

[
m̃22 + m̃33 − sign ((m̃33 − m̃22) cos 2θ)

√
(m̃33 − m̃22)2 + 4m2

23

]
,

m2
l3

=
1

2

[
m̃22 + m̃33 + sign ((m̃33 − m̃22) cos 2θ)

√
(m̃33 − m̃22)2 + 4m2

23

]
.

(7.69)

• Xlr = ρr(a
2bcγdδ)

This general CP transformation is symmetric only if γ = 2δ mod n. One

can easily find that the charged lepton mass matrix is constrained to be of

the form

m†lml =

 m̃11 0 0

0 m̃22 m̃23e
iφ

0 m̃23e
−iφ m̃22

 , (7.70)

where m̃11, m̃22, m̃23 and φ are real. It is diagonalized by the unitary matrix

Ul =
1√
2


√

2 0 0

0 eiφ eiφ

0 −1 1

 . (7.71)



184 7 Appendix

The charged lepton masses are

m2
l1

= m̃11,

m2
l2

= m̃22 − m̃23,

m2
l3

= m̃22 + m̃23 . (7.72)

(vi) Gl = Zcn/2dn/2

2 =
{

1, cn/2dn/2
}

, Xlr =
{
ρr(c

γdδ), ρr(bc
γdδ)

}
• Xlr = ρr(c

γdδ)

Remnant symmetry leads to the following charged lepton mass matrix

m†lml =

 m̃11 0 m̃13e
iπ γ+δ

n

0 m̃22 0

m̃13e
−iπ γ+δ

n 0 m̃33

 , (7.73)

where m̃11, m̃13, m̃22 and m33 are real parameters. The unitary transforma-

tion Ul is of the form

Ul =

 eiπ
γ
n cos θ 0 eiπ

γ
n sin θ

0 eiπ
δ−γ
n 0

−e−iπ δn sin θ 0 e−iπ
δ
n cos θ

 , (7.74)

with

tan 2θ =
2m̃13

m̃33 − m̃11

. (7.75)

The charged lepton mass eigenvalues are given by

m2
l1

=
1

2

[
m̃11 + m̃33 − sign ((m̃33 − m̃11) cos 2θ)

√
(m̃33 − m̃11)2 + 4m̃2

13

]
,

m2
l2

= m̃22,

m2
l3

=
1

2

[
m̃11 + m̃33 + sign ((m̃33 − m̃11) cos 2θ)

√
(m̃33 − m̃11)2 + 4m̃2

13

]
.

(7.76)

• Xlr = ρr(bc
γdδ)

The non-degeneracy of the charged lepton masses requires γ + δ = 0 mod n

for which the general CP transformation matrix ρr(bc
γdδ) is symmetric. The

charged lepton mass matrix fulfilling the invariant condition in Eq. (7.48) is
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of the form

m†lml =

 m̃11 0 m̃13e
iφ

0 m̃22 0

m̃13e
−iφ 0 m̃11

 , (7.77)

where m̃11, m̃13, m̃22 and φ are real. The charged lepton diagonalization

matrix is

Ul =
1√
2

 eiφ 0 eiφ

0
√

2 0

−1 0 1

 . (7.78)

Finally the charged lepton masses are

m2
l1

= m̃11 − m̃13,

m2
l2

= m̃22,

m2
l3

= m̃11 + m̃13 . (7.79)

Comparing with phenomenological predictions of Z2 × CP in the neutrino sector

analysed in section 4.3.2, we see that the diagonalization matrix Ul is of the same

form as Uν provided the residual flavour and residual CP symmetries are the same

in the two occasions.

7.1.6 Neutrino mass and diagonalisation matrices for charged-

lepton-semidirect models

(i) Gν = K
(cn/2,dn/2)
4 , Xνr =

{
ρr(c

γdδ)
}

Since the representation matrices of both cn/2 and dn/2 are diagonal, the light

neutrino mass matrix is constrained to be diagonal as well. Including the residual

CP symmetry, we find

mν =

 m11e
−2iπ γ

n 0 0

0 m22e
2iπ γ−δ

n 0

0 0 m33e
2iπ δ

n

 , (7.80)

where m11, m22 and m33 are real parameters. The neutrino diagonalization matrix

can be read out

Uν = diag
(
eiπ

γ
n , e−iπ

γ−δ
n , e−iπ

δ
n

)
Kν , (7.81)
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where Kν is a diagonal matrix with element ±1 or ±i to set the light neutrino

masses being positive. The light neutrino masses are

m1 = |m11| , m2 = |m22| , m3 = |m33| . (7.82)

We see that the light neutrino masses depend on only three real parameters,

and we would like to stress again that the order of the light neutrino masses

can not be fixed here, and therefore Uν here and henceforth is determined up

to column permutations. For other residual CP symmetries Xνr = ρr(bc
γdδ),

ρr(ac
γdδ), ρr(a

2cγdδ), ρr(abc
γdδ) and ρr(a

2bcγdδ) with γ, δ = 0, 1, . . . n − 1, the

light neutrino masses are partially degenerate such that they are not viable.

(ii) Gν = K
(cn/2,abcy)
4 , Xνr = {ρr(cγd2y+2γ), ρr(abc

y+γd2y+2γ)}

In this case, the light neutrino mass matrix takes the form

mν =

 m11e
−2iπ γ

n m12e
−2iπ y+γ

n 0

m12e
−2iπ y+γ

n m11e
−2iπ 2y+γ

n 0

0 0 m33e
4iπ y+γ

n

 , (7.83)

where m11, m12 and m33 are real. It is diagonalized by the unitary matrix Uν

with

Uν =
1√
2

 eiπ
γ
n eiπ

γ
n 0

−eiπ 2y+γ
n eiπ

2y+γ
n 0

0 0
√

2e−2iπ y+γ
n

 . (7.84)

The light neutrino masses are given by

m1 = |m11 −m12| , m2 = |m11 +m12| , m3 = |m33| . (7.85)

For the case of Xνr =
{
ρr(c

γd2y+2γ+n/2), ρr(abc
y+γd2y+2γ+n/2)

}
, the light neutrino

masses are degenerate, and therefore are not discussed here.

(iii) Gν = K
(dn/2,a2bdz)
4 , Xνr =

{
ρr(c

2z+2δdδ), ρr(a
2bc2z+2δdz+δ)

}
The light neutrino mass matrix, which is invariant under both residual flavour

and residual CP symmetry, is determined to be

mν =

 m11e
−4iπ z+δ

n 0 0

0 m22e
2iπ 2z+δ

n m23e
2iπ z+δ

n

0 m23e
2iπ z+δ

n m22e
2iπ δ

n

 , (7.86)
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where m11, m22 and m23 are real. The unitary matrix Uν is

Uν =
1√
2


√

2e2iπ z+δ
n 0 0

0 e−iπ
2z+δ
n e−iπ

2z+δ
n

0 −e−iπ δn e−iπ
δ
n

 . (7.87)

The light neutrino mass eigenvalues are given by

m1 = |m11| , m2 = |m22 −m23| , m3 = |m22 +m23| . (7.88)

For the value of Xνr =
{
ρr(c

2z+2δ+n/2dδ), ρr(a
2bc2z+2δ+n/2dz+δ)

}
, the neutrino

masses are degenerate.

(iv) Gν = K
(cn/2dn/2,bcxdx)
4 , Xνr = {ρr(cγd−2x−γ), ρr(bc

x+γd−x−γ)}

In this case, we find the light neutrino mass matrix is of the form

mν =

 m11e
−2iπ γ

n 0 m13e
−2iπ x+γ

n

0 m22e
4iπ x+γ

n 0

m13e
−2iπ x+γ

n 0 m11e
−2iπ 2x+γ

n

 , (7.89)

where m11, m13 and m22 are real. The unitary matrix Uν diagonalizing this

neutrino mass matrix is

Uν =
1√
2

 eiπ
γ
n 0 eiπ

γ
n

0
√

2e−2iπ x+γ
n 0

−eiπ 2x+γ
n 0 eiπ

2x+γ
n

 . (7.90)

Finally the neutrino masses are

m1 = |m11 −m13| , m2 = |m22| , m3 = |m11 +m13| . (7.91)

For the remaining value of Xνr =
{
ρr(c

γd−2x−γ+n/2), ρr(bc
x+γd−x−γ+n/2)

}
, the

light neutrino masses are degenerate.
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7.1.7 Additional mixing results for charged-lepton-semidirect

models

sin2 θ13 =
1

2
sin2 θ, sin2 θ12 =

1

2
−
√

2 sin 2θ cosϕ8

3 + cos 2θ
, sin2 θ23 =

2

3 + cos 2θ
,

|tan δCP | =
∣∣∣∣(3 + cos 2θ) tanϕ8

1 + 3 cos 2θ

∣∣∣∣ , |JCP | =
1

8
√

2
|sin 2θ sinϕ8| ,

|tanα21| =

∣∣∣∣∣ 8
√

2(1 + 3 cos 2θ) sin 2θ sinϕ8

7 + 12 cos 2θ + 13 cos 4θ + 8 sin2 2θ cos 2ϕ8

∣∣∣∣∣ ,
|tanα′31| =

∣∣∣∣∣ sin2 θ sin 2ϕ9 +
√

2 sin 2θ sin(2ϕ9 − ϕ8) + 2 cos2 θ sin(2ϕ9 − 2ϕ8)

sin2 θ cos 2ϕ9 +
√

2 sin 2θ cos(2ϕ9 − ϕ8) + 2 cos2 θ cos(2ϕ9 − 2ϕ8)

∣∣∣∣∣ .
(7.92)

All mixing parameters depend on θ and ϕ8 except |tanα′31| which involves ϕ9

additionally.

7.2 Analysing ∆(3n2) invariant potentials with

n > 3 with CP-odd invariants

So far we have considered the finite groups A4 = ∆(3 · 22) and ∆(27) = ∆(3 · 32)

which correspond to the first two non-Abelian members of the series ∆(3n2) with

n ∈ N. In this section we derive renormalisable potentials which are invariant

under ∆(3n2) with n > 3. The field contents considered are a single triplet of

SM singlets, then one triplet of SU(2)L doublets, then two triplets of SM singlets

and finally two triplets of SU(2)L doublets. Following [156], a triplet of ∆(3n2)

can be written as 3(k,l), where k, l = 0, 1, ..., n − 1. The complex conjugate of

3(k,l) is given by 3(−k,−l), which we sometimes denote as 3̄, dropping the indices.

The cyclic permutation symmetry included in ∆(3n2) entails an ambiguity in

labelling the same triplet representation such that 3(k,l) = 3(l,−k−l) = 3(−k−l,k).

With these preliminary remarks, we can determine the product of two identical

triplet representations [156]

3(k,l) ⊗ 3(k,l) = [3(2k,2l) + 3(−k,−l)]s + [3(−k,−l)]a . (7.93)
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Figure 7.6: The correlations among mixing parameters in case V. The red
filled regions denote the allowed values of the mixing parameters if we
take the parameters ϕ8 and ϕ9 to be continuous (which is equivalent to
taking the limit n → ∞) and the three mixing angles are required to lie
in their 3σ ranges. Note that the Majorana phase α′31 is not constrained
in this limit. The black curves represent the phenomenologically viable
correlations for n = 8. The 1σ and 3σ bounds of the mixing parameters
are taken from Ref. [78].
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Again the subscripts s and a denote symmetric and antisymmetric combinations.

Assuming the original triplet 3(k,l) to be a faithful (and thus irreducible) rep-

resentation of ∆(3n2), all representations on the right-hand side are irreducible

for n 6= 2. Excluding moreover the case with n = 3, the triplets 3(2k,2l) and

3(−k,−l) denote different representations. Throughout this section we adopt the

basis of [156, 110].

7.2.1 One flavour triplet

With one triplet field, only the symmetric part of Eq. (7.93) is relevant for con-

structing quartic terms of the form 3⊗ 3⊗ 3̄⊗ 3̄. Considering n > 3, the two

triplets in the symmetric contraction of Eq. (7.93) are distinct, so that only two

independent quartic invariants can be constructed. The renormalisable scalar po-

tential, which is additionally invariant under a U(1) symmetry, thus takes the

form

V∆(3n2)(ϕ) =V0(ϕ) , (7.94)

where the explicit form of V0(ϕ) is given in Eq. (5.111). This potential always

explicitly conserves CP. It is a reduced version of the A4 symmetric potential

VA4(ϕ) of Eq. (5.113) which generally conserves CP. Therefore it is clear that

V∆(3n2)(ϕ) is left invariant under the same CP symmetry, i.e. the one defined with

a 2-3 swap, X23. In addition, V∆(3n2)(ϕ) respects the trivial CP symmetry CP0

(which VA4(ϕ) in general does not).

7.2.2 One flavour triplet of Higgs doublets

If each component of the faithful ∆(3n2) triplet transforms as an SU(2)L doublet,

the corresponding renormalisable potential consists of four independent terms. As

described in Section 5.4, the different ways of contracting the SU(2)L indices entail

a doubling of the ∆(3n2) invariant term in Eq. (7.94) which is proportional to r.

The resulting Higgs potential then takes the form

V∆(3n2)(H) = V0(H) , (7.95)

with the right-hand side defined in Eq. (5.117). This potential always conserves

CP explicitly (for any choice of parameters). Similar to the corresponding A4
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case, V∆(3n2)(H) is left invariant under a CP transformation with a 2-3 swap.

Additionally, it also respects the trivial CP symmetry CP0.

7.2.3 Two flavour triplets

We now turn to the case of two flavour multiplets, ϕ and ϕ′, in the same faithful

triplet representation. The potential can be simplified by imposing individual

U(1) symmetries for each of the scalar fields, such that the actual symmetry of

the potential is given by ∆(3n2) × U(1) × U(1)′. In addition to the potential of

the individual (non-interacting) fields, only mixed terms of the form ϕϕ′ ϕ∗ ϕ′∗

are possible; in particular cubic terms are absent. In order to construct the mixed

quartic terms, we consider the Kronecker product given in Eq. (7.93), now also

including the antisymmetric combination. Multiplying the right-hand side with its

complex conjugate, we see that there are five independent mixed quartic ∆(3n2)

invariants if n > 3. The renormalisable potential can be written as follows,

V (ϕ, ϕ′)∆(3n2) =V0(ϕ) + V ′0(ϕ′) + V1(ϕ, ϕ′) , (7.96)

where the individual contributions to the right-hand side are defined in Eqs. (5.111)

and (5.120).

Unlike the previous ∆(3n2) invariant potentials for n > 3, this potential generally

violates CP, as confirmed by the non-zero CPI I(6)
2 (Eq. (5.76)) which for this

potential becomes

I(6)
2 =

3

512
is̃2s̃3(−3r̃2

2 + s̃2
3)(−s̃2

1 + s̃1s̃2 + r̃2(−2s̃1 + s̃2) + s̃2
3) . (7.97)

Imposing the trivial CP symmetry CP0 entails s̃3 = 0, whereas the Uϕϕ′

23 2-3 swap

CP symmetry constrains the potential such that s̃2 = 0. As expected, both CP

symmetries enforce I(6)
2 = 0 (and make any other CPIs vanish), but they are

distinct CP symmetries with distinct effects on the potential.

Inspection of other CPIs reveals that also the factor (−3r̃2
2 + s̃2

3) is present in

each non-vanishing CPI we found. This raises the question if there exists a CP

symmetry which is associated with setting this factor to zero. Such a symmetry

must relate different terms of the potential in Eq. (7.96), namely

r̃2

(∑
i

ϕiϕ
′∗i
)(∑

j

ϕ′jϕ
∗j
)

+ i s̃3

[
(ϕ1ϕ

′∗1ϕ′2ϕ
∗2 + cycl.)− (ϕ∗1ϕ′1ϕ

′∗2ϕ2 + cycl.)
]
.
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Clearly, the term proportional to r̃2 is invariant under a general CP transformation

where the unitary matrix X is block diagonal and the blocks are the same for both

triplets ϕ and ϕ′. Hence, we are led to more general choices with different 3 × 3

blocks Xϕ and Xϕ′ for ϕ and ϕ′, respectively. Pursuing the simple ansatz

Xϕϕ′ =

(
Xϕ 0

0 Xϕ′

)
, with Xϕ =

1 0 0

0 ω 0

0 0 ω2

 , Xϕ′ =

1 0 0

0 ω2 0

0 0 ω

 ,

(7.98)

we find that the potential remains invariant under the corresponding general CP

transformation if and only if

s̃3 = r̃2 i(ω − ω2) . (7.99)

Inserting ω = e2πi/3, we get s̃3 = −
√

3r̃2 which corresponds to one solution of the

quadratic equation 3r̃2
2 − s̃2

3 = 0. The other solution, s̃3 =
√

3r̃2, is related to

the CP transformation where the roles of the explicit matrices in Eq. (7.98) are

exchanged. Imposing either of the two CP symmetries guarantees that all CPIs

vanish.

An example of a larger non-trivial CPI is provided by I(7,2)
1 , defined in Eq. (7.241)

of Appendix 7.3.6. Explicit evaluation in the parametrisation of Eq. (7.96) yields

I(7,2)
1 =

9

8192
is̃2s̃3

(
3r̃2

2 − s̃2
3

)(
m2
ϕ −m2

ϕ′

)2(
r̃1 + r̃2 + s̃1

)
×
[
16(s2 + ss′ + s′

2
)+

+ 8r(2s+ s′) + 8r′(2s′ + s) + s̃2
1 + s̃2

2 − s̃2
3 − s̃1s̃2 + r̃2(2s̃1 − s̃2)

]
.

(7.100)

While this more complicated CPI vanishes for mϕ = mϕ′ , we already know that

such a relation is not a consequence of any CP symmetry because the simpler CPI

derived above does not depend on the masses. In other words, any CP symmetry

that would relate the masses by mϕ = mϕ′ would have to impose additional

constraints on the other parameters of the potential.

Having identified the CP symmetries corresponding to the zeros of s̃2s̃3

(
3r̃2

2− s̃2
3

)
,

one may wonder about the consequences of imposing other CP symmetries on

the potential of Eq. (7.96). As an example, one could for instance consider the

situation where X is given by the block matrix where Xϕ and X ′ϕ are both given

by one of the matrices of Eq. (5.150). A straightforward but somewhat tedious

calculation reveals that such a “general” CP symmetry would require vanishing
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coefficients for all non-SU(3) type terms. In other words s = s′ = s̃1 = s̃2 = s̃3 = 0.

The symmetry of the resulting potential would therefore be enhanced from ∆(3n2)

to SU(3) in addition to preserving CP.

7.2.4 Two flavour triplets of Higgs doublets

The potential of two triplets of SU(2)L doublets can be deduced from the potential

of two flavour triplets of SU(2)L singlets. It is a particular case of the correspond-

ing A4 potential. We therefore write the potential in terms of the expressions

defined in Eqs. (5.117) and (5.126),

V∆(3n2)(H,H
′) = V0(H) + V ′0(H ′) + V1(H,H ′) . (7.101)

We note again that due to the SU(2)L×U(1)Y gauge group, the potential cannot

contain any cubic terms. In fact, each term must have an equal number of Higgs

and complex conjugate Higgs fields. Hence it is sufficient to impose e.g. a Z3

symmetry with non-trivial charge for only one of the two triplets of Higgs doublets

in order to enforce the potential of Eq. (7.101). This potential in Eq. (7.101)

generally violates CP explicitly. Of the CP-odd invariants calculated, cf. Table 5.1,

I(6)
2 , I(6)

3 , I(6)
4 , I(6)

5 (Eqs. (5.76,5.77,5.78,5.79)) are non-zero, but the expressions are

too large to display here.

7.2.5 ∆(6n2) invariant potentials with n > 3

Working in the basis of [49, 110], it is straightforward to enhance the symmetry

of ∆(3n2) invariant potentials to ∆(6n2) by imposing extra constraints, see Ap-

pendix 7.4.2. With only one flavour triplet ϕ or H, the renormalisable potentials

are automatically symmetric under ∆(6n2), i.e.

V∆(6n2)(ϕ) = V∆(3n2)(ϕ) = V0(ϕ) , V∆(6n2)(H) = V∆(3n2)(H) = V0(H) ,

(7.102)

where V0(ϕ) and V0(H) are defined in Eqs. (5.111) and (5.117), respectively. With

two flavour triplets, it is necessary to impose s̃2 = s̃3 = 0 for V∆(6n2)(ϕ, ϕ
′) and

s̃21 = s̃22 = s̃31 = s̃32 = 0 for V∆(6n2)(H,H
′). Using the definitions of Eqs. (5.136)
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and (5.140), we then have

V∆(6n2)(ϕ, ϕ
′) =V0(ϕ) + V ′0(ϕ′) + V2(ϕ, ϕ′) , (7.103)

V∆(6n2)(H,H
′) =V0(H) + V ′0(H ′) + V2(H,H ′) . (7.104)

All of the above ∆(6n2) invariant potentials (with n > 3) conserve CP explicitly.

For instance, one can easily show that the respective trivial CP transformations

CP0 as well as the respective CP transformations with a 2-3 swap (X23, XH
23, Xϕϕ′

23 ,

XHH′
23 ) do not constrain the parameters of the potentials as they are all real.

7.3 List of invariants

7.3.1 Contraction matrices of nZ = 5 invariants

I
(5)
1 = Za1a2

a7a9
Za3a4
a5a10

Za5a6
a3a6

Za7a8
a4a8

Za9a10
a1a2

= =


0 0 0 0 2

0 0 1 1 0

0 1 1 0 0

1 0 0 1 0

1 1 0 0 0


(7.105)

I
(5)
2 = Za1a2

a5a7
Za3a4
a8a9

Za5a6
a3a6

Za7a8
a4a10

Za9a10
a1a2

= =


0 0 0 0 2

0 0 1 1 0

1 0 1 0 0

1 1 0 0 0

0 1 0 1 0


(7.106)

I
(5)
3 = Za1a2

a5a9
Za3a4
a3a7

Za5a6
a6a8

Za7a8
a1a10

Za9a10
a2a4

= =


0 0 0 1 1

0 1 0 0 1

1 0 1 0 0

0 1 1 0 0

1 0 0 1 0


(7.107)
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7.3.2 Contraction matrices of nZ = 6 invariants without Z-

self-loops

I
(6)
1 = Za1a2

a11a10
Za3a4
a5a8

Za5a6
a7a12

Za7a8
a9a6

Za9a10
a3a4

Za11a12
a1a2

= =



0 0 0 0 0 2

0 0 0 0 2 0

0 1 0 1 0 0

0 1 1 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0


(7.108)

I
(6)
2 = Za1a2

a7a10
Za3a4
a11a6

Za5a6
a9a8

Za7a8
a3a12

Za9a10
a5a4

Za11a12
a1a2

= =



0 0 0 0 0 2

0 0 0 1 1 0

0 1 0 0 1 0

1 0 1 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0


(7.109)

I
(6)
3 = Za1a2

a7a10
Za3a4
a9a6

Za5a6
a11a8

Za7a8
a3a12

Za9a10
a5a4

Za11a12
a1a2

= =



0 0 0 0 0 2

0 0 0 1 1 0

0 1 0 0 1 0

1 0 1 0 0 0

1 1 0 0 0 0

0 0 1 1 0 0


(7.110)

I
(6)
4 = Za1a2

a11a10
Za3a4
a5a8

Za5a6
a7a12

Za7a8
a9a6

Za9a10
a1a4

Za11a12
a3a2

= =



0 0 0 0 1 1

0 0 0 0 1 1

0 1 0 1 0 0

0 1 1 0 0 0

1 0 0 1 0 0

1 0 1 0 0 0


(7.111)

I
(6)
5 = Za1a2

a7a12
Za3a4
a5a10

Za5a6
a9a8

Za7a8
a11a4

Za9a10
a1a6

Za11a12
a3a2

= =



0 0 0 0 1 1

0 0 0 1 0 1

0 1 0 0 1 0

1 0 1 0 0 0

0 1 1 0 0 0

1 0 0 1 0 0


(7.112)
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7.3.3 nZ = 6 invariants with self-loops

Za1a2
a9a12

Za3a4
a5a8

Za5a6
a11a6

Za7a8
a7a10

Za9a10
a3a4

Za11a12
a1a2

(7.113)

Za1a2
a7a12

Za3a4
a11a8

Za5a6
a5a10

Za7a8
a9a6

Za9a10
a3a4

Za11a12
a1a2

(7.114)

Za1a2
a11a10

Za3a4
a7a8

Za5a6
a5a12

Za7a8
a9a6

Za9a10
a3a4

Za11a12
a1a2

(7.115)

Za1a2
a11a8

Za3a4
a7a10

Za5a6
a5a12

Za7a8
a9a6

Za9a10
a3a4

Za11a12
a1a2

(7.116)

Za1a2
a7a10

Za3a4
a11a8

Za5a6
a5a12

Za7a8
a9a6

Za9a10
a3a4

Za11a12
a1a2

(7.117)

Za1a2
a9a12

Za3a4
a7a10

Za5a6
a11a6

Za7a8
a3a8

Za9a10
a5a4

Za11a12
a1a2

(7.118)

Za1a2
a11a8

Za3a4
a9a12

Za5a6
a7a6

Za7a8
a3a10

Za9a10
a5a4

Za11a12
a1a2

(7.119)

Za1a2
a9a12

Za3a4
a11a8

Za5a6
a7a6

Za7a8
a3a10

Za9a10
a5a4

Za11a12
a1a2

(7.120)

Za1a2
a9a8

Za3a4
a7a12

Za5a6
a11a6

Za7a8
a3a10

Za9a10
a5a4

Za11a12
a1a2

(7.121)

Za1a2
a7a12

Za3a4
a9a8

Za5a6
a11a6

Za7a8
a3a10

Za9a10
a5a4

Za11a12
a1a2

(7.122)

Za1a2
a9a10

Za3a4
a11a8

Za5a6
a7a6

Za7a8
a3a12

Za9a10
a5a4

Za11a12
a1a2

(7.123)

Za1a2
a9a8

Za3a4
a11a10

Za5a6
a7a6

Za7a8
a3a12

Za9a10
a5a4

Za11a12
a1a2

(7.124)

Za1a2
a7a10

Za3a4
a11a8

Za5a6
a9a6

Za7a8
a3a12

Za9a10
a5a4

Za11a12
a1a2

(7.125)

Za1a2
a7a10

Za3a4
a9a8

Za5a6
a11a6

Za7a8
a3a12

Za9a10
a5a4

Za11a12
a1a2

(7.126)

Za1a2
a9a12

Za3a4
a5a10

Za5a6
a11a6

Za7a8
a3a8

Za9a10
a7a4

Za11a12
a1a2

(7.127)

Za1a2
a9a8

Za3a4
a5a12

Za5a6
a11a6

Za7a8
a3a10

Za9a10
a7a4

Za11a12
a1a2

(7.128)

Za1a2
a9a8

Za3a4
a5a10

Za5a6
a11a6

Za7a8
a3a12

Za9a10
a7a4

Za11a12
a1a2

(7.129)

Za1a2
a11a10

Za3a4
a5a12

Za5a6
a7a6

Za7a8
a3a8

Za9a10
a9a4

Za11a12
a1a2

(7.130)

Za1a2
a5a12

Za3a4
a11a10

Za5a6
a7a6

Za7a8
a3a8

Za9a10
a9a4

Za11a12
a1a2

(7.131)

Za1a2
a5a10

Za3a4
a11a6

Za5a6
a7a12

Za7a8
a3a8

Za9a10
a9a4

Za11a12
a1a2

(7.132)

Za1a2
a7a10

Za3a4
a5a12

Za5a6
a11a6

Za7a8
a3a8

Za9a10
a9a4

Za11a12
a1a2

(7.133)

Za1a2
a5a10

Za3a4
a7a12

Za5a6
a11a6

Za7a8
a3a8

Za9a10
a9a4

Za11a12
a1a2

(7.134)

Za1a2
a5a10

Za3a4
a11a8

Za5a6
a7a6

Za7a8
a3a12

Za9a10
a9a4

Za11a12
a1a2

(7.135)

Za1a2
a9a12

Za3a4
a7a6

Za5a6
a5a10

Za7a8
a3a8

Za9a10
a11a4

Za11a12
a1a2

(7.136)

Za1a2
a9a10

Za3a4
a7a6

Za5a6
a5a12

Za7a8
a3a8

Za9a10
a11a4

Za11a12
a1a2

(7.137)

Za1a2
a5a10

Za3a4
a9a12

Za5a6
a7a6

Za7a8
a3a8

Za9a10
a11a4

Za11a12
a1a2

(7.138)

Za1a2
a7a10

Za3a4
a5a12

Za5a6
a9a6

Za7a8
a3a8

Za9a10
a11a4

Za11a12
a1a2

(7.139)

Za1a2
a5a10

Za3a4
a7a12

Za5a6
a9a6

Za7a8
a3a8

Za9a10
a11a4

Za11a12
a1a2

(7.140)

Za1a2
a9a8

Za3a4
a5a10

Za5a6
a7a6

Za7a8
a3a12

Za9a10
a11a4

Za11a12
a1a2

(7.141)

Za1a2
a9a8

Za3a4
a3a12

Za5a6
a5a10

Za7a8
a7a6

Za9a10
a11a4

Za11a12
a1a2

(7.142)

Za1a2
a9a12

Za3a4
a5a8

Za5a6
a11a6

Za7a8
a7a10

Za9a10
a1a4

Za11a12
a3a2

(7.143)

Za1a2
a11a8

Za3a4
a7a10

Za5a6
a5a12

Za7a8
a9a6

Za9a10
a1a4

Za11a12
a3a2

(7.144)
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Za1a2
a9a12

Za3a4
a7a10

Za5a6
a5a8

Za7a8
a11a4

Za9a10
a1a6

Za11a12
a3a2

(7.145)

Za1a2
a7a10

Za3a4
a9a12

Za5a6
a5a8

Za7a8
a11a4

Za9a10
a1a6

Za11a12
a3a2

(7.146)

Za1a2
a7a12

Za3a4
a5a10

Za5a6
a11a6

Za7a8
a9a4

Za9a10
a1a8

Za11a12
a3a2

(7.147)

Za1a2
a7a10

Za3a4
a9a6

Za5a6
a5a12

Za7a8
a11a4

Za9a10
a1a8

Za11a12
a3a2

(7.148)

Za1a2
a11a8

Za3a4
a9a6

Za5a6
a5a12

Za7a8
a7a4

Za9a10
a1a10

Za11a12
a3a2

(7.149)

Za1a2
a9a12

Za3a4
a5a8

Za5a6
a11a6

Za7a8
a7a4

Za9a10
a1a10

Za11a12
a3a2

(7.150)

Za1a2
a9a8

Za3a4
a5a12

Za5a6
a11a6

Za7a8
a7a4

Za9a10
a1a10

Za11a12
a3a2

(7.151)

Za1a2
a9a8

Za3a4
a5a4

Za5a6
a11a6

Za7a8
a7a12

Za9a10
a1a10

Za11a12
a3a2

(7.152)

Za1a2
a7a12

Za3a4
a9a6

Za5a6
a5a8

Za7a8
a11a4

Za9a10
a1a10

Za11a12
a3a2

(7.153)

Za1a2
a9a8

Za3a4
a7a6

Za5a6
a5a12

Za7a8
a11a4

Za9a10
a1a10

Za11a12
a3a2

(7.154)

Za1a2
a9a8

Za3a4
a5a12

Za5a6
a7a6

Za7a8
a11a4

Za9a10
a1a10

Za11a12
a3a2

(7.155)

Za1a2
a7a10

Za3a4
a9a4

Za5a6
a11a6

Za7a8
a5a8

Za9a10
a1a12

Za11a12
a3a2

(7.156)

Za1a2
a11a10

Za3a4
a5a8

Za5a6
a9a6

Za7a8
a7a4

Za9a10
a1a12

Za11a12
a3a2

(7.157)

Za1a2
a11a8

Za3a4
a5a10

Za5a6
a9a6

Za7a8
a7a4

Za9a10
a1a12

Za11a12
a3a2

(7.158)

Za1a2
a9a8

Za3a4
a5a10

Za5a6
a11a6

Za7a8
a7a4

Za9a10
a1a12

Za11a12
a3a2

(7.159)

Za1a2
a11a8

Za3a4
a9a4

Za5a6
a5a10

Za7a8
a7a6

Za9a10
a1a12

Za11a12
a3a2

(7.160)

(7.161)

7.3.4 Invariants with nY 6= 0 not listed in the main text

nY = 2, nZ = 3 invariants with self-loops

Y a1
a7
Y a2
a5
Za3a4
a3a8

Za5a6
a4a6

Za7a8
a1a2

(7.162)

Y a1
a7
Y a2
a5
Za3a4
a3a6

Za5a6
a4a8

Za7a8
a1a2

(7.163)

Y a1
a5
Y a2
a3
Za3a4
a7a8

Za5a6
a4a6

Za7a8
a1a2

(7.164)

Y a1
a5
Y a2
a3
Za3a4
a4a7

Za5a6
a6a8

Za7a8
a1a2

(7.165)

Y a1
a7
Y a2
a3
Za3a4
a5a8

Za5a6
a2a6

Za7a8
a1a4

(7.166)

Y a1
a5
Y a2
a3
Za3a4
a6a7

Za5a6
a2a4

Za7a8
a1a8

(7.167)

Y a1
a2
Y a2
a5
Za3a4
a7a8

Za5a6
a3a6

Za7a8
a1a4

(7.168)

Y a1
a2
Y a2
a5
Za3a4
a3a7

Za5a6
a6a8

Za7a8
a1a4

(7.169)
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nY = 3, nZ = 3 Invariants with self-loops

Y a1
a8
Y a2
a6
Y a3
a4
Za4a5
a5a9

Za6a7
a3a7

Za8a9
a1a2

(7.170)

Y a1
a8
Y a2
a6
Y a3
a4
Za4a5
a5a7

Za6a7
a3a9

Za8a9
a1a2

(7.171)

Y a1
a6
Y a2
a7
Y a3
a4
Za4a5
a5a8

Za6a7
a3a9

Za8a9
a1a2

(7.172)

Y a1
a8
Y a2
a4
Y a3
a6
Za4a5
a5a9

Za6a7
a3a7

Za8a9
a1a2

(7.173)

Y a1
a8
Y a2
a4
Y a3
a6
Za4a5
a5a7

Za6a7
a3a9

Za8a9
a1a2

(7.174)

Y a1
a6
Y a2
a4
Y a3
a8
Za4a5
a5a9

Za6a7
a3a7

Za8a9
a1a2

(7.175)

Y a1
a6
Y a2
a4
Y a3
a8
Za4a5
a5a7

Za6a7
a3a9

Za8a9
a1a2

(7.176)

Y a1
a6
Y a2
a4
Y a3
a7
Za4a5
a5a8

Za6a7
a3a9

Za8a9
a1a2

(7.177)

Y a1
a8
Y a2
a3
Y a3
a6
Za4a5
a4a9

Za6a7
a5a7

Za8a9
a1a2

(7.178)

Y a1
a8
Y a2
a3
Y a3
a6
Za4a5
a4a7

Za6a7
a5a9

Za8a9
a1a2

(7.179)

Y a1
a6
Y a2
a3
Y a3
a8
Za4a5
a4a9

Za6a7
a5a7

Za8a9
a1a2

(7.180)

Y a1
a6
Y a2
a3
Y a3
a8
Za4a5
a4a7

Za6a7
a5a9

Za8a9
a1a2

(7.181)

Y a1
a6
Y a2
a3
Y a3
a4
Za4a5
a8a9

Za6a7
a5a7

Za8a9
a1a2

(7.182)

Y a1
a6
Y a2
a3
Y a3
a4
Za4a5
a5a8

Za6a7
a7a9

Za8a9
a1a2

(7.183)

Y a1
a6
Y a2
a3
Y a3
a4
Za4a5
a5a7

Za6a7
a8a9

Za8a9
a1a2

(7.184)

Y a1
a8
Y a2
a4
Y a3
a3
Za4a5
a6a9

Za6a7
a2a7

Za8a9
a1a5

(7.185)

Y a1
a6
Y a2
a4
Y a3
a3
Za4a5
a7a8

Za6a7
a2a5

Za8a9
a1a9

(7.186)

Y a1
a8
Y a2
a3
Y a3
a6
Za4a5
a4a7

Za6a7
a2a9

Za8a9
a1a5

(7.187)

Y a1
a6
Y a2
a3
Y a3
a8
Za4a5
a4a9

Za6a7
a2a7

Za8a9
a1a5

(7.188)

Y a1
a8
Y a2
a3
Y a3
a4
Za4a5
a6a9

Za6a7
a2a7

Za8a9
a1a5

(7.189)

Y a1
a6
Y a2
a3
Y a3
a4
Za4a5
a8a9

Za6a7
a2a7

Za8a9
a1a5

(7.190)

Y a1
a6
Y a2
a3
Y a3
a4
Za4a5
a7a8

Za6a7
a2a5

Za8a9
a1a9

(7.191)

Y a1
a6
Y a2
a3
Y a3
a4
Za4a5
a5a8

Za6a7
a2a9

Za8a9
a1a7

(7.192)

Y a1
a6
Y a2
a3
Y a3
a4
Za4a5
a5a8

Za6a7
a2a7

Za8a9
a1a9

(7.193)

Y a1
a6
Y a2
a3
Y a3
a4
Za4a5
a5a7

Za6a7
a2a8

Za8a9
a1a9

(7.194)

Y a1
a4
Y a2
a3
Y a3
a6
Za4a5
a7a8

Za6a7
a2a5

Za8a9
a1a9

(7.195)

Y a1
a6
Y a2
a3
Y a3
a2
Za4a5
a8a9

Za6a7
a4a7

Za8a9
a1a5

(7.196)

Y a1
a6
Y a2
a3
Y a3
a2
Za4a5
a4a8

Za6a7
a7a9

Za8a9
a1a5

(7.197)

Y a1
a3
Y a2
a6
Y a3
a2
Za4a5
a8a9

Za6a7
a4a7

Za8a9
a1a5

(7.198)

Y a1
a3
Y a2
a6
Y a3
a2
Za4a5
a4a8

Za6a7
a7a9

Za8a9
a1a5

(7.199)
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ny = 1, nZ = 4 Invariants with self-loops

Y a1
a8
Za2a3
a6a7

Za4a5
a4a9

Za6a7
a2a5

Za8a9
a1a3

(7.200)

Y a1
a6
Za2a3
a8a9

Za4a5
a4a7

Za6a7
a2a5

Za8a9
a1a3

(7.201)

Y a1
a8
Za2a3
a4a6

Za4a5
a5a9

Za6a7
a2a7

Za8a9
a1a3

(7.202)

Y a1
a6
Za2a3
a4a8

Za4a5
a5a9

Za6a7
a2a7

Za8a9
a1a3

(7.203)

Y a1
a6
Za2a3
a4a8

Za4a5
a5a7

Za6a7
a2a9

Za8a9
a1a3

(7.204)

Y a1
a6
Za2a3
a4a7

Za4a5
a5a8

Za6a7
a2a9

Za8a9
a1a3

(7.205)

Y a1
a6
Za2a3
a4a5

Za4a5
a8a9

Za6a7
a2a7

Za8a9
a1a3

(7.206)

Y a1
a4
Za2a3
a8a9

Za4a5
a5a6

Za6a7
a2a7

Za8a9
a1a3

(7.207)

Y a1
a4
Za2a3
a6a8

Za4a5
a5a9

Za6a7
a2a7

Za8a9
a1a3

(7.208)

Y a1
a4
Za2a3
a6a8

Za4a5
a5a7

Za6a7
a2a9

Za8a9
a1a3

(7.209)

Y a1
a4
Za2a3
a6a7

Za4a5
a5a8

Za6a7
a2a9

Za8a9
a1a3

(7.210)

Y a1
a6
Za2a3
a4a8

Za4a5
a5a9

Za6a7
a2a3

Za8a9
a1a7

(7.211)

Y a1
a6
Za2a3
a4a8

Za4a5
a5a7

Za6a7
a2a3

Za8a9
a1a9

(7.212)

Y a1
a6
Za2a3
a2a8

Za4a5
a4a9

Za6a7
a5a7

Za8a9
a1a3

(7.213)

Y a1
a6
Za2a3
a2a4

Za4a5
a5a8

Za6a7
a7a9

Za8a9
a1a3

(7.214)

7.3.5 Lists of spontaneous CP-odd invariants

nv = 1, nZ = 3

va4v
∗a1Za2a3

a6a7
Za4a5
a2a5

Za6a7
a1a3

(7.215)

va4v
∗a1Za2a3

a2a6
Za4a5
a5a7

Za6a7
a1a3

(7.216)
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nv = 2, nZ = 3

va5va7v
∗a1v∗a2Za3a4

a6a8
Za5a6
a3a4

Za7a8
a1a2

(7.217)

va5va7v
∗a1v∗a2Za3a4

a3a8
Za5a6
a4a6

Za7a8
a1a2

(7.218)

va5va7v
∗a1v∗a2Za3a4

a3a6
Za5a6
a4a8

Za7a8
a1a2

(7.219)

va5va7v
∗a1v∗a2Za3a4

a3a4
Za5a6
a6a8

Za7a8
a1a2

(7.220)

va3va5v
∗a1v∗a2Za3a4

a7a8
Za5a6
a4a6

Za7a8
a1a2

(7.221)

va3va5v
∗a1v∗a2Za3a4

a6a7
Za5a6
a4a8

Za7a8
a1a2

(7.222)

va3va5v
∗a1v∗a2Za3a4

a4a7
Za5a6
a6a8

Za7a8
a1a2

(7.223)

va3va7v
∗a1v∗a2Za3a4

a5a8
Za5a6
a1a6

Za7a8
a2a4

(7.224)

nv = 1, nZ = 4

va8v
∗a1Za2a3

a6a7
Za4a5
a4a9

Za6a7
a2a5

Za8a9
a1a3

(7.225)

va6v
∗a1Za2a3

a8a9
Za4a5
a4a7

Za6a7
a2a5

Za8a9
a1a3

(7.226)

va6v
∗a1Za2a3

a4a7
Za4a5
a8a9

Za6a7
a2a5

Za8a9
a1a3

(7.227)

va8v
∗a1Za2a3

a4a6
Za4a5
a5a9

Za6a7
a2a7

Za8a9
a1a3

(7.228)

va6v
∗a1Za2a3

a4a8
Za4a5
a5a9

Za6a7
a2a7

Za8a9
a1a3

(7.229)

va6v
∗a1Za2a3

a4a8
Za4a5
a5a7

Za6a7
a2a9

Za8a9
a1a3

(7.230)

va6v
∗a1Za2a3

a4a7
Za4a5
a5a8

Za6a7
a2a9

Za8a9
a1a3

(7.231)

va6v
∗a1Za2a3

a4a5
Za4a5
a8a9

Za6a7
a2a7

Za8a9
a1a3

(7.232)

va4v
∗a1Za2a3

a8a9
Za4a5
a5a6

Za6a7
a2a7

Za8a9
a1a3

(7.233)

va4v
∗a1Za2a3

a6a8
Za4a5
a5a9

Za6a7
a2a7

Za8a9
a1a3

(7.234)

va4v
∗a1Za2a3

a6a8
Za4a5
a5a7

Za6a7
a2a9

Za8a9
a1a3

(7.235)

va4v
∗a1Za2a3

a6a7
Za4a5
a5a8

Za6a7
a2a9

Za8a9
a1a3

(7.236)

va6v
∗a1Za2a3

a4a8
Za4a5
a5a9

Za6a7
a2a3

Za8a9
a1a7

(7.237)

va6v
∗a1Za2a3

a4a8
Za4a5
a5a7

Za6a7
a2a3

Za8a9
a1a9

(7.238)

va6v
∗a1Za2a3

a2a8
Za4a5
a4a9

Za6a7
a5a7

Za8a9
a1a3

(7.239)

va6v
∗a1Za2a3

a2a4
Za4a5
a5a8

Za6a7
a7a9

Za8a9
a1a3

(7.240)

7.3.6 Larger CP-odd invariants

In addition to the smaller invariants discussed previously, we also found some

larger CPIs with up to 9 Z tensors. Using the notation established in Eq. (5.40),
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we show only half of the CPI , which is sufficient to uniquely define it.

I
(7,2)
1 =Z

b3b4
b1b2

Z
b1a5
b3a1

Z
b2a6
b4a2

Zc3c4
c1c2

Zc1a
′
1

c3a3
Zc2a2
c4a4

Za′3a4
a5a6

Y
a1
a′1

Y
a3
a′3

, (7.241)

I
(8)
1 =Z

b3b4
b1b2

Z
b1b6
b3b5

Z
b2a5
b4a1

Z
b5a6
b6a2

Zc3c4
c1c2

Zc1a1
c3a3

Zc2a2
c4a4

Za3a4
a5a6

, (7.242)

I
(9)
1 =Z

b3b4
b1b2

Z
b1b6
b3b5

Z
b2b8
b4b7

Z
b5a5
b6a1

Z
b7a6
b8a2

Zc3c4
c1c2

Zc1a1
c3a3

Zc2a2
c4a4

Za3a4
a5a6

. (7.243)

The respective CPIs I(7,2)
1 , I(8)

1 , I(9)
1 can be obtained by subtracting from the I

above the I∗ obtained by swapping the upper and lower indices, as described in

general in Section 5.2.2.

7.4 More group theory of ∆(6n2)

∆(6n2) is non-abelian finite subgroup of SU(3). The ∆(6n2) is isomorphic to

(Zn × Zn) o S3, where S3 is isomorphic to Z3 o Z2, and it can be conveniently

defined by four generators a, b, c and d obeying the relations [49]:

a3 = b2 = (ab)2 = 1,

cn = dn = 1, cd = dc ,

aca−1 = c−1d−1, ada−1 = c, bcb−1 = d−1, bdb−1 = c−1 . (7.244)

The elements a and b are the generators of S3 while c and d generate Zn × Zn,

and the last line defines the semidirect product “ o ”. Note that the generator

d = bc−1b−1 is not independent. All the group elements can be written into the

form

g = aαbβcγdδ , (7.245)

where α = 0, 1, 2, β = 0, 1, γ, δ = 0, 1, 2, . . . n − 1. In the following we list the

elements of ∆(6n2) by order of the generated cyclic subgroup.

• Elements of order 2, if n even:

cn/2, dn/2, cn/2dn/2 (7.246)
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• Elements of order 2, always:

bcεdε, abcγ, a2bdδ (7.247)

with ε, γ, δ = 0, . . . , n− 1.

• Elements of order 3, if 3 divides n:

cn/3, dn/3, . . . (7.248)

where the dots indicate all possible products and powers of the two first

elements.

• Elements of order 3, always:

acγdδ, a2cγdδ (7.249)

with γ, δ = 0, . . . , n− 1

• Elements of order m where m divides n, if m and n are even:

bcδ+2kn/mdδ, abcγd2kn/m, a2bc2kn/mdδ (7.250)

with γ, δ = 0, . . . , n− 1 and 0 ≤ k ≤ m/2

• Elements of order m where m divides n, always:

ckn/mdln/m (7.251)

with k, l = 0, . . . , n− 1.

The ∆(6n2) group have been thoroughly studied in Ref. [49]. In the following,

we shall review the basic aspects, which is relevant to our present work. The

conjugacy classes of ∆(6n2) group are of the following forms:



204 7 Appendix

• n 6= 3Z

1 : 1C1 = {1} , (7.252a)

n− 1 : 3C
(ρ)
1 =

{
cρd−ρ, c−2ρd−ρ, cρd2ρ

}
, ρ = 1, 2, ..., n− 1, (7.252b)

n2 − 3n+ 2

6
: 6C

(ρ,σ)
1 =

{
cρdσ, cσ−ρd−ρ, c−σdρ−σ, c−σd−ρ, cσ−ρdσ, cρdρ−σ

}
,(7.252c)

1 : 2n2C2 =
{
aczdy, a2c−yd−z|z, y = 0, 1, . . . , n− 1

}
, (7.252d)

n : 3nC
(ρ)
3 =

{
bcρ+xdx, a2bc−ρd−x−ρ, abc−xdρ|x = 0, 1, . . . , n− 1

}
, ρ = 0, 1, . . . , n− 1.(7.252e)

The convention used here is that the quantity left of the colon is the number

of classes of the kind on the right of the colon. In Eq. (7.252c), the parameter

ρ, σ = 0, 1, ..., n− 1, but excluding possibilities given by

ρ+ σ = 0 mod n, 2ρ− σ = 0 mod n, ρ− 2σ = 0 mod n . (7.253)

• n = 3Z

1 : 1C1 = {1} , (7.254a)

2 : 1C
(ν)
1 =

{
cνd2ν

}
, ν = n

3 ,
2n
3 , (7.254b)

n− 3 : 3C
(ρ)
1 =

{
cρd−ρ, c−2ρd−ρ, cρd2ρ

}
, ρ 6= n

3 ,
2n
3 , (7.254c)

n2 − 3n+ 6

6
: 6C

(ρ,σ)
1 =

{
cρdσ, cσ−ρd−ρ, c−σdρ−σ, c−σd−ρ, cσ−ρdσ, cρdρ−σ

}
, (7.254d)

3 :
2n2

3
C

(τ)
2 = {acτ−y−3xdy, a2c−ydy+3x−τ |y = 0, 1, ..., n− 1, x = 0, 1, . . . , n−3

3 }, τ = 0, 1, 2 ,

n : 3nC
(ρ)
3 =

{
bcρ+xdx, a2bc−ρd−x−ρ, abc−xdρ|x = 0, 1, . . . , n− 1

}
, ρ = 0, 1, . . . , n− 1.

(7.254e)

In Eq. (7.254d), ρ, σ = 0, 1, ..., n−1, again excluding possibilities given by Eq. (7.253).

The irreducible representations and their representation matrices of the ∆(6n2)

group are as follows [49]:

(i) n 6= 3Z

• One-dimensional representations

11 : a = b = c = d = 1, (7.255a)

12 : a = c = d = 1, b = −1, (7.255b)
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• Two-dimensional representation

2 : a =
1

2

(
−1 −

√
3√

3 − 1

)
, b =

(
1 0

0 − 1

)
, c = d =

(
1 0

0 1

)
, (7.256)

which is related to the basis chosen in Ref. [49] by a unitary transformation

U with

U =
1√
2

(
1 i

1 −i

)
. (7.257)

In our new basis, all the Clebsch-Gordan (CG) coefficients are real, as is

shown in the Appendix 7.4.1. Hence our basis is the so-called the “CP”

basis. The conventional CP transformation ϕ → ϕ∗ can be consistently

imposed onto the theory in our basis, and all the coupling constant would

be constrained to be real.

• Three-dimensional representations

31,k : a =

0 1 0

0 0 1

1 0 0

 , b =

0 0 1

0 1 0

1 0 0

 , c =

η
k 0 0

0 η−k 0

0 0 1

 , d =

1 0 0

0 ηk 0

0 0 η−k

 ,

(7.258a)

32,k : a =

0 1 0

0 0 1

1 0 0

 , b = −

0 0 1

0 1 0

1 0 0

 , c =

η
k 0 0

0 η−k 0

0 0 1

 , d =

1 0 0

0 ηk 0

0 0 η−k

 ,

(7.258b)

where η ≡ e2πi/n and k = 1, 2, . . . n− 1.

• Six-dimensional representations

6
(̃k,l)

: a =

(
a1 0

0 a2

)
, b =

(
0 13

13 0

)
, c =

(
c1 0

0 c2

)
, d =

(
d1 0

0 d2

)
,

(7.259)



206 7 Appendix

with

a1 =

0 1 0

0 0 1

1 0 0

 , a2 =

0 0 1

1 0 0

0 1 0

 , (7.260)

c1 = d−1
2 =

η
l 0 0

0 ηk 0

0 0 η−l−k

 , c2 = d−1
1 =

η
l+k 0 0

0 η−l 0

0 0 η−k

 .(7.261)

Here ˜ denotes the mapping

(̃
k

l

)
7−→ either

(
k

l

)
,

(
−k − l
k

)
,

(
l

−k − l

)
,

(
−l
−k

)
,

(
k + l

−l

)
, or

(
−k
k + l

)
,

(7.262)

k, l = 0, 1, . . . n− 1, and the following cases are forbidden.

l = 0, k = 0, k + l = 0 mod n . (7.263)

(ii) n = 3Z

• One-dimensional representations

11 : a = b = c = d = 1, (7.264a)

12 : a = c = d = 1, b = −1, (7.264b)

• Two-dimensional representation

21 : a =
1

2

(
−1 −

√
3√

3 − 1

)
, b =

(
1 0

0 − 1

)
, c = d =

(
1 0

0 1

)
, (7.265a)

22 : a =
1

2

(
−1 −

√
3√

3 − 1

)
, b =

(
1 0

0 − 1

)
, c = d =

1

2

(
−1

√
3

−
√

3 − 1

)
,

(7.265b)

23 : a =
1

2

(
−1 −

√
3√

3 − 1

)
, b =

(
1 0

0 − 1

)
, c = d =

1

2

(
−1 −

√
3√

3 − 1

)
,

(7.265c)

24 : a =

(
1 0

0 1

)
, b =

(
1 0

0 − 1

)
, c = d =

1

2

(
−1 −

√
3√

3 − 1

)
.(7.265d)
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They are related to the representation matrices of Ref. [49] by the unitary

transformation U in Eq. (7.257).

• Three-dimensional representations

31,k : a =

0 1 0

0 0 1

1 0 0

 , b =

0 0 1

0 1 0

1 0 0

 , c =

η
k 0 0

0 η−k 0

0 0 1

 , d =

1 0 0

0 ηk 0

0 0 η−k

 ,

(7.266a)

32,k : a =

0 1 0

0 0 1

1 0 0

 , b = −

0 0 1

0 1 0

1 0 0

 , c =

η
k 0 0

0 η−k 0

0 0 1

 , d =

1 0 0

0 ηk 0

0 0 η−k

 ,

(7.266b)

where k = 1, 2, . . . n− 1.

• Six-dimensional representations

6
(̃k,l)

: a =

(
a1 0

0 a2

)
, b =

(
0 13

13 0

)
, c =

(
c1 0

0 c2

)
, d =

(
d1 0

0 d2

)
.

(7.267)

The 3× 3 unitary matrices a1,2, c1,2 and d1,2 are given in Eq. (7.260). Again

the following values are prohibited:

l = 0, k = 0, k = l = n/3, k = l = 2n/3, k + l = 0 mod n . (7.268)

7.4.1 Clebsch-Gordan coefficients for ∆(6n2) group with

n 6= 3Z

In the following, we shall present all the CG coefficients in the form of x⊗y in our

chosen basis, xi denotes the element of the left base vectors x, and yi is the element

of the right base vectors y. We shall see explicitly that all the CG coefficients are

real.

• 2⊗ 2 = 11 ⊕ 12 ⊕ 2
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2 ∼

(
x2y2 − x1y1

x1y2 + x2y1

)
, 11 ∼ x1y1 + x2y2, 12 ∼ x1y2 − x2y1 . (7.269)

• 2⊗ 31,k = 31,k ⊕ 32,k

31,k ∼


(
x1 −

√
3x2

)
y1

−2x1y2(
x1 +

√
3x2

)
y3

 , 32,k ∼


(√

3x1 + x2

)
y1

−2x2y2(
−
√

3x1 + x2

)
y3

 . (7.270)

• 2⊗ 32,k = 31,k ⊕ 32,k

31,k ∼


(√

3x1 + x2

)
y1

−2x2y2(
−
√

3x1 + x2

)
y3

 , 32,k ∼


(
x1 −

√
3x2

)
y1

−2x1y2(
x1 +

√
3x2

)
y3

 . (7.271)

• 2⊗ 6(k,l) = 6(k,l) ⊕ 6(k,l)

6(k,l) ∼



(√
3x1 + x2

)
y1

−2x2y2(
−
√

3x1 + x2

)
y3(√

3x1 − x2

)
y4

2x2y5

−
(√

3x1 + x2

)
y6


, 6(k,l) ∼



2x2y1(√
3x1 − x2

)
y2

−
(√

3x1 + x2

)
y3

−2x2y4(√
3x1 + x2

)
y5(

−
√

3x1 + x2

)
y6


.

(7.272)

• 31,l ⊗ 31,l′ = 31,l+l′ ⊕ 6
(̃l,−l′)

31,l+l′ ∼

x1y1

x2y2

x3y3

 , 6(−l,l−l′) ∼



x1y2

x2y3

x3y1

x3y2

x2y1

x1y3


, (7.273)

• 31,l ⊗ 32,l′ = 32,l+l′ ⊕ 6
(̃l,−l′)
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32,l+l′ ∼

x1y1

x2y2

x3y3

 , 6(−l,l−l′) ∼



x1y2

x2y3

x3y1

−x3y2

−x2y1

−x1y3


, (7.274)

• 31,l ⊗ 6(k′,l′) = 6(̃
k′

l′ − l

) ⊕ 6 ˜(
k′ − l
l′ + l

) ⊕ 6 ˜(
l + k′

l′

)

6(
l′ − l

l− k′ − l′

) ∼



x1y3

x2y1

x3y2

x3y6

x2y4

x1y5


, 6(

k′ − l
l′ + l

) ∼



x1y1

x2y2

x3y3

x3y4

x2y5

x1y6


, 6(

−l− k′ − l′

l + k′

) ∼



x1y2

x2y3

x3y1

x3y5

x2y6

x1y4


.

(7.275)

• 32,l ⊗ 32,l′ = 31,l+l′ ⊕ 6
(̃l,−l′)

31,l+l′ ∼

x1y1

x2y2

x3y3

 , 6(−l,l−l′) ∼



x1y2

x2y3

x3y1

x3y2

x2y1

x1y3


. (7.276)

• 32,l ⊗ 6(k′,l′) = 6(̃
k′

l′ − l

) ⊕ 6 ˜(
k′ − l
l′ + l

) ⊕ 6 ˜(
l + k′

l′

)

6(
l′ − l

l− k′ − l′

) ∼



x1y3

x2y1

x3y2

−x3y6

−x2y4

−x1y5


, 6(

k′ − l
l′ + l

) ∼



x1y1

x2y2

x3y3

−x3y4

−x2y5

−x1y6


, 6(

−l− k′ − l′

l + k′

) ∼



x1y2

x2y3

x3y1

−x3y5

−x2y6

−x1y4


.

(7.277)

• 6(k,l) ⊗ 6(k′,l′) =
∑

p,s 6 ˜((
k

l

)
+Mp

s

(
k′

l′

))
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6(
k + k′

l + l′

) ∼



x1y1

x2y2

x3y3

x4y4

x5y5

x6y6


, 6(

k − k′ − l′

l + k′

) ∼



x1y2

x2y3

x3y1

x4y5

x5y6

x6y4


, 6(

k + l′

l− l′ − k′

) ∼



x1y3

x2y1

x3y2

x4y6

x5y4

x6y5


,

6(
k − k′

l + k′ + l′

) ∼



x1y4

x2y6

x3y5

x4y1

x5y3

x6y2


, 6(

k + k′ + l′

l− l′

) ∼



x1y5

x2y4

x3y6

x4y2

x5y1

x6y3


, 6(

k − l′

l− k′

) ∼



x1y6

x2y5

x3y4

x4y3

x5y2

x6y1


.

(7.278)

For the case of n = 3Z, the CG-coefficients can be calculated although it is some-

what lengthy. Part of the CG coefficients are complex numbers in our chosen basis,

the explicit form would not be reported here since general CP transformations can

not be consistently defined in generic settings based on such groups unless the

doublet representations 22, 23 and 24 are not introduced in a specific model.

7.4.2 ∆(6n2) potentials as particular cases of ∆(3n2) po-

tentials

The triplet generators of ∆(6n2) with n ∈ N are [49]

a =

0 1 0

0 0 1

1 0 0

 , b = ±

0 0 1

0 1 0

1 0 0

 , c =

η
l 0 0

0 η−l 0

0 0 1

 , (7.279)
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where η = e2πi/n and l ∈ N. If the field transforms as a faithful triplet, any

c-invariant operator O will also be invariant under the phase transformation3

c0 =

η 0 0

0 η−1 0

0 0 1

 , (7.280)

and therefore also under

c−l0 =

η
−l 0 0

0 ηl 0

0 0 1

 and ck0 =

η
k 0 0

0 η−k 0

0 0 1

 . (7.281)

Imposing additionally invariance under a, we quickly find that the operator O is

also invariant under

ac−l0 a
2 =

η
l 0 0

0 1 0

0 0 η−l

 and a2ck0a =

1 0 0

0 ηk 0

0 0 η−k

 . (7.282)

As a result, the operator O is symmetric under the successive application of ac−l0 a
2

and a2ck0a, i.e. η
l 0 0

0 ηk 0

0 0 η−k−l

 . (7.283)

Demanding invariance under a and c of Eq. (7.279) therefore leads to the set of

∆(3n2) invariant operators where the triplet generators are given by [156]

a′ =

0 1 0

0 0 1

1 0 0

 , c′ =

η
l 0 0

0 ηk 0

0 0 η−k−l

 . (7.284)

We thus conclude that the ∆(6n2) symmetric potential can be deduced from the

∆(3n2) invariant potential by simply dropping all terms which are not symmetric

under b of Eq. (7.279). Therefore, in each of these cases it is sufficient to use the

already obtained expressions for the CPIs and set constraints on the coefficients

to make all the terms in the potential invariant under the b generator.

3For faithful representations, l and n have to be coprime. As a consequence, there must be
an integer p such that cp = c0.
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