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Abstract. We develop a geometric approach to A-infinity algebras and A-infinity
categories based on the notion of formal scheme in the category of graded vector
spaces. The geometric approach clarifies several questions, e.g. the notion of ho-
mological unit or A-infinity structure on A-infinity functors. We discuss Hochschild
complexes of A-infinity algebras from geometric point of view. The chapter con-
tains homological versions of the notions of properness and smoothness of projective
varieties as well as the non-commutative version of the Hodge-to-de Rham degen-
eration conjecture. We also discuss a generalization of Deligne’s conjecture which
includes both Hochschild chains and cochains. We conclude the chapter with the
description of an action of the PROP of singular chains of the topological PROP of
two-dimensional surfaces on the Hochschild chain complex of an A-infinity algebra
with scalar product (this action is more or less equivalent to the structure of two-
dimensional Topological Field Theory associated with an “abstract” Calabi–Yau
manifold).

1 Introduction

1.1 A∞-Algebras as Spaces

The notion of A∞-algebra introduced by Stasheff (or the notion of
A∞-category introduced by Fukaya) has two different interpretations. First
one is operadic: an A∞-algebra is an algebra over the A∞-operad (one of
its versions is the operad of singular chains of the operad of intervals in the
real line). Second one is geometric: an A∞-algebra is the same as a non-
commutative formal graded manifold X over, say, field k, having a marked k-
point pt and equipped with a vector field d of degree +1 such that d|pt = 0 and
[d, d] = 0 (such vector fields are called homological). By definition the algebra
of functions on the non-commutative formal pointed graded manifold is iso-
morphic to the algebra of formal series

∑
n≥0

∑
i1,i2,...,in∈I ai1...in

xi1 ...xin
:=

∑
M aMxM of free graded variables xi, i ∈ I (the set I can be infinite). Here
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M = (i1, ..., in), n ≥ 0 is a non-commutative multi-index, i.e. an element
of the free monoid generated by I. Homological vector field makes the above
graded algebra into a complex of vector spaces. The triple (X, pt, d) is called a
non-commutative formal pointed differential-graded (or simply dg-) manifold.

It is an interesting problem to make a dictionary from the pure alge-
braic language of A∞-algebras and A∞-categories to the language of non-
commutative geometry.3 One purpose of these notes is to make few steps in
this direction.

From the point of view of Grothendieck’s approach to the notion of
“space,” our formal pointed manifolds are given by functors on graded as-
sociative Artin algebras commuting with finite projective limits. It is easy to
see that such functors are represented by graded coalgebras. These coalgebras
can be thought of as coalgebras of distributions on formal pointed manifolds.
The above-mentioned algebras of formal power series are dual to the coalge-
bras of distributions.

In the case of (small) A∞-categories considered in the subsequent paper
we will slightly modify the above definitions. Instead of one marked point one
will have a closed subscheme of disjoint points (objects) in a formal graded
manifold and the homological vector field d must be compatible with the
embedding of this subscheme as well as with the projection onto it.

1.2 Some Applications of Geometric Language

Geometric approach to A∞-algebras and A∞-categories clarifies several long-
standing questions. In particular one can obtain an explicit description of the
A∞-structure on A∞-functors. This will be explained in detail in the sub-
sequent paper. Here we make few remarks. In geometric terms A∞-functors
are interpreted as maps between non-commutative formal dg-manifolds com-
muting with homological vector fields. We will introduce a non-commutative
formal dg-manifold of maps between two such spaces. Functors are just “com-
mutative” points of the latter. The case of A∞-categories with one object
(i.e., A∞-algebras) is considered in this chapter. The general case reflects the
difference between quivers with one vertex and quivers with many vertices
(vertices correspond to objects).4 As a result of the above considerations one
can describe explicitly the A∞-structure on functors in terms of sums over
sets of trees. Among other applications of our geometric language we mention
an interpretation of the Hochschild chain complex of an A∞-algebra in terms
of cyclic differential forms on the corresponding formal pointed dg-manifold
(Sect. 7.2).

Geometric language simplifies some proofs as well. For example, Hochschild
cohomology of an A∞-category C is isomorphic to Ext•(IdC , IdC) taken in the
3 We use “formal” non-commutative geometry in tensor categories, which is differ-

ent from the non-commutative geometry in the sense of Alain Connes.
4 Another, purely algebraic approach to the A∞-structure on functors was sug-

gested in [39].
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A∞-category of endofunctors C → C. This result admits an easy proof, if one
interprets Hochschild cochains as vector fields and functors as maps (the idea
to treat Ext•(IdC , IdC) as the tangent space to deformations of the derived
category Db(C) goes back to A.Bondal).

1.3 Content of the Paper

Present paper contains two parts out of three (the last one is devoted to
A∞-categories and will appear later). Here we discuss A∞-algebras (=non-
commutative formal pointed dg-manifolds with fixed affine coordinates). We
have tried to be precise and provide details of most of the proofs.

Part I is devoted to the geometric description of A∞-algebras. We start
with basics on formal graded affine schemes, then add a homological vec-
tor field, thus arriving to the geometric definition of A∞-algebras as for-
mal pointed dg-manifolds. Most of the material is well-known in algebraic
language. We cannot completely avoid A∞-categories (subject of the sub-
sequent paper). They appear in the form of categories of A∞-modules and
A∞-bimodules, which can be defined directly.

Since in the A∞-world many notions are defined“up to quasi-isomorphism”,
their geometric meaning is not obvious. As an example we mention the no-
tion of weak unit. Basically, this means that the unit exists at the level of
cohomology only. In Sect. 4 we discuss the relationship of weak units with the
“differential-graded” version of the affine line.

We start Part II with the definition of the Hochschild complexes of A∞-
algebras. As we already mentioned, Hochschild cochain complex is interpreted
in terms of graded vector fields on the non-commutative formal affine space.
Dualizing, Hochschild chain complex is interpreted in terms of degree one
cyclic differential forms. This interpretation is motivated by [30]. It differs
from the traditional picture (see e.g. [7, 11]) where one assigns to a Hochschild
chain a0 ⊗ a1 ⊗ ...⊗ an the differential form a0da1...dan. In our approach we
interepret ai as the dual to an affine coordinate xi and the above expression
is dual to the cyclic differential 1-form x1...xndx0. We also discuss graphical
description of Hochschild chains, the differential, etc.

After that we discuss homologically smooth compact A∞-algebras. Those
are analogs of smooth projective varieties in algebraic geometry. Indeed, the
derived category Db(X) of coherent sheaves on a smooth projective variety
X is A∞-equivalent to the category of perfect modules over a homologically
smooth compact A∞-algebra (this can be obtained using the results of [5]).
The algebra contains as much information about the geometry of X as the cat-
egory Db(X) does. A good illustration of this idea is given by the “abstract”
version of Hodge theory presented in Sect. 9. It is largely conjectural topic,
which eventually should be incorporated in the theory of “non-commutative
motives.” Encoding smooth proper varieties by homologically smooth com-
pact A∞-algebras we can forget about the underlying commutative geometry
and try to develop a theory of “non-commutative smooth projective varieties”
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in an abstract form. Let us briefly explain what does it mean for the Hodge
theory. Let (C•(A,A), b) be the Hochschild chain complex of a (weakly uni-
tal) homologically smooth compact A∞-algebra A. The corresponding nega-
tive cyclic complex (C•(A,A)[[u]], b+ uB) gives rise to a family of complexes
over the formal affine line A1

form[+2] (shift of the grading reflects the fact
that the variable u has degree +2, cf. [7, 11]). We conjecture that the corre-
sponding family of cohomology groups gives rise to a vector bundle over the
formal line. The generic fiber of this vector bundle is isomorphic to periodic
cyclic homology, while the fiber over u = 0 is isomorphic to the Hochschild
homology. If compact homologically smooth A∞-algebra A corresponds to a
smooth projective variety as explained above, then the generic fiber is just
the algebraic de Rham cohomology of the variety, while the fiber over u = 0
is the Hodge cohomology. Then our conjecture becomes the classical theorem
which claims degeneration of the spectral sequence Hodge-to-de Rham.5

Last section of Part II is devoted to the relationship between moduli spaces
of points on a cylinder and algebraic structures on the Hochschild complexes.
In Sect. 11.3 we formulate a generalization of Deligne’s conjecture. Recall that
Deligne’s conjecture says (see e.g., [35]) that the Hochschild cochain complex
of an A∞-algebra is an algebra over the operad of chains on the topological
operad of little discs. In the conventional approach to non-commutative ge-
ometry Hochschild cochains correspond to polyvector fields, while Hochschild
chains correspond to de Rham differential forms. One can contract a form with
a polyvector field or take a Lie derivative of a form with respect to a polyvec-
tor field. This geometric point of view leads to a generalization of Deligne’s
conjecture which includes Hochschild chains equipped with the structure of
(homotopy) module over cochains and to the “Cartan type” calculus which
involves both chains and cochains (cf. [11, 48]). We unify both approaches un-
der one roof formulating a theorem which says that the pair consisting of the
Hochschild chain and Hochschild cochain complexes of the same A∞-algebra
is an algebra over the colored operad of singular chains on configurations of
discs on a cylinder with marked points on each of the boundary circles.6

Sections 10 and 11.6 are devoted to A∞-algebras with scalar product,
which is the same as non-commutative formal symplectic manifolds. In Sect. 10
we also discuss a homological version of this notion and explain that it corre-
sponds to the notion of Calabi–Yau structure on a manifold. In Sect. 11.6 we
define an action of the PROP of singular chains of the topological PROP of
smooth oriented two-dimensional surfaces with boundaries on the Hochschild
chain complex of an A∞-algebra with scalar product. If in addition A is homo-
logically smooth and the spectral sequence Hodge-to-de Rham degenerates,
then the above action extends to the action of the PROP of singular chains

5 In a recent preprint [24], D. Kaledin claims the proof of our conjecture. He uses
a different approach.

6 After our paper was finished we received the paper [49] where the authors proved
an equivalent result.
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on the topological PROP of stable two-dimensional surfaces. This is essen-
tially equivalent to a structure of two-dimensional Cohomological TFT (simi-
lar ideas have been developed by Kevin Costello, see [8]). More details and an
application of this approach to the calculation of Gromov–Witten invariants
will be given in [22].

1.4 Generalization to A∞-Categories

Let us say few words about the subsequent paper which is devoted to
A∞-categories. The formalism of present paper admits a straightforward gen-
eralization to the case of A∞-categories. The latter should be viewed as non-
commutative formal dg-manifolds with a closed marked subscheme of objects.
Although some parts of the theory of A∞-categories admit nice interpreta-
tion in terms of non-commutative geometry, some other still wait for it. This
includes e.g. triangulated A∞-categories. We will present the theory of tri-
angulated A∞-categories from the point of view of A∞-functors from “ele-
mentary” categories to a given A∞-category (see a summary in [33, 46, 47]).
Those “elementary” categories are, roughly speaking, derived categories of
representations of quivers with small number of vertices. Our approach has
certain advantages over the traditional one. For example the complicated “oc-
tahedron axiom” admits a natural interpretation in terms of functors from the
A∞-category associated with the quiver of the Dynkin diagram A2 (there are
six indecomposible objects in the category Db(A2−mod) corresponding to six
vertices of the octahedron). In some sections of the paper on A∞-categories we
have not been able to provide pure geometric proofs of the results, thus relying
on less flexible approach which uses differential-graded categories (see [14]).
As a compromise, we will present only part of the theory of A∞-categories,
with sketches of proofs, which are half-geomeric and half-algebraic, postponing
more coherent exposition for future publications.

In the present and subsequent studies we mostly consider A∞-algebras and
categories over a field of characteristic zero. This assumption simplifies many
results, but also makes some other less general. We refer the reader to [39, 40]
for a theory over a ground ring instead of ground field (the approach of [39, 40]
is pure algebraic and different from ours). Most of the results of present paper
are valid for an A∞-algebra A over the unital commutative associative ring
k, as long as the graded module A is flat over k. More precisely, the results
of Part I remain true except of the results of Sect. 3.2 (the minimal model
theorem). In these two cases we assume that k is a field of characteristic
zero. Constructions of Part II work over a commutative ring k. The results
of Sect. 10 are valid (and the conjectures are expected to be valid) over a
field of characteristic zero. Algebraic version of Hodge theory from Sect. 9
and the results of Sect. 11 are formulated for an A∞-algebra over the field of
characteristic zero, although the Conjecture 2 is expected to be true for any
Z-flat A∞-algebra.
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Part I: A∞A∞A∞-Algebras and Non-commutative dg-Manifolds

2 Coalgebras and Non-commutative Schemes

Geometric description of A∞-algebras will be given in terms of geometry of
non-commutative ind-affine schemes in the tensor category of graded vector
spaces (we will use Z-grading or Z/2-grading). In this section we are going
to describe these ind-schemes as functors from finite-dimensional algebras
to sets (cf. with the description of formal schemes in [20]). More precisely,
such functors are represented by counital coalgebras. Corresponding geometric
objects are called non-commutative thin schemes.

2.1 Coalgebras as Functors

Let k be a field and C be a k-linear Abelian symmetric monoidal category
(we will call such categories tensor), which admits infinite sums and products
(we refer to [13] about all necessary terminology of tensor categories). Then
we can do simple linear algebra in C, in particular, speak about associative
algebras or coassociative coalgebras. For the rest of the paper, unless we say
otherwise, we will assume that either C = V ectZk , which is the tensor category
of Z-graded vector spaces V = ⊕n∈ZVn, or C = V ect

Z/2
k , which is the tensor

category of Z/2-graded vector spaces (then V = V0⊕V1), or C = V ectk, which
is the tensor category of k-vector spaces. Associativity morphisms in V ectZk
or V ect

Z/2
k are identity maps and commutativity morphisms are given by the

Koszul rule of signs: c(vi ⊗ vj) = (−1)ijvj ⊗ vi, where vn denotes an element
of degree n.

We will denote by Cf the Artinian category of finite-dimensional objects in
C (i.e. objects of finite length). The category AlgCf of unital finite-dimensional
algebras is closed with respect to finite projective limits. In particular, finite
products and finite fiber products exist in AlgCf . One has also the categories
CoalgC (resp. CoalgCf ) of coassociative counital (resp. coassociative counital
finite-dimensional) coalgebras. In the case C = V ectk we will also use the
notation Algk, Algf

k , Coalgk and Coalgf
k for these categories. The category

CoalgCf = Algop
Cf admits finite inductive limits.

We will need simple facts about coalgebras. We will present proofs in the
Appendix for completness.

Theorem 2.1 Let F : AlgCf → Sets be a covariant functor commuting with
finite projective limits. Then it is isomorphic to a functor of the type A 
→
HomCoalgC (A∗, B) for some counital coalgebra B. Moreover, the category of
such functors is equivalent to the category of counital coalgebras.

Proposition 2.2 If B ∈ Ob(CoalgC), then B is a union of finite-dimensional
counital coalgebras.
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Objects of the category CoalgCf = Algop
Cf can be interpreted as “very thin”

non-commutative affine schemes (cf. with finite schemes in algebraic geome-
try). Proposition 1 implies that the category CoalgC is naturally equivalent
to the category of ind-objects in CoalgCf .

For a counital coalgebra B we denote by Spc(B) (the “spectrum” of the
coalgebra B) the corresponding functor on the category of finite-dimensional
algebras. A functor isomorphic to Spc(B) for some B is called a non-
commutative thin scheme. The category of non-commutative thin schemes
is equivalent to the category of counital coalgebras. For a non-commutative
scheme X we denote by BX the corresponding coalgebra. We will call it the
coalgebra of distributions on X. The algebra of functions on X is by definition
O(X) = B∗

X .
Non-commutative thin schemes form a full monoidal subcategory NAff th

C
⊂ Ind(NAffC) of the category of non-commutative ind-affine schemes (see
Appendix). Tensor product corresponds to the tensor product of coalgebras.

Let us consider few examples.

Example 2.3 Let V ∈ Ob(C). Then T (V ) = ⊕n≥0V
⊗n carries a structure of

counital cofree coalgebra in C with the coproduct Δ(v0 ⊗ ...⊗ vn) =
∑

0≤i≤n

(v0⊗...⊗vi)⊗(vi+1⊗...⊗vn). The corresponding non-commutative thin scheme
is called non-commutative formal affine space Vform (or formal neighborhood
of zero in V ).

Definition 2.4 A non-commutative formal manifold X is a non-commutative
thin scheme isomorphic to some Spc(T (V )) from the example above. The
dimension of X is defined as dimkV .

The algebra O(X) of functions on a non-commutative formal manifold
X of dimension n is isomorphic to the topological algebra k〈〈x1, ..., xn〉〉 of
formal power series in free graded variables x1, ..., xn.

Let X be a non-commutative formal manifold and pt : k → BX a k-point
in X,

Definition 2.5 The pair (X, pt) is called a non-commutative formal pointed
manifold. If C = V ectZk it will be called non-commutative formal pointed
graded manifold. If C = V ect

Z/2
k it will be called non-commutative formal

pointed supermanifold.

The following example is a generalization of the Example 1 (which corre-
sponds to a quiver with one vertex).

Example 2.6 Let I be a set and BI = ⊕i∈I1i be the direct sum of trivial
coalgebras. We denote by O(I) the dual topological algebra. It can be thought
of as the algebra of functions on a discrete non-commutative thin scheme I.

A quiver Q in C with the set of vertices I is given by a collection of objects
Eij ∈ C, i, j ∈ I called spaces of arrows from i to j. The coalgebra of Q is
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the coalgebra BQ generated by the O(I) − O(I)-bimodule EQ = ⊕i,j∈IEij ,
i.e. BQ " ⊕n≥0 ⊕i0,i1,...,in∈I Ei0i1 ⊗ ... ⊗ Ein−1in

:= ⊕n≥0B
n
Q, B0

Q := BI .
Elements of B0

Q are called trivial paths. Elements of Bn
Q are called paths of

the length n. Coproduct is given by the formula

Δ(ei0i1⊗...⊗ein−1in
) = ⊕0≤m≤n(ei0i1⊗...⊗eim−1im

)⊗(eimim+1 ...⊗...⊗ein−1in
),

where for m = 0 (resp. m = n) we set ei−1i0 = 1i0 (resp. einin+1 = 1in
).

In particular, Δ(1i) = 1i ⊗ 1i, i ∈ I and Δ(eij) = 1i ⊗ eij + eij ⊗ 1j , where
eij ∈ Eij and 1m ∈ BI corresponds to the image of 1 ∈ 1 under the natural
embedding into ⊕m∈I1.

The coalgebra BQ has a counit ε such that ε(1i) = 1i and ε(x) = 0 for
x ∈ Bn

Q, n ≥ 1.

Example 2.7 (Generalized quivers). Here we replace 1i by a unital simple
algebra Ai (e.g. Ai = Mat(ni,Di), where Di is a division algebra). Then Eij

are Ai −mod−Aj-bimodules. We leave as an exercise to the reader to write
down the coproduct (one uses the tensor product of bimodules) and to check
that we indeed obtain a coalgebra.

Example 2.8 Let I be a set. Then the coalgebra BI = ⊕i∈I1i is a direct sum
of trivial coalgebras, isomorphic to the unit object in C. This is a special case
of Example 2. Note that in general BQ is a O(I) − O(I)-bimodule.

Example 2.9 Let A be an associative unital algebra. It gives rise to the functor
FA : CoalgCf → Sets such that FA(B) = HomAlgC (A,B∗). This functor de-
scribes finite-dimensional representations of A. It commutes with finite direct
limits, hence it is representable by a coalgebra. If A = O(X) is the algebra
of regular functions on the affine scheme X, then in the case of algebraically
closed field k the coalgebra representing FA is isomorphic to ⊕x∈X(k)O∗

x,X ,
where O∗

x,X denotes the topological dual to the completion of the local ring
Ox,X . If X is smooth of dimension n, then each summand is isomorphic to the
topological dual to the algebra of formal power series k[[t1, ..., tn]]. In other
words, this coalgebra corresponds to the disjoint union of formal neighbor-
hoods of all points of X.

Remark 2.10 One can describe non-commutative thin schemes more precisely
by using structure theorems about finite-dimensional algebras in C. For exam-
ple, in the case C = V ectk any finite-dimensional algebra A is isomorphic to a
sum A0⊕r, where A0 is a finite sum of matrix algebras ⊕iMat(ni,Di), Di are
division algebras and r is the radical. In Z-graded case a similar decomposition
holds, with A0 being a sum of algebras of the type End(Vi)⊗Di,where Vi are
some graded vector spaces and Di are division algebras of degree zero. In Z/2-
graded case the description is slightly more complicated. In particular A0 can
contain summands isomorphic to (End(Vi) ⊗Di) ⊗Dλ, where Vi and Di are
Z/2-graded analogs of the above-described objects and Dλ is a 1|1-dimensional
superalgebra isomorphic to k[ξ]/(ξ2 = λ), deg ξ = 1, λ ∈ k∗/(k∗)2.
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2.2 Smooth Thin Schemes

Recall that the notion of an ideal has meaning in any abelian tensor category.
A two-sided ideal J is called nilpotent if the multiplication map J⊗n → J has
zero image for a sufficiently large n.

Definition 2.11 Counital coalgebra B in a tensor category C is called smooth
if the corresponding functor FB : AlgCf → Sets, FB(A) = HomCoalgC (A∗, B)
satisfies the following lifting property: for any two-sided nilpotent ideal J ⊂ A
the map FB(A) → FB(A/J) induced by the natural projection A → A/J is
surjective. Non-commutative thin scheme X is called smooth if the corre-
sponding counital coalgebra B = BX is smooth.

Proposition 2.12 For any quiver Q in C the corresponding coalgebra BQ is
smooth.

Proof. First let us assume that the result holds for all finite quivers. We
remark that if A is finite-dimensional and Q is an infinite quiver then for any
morphism f : A∗ → BQ we have: f(A∗) belongs to the coalgebra of a finite
sub-quiver of Q. Since the lifting property holds for the latter, the result
follows. Finally, we need to prove the Proposition for a finite quiver Q . Let us
choose a basis {eij,α} of each space of arrows Eij . Then for a finite-dimensional
algebra A the set FBQ

(A) is isomorphic to the set {((πi), xij,α)i,j∈I}, where
πi ∈ A, π2

i = πi, πiπj = πjπi, if i �= j,
∑

i∈I πi = 1A and xij,α ∈ πiAπj satisfy
the condition: there exists N ≥ 1 such that xi1j1,α1 ...ximjm,αm

= 0 for all
m ≥ N . Let now J ⊂ A be the nilpotent ideal from the definition of smooth
coalgebra and (π′

i, x
′
ij,α) be elements of A/J satisfying the above constraints.

Our goal is to lift them to A. We can lift the them to the projectors πi and
elements xij,α for A in such a way that the above constraints are satisfied
except of the last one, which becomes an inclusion xi1j1,α1 ...ximjm,αm

∈ J for
m ≥ N . Since Jn = 0 in A for some n we see that xi1j1,α1 ...ximjm,αm

= 0 in
A for m ≥ nN . This proves the result. �

Remark 2.13 (a) According to Cuntz and Quillen [10] a non-commutative
algebra R in V ectk is called smooth if the functor Algk → Sets, FR(A) =
HomAlgk

(R,A) satisfies the lifting property from the Definition 3 applied to
all (not only finite-dimensional) algebras. We remark that if R is smooth in
the sense of Cuntz and Quillen then the coalgebra Rdual representing the
functor Coalgf

k → Sets,B 
→ HomAlgf
k
(R,B∗) is smooth. One can prove that

any smooth coalgebra in V ectk is isomorphic to a coalgebra of a generalized
quiver (see Example 3).

(b) Almost all examples of non-commutative smooth thin schemes consid-
ered in this paper are formal pointed manifolds, i.e. they are isomorphic to
Spc(T (V )) for some V ∈ Ob(C). It is natural to try to “globalize” our results
to the case of non-commutative “smooth” schemes X which satisfy the prop-
erty that the completion of X at a “commutative” point gives rise to a formal
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pointed manifold in our sense. An example of the space of maps is considered
in the next subsection.

(c) The tensor product of non-commutative smooth thin schemes is typi-
cally non-smooth, since it corresponds to the tensor product of coalgebras (the
latter is not a categorical product).

Let now x be a k-point of a non-commutative smooth thin scheme X. By
definition x is a homomorphism of counital coalgebras x : k → BX (here k = 1
is the trivial coalgebra corresponding to the unit object). The completion X̂x

of X at x is a formal pointed manifold which can be described such as follows.
As a functor FX̂x

: Algf
C → Sets it assigns to a finite-dimensional algebra A

the set of such homomorphisms of counital colagebras f : A∗ → BX which are
compositions A∗ → A∗

1 → BX , where A∗
1 ⊂ BX is a conilpotent extension of x

(i.e., A1 is a finite-dimensional unital nilpotent algebra such that the natural
embedding k → A∗

1 → BX coinsides with x : k → BX).
Description of the coalgebra BX̂x

is given in the following Proposition.

Proposition 2.14 The formal neighborhood X̂x corresponds to the counital
sub-coalgebra BX̂x

⊂ BX which is the preimage under the natural projection
BX → BX/x(k) of the sub-coalgebra consisting of conilpotent elements in the
non-counital coalgebra B/x(k). Moreover, X̂x is universal for all morphisms
from nilpotent extensions of x to X.

We discuss in Appendix a more general construction of the completion
along a non-commutative thin subscheme.

We leave as an exercise to the reader to prove the following result.

Proposition 2.15 Let Q be a quiver and pti ∈ X = XBQ
corresponds to a

vertex i ∈ I. Then the formal neighborhood X̂pti
is a formal pointed manifold

corresponding to the tensor coalgebra T (Eii) = ⊕n≥0E
⊗n
ii , where Eii is the

space of loops at i.

2.3 Inner Hom

Let X,Y be non-commutative thin schemes and BX , BY the corresponding
coalgebras.

Theorem 2.16 The functor AlgCf → Sets such that

A 
→ HomCoalgC (A∗ ⊗BX , BY )

is representable. The corresponding non-commutative thin scheme is denoted
by Maps(X,Y ).

Proof. It is easy to see that the functor under consideration commutes with
finite projective limits. Hence it is of the type A 
→ HomCoalgC (A∗, B), where
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B is a counital coalgebra (Theorem 1). The corresponding non-commutative
thin scheme is the desired Maps(X,Y ). �

It follows from the definition that Maps(X,Y ) = Hom(X,Y ), where the
inner Hom is taken in the symmetric monoidal category of non-commutative
thin schemes. By definition Hom(X,Y ) is a non-commutative thin scheme,
which satisfies the following functorial isomorphism for any Z ∈ Ob(NAff th

C ):

HomNAffth
C

(Z,Hom(X,Y )) " HomNAffth
C

(Z ⊗X,Y ).

Note that the monoidal category NAffC of all non-commutative affine
schemes does not have inner Hom′s even in the case C = V ectk. If C = V ectk
then one can define Hom(X,Y ) for X = Spec(A), where A is a finite-
dimensional unital algebra and Y is arbitrary. The situation is similar to
the case of “commutative” algebraic geometry, where one can define an affine
scheme of maps from a scheme of finite length to an arbitrary affine scheme.
On the other hand, one can show that the category of non-commutative ind-
affine schemes admit inner Hom’s (the corresponding result for commutative
ind-affine schemes is known).

Remark 2.17 The non-commutative thin scheme Maps(X,Y ) gives rise to a
quiver, such that its vertices are k-points of Maps(X,Y ). In other words,
vertices correspond to homomorphisms BX → BY of the coalgebras of dis-
tributions. Taking the completion at a k-point we obtain a formal pointed
manifold. More generally, one can take a completion along a subscheme of
k-points, thus arriving to a non-commutative formal manifold with a marked
closed subscheme (rather than one point). This construction will be used in
the subsequent paper for the desription of the A∞-structure on A∞-functors.
We also remark that the space of arrows Eij of a quiver is an example of
the geometric notion of bitangent space at a pair of k-points i, j. It will be
discussed in the subsequent paper.

Example 2.18 Let Q1 = {i1} and Q2 = {i2} be quivers with one vertex
such that Ei1i1 = V1, Ei2i2 = V2, dimVi < ∞, i = 1, 2. Then BQi

=
T (Vi), i = 1, 2 and Maps(XBQ1

,XBQ2
) corresponds to the quiver Q such

that the set of vertices IQ = HomCoalgC (BQ1 , BQ2) =
∏

n≥1 Hom(V ⊗n
1 , V2)

and for any two vertices f, g ∈ IQ the space of arrows is isomorphic to
Ef,g =

∏
n≥0 Hom(V ⊗n

1 , V2).

Definition 2.19 Homomorphism f : B1 → B2 of counital coalgebras is called
a minimal conilpotent extension if it is an inclusion and the induced coproduct
on the non-counital coalgebra B2/f(B1) is trivial.

Composition of minimal conilpotent extensions is simply called a conilpo-
tent extension. Definition 2.2.1 can be reformulated in terms of finite-dimen-
sional coalgebras. Coalgebra B is smooth if the functor C 
→ HomCoalgC (C,B)
satisfies the lifting property with respect to conilpotent extensions of finite-
dimensional counital coalgebras. The following proposition shows that we can
drop the condition of finite-dimensionality.
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Proposition 2.20 If B is a smooth coalgebra then the functor CoalgC →
Sets such that C 
→ HomCoalgC (C,B) satisfies the lifting property for conilpo-
tent extensions.

Proof. Let f : B1 → B2 be a conilpotent extension, and g: B1 → B and
be an arbitrary homomorphism of counital algebras. It can be thought of as
homomorphism of f(B1) → B. We need to show that g can be extended
to B2. Let us consider the set of pairs (C, gC) such f(B1) ⊂ C ⊂ B2 and
gC : C → B defines an extension of counital coalgebras, which coincides with
g on f(B1). We apply Zorn lemma to the partially ordered set of such pairs and
see that there exists a maximal element (Bmax, gmax) in this set. We claim that
Bmax = B2. Indeed, let x ∈ B2 \Bmax. Then there exists a finite-dimensional
coalgebra Bx ⊂ B2 which contains x. Clearly Bx is a conilpotent extension
of f(B1) ∩ Bx. Since B is smooth we can extend gmax : f(B1) ∩ Bx → B to
gx : Bx → B and,finally to gx,max : Bx + Bmax → B. This contradicts to
maximality of (Bmax, gmax). Proposition is proved. �

Proposition 2.21 If X,Y are non-commutative thin schemes and Y is
smooth then Maps(X,Y ) is also smooth.

Proof. Let A → A/J be a nilpotent extension of finite-dimensional unital
algebras. Then (A/J)∗⊗BX → A∗⊗BX is a conilpotent extension of counital
coalgebras. Since BY is smooth then the previous Proposition implies that the
induced map HomCoalgC (A∗ ⊗ BX , BY ) → HomCoalgC ((A/J)∗ ⊗ BX , BY ) is
surjective. This concludes the proof. �

Let us consider the case when (X, ptX) and (Y, ptY ) are non-commutative
formal pointed manifolds in the category C = V ectZk . One can describe “in
coordinates” the non-commutative formal pointed manifold, which is the for-
mal neighborhood of a k-point of Maps(X,Y ). Namely, let X = Spc(B)
and Y = Spc(C), and let f ∈ HomNAffth

C
(X,Y ) be a morphism preserving

marked points. Then f gives rise to a k-point of Z = Maps(X,Y ). Since O(X)
and O(Y ) are isomorphic to the topological algebras of formal power series in
free graded variables, we can choose sets of free topological generators (xi)i∈I

and (yj)j∈J for these algebras. Then we can write for the corresponding ho-
momorphism of algebras f∗ : O(Y ) → O(X):

f∗(yj) =
∑

I

c0j,MxM ,

where c0j,M ∈ k and M = (i1, ..., in), is ∈ I is a non-commutative multi-index
(all the coefficients depend on f , hence a better notation should be cf,0

j,M ).
Notice that for M = 0 one gets c0j,0 = 0 since f is a morphism of pointed
schemes. Then we can consider an “infinitesimal deformation” fdef of f

f∗
def (yj) =

∑

M

(c0j,M + δc0j,M )xM ,
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where δc0j,M are new variables commuting with all xi. Then δc0j,M can be
thought of as coordinates in the formal neighborhood of f . More pedan-
tically it can be spelled out such as follows. Let A = k ⊕ m be a finite-
dimensional graded unital algebra, where m is a graded nilpotent ideal of
A. Then an A-point of the formal neighborhood Uf of f is a morphism
φ ∈ HomNAffth

C
(Spec(A) ⊗ X,Y ), such that it reduces to f modulo the

nilpotent ideal m. We have for the corresponding homomorphism of algebras:

φ∗(yj) =
∑

M

cj,MxM ,

where M is a non-commutative multi-index, cj,M ∈ A, and cj,M 
→ c0j,M
under the natural homomorphism A → k = A/m. In particular cj,0 ∈ m.
We can treat coefficients cj,M as A-points of the formal neighborhood Uf of
f ∈ Maps(X,Y ).

Remark 2.22 The above definitions will play an important role in the subse-
quent paper, where the non-commutative smooth thin scheme Spc(BQ) will be
assigned to a (small) A∞-category, the non-commutative smooth thin scheme
Maps(Spc(BQ1), Spc(BQ2)) will be used for the description of the category of
A∞-functors between A∞-categories and the formal neighborhood of a point
in the space Maps(Spc(BQ1), Spc(BQ2)) will correspond to natural transfor-
mations between A∞-functors.

3 A∞-Algebras

3.1 Main Definitions

From now on assume that C = V ectZk unless we say otherwise. If X is a thin
scheme then a vector field on X is, by definition, a derivation of the coalgebra
BX . Vector fields form a graded Lie algebra V ect(X).

Definition 3.1 A non-commutative thin differential-graded (dg for short)
scheme is a pair (X, d) where X is a non-commutative thin scheme and d is a
vector field on X of degree +1 such that [d, d] = 0.

We will call the vector field d homological vector field.
Let X be a formal pointed manifold and x0 be its unique k-point. Such

a point corresponds to a homomorphism of counital coalgebras k → BX . We
say that the vector field d vanishes at x0 if the corresponding derivation kills
the image of k.

Definition 3.2 A non-commutative formal pointed dg-manifold is a pair
((X,x0), d) such that (X,x0) is a non-commutative formal pointed graded
manifold and d = dX is a homological vector field on X such that d|x0 = 0.
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Homological vector field d has an infinite Taylor decomposition at x0. More
precisely, let Tx0X be the tangent space at x0. It is canonically isomorphic
to the graded vector space of primitive elements of the coalgebra BX , i.e.
the set of a ∈ BX such that Δ(a) = 1 ⊗ a + a ⊗ 1 where 1 ∈ BX is the
image of 1 ∈ k under the homomorphism of coalgebras x0 : k → BX (see
Appendix for the general definition of the tangent space). Then d := dX

gives rise to a (non-canonically defined) collection of linear maps d
(n)
X := mn :

Tx0X
⊗n → Tx0X[1], n ≥ 1 called Taylor coefficients of d which satisfy a

system of quadratic relations arising from the condition [d, d] = 0. Indeed,
our non-commutative formal pointed manifold is isomorphic to the formal
neighborhood of zero in Tx0X, hence the corresponding non-commutative thin
scheme is isomorphic to the cofree tensor coalgebra T (Tx0X) generated by
Tx0X. Homological vector field d is a derivation of a cofree coalgebra, hence
it is uniquely determined by a sequence of linear maps mn.

Definition 3.3 Non-unital A∞-algebra over k is given by a non-commutative
formal pointed dg-manifold (X,x0, d) together with an isomorphism of couni-
tal coalgebras BX " T (Tx0X).

Choice of an isomorphism with the tensor coalgebra generated by the
tangent space is a non-commutative analog of a choice of affine structure in
the formal neighborhood of x0.

From the above definitions one can recover the traditional one. We present
it below for convenience of the reader.

Definition 3.4 A structure of an A∞-algebra on V ∈ Ob(V ectZk ) is given by
a derivation d of degree +1 of the non-counital cofree coalgebra T+(V [1]) =
⊕n≥1V

⊗n such that [d, d] = 0 in the differential-graded Lie algebra of coalge-
bra derivations.

Traditionally the Taylor coefficients of d = m1+m2+· · · are called (higher)
multiplications for V . The pair (V,m1) is a complex of k-vector spaces called
the tangent complex. If X = Spc(T (V )) then V [1] = T0X and m1 = d

(1)
X is

the first Taylor coefficient of the homological vector field dX . The tangent
cohomology groups Hi(V,m1) will be denoted by Hi(V ). Clearly H•(V ) =
⊕i∈ZH

i(V ) is an associative (non-unital) algebra with the product induced
by m2.

An important class of A∞-algebras consists of unital (or strictly unital)
and weakly unital (or homologically unital) ones. We are going to discuss the
definition and the geometric meaning of unitality later.

Homomorphism of A∞-algebras can be described geometrically as a mor-
phism of the corresponding non-commutative formal pointed dg-manifolds. In
the algebraic form one recovers the following traditional definition.

Definition 3.5 A homomorphism of non-unital A∞-algebras (A∞-morphism
for short) (V, dV ) → (W,dW ) is a homomorphism of differential-graded coal-
gebras T+(V [1]) → T+(W [1]).
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A homomorphism f of non-unital A∞-algebras is determined by its Taylor
coefficients fn : V ⊗n → W [1 − n], n ≥ 1 satisfying the system of equations∑

1≤l1<...,<li=n(−1)γimW
i (fl1(a1, ..., al1),

fl2−l1(al1+1, ..., al2), ..., fn−li−1(an−li−1+1, ..., an)) =∑
s+r=n+1

∑
1≤j≤s(−1)εsfs(a1, ..., aj−1,m

V
r (aj , ..., aj+r−1), aj+r, ..., an).

Here εs = r
∑

1≤p≤j−1 deg(ap)+j−1+r(s−j), γi =
∑

1≤p≤i−1(i−p)(lp−
lp−1 − 1) +

∑
1≤p≤i−1 ν(lp)

∑
lp−1+1≤q≤lp

deg(aq), where we use the notation
ν(lp) =

∑
p+1≤m≤i(1 − lm + lm−1) and set l0 = 0.

Remark 3.6 All the above definitions and results are valid for Z/2-graded
A∞-algebras as well. In this case we consider formal manifolds in the category
V ect

Z/2
k of Z/2-graded vector spaces. We will use the correspodning results

without further comments. In this case one denotes by ΠA the Z/2-graded
vector space A[1].

3.2 Minimal Models of A∞-Algebras

One can do simple differential geometry in the symmetric monoidal category
of non-commutative formal pointed dg-manifolds. New phenomenon is the
possibility to define some structures up to a quasi-isomorphism.

Definition 3.7 Let f : (X, dX , x0) → (Y, dY , y0) be a morphism of non-
commutative formal pointed dg-manifolds. We say that f is a quasi-isomorp-
hism if the induced morphism of the tangent complexes f1 : (Tx0X, d

(1)
X ) →

(Ty0Y, d
(1)
Y ) is a quasi-isomorphism. We will use the same terminology for the

corresponding A∞-algebras.

Definition 3.8 An A∞-algebra A (or the corresponding non-commutative
formal pointed dg-manifold) is called minimal if m1 = 0. It is called con-
tractible if mn = 0 for all n ≥ 2 and H•(A,m1) = 0.

The notion of minimality is coordinate independent, while the notion of
contractibility is not.

It is easy to prove that any A∞-algebra A has a minimal model MA,
i.e. MA is minimal and there is a quasi-isomorphism MA → A (the proof
is similar to the one from [29, 36]). The minimal model is unique up to an
A∞-isomorphism. We will use the same terminology for non-commutative for-
mal pointed dg-manifolds. In geometric language a non-commutative formal
pointed dg-manifold X is isomorphic to a categorical product (i.e. correspond-
ing to the completed free product of algebras of functions) Xm ×Xlc, where
Xm is minimal and Xlc is linear contractible. The above-mentioned quasi-
isomorphism corresponds to the projection X → Xm.

The following result (homological inverse function theorem) can be easily
deduced from the above product decomposition.
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Proposition 3.9 If f : A → B is a quasi-isomorphism of A∞-algebras then
there is a (non-canonical) quasi-isomorphism g : B → A such that fg and gf
induce identity maps on zero cohomologies H0(B) and H0(A) respectively.

3.3 Centralizer of an A∞-Morphism

Let A and B be two A∞-algebras, and (X, dX , x0) and (Y, dY , y0) be the
corresponding non-commutative formal pointed dg-manifolds. Let f : A →
B be a morphism of A∞-algebras. Then the corresponding k-point f ∈
Maps(Spc(A), Spc(B)) gives rise to the formal pointed manifold Uf =
M̂aps(X,Y )f (completion at the point f). Functoriality of the construction
of Maps(X,Y ) gives rise to a homomorphism of graded Lie algebras of vector
fields V ect(X)⊕V ect(Y ) → V ect(Maps(X,Y )). Since [dX , dY ] = 0 on X⊗Y ,
we have a well-defined homological vector field dZ on Z = Maps(X,Y ). It
corresponds to dX ⊗ 1Y − 1X ⊗dY under the above homomorphism. It is easy
to see that dZ |f = 0 and in fact morphisms f : A → B of A∞-algebras are
exactly zeros of dZ . We are going to describe below the A∞-algebra Centr(f)
(centralizer of f) which corresponds to the formal neighborhood Uf of the
point f ∈ Maps(X,Y ). We can write (see Sect. 2.3 for the notation)

cj,M = c0j,M + rj,M ,

where c0j,M ∈ k and rj,M are formal non-commutative coordinates in the
neighborhood of f . Then the A∞-algebra Centr(f) has a basis (rj,M )j,M and
the A∞-structure is defined by the restriction of the homological vector dZ to
Uf .

As a Z-graded vector space Centr(f) =
∏

n≥0 HomV ectZk
(A⊗n, B)[−n].

Let φ1, ..., φn ∈ Centr(f) and a1, ..., aN ∈ A. Then we have mn(φ1, ..., φn)
(a1, ..., aN ) = I + R. Here I corresponds to the term = 1X ⊗ dY and is given
by the following expression

f

a1 a

φ1
φn

f

+
root

φi

I = Σ
trees T

–+ m j
B
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Similarly R corresponds to the term dX ⊗ 1Y and is described by the
following figure

R = Σ

a1 aN

e

Am j .
edges e,
trees T

root
+

φ1

–+

Comments on the figure describing I.

(1) We partition a sequence (a1, ..., aN ) into l ≥ n non-empty subsequences.
(2) We mark n of these subsequences counting from the left (the set can be

empty).
(3) We apply multilinear map φi, 1 ≤ i ≤ n to the ith marked group of

elements al.
(4) We apply Taylor coefficients of f to the remaining subsequences.

Notice that the term R appear only for m1 (i.e. n = 1). For all subsequences
we have n ≥ 1.

From geometric point of view the term I corresponds to the vector field
dY , while the term R corresponds to the vector field dX .

Proposition 3.10 Let dCentr(f) be the derivation corresponding to the image
of dX ⊕ dY in Maps(X,Y ).

One has [dCentr(f), dCentr(f)] = 0.

Proof. Clear. �

Remark 3.11 The A∞-algebra Centr(f) and its generalization to the case of
A∞-categories discussed in the subsequent paper provide geometric descrip-
tion of the notion of natural transformaion in the A∞-case (see [39, 40] for a
pure algebraic approach to this notion).

4 Non-Commutative dg-line L and Weak Unit

4.1 Main Definition

Definition 4.1 An A∞-algebra is called unital (or strictly unital) if there
exists an element 1 ∈ V of degree zero, such that m2(1, v) = m2(v, 1) and
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mn(v1, ..., 1, ..., vn) = 0 for all n �= 2 and v, v1, ..., vn ∈ V . It is called weakly
unital (or homologically unital) if the graded associative unital algebra H•(V )
has a unit 1 ∈ H0(V ).

The notion of strict unit depends on a choice of affine coordinates on
Spc(T (V )), while the notion of weak unit is “coordinate free.” Moreover, one
can show that a weakly unital A∞-algebra becomes strictly unital after an
appropriate change of coordinates.

The category of unital or weakly unital A∞-algebras are defined in the
natural way by the requirement that morphisms preserve the unit (or weak
unit) structure.

In this section we are going to discuss a non-commutative dg-version of
the odd one-dimensional supervector space A0|1 and its relationship to weakly
unital A∞-algebras. The results are valid for both Z-graded and Z/2-graded
A∞-algebras.

Definition 4.2 Non-commutative formal dg-line L is a non-commutative for-
mal pointed dg-manifold corresponding to the one-dimensional A∞-algebra
A " k such that m2 = id,mn�=2 = 0.

The algebra of functions O(L) is isomorphic to the topological algebra of
formal series k〈〈ξ〉〉, where deg ξ = 1. The differential is given by ∂(ξ) = ξ2.

4.2 Adding a Weak Unit

Let (X, dX , x0) be a non-commutative formal pointed dg-manifold correspod-
ning to a non-unital A∞-algebra A. We would like to describe geometrically
the procedure of adding a weak unit to A.

Let us consider the non-commutative formal pointed graded manifold
X1 = L × X corresponding to the free product of the coalgebras BL ∗ BX .
Clearly one can lift vector fields dX and dL := ∂/∂ ξ to X1.

Lemma 4.3 The vector field

d := dX1 = dX + ad(ξ) − ξ2∂/∂ ξ

satisfies the condition [d, d] = 0.

Proof. Straightforward check. �
It follows from the formulas given in the proof that ξ appears in the ex-

pansion of dX in quadratic expressions only. Let A1 be an A∞-algebras cor-
responding to X1 and 1 ∈ TptX1 = A1[1] be the element of A1[1] dual to ξ

(it corresponds to the tangent vector ∂/∂ ξ). Thus we see that mA1
2 (1, a) =

mA1
2 (a, 1) = a,mA1

2 (1, 1) = 1 for any a ∈ A and mA1
n (a1, ..., 1, ..., an) = 0 for

all n ≥ 2, a1, ..., an ∈ A. This proves the following result.

Proposition 4.4 The A∞-algebra A1 has a strict unit.
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Notice that we have a canonical morphism of non-commutative formal
pointed dg-manifolds e : X → X1 such that e∗|X = id, e∗(ξ) = 0.

Definition 4.5 Weak unit in X is given by a morphism of non-commutative
formal pointed dg-manifolds p : X1 → X such that p ◦ e = id.

It follows from the definition that if X has a weak unit then the associative
algebra H•(A,mA

1 ) is unital. Hence our geometric definition agrees with the
pure algebraic one (explicit algebraic description of the notion of weak unit
can be found, e.g., in [15], Sect. 207).

5 Modules and Bimodules

5.1 Modules and Vector Bundles

Recall that a topological vector space is called linearly compact if it is a projec-
tive limit of finite-dimensional vector spaces. The duality functor V 
→ V ∗ es-
tablishes an anti-equivalence between the category of vector spaces (equipped
with the discrete topology) and the category of linearly compact vector spaces.
All that can be extended in the obvious way to the category of graded vector
spaces.

Let X be a non-commutative thin scheme in V ectZk .

Definition 5.1 Linearly compact vector bundle E over X is given by a lin-
early compact topologically free O(X)-module Γ (E), where O(X) is the al-
gebra of function on X. Module Γ (E) is called the module of sections of the
linearly compact vector bundle E .

Suppose that (X,x0) is formal graded manifold. The fiber of E over x0 is
given by the quotient space Ex0 = Γ (E)/mx0Γ (E) where mx0 ⊂ O(X) is the
two-sided maximal ideal of functions vanishing at x0 and the bar means the
closure.

Definition 5.2 A dg-vector bundle over a formal pointed dg-manifold (X, dX ,
x0) is given by a linearly compact vector bundle E over (X,x0) such that the
corresponding module Γ (E) carries a differential dE : Γ (E) → Γ (E)[1], d2

E = 0
so that (Γ (E), dE) becomes a dg-module over the dg-algebra (O(X), dX) and
dE vanishes on Ex0 .

Definition 5.3 Let A be a non-unital A∞-algebra. A left A-module M is
given by a dg-bundle E over the formal pointed dg-manifold X = Spc(T (A[1]))
together with an isomorphism of vector bundles Γ (E) " O(X)⊗̂M∗ called a
trivialization of E .

7 V. Lyubashenko has informed us that the equivalence of two descriptions also
follows from his results with Yu. Bespalov and O. Manzyuk.
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Passing to dual spaces we obtain the following algebraic definition.

Definition 5.4 Let A be an A∞-algebra and M be a Z-graded vector space.
A structure of a left A∞-module on M over A (or simply a structure of a left
A-module on M) is given by a differential dM of degree +1 on T (A[1]) ⊗ M
which makes it into a dg-comodule over the dg-coalgebra T (A[1]).

The notion of right A∞-module is similar. Right A-module is the same
as left Aop-module. Here Aop is the opposite A∞-algebra, which coincides
with A as a Z-graded vector space and for the higher multiplications one
has: mop

n (a1, ..., an) = (−1)n(n−1)/2mn(an, ..., a1). The A∞-algebra A carries
the natural structures of the left and right A-modules. If we simply say “A-
module” it will always mean “left A-module.”

Taking the Taylor series of dM we obtain a collection of k-linear maps
(higher action morphisms) for any n ≥ 1

mM
n : A⊗(n−1) ⊗M → M [2 − n],

satisfying the compatibility conditions which can be written in exactly the
same form as compatibility conditions for the higher products mA

n (see e.g.,
[27]). All those conditions can be derived from just one property that the
cofree T+(A[1])-comodule T+(A[1],M) = ⊕n≥0A[1]⊗n⊗M carries a derivation
mM = (mM

n )n≥0 such that [mM ,mM ] = 0. In particular (M,mM
1 ) is a complex

of vector spaces.

Definition 5.5 Let A be a weakly unital A∞-algebra. An A-module M is
called weakly unital if the cohomology H•(M,mM

1 ) is a unital H•(A)-module.

It is easy to see that left A∞-modules over A form a dg-category A−mod
with morphisms being homomorphisms of the corresponding comodules. As a
graded vector space

HomA−mod(M,N) = ⊕n≥0HomV ectZk
(A[1]⊗n ⊗M,N).

It easy to see that HomA−mod(M,N) is a complex.
If M is a right A-module and N is a left A-module then one has a naturally

defined structure of a complex on M ⊗A N := ⊕n≥0M ⊗ A[1]⊗n ⊗ N . The
differential is given by the formula:

d(x⊗ a1 ⊗ ...⊗ an ⊗ y) =
∑

±mM
i (x⊗ a1 ⊗ ...⊗ ai) ⊗ ai+1 ⊗ ...⊗ an ⊗ y)

+
∑

±x⊗ a1 ⊗ ...⊗ ai−1 ⊗mA
k (ai ⊗ ...⊗ ai+k−1) ⊗ ai+k ⊗ ...⊗ an ⊗ y

+
∑

±x⊗ a1 ⊗ ...⊗ ai−1 ⊗mN
j (ai ⊗ ...⊗ an ⊗ y).

We call this complex the derived tensor product of M and N .
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For any A∞-algebras A and B we define an A−B-bimodule as a Z-graded
vector space M together with linear maps

cM
n1,n2

: A[1]⊗n1 ⊗M ⊗B[1]⊗n2 → M [1]

satisfying the natural compatibility conditions (see e.g. [27]). If X and Y are
formal pointed dg-manifolds corresponding to A and B respectively then an
A − B-bimodule is the same as a dg-bundle E over X ⊗ Y equipped with a
homological vector field dE which is a lift of the vector field dX ⊗ 1 + 1 ⊗ dY .

Example 5.6 Let A = B = M . We define a structure of diagonal bimodule on
A by setting cA

n1,n2
= mA

n1+n2+1.

Proposition 5.7 (1) To have a structure of an A∞-module on the complex
M is the same as to have a homomorphism of A∞-algebras φ : A → EndK(M),
where K is a category of complexes of k-vector spaces.

(2) To have a structure of an A − B-bimodule on a graded vector space
M is the same as to have a structure of left A-module on M and to have a
morphism of A∞-algebras ϕA,B : Bop → HomA−mod(M,M).

Let A be an A∞-algebra, M be an A-module and ϕA,A : Aop → HomA−mod

(M, M) be the corresponding morphism of A∞-algebras. Then the dg-algebra
Centr(ϕ) is isomorphic to the dg-algebra HomA−mod(M,M).

If M =A MB is an A − B-bimodule and N =B NC is a B − C-bimodule
then the complex AMB ⊗B BNC carries an A − C-bimodule structure. It is
called the tensor product of M and N .

Let f : X → Y be a homomorphism of formal pointed dg-manifolds corre-
sponding to a homomorphism of A∞-algebras A → B. Recall that in Sect. 4
we constructed the formal neighborhood Uf of f in Maps(X,Y ) and the A∞-
algebra Centr(f). On the other hand, we have an A − mod − B bimodule
structure on B induced by f . Let us denote this bimodule by M(f). We leave
the proof of the following result as an exercise to the reader. It will not be
used in the paper.

Proposition 5.8 If B is weakly unital then the dg-algebra EndA−mod−B

(M(f)) is quasi-isomorphic to Centr(f).

A∞-bimodules will be used in Part II for study of homologically smooth
A∞-algebras. In the subsequent paper devoted to A∞-categories we will
explain that bimodules give rise to A∞-functors between the corresponding
categories of modules. Tensor product of bimodules corresponds to the com-
position of A∞-functors.

5.2 On the Tensor Product of A∞-Algebras

The tensor product of two dg-algebras A1 and A2 is a dg-algebra. For A∞-
algebras there is no canonical simple formula for the A∞-structure on A1⊗kA2
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which generalizes the one in the dg-algebras case. Some complicated formulas
were proposed in [44]. They are not symmetric with respect to the permutation
(A1, A2) 
→ (A2, A1). We will give below the definition of the dg-algebra which
is quasi-isomorphic to the one from [44] in the case when both A1 and A2 are
weakly unital. Namely, we define the A∞-tensor product

A1“ ⊗′′ A2 = EndA1−mod−A2(A1 ⊗A2).

Note that it is a unital dg-algebra. One can show that the dg-category A −
mod−B is equivalent (as a dg-category) to A1“ ⊗′′ Aop

2 −mod.

6 Yoneda Lemma

6.1 Explicit Formulas for the Product and Differential
on Centr(f)

Let A be an A∞-algebra and B = EndK(A) be the dg-algebra of endo-
morphisms of A in the category K of complexes of k-vector spaces. Let
f = fA : A → B be the natural A∞-morphism coming from the left ac-
tion of A on itself. Notice that B is always a unital dg-algebra, while A can be
non-unital. The aim of this Section was to discuss the relationship between A
and Centr(fA). This is a simplest case of the A∞-version of Yoneda lemma
(the general case easily follows from this one. See also [39, 40]).

As a graded vector space Centr(fA) is isomorphic to
∏

n≥0 Hom(A⊗(n+1),
A)[−n].

Let us describe the product in Centr(f) for f = fA. Let φ, ψ be two
homogeneous elements of Centr(f). Then

(φ · ψ)(a1, a2, . . . , aN ) = ±φ(a1, . . . , ap−1, ψ(ap, . . . , aN )).

Here ψ acts on the last group of variables ap, . . . , aN and we use the Koszul
sign convention for A∞-algebras in order to determine the sign.

Similarly one has the following formula for the differential (see Sect. 3.3):

(dφ)(a1, . . . , aN ) =
∑

±φ(a1, . . . , as,mi(as+1, . . . , as+i), as+i+1 . . . , aN )

+
∑

±mi(a1, . . . , as−1, φ(as, . . . , aj , ..., aN )).

6.2 Yoneda Homomorphism

If M is an A − B-bimodule then one has a homomorphism of A∞-algebras
Bop → Centr(φA,M ) (see Propositions 5.1.7 and 5.1.8). We would like to apply
this general observation in the case of the diagonal bimodule structure on A.
Explicitly, we have the A∞-morphism Aop → Endmod−A(A) or, equivalently,
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the collection of maps A⊗m → Hom(A⊗n, A). By conjugation it gives us a
collection of maps

A⊗m ⊗Hom(A⊗n, A) → Hom(A⊗(m+n), A).

In this way we get a natural A∞-morphism Y o : Aop → Centr(fA) called the
Yoneda homomorphism.

Proposition 6.1 The A∞-algebra A is weakly unital if and only if the
Yoneda homomorphism is a quasi-isomorphism.

Proof. Since Centr(fA) is weakly unital, then A must be weakly unital as
long as Yoneda morphism is a quasi-isomorphism.

Let us prove the opposite statement. We assume that A is weakly unital.
It suffices to prove that the cone Cone(Y o) of the Yoneda homomorphism has
trivial cohomology. Thus we need to prove that the cone of the morphism of
complexes

(Aop,m1) → (⊕n≥1Hom(A⊗n, A),mCentr(fA)
1 ).

is contractible. In order to see this, one considers the extended complex A⊕
Centr(fA). It has natural filtration arising from the tensor powers of A. The
corresponding spectral sequence collapses, which gives an explicit homotopy
of the extended complex to the trivial one. This implies the desired quasi-
isomorphism of H0(Aop) and H0(Centr(fA)). �

Remark 6.2 It look like the construction of Centr(fA) is the first known
canonical construction of a unital dg-algebra quasi-isomorphic to a given A∞-
algebra (canonical but not functorial). This is true even in the case of strictly
unital A∞-algebras. Standard construction via bar and cobar resolutions gives
a non-unital dg-algebra.

Part II: Smoothness and Compactness

7 Hochschild Cochain and Chain Complexes
of an A∞-Algebra

7.1 Hochschild Cochain Complex

We change the notation for the homological vector field to Q, since the let-
ter d will be used for the differential.8 Let ((X, pt), Q) be a non-commutative

8 We recall that the super version of the notion of formal dg-manifold was intro-
duced by A. Schwarz under the name “Q-manifold.” Here letter Q refers to the
supercharge notation from Quantum Field Theory.
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formal pointed dg-manifold corresponding to a non-unital A∞-algebra A and
V ect(X) the graded Lie algebra of vector fields on X (i.e., continuous deriva-
tions of O(X)).

We denote by C•(A,A) := C•(X,X) := V ect(X)[−1] the Hochschild
cochain complex of A. As a Z-graded vector space

C•(A,A) =
∏

n≥0

HomC(A[1]⊗n, A).

The differential on C•(A,A) is given by [Q, •]. Algebraically, C•(A,A)[1] is a
DGLA of derivations of the coalgebra T (A[1]) (see Sect. 3).

Theorem 7.1 Let X be a non-commutative formal pointed dg-manifold and
C•(X,X) be the Hochschild cochain complex. Then one has the following
quasi-isomorphism of complexes

C•(X,X)[1] " TidX
(Maps(X,X)),

where TidX
denotes the tangent complex at the identity map.

Proof. Notice that Maps(Spec(k[ε]/(ε2)) ⊗X,X) is the non-commutative dg
ind-manifold of vector fields on X. The tangent space TidX

from the theorem
can be identified with the set of such f ∈ Maps(Spec(k[ε]/(ε2))⊗X,X) that
f |{pt}⊗X = idX . On the other hand the DGLA C•(X,X)[1] is the DGLA of
vector fields on X. The theorem follows. �

The Hochschild complex admits a couple of other interpretations. We leave
to the reader to check the equivalence of all of them. First, C•(A,A) "
Centr(idA). Finally, for a weakly unital A one has C•(A,A) " HomA−mod−A

(A,A). Both are quasi-isomorphisms of complexes.

Remark 7.2 Interpretation of C•(A,A)[1] as vector fields gives a DGLA struc-
ture on this space. It is a Lie algebra of the “commutative” formal group in
V ectZk , which is an abelianization of the non-commutative formal group of in-
ner (in the sense of tensor categories) automorphisms Aut(X) ⊂ Maps(X,X).
Because of this non-commutative structure underlying the Hochschild cochain
complex, it is natural to expect that C•(A,A)[1] carries more structures than
just DGLA. Indeed, Deligne’s conjecture (see e.g., [35] and the last section
of this paper) claims that the DGLA algebra structure on C•(A,A)[1] can
be extended to a structure of an algebra over the operad of singular chains
of the topological operad of little discs. Graded Lie algebra structure can be
recovered from cells of highest dimension in the cell decomposition of the
topological operad.

7.2 Hochschild Chain Complex

In this subsection we are going to construct a complex of k-vector spaces
which is dual to the Hochschild chain complex of a non-unital A∞-algebra.
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Cyclic Differential Forms of Order Zero

Let (X, pt) be a non-commutative formal pointed manifold over k and O(X)
the algebra of functions on X. For simplicity we will assume that X is finite-
dimensional, i.e., dimk TptX < ∞. If B = BX is a counital coalgebra corre-
sponding to X (coalgebra of distributions on X) then O(X) " B∗. Let us
choose affine coordinates x1, x2, ..., xn at the marked point pt. Then we have
an isomorphism of O(X) with the topological algebra k〈〈x1, ..., xn〉〉 of formal
series in free graded variables x1, ..., xn.

We define the space of cyclic differential degree zero forms on X as

Ω0
cycl(X) = O(X)/[O(X),O(X)]top,

where [O(X),O(X)]top denotes the topological commutator (the closure of the
algebraic commutator in the adic topology of the space of non-commutative
formal power series).

Equivalently, we can start with the graded k-vector space Ω0
cycl,dual(X)

defined as the kernel of the composition B → B⊗B →
∧2

B (first map is the
coproduct Δ : B → B ⊗ B, while the second one is the natural projection to
the skew-symmetric tensors). Then Ω0

cycl(X) " (Ω0
cycl,dual(X))∗ (dual vector

space).

Higher Order Cyclic Differential Forms

We start with the definition of the odd tangent bundle T [1]X. This is the dg-
analog of the total space of the tangent supervector bundle with the changed
parity of fibers. It is more convenient to describe this formal manifold in
terms of algebras rather than coalgebras. Namely, the algebra of functions
O(T [1]X) is a unital topological algebra isomorphic to the algebra of for-
mal power series k〈〈xi, dxi〉〉, 1 ≤ i ≤ n, where deg dxi = deg xi + 1 (we
do not impose any commutativity relations between generators). More in-
variant description involves the odd line. Namely, let t1 := Spc(B1), where
(B1)∗ = k〈〈ξ〉〉/(ξ2), deg ξ = +1. Then we define T [1]X as the formal neigh-
borhood in Maps(t1,X) of the point p which is the composition of pt with
the trivial map of t1 into the point Spc(k).

Definition 7.3 (a) The graded vector space

O(T [1]X) = Ω•(X) =
∏

m≥0

Ωm(X)

is called the space of de Rham differential forms on X.
(b) The graded space

Ω0
cycl(T [1]X) =

∏

m≥0

Ωm
cycl(X)

is called the space of cyclic differential forms on X.
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In coordinate description the grading is given by the total number of dxi.
Clearly each space Ωn

cycl(X), n ≥ 0 is dual to some vector space Ωn
cycl,dual(X)

equipped with the discrete topology (since this is true for Ω0(T [1]X)).
The de Rham differential on Ω•(X) corresponds to the vector field ∂/∂ξ

(see description which uses the odd line, it is the same variable ξ). Since Ω0
cycl

is given by the natural (functorial) construction, the de Rham differential
descends to the subspace of cyclic differential forms. We will denote the former
by dDR and the latter by dcycl.

The space of cyclic 1-forms Ω1
cycl(X) is a (topological) span of expressions

x1x2...xl dxj , xi ∈ O(X). Equivalently, the space of cyclic 1-forms consists of
expressions

∑
1≤i≤n fi(x1, ..., xn) dxi where fi ∈ k〈〈x1, ..., xn〉〉.

There is a map ϕ : Ω1
cycl(X) → O(X)red := O(X)/k, which is defined on

Ω1(X) by the formula adb 
→ [a, b] (check that the induced map on the cyclic
1-forms is well-defined). This map does not have an analog in the commutative
case.9

Non-commutative Cartan Calculus

Let X be a formal graded manifold over a field k. We denote by g := gX

the graded Lie algebra of continuous linear maps O(T [1]X) → O(T [1]X)
generated by de Rham differential d = ddR and contraction maps iξ, ξ ∈
V ect(X) which are defined by the formulas iξ(f) = 0, iξ(df) = ξ(f) for all f ∈
O(T [1]X). Let us define the Lie derivative Lieξ = [d, iξ] (graded commutator).
Then one can easily checks the usual formulas of the Cartan calculus

[d, d] = 0, Lieξ = [d, iξ], [d, Lieξ] = 0,

[Lieξ, iη] = i[ξ,η], [Lieξ, Lieη] = Lie[ξ,η], [iξ, iη] = 0,

for any ξ, η ∈ V ect(X).
By naturality, the graded Lie algebra gX acts on the space Ω•

cycl(X) as
well as one the dual space (Ω•

cycl(X))∗.

Differential on the Hochschild Chain Complex

Let Q be a homological vector field on (X, pt). Then A = TptX[−1] is a
non-unital A∞-algebra.

We define the dual Hochschild chain complex (C•(A,A))∗ as Ω1
cycl(X)[2]

with the differential LieQ. Our terminology is explained by the observation
that Ω1

cycl(X)[2] is dual to the conventional Hochschild chain complex

9 V. Ginzburg pointed out that the geometric meaning of the map ϕ as a “contrac-
tion with double derivation” was suggested in Sect. 5.4 of [19].
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C•(A,A) = ⊕n≥0(A[1])⊗n ⊗A.

Note that we use the cohomological grading on C•(A,A), i.e. chains of degree
n in conventional (homological) grading have degree −n in our grading. The
differential has degree +1.

In coordinates the isomorphism identifies an element fi(x1, ..., xn) ⊗ xi ∈
(A[1]⊗n ⊗ A)∗ with the homogeneous element fi(x1, ..., xn) dxi ∈ Ω1

cycl(X).
Here xi ∈ (A[1])∗, 1 ≤ i ≤ n are affine coordinates.

The graded Lie algebra V ect(X) of vector fields of all degrees acts on any
functorially defined space, in particular, on all spaces Ωj(X), Ωj

cycl(X), etc.
Then we have a differential on Ωj

cycl(X) given by b = LieQ of degree +1.
There is an explicit formula for the differential b on C•(A,A) (cf. [T]):

b(a0 ⊗ ...⊗ an) =
∑

±a0 ⊗ ...⊗ml(ai ⊗ ...⊗ aj) ⊗ ...⊗ an

+
∑

±ml(aj ⊗ ...⊗ an ⊗ a0 ⊗ ...⊗ ai) ⊗ ai+1 ⊗ ...⊗ aj−1.

It is convenient to depict a cyclic monomial a0 ⊗ ...⊗ an in the following way.
We draw a clockwise oriented circle with n+1 points labeled from 0 to n such
that one point is marked We assign the elements a0, a1, ..., an to the points
with the corresponding labels, putting a0 at the marked point.

a0

a1

ai

an

Then we can write b = b1 +b2 where b1 is the sum (with appropriate signs)
of the expressions depicted below:
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mlid

.

.
Similarly, b2 is the sum (with appropriate signs) of the expressions depicted

below:

mlid

.

.
In both cases maps ml are applied to a consequitive cyclically ordered

sequence of elements of A assigned to the points on the top circle. The identity
map is applied to the remaining elements. Marked point on the top circle is
the position of the element of a0. Marked point on the bottom circle depicts
the first tensor factor of the corresponding summand of b. In both the cases
we start cyclic count of tensor factors clockwise from the marked point.
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7.3 The Case of Strictly Unital A∞-Algebras

Let A be a strictly unital A∞-algebra. There is a reduced Hochschild chain
complex

Cred
• (A,A) = ⊕n≥0A⊗ ((A/k · 1)[1])⊗n,

which is the quotient of C•(A,A). Similarly there is a reduced Hochschild
cochain complex

C•
red(A,A) =

∏

n≥0

HomC((A/k · 1)[1]⊗n, A),

which is a subcomplex of the Hochschild cochain complex C•(A,A).
Also, C•(A,A) carries also the “Connes’s differential” B of degree −1

(called sometimes “de Rham differential”) given by the formula (see [7], [T])

B(a0 ⊗ ...⊗ an) =
∑

i

±1⊗ ai ⊗ ...⊗ an ⊗ a0 ⊗ ...⊗ ai−1, B
2 = 0, Bb+ bB = 0.

Here is a graphical description of B (it will receive an explanation in the
section devoted to generalized Deligne’s conjecture)

id id 1 id

.

.

.

ai
an

Let u be an independent variable of degree +2. It follows that for a strictly
unital A∞-algebra A one has a differential b+uB of degree +1 on the graded
vector space C•(A,A)[[u]] which makes the latter into a complex called neg-
ative cyclic complex (see [7, T]). In fact b + uB is a differential on a smaller
complex C•(A,A)[u]. In the non-unital case one can use Cuntz–Quillen com-
plex instead of a negative cyclic complex (see next subsection).
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7.4 Non-unital Case: Cuntz–Quillen Complex

In this subsection we are going to present a formal dg-version of the mixed
complex introduced by Cuntz and Quillen [9]. In the previous subsection we
introduced the Connes differential B in the case of strictly unital A∞-algebras.
In the non-unital case the construction has to be modified. Let X = A[1]form

be the corresponding non-commutative formal pointed dg-manifold. The al-
gebra of functions O(X) "

∏
n≥0(A[1]⊗n)∗ is a complex with the differential

LieQ.

Proposition 7.4 If A is weakly unital then all non-zero cohomology of the
complex O(X) are trivial and H0(O(X)) " k.

Proof. Let us calculate the cohomology using the spectral sequence associated
with the filtration

∏
n≥n0

(A[1]⊗n)∗. The term E1 of the spectral sequence
is isomorphic to the complex

∏
n≥0((H

•(A[1],m1))⊗n)∗ with the differential
induced by the multiplication mA

2 on H•(A,mA
1 ). By assumption H•(A,mA

1 )
is a unital algebra, hence all the cohomology groups vanish except of the
zeroth one, which is isomorphic to k. This concludes the proof. �.

It follows from the above Proposition that the complex O(X)/k is acyclic.
We have the following two morphisms of complexes

dcycl : (O(X)/k · 1, LieQ) → (Ω1
cycl(X), LieQ)

and
ϕ : (Ω1

cycl(X), LieQ) → (O(X)/k · 1, LieQ).

Here dcycl and ϕ were introduced in the Sect. 7.2. We have: deg(dcycl) = +1,
deg(ϕ) = −1, dcycl ◦ ϕ = 0, ϕ ◦ dcycl = 0..

Let us consider a modified Hochschild chain complex

Cmod
• (A,A) := (Ω1

cycl(X)[2])∗ ⊕ (O(X)/k · 1)∗

with the differential

b =
(

(LieQ)∗ ϕ∗

0 (LieQ)∗

)

Let

B =
(

0 0
d∗cycl 0

)

be an endomorphism of Cmod
• (A,A) of degree −1. Then

B2 = 0. Let u be a formal variable of degree +2. We define modified negative
cyclic, periodic cyclic and cyclic chain complexes such as follows

CC−,mod
• (A) = (Cmod

• (A,A)[[u]], b + uB),

CPmod
• (A) = (Cmod

• (A,A)((u)), b + uB),

CCmod
• (A) = (CPmod

• (A)/CC−,mod
• (A))[−2].
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For unital dg-algebras these complexes are quasi-isomorphic to the stan-
dard ones. If char k = 0 and A is weakly unital then CC−,mod

• (A) is quasi-
isomorphic to the complex (Ω0

cycl(X), LieQ)∗. Note that the k[[u]]-module
structure on the cohomology H•((Ω0

cycl(X), LieQ)∗) is not visible from the
definition.

8 Homologically Smooth and Compact A∞-Algebras

From now on we will assume that all A∞-algebras are weakly unital unless
we say otherwise.

8.1 Homological Smoothness

Let A be an A∞-algebra over k and E1, E2, ..., En be a sequence of A-modules.
Let us consider a sequence (E≤i)1≤i≤n of A-modules together with exact tri-
angles

Ei → E≤i → Ei+1 → Ei[1],

such that E≤1 = E1.
We will call E≤n an extension of the sequence E1, ..., En.
The reader also notices that the above definition can be given also for the

category of A−A-bimodules.

Definition 8.1 (1) A perfect A-module is the one which is quasi-isomorphic
to a direct summand of an extension of a sequence of modules each of which
is quasi-isomorphic to A[n], n ∈ Z.

(2) A perfect A − A-bimodule is the one which is quasi-isomorphic to a
direct summand of an extension of a sequence consisting of bimodules each of
which is quasi-isomorphic to (A⊗A)[n], n ∈ Z.

Perfect A-modules form a full subcategory PerfA of the dg-category A−
mod. Perfect A − A-bimodules form a full subcategory PerfA−mod−A of the
category of A−A-bimodules.10

Definition 8.2 We say that an A∞-algebra A is homologically smooth if it
is a perfect A − A-bimodule (equivalently, A is a perfect module over the
A∞-algebra A “⊗” Aop).

Remark 8.3 An A − B-bimodule M gives rise to a dg-functor B − mod →
A − mod such that V 
→ M ⊗B V . The diagonal bimodule A corresponds to
the identity functor IdA−mod : A−mod → A−mod. The notion of homolog-
ical smoothness can be generalized to the framework of A∞-categories. The
corresponding notion of saturated A∞-category can be spelled out entirely in
terms of the identity functor.
10 Sometimes PerfA is called a thick triangulated subcategory of A−mod generated

by A. Then it is denoted by 〈A〉. In the case of A − A-bimodules we have a thik
triangulated subcategory generated by A ⊗ A, which is denoted by 〈A ⊗ A〉.
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Let us list few examples of homologically smooth A∞-algebras.

Example 8.4 (a) Algebra of functions on a smooth affine scheme.
(b) A = k[x1, ..., xn]q, which is the algebra of polynomials in variables

xi, 1 ≤ i ≤ n subject to the relations xixj = qij xjxi, where qij ∈ k∗ satisfy the
properties qii = 1, qijqji = 1. More generally, all quadratic Koszul algebras,
which are deformations of polynomial algebras are homologically smooth.

(c) Algebras of regular functions on quantum groups (see [37]).
(d) Free algebras k〈x1, ..., xn〉.
(e) Finite-dimensional associative algebras of finite homological dimension.
(f) If X is a smooth scheme over k then the bounded derived cate-

gory Db(Perf(X)) of the category of perfect complexes (it is equivalent to
Db(Coh(X))) has a generator P (see [5]). Then the dg-algebra A = End(P )
(here we understand endomorphisms in the “derived sense”, see [28]) is a
homologically smooth algebra.

Let us introduce an A − A-bimodule A! = HomA−mod−A(A,A ⊗ A) (cf.
[18]). The structure of an A − A-bimodule is defined similarly to the case of
associative algebras.

Proposition 8.5 If A is homologically smooth then A! is a perfect A − A-
bimodule.

Proof. We observe that HomC−mod(C,C) is a dg-algebra for any A∞-
algebra C. The Yoneda embedding C → HomC−mod(C,C) is a quasi-
isomorphism of A∞-algebras. Let us apply this observation to C = A⊗ Aop.
Then using the A∞-algebra A“ ⊗′′ Aop (see Sect. 5.2) we obtain a quasi-
isomorphism of A − A-bimodules HomA−mod−A(A ⊗ A,A ⊗ A) " A ⊗ A.
By assumption A is quasi-isomorphic (as an A∞-bimodule) to a direct
summand in an extension of a sequence (A ⊗ A)[ni] for ni ∈ Z. Hence
HomA−mod−A(A ⊗ A,A ⊗ A) is quasi-isomorphic to a direct summand in
an extension of a sequence (A⊗A)[mi] for mi ∈ Z. The result follows. �

Definition 8.6 The bimodule A! is called the inverse dualizing bimodule.

The terminology is explained by an observation that if A = End(P ) where
P is a generator of of Perf(X) (see example 8f)) then the bimodule A! cor-
responds to the functor F 
→ F ⊗ K−1

X [−dimX], where KX is the canonical
class of X.11

Remark 8.7 In [50] the authors introduced a stronger notion of fibrant dg-
algebra. Informally it corresponds to “non-commutative homologically smooth
affine schemes of finite type.” In the compact case (see the next section) both
notions are equivalent.
11 We thank Amnon Yekutieli for pointing out that the inverse dualizing module

was first mentioned in the paper by M. van den Bergh “Existence theorems for
dualizing complexes over non-commutative graded and filtered rings,” J. Algebra,
195:2, 1997, 662–679.
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8.2 Compact A∞-Algebras

Definition 8.8 We say that an A∞-algebra A is compact if the cohomology
H•(A,m1) is finite-dimensional.

Example 8.9 (a) If dimkA < ∞ then A is compact.
(b) Let X/k be a proper scheme of finite type. According to [5] there exists

a compact dg-algebra A such that PerfA is equivalent to Db(Coh(X)).
(c) If Y ⊂ X is a proper subscheme (possibly singular) of a smooth scheme

X then the bounded derived category Db
Y (Perf(X)) of the category of perfect

complexes on X, which are supported on Y has a generator P such that
A = End(P ) is compact. In general it is not homologically smooth for Y �= X.
More generally, one can replace X by a formal smooth scheme containing Y ,
e.g., by the formal neighborhood of Y in the ambient smooth scheme. In
particular, for Y = {pt} ⊂ X = A1 and the generator OY of Db(Perf(X))
the corresponding graded algebra is isomorphic to k〈ξ〉/(ξ2), where deg ξ = 1.

Proposition 8.10 If A is compact and homologically smooth then the Hoch-
schild homology and cohomology of A are finite-dimensional.

Proof. (a) Let us start with Hochschild cohomology. We have an isomor-
phism of complexes C•(A,A) " HomA−mod−A(A,A). Since A is homologi-
cally smooth the latter complex is quasi-isomorphic to a direct summand of an
extension of the bimodule HomA−mod−A(A⊗A,A⊗A). The latter complex
is quasi-isomorphic to A⊗A (see the proof of the Proposition 8.1.5). Since A
is compact, the complex A⊗A has finite-dimensional cohomology. Therefore
any perfect A−A-bimodule enjoys the same property. We conclude that the
Hochschild cohomology groups are finite-dimensional vector spaces.

(b) Let us consider the case of Hochschild homology. With any A − A-
bimodule E we associate a complex of vector spaces E� = ⊕n≥0A[1]⊗n⊗E (cf.
[18]). The differential on E� is given by the same formulas as the Hochschild
differential for C•(A,A) with the only change: we place an element e ∈ E
instead of an element of A at the marked vertex (see Sect. 7). Taking E = A
with the structure of the diagonal A−A-bimodule we obtain A� = C•(A,A).
On the other hand, it is easy to see that the complex (A ⊗ A)� is quasi-
isomorphic to (A,m1), since (A ⊗ A)� is the quotient of the canonical free
resolution (bar resolution) for A by a subcomplex A. The construction of E�

is functorial, hence A� is quasi-isomorphic to a direct summand of an extension
(in the category of complexes) of a shift of (A⊗A)�, because A is smooth. Since
A� = C•(A,A) we see that the Hochschild homology H•(A,A) is isomorphic
to a direct summand of the cohomology of an extension of a sequence of k-
modules (A[ni],m1). Since the vector space H•(A,m1) is finite-dimensional
the result follows. �

Remark 8.11 For a homologically smooth compact A∞-algebra A one has a
quasi-isomorphism of complexes C•(A,A) " HomA−mod−A(A!, A) Also, the



186 M. Kontsevich and Y. Soibelman

complex HomA−mod−A(M !, N) is quasi-isomorphic to (M ⊗A N)� for two
A − A-bimodules M,N , such that M is perfect. Here M ! := HomA−mod−A

(M,A ⊗ A) Having this in mind one can offer a version of the above proof
which uses the isomorphism

HomA−mod−A(A!, A) " HomA−mod−A(HomA−mod−A(A,A⊗A), A).

Indeed, since A is homologically smooth the bimodule HomA−mod−A(A,A⊗
A) is quasi-isomorphic to a direct summand P of an extension of a shift of
HomA−mod−A(A⊗A,A⊗A) " A⊗A. Similarly, HomA−mod−A(P,A) is quasi-
isomorphic to a direct summand of an extension of a shift of HomA−mod−A(A⊗
A,A⊗A) " A⊗A. Combining the above computations we see that the com-
plex C•(A,A) is quasi-isomorphic to a direct summand of an extension of a
shift of the complex A ⊗ A. The latter has finite-dimensional cohomology,
since A enjoys this property.

Besides algebras of finite quivers there are two main sources of homologi-
cally smooth compact Z-graded A∞-algebras.

Example 8.12 (a) Combining Examples 8.1.4(f) and 8.2.2(b) we see that the
derived category Db(Coh(X)) is equivalent to the category PerfA for a ho-
mologically smooth compact A∞-algebra A.

(b) According to [45] the derived category Db(F (X)) of the Fukaya cat-
egory of a K3 surface X is equivalent to PerfA for a homologically smooth
compact A∞-algebra A. The latter is generated by Lagrangian spheres, which
are vanishing cycles at the critical points for a fibration of X over CP1. This
result can be generalized to other Calabi–Yau manifolds.

In Z/2-graded case examples of homologically smooth compact A∞-algebras
come from Landau–Ginzburg categories (see [42, 43]) and from Fukaya cate-
gories for Fano varieties.

Remark 8.13 Formal deformation theory of smooth compact A∞-algebras
gives a finite-dimensional formal pointed (commutative) dg-manifold. The
global moduli stack can be constructed using methods of [50]). It can be
thought of as a moduli stack of non-commutative smooth proper varieties.

9 Degeneration Hodge-to-de Rham

9.1 Main Conjecture

Let us assume that char k = 0 and A is a weakly unital A∞-algebra, which
can be Z-graded or Z/2-graded.

For any n ≥ 0 we define the truncated modified negative cyclic complex
C

mod,(n)
• (A,A) = (Cmod

• (A,A) ⊗ k[u]/(un), b + uB), where deg u = +2. Its
cohomology will be denoted by H•(Cmod,(n)

• (A,A)).
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Definition 9.1 We say that an A∞-algebra A satisfies the degeneration prop-
erty if for any n ≥ 1 one has: H•(Cmod,(n)

• (A,A)) is a flat k[u]/(un)-module.

Conjecture 9.2 (Degeneration Hodge-to-de Rham). Let A be a weakly uni-
tal compact homologically smooth A∞-algebra. Then it satisfies the degener-
ation property.

We will call the above statement the degeneration conjecture.

Corollary 9.3 If the A satisfies the degeneration property then the negative
cyclic homology coincides with lim←−n

H•(Cmod,(n)
• (A,A)) and it is a flat k[[u]]-

module.

Remark 9.4 One can speak about degeneration property (modulo un) for A∞-
algebras which are flat over unital commutative k-algebras. For example, let
R be an Artinian local k-algebra with the maximal ideal m and A be a flat R-
algebra such that A/m is weakly unital, homologically smooth and compact.
Then, assuming the degeneration property for A/m, one can easily see that
it holds for A as well. In particular, the Hochschild homology of A gives rise
to a vector bundle over Spec(R) × A1

form[−2].

Assuming the degeneration property for A we see that there is a Z-graded
vector bundle ξA over A1

form[−2] = Spf(k[[u]]) with the space of sections
isomorphic to

lim←−
n

H•(Cmod,(n)
• (A,A)) = HC−,mod

• (A),

which is the negative cyclic homology of A. The fiber of ξA at u = 0 is
isomorphic to the Hochschild homology Hmod

• (A,A) := H•(C•(A,A)).
Note that Z-graded k((u))-module HPmod

• (A) of periodic cyclic homology
can be described in terms of just one Z/2-graded vector space HPmod

even(A) ⊕
ΠHPmod

odd (A), where HPmod
even(A) (resp. HPmod

odd (A)) consists of elements of de-
gree zero (resp. degree +1) of HPmod

• (A) and Π is the functor of changing
the parity. We can interpret ξA in terms of (Z/2-graded) supergeometry as
a Gm-equivariant supervector bundle over the even formal line A1

form. The
structure of a Gm-equivariant supervector bundle ξA is equivalent to a filtra-
tion F (called Hodge filtration) by even numbers on HPmod

even(A) and by odd
numbers on HPmod

odd (A). The associated Z-graded vector space coincides with
H•(A,A).

We can say few words in support of the degeneration conjecture. One is,
of course, the classical Hodge-to-de Rham degeneration theorem (see Sect. 9.2
below). It is an interesting question to express the classical Hodge theory alge-
braically, in terms of a generator E of the derived category of coherent sheaves
and the corresponding A∞-algebra A = RHom(E , E). The degeneration con-
jecture also trivially holds for algebras of finite quivers without relations.

In classical algebraic geometry there are basically two approaches to the
proof of degeneration conjecture. One is analytic and uses Kähler metric,
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Hodge decomposition, etc. Another one is pure algebraic and uses the tech-
nique of reduction to finite characteristic (see [12]). Recently Kaledin (see
[24]) suggested a proof of a version of the degeneration conjecture based on
the reduction to finite characterstic.

Below we will formulate a conjecture which could lead to the definition
of crystalline cohomology for A∞-algebras. Notice that one can define ho-
mologically smooth and compact A∞-algebras over any commutative ring, in
particular, over the ring of integers Z. We assume that A is a flat Z-module.

Conjecture 9.5 Suppose that A is a weakly unital A∞-algebra over Z,
such that it is homologically smooth (but not necessarily compact). Trun-
cated negative cyclic complexes (C•(A,A) ⊗ Z[[u, p]]/(un, pm), b + uB) and
(C•(A,A) ⊗ Z[[u, p]]/(un, pm), b− puB) are quasi-isomorphic for all n,m ≥ 1
and all prime numbers p.

If, in addition, A is compact then the homology of either of the above
complexes is a flat module over Z[[u, p]]/(un, pm).

If the above conjecture is true then the degeneration conjecture, probably,
can be deduced along the lines of [12]. One can also make some conjectures
about Hochschild complex of an arbitrary A∞-algebra, not assuming that it
is compact or homologically smooth. More precisely, let A be a unital A∞-
algebra over the ring of p-adic numbers Zp. We assume that A is topologically
free Zp-module. Let A0 = A ⊗Zp

Z/p be the reduction modulo p. Then we
have the Hochschild complex (C•(A0, A0), b) and the Z/2-graded complex
(C•(A0, A0), b + B).

Conjecture 9.6 For any i there is natural isomorphism of Z/2-graded vector
spaces over the field Z/p:

H•(C•(A0, A0), b) " H•(C•(A0, A0), b + B).

There are similar isomorphisms for weakly unital and non-unital A∞-algebras,
if one replaces C•(A0, A0) by Cmod

• (A0, A0). Also one has similar isomorphisms
for Z/2-graded A∞-algebras.

The last conjecture presumably gives an isomorphism used in [12], but
does not imply the degeneration conjecture.

Remark 9.7 As we will explain elsewhere there are similar conjectures for
saturated A∞-categories (recall that they are generalizations of homologically
smooth compact A∞-algebras). This observation supports the idea of intro-
ducing the category NCMot of non-commutative pure motives. Objects of the
latter will be saturated A∞-categories over a field and HomNCMot(C1, C2) =
K0(Funct(C1, C2)) ⊗ Q/equiv where K0 means the K0-group of the A∞-
category of functors and equiv means numerical equivalence (i.e., the quiva-
lence relation generated by the kernel of the Euler form 〈E,F 〉 := χ(RHom(E,
F )), where χ is the Euler characteristic). The above category is worth of con-
sideration and will be discussed elsewhere (see [32]). In particular, one can
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formulate non-commutative analogs of Weil and Beilinson conjectures for the
category NCMot.

9.2 Relationship with the Classical Hodge Theory

Let X be a quasi-projective scheme of finite type over a field k of characteristic
zero. Then the category Perf(X) of perfect sheaves on X is equivalent to
H0(A−mod), where A−mod is the category of A∞-modules over a dg-algebra
A. Let us recall a construction of A. Consider a complex E of vector bundles
which generates the bounded derived category Db(Perf(X)) (see [5]). Then
A is quasi-isomorphic to RHom(E,E). More explicitly, let us fix an affine
covering X = ∪iUi. Then the complex A := ⊕i0,i1,...,in

Γ (Ui0 ∩ ... ∩ Uin
, E∗ ⊗

E)[−n], n = dimX computes RHom(E,E) and carries a structure of dg-
algebra. Different choices of A give rise to equivalent categories H0(A−mod)
(derived Morita equivalence).

Properties of X are encoded in the properties of A. In particular:
(a) X is smooth iff A is homologically smooth;
(b) X is compact iff A is compact.
Moreover, if X is smooth then

H•(A,A) " Ext•Db(Coh(X×X))(OΔ,OΔ) "

⊕i,j≥0H
i(X,∧jTX)[−(i + j)]]

where OΔ is the structure sheaf of the diagonal Δ ⊂ X ×X.
Similarly

H•(A,A) " ⊕i,j≥0H
i(X,∧jT ∗

X)[j − i].

The RHS of the last formula is the Hodge cohomology of X. One can con-
sider the hypercohomology H•(X,Ω•

X [[u]]/unΩ•
X [[u]]) equipped with the dif-

ferential uddR. Then the classical Hodge theory ensures degeneration of the
corresponding spectral sequence, which means that the hypercohomology is a
flat k[u]/(un)-module for any n ≥ 1. Usual de Rham cohomology H•

dR(X) is
isomorphic to the generic fiber of the corresponding flat vector bundle over
the formal line A1

form[−2], while the fiber at u = 0 is isomorphic to the
Hodge cohomology H•

Hodge(X) = ⊕i,j≥0H
i(X,∧jT ∗

X)[j− i]. In order to make
a connection with the “abstract” theory of the previous subsection we remark
that H•

dR(X) is isomorphic to the periodic cyclic homology HP•(A) while
H•(A,A) is isomorphic to H•

Hodge(X).

10 A∞-Algebras with Scalar Product

10.1 Main Definitions

Let (X, pt,Q) be a finite-dimensional formal pointed dg-manifold over a field
k of characteristic zero.



190 M. Kontsevich and Y. Soibelman

Definition 10.1 A symplectic structure of degree N ∈ Z on X is given by
a cyclic closed 2-form ω of degree N such that its restriction to the tangent
space TptX is non-degenerate.

One has the following non-commutative analog of the Darboux lemma.

Proposition 10.2 Symplectic form ω has constant coefficients in some affine
coordinates at the point pt.

Proof. Let us choose an affine structure at the marked point and write
down ω = ω0 + ω1 + ω2 + ...., where ωl =

∑
i,j cij(x)dxi ⊗ dxj and cij(x) is

homogeneous of degree l (in particular, ω0 has constant coefficients). Next we
observe that the following lemma holds.

Lemma 10.3 Let ω = ω0 + r, where r = ωl + ωl+1 + ..., l ≥ 1. Then there
is a change of affine coordinates xi 
→ xi + O(xl+1) which transforms ω into
ω0 + ωl+1 + ....

Lemma implies the Proposition, since we can make an infinite product of
the above changes of variables (it is a well-defined infinite series). The resulting
automorphism of the formal neighborhood of x0 transforms ω into ω0.

Proof of the lemma. We have dcyclωj = 0 for all j ≥ l (see Sect. 7.2
for the notation). The change of variables is determined by a vector field
v = (v1, ..., vn) such that v(x0) = 0. Namely, xi 
→ xi − vi, 1 ≤ i ≤ n.
Moreover, we will be looking for a vector field such that vi = O(xl+1) for
all i.

We have Liev(ω) = d(ivω0)+d(ivr). Since dωl = 0 we have ωl = dαl+1 for
some form αl+1 = O(xl+1) in the obvious notation (formal Poincare lemma).
Therefore in order to kill the term with ωl we need to solve the equation
dαl+1 = d(ivω0). It suffices to solve the equation αl+1 = ivω0. Since ω0 is
non-degenerate, there exists a unique vector field v = O(xl+1) solving last
equation. This proves the lemma. �

Definition 10.4 Let (X, pt,Q, ω) be a non-commutative formal pointed sym-
plectic dg-manifold. A scalar product of degree N on the A∞-algebra A =
TptX[−1] is given by a choice of affine coordinates at pt such that the ω be-
comes constant and gives rise to a non-degenerate bilinear form A ⊗ A →
k[−N ].

Remark 10.5 Note that since LieQ(ω) = 0 there exists a cyclic function S ∈
Ω0

cycl(X) such that iQω = dS and {S, S} = 0 (here the Poisson bracket
corresponds to the symplectic form ω). It follows that the deformation theory
of a non-unital A∞-algebra A with the scalar product is controlled by the
DGLA Ω0

cycl(X) equipped with the differential {S, •}.

We can restate the above definition in algebraic terms. Let A be a finite-
dimensional A∞-algebra, which carries a non-degenerate symmetric bilinear
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form (, ) of degree N . This means that for any two elements a, b ∈ A such that
deg(a) + deg(b) = N we are given a number (a, b) ∈ k such that:

(1) for any collection of elements a1, ..., an+1 ∈ A the expression (mn(a1, ...,
an), an+1) is cyclically symmetric in the graded sense (i.e., it satisfies the
Koszul rule of signs with respect to the cyclic permutation of arguments);

(2) bilinear form (•, •) is non-degenerate.
In this case we will say that A is an A∞-algebra with the scalar product of

degree N .

10.2 Calabi–Yau Structure

The above definition requires A to be finite-dimensional. We can relax
this condition requesting that A is compact. As a result we will arrive
to a homological version of the notion of scalar product. More precisely,
assume that A is weakly unital compact A∞-algebra. Let CCmod

• (A) =
(CCmod

• (A,A)[u−1], b+uB) be the cyclic complex of A. Let us choose a coho-
mology class [ϕ] ∈ H•(CCmod

• (A))∗ of degree N . Since the complex (A,m1)
is a subcomplex of Cmod

• (A,A) ⊂ CCmod
• (A) we see that [ϕ] defines a linear

functional Tr[ϕ] : H•(A) → k[−N ].

Definition 10.6 We say that [ϕ] is homologically non-degenerate if the bilin-
ear form of degree N on H•(A) given by (a, b) 
→ Tr[ϕ](ab) is non-degenerate.

Note that the above bilinear form defines a symmetric scalar product of
degree N on H•(A) .

Theorem 10.7 For a weakly unital compact A∞-algebra A a homologically
non-degenerate cohomology class [ϕ] gives rise to a class of isomorphisms of
non-degenerate scalar products on a minimal model of A.

Proof. Since char k = 0 the complex (CCmod
• (A))∗ is quasi-isomorphic to

(Ω0
cycl(X)/k, LieQ).

Lemma 10.8 Complex (Ω2,cl
cycl(X), LieQ) is quasi-isomorphic to the complex

(Ω0
cycl(X)/k, LieQ).12

Proof. Notice that as a complex (Ω2,cl
cycl(X), LieQ) is isomorphic to the

complex Ω1
cycl(X)/dcycl Ω

0
cycl(X). The latter is quasi-isomorphic to

[O(X),O(X)]top via a db 
→ [a, b] (recall that [O(X),O(X)]top denotes the
topological closure of the commutator).

By definition Ω0
cycl(X) = O(X)/[O(X),O(X)]top. We know that O(X)/k

is acyclic, hence Ω0
cycl(X)/k is quasi-isomorphic to [O(X),O(X)]top. Hence

the complex (Ω2,cl
cycl(X), LieQ) is quasi-isomorphic to (Ω0

cycl(X)/k, LieQ). �

12 See also Proposition 5.5.1 from [19].
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As a corollary we obtain an isomorphism of cohomology groups
H•(Ω2,cl

cycl(X)) " H•(Ω0
cycl(X)/k). Having a non-degenerate cohomology class

[ϕ] ∈ H•(CCmod
• (A))∗ " H•(Ω2,cl

cycl(X), LieQ) as above, we can choose its
representative ω ∈ Ω2,cl

cycl(X), LieQω = 0. Let us consider ω(x0). It can be
described pure algebraically such as follows. Notice that there is a natural
projection H•(Ω0

cycl(X)/k) → (A/[A,A])∗ which corresponds to the taking
the first Taylor coefficient of the cyclic function. Then the above evaluation
ω(x0) is the image of ϕ(x0) under the natural map (A/[A,A])∗ → (Sym2(A))∗

which assigns to a linear functional l the bilinear form l(ab).
We claim that the total map H•(Ω2,cl

cycl(X)) → (Sym2(A))∗ is the same
as the evaluation at x0 of the closed cyclic 2-form. Equivalently, we claim
that ω(x0)(a, b) = Trϕ(ab). Indeed, if f ∈ Ω0

cycl(X)/k is the cyclic func-
tion corresponding to ω then we can write f =

∑
i aixi + O(x2). Therefore

LieQ(f) =
∑

l,i,j aic
ij
l [xi, xj ] + O(x3), where cij

l are structure constants of
O(X). Dualizing we obtain the claim.

Proposition 10.9 Let ω1 and ω2 be two symplectic structures on the finite-
dimensional formal pointed minimal dg-manifold (X, pt,Q) such that [ω1] =
[ω2] in the cohomology of the complex (Ω2,cl

cycl(X), LieQ) consisting of closed
cyclic 2-forms. Then there exists a change of coordinates at x0 preserving Q
which transforms ω1 into ω2.

Corollary 10.10 Let (X, pt,Q) be a (possibly infinite-dimensional) formal
pointed dg-manifold endowed with a (possibly degenerate) closed cyclic 2-
form ω. Assume that the tangent cohomology H0(TptX) is finite-dimensional
and ω induces a non-degenerate pairing on it. Then on the minimal model of
(X, pt,Q) we have a canonical isomorphism class of symplectic forms modulo
the action of the group Aut(X, pt,Q).

Proof. Let M be a (finite-dimensional) minimal model of A. Choosing
a cohomology class [ϕ] as above we obtain a non-degenerate bilinear form
on M , which is the restriction ω(x0) of a representative ω ∈ Ω2,cl(X). By
construction this scalar product depends on ω. We would like to show that
in fact it depends on the cohomology class of ω, i.e., on ϕ only. This is the
corollary of the following result.

Lemma 10.11 Let ω1 = ω + LieQ(dα). Then there exists a vector field v
such that v(x0) = 0, [v,Q] = 0 and Liev(ω) = LieQ(dα).

Proof. As in the proof of Darboux lemma we need to find a vector field
v, satisfying the condition div(ω) = LieQ(dα). Let β = LieQ(α). Then
dβ = dLieQ(α) = 0. Since ω is non-degenerate we can find v satisfying the
conditions of the Proposition and such that div(ω) = LieQ(dα). Using this v
we can change affine coordinates transforming ω + LieQ(dα) back to ω. This
concludes the proof of the Proposition and the Theorem.�
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Presumably the above construction is equivalent to the one given in [23].
We will sometimes call the cohomology class [ϕ] a Calabi–Yau structure on
A (or on the corresponding non-commutative formal pointed dg-manifold X).
The following example illustrates the relation to geometry.

Example 10.12 Let X be a complex Calabi–Yau manifold of dimension n.
Then it carries a nowhere vanishing holomorphic n-form vol. Let us fix a
holomorphic vector bundle E and consider a dg-algebra A = Ω0,∗(X,End(E))
of Dolbeault (0, p)-forms with values in End(E). This dg-algebra carries a
linear functional a 
→

∫
X
Tr(a)∧vol. One can check that this is a cyclic cocycle

which defines a non-degenerate pairing on H•(A) in the way described above.

There is another approach to Calabi–Yau structures in the case when A
is homologically smooth. Namely, we say that A carries a Calabi–Yau struc-
ture of dimension N if A! " A[N ] (recall that A! is the A − A-bimodule
HomA−mod−A(A,A⊗A) introduced in Sect. 8.1. Then we expect the follow-
ing conjecture to be true.

Conjecture 10.13 If A is a homologically smooth compact finite-dimensional
A∞-algebra then the existence of a non-degenerate cohomology class [ϕ] of
degree dimA is equivalent to the condition A! " A[dimA].

If A is the dg-algebra of endomorphisms of a generator of Db(Coh(X))
where X is Calabi–Yau then the above conjecture holds trivially.

Finally, we would like to illustrate the relationship of the non-commutative
symplectic geometry discussed above with the commutative symplectic ge-
ometry of certain spaces of representations.13 More generally we would like
to associate with X = Spc(T (A[1])) a collection of formal algebraic vari-
eties, so that some “non-commutative” geometric structure on X becomes
a collection of compatible “commutative” structures on formal manifolds
M(X,n) := R̂ep0(O(X),Matn(k)), where Matn(k) is the associative alge-
bra of n × n matrices over k, O(X) is the algebra of functions on X and
R̂ep0(...) means the formal completion at the trivial representation. In other
words, we would like to define a collection of compatible geometric structure
on “Matn(k)-points” of the formal manifold X. In the case of symplectic
structure this philosophy is illustrated by the following result.

Theorem 10.14 Let X be a non-commutative formal symplectic manifold in
V ectk. Then it defines a collection of symplectic structures on all manifolds
M(X,n), n ≥ 1.

Proof. Let O(X) = A,O(M(X,n)) = B. Then we can choose isomor-
phisms A " k〈〈x1, ..., xm〉〉 and B " 〈〈xα,β

1 , ..., xα,β
m 〉〉, where 1 ≤ α, β ≤ n. To

any a ∈ A we can assign â ∈ B ⊗Matn(k) such that:

13 It goes back to [30] and since that time has been discussed in many papers, see
e.g. [18].
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x̂i =
∑

α,β

xα,β
i ⊗ eα,β ,

where eα,β is the n × n matrix with the only non-trivial element equal to 1
on the intersection of α-th line and β-th column. The above formulas define
an algebra homomorphism. Composing it with the map idB ⊗ TrMatn(k) we
get a linear map Ocycl(X) → O(M(X,n)). Indeed the closure of the commu-
tator [A,A] is mapped to zero. Similarly, we have a morphism of complexes
Ω•

cycl(X) → Ω•(M(X,n)), such that

dxi 
→
∑

α,β

dxα,β
i eα,β .

Clearly, continuous derivations of A (i.e., vector fields on X) give rise to the
vector fields on M(X,n).

Finally, one can see that a non-degenerate cyclic 2-form ω is mapped to the
tensor product of a non-degenerate 2-form on M(X,n) and a nondegenerate
2-form Tr(XY ) on Matn(k). Therefore a symplectic form on X gives rise to
a symplectic form on M(X,n), n ≥ 1. �

11 Hochschild Complexes as Algebras Over Operads
and PROPs

Let A be a strictly unital A∞-algebra over a field k of characteristic zero. In
this section we are going to describe a colored dg-operad P such that the pair
(C•(A,A), C•(A,A)) is an algebra over this operad. More precisely, we are
going to describe Z-graded k-vector spaces A(n,m) and B(n,m), n,m ≥ 0
which are components of the colored operad such that B(n,m) �= 0 for m = 1
only and A(n,m) �= 0 for m = 0 only together with the colored operad
structure and the action

(a) A(n, 0) ⊗ (C•(A,A))⊗n → C•(A,A),
(b) B(n, 1) ⊗ (C•(A,A))⊗n ⊗ C•(A,A) → C•(A,A).
Then, assuming that A carries a non-degenerate scalar product, we are

going to describe a PROP R associated with moduli spaces of Riemannian
surfaces and a structure of R-algebra on C•(A,A).

11.1 Configuration Spaces of Discs

We start with the spaces A(n, 0). They are chain complexes. The complex
A(n, 0) coincides with the complex Mn of the minimal operad M = (Mn)n≥0

described in [35], Sect. 5. Without going into details which can be found in loc.
cit. we recall main facts about the operad M . A basis of Mn as a k-vector space
is formed by n-labeled planar trees (such trees have internal vertices labeled
by the set {1, ..., n} as well as other internal vertices which are non-labeled
and each has the valency at least 3).
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We can depict n-labeled trees such as follows

1

root

2
1

1

root root

4

2
3

Labeled vertices are depicted as circles with numbers inscribed, non-
labeled vertices are depicted as black vertices. In this way we obtain a graded
operad M with the total degree of the basis element corresponding to a tree
T equal to

deg(T ) =
∑

v∈Vlab(T )

(1 − |v|) +
∑

v∈Vnonl(T )

(3 − |v|)

where Vlab(T ) and Vnonl(T ) denote the sets of labeled and non-labeled vertices
respectively , and |v| is the valency of the vertex v, i.e., the cardinality of the
set of edges attached to v.

The notion of an angle between two edges incoming in a vertex is illustrated
in the following figure (angles are marked by asteriscs).

* * *

* *

**

*
*

2

3

1

4

root

Operadic composition and the differential are described in [35], sects. 5.2,
5.3. We borrow from there the following figure which illustrates the operadic
composition of generators corresponding to labeled trees T1 and T2.
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Informally speaking, the operadic gluing of T2 to T1 at an internal vertex
v of T1 is obtained by:

(a) Removing from T1 the vertex v together with all incoming edges and
vertices.

(b) Gluing T2 to v (with the root vertex removed from T2). Then
(c) Inserting removed vertices and edges of T1 in all angles between in-

coming edges to the new vertex vnew.
(d) Taking the sum (with appropriate signs) over all possible inserting of

edges in (c).
The differential dM is a sum of the “local” differentials dv, where v runs

through the set of all internal vertices. Each dv inserts a new edge into the
set of edges attached to v. The following figure borrowed from [35] illustrates
the difference between labeled (white) and non-labeled (black) vertices.
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+

new

val > 1

val > 1

val > 1

val > 1new new

In this way we make M into a dg-operad. It was proved in [35], that
M is quasi-isomorphic to the dg-operad Chains(FM2) of singular chains on
the Fulton–Macpherson operad FM2. The latter consists of the compactified
moduli spaces of configurations of points in R2 (see e.g. [35], Sect. 7.2 for a
description). It was also proved in [35] that C•(A,A) is an algebra over the
operad M (Deligne’s conjecture follows from this fact). The operad FM2 is ho-
motopy equivalent to the famous operad C2 = (C2(n))n≥0 of two-dimensional
discs (little disc operad). Thus C•(A,A) is an algebra (in the homotopy sense)
over the operad Chains(C2).

11.2 Configurations of Points on the Cylinder

Let Σ = S1 × [0, 1] denotes the standard cylinder.
Let us denote by S(n) the set of isotopy classes of the following graphs

Γ ⊂ Σ:
(a) every graph Γ is a forest (i.e., disjoint union of finitely many trees

Γ = %iTi);
(b) the set of vertices V (Γ ) is decomposed into the union V∂Σ % Vlab %

Vnonl % V1 of four sets with the following properties:
(b1) the set V∂Σ is the union {in} ∪ {out} ∪ Vout of three sets of points

which belong to the boundary ∂Σ of the cylinder. The set {in} consists of
one marked point which belongs to the boundary circle S1 × {1} while the
set {out} consists of one marked point which belongs to the boundary circle
S1 × {0}. The set Vout consists of a finitely many unlableled points on the
boundary circle S1 × {0};

(b2) the set Vlab consists of n labeled points which belong to the surface
S1 × (0, 1) of the cylinder;

(b3) the set Vnonl consists of a finitely many non-labeled points which
belong to the surface S1 × (0, 1) of the cylinder;
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(b4) the set V1 is either empty or consists of only one element denoted by
1 ∈ S1 × (0, 1) and called special vertex;

(c) the following conditions on the valencies of vertices are imposed:
(c1) the valency of the vertex out is ≤ 1;
(c2) the valency of each vertex from the set V∂Σ \ Vout is equal to 1;
(c3) the valency of each vertex from Vlab is at least 1;
(c4) the valency of each vertex from Vnonl is at least 3;
(c5) if the set V1 is non-empty then the valency of the special vertex is

equal to 1. In this case the only outcoming edge connects 1 with the vertex
out.

(d) Every tree Ti from the forest Γ has its root vertex in the set V∂Σ .
(e) We orient each tree Ti down to its root vertex.

in

1

2

3

n .1

in in

out out
out

Remark 11.1 Let us consider the configuration space Xn, n ≥ 0 which con-
sists of (modulo C∗-dilation) equivalence classes of n points on CP1\{0,∞}
together with two direction lines at the tangent spaces at the points 0 and ∞.
One-point compactification X̂n admits a cell decomposition with cells (except
of the point X̂n\Xn) parametrized by elements of the set S(n). This can be
proved with the help of Strebel differentials (cf. [35], Sect. 5.5).

Previous remark is related to the following description of the sets S(n) (it
will be used later in the chapter). Let us contract both circles of the boundary
∂Σ into points. In this way we obtain a tree on the sphere. Points become
vertices of the tree and lines outcoming from the points become edges. There
are two vertices marked by in and out (placed at the north and south poles
respectively). We orient the tree towards to the vertex out. An additional
structure consists of:

(a) Marked edge outcoming from in (it corresponds to the edge outcoming
from in).

(b) Either a marked edge incoming to out (there was an edge incoming to
out which connected it with a vertex not marked by 1) or an angle between
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two edges incoming to out (all edges which have one of the endpoint vertices
on the bottom circle become after contracting it to a point the edges incoming
to out, and if there was an edge connecting a point marked by 1 with out, we
mark the angle between edges containing this line).

The reader notices that the star of the vertex out can be identified with a
regular k-gon, where k is the number of incoming to out edges. For this k-gon
we have either a marked point on an edge (case (a) above) or a marked angle
with the vertex in out (case (b) above).

11.3 Generalization of Deligne’s Conjecture

The definition of the operadic space B(n, 1) will be clear from the description
of its action on the Hochschild chain complex. The space B(n, 1) will have
a basis parametrized by elements of the set S(n) described in the previous
subsection. Let us describe the action of a generator of B(n, 1) on a pair
(γ1 ⊗ ...⊗γn, β), where γ1 ⊗ ...⊗γn ∈ C•(A,A)⊗n and β = a0 ⊗a1 ⊗ ...⊗al ∈
Cl(A,A). We attach elements a0, a1, ..., al to points on Σin

h , in a cyclic order,
such that a0 is attached to the point in. We attach γi to the ith numbered
point on the surface of Σh. Then we draw disjoint continuous segments (in all
possible ways, considering pictures up to an isotopy) starting from each point
marked by some element ai and oriented downstairs, with the requirements
(a–c) as above, with the only modification that we allow an arbitrary number
of points on S1×{1}. We attach higher multiplications mj to all non-numbered
vertices, so that j is equal to the incoming valency of the vertex. Reading from
the top to the bottom and composing γi and mj we obtain (on the bottom
circle) an element b0 ⊗ ...⊗ bm ∈ C•(A,A) with b0 attached to the vertex out.
If the special vertex 1 is present then we set b0 = 1. This gives the desired
action.

m2

m2

m2

.

..
.

.1
γ1

γ3

γ2

a
aa0n

1
2

ai

b

bb

1

m
i

= ina

b0 = out
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Composition of the operations in B(n, 1) corresponds to the gluing of the
cylinders such that the point out of the top cylinder is identified with the
point in of the bottom cylinder. If after the gluing there is a line from the
point marked 1 on the top cylinder which does not end at the point out of
the bottom cylinder, we will declare such a composition to be equal to zero.

Let us now consider a topological colored operad Ccol
2 = (Ccol

2 (n,m))n,m≥0

with two colors such that Ccol
2 (n,m) �= ∅ only if m = 0, 1 and

(a) In the case m = 0 it is the little disc operad.
(b) In the case m = 1 Ccol

2 (n, 1) is the moduli space (modulo rotations)
of the configurations of n ≥ 1 discs on the cyliner S1 × [0, h] h ≥ 0 and two
marked points on the boundary of the cylinder. We also add the degenerate
circle of configurations n = 0, h = 0. The topological space Ccol

2 (n, 1) is homo-
topically equivalent to the configuration space Xn described in the previous
subsection.

Let Chains(Ccol
2 ) be the colored operad of singular chains on Ccol

2 . Then,
similarly to [35], Sect. 7, one proves (using the explicit action of the colored
operad P = (A(n,m), B(n,m))n,m≥0 described above) the following result.

Theorem 11.2 Let A be a unital A∞-algebra. Then the pair (C•(A,A), C•
(A,A)) is an algebra over the colored operad Chains(Ccol

2 ) (which is quasi-
isomorphic to P ) such that for h = 0, n = 0 and coinciding points in = out,
the corresponding operation is the identity.

Remark 11.3 The above Theorem generalizes Deligne’s conjecture (see e.g.
[35]). It is related to the abstract calculus associated with A (see [T, 48]). The
reader also notices that for h = 0, n = 0 we have the moduli space of two
points on the circle. It is homeomorphic to S1. Thus we have an action of S1

on C•(A,A). This action gives rise to the Connes differential B.

Similarly to the case of little disc operad, one can prove the following
result.

Proposition 11.4 The colored operadCcol
2 is formal, i.e., it is quasi-isomorphic

to its homology colored operad.

If A is non-unital we can consider the direct sum A1 = A ⊕ k and make
it into a unital A∞-algebra. The reduced Hochschild chain complex of A1 is
defined as Cred

• (A1, A1) = ⊕n≥0A1 ⊗ ((A1/k)[1])⊗n with the same differen-
tial as in the unital case. One defines the reduced Hochschild cochain com-
plex C•

red(A1, A1) similarly. We define the modified Hochschild chain complex
Cmod

• (A,A) from the following isomorphism of complexes Cred
• (A1, A1) "

Cmod
• (A,A) ⊕ k. Similarly, we define the modified Hochschild cochain com-

plex from the decomposition C•
red(A1, A1) " C•

mod(A,A)⊕ k. Then, similarly
to the Theorem 11.3.1 one proves the following result.

Proposition 11.5 The pair (Cmod
• (A,A), C•

mod(A,A)) is an algebra over the
colored operad which is an extension of Chains(Ccol

2 ) by null-ary operations
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on Hochschild chain and cochain complexes, which correspond to the unit
in A, and such that for h = 0, n = 0 and coinciding points in = out, the
corresponding operation is the identity.

11.4 Remark About Gauss–Manin Connection

Let R = k[[t1, ..., tn]] be the algebra of formal series and A be an R-flat
A∞-algebra. Then the (modified) negative cyclic complex CC−,mod

• (A) =
(C•(A,A)[[u]], b + uB) is an R[[u]]-module. It follows from the existense of
Gauss-Manin connection (see [16]) that the cohomology HC−,mod

• (A) is in
fact a module over the ring

DR(A) := k[[t1, ..., tn, u]][u∂/∂t1, ..., u∂/∂tn].

Inedeed, if ∇ is the Gauss–Manin connection from [16] then u∂/∂ti acts on
the cohomology as u∇∂/∂ti

, 1 ≤ i ≤ n.
The above considerations can be explained from the point of view of conjec-

ture below. Let g = C•(A,A)[1] be the DGLA associated with the Hochschild
cochain complex and M := (CC−,mod

• (A). We define a DGLA ĝ which is the
crossproduct (g ⊗ k〈ξ〉) � k(∂/∂ξ), where deg ξ = +1.

Conjecture 11.6 There is a structure of an L∞-module on M over ĝ which
extends the natural structure of a g-module and such that ∂/∂ξ acts as Connes
differential B. Moreover this structure should follow from the P -algebra struc-
ture described in Sect. 11.3.

It looks plausible that the formulas for the Gauss–Manin connection from
[16] can be derived from our generalization of Deilgne’s conjecture. We will
discuss flat connections on periodic cyclic homology later in the text.

11.5 Flat Connections and the Colored Operad

We start with Z-graded case. Let us interpret the Z-graded formal scheme
Spf(k[[u]]) as even formal line equipped with the Gm-action u 
→ λ2u.
The space HC−,mod

• (A) can be interpreted as a space of sections of a Gm-
equivariant vector bundle ξA over Spf(k[[u]]) corresponding to the k[[u]]-flat
module lim←−n

H•(C(n)
• (A,A)). The action of Gm identifies fibers of this vector

bundle over u �= 0. Thus we have a natural flat connection ∇ on the restriction
of ξA to the complement of the point 0 which has the pole of order one at
u = 0.

Here we are going to introduce a different construction of the connection
∇ which works also in Z/2-graded case. This connection will have in general
a pole of degree two at u = 0. In particular we have the following result.

Proposition 11.7 The space of section of the vector bundle ξA can be en-
dowed with a structure of a k[[u]][[u2∂/∂u]]-module.
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In fact we are going to give an explicit construction of the connection,
which is based on the action of the colored dg-operad P discussed in Sect. 11.3
(more precisely, an extension Pnew of P , see below). Before presenting an
explicit formula, we will make few comments.

1. For any Z/2-graded A∞-algebra A one can define canonically a 1-
parameter family of A∞-algebras Aλ, λ ∈ Gm, such that Aλ = A as a Z/2-
graded vector space and mAλ

n = λmA
n .

2. For simplicity we will assume that A is strictly unital. Otherwise we will
work with the pair (Cmod

• (A,A), C•
mod(A,A)) of modified Hochschild com-

plexes.
3. We can consider an extension Pnew of the dg-operad P allowing any

non-zero valency for a non-labeled (black) vertex( in the definition of P we
required that such a valency was at least three). All the formulas remain the
same. But the dg-operad Pnew is no longer formal. It contains a dg-suboperad
generated by trees with all vertices being non-labeled. Action of this suboperad
Pnew

nonl is responsible for the flat connection discussed below.
4. In addition to the connection along the variable u one has the Gauss–

Manin connection which acts along the fibers of ξA (see Sect. 11.4). Probably
one can write down an explicit formula for this connection using the action of
the colored operad Pnew. In what follows are going to describe a connection
which presumably coincides with the Gauss-Manin connection.

Let us now consider a dg-algebra k[B, γ0, γ2] which is generated by the
following operations of the colored dg-operad Pnew:

(a) Connes differential B of degree −1. It can be depicted such as follows
(cf. Sect. 7.3):

in

.B= .1

out
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(b) Generator γ2 of degree 2, corresponding to the following figure:

in

out

γ2 =
.

.

(c) Generator γ0 of degree 0, where 2γ0 is depicted below:

+

in in in

out
outout

.1 .1 .1. ..
++2γ0 =

Proposition 11.8 The following identities hold in Pnew:

B2 = dB = dγ2 = 0, dγ0 = [B, γ2],

Bγ0 + γ0B := [B, γ0]+ = −B.

Here by d we denote the Hochschild chain differential (previously it was de-
noted by b).

Proof. Let us prove that [B, γ0] = −B, leaving the rest as an exercise to the
reader. One has the following identities for the compositions of operations in
Pnew: Bγ0 = 0, γ0B = B. Let us check, for example, the last identity. Let us
denote by W the first summand on the figure defining 2γ0. Then γ0B = 1

2WB.
The latter can be depicted in the following way:
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.

out2

out1 = in2

in1

B =

W =
.1 .

.1

It is easily seen equals to 2 · 1/2B = B. �

Corollary 11.9 Hochschild chain complex C•(A,A) is a dg-module over the
dg-algebra k[B, γ0, γ2].

Let us consider the truncated negative cyclic complex (C•(A,A)[[u]]/(un),
du = d+uB). We introduce a k-linear map ∇ of C•(A,A)[[u]]/(un) into itself
such that ∇u2∂/∂u = u2∂/∂u− γ2 + uγ0. Then we have:

(a) [∇u2∂/∂u, du] = 0;
(b) [∇u2∂/∂u, u] = u2.
Let us denote by V the unital dg-algebra generated by ∇u2∂/∂u and u,

subject to the relations (a), (b) and the relation un = 0. From (a) and (b)
one deduces the following result.

Proposition 11.10 The complex (C•(A,A)[[u]]/(un), du = d + uB) is a V -
module. Moreover, assuming the degeneration conjecture, we see that the
operator ∇u2∂/∂u defines a flat connection on the cohomology bundle

H•(C•(A,A)[[u]]/(un), du)

which has the only singularity at u = 0 which is a pole of second order.

Taking the inverse limit over n we see that H•(C•(A,A)[[u]], du) gives rise
to a vector bundle over A1

form[−2] which carries a flat connection with the
second order pole at u = 0. It is interesting to note the difference between Z-
graded and Z/2-graded A∞-algebras. It follows from the explicit formula for
the connection ∇ that the coefficient of the second degree pole is represented
by multiplication by a cocyle (mn)n≥1 ∈ C•(A,A). In cohomology it is trivial
in Z-graded case (because of the invariance with respect to the group action
mn 
→ λ mn), but non-trivial in Z/2-graded case. Therefore the order of the
pole of ∇ is equal to one for Z-graded A∞-algebras and is equal to two for
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Z/2-graded A∞-algebras. We see that in Z-graded case the connection along
the variable u comes from the action of the group Gm on higher products mn,
while in Z/2-graded case it is more complicated.

11.6 PROP of Marked Riemann Surfaces

In this section we will describe a PROP naturally acting on the Hochschild
complexes of a finite-dimensional A∞-algebra with the scalar product of de-
gree N .

Since we have a quasi-isomorphism of complexes

C•(A,A) " (C•(A,A))∗[−N ]

it suffices to consider the chain complex only.
In this subsection we will assume that A is either Z-graded (then N is

an integer) or Z/2-graded (then N ∈ Z/2). We will present the results for
non-unital A∞-algebras. In this case we will consider the modified Hochschild
chain complex

Cmod
• (A,A) = ⊕n≥0A⊗ (A[1])⊗n

⊕
⊕n≥1(A[1])⊗n,

equipped with the Hochschild chain differential (see Sect. 7.4).
Our construction is summarized in (i–ii) below.

(i) Let us consider the topological PROP M = (M(n,m))n,m≥0 consisting
of moduli spaces of metrics on compacts oriented surfaces with bondary
consisting of n+m circles and some additional marking (see precise def-
inition below).

(ii) Let Chains(M) be the corresponding PROP of singular chains. Then
there is a structure of a Chains(M)-algebra on Cmod

• (A,A), which is
encoded in a collection of morphisms of complexes

Chains(M(n,m)) ⊗ Cmod
• (A,A)⊗n → (Cmod

• (A,A))⊗m.

In addition one has the following:
(iii) If A is homologically smooth and satisfies the degeneration property

then the structure of Chains(M)-algebra extends to a structure of a
Chains(M)-algebra, where M is the topological PROP of stable com-
pactifications of M(n,m).

Definition 11.11 An element of M(n,m) is an isomorphism class of triples
(Σ, h,mark) where Σ is a compact oriented surface (not necessarily con-
nected) with metric h and mark is an orientation preserving isometry be-
tween a neighborhood of ∂Σ and the disjoint union of n + m flat semiannuli
%1≤i≤n(S1 × [0, ε))%%1≤i≤m(S1 × [−ε, 0]), where ε is a sufficiently small pos-
itive number. We will call n circle “inputs” and the rest m circles “outputs”.
We will assume that each connected component of Σ has at least one input
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and there are no discs among the connected components. Also we will add
Σ = S1 to M(1, 1) as the identity morphism. It can be thought of as the limit
of cylinders S1 × [0, ε] as ε → 0.

The composition is given by the natural gluing of surfaces.
Let us describe a construction of the action of Chains(M) on the Hochschild

chain complex. In fact, instead of Chains(M) we will consider a quasi-
isomorphic dg-PROP R = (R(n,m)n,m≥0) generated by ribbon graphs with
additional data. In what follows we will skip some technical details in the defi-
nition of the PROP R. They can be recovered in a more or less straightforward
way.

It is well-known (and can be proved with the help of Strebel differ-
entials) that M(n,m) admits a stratification with strata parametrized by
graphs described below. More precisely, we consider the following class of
graphs.

(1) Each graph Γ is a (not necessarily connected) ribbon graph (i.e., we are
given a cyclic order on the set Star(v) of edges attached to a vertex v of Γ ).
It is well-known that replacing an edge of a ribbon graph by a thin stripe
(thus getting a “fat graph”) and gluing stripes in the cyclic order one gets a
Riemann surface with the boundary.

(2) The set V (Γ ) of vertices of Γ is the union of three sets: V (Γ ) =
Vin(Γ ) ∪ Vmiddle(Γ ) ∪ Vout(Γ ). Here Vin(Γ ) consists of n numbered vertices
in1, ..., inn of the valency 1 ( the outcoming edges are called tails), Vmiddle(Γ )
consists of vertices of the valency ≥ 3, and Vout(Γ ) consists of m numbered
vertices out1, ..., outm of valency ≥ 1.

(3) We assume that the Riemann surface corresponding to Γ has n con-
nected boundary components each of which has exactly one input vertex.

(4) For every vertex outj ∈ Vout(Γ ), 1 ≤ j ≤ m we mark either an incoming
edge or a pair of adjacent (we call such a pair of edges a corner).

marked edge marked
corner

More pedantically, let E(Γ ) denotes the set of edges of Γ and Eor(Γ )
denotes the set of pairs (e, or) where e ∈ E(Γ ) and or is one of two possible
orientations of e. There is an obvious map Eor(Γ ) → V (Γ ) × V (Γ ) which
assigns to an oriented edge the pair of its endpoint vertices: source and target.
The free involution σ acting on Eor(Γ ) (change of orientation) corresponds to
the permutation map on V (Γ ) × V (Γ ). Cyclic order on each Star(v) means
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that there is a bijection ρ : Eor(Γ ) → Eor(Γ ) such that orbits of iterations
ρn, n ≥ 1 are elements of Star(v) for some v ∈ V (Γ ). In particular, the corner
is given either by a pair of coinciding edges (e, e) such that ρ(e) = e or by a
pair edges e, e′ ∈ Star(v) such that ρ(e) = e′. Let us define a face as an orbit
of ρ ◦ σ. Then faces are oriented closed paths. It follows from the condition
(2) that each face contains exactly one edge outcoming from some ini.

We depict below two graphs in the case g = 0, n = 2,m = 0.

deg Γ = 0. .in1

in2

deg Γ = −1

in1

in2.

.

Here is a figure illustrating the notion of face

.

.in1

in2 .

.

Two faces: one contains in1,
another contains in2

Remark 11.12 The above data (i.e., a ribbon graph with numerations of in
and out vertices) have no automorphisms. Thus we can identify Γ with its
isomorphism class.
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The functional (mn(a1, ..., an), an+1) is depicted such as follows.

.
v mn

n = |v|–1

We define the degree of Γ by the formula

deg Γ =
∑

v∈Vmiddle(Γ )

(3 − |v|) +
∑

v∈Vout(Γ )

(1 − |v|) +
∑

v∈Vout(Γ )

εv −Nχ(Γ ),

where εv = −1, if v contains a marked corner and εv = 0 otherwise. Here
χ(Γ ) = |V (Γ )| − |E(Γ )| denotes the Euler characteristic of Γ .

Definition 11.13 We define R(n,m) as a graded vector space which is a
direct sum ⊕ΓψΓ of 1-dimensional graded vector spaces generated by graphs
Γ as above, each summand has degree deg Γ .

One can see that ψΓ is naturally identified with the tensor product of
one-dimensional vector spaces (determinants) corresponding to vertices of Γ .

Now, having a graph Γ which satisfies conditions (1–3) above and Hoch-
schild chains γ1, ..., γn ∈ Cmod

• (A,A) we would like to define an element of
Cmod

• (A,A)⊗m. Roughly speaking we are going to assign the above n elements
of the Hochschild complex to n faces corresponding to vertices ini, 1 ≤ i ≤ n,
then assign tensors corresponding to higher products ml to internal vertices
v ∈ Vmiddle(Γ ), then using the convolution operation on tensors given by the
scalar product on A to read off the resulting tensor from outj , 1 ≤ j ≤ m.
More precise algorithm is described below.

(a) We decompose the modified Hochschild complex such as follows:

Cmod
• (A,A) = ⊕l≥0,ε∈{0,1}C

mod
l,ε (A,A),

where Cmod
l,ε=0(A,A) = A⊗ (A[1])⊗l and Cmod

l,ε=1(A,A) = k⊗ (A[1])⊗l according
to the definition of modified Hochschild chain complex. For any choice of
li ≥ 0, εi ∈ {0, 1}, 1 ≤ i ≤ n we are going to construct a linear map of degree
zero
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fΓ : ψΓ ⊗ Cmod
l1,ε1

(A,A) ⊗ ...⊗ Cmod
ln,ε1

(A,A) → (Cmod
• (A,A))⊗m.

The result will be a sum fΓ =
∑

Γ ′ fΓ ′ of certain maps. The description
of the collection of graphs Γ ′ is given below.

(b) Each new graph Γ ′ is obtained from Γ by adding new edges. More
precisely one has V (Γ ′) = V (Γ ) and for each vertex ini ∈ Vin(Γ ) we add li
new outcoming edges. Then the valency of ini becomes li + 1.

.

.
in1

m3

m3

in2

c

..
.

.

More pedantically, for every i, 1 ≤ i ≤ n we have constructed a map from
the set {1, ..., li} to a cyclically ordered set which is an orbit of ρ ◦ σ with
removed tail edge outcoming from ini. Cyclic order on the edges of Γ ′ is
induced by the cyclic order at every vertex and the cyclic order on the path
forming the face corresponding to ini.

.ini

corner

(c) We assign γi ∈ Cli,εi
to ini. We depict γi as a “wheel” representing the

Hochschild cocycle. It is formed by the endpoints of the li+1 edges outcoming
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from ini ∈ V (Γ ′) and taken in the cyclic order of the corresponding face. If
εi = 1 then (up to a scalar) γi = 1 ⊗ a1 ⊗ ... ⊗ ali and we require that the
tensor factor 1 corresponds to zero in the cyclic order.

.
.

ini

1

a1

a2

a3 a4

γi

(d) We remove from considerations graphs Γ which do not obey the fol-
lowing property after the step (c):

the edge corresponding to the unit 1 ∈ k (see step c)) is of the type (ini, v)
where either v ∈ Vmiddle(Γ ′) and |v| = 3 or v = outj for some 1 ≤ j ≤ m and
the edge (ini, outj) was the marked edge for outj .

Let us call unit edge the one which satisfies one of the above properties.
We define a new graph Γ ′′ which is obtained from Γ by removing unit edges.

(e) Each vertex now has the valency |v| ≥ 2. We attach to every such
vertex either:

the tensor c ∈ A⊗A (inverse to the scalar product), if |v| = 2,
or
the tensor (m|v|−1(a1, ..., a|v|−1), a|v|) if |v| ≥ 3. The latter can be identified

with the element of A⊗|v| (here we use the non-degenerate scalar product
on A).

Let us illustrate this construction.

.

.

c

γ1

1

.γ2

.
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(f) Let us contract indices of tensors corresponding to Vin(Γ ′′)∪Vmiddle(Γ ′′)
(see c, e) along the edges of Γ ′′ using the scalar product on A. The result will
be an element aout of the tensor product ⊗1≤j≤mAStarΓ ′′ (outj).

(g) Last thing we need to do is to interpret the element aout as an element
of Cmod

• (A,A). There are three cases.
Case 1. When we constructed Γ ′′ there was a unit edge incoming to some

outj . Then we reconstruct back the removed edge, attach 1 ∈ k to it, and
interpret the resulting tensor as an element of Cmod

|outj |,εj=1(A,A).
Case 2. There was no removed unit edge incoming to outj and we had

a marked edge (not a marked corner) at the vertex outj . Then we have an
honest element of Cmod

|outj |,εj=0(A,A)
Case 3. Same as in Case 2, but there was a marked corner at outj ∈

Vout(Γ ). We have added and removed new edges when constructed Γ ′′. There-
fore the marked corner gives rise to a new set of marked corners at outj consid-
ered as a vertex of Γ ′′. Inside every such a corner we insert a new edge, attach
the element 1 ∈ k to it and take the sum over all the corners. In this way we
obtain an element of Cmod

|outj |,εj=1(A,A). This procedure is depicted below.

e1 and e2 are new edges.

1

e1

e2

Three new
corners with
new unit edges

outj

e1

e2

e1

e2

1

e1

e2

1

+

+

.

.

.

.

out j

outj

outj



212 M. Kontsevich and Y. Soibelman

This concludes the construction of fΓ . Notice that R is a dg-PROP with
the differential given by the insertion of a new edge between two vertices from
Vmiddle(Γ ).

Proof of the following Proposition will be given elsewhere.

Proposition 11.14 The above construction gives rise to a structure of a
R-algebra on Cmod

• (A,A).

Remark 11.15 The above construction did not use homological smoothness
of A.

Finally we would like to say few words about an extension of the R-action
to the Chains(M)-action. More details and application to Topological Field
Theory will be given in [22].

If we assume the degeneration property for A, then the action of the
PROP R can be extended to the action of the PROP Chains(M) of sin-
gular chains of the topological PROP of stable degenerations of Mmarked

g,n,m .
In order to see this, one introduces the PROP D freely generated by R(2, 0)
and R(1, 1), i.e., by singular chains on the moduli space of cylinders with two
inputs and zero outputs (they correspond to the scalar product on C•(A,A))
and by cylinders with one input and one output (they correspond to mor-
phisms C•(A,A) → C•(A,A)). In fact the (non-symmetric) bilinear form
h : H•(A,A) ⊗H•(A,A) → k does exist for any compact A∞-algebra A. It is
described by the graph of degree zero on the figure in Sect. 11.6. This is a gen-
eralization of the bilinear form (a, b) ∈ A/[A,A]⊗A/[A,A] 
→ Tr(axb) ∈ k. It
seems plausible that homological smoothness implies that h is non-degenerate.
This allows us to extend the action of the dg sub-PROP D ⊂ R to the ac-
tion of the dg PROP D′ ⊂ R which contains also R(0, 2) (i.e., the inverse
to the above bilinear form). If we assume the degeneration property, then we
can “shrink” the action of the homologically non-trivial circle of the cylinders
(since the rotation around this circle corresponds to the differential B). Thus
D′ is quasi-isomorphic to the dg-PROP of chains on the (one-dimensional)
retracts of the above cylinders (retraction contracts the circle). Let us denote
the dg-PROP generated by singular chains on the retractions by D′′. Thus,
assuming the degeneration property, we see that the free product dg-PROP
R′ = R ∗D D′′ acts on Cmod

• (A,A). One can show that R′ is quasi-isomorphic
to the dg-PROP of chains on the topological PROP M

marked

g,n,m of stable com-
pactifications of the surfaces from Mmarked

g,n,m .

Remark 11.16 (a) The above construction is generalization of the construc-
tion from [31], which assigns cohomology classes of Mg,n to a finite-dimen-
sional A∞-algebra with scalar product (trivalent graphs were used in [31]).

(b) Different approach to the action of the PROP R was suggested in [8].
The above Proposition gives rise to a structure of Topological Field Theory
associated with a non-unital A∞-algebra with scalar product. If the degener-
ation property holds for A then one can define a Cohomological Field Theory
in the sense of [34].
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(c) Homological smoothness of A is closely related to the existence of a
non-commutative analog of the Chern class of the diagonal Δ ⊂ X ×X of a
projective scheme X. This Chern class gives rise to the inverse to the scalar
product on A. This topic will be discussed in the subsequent study devoted
to A∞-categories.

12 Appendix

12.1 Non-Commutative Schemes and Ind-Schemes

Let C be an Abelian k-linear tensor category. To simplify formulas we will
assume that it is strict (see [41]). We will also assume that C admits infinite
sums. To simplify the exposition we will assume below (and in the main body
of the paper) that C = V ectZk .

Definition 12.1 The category of non-commutative affine k-schemes in C (no-
tation NAffC) is the one opposite to the category of associative unital k-
algebras in C.

The non-commutative scheme corresponding to the algebra A is denoted
by Spec(A). Conversely, if X is a non-commutative affine scheme then the
corresponding algebra (algebra of regular functions on X) is denoted by O(X).
By analogy with commutative case we call a morphism f : X → Y a closed
embedding if the corresponding homomorphism f∗ : O(Y ) → O(X) is an
epimorphism.

Let us recall some terminology of ind-objects (see e.g., [1, 20, 21]). For a
covariant functor φ : I → A from a small filtering category I (called filtrant
in [21]) there is a notion of an inductive limit “ lim−→

′′ φ ∈ Â and a projec-
tive limit “ lim←−

′′ φ ∈ Â. By definition “ lim−→
′′ φ(X) = lim−→HomA(X,φ(i)) and

“ lim←−
′′ φ(X) = lim−→HomA(φ(i),X). All inductive limits form a full subcate-

gory Ind(A) ⊂ Â of ind-objects in A. Similarly all projective limits form a
full subcategory Pro(A) ⊂ Â of pro-objects in A.

Definition 12.2 Let I be a small filtering category and F : I → NAffC
a covariant functor. We say that “ lim−→

′′ F is a non-commutative ind-affine
scheme if for a morphism i → j in I the corresponding morphism F (i) → F (j)
is a closed embedding.

In other words a non-commutative ind-affine scheme X is an object of
Ind(NAffC), corresponding to the projective limit lim←− Aα, α ∈ I, where each
Aα is a unital associative algebra in C and for a morphism α → β in I the
corresponding homomorphism Aβ → Aα is a surjective homomorphism of
unital algebras (i.e., one has an exact sequence 0 → J → Aβ → Aα → 0).
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Remark 12.3 Not all categorical epimorphisms of algebras are surjective ho-
momorphisms (although the converse is true). Nevertheless one can define
closed embeddings of affine schemes for an arbitrary Abelian k-linear cate-
gory, observing that a surjective homomorphism of algebras f : A → B is
characterized categorically by the condition that B is the cokernel of the pair
of the natural projections f1,2 : A×B A → A defined by f .

Morphisms between non-commutative ind-affine schemes are defined as
morphisms between the corresponding projective systems of unital algebras.
Thus we have

HomNAffC (lim−→
I

Xi, lim−→
J

Yj) = lim←−
I

lim−→
J

HomNAffC (Xi, Yj).

Let us recall that an algebra M ∈ Ob(C) is called nilpotent if the natural
morphism M⊗n → M is zero for all sufficiently large n.

Definition 12.4 A non-commutative ind-affine scheme X̂ is called formal if it
can be represented as X̂ = lim−→Spec(Ai), where (Ai)i∈I is a projective system
of associative unital algebras in C such that the homomorphisms Ai → Aj are
surjective and have nilpotent kernels for all morphisms j → i in I.

Let us consider few examples in the case when C = V ectk.

Example 12.5 In order to define the non-commutative formal affine line Â1
NC

it suffices to define Hom(Spec(A), Â1
NC) for any associative unital algebra A.

We define HomNAffk
(Spec(A), Â1

NC) = lim−→ HomAlgk
(k[[t]]/(tn), A). Then

the set of A-points of the non-commutative formal affine line consists of all
nilpotent elements of A.

Example 12.6 For an arbitrary set I the non-commutative formal affine space
ÂI

NC corresponds, by definition, to the topological free algebra k〈〈ti〉〉i∈I .
If A is a unital k-algebra then any homomorphism k〈〈ti〉〉i∈I → A maps
almost all ti to zero and the remaining generators are mapped into nilpo-
tent elements of A. In particular, if I = N = {1, 2, ...} then ÂN

NC =
lim−→Spec(k〈〈t1, ..., tn〉〉/(t1, ..., tn)m), where (t1, ..., tn) denotes the two-sided
ideal generated by ti, 1 ≤ i ≤ n and the limit is taken over all n,m → ∞.

By definition, a closed subscheme Y of a scheme X is defined by a two-
sided ideal J ⊂ O(X). Then O(Y ) = O(X)/J . If Y ⊂ X is defined by a
two-sided ideal J ⊂ O(X), then the completion of X along Y is a formal
scheme corresponding to the projective limit of algebras lim←−n

O(X)/Jn. This
formal scheme will be denoted by X̂Y or by Spf(O(X)/J).

Non-commutative affine schemes over a given field k form symmetric
monoidal category. The tensor structure is given by the ordinary tensor prod-
uct of unital algebras. The corresponding tensor product of non-commutative
affine schemes will be denoted by X ⊗ Y . It is not a categorical product,
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differently from the case of commutative affine schemes (where the tensor
product of algebras corresponds to the Cartesian product X × Y ). For non-
commutative affine schemes the analog of the Cartesian product is the free
product of algebras.

Let A,B be free algebras. Then Spec(A) and Spec(B) are non-commutative
manifolds. Since the tensor product A⊗B in general is not a smooth algebra,
the non-commutative affine scheme Spec(A⊗B) is not a manifold.

Let X be a non-commutative ind-affine scheme in C. A closed k-point x ∈
X is by definition a homomorphism of O(X) to the tensor algebra generated
by the unit object 1. Let mx be the kernel of this homomorphism. We define
the tangent space TxX in the usual way as (mx/m

2
x)∗ ∈ Ob(C). Here m2

x is
the image of the multiplication map m⊗2

x → mx.
A non-commutative ind-affine scheme with a marked closed k-point will

be called pointed. There is a natural generalization of this notion to the case
of many points. Let Y ⊂ X be a closed subscheme of disjoint closed k-points
(it corresponds to the algebra homomorphism O(X) → 1 ⊕ 1 ⊕ ...). Then
X̂Y is a formal manifold. A pair (X̂Y , Y ) (often abbreviated by X̂Y ) will be
called (non-commutative) formal manifold with marked points. If Y consists of
one such point then (X̂Y , Y ) will be called (non-commutative) formal pointed
manifold.

12.2 Proof of Theorem 2.1.1

In the category AlgCf every pair of morphisms has a kernel. Since the functor
F is left exact and the category AlgCf is Artinian, it follows from [20], Sect. 3.1
that F is strictly pro-representable. This means that there exists a projective
system of finite-dimensional algebras (Ai)i∈I such that, for any morphism
i → j the corresponding morphsim Aj → Ai is a categorical epimorphism and
for any A ∈ Ob(AlgCf ) one has

F (A) = lim−→
I

HomAlgCf
(Ai, A).

Equivalently,
F (A) = lim−→

I

HomCoalgCf
(A∗

i , A
∗),

where (A∗
i )i∈I is an inductive system of finite-dimensional coalgebras and for

any morphism i → j in I we have a categorical monomorphism gji : A∗
i → A∗

j .
All what we need is to replace the projective system of algebras (Ai)i∈I

by another projective system of algebras (Ai)i∈I such that
(a) functors “lim←−”hAi

and “lim←−”hAi
are isomorphic (here hX is the functor

defined by the formula hX(Y ) = Hom(X,Y ));
(b) for any morphism i → j the corresponding homomorphism of algebras

f ij : Aj → Ai is surjective.
Let us define Ai =

⋂
i→j Im(fij), where Im(fij) is the image of the homo-

morphism fij : Aj → Ai corresponding to the morphism i → j in I. In order
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to prove a) it suffices to show that for any unital algebra B in Cf the natural
map of sets

lim−→
I

HomCf (Ai, B) → lim−→
I

HomCf (Ai, B)

(the restriction map) is well-defined and bijective.
The set lim−→I

HomCf (Ai, B) is isomorphic to (
⊔

I HomCf (Ai, B))/equiv,
where two maps fi : Ai → B and fj : Aj → B such that i → j are equivalent
if fifij = fj . Since Cf is an Artinian category, we conclude that there exists
Am such that fim(Am) = Ai, fjm(Am) = Aj . From this observation one easily
deduces that fij(Aj) = Ai. It follows that the morphism of functors in (a) is
well-defined and (b) holds. The proof that morphisms of functors biejectively
correspond to homomorphisms of coalgebras is similar. This completes the
proof of the theorem. �

12.3 Proof of Proposition 2.1.2

The result follows from the fact that any x ∈ B belongs to a finite-dimensional
subcoalgebra Bx ⊂ B and if B was counital then Bx would be also counital.
Let us describe how to construct Bx. Let Δ be the coproduct in B. Then one
can write

Δ(x) =
∑

i

ai ⊗ bi,

where ai (resp. bi) are linearly independent elements of B.
It follows from the coassociativity of Δ that

∑

i

Δ(ai) ⊗ bi =
∑

i

ai ⊗Δ(bi).

Therefore one can find constants cij ∈ k such that

Δ(ai) =
∑

j

aj ⊗ cij ,

and
Δ(bi) =

∑

j

cji ⊗ bj .

Applying Δ ⊗ id to the last equality and using the coassociativity condition
again we get

Δ(cji) =
∑

n

cjn ⊗ cni.

Let Bx be the vector space spanned by x and all elements ai, bi, cij . Then Bx

is the desired subcoalgebra. �
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12.4 Formal Completion Along a Subscheme

Here we present a construction which generalizes the definition of a formal
neighborhood of a k-point of a non-commutative smooth thin scheme.

Let X = Spc(BX) be such a scheme and f : X → Y = Spc(BY ) be a closed
embedding, i.e., the corresponding homomorphism of coalgebras BX → BY

is injective. We start with the category NX of nilpotent extensions of X,
i.e., homomorphisms φ : X → U , where U = Spc(D) is a non-commutative
thin scheme, such that the quotient D/f(BX) (which is always a non-counital
coalgebra) is locally conilpotent. We recall that the local conilpotency means
that for any a ∈ D/f(BX) there exists n ≥ 2 such that Δ(n)(a) = 0, where
Δ(n) is the nth iterated coproduct Δ. If (X,φ1, U1) and (X,φ2, U2) are two
nilpotent extensions of X then a morphism between them is a morphism of
non-commutative thin schemes t : U1 → U2, such that tφ1 = φ2 (in particular,
NX is a subcategory of the naturally-defined category of non-commutative
relative thin schemes).

Let us consider the functor Gf : N op
X → Sets such that G(X,φ,U) is the

set of all morphisms ψ : U → Y such that ψφ = f .

Proposition 12.7 Functor Gf is represented by a triple (X,π, ŶX) where
the non-commutative thin scheme denoted by ŶX is called the formal neigh-
borhood of f(X) in Y (or the completion of Y along f(X)).

Proof. Let Bf ⊂ BX be the counital subcoalgebra which is the pre-
image of the (non-counital) subcoalgebra in BY /f(BX) consisting of locally-
conilpotent elements. Notice that f(BX) ⊂ Bf . It is easy to see that taking
ŶX := Spc(Bf ) we obtain the triple which represents the functor Gf . �

Notice that ŶX → Y is a closed embedding of non-commutative thin
schemes.

Proposition 12.8 If Y is smooth then ŶX is smooth and ŶX " ŶŶX
.

Proof. Follows immediately from the explicit description of the coalgebra
Bf given in the proof of the previous Proposition. �
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