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Some important problems in science do not have analytical solutions in four dimensions including
QCD, but they are integrable in two dimensions. For many years, scientists have been trying to
find a relation between two-dimensional and four-dimensional space-time to explain the real
problem in four dimensions by accurately solving the appropriate model in two dimensions. In

this paper, an interesting relation between gYM, (generalized two-dimensional Yang-Mills) and
Maxwell construction has been found, which can be a starting point for finding more relations
between two-dimensional and four-dimensional space-time, so this paper can play an important
role in the advancement of science. For this purpose, first, the large-N behavior of the quartic-cubic
generalized two-dimensional Yang-Mills U(N) on a sphere is investigated for finite cubic couplings.
Itis shown that there are two phase transitions one of which is of third order, which is similar to
previous papers, and the other one is of second order, which is a novel result. Second, gYM, (for
G(z) =z™ 4+ Az"; m = 4,65 n < m) and Maxwell construction are compared with each other and a
relationship between two-dimensional space-time, which is integrable, and four-dimensional space-
time is obtained.

The YM, theory is defined by the lagran§ian tr(F%) on a compact Riemann surface, where F is the 2-form field
strength. If one considers i tr(BF) + tr(B~) as the Lagrangian of this theory, where B is an auxiliary pseudo-scalar
field in the adjoint representation of the gauge group, and uses path-integral method over the field B, an effective
Lagrangian of the form ¢r(F?) is concluded.

Because of two reasons, it is interesting that YM, theory be generalized. First, invariance under area-preserving
diffeomorphisms and the lack of propagating degrees of freedom are two important properties of YM, that are
not exclusive to the i tr(BF) + tr(B?) Lagrangian, but one can generalize this theory without losing these two
properties. These generalized theories (§YM,s) are defined by replacing the tr(B2) term by an arbitrary class
function f(B)'. Second, it is conceivable that one of the generalized 2D models will reveal features which are
more relevant and more closely resemble the four-dimensional theories of interest.

Two-dimensional Yang-Mills theory (YM;) and generalized Yang-Mills theories (gYM>s) have been a subject
of extensive study'-*%. They are important theories because they are integrable. It has been seen that there are
certain relations between these theories and string theories. These relations can be seen by studying the large-N
behavior of YM; (or gYM,) based on SU(N) that is shown in Refs.!*!%171%. On the other hand, these theories can
shed light on some basic features of QCDs.

Because YM; and gYM, are integrable models, so they are useful for exploring the general properties of
QCD. For example, one can study the large-N behavior of the free energy of these theories. To do so, one should
begin with the partition function of one of these theories on a certain surface. Then the sum over reducible
representations of U(N) (or SU(N)) appeared in the expressions of the partition function must be replaced by a
path integral over continuous Young tableaus and calculated the area-dependence of the free energy from the
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saddle-point configuration. In Ref.?’, it was seen that the behavior of the free energy of U(N) YM; on a sphere
with area A < A, = 72 is logarithmic, and in Ref.”* for A > A, the free energy was studied and a third-order
phase transition was obtained, at A = A,. A fact that was known earlier in the context of lattice formulation®.
In Ref.?, a function G was introduced to charactrize a g¥YM, with the gauge group U(N) on the sphere. In the
case of gYM, models, the same transition was shown on the sphere for G(z) = z*in Ref.?® and for G(z) = z®and
G(z) = 2% + Az*in Ref?!, and also for G(z) = z* + A 23 (for small 1) in Ref.?2.

In this paper, the large-N behavior of a gYM; based on a gauge group U(N) on a sphere is studied, for which
G(z) =z + 72" (n < 4) and G(z) = z° + 1.2 (n < 6), and 1 is not necessarily small. In “The free energy”
section, for G(z) = z* + 4z°, the free energy seems to experience a zeroth-order phase transition. In “The
boundary conditions on density” section, the zeroth-order phase transition is investigated by studying the density
p and it is obtained that there are four intervals in each of which the density behaves differently. Thus, the free
energy on each interval should be investigated separately, and therefore the zeroth-order phase transition is not
correct. In “Studying the second subinterval” section, the interval 2) is studied and it is seen that the redefined
density on this interval, like initial density, is not nonnegative while it should be nonnegative and therefore the
free energy on this interval is undefined and so it must be removed from the corresponding graphs. In “The
third-order phase transition” section, the interval 3) is studied and a third-order phase transition at A = Ay
is obtained. In “The second-order phase transition” section, the interval 3) is studied again and it is seen that
there is the other phase transition that is of second order, at A = Ajy. This is a new result because in all previous
papers there were just third-order phase transitions. In “Maxwell construction” section, Maxwell construction is
studied. In “Comparing gYM, with Maxwell construction” section, gY M, and Maxwell construction are compared
with each other and it is seen that the main parameters of gYM,, which are purely mathematical parameters, are
similar to the physical parameters in four-dimensional space-time. This result is novel and also so interesting.
In “¢p® + J¢™ (n < 6) models” section, a few other models are studied for further research on the outcome of the
previous section. This conclusion is so important because it shows a relationship between two-dimensional space-
time and four-dimensional space-time and so one can describe an insolvable physical event in four dimensions
by studing the appropriate model in two dimensions. “Concluding remarks” section is devoted to the concluding
remarks.

The free energy
First, it is helpful to review the expression for the partition function of a gYM, on a sphere in the large-N limit**32.
The partition function of the gYM, on the sphere is'**

_ 2 —AA(r)
7 = Zdr e 5 (1)

where s are the irreducible representations of the gauge group, d, is the dimension of the rth representation, A
is the area of the sphere and A(r) is

p
AT = S G, 2
k=1

in which Cy is the kth Casimir of the group, and ay’s are arbitrary constants. If one considers the gauge group
U(N) and parameterizes its representation by N integers n; > n; > ... > ny, it is seen that®

ni — nj
= 1l <1+;’—i1)’

1<i<j<N

N (3)
a=Y [(nH—N—i)k— (N—z')k].
i=1

To make the partition function (1) convergent, it is necessary that p in (2) be even and a, be positive.
In the large-N limit, the partition function (1) can be rewritten in the form of a path integral over continuous
parameters. If the continuous function ¢ (x) is introduced as

¢x) =—n(x) —1+x, (4)
where
0<x:=i/N<1, (5)
and
n(x) := n;/N, (6)
then the partition function (1) becomes
Z= / [T do@ o™, @)
0<x<l1

where
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1 1 1
S() = N* | -4 / dx Glp)] + / / dy loglp (x) — p ()1 |, ®)
0 0 0
apart from an unimportant constant, and
4
G@¢) = (D ag". 9)
k=1

As N — oo, for determining the action (8), one should maximize S. The saddle point equation for S is

1
(6 ()] P/ i (10)
x)] = _—,
¢ / 6 =0
where
A /
8@ =G (o) (11)
and P is the principal value of the integral. If the density is introduced as
(6001 = (12)
x)] = ——,
g a9 ()
then (10) becomes
[ 0@ d
p
= P s
8@@) / ¢ (13)
b
along with the normalization condition
a
[oeras =1 (1)

b
There is also the other condition on the density, that is
0=p@) =L (15)

The above condition can be obtained from the condition n; > n, > ... > ny. To solve (13), the function H(z) is
defined in the complex z-plane as*

a

' d
e :/ p(&)ds. »

z—§
b

One can obtain®®

> @n—1!2q — D!
H = —\/(z — —b E nyd my(ntmtq+l) ,
W mVEmakny iy 2 nlgln 4 g+ m 4 1)! aoEE @ ar

and

Va=z)(z-b) i (2n—DNE2g— D! a"bizm gD (o)

P = T 2" nlgl(n 4+ q + m+ 1)!

(18)

m,n,q=0

where g(”) is the nth derivative of g. Using (16) and (14), it is seen that H(z) behaves like z~! for large z. Thus,
from (17), one can arrive at

oo
Z (2n+— 1')”’(24 - 13” aang("+‘1)(0) =0, (19)
n
n,g=0 2inig(n + g)!
. @2n—1DNERg— D!
Z @n-—DI2q -1 a"bigta-D (o) = 1. (20)

n+qpylg! — |
n,q:02 nlqg!(n+q—1)!

These two equations should be used to obtain a and b. Defining the free energy as
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1
F:= N InZ, (21)
one can obtain
1 a
F'A) = /dx Glo(x)] = /dz G(2) p(2), (22)
0 b

that F'(A) is the derivative of the free energy with respect to A. Substituting (9) into (22), it is seen that the
integrals

a

/dz Z" p(2) (23)

b

apear. To obtain these integrals and so F'(A), one should expand H(z) for z — oo in (16) and (17).
If one considers

G(z) = 2* + J2°, (24)
by rescaling z = z//4, one has
Gz =1zt +72. (25)
Using (12), one can obtain
p(2) = ip(2), (26)
where
o dx
p(2) == = (27)
Using (16), one has
HZ) = 2H(2), (28)
where
AG) = /d§ :(_2 (29)
b

Using (11) and (17), one obtains

HG) =4 %(42%322)— 1\/(2—21)(2—5) (3@ + b+27) + 3@ + b%) + 8% + 2ab + 42(a + b)}|,

4
(30)
where A = A /. Expanding (30) for large 7, it is seen that
HE =ap+a 127 +0E). (31)
Because H (%) behaves like 2! for large  as before, so using (30), one arrives at two following equations
..,2 ~ 3 ~ 2 ~ 3
7 (3O‘+7)+O' <20+7)=0, (32)
4 2
3.4 ( .y 3 ~> 1
— T 3 - = =,
5+ -+ 20 3 (33)
where
a+b
G =220 (34
2
i—b
= : (35)
2
Using (32) and (33), one obtains
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f2=&2(25+%), (36)

~2 9~ 9

1566 4+ £55 4 54 4 253
2 16 16

A:

By applying the condition 2 > 0 to (36), it is concluded that

3 . 1
T <5<-—-.
4~ — 4
Using (36), it is seen that 7 is infinity at 6 = — i. Also, using (37), it is seen that Ais infinity at 6 = — %. Thus,
the condition on & is converted to
> s ! (38)
—— <0 < —-.
4 4

If one expands (16) for large z and uses (14), the derivative of the free energy with respect to the area, using (22)
and (24), becomes

F'(A) = Hy(?) + H5(2), (39)

where Hy(Z) (or Hs(2)) is the coefficient of 2~# (or 27°) in the expansion of H(Z). Thus, expanding (30) for large
z and using (37), it is seen that

63(36 4 3906 + 166752 + 350063 4 36005+ + 16005 °)

F(A) =— 40
@) 12(1 + 46)2(3 + 156 + 2052) (40)
Integrating (40) and using (37), apart from a constant, one can obtain
- 1 4 3480 5(1+40
Fe)=71- =T 5 52)2 (~ )~2
4 3446 23+ 150 +205%) 34 150 + 200 1)
41

—4log|5| + 2log |1 + 45| — 2log |3 + 45| |.

Using (41) and (37), one can plot F as a function of A as shown in Fig. 2 and also using (40) and (37), one can
plot F’ as a function of A as shown in Fig. 3. Since the free energy for a given area must be minimum, so using
Fig. 2, it is concluded that the free energy experiences a zeroth-order phase transition. Now the question is
whether the zeroth-order phase transition is a correct result or an incorrect one? In the next section, the ques-
tion will be answered.

The boundary conditions on density

Using (37), one can plot A as a function of & in the interval( l] as shown in Fig. 1. From this figure, it is

3
R
seen that there are three (or two) values for & for every value of A in the interval Ay < A < Ay Thus, using (41),
there are several values for F for any given area in[Ay, Ajr]. For discussing with more detail, first one should study
the density and then return to calculate the free energy. Thus, one can begin with (11) and (18) and find the

density for G(Z) = z* + z>. The density becomes

A
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Figure 1. Surface area.
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b

Figure 2. Free energy.
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Figure 3. The derivative of the free energy.

A
p) =

= VB = (E-06)[46° +27 +462 +42° +3(6 +2)]. (42)
v/

By differentiating p with respect to Z and putting the derivative equal to zero, one obtains

6(1+46)2 +(3+66(1—46)172+6(—3—66 +85%) 2+ 6%(1 +25)(3 +45) = 0. (43)

This equation has three roots z;’s for which the density is extremum. One can plot z;’s and also b and a (using
(34), (35) and (36)) as functions of & on the interval —% <0 < —% as shown in Fig. 4. Because the density
has been defined only on the interval b < zZ < 4, so using Fig. 4, it is seen that there are three subintervals
(6 < 61,61 <6 <611,6 > 6p1) on each of which the number of Z; ’s is different and so the density on each

a
/
0.5 / , Zs
e
II_ ==

o

0.6 _-0.5 -0.4  -0.3 _
/’/———/—\ Z3

- I
_Oj/

_1‘ ___________ \\\ 21
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b

Figure 4. The roots of the density.
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subinterval should be plotted separately. The graphs of these densities have been shown in Figs. 5,6 and 7. Each
of these figures is related to a specific 6. Changing the value of 6, the curves in Figs. 5 and 6 change quantitatively
but don’t change qualitatively. For some &’s, Fig. 7 is converted to Fig. 8. To find the boundary of Figs. 7 and 8,
one should obtain the & for which the minimum value of g with respect to Z becomes zero. Thus one should plot
pi’s, which are the extrema of p(2), as functions of & (Fig. 9). Using Figs. 4 and 9, it is seen that there are four
subintervals for & as follows: 1) =2 < & < 61,2) 61 <6 <671, 3) 611 <6 < 6y, and 4) 67 < G < —5 that
the densities of these subintervals have been shown in Figs. 5, 6, 7 and 8, respectively. The condition (using

26 and 15)
0<p=<1i
p
3.5
3
2.5
2
1.5
1
0.5 ~
a
g -0.8 -0.7 -0.6 -0.

Figure 5. The density in subinterval 1).
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Figure 6. The density in subinterval 2).
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Figure 7. The density in subinterval 3).
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Figure 8. The density in subinterval 4).
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Figure 9. The extremum densities.

restricts the acceptable densities. Because p is not nonnegative on the subintervals 2) and 3), first one should
redefine the density on these subintervals and then find the free energies of these redefined densities. Thus, the
free energy of the system is changed. As a result, the zeroth-order phase transition obtained in the previous sec-
tion is incorrect. In the next three sections, the density on two subintervals 2) and 3) will be redefined and the
order of the phase transition will be obtained.

Studying the second subinterval . .
One can obtain 67 = —0.601986 and 657 = —0.418476, and also A; = 37.8042 and A;; = 62.2248. From Fig. 6,
it is seen that the density is not nonnegative on this subinterval so it must be redefined. If one redefines it as

5 (2) = {0’ Zelod (45)
PE =\ 50, 2e b
and finds p,(Z) as a function of § where § = %, it is seen that p,(z) (as a function of 8) is the same as 0, (Z) (as

a function of ). Thus, the behavior of p, (Z) is similar to that of p,(z) but on the interval b < z < ¢. This means
that 5, (2) is negative for some 2’s. Thus, this redefining of the density is incorrect. If it is redefined as

_ o, zelde
02(z) = {52(2)’ zZe [E, a] U [e,al "
one can find?®
- A ~3 =2 i-bE-dE-E—a g Atbrd e
Hz(z)zf[(4z +3z)—\/(z—b)(z—d)(z—e)(z—a){3+4z+2(a+b+d+e)} ’ “7)
and
o E\/(z—b)(z—d)(z_e)(“_z) (3+4z+2@a+b+d+2o). (48)

Expanding H (2) for large %, it is seen that
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Hy(2) = Biz+ Bo+ B2~ +0E72).

Because H; (%) should behave like 2! for large Z, so one arrives at the following three equations

B1=0,
Bo =0,
B-1=1

One also has?®

/ d2(g(®) — Fb(3) = 0,
d

where ¢g(2) = % G’ (2). Thus, one can obtain

/dz{g\/(2—5)(2—Zl)(%—é)(é—&){3+42+2(a+5+3+é)} =0.
d

(54)

Using this equation and (50), (51) and (52), one can obtain the four unknowns a, b,éand d. To study the structure

of the phase transition, one can use the following change of variables

b=b.(1+P), d=d.(1+M), ¢=¢.1+X), a=ac(l+U),

(55)

where the index ¢ shows a critical point between subintervals 1) and 2), that is labeled I in Figs. 1, 2, 3,4, 5,6, 7,

8,9,10, 11 and 12. By calculating, it is seen that

™

o
-0.6 -0.5 -0.4 -0.3
Figure 11. The modified surface area.
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Figure 12. The modified derivtive of the free energy.

be = —0.920721, d. =& = a. = —0.283251 (56)
One can substitute (55) and (56) into (50) and (51), and obtain

P = —0.12M — 0.06M? — 0.12U — 0.06U? — 0.12X

(57)
—0.06X% — 0.04MU — 0.04UX — 0.04MX,

U=—M—0232M? — X — 0.232X% — 0.232MX. (58)

Using these two relations, it can be seen that if M = —X then P, U, X2 and M? are of the same order, but if
M # —X then P, M, X and U are of the same order. If M = —X, using (55) and (56), it is seen thata < e. This is
an incorrect result because there is the following condition on b, d, e and a (using (46))

b<d<é<a, (59)
so M # —X. One can consider
P=P1 Q2 + P Q+ P Q% + P, Q2
M =My QY2 + My Q@ + M3, Q%2 + M, @2,
X =X Q2+ xQ + X3/2 Q2 4+ X, Q%
U=U1p QY%+ U Q+ Usjp @2 + U, @2,

(60)

where Qis (A — A.)/A.and A, = A;. From (55), (56), (60), and also (50), (51), (52) and (54), one can obtain

P =—0.067 Q2+ 0.0127 Q3% 4+ 0.05 Q?,
M =0.64 22 — 0.064 Q — 0.266 %% + X, @2,

X =0.64 QY2 — 0.064 2 — 0.266 22 + X, Q,
U=-1280Y2-0169+0.34 Q%% + (0.038 — 2X;) Q2.

(61)

Using (61), (55), (56), (48) and A =A; (1+ ), one can plot the density as a function of Z for small Q. It is seen
that for Q # 0, this graph is similar to Fig. 6. Thus, the redefined density is not also nonnegative. It follows that
the subinterval 2) must not exist and the curves between I and II shown in Figs. 1, 2 and 3 must be removed.

The third-order phase transition

The subinterval 3) is 61 <6 < opr. One can obtain 677 = —0.418476 and 67 = —0.33541, and also
A = 62.2248 and Ay = 25.5689. From Fig. 7, it is seen that the density is not nonnegative on this subinterval,
so it must be redefined and the curves between II and III shown in Figs. 1, 2 and 3 must be replaced by new curves
obtained in the next section. In line with the previous section, if one redefines the density as

0, zeldé]

732, z e [b,dlU ¢4 (62)

03(2) = {

it can be concluded that Eqgs. (47) to (54), which were obtained by studying the second subinterval, are also valid
for the subinterval 3). To study the structure of the phase transition at the point III, one can use the following
change of variables

b=by(1+P), d=dy(1+M), é=em(l+X), a=am(l+U), (63)

Scientific Reports |

(2024) 14:18685 | https://doi.org/10.1038/s41598-024-69554-6 nature portfolio



www.nature.com/scientificreports/

where
by = —0.938782, anr = 0267962, dpr = &y = —0.207295. (64)
Substituting (63) and (64) into (50) and (51), one can obtain

P = —0.047 M? — 018 U — 0.03 MX — 0.047 X2,

5 5 (65)
U=-0.15M"—-0.1MX — 0.15X".
Using these two relations, it is seen that P, U, M 2 and X2 are of the same order. Thus, one can consider
P =P Q+P3 Q%%+ P, Q%
M =M, QY% 4+ My Q+ M), @2 + My @2,
12 32 2 (66)
X:Xl/zfz +X1§Z+X3/29 + X, Q°,
U=U Q4+ Usp Q%4+ U, Q%
where Q = A;}‘m. Substituting (63), (64) and (66) into (50), (51), (52) and (54), it is obtained
I
P =—0.064 2+ 0.048 2%,
M =1.61QY2 —0.125Q — 0.498 %2 + (—0.01 — X3) 2%, -

X =—161QY2-0.125Q + 0498 Q%2 + X, Q?,
U=—-0535Q+0.18 Q2.

Using (63), (64), (67), (48) and A = A (1 4+ Q), one can plot the density as a function of z for small €2 as shown
in Fig. 10. It is seen that the density is nonnegative for 2 # 0, so the redefinition of the density as (62) on the
subinterval 3) near the point III is correct. Now one can obtain the phase transition near the point III. Expanding
(47) for large z and using (39), one can obtain

(F}),; (A) = —0.07 — 0.034  + 0.0129 Q2 + O(22%). (68)

To calculate the phase transition, one should find F/,(A) near the point I11, which is the derivative of the free
energy obtained using the initial density (42). Substltutlng o = ® + oyyr into (37) and using A=Ap(Q+Q),
one gets

® = —0.0414 Q + 0.00747 Q2. (69)
Thus, using (40), it is obtained
(E),; (A) = —0.07 — 0.034 Q 4 0.0066 2> + O(2). (70)
Using (68) and (70), it is concluded
(F}) (A — (FL),; (A) = 0.0063 Q% + O(2%). (71)

As a result, there is a third-order phase transition near the point III on the subinterval 3).

The second-order phase transition
As seen in the previous section, in Fig. 1, if one moves on the graph from the right side to the left passing through
the point ITI, Fig. 8 is converted to Fig. 7. Thus, the density must be redefined as (62) on the interval 3) and as a
result Fig. 7 will be replaced by Fig. 10. In this section, it is seen that by increasing A continuously from Ay to
Apy in Fig. 11, the distance between & and & goes to zero in Fig. 10. Thus, the curve between the points III and
II in Fig. 1 will be replaced by the curve between the points III and IV in Fig. 11. Also, as seen in “Studying the
second subinterval” section, the curve between the points I and II must be removed. Thus, the graph of the area
versus ¢ is converted to the curve from the left side to the point I and the curve from the point IV to the right
side in Fig. 11. It was seen that the graph of the density as a function of z was similar to Fig. 5 for6y < & < o7,
while it is seen that the graph is similar to Fig. 10 for 67y < 6_< &py1. Using the fact that there is a specific density
for a given area and the graph of the density by increasing A should be continuously converted from Figs. 8, 9
and 10 and finally to Fig. 5, the curve between I and V must be removed too. Thus, in Figs. 11 and 12, the solid
curves from V to III are replaced by the dashed curves.

In this section, first, the points IV and V will be found and then the phase transition, to go from IV to V, will
be obtained.

At the point IV, a and e are equal because the density at the point IV is the same as one at the point V and so
the graph of the density at the point IV is like Fig. 5. Thus, one can use the following change of variables

Gg=é¢=v, d=y+n b=y —n. (72)
Using (50), one obtains
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2
oY +(V—;v)(3+4v)' 73)

Now, using (51), (52) and the above relations, the following two equations are obtained

—2yv(3+4y + 4v) — %(3 +8y) {4y’ + (y + )3+ 4v)} =0, (74)

— 1—36{;/ +4y2 —4yy — @B+ WHY + (¥ + )G+ 4)A = 1. (75)

The roots of Eq. (74) are

Lo 9T+ ¥2) + /81 + 432y — 288y2 — 3840y3 — 3840y* 76)
e 24 4 96y

and

94 48(y + y2) — /81 + 432y — 288y2 — 3840y 3 — 3840y4

= 77
2 24+ 96y 7
Substituting (72) and (73) into (54), one has
[ [A
- . - - - 1
/ dz 5(3+4z+4y+4v)(z—v) 22—2zy+5{6y2+(y+v)(3+4v)} =0. (78)

v+n

Now, one should calculate this integral and substitute (76) and (77) for v in the result of the integral, one by one.
Using vy, one can obtain

(y1 = —0.67748, A; = 48.2053), (y» = —0.42, A, = 62.2), (79)
and using v,, one can get
= —0.602, A; = 37.8042, (80)

that (75) has been used to obtain A/s. At this step, one should study A, A; and A3 to find the point I'V. It is seen
that the graph of the density for A = A, is like Fig. 6 that is not nonnegative, so this answer is incorrect. On the
other hand, the graphs of the density for both A and Aj; are like Fig. 5. Thus, to investigate which answer is cor-
rect, one should find the point IV numerically. Using (50), (51), (52) and (54) and starting from the point III, by
increasing Alittle by little and using the relations in the subinterval 3), one can obtain b = —0.9069, d = —0.4689,
e = —0.09765anda = 0.2117 for A = A3 Thus, this answer is unacceptable because the initial conditione = a
is not satisfied for A = Aj. Increasing A further, for A = A, one can plot the density as a function of Z. It is seen
that the graph is like Fig. 5, and so the point IV is specified by Ay, y1, and v;. Thus, the numerical values of the
unknown parameters at the point IV are as follows

Apy = 482053, Gy = &y = 0.12023, dpy = —0.44966, bjy = —0.905313 (81)

Using

b=byv(1+P), d=dyv1+M), é=&v(1+X), d=ay(l+U) (82)
and also using (50) and (51), one can obtain

P =0.0729 U + 0.0729 X + 0.03699 U? + 0.03699 X? + 0.0306 UX,
M = —5.584P — 0.3257U — 0.3257X — 0.0938U2 — 0.0938X? — 0.0626 UX.

Using these two relations, it is clear that if U = —X then P, M, U? and X? are of the same order, but if U # —X
then P, M, U and X are of the same order.
Thus, for U # —X, one can consider

(83)

P=P Q+ P, Q?

M= M; Q+ M, Q?
U=UQ+ U,
X=X Q+X Q2

(84)

where Q = AA’V and so €2 is negative on the subinterval 3). One can use (50, (51), (52) and (54) to calculate the
v

unknown parameters P; to X, that two sets of vaues are obtained. Using one of these sets, it is seen that
X = —0.9375Q, and U = —.0057 2. Using (81) and (82), the inequality a < € is obtained that is incorrect
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becauseb < d < & < a. Using the other one, it is seen that e = a, up to 0(£2%), so this is incorrect too. Thus,
U # —X is not acceptable, and soU = —X.
For U = —X, one can expand (50) and (51) up to order P and obtain

P=0.04X% M=—-036X> (85)
Using (85), (52) and A=Ay (14 Q), itis obtained (up to order Q)

X)1 = —115iV/Q, (X)2 = 115V (86)

Because €2 is negative and U = —X, so the correct answer (up to order \/ﬁ) is X = 1.15i+/SQ. Thus, one can
obtain

X=115i/Q+XQ, U=-115i/Q—-X,Q, P=—-0057Q, M =0.487. (87)

Expanding HZ)for large z and using Fg (A) = Hy(%) + Hs(Z) near the point IV, it is seen that
(F}),y (A) = —0.09396 — 0.031046 Q2 + O(22%). (88)

Now, one should find the point V that is in the subinterval 1) and Ay = Ay = 48.2053. Because the areas related
to the points V'and I'V are the same, so the graphs of the density at these two points must be the same qualitativey
and also quantitatively. It can be concluded that

Gv = diy = —0.44966, by = byy = —0.905313, &y = —0.6775 (89)

Thus, one can obtain F/, near the point V, like “The third-order phase transition” section. Up to order €2, one
can arrive at

(E.), (A) = —0.09396 — 0.013411 Q + O(22?). (90)
Using (88) and (90), it is seen that
(F)y (A) — (E), (A) = —0.017635 Q + O(RQ?). (91)

It is clear that there is a second-order phase transition and (F3),V (A) > (F’ )y (A) because Q is negative.This is
a new result because in all previous papers there were just third-order phase transitions. Now, one can plot F
as a function of A as shown in Fig. 12. In this figure, the solid curves from I to II, I to V, and II to IIl must be
replaced by the dashed curve from III to IV. Meanwhile, in Fig. 12 there are two regions resembling triangles, and
the surface areas of these two triangles should be the same. The proof for that comes from the fact that one can
go from the point III to the point IV through two different paths, the wrong one which goes through the lower
curve (III to II, I to I, and then I to IV), and the correct one which goes from III to IV directly. The difference
of the free energies at IV and III should be the same following both paths. This results that the surface areas of
the triangle-like regions are equal.

Maxwell construction
Van der Waals equation of state for a gas is

2
<p+ )(v nb) = nRT, (92)

where n is the number of moles, T is temperature, p is pressure, and V is the total volume of the gas. R is the gas
constant that is R = 8.3145 K a and b are positive experimental constants that are specific for any specified
gas. This relation, can also be rewritten as

(p n %) (v—b) = kg, 93)

NLA, a = ﬁ, y = % (N is the total number of particles), kg = 1.38 X 10723 %that is Boltzmann’s

constant, and Ny = 6.02 x 102 that is Avogadro’s number. Using above relation, it is seen that in the inflection
point, using

where b’ =

ap ¥*p
37 c=0 ch 0, (94)
there are the following three conditions
84/ a
=3V, T.= , = .
v = 2wky P 2 ©3)

The point with these conditions is named critical point. If (93) is rewritten in terms of ¥, p and T where
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. v . P = T
V= — = —, T = —
” P > T. (96)
then (93) is converted to
- - 3 ~
(37 — 1)<p+ ﬁ) =T (97)

It is seen that the above relation is independent of a’ and b’. Now, one can plot p as a function of ¥ (for van der
Waals isotherms) for T = T,, T > T, and T < T, as shown in Fig. 13. In Fig. 14 that is for T < T, the solid
curve between 1 and 2 should be removed and 1 must be connected to 2 directly and, meanwhile, the surface
areas of regions B and C should be the same™®. If one plots chemical potential as a function of pressure, as shown
in Fig. 15, comparing with Fig. 14, the region resembling triangle should be removed from the graph. Thus, the
chemical potential experiences a first-order phase transition at the point 1 (or 2) and as a result the free energy
of the substance experiences a second-order phase transition because the chemical potential is derivative of the
free energy.

Comparing gYM; with Maxwell construction :
Comparing Figs. 11 and 14 and also Figs. 12 and 15, it is seen that A is equivalent to pressure, ¢ is equivalent
to volume and F' is equivalent to chemical potential. The points V and IV in gYM, are equivalent to the points
1 and 2 in Maxwell construction, respectively. The free energy of the system experiences a second-order phase
transition to go from V'to IV, and also the same transition occurs to go from 1 to 2. The surface areas of regions
B and C in Fig. 14 are the same and also the surface areas of the triangle-like regions in Fig. 12 are the same.

If one considers G(z) = z* + 4z? instead of G(z) = z* + /2%, and uses the relations of “The free energy”
section, it is seen that 72 is negative for all 5. Thus, there is no real answer.

However, if one considers G(z) = z* + Jz instead of G(z) = z* + /2% and uses “The free energy” section,
it is obtained

4852

A= — 98
1 — 1663 — 8066 ©8)

T >T.>T

2 4 6 8 10

Figure 14. Pressure as a function of volume for T < T..
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1,2

0.7 0.4 0.6 0.8 1 1.2 1.4

Figure 15. Chemical potential as a function of pressure for T < T.

where A = A/*3and 6 = 5775 Thus, one can plot Aas a function of & as shown in Fig. 16. This figure is similar
to Fig. 13 for T > T..

As aresult, G(z) in gYM, plays the role of temperature in Maxwell construction. This comparison is comple-
tety new and there is not like this in other papers.

#° + 49" (n < 6) models

To complete the previous section, one should study more models such as ¢® + 1 ¢"(n < 6). If
G(z) =2° + J2°, (99)

by rescaling z = z/4, and using (11) and (17), one can obtain

~ ~ |1 1 ~ ~ ~
Hz) =A E(625 + 5z%) — Fs‘/ (Z —a)(z — b) {105@@" + b*) + 206°(5 + 62)
+ 24D°%(5 + 62) + 32b2%(5 + 62) + 642° (5 + 62) + 202> (5 + 3b + 62)

~2 072 z ~ - - Y73 = ~ (100)
+ 6a2(96% + 2b(5 + 6%) + 42(5 + 62)) + 4a(15b> + 3b%(5 + 6%)
+4b7(5 + 67) + 872(5 + 62))}}

where A = A5 Because H(Z) should behave like 2! for Z — o0, so using (100) and also (34) and (35), one
can arrive at

1 -~
BA [5(85* + 246272 + 37%) + 65 (85* + 406272 + 1554 = 0 (101)

SN

175
150
125
100
75
50
25

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1

Figure 16. Surface area for G(z) = z* + Jz.
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5 1
sz [4(45° 436 7%) +3(86* + 126272 + 4] = T (102)
The last two equations, lead to
2(30&2 + 6053 + /301/54(25 + 845 + 8462)>
2o _ (103)

- >

15(1 4 66)

A =[15(1 + 66)3]/[6 (30&2 + 6063 + v/307/54(25 + 846 + 84&2)> {2052

4 1452 <z4&3 4 /300/54(25 1 846 + 84&2)) + (140&3 4+ /301/54(25 + 846 + 84&2))

+ 7(48&4 + /306 /5425 + 846 + 84&2))}].
(104)

Using these two equations and the condition #2 > 0, and also using the fact that ¥ and A should not be infinity,
the following condition is obtained

—0.8333 <5 < 0. (105)

Now, by using (104), one can plot A as a function of & on the interval (105) as shown in Fig. 17. It is seen that
this figure is similar to Fig. 13 for T < T..
In the same way as before, if one considers

G(z) = 2% + 124, (106)

by rescaling Z = z/+// and doing some calculations, one can get 72 < 0 for all 5. Thus, this model has not real
answers.

If
G(z) = 2% + /23, (107)

by rescaling Z = {75 and using the condition 7 > 0, one has

A= (1800&3)/[(1 42063 +/1—206° + 280&6>{1 — 7063

(108)
X (853 +v1—-2003+ 28056) + (1005r3 +1/1—2063 + 28056>}],
and
—0.793701 < & < 0. (109)

By plotting A as a function of 5 as shown in Fig. 18, it is seen that the figure is similar to Fig. 13 for T < T.
Now, if one considers

G(z) =2+ 12% (110)

by rescaling Z = -7 and doing some calculations, it is seen that 72 < 0 for all 5. Thus, there is no reall answer
for this model.
Finally, by considering

p S

350
30
25
20
15
100
50

o

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2

Figure 17. Surface area for G(z) = z° + 12°.
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60

40

20

-20

-40

Figure 18. Surface area for G(z) = z°® + 12>,

Giz) =2%+ )z, (111)

and rescaling Z = {7z and also doing the calculations mentioned earlier, one can obtain
A= (90&2)/[(1053 + v/ =56 + 70&6> (1 + 14&2<4&3 +v/ =56 + 70&6))], (112)

and

—0.698827 < & < 0. (113)

Now, one can plot 4 as a function of & as shown in Fig. 19 and see that this figure is similar to Fig. 13 for T > T..

As aresult, as seen in the previous section, the model G(z) plays the role of the temperature and so by using
an appropriate model in two-dimensional space-time, one can describe a physical event in four-dimensional
space-time.

Concluding remarks

First, a g¥M, on the sphere with quartic and cubic couplings was studied. The effect of the cubic coupling on the
density and the free energy was investigated. It was seen that there were four subintervals that in two of which
the density was not nonnegative, which should be nonnegative, and so had to be redefined. Redefining the
density, the free energy experienced two phase transitions one of which was of third order, like previous papers,
and the other one was of second order, which is a novel result. Second, gYM, for G(z) = z* + Az"(n < 4) and
Maxwell construction were compared with each other and it was seen that there was a relationship between two-
dimensional space-time and four-dimensional space-time. In the end, the models G(z) = z° + /2" (n < 6) were
studied and by comparing with Maxwell construction the equivalent parameters in two-dimensional space-time
and Maxwell construction such as pressure, temperature and volume were found. This comparison is completety
new and there is not like this in other papers. As a result, this paper can be a starting point for finding more
relationships between two-dimensional and four-dimensional space-time to describe physical events accurately.

200
150
100

50

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1

Figure 19. Surface area for G(z) = z° + Jz.
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