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A relationship 
between two‑dimensional 
and four‑dimensional space‑time 
by comparing generalized 
two‑dimensional Yang–Mills theory 
and Maxwell construction
Leila Lavaei 

Some important problems in science do not have analytical solutions in four dimensions including 
QCD, but they are integrable in two dimensions. For many years, scientists have been trying to 
find a relation between two-dimensional and four-dimensional space-time to explain the real 
problem in four dimensions by accurately solving the appropriate model in two dimensions. In 
this paper, an interesting relation between gYM2 (generalized two-dimensional Yang–Mills) and 
Maxwell construction has been found, which can be a starting point for finding more relations 
between two-dimensional and four-dimensional space-time, so this paper can play an important 
role in the advancement of science. For this purpose, first, the large-N behavior of the quartic-cubic 
generalized two-dimensional Yang–Mills U(N) on a sphere is investigated for finite cubic couplings. 
It is shown that there are two phase transitions one of which is of third order, which is similar to 
previous papers, and the other one is of second order, which is a novel result. Second, gYM2 (for 
G(z) = z

m + � zn;m = 4, 6; n < m ) and Maxwell construction are compared with each other and a 
relationship between two-dimensional space-time, which is integrable, and four-dimensional space-
time is obtained.

The YM2 theory is defined by the lagrangian tr(F2) on a compact Riemann surface, where F is the 2-form field 
strength. If one considers i tr(BF)+ tr(B2) as the Lagrangian of this theory, where B is an auxiliary pseudo-scalar 
field in the adjoint representation of the gauge group, and uses path-integral method over the field B, an effective 
Lagrangian of the form tr(F2) is concluded.

Because of two reasons, it is interesting that YM2 theory be generalized. First, invariance under area-preserving 
diffeomorphisms and the lack of propagating degrees of freedom are two important properties of YM2 that are 
not exclusive to the i tr(BF)+ tr(B2) Lagrangian, but one can generalize this theory without losing these two 
properties. These generalized theories ( gYM2 s) are defined by replacing the tr(B2) term by an arbitrary class 
function f (B)1. Second, it is conceivable that one of the generalized 2D models will reveal features which are 
more relevant and more closely resemble the four-dimensional theories of interest.

Two-dimensional Yang–Mills theory ( YM2 ) and generalized Yang–Mills theories ( gYM2 s) have been a subject 
of extensive study1–28. They are important theories because they are integrable. It has been seen that there are 
certain relations between these theories and string theories. These relations can be seen by studying the large-N 
behavior of YM2 (or gYM2 ) based on SU(N) that is shown in Refs.13,16,17,19. On the other hand, these theories can 
shed light on some basic features of QCD4.

Because YM2 and gYM2 are integrable models, so they are useful for exploring the general properties of 
QCD. For example, one can study the large-N behavior of the free energy of these theories. To do so, one should 
begin with the partition function of one of these theories on a certain surface. Then the sum over reducible 
representations of U(N) (or SU(N)) appeared in the expressions of the partition function must be replaced by a 
path integral over continuous Young tableaus and calculated the area-dependence of the free energy from the 

OPEN

Department of Physics, Qom University of Technology, Qom, Iran. email: yalda57L@yahoo.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-024-69554-6&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2024) 14:18685  | https://doi.org/10.1038/s41598-024-69554-6

www.nature.com/scientificreports/

saddle-point configuration. In Ref.29, it was seen that the behavior of the free energy of U(N) YM2 on a sphere 
with area A < Ac = π2 is logarithmic, and in Ref.23 for A > Ac the free energy was studied and a third-order 
phase transition was obtained, at A = Ac . A fact that was known earlier in the context of lattice formulation30. 
In Ref.28, a function G was introduced to charactrize a gYM2 with the gauge group U(N) on the sphere. In the 
case of gYM2 models, the same transition was shown on the sphere for G(z) = z4 in Ref.28 and for G(z) = z6 and 
G(z) = z2 + � z4 in Ref.31, and also for G(z) = z4 + � z3 (for small � ) in Ref.32.

In this paper, the large-N behavior of a gYM2 based on a gauge group U(N) on a sphere is studied, for which 
G(z) = z4 + � zn (n < 4) and G(z) = z6 + � zn (n < 6) , and � is not necessarily small. In “The free energy” 
section, for G(z) = z4 + � z3 , the free energy seems to experience a zeroth-order phase transition. In “The 
boundary conditions on density” section, the zeroth-order phase transition is investigated by studying the density 
ρ and it is obtained that there are four intervals in each of which the density behaves differently. Thus, the free 
energy on each interval should be investigated separately, and therefore the zeroth-order phase transition is not 
correct. In “Studying the second subinterval” section, the interval 2) is studied and it is seen that the redefined 
density on this interval, like initial density, is not nonnegative while it should be nonnegative and therefore the 
free energy on this interval is undefined and so it must be removed from the corresponding graphs. In “The 
third-order phase transition” section, the interval 3) is studied and a third-order phase transition at Ã = ÃIII 
is obtained. In “The second-order phase transition” section, the interval 3) is studied again and it is seen that 
there is the other phase transition that is of second order, at Ã = ÃIV . This is a new result because in all previous 
papers there were just third-order phase transitions. In “Maxwell construction” section, Maxwell construction is 
studied. In “Comparing gYM2 with Maxwell construction” section, gYM2 and Maxwell construction are compared 
with each other and it is seen that the main parameters of gYM2 , which are purely mathematical parameters, are 
similar to the physical parameters in four-dimensional space-time. This result is novel and also so interesting. 
In “φ6 + �φn(n < 6) models” section, a few other models are studied for further research on the outcome of the 
previous section. This conclusion is so important because it shows a relationship between two-dimensional space-
time and four-dimensional space-time and so one can describe an insolvable physical event in four dimensions 
by studing the appropriate model in two dimensions. “Concluding remarks” section is devoted to the concluding 
remarks.

The free energy
First, it is helpful to review the expression for the partition function of a gYM2 on a sphere in the large-N limit28,32. 
The partition function of the gYM2 on the sphere is19,20

where r’s are the irreducible representations of the gauge group, dr is the dimension of the rth representation, A 
is the area of the sphere and �(r) is

in which Ck is the kth Casimir of the group, and ak ’s are arbitrary constants. If one considers the gauge group 
U(N) and parameterizes its representation by N integers n1 ≥ n2 ≥ ... ≥ nN , it is seen that33

To make the partition function (1) convergent, it is necessary that p in (2) be even and ap be positive.
In the large-N limit, the partition function (1) can be rewritten in the form of a path integral over continuous 

parameters. If the continuous function φ(x) is introduced as

where

and

then the partition function (1) becomes

where

(1)Z =
∑

r

d2r e
−A�(r),

(2)�(r) =
p

∑

k=1

ak

Nk−1
Ck(r),

(3)

dr =
∏

1≤i≤j≤N

(

1+
ni − nj

j − i

)

,

Ck =
N
∑

i=1

[

(ni + N − i)k − (N − i)k
]

.

(4)φ(x) = −n(x)− 1+ x,

(5)0 ≤ x := i/N ≤ 1,

(6)n(x) := ni/N ,

(7)Z =
∫

∏

0≤x≤1

dφ(x) eS[φ(x)],
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apart from an unimportant constant, and

As N → ∞ , for determining the action (8), one should maximize S. The saddle point equation for S is

where

and P is the principal value of the integral. If the density is introduced as

then (10) becomes

along with the normalization condition

There is also the other condition on the density, that is

The above condition can be obtained from the condition n1 ≥ n2 ≥ ... ≥ nN . To solve (13), the function H(z) is 
defined in the complex z-plane as34

One can obtain28

and

where g (n) is the nth derivative of g. Using (16) and (14), it is seen that H(z) behaves like z−1 for large z. Thus, 
from (17), one can arrive at

These two equations should be used to obtain a and b. Defining the free energy as

(8)S(φ) = N2



−A

1
�

0

dx G[φ(x)] +
1

�

0

1
�

0

dy log|φ(x)− φ(y)|



,

(9)G(φ) =
p

∑

k=1

(−1)k akφ
k .

(10)g[φ(x)] = P

1
∫

0

dy

φ(x)− φ(y)
,

(11)g(φ) =
A

2
G′(φ),

(12)ρ[φ(x)] =
dx

dφ(x)
,

(13)g(z) = P

a
∫

b

ρ(ξ) dξ

z − ξ
,

(14)

a
∫

b

ρ(ξ) dξ = 1.

(15)0 ≤ ρ(ξ) ≤ 1.

(16)H(z) :=
a

∫

b

ρ(ξ) dξ

z − ξ
.

(17)H(z) = g(z)−
√

(z − a)(z − b)

∞
∑

m,n,q=0

(2n− 1)!!(2q− 1)!!
2n+qn!q!(n+ q+m+ 1)!

anbqzmg (n+m+q+1)(0),

(18)ρ(z) =
√
(a− z)(z − b)

π

∞
∑

m,n,q=0

(2n− 1)!!(2q− 1)!!
2n+qn!q!(n+ q+m+ 1)!

anbqzmg (n+m+q+1)(0),

(19)
∞
∑

n,q=0

(2n− 1)!!(2q− 1)!!
2n+qn!q!(n+ q)!

anbqg (n+q)(0) = 0,

(20)
∞
∑

n,q=0

(2n− 1)!!(2q− 1)!!
2n+qn!q!(n+ q− 1)!

anbqg (n+q−1)(0) = 1.
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one can obtain

that F ′(A) is the derivative of the free energy with respect to A. Substituting (9) into (22), it is seen that the 
integrals

apear. To obtain these integrals and so F ′(A) , one should expand H(z) for z → ∞ in (16) and (17).
If one considers

by rescaling z̃ = z/� , one has

Using (12), one can obtain

where

Using (16), one has

where

Using (11) and (17), one obtains

where Ã = A �
4 . Expanding (30) for large z̃ , it is seen that

Because H̃(z̃) behaves like z̃−1 for large z̃ as before, so using (30), one arrives at two following equations

where

Using (32) and (33), one obtains

(21)F := −
1

N2
lnZ,

(22)F ′(A) =
1

∫

0

dx G[φ(x)] =
a

∫

b

dz G(z) ρ(z),

(23)

a
∫

b

dz zn ρ(z)

(24)G(z) = z4 + �z3,

(25)G(z̃) = �
4
[

z̃4 + z̃3
]

.

(26)ρ̃(z̃) = �ρ(z),

(27)ρ̃(z̃) :=
dx

dz̃
.

(28)H̃(z̃) = �H(z),

(29)H̃(z̃) :=
ã

∫

b̃

dξ̃
ρ̃(ξ̃ )

z̃ − ξ̃
.

(30)

H̃(z̃) = Ã

[

1

2
(4z̃3 + 3z̃2)−

1

4

√

(z̃ − ã)(z̃ − b̃) {3(ã+ b̃+ 2z̃)+ 3(ã2 + b̃2)+ 8z̃2 + 2ãb̃+ 4z̃(ã+ b̃)}
]

,

(31)H̃(z̃) = α0 + α−1z̃
−1 + O(z̃−2).

(32)τ̃ 2
(

3σ̃ +
3

4

)

+ σ̃ 2
(

2σ̃ +
3

2

)

= 0,

(33)
3

4
τ̃ 4 + τ̃ 2

(

3σ̃ 2 +
3

2
σ̃

)

=
1

Ã
,

(34)σ̃ :=
ã+ b̃

2
,

(35)τ̃ :=
ã− b̃

2
.
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By applying the condition τ̃ 2 ≥ 0 to (36), it is concluded that

Using (36), it is seen that τ̃ is infinity at σ̃ = − 1
4 . Also, using (37), it is seen that Ã is infinity at σ̃ = − 3

4 . Thus, 
the condition on σ̃ is converted to

If one expands (16) for large z̃ and uses (14), the derivative of the free energy with respect to the area, using (22) 
and (24), becomes

where H̃4(z̃) (or H̃5(z̃) ) is the coefficient of z̃−4 (or z̃−5 ) in the expansion of H̃(z̃) . Thus, expanding (30) for large 
z̃ and using (37), it is seen that

Integrating (40) and using (37), apart from a constant, one can obtain

Using (41) and (37), one can plot F̃ as a function of Ã as shown in Fig. 2 and also using (40) and (37), one can 
plot F̃ ′ as a function of Ã as shown in Fig. 3. Since the free energy for a given area must be minimum, so using 
Fig. 2, it is concluded that the free energy experiences a zeroth-order phase transition. Now the question is 
whether the zeroth-order phase transition is a correct result or an incorrect one? In the next section, the ques-
tion will be answered.

The boundary conditions on density
Using (37), one can plot Ã as a function of σ̃ in the interval 

(

− 3
4 ,−

1
4

]

 as shown in Fig. 1. From this figure, it is 
seen that there are three (or two) values for σ̃ for every value of Ã in the interval ÃI ≤ Ã ≤ ÃII . Thus, using (41), 
there are several values for F̃ for any given area in [ÃI , ÃII ] . For discussing with more detail, first one should study 
the density and then return to calculate the free energy. Thus, one can begin with (11) and (18) and find the 
density for G̃(z̃) = z̃4 + z̃3 . The density becomes

(36)τ̃ 2 = σ̃ 2
(2σ̃ + 3

2

3σ̃ + 3
4

)

,

(37)Ã = −
9σ̃ 2 + 9

2 σ̃ + 9
16

15σ̃ 6 + 45
2 σ̃

5 + 171
16 σ̃

4 + 27
16 σ̃

3
.

−
3

4
≤ σ̃ ≤ −

1

4
.

(38)−
3

4
< σ̃ < −

1

4
.

(39)F̃ ′(Ã) = H̃4(z̃)+ H̃5(z̃),

(40)F̃ ′(Ã) = −
σ̃ 3(36+ 390σ̃ + 1667σ̃ 2 + 3500σ̃ 3 + 3600σ̃ 4 + 1600σ̃ 5)

12(1+ 4σ̃ )2(3+ 15σ̃ + 20σ̃ 2)
.

(41)
F̃(σ̃ ) =

1

4

[

−
4

3+ 4σ̃
+

3+ 8σ̃

2(3+ 15σ̃ + 20σ̃ 2)2
+

5(1+ 4σ̃ )

3+ 15σ̃ + 20σ̃ 2

−4 log |σ̃ | + 2 log |1+ 4σ̃ | − 2 log |3+ 4σ̃ |
]

.

Figure 1.   Surface area.
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By differentiating ρ̃ with respect to z̃ and putting the derivative equal to zero, one obtains

This equation has three roots z̃i ’s for which the density is extremum. One can plot z̃i ’s and also b̃ and ã (using 
(34), (35) and (36)) as functions of σ̃ on the interval − 3

4 < σ̃ < − 1
4 as shown in Fig. 4. Because the density 

has been defined only on the interval b̃ ≤ z̃ ≤ ã , so using Fig. 4, it is seen that there are three subintervals 
( ̃σ ≤ σ̃I , σ̃I ≤ σ̃ ≤ σ̃II , σ̃ ≥ σ̃II ) on each of which the number of z̃i ’s is different and so the density on each 

(42)ρ̃(z̃) =
Ã

2π

√

τ̃ 2 − (z̃ − σ̃ )2
[

4σ̃ 2 + 2τ̃ 2 + 4σ̃ z̃ + 4z̃2 + 3(σ̃ + z̃)
]

.

(43)6(1+ 4σ̃ ) z̃3 + {3+ 6σ̃ (1− 4σ̃ )} z̃2 + σ̃ (−3− 6σ̃ + 8σ̃ 2) z̃ + σ̃ 2(1+ 2σ̃ )(3+ 4σ̃ ) = 0.

Figure 2.   Free energy.

Figure 3.   The derivative of the free energy.

Figure 4.   The roots of the density.
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subinterval should be plotted separately. The graphs of these densities have been shown in Figs.  5, 6 and  7. Each 
of these figures is related to a specific σ̃ . Changing the value of σ̃ , the curves in Figs. 5 and 6 change quantitatively 
but don’t change qualitatively. For some σ̃’s, Fig. 7 is converted to Fig. 8. To find the boundary of Figs. 7 and 8, 
one should obtain the σ̃ for which the minimum value of ρ̃ with respect to z̃ becomes zero. Thus one should plot 
ρ̃i’s, which are the extrema of ρ̃(z̃) , as functions of σ̃ (Fig. 9). Using Figs. 4 and 9, it is seen that there are four 
subintervals for σ̃ as follows: 1) − 3

4 < σ̃ ≤ σ̃I , 2) σ̃I ≤ σ̃ ≤ σ̃II , 3) σ̃II ≤ σ̃ ≤ σ̃III , and 4) σ̃III ≤ σ̃ < − 1
4 that 

the densities of these subintervals have been shown in Figs. 5,  6,  7 and  8, respectively. The condition (using 
26 and 15)

(44)0 ≤ ρ̃ ≤ �

Figure 5.   The density in subinterval 1).

Figure 6.   The density in subinterval 2).

Figure 7.   The density in subinterval 3).
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restricts the acceptable densities. Because ρ̃ is not nonnegative on the subintervals 2) and 3), first one should 
redefine the density on these subintervals and then find the free energies of these redefined densities. Thus, the 
free energy of the system is changed. As a result, the zeroth-order phase transition obtained in the previous sec-
tion is incorrect. In the next three sections, the density on two subintervals 2) and 3) will be redefined and the 
order of the phase transition will be obtained.

Studying the second subinterval
One can obtain σ̃I = −0.601986 and σ̃II = −0.418476 , and also ÃI = 37.8042 and ÃII = 62.2248 . From Fig. 6, 
it is seen that the density is not nonnegative on this subinterval so it must be redefined. If one redefines it as

and finds ρ2(z̃) as a function of δ̃ where δ̃ = b̃+c̃
2  , it is seen that ρ2(z̃) (as a function of δ̃ ) is the same as ρ̃2(z̃) (as 

a function of σ̃ ). Thus, the behavior of ρ2(z̃) is similar to that of ρ̃2(z̃) but on the interval b̃ ≤ z̃ ≤ c̃ . This means 
that ρ2(z̃) is negative for some z̃’s. Thus, this redefining of the density is incorrect. If it is redefined as

one can find28

and

Expanding H̃(z̃) for large z̃ , it is seen that

(45)ρ̃2(z̃) =
{

0, z̃ ∈ [c̃, ã]
ρ2(z̃), z̃ ∈ [b̃, c̃]

(46)ρ̃2(z̃) =
{

0, z̃ ∈ [d̃, ẽ]
ρ2(z̃), z̃ ∈ [b̃, d̃] ∪ [ẽ, ã]

(47)H̃2(z̃) =
Ã

2

[

(4z̃3 + 3z̃2)−
√

(z̃ − b̃)(z̃ − d̃)(z̃ − ẽ)(z̃ − ã) {3+ 4z̃ + 2(ã+ b̃+ d̃ + ẽ)}
]

,

(48)ρ̃2(z̃) =
Ã

2π

√

(z̃ − b̃)(z̃ − d̃)(z̃ − ẽ)(ã− z̃) {3+ 4z̃ + 2(ã+ b̃+ d̃ + ẽ)}.

Figure 8.   The density in subinterval 4).

Figure 9.   The extremum densities.
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Because H̃2(z̃) should behave like z̃−1 for large z̃ , so one arrives at the following three equations

One also has28

where g(z̃) = Ã
2 G′(z̃) . Thus, one can obtain

Using this equation and (50), (51) and (52), one can obtain the four unknowns ã , b̃ , ẽ and d̃ . To study the structure 
of the phase transition, one can use the following change of variables

where the index c shows a critical point between subintervals 1) and 2), that is labeled I in Figs. 1, 2, 3, 4, 5, 6, 7, 
8, 9, 10, 11 and  12. By calculating, it is seen that

(49)H̃2(z̃) = β1z̃ + β0 + β−1z̃
−1 + O(z̃−2).

(50)β1 = 0,

(51)β0 = 0,

(52)β−1 = 1.

(53)

ẽ
∫

d̃

dz̃{g(z̃)− H̃2(z̃)} = 0,

(54)

ẽ
∫

d̃

dz̃

[

Ã

2

√

(z̃ − b̃)(z̃ − d̃)(z̃ − ẽ)(z̃ − ã) {3+ 4z̃ + 2(ã+ b̃+ d̃ + ẽ)}
]

= 0.

(55)b̃ = b̃c(1+ P), d̃ = d̃c(1+M), ẽ = ẽc(1+ X), ã = ãc(1+ U),

Figure 10.   The redefined density.

Figure 11.   The modified surface area.
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One can substitute (55) and (56) into (50) and (51), and obtain

Using these two relations, it can be seen that if M = −X then P, U, X2 and M2 are of the same order, but if 
M  = −X then P, M, X and U are of the same order. If M = −X , using (55) and (56), it is seen that ã < ẽ . This is 
an incorrect result because there is the following condition on b̃ , d̃ , ẽ and ã (using (46))

so M  = −X . One can consider

where � is (Ã− Ãc)/Ãc and Ãc = ÃI . From (55), (56), (60), and also (50), (51), (52) and (54), one can obtain

Using (61), (55), (56), (48) and Ã = ÃI (1+�) , one can plot the density as a function of z̃ for small � . It is seen 
that for �  = 0 , this graph is similar to Fig. 6. Thus, the redefined density is not also nonnegative. It follows that 
the subinterval 2) must not exist and the curves between I and II shown in Figs. 1, 2 and 3 must be removed.

The third‑order phase transition
The subinterval 3) is σ̃II ≤ σ̃ ≤ σ̃III  . One can obtain σ̃II = −0.418476 and σ̃III = −0.33541 , and also 
ÃII = 62.2248 and ÃIII = 25.5689 . From Fig. 7, it is seen that the density is not nonnegative on this subinterval, 
so it must be redefined and the curves between II and III shown in Figs. 1, 2 and 3 must be replaced by new curves 
obtained in the next section. In line with the previous section, if one redefines the density as

it can be concluded that Eqs. (47) to (54), which were obtained by studying the second subinterval, are also valid 
for the subinterval 3). To study the structure of the phase transition at the point III, one can use the following 
change of variables

(56)b̃c = −0.920721, d̃c = ẽc = ãc = −0.283251

(57)
P = −0.12M − 0.06M2 − 0.12U − 0.06U2 − 0.12X

−0.06X2 − 0.04MU − 0.04UX − 0.04MX,

(58)U = −M − 0.232M2 − X − 0.232X2 − 0.232MX.

(59)b̃ < d̃ < ẽ < ã,

(60)

P =P1/2 �
1/2 + P1 �+ P3/2 �

3/2 + P2 �
2,

M =M1/2 �
1/2 +M1 �+M3/2 �

3/2 +M2 �
2,

X =X1/2 �
1/2 + X1 �+ X3/2 �

3/2 + X2 �
2,

U =U1/2 �
1/2 + U1 �+ U3/2 �

3/2 + U2 �
2,

(61)

P =− 0.067�+ 0.0127�3/2 + 0.05�2,

M =0.64�1/2 − 0.064�− 0.266�3/2 + X2 �
2,

X =0.64�1/2 − 0.064�− 0.266�3/2 + X2 �
2,

U =− 1.28�1/2 − 0.16�+ 0.34�3/2 + (0.038− 2X2)�
2.

(62)ρ̃3(z̃) =
{

0, z̃ ∈ [d̃, ẽ]
ρ3(z̃), z̃ ∈ [b̃, d̃] ∪ [ẽ, ã]

(63)b̃ = b̃III (1+ P), d̃ = d̃III (1+M), ẽ = ẽIII (1+ X), ã = ãIII (1+ U),

Figure 12.   The modified derivtive of the free energy.
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where

Substituting (63) and (64) into (50) and (51), one can obtain

Using these two relations, it is seen that P, U, M2 and X2 are of the same order. Thus, one can consider

where � = Ã−ÃIII

ÃIII
 . Substituting (63), (64) and (66) into (50), (51), (52) and (54), it is obtained

Using (63), (64), (67), (48) and Ã = ÃIII (1+�) , one can plot the density as a function of z̃ for small � as shown 
in Fig. 10. It is seen that the density is nonnegative for �  = 0 , so the redefinition of the density as (62) on the 
subinterval 3) near the point III is correct. Now one can obtain the phase transition near the point III. Expanding 
(47) for large z̃ and using (39), one can obtain

To calculate the phase transition, one should find F̃ ′w(Ã) near the point III, which is the derivative of the free 
energy obtained using the initial density (42). Substituting σ̃ = �+ σ̃III into (37) and using Ã = ÃIII (1+�) , 
one gets

Thus, using (40), it is obtained

Using (68) and (70), it is concluded

As a result, there is a third-order phase transition near the point III on the subinterval 3).

The second‑order phase transition
As seen in the previous section, in Fig. 1, if one moves on the graph from the right side to the left passing through 
the point III, Fig. 8 is converted to Fig. 7. Thus, the density must be redefined as (62) on the interval 3) and as a 
result Fig. 7 will be replaced by Fig. 10. In this section, it is seen that by increasing Ã continuously from ÃIII to 
ÃIV in Fig. 11, the distance between ẽ and ã goes to zero in Fig. 10. Thus, the curve between the points III and 
II in Fig. 1 will be replaced by the curve between the points III and IV in Fig. 11. Also, as seen in “Studying the 
second subinterval” section, the curve between the points I and II must be removed. Thus, the graph of the area 
versus σ̃ is converted to the curve from the left side to the point I and the curve from the point IV to the right 
side in Fig. 11. It was seen that the graph of the density as a function of z̃ was similar to Fig. 5 for σ̃V < σ̃ < σ̃I , 
while it is seen that the graph is similar to Fig. 10 for σ̃IV < σ̃ < σ̃III . Using the fact that there is a specific density 
for a given area and the graph of the density by increasing Ã should be continuously converted from Figs. 8, 9 
and 10 and finally to Fig. 5, the curve between I and V must be removed too. Thus, in Figs. 11 and  12, the solid 
curves from V to III are replaced by the dashed curves.

In this section, first, the points IV and V will be found and then the phase transition, to go from IV to V, will 
be obtained.

At the point IV, ã and ẽ are equal because the density at the point IV is the same as one at the point V and so 
the graph of the density at the point IV is like Fig. 5. Thus, one can use the following change of variables

Using (50), one obtains

(64)b̃III = −0.938782, ãIII = 0.267962, d̃III = ẽIII = −0.207295.

(65)
P = −0.047M2 − 018U − 0.03MX − 0.047X2,

U = −0.15M2 − 0.1MX − 0.15X2.

(66)

P =P1 �+ P3/2 �
3/2 + P2 �

2,

M =M1/2 �
1/2 +M1 �+M3/2 �

3/2 +M2 �
2,

X =X1/2 �
1/2 + X1 �+ X3/2 �

3/2 + X2 �
2,

U =U1 �+ U3/2 �
3/2 + U2 �

2,

(67)

P =− 0.064�+ 0.048�2,

M =1.61�1/2 − 0.125�− 0.498�3/2 + (−0.01− X2)�
2,

X =− 1.61�1/2 − 0.125�+ 0.498�3/2 + X2 �
2,

U =− 0.535�+ 0.18�2.

(68)(F̃ ′3)III (Ã) = −0.07− 0.034�+ 0.0129�2 + O(�3).

(69)� = −0.0414�+ 0.00747�2.

(70)(F̃ ′w)III (Ã) = −0.07− 0.034�+ 0.0066�2 + O(�3).

(71)(F̃ ′3)III (Ã)− (F̃ ′w)III (Ã) = 0.0063�2 + O(�3).

(72)ã = ẽ = ν, d̃ = γ + η, b̃ = γ − η.
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Now, using (51), (52) and the above relations, the following two equations are obtained

The roots of Eq. (74) are

and

Substituting (72) and (73) into (54), one has

Now, one should calculate this integral and substitute (76) and (77) for ν in the result of the integral, one by one. 
Using ν1 , one can obtain

and using ν2 , one can get

that (75) has been used to obtain Ãi’s. At this step, one should study Ã1 , Ã2 and Ã3 to find the point IV. It is seen 
that the graph of the density for Ã = Ã2 is like Fig. 6 that is not nonnegative, so this answer is incorrect. On the 
other hand, the graphs of the density for both Ã1 and Ã3 are like Fig. 5. Thus, to investigate which answer is cor-
rect, one should find the point IV numerically. Using (50), (51), (52) and (54) and starting from the point III, by 
increasing Ã little by little and using the relations in the subinterval 3), one can obtain b̃ = −0.9069 , d̃ = −0.4689 , 
ẽ = −0.09765 and ã = 0.2117 for Ã = Ã3 . Thus, this answer is unacceptable because the initial condition ẽ = ã 
is not satisfied for Ã = Ã3 . Increasing Ã further, for Ã = Ã1 , one can plot the density as a function of z̃ . It is seen 
that the graph is like Fig. 5, and so the point IV is specified by Ã1 , γ1 , and ν1 . Thus, the numerical values of the 
unknown parameters at the point IV are as follows

Using

and also using (50) and (51), one can obtain

Using these two relations, it is clear that if U = −X then P, M, U2 and X2 are of the same order, but if U  = −X 
then P, M, U and X are of the same order.

Thus, for U  = −X , one can consider

where � = Ã−ÃIV

ÃIV
 and so � is negative on the subinterval 3). One can use (50, (51), (52) and (54) to calculate the 

unknown parameters P1 to X2 that two sets of vaues are obtained. Using one of these sets, it is seen that 
X = −0.9375� , and U = −.0057� . Using (81) and (82), the inequality ã < ẽ is obtained that is incorrect 

(73)η2 = −
4γ 2 + (γ + ν)(3+ 4ν)

2
.

(74)− 2γ ν(3+ 4γ + 4ν)−
1

2
(3+ 8γ ){4γ 2 + (γ + ν)(3+ 4ν)} = 0,

(75)−
3

16
{γ + 4γ 2 − 4γ ν − ν(3+ 4ν)}{4γ 2 + (γ + ν)(3+ 4ν)}Ã = 1.

(76)ν1 = −
9+ 48(γ + γ 2)+

√

81+ 432γ − 288γ 2 − 3840γ 3 − 3840γ 4

24+ 96γ

(77)ν2 = −
9+ 48(γ + γ 2)−

√

81+ 432γ − 288γ 2 − 3840γ 3 − 3840γ 4

24+ 96γ
.

(78)

ν
∫

γ+η

dz̃

[

Ã

2
(3+ 4z̃ + 4γ + 4ν)(z̃ − ν)

√

z̃2 − 2z̃γ +
1

2
{6γ 2 + (γ + ν)(3+ 4ν)}

]

= 0.

(79)(γ1 = −0.67748, Ã1 = 48.2053), (γ2 = −0.42, Ã2 = 62.2),

(80)γ3 = −0.602, Ã3 = 37.8042,

(81)ÃIV = 48.2053, ãIV = ẽIV = 0.12023, d̃IV = −0.44966, b̃IV = −0.905313

(82)b̃ = b̃IV (1+ P), d̃ = d̃IV (1+M), ẽ = ẽIV (1+ X), ã = ãIV (1+ U)

(83)
P = 0.0729U + 0.0729X + 0.03699U2 + 0.03699X2 + 0.0306UX,

M = −5.584P − 0.3257U − 0.3257X − 0.0938U2 − 0.0938X2 − 0.0626UX.

(84)

P = P1 �+ P2 �
2

M = M1 �+M2 �
2

U = U1 �+ U2 �
2

X = X1 �+ X2 �
2,
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because b̃ < d̃ < ẽ < ã . Using the other one, it is seen that ẽ = ã , up to O(�2) , so this is incorrect too. Thus, 
U  = −X is not acceptable, and so U = −X.

For U = −X , one can expand (50) and (51) up to order P and obtain

Using (85), (52) and Ã = ÃIV (1+�) , it is obtained (up to order 
√
�)

Because � is negative and U = −X , so the correct answer (up to order 
√
� ) is X = 1.15 i

√
� . Thus, one can 

obtain

Expanding H̃(z̃) for large z̃ and using F̃ ′3(Ã) = H̃4(z̃)+ H̃5(z̃) near the point IV, it is seen that

Now, one should find the point V that is in the subinterval 1) and ÃV = ÃIV = 48.2053 . Because the areas related 
to the points V and IV are the same , so the graphs of the density at these two points must be the same qualitativey 
and also quantitatively. It can be concluded that

Thus, one can obtain F̃ ′w near the point V, like “The third-order phase transition” section. Up to order � , one 
can arrive at

Using (88) and (90), it is seen that

It is clear that there is a second-order phase transition and (F̃ ′3)IV (Ã) > (F̃ ′w)V (Ã) because � is negative.This is 
a new result because in all previous papers there were just third-order phase transitions. Now, one can plot F̃ ′ 
as a function of Ã as shown in Fig. 12. In this figure, the solid curves from I to II, I to V, and II to III must be 
replaced by the dashed curve from III to IV. Meanwhile, in Fig. 12 there are two regions resembling triangles, and 
the surface areas of these two triangles should be the same. The proof for that comes from the fact that one can 
go from the point III to the point IV through two different paths, the wrong one which goes through the lower 
curve (III to II, II to I, and then I to IV), and the correct one which goes from III to IV directly. The difference 
of the free energies at IV and III should be the same following both paths. This results that the surface areas of 
the triangle-like regions are equal.

Maxwell construction
Van der Waals equation of state for a gas is

where n is the number of moles, T is temperature, p is pressure, and V is the total volume of the gas. R is the gas 
constant that is R = 8.3145 J

mol.K . a and b are positive experimental constants that are specific for any specified 
gas. This relation, can also be rewritten as

where b′ = b
NA

 , a′ = a
N2
A

 , v = V
N  (N is the total number of particles), kB = 1.38× 10−23 J

K that is Boltzmann’s 
constant, and NA = 6.02× 1023 that is Avogadro’s number. Using above relation, it is seen that in the inflection 
point, using

there are the following three conditions

The point with these conditions is named critical point. If (93) is rewritten in terms of ṽ , p̃ and T̃ where

(85)P = 0.04X2, M = −0.36X2.

(86)(X)1 = −1.15 i
√
�, (X)2 = 1.15 i

√
�.

(87)X = 1.15 i
√
�+ X1 �, U = −1.15 i

√
�− X1 �, P = −0.057�, M = 0.487�.

(88)(F̃ ′3)IV (Ã) = −0.09396− 0.031046�+ O(�2).

(89)ãV = d̃IV = −0.44966, b̃V = b̃IV = −0.905313, σ̃V = −0.6775

(90)(F̃ ′w)V (Ã) = −0.09396− 0.013411�+ O(�2).

(91)(F̃ ′3)IV (Ã)− (F̃ ′w)V (Ã) = −0.017635�+ O(�2).

(92)
(

p+
an2

V2

)

(V − nb) = nRT ,

(93)
(

p+
a′

v2

)

(v − b′) = kBT ,

(94)∂p

∂v
|c = 0,

∂2p

∂v2
|c = 0,

(95)vc = 3b′, Tc =
8a′

27b′kB
, pc =

a′

27b′2
.
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then (93) is converted to

It is seen that the above relation is independent of a′ and b′ . Now, one can plot p̃ as a function of ṽ (for van der 
Waals isotherms) for T = Tc , T > Tc , and T < Tc as shown in Fig. 13. In Fig. 14 that is for T < Tc , the solid 
curve between 1 and 2 should be removed and 1 must be connected to 2 directly and, meanwhile, the surface 
areas of regions B and C should be the same35. If one plots chemical potential as a function of pressure, as shown 
in Fig. 15, comparing with Fig. 14, the region resembling triangle should be removed from the graph. Thus, the 
chemical potential experiences a first-order phase transition at the point 1 (or 2) and as a result the free energy 
of the substance experiences a second-order phase transition because the chemical potential is derivative of the 
free energy.

Comparing gYM2 with Maxwell construction
Comparing Figs. 11 and 14 and also Figs. 12 and  15, it is seen that Ã is equivalent to pressure, σ̃ is equivalent 
to volume and F̃ ′ is equivalent to chemical potential. The points V and IV in gYM2 are equivalent to the points 
1 and 2 in Maxwell construction, respectively. The free energy of the system experiences a second-order phase 
transition to go from V to IV, and also the same transition occurs to go from 1 to 2. The surface areas of regions 
B and C in Fig. 14 are the same and also the surface areas of the triangle-like regions in Fig. 12 are the same.

If one considers G(z) = z4 + �z2 instead of G(z) = z4 + �z3 , and uses the relations of “The free energy” 
section, it is seen that τ̃ 2 is negative for all σ̃ . Thus, there is no real answer.

However, if one considers G(z) = z4 + �z instead of G(z) = z4 + �z3 , and uses “The free energy” section, 
it is obtained

(96)ṽ =
v

vc
, p̃ =

p

pc
, T̃ =

T

Tc
,

(97)(3ṽ − 1)
(

p̃+
3

ṽ2

)

= 8T̃ .

(98)Ã =
48σ̃ 2

1− 16σ̃ 3 − 80σ̃ 6
,

Figure 13.   Pressure as a function of volume(isotherms).

Figure 14.   Pressure as a function of volume for T < Tc.
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where Ã = A �
4/3 and σ̃ = σ

�1/3
 . Thus, one can plot Ã as a function of σ̃ as shown in Fig. 16. This figure is similar 

to Fig. 13 for T > Tc.
As a result, G(z) in gYM2 plays the role of temperature in Maxwell construction. This comparison is comple-

tety new and there is not like this in other papers.

φ6 + �φn(n < 6) models
To complete the previous section, one should study more models such as φ6 + �φn(n < 6) . If

by rescaling z̃ = z/� , and using (11) and (17), one can obtain

where Ã = A�5 . Because H̃(z̃) should behave like z̃−1 for z̃ → ∞ , so using (100) and also (34) and (35), one 
can arrive at

(99)G(z) = z6 + �z5,

(100)

H̃(z̃) =Ã

[

1

2
(6z̃5 + 5z̃4)−

1

128

√

(z̃ − ã)(z̃ − b̃) {105(ã4 + b̃4)+ 20b̃3(5+ 6z̃)

+ 24b̃2z̃(5+ 6z̃)+ 32b̃z̃2(5+ 6z̃)+ 64z̃3(5+ 6z̃)+ 20ã3(5+ 3b̃+ 6z̃)

+ 6ã2(9b̃2 + 2b̃(5+ 6z̃)+ 4z̃(5+ 6z̃))+ 4ã(15b̃3 + 3b̃2(5+ 6z̃)

+ 4b̃z̃(5+ 6z̃)+ 8z̃2(5+ 6z̃))}
]

(101)
1

16
Ã [5(8σ̃ 4 + 24σ̃ 2τ̃ 2 + 3τ̃ 4)+ 6σ̃ (8σ̃ 4 + 40σ̃ 2τ̃ 2 + 15τ̃ 4)] = 0

Figure 15.   Chemical potential as a function of pressure for T < Tc.

Figure 16.   Surface area for G(z) = z
4
+ �z.
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The last two equations, lead to

Using these two equations and the condition τ̃ 2 ≥ 0 , and also using the fact that τ̃ and Ã should not be infinity, 
the following condition is obtained

Now, by using (104), one can plot Ã as a function of σ̃ on the interval (105) as shown in Fig. 17. It is seen that 
this figure is similar to Fig. 13 for T < Tc.

In the same way as before, if one considers

by rescaling z̃ = z/
√
� and doing some calculations, one can get τ̃ 2 < 0 for all σ̃ . Thus, this model has not real 

answers.
If

by rescaling z̃ = z
�1/3

 and using the condition τ̃ 2 ≥ 0 , one has

and

By plotting Ã as a function of σ̃ as shown in Fig. 18, it is seen that the figure is similar to Fig. 13 for T < Tc.
Now, if one considers

by rescaling z̃ = z
�1/4

 and doing some calculations, it is seen that τ̃ 2 < 0 for all σ̃ . Thus, there is no reall answer 
for this model.

Finally, by considering

(102)
5

16
τ̃ 2 [4(4σ̃ 3 + 3σ̃ τ̃ 2)+ 3(8σ̃ 4 + 12σ̃ 2τ̃ 2 + τ̃ 4)] =

1

Ã
.

(103)τ̃ 2 =−
2
(

30σ̃ 2 + 60σ̃ 3 +
√
30
√

σ̃ 4(25+ 84σ̃ + 84σ̃ 2)

)

15(1+ 6σ̃ )
,

(104)

Ã =[15(1+ 6σ̃ )3]/[σ̃
(

30σ̃ 2 + 60σ̃ 3 +
√
30
√

σ̃ 4(25+ 84σ̃ + 84σ̃ 2)

)

{20σ̃ 2

+ 14σ̃ 2
(

24σ̃ 3 +
√
30
√

σ̃ 4(25+ 84σ̃ + 84σ̃ 2)

)

+
(

140σ̃ 3 +
√
30
√

σ̃ 4(25+ 84σ̃ + 84σ̃ 2)

)

+ 7
(

48σ̃ 4 +
√
30σ̃

√

σ̃ 4(25+ 84σ̃ + 84σ̃ 2)

)

}].

(105)−0.8333 < σ̃ < 0.

(106)G(z) = z6 + �z4,

(107)G(z) = z6 + �z3,

(108)
Ã =− (1800σ̃ 3)/[

(

1+ 20σ̃ 3 +
√

1− 20σ̃ 3 + 280σ̃ 6
)

{1− 70σ̃ 3

×
(

8σ̃ 3 +
√

1− 20σ̃ 3 + 280σ̃ 6
)

+
(

100σ̃ 3 +
√

1− 20σ̃ 3 + 280σ̃ 6
)

}],

(109)−0.793701 < σ̃ < 0.

(110)G(z) = z6 + � z2,

Figure 17.   Surface area for G(z) = z
6
+ �z

5.
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and rescaling z̃ = z
�1/5

 and also doing the calculations mentioned earlier, one can obtain

and

Now, one can plot Ã as a function of σ̃ as shown in Fig. 19 and see that this figure is similar to Fig. 13 for T > Tc.
As a result, as seen in the previous section, the model G(z) plays the role of the temperature and so by using 

an appropriate model in two-dimensional space-time, one can describe a physical event in four-dimensional 
space-time.

Concluding remarks
First, a gYM2 on the sphere with quartic and cubic couplings was studied. The effect of the cubic coupling on the 
density and the free energy was investigated. It was seen that there were four subintervals that in two of which 
the density was not nonnegative, which should be nonnegative, and so had to be redefined. Redefining the 
density, the free energy experienced two phase transitions one of which was of third order, like previous papers, 
and the other one was of second order, which is a novel result. Second, gYM2 for G(z) = z4 + �zn(n < 4) and 
Maxwell construction were compared with each other and it was seen that there was a relationship between two-
dimensional space-time and four-dimensional space-time. In the end, the models G(z) = z6 + �zn(n < 6) were 
studied and by comparing with Maxwell construction the equivalent parameters in two-dimensional space-time 
and Maxwell construction such as pressure, temperature and volume were found. This comparison is completety 
new and there is not like this in other papers. As a result, this paper can be a starting point for finding more 
relationships between two-dimensional and four-dimensional space-time to describe physical events accurately.

(111)G(z) = z6 + � z,

(112)Ã = (90σ̃ 2)/[
(

10σ̃ 3 +
√

−5σ̃ + 70σ̃ 6
)(

1+ 14σ̃ 2
(

4σ̃ 3 +
√

−5σ̃ + 70σ̃ 6
))

],

(113)−0.698827 < σ̃ < 0.

Figure 18.   Surface area for G(z) = z
6
+ �z

3.

Figure 19.   Surface area for G(z) = z
6
+ �z.
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