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Abstract

The LHCD experiment at CERN has produced many intriguing results in b — s¢ and
b — clv decays, which point to potential contributions from New Physics. This thesis
describes an analysis of B® — K*ut~where the decay amplitudes are measured as
functions of ¢2, the dimuon invariant mass squared. Measuring the angular distribution of
this decay results in a plethora of observables that can be used to constrain the type of
New Physics contributions. Owing to the number of parameterisations of the Standard
Model and other models which can describe New Physics effects, Legendre polynomial
ansatzes are used to describe the variation with ¢? in order to be as model-independent
as possible. A selection strategy for BY — K*Ou% i ~is outlined, resulting in low levels of
misidentified and combinatorial background. Pseudoexperiment studies are performed
in order to develop the analysis strategy and further understand the symmetries of the
angular distribution and the fit. Blinded results from 9 fb~! of data collected by the
LHCDb detector at the LHC at CERN are shown, where the fit is performed in the region
1.25 < ¢®> < 8 GeV?/c*. The fit is performed with four-parameter ansatzes for the P-wave
and one-parameter ansatzes for the S-wave. Pseudoexperiment studies are performed from
the data fit. The data fit quality is determined to be good, with p-value = 70%. Where the
Hessian is not a good description of the uncertainties, fits to the log-likelihood profiles are
performed with bifurcated parabolas to extract the uncertainties, resulting in good-quality

statistical coverage.



Statement of Originality

The work presented in this thesis is the result of research I performed with the High
Energy Physics group at Imperial College London between February 2020 and September
2023. This is with support from members of the Imperial College LHCb group, and
members of the LHCb collaboration. I performed the work presented in this thesis, with
the exceptions stated in the relevant chapters, such as producing the simulation and data
samples, and the BT — K**u = BDT. Any plots which are not produced by myself are

appropriately referenced.
This thesis has not been submitted for any other qualification.

Matthew Birch

September 2023



Copyright Declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents
are licensed under a Creative Commons Attribution-Non Commercial 4.0 International
Licence (CC BY-NC).

Under this licence, you may copy and redistribute the material in any medium or
format. You may also create and distribute modified versions of the work. This is on the
condition that: you credit the author and do not use it, or any derivative works, for a
commercial purpose.

When reusing or sharing this work, ensure you make the licence terms clear to others
by naming the licence and linking to the licence text. Where a work has been adapted,
you should indicate that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not

included in this licence or permitted under UK Copyright Law.



Acknowledgements

Firstly, I would like to express my sincere gratitude to my supervisor, Mike McCann, for
his exceptional mentorship and guidance throughout my PhD. Your expert advice and
unwavering encouragement were instrumental in shaping my research and driving me to
achieve my best work. I feel incredibly honoured to have had the opportunity to work with
you.

I am also deeply grateful to the amplitude ansatz team: Kostas Petridis, Rui Wang, and
Paula Alvarez—Cartelle, for the invaluable help, guidance, and many insightful discussions.
I extend my thanks to Mitesh Patel for his excellent support and guidance, and to Mark
Smith for the interesting and helpful discussions. I thank the LHCb Imperial group for
creating such a wonderful and supportive community that I am proud to be part of.

To my friends, I would like to extend my heartfelt gratitude for your constant support
and motivation that has made my PhD journey an unforgettable experience. Lastly, 1
express my profound appreciation to my family, including my parents Jane and Rich, and

my sister Rachel, for their unwavering support and encouragement.



Contents

List of Tables 9
List of Figures 11
1 Introduction 22
2 Theory 27
2.1 The Standard Model . . . . . .. .. .. L 27
2.2 Problems with the Standard Model . . . . . . .. .. ... ... .. ..... 29
2.3 Thedecay B® — K*0utpu= . . . . ... . ... 31
2.4 Effective field theories . . . . . . . . ... oL 33
2.5 Hadromiceffects . . . . . . . . .. 36
2.6 Angles used to parameterise the decay B — K*%uTp= . . . . .. .. .. .. 38
2.7 Differential decay rate of B — K*%utpu= . ... ... ... .. ... 41
2.8 CP-averages and asymmetries . . . . . . . . . . ... 43
2.9 Including mpur . - -« « o o e 45
2.10 Symmetries of the angular distribution . . . . . . .. .. ... ... .. 48
3 The LHCb experiment 51
3.1 The Large Hadron Collider . . . . . .. .. .. ... .. .. ... ...... 51
3.2 The LHCb experiment . . . . . . . . .. ... ... ... ... 52
3.3 LHCb Trigger System . . . . . . . . .. 56
3.4 LHCb Upgrade (2019-2022) . . . . . . . o o oo v i ittt 56
3.5 Data flow of the LHCb experiment . . . . . . ... ... ... ........ 59
3.6 Using the LHCb experiment to measure the decay B® — K*0utpu= . . . .. 59



4 Analysis flow of the amplitude ansatz analysis of B® — K*0ut ;™

5 Selection of B° — K*%u*u~ candidates
0.1 Trigger . . . . Lo e
5.2 Stripping . . . . . .. e
5.3 Cleaning cuts . . . . . . . . . L
5.4 Peaking background vetoes . . . . . ... oL
55 BT — KtuTp= veto . . . . o o o
5.6 Combinatorial BDT . . . .. .. .. ...
5.7 BT — K*Tutum BDT . ...
5.8 Validation of the selection on the same-sign muon sample . . . . . ... ..
5.9 Performance of the selection . . . . . . . . ... ... ... .. ... ..., .
6 Acceptance
6.1 Goodness-of-fit . . . ... L
6.2 Choice of acceptances . . . . . . . . . ... e
7 Fitting Strategy
7.1 Signal PDF . . . . ..o
7.2 Background PDF . . . .. ..o
7.3 Unbinned extended maximum likelihood fit . . . . . . ... ... ... ...
7.4 Fitstrategy . . . . . ..
8 Pseudoexperiment studies
8.1 Studyoftheb5D fit . . . . . . .. .. L
8.2 Amsatz choice . . . . . . . ..
8.3 Study of apparent fit biases . . . . . . . .. ... L

9 Pseudoexperiments generated from the data fit

10 Results from the control mode fits

10.1 CP-averages fit . . . . . . . . . .

10.2 CP-asymmetries fit . . . . . . . .. L

10.3 Using BY — K*9.J /4 to verify the acceptance . . . . . . ... ........

61

63
64
65
67
68
71
73
85
89
96

107
109
111

114
114
120
121
123

125
125
135
141

155



11 Results in the region 1.25 < ¢> < 8 GeV?2/c? 185

11.1 Fit in the CP-asymmetries configuration with a 4-parameter ansatz . . . . . 186
11.2 Fit in the CP-averages configuration with a 5-parameter ansatz . . . . . . . 186
11.3 Fit in the CP-averages configuration with a 4-parameter ansatz . . . . . . . 189
11.4 Systematic uncertainties . . . . . . . .. ..o o 189
12 Conclusions 198
Bibliography 208

A Comparison of the input variables in B’ — K*U.J/y) simulation and
sWeighted B° — K*0J/i) data for the combinatorial BDT for Run 1,

2016, and 2018 209

B Combinatorial BDT efficiency as a function of cosfy, cosfx, and ¢ for
B — K*0J /¢ simulation and B° — K*°J/v data, in Run 1, 2016, and 2018,

in the nominal and narrow mg, windows 219



List of Tables

2.1

5.1

5.2

5.3

5.4
9.5

5.6
5.7

5.8
5.9

5.10

6.1

The Standard Model of particle physics. . . . . . . . ... ... ... ... .

Trigger requirements in B® — K*%u* 1~ analyses. There are three trigger

stages: Level 0 (LO), High Level Trigger 1 (HLT1), and High Level Trigger 2

Cleaning cuts which are identical to those in the ongoing binned angular
analysis. . ...
Hadron general PID requirements . . . . ... ... .. ... ........
A summary of the peaking backgrounds. The type of background and mis-1D
is also specified. . . . . . ...
Training variables used in the peaking background BDTs. . . . . ... . ..
Signal efficiency and background rejection efficiency for each background,
with figures showing the BDT response for each background indicated. . . .
Optimum combinatorial BDT working points and efficiencies. . . . . . ..
p-values when comparing fits to angles in a B® mass region to the distribu-
tions in the other B® mass regions. . . . . . .. ... .. .. ... .. ....

Summary of applied selections and efficiencies. . . . . ... ... ... ...

J /1 signal data yields, number of acceptance simulation events which pass
the selection in the J/v window, and weight used for each sample when

computing the B® acceptance. . . . . . .. ... ...

28



6.2 J/4 signal data yields, number of acceptance simulation events which pass
the selection in the J/v window, and weight used for each sample when
computing the B0 acceptance. . . . . . . . ...

6.3 J/v signal data yields, number of acceptance simulation events which pass
the selection in the J/v window, and weight used for each sample when

computing the combined BY and BO acceptance. . . . . ... .. ... ...

10.1 Results for the obsvervables from the Run 1 and 2016 B® — K*0.J/4 fits,
where the fits are performed in the CP-averages configuration. . . .. . ..
10.2 Results for the obsvervables from the 2017 and 2018 B? — K*U.J/4 fits,
where the fits are performed in the CP-averages configuration. . . .. . ..
10.3 Comparisons of obsvervables (in numbers of o) for the B® — K*0.J /1 fits
between each data period, where the fits are performed in the CP-averages
configuration. . . . . . . . ...
10.4 Results for the obsvervables from the Run 1 and 2016 B? — K*0.J /4 fits,
where the fits are performed in the CP-asymmetries configuration. . . . . .
10.5 Results for the obsvervables from the 2017 and 2018 B? — K*V.J /v fits,
where the fits are performed in the CP-asymmetries configuration. . . . . .
10.6 Comparisons of obsvervables (in numbers of o) for the B® — K*V.J/y
fits between each data period, where the fits are performed in the CP-
asymmetries configuration. . . . .. .. ..o Lo
10.7 p-values (in %) from chi-squared goodness-of-fit test when comparing fits in

bins of (a, logyo(maz(p;t,p,))) to the combined fit in each data period.

11.1 Ratio between the LO systematic uncertainty and the smaller of the upper

or lower statistical uncertainty for each fit parameter. . . . . . ... .. ..

10

. 184



List of Figures

1.1
1.2

1.3

1.4

1.5

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6

5.1

Rp and Rp~ measurements as of 2023 [1]. . . . . ... ... ... ... ... 23

Branching fraction of B® — K*0u* ;. measured with Run 1 data at LHCb

Branching fractions of decays involving b — sff¢ transitions measured at
LHCD [3] [4]. « « o o o e e 24
An angular observable from the B® — K*0u% = analysis at LHCb which
uses Run 1 and 2016 data [7]. The data are shown by the black points and
the orange bands show theoretical predictions from Ref. [8]. . . . . . . . .. 24
Global fit of b — s¢ anomalies,where a New Physics coupling Cy, is

introduced, in addition to a Cy, = —C'¢, New Physics contribution [9]. . . 25

Example Feynman diagrams describing the decay B® — K*0utpu=. . . . .. 32
Dimuon invariant mass squared (¢?) spectrum of the decay B® — K*0u*pu=. 35

Schematic of the angular basis used to parameterise B — K*u*pu~ and

BY — K*Outp=decays [53]. . . . .. 40
Plot of the bb production cross-sections at the LHC [64]. . . . .. ... ... 53
Schematic of the LHCb detector [65]. . . . . ... ... ... ... ...... 53
Schematic of RICH1 and RICH2 [70]. . . .. ... ... ... ........ 54
Mlustration of the LHCD trigger used in Run 2 [73]. . . .. ... ... ... 57
MaPMTs used for the RICH upgrade. . . . . . ... ... ... .. .... 58
Installation of the columns in the RICH1 detector. . . . ... ... ... .. 58

Schematic showing the primary vertex, decay (secondary) vertex, flight

distance and impact parameter. . . . . . .. ... Lo 67



5.2

5.3

0.4

9.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

5.20

Result of the training of the peaking background BDTs. . . . . .. ... .. 72

Training variables for the Run 1 combinatorial BDT. . . . . .. ... .. .. 76
Training variables for the Run 1 combinatorial BDT. . . . . ... .. .. .. 7
Training variables for the Run 1 combinatorial BDT. . . . . ... ... ... 78
Training variables for the Run 2 combinatorial BDT. . . . . .. ... .. .. 79
Training variables for the Run 2 combinatorial BDT. . . . . ... .. .. .. 80
Training variables for the Run 2 combinatorial BDT. . . . . ... ... ... 81

Comparison  between B? — K*0J/1) simulation and sWeighted
BY — K*0.J/4 data for the BDT training variables for 2017.. . . . . . . .. 82
Comparison between B? — K*0J/1) simulation and sWeighted
BY — K*0.J /4 data for the BDT training variables for 2017.. . . . . . . .. 83
Comparison  between B? — K*0J/1) simulation and sWeighted
BY — K*0.J /4 data for the BDT training variables for 2017.. . . . . . . .. 84
Comparison  between B? — K*0J/1) simulation and sWeighted
B — K*0J /v data for cos O for 2017. . . . . .. ... L. 85
Combinatorial BDT efficiency as a function of cos 8y, cos 0k, and ¢ for 2017
BY — K*0J /4 simulation and 2017 B® — K*0J/¢p data. . . . .. ... ... 86
Combinatorial BDT efficiency as a function of cosf,, cosfg, and ¢ for
2017 BY — K*YJ /1 simulation and 2017 B® — K*0.J /¢ data, in the region
876 < mpx < 916 MeV/cz. This better aligns the data with the simulated
P-wave state. . . . . . . .. L 87
Result of the training of the combinatorial BDT for Run 1 and Run 2. . . . 88
ROC curves from the training of the combinatorial BDT for Run 1 and Run 2. 88
Signal efficiency, background rejection efficiency, and significance for the
Run 1 BDT as a function of BDT cut point. . . . . . ... ... ... .... 89
Signal efficiency, background rejection efficiency, and significance for the
Run 2 BDT as a function of BDT cut point. . . . . . ... ... ... .... 90
cos @y and cos @k in the lower B® mass sideband for all run periods, in the
regions 1.25 < ¢ < 8 GeV?/ct and 11 < ¢ < 12.5 GeVZ/ct. . . . . . .. .. 90
cos By and cos A in the upper mass B° sideband for all run periods, in the

regions 1.25 < ¢ < 8 GeV?/c* and 11 < ¢2 < 12.5 GeV2/c* . . ... .. .. 91

12



5.21

0.22

5.23
5.24

5.25

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

BY mass distribution in the same-sign muon sample before and after applying
the combinatorial BDT. . . . . . . ... ... ... ... . . 92
Combinatorial BDT efficiency in the B mass on the same-sign muon sample. 92
Correlation between BDT and B? mass in the same-sign muon sample. . . . 93
B° mass distribution in the same-sign muon sample with the full selection
applied, in the region 1.25 < ¢?> < 8 GeV?/c*. An exponential function is
fitted to this distribution. . . . . . .. ..o 94
B° mass distribution in the same-sign muon sample with the full selection
applied, in the region 11 < ¢ < 12.5 GeV?/c*. An exponential function is
fitted to this distribution. . . . . . .. ..o oo 94
Results from fits to the angles in the low ¢? region in the selected same-sign
muon sample, for the first Legendre coefficient. . . . . . .. .. .. ... .. 95
Results from fits to the angles in the low ¢? region in the selected same-sign
muon sample, for the second Legendre coefficient. . . . . . . ... ... ... 96
Results from fits to the angles in the interresonance region in the selected
same-sign muon sample, for the first Legendre coefficient. . . . . . . .. .. 97
cos by, cosfx and ¢ in different BY mass regions in the same-sign muon
sample in the low ¢? region with fits to second order Legendre polynomials. 98
cos By, cosf and ¢ in different B mass regions in the same-sign muon
sample in the interresonance region with fits to first order Legendre polynomials. 99
Expected peaking background yields relative to the signal in the two ¢?
regions of interest, for the full dataset. This is after the trigger, stripping
and cleaning cuts apart from the hadron PID are applied. . . . . .. .. .. 100
Expected peaking background yields relative to the signal in the two ¢>
regions of interest, for the full dataset. This is after the trigger, stripping
and cleaning cuts (including hadron PID) are applied. . . . .. .. ... .. 100
Expected peaking background yields relative to the signal in the two ¢?
regions of interest, for the full dataset. This is after the trigger, stripping,

cleaning cuts, and peaking background veto BDTs are applied. . . . . . .. 101

13



5.34

5.35

5.36

5.37

5.38
5.39

6.1
6.2

7.1

7.2

7.3

7.4

Expected peaking background yields relative to the signal in the two ¢>
regions of interest, for the full dataset. This is after the trigger, stripping,
cleaning cuts, peaking background veto BDTs and combinatorial BDT are
applied. . . . . L 101
Expected peaking background yields relative to the signal in the two ¢?

regions of interest, for the full dataset. This is with all of the selection applied.102

BY mass distributions for the signal and total peaking background simulation.103
cos 0y distributions for the signal and total peaking background simulation. 104
cos 0 distributions for the signal and total peaking background simulation. 105
¢ distributions for the signal and total peaking background simulation. . . . 106
Example acceptance goodness-of-fit plots. . . . . .. ... ... ... .... 111
Projections of the combined B° and B acceptance in ¢, cos 8y, cosfx, and

Theoretical predictions of the P-wave amplitudes in the transformed basis
and fits to these prediction using a four-parameter Legendre polynomial
amplitudes ansatz. The theoretical predictions shown are for the SM, where
the phases between the rare mode and the ¢(1020) and .J/v resonances are
both 5. . . . .. 116
Theoretical predictions of the P-wave amplitudes in the transformed basis
and fits to these prediction using a four-parameter Legendre polynomial
amplitudes ansatz. The theoretical predictions shown are for the SM, where

the phases between the rare mode and the ¢(1020) and .J/1 resonances are

Theoretical predictions of the P-wave amplitudes in the transformed basis
and fits to these prediction using a four-parameter Legendre polynomial
amplitudes ansatz. The theoretical predictions shown are for a NP model
With ACy = —1. o o e 117
Comparison between the B° acceptance (blue) and the BY acceptance (red)

in g%, cosly, cosOr, and ¢. . . . .. 120

14



8.1

8.2

8.3

8.4

8.5

8.6

8.7
8.8

8.9

8.10

8.11

8.12

8.13

Change in amplitude precision when comparing the 5D fit to the 4D fit at
q®> = 4 GeV?/c*, where the fitted amplitudes are transformed back into the
original untransformed amplitude basis. . . . . . ... ..o 0L 127
Change in observable precision when comparing the 5D fit to the 4D fit at
P =4GeVE/ct 128
Correlation matrix from ensembles of 4D fits to pseudoexperiments. The
ansatz proposed in [11] wasused. . . . . . . ... ... 128
Correlation matrix from ensembles of 5D fits to pseudoexperiments. The
ansatz proposed in [11] wasused. . . . . . .. ... .. 129
Average correlation matrix from 5D fits, where the amplitudes are flat in ¢2. 129
The observable Ss; as a function of my, at ¢> =7 GeVZ/ct. .. ... ... 131
Observables Ssa, Ss3, Sg4, and Sgs as functions of mp, at ¢> = 7 GeV2/c*. 132
The difference between the observable Sg; in the 4D basis where the angle
is 0 or n, and all other angles are as used in the nominal 4D basis, and Sgq
in the 5D basis. This is at ¢> =6 GeV2/c*. . . .. . .. ... .. ... ... 133
The difference between the observable Sg; in the 4D basis where the angle
is 6 or n, and all other angles are as used in the nominal 4D basis, and Sg;
in the 5D basis, in the mg, window 0.745 < mg, < 1.1 GeV/c%. This is at
P =6GeV2/ct 133
The difference between the observable Sgq in the 4D basis where the angle
is 6 or 7, and all other angles are as used in the nominal 4D basis, and Sg1
in the 5D basis, in the m g, window 0.745 < mg, < 1.1 GeV/cz. This is at
P =4GeV2/ct 134
The difference between the observable Sg; in the 4D basis where the angle
is 6 or n, and all other angles are as used in the nominal 4D basis, and Sg;

in the 5D basis, in the mg, window 0.745 < mg, < 1.1 GeV/cQ. This is at

P =2GeV2/ct 134
Observables Sg1, Sg2, Sg3, Ssa, and Sgs as functions of my, at the ¢ value
with maximal breaking of symmetry. . . . . . .. .. ... ... L. 136
Profile log-likelihoods from an example pseudoexperiement, where the fit is

performed with the ansatz proposed by [11]. . . . . ... ... ... .. ... 138

15



8.14

8.15

8.16

8.17

8.18

8.19

8.20

8.21

8.22

8.23
8.24

8.25

8.26

8.27

Correlation matrix from ensembles of 4D fits to pseudoexperiments. Here the
ansatz A = a;L;(¢%) was used, where «; corresponds to the amplitude
coefficients, and L;(¢?) are Legendre polynomials in ¢?, where ¢? is scaled
totherange —1 <z <1.. ... ... . .. . .. . . e 139
Profile log-likelihoods from an example pseudoexperiement, where the fit is
performed with a three-parameter Legendre polynomial ansatz. . . . . . . . 140
P-wave amplitudes from ensembles of fits in the 1.25 < ¢> < 7 GeV?/c* region. 142
Observables (Ss) from ensembles of fits in the 1.25 < ¢? < 7 GeV?/c? region. 143
Observables (Ps) from ensembles of fits in the 1.25 < ¢?> < 7 GeV?/c* region.144
Distribution of fits of Re(Aﬁ ) of pseudoexperiments generated from the SM
amplitude predictions. . . . . . . ... 145
Some P-wave amplitudes from ensembles of fits in the 1.25 < ¢> < 7 GeV?/c*
region, where the pseudoexperiments are generated with nominal sample
yields and 10x nominal sample yields. . . . . . . ... ... ... ... ... 146
Some P-wave observables from ensembles of fits in the 1.25 < ¢? < 7 GeV?/c*
region, where the pseudoexperiments are generated with nominal sample
yields and 10x nominal sample yields. . . . . . . ... ... ... ... ... 147
Distribution of fits to pseudoexperiments generated with 1x and 10X nominal
sample yields. . . . . . .. Lo 148
Physical region of S3 and Sg. . . . . .. ..o 149
Im(Aﬁ%) and Re(.Aﬁ), and S3 and S4, at ¢> = 6 GeV?/c*, where only Re(Aﬁ)
and the right-handed amplitudes are floated. . . . . . . .. ... ... ... 149
Im(Aﬁ%) and Re(Aﬁ), and S3 and S4, at ¢*> = 6 GeV?2/c?, where only Re(Aﬁ)
and Im(Aﬁ%) are floated. . . . ... Lo 150
Distribution of pseudoevents when sampling from the SM amplitude pre-
dictions at ¢> = 6 GeV?/c* and fit covariance matrix (where constant
amplitudes are fitted) for Re(.Aﬁ yand Re(AF). ... ... ... L. 150
Distribution of pseudoevents when sampling from the SM amplitude pre-
dictions at ¢> = 6 GeV?/c* and fit covariance matrix (where constant

amplitudes are fitted) for Sy and Pj. . . . . ... ... 150

16



8.28

8.29

8.30

8.31

8.32

8.33

9.1

9.2

9.3

9.4

9.5

Distribution of pseudoevents sampled from the amplitudes and fit covariance
matrix for Re(.Aﬁ Jand Re(AF). . . . . ..o
Distribution of pseudoevents sampled from the amplitudes and fit covariance
matrix for Sy and Pj. . . . ...
Distribution of fits of Re(Aﬁ ) from pseudoexperiments generated close to
the S3/S4 boundary. . . . . . .. ...
Distribution of fits of Re(Aﬁ) from pseudoexperiments generated away from
the S3/S4 boundary. . . . . ... L L L
Distribution of Re(A‘]‘J ) at ¢ = 6 GeV?/c* from an ensemble of fits where
no, upper and lower 5%, 10%, 15%, and 20% of fits in the other amplitudes
are removed. . ... ... L e
Distribution of Re(A‘]‘J ) at ¢ =4 GeV?/c* from an ensemble of fits where
no, upper and lower 5%, 10%, 15%, and 20% of fits in the other amplitudes

are removed. . ... L L e e e e e

Projections from fitting a pseudoexperiment generated in the

1.25 <> <8GeV?/ctregion. . . . . . ...
Residuals of the P-wave parameters (left-handed parallel amplitude com-
ponents) from ensembles of fits in the 1.25 < ¢? < 8 GeV?/c* region. The
value of the parameters used for the generation are from the data fit. . . .
Residuals of the P-wave parameters (right-handed parallel amplitude com-
ponents) from ensembles of fits in the 1.25 < ¢> < 8 GeV2/c* region. The
value of the parameters used for the generation are from the data fit. . . .
Residuals of the P-wave parameters (left-handed transverse amplitude com-
ponents) from ensembles of fits in the 1.25 < ¢> < 8 GeV2/c* region. The
value of the parameters used for the generation are from the data fit. . . .
Residuals of the P-wave parameters (right-handed transverse and
longitudinal amplitude components) from ensembles of fits in the
1.25 < ¢®> < 8 GeV?/c* region. The value of the parameters used for the

generation are from the data fit. . . . ... ... ... 000,

17

151

152

. 157

. 158

. 159



9.6

9.7

9.8

9.9

9.10

10.1
10.2
10.3
10.4
10.5

10.6

10.7

10.8

Distribution of fits of the P-wave amplitudes from ensembles of fits in the

1.25 < ¢*> < 8 GeV?/c? region. The value of the parameters used for the

generation are from the data fit. . . . .. ... ... ... ... ... ....
Coverage of the P-wave parameters (left-handed parallel amplitude com-
ponents) from ensembles of fits in the 1.25 < ¢> < 8 GeV2/c* region. The
value of the parameters used for the generation are from the data fit. . . .
Coverage of the P-wave parameters (right-handed parallel amplitude com-
ponents) from ensembles of fits in the 1.25 < ¢> < 8 GeV2/c* region. The
value of the parameters used for the generation are from the data fit. . . .
Coverage of the P-wave parameters (left-handed transverse amplitude com-
ponents) from ensembles of fits in the 1.25 < ¢? < 8 GeV?/c?* region. The
value of the parameters used for the generation are from the data fit. . . .
Coverage of the P-wave parameters (right-handed transverse and longitudinal
amplitude components) from ensembles of fits in the 1.25 < ¢? < 8 GeV?/c?
region. The value of the parameters used for the generation are from the

data fit. . . . .

Plots of the B — K*0.J /1) CP-averages fit to Run 1 data. . . . . . ... ..
Plots of the B — K*0.J /¢y CP-averages fit to 2016 data. . . . . . . ... ..
Plots of the B — K*0.J /1) CP-averages fit to 2017 data. . . . . . . ... ..
Plots of the B® — K*0.J /1) CP-averages fit to 2018 data. . . . . . . ... ..
Angle between the two muons in the lab frame («) against log,, of the
maximum muon momentum. This is shown for 2016 simulation in the J /¢
region and the rare mode region. . . . . . .. ... ..o
Pulls from comparing the CP-averaged observables from the Run 1 B —
K*Y.J /4 fit and the fits in the bins defined in Figure 10.5. . . . .. ... ..
Pulls from comparing the CP-asymmetries from the Run 1 B — K*0.J /4)
fit and the fits in the bins defined in Figure 10.5. . . . . . . .. ... .. ..
Pulls from comparing the CP-averaged observables from the 2016 B —
K*YJ /1 fit and the fits in the bins defined in Figure 10.5. . . . . . ... ..

18

. 163

. 164

. 165

177



10.9 Pulls from comparing the CP-asymmetries from the 2016 B° — K*0.J /4 fit
and the fits in the bins defined in Figure 10.5. . . . . . . .. ... ... ...
10.10Pulls from comparing the CP-averaged observables from the 2017 B? —
K*Y.J /4 fit and the fits in the bins defined in Figure 10.5. . . . ... .. ..
10.11Pulls from comparing the CP-asymmetries from the 2017 B® — K*0.J/4) fit
and the fits in the bins defined in Figure 10.5. . . . . . . . ... .. .. ...
10.12Pulls from comparing the CP-averaged observables from the 2018 BY —
K*J /1 fit and the fits in the bins defined in Figure 10.5. . . . . ... ...
10.13Pulls from comparing the CP-asymmetries from the 2018 BY — K*0.J /4 fit

and the fits in the bins defined in Figure 10.5. . . . . . . . . ... ... ...

11.1 Example log-likelihood profiles from the combined Run 1 + Run 2 data
fit in the region 1.25 < ¢ < 8 GeV?/c*. The fit is performed in the CP-
asymmetries configuration with four parameters for the P-wave amplitudes.

11.2 Example log-likelihood profiles from the combined Run 1 + Run 2 data fit in
the region 1.25 < ¢ < 8 GeV?/c*. The fit is performed in the CP-averages
configuration with five parameters for the P-wave amplitudes. . . . . . . ..

11.3 Projections for the combined Run 1 4+ Run 2 data fit in the region
1.25 < ¢® < 8 GeV?/ct. The fit is performed in the CP-averages configura-
tion, where each P-wave amplitude is parameterised with four parameters.
The signal is shown in blue and the background is shown in red. . . . . ..

11.4 Profile log-likelihood from the combined Run 1 4+ Run 2 data fit in the
region 1.25 < ¢> < 8 GeV?/c* for the left-handed parallel amplitudes. The
fit is performed in the CP-averages configuration with four parameters for
the P-wave amplitudes. . . . . . . . . ... ... . ...

11.5 Profile log-likelihood from the combined Run 1 + Run 2 data fit in the
region 1.25 < ¢® < 8 GeV2/c* for the right-handed parallel amplitudes. The
fit is performed in the CP-averages configuration with four parameters for

the P-wave amplitudes. . . . . . .. ... .. ... ...

19

179

181

183

187



11.6

11.7

11.8

11.9

Al

A2

A3

A4

A5

A6

AT

A8

A9

Profile log-likelihood from the combined Run 1 4+ Run 2 data fit in the region
1.25 < g% < 8 GeV?/c?* for the left-handed transverse amplitudes. The fit is
performed in the CP-averages configuration with four parameters for the
P-wave amplitudes. . . . . . . ...
Profile log-likelihood from the combined Run 1 + Run 2 data fit in the region
1.25 < ¢*> < 8 GeV?/c* for the right-handed transverse and longitudinal
amplitudes. The fit is performed in the CP-averages configuration with four
parameters for the P-wave amplitudes. . . . . . . . ... ... ... ... ..
Correlation matrix for the amplitude ansatz fit to data in the
1.25 < ¢*> < 8 GeV?/c* region for the parameters of interest. . . . . . . . ..
Goodness-of-fit plot corresponding to the fit in the 1.25 < ¢® < 8 GeV?/c?

region. The corresponding p-value is 70%. . . . . . . . . .. ... ... ...

Comparison  between B? — K*0J/1) simulation and sWeighted
BY — K*0.J/4 data for the BDT training variables for Run 1. . . . . . . . .
Comparison  between B? — K*0J/1) simulation and sWeighted
BY — K*0.J /4 data for the BDT training variables for Run 1. . . . . . . ..
Comparison  between B? — K*0J/1) simulation and sWeighted
B — K*0.J /4 data for the BDT training variables for Run 1. . . . . . . . .
Comparison  between B? — K*0J/1) simulation and sWeighted
BY — K*0.J/4 data for the BDT training variables for 2016. . . . . . . . ..
Comparison  between B? — K*0J/1) simulation and sWeighted
BY — K*0.J/4 data for the BDT training variables for 2016. . . . . . . . ..
Comparison  between B? — K*0J/1) simulation and sWeighted
B — K*0.J /4 data for the BDT training variables for 2016. . . . . . . . ..
Comparison  between B? — K*0J/1) simulation and sWeighted
BY — K*0J /4 data for the BDT training variables for 2018. . . . . . . .. .
Comparison  between B? — K*0J/1) simulation and sWeighted
BY — K*0.J/4 data for the BDT training variables for 2018.. . . . . .. ..
Comparison between BY — K*0J/i) simulation and sWeighted
B — K*0.J /4 data for the BDT training variables for 2018.. . . . . . . ..

20



B.1

B.2

B.3

BA4

B.5

B.6

Combinatorial BDT efficiency as a function of cos 8y, cos 0k, and ¢ for Run 1
BY — K*0J /¢ simulation and Run 1 B® — K*YJ/+ data. . . .. ... ...
Combinatorial BDT efficiency as a function of cosf,, cosfg, and ¢ for
Run 1 B® — K*0J /v simulation and Run 1 BY — K*°J/¢ data, in the
region 876 < my, < 916 MeV/c?. This better aligns the data with the
simulated P-wave state. . . . .. ... o oL
Combinatorial BDT efficiency as a function of cos 6y, cos 0, and ¢ for 2016
B — K*0J /¢ simulation and 2016 B® — K*0J/¢ data. . . . .. ... ...
Combinatorial BDT efficiency as a function of cosf,, cosfg, and ¢ for
2016 BY — K*Y.J/4 simulation and 2016 B® — K*0.J /4 data, in the region
876 < mp, < 916 MeV/c2. This better aligns the data with the simulated
P-wave state. . . . . . . ..
Combinatorial BDT efficiency as a function of cos 6y, cos 0k, and ¢ for 2018
B — K*0J /v simulation and 2018 B® — K*0J/¢) data. . . . .. ... ...
Combinatorial BDT efficiency as a function of cosf,, cosfg, and ¢ for
2018 BY — K*VJ /1 simulation and 2018 B® — K*0.J /4 data, in the region
876 < mp, < 916 MeV/cz. This better aligns the data with the simulated

P-wave state. . . . . . .

21

220



Chapter 1

Introduction

In recent years, experiments have measured quantities exhibiting discrepancies with respect
to the Standard Model (SM). These include branching fractions, ratios of branching
fractions, and angular coefficients. Examples of ratios of branching fractions are tests of
Lepton Flavour Universality (LFU). Ignoring lepton masses, the SM predictions for the
branching fractions of B — X /¢ are the same between the three lepton generations. There
are theoretical uncertainties of these branching fractions due to low energy QCD effects,

such as hadronic form-factors. However by measuring ratios of branching fractions, such as

B(B—D™)rv,,)

Rpe = BBSD ) these uncertainties cancel to first order. The most recent combined

Rp and Rp+~ LHCDb measurement sees a 1.90 deviation with respect to the SM, and global
fits show a 3.20 deviation with the SM, as indicated by Figure 1.1 [1].

Deviations are also seen in branching fractions. An example is the branching fraction
of B — K*Ou* =, measured with Run 1 data at LHCb, as shown by Figure 1.2 [2], where
¢ is the square of the dimuon invariant mass. This measurement is currently limited
by systematic uncertainties. Nevertheless, it has been observed that in most ¢ bins the
measured differential branching fraction is lower than the theoretical prediction. In addition
the decay BY — ¢u*pu~, measured with the Run 1 and Run 2 datasets, shows a 3.20
deviation with respect the SM, as seen in Figure 1.3a [3]. Also the differential branching
fraction of decays such as BT — K+ pu*u~ show deviations with respect to the SM (e.g.
Figure 1.3b [4]). What’s intriguing about these plots is all of these measurements show a
coherent undershooting with respect to the SM.

With regards to angular observables, these have been studied in decays such as
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Figure 1.2: Branching fraction of B — K*%u™pu~, measured with Run 1 data at LHCb [2].
The data are shown by the black points and the blue bands corresponds to the Standard Model

predictions from Refs. [5]

[6].

B® — K*9up~. The latest published analysis of B® — K*0u% ;. which measures the

angular coefficients of this decay, uses Run 1 and 2016 data from LHCb [7]. Local discrep-

ancies are seen in observables, for example the observable P;, as shown by Figure 1.4. The

P observables are defined in Chapter 2. As described by [7], fits to the angular observable

reveal discrepancies of 3¢ in the real part of the value that parameterises vector currents,

Re(Cy) (discussed further in Chapter 2).
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Figure 1.4: An angular observable from the B® — K*Ou*;~ analysis at LHCb which uses Run 1
and 2016 data [7]. The data are shown by the black points and the orange bands show theoretical
predictions from Ref. [8].

These Flavour Anomalies can be described by contributions from New Physics (NP).
Global fits claim the tension to be > 50. Examples of global fits are described in [9]. A
scenario discussed in [9] is where a NP coupling Cy,, is introduced, where the subscript p
indicates these contributions couple to muons. A Cy, = —Cyy, NP contribution is also
introduced, where Cyq is a value that parameterises axial-vector contributions and the ’
indicates right-handed quark couplings. This fit, with a p-value goodness-of-fit of 31.1%,

shows a pull of 7.1 with respect to the SM, as shown by Figure 1.5. Contours from major
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experiments are shown, in addition to the combination.

The analysis described in this thesis measures the decay amplitudes of B® — K*0y+t~
using Run 1 and Run 2 data from LHCb, which corresponds to 9 fb~! of data. As described
by Ref. [10], different models (i.e. the SM and NP models) result in different shapes of
the angular observables as a function of ¢?>. The decay amplitudes are measured unbinned
in ¢> (where ¢? is the dimuon invariant mass squared) in order to increase sensitivity to
NP, since the shape of the amplitudes and hence the angular observables in ¢? can be
exploited. There are many possible ways to theoretically describe this decay. In order to
be as model-independent as possible, ansatzes are used to describe the decay amplitudes,
as initially motivated by [11]. Providing the amplitude components and covariance matrix
allows one to generate synthetic datasets from the fit, and perform fits to these synthetic
datasets with any choice of model. A similar approach approach was performed as part
of the Run 1 analysis of B® — K*0u ;= at LHCD [12], however only the zero crossing
points (values of ¢?> where the angular observables cross zero) were published since the

log-likelihood surface was found to be non-parabolic. These zero crossing points were
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computed via bootstrapping [13].

This analysis is in collaboration with members from the Imperial, Bristol and Cambridge
groups in LHCb. Unless otherwise specified, the work described in this thesis is my own.

Chapter 2 provides a theoretical overview of this decay and Chapter 3 describes the
LHCDb experiment and data flow. Chapter 4 presents an overall analysis flow and Chapter 5
describes the data selection used in this analysis. The acceptance, which is used to account
for the angular and ¢? structures introduced by the selection, is described in Chapter 6.
The fitting strategy is described in Chapter 7 and studies with pseudoexperiments are
described in Chapters 8 and 9. The data results are shown in Chapters 10 and 11 for the

control mode and the rare mode respectively. Conclusions are drawn in Chapter 12.
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Chapter 2

Theory

This chapter describes the theoretical aspects related to this analysis. Section 2.1 provides
an overview of the Standard Model, and problems with the Standard Model are discussed
in Section 2.2. Section 2.3 describes the decay B® — K*0u% 1, which is the subject of
the analysis described in this thesis. Effective field theories, the basis of the theoretical
framework describing this decay, are discussed in Section 2.4, and hadronic effects are
described in Section 2.5. The angles used to parameterise the decay BY — K*9utpu~ are
defined in Section 2.6 and the differential decay rate is described in Section 2.7. The
CP-averages and asymmetries are defined in Section 2.8. The differential decay rate as a
function of the mass of the kaon-pion system, mg, is described in Section 2.9 and the

symmetries of the decay rates are discussed in Section 2.10.

2.1 The Standard Model

The Standard Model (SM) is a quantum field theory describing three of the four known
interactions of nature (the electromagnetic, strong, and weak interactions). Fundamental
particles are excitations of their respective quantum fields, and are presented in Table 2.1
[14].

The SM can be written in a Lagrangian formalism. Certain gauge transformations
applied to terms in the Lagrangian leaves the Lagrangian invariant. Groups can be used
to describe these transformations. The electroweak interaction, which corresponds to the

electromagnetic interaction unified with the weak interaction, obeys symmetries described
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Fermions Bosons

Up (u) Charm (c) Top (1) Gluon (g) Higgs (H)
Mass = 2.2 MeV/c? | 1.275 GeV/c? | 172.8 GeV/c?> | 0 125.3 GeV/c?
Charge = 2/3 2/3 2/3 0 0

Spin = 1/2 1/2 1/2 1 0

Down (d) Strange (s) Beauty (b) Photon ()

Mass = 4.7 MeV/c? | 95 MeV/c? 4.18 GeV/c? 0

Charge = —1/3 -1/3 -1/3 0

Spin = 1/2 1/2 1/2 1

Electron (e) Muon (u) Tau (1) W boson (W)

Mass = 511 keV/c? | 105.66 MeV /c? | 1.7769 GeV/c? | 80.433 GeV/c?

Charge = —1 -1 -1 1

Spin = 1/2 1/2 1/2 1

Electron Muon Tau Z boson (Z)

neutrino (v.) neutrino (v,) | neutrino (v,)

Mass < 0.8 eV/c? <0.19eV/c? | <182eV/c? | 91.19 GeV/c?

Charge = 0 0 0 0

Spin = 1/2 1/2 1/2 1

Table 2.1: The Standard Model of particle physics.

by the SU(2)xU(1) groups [15] [16] [17].
The SM is based on the symmetry group SU(3)cxSU(2)1,xU(1)y where C corresponds

to colour, L represents left-handed fermions, and the hypercharge Y is given by

Y = 2(Q - Iy), (2.1)

where @ is the electric charge and I3 is the third component of the weak isospin. Left-
handed quarks form a doublet under SU(2)r, with hypercharge Y = 1/3 (for up-type
quarks, Y = 2(2/3 — 1/2); for down type quarks, Y = 2(—1/3 + 1/2)). The right-handed
quarks are singlets under SU(2)r, where Y = 4/3 for up-type right-handed quarks, and
Y = —2/3 for down-type right-handed quarks [18].

In the SM, quark masses are generated through interaction with Higgs doublet ®.
Expanding the field around the ground state, in the ‘unitrary gauge’, ® = ((”+ho)/ \/5)
where h is a real scalar field and v is the Higgs field vacuum expectation value [19] [20]

[21]. The Yukawa Lagrangian describes interaction between left-handed and right-handed

quarks through the Higgs and is given by

Lyukawa = —GpQrPdr — GuQr®ur (2.2)
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where

QL= e (2.3)
dr,

is a SU(2)r, left-handed quark doublet, ur and dg are the the SU(2)r, right-handed quark
singlets, and Gp and Gy are constants. Extending this to three generations, these constants
become flavour matrices. However this results in the mass matrices after symmetry breaking
becoming non-diagonal.

In order to make the mass matrices diagonal, the left- and right- handed quarks are

redefined as

ux,i = Muy ijux,; (2.4)

dx; — Mgy ijux j,

where M are orthogonal matrices, ¢ and j correspond to the quark generations, and
X = {L, R}. Applying these transformations results in a diagonal mass matrix, in addition
to the kinetic, electromagnetic and neutral current terms. The charge-current becomes of
the form

aj (M}, Ma,) qd3, (2.5)

which manifests as mixing between the quark generations. (M;[L Mg, ) 4 can be associated

to the CKM matrix [22] [23]. Explicitly, the charge-current term becomes

dr,
a7 YW Vera | sp | (2.6)
\/5 L L L " L

br,

Vud Vus Vub
where Vogn = MJL Mo, = Vg Ves Vi
Vie Vis Vi

2.2 Problems with the Standard Model

Whilst the SM is the most successful theory of particle physics, there are several problems
with the SM, most notably observed phenomena which are unexplained. A striking example

is the absence of gravity in the SM. The most successful theory describing gravity to date is
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General Relativity (GR) [24], which is a classical theory that describes gravity in terms of the
curvature of spacetime. The SM and GR have completely different theoretical frameworks
and attempts to unify the SM and GR have been extremely challenging. An example
challenge when attempting to introduce gravity in the SM is the non-renormalisability of GR.
Nevertheless, there are several theories which can describe quantum gravity, such as string
theory and loop quantum gravity, however these theories have not been experimentally
verified.

There is a plethora of evidence for Dark Matter (DM) however the SM has no DM
candidate. Evidence for DM arises from the cosmic microwave background, gravitational
lensing, galactic clusters and velocity profiles of galaxies [25] [26] [27]. From cosmological
observations, DM is predicted to be approximately 27% of the mass-energy content of
the universe. There are several candidates for DM, such as Weakly Interacting Massive
Particles [28]. Recent limits exclude cross sections above 9.2 x 10~%® at WIMP mass of
36 GeV/c? [29]. Another candidate for dark matter is axions, which was proposed [30] [31]
to solve the strong CP problem in quantum chromodynamics [32].

The SM cannot explain a large portion of the matter-antimatter asymmetry we observe
in the universe. The Sakharov conditions for baryogenesis are baryon number violation,
CP violation, and interactions out of thermal equilibrium [33]. In principle, the SM allows
for baryon number violation through non-perturbative processes [34], however this is not
enough to account for the matter-antimatter asymmetry in the universe. No baryon number
violating process has been observed. In addition, the CP violation measured in the quark
sector so far is not enough to explain the matter-antimatter asymmetry in the universe.
Current limits on electric dipole moments such as Ref. [35] also provide constraints on
possible sources of CP violation. Recent measurements from T2K indicate CP violation
in the neutrino sector [36], with a preference near maximal CP violation, however more
data is required to determine whether the CP violation here is enough to explain the
matter-antimatter asymmetry in the universe.

There is evidence for dark energy such as from supernovae [37] and the cosmic microwave
background, however the SM has no dark energy candidate. The cosmological constant
in GR can account for dark energy, however the vacuum energy density predicted in the

SM is many orders of magnitude larger than the observed value of dark energy. Various
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proposals have been put forward to explain dark energy, such as quintessence [38] [39] or
chameleons [40], as well as black hole accretion [41].

There are also many theoretical problems in the SM, such as the hierarchy problem. The
Higgs mass in the SM has very large quantum corrections, which are orders of magnitude
larger than the corrected mass of the Higgs. Naively one would expect the corrected Higgs
mass to be of the same order of magnitude as the very large quantum corrections, i.e.
towards the Planck mass. Thus there a high amount of fine-tuning in the cancellation of
the bare Higgs mass and the quantum corrections. There is the question of why gravity is
so much weaker than the other interactions. There are several proposals to address this,
such as supersymmetry or extra dimensions.

In the SM, neutrinos are massless. However, since neutrinos are observed to oscillate
[42] [43], they are therefore required to have mass. It is currently not known how neutrinos
acquire their mass and whether neutrinos are Dirac or Majorana particles. In addition,
recent results [44] present an upper limit of the effective electron anti-neutrino mass of
0.8 eV/c? at a 90% confidence level. This is much smaller than the masses of other SM
massive particles. It is not known why the neutrinos mass is so small, as well as whether
the neutrino masses are arranged in the ‘normal hierarchy’ or the ‘inverted hierarchy’. In
addition, future measurements will determine whether CP violation in the neutrino sector
is larger than that in the quark sector [36].

There are a large number of free parameters in the SM such as the fermion masses,
Higgs mass, and elements of the CKM matrix. In addition there is no explanation for why
there are three generations of matter. To summarise, there are phenomena observed in
nature but not explained by the SM, in addition to theoretical questions regarding the
structure of the SM, with the hope of a more fundamental theory which can explain some

of these mysteries.

2.3 The decay B — K*u"u~

As discussed in Section 2.2, there are deficits with the SM, for example it cannot explain
the matter-antimatter asymmetry in our universe, and it also does not have a dark matter

candidate. One of the most effective ways to search for Beyond the Standard Model (BSM)
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Figure 2.1: Example Feynman diagrams describing the decay B® — K*Opu*p~.

physics is by measuring rare decays such as BY — K*°u* . Searching for NP through rare
decays can probe BSM physics at energies beyond those accessible by direct searches since
the BSM particle can be produced virtually. Quantities such as branching fractions and
angular observables can be measured and compared to the SM. As discussed in Chapter 1,
recent measurements in b — s€¢ and b — cfv transitions, such as B® — K*0u% ", have
revealed discrepancies with respect to the SM. By performing an angular analysis of
B% — K*9u% 1~ not only one can determine whether there is NP, but one can also deduce
the nature of the NP model.

The decay B — K*ut = occurs through the quark-level transition b — sff. It is
a Flavour Changing Neutral Current (FCNC) thus it can only occur through loop-level
Feynman diagrams in the SM, as indicated by Figure 2.1. Since this process can only occur
at loop-level and involves at least one off-diagonal CKM element (i.e. Vi), it is highly
suppressed in the SM. Studying this decay (and other rare decay processes) allows one
to search for contributions from BSM physics without large SM backgrounds. These NP
contributions could occur through tree-level Feynman diagrams and potentially be large
compared to the SM. In addition, measuring these processes provides a test of the flavour

structure in the SM and helps constrain possible NP models.
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2.4 Effective field theories

Processes such as B? — K*0u* =~ have contributions with different associated energy
scales: Agcp ~ 0.2 GeV, which is the strength of Quantum Chromodynamics (QCD)
interactions between the quarks, m; ~ 4 GeV/c?, which is the mass of the b quark, and
mw ~ 80 GeV/c?, which is the mass of the W boson involved in the FCNC. This results in
calculations when summing over Feynman diagrams becoming extremely difficult to perform
due to large logarithms which do not get smaller as the summation order increases, thus
requiring summation to all orders. This problem is solved by computing these processes in
an Effective Field Theory (EFT) framework via an Operator Product Expansion (OPE),
where a product of local quantum fields is expanded as a summation of those fields [45]
[46].

EFTs allow one to separate high and low-energy effects. Suppose we have a particle
with mass M and a process which occurs at energy F, and F < pu < M, where p is
some scale below which the dynamics of M is unimportant. The quantum fields can be
decomposed into high and low energy modes, 11, and 1z, where they describe effects below
and above pu respectively. Analogously to Fermi theory, the fields at high energies ¢ are

integrated out. This results in the EFT Lagrangian
Lerr =Y Ci(1)O;(n) (2.7)

where C;(u) are Wilson coefficients, which describe effects at high energies. The operators
O;(n) describe effects at low energies. Thus the high and low energy effects factorise.
However the observables should not depend on the scale u, thus the Wilson coeflicients

Ci(p) obey the Renormalisation Group Equation (RGE) [46]

= 7i;Cj (1) (2.8)

This equation provides a relationship between the Wilson coefficients and the scale pu.
Hence predictions are generated at low energies by matching the theory at high energy, i.e.
at My, where perturbation theory can be used, and evolving the predictions from My to

mp. Thus one has C;(my) = K;;Cj(Myw ), where K;; is some matrix.
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2.4.1 The effective Hamiltonian for the decay B® — K*0u*p~

The effective Hamiltonian, after performing an Operator Product Expansion in M%, is
w
given by
4G .
Hegs = =5 VoV > Ci(w)Oiw), (2.9)
i

where G is the Fermi constant, C;(u) are Wilson coefficients and O;(u) are operators.

The operators are O; are defined as

Os = [57. w7 PLb) Y [y 7" Pra)

O = [§7uTaPLu] [ﬂ'YHTaPLb] q

O1c = [57,T*Prc|[cy" T Prb| O = [57u 771" PLb] Z[CNMVVWPTQPL(A
q
Ooy =[5y, Pru][ury* Prb
2 [ 7114 L H g L ] 07 = ﬁmb(gUMVPRb)FHU
T
Ose = (5 PrclEr PLb o
Os = ——mp(50" PRTb)G,,,
O3 = [57,PLb] Y _[v" Prd] (47;)
e _
q Oy = (47)? (57 PLb) (("0)
Oy = [57,T*PLb] Y _[7"T* Prq] 2 7
g Or0 = Tz (0 Frb) (" 7'0)

where T are the SU(3)c generators, Py r = (1F v5)/2 are the chiral projection operators,
ot are the Pauli spin matrices, F},, is the electromagnetic field tensor, and G, is the gluon
field tensor. One can also define the primed operators O’ by applying the transformation
Pr, < Pp.

The dominant contributions to the process BY — K*0 w ™ in the SM are from Og, Oy,
and O7. Og and O are the semi-leptonic operators which describe vector and axial-vector
currents respectively. The electromagnetic dipole operator is O7. The operators Oy,
O1c, Oay, and 0o, are the charge-current operators, also known as the 4-quark operators,
and describe processes where qq pairs are produced. These also contribute to the process
B% — K*9u% 1~ since the quark pair can subsequently decay to two muons. The gluon
dipole operator Og and the QCD penguin operators Os, Oy4, Os, and and Og contribute,
albeit at a lower level compared to the charge-current operators.

The dimuon invariant mass squared (g?) spectrum of the decay B® — K*Ou*pu~ is

shown in Figure 2.2. Below ¢ = (Qm#)z, the decay rate is exactly zero. In the decay
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Figure 2.2: Dimuon invariant mass squared (¢?) spectrum of the decay BY — K*Ou*p~. There are
two narrow states, the J/1(1S) meson, with mass 3096 MeV, and the ¢(25) meson, with mass 3686
MeV. Most of the regions dominated by the rare mode are dominated by the Wilson coefficients Cg
and Cyo and the low ¢? region is dominated by C;. The ¢? region the analysis described in thesis is
the region 1.25 < ¢® < 8 GeV?2/c*. The J/v region is used for validating the analysis.

BY — K*X(cc), where X (c¢) — u+pu~, there are two narrow states, the J/1(15) meson,
with mass 3096 MeV, and the 1 (2S) meson, with mass 3686 MeV. There are broad c¢
resonances at higher mass. In addition to the 1-particle contributions, there are 2-particle
contributions such as DD and D*D and a 77 contribution. Most of the regions dominated
by the rare mode are dominated by the Wilson coefficients Cy and Cjg and the low ¢?
region is dominated by C;. The analysis described in this thesis is performed in the ¢?
regions 1.25 < ¢? < 8 GeV?/c* and 11 < ¢? < 12.5 GeV?/ct. The J/1 region is used for
validating the analysis. This analysis makes an assumption that the muons are massless,
as adopted by previous analyses in BY — K*0u*p~ [7]. This is a valid assumption since

in the ¢? regions this analysis is performed in, ¢? > (2m,,)?, where m,, is the muon mass.
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2.5 Hadronic effects

The amplitude, describing the transition from the initial state to the final state, is given by

Appr =) Ci(mp) (K11~ |0;(mp)| BY). (2.11)

i
Whilst calculating C;(mp) is not problematic, calculating the matrix elements
(K*Ou* 1|0 (mp)|B°) is much more complicated since QCD is non-perturbative at low
energies. These can be split into local and non-local hadronic effects. The amplitudes are
sensitive to form-factors which encapsulate local hadronic effects, such as QCD interactions
corresponding to the bound meson state and the vacuum. These are described in more
detail in Section 2.5.1. In addition, the amplitudes also have a contribution from non-local
effects, which are described in Section 2.5.2.

As described by Ref. [47], the coefficients C7 and Cyp appear with contributions from
other Wilson coefficients C; in the matrix elements. It is thus convenient to define the

effective Wilson Coefficients CS, C$%, and C§H, which are given by [47]

47 1 4 20 80
Cff = 220, — 205 — —Cy— =C5 — —C,
7 o L R I I :
47
Cs' = —Co+Y(q?)
Qs
4
Csf = —Cuo
s (2.12)
Ceﬂ/ — 41 /
7 a7
4
Ceff’ _ e
9 a9
47
Ceﬁ/ — 70/
10 o J10

where

4
Y(q®) =h(g®, m,) <301 + Cy 4+ 6C5 + 6005>

1 4 64
— ih(qZ’ mb) (703 + §C4 + 76C5 + 3CG>

) A 64 (2.13)
— *h(q2, 0) <03 + 504 + 16C5 + 306)

2
4 64 64
+ 503 + 305 + 27706
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with

(2.14)

1

4 arctan ——
—5@= VI 1] x Vel
R Y

and z = 4mg /q*. u is the renormalisation scale and m; and m. are the masses of the b
and ¢ quarks respectively.

Transversity amplitudes A [48] are commonly used to describe the decay
BY — K*%u* =, These have a definite parity and can be written in terms of the He-
licity amplitudes [49]. As described by Ref. [47], the transversity amplitudes are written in
terms of the effective Wilson coeffients and form-factors. There are three polarisations of
the K*0: parallel, transverse and longitudinal, represented by the subscripts ||, L, and 0
respectively. The decay involves a muon-antimuon pair, so the superscripts L and R are
used to represent left-handed and right-handed muonic currents respectively. There is also
an addition amplitude A;, which corresponds to where the gauge boson (the virtual Z or
photon) polarisation vector is time-like in the gauge boson rest frame. Assuming massless
muons, this amplitude vanishes [47]. The amplitudes written in terms of the effective

Wilson coefficients and form-factors are given as

Ai(q?)

mp — Mg+

AP = — NVa(m} — mie) [[(CSE - o) (off - i)

27TL 2
+ 7%6%‘* — YTy (¢?)

4 4 V 2 2m 4
AR ZN V2N H(cgf‘E +Cs) = (Cs + 5 )] - iqw)m* + qu (ce + g )Tl(QQ)]

N / /
AL,R _ Ceff _ Ceff ¥ Ceff _ Ceff
0 2m§( \/q7 { ( 9 9 ) ( 10 10 )

As(q?) ]

x [<m23 % — @) (mp + mi) Ar(q?) — A

mp + my
eff eff’ 2 2 2 2 A 2
+2mp(C7" —C77) |(mp + 3m — ¢°)12(q") — —5—5T15(q")
mB —mK*

(2.15)
i 0 i *0 o[ Gha®  9y19]'/?
where mp is the B” mass, mp~ is the mass of the K*¥, and N = V, V% [7q A ]

105,73
3x2197momy

with A = m% + m%. + ¢* — 2(mpmgs + mg+q> + m%q%). Ti, Ty and Tj are dipole form-
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factors and V, A1, and A, are vector and axial-vector form-factors.

2.5.1 Local hadronic effects

The hadronic matrix elements cannot be computed perturbatively due to low energy QCD
effects. They are parameterised as summations of Lorentz structures and functions of
kinematic variables [50]. These functions are called ‘form-factors’.

There are two categories of techniques in which form factors are computed by the
theoretical community. One, Lattice QCD, is generally computed at low hadronic recoil,
i.e. high ¢?. Whilst in principle Lattice QCD can be computed at any value of ¢2, the
predictions are generally more precise at high ¢2, i.e. ¢*> = 10 GeV?/c* which corresponds
to low hadronic recoil. Alternatively, one can use a method such as Light Cone Sum Rules
[5] [51]. Here the predictions are computed at negative ¢> where the theory is most precise
and extrapolated into the ¢? > 0 region. The uncertainty due to form-factors contributes

significantly to the overall uncertainty of the theoretical predictions.

2.5.2 Non-local hadronic effects

Even when removing the ¢? regions corresponding to the resonances in order to measure
the rare mode, there is still a possibility of interference between the resonances and the
rare mode. The effective Wilson coefficients CSf, CSH, and Cleoﬁlr include contributions from
the 4-quark operators, thus there is a need to compute predictions for b — cés processes.
The next-to-leading order non-local contributions are difficult to compute, in particular
the interference between the non-local contributions and the rare mode.

The predictions for these non-local effects can be estimated through Light Cone Sum
Rules [52] and extrapolating to higher ¢, or through data-driven methods, such as

measuring the resonances from the data.

2.6 Angles used to parameterise the decay B’ — K*'u ™~

In order to measure the decay amplitudes or angular coefficients of B® — K*Ou+tu—,
where K** — K+7~, the angular distribution of the decay products (K*, 7—, uT, and

p~) is measured. The three angles 6;, 0k, and ¢ are used to parameterise the decay

38



B® — K*9,% i~ providing a complete description of the angular distribution of the decay
products in cosfy, cosfk, and ¢. A schematic of the angular definitions is given by
Figure 2.3 [53]. The notation ng, corresponds to the direction normal to the plane
containing particles a and b in the B? (or B°) rest frame. The angular basis is defined in
[53].

The angle 0, is defined as the angle between the direction of the u™(x~) in the dimuon
rest frame and the direction of the dimuon system in the B® (B?) rest frame. The angle
0 is the angle between the direction of the kaon in the K** (K*0) rest frame and the

direction of the K*0 (K*°) in the BY (BY) rest frame. Explicitly, cosf, and cos @ are

defined as
= (7). () () (7). e
costie = (i) - (i) = () - (55 ) (2.17)

for the B® and
= (7). () = () (7). e
costc = (o) - (Bi0ed ) = (25 ) - (~5 ) (2.19)

for the B decay.
The angle ¢ is the angle between the plane containing the ;™ and the p~ and the plane
containing the kaon and pion from the K*9.

The definition of the angle ¢ is given by

~BO ~RO RO RO
cos ¢ = (pf+ x pf—) : <pK+ x pf—) , (2.20)

. B0 RO RO R0 RO
sin ¢ = [(pf+ X pff) : (p;B<+ x pf,)} PR (2.21)
for the BY and
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(c) ¢ definition for the B° decay

Figure 2.3: Schematic of the angular basis used to parameterise B — K*utu~ and
B — K*Ou*u~ decays [53]. The notation ngy is used to represent the direction normal to
the plane containing particles a and b in the B° (or B°) rest frame.
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RO RO =0 RO
cos ¢ = (pf, X pﬁi) . <p£, X Pf+) , (2.22)

. ~RO ~RO ~RO ~RO ~RO
sing = — [(pf— x pf+) : (p;B{— X pf+>} PR (2.23)

for the B° decay. The ﬁg) are unit vectors describing the direction of a particle X in the

rest frame of the system Y. In this angular basis, the angular definition for the B° is a CP

transformation of that for the B° decay.

2.7 Differential decay rate of B" — K*0uTpu~

The decay B° — K*9u*tp~, where K*0 — K*7~, is written as a function of the angles
cos By, cos O, and ¢. The decay rate of B® — K*Ou+pu~ is given by T'p(B® — K*0u* ™).

The differential decay rate can be expressed in terms of the angles and ¢? and is given by

dTp(BO—=K*0utpu—)

Tcos0;dcos frdadgz - Lhis can be interpreted as a Probability Density Function (PDF) of

B% — K*9,% 1~ in the angles and ¢?.

Since the presence of the K*¥ is inferred from measuring the K+7~ state, states other
than the K*°(892) contribute to the K7~ spectrum. Within the m ., window used in this
analysis, which is 100 MeV/c? about the K*Y pole mass, the state where the K7~ system
has angular momentum of 1, referred to as the P-wave, is dominant. The state where the
K*7~ system has angular momentum of 0, referred to as the S-wave, also contributes at
a non-negligible level [2] and is therefore also considered in this analysis. Higher order
waves are neglected since they are dominant in regions of myg, outside the mg, window
used in this analysis [14]. In addition, as part of Ref. [2], the effect of neglecting a D-wave
contribution was computed and found to be negligible. Thus the differential decay rates
for the S-wave, P-wave, and interference between the S-wave and P-wave, are measured.

Thus the differential decay rate for B® — K*Ou = where the K system is in a P-wave
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configuration, can be written as [54]

dl'p(BY — KOyt~ ) .
dc];(s G cos ngqquQ) = Tor [Jls sin? O + Ji.cos® 0p + Jos sin? O cos 20) + Joe cos® Ok cos 20,

+J3 sin? O sin® 0, cos 2¢ + Jy sin 20 sin 26 cos ¢
+J5 sin 20 sin 6y cos ¢ + Jg, sin? O cos 6,
+J7 sin 20k sin 0, sin ¢ + Jg sin 20 i sin 20, sin ¢

+.Jg sin? O sin? Oy sin 2¢] ,
(2.24)

where J; = J;(¢%) are quantities constructed from bilinear combinations of the decay
amplitudes.

Likewise, the differential decay rate for the decay B — K*9u*p~, where the K7
system is in an S-wave configuration, as well as the interference terms, is written as

dls(B° — K*%utp™) 1
dcosfdcosOdodg?  4m

[(Jf, + J5, cos20;)

+J cos O + JS, cos 20, cos 0
1o BB VT 2h LUK (2.25)

+j4 sin 260, sin O cos ¢ + j5 sin 0y sin O cos ¢

+.J7 sin 0y sin O sin o+ Jg sin 260, sin O sin qb] .

The B® — K*0u% 1~ decay amplitudes are described in terms their real and imaginary
components, as well as the three transversity states of the K** (||, L and 0 denoting parallel,
transverse and longitudinal polarisations respectively) and the chiralities of the dimuon
system (L and R corresponding the dimuon system in a left-handed and right-handed
configuration). Following reference [54], in terms of these decay amplitudes, assuming
massless muons, and no scalar or tensor contributions (as in the SM), the P-wave J terms

are written as
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1 \ )
) Jy = \@Re(A(%Aﬁ + AFA)
Do = g [+ AP AR 142 e A
J5 = \/§RQ(AOAJ_ - AO AJ_ )
Jie = |AF? 4 |AR?
1 0 0 Jos = 2Re(Af AT — AJFAT)

e L2 R 2 R|2
T = g AP+ AP LR AT ey
Joe = —|AG* — |AGI? _ /1 L 4L | 4R 4Rx
1 Jg = QIm(AoAJ_ +A0.AJ_ )
To= 3 [lALE = LA AR — AR
Jo = Im(A[* AT + Aff* AT

One can also write the S-wave amplitudes (denoted by the subscript 00) in terms of
their real and imaginary components and the chiralities of the dimuon system. In terms of

the amplitudes, the S-wave and interference J terms are written as

o i 27 ) .

Jia = 3 (ARl + | AGI”] 1= \/:;RG(A%O““ﬁ +AAL)

= 3 ~

Joa = -3 [1AGo|* + | A *] Js = \/?Re(AgoAIf — A AT

= 27 L ALx R 4R« ~ 27 (227)
Tty =\ TeRe( AR A" + ARAR) Jr = S Im (AR A" — AGA)

=0 27 L 4Lx R 4R« ~ 27
J2b = —\/;RG(AOOAO + AOOAO ) Jg = \/;Im(A%DAIj_* + AOROAT*)

Thus, combining the P-wave, S-wave, and interference, the differential decay rate of

BY — K*9uF i~ is given by

d*T(BY - K*utp~)  dlp(BY — K*%utp~)  dlg(B° — K*utu™)
dcosfpdcosOdpdg?  dcosBpd cos O dpdg? d cos 0yd cos O dpdg?

(2.28)

2.8 CP-averages and asymmetries

For this analysis, the amplitudes 4 are measured. However one can define a set of

observables [54] corresponding to the CP-averages for the P-wave and the S-wave by
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N
)

dl's dl'g
( a2 + dq2>

, the P-wave only observables

dlg | dbp | dlg | dlp (2.29)
a Tag tag ot
8 jC J:c
T 3(dar b ;a R the fraction of S-wave.
( S + qu + qu + P)
Here dFséP are the decay rates for the S-wave and P-wave, differential in ¢2, i.e
dg
dPS +1 +1 dFs BO N K*OM M_)
dcosfy dcosby d
/—ﬂ/_ / d cos 6,d cos O g dpdg? costly dcos Ok do
dF 1t Arg (B0 — K*0ut
S / / / s i) dcosfy dcosfy do
-7 d cos 6,d cos O g dpdg?
dFP +1 p+1 de BO K*OM [ ) (230)
dcosfy dcosfy d
/n/ / d cos 0,d cos O dpdg? cos By dcosfg do
dPP +1 p+1 dFP BO _>K*0M+M )
dcos by dcosfx do.
/—71'/ / d cos 6,d cos O g dpdg? costly dcos Ok do
The CP-averaged interference terms are defined as
SSl = § chb + jlcb
3(d dar
(T —|— qu _|_ dq + P)
552 = é j4 + j4
Pl Bl B)
4 j5 + j5
s C 3 (2.31)
(5 + g G+ 5)
Sgy = 4 Jr + J7
(4 + G+ G + )
SS5 é jS + j8
P+ it d)

The fraction of longitudinal polarisation of the K*°, F; = S;.. The forward-backward
asymmetry of the dimuon system is defined as App = %565. From Equation 2.26,
So. = —Fp,, and Sos = 3515 = %(1 — Fr). Thus the set of P-wave observables obtained
from the amplitudes, without any degeneracies, is {F, S3, S4, S5, Arp, S7, Ss, So }.

One can define ‘form-factor independent’ observables, where theoretical uncertainties
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due to local contributions (form-factors) cancel to first order. Following e.g. [53], [55], and

[56], these are defined as

1—Fy

Py =

1—-Fp,

- 3(1—Fyp)

The CP-asymmetries can be analogously defined by

A2
@&_gg
dq? dq
AFg = d drp dfp
G?+ + 5 W )
— § Jla Jla
3 <dFS + qu + dq
8 Je¢
Asi = - b

2.9 Including mg,

3 <dF5 n dqp i dgs I drp>

S
Pj=——
Fr(1—Fy)
S
= Fu5F)
L‘g7 L (2.32)
- —
Fr(1—Fyp)
S
Py=——
Fr(1—Fyp)
4 Ji—Ja
4 Js — Js
T (8 iy oy )
d d
q q~ :q q (2.33)
4 Jr — Jr
(o )
4 Js — Js
_'3(g£§_kdrp dlfy fp>
dg? dg? dg? dg?

The above treatment of the amplitudes assumes the K*° is infinitely narrow. In reality the

K*0 has a non-zero width and so the angular distribution of B —

KOyt~ is a function

of mg,. Thus the differential decay distribution as described in Equation 2.28 does not

describe the genuine distribution since it does not include the mg, dependence. Therefore

the decay amplitudes depend on mp, as well as ¢

2, ie. A= A(mKTr,

¢?). This subsection

describes the models used to describe the mp;, lineshape. Following e.g. [54], factorisation

between mp, and ¢? is assumed, i.e.

A(mKTH q2)
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The differential decay distribution is rewritten to explicitly contain the mg, by applying

the transformation

Ap — APABW
(2.35)

As — AsArass

to the P-wave amplitudes Ap, and the S-wave amplitudes Ag. Here, the P-wave and
S-wave lineshapes are parameterised by the Breit-Wigner (Apw) and LASS (Arass)
parameterisations respectively. Thus the 4D differential decay rate as in Equation 2.28

becomes a 5D differential decay rate, i.e.

d4F(B0 N K*ON+M_) . d5F(BO N K*OM+M_) (2 36)
d cos 0yd cos O dpdg? d cos 0yd cos O dpdg?dmp '
The P-wave mp, lineshape is given by
VPR 0 (55) 5" B' 1y (P p0) B Lic. (B ho
Apw (mem. ) = (5575 (75) 5(0,20) B’ Ly (h, ho) (2.37)

m3.0 — M, — Mol (M)
where p is the momentum of the K7 system in the B rest frame and h is the momentum
of the kaon in the K rest frame. py and hg are the equivalent quantities, evaluated at
the resonance peak. The spins of the K7 system and the BY are given by Ly, = 1 and
Lo = 0 respectively. The pole mass of the K*¥ is given by m 0.

The Blatt-Weisskopf barrier factors, B}, are used to factor in the production and decay

of the resonance. These are given by

1+ (hgd)2

By(h,ho) =1 Bi(h,ho) = T+ (hd)?’

(2.38)

where d = 1.6 GeV~! as used by [57]. Finally the decay width I'(mg,) is given by

h (2LK7T+1)m *0 2

The S-wave is described by the LASS parameterisation [58], Apass(mkxr,q?), given by

P LY B\ Lir
Arass(Mir, %) Z[vph (p()) (ho> B/LB(p7p0)B/LKﬁ(h7hO)] X

Micn N 621'53
cotdp —1i cotdr —1
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where Lgo =1 and Ly, = 0. The non-resonant component of the LASS parameterisastion

is described by cots,,, which is defined as

1 sk
cot 0 = — + % (2.41)
a

Here 7 and a are fixed to 1.7 GeV~! and 2.48 GeV ! respectively [59] [60].
The m ., window chosen for this analysis is 0.796 < mg, < 0.996 GeV/c?. Introducing

the mg, dependence in the four-differential distribution, then integrating over mpg.,, one

has

d4F BO—>K*0 +,,— dr BO—>K*O +,,— 0.996
1 ( mop 2) — P( mop 2)/ |ABW(mK7r,q2)|2de7r

cos 0yd cos O dopdg d cos 0¢d cos O dddg? Jg.796

1 . ~ 0.996
b [T+ Tiycos28) [ Auss(mic, )P dmice

Am 0.796

27 L 4Lx R 4R« 0-996 2\ % 2
+ 1—6Re<(A00A0 + AR AR Avass(mice, 62) Ay (e, 6°)dmicr ) cos i
0.796

+ other interference terms.
(2.42)

Regarding the normalisation of the mg, lineshapes, consider integrating Equation 2.42
over cosfy, cosfk, and ¢. The only terms which remain are Jis, Jic, Jos, Joc, jfa, and

jzca. Thus after simplifying, one has

dT(B® — K*0ut 0.996
( da2 i) :<’AH|2 + AL + \A0|2)/ [ Apw (M, ¢*) Pdmicr
! 0.996 0796 (2.43)
+ |Aoo\2/ |Avass (Micr, ¢°) P dmcr.
0.796

However, it is required that
dI'(B® — K*%utp~)  dlp(BY — K*utpu™) N dl's(B® — K*0u*u™)
2 - 2 2
dg dq dq (2.44)
= [A)* + AL + [Aof* + Aol

In order for this to be satisfied, the m g, lineshapes are thus normalised to the m g, window
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used in this analysis, in other words

0.996
/ Asw (M ir, @) *dmg, = 1
0.796 (2.45)

0.996 .
/ |Avass(mgr, ¢°)|"dmgr = 1.
0.796

This is enforced by redefining the mg, lineshapes normalised to the square root of the

integrals of the lineshapes squared over the my, window,

Asw (MK, ¢%)

0.996

Apw (micr, q
\/ 0796 |ABW mKwa )’2de7r

2.46
Avass(mrr, ¢°) (2.46)

\/ Jo706 Y | ALass(micr, ¢2)|2dmc

Arass(Mer, q

2.10 Symmetries of the angular distribution

As described by [61], the eight complex decay amplitudes (A”, ’AH ;AL AR AL AR AL,

AR) can be arranged into four complex vectors

Ajf Af Ap Ao
n| = PU , N = R , o= R , TNoo = R . (2'47)

A” * A Ay* Aoy
Certain transformations can be applied to these amplitude vectors leaving the differential
decay rate invariant. These transformations can be written as n; — U;jn; = n;
The differential decay rate as written as Equation 2.28 obeys four symmetries. The

symmetry transformations can be written as

, gL 0 cosf) —sind coshin —sinhin

n; =Un; = A ng, (2.48)
0 e ¥R sinf  cos#d —sinhinp  coshin

where U is a matrix which defines the symmetries. These are two global phases, ¢ and ¢pg,
a rotation # about the real and imaginary components of the amplitudes, and a rotation

n which mixes the real and imaginary components of the amplitudes [61]. Thus one can

rotate the amplitude vectors by four angles as defined in Equation 2.48 with the angular
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distribution (Equation 2.28) invariant under this rotation. Thus the amplitude basis is not
unique.

Introducing mg, into the differential decay rate results in a breaking of two symmetries.
This occurs in the interference terms, such as J¢, o< Re(Af Al* + AR AR). Here this J-
term obeys the symmetries described in Equation 2.48. After applying the transformations
in Equation 2.35, the term Im(A5AS* + AR AN*) appears, which violates two of the
symmetries described in Equation 2.48 and is only invariant under the rotations about the
phases ¢y, for the left-handed amplitudes and —¢g for the right-handed amplitudes. Thus
the differential decay rate as a function of mg, obeys the symmetries described by

elor 0
n, =Un; = ng. (2.49)

Considering the differential decay rate integrated over my, if the K*° has a narrow
width, then the P-wave and S-wave lineshapes will be delta-functions, thus the mg,
integrals are exactly equal to one. However, because the mg, lineshapes for the P-wave
and the S-wave are not narrow, there is an interference between these lineshapes. In other

words, the interference integral

0.996
/ Apass (Mxcr 02) Ay (micrs ¢2)dmc (2.50)
0.796

is not equal to one. This technically results in the same symmetry-breaking terms in the
differential decay rate being introduced as in the case where the differential decay rate is a
function of mg,. The effect of the symmetry breaking on the P-wave observables after
integrating over my, due to this complex-valued integral was studied on pseudoexperiments
and found to be negligible.

With regards to discrete symmetries of the differential decay rate, there is a symmetry

where all amplitudes can be rotated by a phase of 7, i.e.
A— —A, (2.51)

In the case of the differential decay rate which assumes massless muons and no scalars
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or tensors, there are two discrete symmetries since there are no terms of the form Ay Ag.
Thus the left handed and/or the right handed amplitudes can be rotated by a phase 7 and
the differential decay rate invariant under this sign flip, so there are two discrete symmetries
in the differential decay rate. There are therefore four sets of amplitudes which result in
identical differential decay rates based on these discrete symmetries: (Ar, Agr), (AL, —AR),
(-=Ar, Ar), and (—Ar, —Ag). As these symmetries are not physically meaningful, and
the sets of amplitudes are identical apart from sign flips, it is sufficient to parameterise

only one set in order to describe the differential decay rate.
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Chapter 3

The LHCDb experiment

This chapter describes the detector, trigger, and data flow of the LHCb experiment.
Section 3.1 describes CERN and the Large Hadron Collider (LHC). LHCDb, an experiment
based at the LHC, is described in Section 3.2. The LHCb trigger system is described in
Section 3.3. The LHCb upgrade during Long Shutdown 2 is described in Section 3.4 and

the data flow is discussed in Section 3.5.

3.1 The Large Hadron Collider

The European Organization for Nuclear Research (CERN) ia a particle physics laboratory
based in Geneva, Switzerland. It runs the Large Hadron Collider (the LHC), the largest
and highest energy particle accelerator in the world.

As described in [62], the LHC is a hadron accelerator and collider with 26.7 km
circumference. The tunnel used to house the LHC, formerly used for the Large Electron
Positron collider (LEP), has a depth which varies between 45 m and 170 m. It contains
two beam pipes, with bunches of hadrons being accelerated in opposite directions. These
interact at four points, where the four large experiments (ATLAS, CMS, ALICE, LHCb)
are located. Most of the LHC physics programme is dedicated to proton-proton collisions.
There are also heavy ion collisions, which are not discussed here.

The LHC uses superconducting magnets utilising NbTi and cooled down using superfluid
helium to 1.9 K. Dipole magnets with peak field 8.33 T are used for bending and quadrupole

magnets are used for focusing the beam. Sextupoles and octupoles are used for corrections
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such as the beam chromaticity and Landau damping [63].

There have been two main Run periods of the LHC, Run 1 (2009-2013) and Run 2
(2015-2018). Between Run 1 and Run 2 the LHC and experiments were upgraded. During
2019-2021 the LHC and experiments were shut down for further upgrades. The latest Run
period (Run 3) started in 2022. The analysis described in this thesis uses data collected in
2011, 2012, 2016, 2017, and 2018.

Each proton beam consists of 2080 bunches, each with spacing of 25 ns (apart from
50 ns in Run 1), thus the collision rate is 40 MHz (20 MHz in Run 1). The maximum
intensity of the beam is 1.15 x 10! protons per bunch. The centre of mass energy /s of

the proton-proton collisions was 7 TeV for 2011, 8 TeV for 2012 and 13 TeV for Run 2.

3.2 The LHCb experiment

At high energies beauty hadrons are primarily produced in the forward and backward
directions. This is shown in Figure 3.1 [64], which shows the bb production cross-sections as
a function of angles. Here, proton-proton interactions are simulated via gg — bb, gg — bb,
dq — bbg (where q # b), bb — bbg, and gg — bbg at collision energy /s = 14 TeV. Most bb
pairs are produced along the beam direction.

The LHCb experiment is primarily designed to measure properties associated to beauty
hadrons. It is a forward-arm spectrometer based at Point 8 of the LHC at CERN. Referring
back to Figure 3.1, the detector geometry of LHCb is chosen such that it can capture a
large number of bb pairs (the LHCb acceptance is shown in red).

A schematic of the detector is shown in Figure 3.2 [65]. LHCb employs a right-handed
coordinate system, where the origin is located in the Vertex Locator. The z axis traverses
along beam and the y axis is along the vertical direction.

The proton-proton interactions occur inside the VErtex LOcator (VELO) [66] [67]. The
VELO is a silicon microstrip detector, consisting of 84 modules. These modules are in
two halves (42 modules each) and are arranged perpendicular to the beamline. During
physics data-taking, the modules are 8 mm away from the beamline. The main role of the
VELO is to measure and distinguish between primary vertices (proton-proton interaction

points) and secondary vertices (locations of the decay vertices). These secondary verticies
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Figure 3.1: Plot of the bb production cross-sections at the LHC, as a function of angle between the
b and beam direction in the lab frame (¢1), and angle between the b and beam direction in the lab
frame (62) [64]. Most bb pairs are produced along the beam direction. The area shaded red is the

region which is captured by LHCDb.
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Figure 3.2: Schematic of the LHCb detector [65].
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Figure 3.3: Schematic of RICH1 (a) and RICH2 (b) [70].

are generally of heavy flavour hadrons, such as B mesons. The VELO performs extremely
well, with over 98% track reconstruction efficiency. For vertices with 25 tracks the primary
vertex resolution is 13 pym in the xy plane and 71 um along the beam axis.

Long-lived charged hadrons are identified using the Ring Imaging Cherenkov (RICH)
detectors [68] [69]. There are two RICH detectors, RICH1 and RICH2, designed to measure
particles with low (2 — 40 GeV/c) and high (15 — 100 GeV/c) momenta respectively.
Cherenkov photons are emitted when charged particles move faster than light through a
radiator. For RICH1 the radiator used is C4F;o (along with aerogel in Run 1) and for
RICH2 CFy is used, which has a refractive index lower than that of C4F19. As shown in
Figure 3.3, mirrors are used to reflect the Cherenkov light into Hybrid Photon Detectors
(HPDs), where the photoelectrons produced are read out as hits. These photon detectors
are separated from the radiator volume by quartz windows. Each track is assigned a
variable which is the difference of log-likelihoods between the hypothesis of the particle
being of type X and type Y from the RICH system, denoted DLL xy

Downstream of the RICH1 detector is a dipole magnet with bending power 4 Tm. Each
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magnetic coil consists of 15 layers, where each layer is 15 turns of aluminium. Data are
collected with the direction of the magnetic field either in the positive or the negative
y-axis directions, known as the ‘MagUp’ and ‘MagDown’ configurations. This is in order
to reduce uncertainties pertaining to detector asymmetries since periodically changing the
magnetic field direction allows different charges to experience both halves of the detector.

The LHCD tracking system consists of the Tracker Turicensis (TT) tracker between
RICHI and the magnet, and three tracking stations T1-3, between the magnet and RICH2.
The TT employs 4 silicon microstrip layers and the each of the tracking stations T1-3 have
4 planes consisting of silicon microstrip layers and straw tubes.

The calorimetry system consists of the Scintillating Pad Detector (SPD), Preshower
(PS), Electromagnetic Calorimeter (ECAL), and Hadron Calorimeter (HCAL). The PS
and SPD are scintillator planes, with a lead wall between them. The ECAL, designed
for electron and photon identification, consists of alternating layers of lead plates and
scintillator tiles with total depth 25 times the radiation length. The HCAL, designed for
hadron identification, consists of layers of iron and scintillator.

For muon identification, the muon station M1-5 are used. These consist of multiwire
proportional chambers with the exception of the innermost chambers of the first station M1,
where gas electron multiplier detectors are used. The muon stations provide momentum
and binary information based upon the number of stations where a hit is found within a
region around the track extrapolated from the tracking system. This binary information
results in the probability of hadrons to be misidentified as muons at around 1%, with a
muon efficiency in the range 95-98% [71]. The muon stations are important for the trigger
system as explained in Section 3.3.

There are PID probability variables constructed from combining the information from
the sub-detectors into Neural Networks (NNs). These are known as the ProbNNx variables,
which corresponds to a score from the NN increasing from 0 to 1 for how likely each track

is of species x.
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3.3 LHCDb Trigger System

The LHCD trigger system used in Run 1 and Run 2 consists of one hardware stage and
two software stages [72]. As mentioned in Section 3.1, the bunch crossing rate is 40 MHz.
The LO hardware trigger has a readout rate of 1 MHz where the trigger is implemented
in Field-Programmable Gate Arrays. This trigger fires based on high transverse energy /
momentum signatures in the calorimeters or muon stations. The analysis described in this
thesis requires the LO trigger to have fired in the muon stations.

There are two stages of the software trigger, HLT1 and HLT2. The HLT1 trigger is based
on a selection of events which require minimal reconstruction, such as muon tracks with
large impact parameters. For the HLT2 stage a full event reconstruction is performed,
where analysis-type specific selections are performed, such as a trigger designed to select
B meson decays. The software triggers reduce the readout rate to 5 kHz in Run 1 and
12.5 kHz in Run 2 in order for the events to be saved. A schematic of the LHCb trigger for

Run 2 is shown as Figure 3.4 [73].

3.4 LHCDb Upgrade (2019-2022)

This section briefly describes the LHCb upgrade during Long Shutdown 2 (LS2) of the
LHC [74]. From Run 3, LHCb collects five times the instantaneous luminosity than that of
Run 2.

The VELO is upgraded, with more advanced technology where the silicon microstrips
are replaced with pixel sensors resulting in improved hit resolution. The VELO will be
much closer to the beam than previously (5 mm, compared to 8 mm). This will result in a
40% improvement in vertex resolution.

The RICH detectors have undergone a large upgrade, with the optical system being
able to deal with the higher expected occupancy. In addition, new photon detector are
being used, where the HPDs are being replaced with Multianode Photomultiplier Tubes
(MaPMTs) (Figure 3.5) which allow data to be read out at a rate of 40 MHz. These
MaPMTs are assembled on columns which include the electronics. Some images of the
RICH upgrade installation are shown in Figure 3.6.

Downstream of RICH1, in replacement of the TT, is the Upstream Tracker (UT), using
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Figure 3.4: Illustration of the LHCD trigger used in Run 2 [73].

silicon strip technology and able to handle the higher expected occupancy. The Scintillating
Fiber (SciF1i) tracker is downstream of the magnet, in replacement of the T1-3 tracking
stations. The SciFi uses scintillating fibres, with high expected hit efficiency and resolution
better than 100 pm in the bending plane, read out at 40 MHz.

The trigger is also upgraded so it can run at the increased luminosity. The hardware
trigger is removed, thus the LHCD triggers from Run 3 are entirely software-based. The
HLT will perform a reconstruction at the rate of 30 MHz. These events are buffered to
disk where offline particle identification and track information are used to perform the

trigger selection. Events are then stored at a rate 2-5 GB/s [75].
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Figure 3.5: MaPMTs used for the RICH upgrade.

Figure 3.6: Installation of the columns in the RICH1 detector.
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3.5 Data flow of the LHCb experiment

This analysis relies on simulation. Unless otherwise specified, the simulation used for
this analysis was generated centrally by members of the LHCb collaboration. The Gauss
simulation framework [76] is responsible for the event and detector simulation used in
this analysis. Specifically, proton-proton interactions up to and including hadronisation
are simulated using Pythia. The decays of particles, such as B mesons, are simulated
using EvtGen. PHOTOS is used for final state radiation. GEANT4 is used to simulate
the propagation and interaction of the particles through the detector. The digitisation of
the detector hits is simulated by the Boole application [77]. The trigger uses the Moore
software framework, and reconstruction is performed using the Brunel software [77].
Offline selections are applied centrally to the stored data, known as ‘stripping’, using
the software DaVinci. Each type of analysis has a set of stripping requirements. The
data pre-stripping cannot be accessed directly due to computing restrictions. The analysis
presented in this thesis uses data filtered through the B2XMuMu stripping line, as described

in Section 5.2.

3.6 Using the LHCb experiment to measure the decay
BO—>K*O,LL+M_

There are several features of the LHCDb detector which makes it a suitable experiment
to measure the decay B® — K*Outpu~. An example is the VELO, which is designed to
measure primary and secondary vertices. The B is produced at the primary vertex and
decays at the secondary vertex. The B® mean lifetime is 1.52 x 1072 s [14], and due to its
Lorentz boost the B? travels a few mm before it decays. A variable which is powerful in
separating signal B® decays from background events is the Impact Parameter (IP). This is
the shortest distance between the direction of momentum of a track and the primary vertex.
Since the BY decays into four charged particles (B — K*u*p~, and K** — K*tr™),
the IPs of the K, m, and muons can be examined. For combinatorial background events
(background events where at least one track is not from the signal), the IP is typically

small compared to the signal IP since most combinatorial charged tracks originate from the
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primary vertex. Thus background events can be rejected by examining the IPs of the K, 7,
and muon tracks, resulting in a higher signal purity. In addition, quantities such as the B°
end vertex x?, which corresponds to the quality of the vertex fit of the secondary vertex,
can be used to distinguish signal from background. This is because for combinatorial
background not all tracks originate from the B° thus resulting in a poor vertex fit.
Another feature of the LHCb detector are the RICH detectors which are vital for particle
identification, such as distinguishing kaons from pions. In particular for B — K*0pu*p~,
there are background events which correspond to 7w and K K states misidentified as K.
The RICH detectors, in addition to the muon system and calorimeters, provide particle
identification variables such as DL Ly, which is the difference of log-likelihoods of a track
being a kaon and a pion. As discussed by [78], a loose selection on the this variable results
in a high signal efficiency, and a more stringent selection on this variable results in a good
background rejection. Thus the information from the RICH detectors helps to remove
combinatorial events and also events from BY decays which appear signal-like, such as

BY — ¢utp~, where ¢ — KT K, and one of the kaons is reconstructed as a pion.
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Chapter 4

Analysis flow of the amplitude

ansatz analysis of BY — K*V, )~

This chapter describes the analysis flow of the amplitude ansatz analysis the decay
B% — K*9* ;= at LHCb. The objective of this analysis is to measure the decay amplitudes
as functions of dimuon invariant mass squared, ¢2, aiming to be as model-independent as
possible. The amplitudes are modelled using summations of Legendre polynomials in ¢?,
multiplied by coefficients which vary freely in the fit to data.

A selection is applied to the data collected by LHCb in order to select signal candidates.
This process is described in Chapter 5. A set of triggers are used to decide which events
to save whilst LHCb is recording data. The first stage of offline selection, known as
‘stripping’, is performed centrally by the LHCb collaboration and is applied before the data
is made available for analysis. Other selections, for example requirements on the Particle
IDentification (PID) variables of the hadrons, are applied. Boosted Decision Trees (BDTs)
are used to remove background processes which have been misidentified as signal, as well
as background processes where at least one track is not from the signal decay.

Due to detector effects, selection, and the reconstruction, the angular and ¢ distri-
butions are warped. This is corrected for by an acceptance function, an efficiency which
depends on the angles and ¢?. The determination of this function from simulation is
described in Chapter 6. A goodness-of-fit method using BDTs has been developed and

applied to the acceptance function fit to simulation in order to ensure the acceptance is a
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good fit of the simulation.

With the selection applied and acceptance determined, the data can be fitted. A
five dimensional unbinned maximum likelihood fit is performed to the data with the
selection applied. The fit is performed in the B mass, ¢2, cos 8y, cos @, and ¢. The decay
distribution of the decay BY — K*9u* 1~ is written in terms of ¢2, cosy, cos @, and ¢.
This decay distribution is multiplied by the acceptance function in order to obtain the
observed decay distribution. This corresponds to the angular signal PDF. Since the data
consists of signal and remaining background after the selection is applied, the BY mass
is included in the fit since the signal and background have very different shapes — the
signal lineshape is the sum of two Crystal Ball functions and the background is described
by an exponential. In the angles and ¢?, the background is described by summations
of Chebyshev polynomials multiplied by coefficients. In the B mass signal description,
a component accounting for the decay BY — K *0, 1~ is included. More information
regarding the fit strategy is given in Chapter 7. Studies pertaining to the ansatz model
and whether to include the kaon-pion invariant mass in the fit are described in Chapter 8.

The data fit regions are 1.25 < ¢> < 8 GeV?/c* and 11 < ¢® < 12.5 GeV?/ct
These fits are referred to as the ‘rare mode’ fits. The blinded results for the
fit in the 1.25 < ¢> <8 GeV?/c* region are presented in Chapter 11. The decay
BY — K*0J/4p(— ptpu~) is dominant in the ¢? region 9.223 < ¢ < 9.966 GeV?/c*. This
region is used as a control mode, where fits are performed in this region in order to validate
the implementation of the fitter and to verify agreement between data taking periods.
Results from this region are given in Chapter 10.

The free parameters in the fit for both the control mode and rare mode are the amplitude
coefficients, background angular and ¢? coefficients, number of background events, mean
and widths of the signal BY mass lineshapes, and the exponential background parameter.
The P-wave amplitude coefficients are the parameters of interest and the remainder of
parameters are treated as nuisance parameters.

For the control mode fit, the tails of the signal lineshapes are also floated. These are
used to fix the signal lineshape tail parameters in the rare mode fits. In both fits, the
difference between the B? and BY masses and the fraction of BY — K0T~ decays

relative to B — K*0ut = decays are fixed.
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Chapter 5

Selection of B — K*V;+ )~

candidates

This chapter outlines the selection used in the B® — K*0u%;~ amplitude ansatz analysis.
The B is produced and decays inside the VELO, resulting in four charged tracks corre-
sponding to K, m, u*, and pu~. There are several types background process in the data
which need to be removed. A class of background which requires addressing is combinatorial
background, which correspond to background processes where at least one reconstructed
track is not from the signal. There are also misidentified backgrounds, where a decay is
incorrectly reconstructed as signal due to misidentifying the particles in the final state.
These tend to peak in the B® mass and are thus known as ‘peaking backgrounds’. The
selection strategy described in this chapter is designed to ensure the quality of the primary
and secondary vertices, where the BY is produced and decays. The Particle IDentification
(PID) information of the hadrons and muons is used to ensure the particle of the correct
species is reconstructed.

Sections 5.1 and 5.2 describe the trigger and the first stage of offline selection used in this
analysis. The selections applied directly after stripping are described in Section 5.3. The
removal of peaking backgrounds are described in Sections 5.4 and 5.5. Section 5.6 describes
the boosted decision tree (BDT) used to remove combinatorial events and Section 5.7
describes a BDT specifically targeted to remove backgrounds such as BT — K*Tputu~.

The validation of this selection on a background sample, where the muons have the same
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Table 5.1: Trigger requirements in B® — K*%u ™~ analyses. There are three trigger stages: Level 0
(LO), High Level Trigger 1 (HLT1), and High Level Trigger 2 (HLT2).

201142012 2016 201742018

LO Muon Muon Muon
DiMuon DiMuon DiMuon

HLT1 TrackAl11LO TrackMVA TrackMVA
TrackMuon TrackMuon TrackMuon

TwoTrackMVA TwoTrackMVA

HLT2 Topo[2,3,4]BodyBBDT Topo[2,3,4]Body Topo[2,3,4]Body
TopoMu([2,3,4]BodyBBDT TopoMul[2,3,4]1Body TopoMul2,3,4]1Body
DiMuonDetached DiMuonDetached

SingleMuon

sign, is described in Section 5.8 and the performance of the selection is described in

Section 5.9.

5.1 Trigger

As described in Section 3.3, the LHCb trigger system consists of three stages: the hardware
trigger stage Level 0 (LO), and the two software stages High Level Triggers 1 and 2 (HLT1
and HLT2). The trigger requirements are common amongst B’ — K*°u* ;= analyses,
written by the LHCb collaboration and are summarised in Table 5.1.

In order for an event to pass the trigger, the candidate has to fire at least one trigger per
trigger level. All triggers are required to be Triggered On Signal (TOS), i.e. the trigger to
fire on the signal candidate, not on another process in the event. This allows for efficiencies
for the TOS events to be calculated from the TOS and the Trigger Independent of Signal
(where the trigger fires from a process which is not due to the signal) samples.

Since the B° is heavy and has a long lifetime, the final state particles (K, 7, u™,
p~) typically have high transverse momenta. The final state particles are also produced
displaced from the primary vertex as described in Section 3.6. Thus the triggers used in
this analysis use variables such as the transverse momentum and the chi-squared of the
impact parameter with respect to the primary vertex for the final state particles.

For the Level 0 trigger (LO), the Muon and DiMuon triggers require the candidate to pass
a threshold of muon transverse momentum pr, or product of muon transverse momenta

respectively. These thresholds change between data-taking periods. The muon transverse
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momentum threshold for the Muon trigger is in the region 1 — 2 GeV/c and the product of
muon transverse momenta for the DiMuon trigger is typically a few GeV?/c?.

At the HLT1 trigger level, a partial event reconstruction is performed. Here tracks in
the VELO are reconstructed and matched with hits in the muon chambers, as well as hits
in the tracking stations. For Run 1, tracks with at least one track with a large enough pr
and x?p (chi-squared of the Impact Parameter (IP)) with respect to the primary vertices
are selected by the TrackA11LO trigger. The TrackMuon trigger is specifically designed to
select decays involving muon tracks with large X% p with respect to the primary vertices [79],
thus selecting muons whose tracks are displaced from the primary vertex. For Run 2,
the TrackAl11LO trigger was replaced with TrackMVA and TwoTrackMVA, where machine
learning techniques are employed to select tracks based on the pr and X% p-

A full event reconstruction is performed at the HLT2 level, including information from
other sub-detectors, such as the RICH and the Calorimeters (CALO). In this analysis the
Topo [N]BodyBBDT and Topo [N]Body triggers are are applied, which are designed to select
events involving N-body B meson decays. The SingleMuon and DiMuonDetached triggers
require a displaced muon or dimuon system respectively.

The main impact the trigger has on the acceptance shape is the rise from low ¢? to
the central ¢® region, seen in Figure 6.2. At low ¢2, the acceptance at high and low cos 6,
moves much more rapidly than at higher ¢2. This is due to the LO triggers since requiring
thresholds on the muon transverse momenta warps ¢> and cos @y in particular. However
the parameterisation used to describe the acceptance is sufficient to describe this, validated

by a goodness-of-fit described in Chapter 6.

5.2 Stripping

Due to computing restrictions, the first stage of the offline selection of the data is per-
formed centrally by the LHCb collaboration before it is made available to analysts. This
stage is known as ‘stripping’, as described in Section 3.5. Analyses studying the decay
BY — K*0u*;~ using the full Run 1 and Run 2 datasets use the latest version of the
B2XMuMu stripping line, which is designed to select events involving a B meson decaying

into at least two muons. The selections which form part of the B2XMuMu stripping line are
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Table 5.2: Requirements in the B2XMuMu stripping line.

Candidate Requirement

B Measured mass € [4600, 7100] MeV /c?
Mass € [4700, 7000] MeV /c?
End vertex x? per DOF < 8
DIRA > 0.9999
Flight distance x? > 64
Maximum daughter x%P >9
K*0 Measured mass € [0,6200] MeV /c?
Mass € [0,6200] MeV/c?
End vertex x? per DOF < 12
DIRA > —0.9
Flight distance x? > 16
Minimum x%p > 0
Maximum daughter x%, > 6
wpT Measured mass < 7100 MeV /c?
End vertex x? per DOF < 12
DIRA > —0.9
Flight distance x? > 9
Maximum 2 of either u* or p= > 6

K*, n~ Minimum X%P > 6
Track registered in the RICH subsystem
wr, o Minimum x7p > 6
DLL,; > -3
Positive isMuon detected, based on muon chamber hits
Tracks Ghost probability < 0.5
Event Maximum hits in Scintillating Pad Detector < 600

shown in Table 5.2.

Figure 5.1 is a schematic showing the primary vertex, where a proton-proton collision
occurs, and the decay vertex of a B meson. The decay vertex of the B? is also known as
the ‘secondary vertex’, or the ‘end vertex’. The distance between the primary vertex and
the decay (secondary) vertex is the flight distance. The ‘measured mass’ is the invariant
mass of the system based on the 4-momenta. The ‘mass’ corresponds to the invariant mass
obtained from the vertex fit. The DIRA is the cosine of the angle between the reconstructed
momentum and reconstructed line of flight of the candidate. Thus from Table 5.2, the
primary and secondary vertices are required to be of good quality. For each track, the
variable DLL xy is assigned which corresponds to the difference of log-likelihoods for the
hypotheses of the particle being of type X and type Y. The variable isMuon corresponds to

hits in the muon system which are consistent with muons. As part of the reconstruction a
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Figure 5.1: Schematic showing the primary vertex, decay (secondary) vertex, flight distance and
impact parameter. The DIRA is the cosine of the angle between the reconstructed momentum and
reconstructed line of flight of the candidate.

“ghost probability”, based on fit quality, the number of missing hits, and energy deposited
in the tracker, is computed. Selecting low ghost probability tracks effectively removes
tracks that do not correspond to real particles. The cut on the maximum number of hits in

the Scintillating Pad Detector is applied in order to remove events which are too crowded.

5.3 Cleaning cuts

Some cleaning cuts follow the same selections as the ongoing binned angular analysis, as
shown in Table 5.3. Here, pairs of tracks are required to be well separated in order to
reduce the number of clones (tracks which share a large percentage of hits from the VELO
and T-stations). The requirement on the B® end vertex y? per DOF is tightened in order
to select B mesons with a good fit quality. As described by the CP-asymmetries analysis
of the decays B — K*0u*pu~ and BT — K+ p*pu~ [80], tracks which are close the edges
of the detector can be swept out by the magnetic field, resulting in highly asymmetric
decay rates. Thus the selection based on the kaon momenta, motivated by Ref. [80], aims
to reduce raw detector asymmetries, which are largest at the edges of the detector.

The general Particle IDentification (PID) requirements are shown in Table 5.4. These
selections are based on ProbNN variables and remove a large amount of mis-ID background.

In particular, these help to remove KK and wm backgrounds, in addition to mis-1D
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Table 5.3: Cleaning cuts which are identical to those in the ongoing binned angular analysis.

Candidate Requirement
Track pairs | Angular separation § > 1 mrad
B End vertex x?/DOF < 6
KT pz(KT) > 2000 MeV/c
Ipx (K1)| < 0.33(pz(K™) — 2000)

backgrounds such as BY — K*Y.J/¢ where u — m, @ — u. These typically peak in the B°
mass and is thus vital to remove them. The selections based on the PID requirements help
with the overall reduction of these backgrounds and allow the further selection stages to

be more efficient in removing more signal-like backgrounds.

Table 5.4: Hadron general PID requirements

Candidate | Requirement
K ProbNNk > 0.2
s ProbNN7 > 0.2

Additionally, the selection 5170 < m g ,+,~ < 5700 MeV/ c? is applied. The mgn
window chosen is 796 < my, < 996 MeV/c?. The ¢> window chosen for analysis in the
rare mode is 1.25 < ¢? < 8 GeV?/c*. The region 11 < ¢ < 12.5 GeV?/c? is also included,
however studies in this region are not presented in this thesis. The lower ¢?> boundary at
1.25 GeV?/c* is due to low mass resonances such as the ¢(1020) resulting in fast-moving
behaviour in the amplitudes. It was found that a lower bound at 1.25 GeV?2/c? results
in a better description of the amplitudes since the model used does not need to describe
the ¢(1020) resonance. The choice of the upper ¢ bound 8 GeV?/c* in the low ¢ is due
to the radiative tail of the J/1 entering the BY mass region, and that the amplitudes
are more fast-moving as ¢> becomes closer to the J/v. For the J/1 region, the ¢* region
corresponds to 9.223 < ¢ < 9.966 GeV?/c*. The purpose of measuring the .J/¢ resonance

is to validate the fitter and the acceptance.

5.4 Peaking background vetoes

There are several decays which could be incorrectly reconstructed as the signal and may
cause fit biases. These are often decays with a reconstructed Kmuu final state, where at

least one particle has been identified as an incorrect species. These decays generally peak
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in the B mass and have angular structures which do not factorise. Table 5.5 shows a list of
some incorrectly reconstructed backgrounds which may cause fit biases. Details regarding

the mis-ID for each background are shown.

Table 5.5: A summary of the peaking backgrounds. The type of background and mis-ID is also
specified.

Mode Type
B - K*9uFp~, where K < 7 Double hadron mis-ID
BY — ¢utp~, where K — 7 Single hadron mis-1D
B — K*0J /4, where u <+ K Hadron-muon swap
BY — K*0J /4, where pu <+ 7 Hadron-muon swap
BY — K*04(25), where ju < K Hadron-muon swap
BY — K*09(295), where ju <> 7 Hadron-muon swap
Ay — pKputp~, where p — 7 Single hadron mis-ID
Ay — pKputp~, where p — K and K — 7 | Double hadron mis-ID

Variables which are used to distinguish these decays are the PID variables and two-body
or four-body masses under the swapped hypothesis. Therefore a cut needs to be applied in
these variables in order to remove these backgrounds. An option is to apply a ‘rectangular’
cut, for example removing all events with a mass under the swapped hypothesis in a certain
range, where the PID is above or below some threshold. However this is not the optimal cut.
A more efficient cut can be determined by using Boosted Decision Trees (BDTSs), which
was initially developed for the binned angular analysis. Here, BDTs are used to classify
each event by providing a score, allowing for signal / peaking background separation. A
cut is applied based on the BDT scores.

Decision Trees (DTs) are structures consisting of nodes and leaves which use a sequence
of cuts to bisect the data, with the goal of each cut to maximise the purity of the two
samples. Each subsample is treated independently with further bisecting cuts to form a
tree-like structure until a stopping condition is reached. However training a DT could
result in biases and/or variances in the results which is undesirable. Boosting is therefore
used, where weak learners are combined into strong learners. A BDT consists of a forest
of trees, with each tree of a shallow depth. Whilst each individual tree may not separate
the samples effectively, if better than a random guess, the result of boosting results in the

ensemble of weak classifiers becoming a strong classifier.

For each of these background modes a sample of simulated events is obtained with the
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relevant mis-identification hypothesis enforced. The trigger, stripping, cleaning cuts and
invariant mass cuts are applied (B mass, K7 mass, rare mode ¢?). The remaining samples
are used to train a Boosted Decision Tree (BDT) for each background. For the signal
sample, BY — K*Out = simulation is used, with the same selection applied. The BDT is
trained using the xgboost algorithm [81], a type of BDT based upon a gradient-descent
framework.

For most of the BDTs the cut point is chosen such that the signal efficiency is equal
to that of the vetoes used in the previous binned angular analysis [7]. Sometimes harsher
BDT cut points are used in order to get the overall estimated level of peaking backgrounds
to a reasonable level (i.e below 1% of the signal after the full selection is applied). Due
to the small samples that pass the initial selection requirements, k-fold cross validation is
used in order to make sure the BDT is statistically independent. This is a procedure where
the dataset is split into k subsets, or ‘folds’, and for each fold the BDT is trained on the
other folds and tested for that fold. Here 10 folds are used, and one fold is chosen for use
in the analysis. The BDTs use PID variables and masses under the swapped hypothesis in
the training. The DLL variables are chosen instead of ProbNN to reduce the possibility of
correlations with kinematic variables which are poorly modelled in simulation. Since the
cleaning cuts are applied, in particular the hadron PID selection, the BDTs are optimised
to remove peaking backgrounds which appear signal-like.

Table 5.6 shows the training variables used in these BDTs. These include invariant
masses under the swapped hypotheses, such as mgyqp(Km), where the K7 invariant mass
is computed with the kaon and pion masses swapped. The DLL variables are also used.

Table 5.7 presents figures of the BDT responses and signal and background rejection ef-
ficiencies. Note these efficiencies are conditional. Previous analyses of B® — K*0ut =~ did
not have hadron PID requirements as strong as shown in Table 5.4 thus these peaking back-
ground BDTs are optimised to remove mis-ID backgrounds which appear particularly signal-
like. For BDTs involving true events from the J/1, only events with the swapped dimuon
mass hypothesis in the J/1 region (3050 < m(u*p~) < 3150 MeV/c?) are considered in
the training. Likewise for BDTs involving true events from the ¢(2S), only events with the
swapped dimuon mass hypothesis in the ¥(2S5) region (3626 < m(u*u~) < 3746 MeV/c?)

are considered. The efficiencies shown are still for the full samples.
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Table 5.6: Training variables used in the peaking background BDTs.

Background mis-ID Training variables

BY — K"~ | K < m mis-ID | dihadron mass with the background hypothesis,

DLLg, for the hadrons

BY — optp~ K — 7 mis-ID | dihadron mass with the background hypothesis,

DLL g, for the pion

BY — K*0J /4 w4 K swap dimuon mass with the background hypothesis,

DLLky and DLL, for the kaon and muon

B - K*0J /1 Wb <> T swap dimuon mass with the background hypothesis,

DLL,, for the pion and muon

BY — K*0(25) | p+ K swap dimuon mass with the background hypothesis,

DLLky and DLL, for the kaon and muon

BY — K*0(2S) | u <> 7 swap dimuon mass with the background hypothesis,

DLL,, for the pion and muon

Ay = pKpuTp~ | p— 7 mis-ID | dihadron mass with the background hypothesis,

B mass with the background hypothesis,
DLL,, for the pion

Ay — pKputp~ p— K, dihadron mass with the background hypothesis,

K — 7 mis-ID B mass with the background hypothesis,

DLL g for the pion, DLL,,, for the kaon

Table 5.7: Signal efficiency and background rejection efficiency for each background, with figures
showing the BDT response for each background indicated.

Background mis-ID Figure | Signal efficiency | Background rejection
efficiency
BY - Kt~ | K< 7 mis-ID | 5.2a 99.24 4+ 0.01% 89.3 £ 0.4%
BY - ¢utp~ | K — mmis-ID | 5.2b 99.896 + 0.004 % 90.2+0.2 %
B - K*J/¢ | p< K swap 5.2¢ 99.23 £+ 0.01% 96 + 2%
BY — K*0.J /4 [ 4> T swap 5.2d 99.634 + 0.007% 97.54+0.7%
B — K*09(25) | u < K swap 5.2¢ 99.557 + 0.008% 96 + 2%
BY — K*0(2S) | <> 7 swap 5.2f 99.915 + 0.008% 98 + 1%
Ay — pKpuTp~ | p— 7 mis-ID 5.2g 99.304 + 0.008% 89.6 + 0.5%
Ay — pKputp~ p— K, 5.2h 98.948 + 0.008% 83.1 +£0.8%
K — 7 mis-1D

All of these peaking background BDTs are applied to data and simulation, with the

selection requiring events to pass the chosen cut points for all of the BDTS.

5.5 BT — KTutu~ veto

There is expected to be a background due to the decay products of Bt — KTpu*pu~
being paired with a pion from elsewhere in the event. Here the same veto

as is in other B — K*OuTu~ analyses is used, as proposed in [82]. For
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Figure 5.2: Results of the training of various BDTs on signal simulation (red) against background
simulation (blue). The data is kFolded, and the response shown here is for the testing sample. For
the background the BDTs shown here are trained on (a) double hadron mis-ID from B® — K*Ou+pu—,
(b) BY — ¢utpu~, (¢) u <> K swap from the J/1, (d) u «> 7 swap from the J/1, (e) p > K
swap from the ¢(25), (f) u <> m swap from the 1(25), (g) Ay — pKutp~, where p — m, and (h)
Ay — pKputu~, where p — K and K — .
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those event with mp > 5380 MeV/c? (the B® mass plus a pion) the region with
5220 < m(KpTp~) < 5340 MeV/c? is excluded, corresponding to a 60 MeV/c? window
around the BT mass. This selection causes a hole in the space of mp, cosfx, and ¢> above

the B® mass which is accounted for in the background PDF as described in Section 7.2.1.

5.6 Combinatorial BDT

After removing backgrounds arising from particle mis-identification, there remains a large
amount of background arising from combinatorial events. These are where at least one
particle does not originate from the BY. Since these backgrounds in general are in the full
B° mass range and not centred in a particular mass region, they cannot be removed as
easily as BT — KT pu~. In addition, given the different centre-of-mass energies of the
pp collisions between Run 1 and Run 2, the combinatorial background is expected to be
different such that treating these periods separately results in a more efficient removal
of these backgrounds. Two BDTs (one for each run period) are therefore designed to
remove these combinatorial backgrounds, one each for Run 1 and Run 2, using the xgboost
algorithm [81]. k-fold cross validation is used with 10 folds. Separate BDTs were not
considered for the peaking backgrounds in Table 5.5 since these backgrounds are controlled
at a reasonable level, as shown by Section 5.9. The estimated peaking background yields
relative to the signal after the peaking background BDTs were applied were also found to
not vary much between data taking periods.

Since this BDT is designed to remove any combinatorial event rather than a specific
background, data is used as a proxy for the background. The BDT is trained on the
upper BY mass sideband data (defined as the region 5350 < mp < 5700 MeV /c?) for the
background. This region is the selected (trigger, stripping, cleaning cuts, mass selection,
peaking background vetoes) region of the data sample, using the Run 1 sample for the
Run 1 BDT and the Run 2 sample for the Run 2 BDT.

For the signal, the BDT is trained on the B® — K*0;%;~ simulation, with all of the

selections including mass selections applied. The set of BDT training variables are

e B lifetime, pr (transverse momentum), p (momentum), end vertex y2, DIRA
® DLL ("), DLLyx(p™), DLLg#(K), DLLgr ()
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Muon and hadron isolation variables

IP x? of the pion, kaon, ut, u=, BY

Flight distance x? of the K*0, B?

End vertex x? of the K*0.

The isolation variable for a reconstructed hadron or muon track corresponds to the
number of extra tracks (i.e. tracks which are not from the signal candidate) that can form
a vertex with the reconstructed track. Thus the isolation variables are discrete.

The choice of variables and training samples are such that the combinatorial BDT is
trained to remove many event topologies, such as combinatorial events where the hadrons
and muons are displaced from the primary vertex. Of these variables, the IP 2, flight
distance x? and end vertex y? variables are found to be useful since they are effective
at removing different kinds of combinatorial backgrounds (e.g. B* — D%u*v,, where
D® — Kt~ v, with a combinatorial pion).

The simulation has per-candidate weights applied in order to account for mismodelling
in the simulation. These were developed by the ongoing binned angular analysis, and
consist of trigger weights, track weights, and kinematic weights. The trigger weights
account for mismodelling of the LO trigger in the simulation. The efficiency of the trigger is
computed using BT — J/1 K™ data and simulation, and is parametrised in two dimensions
by the pr of the two decay product muons. The TISTOS method [83] is used where the
numbers of candidates which are Triggered Independent of Signal (TIS), Triggered On
Signal (TOS) and simultaneously TIS and TOS (TISTOS) are used to extract an efficiency
of the trigger. The ratio of the TISTOS efficiencies in data to simulation is applied as a
correction for the trigger efficiency. The track weights account for mismodelling of the
tracking efficiency, with the correction applied based on the ppr and 7 variables of each of
the decay products since these variables are correlated with the tracking efficiency. These
corrections are obtained by simulating a decay channel which is experimentally clean and
with large yields in data, such as J/¢¥ — p*u~ and comparing this with data in order to
extract a correction. Finally, the kinematic corrections are used to correct the BY p and
pr spectra, where BT — J/y K™ is used for these corrections. Here, per-event weights are

obtained via training BDTs on Bt — J/¢K* simulation and data.
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The distribution of the training variables for the signal and background samples for
the Run 1 BDT are shown as Figures 5.3, 5.4, and 5.5. Similarly, the distribution of the
training variables for the signal and background samples for the Run 2 BDT are shown
as Figures 5.6, 5.7, and 5.8. The variables which were found to have highest variable
importance (number of times a variable is used to split the data) are the B% end vertex x?,
the B” DIRA, and the flight distance x? of the B°. These are important variables since
they correspond to the quality of the vertex fit and reconstructed B?. In addition, the
hadron isolation variables provide the BDT with greater separation power since, compared
to the signal, tracks from combinatorial background often have more tracks which are
nearby.

The agreement between simulation and data of the input variables has been examined
by comparing the input variables in the control mode. The input variables in B — K*0.J /4
simulation are compared with BY — K*0.J /1 data which has been background subtracted
using the sWeight technique [84]. These are shown as Figure 5.9, 5.10, and 5.11 for 2017.
For the rest of the data periods, these are shown in Appendix A. As seen in these plots, the
agreement between simulation and data in the control mode appears to be reasonable, but
not perfect. This is most likely due to a number of features in the data. Firstly, given the
backgrounds are non-negligible in the control mode, and these do not necessarily factorise
with the B mass, the sWeighting procedure is not perfect. In addition, even if there is no
issue with the sWeighting, the signal data sample is not 100% P-wave B® — K*°.J /¢ as in
the simulation. There is an S-wave contribution as well as contributions from exotic states,
i.e. BY — Z(4430)" K, where Z(4430)~ — J/+¢m~. This is evident in Figure 5.12 which
shows cos fx in the B® — K*0.J /4 simulation and sWeighted B® — K*0.J /¢ data.

Given the angles are different from the outset, comparisons of the BDT efficiency
between simulation and data were made. Figure 5.13 shows the BDT efficiency as a
function of cos @y, cos Ok, and ¢ for the BY — K*V.J/¢ simulation and data. The efficiency
is fairly flat in cos 6y and ¢, and mostly flat in cos 6 with a drop at high cos . Comparing
simulation to data, the BDT angular efficiency appears well modelled apart from at high
cos B, where the difference is most likely due to backgrounds which have not been
sWeighted properly in data, as well as the exotic states and S-wave of the J/¢ data. In

order to investigate this, the efficiencies were examined in a narrow mg, window around
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Figure 5.3: Training variables for the Run 1 combinatorial BDT. Signal is shown in blue and
background is shown in orange. The distributions are normalised to unit area.
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Figure 5.5: Training variables for the Run 1 combinatorial BDT. Signal is shown in blue and
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the K*0 pole mass. A selection 876 < my, < 916 MeV/c? was applied to both data and
simulation to ensure a sample which has a high purity of P-wave J/v¢. The efficiencies
for 2017 in this mg, region are shown in Figure 5.14. As seen in the high cos 0k region,
the discrepancy between data and simulation reduces as the data becomes more P-wave
dominated. The same behaviour is seen in the other data periods, as shown in Appendix B.

The results of the training for Run 1 and Run 2 can be seen in Figure 5.15. The BDT

78



1200 1 = Signal 0.00016 ] = Signal
- " Background 0.00014 ] " Background
1000 ‘ |
‘ 0.00012
800 0.00010
600 ‘ 0.00008
\ 0.00006
400
0.00004
200 0.00002
0 - 0.00000
0.000 0.001 0.002 0.003 0.004 0.005 0.006 0.007 10000 15000 20000 25000
BO lifetime (ns) B P (MeV/c)
[0 Signal [ Signal
" Background " Background
0.000008
0.000006 -
0.000004
0.000002 -
0.000000- v v v v v
100000 200000 300000 15 20 25 30 35 40
B° P (MeV/c) B° end vertex x2
254 m=m Signal 0.16 e Signal
" Background 0.14 1 I Background
20
0.12
151 0.10
0.08 1
101 0.06 1
0.04
5.
0.02
0.00-

0
-1.25 -1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50
10000 x (B° DIRA-1)

0.16 1 [ Signal 0.040 H [ Signal
" Background 0.035- " Background
0.144
0.12 0.030 |
0.104 0.025 1
0.084 0.020 A
0.06 0.015 1
0.044 0.010 1
0.024 0.005 A
0.00- 0.000 -
-50 -25 00 25 50 75 10.0 125 15.0 20 40 60 80
DLLyn(u™) DLLkr(K)

Figure 5.6: Training variables for the Run 2 combinatorial BDT. Signal is shown in blue and
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Figure 5.8: Training variables for the Run 2 combinatorial BDT. Signal is shown in blue and
background is shown in orange. The distributions are normalised to unit area.

clearly performs well. The Receiver Operating Characteristic (ROC) curves for Run 1 and
Run 2 are shown as 5.16. The high quality performance of the BDTs is due to the use
of xgboost, a training sample which is representative of the signal (i.e. B® — K*0utp~
simulation), and input variables which allow good discrimination between signal and
background events.

The optimum cut points are chosen such that the statistical significance S/v/S + B,

81



400 mmm B - K'Y/ simulation

350 mm B°-K'Y/y data
300
250
200
150
100
50
0

0.000 0.002 0.004 0.006 0.008 0.010
BO lifetime (ns)
mm B°- K'Y/ simulation
0.000008 A mm B°-K'Y/y data

0.000006

0.000004

0.000002

0.000000 -
100000 200000

BY P (MeV/c)

300000

mmm B° - K'Y/y simulation

1007 s B> K"Y/y data

80

60

40

20

[0}
-0.175 -0.125 -0.075 —-0.025
10000 x (B° DIRA - 1)
0.16 1 mm B° - K"/ simulation
m B°- K'Yy data

0.14

0.12+
0.10+
0.08
0.06 1
0.04
0.02 1

0.00-
0.0

2.5

5.0 7.5 10.0

DLLynlp*)

125 15.0 175

mmm B0 - K'Y/y simulation
mm B%-K'Y/y data

0.00010

0.00008

0.00006

0.00004

0.00002

0.00000

5000 10000 15000

B P; (MeV/c)

20000

25000

mm B° - K'Y/ simulation
mm B°-K'Y/y data

0.14

10 15
B° end vertex x?

mmm B° - K'Y/y simulation
mm B°->K'Y/y data

0.16 1

0.14

7.5 10.0 12,5 15.0 175
DLLyp(u™)
0.025
mm B0 - K'Y/ simulation
mm B%-K"Y/y data
0.020
0.015 1
0.010 1
0.005 1
0.000-

40 60
DLLn(K)

80 100 120

Figure 5.9: Comparison between B — K*Y.J /¢ simulation and sWeighted B® — K*Y.J /1 data for
the BDT training variables for 2017. The distributions are normalised to unit area.
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Figure 5.10: Comparison between B? — K*0J /v simulation and sWeighted B® — K*0.J /¢ data
for the BDT training variables for 2017. The distributions are normalised to unit area.

83



mm B° - K'%/y simulation mm B0 - K"Y/y simulation
m B°- K'Yy data 10-31 B> K'Y/y data

1074

500 1000 1500 2000 2500 3000 3500 1000 2000 3000 4000 5000 6000

ut 1P x? Flight distance x2 of the K™
0.51 mm B° - K'Y/y simulation mmm B0 - K'Y/y simulation
mm B°- K'Yy data mm B%-K'Y/y data

5000 10000 15000 20000 25000 30000
BO IP x? Flight distance x2 of the B

mm B°- K"/ simulation

mm B°-> K'Yy data
2.5

2.04

1.51

1.0

0.51

0.0- ’ v v - -
0 1 2 3 4 5 6 7
End vertex x? of the K™

Figure 5.11: Comparison between B? — K*0.J /v simulation and sWeighted BY — K*°.J/¢ data
for the BDT training variables for 2017. The distributions are normalised to unit area.

where S is the estimated signal yield, and B is the expected background yield, is maximised.
The yield of the background is estimated directly from the upper B? mass sideband samples.
They are fit with an exponential function and the yield is extrapolated into the full fit
region (5170 < mp < 5700 MeV/c?). The signal yields are estimated by examining the
simulation efficiencies and the B® — K*0.J /v data fits.

The significance S/+/S + B is maximised for the Run 1 and Run 2 BDTs. For Run 1,
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Figure 5.12: Comparison between BY — K*0.J /v simulation and sWeighted B® — K*°.J/¢ data
for cos Ok for 2017. The deviations are caused by the presence of exotic states in the data.

Figure 5.17 shows the signal and background efficiencies, and significance as a function of
BDT cut point. The same is shown for Run 2 in Figure 5.18. Table 5.8 shows the optimum

BDT working points and efficiencies.

Table 5.8: Optimum combinatorial BDT working points and efficiencies.

Run Period | BDT cut | Significance | Signal efficiency | Background rejection
efficiency
1 0.97672 30.4 0.924 0.984
0.97983 60.8 0.917 0.987

5.7 Bt — K**u*u~ BDT

Another BDT was trained, which was developed for the ongoing binned analysis, to
further reduce background levels, in particular BT — K**putu~, where K*t — K70 or
K*t — Kg7r+. Such backgrounds have angular structures which do not factorise with the
BY mass. There are two BDTs, one for each decay mode, using xgboost. This BDT is
trained on variables such as the X% p of the tracks, rapidities, difference between rapidity of
the hadrons, and the K*0 and B° vertex x2. The cut points chosen for the BDT are such
that > 90% of signal is retained.

Figure 5.19 shows cos 8y and cos 0k in the lower mass sideband, defined as the region
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Figure 5.13: Combinatorial BDT efficiency as a function of cosfy, cosfg, and ¢ for 2017
B — K*9J/+ simulation and 2017 B® — K*0.J/1 data, where the uncertainties are statistical.
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Figure 5.14: Combinatorial BDT efficiency as a function of cosfy, cosfg, and ¢ for 2017
B — K*9J/+ simulation and 2017 B® — K*°.J /v data, in the region 876 < mg, < 916 MeV/c?,
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Figure 5.15: Result of the training of the combinatorial BDT for (left) Run 1 and (right) Run 2.
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Figure 5.16: ROC curves from the training of the combinatorial BDT for (left) Run 1 and (right)
Run 2. Note the z-axis uses a log scale.

5170 < mp < 5220 MeV/cQ. Figure 5.20 shows cos#, and cosf in the upper mass
sideband, defined as the region 5350 < mp < 5700 MeV/c2. Green and blue show the
angles after applying the combinatorial and subsequently applying the B* — K** ™t~
BDT, respectively.

Applied to the ansatz analysis selection, this BDT reduces peaking structures such as
the one seen at high cos @ in the lower mass sideband. This feature is predominantly from
BT — K*ptu~, where K*T — K% or K** — K3n™ and does not factorise with the
B° mass. It is critical that the angles must factorise with each other and the BY mass since
this is assumed by the background fit model. The BT — K*Tpu*u~ BDT significantly
reduces this structure, thus improving the fit quality and reducing the possibility of a poor

goodness-of-fit.
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Figure 5.17: Signal efficiency, background rejection efficiency, and significance for the Run 1 BDT
as a function of BDT cut point. The BDT cut point is chosen such that the significance is at a
maximum.

5.8 Validation of the selection on the same-sign muon sample

The B2XMuMu stripping line also contains a sample of reconstructed decays where both
muons have the same sign. This sample contains no signal and is an excellent proxy for
combinatorial background in the full B mass range, since the reconstructed decay is
topologically similar to B — K*9u* i~ and the same triggers and stripping are applied.
This sample also provides a way to examine how the selection performs in the full B® mass
range. This same-sign muon sample was used to examine the combinatorial BDT efficiency
across the full B mass range and study the factorisability between the angles and the B°
mass.

Run 1 + Run 2 datasets were used from the B2XMuXMu stripping line, the same stripping
line as the opposite sign sample. The triggers are also the same. Starting with ~ 10
million events, the mass cuts (mp, Mg, and ¢*) remove 93% of events. The peaking

background vetoes, cleaning cuts and PID requirements remove a further 97% of events.
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Figure 5.19: cos, and cosfx in the lower B° mass sideband for all run periods, in the regions
1.25 < ¢ < 8 GeV?/c* and 11 < ¢® < 12.5 GeV?/ct. Green and blue show the angles after
applying the combinatorial and subsequently applying the BT — K**utu~ BDT, respectively.
The BT — K*Tp*tu~ BDT reduces the overall amount of combinatorial background and helps to
reduce peaking structures such as the one seen at high cosfg.
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Figure 5.20: cosf, and cosf in the upper mass B° sideband for all run periods, in the regions
1.25 < ¢ < 8 GeV?/c* and 11 < ¢ < 12.5 GeV?/c*. Green and blue show the angles after
applying the combinatorial and subsequently applying the BT — K**utu~ BDT, respectively.
The BT — K**utp~ BDT reduces the overall amount of combinatorial background.

The combinatorial BDT removes 98% of the remaining data resulting in 391 events.

5.8.1 BDT efficiency

The BDT efficiency was studied across the full B® mass range in the same-sign muon
sample. Figure 5.21 shows the B mass before and after applying the combinatorial BDT
(blue and orange respectively), in the range 4900 < mp < 6100 MeV /c?. The efficiency of
the combinatorial BDT is found by dividing these two histograms, as shown by Figure 5.22.
Within statistical uncertainties, the BDT efficiency is a smooth function.

The correlation between the BDT score and the B? mass was studied. The histograms
of BDT score against B? mass are shown as Figure 5.23. A correlation of —0.04247 was
measured between BDT score and BY mass in the region 5170 < mp < 5700 MeV/c?. This
is evident from looking at the BDT efficiency. Given no significant peaks are seen in the B°
mass, the main check which needs to be performed is whether the BY mass distribution can
be modelled with an exponential function, which is the nominal background description in
the B? mass in the fit to opposite-sign data.

The Bt — K*tutpu~ BDT was also applied to the same-sign sample and B°
mass distributions were plotted in the two fit regions, 1.25 < ¢> < 8 GeV?/c* and
11 < ¢% < 12.5 GeV?/c*. These are shown by the blue histograms in Figures 5.24 and 5.25
respectively. These distributions were fitted with exponential functions and chi-square tests

were performed. The chi-square values for the lower and upper ¢ regions are 4.11 and 10.26.
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Figure 5.21: BY mass distribution in the same-sign muon sample before (blue) and after (orange)
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Figure 5.23: Correlation between BDT and B® mass in the same-sign muon sample in BDT > 0.95
(top left), 0.001 < BDT < 0.1 (top right) and 0.1 < BDT < 0.95 (bottom).

With 6 degrees of freedom, this results in p-values of 66.15% and 11.42% respectively. Thus
the BY mass distributions of the same-sign muon sample after applying the full selection
can be described by exponential functions. Given this and the good-quality goodness-of-fit
presented in Chapter 11, the background component of the B? mass in the opposite-sign
data is describable using an exponential function. For the main analysis which uses the

opposite-sign data, the decay constant in the exponential function is a free parameters in

the fit.

5.8.2 Background factorisability

In the fit, the background is parameterised as factorising between the BY mass, each
angle, and ¢2, i.e. Pyrg = P(mp)P(cos ;) P(cos k)P (¢)P(q?). In particular, the BY mass
factorises with the angular PDF, i.e. Py, = P(mp) x P(£,¢%).

Given that there are backgrounds which do factorise in the BY mass, it is necessary
to examine the factorisation of the combinatorial, which can be done with the same-sign
muon sample. If they do not factorise, one has to improve the background description in

order to incorporate non-factorisable effects, or improve the selection. Again, the dataset
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Figure 5.24: BY mass distribution in the Figure 5.25: B® mass distribution in the
same-sign muon sample with the full selec- same-sign muon sample with the full selec-
tion applied, in the region 1.25 < ¢> < 8  tion applied, in the region 11 < ¢% < 12.5
GeV?/c* (blue). From fitting an exponential ~ GeV?/c* (blue). From fitting an exponential
function to this distribution (red), a p-value  function to this distribution (red), a p-value
of 66.15% is determined from a chi-square  of 11.42% is determined from a chi-square
test. test.

was split into the two ¢? regions (1.25 < ¢? < 8 GeV?/c* and 11 < ¢ < 12.5 GeV?/c*)
and treated entirely separately.

Legendre polynomials are fitted to the angular distributions in the full B® mass range.
For the lower ¢® region, two parameters were fitted for each angular variable cos 8y, cos O,
and ¢. The parameterisation is of the form 1+ al + bLo where a, b are fit parameters and
L; are Legendre polynomials of order ¢. The angle ¢ is scaled to the region —1 <z <1
when evaluating the polynomial. Owing to the low amount of data in the interresonance
region (11 < ¢? < 12.5 GeV?/c*), only one parameter was fitted, i.e. a parameterisation of
the form 1+ al;.

The B° mass region was also split into two bins of B? mass, and the angular fits were
performed. Each BY mass bin contains the same number of events. The coefficients can be
compared between BY mass bins for the lower ¢? region or the interresonance region. The
same study was also performed where the BY mass was split into three bins of equal size.

For the lower ¢ region, the results for the a parameter for the angles are shown as
Figure 5.26. The results for the b parameter for the angles are shown as Figure 5.27.
Within the data sample statistics, the coeflicients are consistent.

For the interresonance region, the results for the a parameter for the angles are shown
as Figure 5.28. The coefficients are consistent within each other given the data statistics.

The angles and fits in the full B mass range and the three bins in B® mass are plotted.
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Figure 5.26: Results from fits to the angles in the low ¢? region in the selected same-sign muon
sample. This plot shows the first Legendre coefficient for the three angles. The fit was performed in
the full B® mass range, two B mass regions of equal size, and three B® mass regions of equal size.

This is in order to visually examine the quality of the fits and the shape of the backgrounds
in different B mass regions. These are shown as Figure 5.29 for cos6y, cosfx and ¢.
Likewise, for the interresonance region, these are shown as Figure 5.30. Within the data
statistics, the backgrounds indeed appear to factorise in B® mass.

Chi-square goodness of fit tests were performed on the fits where the BY mass is split
into three bins. The fit in each B mass region is compared to the data in the other two
regions in order to examine the compatibility between the angular shapes between different
B° mass regions. The reason for not comparing the fit to the data in all three regions is

to avoid correlations between the fit and data used to perform the fit. The p-values are
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Figure 5.27: Results from fits to the angles in the low ¢? region in the selected same-sign muon
sample. This plot shows the second Legendre coefficient for the three angles. The fit was performed
in the full B® mass range, two B° mass regions of equal size, and three B® mass regions of equal
size.

shown in Table 5.9.

5.9 Performance of the selection

The performance of the selection is examined by computing expected peaking background
yields relative to the signal. This was examined at various points in the selection. Figure 5.31
shows the expected peaking background yields in the two signal regions after the trigger,
stripping and all cleaning cuts apart from the hadron PID has been applied. The sum

of all peaking backgrounds relative to the signal is large, at 85% in the low ¢? region
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Figure 5.28: Results from fits to the angles in the interresonance region in the selected same-sign
muon sample. This plot shows the first Legendre coefficient for the three angles. The fit was
performed in the full B® mass range, two B® mass regions of equal size, and three B® mass regions
of equal size.

and 70% in the interresonance region. The largest background is the K and m mis-ID in
B® — K*9up~. Figure 5.32 shows the same after the hadron PID selection is applied.
Applying the hadron PID requirements reduces the overall levels of peaking backgrounds
in both ¢? regions, towards 12% in the low ¢? region and 5% in the interresonance region.
The largest backgrounds in the two regions are now the p-m swap from BY — K*9.J/4
and K — 7 mis-ID in BY — ¢u™u~ respectively. These are reduced significantly by the
peaking background veto BDTs discussed in Section 5.4. Figure 5.33 shows the expected
peaking background yields relative to the signal after the peaking background veto BDT's

have been applied. These have reduced overall levels of background to around 1.7% of the
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Figure 5.29: cos#y, cosfx and ¢ in different B° mass regions in the same-sign muon sample in the
low ¢2 region with fits to second order Legendre polynomials.

Table 5.9: p-values when comparing fits to angles in a B° mass region to the distributions in the
other BY mass regions.

Angle | ¢° region (GeV?/c?) | BY mass region (MeV/c?) | p-value (%)
cos 1.25 < ¢*> <8 5170 < mp < 5257 84.7
cos by 125 < ¢®> <8 5257 < mp < 5405 58.9
cos 0y 125 < ¢> <8 5405 < mp < 5700 41.3
cos Ok 1.25 < ¢?> < 8 5170 < mp < 5257 41.3
cos O 125 < ¢> <8 5257 < mp < 5405 72.6
cos Ok 1.25 < ¢?> < 8 5405 < mp < 5700 23.0
é 1.25 < ¢®> <8 5170 < mp < 5257 19.8
é 1.25 < ¢* <8 5257 < mp < 5405 19.3
¢ 125 <¢®> <8 5405 < mp < 5700 8.6
cos by 11 < ¢> <125 5170 < mp < 5300 23.1
cos b, 11 <¢®> <125 5300 < mp < 5407 50.9
cos 11 <¢®> <125 5407 < mp < 5700 46.8
cos Ok 11 <¢®><125 5170 < mp < 5300 6.2
cos Ok 11<¢®<125 5300 < mp < 5407 39.6
cos Ok 11 < ¢®> <125 5407 < mp < 5700 48.2
é 11 <¢®> <125 5170 < mp < 5300 18.2
é 11 <¢> <125 5300 < mp < 5407 75.8
é 11 <¢®> <125 5407 < mp < 5700 13.3
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Figure 5.30: cosf, cosfOx and ¢ in different B° mass regions in the same-sign muon sample in the
interresonance region with fits to first order Legendre polynomials.

signal. Now Bt — K**pu "~ is largest in both regions. Figures 5.34 and 5.35 show the
expected peaking background yields relative to the signal after applying the combinatorial
BDT and subsequently applying the K** BDT respectively. The resulting overall levels
of peaking background are low (0.9% and 0.4% of the signal in the two ¢? regions) thus
overall levels of backgrounds will have a negligible effect on the signal. In addition there is
no single peaking background considered here which is greater than 0.3% of the signal.
Figure 5.36 shows the B® mass distributions for the signal simulation and the background
simulation. The background simulation corresponds to the total background, obtained
by adding together the individual background components scaled to the expected yields
relative to the signal. The top plots show the low ¢ region and the bottom plots show the
interresonance region. The left plots show the BY mass after the trigger, stripping, and
cleaning cuts (including hadron PID) are applied and the right plots show the B mass after
the full selection is applied. The same is shown for cos 8y, cos 0k and ¢ in Figures 5.37, 5.38,

and 5.39. As seen in these plots, the background is peaking in certain angular and/or B°
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Figure 5.31: Expected peaking background yields relative to the signal in the two ¢? regions of
interest, for the full dataset. This is after the trigger, stripping and cleaning cuts apart from the
hadron PID are applied. The sum of all peaking backgrounds relative to the signal is 85% in the
low ¢ region and 70% in the interresonance region.
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Figure 5.32: Expected peaking background yields relative to the signal in the two ¢? regions of
interest, for the full dataset. This is after the trigger, stripping and cleaning cuts (including hadron
PID) are applied. The sum of all peaking backgrounds relative to the signal is 12% in the low ¢
region and 5% in the interresonance region.
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Figure 5.33: Expected peaking background yields relative to the signal in the two ¢ regions
of interest, for the full dataset. This is after the trigger, stripping, cleaning cuts, and peaking
background veto BDTs are applied. The sum of all peaking backgrounds relative to the signal is
1.7% in both ¢ regions.
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Figure 5.34: Expected peaking background yields relative to the signal in the two ¢? regions of
interest, for the full dataset. This is after the trigger, stripping, cleaning cuts, peaking background
veto BDTs and combinatorial BDT are applied. The sum of all peaking backgrounds relative to
the signal is 1.1% in the low ¢? region and 0.8% in the interresonance region.
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Figure 5.35: Expected peaking background yields relative to the signal in the two ¢? regions of
interest, for the full dataset. This is with all of the selection applied. The sum of all peaking
backgrounds relative to the signal is 0.9% in the low ¢? region and 0.4% in the interresonance
region.

mass regions. Thus it is important to remove these backgrounds. The selection described
in this chapter is very powerful at removing these peaking backgrounds as well as overall
levels of combinatorial background resulting in a clean sample which can be used for the
amplitude ansatz analysis of B — K*9utu~. The expected yields are estimated. After
the selection is applied, in the 1.25 < ¢ < 8 GeV?/c* region, the expected yields are 4167
signal events, 726 combinatorial background events, and 38 combined peaking background
events.

Since the overall level of peaking backgrounds is low compared to the signal, and that
the signal data fit shows a good-quality goodness-of-fit, as shown in Section 11.3.1, the
effect of the remaining peaking backgrounds on the signal is deemed to be negligible. With
regards to the combinatorial background, since it can be described by an exponential
function in the BY mass, unlike the signal which is described by the sum of two Crystal
Ball functions, the background is thus uncorrelated with the signal.

Table 5.10 presents a summary of the applied selections with efficiencies. The efficiencies

were determined from B® — K*%uF ;= simulation. The efficiencies shown for each selection
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Figure 5.36: BY mass distributions for the signal and total peaking background simulation. The
background simulation corresponds to the total background, obtained by adding together the
individual background components scaled to the expected yields relative to the signal. The top
plots show the low ¢? region and the bottom plots show the interresonance region. The left plots
are after applying the trigger, stripping, and cleaning cuts (including hadron PID) and the right
plots are after the full selection is applied. Note a log scale is used for the y-axis.

level are conditional with respect to the previous selection level. The detector acceptance
efficiency refers to the proportion of B® — K*%u* i~ decays where the reconstructed final
state particle tracks (K, m, u*, p~) are within the LHCb detector acceptance. The
combined efficiency of the trigger, stripping, and cleaning cuts is 8.17%, of which the
stripping is the most stringent. The ¢? selection refers to the selection of events which
are in the ¢ windows 1.25 < ¢? < 8 GeV/c* and 11 < ¢? < 12.5 GeV/c*. The mass cuts
refer to the kaon-pion invariant mass (mg,) and B mass (mp) selections. The peaking
background veto BDTs and K uu veto are described in Sections 5.4 and 5.5 respectively.
The combinatorial and K*+ BDTs are described in Sections 5.6 and 5.7 respectively. The

total efficiency, which is a combination of all of the efficiencies, is also shown.
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Figure 5.37: cos@, distributions for the signal and total peaking background simulation. The
background simulation corresponds to the total background, obtained by adding together the
individual background components scaled to the expected yields relative to the signal. The top
plots show the low ¢? region and the bottom plots show the interresonance region. The left plots
are after applying the trigger, stripping, and cleaning cuts (including hadron PID) and the right
plots are after the full selection is applied.

Table 5.10: Summary of applied selections and efficiencies. For each selection stage the efficiency
shown is conditional with respect to the previous selection stage. The total efficiency is also shown.

Selection Efficiency
Detector acceptance 16.79%
Trigger (Table 5.1), stripping (Table 5.2), cleaning cuts (Tables 5.3 and 5.4) 8.17%
q® (1.25 < ¢*> < 8 GeV?/c*, 11 < ¢® < 12.5 GeV?/c*) 37.16%
Mass selections (796 < my, < 996 MeV/c?, 5170 < mp < 5700 MeV/c?) 92.53%
Peaking background veto BDTs (Table 5.7) 95.79%
K pup veto (Exclude events with mp > 5380 MeV /c? and

5220 < m(Kptp~) < 5340 MeV/c?) 99.99%
Combinatorial BDT (Table 5.8) 91.85%

K** BDT (K** — K+7" BDT score > 0.65,
K*T — K3n™ BDT score > 0.68) 92.72%
Total ‘ 0.38%
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Figure 5.38: cos 0 distributions for the signal and peaking background simulation. The background
simulation corresponds to the total background, obtained by adding together the individual
background components scaled to the expected yields relative to the signal. The top plots show
the low ¢2 region and the bottom plots show the interresonance region. The left plots are after
applying the trigger, stripping, and cleaning cuts (including hadron PID) and the right plots are
after the full selection is applied.
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Chapter 6

Acceptance

Detector effects, selection cuts and reconstruction distort the true angular and ¢? distri-
butions resulting in the measured distributions. To account for this effect, an acceptance
function, ¢, is used. A simulation is generated flat in the angles and ¢?. This simulation is
propagated through the detector and the selection is applied. This is used to ascertain the
acceptance. The acceptance is parameterised in cos 6;, cos g, ¢ and ¢°. In the amplitude

ansatz fit, this enters as

dr
dQdg?

dr
dQdg? ’

true

= e(cos b}, cos Ok, @, q2)
experiment

(6.1)

where the acceptance function is used to transform from the measured angular distribution
of the decay products to the underlying angular distribution which depends only on the
underlying physics. Similarly to other BY — K*Ou* i~ analyses, the acceptance is modelled

as the polynomial

(cos 0y, cos O, qﬁ,qz) = Z CijmnLi(cos ;) Lj(cos HK)Lm(qﬁl)Ln(qz’), (6.2)

ijmn
where L, denotes Legendre polynomials of order a. The quantities ¢’ and ¢? correspond to
¢ and ¢ scaled to the range —1 < z < 1. The method of computing this function follows
other B® — K*0u* ;i ~analyses, where the coefficients Cijmn are obtained by utilising the

orthonormality of the Legendre polynomials, namely
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L L = .
/_ L) La(o) de = 5 (6.3)

where g4, is the Kronecker delta. Hence, explicitly, the coefficients c¢;jm, are obtained via

method of moments and are given by

_ i [(21+1>(2j;—1)<2m2+1><2n2+1)
; (6.4)

Cijmn =

x L;(cos ;) Lj(cosO)L (¢/)Ln(q2/):|a

where w, is the weight corresponding to event a and N is the number of events in the
simulated sample. The per-candidate weight consists of weights to account for mismodelling
in the simulation, as described in Chapter 5.

Acceptance functions are ascertained using B — K*°u% ;= simulation which is gen-
erated flat in ¢? and the angles. It is generated with a Briet-Wigner parameterisation
of the mpg, lineshape. The acceptance is computed integrated over the mpg, region
0.796 < myr < 0.996 GeV/c?, in the ¢® region 1 < ¢® < 15 GeV?/ct.

The acceptance for the BY dataset is different from the acceptance for the B? dataset,
thus the acceptance is also computed split into B® and B° flavours and treated separately.
This is in order to avoid the potential Punzi effect [85]. This effect describes a potential
bias resulting from using the same template when fitting two classes of events. In particular,
a bias is induced if the template depends on the event class. For this analysis, since the
B and B° have potentially different acceptance shapes, using a single acceptance and
applying it to both the B and BY Probability Density Functions (PDFs) can induce biases
in the fit results, thus this must be avoided. Hence in the fit where the B® and BY have
separate PDF's, each PDF has its own acceptance function. Thus there are two acceptance
functions in this case, one corresponding to the B? dataset, and another corresponding to

the B? dataset.
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6.1 Goodness-of-fit

Beyond the accuracy of the simulation there are two sources of uncertainty related to the
acceptance function. The first is the limited size of the simulation samples. The second is
the choice of the orders of the polynomials used to fit the simulation. If the orders are too
low the shape will not be accurately captured however if they are too high then statistical
variations are modelled. Thus the maximum required orders is correlated to the size of the
simulation sample available so one must determine the orders of the acceptance function in
order to obtain a function which does not fluctuate with statistical variations and is still a
good description of the simulation.

One way to ascertain whether the acceptance function can model the simulation is by
visually inspecting 1D and 2D projections and comparing to simulation, in slices of ¢?.
However this is an insufficient way of determining the goodness-of-fit of the acceptance
since there could be mis-modellings in the multidimensional space which are not visible
in the 1D or 2D projections. In addition, since the acceptance is in four dimensions, x?
test-statistics are not sufficient to determine if a good fit of the acceptance simulation has
been achieved since variations are averaged out when binning and chi-square statistics
becomes increasingly complex as the dimensionality increases. Thus BDTs, which are
designed for multivariate analyses, are utilised.

This multivariate analysis-based goodness-of-fit test is performed by training a BDT to
discriminate between the simulation and a psuedoexperiment generated from the model
used to fit the simulation (in this case, the acceptance function). This is compared to BDTs
trained on statistically compatible distributions, which correspond to pseudoexperiments
generated from the model. If a BDT cannot distinguish between the simulation and a
pseudoexperiment generated from the model better than a pseudoexperimet generated
from the model from other pseudoexperiments then the model is a good description of the
simulation.

From an acceptance function, a pseudoexperiment with a large number of events
(greater than 5x the simulation size) is generated in cos )y, cosfy, ¢, and ¢, which are
the variables used to parameterise the acceptance. This pseudoexperiment is known as

the ‘benchmark pseudoexperiment’ since all BDTs in this goodness-of-fit method are
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trained to distinguish this benchmark pseudoexperiment from another sample (either the
simulation or other pseudoexperiments). More pseudoexperiments are generated but with
the same number of events as the simulation used to derive the acceptance. The reason for
generating the benchmark pseudoexperiment with high yields is to avoid double counting
the expected statistical variation of the acceptance. BDTs are then trained to discriminate
these pseudoexperiments from the benchmark pseudoexperiment. The training variables
are cosfy, cos Ok, ¢, and ¢>.

A metric for the performance of the BDT is the area under the Receiver Operating
Characteristic curve (ROC AUC) and is a quantity which describes how well the BDT
can discriminate between two samples. The ROC curve is the true positive rate against
the false positive rate so if the ROC AUC is 0.5 the BDT is no better than a random
guess. If the ROC AUC is 1 then the BDT is a perfect algorithm. The distribution of the
BDTs trained to separate the benchmark pseudoexperiment from other psuedoexperiments
is plotted. Since these pseudoexperiments are generated from the same model, the only
differences between them are due to statistics.

Finally another BDT is trained to discriminate betwee the benchmark pseudoexperiment
and the simulation used to derive the acceptance. The ROC AUC is obtained, compared
with the distribution for the BDTs comparing the benchmark pseudoexperiment with
pseudoexperiments and a p-value is calculated. If the fit is good, the BDT should not
be able to differentiate between the benchmark pseudoexperiment and simulation better
than it can differentiate statistical variations (distribution when comparing benchmark
pseudoexperiment with pseudoexperiments). If the fit is bad, the ROC AUC of the BDT
trained to discriminate between the benchmark psuedoexperiment and simulation will
be larger than the distribution of BDTs trained to discriminate between the benchmark
pseudoexperiment and pseudoexperiments.

Figure 6.1 shows distributions of the goodness-of-fit metric, for two different sets of
polynomial orders. Here, the 2016 simulation sample is used. On the left is the result for
one set of polynomials and the right, alternative polynomials where the maximum orders
are higher. The blue distribution is that of the ROC AUC of the BDTs used to separate
the benchmark pseudoexperiment from the other pseudoexperiments. This distribution is

a distribution of figure-of-merits resulting from goodness-of-fits to datasets where the only
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Figure 6.1: Example goodness-of-fit plots. The 2016 simulation sample is used. On the left is the
result for one set of polynomials and the right, alternative polynomials where the maximum orders
are higher. The blue distribution is that of the ROC AUC of the BDTs to separate the benchmark
pseudoexperiment from the other pseudoexperiments; the red line is that for the BDT to separate
benchmark pseudoexperiment from the simulation.

differences are due to statistical fluctuations. The red line shows the figure-of-merit (i.e.
the ROC AUC) corresponding to the BDT which is trained to separate the benchmark
pseudoexperiment from the simulation. If the figure-of-merit corresponding to this BDT is
much larger than the figure-of-merits arising from statistical fluctuations, for example the
left plot, the BDT is much better at separating a pseudoexperiment from the simulation
than it is from separating the pseudoexperiment from other pseudoexperiments. Thus the
acceptance function in this case is a bad fit of the simulation. However, if the figure-of-merit
from the BDT trained to separate a pseudoexperiment from the simulation is comparable
to the distribution of figure-of-merits from BDTs trained to separate the pseudoexperiment
from other pseudoexperiments, for example the right plot, then the acceptance here is a

good description of the simulation.

6.2 Choice of acceptances

Having found high enough orders to describe the simulation, care must be taken to
avoid overfitting. Therefore the polynomial orders are decreased until the fit is no longer
acceptable. The lowest set of orders that gives a sufficient quality fit is used in the analysis.
If the p-value is greater than 5% the choice of orders is considered to result in an acceptance

function which is a good description of the simulation. Where B® and BO are treated
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Year | Number of acceptance events | J/i¢ data signal yield | Weight
Run 1 147244 152390 1.035
2016 135687 158710 1.170
2017 130394 170034 1.304
2018 125025 209108 1.673

Table 6.1: J/4 signal data yields, number of acceptance simulation events which pass the selection

in the J/1v window, and weight used for each sample when computing the BY acceptance.

Year | Number of acceptance events | J/i data signal yield | Weight
Run 1 148141 148782 1.004
2016 134143 154544 1.152
2017 129402 166172 1.284
2018 124967 203765 1.631

Table 6.2: J/1 signal data yields, number of acceptance simulation events which pass the selection
in the J/v¢ window, and weight used for each sample when computing the B9 acceptance.

separately, the maximum orders in each of the four dimensions are chosen to be the same.
The lowest set of orders that gives a good description for both B® and B is chosen.
Since the fit combines the Run 1 and Run 2 datasets, the combined Run 1 4+ Run 2
acceptances are computed. In order to do this, for each data period (Run 1, 2016, 2017,
2018) the simulation is normalised such that it represents the relative fraction of that year’s
data in the total dataset. This is by applying a per-year weight which is the J/v¢ data
fit yield divided by the amount of simulation in the J/¢ window. This is shown in Table
6.1 for the BY dataset and Table 6.2 for the B? dataset. For the acceptances used for the
CP-averaged fit, again the simulation used to compute the acceptance is normalised to the
amount of simulation in the J/¢ window and scaled according to the J/v¢ data fits. This

is shown in Table 6.3.

Year | Number of acceptance events | J/i data signal yield | Weight
Run 1 295385 303920 1.029
2016 269830 313483 1.162
2017 259796 336601 1.296
2018 249992 414027 1.656

Table 6.3: J/1 signal data yields, number of acceptance simulation events which pass the selection
in the J/v window, and weight used for each sample when computing the combined B° and B°
acceptance.
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Figure 6.2: Projections of the combined BY and B acceptance in ¢2, cos 6y, cos 0, and ¢.

For theB? and B acceptances, the optimum maximum orders are 6 (cos ), 8 (cos ),
6 (¢), and 5 (¢?). For the combined B® and B° acceptance, the optimum maximum orders
are 6 (cosfy), 9 (cosfk), 6 (¢), and 6 (¢?).

Figure 6.2 shows the projections of the combined B? and B acceptance in ¢, cos 6y,

cos Ok, and ¢.
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Chapter 7

Fitting Strategy

A fitting framework is implemented in C++, using the TMinuit [86] library in ROOT. In
this fitting framework, the PDF's are defined, the data are loaded and the fit is performed.
This chapter describes the PDFs and the fits that are performed.

The fitting framework is written such that an extended maximum likelihood fit is
performed to the data. A total PDF is formed which contains the signal (B°), a BY
component, and the combinatorial background. The angular part of the signal PDF is

formed from the amplitudes, which are parameterised with ¢*>-dependent ansatzes.

7.1 Signal PDF

7.1.1 Angular signal PDF

The angular signal PDF is described in Chapter 2.7. The J-terms are written as bilinear

d*T(B°—K*Outu~)
d cos 0¢d cos 0 dppdg?

combinations of the decay amplitudes. The PDF is fitted for the signal

4D fit. 5D fits, where the PDF is a function of m,, were also studied, where the PDF is

dST(B—K*Outpu™)

given by = By cos O dodg?dmmes As shown in Section 8.1, the performance of the 5D fit

is insufficient with the existing statistics, and so a 4D fit nominally is performed for this
analysis. For the CP-average fit, where the B — K*0y*y~and BY — K*utu~ decay
amplitudes are set to be identical, there is just one PDF. For the asymmetries fit there are

two PDFs, one for the B amplitudes, and one for the B° amplitudes.
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Ansatz model

The ansatz model used for this analysis is

for the amplitudes. L; are Legendre polynomials in ¢?> and a; are complex coefficients.
When evaluating the Legendre polynomials, ¢° is scaled to the range —1 < z < 1. An

alternative amplitude ansatz was also considered. This is described by the parameterisation

v

A:a+ﬁq2+? (7.2)

as originally proposed in [11]. This ansatz was not adopted due to the very large correlations
between coefficients and presence of local minima seen through pseudoexperiment studies.

More about the motivation for the Legendre ansatz is given in Section 8.2.

Amplitude basis

As described in Section 2.10, there are four continuous symmetries of the PDF. Thus the
effective number of amplitudes (8 complex amplitudes x (real, imaginary) = 16) is not
equal to the number of degrees-of-freedom in the PDF (12). This results in an infinite
number of sets of amplitudes which result in the same PDF. In order to define an amplitude
basis an effective rotation is performed that leaves four of the amplitudes at arbitrary
constants, which do not need to float in the fit. As initially motivated by [11], the amplitude
basis chosen is where Im(A%¥) = Im(A}) = Re(Af) = Im(AF) = 0. All other amplitudes

float in the fit.

Amplitude ansatz description of the theoretical predictions

The Legendre polynomial ansatz with four parameters can describe a variety of models
as shown in Figures 7.1, 7.2, and 7.3. These show the P-wave amplitudes in the nominal
amplitude basis. The predictions shown in black are for two SM models (Figures 7.1 and
7.2) where the differences between them are the phases between the ¢(1020) and the J/1)

and the rare mode, and a NP model (Figure 7.3), where there is a shift ACy = —1 with
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Figure 7.1: Theoretical predictions of the P-wave amplitudes in the transformed basis (black) and
fits to these prediction using four-parameter Legendre polynomial amplitudes ansatzes (red). The
theoretical predictions shown are for the SM, where the phases between the rare mode and the
$(1020) and .J/1) resonances are both 7.

respect to the SM. These predictions were generated by another member of the analysis.
Shown in red are fits to these predictions with four-parameter Legendre polynomial ansatzes.
As shown in these plots, the predictions vary between the models and the ansatz chosen
can describe a variety of models. This is also verified by performing a goodness-of-fit to

the data, as shown in Section 11.3.1.

7.1.2 B° mass lineshape

The BY mass mp is factorised out from the angular PDF. It is described by a sum
of two Crystal Ball functions [87], with tails on opposite sides. The B° mass signal

parameterisation is

Pp = feorePoB(mB, 1ty 01, 1,11) + (1 = feore) PoB(mB, pb, 02, a2, n2) (7.3)
where
_(mB—Qu)2
Pcp(mp, p, 00, a4,m;) = Ne 2% (7.4)
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for E=£ > —a; and
k2

O\ T a? . _ i
PCB(mBmu’a U’i)ai?ni) =N (m> e 2 <nl - ‘a’b| - TTLBM) (75)
|a] |a] i

T

< —a4, and N is a normalisation factor. The parameters «;, n; and fcore are

where TE—£

k3

extracted from the control mode and fixed in the rare mode fits.

7.1.3 Contribution from B — K*Oy* ;-

The contribution from BQ — K*9uT 1~ needs to be accounted for in order to have a good-
quality BY fit. Therefore NsigPsig for the CP-average fit, where Ng;, po is the number of

BY events and Pg;, is the signal PDF, is modified to be

Ngig,BoPsig = Ngig BoPsig Bo + Ngig 5o Psig B0 = Ngig.po(Psig.po + fBoPsigpo) (7.6)

N. 0 0 fo*0, 4+, —
_ sig.B} _ BB K" utpT) foo s 0 0 :
where fpo = Nowy 5o — BB S K05 um) Ta° with fs and f; as the B and B" fragmentation

fractions.

The B? and B datasets are split based on the charge of the kaon, since B® — K*0y+t~
and B® — K*%u* =, where K** — K*7~ and K** — K7+, Since BY — K*9u*pu~ and
BY — K*0ut ;= the Kt dataset contains the B® and BY and the K~ dataset contains
the BY and BY. Thus in the asymmetries fit the equivalent of Equation 7.6 for the K+

dataset is

Nsig.BPsig 5o + Ngig 5o Psig 50 = Nsig,50(Psig,p0 + [0 Psig 5o) (7.7)

and for the K~ dataset the equivalent is

Nisig,50 Psig 50 + Nsig,50 Psig 5y = Nsig,50(Psig 50 + f59Psig,50) (7-8)
N.fo R0 *0,, 4+, — N. O_ypex0,,+,,—
__ Vsig,BY) _ BBI—=K*utupT) fe _ sig,BY _ BBy K*utuT) fs
where fBQ = NSz‘g,BO = BBYSEOuTa) g and fBg - NSig,BO — BB=Kutu) fao The

ratio of the BY to BY yields are fixed in both the control mode fit and the rare mode fits.
The values of these ratios are fixed to the values recorded in the PDG [14], assuming no CP

asymmetry. The hadronisation fraction is taken from a recent measurement at LHCDb [88].
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Therefore for all fits fpo = fgg = 0.0077577.

The B! lineshape has identical parameters to that of the BY, but with a shift
AM = 87.26 MeV/c? of the mean p. There are also differences in the angular PDF.
The LHCb angular convention is chosen such that the PDFs have the same form for B°
and BY. However, as the BY decays to a K~ and not a KT, a CP-transformation has to
be applied to the final state. This corresponds to a transformation in ¢, ¢ — 27 — ¢. This
can therefore be resolved by flipping the signs of J7, Js, Jo, J7 and Jg.

Thus the BY PDF has the same angular PDF as the BY but with the signs of J7, Jg, Jo,
J7 and Jg flipped, as described in Figure 4 of [49]. The amplitude coefficients are shared
in the fit between Pg;y o and Pg; po for the CP-averages fit. For the CP-asymmetries
fit, the parameters are shared between Pg;, go and Pg;g po, and Pg;, go and Pg;, po- This
approximation is considered to be acceptable since the contributions from the B processes

are small compared to those from the main B° processes.

Acceptance for B — K*0ytp~

The acceptance (i.e. the ¢ and angular efficiencies) for the BY was studied using
BY — K*Ou*p~ simulation. Since differences could potentially arise due to the different
decay kinematics, i.e. that the BY mass is different from the B, there could potentially be
differences between the B? — K*0u*p~ acceptance and the B® — K*%uT = acceptance.

The BY — K*%uTu~ acceptance was determined by simulating BY — K*0u*u~ events
and applying the full selection. Weights were applied in order to make the variables ¢?,
cos By, cosOk, and ¢ flat if no selection is applied. Thus the weighted selected simulation
corresponds to the acceptance.

The BY — K*9utpu~ acceptance was compared to the BY — K*9u*pu~acceptance.
Figure 7.4 shows the ¢?, cos @y, cosfx, and ¢ projections of acceptances for the B? (red)
and B (blue) decay channels, using 2017 simulation. As seen in these plots, the acceptances
are the same within statistical fluctuations. Thus given the similarity of the acceptances
for the B® and BY decays, and that the expected number of B? is a small fraction of the
expected number of BY events, the acceptances for the BY and B? are treated to be the

same, namely the acceptance of the B® decay discussed in Chapter 6.
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Figure 7.4: Comparison between the B acceptance (blue) and the BY acceptance (red) in ¢, cos 6y,
cos g, and ¢.

7.2 Background PDF

The background is described by a five dimensional PDF
Ppig (q2, cos 0y, cos Ok, @, mBo) =P (q2) P (cosby) P (cosfOk) P(p)P (mpo) (7.9)

where the functions P (¢?), P (cosfy), P (cosfk), and P(¢) are second order Chebyshev
polynomials with two parameters describing each function. When evaluating the poly-
nomials, ¢ and ¢? are both scaled to the range —1 < x < 1. The background in the B°
mass P(mpo) is an exponential function. There are therefore nine free background PDF
parameters in total. The number of background events is also floated. For the CP-averages
fit, this is the combined number of BY and B° background events. For the CP-asymmetries
fit, the number of background events for the B® and B datasets float separately. For the
CP-asymmetries fit the background PDFs are identical between BY and B? apart from the
overall yields. This was shown to be a reasonable approximation in studies performed as

part of the binned analysis.
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7.2.1 BT = Ktutu~ veto

There is a selection veto for removing Bt — KT utu~ events. All events with
5220 < mgpu < 5340 MeV/c? and mpo > 5380 MeV/c? are removed which removes the
majority of Bt — K+ puTp~ events, where mp,, is the invariant mass of the Kpp system.
However this distorts the four-dimensional space of cos 8, mpo, mx, and g2, above the
signal BY mass. Since the nominal fit is performed after integrating over mg, only effects
in cosfx, mpo and ¢? are taken into account. Following the procedure described in [82], a
histogram describing this cut out region is created by mapping out simulated events which
were cut out by the veto in regions of cos@, mpo, mx, and ¢, and integrating over
mgr. This histogram was generated by another member of the amplitude ansatz analysis.
Events that fall into this region are set to 0 and the background PDF is renormalised
correspondingly.

The correction of the K+ u™ ™ veto is only applied to the background PDF since this
veto takes effect far from the B signal peak in the B® mass distribution (fewer than 0.01%
of events are removed). It is closer to the BY signal peak but the effect is expected to be

small since the BY signal peak is already small.

7.3 Unbinned extended maximum likelihood fit

An unbinned extended maximum likelihood fit is performed, where the likelihood

. . Npat _(NSig,BO+NS' ,BO+NBkg)
(NS’Lg,BO + NSzg,Bg + NBk’g) ate 19,5

NDat! 8
NDat 1
N Po: :
g ((NSig,BO‘i‘NSi%BQ"i_NBkQ)( sig. 0 Pig. o (@i 1)+ (7.10)

Nsig,Bo (i, 1) Psig po (i, M) + NBkgPprg (i, 77)))

is maximised. Here Ng;, po, Ngig po = fpoNgig po and Npy, are the means of Poissons
which correspond to the expected number of B®, BY and background events. Npg; is the
total number of events in the dataset, x; corresponds to the angles and mass variables at
event ¢, and n are the fit parameters.

The signal PDF is not sensitive to the global scaling. If all of the amplitudes are
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multiplied by a constant, it would cancel when normalising the PDF. Thus the overall
scale of the PDF needs to be fixed. Since the observables are computed normalised to the
rate, such as in Equation 2.29, the overall scale of the amplitudes is meaningless. In order

to set the overall scaling, an extended maximum likelihood fit is performed, where

dcosfy dcosfx d¢ dg* dmp (7.11)

Ngig po = « /PSig B0
Fit

where « is a constant. This is nominally set as 50,000 for the rare mode fits and 2,000,000 for
the J/4 fit. These are arbitrary values — the angular PDF consists of bilinear combinations
of the decay amplitudes, thus if all of the amplitudes are scaled by a constant, this constant
can be factored out of the PDF. This constant cancels when normalising the PDF. The
overall scale of the amplitudes is thus chosen by choosing an arbitrary value of «, such that
Ngig po always corresponds to the observed number of signal events. In other words, the
amplitudes in Pg;, go and Pg;, go will scale such that Ng;, go corresponds to the observed
number of signal events, and this arbitrary scale is chosen by setting « to an abritrary
constant.

For the CP-asymmetries fit, there are two scalings, ago and oo, where

dcosfy dcosfy dé dg? dmp (7.12)
Fit

Ngig B0 = ago /PSig B0

and

dcosy dcosbx do dg® dmp. (7.13)
Fit

Ngig go = oo / Psie po

In order to allow for the B amplitudes to be directly comparable to the B® amplitudes,
the two constants ago and avgo can be set to be the same. However, this does not factor
out detection and production asymmetries between B? and B°. In order to incorporate this

effect, the detection and production asymmetries are measured from the B® — K*0.J /¢

Npo
NBO

data fits by forming the ratio C' = from the signal yields. This is the ratio between the
number of B? events to the B® events in the J/1 mode. Since the genuine CP-asymmetry
Acp of the J/v is assumed to be 0 [89], this ratio corresponds to the amount of production

and detection asymmetry. Thus by setting a0 = Capgo, the production and detection

asymmetries are factored out.
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The negative log-likelihood function, which is minimised, is written as

—log £ = — >y, 108 (Ngig 5o Psig po + Nsig 5o Psig 50 + NprgPrig) +

(Nsig,po + Nsig,50 + Npig)

(7.14)

for the CP-averages fit and

—loglL=—3n . log (NSig,BOPSig,BO + Neig,0Psig,50 + Nkg, B0 L Bkg,BO) -
2N

Dat, K—

log (NSig,B_OPSig,B_O + Nsig,50 Psig,po + NBkg,BOPBkg,BU) +

(NSig,BO + Nsig,B0 + Npkg,Bo + Ngig po + Ng;g go + NBk:g,BO>
(7.15)

for the CP-asymmetries fit. Here, Ng;, denotes the signal yield as shown in Equations

7.11, 7.12 and 7.13, and Npy, is the background yield.

7.4 Fit strategy

The fitter measures the amplitude coefficients, B° mass lineshape parameters, background
parameters, and the background yields, returning the fit parameters. There are some
P-wave amplitude parameters where the uncertainties from the Hessian error matrix cannot
be used since they do not provide good descriptions of the 1D log-likelihood surfaces.
Therefore fits to these 1D log-likelihood surfaces are performed with bifurcated parabolas
in order to extract the uncertainties. The correlation matrix is computed from the Hessian
covariance matrix.

The amplitudes and observables are then computed by sampling from the fit covaraince

matrix. There are several fit configurations for the data fits as described below.

e Fit the control mode (B® — K*9J/v) samples. Here the number of parameters
in the amplitude ansatz is set to be one, i.e. constants, to remove the ¢*> depen-
dencies. This fit is performed in a 60 MeV/c? window about the J/1 mass m J s
ie. (mysy —60 MeV/c?) < ¢* < (m, + 60 MeV/c?). The acceptance function is
evaluated at the J/¢ mass. The fit in the CP-averages or the CP-asymmetries

configuration is performed. The results of this fit are in Chapter 10.
e Fit in the range 1.25 < ¢*> < 8.0 GeV?/ct. The number of parameters for the
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amplitude ansatz is set to be 4, and nominally the CP-averages fit is performed, with
results in Chapter 11. The motivation for the number of parameters for the ansatz
and why a CP-asymmetries fit is not nominally performed for this analysis is also

given in Chapter 11.

e Fit in the inter-resonance region 11 < ¢? < 12.5 GeV?/c*. Results in this region do
not feature in this thesis since the pseudoexperiment studies were primarily performed

by another member of the amplitude ansatz analysis.

In all cases, the S-wave is set to be flat in ¢°. The combined Run 1 + Run 2 datasets
are fit for each ¢? region, with the exception of the control mode where each data period is

fitted separately.
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Chapter 8

Pseudoexperiment studies

The pseudoexperiment studies described in this Chapter are based on Standard Model
pseudoexperiements with no acceptance or background. These studies were performed in
order to understand the analysis in more detail, such as the study of apparent biases and
symmetries of the PDF, as well as answering questions pertaining to the analysis strategy,
such as whether to measure the PDF as a function of the kaon-pion invariant mass (mg)

or which amplitude ansatz to use.

8.1 Study of the 5D fit

Whilst this analysis is performed on the decay B? — K*Ou*tp~, in reality it is
B? — K*7~ptp~. In the signal data, the dominant contribution in the K7~ system cor-
responds to the K*0(892), where the kaon and pion are in a P-wave configuration. However
there is also a contribution where the K7~ system is in an S-wave configuration, for exam-
ple the K;5(700), also known as the x, and the K§(1430) [14]. There are more contributions
however they are negligble in the K mass window 0.796 < my, < 0.996 MeV /c?, where
my, is the kaon-pion invariant mass. Whilst the P-wave and S-wave contributions can
be distinguished since they have separate amplitudes, measuring m g, provides additional
information regarding how likely a particular event is P-wave or S-wave.

The feasibility regarding whether to fit my, was investigated. This was tested in the
q? region 1.25 < ¢® < 7 GeV?/c? since at the time of performing this study, the nominal ¢

region for the rare mode fit was 1.25 < ¢% < 7 GeV?2/c*. There are several advantages of
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fitting m g, most notably it allows one to better to distinguish the P-wave contribution,
which peaks in mg,, and the S-wave contribution, which is relatively flat in mg,. This
allows one to make precise measurements of the S-wave parameters. Measuring mg,
thus allows a much better precision of the measurement of the fraction of S-wave and the
interference observables.

As described in Section 2.9, the 5D angular distribution only exhibits two symmetries: a
phase each for the left-handed and right-handed amplitudes. As a reminder, four amplitudes
are set to zero in the basis-fixing condition in the 4D fit. For the 5D fit, only two amplitudes
are fixed to zero to fix the amplitude basis, since there are two continuous symmetries of
the PDF. The choice Im(A%) = Im(A%) = 0 was made. Pseudoexperiments were generated
from the amplitude predictions, with the expected Run 1 + Run 2 sample yields. The
precision of the two fits were compared by performing a 5D fit (where mg is fitted, and
two amplitudes are fixed to zero) and a 4D fit (where m g is not fitted and four amplitudes
are fixed to zero).

The change in precision of the amplitudes which float in both fits was examined at
points in ¢2. The ratio between the 5D and 4D uncertainties (o5p and o4p respectively) for
the amplitudes was plotted. Therefore if % is less than one, there is a precision increase
from the 5D fit, and if this is greater than one, there is a precision decrease. Figure 8.1
shows the change in precision for the amplitudes at ¢> = 4 GeV?/c*. In order to make a
like-for-like comparison, the fitted amplitudes are transformed back into the untransformed
amplitude basis. Comparing the amplitudes which float in both the 4D and 5D fits (all
apart from Im(A%), Im(A¥), Re(Af) and Im(Af)), there is an increase in precision in the
S-wave amplitudes, however there is a considerable decrease in precision for some of the
P-wave amplitudes. This was seen across other points in ¢.

From the amplitudes, the observables are computed. The change in precision was also
studied for the observables. These are shown in Figure 8.2 for ¢*> = 4 GeV?/ct. As seen
from this plot, when the amplitudes combine to form the observables, no precision is lost.
The precision of the P-wave observables remains unchanged, whereas the precision of the
S-wave and interference observables improve. The same behaviour is seen at other points
in ¢°.

The correlation matrices for the ensembles of 4D and 5D fits are compared and are

126



Amplitude error ratios in untransformed basis at g2 = 4 GeV?/ ¢*

Fie(AI?) T T T T ‘ T T T T T T x\ T ‘ T T T T ‘ T T T T
meat) [ * ]
Re(Af) ®
Im(Af) ®
Re(A}) x
Im(AJL_) %
Re(Af ) ®
/m(Af ) x
Re(Ag ) ®
L
Im(A)
Re(AZ ) 112.18
Im(A? ) 208.73
L
Re(Ag 0) ®

oL _
miA) | x |

Re(Ag ) %
mal) | N

L | \"\ [ e b by
0 0.5 1 1.5 2 25
< Oy >
< Oyup>

Figure 8.1: Change in amplitude precision when comparing the 5D fit to the 4D fit at ¢> = 4 GeV?2/c?,
where the fitted amplitudes are transformed back into the original untransformed amplitude basis.
The S-wave amplitudes (Re(A%,), Im(Afy), Re(A%,), and Im(AE))) result in an increase in precision
in the 5D fits compared to the 4D fits, however the P-wave amplitudes generally have a decrease in
precision. Where the points cannot be plotted because they are outside the = axis range, the values

of ég;gi are quoted.

shown as Figures 8.3 and 8.4 respectively. The amplitude ansatz proposed in [11] was used
for both ensembles of fits. Whilst the S-wave sees an improvement in the 5D fits compared
to the 4D fits, there are larger correlations between amplitudes in the 5D fits.

In order to investigate the large correlations and why the P-wave amplitudes lose
precision in the 5D fits, fits were performed where the amplitudes are parameterised as
constants in ¢? in order to simplify the fit. The average correlation matrix for an ensemble
of pseudoexperiments is shown as Figure 8.5. There are some very large correlations, for
example Corr(Im(.Aﬁ), Im(Af)) = 0.78 and Corr(Re(A%), Re(Af))= 0.81. Such high
correlations between P-wave amplitudes are not present in the 4D fits. The 5D fit appears
to behave as though there are too many free parameters.

A study was performed examining how much of the symmetry in the 4D PDF gets
broken by allowing the PDF to be a function of mp,. Note that when comparing the 5D

fit to the 4D fit, two more amplitudes are measured. This is because my, breaks two
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Observable error ratios at g2 = 4 GeV?/c*
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Figure 8.2: Change in observable precision when comparing the 5D fit to the 4D fit at ¢ = 4 GeV?/c*
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Figure 8.3: Correlation matrix from ensembles of 4D fits to pseudoexperiments. The ansatz
proposed in [11] was used.
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Figure 8.4: Correlation matrix from ensembles of 5D fits to pseudoexperiments. The ansatz
proposed in [11] was used.

Re(ag)
Im(og)
Re(ag)
Im(ag)
Re(og)
Im(aj)
Re(o)
Re(a})
Re(af)
Im(og)
Re(ot,)
Im(a,)
Re(af})

Im(af)

Re(ay
Im(oy
Re(oj)
Re(af)
m(f)
Re(at,)
Im(aby)
Re(ofy)
Im(of)

Re(a})

I e i i
& E & E

Figure 8.5: Average correlation matrix from 5D fits, where the amplitudes are flat in ¢2.

symmetries in the angular distribution. The observables where this breaking of symmetry
happens (the interference observables) are investigated in order to understand the fit
behaviour. If there are no large differences between the observables in the 4D PDF and the
5D PDF, this would be because the symmetries of the 4D PDF which get broken in the
5D PDF only result in only small deviations. This would explain why the fitter behaves as
though there are too many free parameters. The pure P-wave and S-wave terms have no

symmetry breaking when transforming from a 4D PDF to a 5D PDF since the absolute
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value of the lineshape squared can always be factored out from the observable. Here, the

observable Sg; is investigated. Explicitly, in the 4D PDF, this is simply

Ss1 o< Re(A§AF* + AR AF) + CP. (8.1)

For the 5D PDF, the P-wave and S-wave lineshapes Ap and Ag are included, so

Ss1 — Re(AbyAs AL A + AN As A A%L) + CP. (8.2)

Thus

Ss1 oc Re(Ab AL + AR A Re(As Ap) — Im( Ay AL* + AR A Im(AsAp) +CP. (8.3)

Returning to the ¢?-dependent fits, Figure 8.6 shows Sg; as a function of mp,, as
explicitly written in Equation 8.3. The 1o and 20 error bands from the 5D fits are shown
in green and yellow respectively. The true value is shown by the black dotted line and
the median is shown by the magenta line. The blue line is the observable Sg; computed
from the true value of amplitudes in the nominal 4D amplitude basis. This 4D basis
has a different basis fixing condition than the 5D basis since the number of symmetries
are different. Therefore examining the difference between this line and the results of the
5D ensemble of fits provides a measure of the amount of breaking of symmetry when
transforming from a 4D PDF to a 5D PDF.

This plot is made at the ¢? value where the difference between the 4D basis and true
observable (i.e. in the 5D basis) is the largest. As mentioned, this difference can be
interpreted as the amount of symmetry breaking in this observable. In other words, the
fact the blue line is different from the black line is the reason why two more amplitudes
are required to be floated in the 5D fits compared to the 4D fits. As seen in this plot,
compared to the statistical uncertainty in the 5D fits, this difference is tiny. Thus the fit is
not sensitive the symmetry breaking in this observable. This is a decrease in precision in
the P-wave amplitudes is seen in the 5D fits, and the large correlations between results
in observables which do not lose precision. The equivalent plots for Sgs, Sg3, Sg4, and

Sg5 were made, since these are the other observables where the symmetry breaking occurs.
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Figure 8.6: The observable Sg; as a function of mg, at ¢> = 7 GeV?/c*. The median, 1o and 20
error bands from ensembles of 5D fits are shown in magenta, green, and yellow respectively. The
true value is shown in black and the true values in the 4D amplitude basis are shown in blue.

These are shown as Figure 8.7.

An investigation was performed investigating whether there is a better basis-fixing
condition, since another basis could result in a larger difference between the symmetry-
breaking observable computed in the 4D basis and the observable computed in the 5D
basis. As a reminder for the reader, there are four angles which are used to set the basis, as
defined in Section 2.10. They are the two global phases (¢, r), #, and 7. The global phases
are ignored in this study since they correspond to symmetries in both the 4D and 5D
PDFs. Nominally in the 4D PDF, the basis fixing condition arises from selecting particular
angles which rotate the amplitudes such that the condition is satisfied. However there
could be another basis-fixing condition (i.e. Im(A%) = Cy, Im(A§) = Ca, Re(Af) = Cs,

Im(AZF) = Cy4, where C; are constants), such that the 4D PDF has a larger breaking of
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Figure 8.7: Observables Sso, Sg3, Ss4, and Sss as functions of mg, at ¢> =7 GeV?/c*. The
median, 1o and 20 error bands from ensembles of 5D fits are shown in magenta, green, and yellow
respectively. The true values are shown in black and the true values in the 4D amplitude basis are
shown in blue.

symmetry. In other words, another 4D, or crucially another 5D amplitude basis could be
used, where the symmetry breaking observables are more sensitive in this basis than the
previous basis. This was studied by scanning values of Sg; at different values of § and 7
and maximising the difference between the observable in 4D basis and the true value of
the observable (i.e. in the 5D basis).

Example plots of one-dimensional scans of the angles at ¢*> = 6 GeV?/ ¢* are shown
in Figure 8.8. Shown are the angles 6 (left) and 7 (right) as functions of mg,, where all
of the other angles are set to those used in the nominal 4D basis. As seen in these plots,
there are certain values of these angles which results in a large difference of Sg1, larger
than the difference seen in Figure 8.6. Therefore there exists amplitude bases where there
is a large breaking of symmetry when transforming from a 4D PDF to a 5D PDF. Thus a

5D fit could be performed (as long as the amplitude ansatz can describe the amplitudes)
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Figure 8.8: The difference between the observable Sg; in the 4D basis where the angle is 6 (left) or
n (right), and all other angles are as used in the nominal 4D basis, and Sg; in the 5D basis. This is
at ¢> = 6 GeV?/c*.

Change of S, in a transformed basis compared to the Change of S, in a transformed basis compared to the
untransformed basis at g2 = 6 GeV?/c* untransformed basis at g2 = 6 GeV?/c*
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Figure 8.9: The difference between the observable Sg; in the 4D basis where the angle is 6 (left) or
n (right), and all other angles are as used in the nominal 4D basis, and Sg; in the 5D basis, in the
My, window 0.745 < mp, < 1.1 GeV/c?. This is at ¢*> = 6 GeV2/c*.

without seeing such large correlations between the P-wave amplitudes.

Whether to fit in a wider mg, window was considered. If there is a large amount of
breaking of symmetry in a region outside the nominal m g, window, then the fitter would
behave much better. Figure 8.9 shows the same as Figure 8.8 but in a wider m g, window.
The same plots as Figure 8.9 but at ¢> = 4 GeV?/c* and ¢*> = 2 GeV?/c* are shown as
Figures 8.10 and 8.11 respectively. The breaking of symmetry is maximal at around the
K*0 P-wave peak. Thus there is not much motivation with the regards to the fit behaviour
for increasing the my, window. In addition, a wide mg, window results in larger levels of

combinatorial and peaking backgrounds, which would need to be dealt with.
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Change of S, in a transformed basis compared to the Change of S, in a transformed basis compared to the
untransformed basis at g2 = 4 GeV?/c* untransformed basis at g2 = 4 GeV?/c*
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Figure 8.10: The difference between the observable Sg; in the 4D basis where the angle is 0 (left)
or 7 (right), and all other angles are as used in the nominal 4D basis, and Sg; in the 5D basis, in
the my, window 0.745 < mg, < 1.1 GeV/c?. This is at ¢> = 4 GeV?/c*.

Change of S, in a transformed basis compared to the Change of S, in a transformed basis compared to the
untransformed basis at g2 = 2 GeV?/c* untransformed basis at g2 = 2 GeV?/c*
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Figure 8.11: The difference between the observable Sgy in the 4D basis where the angle is 0 (left)
or 7 (right), and all other angles are as used in the nominal 4D basis, and Sg; in the 5D basis, in
the my, window 0.745 < mg, < 1.1 GeV/c?. This is at ¢> = 2 GeV?/c*.

Two-dimensional scans of the angles § and my, were performed to find the angles and
q? such that the 4D basis with maximal breaking of symmetry. Figure 8.12 shows the same
as Figures 8.6 and 8.7, with the basis with maximal breaking of symmetry shown in red.
Therefore, there is indeed a 4D basis which is sensitive to a large amount of breaking of
symmetry in the PDF when transforming to a 5D basis. One can consider performing
the fit in one of these alternative bases — the 5D basis would not be the nominal 5D
basis, but an alternative basis where two amplitudes are fixed to some non-zero values.
However there are drawbacks with this. The terms where the symmetries get broken tend

to involve right-handed amplitudes which are usually small. If these are rotated such that
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they become large, or a large amplitude is rotated to become small, this can result in
fast-moving or even discontinuous behaviour in some other amplitudes. This makes those
amplitudes extremely difficult to be described by a simple ansatz. In addition, since the
choice of basis is very model-specific, and the studies performed were based on a particular
parameterisation of the Standard Model (even the Standard Model predictions can vary
due to different parameters for the non-local contributions), this basis is not necessarily
the best for the data. In addition, the S-wave currently has no theoretical predictions, and
global fits only use the P-wave observables. Thus it is decided not to fit the PDF as a
function of mg,. It is possible that the PDF as a function of mg, will be fitted in the
future, given the increase in data and potential interest from theorists in the S-wave and

interference parts of the PDF.

8.2 Ansatz choice

Initially, the ansatz proposed in [11] was studied. The ansatz considered was
_ 2 7
A=a+ fq +q7, (8.4)

where «, 3, and v are amplitude coefficients. However it was noticed through pseudoexper-
iment studies the correlations between the amplitude coefficients are extremely high. As
shown in Figure 8.3, the absolute values of correlations between amplitude components
within an amplitude are greater than 0.95.

Issues were also noted in the behaviour of the log-likelihood profiles. Figure 8.13 shows
some log-likelihood profiles from an example pseudoexperiment, where the ansatz proposed
in [11] was used. In these plots, for each amplitude parameter of interest, the parameter
is fixed to various values in the fit whilst all other parameters float. The fit is performed
200 times for each value, where the free parameters’ initial values are randomised for each
fit. The log-likelihood is recorded, therefore mapping out the minima. Each point may
correspond to different log-likelihoods since some fits may land in the solution corresponding
to the global minimum, others may land in local minima. From Figure 8.13, the global
minimum and the other global minimum where A — —.A are seen. Therefore the global

minimum which is quoted is arbitrarily chosen. The red line shows the parabola from
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S, at g° = 1.256 GeV?/c*

S, at g7 = 7.000 GeV?/c*
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Figure 8.12: Observables Sg1, Sg2, Ss3, Ss4, and Sg5 as functions
maximal breaking of symmetry. The median, 1o and 20 error bands from ensembles of 5D fits
are shown in magenta, green, and yellow respectively. The true values are shown in black and the
true values in the 4D amplitude basis are shown in blue. Shown in red is the basis with maximal

breaking of symmetry.
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the Hessian error matrix. There are local minima around ALLH < 4.5 away from the
global minima. In addition, as seen in the right handed amplitudes, there are local minima
very close to the global minimum. Given this presence of local minima, it is extremely
challenging to parameterise this log-likelihood surface thus the ansatz proposed in [11] is
not adopted.

The amplitude ansatz A = 3" a;L;(¢*) was considered, where o; corresponds to the
amplitude coefficients, and L;(¢?) are Legendre polynomials in ¢%, where ¢ corresponds
to ¢* scaled to the range —1 < x < 1. Ansatzes with three parameters were considered,
ie. A= aLo(¢¥)+ BL1(¢*)+vL2(¢¥), where a, §, and 7 are amplitude components.
Pseudoexperiment studies were performed with four parameters for the ansatz. Due to the
orthogonality of Legendre polynomials, no large correlations were seen between amplitude
ansatz components, as shown in Figure 8.14. Profile log-likelihoods were plotted for an
example pseudoexperiment, where the fit is performed with a 3-parameter Legendre ansatz.
Example of these are shown in Figure 8.15. Here at each point the parameter of interest is
fixed and all other parameters vary freely in the fit. The fit is performed 200 times for
each value, where the free parameters’ initial values are randomised.

Given there are no local minima seen here, it is thus much easier to parameterise the
profile log-likelihoods. This provides a strong motivation for using Legendre polynomials
for the amplitude ansatz. The profile log-likelihoods were studied on data and in cases
where the Hessian is not a good parameterisation of the log-likelihood surface, fits to
bifurcated parabola provided a good description. The number of parameters for P-wave
will be set to four since they can describe a variety of models as shown in Section 7.1.1

and provide a good fit to data, as shown in Chapter 11.
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indicate 1o, 20, and 30 from the Hessian error matrix.
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Figure 8.14: Correlation matrix from ensembles of 4D fits to pseudoexperiments. Here the ansatz
A=Y «a;L;(¢*) was used, where «; corresponds to the amplitude coefficients, and L;(¢*') are
Legendre polynomials in ¢2, where ¢? is scaled to the range —1 < z < 1.
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Figure 8.15: Profile log-likelihoods from an example pseudoexperiement, where the fit is performed
with a three-parameter Legendre polynomial ansatz. At each point the parameter of interest is fixed
and all other parameters vary freely in the fit. The fit is performed 200 times for each value, where
the free parameters’ initial values are randomised. The two global minima are seen. There are no
local minima present. Shown in red is the log likelihood surface from the Hessian error matrix.
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8.3 Study of apparent fit biases

In order to validate the fitter to ensure it is working before applying it to data, pseudoex-
periments are generated from the amplitude ansatz predictions and fit back based on the
four parameter Legendre polynomial ansatz in the region 1.25 < ¢? < 7 GeV?/c*.

The ¢?-dependent amplitudes are computed from the fitted amplitude components.
The distributions of the amplitudes from ensembles of fits are shown as Figure 8.16. The
black and magenta lines show the true value and median respectively, and the green and
yellow bands shows the 1o and 2¢ error bands. From the amplitudes, observables are
computed, which are shown in Figures 8.17 and 8.18.

As seen in Figures 8.16, 8.17 and 8.18 there appears to be some fit biases. These
apparent biases are largest in Re(Aﬁ ), Sy and Pj. The distribution of fits for Re(.Aﬁ ) is
shown as Figure 8.19. Therefore the most likely value of Re(.Aﬁ ) indeed appears to be
biased. This was also seen in Sy, and Pj.

Pseudoexperiment studies were performed at high sample yields (10x nominal sample
yields) to check whether the the median gets closer to the true value as the sample
yields is increased. Figures 8.20, 8.21 show some amplitudes and observables where the
pseduoexperiments are generated with 1x (left), and 10x (right) nominal sample yields.
The difference between the median and true values decrease as the sample yields is increased.
Thus the fitter framework is correctly working. Additionally, the distribution of fits were
plotted at ¢> = 6 GeV?/c* for Re(Aﬁ), S4, and Pj, where the pseudoexperiments are
generated with 1x and 10X nominal sample yields, as shown in Figure 8.22. The true
value is shown in black and the median is shown in magenta. The apparent biases reduce
as sample yields is increased.

Studies were performed investigating these apparent biases, and it was found that
there are no genuine biases. The apparent biases in the observables are in fact artefacts
of projecting a physical boundary visible in the S3/S, plane onto a single observable.
There are physical boundaries in the PDF since the PDF cannot be less than zero and the
observables are combinations of amplitudes normalised to the total P-wave rate. Figure 8.23
shows the physical region of S3 and S4. The red point shows the the median and statistical

uncertainty from an ensemble of fits at ¢> = 6 GeV?/c*. The SM prediction and thus the
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Figure 8.19: Distribution of fits of Re(.Aﬁ ) of pseudoexperiments generated from the SM amplitude
predictions. The black line shows the true value.

results from the fits are close to the physical boundary.

In order to simplify the dimensionality of the problem, pseudoexperiments were gener-
ated at ¢> = 6 GeV?/c* and fits were performed where only Re(Aﬁ) and the right-handed
amplitudes are floated. The bias in Re(Aﬁ ) is still seen. Figure 8.24 shows Im(Af) and
Re(.Aﬁ) (left), and S3 and S4 (right) at ¢*> = 6 GeV?/ct. The true values are shown in
black. In addition, Figure 8.25 shows the same but where only Im(.Aﬁ%) and Re(Aﬁ ) are
floated in the fit. Here the best fit point is unbiased and projecting this 2D histogram onto
1D results in an apparent bias. It was also found that applying a harsh cut in S, where
all fits with S3 > —0.02 are removed, results in no bias in Re(Aﬁ), Sy, and Pj.

The bias in Sy is an artefact from projecting the physical boundary onto one dimension.
Thus S4 may appear biased even though the most likely value when taking into account all of
the observables is unbiased. Re(.Aﬁ ) is highly correlated with Sy, since Sy o Re(.Aﬁ JRe(AE)
and Re(Aé) is a large amplitude which is relatively flat in ¢>. Since the amplitudes are used
to construct the observables, the effect from the boundary is also seen in the amplitudes.
This was checked by generating amplitudes based on their true SM values, and sampling
from the fit covariance matrix. Figure 8.26 shows this for Re(Aﬁ) (left) and Re(A%) (right).
From the amplitudes, observables are computed. Figure 8.27 shows the distribution of Sy
and Pj, where apparent biases are seen. The apparent bias shown in the observables is
seen, so projecting the boundary onto 1D has an effect. This study was applied to the full

¢® range. Here, events are sampled according to the true amplitudes and fit covariance
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Figure 8.20: Some P-wave amplitudes from ensembles of fits in the 1.25 < ¢® < 7 GeV?/c? region,
where the pseudoexperiments are generated with nominal sample yields (left) and 10x nominal
sample yields (right). The black and magenta lines show the true value and median respectively,
and the green and yellow bands shows the 1o and 20 error bands.
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lines show the true value and median respectively.

matrix, as shown in Figure 8.28 for Re(Aﬁ ) (left) and Re(A¥) (right). By construction,
there are no biases in this test. Figure 8.29 shows the distribution of Sy (left) and Pj
(right), where the apparent biases are seen.

Generating pseudoexperiments close to and away from the S3/S4 boundary results in
fits with the parameter Re(.Aﬁ) appearing biased and unbiased respectively. Figures 8.30
and 8.31 show this. Therefore the physical boundary has a profound effect on whether
the observable appears biased in 1D. However this does not conclude whether there is a
genuine bias in Re(Aﬁ ).

A method to check if there is a genuine bias in the multidimensional space has been

developed. This is by selecting the region around the most likely value of a parameter
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of interest and checking whether the bias reduces as the region selected gets smaller. By
decreasing the size of the region selected around the most likely value, the effect of the
physical boundary decreases. Here, the parameter of interest is Re(Aﬁ) at ¢> = 6 GeV2/ct.
The lower and upper X% of fits of all of the other amplitudes and the amplitude Re(Aﬁ )
is examined. X is increased to see whether the bias decreases.

Figure 8.32 shows the distribution of Re(.Aﬁ) at ¢> = 6 GeV?/c* where: none; upper
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Figure 8.27: Distribution of pseudoevents when sampling from the true SM amplitude predictions
at ¢> = 6 GeV?/c* and fit covariance matrix (where constant amplitudes are fitted) for Sy (left)
and P, (right). The black line shows the true values of the amplitudes.
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and lower 5%; 10%; 15%; and 20% of fits in the other amplitudes are removed. As a region
which includes the most likely value gets smaller, the apparent bias seen in Re(Aﬁ ) reduces.
The same plot at ¢> = 4 GeV?/c* is shown as Figure 8.33. The bias seen in this amplitude
is seen to reduce as the region containing the most likely value is decreased.

Thus it is concluded that this apparent bias is not a genuine bias. Therefore no
systematic uncertainty is needed to account for fit biases since the most likely value of all
of the amplitudes and the observables combined is unbiased. It should be noted that one
should not use the result from one observable alone, due to the apparent bias which is an

artefact of the physical boundary. All of the P-wave observables must be used together.
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Chapter 9

Pseudoexperiments generated from

the data fit

This section describes the pseudoexperiment studies in the region 1.25 < ¢? < 8.0 GeV?/c?,
where the pseudoexperiments are generated from the best fit point to data. All plots in
this section are blinded. The default fit configuration in this region is the CP-symmetries
fit, where the P-wave amplitudes have 4 parameters. Explicitly, the P-wave amplitudes A

are described by the ansatz
Alq®) = aLo(¢¥) + BL1(¢”) +~vL2(¢”) + 6 Ls(¢”), (9.1)

where L;(¢%*) are Legendre polynomials, and ¢* corresponds to ¢? scaled to the range
—1 <z < 1. The amplitude components are «, 3, v, and 9.

For the studies performed in this chapter, 1090 pseudoexperiments are generated from
the fit result to data. These are fully representative of the data fit — the acceptance
is included as well as the background and the Kpuu veto. Example projections from a
pseudoexperiment are shown as Figure 9.1.

Results from ensembles of fits were studied. The residuals of the parallel amplitude
parameters are shown as Figures 9.2 and 9.3. The results for the left-handed transverse
amplitude parameters are shown in Figure 9.4. Figure 9.5 shows the residuals for the
right-handed amplitude parameters and the longitudinal amplitude parameters. All other

P-wave amplitude parameters are fixed to zero. The black lines show the values from the
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Figure 9.1: Projections from fitting a pseudoexperiment generated in the 1.25 < ¢® < 8 GeV?/ct
region. The value of the parameters used for the generation are from the data fit. The y-axes
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Figure 9.2: Residuals of the P-wave parameters (left-handed parallel amplitude components) from
ensembles of fits in the 1.25 < ¢? < 8 GeV?/c?* region. The value of the parameters used for the
generation are from the data fit. The experimental values of the parameters are shown by the black
lines. The z-axes have been blinded.

data fit used to generate the pseudoexperiments, i.e. the experimental values. As seen
from these plots there are no large biases.

The distribution of fits of the amplitudes was also examined. The amplitude is computed

157



o= osf-
30; 30;
25 25
20 20—
15— 15—
10 10
5 5
ol [ olm ‘r’j‘f“ .
30 E
C 35—
25 E
C 30—
20— 25—
s 20—
F 15
10? E
£ =
s =
F =
m.nn Wit B E
0 0
Re(7)
30— 30—
25— 25—
20— 20—
15— 15—
10— 10—
s 5
O’HJ-L'_H ol
30— 30—
25— 25—
20— 20—
15— 15—
10 10—
51— 5
£ iy ﬂﬂrﬂ R IR i =
Im(y,') Im(8y)

Figure 9.3: Residuals of the P-wave parameters (right-handed parallel amplitude components) from
ensembles of fits in the 1.25 < ¢? < 8 GeV?/c* region. The value of the parameters used for the
generation are from the data fit. The experimental values of the parameters are shown by the black
lines. The z-axes have been blinded.
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from the amplitude components. Here the amplitudes are shifted by the experimental
value at each ¢® point for the blinding. Thus by definition the experimental value is at zero.
These plots are shown as Figure 9.6 for the P-wave amplitudes. The experimental value is
shown by the black line. There are no large biases seen here, thus the fit is performing well.
However the largest apparent bias seen is in the amplitude Re(.Aﬁ), which is discussed in
more detail in Chapter 8.3.

The coverage of the pseudoexperiments was also studied. The fraction of fits where
experimental value is between the best fit point © minus a shift x of the Hessian uncertainty
onesse and p plus a shift « of ogpssy of the fits were studied. This is compared to the
absolute value of a cumulative distribution of a Normal distribution (i.e. a Gaussian with
mean = 0 and ¢ = 1). These are shown as Figures 9.7, 9.8, 9.9, and 9.10. There are some
components where incorrect coverage is seen, others where the coverage is correct. This is
also compared to the fraction of fits where the experimental value is between p — xopew
and [ + T0pew Where o,e, corresponds to the uncertainties when fitting the profile log-
likelihood from the pseudoexperiments with bifurcated parabolas. As shown in these
figures, the uncertainties when fitting the profile log-likelihood from the pseudoexperiments
with bifurcated parabolas overall gives correct coverage compared to the uncertainties from
the Hessian error matrix, which sometimes results in incorrect coverage. Chapter 11 shows
the profile log-likelihoods from the fits to data.

To conclude, pseudoexperients generated from the data best-fit point suggest the fit is
well behaved and there are no large biases seen. From examining the coverage, the quoted
uncertainties are found to be trustworthy. In most cases, the Hessian error matrix can
be used. Where the Hessian cannot be used, the uncertainties are extracted by fitting
the 1D log-likelihood profile to bifurcated parabolas. Given the fit behaves very well and
the uncertainties can be trusted, this will enable one to generate synthetic datasets with

accurate coverage from the fit results.
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Figure 9.6: Distribution of fits of the P-wave amplitudes from ensembles of fits in the
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shifted by the experimental value. The y-axes have been blinded.
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Figure 9.7: Coverage of the left-handed parallel amplitude components from ensembles of fits in
the 1.25 < ¢? < 8 GeV?/c?* region. The value of the parameters used for the generation are from
the data fit. Shown are the fraction of fits where the experimental value is between p — xogpsse
and u + xoggsse where p is the best fit point oggssg is the Hessian uncertainty, with error
bands shown owing to the finite number of pseudoexperiments. Also shown is the same but for the
uncertainties extracted from fitting bifurcated parabola to the profile log-likelihoods for each toy.
These are compared the absolute value of the cumulative distribution of a Normal distribution.
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Figure 9.8: Coverage of the right-handed parallel amplitude components from ensembles of fits in
the 1.25 < ¢? < 8 GeV?/c?* region. The value of the parameters used for the generation are from
the data fit. Shown are the fraction of fits where the experimental value is between p — xogpsse
and u + xoggsse where p is the best fit point oggssg is the Hessian uncertainty, with error
bands shown owing to the finite number of pseudoexperiments. Also shown is the same but for the
uncertainties extracted from fitting bifurcated parabola to the profile log-likelihoods for each toy.
These are compared the absolute value of the cumulative distribution of a Normal distribution.
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Figure 9.9: Coverage of the left-handed transverse amplitude components from ensembles of fits in
the 1.25 < ¢? < 8 GeV?/c?* region. The value of the parameters used for the generation are from
the data fit. Shown are the fraction of fits where the experimental value is between p — xogpsse
and u + xoggsse where p is the best fit point oggssg is the Hessian uncertainty, with error
bands shown owing to the finite number of pseudoexperiments. Also shown is the same but for the
uncertainties extracted from fitting bifurcated parabola to the profile log-likelihoods for each toy.
These are compared the absolute value of the cumulative distribution of a Normal distribution.
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Figure 9.10: Coverage of the right-handed transverse and longitudinal amplitude components from
ensembles of fits in the 1.25 < ¢® < 8 GeV?/c* region. The value of the parameters used for the
generation are from the data fit. Shown are the fraction of fits where the experimental value is
between u — rogpsse and u+ rogpsse where p is the best fit point oggsse is the Hessian
uncertainty, with error bands shown owing to the finite number of pseudoexperiments. Also shown
is the same but for the uncertainties extracted from fitting bifurcated parabola to the profile
log-likelihoods for each toy. These are compared the absolute value of the cumulative distribution
of a Normal distribution.
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Chapter 10

Results from the control mode fits

The control mode B — K*0J/y is fitted in order to verify agreement between
data periods. The J/v fits shown in this chapter were performed in the ¢? region
9.223 < ¢® < 9.966 GeV?/c*. The fits were performed with amplitudes flat in ¢2, i.e.
A = « for each amplitude, where « is complex. The observables were computed by
sampling from the amplitudes covariance matrix. The B? yield relative to the B? is fixed to
0.0077075 and mass difference between the B? and BY is fixed to 87.26 MeV /c?. The tails
of the signal Crystal Ball functions are free parameters. The acceptances with the same
orders of polynomials used to describe the distributions in the angles as in the full Run 1
and Run 2 fits were used. The acceptance is evaluated at the midpoint of the ¢? window
9.223 < ¢ < 9.966 GeV?/c*. There is no ¢® dependence in this fit since the amplitudes
are very fast-moving and thus extremely difficult to describe with Legendre polynomial

ansatzes. Thus amplitude fits binned in ¢? are performed.

10.1 CP-averages fit

The fits in the CP-average configuration were performed. For these fits all of the BY mass
parameters are floated. The plots of the Run 1 fit are shown as Figure 10.1. The 2016, 2017,
and 2018 fits are shown as Figures 10.2 and 10.3, and 10.4 respectively. The large pulls
in cos @ are due to exotic states decaying to 7.J/v, e.g. B® — Z(4430)~ (= 7~ J/¥)K T,
where Z(4430)~ is a ccdu state. These are consistent with pulls seen in pseudoexperiments

where the exotic states are added in the pseudoexperiments based on [90].

167



I Events

Signal
Background

Total

V2
111

V%

ST T v

8
S
®
S
>
S
e
S
>
o
°
o
°
e
o
>
o
®

Pull

Pull
bhbbloivesn
T

i f nn

bhbbloives

5200 5300 5400 5500 5600 5700 STTT0E 08 04 02 0 0z 04 06 08
mg (MeV/c?) cos,

Pull
Pull

[k bbLoivenn
bhbbloiwenn
Ty

1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

Figure 10.1: Plots of the B® — K*°.J/v) CP-averages fit to Run 1 data. The signal is shown in
blue and the background is shown in red. Shown are the B mass, cos#y, cosfx, and ¢.

The observables in each data period were computed. These are shown as Table 10.1 for
Run 1 and 2016, and Table 10.2 for 2017 and 2018. Note the uncertainties shown are just
statistical. The comparisons between each data period were made and are shown as Table
10.3. Since these comparisons were made with just the statistical uncertainties and J/¢
mode is expected to be systematically limited, the agreement between the data periods is

good.
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Table 10.1: Results for the obsvervables from the Run 1 and 2016 B® — K*0.J /v fits, where the

fits are performed in the CP-averages configuration.

Run 1

2016

FL
S3
S4
S5
AFB
S7
S8
S9
FS

0.55865 = 0.00117
—0.00581 £ 0.00115
—0.24556 £+ 0.00065

—0.0023 £ 0.0014
—0.00142 + 0.00113
—0.0022 £ 0.00181
—0.05103 £ 0.00137
—0.09147 £ 0.00148

0.0834 £ 0.00157

0.56369 £ 0.00141
—0.00341 £ 0.00166
—0.24438 + 0.00101

0.00176 £ 0.00204
—0.00025 £+ 0.00125
—0.00276 = 0.00212

—0.05636 £ 0.002
—0.09308 £ 0.00175

0.08166 £ 0.00245

Table 10.2: Results for the obsvervables from the 2017 and 2018 B® — K*0.J /4 fits, where the fits
are performed in the CP-averages configuration.

2017 2018
FL 0.55975 £ 0.00141 0.56131 £ 0.00128
S3 | —0.00555 £ 0.00163 | —0.00402 £ 0.00149
S4 | —0.24605 £ 0.00099 | —0.24453 £+ 0.0009
S5 —0.00013 £ 0.002 0.00465 £ 0.00179
AFB | —0.00142 £ 0.00123 | —0.00275 % 0.00109
ST 0.00252 + 0.00207 —0.0019 £ 0.00187
S8 | —0.05497 £ 0.00202 | —0.05317 £ 0.00181
S9 | —0.09185 £ 0.00176 | —0.09223 £+ 0.00163
FS 0.08847 £ 0.00251 0.08198 £ 0.00225

Table 10.3: Comparisons of obsvervables (in numbers of o) for the B® — K*0.J /4 fits between each
data period, where the fits are performed in the CP-averages configuration.

Run1-16 | Run1-17 | Run1-18 | 16-17 | 16-18 | 17-18

FL —2.75 —0.6 —1.53 1.98 1.25 —0.82
S3 —-1.19 —0.13 —0.95 0.92 0.28 —0.69
S4 —0.98 0.41 —0.93 1.18 0.11 —1.14
S5 —1.63 —0.89 —3.06 0.66 —1.06 | —1.78
AFB —0.69 0.0 0.85 0.67 1.51 0.81
S7 0.2 —-1.71 —0.12 —-1.78 | —0.31 1.58
S8 2.2 1.62 0.94 —-049 | —-1.18 | —0.66
S9 0.7 0.17 0.35 —-0.49 | —-0.35 0.16
FS 0.6 -1.71 0.52 —1.94 —-0.1 1.93
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Figure 10.2: Plots of the BY — K*0.J/v) CP-averages fit to 2016 data. The signal is shown in blue
and the background is shown in red. Shown are the B® mass, cosy, cosf, and ¢.

10.2 CP-asymmetries fit

The fits in the asymmetries configuration were performed, with identical extended terms,
i.e. assuming no production or detection asymmetry. The production and detection
asymmetries here are therefore absorbed in the amplitudes. From the measured J/1 yields,
the detection and production asymmetries are computed in order to modify the extended
term for the rare mode CP-asymmetries fit. The BY mass tail parameters are fixed to

those measured in B® — K*°.J/+ simulation.
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Figure 10.3: Plots of the BY — K*0.J/v) CP-averages fit to 2017 data. The signal is shown in blue
and the background is shown in red. Shown are the B® mass, cosy, cosf, and ¢.

The observables in each data period were computed. These are shown as Table 10.4 for
Run 1 and 2016, and Table 10.5 for 2017 and 2018. The comparisons between each data
period are shown as Table 10.6. There are no observables more than 30 apart and thus
the agreement between data periods is very good since only the statistical uncertainties

are used in this comparison.
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Table 10.4: Results for the obsvervables from the Run 1 and 2016 B® — K*0.J /v fits, where the

fits are performed in the CP-asymmetries configuration.

Run 1

2016

FL
S3
S4
S5
AFB
S7
S8
S9
FS
AFL
A3
A4
A5
A6S
AT
A8
A9
AFS

Table 10.5: Results for the obsvervables from the 2017 and 2018 B® — K*0.J/1 fits, where the fits
are performed in the CP-asymmetries configuration.

0.55895 £ 0.00153
—0.00679 £ 0.00176
—0.24618 + 0.00107
—0.00236 £ 0.00208
—0.0001 £ 0.00131
—0.00271 4+ 0.00218
—0.05166 +£ 0.00206
—0.09153 £+ 0.00189
0.0811 £+ 0.00254
—0.0009 £ 0.00109
—0.00067 £ 0.00132
—0.00038 = 0.00081
0.0003 £ 0.0016
0.00231 £ 0.0013
0.0019 £+ 0.00165
—0.00017 £ 0.00411
—0.00128 4= 0.0037
—0.00839 = 0.00596

2017

0.56449 + 0.00144
—0.00378 £ 0.00166
—0.24455 + 0.00103

0.00224 + 0.00207
—0.00037 £ 0.00125
—0.00275 £ 0.0021
—0.05673 £ 0.00202
—0.09307 £ 0.00177

0.08154 £ 0.00251

0.00247 £ 0.00104
—0.00016 + 0.00122

0.00039 +£ 0.00075
—0.00092 £+ 0.00151
—0.00046 + 0.00122
—0.00289 £ 0.00155

0.00132 +£ 0.00406
—0.00102 £ 0.00357
—0.01295 £+ 0.00588

2018

FL
S3
S4
S5
AFB
ST
S8
S9
FS
AFL
A3
A4
A5
A6S
AT
A8
A9
AFS

0.56038 £ 0.0014
—0.0062 £ 0.00164
—0.24638 + 0.00098

—0.00051 % 0.002
—0.00125 £+ 0.00124

0.00263 £ 0.0021
—0.05531 £ 0.00198
—0.09197 £ 0.00173
0.08785 +£ 0.00249
—0.00115 £ 0.00094
0.00072 £ 0.00111
0.00024 £+ 0.00067

0.0007 £ 0.00134
—0.00146 + 0.00108
—0.0012 £ 0.00139
—0.00018 = 0.00385
0.00031 £ 0.00348
—0.00291 £ 0.00599

172

0.56262 £ 0.00125
—0.00475 £ 0.00144
—0.24496 £+ 0.0009
0.00418 £ 0.00179
—0.00271 £ 0.0011
—0.00191 £ 0.00183
—0.0537 £ 0.00176
—0.09201 £ 0.00153
0.08125 £ 0.00219
0.00074 £ 0.00068
—0.00083 £ 0.00082
—0.00029 + 0.0005
0.0009 £ 0.00099
—0.00041 £ 0.0008
—0.00018 + 0.00103
0.00154 +£ 0.00362
—0.00016 £+ 0.00313
—0.00155 £ 0.00511
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Figure 10.4: Plots of the BY — K*0.J /1) CP-averages fit to 2018 data. The signal is shown in blue
and the background is shown in red. Shown are the B® mass, cosy, cosf, and ¢.

10.3 Using B — K*'.J/¢ to verify the acceptance

The quantity ¢? is a derived quantity from quantities which the acceptance highly depends
on, such as the opening angle and magnitudes of lepton momenta. It is possible this
is not modelled well in the simulation used to derive the acceptance. The acceptance
simulation cannot be compared directly to data since the acceptance simulation uses a
model which is flat in all of the angles and ¢? and of course the data is model-dependent.

Thus in order to verify the acceptance description, notably that applying cuts to the

173



Table 10.6: Comparisons of obsvervables (in numbers of o) for the B® — K*Y.J/1) fits between each
data period, where the fits are performed in the CP-asymmetries configuration.

Run 1-2016 | Run 1 - 2017 | Run 1 - 2018 | 2016 - 2017 | 2016 - 2018 | 2017 - 2018
FL —2.64 —0.69 —1.86 2.04 0.98 -1.19
S3 —-1.24 —0.24 -0.9 1.04 0.44 —0.66
S4 -1.1 0.14 —0.87 1.3 0.3 —-1.07
SH —1.57 —0.64 —2.38 0.96 -0.71 —1.75
AFB 0.15 0.64 1.53 0.5 1.4 0.88
ST 0.01 —1.76 —0.28 —1.81 —0.3 1.63
S8 1.76 1.28 0.75 -0.5 —-1.13 —0.61
S9 0.6 0.17 0.2 —0.45 —0.45 0.02
FS —0.12 -1.9 —0.04 —1.78 0.09 1.99
AFL —2.24 0.17 —1.28 2.58 1.4 —-1.63
A3 —0.29 —0.81 0.1 —0.53 0.46 1.12
A4 -0.7 —0.99 -0.1 0.15 0.75 0.63
A5 0.55 -0.19 —0.32 —0.8 —1.01 -0.12
A6S 1.55 2.23 1.78 0.61 —0.04 —0.78
A7 2.12 1.44 1.07 —0.81 —1.46 —0.59
A8 —0.26 0.0 —0.31 0.27 —0.04 —0.33
A9 —0.05 —0.31 —0.23 —0.27 —0.18 0.1
AFS 0.54 —0.65 —0.87 —-1.2 —1.46 —0.17

muon momenta and muon opening angle in the lab frame is accurately described by the
acceptance, B® — K*0.J /4 fits are performed with various selections to the muon momenta
and opening angles. This is the first time this check has been performed in the decay
BY — K*0u* =, Figure 10.5 shows the angle between the two muons in the lab frame ()
against log; of the maximum muon momentum. This is shown for 2016 simulation in the
J /1 region (blue) and the rare mode region (red).

This region is divided into 16 bins such that each bin has roughly the same number of
events from simulation. The Run 1 and Run 2 bin boundaries are slightly different owing
to slightly different muon momentum distributions. For each data period, B® — K*0.J /4)
fits were performed in each bin as defined by Figure 10.5 and compared to the fits in the
full muon momenta region. The acceptance is recomputed in each bin. For Run 1, the pulls
((fit result in bin i - fit result in the full momenta region)/uncertainty from the bin i fit)
are shown in Figures 10.6 and 10.7 for the CP-averaged observables and CP-asymmetries
respectively.

For 2016, these are shown in Figures 10.8 and 10.9 for the CP-averages and CP-

asymmetries respectively. Likewise, for 2017 and 2018, they are shown in Figures 10.10
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density.

and 10.11, and Figures 10.12 and 10.13.

From looking at these plots, it appears the observables in each bin are consistent with
the combined fit. Thus selecting a region of «, 10g10(ma:v(p:[, p,,)) results in an acceptance
function which can describe this selection. In order to quantify the goodness-of-fit for
each bin, chi-squared tests were performed assuming the uncertainty of the combined
fit is exactly zero. Each bin has 18 observables (nine CP-averaged observables and nine
CP-asymmetries) thus the number of degrees of freedom is 17. The p-values are shown in
Table 10.7. As seen in this table, most p-values are above 5%. There is a presence of exotic
contributions which are unaccounted for which explains why more bins than expected have
p-values less than 5%. It is thus concluded that the acceptance is a reasonable description

of the true angular efficiency as seen in data.
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Figure 10.11: Pulls from comparing the CP-asymmetries from the 2017 B — K*0.J /4 fit and the
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Table 10.7: p-values (in %) from chi-squared goodness-of-fit test when comparing fits in bins of
(a, logyg(maz(p}t, p,,))) to the combined fit in each data period. In these tests, the uncertainty of
the combined fit is assumed to be zero and the number of degrees of freedom is 17.

Run 1 | 2016 | 2017 | 2018
Bin 1 49.6 | 98.6 | 13.7 | 85.3
Bin 2 38.8 | 81.5 | 73.3 | 36.5
Bin 3 67.7 | 29.7 | 7.2 | 308
Bin 4 92.8 | 11.1 | 73.7 | 37.3
Bin 5 87.1 1.0 0.1 8.3
Bin 6 20.7 | 55.6 | 83.1 | 7.2
Bin 7 48.3 | 78.5 | 84.8 | 44.1
Bin 8 53.9 04 | 11.2 | 0.5
Bin 9 8.5 | 295 | 673 | 14
Bin 10 | 45.7 6.7 | 38.6 | 11.6
Bin 11 2.9 13.9 | 30.0 | 41.6
Bin 12 | 30.2 1.9 | 50.9 | 34.6
Bin 13 | 68.7 | 66.9 | 70.4 | 88.8
Bin 14 3.5 90.9 | 3.5 | 45.7
Bin 15| 96.9 | 36.1 | 1.7 1.0
Bin 16 | 234 | 72.3 | 67.6 | 64.3
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Chapter 11

Results in the region

1.25 < ¢° < 8 GeV?/c

The fit in the region 1.25 < ¢% < 8 GeV?/c?* is performed with the full Run 1 + 2 dataset.
The default fit performed in this amplitude ansatz analysis is the CP-average fit with
a 4-parameter ansatz, with results shown in Section 11.3. Alternative fits including the
asymmetries and with high numbers of parameters were tested, but yield insufficiently
well behaved log-likelihood profiles. These are given in Sections 11.1 and 11.2 for the
CP-asymmetries fit and 5-parameter CP-average fit respectively. As in the control mode
fits, the BY yield relative to the B® and the mass difference between the B? and B° are
fixed. Unlike the control mode fits, the signal Crystal Ball tail parameters are fixed in
this fit configuration. Note all of the plots in this chapter are blinded. As a reminder, the

amplitude ansatz for the P-wave is
A= aLo(q”) + BL1(q”) +vL2(¢”) + L3(¢”) + eLa(q”) (11.1)

where L; are Legendre polynomials of order i and g% corresponds to ¢® scaled to the range

—1 <z < 1. For the 4-parameter fits the values ¢ are fixed to zero.
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11.1 Fit in the CP-asymmetries configuration with a 4-

parameter ansatz

This section describes the CP-asymmetries fit. This fit is performed with a 4-parameter
ansatz describing the P-wave amplitudes and flat S-wave. Profile likelihoods were examined
for all of the P-wave amplitude components. The values of the amplitudes are blinded.

Figure 11.1 shows example profile log-likelihoods. The red line shows the expected
shape of the log-likelihood surface from the Hessian error matrix and the green lines show
the values of the log-likelihood at 1, 2, and 3 sigma as given by the Hessian error matrix.
As seen in these plots, the Hessian error matrix is not always a good description of the
log-likelihood surface. If there is a an asymmetry, this can be dealt with by fitting the
log-likelihood with a bifurcated parabola. However the local minima seen are extremely
difficult to deal with. Since the full likelihood surface including the local minima cannot
be described by a parabola, the fit in the CP-asymmetries configuration will not be the
default fit.

11.2 Fit in the CP-averages configuration with a 5-parameter

ansatz

Since the fit with the asymmetries configuration yields log-likelihood profiles which exhibit
local minima thus cannot be used, the fit in the CP-averages configuration with a 5-
parameter ansatz is performed. This analysis aims for the amplitude model to be as generic
as possible, so the aim is to parameterise the amplitudes with as many parameters as
possible, as long as a good-quality fit is achieved and the description of the uncertainties is
trustworthy. The log-likelihood profiles for this fit were studied.

Example profiles are shown in Figure 11.2. There are hints of local minima. Given
the presence of local minima seen in these profiles, the fit with five parameters for the

amplitude ansatz will not be the default fit.
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Figure 11.1: Example log-likelihood profiles from the combined Run 1 + Run 2 data fit in the
region 1.25 < ¢% < 8 GeV?/c*. The fit is performed in the CP-asymmetries configuration with four
parameters for the P-wave amplitudes. The green lines corresponds to 1, 2, and 3 sigma from the
Hessian error matrix. The red parabola corresponds to the Hessian error matrix.
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Figure 11.2: Example log-likelihood profiles from the combined Run 1 + Run 2 data fit in the
region 1.25 < ¢?> < 8 GeV?/c*. The fit is performed in the CP-averages configuration with five
parameters for the P-wave amplitudes. The green lines corresponds to 1, 2, and 3 sigma from the
Hessian error matrix. The red parabola corresponds to the Hessian error matrix.
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11.3 Fit in the CP-averages configuration with a 4-parameter

ansatz

In this section, the fit is performed in the CP-averages configuration, where each P-wave
amplitude floated has four parameters. The fit projections are shown in Figure 11.3.

The profile likelihoods of the coefficients are examined and are shown in Figures 11.4,
11.5, 11.6, and 11.7. Whilst the Hessian error matrix cannot describe some of the amplitudes
perfectly (shown in red), it can be seen that the profiles can be well described by bifurcated
parabolas (blue). The correlation matrix for this fit for the parameters of interest is shown
as Figure 11.8. Most correlations have a magnitude smaller than 0.1 and there are no
correlations with magnitudes greater than 0.6. The largest correlations are between the

amplitude components of Im(.Af) and also the correlation between Im(Af) and Im(AL).

11.3.1 Goodness-of-fit test

In order to test the robustness of the amplitude ansatz, a goodness-of-fit test is performed.
This follows the same method as the acceptance goodness-of-fit. The goodness-of-fit plot is
shown in Figure 11.9. The blue histogram corresponds to the distribution of BDT figures
of merit when training toys against a toy. This is the expected distribution from statistical
fluctuations. The red line corresponds to training a BDT between the data and a toy. A

p-value is computed, which is 70%. Thus the fit is a good description of the data.

11.4 Systematic uncertainties

Robust checks have been performed to confirm the 4-parameter fit in the CP-averages
configuration should be the nominal fit in the Run 1 + Run 2 amplitude ansatz analysis of
BY — K*%u% 1~ in the ¢? region 1.25 < ¢> < 8 GeV?/c*. Before unblinding the results of
the amplitudes and observables, and thus the Wilson coefficients Cg and Cig, systematic un-
certainties will be computed. These include uncertainties due to the simulation corrections
applied in the acceptance, such as corrections for the BY kinematics, trigger corrections, and
tracking corrections. The systematic uncertainty due to acceptance simulation statistics

will also be computed, as well as model systematic uncertainties such as the mp model
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Figure 11.3: Projections for the combined Run 1 + Run 2 data fit in the region
1.25 < ¢®> < 8 GeV?/c*. The fit is performed in the CP-averages configuration, where each P-
wave amplitude is parameterised with four parameters. The signal is shown in blue and the
background is shown in red.
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Figure 11.5: Profile log-likelihood from the combined Run 1 + Run 2 data fit in the region
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Figure 11.6: Profile log-likelihood from the combined Run 1 + Run 2 data fit in the region
1.25 < ¢® < 8 GeV?/c* for the left-handed transverse amplitudes. The fit is performed in the CP-
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and the mp, model. Finally the ¢? resolution systematic uncertainty will be computed.
The systematic uncertainties overall are expected to be small compared to the statistical
uncertainties.

As with the binned analyses, one of the largest expected systematic uncertainty is the
uncertainty from the corrections to the LO trigger efficiency. Nominally for this systematic
uncertainty, an alternative set of corrections are examined, i.e. B® — J/¥K*" rather
than BT — J/¢ K™ for the trigger weights. However a conservative estimate of this
systematic uncertainty is to not apply any corrections for the trigger and examine how the
fit parameters change when the nominal trigger corrections are applied. This systematic
uncertainty is computed by generating pseudoexperiments at 100 times the observed data
yields. These pseudoexperiments are generated with acceptances without the nominal
trigger corrections applied. Two fits are performed to each pseudoexperiment — one where
the alternative (no corrections applied) acceptance is used and another where the nominal
acceptance is used. For each fit parameter, the difference between the two fits is examined.
The systematic uncertainty calculated is the mean and width of these differences, added
up in quadrature. Table 11.1 presents the LO systematic uncertainty for each parameter as
a ratio of the smaller of the upper or lower statistical uncertainty. As seen in the table,
this conservative LO systematic uncertainty is small compared to the statistical uncertainty
for the amplitude components. This means the uncertainties in this measurement will be

completely dominated by the statistical uncertainties evaluated in Section 11.3.
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Table 11.1: Ratio between the LO systematic uncertainty and the smaller of the upper or lower
statistical uncertainty for each fit parameter.

L0 systematic uncertainty

Parameter statistical uncertainty
Re(af) 0.0255
Re(ﬁi) 0.0111
Re('y” ) 0.0062
Re(éf) 0.0032
Im(a” ) 0.0041
Im(ﬁf) 0.0012
Im(y}) 0.0017
Im(af) 0.0013
Re(au?) 0.0169
Re(ﬁuq) 0.0076
Re(’yu?) 0.0032
Re(cs%) 0.0022
Im(au{) 0.0034
Im(ﬁ%) 0.0064
Im('yu%) 0.0040
Im(é‘k) 0.0008
Re(af) 0.0138
Re(81) 0.0121
Re(vh) 0.0036
Re(61) 0.0015
Im(a}) 0.0061
Im(BL) 0.0026
Im(y}) 0.0032
Im(6%) 0.0016
Re(af) 0.0188
Re(3%) 0.0077
Re(v%) 0.0058
Re(6%) 0.0021
Re(af) 0.0886
Re(BY) 0.0279
Re(y{) 0.0043
Re(64) 0.0024
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Chapter 12

Conclusions

As discussed in Chapter 1, now is a very exciting time in flavour physics. There is a growing
collection of measurements taken by the LHCb experiment involving b — sf¢ and b — clv
showing discrepancies with respect to the SM. An example is the angular observables in
the decay BY — K*9u* 1, which involves a b — s#/ transition, where discrepancies with
respect to the Standard Model are seen in the latest published analysis [7].

This thesis describes an amplitude analysis B® — K*%u% ;i ~. Measuring the amplitudes
provides a complete description of the angular distribution of B® — K*°u* =, The analysis
is also performed unbinned in ¢? in order to become senstivie to the shapes of the amplitudes
and thus the observables in ¢2. Since there are theoretical uncertainties and thus various
parameterisations of the local and non-local hadronic effects, this amplitude analysis aims
to be as model-independent as possible, whilst still being unbinned in ¢.

A selection strategy is described in Chapter 5 resulting in low levels of background. The
combinatorial BDT is able to remove a large portion of the background. The selection results
in estimated 4167 signal events, 726 combinatorial background events, and 38 combined
peaking background events in the region 1.25 < ¢? < 8 GeV?/c* for the Run 1+2 LHCb
datasets. A novel goodness-of-fit method is described in Chapter 6 where a goodness-of-fit
test can be performed to a multi-dimensional function using machine learning techniques.
The acceptance, which is used to account for the angular and ¢ efficiency is also described
in this chapter.

The fit strategy is described in Chapter 7. Extensive work was performed validating the

fitter and demonstrating the fit is unbiased in multidimensions, in addition to investigating
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fundamental aspects of the analysis strategy, such as whether to fit m g, or which amplitude
ansatz to use, as described in Chapter 8. Pseudoexperiments from the fit to data as
described in Chapter 9 in the 1.25 < ¢?> < 8 GeV?/c? region have been performed and
behave well. The results from the control mode and in 1.25 < ¢ < 8 GeV?/c* are
described in Chapters 10 and 11 respectively. Due to the presence of local minima in other
fit configurations, the default strategy is to fit the data using 4-parameter ansatzes for the
P-wave, and perform the fit in the CP-averages configuration. This fit behaves reasonably
well and no local minima are seen < 30 away from the best fit point.

Future work entails computing systematic uncertainties (which are expected to be small
compared to the statistical uncertainties) and unblinding the results. The results from this
analysis will be of high interest to the flavour physics community since the amplitudes
and thus the observables are unbinned in ¢2, while aiming to be as model-independent as
possible. In addition, datasets representative of the signal-only acceptance-corrected LHCb
dataset can be generated from the fit results, allowing one to perform fits to this synthetic
dataset with any choice of model and further study theoretical parameterisations of the

decay B® — K*0utpu~.
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Appendix A

Comparison of the input variables in
BY — K*VJ/+ simulation and sWeighted
B — K*°J /¢ data for the combinatorial

BDT in for Run 1, 2016, and 2018
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Figure A.2: Comparison between B — K*.J /v simulation and sWeighted B — K*0.J /4 data for
the BDT training variables for Run 1. The distributions are normalised to unit area.
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Figure A.3: Comparison between B® — K*0J /v simulation and sWeighted B — K*°.J /v data for
the BDT training variables for Run 1. The distributions are normalised to unit area.
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Figure A.4: Comparison between B — K*.J /v simulation and sWeighted B — K*.J /4 data for
the BDT training variables for 2016. The distributions are normalised to unit area.
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Figure A.5: Comparison between B — K*.J /v simulation and sWeighted B — K*0.J /4 data for
the BDT training variables for 2016. The distributions are normalised to unit area.
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Figure A.6: Comparison between B® — K*0J /v simulation and sWeighted B — K*°.J /v data for
the BDT training variables for 2016. The distributions are normalised to unit area.
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Figure A.7: Comparison between B — K*°.J /v simulation and sWeighted B — K*0.J /4 data for
the BDT training variables for 2018. The distributions are normalised to unit area.
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Figure A.8: Comparison between B — K*.J /v simulation and sWeighted B — K*.J /4 data for
the BDT training variables for 2018. The distributions are normalised to unit area.
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Figure A.9: Comparison between B® — K*0J /v simulation and sWeighted B — K*°.J /v data for
the BDT training variables for 2018. The distributions are normalised to unit area.
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Appendix B

Combinatorial BDT efficiency as a
function of cosy, cosfx, and ¢ for

B — K*VJ /4 simulation and B’ — K*.J /4
data, in Run 1, 2016, and 2018, in the

nominal and narrow myg, windows
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Figure B.1: Combinatorial BDT efficiency as a function of cosfy, cosfx, and ¢ for Run 1
B% — K*9J/+ simulation and Run 1 B° — K*0J/+ data, where the uncertainties are statis-
tical.
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Figure B.2: Combinatorial BDT efficiency as a function of cosfy, cosfk, and ¢ for Run 1
B — K*9.J/+ simulation and Run 1 B® — K*°.J /4 data, in the region 876 < mg, < 916 MeV/c?,
where the uncertainties are statistical. This better aligns the data with the simulated P-wave state.
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Figure B.3: Combinatorial BDT efficiency as a function of cos#y, cosfg, and ¢ for 2016
B% — K*0J/+ simulation and 2016 B® — K*9.J/1¢ data, where the uncertainties are statisti-
cal.
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Figure B.4: Combinatorial BDT efficiency as a function of cos#y, cosfg, and ¢ for 2016
B — K*9J/+ simulation and 2016 B® — K*°.J /v data, in the region 876 < mg, < 916 MeV/c?,
where the uncertainties are statistical. This better aligns the data with the simulated P-wave state.
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Figure B.5: Combinatorial BDT efficiency as a function of cos#, cosfg, and ¢ for 2018
B — K*0J/+ simulation and 2018 B — K*9.J/1¢ data, where the uncertainties are statisti-
cal.
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Figure B.6: Combinatorial BDT efficiency as a function of cos#, cosfg, and ¢ for 2018
B — K*9J/+ simulation and 2018 B® — K*0.J /v data, in the region 876 < mg, < 916 MeV/c?,
where the uncertainties are statistical. This better aligns the data with the simulated P-wave state.
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