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Abstract

The LHCb experiment at CERN has produced many intriguing results in b → sℓℓ and

b → cℓν decays, which point to potential contributions from New Physics. This thesis

describes an analysis of B0 → K∗0µ+µ−where the decay amplitudes are measured as

functions of q2, the dimuon invariant mass squared. Measuring the angular distribution of

this decay results in a plethora of observables that can be used to constrain the type of

New Physics contributions. Owing to the number of parameterisations of the Standard

Model and other models which can describe New Physics effects, Legendre polynomial

ansatzes are used to describe the variation with q2 in order to be as model-independent

as possible. A selection strategy for B0 → K∗0µ+µ−is outlined, resulting in low levels of

misidentified and combinatorial background. Pseudoexperiment studies are performed

in order to develop the analysis strategy and further understand the symmetries of the

angular distribution and the fit. Blinded results from 9 fb−1 of data collected by the

LHCb detector at the LHC at CERN are shown, where the fit is performed in the region

1.25 < q2 < 8 GeV2/c4. The fit is performed with four-parameter ansatzes for the P-wave

and one-parameter ansatzes for the S-wave. Pseudoexperiment studies are performed from

the data fit. The data fit quality is determined to be good, with p-value = 70%. Where the

Hessian is not a good description of the uncertainties, fits to the log-likelihood profiles are

performed with bifurcated parabolas to extract the uncertainties, resulting in good-quality

statistical coverage.
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Chapter 1

Introduction

In recent years, experiments have measured quantities exhibiting discrepancies with respect

to the Standard Model (SM). These include branching fractions, ratios of branching

fractions, and angular coefficients. Examples of ratios of branching fractions are tests of

Lepton Flavour Universality (LFU). Ignoring lepton masses, the SM predictions for the

branching fractions of B → Xℓℓ are the same between the three lepton generations. There

are theoretical uncertainties of these branching fractions due to low energy QCD effects,

such as hadronic form-factors. However by measuring ratios of branching fractions, such as

RD(∗) ≡ B(B→D(∗)τνµ)

B(B→D(∗)µντ )
, these uncertainties cancel to first order. The most recent combined

RD and RD∗ LHCb measurement sees a 1.9σ deviation with respect to the SM, and global

fits show a 3.2σ deviation with the SM, as indicated by Figure 1.1 [1].

Deviations are also seen in branching fractions. An example is the branching fraction

of B0 → K∗0µ+µ−, measured with Run 1 data at LHCb, as shown by Figure 1.2 [2], where

q2 is the square of the dimuon invariant mass. This measurement is currently limited

by systematic uncertainties. Nevertheless, it has been observed that in most q2 bins the

measured differential branching fraction is lower than the theoretical prediction. In addition

the decay B0
s → ϕµ+µ−, measured with the Run 1 and Run 2 datasets, shows a 3.2σ

deviation with respect the SM, as seen in Figure 1.3a [3]. Also the differential branching

fraction of decays such as B+ → K+µ+µ− show deviations with respect to the SM (e.g.

Figure 1.3b [4]). What’s intriguing about these plots is all of these measurements show a

coherent undershooting with respect to the SM.

With regards to angular observables, these have been studied in decays such as
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Figure 1.2: Branching fraction of B0 → K∗0µ+µ−, measured with Run 1 data at LHCb [2].
The data are shown by the black points and the blue bands corresponds to the Standard Model
predictions from Refs. [5] [6].

B0 → K∗0µ+µ−. The latest published analysis of B0 → K∗0µ+µ−, which measures the

angular coefficients of this decay, uses Run 1 and 2016 data from LHCb [7]. Local discrep-

ancies are seen in observables, for example the observable P ′
5, as shown by Figure 1.4. The

P observables are defined in Chapter 2. As described by [7], fits to the angular observable

reveal discrepancies of 3σ in the real part of the value that parameterises vector currents,

Re(C9) (discussed further in Chapter 2).
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Figure 1.3: Branching fractions of decays involving b→ sℓℓ transitions measured at LHCb.
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These Flavour Anomalies can be described by contributions from New Physics (NP).

Global fits claim the tension to be > 5σ. Examples of global fits are described in [9]. A

scenario discussed in [9] is where a NP coupling C9µ is introduced, where the subscript µ

indicates these contributions couple to muons. A C9′µ = −C10′µ NP contribution is also

introduced, where C10 is a value that parameterises axial-vector contributions and the ′

indicates right-handed quark couplings. This fit, with a p-value goodness-of-fit of 31.1%,

shows a pull of 7.1σ with respect to the SM, as shown by Figure 1.5. Contours from major
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experiments are shown, in addition to the combination.

The analysis described in this thesis measures the decay amplitudes of B0 → K∗0µ+µ−

using Run 1 and Run 2 data from LHCb, which corresponds to 9 fb−1 of data. As described

by Ref. [10], different models (i.e. the SM and NP models) result in different shapes of

the angular observables as a function of q2. The decay amplitudes are measured unbinned

in q2 (where q2 is the dimuon invariant mass squared) in order to increase sensitivity to

NP, since the shape of the amplitudes and hence the angular observables in q2 can be

exploited. There are many possible ways to theoretically describe this decay. In order to

be as model-independent as possible, ansatzes are used to describe the decay amplitudes,

as initially motivated by [11]. Providing the amplitude components and covariance matrix

allows one to generate synthetic datasets from the fit, and perform fits to these synthetic

datasets with any choice of model. A similar approach approach was performed as part

of the Run 1 analysis of B0 → K∗0µ+µ− at LHCb [12], however only the zero crossing

points (values of q2 where the angular observables cross zero) were published since the

log-likelihood surface was found to be non-parabolic. These zero crossing points were

25



computed via bootstrapping [13].

This analysis is in collaboration with members from the Imperial, Bristol and Cambridge

groups in LHCb. Unless otherwise specified, the work described in this thesis is my own.

Chapter 2 provides a theoretical overview of this decay and Chapter 3 describes the

LHCb experiment and data flow. Chapter 4 presents an overall analysis flow and Chapter 5

describes the data selection used in this analysis. The acceptance, which is used to account

for the angular and q2 structures introduced by the selection, is described in Chapter 6.

The fitting strategy is described in Chapter 7 and studies with pseudoexperiments are

described in Chapters 8 and 9. The data results are shown in Chapters 10 and 11 for the

control mode and the rare mode respectively. Conclusions are drawn in Chapter 12.
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Chapter 2

Theory

This chapter describes the theoretical aspects related to this analysis. Section 2.1 provides

an overview of the Standard Model, and problems with the Standard Model are discussed

in Section 2.2. Section 2.3 describes the decay B0 → K∗0µ+µ−, which is the subject of

the analysis described in this thesis. Effective field theories, the basis of the theoretical

framework describing this decay, are discussed in Section 2.4, and hadronic effects are

described in Section 2.5. The angles used to parameterise the decay B0 → K∗0µ+µ− are

defined in Section 2.6 and the differential decay rate is described in Section 2.7. The

CP-averages and asymmetries are defined in Section 2.8. The differential decay rate as a

function of the mass of the kaon-pion system, mKπ, is described in Section 2.9 and the

symmetries of the decay rates are discussed in Section 2.10.

2.1 The Standard Model

The Standard Model (SM) is a quantum field theory describing three of the four known

interactions of nature (the electromagnetic, strong, and weak interactions). Fundamental

particles are excitations of their respective quantum fields, and are presented in Table 2.1

[14].

The SM can be written in a Lagrangian formalism. Certain gauge transformations

applied to terms in the Lagrangian leaves the Lagrangian invariant. Groups can be used

to describe these transformations. The electroweak interaction, which corresponds to the

electromagnetic interaction unified with the weak interaction, obeys symmetries described
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Fermions Bosons

Up (u) Charm (c) Top (t) Gluon (g) Higgs (H)
Mass = 2.2 MeV/c2 1.275 GeV/c2 172.8 GeV/c2 0 125.3 GeV/c2

Charge = 2/3 2/3 2/3 0 0
Spin = 1/2 1/2 1/2 1 0

Down (d) Strange (s) Beauty (b) Photon (γ)
Mass = 4.7 MeV/c2 95 MeV/c2 4.18 GeV/c2 0
Charge = −1/3 −1/3 −1/3 0
Spin = 1/2 1/2 1/2 1
Electron (e) Muon (µ) Tau (τ) W boson (W )
Mass = 511 keV/c2 105.66 MeV/c2 1.7769 GeV/c2 80.433 GeV/c2

Charge = −1 −1 −1 1
Spin = 1/2 1/2 1/2 1
Electron Muon Tau Z boson (Z)
neutrino (νe) neutrino (νµ) neutrino (ντ)
Mass < 0.8 eV/c2 < 0.19 eV/c2 < 18.2 eV/c2 91.19 GeV/c2

Charge = 0 0 0 0
Spin = 1/2 1/2 1/2 1

Table 2.1: The Standard Model of particle physics.

by the SU(2)×U(1) groups [15] [16] [17].

The SM is based on the symmetry group SU(3)C×SU(2)L×U(1)Y where C corresponds

to colour, L represents left-handed fermions, and the hypercharge Y is given by

Y = 2(Q− I3), (2.1)

where Q is the electric charge and I3 is the third component of the weak isospin. Left-

handed quarks form a doublet under SU(2)L, with hypercharge Y = 1/3 (for up-type

quarks, Y = 2(2/3− 1/2); for down type quarks, Y = 2(−1/3 + 1/2)). The right-handed

quarks are singlets under SU(2)L, where Y = 4/3 for up-type right-handed quarks, and

Y = −2/3 for down-type right-handed quarks [18].

In the SM, quark masses are generated through interaction with Higgs doublet Φ.

Expanding the field around the ground state, in the ‘unitrary gauge’, Φ =
(

(v+h)/
√
2

0

)

where h is a real scalar field and v is the Higgs field vacuum expectation value [19] [20]

[21]. The Yukawa Lagrangian describes interaction between left-handed and right-handed

quarks through the Higgs and is given by

LYukawa = −GDQ̄LΦdR −GU Q̄LΦ
cuR (2.2)
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where

QL =







uL

dL






(2.3)

is a SU(2)L left-handed quark doublet, uR and dR are the the SU(2)L right-handed quark

singlets, and GD and GU are constants. Extending this to three generations, these constants

become flavour matrices. However this results in the mass matrices after symmetry breaking

becoming non-diagonal.

In order to make the mass matrices diagonal, the left- and right- handed quarks are

redefined as

uX,i →MuX ,ijuX,j

dX,i →MdX ,ijuX,j ,

(2.4)

where M are orthogonal matrices, i and j correspond to the quark generations, and

X = {L,R}. Applying these transformations results in a diagonal mass matrix, in addition

to the kinetic, electromagnetic and neutral current terms. The charge-current becomes of

the form

ufL(M
†
uL
MdL)fgd

g
L, (2.5)

which manifests as mixing between the quark generations. (M †
uLMdL)fg can be associated

to the CKM matrix [22] [23]. Explicitly, the charge-current term becomes

−v√
2

(

uL cL tL

)

γµW+
µ VCKM













dL

sL

bL













, (2.6)

where VCKM ≡M †
uLMdL =













Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb













.

2.2 Problems with the Standard Model

Whilst the SM is the most successful theory of particle physics, there are several problems

with the SM, most notably observed phenomena which are unexplained. A striking example

is the absence of gravity in the SM. The most successful theory describing gravity to date is
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General Relativity (GR) [24], which is a classical theory that describes gravity in terms of the

curvature of spacetime. The SM and GR have completely different theoretical frameworks

and attempts to unify the SM and GR have been extremely challenging. An example

challenge when attempting to introduce gravity in the SM is the non-renormalisability of GR.

Nevertheless, there are several theories which can describe quantum gravity, such as string

theory and loop quantum gravity, however these theories have not been experimentally

verified.

There is a plethora of evidence for Dark Matter (DM) however the SM has no DM

candidate. Evidence for DM arises from the cosmic microwave background, gravitational

lensing, galactic clusters and velocity profiles of galaxies [25] [26] [27]. From cosmological

observations, DM is predicted to be approximately 27% of the mass-energy content of

the universe. There are several candidates for DM, such as Weakly Interacting Massive

Particles [28]. Recent limits exclude cross sections above 9.2× 10−48 at WIMP mass of

36 GeV/c2 [29]. Another candidate for dark matter is axions, which was proposed [30] [31]

to solve the strong CP problem in quantum chromodynamics [32].

The SM cannot explain a large portion of the matter-antimatter asymmetry we observe

in the universe. The Sakharov conditions for baryogenesis are baryon number violation,

CP violation, and interactions out of thermal equilibrium [33]. In principle, the SM allows

for baryon number violation through non-perturbative processes [34], however this is not

enough to account for the matter-antimatter asymmetry in the universe. No baryon number

violating process has been observed. In addition, the CP violation measured in the quark

sector so far is not enough to explain the matter-antimatter asymmetry in the universe.

Current limits on electric dipole moments such as Ref. [35] also provide constraints on

possible sources of CP violation. Recent measurements from T2K indicate CP violation

in the neutrino sector [36], with a preference near maximal CP violation, however more

data is required to determine whether the CP violation here is enough to explain the

matter-antimatter asymmetry in the universe.

There is evidence for dark energy such as from supernovae [37] and the cosmic microwave

background, however the SM has no dark energy candidate. The cosmological constant

in GR can account for dark energy, however the vacuum energy density predicted in the

SM is many orders of magnitude larger than the observed value of dark energy. Various

30



proposals have been put forward to explain dark energy, such as quintessence [38] [39] or

chameleons [40], as well as black hole accretion [41].

There are also many theoretical problems in the SM, such as the hierarchy problem. The

Higgs mass in the SM has very large quantum corrections, which are orders of magnitude

larger than the corrected mass of the Higgs. Naively one would expect the corrected Higgs

mass to be of the same order of magnitude as the very large quantum corrections, i.e.

towards the Planck mass. Thus there a high amount of fine-tuning in the cancellation of

the bare Higgs mass and the quantum corrections. There is the question of why gravity is

so much weaker than the other interactions. There are several proposals to address this,

such as supersymmetry or extra dimensions.

In the SM, neutrinos are massless. However, since neutrinos are observed to oscillate

[42] [43], they are therefore required to have mass. It is currently not known how neutrinos

acquire their mass and whether neutrinos are Dirac or Majorana particles. In addition,

recent results [44] present an upper limit of the effective electron anti-neutrino mass of

0.8 eV/c2 at a 90% confidence level. This is much smaller than the masses of other SM

massive particles. It is not known why the neutrinos mass is so small, as well as whether

the neutrino masses are arranged in the ‘normal hierarchy’ or the ‘inverted hierarchy’. In

addition, future measurements will determine whether CP violation in the neutrino sector

is larger than that in the quark sector [36].

There are a large number of free parameters in the SM such as the fermion masses,

Higgs mass, and elements of the CKM matrix. In addition there is no explanation for why

there are three generations of matter. To summarise, there are phenomena observed in

nature but not explained by the SM, in addition to theoretical questions regarding the

structure of the SM, with the hope of a more fundamental theory which can explain some

of these mysteries.

2.3 The decay B0 → K∗0µ+µ−

As discussed in Section 2.2, there are deficits with the SM, for example it cannot explain

the matter-antimatter asymmetry in our universe, and it also does not have a dark matter

candidate. One of the most effective ways to search for Beyond the Standard Model (BSM)
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Figure 2.1: Example Feynman diagrams describing the decay B0 → K∗0µ+µ−.

physics is by measuring rare decays such as B0 → K∗0µ+µ−. Searching for NP through rare

decays can probe BSM physics at energies beyond those accessible by direct searches since

the BSM particle can be produced virtually. Quantities such as branching fractions and

angular observables can be measured and compared to the SM. As discussed in Chapter 1,

recent measurements in b → sℓℓ and b → cℓν transitions, such as B0 → K∗0µ+µ−, have

revealed discrepancies with respect to the SM. By performing an angular analysis of

B0 → K∗0µ+µ−, not only one can determine whether there is NP, but one can also deduce

the nature of the NP model.

The decay B0 → K∗0µ+µ− occurs through the quark-level transition b → sℓℓ. It is

a Flavour Changing Neutral Current (FCNC) thus it can only occur through loop-level

Feynman diagrams in the SM, as indicated by Figure 2.1. Since this process can only occur

at loop-level and involves at least one off-diagonal CKM element (i.e. Vts), it is highly

suppressed in the SM. Studying this decay (and other rare decay processes) allows one

to search for contributions from BSM physics without large SM backgrounds. These NP

contributions could occur through tree-level Feynman diagrams and potentially be large

compared to the SM. In addition, measuring these processes provides a test of the flavour

structure in the SM and helps constrain possible NP models.
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2.4 Effective field theories

Processes such as B0 → K∗0µ+µ− have contributions with different associated energy

scales: ΛQCD ∼ 0.2 GeV, which is the strength of Quantum Chromodynamics (QCD)

interactions between the quarks, mb ∼ 4 GeV/c2, which is the mass of the b quark, and

mW ∼ 80 GeV/c2, which is the mass of the W boson involved in the FCNC. This results in

calculations when summing over Feynman diagrams becoming extremely difficult to perform

due to large logarithms which do not get smaller as the summation order increases, thus

requiring summation to all orders. This problem is solved by computing these processes in

an Effective Field Theory (EFT) framework via an Operator Product Expansion (OPE),

where a product of local quantum fields is expanded as a summation of those fields [45]

[46].

EFTs allow one to separate high and low-energy effects. Suppose we have a particle

with mass M and a process which occurs at energy E, and E < µ < M , where µ is

some scale below which the dynamics of M is unimportant. The quantum fields can be

decomposed into high and low energy modes, ψL and ψH , where they describe effects below

and above µ respectively. Analogously to Fermi theory, the fields at high energies ψH are

integrated out. This results in the EFT Lagrangian

LEFT =
∑

i

Ci(µ)Oi(µ) (2.7)

where Ci(µ) are Wilson coefficients, which describe effects at high energies. The operators

Oi(µ) describe effects at low energies. Thus the high and low energy effects factorise.

However the observables should not depend on the scale µ, thus the Wilson coefficients

Ci(µ) obey the Renormalisation Group Equation (RGE) [46]

µ
dCi(µ)
dµ

= γijCj(µ). (2.8)

This equation provides a relationship between the Wilson coefficients and the scale µ.

Hence predictions are generated at low energies by matching the theory at high energy, i.e.

at MW , where perturbation theory can be used, and evolving the predictions from MW to

mb. Thus one has Ci(mb) = KijCj(MW ), where Kij is some matrix.
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2.4.1 The effective Hamiltonian for the decay B0 → K∗0µ+µ−

The effective Hamiltonian, after performing an Operator Product Expansion in 1
M2

W
, is

given by

Heff = −4GF√
2
VtbV

∗
ts

∑

i

Ci(µ)Oi(µ), (2.9)

where GF is the Fermi constant, Ci(µ) are Wilson coefficients and Oi(µ) are operators.

The operators are Oi are defined as

O1u = [s̄γµT
aPLu][ūγ

µT aPLb]

O1c = [s̄γµT
aPLc][c̄γ

µT aPLb]

O2u = [s̄γµPLu][ūγ
µPLb]

O2c = [s̄γµPLc][c̄γ
µPLb]

O3 = [s̄γµPLb]
∑

q

[q̄γµPLq]

O4 = [s̄γµT
aPLb]

∑

q

[q̄γµT aPLq]

O5 = [s̄γµγνγρPLb]
∑

q

[q̄γµγνγρPLq]

O6 = [s̄γµγνγρT
aPLb]

∑

q

[q̄γµγνγρT aPLq]

O7 =
e

(4π)2
mb(s̄σ

µνPRb)Fµν

O8 =
e

(4π)2
mb(s̄σ

µνPRT
ab)Gaµν

O9 =
e2

(4π)2
(s̄γµPLb)(ℓ̄γ

µℓ)

O10 =
e2

(4π)2
(s̄γµPLb)(ℓ̄γ

µγ5ℓ)

(2.10)

where T a are the SU(3)C generators, PL/R = (1∓ γ5)/2 are the chiral projection operators,

σµν are the Pauli spin matrices, Fµν is the electromagnetic field tensor, and Gaµν is the gluon

field tensor. One can also define the primed operators O′ by applying the transformation

PL ↔ PR.

The dominant contributions to the process B0 → K∗0µ+µ− in the SM are from O9, O10,

and O7. O9 and O10 are the semi-leptonic operators which describe vector and axial-vector

currents respectively. The electromagnetic dipole operator is O7. The operators O1u,

O1c, O2u, and O2c are the charge-current operators, also known as the 4-quark operators,

and describe processes where qq̄ pairs are produced. These also contribute to the process

B0 → K∗0µ+µ− since the quark pair can subsequently decay to two muons. The gluon

dipole operator O8 and the QCD penguin operators O3, O4, O5, and and O6 contribute,

albeit at a lower level compared to the charge-current operators.

The dimuon invariant mass squared (q2) spectrum of the decay B0 → K∗0µ+µ− is

shown in Figure 2.2. Below q2 = (2mµ)
2, the decay rate is exactly zero. In the decay
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Figure 2.2: Dimuon invariant mass squared (q2) spectrum of the decay B0 → K∗0µ+µ−. There are
two narrow states, the J/ψ(1S) meson, with mass 3096 MeV, and the ψ(2S) meson, with mass 3686
MeV. Most of the regions dominated by the rare mode are dominated by the Wilson coefficients C9
and C10 and the low q2 region is dominated by C7. The q2 region the analysis described in thesis is
the region 1.25 < q2 < 8 GeV2/c4. The J/ψ region is used for validating the analysis.

B0 → K∗X(cc̄), where X(cc̄) → µ+µ−, there are two narrow states, the J/ψ(1S) meson,

with mass 3096 MeV, and the ψ(2S) meson, with mass 3686 MeV. There are broad cc̄

resonances at higher mass. In addition to the 1-particle contributions, there are 2-particle

contributions such as DD̄ and D∗D̄ and a ττ contribution. Most of the regions dominated

by the rare mode are dominated by the Wilson coefficients C9 and C10 and the low q2

region is dominated by C7. The analysis described in this thesis is performed in the q2

regions 1.25 < q2 < 8 GeV2/c4 and 11 < q2 < 12.5 GeV2/c4. The J/ψ region is used for

validating the analysis. This analysis makes an assumption that the muons are massless,

as adopted by previous analyses in B0 → K∗0µ+µ− [7]. This is a valid assumption since

in the q2 regions this analysis is performed in, q2 ≫ (2mµ)
2, where mµ is the muon mass.
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2.5 Hadronic effects

The amplitude, describing the transition from the initial state to the final state, is given by

AEFT =
∑

i

Ci(mB)⟨K∗0µ+µ−|Oi(mB)|B0⟩. (2.11)

Whilst calculating Ci(mB) is not problematic, calculating the matrix elements

⟨K∗0µ+µ−|Oi(mB)|B0⟩ is much more complicated since QCD is non-perturbative at low

energies. These can be split into local and non-local hadronic effects. The amplitudes are

sensitive to form-factors which encapsulate local hadronic effects, such as QCD interactions

corresponding to the bound meson state and the vacuum. These are described in more

detail in Section 2.5.1. In addition, the amplitudes also have a contribution from non-local

effects, which are described in Section 2.5.2.

As described by Ref. [47], the coefficients C7 and C10 appear with contributions from

other Wilson coefficients Ci in the matrix elements. It is thus convenient to define the

effective Wilson Coefficients Ceff
7 , Ceff

9 , and Ceff
10 , which are given by [47]

Ceff
7 =

4π

αs
C7 −

1

3
C3 −

4

9
C4 −

20

3
C5 −

80

9
C6

Ceff
9 =

4π

αs
C9 + Y (q2)

Ceff
10 =

4π

αs
C10

Ceff
7

′
=

4π

αs
C ′
7

Ceff
9

′
=

4π

αs
C ′
9

Ceff
10

′
=

4π

αs
C ′
10

(2.12)

where

Y (q2) =h(q2,mc)

(

4

3
C1 + C2 + 6C3 + 60C5

)

− 1

2
h(q2,mb)

(

7C3 +
4

3
C4 + 76C5 +

64

3
C6

)

− 1

2
h(q2, 0)

(

C3 +
4

3
C4 + 16C5 +

64

3
C6

)

+
4

3
C3 +

64

9
C5 +

64

27
C6

(2.13)
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with

h(q2,mq) =− 4

9

(

ln
m2
q

µ2
− 2

3
− z

)

− 4

9
(2− z)

√

|z − 1| ×















arctan 1√
z−1

z > 1

ln 1+
√
1+z√
z

− iπ
2 z ≤ 1

(2.14)

and z = 4m2
q/q

2. µ is the renormalisation scale and mb and mc are the masses of the b

and c quarks respectively.

Transversity amplitudes A [48] are commonly used to describe the decay

B0 → K∗0µ+µ−. These have a definite parity and can be written in terms of the He-

licity amplitudes [49]. As described by Ref. [47], the transversity amplitudes are written in

terms of the effective Wilson coeffients and form-factors. There are three polarisations of

the K∗0: parallel, transverse and longitudinal, represented by the subscripts ∥, ⊥, and 0

respectively. The decay involves a muon-antimuon pair, so the superscripts L and R are

used to represent left-handed and right-handed muonic currents respectively. There is also

an addition amplitude At, which corresponds to where the gauge boson (the virtual Z or

photon) polarisation vector is time-like in the gauge boson rest frame. Assuming massless

muons, this amplitude vanishes [47]. The amplitudes written in terms of the effective

Wilson coefficients and form-factors are given as

AL,R
∥ =−N

√
2(m2

B −m2
K∗)

[

[

(Ceff
9 − Ceff′

9 )∓ (Ceff
10 − Ceff′

10 )
] A1(q

2)

mB −mK∗

+
2mb

q2
(Ceff

7 − Ceff′

7 )T2(q
2)

]

AL,R
⊥ =N

√
2λ

[

[

(Ceff
9 + Ceff′

9 )∓ (Ceff
10 + Ceff′

10 )
] V (q2)

mB +mK∗

+
2mb

q2
(Ceff

7 + Ceff′

7 )T1(q
2)

]

AL,R
0 =− N

2m∗
K

√

q2

{

(Ceff
9 − Ceff′

9 )∓ (Ceff
10 − Ceff′

10 )

×
[

(m2
B −m2

K∗ − q2)(mB +m∗
K)A1(q

2)− λ
A2(q

2)

mB +m∗
K

]

+ 2mB(Ceff
7 − Ceff′

7 )

[

(m2
B + 3m2

K∗ − q2)T2(q
2)− λ

m2
B −m2

K∗

T3(q
2)

]

}

(2.15)

wheremB is the B0 mass,mK∗ is the mass of theK∗0, andN = VtbV
∗
ts

[

G2
Fα

2

3×210π5m3
B
q2λ1/2

]1/2

with λ = m4
B +m4

K∗ + q4 − 2(mBmK∗ +mK∗q2 +m2
Bq

2). T1, T2 and T3 are dipole form-
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factors and V , A1, and A2 are vector and axial-vector form-factors.

2.5.1 Local hadronic effects

The hadronic matrix elements cannot be computed perturbatively due to low energy QCD

effects. They are parameterised as summations of Lorentz structures and functions of

kinematic variables [50]. These functions are called ‘form-factors’.

There are two categories of techniques in which form factors are computed by the

theoretical community. One, Lattice QCD, is generally computed at low hadronic recoil,

i.e. high q2. Whilst in principle Lattice QCD can be computed at any value of q2, the

predictions are generally more precise at high q2, i.e. q2 ≳ 10 GeV2/c4 which corresponds

to low hadronic recoil. Alternatively, one can use a method such as Light Cone Sum Rules

[5] [51]. Here the predictions are computed at negative q2 where the theory is most precise

and extrapolated into the q2 > 0 region. The uncertainty due to form-factors contributes

significantly to the overall uncertainty of the theoretical predictions.

2.5.2 Non-local hadronic effects

Even when removing the q2 regions corresponding to the resonances in order to measure

the rare mode, there is still a possibility of interference between the resonances and the

rare mode. The effective Wilson coefficients Ceff
7 , Ceff

9 , and Ceff
10 include contributions from

the 4-quark operators, thus there is a need to compute predictions for b→ cc̄s processes.

The next-to-leading order non-local contributions are difficult to compute, in particular

the interference between the non-local contributions and the rare mode.

The predictions for these non-local effects can be estimated through Light Cone Sum

Rules [52] and extrapolating to higher q2, or through data-driven methods, such as

measuring the resonances from the data.

2.6 Angles used to parameterise the decay B0 → K∗0µ+µ−

In order to measure the decay amplitudes or angular coefficients of B0 → K∗0µ+µ−,

where K∗0 → K+π−, the angular distribution of the decay products (K+, π−, µ+, and

µ−) is measured. The three angles θℓ, θK , and ϕ are used to parameterise the decay

38



B0 → K∗0µ+µ−, providing a complete description of the angular distribution of the decay

products in cos θℓ, cos θK , and ϕ. A schematic of the angular definitions is given by

Figure 2.3 [53]. The notation nab corresponds to the direction normal to the plane

containing particles a and b in the B0 (or B̄0) rest frame. The angular basis is defined in

[53].

The angle θℓ is defined as the angle between the direction of the µ+(µ−) in the dimuon

rest frame and the direction of the dimuon system in the B0 (B̄0) rest frame. The angle

θK is the angle between the direction of the kaon in the K∗0 (K̄∗0) rest frame and the

direction of the K∗0 (K̄∗0) in the B0 (B̄0) rest frame. Explicitly, cos θℓ and cos θK are

defined as

cos θℓ =
(

p̂
(µ+µ−)
µ+

)

·
(

p̂
(B0)
µ+µ−

)

=
(

p̂
(µ+µ−)
µ+

)

·
(

−p̂(µ
+µ−)

B0

)

, (2.16)

cos θK =
(

p̂
(K∗0)
K+

)

·
(

p̂
(B0)
K∗0

)

=
(

p̂
(K∗0)
K+

)

·
(

−p̂(K
∗0)

B0

)

(2.17)

for the B0 and

cos θℓ =
(

p̂
(µ+µ−)
µ−

)

·
(

p̂
(B̄0)
µ+µ−

)

=
(

p̂
(µ+µ−)
µ−

)

·
(

−p̂(µ
+µ−)

B̄0

)

, (2.18)

cos θK =
(

p̂
(K̄∗0)
K−

)

·
(

p̂
(B̄0)

K̄∗0

)

=
(

p̂
(K̄∗0)
K−

)

·
(

−p̂(K̄
∗0)

B̄0

)

(2.19)

for the B̄0 decay.

The angle ϕ is the angle between the plane containing the µ+ and the µ− and the plane

containing the kaon and pion from the K∗0.

The definition of the angle ϕ is given by

cosϕ =
(

p̂B
0

µ+ × p̂B
0

µ−

)

·
(

p̂B
0

K+ × p̂B
0

π−

)

, (2.20)

sinϕ =
[(

p̂B
0

µ+ × p̂B
0

µ−

)

·
(

p̂B
0

K+ × p̂B
0

π−

)]

· p̂B0

K∗0 (2.21)

for the B0 and
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(a) θK and θℓ definitions for the B0 decay
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(b) φ definition for the B0 decay
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(c) φ definition for the B0 decay

Figure 2.3: Schematic of the angular basis used to parameterise B0 → K∗0µ+µ− and
B̄0 → K̄∗0µ+µ− decays [53]. The notation nab is used to represent the direction normal to
the plane containing particles a and b in the B0 (or B̄0) rest frame.
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cosϕ =
(

p̂B̄
0

µ− × p̂B̄
0

µ+

)

·
(

p̂B̄
0

K− × p̂B̄
0

π+

)

, (2.22)

sinϕ = −
[(

p̂B̄
0

µ− × p̂B̄
0

µ+

)

·
(

p̂B̄
0

K− × p̂B̄
0

π+

)]

· p̂B̄0

K∗0 (2.23)

for the B̄0 decay. The p̂
(Y )
X are unit vectors describing the direction of a particle X in the

rest frame of the system Y . In this angular basis, the angular definition for the B̄0 is a CP

transformation of that for the B0 decay.

2.7 Differential decay rate of B0 → K∗0µ+µ−

The decay B0 → K∗0µ+µ−, where K∗0 → K+π−, is written as a function of the angles

cos θℓ, cos θK , and ϕ. The decay rate of B0 → K∗0µ+µ− is given by ΓP (B
0 → K∗0µ+µ−).

The differential decay rate can be expressed in terms of the angles and q2 and is given by

dΓP (B0→K∗0µ+µ−)
d cos θℓd cos θKdϕdq2

. This can be interpreted as a Probability Density Function (PDF) of

B0 → K∗0µ+µ− in the angles and q2.

Since the presence of the K∗0 is inferred from measuring the K+π− state, states other

than the K∗0(892) contribute to the K+π− spectrum. Within the mKπ window used in this

analysis, which is 100 MeV/c2 about the K∗0 pole mass, the state where the K+π− system

has angular momentum of 1, referred to as the P-wave, is dominant. The state where the

K+π− system has angular momentum of 0, referred to as the S-wave, also contributes at

a non-negligible level [2] and is therefore also considered in this analysis. Higher order

waves are neglected since they are dominant in regions of mKπ outside the mKπ window

used in this analysis [14]. In addition, as part of Ref. [2], the effect of neglecting a D-wave

contribution was computed and found to be negligible. Thus the differential decay rates

for the S-wave, P-wave, and interference between the S-wave and P-wave, are measured.

Thus the differential decay rate for B0 → K∗0µ+µ− where the Kπ system is in a P-wave
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configuration, can be written as [54]

dΓP (B
0 → K∗0µ+µ−)

d cos θℓd cos θKdϕdq2
=

9

32π

[

J1s sin
2 θK + J1c cos

2 θℓ + J2s sin
2 θK cos 2θℓ + J2c cos

2 θK cos 2θℓ

+J3 sin
2 θK sin2 θℓ cos 2ϕ+ J4 sin 2θK sin 2θℓ cosϕ

+J5 sin 2θK sin θℓ cosϕ+ J6s sin
2 θK cos θℓ

+J7 sin 2θK sin θℓ sinϕ+ J8 sin 2θK sin 2θℓ sinϕ

+J9 sin
2 θK sin2 θℓ sin 2ϕ

]

,

(2.24)

where Ji = Ji(q
2) are quantities constructed from bilinear combinations of the decay

amplitudes.

Likewise, the differential decay rate for the decay B0 → K∗0µ+µ−, where the Kπ

system is in an S-wave configuration, as well as the interference terms, is written as

dΓS(B
0 → K∗0µ+µ−)

d cos θℓd cos θKdϕdq2
=

1

4π

[

(J̃c1a + J̃c2a cos 2θℓ)

+J̃c1b cos θK + J̃c2b cos 2θℓ cos θK

+J̃4 sin 2θℓ sin θK cosϕ+ J̃5 sin θℓ sin θK cosϕ

+J̃7 sin θℓ sin θK sinϕ+ J̃8 sin 2θℓ sin θK sinϕ
]

.

(2.25)

The B0 → K∗0µ+µ− decay amplitudes are described in terms their real and imaginary

components, as well as the three transversity states of the K∗0 (∥, ⊥ and 0 denoting parallel,

transverse and longitudinal polarisations respectively) and the chiralities of the dimuon

system (L and R corresponding the dimuon system in a left-handed and right-handed

configuration). Following reference [54], in terms of these decay amplitudes, assuming

massless muons, and no scalar or tensor contributions (as in the SM), the P-wave J terms

are written as
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J1s =
3

4

[

|AL
∥ |2 + |AL

⊥|2 + |AR
∥ |2 + |AR

⊥|2
]

J1c = |AL
0 |2 + |AR

0 |2

J2s =
1

4

[

|AL
∥ |2 + |AL

⊥|2 + |AR
∥ |2 + |AR

⊥|2
]

J2c = −|AL
0 |2 − |AR

0 |2

J3 =
1

2

[

|AL
⊥|2 − |AL

∥ |2 + |AR
⊥|2 − |AR

∥ |2
]

J4 =

√

1

2
Re(AL

0AL∗
∥ +AR

0 AR∗
∥ )

J5 =
√
2Re(AL

0AL∗
⊥ −AR

0 AR∗
⊥ )

J6s = 2Re(AL
∥AL∗

⊥ −AR
∥ AR∗

⊥ )

J7 =
√
2Im(AL

0AL∗
∥ −AR

0 AR∗
∥ )

J8 =

√

1

2
Im(AL

0AL∗
⊥ +AR

0 AR∗
⊥ )

J9 = Im(AL∗
∥ AL

⊥ +AR∗
∥ AR

⊥) .

(2.26)

One can also write the S-wave amplitudes (denoted by the subscript 00) in terms of

their real and imaginary components and the chiralities of the dimuon system. In terms of

the amplitudes, the S-wave and interference J terms are written as

J̃c1a =
3

8

[

|AL
00|2 + |AR

00|2
]

J̃c2a = −3

8

[

|AL
00|2 + |AR

00|2
]

J̃c1b =

√

27

16
Re(AL

00AL∗
0 +AR

00AR∗
0 )

J̃c2b = −
√

27

16
Re(AL

00AL∗
0 +AR

00AR∗
0 )

J̃4 =

√

27

32
Re(AL

00AL∗
∥ +AR

00AR∗
∥ )

J̃5 =

√

27

8
Re(AL

00AL∗
⊥ −AR

00AR∗
⊥ )

J̃7 =

√

27

8
Im(AL

00AL∗
∥ −AR

00AR∗
∥ )

J̃8 =

√

27

32
Im(AL

00AL∗
⊥ +AR

00AR∗
⊥ ).

(2.27)

Thus, combining the P-wave, S-wave, and interference, the differential decay rate of

B0 → K∗0µ+µ− is given by

d4Γ(B0 → K∗0µ+µ−)
d cos θℓd cos θKdϕdq2

=
dΓP (B

0 → K∗0µ+µ−)
d cos θℓd cos θKdϕdq2

+
dΓS(B

0 → K∗0µ+µ−)
d cos θℓd cos θKdϕdq2

. (2.28)

2.8 CP-averages and asymmetries

For this analysis, the amplitudes A are measured. However one can define a set of

observables [54] corresponding to the CP-averages for the P-wave and the S-wave by
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Si =

(

Ji + J̄i
)

(

dΓP
dq2

+ dΓ̄P
dq2

) , the P-wave only observables

FS =

(

dΓS
dq2

+ dΓ̄S
dq2

)

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

=
8

3

J̃c1a +
¯̃Jc1a

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

) , the fraction of S-wave.

(2.29)

Here
dΓS/P

dq2
are the decay rates for the S-wave and P-wave, differential in q2, i.e.

dΓS
dq2

=

∫ π

−π

∫ +1

−1

∫ +1

−1

dΓS(B
0 → K∗0µ+µ−)

d cos θℓd cos θKdϕdq2
d cos θℓ d cos θK dϕ

dΓ̄S
dq2

=

∫ π

−π

∫ +1

−1

∫ +1

−1

dΓS(B̄0 → K̄∗0µ+µ−)
d cos θℓd cos θKdϕdq2

d cos θℓ d cos θK dϕ

dΓP
dq2

=

∫ π

−π

∫ +1

−1

∫ +1

−1

dΓP (B
0 → K∗0µ+µ−)

d cos θℓd cos θKdϕdq2
d cos θℓ d cos θK dϕ

dΓ̄P
dq2

=

∫ π

−π

∫ +1

−1

∫ +1

−1

dΓP (B̄0 → K̄∗0µ+µ−)
d cos θℓd cos θKdϕdq2

d cos θℓ d cos θK dϕ.

(2.30)

The CP-averaged interference terms are defined as

SS1 =
8

3

J̃c1b +
¯̃Jc1b

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

SS2 =
4

3

J̃4 +
¯̃J4

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

SS3 =
4

3

J̃5 +
¯̃J5

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

SS4 =
4

3

J̃7 +
¯̃J7

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

SS5 =
4

3

J̃8 +
¯̃J8

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

) .

(2.31)

The fraction of longitudinal polarisation of the K∗0, FL = S1c. The forward-backward

asymmetry of the dimuon system is defined as AFB = 3
4S6s. From Equation 2.26,

S2c = −FL, and S2s = 3S1s =
1
4(1− FL). Thus the set of P-wave observables obtained

from the amplitudes, without any degeneracies, is {FL, S3, S4, S5, AFB, S7, S8, S9}.

One can define ‘form-factor independent’ observables, where theoretical uncertainties
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due to local contributions (form-factors) cancel to first order. Following e.g. [53], [55], and

[56], these are defined as

P1 =
2S3

1− FL

P2 =
2AFB

3(1− FL)

P3 =
−S9

1− FL

P ′
4 =

S4
√

FL(1− FL)

P ′
5 =

S5
√

FL(1− FL)

P ′
6 =

S7
√

FL(1− FL)

P ′
8 =

S8
√

FL(1− FL)

(2.32)

The CP-asymmetries can be analogously defined by

Ai =

(

Ji − J̄i
)

(

dΓP
dq2

+ dΓ̄P
dq2

)

AFS =

(

dΓS
dq2

− dΓ̄S
dq2

)

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

=
8

3

J̃c1a −
¯̃Jc1a

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

AS1 =
8

3

J̃c1b −
¯̃Jc1b

(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

AS2 =
4

3

J̃4 − ¯̃J4
(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

AS3 =
4

3

J̃5 − ¯̃J5
(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

AS4 =
4

3

J̃7 − ¯̃J7
(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

)

AS5 =
4

3

J̃8 − ¯̃J8
(

dΓS
dq2

+ dΓP
dq2

+ dΓ̄S
dq2

+ dΓ̄P
dq2

) .

(2.33)

2.9 Including mKπ

The above treatment of the amplitudes assumes the K∗0 is infinitely narrow. In reality the

K∗0 has a non-zero width and so the angular distribution of B0 → K∗0µ+µ− is a function

of mKπ. Thus the differential decay distribution as described in Equation 2.28 does not

describe the genuine distribution since it does not include the mKπ dependence. Therefore

the decay amplitudes depend on mKπ as well as q2, i.e. A = A(mKπ, q
2). This subsection

describes the models used to describe the mKπ lineshape. Following e.g. [54], factorisation

between mKπ and q2 is assumed, i.e.

A(mKπ, q
2) = A(mKπ)A(q2). (2.34)
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The differential decay distribution is rewritten to explicitly contain the mKπ by applying

the transformation

AP → APABW

AS → ASALASS

(2.35)

to the P-wave amplitudes AP , and the S-wave amplitudes AS . Here, the P-wave and

S-wave lineshapes are parameterised by the Breit-Wigner (ABW ) and LASS (ALASS)

parameterisations respectively. Thus the 4D differential decay rate as in Equation 2.28

becomes a 5D differential decay rate, i.e.

d4Γ(B0 → K∗0µ+µ−)
d cos θℓd cos θKdϕdq2

→ d5Γ(B0 → K∗0µ+µ−)
d cos θℓd cos θKdϕdq2dmKπ

. (2.36)

The P-wave mKπ lineshape is given by

ABW(mKπ, q
2) =

√
ph( pp0 )

LB0 ( hh0 )
LKπB′

LB
(p, p0)B

′
LKπ

(h, h0)

m2
K∗0 −m2

Kπ − imK∗0Γ(mKπ)
(2.37)

where p is the momentum of the Kπ system in the B0 rest frame and h is the momentum

of the kaon in the Kπ rest frame. p0 and h0 are the equivalent quantities, evaluated at

the resonance peak. The spins of the Kπ system and the B0 are given by LKπ = 1 and

LB0 = 0 respectively. The pole mass of the K∗0 is given by mK∗0 .

The Blatt-Weisskopf barrier factors, B′
L, are used to factor in the production and decay

of the resonance. These are given by

B′
0(h, h0) = 1 B′

1(h, h0) =

√

1 + (h0d)2

1 + (hd)2
, (2.38)

where d = 1.6 GeV−1 as used by [57]. Finally the decay width Γ(mKπ) is given by

Γ(mKπ) = Γ(mK∗0)
( h

h0

)(2LKπ+1)mK∗0

mKπ

(

B′
LKπ

(h, h0)
)2
. (2.39)

The S-wave is described by the LASS parameterisation [58], ALASS(mKπ, q
2), given by

ALASS(mKπ, q
2) =

[

√

ph

(

p

p0

)L0
B
(

h

h0

)LKπ

B′
LB

(p, p0)B
′
LKπ

(h, h0)
]

×
(

mKπ

cot δB − i
+

e2iδB

cot δR − i

)

(2.40)
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where LB0 = 1 and LKπ = 0. The non-resonant component of the LASS parameterisastion

is described by cotδB , which is defined as

cot δB =
1

ah
+
rh

2
. (2.41)

Here r and a are fixed to 1.7 GeV−1 and 2.48 GeV−1 respectively [59] [60].

The mKπ window chosen for this analysis is 0.796 < mKπ < 0.996 GeV/c2. Introducing

the mKπ dependence in the four-differential distribution, then integrating over mKπ, one

has

d4Γ(B0 → K∗0µ+µ−)
d cos θℓd cos θKdϕdq2

=
dΓP (B

0 → K∗0µ+µ−)
d cos θℓd cos θKdϕdq2

∫ 0.996

0.796
|ABW(mKπ, q

2)|2dmKπ

+
1

4π

[

(J̃c1a + J̃c2a cos 2θℓ)

∫ 0.996

0.796
|ALASS(mKπ, q

2)|2dmKπ

+

√

27

16
Re
(

(AL
00AL∗

0 +AR
00AR∗

0 )

∫ 0.996

0.796
ALASS(mKπ, q

2)A∗
BW(mKπ, q

2)dmKπ

)

cos θK

+ other interference terms.

(2.42)

Regarding the normalisation of the mKπ lineshapes, consider integrating Equation 2.42

over cos θℓ, cos θK , and ϕ. The only terms which remain are J1s, J1c, J2s, J2c, J̃
c
1a, and

J̃c2a. Thus after simplifying, one has

dΓ(B0 → K∗0µ+µ−)
dq2

=
(

|A∥|2 + |A⊥|2 + |A0|2
)

∫ 0.996

0.796
|ABW(mKπ, q

2)|2dmKπ

+ |A00|2
∫ 0.996

0.796
|ALASS(mKπ, q

2)|2dmKπ.

(2.43)

However, it is required that

dΓ(B0 → K∗0µ+µ−)
dq2

=
dΓP (B

0 → K∗0µ+µ−)
dq2

+
dΓS(B

0 → K∗0µ+µ−)
dq2

= |A∥|2 + |A⊥|2 + |A0|2 + |A00|2.
(2.44)

In order for this to be satisfied, the mKπ lineshapes are thus normalised to the mKπ window
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used in this analysis, in other words

∫ 0.996

0.796
|ABW(mKπ, q

2)|2dmKπ = 1

∫ 0.996

0.796
|ALASS(mKπ, q

2)|2dmKπ = 1.

(2.45)

This is enforced by redefining the mKπ lineshapes normalised to the square root of the

integrals of the lineshapes squared over the mKπ window,

ABW(mKπ, q
2) → ABW(mKπ, q

2)
√

∫ 0.996
0.796 |ABW(mKπ, q2)|2dmKπ

ALASS(mKπ, q
2) → ALASS(mKπ, q

2)
√

∫ 0.996
0.796 |ALASS(mKπ, q2)|2dmKπ

.

(2.46)

2.10 Symmetries of the angular distribution

As described by [61], the eight complex decay amplitudes (AL
∥ , AR

∥ , AL
⊥, AR

⊥, AL
0 , AR

0 , AL
00,

AR
00) can be arranged into four complex vectors

n∥ =







AL
∥

AR∗
∥






, n⊥ =







AL
⊥

−AR∗
⊥






, n0 =







AL
0

AR∗
0






, n00 =







AL
00

AR∗
00






. (2.47)

Certain transformations can be applied to these amplitude vectors leaving the differential

decay rate invariant. These transformations can be written as ni → Uijnj ≡ n′j .

The differential decay rate as written as Equation 2.28 obeys four symmetries. The

symmetry transformations can be written as

n′i = Uni =







eiϕL 0

0 e−iϕR













cos θ − sin θ

sin θ cos θ













cosh iη − sinh iη

− sinh iη cosh iη






ni, (2.48)

where U is a matrix which defines the symmetries. These are two global phases, ϕL and ϕR,

a rotation θ about the real and imaginary components of the amplitudes, and a rotation

η which mixes the real and imaginary components of the amplitudes [61]. Thus one can

rotate the amplitude vectors by four angles as defined in Equation 2.48 with the angular
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distribution (Equation 2.28) invariant under this rotation. Thus the amplitude basis is not

unique.

Introducing mKπ into the differential decay rate results in a breaking of two symmetries.

This occurs in the interference terms, such as J̃c1b ∝ Re(AL
00AL∗

0 +AR
00AR∗

0 ). Here this J-

term obeys the symmetries described in Equation 2.48. After applying the transformations

in Equation 2.35, the term Im(AL
00AL∗

0 + AR
00AR∗

0 ) appears, which violates two of the

symmetries described in Equation 2.48 and is only invariant under the rotations about the

phases ϕL for the left-handed amplitudes and −ϕR for the right-handed amplitudes. Thus

the differential decay rate as a function of mKπ obeys the symmetries described by

n′i = Uni =







eiϕL 0

0 e−iϕR






ni. (2.49)

Considering the differential decay rate integrated over mKπ, if the K
∗0 has a narrow

width, then the P-wave and S-wave lineshapes will be delta-functions, thus the mKπ

integrals are exactly equal to one. However, because the mKπ lineshapes for the P-wave

and the S-wave are not narrow, there is an interference between these lineshapes. In other

words, the interference integral

∫ 0.996

0.796
ALASS(mKπ, q

2)A∗
BW(mKπ, q

2)dmKπ (2.50)

is not equal to one. This technically results in the same symmetry-breaking terms in the

differential decay rate being introduced as in the case where the differential decay rate is a

function of mKπ. The effect of the symmetry breaking on the P-wave observables after

integrating overmKπ due to this complex-valued integral was studied on pseudoexperiments

and found to be negligible.

With regards to discrete symmetries of the differential decay rate, there is a symmetry

where all amplitudes can be rotated by a phase of π, i.e.

A → −A, (2.51)

In the case of the differential decay rate which assumes massless muons and no scalars
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or tensors, there are two discrete symmetries since there are no terms of the form ALAR.

Thus the left handed and/or the right handed amplitudes can be rotated by a phase π and

the differential decay rate invariant under this sign flip, so there are two discrete symmetries

in the differential decay rate. There are therefore four sets of amplitudes which result in

identical differential decay rates based on these discrete symmetries: (AL, AR), (AL, −AR),

(−AL, AR), and (−AL, −AR). As these symmetries are not physically meaningful, and

the sets of amplitudes are identical apart from sign flips, it is sufficient to parameterise

only one set in order to describe the differential decay rate.
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Chapter 3

The LHCb experiment

This chapter describes the detector, trigger, and data flow of the LHCb experiment.

Section 3.1 describes CERN and the Large Hadron Collider (LHC). LHCb, an experiment

based at the LHC, is described in Section 3.2. The LHCb trigger system is described in

Section 3.3. The LHCb upgrade during Long Shutdown 2 is described in Section 3.4 and

the data flow is discussed in Section 3.5.

3.1 The Large Hadron Collider

The European Organization for Nuclear Research (CERN) ia a particle physics laboratory

based in Geneva, Switzerland. It runs the Large Hadron Collider (the LHC), the largest

and highest energy particle accelerator in the world.

As described in [62], the LHC is a hadron accelerator and collider with 26.7 km

circumference. The tunnel used to house the LHC, formerly used for the Large Electron

Positron collider (LEP), has a depth which varies between 45 m and 170 m. It contains

two beam pipes, with bunches of hadrons being accelerated in opposite directions. These

interact at four points, where the four large experiments (ATLAS, CMS, ALICE, LHCb)

are located. Most of the LHC physics programme is dedicated to proton-proton collisions.

There are also heavy ion collisions, which are not discussed here.

The LHC uses superconducting magnets utilising NbTi and cooled down using superfluid

helium to 1.9 K. Dipole magnets with peak field 8.33 T are used for bending and quadrupole

magnets are used for focusing the beam. Sextupoles and octupoles are used for corrections
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such as the beam chromaticity and Landau damping [63].

There have been two main Run periods of the LHC, Run 1 (2009-2013) and Run 2

(2015-2018). Between Run 1 and Run 2 the LHC and experiments were upgraded. During

2019-2021 the LHC and experiments were shut down for further upgrades. The latest Run

period (Run 3) started in 2022. The analysis described in this thesis uses data collected in

2011, 2012, 2016, 2017, and 2018.

Each proton beam consists of 2080 bunches, each with spacing of 25 ns (apart from

50 ns in Run 1), thus the collision rate is 40 MHz (20 MHz in Run 1). The maximum

intensity of the beam is 1.15× 1011 protons per bunch. The centre of mass energy
√
s of

the proton-proton collisions was 7 TeV for 2011, 8 TeV for 2012 and 13 TeV for Run 2.

3.2 The LHCb experiment

At high energies beauty hadrons are primarily produced in the forward and backward

directions. This is shown in Figure 3.1 [64], which shows the bb̄ production cross-sections as

a function of angles. Here, proton-proton interactions are simulated via q̄q → b̄b, gg → b̄b,

q̄q → b̄bg (where q ̸= b), b̄b→ b̄bg, and gg → b̄bg at collision energy
√
s = 14 TeV. Most bb̄

pairs are produced along the beam direction.

The LHCb experiment is primarily designed to measure properties associated to beauty

hadrons. It is a forward-arm spectrometer based at Point 8 of the LHC at CERN. Referring

back to Figure 3.1, the detector geometry of LHCb is chosen such that it can capture a

large number of bb̄ pairs (the LHCb acceptance is shown in red).

A schematic of the detector is shown in Figure 3.2 [65]. LHCb employs a right-handed

coordinate system, where the origin is located in the Vertex Locator. The z axis traverses

along beam and the y axis is along the vertical direction.

The proton-proton interactions occur inside the VErtex LOcator (VELO) [66] [67]. The

VELO is a silicon microstrip detector, consisting of 84 modules. These modules are in

two halves (42 modules each) and are arranged perpendicular to the beamline. During

physics data-taking, the modules are 8 mm away from the beamline. The main role of the

VELO is to measure and distinguish between primary vertices (proton-proton interaction

points) and secondary vertices (locations of the decay vertices). These secondary verticies
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Figure 3.1: Plot of the bb̄ production cross-sections at the LHC, as a function of angle between the
b and beam direction in the lab frame (θ1), and angle between the b̄ and beam direction in the lab
frame (θ2) [64]. Most bb̄ pairs are produced along the beam direction. The area shaded red is the
region which is captured by LHCb.

Figure 3.2: Schematic of the LHCb detector [65].
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Figure 3.3: Schematic of RICH1 (a) and RICH2 (b) [70].

are generally of heavy flavour hadrons, such as B mesons. The VELO performs extremely

well, with over 98% track reconstruction efficiency. For vertices with 25 tracks the primary

vertex resolution is 13 µm in the xy plane and 71 µm along the beam axis.

Long-lived charged hadrons are identified using the Ring Imaging Cherenkov (RICH)

detectors [68] [69]. There are two RICH detectors, RICH1 and RICH2, designed to measure

particles with low (2 − 40 GeV/c) and high (15 − 100 GeV/c) momenta respectively.

Cherenkov photons are emitted when charged particles move faster than light through a

radiator. For RICH1 the radiator used is C4F10 (along with aerogel in Run 1) and for

RICH2 CF4 is used, which has a refractive index lower than that of C4F10. As shown in

Figure 3.3, mirrors are used to reflect the Cherenkov light into Hybrid Photon Detectors

(HPDs), where the photoelectrons produced are read out as hits. These photon detectors

are separated from the radiator volume by quartz windows. Each track is assigned a

variable which is the difference of log-likelihoods between the hypothesis of the particle

being of type X and type Y from the RICH system, denoted DLLXY

Downstream of the RICH1 detector is a dipole magnet with bending power 4 Tm. Each
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magnetic coil consists of 15 layers, where each layer is 15 turns of aluminium. Data are

collected with the direction of the magnetic field either in the positive or the negative

y-axis directions, known as the ‘MagUp’ and ‘MagDown’ configurations. This is in order

to reduce uncertainties pertaining to detector asymmetries since periodically changing the

magnetic field direction allows different charges to experience both halves of the detector.

The LHCb tracking system consists of the Tracker Turicensis (TT) tracker between

RICH1 and the magnet, and three tracking stations T1-3, between the magnet and RICH2.

The TT employs 4 silicon microstrip layers and the each of the tracking stations T1-3 have

4 planes consisting of silicon microstrip layers and straw tubes.

The calorimetry system consists of the Scintillating Pad Detector (SPD), Preshower

(PS), Electromagnetic Calorimeter (ECAL), and Hadron Calorimeter (HCAL). The PS

and SPD are scintillator planes, with a lead wall between them. The ECAL, designed

for electron and photon identification, consists of alternating layers of lead plates and

scintillator tiles with total depth 25 times the radiation length. The HCAL, designed for

hadron identification, consists of layers of iron and scintillator.

For muon identification, the muon station M1-5 are used. These consist of multiwire

proportional chambers with the exception of the innermost chambers of the first station M1,

where gas electron multiplier detectors are used. The muon stations provide momentum

and binary information based upon the number of stations where a hit is found within a

region around the track extrapolated from the tracking system. This binary information

results in the probability of hadrons to be misidentified as muons at around 1%, with a

muon efficiency in the range 95-98% [71]. The muon stations are important for the trigger

system as explained in Section 3.3.

There are PID probability variables constructed from combining the information from

the sub-detectors into Neural Networks (NNs). These are known as the ProbNNx variables,

which corresponds to a score from the NN increasing from 0 to 1 for how likely each track

is of species x.
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3.3 LHCb Trigger System

The LHCb trigger system used in Run 1 and Run 2 consists of one hardware stage and

two software stages [72]. As mentioned in Section 3.1, the bunch crossing rate is 40 MHz.

The L0 hardware trigger has a readout rate of 1 MHz where the trigger is implemented

in Field-Programmable Gate Arrays. This trigger fires based on high transverse energy /

momentum signatures in the calorimeters or muon stations. The analysis described in this

thesis requires the L0 trigger to have fired in the muon stations.

There are two stages of the software trigger, HLT1 and HLT2. The HLT1 trigger is based

on a selection of events which require minimal reconstruction, such as muon tracks with

large impact parameters. For the HLT2 stage a full event reconstruction is performed,

where analysis-type specific selections are performed, such as a trigger designed to select

B meson decays. The software triggers reduce the readout rate to 5 kHz in Run 1 and

12.5 kHz in Run 2 in order for the events to be saved. A schematic of the LHCb trigger for

Run 2 is shown as Figure 3.4 [73].

3.4 LHCb Upgrade (2019-2022)

This section briefly describes the LHCb upgrade during Long Shutdown 2 (LS2) of the

LHC [74]. From Run 3, LHCb collects five times the instantaneous luminosity than that of

Run 2.

The VELO is upgraded, with more advanced technology where the silicon microstrips

are replaced with pixel sensors resulting in improved hit resolution. The VELO will be

much closer to the beam than previously (5 mm, compared to 8 mm). This will result in a

40% improvement in vertex resolution.

The RICH detectors have undergone a large upgrade, with the optical system being

able to deal with the higher expected occupancy. In addition, new photon detector are

being used, where the HPDs are being replaced with Multianode Photomultiplier Tubes

(MaPMTs) (Figure 3.5) which allow data to be read out at a rate of 40 MHz. These

MaPMTs are assembled on columns which include the electronics. Some images of the

RICH upgrade installation are shown in Figure 3.6.

Downstream of RICH1, in replacement of the TT, is the Upstream Tracker (UT), using
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Figure 3.4: Illustration of the LHCb trigger used in Run 2 [73].

silicon strip technology and able to handle the higher expected occupancy. The Scintillating

Fiber (SciFi) tracker is downstream of the magnet, in replacement of the T1-3 tracking

stations. The SciFi uses scintillating fibres, with high expected hit efficiency and resolution

better than 100 µm in the bending plane, read out at 40 MHz.

The trigger is also upgraded so it can run at the increased luminosity. The hardware

trigger is removed, thus the LHCb triggers from Run 3 are entirely software-based. The

HLT will perform a reconstruction at the rate of 30 MHz. These events are buffered to

disk where offline particle identification and track information are used to perform the

trigger selection. Events are then stored at a rate 2-5 GB/s [75].
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Figure 3.5: MaPMTs used for the RICH upgrade.

Figure 3.6: Installation of the columns in the RICH1 detector.
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3.5 Data flow of the LHCb experiment

This analysis relies on simulation. Unless otherwise specified, the simulation used for

this analysis was generated centrally by members of the LHCb collaboration. The Gauss

simulation framework [76] is responsible for the event and detector simulation used in

this analysis. Specifically, proton-proton interactions up to and including hadronisation

are simulated using Pythia. The decays of particles, such as B mesons, are simulated

using EvtGen. PHOTOS is used for final state radiation. GEANT4 is used to simulate

the propagation and interaction of the particles through the detector. The digitisation of

the detector hits is simulated by the Boole application [77]. The trigger uses the Moore

software framework, and reconstruction is performed using the Brunel software [77].

Offline selections are applied centrally to the stored data, known as ‘stripping’, using

the software DaVinci. Each type of analysis has a set of stripping requirements. The

data pre-stripping cannot be accessed directly due to computing restrictions. The analysis

presented in this thesis uses data filtered through the B2XMuMu stripping line, as described

in Section 5.2.

3.6 Using the LHCb experiment to measure the decay

B0 → K∗0µ+µ−

There are several features of the LHCb detector which makes it a suitable experiment

to measure the decay B0 → K∗0µ+µ−. An example is the VELO, which is designed to

measure primary and secondary vertices. The B0 is produced at the primary vertex and

decays at the secondary vertex. The B0 mean lifetime is 1.52× 10−12 s [14], and due to its

Lorentz boost the B0 travels a few mm before it decays. A variable which is powerful in

separating signal B0 decays from background events is the Impact Parameter (IP). This is

the shortest distance between the direction of momentum of a track and the primary vertex.

Since the B0 decays into four charged particles (B0 → K∗0µ+µ−, and K∗0 → K+π−),

the IPs of the K, π, and muons can be examined. For combinatorial background events

(background events where at least one track is not from the signal), the IP is typically

small compared to the signal IP since most combinatorial charged tracks originate from the
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primary vertex. Thus background events can be rejected by examining the IPs of the K, π,

and muon tracks, resulting in a higher signal purity. In addition, quantities such as the B0

end vertex χ2, which corresponds to the quality of the vertex fit of the secondary vertex,

can be used to distinguish signal from background. This is because for combinatorial

background not all tracks originate from the B0 thus resulting in a poor vertex fit.

Another feature of the LHCb detector are the RICH detectors which are vital for particle

identification, such as distinguishing kaons from pions. In particular for B0 → K∗0µ+µ−,

there are background events which correspond to ππ and KK states misidentified as Kπ.

The RICH detectors, in addition to the muon system and calorimeters, provide particle

identification variables such as DLLKπ which is the difference of log-likelihoods of a track

being a kaon and a pion. As discussed by [78], a loose selection on the this variable results

in a high signal efficiency, and a more stringent selection on this variable results in a good

background rejection. Thus the information from the RICH detectors helps to remove

combinatorial events and also events from B0 decays which appear signal-like, such as

B0
s → ϕµ+µ−, where ϕ→ K+K−, and one of the kaons is reconstructed as a pion.
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Chapter 4

Analysis flow of the amplitude

ansatz analysis of B0 → K∗0µ+µ−

This chapter describes the analysis flow of the amplitude ansatz analysis the decay

B0 → K∗0µ+µ− at LHCb. The objective of this analysis is to measure the decay amplitudes

as functions of dimuon invariant mass squared, q2, aiming to be as model-independent as

possible. The amplitudes are modelled using summations of Legendre polynomials in q2,

multiplied by coefficients which vary freely in the fit to data.

A selection is applied to the data collected by LHCb in order to select signal candidates.

This process is described in Chapter 5. A set of triggers are used to decide which events

to save whilst LHCb is recording data. The first stage of offline selection, known as

‘stripping’, is performed centrally by the LHCb collaboration and is applied before the data

is made available for analysis. Other selections, for example requirements on the Particle

IDentification (PID) variables of the hadrons, are applied. Boosted Decision Trees (BDTs)

are used to remove background processes which have been misidentified as signal, as well

as background processes where at least one track is not from the signal decay.

Due to detector effects, selection, and the reconstruction, the angular and q2 distri-

butions are warped. This is corrected for by an acceptance function, an efficiency which

depends on the angles and q2. The determination of this function from simulation is

described in Chapter 6. A goodness-of-fit method using BDTs has been developed and

applied to the acceptance function fit to simulation in order to ensure the acceptance is a
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good fit of the simulation.

With the selection applied and acceptance determined, the data can be fitted. A

five dimensional unbinned maximum likelihood fit is performed to the data with the

selection applied. The fit is performed in the B0 mass, q2, cos θℓ, cos θK , and ϕ. The decay

distribution of the decay B0 → K∗0µ+µ− is written in terms of q2, cos θℓ, cos θK , and ϕ.

This decay distribution is multiplied by the acceptance function in order to obtain the

observed decay distribution. This corresponds to the angular signal PDF. Since the data

consists of signal and remaining background after the selection is applied, the B0 mass

is included in the fit since the signal and background have very different shapes — the

signal lineshape is the sum of two Crystal Ball functions and the background is described

by an exponential. In the angles and q2, the background is described by summations

of Chebyshev polynomials multiplied by coefficients. In the B0 mass signal description,

a component accounting for the decay B0
s → K̄∗0µ+µ− is included. More information

regarding the fit strategy is given in Chapter 7. Studies pertaining to the ansatz model

and whether to include the kaon-pion invariant mass in the fit are described in Chapter 8.

The data fit regions are 1.25 < q2 < 8 GeV2/c4 and 11 < q2 < 12.5 GeV2/c4.

These fits are referred to as the ‘rare mode’ fits. The blinded results for the

fit in the 1.25 < q2 < 8 GeV2/c4 region are presented in Chapter 11. The decay

B0 → K∗0J/ψ(→ µ+µ−) is dominant in the q2 region 9.223 < q2 < 9.966 GeV2/c4. This

region is used as a control mode, where fits are performed in this region in order to validate

the implementation of the fitter and to verify agreement between data taking periods.

Results from this region are given in Chapter 10.

The free parameters in the fit for both the control mode and rare mode are the amplitude

coefficients, background angular and q2 coefficients, number of background events, mean

and widths of the signal B0 mass lineshapes, and the exponential background parameter.

The P-wave amplitude coefficients are the parameters of interest and the remainder of

parameters are treated as nuisance parameters.

For the control mode fit, the tails of the signal lineshapes are also floated. These are

used to fix the signal lineshape tail parameters in the rare mode fits. In both fits, the

difference between the B0 and B0
s masses and the fraction of B0

s → K̄∗0µ+µ− decays

relative to B0 → K∗0µ+µ− decays are fixed.
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Chapter 5

Selection of B0 → K∗0µ+µ−

candidates

This chapter outlines the selection used in the B0 → K∗0µ+µ− amplitude ansatz analysis.

The B0 is produced and decays inside the VELO, resulting in four charged tracks corre-

sponding to K, π, µ+, and µ−. There are several types background process in the data

which need to be removed. A class of background which requires addressing is combinatorial

background, which correspond to background processes where at least one reconstructed

track is not from the signal. There are also misidentified backgrounds, where a decay is

incorrectly reconstructed as signal due to misidentifying the particles in the final state.

These tend to peak in the B0 mass and are thus known as ‘peaking backgrounds’. The

selection strategy described in this chapter is designed to ensure the quality of the primary

and secondary vertices, where the B0 is produced and decays. The Particle IDentification

(PID) information of the hadrons and muons is used to ensure the particle of the correct

species is reconstructed.

Sections 5.1 and 5.2 describe the trigger and the first stage of offline selection used in this

analysis. The selections applied directly after stripping are described in Section 5.3. The

removal of peaking backgrounds are described in Sections 5.4 and 5.5. Section 5.6 describes

the boosted decision tree (BDT) used to remove combinatorial events and Section 5.7

describes a BDT specifically targeted to remove backgrounds such as B+ → K∗+µ+µ−.

The validation of this selection on a background sample, where the muons have the same
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Table 5.1: Trigger requirements in B0 → K∗0µ+µ− analyses. There are three trigger stages: Level 0
(L0), High Level Trigger 1 (HLT1), and High Level Trigger 2 (HLT2).

2011+2012 2016 2017+2018

L0 Muon Muon Muon

DiMuon DiMuon DiMuon

HLT1 TrackAllL0 TrackMVA TrackMVA

TrackMuon TrackMuon TrackMuon

TwoTrackMVA TwoTrackMVA

HLT2 Topo[2,3,4]BodyBBDT Topo[2,3,4]Body Topo[2,3,4]Body

TopoMu[2,3,4]BodyBBDT TopoMu[2,3,4]Body TopoMu[2,3,4]Body

DiMuonDetached DiMuonDetached

SingleMuon

sign, is described in Section 5.8 and the performance of the selection is described in

Section 5.9.

5.1 Trigger

As described in Section 3.3, the LHCb trigger system consists of three stages: the hardware

trigger stage Level 0 (L0), and the two software stages High Level Triggers 1 and 2 (HLT1

and HLT2). The trigger requirements are common amongst B0 → K∗0µ+µ− analyses,

written by the LHCb collaboration and are summarised in Table 5.1.

In order for an event to pass the trigger, the candidate has to fire at least one trigger per

trigger level. All triggers are required to be Triggered On Signal (TOS), i.e. the trigger to

fire on the signal candidate, not on another process in the event. This allows for efficiencies

for the TOS events to be calculated from the TOS and the Trigger Independent of Signal

(where the trigger fires from a process which is not due to the signal) samples.

Since the B0 is heavy and has a long lifetime, the final state particles (K, π, µ+,

µ−) typically have high transverse momenta. The final state particles are also produced

displaced from the primary vertex as described in Section 3.6. Thus the triggers used in

this analysis use variables such as the transverse momentum and the chi-squared of the

impact parameter with respect to the primary vertex for the final state particles.

For the Level 0 trigger (L0), the Muon and DiMuon triggers require the candidate to pass

a threshold of muon transverse momentum pT , or product of muon transverse momenta

respectively. These thresholds change between data-taking periods. The muon transverse
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momentum threshold for the Muon trigger is in the region 1− 2 GeV/c and the product of

muon transverse momenta for the DiMuon trigger is typically a few GeV2/c2.

At the HLT1 trigger level, a partial event reconstruction is performed. Here tracks in

the VELO are reconstructed and matched with hits in the muon chambers, as well as hits

in the tracking stations. For Run 1, tracks with at least one track with a large enough pT

and χ2
IP (chi-squared of the Impact Parameter (IP)) with respect to the primary vertices

are selected by the TrackAllL0 trigger. The TrackMuon trigger is specifically designed to

select decays involving muon tracks with large χ2
IP with respect to the primary vertices [79],

thus selecting muons whose tracks are displaced from the primary vertex. For Run 2,

the TrackAllL0 trigger was replaced with TrackMVA and TwoTrackMVA, where machine

learning techniques are employed to select tracks based on the pT and χ2
IP .

A full event reconstruction is performed at the HLT2 level, including information from

other sub-detectors, such as the RICH and the Calorimeters (CALO). In this analysis the

Topo[N]BodyBBDT and Topo[N]Body triggers are are applied, which are designed to select

events involving N-body B meson decays. The SingleMuon and DiMuonDetached triggers

require a displaced muon or dimuon system respectively.

The main impact the trigger has on the acceptance shape is the rise from low q2 to

the central q2 region, seen in Figure 6.2. At low q2, the acceptance at high and low cos θℓ

moves much more rapidly than at higher q2. This is due to the L0 triggers since requiring

thresholds on the muon transverse momenta warps q2 and cos θℓ in particular. However

the parameterisation used to describe the acceptance is sufficient to describe this, validated

by a goodness-of-fit described in Chapter 6.

5.2 Stripping

Due to computing restrictions, the first stage of the offline selection of the data is per-

formed centrally by the LHCb collaboration before it is made available to analysts. This

stage is known as ‘stripping’, as described in Section 3.5. Analyses studying the decay

B0 → K∗0µ+µ− using the full Run 1 and Run 2 datasets use the latest version of the

B2XMuMu stripping line, which is designed to select events involving a B meson decaying

into at least two muons. The selections which form part of the B2XMuMu stripping line are
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Table 5.2: Requirements in the B2XMuMu stripping line.

Candidate Requirement

B0 Measured mass ∈ [4600, 7100] MeV/c2

Mass ∈ [4700, 7000] MeV/c2

End vertex χ2 per DOF < 8
DIRA > 0.9999
Flight distance χ2 > 64
Maximum daughter χ2

IP > 9

K∗0 Measured mass ∈ [0, 6200] MeV/c2

Mass ∈ [0, 6200] MeV/c2

End vertex χ2 per DOF < 12
DIRA > −0.9
Flight distance χ2 > 16
Minimum χ2

IP > 0
Maximum daughter χ2

IP > 6

µ+µ− Measured mass < 7100 MeV/c2

End vertex χ2 per DOF < 12
DIRA > −0.9
Flight distance χ2 > 9
Maximum χ2

IP of either µ+ or µ− > 6

K+, π− Minimum χ2
IP > 6

Track registered in the RICH subsystem

µ+, µ− Minimum χ2
IP > 6

DLLµπ > −3
Positive isMuon detected, based on muon chamber hits

Tracks Ghost probability < 0.5

Event Maximum hits in Scintillating Pad Detector < 600

shown in Table 5.2.

Figure 5.1 is a schematic showing the primary vertex, where a proton-proton collision

occurs, and the decay vertex of a B0 meson. The decay vertex of the B0 is also known as

the ‘secondary vertex’, or the ‘end vertex’. The distance between the primary vertex and

the decay (secondary) vertex is the flight distance. The ‘measured mass’ is the invariant

mass of the system based on the 4-momenta. The ‘mass’ corresponds to the invariant mass

obtained from the vertex fit. The DIRA is the cosine of the angle between the reconstructed

momentum and reconstructed line of flight of the candidate. Thus from Table 5.2, the

primary and secondary vertices are required to be of good quality. For each track, the

variable DLLXY is assigned which corresponds to the difference of log-likelihoods for the

hypotheses of the particle being of type X and type Y . The variable isMuon corresponds to

hits in the muon system which are consistent with muons. As part of the reconstruction a
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Figure 5.1: Schematic showing the primary vertex, decay (secondary) vertex, flight distance and
impact parameter. The DIRA is the cosine of the angle between the reconstructed momentum and
reconstructed line of flight of the candidate.

“ghost probability”, based on fit quality, the number of missing hits, and energy deposited

in the tracker, is computed. Selecting low ghost probability tracks effectively removes

tracks that do not correspond to real particles. The cut on the maximum number of hits in

the Scintillating Pad Detector is applied in order to remove events which are too crowded.

5.3 Cleaning cuts

Some cleaning cuts follow the same selections as the ongoing binned angular analysis, as

shown in Table 5.3. Here, pairs of tracks are required to be well separated in order to

reduce the number of clones (tracks which share a large percentage of hits from the VELO

and T-stations). The requirement on the B0 end vertex χ2 per DOF is tightened in order

to select B mesons with a good fit quality. As described by the CP-asymmetries analysis

of the decays B0 → K∗0µ+µ− and B+ → K+µ+µ− [80], tracks which are close the edges

of the detector can be swept out by the magnetic field, resulting in highly asymmetric

decay rates. Thus the selection based on the kaon momenta, motivated by Ref. [80], aims

to reduce raw detector asymmetries, which are largest at the edges of the detector.

The general Particle IDentification (PID) requirements are shown in Table 5.4. These

selections are based on ProbNN variables and remove a large amount of mis-ID background.

In particular, these help to remove KK and ππ backgrounds, in addition to mis-ID
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Table 5.3: Cleaning cuts which are identical to those in the ongoing binned angular analysis.

Candidate Requirement

Track pairs Angular separation θ > 1 mrad

B0 End vertex χ2/DOF < 6

K+ pZ(K
+) > 2000 MeV/c

|pX(K+)| < 0.33(pZ(K
+)− 2000)

backgrounds such as B0 → K∗0J/ψ where µ→ π, π → µ. These typically peak in the B0

mass and is thus vital to remove them. The selections based on the PID requirements help

with the overall reduction of these backgrounds and allow the further selection stages to

be more efficient in removing more signal-like backgrounds.

Table 5.4: Hadron general PID requirements

Candidate Requirement

K ProbNNk > 0.2

π ProbNNπ > 0.2

Additionally, the selection 5170 < mKπµ+µ− < 5700 MeV/c2 is applied. The mKπ

window chosen is 796 < mKπ < 996 MeV/c2. The q2 window chosen for analysis in the

rare mode is 1.25 < q2 < 8 GeV2/c4. The region 11 < q2 < 12.5 GeV2/c4 is also included,

however studies in this region are not presented in this thesis. The lower q2 boundary at

1.25 GeV2/c4 is due to low mass resonances such as the ϕ(1020) resulting in fast-moving

behaviour in the amplitudes. It was found that a lower bound at 1.25 GeV2/c4 results

in a better description of the amplitudes since the model used does not need to describe

the ϕ(1020) resonance. The choice of the upper q2 bound 8 GeV2/c4 in the low q2 is due

to the radiative tail of the J/ψ entering the B0 mass region, and that the amplitudes

are more fast-moving as q2 becomes closer to the J/ψ. For the J/ψ region, the q2 region

corresponds to 9.223 < q2 < 9.966 GeV2/c4. The purpose of measuring the J/ψ resonance

is to validate the fitter and the acceptance.

5.4 Peaking background vetoes

There are several decays which could be incorrectly reconstructed as the signal and may

cause fit biases. These are often decays with a reconstructed Kπµµ final state, where at

least one particle has been identified as an incorrect species. These decays generally peak
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in the B mass and have angular structures which do not factorise. Table 5.5 shows a list of

some incorrectly reconstructed backgrounds which may cause fit biases. Details regarding

the mis-ID for each background are shown.

Table 5.5: A summary of the peaking backgrounds. The type of background and mis-ID is also
specified.

Mode Type

B0 → K∗0µ+µ−, where K ↔ π Double hadron mis-ID
B0
s → ϕµ+µ−, where K → π Single hadron mis-ID

B0 → K∗0J/ψ, where µ↔ K Hadron-muon swap
B0 → K∗0J/ψ, where µ↔ π Hadron-muon swap
B0 → K∗0ψ(2S), where µ↔ K Hadron-muon swap
B0 → K∗0ψ(2S), where µ↔ π Hadron-muon swap
Λb → pKµ+µ−, where p→ π Single hadron mis-ID

Λb → pKµ+µ−, where p→ K and K → π Double hadron mis-ID

Variables which are used to distinguish these decays are the PID variables and two-body

or four-body masses under the swapped hypothesis. Therefore a cut needs to be applied in

these variables in order to remove these backgrounds. An option is to apply a ‘rectangular’

cut, for example removing all events with a mass under the swapped hypothesis in a certain

range, where the PID is above or below some threshold. However this is not the optimal cut.

A more efficient cut can be determined by using Boosted Decision Trees (BDTs), which

was initially developed for the binned angular analysis. Here, BDTs are used to classify

each event by providing a score, allowing for signal / peaking background separation. A

cut is applied based on the BDT scores.

Decision Trees (DTs) are structures consisting of nodes and leaves which use a sequence

of cuts to bisect the data, with the goal of each cut to maximise the purity of the two

samples. Each subsample is treated independently with further bisecting cuts to form a

tree-like structure until a stopping condition is reached. However training a DT could

result in biases and/or variances in the results which is undesirable. Boosting is therefore

used, where weak learners are combined into strong learners. A BDT consists of a forest

of trees, with each tree of a shallow depth. Whilst each individual tree may not separate

the samples effectively, if better than a random guess, the result of boosting results in the

ensemble of weak classifiers becoming a strong classifier.

For each of these background modes a sample of simulated events is obtained with the
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relevant mis-identification hypothesis enforced. The trigger, stripping, cleaning cuts and

invariant mass cuts are applied (B mass, Kπ mass, rare mode q2). The remaining samples

are used to train a Boosted Decision Tree (BDT) for each background. For the signal

sample, B0 → K∗0µ+µ− simulation is used, with the same selection applied. The BDT is

trained using the xgboost algorithm [81], a type of BDT based upon a gradient-descent

framework.

For most of the BDTs the cut point is chosen such that the signal efficiency is equal

to that of the vetoes used in the previous binned angular analysis [7]. Sometimes harsher

BDT cut points are used in order to get the overall estimated level of peaking backgrounds

to a reasonable level (i.e below 1% of the signal after the full selection is applied). Due

to the small samples that pass the initial selection requirements, k-fold cross validation is

used in order to make sure the BDT is statistically independent. This is a procedure where

the dataset is split into k subsets, or ‘folds’, and for each fold the BDT is trained on the

other folds and tested for that fold. Here 10 folds are used, and one fold is chosen for use

in the analysis. The BDTs use PID variables and masses under the swapped hypothesis in

the training. The DLL variables are chosen instead of ProbNN to reduce the possibility of

correlations with kinematic variables which are poorly modelled in simulation. Since the

cleaning cuts are applied, in particular the hadron PID selection, the BDTs are optimised

to remove peaking backgrounds which appear signal-like.

Table 5.6 shows the training variables used in these BDTs. These include invariant

masses under the swapped hypotheses, such as mswap(Kπ), where the Kπ invariant mass

is computed with the kaon and pion masses swapped. The DLL variables are also used.

Table 5.7 presents figures of the BDT responses and signal and background rejection ef-

ficiencies. Note these efficiencies are conditional. Previous analyses of B0 → K∗0µ+µ− did

not have hadron PID requirements as strong as shown in Table 5.4 thus these peaking back-

ground BDTs are optimised to remove mis-ID backgrounds which appear particularly signal-

like. For BDTs involving true events from the J/ψ, only events with the swapped dimuon

mass hypothesis in the J/ψ region (3050 < m(µ+µ−) < 3150 MeV/c2) are considered in

the training. Likewise for BDTs involving true events from the ψ(2S), only events with the

swapped dimuon mass hypothesis in the ψ(2S) region (3626 < m(µ+µ−) < 3746 MeV/c2)

are considered. The efficiencies shown are still for the full samples.
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Table 5.6: Training variables used in the peaking background BDTs.

Background mis-ID Training variables

B0 → K∗0µ+µ− K ↔ π mis-ID dihadron mass with the background hypothesis,
DLLKπ for the hadrons

B0
s → ϕµ+µ− K → π mis-ID dihadron mass with the background hypothesis,

DLLKπ for the pion

B0 → K∗0J/ψ µ↔ K swap dimuon mass with the background hypothesis,
DLLKπ and DLLµπ for the kaon and muon

B0 → K∗0J/ψ µ↔ π swap dimuon mass with the background hypothesis,
DLLµπ for the pion and muon

B0 → K∗0ψ(2S) µ↔ K swap dimuon mass with the background hypothesis,
DLLKπ and DLLµπ for the kaon and muon

B0 → K∗0ψ(2S) µ↔ π swap dimuon mass with the background hypothesis,
DLLµπ for the pion and muon

Λb → pKµ+µ− p→ π mis-ID dihadron mass with the background hypothesis,
B mass with the background hypothesis,

DLLpπ for the pion

Λb → pKµ+µ− p→ K, dihadron mass with the background hypothesis,
K → π mis-ID B mass with the background hypothesis,

DLLKπ for the pion, DLLpπ for the kaon

Table 5.7: Signal efficiency and background rejection efficiency for each background, with figures
showing the BDT response for each background indicated.

Background mis-ID Figure Signal efficiency Background rejection
efficiency

B0 → K∗0µ+µ− K ↔ π mis-ID 5.2a 99.24± 0.01% 89.3± 0.4%
B0
s → ϕµ+µ− K → π mis-ID 5.2b 99.896± 0.004 % 90.2± 0.2 %

B0 → K∗0J/ψ µ↔ K swap 5.2c 99.23± 0.01% 96± 2%
B0 → K∗0J/ψ µ↔ π swap 5.2d 99.634± 0.007% 97.5± 0.7%
B0 → K∗0ψ(2S) µ↔ K swap 5.2e 99.557± 0.008% 96± 2%
B0 → K∗0ψ(2S) µ↔ π swap 5.2f 99.915± 0.008% 98± 1%
Λb → pKµ+µ− p→ π mis-ID 5.2g 99.304± 0.008% 89.6± 0.5%
Λb → pKµ+µ− p→ K, 5.2h 98.948± 0.008% 83.1± 0.8%

K → π mis-ID

All of these peaking background BDTs are applied to data and simulation, with the

selection requiring events to pass the chosen cut points for all of the BDTS.

5.5 B+ → K+µ+µ− veto

There is expected to be a background due to the decay products of B+ → K+µ+µ−

being paired with a pion from elsewhere in the event. Here the same veto

as is in other B0 → K∗0µ+µ− analyses is used, as proposed in [82]. For
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Figure 5.2: Results of the training of various BDTs on signal simulation (red) against background
simulation (blue). The data is kFolded, and the response shown here is for the testing sample. For
the background the BDTs shown here are trained on (a) double hadron mis-ID from B0 → K∗0µ+µ−,
(b) B0

s → ϕµ+µ−, (c) µ ↔ K swap from the J/ψ, (d) µ ↔ π swap from the J/ψ, (e) µ ↔ K
swap from the ψ(2S), (f) µ↔ π swap from the ψ(2S), (g) Λb → pKµ+µ−, where p→ π, and (h)
Λb → pKµ+µ−, where p→ K and K → π.
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those event with mB > 5380 MeV/c2 (the B0 mass plus a pion) the region with

5220 < m(Kµ+µ−) < 5340 MeV/c2 is excluded, corresponding to a 60 MeV/c2 window

around the B+ mass. This selection causes a hole in the space of mB , cos θK , and q2 above

the B0 mass which is accounted for in the background PDF as described in Section 7.2.1.

5.6 Combinatorial BDT

After removing backgrounds arising from particle mis-identification, there remains a large

amount of background arising from combinatorial events. These are where at least one

particle does not originate from the B0. Since these backgrounds in general are in the full

B0 mass range and not centred in a particular mass region, they cannot be removed as

easily as B+ → K+µ+µ−. In addition, given the different centre-of-mass energies of the

pp collisions between Run 1 and Run 2, the combinatorial background is expected to be

different such that treating these periods separately results in a more efficient removal

of these backgrounds. Two BDTs (one for each run period) are therefore designed to

remove these combinatorial backgrounds, one each for Run 1 and Run 2, using the xgboost

algorithm [81]. k-fold cross validation is used with 10 folds. Separate BDTs were not

considered for the peaking backgrounds in Table 5.5 since these backgrounds are controlled

at a reasonable level, as shown by Section 5.9. The estimated peaking background yields

relative to the signal after the peaking background BDTs were applied were also found to

not vary much between data taking periods.

Since this BDT is designed to remove any combinatorial event rather than a specific

background, data is used as a proxy for the background. The BDT is trained on the

upper B0 mass sideband data (defined as the region 5350 < mB < 5700 MeV/c2) for the

background. This region is the selected (trigger, stripping, cleaning cuts, mass selection,

peaking background vetoes) region of the data sample, using the Run 1 sample for the

Run 1 BDT and the Run 2 sample for the Run 2 BDT.

For the signal, the BDT is trained on the B0 → K∗0µ+µ− simulation, with all of the

selections including mass selections applied. The set of BDT training variables are

• B0 lifetime, pT (transverse momentum), p (momentum), end vertex χ2, DIRA

• DLLµπ(µ
+), DLLµπ(µ

−), DLLKπ(K), DLLKπ(π)
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• Muon and hadron isolation variables

• IP χ2 of the pion, kaon, µ+, µ−, B0

• Flight distance χ2 of the K∗0, B0

• End vertex χ2 of the K∗0.

The isolation variable for a reconstructed hadron or muon track corresponds to the

number of extra tracks (i.e. tracks which are not from the signal candidate) that can form

a vertex with the reconstructed track. Thus the isolation variables are discrete.

The choice of variables and training samples are such that the combinatorial BDT is

trained to remove many event topologies, such as combinatorial events where the hadrons

and muons are displaced from the primary vertex. Of these variables, the IP χ2, flight

distance χ2 and end vertex χ2 variables are found to be useful since they are effective

at removing different kinds of combinatorial backgrounds (e.g. B+ → D̄0µ+νµ, where

D̄0 → K+µ−ν̄µ with a combinatorial pion).

The simulation has per-candidate weights applied in order to account for mismodelling

in the simulation. These were developed by the ongoing binned angular analysis, and

consist of trigger weights, track weights, and kinematic weights. The trigger weights

account for mismodelling of the L0 trigger in the simulation. The efficiency of the trigger is

computed using B+ → J/ψK+ data and simulation, and is parametrised in two dimensions

by the pT of the two decay product muons. The TISTOS method [83] is used where the

numbers of candidates which are Triggered Independent of Signal (TIS), Triggered On

Signal (TOS) and simultaneously TIS and TOS (TISTOS) are used to extract an efficiency

of the trigger. The ratio of the TISTOS efficiencies in data to simulation is applied as a

correction for the trigger efficiency. The track weights account for mismodelling of the

tracking efficiency, with the correction applied based on the pT and η variables of each of

the decay products since these variables are correlated with the tracking efficiency. These

corrections are obtained by simulating a decay channel which is experimentally clean and

with large yields in data, such as J/ψ → µ+µ− and comparing this with data in order to

extract a correction. Finally, the kinematic corrections are used to correct the B0 p and

pT spectra, where B+ → J/ψK+ is used for these corrections. Here, per-event weights are

obtained via training BDTs on B+ → J/ψK+ simulation and data.
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The distribution of the training variables for the signal and background samples for

the Run 1 BDT are shown as Figures 5.3, 5.4, and 5.5. Similarly, the distribution of the

training variables for the signal and background samples for the Run 2 BDT are shown

as Figures 5.6, 5.7, and 5.8. The variables which were found to have highest variable

importance (number of times a variable is used to split the data) are the B0 end vertex χ2,

the B0 DIRA, and the flight distance χ2 of the B0. These are important variables since

they correspond to the quality of the vertex fit and reconstructed B0. In addition, the

hadron isolation variables provide the BDT with greater separation power since, compared

to the signal, tracks from combinatorial background often have more tracks which are

nearby.

The agreement between simulation and data of the input variables has been examined

by comparing the input variables in the control mode. The input variables in B0 → K∗0J/ψ

simulation are compared with B0 → K∗0J/ψ data which has been background subtracted

using the sWeight technique [84]. These are shown as Figure 5.9, 5.10, and 5.11 for 2017.

For the rest of the data periods, these are shown in Appendix A. As seen in these plots, the

agreement between simulation and data in the control mode appears to be reasonable, but

not perfect. This is most likely due to a number of features in the data. Firstly, given the

backgrounds are non-negligible in the control mode, and these do not necessarily factorise

with the B0 mass, the sWeighting procedure is not perfect. In addition, even if there is no

issue with the sWeighting, the signal data sample is not 100% P-wave B0 → K∗0J/ψ as in

the simulation. There is an S-wave contribution as well as contributions from exotic states,

i.e. B0 → Z(4430)−K+, where Z(4430)− → J/ψπ−. This is evident in Figure 5.12 which

shows cos θK in the B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data.

Given the angles are different from the outset, comparisons of the BDT efficiency

between simulation and data were made. Figure 5.13 shows the BDT efficiency as a

function of cos θℓ, cos θK , and ϕ for the B0 → K∗0J/ψ simulation and data. The efficiency

is fairly flat in cos θℓ and ϕ, and mostly flat in cos θK with a drop at high cos θK . Comparing

simulation to data, the BDT angular efficiency appears well modelled apart from at high

cos θK , where the difference is most likely due to backgrounds which have not been

sWeighted properly in data, as well as the exotic states and S-wave of the J/ψ data. In

order to investigate this, the efficiencies were examined in a narrow mKπ window around
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Figure 5.3: Training variables for the Run 1 combinatorial BDT. Signal is shown in blue and
background is shown in orange. The distributions are normalised to unit area.
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Figure 5.4: Training variables for the Run 1 combinatorial BDT. Signal is shown in blue and
background is shown in orange. The distributions are normalised to unit area.
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Figure 5.5: Training variables for the Run 1 combinatorial BDT. Signal is shown in blue and
background is shown in orange. The distributions are normalised to unit area.

the K∗0 pole mass. A selection 876 < mKπ < 916 MeV/c2 was applied to both data and

simulation to ensure a sample which has a high purity of P-wave J/ψ. The efficiencies

for 2017 in this mKπ region are shown in Figure 5.14. As seen in the high cos θK region,

the discrepancy between data and simulation reduces as the data becomes more P-wave

dominated. The same behaviour is seen in the other data periods, as shown in Appendix B.

The results of the training for Run 1 and Run 2 can be seen in Figure 5.15. The BDT
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Figure 5.6: Training variables for the Run 2 combinatorial BDT. Signal is shown in blue and
background is shown in orange. The distributions are normalised to unit area.
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Figure 5.7: Training variables for the Run 2 combinatorial BDT. Signal is shown in blue and
background is shown in orange. The distributions are normalised to unit area.
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Figure 5.8: Training variables for the Run 2 combinatorial BDT. Signal is shown in blue and
background is shown in orange. The distributions are normalised to unit area.

clearly performs well. The Receiver Operating Characteristic (ROC) curves for Run 1 and

Run 2 are shown as 5.16. The high quality performance of the BDTs is due to the use

of xgboost, a training sample which is representative of the signal (i.e. B0 → K∗0µ+µ−

simulation), and input variables which allow good discrimination between signal and

background events.

The optimum cut points are chosen such that the statistical significance S/
√
S +B,
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Figure 5.9: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for 2017. The distributions are normalised to unit area.
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Figure 5.10: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data
for the BDT training variables for 2017. The distributions are normalised to unit area.
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Figure 5.11: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data
for the BDT training variables for 2017. The distributions are normalised to unit area.

where S is the estimated signal yield, and B is the expected background yield, is maximised.

The yield of the background is estimated directly from the upper B0 mass sideband samples.

They are fit with an exponential function and the yield is extrapolated into the full fit

region (5170 < mB < 5700 MeV/c2). The signal yields are estimated by examining the

simulation efficiencies and the B0 → K∗0J/ψ data fits.

The significance S/
√
S +B is maximised for the Run 1 and Run 2 BDTs. For Run 1,
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Figure 5.12: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data
for cos θK for 2017. The deviations are caused by the presence of exotic states in the data.

Figure 5.17 shows the signal and background efficiencies, and significance as a function of

BDT cut point. The same is shown for Run 2 in Figure 5.18. Table 5.8 shows the optimum

BDT working points and efficiencies.

Table 5.8: Optimum combinatorial BDT working points and efficiencies.

Run Period BDT cut Significance Signal efficiency Background rejection
efficiency

1 0.97672 30.4 0.924 0.984

2 0.97983 60.8 0.917 0.987

5.7 B+ → K∗+µ+µ− BDT

Another BDT was trained, which was developed for the ongoing binned analysis, to

further reduce background levels, in particular B+ → K∗+µ+µ−, where K∗+ → K+π0 or

K∗+ → K0
Sπ

+. Such backgrounds have angular structures which do not factorise with the

B0 mass. There are two BDTs, one for each decay mode, using xgboost. This BDT is

trained on variables such as the χ2
IP of the tracks, rapidities, difference between rapidity of

the hadrons, and the K∗0 and B0 vertex χ2. The cut points chosen for the BDT are such

that > 90% of signal is retained.

Figure 5.19 shows cos θℓ and cos θK in the lower mass sideband, defined as the region
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Figure 5.13: Combinatorial BDT efficiency as a function of cos θℓ, cos θK , and ϕ for 2017
B0 → K∗0J/ψ simulation and 2017 B0 → K∗0J/ψ data, where the uncertainties are statistical.
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Figure 5.14: Combinatorial BDT efficiency as a function of cos θℓ, cos θK , and ϕ for 2017
B0 → K∗0J/ψ simulation and 2017 B0 → K∗0J/ψ data, in the region 876 < mKπ < 916 MeV/c2,
where the uncertainties are statistical. This better aligns the data with the simulated P-wave state.
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Figure 5.15: Result of the training of the combinatorial BDT for (left) Run 1 and (right) Run 2.
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Figure 5.16: ROC curves from the training of the combinatorial BDT for (left) Run 1 and (right)
Run 2. Note the x-axis uses a log scale.

5170 < mB < 5220 MeV/c2. Figure 5.20 shows cos θℓ and cos θK in the upper mass

sideband, defined as the region 5350 < mB < 5700 MeV/c2. Green and blue show the

angles after applying the combinatorial and subsequently applying the B+ → K∗+µ+µ−

BDT, respectively.

Applied to the ansatz analysis selection, this BDT reduces peaking structures such as

the one seen at high cos θK in the lower mass sideband. This feature is predominantly from

B+ → K∗+µ+µ−, where K∗+ → K+π0 or K∗+ → K0
Sπ

+ and does not factorise with the

B0 mass. It is critical that the angles must factorise with each other and the B0 mass since

this is assumed by the background fit model. The B+ → K∗+µ+µ− BDT significantly

reduces this structure, thus improving the fit quality and reducing the possibility of a poor

goodness-of-fit.

88



0.94 0.95 0.96 0.97 0.98 0.99 1.00
BDT cut

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975
Si

gn
al

 e
ffi

cie
nc

y

0.94 0.95 0.96 0.97 0.98 0.99 1.00
BDT cut

0.965

0.970

0.975

0.980

0.985

0.990

0.995

1.000

1.005

Ba
ck

gr
ou

nd
 re

je
ct

io
n 

ef
fic

ie
nc

y

0.94 0.95 0.96 0.97 0.98 0.99 1.00
BDT cut

28.0

28.5

29.0

29.5

30.0

30.5

Si
gn

ifi
ca

nc
e

Figure 5.17: Signal efficiency, background rejection efficiency, and significance for the Run 1 BDT
as a function of BDT cut point. The BDT cut point is chosen such that the significance is at a
maximum.

5.8 Validation of the selection on the same-sign muon sample

The B2XMuMu stripping line also contains a sample of reconstructed decays where both

muons have the same sign. This sample contains no signal and is an excellent proxy for

combinatorial background in the full B0 mass range, since the reconstructed decay is

topologically similar to B0 → K∗0µ+µ− and the same triggers and stripping are applied.

This sample also provides a way to examine how the selection performs in the full B0 mass

range. This same-sign muon sample was used to examine the combinatorial BDT efficiency

across the full B0 mass range and study the factorisability between the angles and the B0

mass.

Run 1 + Run 2 datasets were used from the B2XMuXMu stripping line, the same stripping

line as the opposite sign sample. The triggers are also the same. Starting with ∼ 10

million events, the mass cuts (mB, mKπ, and q2) remove 93% of events. The peaking

background vetoes, cleaning cuts and PID requirements remove a further 97% of events.
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Figure 5.18: Signal efficiency, background rejection efficiency, and significance for the Run 2 BDT
as a function of BDT cut point. The BDT cut point is chosen such that the significance is at a
maximum.
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Figure 5.19: cos θℓ and cos θK in the lower B0 mass sideband for all run periods, in the regions
1.25 < q2 < 8 GeV2/c4 and 11 < q2 < 12.5 GeV2/c4. Green and blue show the angles after
applying the combinatorial and subsequently applying the B+ → K∗+µ+µ− BDT, respectively.
The B+ → K∗+µ+µ− BDT reduces the overall amount of combinatorial background and helps to
reduce peaking structures such as the one seen at high cos θK .
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Figure 5.20: cos θℓ and cos θK in the upper mass B0 sideband for all run periods, in the regions
1.25 < q2 < 8 GeV2/c4 and 11 < q2 < 12.5 GeV2/c4. Green and blue show the angles after
applying the combinatorial and subsequently applying the B+ → K∗+µ+µ− BDT, respectively.
The B+ → K∗+µ+µ− BDT reduces the overall amount of combinatorial background.

The combinatorial BDT removes 98% of the remaining data resulting in 391 events.

5.8.1 BDT efficiency

The BDT efficiency was studied across the full B0 mass range in the same-sign muon

sample. Figure 5.21 shows the B0 mass before and after applying the combinatorial BDT

(blue and orange respectively), in the range 4900 < mB < 6100 MeV/c2. The efficiency of

the combinatorial BDT is found by dividing these two histograms, as shown by Figure 5.22.

Within statistical uncertainties, the BDT efficiency is a smooth function.

The correlation between the BDT score and the B0 mass was studied. The histograms

of BDT score against B0 mass are shown as Figure 5.23. A correlation of −0.04247 was

measured between BDT score and B0 mass in the region 5170 < mB < 5700 MeV/c2. This

is evident from looking at the BDT efficiency. Given no significant peaks are seen in the B0

mass, the main check which needs to be performed is whether the B0 mass distribution can

be modelled with an exponential function, which is the nominal background description in

the B0 mass in the fit to opposite-sign data.

The B+ → K∗+µ+µ− BDT was also applied to the same-sign sample and B0

mass distributions were plotted in the two fit regions, 1.25 < q2 < 8 GeV2/c4 and

11 < q2 < 12.5 GeV2/c4. These are shown by the blue histograms in Figures 5.24 and 5.25

respectively. These distributions were fitted with exponential functions and chi-square tests

were performed. The chi-square values for the lower and upper q2 regions are 4.11 and 10.26.
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Figure 5.21: B0 mass distribution in the same-sign muon sample before (blue) and after (orange)
applying the combinatorial BDT in the region 4900 < mB < 6100 MeV/c2.
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Figure 5.22: Combinatorial BDT efficiency on the same-sign muon sample in the region
4900 < mB < 6100 MeV/c2.
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Figure 5.23: Correlation between BDT and B0 mass in the same-sign muon sample in BDT > 0.95
(top left), 0.001 < BDT < 0.1 (top right) and 0.1 < BDT < 0.95 (bottom).

With 6 degrees of freedom, this results in p-values of 66.15% and 11.42% respectively. Thus

the B0 mass distributions of the same-sign muon sample after applying the full selection

can be described by exponential functions. Given this and the good-quality goodness-of-fit

presented in Chapter 11, the background component of the B0 mass in the opposite-sign

data is describable using an exponential function. For the main analysis which uses the

opposite-sign data, the decay constant in the exponential function is a free parameters in

the fit.

5.8.2 Background factorisability

In the fit, the background is parameterised as factorising between the B0 mass, each

angle, and q2, i.e. Pbkg = P (mB)P (cos θℓ)P (cos θK)P (ϕ)P (q2). In particular, the B0 mass

factorises with the angular PDF, i.e. Pbkg = P (mB)× P (Ω, q2).

Given that there are backgrounds which do factorise in the B0 mass, it is necessary

to examine the factorisation of the combinatorial, which can be done with the same-sign

muon sample. If they do not factorise, one has to improve the background description in

order to incorporate non-factorisable effects, or improve the selection. Again, the dataset
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Figure 5.24: B0 mass distribution in the
same-sign muon sample with the full selec-
tion applied, in the region 1.25 < q2 < 8
GeV2/c4 (blue). From fitting an exponential
function to this distribution (red), a p-value
of 66.15% is determined from a chi-square
test.
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Figure 5.25: B0 mass distribution in the
same-sign muon sample with the full selec-
tion applied, in the region 11 < q2 < 12.5
GeV2/c4 (blue). From fitting an exponential
function to this distribution (red), a p-value
of 11.42% is determined from a chi-square
test.

was split into the two q2 regions (1.25 < q2 < 8 GeV2/c4 and 11 < q2 < 12.5 GeV2/c4)

and treated entirely separately.

Legendre polynomials are fitted to the angular distributions in the full B0 mass range.

For the lower q2 region, two parameters were fitted for each angular variable cos θℓ, cos θK ,

and ϕ. The parameterisation is of the form 1+ aL1 + bL2 where a, b are fit parameters and

Li are Legendre polynomials of order i. The angle ϕ is scaled to the region −1 ≤ x ≤ 1

when evaluating the polynomial. Owing to the low amount of data in the interresonance

region (11 < q2 < 12.5 GeV2/c4), only one parameter was fitted, i.e. a parameterisation of

the form 1 + aL1.

The B0 mass region was also split into two bins of B0 mass, and the angular fits were

performed. Each B0 mass bin contains the same number of events. The coefficients can be

compared between B0 mass bins for the lower q2 region or the interresonance region. The

same study was also performed where the B0 mass was split into three bins of equal size.

For the lower q2 region, the results for the a parameter for the angles are shown as

Figure 5.26. The results for the b parameter for the angles are shown as Figure 5.27.

Within the data sample statistics, the coefficients are consistent.

For the interresonance region, the results for the a parameter for the angles are shown

as Figure 5.28. The coefficients are consistent within each other given the data statistics.

The angles and fits in the full B0 mass range and the three bins in B0 mass are plotted.
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Figure 5.26: Results from fits to the angles in the low q2 region in the selected same-sign muon
sample. This plot shows the first Legendre coefficient for the three angles. The fit was performed in
the full B0 mass range, two B0 mass regions of equal size, and three B0 mass regions of equal size.

This is in order to visually examine the quality of the fits and the shape of the backgrounds

in different B mass regions. These are shown as Figure 5.29 for cos θℓ, cos θK and ϕ.

Likewise, for the interresonance region, these are shown as Figure 5.30. Within the data

statistics, the backgrounds indeed appear to factorise in B0 mass.

Chi-square goodness of fit tests were performed on the fits where the B0 mass is split

into three bins. The fit in each B0 mass region is compared to the data in the other two

regions in order to examine the compatibility between the angular shapes between different

B0 mass regions. The reason for not comparing the fit to the data in all three regions is

to avoid correlations between the fit and data used to perform the fit. The p-values are
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Figure 5.27: Results from fits to the angles in the low q2 region in the selected same-sign muon
sample. This plot shows the second Legendre coefficient for the three angles. The fit was performed
in the full B0 mass range, two B0 mass regions of equal size, and three B0 mass regions of equal
size.

shown in Table 5.9.

5.9 Performance of the selection

The performance of the selection is examined by computing expected peaking background

yields relative to the signal. This was examined at various points in the selection. Figure 5.31

shows the expected peaking background yields in the two signal regions after the trigger,

stripping and all cleaning cuts apart from the hadron PID has been applied. The sum

of all peaking backgrounds relative to the signal is large, at 85% in the low q2 region
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Figure 5.28: Results from fits to the angles in the interresonance region in the selected same-sign
muon sample. This plot shows the first Legendre coefficient for the three angles. The fit was
performed in the full B0 mass range, two B0 mass regions of equal size, and three B0 mass regions
of equal size.

and 70% in the interresonance region. The largest background is the K and π mis-ID in

B0 → K∗0µ+µ−. Figure 5.32 shows the same after the hadron PID selection is applied.

Applying the hadron PID requirements reduces the overall levels of peaking backgrounds

in both q2 regions, towards 12% in the low q2 region and 5% in the interresonance region.

The largest backgrounds in the two regions are now the µ-π swap from B0 → K∗0J/ψ

and K → π mis-ID in B0
s → ϕµ+µ− respectively. These are reduced significantly by the

peaking background veto BDTs discussed in Section 5.4. Figure 5.33 shows the expected

peaking background yields relative to the signal after the peaking background veto BDTs

have been applied. These have reduced overall levels of background to around 1.7% of the
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Figure 5.29: cos θℓ, cos θK and ϕ in different B0 mass regions in the same-sign muon sample in the
low q2 region with fits to second order Legendre polynomials.

Table 5.9: p-values when comparing fits to angles in a B0 mass region to the distributions in the
other B0 mass regions.

Angle q2 region (GeV2/c4) B0 mass region (MeV/c2) p-value (%)

cos θℓ 1.25 < q2 < 8 5170 < mB < 5257 84.7
cos θℓ 1.25 < q2 < 8 5257 < mB < 5405 58.9
cos θℓ 1.25 < q2 < 8 5405 < mB < 5700 41.3
cos θK 1.25 < q2 < 8 5170 < mB < 5257 41.3
cos θK 1.25 < q2 < 8 5257 < mB < 5405 72.6
cos θK 1.25 < q2 < 8 5405 < mB < 5700 23.0
ϕ 1.25 < q2 < 8 5170 < mB < 5257 19.8
ϕ 1.25 < q2 < 8 5257 < mB < 5405 19.3
ϕ 1.25 < q2 < 8 5405 < mB < 5700 8.6

cos θℓ 11 < q2 < 12.5 5170 < mB < 5300 23.1
cos θℓ 11 < q2 < 12.5 5300 < mB < 5407 50.9
cos θℓ 11 < q2 < 12.5 5407 < mB < 5700 46.8
cos θK 11 < q2 < 12.5 5170 < mB < 5300 6.2
cos θK 11 < q2 < 12.5 5300 < mB < 5407 39.6
cos θK 11 < q2 < 12.5 5407 < mB < 5700 48.2
ϕ 11 < q2 < 12.5 5170 < mB < 5300 18.2
ϕ 11 < q2 < 12.5 5300 < mB < 5407 75.8
ϕ 11 < q2 < 12.5 5407 < mB < 5700 13.3
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Figure 5.30: cos θℓ, cos θK and ϕ in different B0 mass regions in the same-sign muon sample in the
interresonance region with fits to first order Legendre polynomials.

signal. Now B+ → K∗+µ+µ− is largest in both regions. Figures 5.34 and 5.35 show the

expected peaking background yields relative to the signal after applying the combinatorial

BDT and subsequently applying the K∗+ BDT respectively. The resulting overall levels

of peaking background are low (0.9% and 0.4% of the signal in the two q2 regions) thus

overall levels of backgrounds will have a negligible effect on the signal. In addition there is

no single peaking background considered here which is greater than 0.3% of the signal.

Figure 5.36 shows the B0 mass distributions for the signal simulation and the background

simulation. The background simulation corresponds to the total background, obtained

by adding together the individual background components scaled to the expected yields

relative to the signal. The top plots show the low q2 region and the bottom plots show the

interresonance region. The left plots show the B0 mass after the trigger, stripping, and

cleaning cuts (including hadron PID) are applied and the right plots show the B0 mass after

the full selection is applied. The same is shown for cos θℓ, cos θK and ϕ in Figures 5.37, 5.38,

and 5.39. As seen in these plots, the background is peaking in certain angular and/or B0
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Figure 5.31: Expected peaking background yields relative to the signal in the two q2 regions of
interest, for the full dataset. This is after the trigger, stripping and cleaning cuts apart from the
hadron PID are applied. The sum of all peaking backgrounds relative to the signal is 85% in the
low q2 region and 70% in the interresonance region.
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Figure 5.32: Expected peaking background yields relative to the signal in the two q2 regions of
interest, for the full dataset. This is after the trigger, stripping and cleaning cuts (including hadron
PID) are applied. The sum of all peaking backgrounds relative to the signal is 12% in the low q2

region and 5% in the interresonance region.
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Figure 5.33: Expected peaking background yields relative to the signal in the two q2 regions
of interest, for the full dataset. This is after the trigger, stripping, cleaning cuts, and peaking
background veto BDTs are applied. The sum of all peaking backgrounds relative to the signal is
1.7% in both q2 regions.
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Figure 5.34: Expected peaking background yields relative to the signal in the two q2 regions of
interest, for the full dataset. This is after the trigger, stripping, cleaning cuts, peaking background
veto BDTs and combinatorial BDT are applied. The sum of all peaking backgrounds relative to
the signal is 1.1% in the low q2 region and 0.8% in the interresonance region.
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Figure 5.35: Expected peaking background yields relative to the signal in the two q2 regions of
interest, for the full dataset. This is with all of the selection applied. The sum of all peaking
backgrounds relative to the signal is 0.9% in the low q2 region and 0.4% in the interresonance
region.

mass regions. Thus it is important to remove these backgrounds. The selection described

in this chapter is very powerful at removing these peaking backgrounds as well as overall

levels of combinatorial background resulting in a clean sample which can be used for the

amplitude ansatz analysis of B0 → K∗0µ+µ−. The expected yields are estimated. After

the selection is applied, in the 1.25 < q2 < 8 GeV2/c4 region, the expected yields are 4167

signal events, 726 combinatorial background events, and 38 combined peaking background

events.

Since the overall level of peaking backgrounds is low compared to the signal, and that

the signal data fit shows a good-quality goodness-of-fit, as shown in Section 11.3.1, the

effect of the remaining peaking backgrounds on the signal is deemed to be negligible. With

regards to the combinatorial background, since it can be described by an exponential

function in the B0 mass, unlike the signal which is described by the sum of two Crystal

Ball functions, the background is thus uncorrelated with the signal.

Table 5.10 presents a summary of the applied selections with efficiencies. The efficiencies

were determined from B0 → K∗0µ+µ− simulation. The efficiencies shown for each selection
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Figure 5.36: B0 mass distributions for the signal and total peaking background simulation. The
background simulation corresponds to the total background, obtained by adding together the
individual background components scaled to the expected yields relative to the signal. The top
plots show the low q2 region and the bottom plots show the interresonance region. The left plots
are after applying the trigger, stripping, and cleaning cuts (including hadron PID) and the right
plots are after the full selection is applied. Note a log scale is used for the y-axis.

level are conditional with respect to the previous selection level. The detector acceptance

efficiency refers to the proportion of B0 → K∗0µ+µ− decays where the reconstructed final

state particle tracks (K, π, µ+, µ−) are within the LHCb detector acceptance. The

combined efficiency of the trigger, stripping, and cleaning cuts is 8.17%, of which the

stripping is the most stringent. The q2 selection refers to the selection of events which

are in the q2 windows 1.25 < q2 < 8 GeV/c4 and 11 < q2 < 12.5 GeV/c4. The mass cuts

refer to the kaon-pion invariant mass (mKπ) and B mass (mB) selections. The peaking

background veto BDTs and Kµµ veto are described in Sections 5.4 and 5.5 respectively.

The combinatorial and K∗+ BDTs are described in Sections 5.6 and 5.7 respectively. The

total efficiency, which is a combination of all of the efficiencies, is also shown.
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Figure 5.37: cos θℓ distributions for the signal and total peaking background simulation. The
background simulation corresponds to the total background, obtained by adding together the
individual background components scaled to the expected yields relative to the signal. The top
plots show the low q2 region and the bottom plots show the interresonance region. The left plots
are after applying the trigger, stripping, and cleaning cuts (including hadron PID) and the right
plots are after the full selection is applied.

Table 5.10: Summary of applied selections and efficiencies. For each selection stage the efficiency
shown is conditional with respect to the previous selection stage. The total efficiency is also shown.

Selection Efficiency

Detector acceptance 16.79%

Trigger (Table 5.1), stripping (Table 5.2), cleaning cuts (Tables 5.3 and 5.4) 8.17%

q2 (1.25 < q2 < 8 GeV2/c4, 11 < q2 < 12.5 GeV2/c4) 37.16%

Mass selections (796 < mKπ < 996 MeV/c2, 5170 < mB < 5700 MeV/c2) 92.53%

Peaking background veto BDTs (Table 5.7) 95.79%

Kµµ veto (Exclude events with mB > 5380 MeV/c2 and
5220 < m(Kµ+µ−) < 5340 MeV/c2) 99.99%

Combinatorial BDT (Table 5.8) 91.85%

K∗+ BDT (K∗+ → K+π0 BDT score > 0.65,
K∗+ → K0

Sπ
+ BDT score > 0.68) 92.72%

Total 0.38%
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Figure 5.38: cos θK distributions for the signal and peaking background simulation. The background
simulation corresponds to the total background, obtained by adding together the individual
background components scaled to the expected yields relative to the signal. The top plots show
the low q2 region and the bottom plots show the interresonance region. The left plots are after
applying the trigger, stripping, and cleaning cuts (including hadron PID) and the right plots are
after the full selection is applied.
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Figure 5.39: ϕ distributions for the signal and peaking background simulation. The background
simulation corresponds to the total background, obtained by adding together the individual
background components scaled to the expected yields relative to the signal. The top plots show
the low q2 region and the bottom plots show the interresonance region. The left plots are after
applying the trigger, stripping, and cleaning cuts (including hadron PID) and the right plots are
after the full selection is applied.
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Chapter 6

Acceptance

Detector effects, selection cuts and reconstruction distort the true angular and q2 distri-

butions resulting in the measured distributions. To account for this effect, an acceptance

function, ε, is used. A simulation is generated flat in the angles and q2. This simulation is

propagated through the detector and the selection is applied. This is used to ascertain the

acceptance. The acceptance is parameterised in cos θl, cos θK , ϕ and q2. In the amplitude

ansatz fit, this enters as

dΓ

dΩdq2

∣

∣

∣

∣

experiment

= ε(cos θl, cos θK , ϕ, q
2)

dΓ

dΩdq2

∣

∣

∣

∣

true

, (6.1)

where the acceptance function is used to transform from the measured angular distribution

of the decay products to the underlying angular distribution which depends only on the

underlying physics. Similarly to other B0 → K∗0µ+µ−analyses, the acceptance is modelled

as the polynomial

ε(cos θl, cos θK , ϕ, q
2) =

∑

ijmn

cijmnLi(cos θl)Lj(cos θK)Lm(ϕ
′)Ln(q

2′), (6.2)

where La denotes Legendre polynomials of order a. The quantities ϕ′ and q2′ correspond to

ϕ and q2 scaled to the range −1 ≤ x ≤ 1. The method of computing this function follows

other B0 → K∗0µ+µ−analyses, where the coefficients cijmn are obtained by utilising the

orthonormality of the Legendre polynomials, namely
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∫ +1

−1
La(x)Lb(x) dx =

2

2a+ 1
δab , (6.3)

where δab is the Kronecker delta. Hence, explicitly, the coefficients cijmn are obtained via

method of moments and are given by

cijmn =
1

N
∑

a=1
wa

N
∑

a=1

wa

[(2i+ 1

2

)(2j + 1

2

)(2m+ 1

2

)(2n+ 1

2

)

× Li(cos θl)Lj(cos θK)Lm(ϕ
′)Ln(q

2′)
]

,

(6.4)

where wa is the weight corresponding to event a and N is the number of events in the

simulated sample. The per-candidate weight consists of weights to account for mismodelling

in the simulation, as described in Chapter 5.

Acceptance functions are ascertained using B0 → K∗0µ+µ− simulation which is gen-

erated flat in q2 and the angles. It is generated with a Briet-Wigner parameterisation

of the mKπ lineshape. The acceptance is computed integrated over the mKπ region

0.796 < mKπ < 0.996 GeV/c2, in the q2 region 1 < q2 < 15 GeV2/c4.

The acceptance for the B0 dataset is different from the acceptance for the B̄0 dataset,

thus the acceptance is also computed split into B0 and B̄0 flavours and treated separately.

This is in order to avoid the potential Punzi effect [85]. This effect describes a potential

bias resulting from using the same template when fitting two classes of events. In particular,

a bias is induced if the template depends on the event class. For this analysis, since the

B0 and B̄0 have potentially different acceptance shapes, using a single acceptance and

applying it to both the B0 and B̄0 Probability Density Functions (PDFs) can induce biases

in the fit results, thus this must be avoided. Hence in the fit where the B0 and B̄0 have

separate PDFs, each PDF has its own acceptance function. Thus there are two acceptance

functions in this case, one corresponding to the B0 dataset, and another corresponding to

the B̄0 dataset.

108



6.1 Goodness-of-fit

Beyond the accuracy of the simulation there are two sources of uncertainty related to the

acceptance function. The first is the limited size of the simulation samples. The second is

the choice of the orders of the polynomials used to fit the simulation. If the orders are too

low the shape will not be accurately captured however if they are too high then statistical

variations are modelled. Thus the maximum required orders is correlated to the size of the

simulation sample available so one must determine the orders of the acceptance function in

order to obtain a function which does not fluctuate with statistical variations and is still a

good description of the simulation.

One way to ascertain whether the acceptance function can model the simulation is by

visually inspecting 1D and 2D projections and comparing to simulation, in slices of q2.

However this is an insufficient way of determining the goodness-of-fit of the acceptance

since there could be mis-modellings in the multidimensional space which are not visible

in the 1D or 2D projections. In addition, since the acceptance is in four dimensions, χ2

test-statistics are not sufficient to determine if a good fit of the acceptance simulation has

been achieved since variations are averaged out when binning and chi-square statistics

becomes increasingly complex as the dimensionality increases. Thus BDTs, which are

designed for multivariate analyses, are utilised.

This multivariate analysis-based goodness-of-fit test is performed by training a BDT to

discriminate between the simulation and a psuedoexperiment generated from the model

used to fit the simulation (in this case, the acceptance function). This is compared to BDTs

trained on statistically compatible distributions, which correspond to pseudoexperiments

generated from the model. If a BDT cannot distinguish between the simulation and a

pseudoexperiment generated from the model better than a pseudoexperimet generated

from the model from other pseudoexperiments then the model is a good description of the

simulation.

From an acceptance function, a pseudoexperiment with a large number of events

(greater than 5x the simulation size) is generated in cos θℓ, cos θK , ϕ, and q
2, which are

the variables used to parameterise the acceptance. This pseudoexperiment is known as

the ‘benchmark pseudoexperiment’ since all BDTs in this goodness-of-fit method are
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trained to distinguish this benchmark pseudoexperiment from another sample (either the

simulation or other pseudoexperiments). More pseudoexperiments are generated but with

the same number of events as the simulation used to derive the acceptance. The reason for

generating the benchmark pseudoexperiment with high yields is to avoid double counting

the expected statistical variation of the acceptance. BDTs are then trained to discriminate

these pseudoexperiments from the benchmark pseudoexperiment. The training variables

are cos θℓ, cos θK , ϕ, and q2.

A metric for the performance of the BDT is the area under the Receiver Operating

Characteristic curve (ROC AUC) and is a quantity which describes how well the BDT

can discriminate between two samples. The ROC curve is the true positive rate against

the false positive rate so if the ROC AUC is 0.5 the BDT is no better than a random

guess. If the ROC AUC is 1 then the BDT is a perfect algorithm. The distribution of the

BDTs trained to separate the benchmark pseudoexperiment from other psuedoexperiments

is plotted. Since these pseudoexperiments are generated from the same model, the only

differences between them are due to statistics.

Finally another BDT is trained to discriminate betwee the benchmark pseudoexperiment

and the simulation used to derive the acceptance. The ROC AUC is obtained, compared

with the distribution for the BDTs comparing the benchmark pseudoexperiment with

pseudoexperiments and a p-value is calculated. If the fit is good, the BDT should not

be able to differentiate between the benchmark pseudoexperiment and simulation better

than it can differentiate statistical variations (distribution when comparing benchmark

pseudoexperiment with pseudoexperiments). If the fit is bad, the ROC AUC of the BDT

trained to discriminate between the benchmark psuedoexperiment and simulation will

be larger than the distribution of BDTs trained to discriminate between the benchmark

pseudoexperiment and pseudoexperiments.

Figure 6.1 shows distributions of the goodness-of-fit metric, for two different sets of

polynomial orders. Here, the 2016 simulation sample is used. On the left is the result for

one set of polynomials and the right, alternative polynomials where the maximum orders

are higher. The blue distribution is that of the ROC AUC of the BDTs used to separate

the benchmark pseudoexperiment from the other pseudoexperiments. This distribution is

a distribution of figure-of-merits resulting from goodness-of-fits to datasets where the only
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Figure 6.1: Example goodness-of-fit plots. The 2016 simulation sample is used. On the left is the
result for one set of polynomials and the right, alternative polynomials where the maximum orders
are higher. The blue distribution is that of the ROC AUC of the BDTs to separate the benchmark
pseudoexperiment from the other pseudoexperiments; the red line is that for the BDT to separate
benchmark pseudoexperiment from the simulation.

differences are due to statistical fluctuations. The red line shows the figure-of-merit (i.e.

the ROC AUC) corresponding to the BDT which is trained to separate the benchmark

pseudoexperiment from the simulation. If the figure-of-merit corresponding to this BDT is

much larger than the figure-of-merits arising from statistical fluctuations, for example the

left plot, the BDT is much better at separating a pseudoexperiment from the simulation

than it is from separating the pseudoexperiment from other pseudoexperiments. Thus the

acceptance function in this case is a bad fit of the simulation. However, if the figure-of-merit

from the BDT trained to separate a pseudoexperiment from the simulation is comparable

to the distribution of figure-of-merits from BDTs trained to separate the pseudoexperiment

from other pseudoexperiments, for example the right plot, then the acceptance here is a

good description of the simulation.

6.2 Choice of acceptances

Having found high enough orders to describe the simulation, care must be taken to

avoid overfitting. Therefore the polynomial orders are decreased until the fit is no longer

acceptable. The lowest set of orders that gives a sufficient quality fit is used in the analysis.

If the p-value is greater than 5% the choice of orders is considered to result in an acceptance

function which is a good description of the simulation. Where B0 and B̄0 are treated
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Year Number of acceptance events J/ψ data signal yield Weight

Run 1 147244 152390 1.035
2016 135687 158710 1.170
2017 130394 170034 1.304
2018 125025 209108 1.673

Table 6.1: J/ψ signal data yields, number of acceptance simulation events which pass the selection
in the J/ψ window, and weight used for each sample when computing the B0 acceptance.

Year Number of acceptance events J/ψ data signal yield Weight

Run 1 148141 148782 1.004
2016 134143 154544 1.152
2017 129402 166172 1.284
2018 124967 203765 1.631

Table 6.2: J/ψ signal data yields, number of acceptance simulation events which pass the selection
in the J/ψ window, and weight used for each sample when computing the B̄0 acceptance.

separately, the maximum orders in each of the four dimensions are chosen to be the same.

The lowest set of orders that gives a good description for both B0 and B̄0 is chosen.

Since the fit combines the Run 1 and Run 2 datasets, the combined Run 1 + Run 2

acceptances are computed. In order to do this, for each data period (Run 1, 2016, 2017,

2018) the simulation is normalised such that it represents the relative fraction of that year’s

data in the total dataset. This is by applying a per-year weight which is the J/ψ data

fit yield divided by the amount of simulation in the J/ψ window. This is shown in Table

6.1 for the B0 dataset and Table 6.2 for the B̄0 dataset. For the acceptances used for the

CP-averaged fit, again the simulation used to compute the acceptance is normalised to the

amount of simulation in the J/ψ window and scaled according to the J/ψ data fits. This

is shown in Table 6.3.

Year Number of acceptance events J/ψ data signal yield Weight

Run 1 295385 303920 1.029
2016 269830 313483 1.162
2017 259796 336601 1.296
2018 249992 414027 1.656

Table 6.3: J/ψ signal data yields, number of acceptance simulation events which pass the selection
in the J/ψ window, and weight used for each sample when computing the combined B0 and B̄0

acceptance.
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Figure 6.2: Projections of the combined B0 and B̄0 acceptance in q2, cos θℓ, cos θK , and ϕ.

For theB0 and B̄0 acceptances, the optimum maximum orders are 6 (cos θℓ), 8 (cos θK),

6 (ϕ), and 5 (q2). For the combined B0 and B̄0 acceptance, the optimum maximum orders

are 6 (cos θℓ), 9 (cos θK), 6 (ϕ), and 6 (q2).

Figure 6.2 shows the projections of the combined B0 and B̄0 acceptance in q2, cos θℓ,

cos θK , and ϕ.
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Chapter 7

Fitting Strategy

A fitting framework is implemented in C++, using the TMinuit [86] library in ROOT. In

this fitting framework, the PDFs are defined, the data are loaded and the fit is performed.

This chapter describes the PDFs and the fits that are performed.

The fitting framework is written such that an extended maximum likelihood fit is

performed to the data. A total PDF is formed which contains the signal (B0), a B0
s

component, and the combinatorial background. The angular part of the signal PDF is

formed from the amplitudes, which are parameterised with q2-dependent ansatzes.

7.1 Signal PDF

7.1.1 Angular signal PDF

The angular signal PDF is described in Chapter 2.7. The J-terms are written as bilinear

combinations of the decay amplitudes. The PDF d4Γ(B0→K∗0µ+µ−)
d cos θℓd cos θKdϕdq2

is fitted for the signal

4D fit. 5D fits, where the PDF is a function of mKπ, were also studied, where the PDF is

given by d5Γ(B0→K∗0µ+µ−)
d cos θℓd cos θKdϕdq2dmKπ

. As shown in Section 8.1, the performance of the 5D fit

is insufficient with the existing statistics, and so a 4D fit nominally is performed for this

analysis. For the CP-average fit, where the B0 → K∗0µ+µ−and B̄0 → K̄∗0µ+µ− decay

amplitudes are set to be identical, there is just one PDF. For the asymmetries fit there are

two PDFs, one for the B0 amplitudes, and one for the B̄0 amplitudes.
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Ansatz model

The ansatz model used for this analysis is

A =
∑

i

αiLi (7.1)

for the amplitudes. Li are Legendre polynomials in q2 and ai are complex coefficients.

When evaluating the Legendre polynomials, q2 is scaled to the range −1 ≤ x ≤ 1. An

alternative amplitude ansatz was also considered. This is described by the parameterisation

A = α+ βq2 +
γ

q2
(7.2)

as originally proposed in [11]. This ansatz was not adopted due to the very large correlations

between coefficients and presence of local minima seen through pseudoexperiment studies.

More about the motivation for the Legendre ansatz is given in Section 8.2.

Amplitude basis

As described in Section 2.10, there are four continuous symmetries of the PDF. Thus the

effective number of amplitudes (8 complex amplitudes × (real, imaginary) = 16) is not

equal to the number of degrees-of-freedom in the PDF (12). This results in an infinite

number of sets of amplitudes which result in the same PDF. In order to define an amplitude

basis an effective rotation is performed that leaves four of the amplitudes at arbitrary

constants, which do not need to float in the fit. As initially motivated by [11], the amplitude

basis chosen is where Im(AR
⊥) = Im(AL

0 ) = Re(AR
0 ) = Im(AR

0 ) = 0. All other amplitudes

float in the fit.

Amplitude ansatz description of the theoretical predictions

The Legendre polynomial ansatz with four parameters can describe a variety of models

as shown in Figures 7.1, 7.2, and 7.3. These show the P-wave amplitudes in the nominal

amplitude basis. The predictions shown in black are for two SM models (Figures 7.1 and

7.2) where the differences between them are the phases between the ϕ(1020) and the J/ψ

and the rare mode, and a NP model (Figure 7.3), where there is a shift ∆C9 = −1 with
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Figure 7.1: Theoretical predictions of the P-wave amplitudes in the transformed basis (black) and
fits to these prediction using four-parameter Legendre polynomial amplitudes ansatzes (red). The
theoretical predictions shown are for the SM, where the phases between the rare mode and the
ϕ(1020) and J/ψ resonances are both π

2 .

respect to the SM. These predictions were generated by another member of the analysis.

Shown in red are fits to these predictions with four-parameter Legendre polynomial ansatzes.

As shown in these plots, the predictions vary between the models and the ansatz chosen

can describe a variety of models. This is also verified by performing a goodness-of-fit to

the data, as shown in Section 11.3.1.

7.1.2 B0 mass lineshape

The B0 mass mB is factorised out from the angular PDF. It is described by a sum

of two Crystal Ball functions [87], with tails on opposite sides. The B0 mass signal

parameterisation is

PB = fcorePCB(mB, µ, σ1, α1, n1) + (1− fcore)PCB(mB, µ, σ2, α2, n2) (7.3)

where

PCB(mB, µ, σi, αi, ni) = Ne
− (mB−µ)2

2σ2
i (7.4)
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Figure 7.2: Theoretical predictions of the P-wave amplitudes in the transformed basis (black) and
fits to these prediction using four-parameter Legendre polynomial amplitudes ansatzes (red). The
theoretical predictions shown are for the SM, where the phases between the rare mode and the
ϕ(1020) and J/ψ resonances are both 0.
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Figure 7.3: Theoretical predictions of the P-wave amplitudes in the transformed basis (black) and
fits to these prediction using four-parameter Legendre polynomial amplitudes ansatzes (red). The
theoretical predictions shown are for a NP model with ∆C9 = −1.
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for mB−µ
σi

> −αi and

PCB(mB, µ, σi, αi, ni) = N

(

ni
|ai|

)ni

e−
α2
i
2

(

ni
|ai|

− |ai| −
mB − µ

σi

)−ni

(7.5)

where mB−µ
σi

≤ −αi, and N is a normalisation factor. The parameters αi, ni and fcore are

extracted from the control mode and fixed in the rare mode fits.

7.1.3 Contribution from B0
s → K̄∗0µ+µ−

The contribution from B̄0
s → K∗0µ+µ− needs to be accounted for in order to have a good-

quality B0 fit. Therefore NSigPSig for the CP-average fit, where NSig,B0 is the number of

B0 events and PSig is the signal PDF, is modified to be

NSig,B0PSig → NSig,B0PSig,B0 +NSig,B0
s
PSig,B0

s
= NSig,B0(PSig,B0 + fB0

s
PSig,B0

s
) (7.6)

where fB0
s
=

N
Sig,B0

s
NSig,B0

= B(B0
s→K̄∗0µ+µ−)

B(B0→K∗0µ+µ−)
fs
fd
, with fs and fd as the B0

s and B0 fragmentation

fractions.

The B0 and B̄0 datasets are split based on the charge of the kaon, since B0 → K∗0µ+µ−

and B̄0 → K̄∗0µ+µ−, where K∗0 → K+π− and K̄∗0 → K−π+. Since B̄0
s → K∗0µ+µ− and

B0
s → K̄∗0µ+µ−, the K+ dataset contains the B0 and B̄0

s and the K− dataset contains

the B̄0 and B0
s . Thus in the asymmetries fit the equivalent of Equation 7.6 for the K+

dataset is

NSig,B0PSig,B0 +NSig,B̄0
s
PSig,B̄0

s
= NSig,B0(PSig,B0 + fB̄0

s
PSig,B̄0

s
) (7.7)

and for the K− dataset the equivalent is

NSig,B̄0PSig,B̄0 +NSig,B0
s
PSig,B0

s
= NSig,B̄0(PSig,B̄0 + fB0

s
PSig,B0

s
) (7.8)

where fB̄0
s
=

N
Sig,B̄0

s
NSig,B0

= B(B̄0
s→K∗0µ+µ−)

B(B0→K∗0µ+µ−)
fs
fd

and fB0
s
=

N
Sig,B0

s
NSig,B̄0

= B(B0
s→K̄∗0µ+µ−)

B(B̄0→K̄∗0µ+µ−)
fs
fd
. The

ratio of the B0
s to B0 yields are fixed in both the control mode fit and the rare mode fits.

The values of these ratios are fixed to the values recorded in the PDG [14], assuming no CP

asymmetry. The hadronisation fraction is taken from a recent measurement at LHCb [88].
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Therefore for all fits fB0
s
= fB̄0

s
= 0.0077577.

The B0
s lineshape has identical parameters to that of the B0, but with a shift

∆M = 87.26 MeV/c2 of the mean µ. There are also differences in the angular PDF.

The LHCb angular convention is chosen such that the PDFs have the same form for B0

and B̄0. However, as the B0
s decays to a K− and not a K+, a CP-transformation has to

be applied to the final state. This corresponds to a transformation in ϕ, ϕ→ 2π − ϕ. This

can therefore be resolved by flipping the signs of J7, J8, J9, J̃7 and J̃8.

Thus the B0
s PDF has the same angular PDF as the B0 but with the signs of J7, J8, J9,

J̃7 and J̃8 flipped, as described in Figure 4 of [49]. The amplitude coefficients are shared

in the fit between PSig,B0 and PSig,B0
s
for the CP-averages fit. For the CP-asymmetries

fit, the parameters are shared between PSig,B0 and PSig,B0
s
, and PSig,B̄0 and PSig,B̄0

s
. This

approximation is considered to be acceptable since the contributions from the B0
s processes

are small compared to those from the main B0 processes.

Acceptance for B0
s → K̄∗0µ+µ−

The acceptance (i.e. the q2 and angular efficiencies) for the B0
s was studied using

B0
s → K̄∗0µ+µ− simulation. Since differences could potentially arise due to the different

decay kinematics, i.e. that the B0
s mass is different from the B0, there could potentially be

differences between the B0
s → K̄∗0µ+µ− acceptance and the B0 → K∗0µ+µ− acceptance.

The B0
s → K̄∗0µ+µ− acceptance was determined by simulating B0

s → K̄∗0µ+µ− events

and applying the full selection. Weights were applied in order to make the variables q2,

cos θℓ, cos θK , and ϕ flat if no selection is applied. Thus the weighted selected simulation

corresponds to the acceptance.

The B0
s → K̄∗0µ+µ− acceptance was compared to the B0 → K∗0µ+µ−acceptance.

Figure 7.4 shows the q2, cos θℓ, cos θK , and ϕ projections of acceptances for the B0
s (red)

and B0 (blue) decay channels, using 2017 simulation. As seen in these plots, the acceptances

are the same within statistical fluctuations. Thus given the similarity of the acceptances

for the B0 and B0
s decays, and that the expected number of B0

s is a small fraction of the

expected number of B0 events, the acceptances for the B0 and B0
s are treated to be the

same, namely the acceptance of the B0 decay discussed in Chapter 6.
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Figure 7.4: Comparison between the B0 acceptance (blue) and the B0
s acceptance (red) in q2, cos θℓ,

cos θK , and ϕ.

7.2 Background PDF

The background is described by a five dimensional PDF

PBkg
(

q2, cos θℓ, cos θK , ϕ,mB0

)

= P
(

q2
)

P (cos θℓ)P (cos θK)P (ϕ)P (mB0) (7.9)

where the functions P
(

q2
)

, P (cos θℓ), P (cos θK), and P (ϕ) are second order Chebyshev

polynomials with two parameters describing each function. When evaluating the poly-

nomials, ϕ and q2 are both scaled to the range −1 ≤ x ≤ 1. The background in the B0

mass P (mB0) is an exponential function. There are therefore nine free background PDF

parameters in total. The number of background events is also floated. For the CP-averages

fit, this is the combined number of B0 and B̄0 background events. For the CP-asymmetries

fit, the number of background events for the B0 and B̄0 datasets float separately. For the

CP-asymmetries fit the background PDFs are identical between B0 and B̄0 apart from the

overall yields. This was shown to be a reasonable approximation in studies performed as

part of the binned analysis.
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7.2.1 B+ → K+µ+µ− veto

There is a selection veto for removing B+ → K+µ+µ− events. All events with

5220 < mKµµ < 5340 MeV/c2 and mB0 > 5380 MeV/c2 are removed which removes the

majority of B+ → K+µ+µ− events, where mKµµ is the invariant mass of the Kµµ system.

However this distorts the four-dimensional space of cos θK , mB0 ,mKπ and q2, above the

signal B0 mass. Since the nominal fit is performed after integrating over mKπ, only effects

in cos θK , mB0 and q2 are taken into account. Following the procedure described in [82], a

histogram describing this cut out region is created by mapping out simulated events which

were cut out by the veto in regions of cos θK , mB0 , mKπ and q2, and integrating over

mKπ. This histogram was generated by another member of the amplitude ansatz analysis.

Events that fall into this region are set to 0 and the background PDF is renormalised

correspondingly.

The correction of the K+µ+µ− veto is only applied to the background PDF since this

veto takes effect far from the B0 signal peak in the B0 mass distribution (fewer than 0.01%

of events are removed). It is closer to the B0
s signal peak but the effect is expected to be

small since the B0
s signal peak is already small.

7.3 Unbinned extended maximum likelihood fit

An unbinned extended maximum likelihood fit is performed, where the likelihood

(NSig,B0 +NSig,B0
s
+NBkg)

NDate
−(NSig,B0+NSig,B0

s
+NBkg)

NDat!
×

NDat
∏

i=0

(

1

(NSig,B0 +NSig,B0
s
+NBkg)

(

NSig,B0PSig,B0(xi, η)+

NSig,B0
s
(xi, η)PSig,B0

s
(xi, η) +NBkgPBkg(xi, η)

)

)

(7.10)

is maximised. Here NSig,B0 , NSig,B0
s
≡ fB0

s
NSig,B0 and NBkg are the means of Poissons

which correspond to the expected number of B0, B0
s and background events. NDat is the

total number of events in the dataset, xi corresponds to the angles and mass variables at

event i, and η are the fit parameters.

The signal PDF is not sensitive to the global scaling. If all of the amplitudes are
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multiplied by a constant, it would cancel when normalising the PDF. Thus the overall

scale of the PDF needs to be fixed. Since the observables are computed normalised to the

rate, such as in Equation 2.29, the overall scale of the amplitudes is meaningless. In order

to set the overall scaling, an extended maximum likelihood fit is performed, where

NSig ,B0 = α

∫

PSig ,B0

∣

∣

∣

∣

Fit

d cos θℓ d cos θK dϕ dq2 dmB (7.11)

where α is a constant. This is nominally set as 50,000 for the rare mode fits and 2,000,000 for

the J/ψ fit. These are arbitrary values — the angular PDF consists of bilinear combinations

of the decay amplitudes, thus if all of the amplitudes are scaled by a constant, this constant

can be factored out of the PDF. This constant cancels when normalising the PDF. The

overall scale of the amplitudes is thus chosen by choosing an arbitrary value of α, such that

NSig, B0 always corresponds to the observed number of signal events. In other words, the

amplitudes in PSig,B0 and PSig,B0
s
will scale such that NSig,B0 corresponds to the observed

number of signal events, and this arbitrary scale is chosen by setting α to an abritrary

constant.

For the CP-asymmetries fit, there are two scalings, αB0 and αB̄0 , where

NSig ,B0 = αB0

∫

PSig ,B0

∣

∣

∣

∣

Fit

d cos θℓ d cos θK dϕ dq2 dmB (7.12)

and

NSig,B̄0 = αB̄0

∫

PSig ,B̄0

∣

∣

∣

∣

Fit

d cos θℓ d cos θK dϕ dq2 dmB. (7.13)

In order to allow for the B0 amplitudes to be directly comparable to the B̄0 amplitudes,

the two constants αB0 and αB̄0 can be set to be the same. However, this does not factor

out detection and production asymmetries between B0 and B̄0. In order to incorporate this

effect, the detection and production asymmetries are measured from the B0 → K∗0J/ψ

data fits by forming the ratio C =
NB0

NB̄0
from the signal yields. This is the ratio between the

number of B̄0 events to the B0 events in the J/ψ mode. Since the genuine CP-asymmetry

ACP of the J/ψ is assumed to be 0 [89], this ratio corresponds to the amount of production

and detection asymmetry. Thus by setting αB̄0 = CαB0 , the production and detection

asymmetries are factored out.
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The negative log-likelihood function, which is minimised, is written as

− logL = −
∑

NDat
log
(

NSig,B0PSig,B0 +NSig,B0
s
PSig,B0

s
+NBkgPBkg

)

+
(

NSig,B0 +NSig,B0
s
+NBkg

)

(7.14)

for the CP-averages fit and

− logL = −
∑

NDat,K+
log
(

NSig,B0PSig,B0 +NSig,B̄0
s
PSig,B̄0

s
+NBkg,B0PBkg,B0

)

−
∑

NDat,K−

log
(

NSig,B̄0PSig,B̄0 +NSig,B0
s
PSig,B0

s
+NBkg,B̄0PBkg,B̄0

)

+
(

NSig,B0 +NSig,B0
s
+NBkg,B0 +NSig,B̄0 +NSig,B̄0

s
+NBkg,B̄0

)

(7.15)

for the CP-asymmetries fit. Here, NSig denotes the signal yield as shown in Equations

7.11, 7.12 and 7.13, and NBkg is the background yield.

7.4 Fit strategy

The fitter measures the amplitude coefficients, B0 mass lineshape parameters, background

parameters, and the background yields, returning the fit parameters. There are some

P-wave amplitude parameters where the uncertainties from the Hessian error matrix cannot

be used since they do not provide good descriptions of the 1D log-likelihood surfaces.

Therefore fits to these 1D log-likelihood surfaces are performed with bifurcated parabolas

in order to extract the uncertainties. The correlation matrix is computed from the Hessian

covariance matrix.

The amplitudes and observables are then computed by sampling from the fit covaraince

matrix. There are several fit configurations for the data fits as described below.

• Fit the control mode (B0 → K∗0J/ψ) samples. Here the number of parameters

in the amplitude ansatz is set to be one, i.e. constants, to remove the q2 depen-

dencies. This fit is performed in a 60 MeV/c2 window about the J/ψ mass mJ/ψ,

i.e. (mJ/ψ − 60 MeV/c2) < q2 < (mJ/ψ + 60 MeV/c2). The acceptance function is

evaluated at the J/ψ mass. The fit in the CP-averages or the CP-asymmetries

configuration is performed. The results of this fit are in Chapter 10.

• Fit in the range 1.25 < q2 < 8.0 GeV2/c4. The number of parameters for the
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amplitude ansatz is set to be 4, and nominally the CP-averages fit is performed, with

results in Chapter 11. The motivation for the number of parameters for the ansatz

and why a CP-asymmetries fit is not nominally performed for this analysis is also

given in Chapter 11.

• Fit in the inter-resonance region 11 < q2 < 12.5 GeV2/c4. Results in this region do

not feature in this thesis since the pseudoexperiment studies were primarily performed

by another member of the amplitude ansatz analysis.

In all cases, the S-wave is set to be flat in q2. The combined Run 1 + Run 2 datasets

are fit for each q2 region, with the exception of the control mode where each data period is

fitted separately.
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Chapter 8

Pseudoexperiment studies

The pseudoexperiment studies described in this Chapter are based on Standard Model

pseudoexperiements with no acceptance or background. These studies were performed in

order to understand the analysis in more detail, such as the study of apparent biases and

symmetries of the PDF, as well as answering questions pertaining to the analysis strategy,

such as whether to measure the PDF as a function of the kaon-pion invariant mass (mKπ)

or which amplitude ansatz to use.

8.1 Study of the 5D fit

Whilst this analysis is performed on the decay B0 → K∗0µ+µ−, in reality it is

B0 → K+π−µ+µ−. In the signal data, the dominant contribution in the K+π− system cor-

responds to the K∗0(892), where the kaon and pion are in a P-wave configuration. However

there is also a contribution where the K+π− system is in an S-wave configuration, for exam-

ple the K∗
0 (700), also known as the κ, and the K∗

0 (1430) [14]. There are more contributions

however they are negligble in the Kπ mass window 0.796 < mKπ < 0.996 MeV/c2, where

mKπ is the kaon-pion invariant mass. Whilst the P-wave and S-wave contributions can

be distinguished since they have separate amplitudes, measuring mKπ provides additional

information regarding how likely a particular event is P-wave or S-wave.

The feasibility regarding whether to fit mKπ was investigated. This was tested in the

q2 region 1.25 < q2 < 7 GeV2/c4 since at the time of performing this study, the nominal q2

region for the rare mode fit was 1.25 < q2 < 7 GeV2/c4. There are several advantages of
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fitting mKπ, most notably it allows one to better to distinguish the P-wave contribution,

which peaks in mKπ, and the S-wave contribution, which is relatively flat in mKπ. This

allows one to make precise measurements of the S-wave parameters. Measuring mKπ

thus allows a much better precision of the measurement of the fraction of S-wave and the

interference observables.

As described in Section 2.9, the 5D angular distribution only exhibits two symmetries: a

phase each for the left-handed and right-handed amplitudes. As a reminder, four amplitudes

are set to zero in the basis-fixing condition in the 4D fit. For the 5D fit, only two amplitudes

are fixed to zero to fix the amplitude basis, since there are two continuous symmetries of

the PDF. The choice Im(AR
⊥) = Im(AL

0 ) = 0 was made. Pseudoexperiments were generated

from the amplitude predictions, with the expected Run 1 + Run 2 sample yields. The

precision of the two fits were compared by performing a 5D fit (where mKπ is fitted, and

two amplitudes are fixed to zero) and a 4D fit (where mKπ is not fitted and four amplitudes

are fixed to zero).

The change in precision of the amplitudes which float in both fits was examined at

points in q2. The ratio between the 5D and 4D uncertainties (σ5D and σ4D respectively) for

the amplitudes was plotted. Therefore if ⟨σ5D⟩
⟨σ4D⟩ is less than one, there is a precision increase

from the 5D fit, and if this is greater than one, there is a precision decrease. Figure 8.1

shows the change in precision for the amplitudes at q2 = 4 GeV2/c4. In order to make a

like-for-like comparison, the fitted amplitudes are transformed back into the untransformed

amplitude basis. Comparing the amplitudes which float in both the 4D and 5D fits (all

apart from Im(AR
⊥), Im(AL

0 ), Re(AR
0 ) and Im(AR

0 )), there is an increase in precision in the

S-wave amplitudes, however there is a considerable decrease in precision for some of the

P-wave amplitudes. This was seen across other points in q2.

From the amplitudes, the observables are computed. The change in precision was also

studied for the observables. These are shown in Figure 8.2 for q2 = 4 GeV2/c4. As seen

from this plot, when the amplitudes combine to form the observables, no precision is lost.

The precision of the P-wave observables remains unchanged, whereas the precision of the

S-wave and interference observables improve. The same behaviour is seen at other points

in q2.

The correlation matrices for the ensembles of 4D and 5D fits are compared and are
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Figure 8.1: Change in amplitude precision when comparing the 5D fit to the 4D fit at q2 = 4 GeV2/c4,
where the fitted amplitudes are transformed back into the original untransformed amplitude basis.
The S-wave amplitudes (Re(AL

00), Im(AL
00), Re(AR

00), and Im(AR
00)) result in an increase in precision

in the 5D fits compared to the 4D fits, however the P-wave amplitudes generally have a decrease in
precision. Where the points cannot be plotted because they are outside the x axis range, the values

of ⟨σ5D⟩
⟨σ4D⟩ are quoted.

shown as Figures 8.3 and 8.4 respectively. The amplitude ansatz proposed in [11] was used

for both ensembles of fits. Whilst the S-wave sees an improvement in the 5D fits compared

to the 4D fits, there are larger correlations between amplitudes in the 5D fits.

In order to investigate the large correlations and why the P-wave amplitudes lose

precision in the 5D fits, fits were performed where the amplitudes are parameterised as

constants in q2 in order to simplify the fit. The average correlation matrix for an ensemble

of pseudoexperiments is shown as Figure 8.5. There are some very large correlations, for

example Corr(Im(AL
∥ ), Im(AR0 )) = 0.78 and Corr(Re(AL⊥), Re(A

R
0 ))= 0.81. Such high

correlations between P-wave amplitudes are not present in the 4D fits. The 5D fit appears

to behave as though there are too many free parameters.

A study was performed examining how much of the symmetry in the 4D PDF gets

broken by allowing the PDF to be a function of mKπ. Note that when comparing the 5D

fit to the 4D fit, two more amplitudes are measured. This is because mKπ breaks two
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Figure 8.3: Correlation matrix from ensembles of 4D fits to pseudoexperiments. The ansatz
proposed in [11] was used.
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Figure 8.4: Correlation matrix from ensembles of 5D fits to pseudoexperiments. The ansatz
proposed in [11] was used.
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Figure 8.5: Average correlation matrix from 5D fits, where the amplitudes are flat in q2.

symmetries in the angular distribution. The observables where this breaking of symmetry

happens (the interference observables) are investigated in order to understand the fit

behaviour. If there are no large differences between the observables in the 4D PDF and the

5D PDF, this would be because the symmetries of the 4D PDF which get broken in the

5D PDF only result in only small deviations. This would explain why the fitter behaves as

though there are too many free parameters. The pure P-wave and S-wave terms have no

symmetry breaking when transforming from a 4D PDF to a 5D PDF since the absolute
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value of the lineshape squared can always be factored out from the observable. Here, the

observable SS1 is investigated. Explicitly, in the 4D PDF, this is simply

SS1 ∝ Re(AL
00AL∗

0 +AR
00AR∗

0 ) + CP. (8.1)

For the 5D PDF, the P-wave and S-wave lineshapes AP and AS are included, so

SS1 → Re(AL
00ASAL∗

0 A∗
P +AR

00ASAR∗
0 A∗

P ) + CP. (8.2)

Thus

SS1 ∝ Re(AL
00AL∗

0 +AR
00AR∗

0 )Re(ASA∗
P )−Im(AL

00AL∗
0 +AR

00AR∗
0 )Im(ASA∗

P )+CP. (8.3)

Returning to the q2-dependent fits, Figure 8.6 shows SS1 as a function of mKπ, as

explicitly written in Equation 8.3. The 1σ and 2σ error bands from the 5D fits are shown

in green and yellow respectively. The true value is shown by the black dotted line and

the median is shown by the magenta line. The blue line is the observable SS1 computed

from the true value of amplitudes in the nominal 4D amplitude basis. This 4D basis

has a different basis fixing condition than the 5D basis since the number of symmetries

are different. Therefore examining the difference between this line and the results of the

5D ensemble of fits provides a measure of the amount of breaking of symmetry when

transforming from a 4D PDF to a 5D PDF.

This plot is made at the q2 value where the difference between the 4D basis and true

observable (i.e. in the 5D basis) is the largest. As mentioned, this difference can be

interpreted as the amount of symmetry breaking in this observable. In other words, the

fact the blue line is different from the black line is the reason why two more amplitudes

are required to be floated in the 5D fits compared to the 4D fits. As seen in this plot,

compared to the statistical uncertainty in the 5D fits, this difference is tiny. Thus the fit is

not sensitive the symmetry breaking in this observable. This is a decrease in precision in

the P-wave amplitudes is seen in the 5D fits, and the large correlations between results

in observables which do not lose precision. The equivalent plots for SS2, SS3, SS4, and

SS5 were made, since these are the other observables where the symmetry breaking occurs.
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Figure 8.6: The observable SS1 as a function of mKπ at q2 = 7 GeV2/c4. The median, 1σ and 2σ
error bands from ensembles of 5D fits are shown in magenta, green, and yellow respectively. The
true value is shown in black and the true values in the 4D amplitude basis are shown in blue.

These are shown as Figure 8.7.

An investigation was performed investigating whether there is a better basis-fixing

condition, since another basis could result in a larger difference between the symmetry-

breaking observable computed in the 4D basis and the observable computed in the 5D

basis. As a reminder for the reader, there are four angles which are used to set the basis, as

defined in Section 2.10. They are the two global phases (ϕL,R), θ, and η. The global phases

are ignored in this study since they correspond to symmetries in both the 4D and 5D

PDFs. Nominally in the 4D PDF, the basis fixing condition arises from selecting particular

angles which rotate the amplitudes such that the condition is satisfied. However there

could be another basis-fixing condition (i.e. Im(AR
⊥) = C1, Im(AL

0 ) = C2, Re(AR
0 ) = C3,

Im(AR
0 ) = C4, where Ci are constants), such that the 4D PDF has a larger breaking of
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Figure 8.7: Observables SS2, SS3, SS4, and SS5 as functions of mKπ at q2 = 7 GeV2/c4. The
median, 1σ and 2σ error bands from ensembles of 5D fits are shown in magenta, green, and yellow
respectively. The true values are shown in black and the true values in the 4D amplitude basis are
shown in blue.

symmetry. In other words, another 4D, or crucially another 5D amplitude basis could be

used, where the symmetry breaking observables are more sensitive in this basis than the

previous basis. This was studied by scanning values of SS1 at different values of θ and η

and maximising the difference between the observable in 4D basis and the true value of

the observable (i.e. in the 5D basis).

Example plots of one-dimensional scans of the angles at q2 = 6 GeV2/c4 are shown

in Figure 8.8. Shown are the angles θ (left) and η (right) as functions of mKπ, where all

of the other angles are set to those used in the nominal 4D basis. As seen in these plots,

there are certain values of these angles which results in a large difference of SS1, larger

than the difference seen in Figure 8.6. Therefore there exists amplitude bases where there

is a large breaking of symmetry when transforming from a 4D PDF to a 5D PDF. Thus a

5D fit could be performed (as long as the amplitude ansatz can describe the amplitudes)
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Figure 8.8: The difference between the observable SS1 in the 4D basis where the angle is θ (left) or
η (right), and all other angles are as used in the nominal 4D basis, and SS1 in the 5D basis. This is
at q2 = 6 GeV2/c4.
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Figure 8.9: The difference between the observable SS1 in the 4D basis where the angle is θ (left) or
η (right), and all other angles are as used in the nominal 4D basis, and SS1 in the 5D basis, in the
mKπ window 0.745 < mKπ < 1.1 GeV/c2. This is at q2 = 6 GeV2/c4.

without seeing such large correlations between the P-wave amplitudes.

Whether to fit in a wider mKπ window was considered. If there is a large amount of

breaking of symmetry in a region outside the nominal mKπ window, then the fitter would

behave much better. Figure 8.9 shows the same as Figure 8.8 but in a wider mKπ window.

The same plots as Figure 8.9 but at q2 = 4 GeV2/c4 and q2 = 2 GeV2/c4 are shown as

Figures 8.10 and 8.11 respectively. The breaking of symmetry is maximal at around the

K∗0 P-wave peak. Thus there is not much motivation with the regards to the fit behaviour

for increasing the mKπ window. In addition, a wide mKπ window results in larger levels of

combinatorial and peaking backgrounds, which would need to be dealt with.

133



0.05−

0

0.05

0.1

0.15

0.2

S
1

 S
∆

4c/2 = 4 GeV2quntransformed basis at 

 in a transformed basis compared to the
S1

SChange of 

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

)2c (GeV/
πK

m

3−

2−

1−

0

1

2

3

 (
ra

d
)

θ
4c/2 = 4 GeV2quntransformed basis at 

 in a transformed basis compared to the
S1

SChange of 

0.2−

0.1−

0

0.1

0.2

0.3

0.4

S
1

 S
∆

4c/2 = 4 GeV2quntransformed basis at 

 in a transformed basis compared to the
S1

SChange of 

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

)2c (GeV/
πK

m

3−

2−

1−

0

1

2

3

 (
ra

d
)

η

4c/2 = 4 GeV2quntransformed basis at 

 in a transformed basis compared to the
S1

SChange of 
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Figure 8.11: The difference between the observable SS1 in the 4D basis where the angle is θ (left)
or η (right), and all other angles are as used in the nominal 4D basis, and SS1 in the 5D basis, in
the mKπ window 0.745 < mKπ < 1.1 GeV/c2. This is at q2 = 2 GeV2/c4.

Two-dimensional scans of the angles θ and mKπ were performed to find the angles and

q2 such that the 4D basis with maximal breaking of symmetry. Figure 8.12 shows the same

as Figures 8.6 and 8.7, with the basis with maximal breaking of symmetry shown in red.

Therefore, there is indeed a 4D basis which is sensitive to a large amount of breaking of

symmetry in the PDF when transforming to a 5D basis. One can consider performing

the fit in one of these alternative bases — the 5D basis would not be the nominal 5D

basis, but an alternative basis where two amplitudes are fixed to some non-zero values.

However there are drawbacks with this. The terms where the symmetries get broken tend

to involve right-handed amplitudes which are usually small. If these are rotated such that
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they become large, or a large amplitude is rotated to become small, this can result in

fast-moving or even discontinuous behaviour in some other amplitudes. This makes those

amplitudes extremely difficult to be described by a simple ansatz. In addition, since the

choice of basis is very model-specific, and the studies performed were based on a particular

parameterisation of the Standard Model (even the Standard Model predictions can vary

due to different parameters for the non-local contributions), this basis is not necessarily

the best for the data. In addition, the S-wave currently has no theoretical predictions, and

global fits only use the P-wave observables. Thus it is decided not to fit the PDF as a

function of mKπ. It is possible that the PDF as a function of mKπ will be fitted in the

future, given the increase in data and potential interest from theorists in the S-wave and

interference parts of the PDF.

8.2 Ansatz choice

Initially, the ansatz proposed in [11] was studied. The ansatz considered was

A = α+ βq2 +
γ

q2
, (8.4)

where α, β, and γ are amplitude coefficients. However it was noticed through pseudoexper-

iment studies the correlations between the amplitude coefficients are extremely high. As

shown in Figure 8.3, the absolute values of correlations between amplitude components

within an amplitude are greater than 0.95.

Issues were also noted in the behaviour of the log-likelihood profiles. Figure 8.13 shows

some log-likelihood profiles from an example pseudoexperiment, where the ansatz proposed

in [11] was used. In these plots, for each amplitude parameter of interest, the parameter

is fixed to various values in the fit whilst all other parameters float. The fit is performed

200 times for each value, where the free parameters’ initial values are randomised for each

fit. The log-likelihood is recorded, therefore mapping out the minima. Each point may

correspond to different log-likelihoods since some fits may land in the solution corresponding

to the global minimum, others may land in local minima. From Figure 8.13, the global

minimum and the other global minimum where A → −A are seen. Therefore the global

minimum which is quoted is arbitrarily chosen. The red line shows the parabola from

135



0.8 0.85 0.9 0.95 1
)2c (GeV/

πK
m

0.5−

0

0.5

1

1.5

2

4
c/

2
 =

 7
.0

0
0
 G

e
V

2
q

 a
t 

S
1

S

True observable

 = -0.57η = -1.26, θBasis where 

Nominal 4D basis

Median from ensemble of fits

 band from ensemble of fitsσ1

 band from ensemble of fitsσ2

0.8 0.85 0.9 0.95 1
)2c (GeV/

πK
m

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

4
c/

2
 =

 1
.2

5
6
 G

e
V

2
q

 a
t 

S
2

S

True observable

 = -0.82η = -0.06, θBasis where 

Nominal 4D basis

Median from ensemble of fits

 band from ensemble of fitsσ1

 band from ensemble of fitsσ2

0.8 0.85 0.9 0.95 1
)2c (GeV/

πK
m

1−

0.5−

0

0.5

1

1.5

4
c/

2
 =

 1
.2

5
6
 G

e
V

2
q

 a
t 

S
3

S

True observable

 = -0.82η = -3.14, θBasis where 

Nominal 4D basis

Median from ensemble of fits

 band from ensemble of fitsσ1

 band from ensemble of fitsσ2

0.8 0.85 0.9 0.95 1
)2c (GeV/

πK
m

2−

1.5−

1−

0.5−

0

0.5

1

1.5

2

4
c/

2
 =

 7
.0

0
0
 G

e
V

2
q

 a
t 

S
4

S
True observable

 = -0.06η = -1.32, θBasis where 

Nominal 4D basis

Median from ensemble of fits

 band from ensemble of fitsσ1

 band from ensemble of fitsσ2

0.8 0.85 0.9 0.95 1
)2c (GeV/

πK
m

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

4
c/

2
 =

 6
.9

8
4
 G

e
V

2
q

 a
t 

S
5

S

True observable

 = -1.51η = -3.02, θBasis where 

Nominal 4D basis

Median from ensemble of fits

 band from ensemble of fitsσ1

 band from ensemble of fitsσ2

Figure 8.12: Observables SS1, SS2, SS3, SS4, and SS5 as functions of mKπ at the q2 value with
maximal breaking of symmetry. The median, 1σ and 2σ error bands from ensembles of 5D fits
are shown in magenta, green, and yellow respectively. The true values are shown in black and the
true values in the 4D amplitude basis are shown in blue. Shown in red is the basis with maximal
breaking of symmetry.

136



the Hessian error matrix. There are local minima around ∆LLH < 4.5 away from the

global minima. In addition, as seen in the right handed amplitudes, there are local minima

very close to the global minimum. Given this presence of local minima, it is extremely

challenging to parameterise this log-likelihood surface thus the ansatz proposed in [11] is

not adopted.

The amplitude ansatz A =
∑

αiLi(q
2′) was considered, where αi corresponds to the

amplitude coefficients, and Li(q
2′) are Legendre polynomials in q2′, where q2′ corresponds

to q2 scaled to the range −1 ≤ x ≤ 1. Ansatzes with three parameters were considered,

i.e. A = αL0(q
2′) + βL1(q

2′) + γL2(q
2′), where α, β, and γ are amplitude components.

Pseudoexperiment studies were performed with four parameters for the ansatz. Due to the

orthogonality of Legendre polynomials, no large correlations were seen between amplitude

ansatz components, as shown in Figure 8.14. Profile log-likelihoods were plotted for an

example pseudoexperiment, where the fit is performed with a 3-parameter Legendre ansatz.

Example of these are shown in Figure 8.15. Here at each point the parameter of interest is

fixed and all other parameters vary freely in the fit. The fit is performed 200 times for

each value, where the free parameters’ initial values are randomised.

Given there are no local minima seen here, it is thus much easier to parameterise the

profile log-likelihoods. This provides a strong motivation for using Legendre polynomials

for the amplitude ansatz. The profile log-likelihoods were studied on data and in cases

where the Hessian is not a good parameterisation of the log-likelihood surface, fits to

bifurcated parabola provided a good description. The number of parameters for P-wave

will be set to four since they can describe a variety of models as shown in Section 7.1.1

and provide a good fit to data, as shown in Chapter 11.
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Figure 8.13: Profile log-likelihoods from an example pseudoexperiement, where the fit is performed
with the ansatz proposed by [11]. At each point the parameter of interest is fixed and all other
parameters vary freely in the fit. The fit is performed 200 times for each value, where the free
parameters’ initial values are randomised. The two global minima are seen, as well as some local
minima. Shown in red is the log likelihood surface from the Hessian error matrix. The green lines
indicate 1σ, 2σ, and 3σ from the Hessian error matrix.
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Figure 8.15: Profile log-likelihoods from an example pseudoexperiement, where the fit is performed
with a three-parameter Legendre polynomial ansatz. At each point the parameter of interest is fixed
and all other parameters vary freely in the fit. The fit is performed 200 times for each value, where
the free parameters’ initial values are randomised. The two global minima are seen. There are no
local minima present. Shown in red is the log likelihood surface from the Hessian error matrix.
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8.3 Study of apparent fit biases

In order to validate the fitter to ensure it is working before applying it to data, pseudoex-

periments are generated from the amplitude ansatz predictions and fit back based on the

four parameter Legendre polynomial ansatz in the region 1.25 < q2 < 7 GeV2/c4.

The q2-dependent amplitudes are computed from the fitted amplitude components.

The distributions of the amplitudes from ensembles of fits are shown as Figure 8.16. The

black and magenta lines show the true value and median respectively, and the green and

yellow bands shows the 1σ and 2σ error bands. From the amplitudes, observables are

computed, which are shown in Figures 8.17 and 8.18.

As seen in Figures 8.16, 8.17 and 8.18 there appears to be some fit biases. These

apparent biases are largest in Re(AL
∥ ), S4 and P ′

4. The distribution of fits for Re(AL
∥ ) is

shown as Figure 8.19. Therefore the most likely value of Re(AL
∥ ) indeed appears to be

biased. This was also seen in S4, and P
′
4.

Pseudoexperiment studies were performed at high sample yields (10× nominal sample

yields) to check whether the the median gets closer to the true value as the sample

yields is increased. Figures 8.20, 8.21 show some amplitudes and observables where the

pseduoexperiments are generated with 1× (left), and 10× (right) nominal sample yields.

The difference between the median and true values decrease as the sample yields is increased.

Thus the fitter framework is correctly working. Additionally, the distribution of fits were

plotted at q2 = 6 GeV2/c4 for Re(AL
∥ ), S4, and P ′

4, where the pseudoexperiments are

generated with 1× and 10× nominal sample yields, as shown in Figure 8.22. The true

value is shown in black and the median is shown in magenta. The apparent biases reduce

as sample yields is increased.

Studies were performed investigating these apparent biases, and it was found that

there are no genuine biases. The apparent biases in the observables are in fact artefacts

of projecting a physical boundary visible in the S3/S4 plane onto a single observable.

There are physical boundaries in the PDF since the PDF cannot be less than zero and the

observables are combinations of amplitudes normalised to the total P-wave rate. Figure 8.23

shows the physical region of S3 and S4. The red point shows the the median and statistical

uncertainty from an ensemble of fits at q2 = 6 GeV2/c4. The SM prediction and thus the
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Figure 8.16: P-wave amplitudes from ensembles of fits in the 1.25 < q2 < 7 GeV2/c4 region. The
black and magenta lines show the true value and median respectively, and the green and yellow
bands shows the 1σ and 2σ error bands.
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Figure 8.17: Observables (Ss) from ensembles of fits in the 1.25 < q2 < 7 GeV2/c4 region. The
black and magenta lines show the true value and median respectively, and the green and yellow
bands shows the 1σ and 2σ error bands.
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Figure 8.18: Observables (Ps) from ensembles of fits in the 1.25 < q2 < 7 GeV2/c4 region. The
black and magenta lines show the true value and median respectively, and the green and yellow
bands shows the 1σ and 2σ error bands.
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Figure 8.19: Distribution of fits of Re(AL
∥ ) of pseudoexperiments generated from the SM amplitude

predictions. The black line shows the true value.

results from the fits are close to the physical boundary.

In order to simplify the dimensionality of the problem, pseudoexperiments were gener-

ated at q2 = 6 GeV2/c4 and fits were performed where only Re(AL
∥ ) and the right-handed

amplitudes are floated. The bias in Re(AL
∥ ) is still seen. Figure 8.24 shows Im(AR

∥ ) and

Re(AL
∥ ) (left), and S3 and S4 (right) at q2 = 6 GeV2/c4. The true values are shown in

black. In addition, Figure 8.25 shows the same but where only Im(AR
∥ ) and Re(AL

∥ ) are

floated in the fit. Here the best fit point is unbiased and projecting this 2D histogram onto

1D results in an apparent bias. It was also found that applying a harsh cut in S3, where

all fits with S3 > −0.02 are removed, results in no bias in Re(AL
∥ ), S4, and P

′
4.

The bias in S4 is an artefact from projecting the physical boundary onto one dimension.

Thus S4 may appear biased even though the most likely value when taking into account all of

the observables is unbiased. Re(AL
∥ ) is highly correlated with S4, since S4 ∝ Re(AL

∥ )Re(AL
0 )

and Re(AL
0 ) is a large amplitude which is relatively flat in q2. Since the amplitudes are used

to construct the observables, the effect from the boundary is also seen in the amplitudes.

This was checked by generating amplitudes based on their true SM values, and sampling

from the fit covariance matrix. Figure 8.26 shows this for Re(AL
∥ ) (left) and Re(AL

0 ) (right).

From the amplitudes, observables are computed. Figure 8.27 shows the distribution of S4

and P ′
4, where apparent biases are seen. The apparent bias shown in the observables is

seen, so projecting the boundary onto 1D has an effect. This study was applied to the full

q2 range. Here, events are sampled according to the true amplitudes and fit covariance
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Figure 8.20: Some P-wave amplitudes from ensembles of fits in the 1.25 < q2 < 7 GeV2/c4 region,
where the pseudoexperiments are generated with nominal sample yields (left) and 10× nominal
sample yields (right). The black and magenta lines show the true value and median respectively,
and the green and yellow bands shows the 1σ and 2σ error bands.
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Figure 8.21: Some P-wave observables from ensembles of fits in the 1.25 < q2 < 7 GeV2/c4 region,
where the pseudoexperiments are generated with nominal sample yields (left) and 10× nominal
sample yields (right). The black and magenta lines show the true value and median respectively,
and the green and yellow bands shows the 1σ and 2σ error bands.
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Figure 8.22: Distribution of fits to pseudoexperiments generated at 1× (left) and 10× (right)
nominal sample yields. Shown are Re(AL

∥ ), S4, and P
′
4 at q2 = 6 GeV2/c4. The black and magenta

lines show the true value and median respectively.

matrix, as shown in Figure 8.28 for Re(AL
∥ ) (left) and Re(AL

0 ) (right). By construction,

there are no biases in this test. Figure 8.29 shows the distribution of S4 (left) and P ′
4

(right), where the apparent biases are seen.

Generating pseudoexperiments close to and away from the S3/S4 boundary results in

fits with the parameter Re(AL
∥ ) appearing biased and unbiased respectively. Figures 8.30

and 8.31 show this. Therefore the physical boundary has a profound effect on whether

the observable appears biased in 1D. However this does not conclude whether there is a

genuine bias in Re(AL
∥ ).

A method to check if there is a genuine bias in the multidimensional space has been

developed. This is by selecting the region around the most likely value of a parameter
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Figure 8.23: Physical region of S3 and S4. The red point shows the median and statistical
uncertainty from ensembles of fits at q2 = 6 GeV2/c4.
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Figure 8.24: Im(AR
∥ ) and Re(AL

∥ ) (left), and S3 and S4 (right) at q2 = 6 GeV2/c4, where only

Re(AL
∥ ) and the right-handed amplitudes are floated. The true values are shown in black.

of interest and checking whether the bias reduces as the region selected gets smaller. By

decreasing the size of the region selected around the most likely value, the effect of the

physical boundary decreases. Here, the parameter of interest is Re(AL
∥ ) at q

2 = 6 GeV2/c4.

The lower and upper X% of fits of all of the other amplitudes and the amplitude Re(AL
∥ )

is examined. X is increased to see whether the bias decreases.

Figure 8.32 shows the distribution of Re(AL
∥ ) at q

2 = 6 GeV2/c4 where: none; upper
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Figure 8.25: Im(AR
∥ ) and Re(AL

∥ ) (left), and S3 and S4 (right) at q2 = 6 GeV2/c4, where only

Re(AL
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∥ ) are floated. The true values are shown in black.
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Figure 8.29: Distribution of pseudoevents sampled from the amplitudes and fit covariance matrix
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Figure 8.30: Pseudoexperiments are generated close to the S3/S4 boundary (from the red point on
the left plot) resulting in distribution of fits to Re(AL

∥ ) (right). The true value is shown by the
black line. There is an apparent bias in this amplitude.
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Figure 8.31: Pseudoexperiments are generated away from the S3/S4 boundary (from the red point
on the left plot) resulting in distribution of fits to Re(AL

∥ ) (right). The true value is shown by the
black line. There is no apparent bias in this amplitude.

and lower 5%; 10%; 15%; and 20% of fits in the other amplitudes are removed. As a region

which includes the most likely value gets smaller, the apparent bias seen in Re(AL
∥ ) reduces.

The same plot at q2 = 4 GeV2/c4 is shown as Figure 8.33. The bias seen in this amplitude

is seen to reduce as the region containing the most likely value is decreased.

Thus it is concluded that this apparent bias is not a genuine bias. Therefore no

systematic uncertainty is needed to account for fit biases since the most likely value of all

of the amplitudes and the observables combined is unbiased. It should be noted that one

should not use the result from one observable alone, due to the apparent bias which is an

artefact of the physical boundary. All of the P-wave observables must be used together.
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Figure 8.32: Distribution of Re(AL
∥ ) at q

2 = 6 GeV2/c4 from an ensemble of fits where no, upper

and lower 5%, 10%, 15%, and 20% of fits in the other amplitudes are removed. The true value is
shown in black.
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Figure 8.33: Distribution of Re(AL
∥ ) at q

2 = 4 GeV2/c4 from an ensemble of fits where no, upper

and lower 5%, 10%, 15%, and 20% of fits in the other amplitudes are removed. The true value is
shown in black.
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Chapter 9

Pseudoexperiments generated from

the data fit

This section describes the pseudoexperiment studies in the region 1.25 < q2 < 8.0 GeV2/c4,

where the pseudoexperiments are generated from the best fit point to data. All plots in

this section are blinded. The default fit configuration in this region is the CP-symmetries

fit, where the P-wave amplitudes have 4 parameters. Explicitly, the P-wave amplitudes A

are described by the ansatz

A(q2) = αL0(q
2′) + βL1(q

2′) + γL2(q
2′) + δL3(q

2′), (9.1)

where Li(q
2′) are Legendre polynomials, and q2′ corresponds to q2 scaled to the range

−1 ≤ x ≤ 1. The amplitude components are α, β, γ, and δ.

For the studies performed in this chapter, 1090 pseudoexperiments are generated from

the fit result to data. These are fully representative of the data fit — the acceptance

is included as well as the background and the Kµµ veto. Example projections from a

pseudoexperiment are shown as Figure 9.1.

Results from ensembles of fits were studied. The residuals of the parallel amplitude

parameters are shown as Figures 9.2 and 9.3. The results for the left-handed transverse

amplitude parameters are shown in Figure 9.4. Figure 9.5 shows the residuals for the

right-handed amplitude parameters and the longitudinal amplitude parameters. All other

P-wave amplitude parameters are fixed to zero. The black lines show the values from the
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Figure 9.1: Projections from fitting a pseudoexperiment generated in the 1.25 < q2 < 8 GeV2/c4

region. The value of the parameters used for the generation are from the data fit. The y-axes
have been blinded. Shown is the B0 mass (top right), cos θℓ (middle left), cos θK (middle right), ϕ
(bottom left), and q2 (bottom right). The signal is shown in blue and the background is shown in
red. As seen from the pulls, the fitter is reasonably behaved.
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Figure 9.2: Residuals of the P-wave parameters (left-handed parallel amplitude components) from
ensembles of fits in the 1.25 < q2 < 8 GeV2/c4 region. The value of the parameters used for the
generation are from the data fit. The experimental values of the parameters are shown by the black
lines. The x-axes have been blinded.

data fit used to generate the pseudoexperiments, i.e. the experimental values. As seen

from these plots there are no large biases.

The distribution of fits of the amplitudes was also examined. The amplitude is computed

157



)RαRe(
0

5

10

15

20

25

30

35

)
R

βRe(
0

5

10

15

20

25

30

35

)RγRe(
0

5

10

15

20

25

30

)RδRe(
0

5

10

15

20

25

30

35

)RαIm(
0

5

10

15

20

25

30

)
R

βIm(
0

5

10

15

20

25

30

)RγIm(
0

5

10

15

20

25

30

)RδIm(
0

5

10

15

20

25

30

Figure 9.3: Residuals of the P-wave parameters (right-handed parallel amplitude components) from
ensembles of fits in the 1.25 < q2 < 8 GeV2/c4 region. The value of the parameters used for the
generation are from the data fit. The experimental values of the parameters are shown by the black
lines. The x-axes have been blinded.
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Figure 9.4: Residuals of the P-wave parameters (left-handed transverse amplitude components)
from ensembles of fits in the 1.25 < q2 < 8 GeV2/c4 region. The value of the parameters used for
the generation are from the data fit. The experimental values of the parameters are shown by the
black lines. The x-axes have been blinded.
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Figure 9.5: Residuals of the P-wave parameters (right-handed transverse and longitudinal amplitude
components) from ensembles of fits in the 1.25 < q2 < 8 GeV2/c4 region. The value of the parameters
used for the generation are from the data fit. The experimental values of the parameters are shown
by the black lines. The x-axes have been blinded.
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from the amplitude components. Here the amplitudes are shifted by the experimental

value at each q2 point for the blinding. Thus by definition the experimental value is at zero.

These plots are shown as Figure 9.6 for the P-wave amplitudes. The experimental value is

shown by the black line. There are no large biases seen here, thus the fit is performing well.

However the largest apparent bias seen is in the amplitude Re(AL
∥ ), which is discussed in

more detail in Chapter 8.3.

The coverage of the pseudoexperiments was also studied. The fraction of fits where

experimental value is between the best fit point µ minus a shift x of the Hessian uncertainty

σHESSE and µ plus a shift x of σHESSE of the fits were studied. This is compared to the

absolute value of a cumulative distribution of a Normal distribution (i.e. a Gaussian with

mean = 0 and σ = 1). These are shown as Figures 9.7, 9.8, 9.9, and 9.10. There are some

components where incorrect coverage is seen, others where the coverage is correct. This is

also compared to the fraction of fits where the experimental value is between µ− xσnew

and µ+ xσnew where σnew corresponds to the uncertainties when fitting the profile log-

likelihood from the pseudoexperiments with bifurcated parabolas. As shown in these

figures, the uncertainties when fitting the profile log-likelihood from the pseudoexperiments

with bifurcated parabolas overall gives correct coverage compared to the uncertainties from

the Hessian error matrix, which sometimes results in incorrect coverage. Chapter 11 shows

the profile log-likelihoods from the fits to data.

To conclude, pseudoexperients generated from the data best-fit point suggest the fit is

well behaved and there are no large biases seen. From examining the coverage, the quoted

uncertainties are found to be trustworthy. In most cases, the Hessian error matrix can

be used. Where the Hessian cannot be used, the uncertainties are extracted by fitting

the 1D log-likelihood profile to bifurcated parabolas. Given the fit behaves very well and

the uncertainties can be trusted, this will enable one to generate synthetic datasets with

accurate coverage from the fit results.
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Figure 9.6: Distribution of fits of the P-wave amplitudes from ensembles of fits in the
1.25 < q2 < 8 GeV2/c4 region. The value of the parameters used for the generation are from
the data fit. The experimental values of the parameters are shown by the black lines. All fits are
shifted by the experimental value. The y-axes have been blinded.
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Figure 9.7: Coverage of the left-handed parallel amplitude components from ensembles of fits in
the 1.25 < q2 < 8 GeV2/c4 region. The value of the parameters used for the generation are from
the data fit. Shown are the fraction of fits where the experimental value is between µ− xσHESSE

and µ+ xσHESSE where µ is the best fit point σHESSE is the Hessian uncertainty, with error
bands shown owing to the finite number of pseudoexperiments. Also shown is the same but for the
uncertainties extracted from fitting bifurcated parabola to the profile log-likelihoods for each toy.
These are compared the absolute value of the cumulative distribution of a Normal distribution.

163



0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.2

0.4

0.6

0.8

1.0

CDF of N(0, x)  CDF of N(0,-x)
Fraction of fits where the true value is 
between x HESSE and + x HESSE 
for Re( R)
Fraction of fits where the true value is 
between x new and + x new 
for Re( R)

0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.2

0.4

0.6

0.8

1.0

CDF of N(0, x)  CDF of N(0,-x)
Fraction of fits where the true value is 
between x HESSE and + x HESSE 
for Re( R)
Fraction of fits where the true value is 
between x new and + x new 
for Re( R)

0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.2

0.4

0.6

0.8

1.0

CDF of N(0, x)  CDF of N(0,-x)
Fraction of fits where the true value is 
between x HESSE and + x HESSE 
for Re( R )
Fraction of fits where the true value is 
between x new and + x new 
for Re( R )

0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.2

0.4

0.6

0.8

1.0

CDF of N(0, x)  CDF of N(0,-x)
Fraction of fits where the true value is 
between x HESSE and + x HESSE 
for Re( R)
Fraction of fits where the true value is 
between x new and + x new 
for Re( R)

0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.2

0.4

0.6

0.8

1.0

CDF of N(0, x)  CDF of N(0,-x)
Fraction of fits where the true value is 
between x HESSE and + x HESSE 
for Im( R)
Fraction of fits where the true value is 
between x new and + x new 
for Im( R)

0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.2

0.4

0.6

0.8

1.0

CDF of N(0, x)  CDF of N(0,-x)
Fraction of fits where the true value is 
between x HESSE and + x HESSE 
for Im( R)
Fraction of fits where the true value is 
between x new and + x new 
for Im( R)

0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.2

0.4

0.6

0.8

1.0

CDF of N(0, x)  CDF of N(0,-x)
Fraction of fits where the true value is 
between x HESSE and + x HESSE 
for Im( R )
Fraction of fits where the true value is 
between x new and + x new 
for Im( R )

0.0 0.5 1.0 1.5 2.0 2.5
x

0.0

0.2

0.4

0.6

0.8

1.0

CDF of N(0, x)  CDF of N(0,-x)
Fraction of fits where the true value is 
between x HESSE and + x HESSE 
for Im( R)
Fraction of fits where the true value is 
between x new and + x new 
for Im( R)

Figure 9.8: Coverage of the right-handed parallel amplitude components from ensembles of fits in
the 1.25 < q2 < 8 GeV2/c4 region. The value of the parameters used for the generation are from
the data fit. Shown are the fraction of fits where the experimental value is between µ− xσHESSE

and µ+ xσHESSE where µ is the best fit point σHESSE is the Hessian uncertainty, with error
bands shown owing to the finite number of pseudoexperiments. Also shown is the same but for the
uncertainties extracted from fitting bifurcated parabola to the profile log-likelihoods for each toy.
These are compared the absolute value of the cumulative distribution of a Normal distribution.
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Figure 9.9: Coverage of the left-handed transverse amplitude components from ensembles of fits in
the 1.25 < q2 < 8 GeV2/c4 region. The value of the parameters used for the generation are from
the data fit. Shown are the fraction of fits where the experimental value is between µ− xσHESSE

and µ+ xσHESSE where µ is the best fit point σHESSE is the Hessian uncertainty, with error
bands shown owing to the finite number of pseudoexperiments. Also shown is the same but for the
uncertainties extracted from fitting bifurcated parabola to the profile log-likelihoods for each toy.
These are compared the absolute value of the cumulative distribution of a Normal distribution.
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Figure 9.10: Coverage of the right-handed transverse and longitudinal amplitude components from
ensembles of fits in the 1.25 < q2 < 8 GeV2/c4 region. The value of the parameters used for the
generation are from the data fit. Shown are the fraction of fits where the experimental value is
between µ− xσHESSE and µ+ xσHESSE where µ is the best fit point σHESSE is the Hessian
uncertainty, with error bands shown owing to the finite number of pseudoexperiments. Also shown
is the same but for the uncertainties extracted from fitting bifurcated parabola to the profile
log-likelihoods for each toy. These are compared the absolute value of the cumulative distribution
of a Normal distribution.
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Chapter 10

Results from the control mode fits

The control mode B0 → K∗0J/ψ is fitted in order to verify agreement between

data periods. The J/ψ fits shown in this chapter were performed in the q2 region

9.223 < q2 < 9.966 GeV2/c4. The fits were performed with amplitudes flat in q2, i.e.

A = α for each amplitude, where α is complex. The observables were computed by

sampling from the amplitudes covariance matrix. The B0
s yield relative to the B0 is fixed to

0.0077075 and mass difference between the B0
s and B0 is fixed to 87.26 MeV/c2. The tails

of the signal Crystal Ball functions are free parameters. The acceptances with the same

orders of polynomials used to describe the distributions in the angles as in the full Run 1

and Run 2 fits were used. The acceptance is evaluated at the midpoint of the q2 window

9.223 < q2 < 9.966 GeV2/c4. There is no q2 dependence in this fit since the amplitudes

are very fast-moving and thus extremely difficult to describe with Legendre polynomial

ansatzes. Thus amplitude fits binned in q2 are performed.

10.1 CP-averages fit

The fits in the CP-average configuration were performed. For these fits all of the B0 mass

parameters are floated. The plots of the Run 1 fit are shown as Figure 10.1. The 2016, 2017,

and 2018 fits are shown as Figures 10.2 and 10.3, and 10.4 respectively. The large pulls

in cos θK are due to exotic states decaying to πJ/ψ, e.g. B0 → Z(4430)−(→ π−J/ψ)K+,

where Z(4430)− is a cc̄dū state. These are consistent with pulls seen in pseudoexperiments

where the exotic states are added in the pseudoexperiments based on [90].
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Figure 10.1: Plots of the B0 → K∗0J/ψ CP-averages fit to Run 1 data. The signal is shown in
blue and the background is shown in red. Shown are the B0 mass, cos θℓ, cos θK , and ϕ.

The observables in each data period were computed. These are shown as Table 10.1 for

Run 1 and 2016, and Table 10.2 for 2017 and 2018. Note the uncertainties shown are just

statistical. The comparisons between each data period were made and are shown as Table

10.3. Since these comparisons were made with just the statistical uncertainties and J/ψ

mode is expected to be systematically limited, the agreement between the data periods is

good.
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Table 10.1: Results for the obsvervables from the Run 1 and 2016 B0 → K∗0J/ψ fits, where the
fits are performed in the CP-averages configuration.

Run 1 2016

FL 0.55865± 0.00117 0.56369± 0.00141
S3 −0.00581± 0.00115 −0.00341± 0.00166
S4 −0.24556± 0.00065 −0.24438± 0.00101
S5 −0.0023± 0.0014 0.00176± 0.00204

AFB −0.00142± 0.00113 −0.00025± 0.00125
S7 −0.0022± 0.00181 −0.00276± 0.00212
S8 −0.05103± 0.00137 −0.05636± 0.002
S9 −0.09147± 0.00148 −0.09308± 0.00175
FS 0.0834± 0.00157 0.08166± 0.00245

Table 10.2: Results for the obsvervables from the 2017 and 2018 B0 → K∗0J/ψ fits, where the fits
are performed in the CP-averages configuration.

2017 2018

FL 0.55975± 0.00141 0.56131± 0.00128
S3 −0.00555± 0.00163 −0.00402± 0.00149
S4 −0.24605± 0.00099 −0.24453± 0.0009
S5 −0.00013± 0.002 0.00465± 0.00179

AFB −0.00142± 0.00123 −0.00275± 0.00109
S7 0.00252± 0.00207 −0.0019± 0.00187
S8 −0.05497± 0.00202 −0.05317± 0.00181
S9 −0.09185± 0.00176 −0.09223± 0.00163
FS 0.08847± 0.00251 0.08198± 0.00225

Table 10.3: Comparisons of obsvervables (in numbers of σ) for the B0 → K∗0J/ψ fits between each
data period, where the fits are performed in the CP-averages configuration.

Run 1 - 16 Run 1 - 17 Run 1 - 18 16 - 17 16 - 18 17 - 18

FL −2.75 −0.6 −1.53 1.98 1.25 −0.82
S3 −1.19 −0.13 −0.95 0.92 0.28 −0.69
S4 −0.98 0.41 −0.93 1.18 0.11 −1.14
S5 −1.63 −0.89 −3.06 0.66 −1.06 −1.78

AFB −0.69 0.0 0.85 0.67 1.51 0.81
S7 0.2 −1.71 −0.12 −1.78 −0.31 1.58
S8 2.2 1.62 0.94 −0.49 −1.18 −0.66
S9 0.7 0.17 0.35 −0.49 −0.35 0.16
FS 0.6 −1.71 0.52 −1.94 −0.1 1.93
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Figure 10.2: Plots of the B0 → K∗0J/ψ CP-averages fit to 2016 data. The signal is shown in blue
and the background is shown in red. Shown are the B0 mass, cos θℓ, cos θK , and ϕ.

10.2 CP-asymmetries fit

The fits in the asymmetries configuration were performed, with identical extended terms,

i.e. assuming no production or detection asymmetry. The production and detection

asymmetries here are therefore absorbed in the amplitudes. From the measured J/ψ yields,

the detection and production asymmetries are computed in order to modify the extended

term for the rare mode CP-asymmetries fit. The B0 mass tail parameters are fixed to

those measured in B0 → K∗0J/ψ simulation.
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Figure 10.3: Plots of the B0 → K∗0J/ψ CP-averages fit to 2017 data. The signal is shown in blue
and the background is shown in red. Shown are the B0 mass, cos θℓ, cos θK , and ϕ.

The observables in each data period were computed. These are shown as Table 10.4 for

Run 1 and 2016, and Table 10.5 for 2017 and 2018. The comparisons between each data

period are shown as Table 10.6. There are no observables more than 3σ apart and thus

the agreement between data periods is very good since only the statistical uncertainties

are used in this comparison.
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Table 10.4: Results for the obsvervables from the Run 1 and 2016 B0 → K∗0J/ψ fits, where the
fits are performed in the CP-asymmetries configuration.

Run 1 2016

FL 0.55895± 0.00153 0.56449± 0.00144
S3 −0.00679± 0.00176 −0.00378± 0.00166
S4 −0.24618± 0.00107 −0.24455± 0.00103
S5 −0.00236± 0.00208 0.00224± 0.00207

AFB −0.0001± 0.00131 −0.00037± 0.00125
S7 −0.00271± 0.00218 −0.00275± 0.0021
S8 −0.05166± 0.00206 −0.05673± 0.00202
S9 −0.09153± 0.00189 −0.09307± 0.00177
FS 0.0811± 0.00254 0.08154± 0.00251
AFL −0.0009± 0.00109 0.00247± 0.00104
A3 −0.00067± 0.00132 −0.00016± 0.00122
A4 −0.00038± 0.00081 0.00039± 0.00075
A5 0.0003± 0.0016 −0.00092± 0.00151
A6S 0.00231± 0.0013 −0.00046± 0.00122
A7 0.0019± 0.00165 −0.00289± 0.00155
A8 −0.00017± 0.00411 0.00132± 0.00406
A9 −0.00128± 0.0037 −0.00102± 0.00357
AFS −0.00839± 0.00596 −0.01295± 0.00588

Table 10.5: Results for the obsvervables from the 2017 and 2018 B0 → K∗0J/ψ fits, where the fits
are performed in the CP-asymmetries configuration.

2017 2018

FL 0.56038± 0.0014 0.56262± 0.00125
S3 −0.0062± 0.00164 −0.00475± 0.00144
S4 −0.24638± 0.00098 −0.24496± 0.0009
S5 −0.00051± 0.002 0.00418± 0.00179

AFB −0.00125± 0.00124 −0.00271± 0.0011
S7 0.00263± 0.0021 −0.00191± 0.00183
S8 −0.05531± 0.00198 −0.0537± 0.00176
S9 −0.09197± 0.00173 −0.09201± 0.00153
FS 0.08785± 0.00249 0.08125± 0.00219
AFL −0.00115± 0.00094 0.00074± 0.00068
A3 0.00072± 0.00111 −0.00083± 0.00082
A4 0.00024± 0.00067 −0.00029± 0.0005
A5 0.0007± 0.00134 0.0009± 0.00099
A6S −0.00146± 0.00108 −0.00041± 0.0008
A7 −0.0012± 0.00139 −0.00018± 0.00103
A8 −0.00018± 0.00385 0.00154± 0.00362
A9 0.00031± 0.00348 −0.00016± 0.00313
AFS −0.00291± 0.00599 −0.00155± 0.00511
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Figure 10.4: Plots of the B0 → K∗0J/ψ CP-averages fit to 2018 data. The signal is shown in blue
and the background is shown in red. Shown are the B0 mass, cos θℓ, cos θK , and ϕ.

10.3 Using B0 → K∗0J/ψ to verify the acceptance

The quantity q2 is a derived quantity from quantities which the acceptance highly depends

on, such as the opening angle and magnitudes of lepton momenta. It is possible this

is not modelled well in the simulation used to derive the acceptance. The acceptance

simulation cannot be compared directly to data since the acceptance simulation uses a

model which is flat in all of the angles and q2 and of course the data is model-dependent.

Thus in order to verify the acceptance description, notably that applying cuts to the

173



Table 10.6: Comparisons of obsvervables (in numbers of σ) for the B0 → K∗0J/ψ fits between each
data period, where the fits are performed in the CP-asymmetries configuration.

Run 1 - 2016 Run 1 - 2017 Run 1 - 2018 2016 - 2017 2016 - 2018 2017 - 2018

FL −2.64 −0.69 −1.86 2.04 0.98 −1.19
S3 −1.24 −0.24 −0.9 1.04 0.44 −0.66
S4 −1.1 0.14 −0.87 1.3 0.3 −1.07
S5 −1.57 −0.64 −2.38 0.96 −0.71 −1.75

AFB 0.15 0.64 1.53 0.5 1.4 0.88
S7 0.01 −1.76 −0.28 −1.81 −0.3 1.63
S8 1.76 1.28 0.75 −0.5 −1.13 −0.61
S9 0.6 0.17 0.2 −0.45 −0.45 0.02
FS −0.12 −1.9 −0.04 −1.78 0.09 1.99
AFL −2.24 0.17 −1.28 2.58 1.4 −1.63
A3 −0.29 −0.81 0.1 −0.53 0.46 1.12
A4 −0.7 −0.59 −0.1 0.15 0.75 0.63
A5 0.55 −0.19 −0.32 −0.8 −1.01 −0.12
A6S 1.55 2.23 1.78 0.61 −0.04 −0.78
A7 2.12 1.44 1.07 −0.81 −1.46 −0.59
A8 −0.26 0.0 −0.31 0.27 −0.04 −0.33
A9 −0.05 −0.31 −0.23 −0.27 −0.18 0.1
AFS 0.54 −0.65 −0.87 −1.2 −1.46 −0.17

muon momenta and muon opening angle in the lab frame is accurately described by the

acceptance, B0 → K∗0J/ψ fits are performed with various selections to the muon momenta

and opening angles. This is the first time this check has been performed in the decay

B0 → K∗0µ+µ−. Figure 10.5 shows the angle between the two muons in the lab frame (α)

against log10 of the maximum muon momentum. This is shown for 2016 simulation in the

J/ψ region (blue) and the rare mode region (red).

This region is divided into 16 bins such that each bin has roughly the same number of

events from simulation. The Run 1 and Run 2 bin boundaries are slightly different owing

to slightly different muon momentum distributions. For each data period, B0 → K∗0J/ψ

fits were performed in each bin as defined by Figure 10.5 and compared to the fits in the

full muon momenta region. The acceptance is recomputed in each bin. For Run 1, the pulls

((fit result in bin i - fit result in the full momenta region)/uncertainty from the bin i fit)

are shown in Figures 10.6 and 10.7 for the CP-averaged observables and CP-asymmetries

respectively.

For 2016, these are shown in Figures 10.8 and 10.9 for the CP-averages and CP-

asymmetries respectively. Likewise, for 2017 and 2018, they are shown in Figures 10.10
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Figure 10.5: Angle between the two muons in the lab frame (α) against log10 of the maximum
muon momentum. This is shown for 2016 simulation in the J/ψ region (blue) and the rare mode
region (red). Each contour line corresponds to a set of points which are in regions with the same
density.

and 10.11, and Figures 10.12 and 10.13.

From looking at these plots, it appears the observables in each bin are consistent with

the combined fit. Thus selecting a region of α, log10(max(p
+
µ , p

−
µ )) results in an acceptance

function which can describe this selection. In order to quantify the goodness-of-fit for

each bin, chi-squared tests were performed assuming the uncertainty of the combined

fit is exactly zero. Each bin has 18 observables (nine CP-averaged observables and nine

CP-asymmetries) thus the number of degrees of freedom is 17. The p-values are shown in

Table 10.7. As seen in this table, most p-values are above 5%. There is a presence of exotic

contributions which are unaccounted for which explains why more bins than expected have

p-values less than 5%. It is thus concluded that the acceptance is a reasonable description

of the true angular efficiency as seen in data.
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Figure 10.6: Pulls from comparing the CP-averaged observables from the Run 1 B0 → K∗0J/ψ
fit and the fits in the bins defined in Figure 10.5. For each observable the pull is defined as the
difference between the fit result in bin i and the fit result in the full momenta region, divided by
the uncertainty from the bin i fit.
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Figure 10.7: Pulls from comparing the CP-asymmetries from the Run 1 B0 → K∗0J/ψ fit and
the fits in the bins defined in Figure 10.5. For each observable the pull is defined as the difference
between the fit result in bin i and the fit result in the full momenta region, divided by the uncertainty
from the bin i fit.
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Figure 10.8: Pulls from comparing the CP-averaged observables from the 2016 B0 → K∗0J/ψ
fit and the fits in the bins defined in Figure 10.5. For each observable the pull is defined as the
difference between the fit result in bin i and the fit result in the full momenta region, divided by
the uncertainty from the bin i fit.
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Figure 10.9: Pulls from comparing the CP-asymmetries from the 2016 B0 → K∗0J/ψ fit and the fits
in the bins defined in Figure 10.5. For each observable the pull is defined as the difference between
the fit result in bin i and the fit result in the full momenta region, divided by the uncertainty from
the bin i fit.
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Figure 10.10: Pulls from comparing the CP-averaged observables from the 2017 B0 → K∗0J/ψ
fit and the fits in the bins defined in Figure 10.5. For each observable the pull is defined as the
difference between the fit result in bin i and the fit result in the full momenta region, divided by
the uncertainty from the bin i fit.
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Figure 10.11: Pulls from comparing the CP-asymmetries from the 2017 B0 → K∗0J/ψ fit and the
fits in the bins defined in Figure 10.5. For each observable the pull is defined as the difference
between the fit result in bin i and the fit result in the full momenta region, divided by the uncertainty
from the bin i fit.
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Figure 10.12: Pulls from comparing the CP-averaged observables from the 2018 B0 → K∗0J/ψ
fit and the fits in the bins defined in Figure 10.5. For each observable the pull is defined as the
difference between the fit result in bin i and the fit result in the full momenta region, divided by
the uncertainty from the bin i fit.
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Figure 10.13: Pulls from comparing the CP-asymmetries from the 2018 B0 → K∗0J/ψ fit and the
fits in the bins defined in Figure 10.5. For each observable the pull is defined as the difference
between the fit result in bin i and the fit result in the full momenta region, divided by the uncertainty
from the bin i fit.
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Table 10.7: p-values (in %) from chi-squared goodness-of-fit test when comparing fits in bins of
(α, log10(max(p

+
µ , p

−
µ ))) to the combined fit in each data period. In these tests, the uncertainty of

the combined fit is assumed to be zero and the number of degrees of freedom is 17.

Run 1 2016 2017 2018

Bin 1 49.6 98.6 13.7 85.3
Bin 2 38.8 81.5 73.3 36.5
Bin 3 67.7 29.7 7.2 30.8
Bin 4 92.8 11.1 73.7 37.3
Bin 5 87.1 1.0 0.1 8.3
Bin 6 20.7 55.6 83.1 7.2
Bin 7 48.3 78.5 84.8 44.1
Bin 8 53.9 0.4 11.2 0.5
Bin 9 85.5 29.5 67.3 1.4
Bin 10 45.7 6.7 38.6 11.6
Bin 11 2.9 13.9 30.0 41.6
Bin 12 30.2 1.9 50.9 34.6
Bin 13 68.7 66.9 70.4 88.8
Bin 14 3.5 90.9 3.5 45.7
Bin 15 96.9 36.1 1.7 1.0
Bin 16 23.4 72.3 67.6 64.3
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Chapter 11

Results in the region

1.25 < q2 < 8 GeV2/c4

The fit in the region 1.25 < q2 < 8 GeV2/c4 is performed with the full Run 1 + 2 dataset.

The default fit performed in this amplitude ansatz analysis is the CP-average fit with

a 4-parameter ansatz, with results shown in Section 11.3. Alternative fits including the

asymmetries and with high numbers of parameters were tested, but yield insufficiently

well behaved log-likelihood profiles. These are given in Sections 11.1 and 11.2 for the

CP-asymmetries fit and 5-parameter CP-average fit respectively. As in the control mode

fits, the B0
s yield relative to the B0 and the mass difference between the B0

s and B0 are

fixed. Unlike the control mode fits, the signal Crystal Ball tail parameters are fixed in

this fit configuration. Note all of the plots in this chapter are blinded. As a reminder, the

amplitude ansatz for the P-wave is

A = αL0(q
2′) + βL1(q

2′) + γL2(q
2′) + δL3(q

2′) + εL4(q
2′) (11.1)

where Li are Legendre polynomials of order i and q2′ corresponds to q2 scaled to the range

−1 ≤ x ≤ 1. For the 4-parameter fits the values ε are fixed to zero.
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11.1 Fit in the CP-asymmetries configuration with a 4-

parameter ansatz

This section describes the CP-asymmetries fit. This fit is performed with a 4-parameter

ansatz describing the P-wave amplitudes and flat S-wave. Profile likelihoods were examined

for all of the P-wave amplitude components. The values of the amplitudes are blinded.

Figure 11.1 shows example profile log-likelihoods. The red line shows the expected

shape of the log-likelihood surface from the Hessian error matrix and the green lines show

the values of the log-likelihood at 1, 2, and 3 sigma as given by the Hessian error matrix.

As seen in these plots, the Hessian error matrix is not always a good description of the

log-likelihood surface. If there is a an asymmetry, this can be dealt with by fitting the

log-likelihood with a bifurcated parabola. However the local minima seen are extremely

difficult to deal with. Since the full likelihood surface including the local minima cannot

be described by a parabola, the fit in the CP-asymmetries configuration will not be the

default fit.

11.2 Fit in the CP-averages configuration with a 5-parameter

ansatz

Since the fit with the asymmetries configuration yields log-likelihood profiles which exhibit

local minima thus cannot be used, the fit in the CP-averages configuration with a 5-

parameter ansatz is performed. This analysis aims for the amplitude model to be as generic

as possible, so the aim is to parameterise the amplitudes with as many parameters as

possible, as long as a good-quality fit is achieved and the description of the uncertainties is

trustworthy. The log-likelihood profiles for this fit were studied.

Example profiles are shown in Figure 11.2. There are hints of local minima. Given

the presence of local minima seen in these profiles, the fit with five parameters for the

amplitude ansatz will not be the default fit.
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Figure 11.1: Example log-likelihood profiles from the combined Run 1 + Run 2 data fit in the
region 1.25 < q2 < 8 GeV2/c4. The fit is performed in the CP-asymmetries configuration with four
parameters for the P-wave amplitudes. The green lines corresponds to 1, 2, and 3 sigma from the
Hessian error matrix. The red parabola corresponds to the Hessian error matrix.
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Figure 11.2: Example log-likelihood profiles from the combined Run 1 + Run 2 data fit in the
region 1.25 < q2 < 8 GeV2/c4. The fit is performed in the CP-averages configuration with five
parameters for the P-wave amplitudes. The green lines corresponds to 1, 2, and 3 sigma from the
Hessian error matrix. The red parabola corresponds to the Hessian error matrix.
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11.3 Fit in the CP-averages configuration with a 4-parameter

ansatz

In this section, the fit is performed in the CP-averages configuration, where each P-wave

amplitude floated has four parameters. The fit projections are shown in Figure 11.3.

The profile likelihoods of the coefficients are examined and are shown in Figures 11.4,

11.5, 11.6, and 11.7. Whilst the Hessian error matrix cannot describe some of the amplitudes

perfectly (shown in red), it can be seen that the profiles can be well described by bifurcated

parabolas (blue). The correlation matrix for this fit for the parameters of interest is shown

as Figure 11.8. Most correlations have a magnitude smaller than 0.1 and there are no

correlations with magnitudes greater than 0.6. The largest correlations are between the

amplitude components of Im(AR
∥ ) and also the correlation between Im(AR

∥ ) and Im(AL
⊥).

11.3.1 Goodness-of-fit test

In order to test the robustness of the amplitude ansatz, a goodness-of-fit test is performed.

This follows the same method as the acceptance goodness-of-fit. The goodness-of-fit plot is

shown in Figure 11.9. The blue histogram corresponds to the distribution of BDT figures

of merit when training toys against a toy. This is the expected distribution from statistical

fluctuations. The red line corresponds to training a BDT between the data and a toy. A

p-value is computed, which is 70%. Thus the fit is a good description of the data.

11.4 Systematic uncertainties

Robust checks have been performed to confirm the 4-parameter fit in the CP-averages

configuration should be the nominal fit in the Run 1 + Run 2 amplitude ansatz analysis of

B0 → K∗0µ+µ−, in the q2 region 1.25 < q2 < 8 GeV2/c4. Before unblinding the results of

the amplitudes and observables, and thus the Wilson coefficients C9 and C10, systematic un-

certainties will be computed. These include uncertainties due to the simulation corrections

applied in the acceptance, such as corrections for the B0 kinematics, trigger corrections, and

tracking corrections. The systematic uncertainty due to acceptance simulation statistics

will also be computed, as well as model systematic uncertainties such as the mB model
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Figure 11.3: Projections for the combined Run 1 + Run 2 data fit in the region
1.25 < q2 < 8 GeV2/c4. The fit is performed in the CP-averages configuration, where each P-
wave amplitude is parameterised with four parameters. The signal is shown in blue and the
background is shown in red.
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Figure 11.4: Profile log-likelihood from the combined Run 1 + Run 2 data fit in the region
1.25 < q2 < 8 GeV2/c4 for the left-handed parallel amplitudes. The fit is performed in the CP-
averages configuration with four parameters for the P-wave amplitudes. The green lines corresponds
to 1, 2, and 3 sigma from the Hessian error matrix. The red parabola corresponds to the Hessian
error matrix and the blue parabolas are fits to these profiles with bifurcated parabolas.
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Figure 11.5: Profile log-likelihood from the combined Run 1 + Run 2 data fit in the region
1.25 < q2 < 8 GeV2/c4 for the right-handed parallel amplitudes. The fit is performed in the CP-
averages configuration with four parameters for the P-wave amplitudes. The green lines corresponds
to 1, 2, and 3 sigma from the Hessian error matrix. The red parabola corresponds to the Hessian
error matrix and the blue parabolas are fits to these profiles with bifurcated parabolas.
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Figure 11.6: Profile log-likelihood from the combined Run 1 + Run 2 data fit in the region
1.25 < q2 < 8 GeV2/c4 for the left-handed transverse amplitudes. The fit is performed in the CP-
averages configuration with four parameters for the P-wave amplitudes. The green lines corresponds
to 1, 2, and 3 sigma from the Hessian error matrix. The red parabola corresponds to the Hessian
error matrix and the blue parabolas are fits to these profiles with bifurcated parabolas.
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Figure 11.7: Profile log-likelihood from the combined Run 1 + Run 2 data fit in the region
1.25 < q2 < 8 GeV2/c4 for the right-handed transverse and longitudinal amplitudes. The fit is
performed in the CP-averages configuration with four parameters for the P-wave amplitudes. The
green lines corresponds to 1, 2, and 3 sigma from the Hessian error matrix. The red parabola
corresponds to the Hessian error matrix and the blue parabolas are fits to these profiles with
bifurcated parabolas.
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Figure 11.8: Correlation matrix for the amplitude ansatz fit to data in the 1.25 < q2 < 8 GeV2/c4

region for the parameters of interest.
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pseudoexperiment from the other pseudoexperiments generated from the data best fit point. The red
line is that for the BDT to separate benchmark pseudoexperiment from the data. The corresponding
p-value is 70%.
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and the mKπ model. Finally the q2 resolution systematic uncertainty will be computed.

The systematic uncertainties overall are expected to be small compared to the statistical

uncertainties.

As with the binned analyses, one of the largest expected systematic uncertainty is the

uncertainty from the corrections to the L0 trigger efficiency. Nominally for this systematic

uncertainty, an alternative set of corrections are examined, i.e. B0 → J/ψK∗0 rather

than B+ → J/ψK+ for the trigger weights. However a conservative estimate of this

systematic uncertainty is to not apply any corrections for the trigger and examine how the

fit parameters change when the nominal trigger corrections are applied. This systematic

uncertainty is computed by generating pseudoexperiments at 100 times the observed data

yields. These pseudoexperiments are generated with acceptances without the nominal

trigger corrections applied. Two fits are performed to each pseudoexperiment — one where

the alternative (no corrections applied) acceptance is used and another where the nominal

acceptance is used. For each fit parameter, the difference between the two fits is examined.

The systematic uncertainty calculated is the mean and width of these differences, added

up in quadrature. Table 11.1 presents the L0 systematic uncertainty for each parameter as

a ratio of the smaller of the upper or lower statistical uncertainty. As seen in the table,

this conservative L0 systematic uncertainty is small compared to the statistical uncertainty

for the amplitude components. This means the uncertainties in this measurement will be

completely dominated by the statistical uncertainties evaluated in Section 11.3.
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Table 11.1: Ratio between the L0 systematic uncertainty and the smaller of the upper or lower
statistical uncertainty for each fit parameter.

Parameter L0 systematic uncertainty
statistical uncertainty

Re(αL∥ ) 0.0255

Re(βL∥ ) 0.0111

Re(γL∥ ) 0.0062

Re(δL∥ ) 0.0032

Im(αL∥ ) 0.0041

Im(βL∥ ) 0.0012

Im(γL∥ ) 0.0017

Im(δL∥ ) 0.0013

Re(αR∥ ) 0.0169

Re(βR∥ ) 0.0076

Re(γR∥ ) 0.0032

Re(δR∥ ) 0.0022

Im(αR∥ ) 0.0034

Im(βR∥ ) 0.0064

Im(γR∥ ) 0.0040

Im(δR∥ ) 0.0008

Re(αL⊥) 0.0138
Re(βL⊥) 0.0121
Re(γL⊥) 0.0036
Re(δL⊥) 0.0015
Im(αL⊥) 0.0061
Im(βL⊥) 0.0026
Im(γL⊥) 0.0032
Im(δL⊥) 0.0016
Re(αR⊥) 0.0188
Re(βR⊥) 0.0077
Re(γR⊥) 0.0058
Re(δR⊥) 0.0021
Re(αL0 ) 0.0886
Re(βL0 ) 0.0279
Re(γL0 ) 0.0043
Re(δL0 ) 0.0024
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Chapter 12

Conclusions

As discussed in Chapter 1, now is a very exciting time in flavour physics. There is a growing

collection of measurements taken by the LHCb experiment involving b→ sℓℓ and b→ cℓν

showing discrepancies with respect to the SM. An example is the angular observables in

the decay B0 → K∗0µ+µ−, which involves a b→ sℓℓ transition, where discrepancies with

respect to the Standard Model are seen in the latest published analysis [7].

This thesis describes an amplitude analysis B0 → K∗0µ+µ−. Measuring the amplitudes

provides a complete description of the angular distribution of B0 → K∗0µ+µ−. The analysis

is also performed unbinned in q2 in order to become senstivie to the shapes of the amplitudes

and thus the observables in q2. Since there are theoretical uncertainties and thus various

parameterisations of the local and non-local hadronic effects, this amplitude analysis aims

to be as model-independent as possible, whilst still being unbinned in q2.

A selection strategy is described in Chapter 5 resulting in low levels of background. The

combinatorial BDT is able to remove a large portion of the background. The selection results

in estimated 4167 signal events, 726 combinatorial background events, and 38 combined

peaking background events in the region 1.25 < q2 < 8 GeV2/c4 for the Run 1+2 LHCb

datasets. A novel goodness-of-fit method is described in Chapter 6 where a goodness-of-fit

test can be performed to a multi-dimensional function using machine learning techniques.

The acceptance, which is used to account for the angular and q2 efficiency is also described

in this chapter.

The fit strategy is described in Chapter 7. Extensive work was performed validating the

fitter and demonstrating the fit is unbiased in multidimensions, in addition to investigating
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fundamental aspects of the analysis strategy, such as whether to fitmKπ or which amplitude

ansatz to use, as described in Chapter 8. Pseudoexperiments from the fit to data as

described in Chapter 9 in the 1.25 < q2 < 8 GeV2/c4 region have been performed and

behave well. The results from the control mode and in 1.25 < q2 < 8 GeV2/c4 are

described in Chapters 10 and 11 respectively. Due to the presence of local minima in other

fit configurations, the default strategy is to fit the data using 4-parameter ansatzes for the

P-wave, and perform the fit in the CP-averages configuration. This fit behaves reasonably

well and no local minima are seen < 3σ away from the best fit point.

Future work entails computing systematic uncertainties (which are expected to be small

compared to the statistical uncertainties) and unblinding the results. The results from this

analysis will be of high interest to the flavour physics community since the amplitudes

and thus the observables are unbinned in q2, while aiming to be as model-independent as

possible. In addition, datasets representative of the signal-only acceptance-corrected LHCb

dataset can be generated from the fit results, allowing one to perform fits to this synthetic

dataset with any choice of model and further study theoretical parameterisations of the

decay B0 → K∗0µ+µ−.
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Appendix A

Comparison of the input variables in

B0 → K∗0J/ψ simulation and sWeighted

B0 → K∗0J/ψ data for the combinatorial

BDT in for Run 1, 2016, and 2018
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Figure A.1: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for Run 1. The distributions are normalised to unit area.
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Figure A.2: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for Run 1. The distributions are normalised to unit area.
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Figure A.3: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for Run 1. The distributions are normalised to unit area.
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Figure A.4: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for 2016. The distributions are normalised to unit area.
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Figure A.5: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for 2016. The distributions are normalised to unit area.
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Figure A.6: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for 2016. The distributions are normalised to unit area.
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Figure A.7: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for 2018. The distributions are normalised to unit area.
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Figure A.8: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for 2018. The distributions are normalised to unit area.
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Figure A.9: Comparison between B0 → K∗0J/ψ simulation and sWeighted B0 → K∗0J/ψ data for
the BDT training variables for 2018. The distributions are normalised to unit area.
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Appendix B

Combinatorial BDT efficiency as a

function of cos θℓ, cos θK, and ϕ for

B0 → K∗0J/ψ simulation and B0 → K∗0J/ψ

data, in Run 1, 2016, and 2018, in the

nominal and narrow mKπ windows
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Figure B.1: Combinatorial BDT efficiency as a function of cos θℓ, cos θK , and ϕ for Run 1
B0 → K∗0J/ψ simulation and Run 1 B0 → K∗0J/ψ data, where the uncertainties are statis-
tical.
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Figure B.2: Combinatorial BDT efficiency as a function of cos θℓ, cos θK , and ϕ for Run 1
B0 → K∗0J/ψ simulation and Run 1 B0 → K∗0J/ψ data, in the region 876 < mKπ < 916 MeV/c2,
where the uncertainties are statistical. This better aligns the data with the simulated P-wave state.
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Figure B.3: Combinatorial BDT efficiency as a function of cos θℓ, cos θK , and ϕ for 2016
B0 → K∗0J/ψ simulation and 2016 B0 → K∗0J/ψ data, where the uncertainties are statisti-
cal.
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Figure B.4: Combinatorial BDT efficiency as a function of cos θℓ, cos θK , and ϕ for 2016
B0 → K∗0J/ψ simulation and 2016 B0 → K∗0J/ψ data, in the region 876 < mKπ < 916 MeV/c2,
where the uncertainties are statistical. This better aligns the data with the simulated P-wave state.
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Figure B.5: Combinatorial BDT efficiency as a function of cos θℓ, cos θK , and ϕ for 2018
B0 → K∗0J/ψ simulation and 2018 B0 → K∗0J/ψ data, where the uncertainties are statisti-
cal.
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Figure B.6: Combinatorial BDT efficiency as a function of cos θℓ, cos θK , and ϕ for 2018
B0 → K∗0J/ψ simulation and 2018 B0 → K∗0J/ψ data, in the region 876 < mKπ < 916 MeV/c2,
where the uncertainties are statistical. This better aligns the data with the simulated P-wave state.
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