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Abstract

The channeling radiation spectrum is calculated without

using the one-dimensional approximation in the planar chan-

neling radiation model or the single-string approximation in

the axial channeling radiation model. The obtained spectrum

of the two-dimensional channeling radiation is significantly

different from those previously calculated with the approxi-

mations. The calculation presented here is of the channeling

radiation experiments conducted at Fermilab Advanced Su-

perconducting Test Accelerator (ASTA) photoinjector with

electron beam energies of 20 to 50 MeV and a diamond tar-

get. The computational method developed in this work can

be applied to general cases of different crystals and beams

with different energy and emittances.

INTRODUCTION

High-energy channeling radiation is produced by a rela-

tivistic electron beam interacting with a crystal lattice when

the beam channels through the crystal. When an ultra-

relativistic electron enters a crystal, the electron will chan-

nel through the crystal lattice if its incident angle relative

to a specific lattice direction is sufficiently small [1]. A

high-intensity ultra-relativistic electron beam could produce

high-brightness hard X-rays due to the perturbation of the

transverse motion of beam electrons in the crystal. To study

this channeling radiation theoretically and numerically, the

interaction between the lattice ions and beam electrons has

previously been modelled with two different approxima-

tions. In the planar channeling approximation [2–4], the

radiation from beam electrons is calculated approximately

using the Bloch wave function of the electrons solved in a

one-dimensional transverse space. In the axial channeling

model [2, 5], on the other hand, a single-string approxima-

tion of the lattice potential results in a rotational symmetry

in the two-dimensional transverse space that greatly simpli-

fies the computational complexity of the original problem

of two-dimensional energy bands calculation. Even though

these approximations have been justified by the fact that the

most relevant energy states for the channeling radiation are

those deeply bound states, it is not clear what the condi-

tions are for the validity of the approximations, especially

for the case of high-brightness electron beams. In this paper,

the channeling radiation spectrum is calculated numerically

by solving the Bloch wave function in the two-dimensional

transverse space without using the planar or axial channeling

approximations. This study is for the upcoming channeling

radiation experiments on Fermilab ASTA facility with a 20

to 50 MeV electron beam incident on a diamond lattice along

the [-110] lattice direction [6, 7]. In this study, we used a

14.6 MeV electron beam with rms emittance of 0.1 μm in

the both transverse directions and the beta functions at the

crystal are 4.0 m in the both directions.

LATTICE INTERACTIONAL POTENTIAL

IN TRANSVERSE PLANE

When a relativistic beam electron channels through a crys-

tal, the ions of the crystal lattice interact with the electron

and affect the motion of the electron. The change of the

electron motion results in the emission of photons. Since the

longitudinal motion of the electron is ultra-relativistic, the

interaction from the ions is too weak to have any effect on the

longitudinal motion. The transverse motion of the electron

is non-relativistic and the interaction from the ions could

have a significant effect on the motion. For the transverse

motion, in this study, the interaction potential V (x, y) in the

transverse plane is obtained by averaging the lattice potential

Vcell (�r) in three-dimensional space along the longitudinal

direction, where Vcell (�r) is the interaction potential of the

ions in one unit cell and calculated by using Doyle-Turners

formula based on a fitting to the electron scattering factor

of the crystal [8]. Due to the periodicity of the lattice in

the transverse plane, V (x, y) can be written as a Fourier ex-

pansion with the reciprocal lattice vectors projected to the

transverse plane. For a beam channeling along the [-110]

direction of diamond lattice, the x and y axis of the trans-

verse plane can be chosen to be along the [110] and [001]

direction, respectively, and the reciprocal lattice constants

of the transverse plane are b1 = 2
√

2π/a and b2 = 2π/a

for the two directions, where a is diamond lattice constant.

The interaction potential for the transverse motion of beam

electrons can then be written as

V (x, y) =

∞∑
k1,k2=−∞

Vk1,k2
ei (k1b1x+k2b2y) (1)

where the expansion coefficients Vk1,k2
are calculated using

the formulas given in [5] and the summations of k1 and k2

need to be truncated at ±kmax for a numerical solution of

the Schrödinger equation of the beam electron in the lattice.

In this study, it was found that the convergence of the trunca-

tion occurs at kmax = 20 as the change of V (x, y) due to the

additional terms of kmax > 20 is negligible. Figure 1 plots

V (x, y) in a unit cell and shows that the interaction potential

in the transverse plane does not have a rotational symmetry

of the potential used in the axial channeling approximation.

The asymmetry of V (x, y) between the x and y direction is

because the two-dimensional lattice in the transverse plane

becomes rectanglar as b1 � b2, which results from the pro-

jection of the cubic diamond lattice to the transverse plane.
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Figure 1: The top figure is V (x, y) for the channeling along

the [-110] direction of diamond. The bottom figures are the

cross section of V (x, y) at (a) y = 0.125 and (b) x = 0.

It should also be noted that the potential wells of V (x, y)

in the transverse space are about four times deeper than the

single potential well in the one-dimensional approximation

of the planar channeling model.

ENERGY BANDS

The wave function of the beam electrons in the transverse

plane is a Bloch wave that can be expanded into plane waves

as

ΨΩ(x, y) =
1

2π

∑
k1,k2

Ck1,k2
ei[(k1+Q1)b1x+(k2+Q2)b2y] (2)

where the summations are truncated similar to V (x, y) as k1

and k2 are from −kmax to kmax and −0.5 ≤ (Q1,Q2) < 0.5

for the first Brillouin zone. With the truncated plane wave

expansion of the Bloch wave, the Schrödinger equation in

the rest frame of the beam can be written as

∑
l1,l2

⎧⎪⎨⎪⎩
⎡⎢⎢⎢⎢⎣(k1 +Q1)2

+

(
b2

b1

)2
(k2 +Q2)2

⎤⎥⎥⎥⎥⎦ δl1k1
δl2k2

+

1

ε
Vk1−l1,k2−l2

}
Cl1,l2 =

En ( �Q)

γε
Ck1,k2

(3)

where l1 and l2 are from −kmax to kmax , γ is the Lorentz

factor of the beam, ε = �2b2
1
/(2γme ) and En ( �Q) is the

eigen energy with the index n numbering the energy bands.

This eigen equation can be solved by diagonalization of a

(2kmax + 1)2 × (2kmax + 1)2 matrix for each given �Q =

(Q1,Q2). Figure 2 plots the probability density |ΨΩ(x, y) |2
of the obtained eigenstates for n = 0 and n = 1 and clearly

shows that |ΨΩ(x, y) |2 is not rotationally symmetric in the

transverse plane even at two lowest eigenstates. The rota-

tional symmetry of the density function in the axial chan-

neling model severs the asymmetric feature (the peaks away

from x = y = 0 in Fig. 2) of the wave function and the justi-

fication of the axial channeling approximation is apparently

problematic.

Figure 2: Wave Density function for (a) n = 0 and (b) n = 1

with Q1 = Q2 = 0.

Figure 3: Energy bands in the lab frame of the beam cal-

culated (a) in two-dimensional transverse plane with the

potential in Fig. 1 and (b) with one-dimensional planar

channeling approximation.

In Fig. 3, the negative energy bands for the channeling

along the [-110] direction in diamond are plotted for differ-

ent values of (Q1,Q2). For a comparison, the eigen energies

of the same system calculated by using the one-dimensional

planar channeling approximation is also included. The en-

ergy bands obtained in the two-dimension calculation is

very different from the one calculated with one-dimensional

approximation. The gaps between the lowest three energy

states are larger than those of the one-dimensional calcula-

tion. Moreover, in the two-dimensional case, there are 111

negative eigen energy states while in the one-dimensional

planar channeling, there are only 6 negative eigen energy

states. The much richer energy band in the two-dimensional

case is apparently due to a much deeper and more complex

interaction potential in the two dimensional case.

RADIATION SPECTRUM

The selection matrix for the electron transition from the

energy eigen state of (n, �Q) to another state of (m, �Q ′) due
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to the perturbation H ′
1
= ε �A · �p can be calculated as

���〈 �Q′,m |H1 | �Q,n
〉���2 = d0T (n, �Q,m, �Q) δ( �Q − �Q′) (4)

where d0 is a constant that is independent of eigen states and

T (n, �Q,m, �Q) =

⎧⎪⎪⎨⎪⎪⎩
∑
k1,k2

Ck1,k2
( �Q,n) C∗k1,k2

( �Q,m)

×
[
(k1 +Q1) +

b2

b1

(k2 +Q2)

]}2

(5)

For a beam distribution in the transverse momentum space

f (px ) =
1

2πσxσy
e−p

2
x /(2σ2

x )−p2
y /(2σ2

y ) (6)

the occupation probability of the beam electrons on the eigen-

state of (n, �Q) can be calculated as

N (n, �Q) =
h2b1b2√
2πσxσy

∫ P1,max

−P1,max

∫ P2,max

−P2,max

(7)

���Ck1,k2
( �Q,n)

���2�P=�k+ �Q e
−P2

1
/(2σ2

k x
)−P2

2
/(2σ2

ky
)

dP1 dP2

where σk x = σx (hb1)−1, σky = σy (hb2)−1, Pi,max =

pmax (hbi )
−1, pmax = (2γme |min(V (x, y)) |)1/2 is the max-

imum transverse momentum for the channeling, and the

integration over �P can be evaluated numerically.

The radiation intensity for the transition from the eigen

state of (n, �Q) to the state of (m, �Q ′) can then be calculated

as

N (n, �Q) T (n, �Q,m, �Q) δ( �Q′ − �Q)

Since the ground state (m = 0) energy is independent of
�Q, for the transition to the ground state we should account

all the transitions to m = 0 states with any �Q. The overall

radiation intensity to the ground state is thus proportional

Radiation Intensity =

∫
N (n, �Q) T (n, �Q,0, �Q) d �Q (8)

Figure 4 plots the radiation spectrum in Lab frame of

14.6 MeV electron beam channeling through diamond lattice

along the [-110] direction calculated using Eq. (8) and, for

a comparison, it also includes the same spectrum calculated

using the planar channeling approximation. The spectrum

obtained with the full two-dimensional calculation (Fig. 4a)

has two dominate peaks at ∼ 55 and 110 keV which are miss-

ing from the one-dimensional calculation (Fig. 4b). Most

peaks in the spectrum of the one-dimensional calculation

are, on the other hand, present in the spectrum of the two-

dimensional calculation. The difference between the two

spectrum is significant, especially at radiation energy higher

than 40 keV in this case. Those radiations peaks with higher

energy could be preferred for the design of high-brightness

hard X-ray sources.

Figure 4: Radiation spectrum in Lab frame of 14.6 MeV

beam channeling along the [-110] direction of diamond cal-

culated (a) with the full two-dimensional model and (b) with

planar channeling approximation.

CONCLUSION

The planar and axial model of channeling radiation pro-

vide clear geometrical descriptions and easy computational

approaches for studying channeling radiation. Their limita-

tions due to the approximations involved could, however, be

significant as shown in this study. The full two-dimensional

calculation of the energy band provides a more complete

spectrum for channeling radiation.

REFERENCES

[1] J. Lindhard, Phys. Lett. 12, 126 (1964).

[2] K. Chouffani and H. Uberall, Phys. Stat. Sol. B213, 107 (1999).

[3] B. Azadegan, et al, Phys. Rev. B74, 045209 (2006).

[4] B. Azadegan, Comp. phys. Commu. 184, 1064 (2013).

[5] J.U. Andersen et al, Nucl. Instrum. Meth. & Inst. 194, 209

(1982).

[6] T. Sen and C. Lynn, FERMILAB-PUB-14-243-APC.

[7] P. Piot et al, FERMILAB-CONF-13-086-AD-APC.

[8] P.A. Doyle and P.S. Turner, Acta Cryst. A24, 390 (1968).

TUPMA023 Proceedings of IPAC2015, Richmond, VA, USA

ISBN 978-3-95450-168-7
1890Co

py
rig

ht
©

20
15

CC
-B

Y-
3.

0
an

d
by

th
er

es
pe

ct
iv

ea
ut

ho
rs

2: Photon Sources and Electron Accelerators
A24 - Other Linac-Based Photon Sources


