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Abstract

The channeling radiation spectrum is calculated without
using the one-dimensional approximation in the planar chan-
neling radiation model or the single-string approximation in
the axial channeling radiation model. The obtained spectrum
of the two-dimensional channeling radiation is significantly
different from those previously calculated with the approxi-
mations. The calculation presented here is of the channeling
radiation experiments conducted at Fermilab Advanced Su-
perconducting Test Accelerator (ASTA) photoinjector with
electron beam energies of 20 to 50 MeV and a diamond tar-
get. The computational method developed in this work can
be applied to general cases of different crystals and beams
with different energy and emittances.

INTRODUCTION

High-energy channeling radiation is produced by a rela-
tivistic electron beam interacting with a crystal lattice when
the beam channels through the crystal. When an ultra-
relativistic electron enters a crystal, the electron will chan-
nel through the crystal lattice if its incident angle relative
to a specific lattice direction is sufficiently small [1]. A
high-intensity ultra-relativistic electron beam could produce
high-brightness hard X-rays due to the perturbation of the
transverse motion of beam electrons in the crystal. To study
this channeling radiation theoretically and numerically, the
interaction between the lattice ions and beam electrons has
previously been modelled with two different approxima-
tions. In the planar channeling approximation [2—4], the
radiation from beam electrons is calculated approximately
using the Bloch wave function of the electrons solved in a
one-dimensional transverse space. In the axial channeling
model [2,5], on the other hand, a single-string approxima-
tion of the lattice potential results in a rotational symmetry
in the two-dimensional transverse space that greatly simpli-
fies the computational complexity of the original problem
of two-dimensional energy bands calculation. Even though
these approximations have been justified by the fact that the
most relevant energy states for the channeling radiation are
those deeply bound states, it is not clear what the condi-
tions are for the validity of the approximations, especially
for the case of high-brightness electron beams. In this paper,
the channeling radiation spectrum is calculated numerically
by solving the Bloch wave function in the two-dimensional
transverse space without using the planar or axial channeling
approximations. This study is for the upcoming channeling
radiation experiments on Fermilab ASTA facility with a 20
to 50 MeV electron beam incident on a diamond lattice along
the [-110] lattice direction [6, 7]. In this study, we used a
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14.6 MeV electron beam with rms emittance of 0.1 um in
the both transverse directions and the beta functions at the
crystal are 4.0 m in the both directions.

LATTICE INTERACTIONAL POTENTIAL
IN TRANSVERSE PLANE

When a relativistic beam electron channels through a crys-
tal, the ions of the crystal lattice interact with the electron
and affect the motion of the electron. The change of the
electron motion results in the emission of photons. Since the
longitudinal motion of the electron is ultra-relativistic, the
interaction from the ions is too weak to have any effect on the
longitudinal motion. The transverse motion of the electron
is non-relativistic and the interaction from the ions could
have a significant effect on the motion. For the transverse
motion, in this study, the interaction potential V (x,y) in the
transverse plane is obtained by averaging the lattice potential
Vee11 (F) in three-dimensional space along the longitudinal
direction, where V,.;; (F) is the interaction potential of the
ions in one unit cell and calculated by using Doyle-Turners
formula based on a fitting to the electron scattering factor
of the crystal [8]. Due to the periodicity of the lattice in
the transverse plane, V(x,y) can be written as a Fourier ex-
pansion with the reciprocal lattice vectors projected to the
transverse plane. For a beam channeling along the [-110]
direction of diamond lattice, the x and y axis of the trans-
verse plane can be chosen to be along the [110] and [001]
direction, respectively, and the reciprocal lattice constants
of the transverse plane are by = 2 V2r/a and by = 2n/a
for the two directions, where a is diamond lattice constant.
The interaction potential for the transverse motion of beam
electrons can then be written as

(o)
Vo) = D Vi eGPkt
kl,kzz—oo

where the expansion coefficients Vi, «, are calculated using
the formulas given in [5] and the summations of k| and k>
need to be truncated at +k,,,, for a numerical solution of
the Schrodinger equation of the beam electron in the lattice.
In this study, it was found that the convergence of the trunca-
tion occurs at k,,, = 20 as the change of V (x,y) due to the
additional terms of k4 > 20 is negligible. Figure 1 plots
V(x,y) in a unit cell and shows that the interaction potential
in the transverse plane does not have a rotational symmetry
of the potential used in the axial channeling approximation.
The asymmetry of V (x,y) between the x and y direction is
because the two-dimensional lattice in the transverse plane
becomes rectanglar as by # b,, which results from the pro-
jection of the cubic diamond lattice to the transverse plane.
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Figure 1: The top figure is V(x,y) for the channeling along
the [-110] direction of diamond. The bottom figures are the
cross section of V(x,y) at (a) y = 0.125 and (b) x = 0.

It should also be noted that the potential wells of V(x,y)
in the transverse space are about four times deeper than the
single potential well in the one-dimensional approximation
of the planar channeling model.

ENERGY BANDS

The wave function of the beam electrons in the transverse
plane is a Bloch wave that can be expanded into plane waves
as

1 .
Yo(x,y) = > Z Ckl,kzel[(kl+Ql)b1x+(k2+Q2)b2y] 2)
ki,kz

where the summations are truncated similar to V(x,y) as ki
and ky are from —k,;, 4 x t0 kypax and —0.5 < (Q1,032) < 0.5
for the first Brillouin zone. With the truncated plane wave
expansion of the Bloch wave, the Schrodinger equation in
the rest frame of the beam can be written as

3

11,0

by\2
(ki + Q1) + (b_f) (ko + Qz)Z] O11kOlrks

1
+;Vk1*ll,k2*lz Cii, =

where /| and [, are from —k,;,4x 10 kpax, v is the Lorentz
factor of the beam, € = h*b?/(2ym,) and E,(Q) is the

eigen energy with the index » numbering the energy bands.

This eigen equation can be solved by diagonalization of a
Ckmax + D? X Qkmax + 1)? matrix for each given Q =
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(Q1,02). Figure 2 plots the probability density I‘I’Q(x,y)l2
of the obtained eigenstates for n = 0 and n = 1 and clearly
shows that |\ (x, y)|2 is not rotationally symmetric in the
transverse plane even at two lowest eigenstates. The rota-
tional symmetry of the density function in the axial chan-
neling model severs the asymmetric feature (the peaks away
from x = y = 0 in Fig. 2) of the wave function and the justi-
fication of the axial channeling approximation is apparently
problematic.
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Figure 2: Wave Density function for (a) n = 0 and (b) n = 1
with Q1 = 0, = 0.
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Figure 3: Energy bands in the lab frame of the beam cal-
culated (a) in two-dimensional transverse plane with the
potential in Fig. 1 and (b) with one-dimensional planar
channeling approximation.

In Fig. 3, the negative energy bands for the channeling
along the [-110] direction in diamond are plotted for differ-
ent values of (Q1,0»). For a comparison, the eigen energies
of the same system calculated by using the one-dimensional
planar channeling approximation is also included. The en-
ergy bands obtained in the two-dimension calculation is
very different from the one calculated with one-dimensional
approximation. The gaps between the lowest three energy
states are larger than those of the one-dimensional calcula-
tion. Moreover, in the two-dimensional case, there are 111
negative eigen energy states while in the one-dimensional
planar channeling, there are only 6 negative eigen energy
states. The much richer energy band in the two-dimensional
case is apparently due to a much deeper and more complex
interaction potential in the two dimensional case.

RADIATION SPECTRUM

The selection matrix for the electron transition from the
energy eigen state of (n,Q) to another state of (m,Q’) due
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to the perturbation H| = €A - P can be calculated as

" N S s o o
(Q"mIH\| Gon)| = doT (n,0,m,0)6(0-0)  (4)
where d) is a constant that is independent of eigen states and
T (n,0,m,0) = {Z Crr (O1) CF, 1, (B.m)
ki, ko

X

b 2
(ki + Q1) + b—f(kz + Q2>]} (5)

For a beam distribution in the transverse momentum space

_p2 2y_p2 2
Flpy) = PRI I (6)

2ro oy

the occupation probability of the beam electrons on the eigen-
state of (n,Q) can be calculated as

R h2b1 bZ Pl,max P2,mux
N(@n,Q) = ——— f f 0
Vzﬂ'o’xo-y —Pimax Y —Prmax
N 2 _p2 2 \_p2 2
‘Ckl,kz(Q,n)| e PICTI=PIC) gpy ap,

P=k+0

where o = U-X(hbl)ils Oky = O—y(th)il» Pimax =
pmax(hbi)_l s Pmax = (2yme|min(V (x, Y))l)l/z is the max-
imum transverse momentum for the channeling, and the
integration over P can be evaluated numerically.

The radiation intensity for the transition from the eigen
state of (n, Q) to the state of (m, é ’) can then be calculated
as

N (n,0) T (n,0,m,0) (0’ - Q)

Since the ground state (m = 0) energy is independent of
Q, for the transition to the ground state we should account
all the transitions to m = 0 states with any Q. The overall
radiation intensity to the ground state is thus proportional

Radiation Intensity = f N1,0)T (n,0,0,0)d0 (8)

Figure 4 plots the radiation spectrum in Lab frame of
14.6 MeV electron beam channeling through diamond lattice
along the [-110] direction calculated using Eq. (8) and, for
a comparison, it also includes the same spectrum calculated
using the planar channeling approximation. The spectrum
obtained with the full two-dimensional calculation (Fig. 4a)
has two dominate peaks at ~ 55 and 110 keV which are miss-
ing from the one-dimensional calculation (Fig. 4b). Most
peaks in the spectrum of the one-dimensional calculation
are, on the other hand, present in the spectrum of the two-
dimensional calculation. The difference between the two
spectrum is significant, especially at radiation energy higher
than 40 keV in this case. Those radiations peaks with higher
energy could be preferred for the design of high-brightness
hard X-ray sources.
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Figure 4: Radiation spectrum in Lab frame of 14.6 MeV
beam channeling along the [-110] direction of diamond cal-
culated (a) with the full two-dimensional model and (b) with
planar channeling approximation.

CONCLUSION

The planar and axial model of channeling radiation pro-
vide clear geometrical descriptions and easy computational
approaches for studying channeling radiation. Their limita-
tions due to the approximations involved could, however, be
significant as shown in this study. The full two-dimensional
calculation of the energy band provides a more complete
spectrum for channeling radiation.
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