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Titre: Nouveaux outils et perspectives pour l’Analyse en Composantes Principales tensorielle et au-delà

Mots clés: ACP tensorielle, Décomposition de tenseur, Ecart théorique algorithmique, Paysages non convexes
à hautes dimensions, Tenseurs aléatoires

Résumé: Cette thèse a pour objet l’analyse en com-
posantes principales (APC) tensorielle. L’introduction
constate l’intérêt grandissant pour les outils ten-
soriels dans le domaine de l’Intelligence Artificielle
(IA). Trouver de nouvelles méthodes et algorithmes
en IA qui soient moins opaques et qui nécessitent
moins de données que l’apprentissage profond est cru-
cial pour faciliter l’adoption de l’IA dans de nou-
veaux domaines d’application. Le deuxième chapitre
souligne l’importance plus générale de l’étude de l’APC
tensorielle en mettant en lumière sa position clé à
l’intersection de sujets de recherche très actifs de trois
disciplines différentes, les mathématique appliquées, la
physique des systèmes désordonnés, et l’informatique
théorique.

La contribution de cette thèse se divise en deux

parties. La première consiste en un nouveau cadre
théorique adapté aux tenseurs, inspiré par des travaux
de recherche récents en physique des hautes énergies.
Ce cadre permet d’améliorer les résultats sur des don-
nées synthétiques ainsi que dans certaines applications
concrètes. Il permet aussi de donner des nouvelles
garanties théoriques pour des situations plus générales,
comme un tenseur aux dimensions non égales. La
deuxième contribution introduit une nouvelle méthode
basée sur une approche plus empirique. Elle fournit de
nouvelles intuitions qui nous poussent à questionner
certaines conjectures telles que celles qui portent sur
le comportement et la performance de la méthode de
la puissance itérée tensorielle. Ces résultats pourraient
apporter de nouveaux éléments essentiels à l’étude de
l’écart théorique-algorithmique et le comportement de
la descente de gradient dans l’apprentissage profond.

Title: New perspectives and tools for Tensor Principal Component Analysis and beyond

Keywords: Tensor PCA, Tensor decomposition, Statistical-computational gap, High dimensional non convex
landscapes, random tensors

Abstract: This thesis deals with tensorial principal
component analysis (PCA). The introduction notes the
growing interest in tensorial tools in the field of Artifi-
cial Intelligence (AI). Finding new AI methods and al-
gorithms that are less opaque and that require less data
than deep learning is crucial to facilitate the adoption
of AI in new application domains. The second chapter
emphasizes the more general importance of the study
of tensorial PCA by highlighting its key position at the
intersection of very active research subjects from three
different disciplines, applied mathematics, the physics
of disordered systems, and theoretical computer sci-
ence.

The contribution of this thesis is divided into two

parts. The first consists of a new theoretical frame-
work adapted to tensors, inspired by recent research
work in high energy physics. This framework makes
it possible to improve the results on synthetic data as
well as in certain concrete applications. It also makes
it possible to give new theoretical guarantees for more
general situations, such as a tensor with unequal di-
mensions. The second contribution introduces a new
method based on a more empirical approach. It pro-
vides new insights that lead us to question certain con-
jectures such as those related to the behavior and per-
formance of the tensor power iteration method. These
results could bring new essential elements to the study
of the statistical-computational gap and the behavior
of gradient descent in deep learning.
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Notations

Tr(.) Trace operator
E Expectation operator
Var(.) Variance operator
Covar(. , .) Covariance operator
.⊤ Transpose operator
∥.∥ Norm operator
δi,j Kronecker symbol
⊗ Outer product
T ,M ,v Tensors, matrices and vectors
Tijk,Mij , vi Components of tensors, matrices and vectors
[p] The set {1, .., p}

A real p−th order tensor T ∈
⊗p

i=1Rni is a member of the tensor product of Eu-clidean spaces Rni , i ∈ [p]. It is symmetric if Ti1...ik = Tτ(i1)...τ(ik) ∀τ ∈ Sk where Sk is thesymmetric group of degree k.
For a vector v ∈ Rn, v⊗p ≡ v ⊗ v ⊗ · · · ⊗ v ∈

⊗pRn denotes its p-th tensor power.
T(v,w, z) ≡ ⟨T,v ⊗w ⊗ z⟩ ≡

∑
ijk Tijkviwjzk is the euclidean product between thetensors T and v ⊗w ⊗ z.

T(:,w, z) is the vector whose i-th entry is ∑
jk Tijkwjzk and T(:, :, z) is the matrixwhose i, jth element is∑k Tijkzk.
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Chapter 1

Introduction

1.1 Artificial Intelligence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111.2 Future challenges for AI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121.2.1 Research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141.2.2 Tensorial approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151.3 Tensorial tools from theoretical physics perspective . . . . . . . . . . . . . . 151.4 Tensor PCA model and its motivations. . . . . . . . . . . . . . . . . . . . . . 17

1.1 Artificial Intelligence

Artificial Intelligence (AI) is humanity’s attempt to automate/delegate human cognitiveabilities through technology. This simulation of intelligence can relate to reasoning anddecision (critical reasoning) [Pom97], understanding of natural language [YHPC18], vi-sual perception (interpretation of and deriving meaningful information from images andscenes) [FJY+19], auditory data (understanding of spoken language) [GME11] as well asvarious other sensors [ŠBP21]. The concept of Artificial intelligence long precedes the ar-rival of computing. The idea that a created object is capable of producing or obtaining aconsciousness similar to that of man is present in Greek mythology, ancient Egypt, Jewishfolklore (the Golem) and many other ancient cultures.
The earliest substantial work in the field of artificial intelligence was done in the mid-20th century by the British logician and computer pioneer Alan Turing. His seminal paper"Computing Machinery and Intelligence" [Tur09] crystallizes ideas about the possibility ofprogramming an electronic computer to behave intelligently and how to test its intelli-gence.
Modern AI is a rich field encompassing diverse major branches such as robotics orexpert systems. One important subarea of AI is Machine learning (ML) [Mah20]. It allowsmachines to learn from data without being programmed explicitly so. ML and data-drivenstatistical techniques gained momentum in recent years due to an incredible increase in

11
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the number and complexity of data available [BN06, GBC16]. Machine-learning systemsare nowadays used for object recognition in images, automatic speech recognition, rec-ommender systems that suggests relevant news items or products to users, and selectingrelevant results of search.
There are three main machine learning paradigms: unsupervised, supervised and re-inforcement learning [AAJM+20]. Unsupervised learning is a type of machine learning al-gorithm used to draw inferences from datasets consisting of input data without labelledresponses. The most common unsupervised learning method is cluster analysis, which isused for exploratory data analysis to find hidden patterns or grouping in data. Other un-supervised approaches include Association Rules (mainly Apriori algorithm) and Dimen-sionality reduction (Principal component analysis, Singular Value decomposition, Autoen-coder). Supervised learning involves making a prediction based on a set of pre-specifiedinput and output variables. There are a number of statistical tools used for supervisedlearning. Some examples include traditional statistical predictionmethods like regressionmodels (e.g. regression splines, projection pursuit regression, penalized regression) thatinvolve fitting a model to data, evaluating the fit and estimating parameters that are laterused in a predictive equation. Other tools include tree-based methods (e.g. classificationand regression trees and random forests), which successively partition a data set basedon the relationships between predictor variables and a target (outcome) variable. Otherexamples include neural networks, discriminant functions and linear classifiers, supportvector classifiers and machines. Finally, the Reinforcement Learning model learns fromthe mistakes and the feedback provided on those mistakes.
Artificial intelligence (AI) and machine learning (ML) have demonstrated their poten-tial to revolutionize industries,public services, and society, achieving or even surpassinghuman levels of performance in terms of accuracy for a range of problems, such as imageand speech recognition [MKS+15] and language translation [YHPC18].

1.2 Future challenges for AI
Building on its tremendous potentiality, AI is rapidly gaining influence in people’s dailylives and in professional fields like healthcare, education, scientific research, communi-cations, transportation, security, and art. However, at the same time that AI systems arestarting to be deployed widely into the economy, multiple issues associated with AI arebecoming magnified.

A major problem frequently referred to is the interpretability of the methods. Thisissue heightened with the diffusion of ML-based technologies in safety-critical domainssuch as healthcare, finance, law, defense and governancewhich require accountability fordecisions and for how data is used in making decisions. Indeed, such fields require trustof users in a decision which is achieved by having a method that is easily interpretable,relatable to the user, connects the decision with contextual information, known laws andprior experiences and reflects the thinking mechanism of the user in reaching a decision.
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Figure 1.1: Subjective and rough classification of ML methods depending on their Accu-racy Interpretability trade-off

Similar concerns are of ethical nature and range from the possibility of criminality,fraud and identity theft to harassment and discriminatory decisions or spreading of dis-information.
Moreover, several of the most-used methods suffer from the scarcity of data in someapplications as well as the discrepancy between the training test and the real life datain others. Indeed, in practice, ML models are applied to data in real-world settings thatrarely match the training distribution. The reliability of a model depends upon its abilityto accommodate underrepresented or imbalanced data material and make relevant de-cisions in a broad array of scenarios. This requirement is fairly linked to interpretabilityas understanding how a model works allows to get some intuitions that may be helpfulfor this purpose.
On the other hand, there have been growing work focusing on building light ML mod-els such as small neural networks (for Internet-of-things (IoT) devices, real-time training,etc.) that require less computing power and are more practically interesting and usefuland generally more interpretable.
Limits of current methods

Applying ML techniques without careful consideration of their assumptions and limi-tationsmay lead to a dilapidation of valuable resources and incorrect scientific inferences.There are various existent and frequently used ML methods, they all come with their ad-vantages and drawbacks.
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Classical statistical methods are widely utilized in most of the day-to-day applicationswith simple requirements of time and resources. They are well understood by the scien-tific community. They are thus considered to be transparent and practical tools. However,their performance are less satisfactory when complex data with high number of variablesare investigated.
Non-traditional machine learning approaches help in overcoming some of these clas-sical models limitations but bring new drawbacks. Among others, the most importantone is their poor interpretability. For example, in a deep neural network, one may de-termine mathematically which nodes of the neural network were activated, but we lackunderstanding of how neurons behaved collectively to arrive at the final output. Thischaracteristic gives neural network the property of being a "black box". Figure 1.1 givesa rough and subjective classification of methods based on their accuracy-interpretabilitytrade-off.
These new highly sophisticated methods also commonly necessitate a large amountof data that is densely and uniformly distributed. Indeed, although deep learning modelshave made exciting progress in vision, language, and other fields [GBC16], the strongperformance of such models is generally heavily dependent on having test data drawnfrom the same distribution as their training set.
It is frequent that these large and complex models, after deployment, fail to achievethe reported high accuracies, lead to unfair decisions, and sometimes provide shockingpredictions contradicting the most basic principles of common sense.

1.2.1 Research directions

To address these issues, various research has been done to improve unbiased and im-partial decision-making, enhance the generalization ability of models to broader data do-mains and develop explanations for ML models. These objectives are heavily dependenton each other and the interpretability is a fundamental aspect that improves the two oth-ers.
Recent achievements in machine learning have been performed in applications thatdid not require high interpretability such as online advertisement and research results.Thus, most methods are not very keen in interpretability constraints, as their objectivesdid not require it. Thismay lead to the incorrect assumption that themost accuratemeth-ods should inherently uninterpretable and complicated.
When researchers gain a deeper understanding on the models they build, it allowsthem to produce AI systems that are better able to serve the humans who rely uponthem, as more interpretable models often become more accurate.
There is two main lines of research pursued to improve interpretability:
1. Developing and improving approaches that are inherently explainable, also knownas white-box models, such as decision trees and linear regression models.
2. Providing post-hoc explanations for already trained, so-called ‘black-box’, models.
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Figure 1.2: Tensors in neural networks.

A common approach for these two lines of research is based on developing new ten-sorial tools.
1.2.2 Tensorial approach

Tensors are a type of data structure that generalizes vectors and matrices to dimensionssuperior or equal to three. They became ubiquitous in modern machine learning giventheir abilities to retain and capture multidimensional structure that is essential for multi-ple applications.
Deep neural networks typically map between higher-order tensors through architec-tures such as convolutional layers, as illustrated in Figure 1.2. In fact, the ability of deepconvolutional neural networks to preserve the local structure of the input is consideredto be a property that is crucial for the great performances achieved [KPAP16].

1.3 Tensorial tools from theoretical physics perspective

This present work was initiated as part of a collaboration between the IJCLab laboratory(formerly LPT) in Orsay, throughmy thesis director Vincent Rivasseau and the LVML visionlaboratory at the CEA.
Within CEA LIST, the Vision Laboratory for Modeling and Localization is in charge of
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a research activity initiated in the 90s on the themes of computer vision and machinelearning for applications dealing with localization in the environment, precise location ofobjects, 3D reconstruction, augmented reality, diminished reality, realistic rendering. Itsmission consists in transferring these technologies to the industrial world and is carriedout upstream by developing state-of-the-art analysis methods in collaboration with theacademic world and downstream by adapting these technologies to the application con-texts of our industrial partners, from proof of concept to pre-industrial prototypes.
The identity of IJCLab is centered on the field of "the physics of two infinities" andtheir applications. The scientific activities of IJCLab are structured in 7 scientific poles:Astroparticles, Astrophysics and Cosmology; Physics of Accelerators; High Energy Physics;Nuclear physics; Theoretical Physics; Energy and environment; Health. The mathematicalphysics group studies on the one hand algebraic and geometric methods in various fieldsranging from non-commutative geometry to quantum field theory, on the other handclassical analysis and functional analysis in quantum mechanics and field theory.
Random Tensor Theory (RTT) provides a set of combinatorial tools dedicated to thestudy of trace invariant graphs [Gur17]. Trace invariants of a tensor T ∈

⊗k
i=1Rni aretensor networks scalars that are invariant under the following O(n1)× · · · ×O(nk) trans-formations:

Ti1...ik −→ T′
i1...ik

=
∑
j1...jk

O
(1)
i1j1

. . . O
(k)
ikjk

Tj1...jk

RTT allows to obtain important probabilistic results on trace invariants by using simpleenumerative combinatorics. In particular, it gives a simple way to compute the moments(expected value, variance, etc.) of the distribution of these scalars for random tensors. Inthe following, it should be understood from the context that
An important concept in problems involvingmatrices is the spectral theory. It refers tothe study of eigenvalues and eigenvectors of amatrix and it is of fundamental importancein numerous areas. Equivalently, the traces of the n first matrix powers

Tr
(
AA⊤

)
,Tr

(
(AA⊤)2

)
, . . . ,Tr

(
(AA⊤)n

)
contain the same information as the eigenvalues (in absolute value) since each set can beinferred from the other through some basic algebraic operations.

In the tensor case, the concept of eigenvalue and eigenvector is ill-defined and notpractical giving that the number of eigenvalues is exponential with the dimension n [Qi05,CS13] and computing them is very complicated. In contrast, we have a very convenientgeneralization of the traces of the power matrices for the tensors that we call trace invari-ants.
Let’s give a formal definition of trace invariants. Let T be a tensor whose entries are

Ti1,...,ik . Let’s define a contraction of a pair of indices as setting them equal to each otherand summing over them, as in calculating the trace of a matrix (Aij →
∑n

i=1Aii). Thetrace invariants of the tensor T correspond to the different ways to contract pairs of in-dices in a product of an even number of copies of T. The degree of the trace invariants
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(a) Tijk (b) TijkTijk
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Figure 1.3: Example of graphs and their associated invariants.

consists in the number of copies of T contracted. For example,∑i1,i2,i3
Ti1i2i3Ti1i2i3 and∑

i1,i2,i3
Ti1i2i2Ti1i3i3 are trace invariants of degree 2.

A trace invariant of degree d of a tensor T of order k admits a practical graphicalrepresentation as an edge colored graph G obtained by following two steps: we first draw
d vertices representing the d different copies ofT. The indices of each copy is representedby k half-edges with a different color in {1, . . . , k} for each index position as shown inFigure 1.3a. Then, when two different indices are contracted in the tensor invariant, weconnect their corresponding half-edges in G. Reciprocally, to obtain the tensor invariantassociated to a graph G with d vertices, we take d copies of T (one for each vertex), weassociate a color for each index position {1, . . . , k}, and we contract the indices of the
d copies of T following the coloring of the edges connecting the vertices. We denotethis invariant IG(T). Three important examples of trace invariants worth mentioning are:the melon diagram (Figure 1.3b), the tetrahedral (1.3c) and the tadpole (1.3d). [ABGD20]provides a thorough study about the number of trace invariants for a given degree d.

1.4 Tensor PCA model and its motivations.

Tensor PCA was introduced in the pioneer work of [RM14] and consists in recovering asignal spike v⊗k
0 that has been corrupted by a noise tensor Z: T = Z + βv⊗k

0 where v0 isa unitary vector and β the Signal-to-Noise Ratio (SNR). The motivation for Tensor PCA isthree-fold:
1) Tensor PCA could be considered as a simple case of Tensor decomposition. How-ever, it has a different motivation which is the theoretical study of the computationallimitations in the very low SNR regime while the Tensor decomposition literature mainlyaddress practical applications, often in a large SNR. Yet, algorithms developed for TensorPCA could be generalised to address Tensor decomposition as in [WA16].
2) In addition to that, Tensor PCA is also often used as a prototypical inference problemfor the theoretical study of the computational hardness of optimization in high-dimensionalnon-convex landscapes, in particular using the well spread gradient descent algorithmand its variants ([BAGJ+20, MKUZ19, MBC+19, MBC+20]). Indeed, these algorithms areused with great empirical success in many ML areas such as Deep Learning, but unfortu-nately they are generally devoid of theoretical guarantees. Understanding the dynamicsof gradient descent methods in specific landscapes such as Tensor PCA could bring newinsights.
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3) One of themain characteristic of Tensor PCA is its conjectured statistical algorithmicgap: while information theory shows that it is theoretically possible to recover the signalfor β ∼ O(1), all existent algorithms have been shown or conjectured to have an algo-rithmic threshold for k ≥ 3 of at least β ∼ O(n(k−2)/4). Thus Tensor PCA is consideredas an interesting study case of such a gap that appears in various other problems (seereferences in [BAGJ+20] and [LZ20]).
Simple and symmetrized power iteration The simple power iteration consists in per-
forming the following operation v ← T(:,v,v)

∥T(:,v,v)∥ Given a non-symmetrical tensor, we define
the symmetrized power iteration as:

v ← T(:,v,v) + T(v, :,v) + T(v,v, :)

∥T(:,v,v) + T(v, :,v) + T(v,v, :)∥
(1.1)

Performing a symmetrized power iteration on a tensor T amounts to perform a sim-ple power iteration on the symmetrized tensor Tsym ≡ ∑
σ∈Sk

Tσ(i1)σ(i2)...σ(ik). Unlessspecified otherwise, we restrict ourselves to a symmetrical tensor and k = 3, that caneasily be generalized to an asymmetrical tensor (by symmetrizing the tensor) and k ≥ 4.
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2.1 From Tensor PCA to the CANDECOMP/PARAFAC Tensor De-
composition

2.1.1 Matrix PCA

Matrix Principal Component Analysis (PCA) is a statistical technique formultivariate analy-sis first introduced in 1901 [Pea01] and has since become one of the most used statisticalmethods thanks to its efficiency, simplicity and large number of fields of application. Thebasic idea of PCA is to perform a dimensionality reduction on a large dataset while keep-ing most of the statistical information, leading to low-dimensional representations of thedatasets in an adaptive and insightful way.
Matrix PCA does so by creating new uncorrelated variables that successively maxi-mize variance. Finding such new variables, the principal components, reduces to solvingan eigenvalue/ eigenvector problem. Indeed, a set of observations is given in the form of p

n−dimensional vectors {x1, . . . ,xp}, or equivalently a n×pmatrixX ≡ (x1, . . . ,xp). Theobjective of this method is to seek new uncorrelated variables consisting in linear com-binations of the vectors xi1≤i≤p that maximize the variance. These linear combinationscould be written as∑p
i=1 aixi ≡Xawhere a = (a1, . . . , ap)with the additional constraint

∥a∥ = 1. The variances of this new variable is equal to Var(Xa) = aTSa where S is thesample covariance matrix associated to the datasetX defined as
S =

1

n− 1

n∑
i=1

(xi − x̄)(xi − x̄)T (2.1)
where x̄ = 1

n

∑n
i=1 xi is the sample mean vector. Given that S is a p × p real symmetricmatrix, it has exactly p eigenvalues λk associated to eigenvectors that form an orthonor-mal set of vectors. The eigenvectors associated to the largest eigenvalue of S solves theproblem. They are uncorrelated given that for two such linear combinations Xak and

Xak′ , Covar(Xak,Xak′) = aT
k′Sak = λkak′ .ak′ = δk,k′ . Xak are thus called the princi-pal components.
Sa− λa = 0⇐⇒ Sa = λa (2.2)

PCA has an intuitive geometric interpretation as searching the eigendecomposition ofthe covariance matrix S amounts to performing a singular value decomposition (SVD) onthe centred data matrix defined asX∗ ≡ (x1 − x̄, . . . ,xp − x̄) given that
(n− 1)S = (X∗)TX∗ (2.3)

Several adaptations of PCA have been developed and tailored for various objectivesanddata types in different disciplines such as Robust Principle Component Analysis (RPCA)[CLMW11]which is an adaptation less sensitive to outliers, Multiple Correspondence Anal-ysis (MCA) for categorical variables [GB06], Multiple Factor Analysis (MFA) [AV+07] for vari-ables structuredby sets, Functional principal component analysis for continuous variables[RD91], PCA for interval type data [CCDS97]. etc.
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Figure 2.1: Examples of tensorial data

2.1.2 Tensor decomposition

Advances in data acquisition and storage technology have enabled the acquisition ofmas-sive amounts of data in a wide range of emerging applications. In particular, numerousapplications across the physical, biological, social and engineering sciences generate largemultidimensional, multi-relational and/ormulti-modal data (see Figure 2.1). Efficient anal-ysis of this data requires dimensionality reduction techniques. However, traditionally em-ployedmatrix decompositions techniques such as the singular value decomposition (SVD)and principal component analysis (PCA) can become inadequate when dealing with mul-tidimensional data. This is because reshaping multi-modal data into matrices, or dataflattening, can fail to reveal important structures in the data.
The research on multinilear generalizations of linear algebra tools has been very ex-tensive and rich. Tensor decompositions overcome the information loss from flattening.These “tensor methods” have found applications in many fields, including quantitativebiology [YAD19], computer graphics [VT04], Hyperspectral analysis [MDDN18], OutlierDetection Methods [DJPM18], Data Recover [SCZL18], Image classification [FH08], facerecognition [VT02], quantum computing [PKYA21] and wireless communication [DLG20,CAVP21], among other areas. Thus, tensor generalizations to the standard algorithmsof linear algebra have the potential to substantially enlarge the arsenal of core tools innumerical computation.
Tensor decomposition is a fundamental unsupervised machine learning method indata science, with applications including network analysis and sensor data processing.From the various generalizations of matrix SVD to tensors, there is two main tensor de-compositions that have been successfully used in numerous applications: (i) CANDECOMP/PARAFAC
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Figure 2.2: CP decomposition illustration.
(CP) decomposition that consists in approximating a tensor with a sum of rank-one ten-sors. [AGH+14, AGJ15, WA16]. One of the most used algorithms is Alternative LeastSquares (ALS) [CLDA09]. (ii) Tucker decomposition that approximates the initial tensorwith one small core tensor and a set of matrices [ZX18]. HOSVD [DLDMV00a] and HOOI[DLDMV00b] are the most popular algorithms for this model and their statistical limitshave been studied in [ZX18].
CP decomposition

TheCANDECOMP/PARAFAC (CP) tensor decomposition is a popular dimensionality-reductionmethod for multiway data. The canonical CP tensor decomposition expresses an N-waytensor as a sum of rank-one tensors to extract multi-modal structure as illustrated in 2.2.Structural features in the dataset are represented as rank-1 tensors, which reduces thesize and complexity of the data. An important interest in resorting to CP tensor decom-position, compared to more standard matrix-based approaches, lies in the uniquenessof the decomposition. This form of dimensionality reduction has many applications in-cluding data decomposition into explanatory factors, dimensionality reduction, filling inmissing data, and data compression. It has been used to analyze multiway datasets ina variety of domains including neuroscience [NLK+20], quantum chemistry [HTG17], cy-bersecurity [BSBE+16], latent variable modeling such as hidden Markov models [HKZ12],independent component analysis [BS05] and topic models [AHK12] and so on.
More precisely, CP Tensor Decomposition of a tensor consists in expressing a tensoras a sum of r rank-one tensors:

T ≡
r∑

i=1

λi(v
(i)
1 ⊗ . . .v

(i)
k ) (2.4)

with λi ∈ R,v(i)
j ∈ Rnj , j ∈ {1, . . . , k} and r is the rank of the tensor which is the minimalnumber of rank-one components that can be summed to express T.

In practice, tensors describe data that is corrupted by noise so one resorts to the ap-proximate decomposition for a given rank r :

argmin
λi,

∥∥∥v(i)
j

∥∥∥=1

∥∥∥∥∥T−
r∑

i=1

λi(v
(i)
1 ⊗ · · · ⊗ v

(i)
k )

∥∥∥∥∥ (2.5)
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Figure 2.3: Tucker decomposition illustration.
Many algorithms for CP tensor decomposition have been developed in the last years,and many of them are based on methods for best rank-one approximation [dSCdA15a].The basic idea is to compute successive rank-one approximations of and subtracting it ateach step in order to compute the full CP decomposition.

2.1.3 Tucker decomposition

The Tucker decomposition is a generalization of the SVD to higher-order tensors (ie. ar-rays with more than two indices). This decomposition plays an important role in variousdomains, such as quantum chemistry [BLHG10], signal processing [MB05] among manyothers (the multiple applications are detailed in reviews like [KB09]).
In this case we write the tensor as

T = G ×1 U1 ×2 U2 ×3 U3 (2.6)
where U1 ∈ RD1×d1 ,B ∈ RD2×d2 ,C ∈ RD3×d3 are the factor matrices, ×i stands forthe mode-i product defined in [KB09] and G ∈ Rd1×d2×d3 is denoted the core tensor andcharacterizes the interactions between the different components of the factor matrices.This is illustrated in Figure 2.3.

HOSVD HOSVD method consists for the factor matrices to be

U1 = first r1 left singular vectors of T(1)

U2 = first r2 left singular vectors of T(2)

U3 = first r3 left singular vectors of T(3)

(2.7)

and the core tensor G
G = T×1 U

T
1 ×2 U

T
2 ×3 U

T
3 (2.8)
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The n-rank Given a Tucker decomposition of the tensor T, the n-rank corresponds tothe tuple of the dimensions (d1, d2, d3) of the core tensor.
2.1.4 Tensor PCA and algorithms

Tensor PCA could be seen as a special case that is common to both CP and Tucker de-composition, for a rank of one and a n-rank of (1,1,1) respectively. Indeed, Tensor PCAalgorithms aim to find the best rank-one approximation for the input tensor.
Multiple Cp tensor decomposition methods based on been proposed that are basedon successive rank-one approximation in [dSCdA15b, PTC15]. These methods consist incareful and subtle deflations as the standardprocedure of computing successive rank-oneapproximations followed by subtractions is not as performant for tensors as for matrices.
Also, trying andmodelizing new theoretical models of algorithms in this simple modelcould be beneficial as it could be easy to generalize it to the tensor decomposition case.One can take as example the deflation method.
Thus, given that Tensor PCA algorithms aim to compute the best rank-one tensor ap-proximation, they could prove useful for Tensor decomposition in general.
which has various applications such as topic modelling [AGJ15], community detection[AGHK13], etc. CP Tensor decomposition also proved useful in the context of deep neu-ral networks, particularly in compressing Convolutional Neural Networks to reduce thememory and the computational cost [AL17, WY+20], Tensor faces [VT02], Hyperspectralimagery [LB13], chemical materials [SB20], multimodal data fusion [LAJ15], data mining[PFS16], etc.

Tensor PCA algorithms

Several algorithms have been developed to tackle the tensor PCA problem. [RM14] an-alyzed many algorithms theoretically and empirically (in a range of 25 ≤ n ≤ 800). Thetensor unfolding algorithm showed an empirical threshold of β ∼ n1/4 while naive poweriteration with a random initialization performed much worse with an empirical thresholdof n1/2. [HSSS16] provided an algorithm based on sum-of-squares, which was the firstwith theoretical guarantees whose threshold matches n1/4. Other studied methods havebeen inspired by different perspectives like homotopy in [ADGM17a], statistical physics([BAGJ+20], [WEAM19] and [BCRT20]), quantum computing [Has20], low-degree polyno-mials [KWB19], statistical query [DH21], random tensor theory [OTR22] as well as renor-malization group [LOST21].
Power iteration is a simple method that has been extensively used in multiple tensorproblems [AGH+12, AGHK13]. [RM14] investigated the empirical performance of poweriteration with a random initialization in the range of n ∈ [50, 800] and observed an em-pirical threshold of n1/2. Through an improved noise analysis, [WA16] showed that for asymmetrical tensor, power iteration is indeed able to recover the signal for a SNR β above

n1/2 with a constant number of initialization and a number of iterations logarithmic on n.Their experiments in the range of n ∈ [25, . . . , 250] suggested that this threshold is tight.
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A recent paper [HHYC20] investigates the simple power iteration for a non-symmetrictensor for Tensor PCA, they prove that the algorithmic threshold is strictly equal to n1/2.The results of their experiments for n ∈ [200, . . . , 800] match their theoretical results.In this paper, we aim to draw attention to a surprising observation that contrasts withprevious work: if we impose five essential features for an algorithm based on power iter-ation or gradient descent (use a symmetrized power iteration, impose a polynomial num-ber of initializations and iterations, etc.), we observe that a novel powerful mechanismfor the convergence towards the signal takes place, leading to a fundamentally differentperformance. In fact, for n ∈ [50, 1000], SMPI is the first algorithm to exhibit an empiri-cal threshold corresponding toO(1) and whose results matches the theoretically-optimalcorrelation at large n.

2.2 Glassy systems and rough landscapes

2.2.1 Glasses

Standard condensed matter has generally tended to focus on ordered and equilibriumphysics. However, since a few decades (the 1970s), the scientific community has startedto take more and more interest in disordered and non-equilibrium physics, which hasbecome a big part of statistical physics. The reason for this development is the incrediblewealth of behaviors in these systems and the multitude of their applications in materialsscience, as well as the variety of conceptual problems involved in understanding thesebehaviors.
A system is considered out of equilibrium if it undergoes a continuous change of itsmechanical and statistical properties. Interestingly, the vast majority of daily physical pro-cesses, from biology to industry, are out of equilibrium. Thus, the theoretical tools devel-oped to address non-equilibrium dynamics can prove useful in a wide variety of contexts,from mechanics of granular systems to artificial intelligence.
There may be various reasons for not reaching equilibrium. Generally, this is becausethe time required for the system to attain equilibrium is larger than the observation timescale. In other cases, the action of external forces keep the system out of equilibrium.
Within non-equilibrium physics, one subject has in particular been the subject of veryrich and fruitful research: glassy systems. Glasses are amorphous structures (a solid thatlacks the long-range order) which experience a so-called vitreous transition (the reverseis called a glass transition). When the temperature of a liquid is rapidly reduced (the sys-tem is then said to be quenched), there comes a time when the viscosity highly dropsand becomes considered as a glass. The glass-transition temperature Tg is the rangeof temperature at which this transition occurs. Below it, the relaxation time becomesexceedingly long which prevents the system to reach equilibrium in laboratory or evengeological time scales. There are several examples of such material and they vary greatlyin size, from macroscopic to microscopic, such as heated metals that are supercooled toform glasses instead of crystals, plastics, colloidal dispersion, and even many biologicaltissues .
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The nature of the glass transition is one of themajor unsolved questions of condensedmatter science. Below the glass transition temperature Tg , the system remain stuck for avery long time and seems to be frozen in amorphous configurations and the number ofthese configurations is exponentially large in the system size. The extremely slow relax-ation to equilibrium is characterized by the time elapsed so far, sometimes called “age”[BA03, CKR94].
2.2.2 Spin glass and Mean field

The modern theory of spin glasses began with the work of Edwards and Anderson [EA75]on the simplemodel associated to equation 2.9. Spin glasses aremetals with several scat-tered magnetized defects that exhibits both quenched disorder and frustration (compet-ing interactions). A quenched disorder describes the fact that the Jij in equation 2.9 arerandom scalars that are constant in the timescales associated to the fluctuations of the
σi. The frustration property is due to the fact that the interactions are competing andno ground state is able to satisfy them all, which is the reason of the huge number ofground states. Although, the interactions that define the spin glass are in principle quan-tum mechanical, a classical statistical mechanics approach is enough to recover many ofthe important phenomena observed down to very low temperatures in a wide variety ofspin glasses, provided that we are able to address the complications that arises from thequenched randomness inherent to spin glasses. Indeed, this quenched disorder leadsto the absence of spatial symmetries that usually extensively simplify the mathematicalstudy of homogeneous systems such as crystals. Although many basic questions remainopen, the study of spin glasses already allowed to uncover numerous important new ideasand techniques that could have wide applicability.

H = −
∑
⟨x,y⟩

Jxyσxσy (2.9)

Spin glasses models can also have an addition applying an external magnetic field.

H = −
∑
⟨x,y⟩

Jxyσxσy − h
∑
x

σx (2.10)

Strong phenomenological analogies has been unveiled between glassy systems andspin glasses such as glassy dynamics and the aging phenomenon. Glassy systems pro-vide thus simpler models that can be studied analytically. In particular, mean- field mod-els have been most valuable in clarifying some of the basic theoretical issues of glassysystems. Mean field theory of spin glass consists in assuming a large number of spins(thus the absence of space limits) and a equivalent interaction coupling between themwhich facilitate mathematical analysis. It provided the first quantitative analysis of roughhigh-dimensional landscapes, in particular of the number and the properties of the crit-ical points, and of the associated dynamics. Yet, the applicability of the results of meanfield models to finite dimensional systems is still not very clear.
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H =
∑
i,j,k

Jijkσiσjσk (2.11)

2.2.3 Spherical p-spin glass model

The p-spin spherical spin glass model, has attracted a lot of interest in the study of spinglasses. It is a simpler than the Sherrington-Kirkpatrick model and its static and dynamicproperties could be studied. In particular, the metastable states could be approximatelycounted and studied, and the Langevin dynamics shows the aging behavior.
Although the models on which we concentrate are simple in the sense discussedabove one needs to master many analytical methods to extract all the richness of theirbehavior. The model is defined by the Hamiltonian

H = −
∑

i1i2...ip

Ti1i2...ipσi1σi2 . . . σip (2.12)

2.2.4 Tensor PCA landscape as a prototypical inference problem and explo-
ration of complex landscapes

Different complex physical systems are characterized by energy functions. Their land-scapes possess multiple local minima that are associated to configurations of the systemand are separated by barriers, an example is illustrated in Figure 2.4. Complex physicalsystems are generally characterized by very rough landscapes, whichmeans a large num-ber of such local minima with large barriers to traverse in order to pass from one to theother. Spin glasses, and in particular spherical p-spin glass are typical examples for roughlandscapes and their analytical properties have been mathematically studied. This couldbe essential for the understanding of important physical phenomena such as aging. Agraphical example of such landscape is in Figure 2.4.
Deriving new insights on rough landscapes is not only important for the understandingof glassy phenomenon, but is relevant for several areas such as protein folding in biology,string theory in physics, and neural network in machine learning. It could be useful tocreate and improve algorithms and methods.
Studying the energy landscape aims to have a better understanding of the dynamicalbehavior of algorithms, in particular local algorithms such as gradient descent and itsvariants. Given that this questions arises in multiple disciplines especially in computerscience. As an example we can give neural networks.
Multiple popular methods in machine learning are based on gradient descent witha lot of success in practice, yet the theoretical analysis of their success is still unclear.Indeed, gradient descent are usually used to optimize high dimensional non convex land-scapes with exponentially large number in the system size of local minima, yet gradientdescent is able to find relevant optimums and do not get trapped in spurious ones.
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Figure 2.4: Rough landscape illustration

Note that [CHM+15] investigated a very similar landscape to Tensor PCA in order togain insights on neural network landscapes.
Inmore details, the problem consists in analyzing the statistical properties of functionsdefinedon very high dimensional spaces. Important statistical information that have beencomputed is the number of critical points for a given index (number of positive directions)at a given energy, in particular the number of minima and the spectral properties of theircorresponding Hessian. This helps to give insights on the dynamics of local algorithmssuch as gradient descent within these landscapes.
For random landscapes, these questions can be approachedwithin a statistical frame-work. The spherical p-spinmodel gives one of the simplest incarnations of a random land-scape. In this model the random fluctuations give rise to a rugged landscape [RBABC19],with an exponentially-large (in the dimension N ) number N exp(N + o(N)) of stationarypoints, being their ‘complexity’.
Tensor PCA, as well as a weaker version of it, the matrix-tensor PCA introduced in[MBC+20], has been considered by the scientific community as a prototypical inferenceproblem in order to analyze the interplay between the loss landscape and performanceof descent algorithms [MKUZ19, MBC+20, BAGJ+20]. They show that there is a region ofparameters where the gradient-flow algorithm finds a good global minimum despite thepresence of exponentially many spurious local minima and show that this is achieved bysurfing on saddles that have strong negative direction towards the global minima.
The paper [RBABC19] show that p-spin glass exhibits two transitions that we denote

βc and βstat as illustrated in Figure 2.5. First, for β < βc, the most numerous and deep-est minima only achieve asymptotically vanishing correlation with the signal. The zonewith an exponential number of minima form a band. For βc < β < βstat, there is a lo-cal minimum with non-trivial correlation that detaches itself but the maximum likelihoodestimator still has vanishing correlation. Finally, for βstat < β the maximum likelihoodestimator has strictly positive correlation.
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Figure 2.5: Evolution of theminimawith the SNR. The light orange zone indicates the zonewith an exponential number of minima. The equator is the zone with the most numerousand deepest minima. A straight line indicates the presence of the global minimum, whilea dashed line is associated to only local minima.
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2.3 The conjectured statistical algorithmic gap: computational
hardness

2.3.1 Statistical computational gap in inference problems

The statistical-computational gap is an empirical attribute that is common to various dif-ferent inference problems. It describes the fact that inference has been proven possible,from an information-theoretically point of view, above a given threshold that we denotestatistical (or theoretical) threshold; yet no polynomial-time algorithms is known to suc-ceed below a second larger threshold denoted the computational (or algorithmic) thresh-old. This intriguing experimental property has attracted a huge amount of interest, es-pecially since it has been observed that several central inference problems exhibit sucha gap, including sparse PCA [BR13], tensor PCA [RM14], planted clique [Jer92], randomconstraint satisfaction problems [ACO08], and many others.
The true nature of this statistical-computational gap is still enigmatic, as it is still notclear whether it is characteristic of an inherent computational intractability in the modelsthat exhibit it, or if a successful algorithm with appropriate properties still needs to beuncovered.
For that purpose, multiple studies addressed this question and obtained important re-sults. Theseworks can roughly categorized in twodistinct but complementary approaches:
• Establishing computational equivalence between different problems via average re-ducing. Typically, one proves that the studied problem is at least as difficult as theaverage case of a standard model which is presumed to be hard.
• Ruling out families of known algorithms through the study of specific classes of al-gorithms as well as properties of the geometric landscape associated to the modelinvestigated. Characterizing geometric properties of the problemmainly aims at un-derstanding the behavior of local algorithms such as the gradient-based methods.

2.3.2 Statistical computational gap in Tensor PCA

The statistical threshold of Tensor PCA

Investigating the statistical threshold is less intricate than addressing the computationalthreshold. Different theoretical tools have been wielded in order to study the best statis-tical threshold above which inference is possible if we remove the polynomial-complexityconstraints.
[JLM+20] gave an exact expression for the statistical threshold βstat. They showedthat the maximum likelihood estimator is the most optimal of all measurable estimatorsin regard of the correlation with the signal vector v0 above the statistical threshold. Thisoptimal correlation is reproduced in Figure 2.6. Similarly to the BBP transition for matri-ces [BBAP05], the maximum likelihood estimator shows a discontinuous transition: Theoptimal correlation with the signal vector is equal to zero below the statistical thresholdbut achieves a correlation close to 1 above the statistical threshold.
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Figure 2.6: Asymptotic correlation of the Maximum Likehood Estimator with the signal asa function of the SNR β.

Among the many tools used to address the statistical threshold, we mention the ex-ample of random tensor models (that we present in more details in the next section).[Gur20] proposed a generalisation of the Wigner law to real symmetric tensors. This gen-eralization is based on a new resolvent. He then shows analytically that the expectationof the newly introduced resolvent exhibits a sharp transition at the statistical threshold.This method presents the advantage of being understandable in terms of the eigenvec-tors concept in tensors.

NP Hardness of Tensor PCA

With the rise of use of tensormethods, researchers has been interested in the computabil-ity of multiple tensor problems. It has been shown in [HL13] that, in general, they arefundamentally more difficult compared to their matrix counterpart . In particular, [HL13]proved the following theorem on approximating a tensor with a single rank-one element.
Theorem 1. [HL13] Rank-1 tensor approximation is NP-hard

However, NP-hardness only suggests that there exist hard problem instances. Thisdoes not rule out the computability of these problems on specific cases of tensors, forinstance a low-rank tensor disturbed by a Gaussian random tensor. This represents thedistinction between a worst-case problem where every instance need to be solved andan average-case problem which requires only specific instances to be computable. Thelatter case is more difficult than and overall very different from the former.
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Figure 2.7: Illustration of the statistical-computational gap.

Algorithmic threshold from existent algorithms

While [RM14] proved that the optimal theoretical threshold is of order βopt = O(1), manyof the suggested methods have been predicted (based on empirical results for 25 ≤ n ≤
1000) to have at best an algorithmic threshold of O(n1/4). This led to a conjecture thatit is not possible to achieve the recovery of the signal vector with polynomial time for a
β below O(n1/4). A rich theoretical literature emerged in order to understand the fun-damental reason behind the apparent computational hardness of Tensor PCA. Average-case reduction has been investigated in [BB20, LZ20]. While several papers (such as[PWB+20, LML+17, RBABC19, JLM+20]) provided new results on the statistical thresholdof Tensor PCA, there have been many results for thresholds of specific algorithmic mod-els. In particular, [KWB19] proves the failure of low-degree methods for 1 ≪ β ≪ n1/4

and surveys a recent and interesting line of research that explores the conjecture thatthe failure of low-degree methods indicates the existence of statistical algorithmic gap inhigh-dimensional inference problems. [BAGJ+20] provides a possible explanation for thefailure of the Langevin dynamics and gradient descent (in the infinitely small learning ratelimit) which is another class of algorithms.
2.3.3 Existent approaches for computational hardness of statistical prob-

lems

This discrepancy between the statistical and computational thresholds the conjecture ofa statistical-computational gap illustrated in Figure 2.7.
Average-Case Hardness of Hypergraphic Planted Clique Detection

Zhang [ZX18] showed a hardness equivalence between Hypergraph Planted Clique (HPC)detection conjecture and Tensor PCA. Luo and Zhang [LZ20] provides some evidence for
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Hypergraph Planted Clique (HPC) detection conjecture and investigates the equivalenceof computational hardnes between HPC and Planted Clique (PC).
Overlap Gap

The overlap gap is a geometrical property that has been shown to be present in mostmodels known to exhibit a statistical-computational gap. It allows to rule out algorithmsclasses that shows an input stability which means that a small perturbation on the inputleads to a small perturbation on the output. [Gam21].
Low degree polynomials

the low-degree polynomial model cover all the algorithms which outputs could be ex-pressed as a polynomial of degree bounded by O(log(n)) on the input entries where nis the system size. This encompasses methods such as Approximate Message Passing[DMM09, BM11], spectral methods, power iteration with a logarithmic number of itera-tions, etc. This model raised a lot of interest as a framework for addressing the statistical-computational gaps. Indeed, it has been shown that low-degree polynomials are able tomatch the best algorithmic performance for multiple standard inference problems, forinstance planted clique [BHK+19], sparse PCA [DKWB19] and Tensor PCA [HKP+17]. Thisled to a conjecture that low-degree polynomials could indicate the success of failure ofalgorithms [Hop18].
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3.1 Brief review of Random Tensor Theory

3.1.1 From eigenvalues to trace invariants

An important concept in problems involving matrices is the spectral theory. It refers tothe study of eigenvalues and eigenvectors of a matrix. It is of fundamental importance inmany areas. In machine learning, the matrix PCA computes the eigenvectors and eigen-values of the covariance matrix of the features to perform a dimensional reduction while
34
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ensuring most of the key information is maintained. In this case, the eigenvalues is avery efficient tool to describe data variability. In the case of signal processing, eigenvaluecan contain information about the intensity of the signal, while the eigenvector pointsout to its direction. Lastly, a more theoretical example involves quantum physics wherethe spectrum of the matrix operator is used to calculate the energy levels and the stateassociated.

In all of these examples, an important property of the eigenvalues of a n-dimensionalmatrix M is its invariance under orthogonal transformations {M → OMO−1,O ∈
O(n)} where O(n) is the n-dimensional orthogonal group (i.e. the group of real matri-ces that satisfiesOO⊤ = In, which should not be confused with the computational com-plexity O(n)). Since these transformations essentially just rotate the basis to define thecoordinate system, they must not affect intrinsic information like data variability, signalintensity or the energy of a system. The eigenvalues are able to capture some of theseinherent information, but recovering the complete general information requires comput-ing their respective eigenvectors (for example to find the principal component, the direc-tion of the signal or the physical state). There are more such invariants than eigenval-ues. Another important set worth mentioning are the traces of the n first matrix powers
Tr(A),Tr

(
A2

)
, . . . ,Tr(An). Obtaining them uses slightly different methods than eigen-values, but they contain the same information since each set can be inferred from theother through some basic algebraic operations.

On the basis of thematrix case, we expect that for a tensorT ∈⊗k
i=1Rni , tensor quan-

tities that are invariant under orthogonal transformations (Ta1j ...a
k
j
→ O

(1)

a1j b
1
j
. . . O

(k)

akj b
k
j

Tb1j ...b
k
jfor O(i) ∈ O(ni) ∀i ∈ [k]) should capture similar intrinsic information like the intensityof the signal, and conceivably, there should be other objects related to these quantitiesthat are able to indicate the direction of the signal. However, the concept of eigenvalueand eigenvector is ill defined in the tensor case and not practical giving that the numberof eigenvalues is exponential with the dimension n ([Qi05], [CS13]) and computing themis very complicated. In contrast, we have a very convenient generalization of the tracesof the power matrices for the tensors that we call trace invariants. They have been ex-tensively studied during the last years in the context of high energy physics and manyimportant properties have been proven ([Gur17]).

Random Tensor Theory (RTT) provides a set of combinatorial tools dedicated to thestudy of trace invariant graphs [Gur17]. Trace invariants of a tensor T ∈
⊗k

i=1Rni aretensor networks scalars that are invariant under the following O(n1)× · · · ×O(nk) trans-formations:
Ti1...ik −→ T′

i1...ik
=

∑
j1...jk

O
(1)
i1j1

. . . O
(k)
ikjk

Tj1...jk

RTT allows to obtain important probabilistic results on trace invariants by using simpleenumerative combinatorics. In particular, it gives a simple way to compute the moments(expected value, variance, etc.) of the distribution of these scalars for random tensors. Inthe following, it should be understood from the context that
Einstein summation convention: It is important to keep in mind throughout the
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(a) Tijk (b) TijkTijk

(c) TijkTij′k′

Ti′jk′Ti′j′k (d) TijjTikk

Figure 3.1: Example of graphs and their associated invariants.

paper that we will follow the Einstein summation convention: when an index variable ap-pears twice in a single term and is not otherwise defined, it implies summation of thatterm over all the values of the index. For example: TijkTijk ≡
∑

ijk TijkTijk. It is acommon convention when addressing tensor problems that helps to make the equationsmore comprehensible.
3.1.2 Trace invariants and their representations as graphs

We first give a more formal definition of trace invariants. Let T be a tensor whose entriesare Ti1,...,ik . Let’s define a contraction of a pair of indices as setting them equal to eachother and summing over them, as in calculating the trace of a matrix (Aij →
∑n

i=1Aii).The trace invariants of the tensor T correspond to the different ways to contract pairs ofindices in a product of an even number of copies of T. The degree of the trace invariantsconsists in the number of copies of T contracted. For example,∑i1,i2,i3
Ti1i2i3Ti1i2i3 and∑

i1,i2,i3
Ti1i2i2Ti1i3i3 are trace invariants of degree 2.

A trace invariant of degree d of a tensor T of order k admits a practical graphicalrepresentation as an edge colored graph G obtained by following two steps: we first draw
d vertices representing the d different copies ofT. The indices of each copy is representedby k half-edges with a different color in {1, . . . , k} for each index position as shown inFigure 3.1a. Then, when two different indices are contracted in the tensor invariant, weconnect their corresponding half-edges in G. Reciprocally, to obtain the tensor invariantassociated to a graph G with d vertices, we take d copies of T (one for each vertex), weassociate a color for each index position {1, . . . , k}, and we contract the indices of the
d copies of T following the coloring of the edges connecting the vertices. We denotethis invariant IG(T). Three important examples of trace invariants worth mentioning are:the melon diagram (Figure 3.1b), the tetrahedral (3.1c) and the tadpole (3.1d). [ABGD20]provides a thorough study about the number of trace invariants for a given degree d.
3.1.3 Combinatorial tools for statistics of trace invariants

Covering graph:

In order to be able to compute the moments of trace invariants in a simple way, weintroduce the concept of covering graph used in [Gur14]: a covering graph of G consistsin adding d/2 new edges of color 0 (also called propagators) relying pairwise the verticesof G. In order to distinguish these edges, we will represent them as dashed lines. If wedenote E0(G) the edges of color 0 of a graph G, then {G′,G′\E0(G′) = G} denotes the
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Figure 3.2: Tetrahedral and its covering graph
graphs which restrict to the graph G when we remove their edges of color 0. These are bythe definition the covering graphs. In Figure 3.2 we represent the three covering graphsof the tetrahedral grapha s an example.

Faces of a graph:

Let c1, c2 ∈ {0, . . . , d} be two different colors of edges. We denote F c1,c2(G) the num-ber of closed cycles (that we also call faces) of 2 colors of G. More explicitly, it consistsof the number of connected sub-graphs left when we keep in G only the edges of colors
c1, c2. In Figure 3.3, we represent the faces that include the color 0 of the first coveringgraph of the tetrahedral trace graph.

Simple expectation formula of a trace invariant:

Given a trace invariant IG(T) and its associated graph G, we can now give a simpleformula provided in [Gur17] and based on the two previous concepts to compute theexpectations of trace invariants of a random tensor T whose components are normallydistributed
E(IG(T)) =

∑
G′,G′\E0(G′)=G

n
∑

c F
0,c(G′). (3.1)

This will be the formula (of enumerative combinatorial nature) that wewill use to calculatethe expectations of our graphs. We call the expectation and the variance of a graph,the expectation and variance of the tensor invariant associated to it. The details of itsderivation are given in the appendix B.
Example of an expectation calculation: the tetrahedral graph Let’s calculate theexpectation of the tetrahedral graph B:
The first step is to find all the covering graphs of the tetrahedral (drawn in Figure 3.2).Then, for each of the three covering graphs, and for each color c we count the number offaces associated to the colors (0, c). We drew in Figure 3.3 the faces for the different colorsfor the first graph. For every covering graph, there is one color having two faces (the redfor the first covering graph) and two colors having only one face. Hence the expectationof the tetrahedral graph is given by 3n4:

E(IG(T)) =
∑

G′,G′\E0(G′)=G

n
∑

c F
0,c(G′) = n2+1+1 + n1+2+1 + n1+1+2 = 3n4. (3.2)
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Figure 3.3: The faces of the first covering graph

Variance formula:

Let’s denote the graph corresponding to the invariant I2G = IG .IG , that consists in twocopies of G, by G × G. The variance formula is
Var(IG) = E(I2G)− E(IG)2

= E(IG×G)− E(IG)2
(3.3)

Thus, computing the variance for an invariant associated to a graph could be done byusing the equation 3.1 for G × G but by taking into account only covering graphs whichare connected (there is at least a propagator linking the two copies such as in Figure 3.4)given that E(IG)2 is the contribution of the disconnected covering graphs . An example ofthe connected covering graph to be included is given in 3.4.

Var(IG(T)) =
∑

G′,G′\E0(G′)=G×G
G′connected

n
∑

c F
0,c(G′). (3.4)

Figure 3.4: Example of a covering graph contributing to the variance
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3.2 Random Tensor Theory for Tensor PCA

In this section, wewill first demonstrate how to recover the signal in the Tensor PCAmodelusing trace invariants. But first we give the general idea of the proposed framework. Aswe previously explained, generalizing eigenvalues and eigenvectors to the tensor caseis not convenient. Thus, our approach is to associate a matrix to the tensor of interestin order to recover the signal by exploiting the well mastered spectral theory of matrices.However, there is twomain important characteristics for thesematrices that are requiredfor them to be of interest: they have to be relevant, in the sense that they should reveal theinformation/signal hidden in the tensor even in low signal regime, and they also have to beeasy to study from a probabilistic point of view in order to provide theoretical guarantees.Conveniently, RTT allows us to select matrices that meet these requirements. Indeed, weprovide matrices that are able to obtain the signal in the high noise regime, and we haveaccess to simple enumerative combinatorial tools in order to have theoretical guaranteesfor their performance.
In the remaining of this thesis, we will loosen the definition of an invariant as it will beno more restricted to product of random tensors but could also be an expression of thesignal spike tensor v⊗k

0 . We will need in this case the generalization of the formula for theexpectation of such invariants.
3.2.1 Matrices associated to trace invariants and new tools

Given that our the objective of Tensor PCA is to recover the signal, we should find math-ematical objects that are able to provide a vector. To this effect, we introduce a new setof tools in the form of matrices. We denote by MG,e the matrix obtained by cutting anedge e of a graph G in two half edges (see Figure 3.5 for an example). This cut amountsto not summing over the two indices i1 and i2 associated to these two half-edges andusing them to index the matrix instead. We will drop the index G, e of the matrix whenthe choice of the graph and edge is clear. Advantageously, we can compute the operatornorms of these matrices using the same tools described above.
edge e

IG(T) = TijkTijk

i1 i2

MG,e ≡ (Ti1jkTi2jk)i1,i2∈[n]

Cut the edge e

Figure 3.5: Obtaining a matrix by cutting the edge of a trace invariant graph G.

Operator norm of a matrix.

In our proofs we will use Wedin perturbation theorem (stated in Appendix B). This the-orem requires computing the operator norm of a matrix MG,e that will be in our caseassociated to a graph G and an edge e.
LetA ∈ Cn×n be amatrix and λ1, . . . , λn its (real or complex) eigenvalues. The spectralradius of A is its highest eigenvalue in absolute value. In particular, when a matrix A is
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symmetric, we have the result ρ(A) = ∥A∥op. Thus, in order to compute the operatornorm of a given matrixM , we can determine the spectral radius of the symmetric matrix
A ≡M⊤M and take its square root since ∥∥A⊤A

∥∥op = ∥A∥2op.
In order to compute the spectral radius of A ≡ M⊤M , we use Gelfand’s Formula(stated in Appendix B) with the Frobenius norm. Thus, the formula to keep in mind forcomputing the operator norm of a matrixM is:

∥M∥∞ = lim
r→∞

Tr
(
(M⊤M)r

)1/2r (3.5)
If wedenoteλmax the largest eigenvalue ofM in absolute value, wehaveTr((M⊤M)r

)1/2r
<

n.|λmax|. Given that λmax is a polynomial of at most degree n of the components of Mwhich are products of Gaussian variables, its expectation exists and is finite. The domi-nated convergence theorem for random variables thus states that
E(∥M∥∞) = E( lim

r→∞
Tr

(
(M⊤M)r

)1/2r
) = lim

r→∞
E(Tr

(
(M⊤M)r

)1/2r
) (3.6)

Expectation formula in the case of a graph with an open edge.

We encounter this case whenwewant to study the statistics of amatrix built out of a traceinvariant graph.
Let’s consider a graph G of order d associated to a trace invariant IG(T) where T is atensor of order k. Since the trace invariant is a contraction of pairs of indices of d copiesof T, we denote the c-th index of the i-th copy of T by aci and the set of the d indices ofthe i-th copy by aDj .
By the definition of the Gaussian measure we have the equation (more details on thisformula is given in the appendix B):

E(IG(T)) =
∑
a

δGaa
∑

τ∈S(k)

k∏
j=1

δaDj aD
jτ(j)

, (3.7)
∑

a indicates a sum over all the indices involved in the computation of the trace invari-ant, illustrated by a half-edge in the graph (we have k×d indices in total: k indices for eachone of the d copies of T of the trace invariant expression). δGaa indicates that contractedindices (illustrated by being two ends of the same edge) of the tensors have to be equal.The term δaDj ajDτ(j)
indicates that we set equal the c-th indices of the copy j and τ(j) of T

for c ∈ {1, . . . , d}.
Cutting an edge of color c between the i-th and the j-th copies of the tensor, removesthe contraction of two indices and leaves them free as variables i1 and i2. Then in theformula 3.7, we replace δacj ,ack by δacj ,i1δi2,ack with i1 and i2 fixed. Thus, to compute theexpectation we use the formula 3.1 with the following addition: if a face of color 0, c con-tains only one of the two vertices of the open edge (if the graph is connected, this onlyhappens when we calculate the variance), its contribution is equal to one. If it containsthe two vertices, it is δi1,i2 .
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Figure 3.6: A mixed graph and its two cycles

Expectation formula in the case of a graph with edges of mixed color

For a general trace invariant, an edge can have two half edges of different colors. Thepropagators (edges of color 0) still identify all the indices of their two end vertices as for-mulated in the equation 3.7. So we adapt the steps in [Gur14] to obtain the equivalentequation 3.8 of the equation B.2 for this new situation. More precisely, the cycles that wewill count in a covering graph G′ of G are built by beginning from a half-edge of G thenalternating until they go back to the starting half-edge, by:
• going from a half-edge of G of color c1 ̸= 0 to its associated half edge of color c2.
• going through the propagator to the half-edge of color c2 connected to the otherend of the propagator.

E(IG(T)) =
∑

G′,G′\E0(G′)=G

nmixed cycles (3.8)

This is illustrated in the Figure 3.6.
Expectation formula in the case of a graphwith amix of spikes and random tensors.

We encounter this case when we want to calculate the contribution of the signal to aninvariant, which lead us to replace a vertex by the tensorial product of our signal vector.Since we are interested by an expectation, and knowing that the Gaussian distribution isinvariant by rotation, we may as well take the signal vector as the unit vector (1, 0, . . . , 0).Then in the formula B.2 in the appendix B, we replace δacj ,ack by δacj ,0 and we restrict thepropagators to the tensors vertices. First, we notice that if there is an odd number ofspikes, the expectation will be equal to zero. Furthermore, there is no free sum if theindex identified in a cycle ends up with a contraction with a spike. Thus, its contributionwill be equal to one.
Decomposition of a graph/matrix by explicitly writing the signal and noise terms:

In Tensor PCA, we can represent the tensor from which we hope to extract the signalgraphically as:
Tij1...jk−1 =

√
nβ vivj1 . . . vjk−1+ Zij1...jk−1
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Let’s decompose a tensor invariant IG(T) of degree d using the graphical decomposi-tion of T = Z + βv⊗k. In each of the graphs illustrating the decomposition (like in Figure3.7), we call each vertex: a spike vertex if it corresponds to the spike tensor v⊗3 and a purenoise vertex if it corresponds to the random tensor Z. This leads us to denote the graphsillustrating the decomposition of the tensor invariant (that we will call the decompositiongraphs):
• The pure noise graph: the graph where all the vertices are replaced by pure noisevertices. It gives a contribution of IG(Z).
• The pure signal graph: the graph where all the vertices are spike vertices. It gives acontribution of βd.
• The intermediate graphs: All the other graphs, which have a mix of noise vertices
and spike vertices.

(a) Pure signal graph

Figure 3.7: Example of a pure signal graph in the top and of intermediate graphs in thebottom
A similar decomposition can be carried out for the matrix based on a graph G andan edge e. Let’s consider a tensor T, a graph G and its associated trace invariant IG(T).Let’s denote I ′G(T) the invariant associated to the sub-graph obtained by removing from

G the edge e and its two vertices and denote I ′NG (T) ≡ I ′G(Z) and I ′IG (T) ≡ I ′G(T)− I ′NG (T)where . We can distinguish three kind of contributions to the matrixMG,e that we denote
M

(N)
G,e ,M

(I)
G,e andM

(R)
G,e , illustrated in Figure 3.8 (where we denoted the invariant I ′G(T) by

I ′ and dropped the index G, e for simplicity).
We also define the pure signal spike matrix as

M
(S)
G,e (T) ≡MG,e(

√
nβv⊗k

0 ) (3.9)

Lemma 2. E(M (N)) =
E(I(N)

G )

n In.

Proof. Let M be the matrix obtained by cutting the edge e of a trace invariant graph G.The equation 3.7 could be interpreted as identifying the indices i and j that are ends of
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I ′ I ′(N) I ′(I) I ′ I ′ I ′

i1 i2

... ...

i1 i2

... ...

i1 i2

... ...

i1 i2

... ...

i1 i2

... ...

i1 i2

... ...

=

=

Zi1..Zi2.... +

+

Zi1..Zi2....+

+

(
√
nvi1Zi2....+

+

√
nvi2Zi1....)+

+

nvi1vi2..

Mi1i2 =

=

M
(N)
i1i2

+

+

M
(I)
i1i2

+

+

M
(R)
i1i2

Pure noisematrix Intermediate mixed noise-signal matrix Signal correlatedrank-one matrix
= + + +

= + + + +

Figure 3.8: Decomposition of a matrix graph and the melon and tetrahedral examples

a same edge by including a factor δij . Hence, the non diagonal components Mij , i ̸= jhave a null expectation since the cycle involving the edge e will identify i and j with a
δij = 0. By invariance, {E(Mii)}i∈[n] are all equal. Then, by linearity of the expectation,
E(Mii) = E(Tr(M))/n = E(I(N)

G )/n.
Using the lemma 2, we identify three possible phases depending on which matrix op-erator norm is much larger than the others:
• No detection and no recovery: If ∥∥M (N) − E(M (N))

∥∥op ≫ ∥∥M (I)
∥∥op, ∥∥M (R)

∥∥opthen no recovery and no detection is possible we can’t distinguish if there is a signal.It is for example the phase for β → 0.
• Detection but no recovery: If ∥∥M (I)

∥∥op ≫ ∥∥M (N) − E(M (N))
∥∥op, ∥∥M (R)

∥∥op thendetection but no recovery. We can detect the presence of the signal (thanks to thehighest eigenvalue) but we can’t recover the signal vector since the leading eigen-vector is not correlated to the signal vector.
• Detection and recovery:

∥∥M (R)
∥∥op ≫ ∥∥M (N) − E(M (N))

∥∥op,∥∥M (I)
∥∥op. We re-

cover the signal vector. It is for example the phase for β →∞.
3.2.2 Tensor PCA framework for algorithms associated to a trace invariant

Note that our results hold for the large n limit, and the experimental results suggest thatthe approximation of large n limit is valid for n ≥ 25. We claim that an event X occurswith high probability if Probability(X)→ 1 when n→∞.
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i j
(a) Example of a covering graph for a matrix component

i j
(b) The cycle containing the open edgecontributing by δij

Figure 3.9: Cycle with an open edge for the expectation of a matrix
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(a) Covering graph contributing

Only internalpropagator

(b) Covering graph not contributingto E(Tr
(
(M − E(M))2

)
)

Figure 3.10: Two covering graphs for the graph of Tr((M⊤M)2
)

The idea of our proofs is to decompose thematrixMG,e into a sum of terms by writing
T = Z+

√
nβv⊗k as illustrated in Figure 3.8. Intuitively, our proofs consist in showing thatif the signal is large enough the term that only involves a product of the signal βv⊗k willdominate, at large n, the other terms. Thus, the largest eigenvector ofMG,e will be closeto v0. Therefore, each proof of theoretical guarantees of a graph will mainly consist inbounding the operator norm of the different terms in the sum illustrated in Figure 3.8 byusing enumerative combinatorics as described in the precedent section.

Definitions and lemmas

We begin by giving useful lemmas and definitions that will be used in the proofs.
Simplification of the notations: In the remainder of this section, we will often as-sume that the matrix is symmetric to simplify the notations. One should keep in mindthat if the matrix is not symmetric, we have to consider A = M⊤M instead of just M ,which affect only the notations in the proofs.
The graph used to investigate the operator norm of a matrix:

Let A = M⊤
G,eMG,e where MG,e is the matrix associated to a graph G and an edge e.The trace of the power r of A, Tr(Ar) can be represented as the graph gluing the openedges of 2r sub-graphs G′ where G′ is the graph G with the edge e open, that representsthe matrix MG,e (see Figure 3.10). We denote the total graph representing Trace(Ar) by

Gtot.
Elementary sub-graph: We call the elementary sub-graphs of Gtot representing

Tr
(
(M⊤M)r

) the sub-graph corresponding to a single matrix M . Thus, Gtot consists ingluing together 2r elementary graphs, like in Figure 3.10.
Internal propagator: We call a propagator of a covering graph an internal propagatorif it connects two vertices of the same elementary sub-graph.

Lemma 3. The covering graphs involved in the calculation of E(Tr(M − E(M))r) are the
same that are involved in the calculation of E(Tr(M r))minus the covering graphs where one
of the elementary sub-graphs has only internal propagators.
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Proof. We can first begin by showing that if we have twomatricesM1 of degree d1 andM2of degree d2 with open edges of the same color denoted l, the covering graphs involvedin Tr((M1 − E(M1))M2) are the covering graphs of Tr(M1M2) minus the ones wherethe propagators are internal.
Let’s denote the graph associated to Tr(M1M2) by G. To distinguish the d1 + d2 ver-tices and their indices, we assign numbers to each vertex. Namely the vertices ofM1 aredenoted by 1, . . . , d1 with 1 and 2 associated to the two vertices adjacent to the open edgeofM1, and d1+1, . . . , d1+d2 forM2 where the vertices of the open edge ofM2 are d1+1,

d1 + 2.
We denote all the indices by a, and the indices of all colors associated to a vertex mby aDm.
A subset of the symmetric group σ(d1+d2) are the permutations which could be writ-ten as τ1τ2 where τ1 is a permutation of (1, . . . , d1) and τ2 is a permutation of (d1, . . . , d1+

d2).
We denote by the symbol δGaa the δ of all the indices that are contracted in the graph

G.
LetG1 the graph associated toM1without the open edges andG2 the graph associatedtoM2 without the open edges.
We have

E(M1)ij =δa1l,iδa2l,j
∑
a

a̸=a1l,a2l

δG1
aa

∑
τ∈S(d1)

d1∏
l=1

δalDaD
τ(l)

, (3.10)

E(Tr(M1M2)) =
∑
a

δGaa
∑

τ∈S(d1+d2)

d1+d2∏
l=1

δalDaD
τ(l)

, (3.11)

Since the edges of G are the union of the edges of G1 and G2 and two edges of color
l connecting the vertices of the open edges: 1 with d1 + 1 and 2 with d1 + 2, we have:
δGaa = δG

1

aa δ
G2

aa δal1,ald1+1
δal2,ald1+2

. This let us write:

E(Tr((M1 − E(M1))M2))

=
∑
a

δGaa

[ ∑
τ∈S(d1+d2)

d1+d2∏
p=1

δapDaD
τ(p)

−
∑

τ1∈S(d1),τ2∈S(d2)

d1∏
p=1

δapDaD
τ1(p)

d1+d2∏
q=d1+1

δaqDaD
τ2(q)

]
,

(3.12)

Thus, the only permutations that are not cancelled are the permutations that doesnot leave invariant the subset {1, . . . , d1}, which means that ∃i ∈ {1, . . . , d1} such that
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τ(i) ∈ {d1 + 1, . . . , d1 + d2}. These permutations correspond to the covering graphs thatdoes not have only internal propagators connecting the vertices of M1. This proves ourclaim.

We can then generalize to the case of a product of multiple matrices by induction,which proves Lemma 3.
Comparison of the contributions of the graphs and of the matrices:

In our framework, we will in general compare a graph made only of the noise tensor
Z that we denote G1 with a graph made only of signal spike v⊗k

0 that we denote G2. Wesay that the graph G2 has a much larger contribution than the graph G1 if
lim
n→∞

√
E(I2G1

)/IG2 = 0 (3.13)
with high probability.

This is based on the combination of the Chebyshev inequality and Cauchy-Schwarzinequality.
α|E(IG1)|+β

√Var(IG1) ≤
√
αE(IG1)

2 + βVar(IG1) ≤ max(α, β)
√

E(I2G1
) α, β > 0 (3.14)

In the case of amatrixM with anopen edge of color l, we compare the operator norms
limr→∞Tr

(
(M⊤M)r

)1/2r, which requires to compare the contributions of the graphs
Tr

(
(M⊤M)r

). We note that
Var(Tr((M⊤M)r

)
) < n4E(Tr

(
(M⊤M)2r

)
) (3.15)

Indeed, the graph of Tr((M⊤M)2r
) could be seen as taking two copies of the graph of

Tr
(
(M⊤M)r

), cutting in each copy an edge linking two elementary sub-graphs, and glu-ing the two copies through the cut edges. The difference of contribution of an equivalentcovering graph between Tr
(
(M⊤M)2r

) and two copies of the graph of Tr((M⊤M)r
)

will be at most n4, due to the four vertices in the two edges that we cut. Based on Cheby-shev inequality, we only need to compute the expectation of the operator norm ofM forcomparison purposes.
We can now state the important algorithm that will be essential for this section. It isimportant to keep in mind that the following claims concern the large n limit. Empirically,the approximation of large n limit seems valid for n > 25.
The proposed algorithm 1 is able to recover the spike in a tensor T through the con-struction of the matrix of size n × n MG,e(T) associated to a given graph G and edge

e.
Theorem 4. Let G be a graph of degree d and an edge e, ∃ βrec > 0 so that Algorithm 1 with
the matrixMG,e(T) gives an estimator v strongly correlated to v0 ( ⟨v,v0⟩ > 0.9) for β ≥ βrec.
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Algorithm 1: Recovery algorithm associated to the graph G and edge e

Input: The tensor T =
√
nβv⊗k

0 + Z
Goal: Estimate v0.Calculate the matrixMG,e(T)Compute its top eigenvector by matrix power iteration (repeat vi ←Mijvj ).
Output: Obtaining an estimated vector v

Proof. Let n ∈ N, G a graph of degree d andMG,e the matrix obtained by cutting the edge
e. As we previously explained, studying the statistical properties of the operator norm
comes down to studying the graph Tr

(
(M⊤

G,eMG,e)
r
). If we decompose the matrixMG,e

as a sum of terms by using T = Z +
√
nβv⊗k

0 , it is clear that when β → ∞ for a fixed
n, the matrix with the largest operator norm will be the one where all the vertices arespike vertices (it will have a factor of βd), and which is proportional to vv⊤. Thus, applyingWedin perturbation theorem proves that ∃βrec such that ∀β ≥ βrec the largest eigenvectorofMG,e will be close to v0, and therefore the recovery is possible.

Example: If we take thematrix defined as (MG,e)i1i2 ≡ Ti1jkTi2jk wehave (MG,e)i1i2 =
Zi1jkZi2jk +

√
nβ(Zi1jk(v

⊗3
0 )i2jk + Zi2jk(v

⊗3
0 )i1jk) + nβ2(v0)i1(v0)i2 . So intuitively, in thelarge β limitMG,ei1i2 will be approximately proportional to (v0)i1(v0)i2 .

Since the algorithm 1 consists in algebraic operations on the tensors entries, it is verysuitable for a parallel architecture (for example by computing independently each entryof the matrix MG,e(T)). The following Theorem 5 gives a lower bound to the thresholdabove which we can recover a spike using a single graph of finite size (independent of
n). Interestingly, this threshold which appears naturally in our framework, matches thethreshold below which there is no known algorithm that is able to recover the spike inpolynomial time. We call the Gaussian variance of a graph G, the variance of the invariant
IG(B) where Bijk are Gaussian random.
Theorem 5. Let k ≥ 3. It is not possible to recover the signal of a constant degree using a
single graph below the threshold β = O(n(k−2)/4) which is the minimal Gaussian variance of
any graph G.

Proof. We aim to prove that E((IG)2) ≥ ndk/2 for any graph G with Gaussian tensor. Aspreviously noted, the graph corresponding to the invariant (IG)2 consists in two copies of
G that we denote (G)2, as in Figure 3.11. A simple way to prove our claim, is to exhibit forany graph G a covering graph for (G)2 that gives a contribution of ndk/2. Such a coveringgraph is obtained by connecting each vertex of G to its equivalent in the second copy asshown in Figure 3.11. All the cycles for the colors 0, c will be of length 2 (consisting in anedge and its equivalent in the other copy). Their total number is equal to dk/2, so thiscovering graph gives a contribution equal to ndk/2. Since the expectation is equal to thesum of the contributions of the covering graphs, the variance will always be larger than
ndk/4. A similar argument proves that the expectation of Tr((MM⊤)r

)2 will be alwayssuperior to nrd.
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cycle 1

cycle 2

cycle 3

1

3

2

Figure 3.11: The covering graph contributing by nkd/2 to the variance, implying that noalgorithm associated to a single graph could recover a signal below the actual computa-tional threshold.

The following lemma 6 has as an important consequence that if we want to investigateif a matrix associated to a graph G and edge e recovers the signal at β = O(n1/4), we candisregard the intermediate matrices and compare onlyM (S) andM (I). This will be usedimplicitly in the remaining of the proofs.
Lemma 6. If for β ≫ n(k−2)/4, the norm operator of the pure signal matrix M (S) is larger
than the norm operator of the pure noisematrixM (N), the operator norm ofM (I) is negligible
comparing to the operator norm ofM (S) for β ≫ n(k−2)/4.

Proof. The proof is based on the fact that the expectation of the square of a connectedgraph with mixed noise and signal spikes can’t be larger than the square of its pure noiseequivalent graph below β = O(n(k−2)/4). Thus, given that the pure signal graph is a poly-nomial on β with higher degree than the intermediate graphs, it means that it will havethe larger contribution for β ≫ n(k−2)/4.
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We will consider a general graph associated to an invariant but the demonstration forthe matricesM follows the same steps but instead of G2, one has to consider Tr(M r)2.
Let G a connected graph whose signal GS (G with only signal spikes vertices) and noisegraphs GN (G with only Gaussian tensor vertices) has a similar operator norm for β =

n(k−2)/4.
Let’s assume that an intermediate graph G int (with r vertices replaced by signal spikes)has a largest contribution than GN for β ≤ n(k−2)/4. Let’s take the covering graph of (G int)2that is responsible for the largest contribution.
We build a covering graph for the pure noise graph (GN )2 from this covering graphthat has a superior or equal contribution than the initial covering graph for (G int)2. To doso, we disconnect the propagators that are connected to signal spike vertices from thesesignal vertices and glue them together (in any way we want), while we connect by a newpropagator each signal spike vertex to its equivalent in the mirror graph. This coveringgraph will give a superior or equal contribution to the expectation of the square of theintermediate graph since:
• The cycles that didn’t involve a spike stay give the same contributions
• The cycles that involved a spike were giving a contribution equal to one in additionto the (

√
nβ)p direct contributions of the p signal spikes vertices. But in the newcovering graph of the pure noise graph, the contribution of these cycles will be n3p/4.Indeed each cycle has at most four signal spike vertices, as it connects a signal spiketo its equivalent in the mirror graph.

Comparison of matrices that appears in our
decomposition

One needs to only compare the pure noise matrix and the pure signal matrix todetermine if the algorithm associated to a connected graph succeeds above the
computational threshold n

k−2
4 .

Using these tools and this algorithm, we are now able to investigate the performanceof our framework in various theoretical settings. In the first two paragraphs, we studythe algorithms associated to two trace invariants of degree 2. They consist of the melonicdiagram and the tadpole diagram. Interestingly, it turns out that they are equivalent tothe two state-of-the-art algorithms for Tensor PCA the tensor unfolding and homotopy-based method as illustrated in Figure 3.12. Thus, we decide to goes further in terms ofgraph’s degree and investigate the algorithms associated to the perfect one-factorizationgraphs (consisting in the tetrahedral when k = 3). In the last subsection, we will provethat our methods allows us to derive a new algorithmic threshold for more general cases.
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Figure 3.12: Equivalence between algorithms associated to graphs and state of the artmethods.

A framework that provides algorithms with different
performance/complexity trade-offs

This framework offers multiple algorithms with different performance-complexitytrade-off. The state-of-the-art algorithms correspond to degree two invariants.Higher degree graphs offer better empirical results but with higher computationalcomplexity.

3.2.3 Some derived algorithms from the new framework

In this subsection we will investigate the melon graph and the tadpole graph. Thesetwo invariants of degree two actually correspond to existent algorithms that representsthe state of the art, respectively the Tensor Unfolding and homotopy-based algorithms.Thus, we take a step forward and investigate a higher degree graph. the perfect one-factorization, that is the tetrahedral in the case k = 3 is a good choice for a next step toinvestigate how algorithms associated to higher degrees graphs perform.
Melonic graph

Let’s consider the invariant Ti1...inTi1...in (illustrated by the graph in Figure 3.1b when k =
3). Its recovery algorithm (with the matrix obtained by cutting any of the edges) is similarto the tensor unfolding method presented in [MR15].
Theorem 7. The algorithm 1 with a matrix MG,e where G is the melon graph with βrec =
O(n(k−2)/4) in linear time and O(n2)memory requirement.
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Proof. Let’s prove by induction the following
E(Tr

(
((M − E(M))(M − E(M))⊤)r

)
) ≤ nkr+1 (3.16)

whereM is the matrix associated to the melon by opening one of its edge (all the edgesare equivalent in this situation given that the dimensions are equal).
• For r = 1 it is straightforward by simply enumerating the cycles and applying theformula 3.1.
• Let r > 1 and let’s assume the statement is true for all r′ < r. Let’s consider one ofits elementary sub-graphs (defined in the beginning of the section). Using lemma 3,we can divide the edges of the sub-graph in two sets:

– The k − 1 edges that are in faces of at least two edges.
– One external edge divided in half edges.

If the k − 1 edges are in faces of exactly two edges, it means that the propagatorsat both the left and right vertices are connected to the two vertices of another ele-mentary sub-graph.
This will lead to two possibilities:

– The two elementary sub-graphs are next to each other. The expectation of
Tr

(
(MM⊤)r

) is equal to the expectation of the graph after removing thesetwo elementary sub-graphs and connecting the two left open edges, to whichwe add the contribution of nk from the two elementary sub-graphs. Using theinduction hypothesis, the graph with the two sub-graphs removed has a con-tribution of maximum nk(r−1)+1. Combining themwe have a total contributionof nk(r−1)+1+k = nkr+1 which proves the theorem.
– The two sub-graphs are not next to each other: Then the open edges have amaximal contribution of 1/2. Cutting this elementary sub-graph and using theinduction hypothesis proves the theorem.

Thus, using Gelfand’s Formula, the norm operator is equal to nk/2. The signal matrixhas an operator norm equal to (
√
nβ)2, which gives a recovery threshold for themelonic algorithm of β = n(k−2)/4 using Wedin perturbation.

For the symmetric case, since T sym
ijk =

∑
τ∈Sk

Tτ(i)τ(j)τ(k) where Sk is the symmetric
group introduced previously. We just need to expand the melonic matrix T sym

i1jk
T sym
i2jk

infunction of the asymmetric tensorT. We obtain a sum of ninematrices (corresponding tographs withmixed colors). We can show that the operator norm of each of thesematricesis at most equal to n3/2.
Tadpole graph

Figure 3.1d has a special characteristic: we can obtain two disconnected parts by cuttingonly one line. Therefore, the matrix obtained by cutting that edge is of rank one (in theform of vv⊤). Thus, the vector v has a weak correlation with the signal v0, which allow
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= Zi1jjZi2kk + β (vi1Zi2kk + vi2Zi1jj) + β2vi1vi2

Mi1i2 = M
(N)
i1i2

+ M
(I)
i1i2

+ M
(R)
i1i2

i1 i2
= + + +

Figure 3.13: Decomposition of a tadpole matrix

the tensor power iteration (vi ← Tijkvjvk) to empirically recover it (formal proofs requireto consider some more sophisticated variants of power iteration like in [ADGM17b] and[BCRT20]). This algorithm is a variant of the already existent homotopy algorithm.
Theorem8. The tadpole graph allows to recover the signal vector for k ≥ 3 andβ = O(n(k−2)/4)
by using local algorithms to enhance the signal contribution of the vector Tijj .

Proof. Using the matrix decomposition illustrated in 3.13, we can see that we have a sumof four matrices of rank one. Using the usual formula to calculate the expectation of theoperator norm of the matrices we obtain:
• ∥∥M (N)

∥∥ = n2

• ∥∥M (I)
∥∥ = n

• ∥∥M (R)
∥∥ = n3/2

we can see that the first one dominates by n1/4 the last one (consisting in the signalvector) so we are able to use power iteration or one of its variants (like in [ADGM17b] and[BCRT20]) to recover it.

Tensor invariant based on the perfect one-factorization graphs

The theoretical physics community that had developed the theory of trace invariantsfor tensor have made a particular focus on a family of graphs called the perfect one-factorization graphs [FRV19b] (more details in the appendix). This focus is motivated bytheir nice combinatorial properties due to their symmetries. It was then natural for us toexplore the algorithmic potential of these graphs in our tensor decomposition context.Our first candidate was the simplest next graph which is of degree strictly superior to twonamed tetrahedral graph. Our investigation through the tetrahedral shows that for k = 3,the algorithms based on the tetrahedral graph shows a very interesting improvement ofempirical results and thus highlights the richness of the proposed framework. Moreover,the properties of this family of graphs also simplify the proofs for recovery theorems.Therefore, the standard methods involved in the demonstrations of these theorems areinstructive for the study of more general graphs.
Theorem 9. The algorithm associated to a perfect one-factorization graph is able to recover
the signal vector for β = O(n(k−2)/4).
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Proof. LetGi be the elementary sub-graphs of G ≡ Tr((M)r) and let’s define (si)i∈{0,...,r}such that si/2 is equal to the number of propagators having their two vertices in the sub-graph Gi (the internal propagators). Thus, we have s/2 =
∑

i si/2 internal propagators intotal. We can divide the edges of the sub-graph Gi in three classes. Each edge could bepart of a face of either one edge, two edges, three edges, etc.. Let’s count how many wecan have of each type in an optimal configuration (maximizing the number of faces) foreach class.
• Edges only connected to internal propagators, there is at most ∑i si(si − 1)/2 ofsuch edges.

– We can have a maximum of si/2 faces of one edge since that is the number ofinternal edges.
– Then, from the si(si − 2)/2 remaining ones, if we want to put them in faces oftwo edges, the two edges needs too to be in the same sub-graph. We can createa maximum of si/2(si/2−1)/2 = si(si−2)/8 different couples of propagators.Each couple can’t create more than one face since otherwise it will contradictthe maximally single trace hypothesis of the graph. So there is a maximum of
si(si − 2)/4 edges that can be put in two edges faces.

– The remaining si(si − 2)/4 will be in faces of at least three edges.
• Edges connected to one internal and one external propagator, there is at most∑

i si(k + 1− si) of such edges. They have to be in faces of at least three edges.
• Edges only connected to external propagators, there is at most∑

i ((k + 1− si)(k − si)/2) such edges. They can only be put in faces of at least twoedges.
• The open edge (defined as the two half-edges we use to glue the elementary sub-graphs to the rest of the graph) can be put in a face of maximum one edge.
So we have a maximal number of faces given by:

r∑
i=1

(
si
2
+

si(si − 2)

8
+

si(si − 2)

12

+
si(k + 1− si)

3
+

(k + 1− si)(k − si)− 2

4
+ 1)

=
r∑

i=1

(
k(k + 1)

4
− si

4k − 3si − 4

24
+

1

2

)
.

(3.17)

Let’s focus on the case where si = 0. If all the points of the elementary sub-graphare connected to points of only one other elementary sub-graph, then the two verticesof the open edge connect to the same elementary sub-graph. In that case the open edgehas a contribution of at most 1/2. In the other case, then there is at least k edges whichcontributes only by at most 1/3making them lose 1/6. Either way the contribution of thesub-graph can’t go further then k(k + 1)/4. Taking into account this observation, we canwrite the maximal number of faces as:
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r∑
i=1

(
k(k + 1)

4
− si

4k − 3si − 4

24
+

1− δsi,0
2

)
. (3.18)

We can easily check that this quantity is always smaller than rk(k+1)
4 for k > 5. Thecase k = 3 (the tetrahedral) and k = 4 could be easily done by manually counting thenumber of cycles. Thus

lim
r→∞

Tr
(
(M (N))r

)1/r
∼ n

k(k+1)
4 (3.19)

On theother hand, the operator normof the pure signalmatrixM (S) is equal to (√nβ)(k+1)

thanks to the k + 1 vertices. M (S) dominates M (N) for β ≫ k−2
4 . This completes theproof.

3.2.4 New theoretical threshold for an asymetrical tensor with different
dimensions n1 ̸= n2 ̸= . . . ̸= nk

We consider the more general case where the tensor T has axes of different dimensions
ni (T ∈⊗k

i=1Rni ). We can assume without any loss of generality that n1 ≥ n2 ≥ · · · ≥ nk.
T = βv1 ⊗ · · · ⊗ vk + Z where vi ∈ Rni , ni ∈ N. (3.20)

Our framework naturally handles this case and allows us to derive a new algorithmicthreshold. It is, to the best of our knowledge, the first generalization of the threshold β =
n(k−2)/4 derived in [RM14] when ni = n ∀i ∈ [k] and appears easily using our framework.
Theorem10. Using themelon graph, the threshold forv1 is given bymax

(
(
∏k

i=1 ni)
1/4, n

1/2
1

)
while the thresholds for vj , j ≥ 2 are equal to (

∏k
i=1 ni)

1/4.

This result coincides with the previously known threshold when ni = n. We also note
that the threshold max

(
(
∏k

i=1 ni)
1/4, n

1/2
1

) for v1 is not surprising. Indeed, if n2 = · · · =
nk = 1, the tensor can be seen as a vector of dimension n1. And since the expectation ofthe norm of a random Gaussian vector is n1/2

1 , β > n
1/2
1 is required to be able to detectthe signal vector.

Proof. Let’s consider themelonic graph with the edge associated to the index of the spaceof dimension nl open. It is associated to the matrix:
Mpq = Ti1...il−1pil+1...ikTi1...il−1qil+1...ik (3.21)

For simplicity the graphs will be drawn for k = 3.
We will treat two separate cases:
• Case nl ≤

∏
i ̸=l

ni:

Let’s prove by induction the statement: Sr: E[Tr((M − E(M))r)] ∼ nl
∏k

i=1 n
r/2
i .
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– Initialisation with r = 2: For M − E(M) we have the following graph and itscovering graphs:

Figure 3.14: The two covering graphs of Tr((M − E(M))2
)

which gives
E(Tr((M − E(M))r) = nl

k∏
i=1

ni +
k∏

i=1

ni ≤ 2nl

k∏
i=1

n
r/2
i

– Assume Sr is true for all r′ < r, let’s prove for r that no covering graph has a
contribution strictly superior to nl

∏k
i=1 n

r/2
i and then, that we can provide a

covering graph that contribute by exactly nl
∏k

i=1 n
r/2
i when r is even.

* In the case where there is no cycle of color l of length 1 (which means apropagator that shares the same ends that an edge of color l), then alledges have a contribution of 1/2 at maximum to the number of faces (nointernal propagators are allowed in the covering graphofE(Tr((M − E(M))r)given lemma 3). So the contribution of that covering graph will be at most
equal to∏k

i=1 n
r/2
i .

* In case there is such a propagator, which means that there is a propagatorcoinciding with an edge of color l between two elementary sub-graphs.Let r Then either the two other ends of the two elementary sub-graphsare connected by a propagator like in 3.15 or not like in 3.16.
· In the first case, the total number of cycles will be at most equal to onecycle of each color, plus the number of cycles of a graph with r − 2

elementary sub-graphs, which is nl
∏k

i=1 n
r/2
i . This could be seen ascounting the cycles in the two connected elementary sub-graphs andthen removing them from the graph Tr((M − E(M))r) and replacingthem by an edge of color l to count the remaining cycles as illustratedin 3.15.

· In the second case, we can remove the cycle of one edge of color l andmix the two elementary sub-graphs adjacent to it into one, as it will not



3.2. RANDOM TENSOR THEORY FOR TENSOR PCA 57

. . . . . . . . . . . .
Figure 3.15: Elementary sub-graph completely connected to the elementary sub-graphnext to it

. . . . . . . . . . . .

Figure 3.16: Elementary sub-graph not completely connected to the elementary sub-graph next to it

change the number of remaining cycles. We thus have a contributionof nl from the cycle associated to the the removed edge, and a con-
tribution of nl

∏k
i=1 n

(r−1)/2
i from the remaining graph using then theinduction hypothesis. Given that we are in the case of nl ≤

∏
i ̸=l ni, the

total contribution nl×nl
∏k

i=1 n
(r−1)/2
i ≤ nl

∏k
i=1 n

r/2
i which proves thestatement.

– The covering graph with propagators disposed as in Figure 3.15 will have acontribution of exactly nr
l

∏
i ̸=l ni if r is even.

• Case nl ≥
∏
i ̸=l

ni:
Let’s prove by induction the statement: Sr: E[Tr((M − E(M))r)] ∼ nr

l

∏
i ̸=l ni.

– Initialisation with r = 2: ForM −E(M) we have the covering graphs in Figure3.14 which checks S2

– Assume Sr is true for all r′ < r, let’s prove for r that no covering graph hasa contribution strictly superior to nr
l

∏
i ̸=l ni and then that we can provide acovering graph that contribute by exactly nr

l

∏
i ̸=l ni.

* In the case where there is no cycle of color l of length 1 (which means apropagator that shares the same ends that an edge of color l), then alledges have a contribution of 1/2 at maximum. So the contribution of that
covering graph will be at most equal to∏k

i=1 n
r/2
i .

* In case there is such a propagator, which means that there is a propaga-tor coinciding with an edge of color l between two elementary sub-graphs.Then either the two other ends of the two elementary sub-graphs are con-nected by a propagator like in Figure 3.15 or not.
· In the first case, the total number of cycles will be at most equal to onecycle of each color, plus the number of cycles of a graph with r − 2elementary sub-graphs, so the contribution of the covering graph willbe at most nr−2

l

∏
i ̸=l ni ×

∏k
i=1 ni, which is smaller than nr

l

∏
i ̸=l ni.
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· In the second case (the case of Figure 3.16), by induction the numberof cycles will be at most the number of cycles in the remaining r − 1elementary sub-graphs plus a cycle of color blue. Thus, it is at mostequal to nr
l

∏
i ̸=l ni.

* The covering graph consisting in propagators coinciding with blue edgeshas a contribution exactly equal to nr
l

∏
i ̸=l ni.

Thus, in the case nl ≤
∏
i ̸=l

ni, the pure signal matrix will have a larger operator norm if
β > (

∏
i ni)

1
4 and in the second case β > n

1
2
l

Theoretical guarantees for more general situations
This framework allows us to derive a new theoretical threshold
max

(
(
∏k

i=1 ni)
1/4, n

1/2
i

) for tensors with different dimensions, which are very
common in real life applications.

3.3 Generalization to Tensor decomposition

3.3.1 Adaptation to low-rank CP decomposition

We consider a symmetric tensor with multiple orthogonal spikes.
T =

p∑
i=1

βiv
⊗k
i + Z where ⟨vi,vj⟩ = 0 ∀i ̸= j. (3.22)

Theorem 11. If we have a number of spikes p that is constant in respect to n, we can recover
the p spikes by an alternating the use of melonic diagram, power iteration and deflation.

We first use the tetrahedral diagram to obtain a vector correlated with the signal vec-tors, thenwe followby power iteration to obtain a normalized vector v highly correlated toone of the spikes and then deflation which consists in replacing the tensorT byT−αv⊗3

where α = T.v⊗3. The experimental results suggest that it works not only for small valuesof p but also for a number of spikes up to n.
3.3.2 Adaptation to Tucker decomposition

We consider the decomposition of a tensor into a set of matrices (loadings) with orthog-onal columns and a core tensor. Thus, we adapted in a simple way our framework to thisother decomposition scheme. This highlights how generic and important this new frame-work is. We compared the principal methods of Tucker decomposition with a straightfor-ward adaptation of thesemethods where we use thematrix associated to the tetrahedralinstead of themelonic (tensor unfoldingmatrices) that are initially used in thesemethods(as loadings in the initialization as well as in the power iteration).
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Algorithm 2: Recovery algorithm for for CP decomposition

1: Input: The tensor T =
∑p

l=1

√
nβlv

⊗3
l + Z

2: Goal: Estimate {vl}pl=1 and {βl}pl=1.3: E = ∅
4: T0 = T
5: Compute the matrixMG,e(T)
6: Compute its k top eigenvectors and eigenvalues.
7: Output: Estimated vectors {v̂l}pl=1 = argmaxE ′⊂E,|E ′|=p

∑
v∈E ′ T(v,v,v) and

β̂l ≡ αl/
√
n

The case r=1 It is straightforward to see that when r1 = r2 = r3 = 1, HOOI is exactlyequivalent to Tensor Unfolding with power iteration. From a theoretical point of view, notonly our algorithm also achieve the optimal estimation error rate but we also unveiled anew phase transition appearing in the asymmetric case when the tensor dimensions areof the form n1 > n2∗n3. This was not studied in [ZX18] as they considered only the caseswhere ∃C0 an universal constant such that n1, n2, n3 ≤ C0min(n1, n2, n3).
The case r>1 We adapted the framework to the Tucker decomposition case to com-pare to HOOI. Indeed one straightforward application of our new results is to replace thematricizationMk which correspond to the melonic graph (since SVD(M)=Eigenvalues(MM⊤) with a new matricization corresponding to the tetrahedral graph. ⇒We perform SVD on the tetrahedral matrices.

Algorithm 3: Recovery algorithm for for Tucker decomposition
1: Input: The tensor T =

∑p
l=1

√
nβlv

⊗3
l + Z,minit,miter,ε,Λ(∼ n)

2: Goal: Estimate {vl}pl=1 and {βl}pl=1.3: for j=0 to 3 do
4: Compute the matrixMG,e(T) associated to an edge corresponding to the index i
5: end for
6: Use the previously computed matrices as an initialisation matrix for Tuckerdecomposition.
7: Output: Estimated vectors mode matrices and core tensor.

3.4 Numerical experiments

In this section we will investigate the empirical results of the previously mentioned ap-plications in order to see if they match with our theoretical results. We restrict to the di-mension k = 3 for simplicity. Simulations were run in Python on a Dell computer runningUbuntu 18.04.5 LTS with eight Intel Core i7-4800MQ processors at 2.70 GHz and 16GB ofRAM.
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3.4.1 Tensor PCA

Settings and comparison of methods for Tensor PCA

Each experiment is an independent instance consisting in the following steps:
• We generate randomly the n components of the signal vector v0 and then normalizeit.
• We generate randomly the n3 components of the random tensor Z. If we are in thesymmetric case, we symmetrize it with the same normalization than [RM14]):

Zijk = (Zijk + Zikj + Zjik + Zjki + Zkij + Zkji)/
√
12

• We compute the tensor T = Z +
√
nβv⊗k

0

• We compute our matrix associated to the invariant M constructed from T usingthe numpy method tensordot in Python.
• We compute its leading eigenvector v
• We plot the correlation between the vector resulted from the algorithm v and thesignal vector we aim to recover v0 (namely the scalar product < v,v0 >).
We focus on the symmetric case and, as in [RM14], for every algorithm we use twovariants: the simple algorithm outputting v and an algorithm where we apply 100 poweriterations on v: vi ← Tijkvjvk, distinguishable by a prefix "p-". In Figures 3.18, 3.19 and3.20, we run 200 experiments for each value of β and plot the 95% confidence interval ofthe correlation of the vector recovered with the signal vector. We compare our method(tetrahedral) to other algorithmic methods: the melonic (tensor unfolding) [RM14] andthe homotopy [ADGM17b]. To the best of our knowledge, they give the state of art re-spectively for the symmetric and asymmetric tensor [BCRT20]. Other methods exist butare either too computationally expensive (sum of squares) or are variants of these algo-rithms.
We see in Figure 3.17 that in the asymmetric case that the tetrahedral algorithm per-forms the best.
Spike with different dimensions:

We aim to recover the three vectors v1,v2 and v3 from a tensor Z + βv1 ⊗ v2 ⊗ v3.We repeat 100 times each instance consisting in choosing randomly v1,v2 and v3 andthe Gaussian random tensor Z and we plot the correlation of the signal vectors with thevectors recovered using the tetrahedral.
In detail, each experiment is an independent instance consisting in the following steps:
• We generate randomly the n1, n2 and n3 components of respectively the signal vec-tors v1, v2 and v3 and then normalize them.
• We generate randomly the n1 × n2 × n3 components of the random tensor Z.
• We compute the tensor T = Z + βv1 ⊗ v2 ⊗ v3
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Figure 3.17: Comparison of different methods for asymmetric tensor for n = 100
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Figure 3.18: Comparison of different methods for symmetric recovery for n = 100.
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Figure 3.19: Comparison of different methods for symmetric recovery for n = 150.
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Figure 3.20: Comparison of different methods for symmetric recovery for n = 200.

• We compute the three matrices to recover each of the vectors by opening an edgeof the color corresponding to the position of the vector using the numpy methodtensordot in Python.
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Figure 3.21: Recovery of a spike with different dimensions.

• We compute their leading eigenvectors.
• We plot the correlation between the vectors resulted from the algorithm and theircorresponding signal vectors we aim to recover v1, v2 and v3 (namely scalar product
< v,vi >).

We see in the Figure 3.21 that the threshold (n1n2n3)
1/4 for the three vectors matchesperfectly with the experiences when n3 < n1.n2. We also see that when n3 > n1.n2 the re-covery of v3 (in green and with the diamond and square markers) have a different asymp-

totic behavior than v1 and v2 (it becomes n1/2
3 since n

1/2
3 ≥ (n1n2n3)

1/4), correspondingto what our theoretical study predicted.
We see in the Figure 3.22 that when n3 > n1n2, the asymptotic behavior of the recov-

ery threshold of v3 matches with our theoretical result n1/2
3

The number of iterations of power iteration for eachmethod In the symmetric case,we plot in Figure 3.23 the number of iterations needed for the power iteration methodto converge with an initialization given by the result of one of the methods we compare:tetrahedral, unfolding, homotopy. In addition to these methods, we plot in red (that wecall perf) the correlation of the power iteration starting from the signal vector v0.
Empirical results shows the fast convergence using the power iteration method fol-lowing the tetrahedral method.

3.4.2 Memory and time requirements of the methods

General requirements:
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Figure 3.22: Recovery of v3 where n3 > n1n2

Since our method consists on computing algebraic operations on tensors entries tostore in matrix n× n, the naive recovery method for a tensor of order k and for a tensorinvariant of degree dwould requireO(n2) space requirements andO(nkd) time complex-ity.
However, similarly to the matrix case where naive implementation requires n3 butdifferent methods propose better asymptotic bounds on the time required to multiplymatrices, it is possible to simplify the computations by using decomposition on blocks([MKV+13]). There has been recently encouraging research investigating the optimizationof tensor contractions ([KSRH+18], [Mat18],[HMvdG18]) in the same way it was done formatrix calculations, especially with the rise of the use of tensorial objects. The ability tobe parallelized (each component of the matrix MG,e can be computed independently) isalso an important feature of our methods for practical applications.
Tetrahedral method with Õ(n4) time and Õ(n3) space requirement:

The unfolding algorithm (melonic) was proven to have a nearly linear time (Õ(n3),since the input tensor is of size n3, Õ notation neglects logarithmic factors).
We use a similar approach to provide a recovery algorithm for the tetrahedral with

Õ(n4) time and Õ(n3) space requirement.
Indeed, using the decomposition previously described, we can prove that there is angap between the highest eigenvalue λ1 ∼ β4 and the second largest one λ2. Thus, wecan usematrix power method in order to recover the leading eigenvector v ←M⊤v with

log(n) complexity (the convergence of the matrix power method is geometric with ratio
|λ1/λ2|).

This lets us calculate the leading eigenvector of the matrix associated to the tetrahe-dral: M t
i1i2
≡ Ti1jkTi2j′k′Tij′kTijk′ .
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(b) β = 30

0 20 40 60 80 100
number of iterations

0.4

0.6

0.8

1.0

<
v,

v 0
>

perf
p-tetr
p-mel
p-hom

(c) β = 35

Figure 3.23: Correlation with the signal vector in function of the number of iterations ofthe power iteration for n = 100. In red an initialization with v0 for the comparison. Inblue, orange and green an initialization with the output of respectively the tetrahedral,the unfolding and the homotopy algorithms.
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We can compute find the leading eigenvector in a time of Õ(n4) and space Õ(n3).Indeed each iteration of the matrix power iteration method requires two intermediatematrices we denoteA,B and a intermediate 3−dimensional tensor we denoteC, in everystep there is at most n4 operations. we follow these steps:
• We take an initial vector v
• We compute the matrixA defined as Aj′k′ ≡ Ti2j′k′vi2

• We compute the tensor C defined as Ck′ik ≡ Aj′k′Tij′k

• We compute the matrixB defined as as Bkj ≡ Ck′ikTijk′

• Return the vector v′ defined as v′i1 ≡ BkjTi1jk

Comparison between different methods

We use our results and the results reported in [ADGM17b] to fill the Table 3.1. Õ and
Ω̃ notation ignores logarithmic factors.

Thus, our framework could be seen as providing multiple algorithms from which wecould choose fromdepending in howmuchwe prioritize the performance over the speed.
Table 3.1: Algorithmic threshold, time and space requirements for each method

Method Time Space ThresholdMelonic recovery/Unfolding O(n3) O(n2) Ω(n3/4)

Tetrahedral recovery O(n4) O(n3) Ω(n3/4)

Sum of squares > Ω(n6) > Ω(n6) Ω̃(n3/4)

Homotopy O(n3) O(n) Ω(n3/4)

Information-theoretic Exp O(n) Ω̃(n1/2)

3.4.3 CP and Tucker decomposition on synthetic and real data

In Figure 3.24 and 3.25, we compare the proposed tensor decomposition algorithms thatwe derived from our framework with the state of the art for both CP and Tucker decom-positions. The comparisons are done for n = 100 and for different β over 20 independentruns.
The figure 3.24 concerns the CP decomposition and suggests that the proposed Tetra-hedral (Tetra) method is more robust to noise than the commonly used algorithm of theTensorLy package (based on ALS), as well as the power iteration method. For Tucker de-composition in Figure 3.25, the results show that the proposed method (Tetra HOOI) pro-vides better results than HOOI and HOSVD in the symmetric case with r1 = r2 = r3 = 20in the large noise regime. Furthermore, we carried out experiments on structured realdata, the Yale Face Database B [LHK05]. In more details, we considered a set of stackedface images that form this database as an initial tensor towhichwe addedGaussian noise.First, we compare HOOI and the proposed Tetra-HOOI algorithms for a fixed value of the
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rank of the matrices involved in this type of methods (r1, r2, r3) = (10, 10, 10) and for dif-ferent values of the noise intensity (λ). To evaluate the denoising performance of thosemethods, we compute the average and standard deviation (over 5 runs) of the Frobenius
norm ∥X−V∥

∥V∥ where V is the input tensor and X is the output of the algorithm. The re-
sults which are reported in the table 3.4 show that Tetra HOOI again outperforms HOOIeven on real data. Note that, we obtained similar results for a fixed (λ = 1000) and fordifferent values of (r1, r2, r3). Note that the Frobenius norm of the difference betweentwo completely uncorrelated normalized vectors is equal to 2.

Figure 3.24: Comparison CP decomposition methods for n = 100 and nspikes = 20.
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Figure 3.25: Comparison Tucker decomposition methods for n = 100 and r1 = r2 = r3 =
20

The settings

CP decomposition on synthetic data

We choose to take the βi equal since we expect it to be the hardest case (it is more difficultto distinguish the spikes). Each experiment is an independent instance consisting in thefollowing steps:
• We generate randomly the p orthogonal vectors vi and then normalize them.

– Generate the components of vi randomly.
– ∀j ∈ [i] we compute vi ← vi − ⟨vi,vj⟩vj in order to have orthogonal spikes.
– Normalize vi

• We generate randomly the n3 components of the random tensor Z.
• We compute the tensor T = Z +

∑
i βiv

⊗3
i

• We compute the matrix associated to the tetrahedral with the numpy method ten-sordot in Python.
• We compute its eigenvectors xi.
• We iterate the following steps beginning from i = 0 to i = p:

– We use the power iteration method on xi with 100 iterations.
– We update the tensor T← T− αix

⊗3
i where αi = Tjkl(xi)j(xi)k(xi)l
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• Since the vectors xi are not necessarily ordered, we want to make a one for onecorrespondence with the vectors vi. So for v1, we search for the xj that maximizes
⟨xj ,vi⟩. We call rename itwi. Then for the other vi we search for the xj that maxi-mizes ⟨xj ,vi⟩ in the set X = {xj , j ∈ [p]} \ {wk, k ∈ [i− 1]}. In that way, for each
vi there is a one to one correspondence to a vector xj that we renamewi.

• We plot the correlation between the vectors resulted from the algorithm wi and thesignal vectors we aim to recover vi (namely scalar product ⟨wi,vi⟩) for each i.
We see that empirically, our method is able to recover any number of spikes inferiorto n, and with a similar threshold than with a single spike.
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Figure 3.26: Average of the correlation of the recovered vector with their correspondingsignal vector in function of the number of spikes for n = 100 and β = 30

We see in Figure 3.27 that when the spacing between the βi gets bigger, it is easier toretrieve the signal vectors, since it will be easier to distinguish them. Thus, the case whereall βi are equal seems to be the hardest case.
CP decomposition on real data

We apply our CP decomposition on a real application that consists in the Hyperspectralimages (HSI). As explained in [Nas13], "Typically, a hyperspectral spectrometer provideshundreds of narrow contiguous bands over a wide range of the electromagnetic spec-trum. Hyperspectral sensors measure the reflective (or emissive) properties of objectsin the visible and short-wave infrared (IR) regions (or the mid-wave and long-wave IR re-gions) of the spectrum. Processing of these data allows algorithms to detect and identifytargets of interest in a hyperspectral scene by exploiting the spectral signatures of thematerials".
Denoising is an important preprocessing step to further analyze a hyperspectral image
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(HSI). The common denoising procedures are either based on 2-dimensional (2D) meth-ods (mainly 2D filters) or tensor decomposition methods.

In [LBF12], the authors compared CP decompositionmethod based on the AlternatingLeast Square (ALS) algorithm with existent methods (two-dimensional filter and Tucker3that is based on a Tucker decomposition) to denoise HSI. They performed their experi-ments on a real world data: the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)HSI, an airborne hyperspectral system flown by NASA/Jet Propulsion Laboratory (JPL). Toanalyze quantitatively the denoising results, they compare the signal-to-noise ratio (SNR)of the denoised image that is defined as:
SNRout = 10 log10

||Ŷ||2

||Y − Ŷ||2
(3.23)

where Y is the original image and Ŷ the estimated image after denoising.
Their numerical results show that the CP decomposition model using the ALS algo-rithm performs better than other considered methods as a denoising procedure.
In order to judge the performance of our algorithm, we perform the same experi-ment with the same estimator and compare it with the ALS algorithm using the PythonTensorLy package [KPAP16]. The hyperspectral image we use is the open source datagiven in [MGT+18] that we normalize. It consists of a tensor of size R425×861×475 where

425 is the number of spectral bands and 865× 475 is the spatial resolution.
CP decomposition model decomposes a tensor as a sum of rank-one tensors (that wecall spikes). Thus, we compare the SNR for different number of spikes in Table 3.2

nspikes 1 3 5 10
TensorLy 41.88 42.75 43.58 46.81Melonic 41.88 43.20 43.99 46.2Tetra 41.88 43.22 44.33 47.28

Table 3.2: We compare the tetrahedral algorithm with the melonic algorithm and the ALSalgorithm from TensorLy.

Tucker decomposition on real data To evaluate the denoising performance of the dif-ferent Tucker decomposition methods, we compute the average and standard deviation(over 5 runs) of the Frobenius norm. The results which are reported in the table 3.3 forfixed rank and table 3.4 for β fixed show that Tetra HOOI again outperforms HOOI evenon real data.
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(r1, r2, r3) (5, 7, 10) (10, 20, 30) (15, 15, 15) (20, 20, 20)

HOOI 0.673
±0.010

1.143
±0.003

0.977
±0.005

1.183
±0.001Tetra-HOOI 0.621

±0.009
0.713
±0.020

0.666
±0.017

0.965
±0.009

Table 3.3: We compare HOOI and the proposed Tetra-HOOI algorithms for a fixed valueof the noise intensity (λ = 1000). We compute the average and standard deviation (over5 runs) of the Frobenius norm for different values of the rank of the matrices involved inthis type of methods (r1, r2, r3).

β 900 1100 1300 1500
HOOI 0.696

±0.008
0.845
±0.006

0.993
±0.008

1.125
±0.007Tetra-HOOI 0.610

±0.017
0.648
±0.010

0.707
±0.019

0.754
±0.013

Table 3.4: We compare HOOI and the proposed Tetra-HOOI algorithms for a fixed valueof the rank of the matrices involved in this type of methods (p1, p2, p3) = (10, 10, 10).We compute the average and standard deviation (over 5 runs) of the Frobenius norm fordifferent values of the noise intensity (β).
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4.1 Power iteration based algorithms

Power iteration is a simple method that has been extensively used in multiple tensorproblems [AGH+12, AGHK13]. [RM14] investigated the empirical performance of poweriteration with a random initialization in the range of n ∈ [50, 800] and observed an empir-ical threshold of n1/2. The conclusion to which they arrive when using a naive approach
73
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is the following.
v1 =

βτk−1
0 v0 + n−1/2g√
β2τ

2(k−1)
0 + 1

+ o(1) (4.1)
where g ∼ N(0, IN ) and o(1) is a vector whose norm converges to zero in probability as
n→∞. However this is not rigorous and may overlook some subtle mechanism.

Through an improved noise analysis, [WA16] showed that for a symmetrical tensor,power iteration is indeed able to recover the signal for a SNR β above n1/2 with a constantnumber of initialization and a number of iterations logarithmic on n. Their experimentsin the range of n ∈ [25, . . . , 250] suggested that this threshold is tight. A recent paper[HHYC20] investigates the simple power iteration for a non-symmetric tensor for TensorPCA, they prove that the algorithmic threshold is strictly equal to n1/2 as an asymetricalpower iterationwith a random initialization outputs a randomvector below this threshold.The results of their experiments for n ∈ [200, . . . , 800]match their theoretical results.
The algorithm of [BCRT20] consists in choosing one initial point x0 that they consideras a center of mass and that will be updated at each step. Then, they sample R pointsthat are orthogonal to x0. After evaluating the gradient on each of the R points, theyaverage them and use the obtained gradient in order to update the position of the centreofmassx0. Moreover they have a stopping condition given by ∥x(t)− x(t− 1)∥2 < ε. Also,they require a "rate η small enough so that the discrete updates in the algorithm can beconsidered a good approximation of a continuous time algorithm." The idea of [BCRT20]is that "One can then substantially reduce the noise by evaluating an empirical averageof the gradient obtained as a sum over many random independent positions in the spaceof parameters to be optimized". Averaging these gradients obtained from independentpoints will lower the norm of gN compared to v0 as they state: "In fact, the average overthe replicas leads to a relative amplification of the informative contribution produced bythe signal with respect to the noise. " However their algorithm has a theoretical limit as"the smoothing of the landscape using different replicas becomes ineffective when R >

Ropt ∼ N(k−1)/2 " which correspond to the threshold limit of n1/4. Under that threshold
gS will be too small and could not be boosted enough so that it becomes stronger than
gN .

In this section, we aim to draw attention to a surprising observation that contrasts withprevious work: if we impose five essential features for an algorithm based on power iter-ation or gradient descent (use a symmetrized power iteration, impose a polynomial num-ber of initializations and iterations, etc.), we observe that a novel powerful mechanismfor the convergence towards the signal takes place, leading to a fundamentally differentperformance. In fact, for n ∈ [50, 1000], SMPI is the first algorithm to exhibit an empiri-cal threshold corresponding toO(1) and whose results matches the theoretically-optimalcorrelation at large n.
Link between Power Iteration and Gradient descent

Maximising T(v,v,v) is equivalent to finding the minimum of the cost function de-fined asH(v) ≡ −T(v,v,v) [BCRT20]. Given that we restrict ourselves to the unit sphere
S1 = {v ∈ Rn | v/∥v∥ = 1}, the gradient is equal to g ≡ ∇H(v) − (∇H(v).v).v which
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will be for our model g = −T(:,v,v) + T(v,v,v).v. Therefore, power iteration could bewritten as:

v ← T(:,v,v)

∥T(:,v,v)∥
=
−g + T(v,v,v).v

∥T(:,v,v)∥

=
T(v,v,v)

∥T(:,v,v)∥
.(v − g

T(v,v,v)
)

(4.2)

We can see that the power iteration could be seen as a gradient descent with an adaptivestep size equal to 1/(T(v,v,v)). This step size has the convenient particularity that it islarge for a random v but becomes small for vectors v such that T(v,v,v) is large, forexample when we are close to a minimum ofH .
4.2 General Principle of SMPI

Table 4.1: The five essential features of SMPI compared to previous works investigatingPower Iteration
Paper Symmetry Discreet

step size
Poly. nb

of initialisat.
Poly. nb

of iterations
No stopping
conditionWang et al.,2017 [WDDFS17] Yes Yes No No No

Huang et al.,2020 [HHYC20] No Yes Yes Yes Yes
Ben Arous et al.,2020 [BAGJ+20] Yes No Yes Yes Yes
Dudeja et al.,2022 [DH22] Yes Yes Yes No Yes

SMPI,2021 Yes Yes Yes Yes Yes
The proposed SMPI (Algorithm 1) consists in applying, in parallel, the power iterationmethod with miter iterations to minit different random initialization. Then, SMPI uses themaximum likelihood estimator to select the output vector in this subset by choosing thevector that maximizes T(v,v,v).

4.2.1 The essential features of SMPI

We stress here an important and fundamental difference between our algorithm withprevious algorithms based on power iteration. In order for this method to succeed in thelow SNR setting, we need these five features that, for the best of our knowledge, we arethe first to impose:
1. Using power iteration or a gradient descent with a large enough step size.
2. In the case of power iteration and non-symmetric tensor, using the symmetrizedversion (or equivalently, symmetrize the tensor).
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Illustration of the principle of Selective Multiple Power Iteration
Tensor T = Z + βv⊗k

0

Input

v1First step: Generateminit random vectors.

Second step: Iteratemiter times : vj+1
i =

Tvj
i v

j
i∥∥∥Tvj

i v
j
i

∥∥∥

. . . vminit

vmiter
1

. . . vmiter
minit

... ...

v

Output

Third step: Choose the vector v =
argmax1≤i≤minit (T.vmiter

i .vmiter
i .vmiter

i ) :

Figure 4.1: Illustrative figure for the SMPI algorithm
Algorithm 4: Selective Multiple Power Iteration

1: Input: The tensor T = Z + βv⊗k
0 ,minit > 10n,miter > 10n,Λ

2: Goal: Estimate v0.
3: for i=0 tominit do
4: Generate a random vector vi,0
5: for j=0 tomiter do
6: vi,j+1 =

T(:,vi,j ,vi,j)

∥T(:,vi,j ,vi,j)∥7: if j > Λ and |⟨vi,j−Λ,vi,j⟩| ≥ 1− ε then
8: vi,miter = vi,j
9: break
10: end if
11: end for
12: end for
13: Select the vector v = argmax1≤i≤minit T(vi,miter ,vi,miter ,vi,miter)14: Output: the estimated vector v

3. Prohibiting a stopping criteria on two consecutive iterations (such as 1−|⟨vi−1,vi⟩| <
ε for ε > 0) and instead, use a criteria based on non-consecutive iterations distantby Λ : 1− ⟨vi−Λ,vi⟩ < ε and Λ = O(n).

4. Using at least a polynomial number of iterations.
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5. Using at least a polynomial number of initialization.

4.2.2 Generalization to Tensor decomposition

SMPI is simple, parallelizable and easy to generalize. In fact, we proposed two variants ofSMPI to deal with the recovery of a spike with different dimensions and with the multi-ple spikes recovery (related to CP tensor decomposition problem). These proposed algo-rithms outperform existent methods in this context which shows a huge potential impactof SMPI for practical applications.
Algorithm for spike with different dimensions

In order to make these tools versatile, less restrictive and usable for a majority ofapplications, we have to consider the case where the dimensions are different: n1 ̸=
n2 ̸= n3.. For example in a video, there is no reason to impose that the time dimensionis equal to the two spatial dimensions. Thus the problem is to infer a spike in the form of
v1 ⊗ v2 ⊗ v3 from the following tensor

T = β

(
n1 + n2 + n3

3

)1/2

v1 ⊗ v2 ⊗ v3 + Z, (4.3)
where Z ∈ Rn1⊗n2⊗n3 is a tensor with random gaussian entries. Algorithm 5 is an adap-tation of SMPI to tackle this model.
Algorithm 5: Recovery algorithm for a spike with different dimensions

1: Input: The tensor T = β
(
n1+n2+n3

3

)1/2
va ⊗ vb ⊗ vc + Z,minit,miter

2: Goal: Estimate va,vb,vc.
3: Generateminit random vectors {vi}1≤i≤n1 and initialize va

0
i = vb

0
i = vc

0
i = vi;

4: Performmiter times power iteration:
va

j+1
i ← T(:,vb

j
i ,vc

j
i )/

∥∥∥T(:,vb
j
i ,vc

j
i )
∥∥∥

vb
j+1
i ← T(va

j+1
i , :,vc

j
i )/

∥∥∥T(va
j+1
i , :,vc

j
i )
∥∥∥

vc
j+1
i ← T(va

j+1
i ,vb

j+1
i , :)/

∥∥∥T(va
j+1
i ,vb

j+1
i , :)

∥∥∥
(4.4)

5: Select the vectors (vaf ,vbf ,vcf ) = argmax1≤i≤minit T(va
miter
i ,vb

miter
i ,vc

miter
i ) :

6: Output: Obtaining estimated vectors (vaf ,vbf ,vcf )

Low-rank CP decomposition algorithm

We consider a generalization of the tensor PCA where we consider the problem ofestimating multiple signal vectors. In this case, we can write the symmetric tensor withmultiple spikes as:
T =

p∑
l=1

√
nβlv

⊗3
l + Z (4.5)
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The algorithm 6 is a simple variant of SMPI. Although it shares some similarities withexisting methods based on power iteration such as [WA16], it is fundamentally differentin its operating mode. Indeed, it is to the best of our knowledge, the first algorithm thatis able to take advantage of the noise-based convergence mechanism given that it sharesthe same essential features with SMPI. This difference is illustrated by the substantialimprovement over existing algorithms on our numerical experiments that we present inthe next section.
Algorithm 6: Recovery algorithm for for CP decomposition

1: Input: The tensor T =
∑p

l=1

√
nβlv

⊗3
l + Z,minit,miter,ε,Λ(∼ n)

2: Goal: Estimate {vl}pl=1 and {βl}pl=1.3: E = ∅
4: T0 = T
5: for i=0 tominit do
6: Generate a random vector vi,0
7: for j=0 tomiter do
8: vi,j+1 =

Ti(:,vi,j ,vi,j)∥∥Ti(:,vi,j ,vi,j)
∥∥

9: end for
10: if ∥vi,miter−Λ,vi,miter∥ ≥ 1− ε then
11: αi = ⟨Ti,v⊗k

i,miter⟩12: Ti+1 = Ti − αiv
⊗k
i,miter13: E = E + {vi,miter}14: else

15: Ti+1 = Ti

16: end if
17: end for
18: Output: Estimated vectors {v̂l}pl=1 = argmaxE ′⊂E,|E ′|=p

∑
v∈E ′ T(v,v,v) and

β̂l ≡ αl/
√
n

4.3 Empirical insights

In Figure 4.2, we compare the results of our algorithmwith the state of art forβ ∈ {1.2, 1.3,
1.4, 1.8, 2.2} and for n ∈ {100, 200, 400}. We averaged over 50 different realizations of
T = Z +

√
nβv⊗3 where Z is a tensor with random Gaussian components. We plot thecorrelation of the vector v output by each algorithm with the signal vector v0 as well asthe 95% confidence interval bars. The algorithms considered are SMPI (that we performafter symmetrizing the tensor T), the Homotopy-based algorithm (Hom) [ADGM17b], theUnfolding algorithm [RM14] (which are considered as the twomain successful algorithmsfor Tensor PCA), as well as the CP tensor decomposition algorithm of the Python packageTensorLy [KPAP19] used with a rank equal to one. Similar results are obtained for n =

1000 (only for SMPI and Homotopy) and on the non symmetric case and are provided inthe Appendix.
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The range of n used is the range commonly considered in empirical investigations ofalgorithms on Tensor PCA. Indeed, for n = 1000 the tensor has 109 non-zero entries whichbecomes extremely costly inmemory and computational power. Furthermore, to the bestof our knowledge, all algorithms investigated exhibited negligible finite size effects in thisrange of n (more details in subsection 4.5.3). We observe in Figure 4.2, that even for smallinstances of n, like n = 100, our algorithm performs significantly better than the state ofart. The gap between the results of our algorithm and the state of art drastically increaseswith n.
Complexity of SMPI

The complexity of SMPI is equal to minit ×miter × n2. In practice, minit = miter = 10nalready gives us excellent results for a SNR in the range 1 < β < n1/4, the complexity isthus ∼ 10n4.
4.3.1 Theoretical insights on the SMPI algorithm

The new surprising empirical observation

Probability (Success from a random initialization after n power iterations) ∼ 1√
n

(4.6)

The mechanism: the role of the noise for signal recovery

In the power iteration, let’s denote the part associated to the noise gN and the one asso-ciated to the signal gS .
T(:,v,v) = Z(:,v,v) + β⟨v,v0⟩2v0 (4.7)

≡ gN +gS (4.8)
In Figure 4.3, we illustrate by an example, a pattern observed on all successful con-vergence in low SNR. For a given random initialization v1, we plot in blue (in both the topand bottom subfigures) the correlation between the signal v0 and vi (obtained after i it-erations on v1). In the top subfigure, we plot in orange the correlation between v0 and

gN/∥gN∥, the normalized gradient associated to the noise tensor. In the bottom we plotin orange the ratio between the contribution of the noise gradient to v0: gN,0 ≡ ⟨gN ,v0⟩v0and the signal gradient gS . We observe an unexpected result: the gradient Z(:,vi,vi) isnon-trivially correlated to v0 and thus partially converges to v0. Moreover, the spikes inthe right figure at the beginning of the convergence suggest that Z(:,vi,vi) triggers theconvergence towards v0 as it gives the largest contribution to the component of vi corre-lated to v0 at the start of the convergence. This suggests that the gradient associated tothe noise actually triggers the convergence towards the signal.
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Figure 4.2: Comparison of the results of SMPI with TensorLy (TenLy) and the State-of-the-art represented here by the Unfolding (Unf) and Homotopy-based (Hom) methods forfour values of the dimension of each axe of the tensor (n = 100, 200, 400). The resultsconsist of the correlation between the output of each algorithm and the signal vector.
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Figure 4.3: In blue, the correlation ⟨vi,v0⟩ at each iteration i. In orange in the left, the
correlation ⟨ gN

∥gN∥ ,v0⟩. In orange in the right, the ratio ⟨gN ,v0⟩
⟨gS ,v0⟩

Towards the quantification of this mechanism

Let’s denote v∗ the output of the MLE (i.e. v∗ = argmax∥v∥=1(T(v,v,v) ) and v̂ the
output of SMPI. We can compare the experimental value of the plateau of ⟨ gN

∥gN∥
,v0⟩ =

⟨ Z(:, v̂, v̂)
||Z(:, v̂, v̂)||

,v0⟩ with its theoretical value obtained for n→∞ using analytic formula for
∥T(:,v∗,v∗)∥ and ⟨v∗,v0⟩provided in [JLM+20] and the following formula for ⟨ Z(:,v,v)

||Z(:,v,v)|| , v0⟩(a proof could be found in appendix 4.3.1):
⟨v, v0⟩(∥T(:,v,v)∥ − β⟨v,v0⟩)√

∥T(:,v,v)∥2 + β2⟨v,v0⟩4 − 2β⟨v,v0⟩3∥T(:,v,v)∥
(4.9)

For β = 1.44
√
n, the theoretical value is ⟨ Z(:,v∗,v∗)

∥Z(:,v∗,v∗)∥
, v0⟩th = 0.496. The table 4.2
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give the average and the standard deviation obtained experimentally for different n. Wesee that the theoretical value 0.496 is well inside the error bar and that the standard de-viation gets smaller as n grows. This shows an excellent adequacy between the empiricalresults of the plateau related to v̂ and the theoretical expectation related to v∗. For thatmatter, it suggests that the exploration of the landscape of Tensor PCA by SMPI alreadyreached the large n regime in the experimental values of n considered.
Table 4.2: Experimental plateau for β = 1.44

√
n

n 50 100 150 200 400

⟨ Z(:, v̂, v̂)
∥Z(:, v̂, v̂)∥

,v0⟩
0.469
±0.148

0.518
±0.074

0.507
±0.056

0.487
±0.038

0.511
±0.025

Importance of the main features of SMPI

Importance of the symmetrized power iteration

For a non-symmetrical tensor, [HHYC20] proved that simple power iteration exhibits analgorithmic threshold strictly equal to n1/2. For a SNR below this threshold, the output ofthe power iteration behaves like a random vector at each iteration. In Figure 4.4 we plot
T(vi,vi,vi) for a simple power iteration (in the left) and for a symmetrized power iteration(in the right) for a non-symmetrical tensor and for small SNR (β = 1.2βth where βth is thetheoretical optimal threshold [JLM+20]). We observe that while the result of simple poweriteration matches the theoretical results obtained in [HHYC20], the symmetrized poweriteration exhibits a fundamentally different and unexpected behavior that, to the bestof our knowledge, has not been fully investigated so far. The fundamentally differentbehavior is very likely to its correspondence to a gradient descent that we explained inthe beginning of this section.
The role of a large step size and the stopping condition

The landscape of the cost function H(v) ≡ −T(v,v,v) is characterized by an exponen-tially large number of critical points [RBABC19]. To understand how a large step size (orequivalently the use of symmetrized power iteration) is essential for the gradient descentto escape many of the spurious minima that it may get trapped in, let’s denotemi a min-imum of v → T(v,v,v) and {vi}1≤i≤n the eigenvalues of the matrix T(:, :,mi). Let’s
assume that we are in the vicinity of mi and initialize with y0 =

mi + ϵv1
1 + ϵ2

and let’s note
y1 =

T(:,y0,y0)

∥T(:,y0,y0)∥
. Thus
T(:,y0,y0) =T(:,mi,mi) + 2εT(:,mi,v1) +O(ϵ2)

=T(mi,mi,mi)mi + ε 2λ1v1 +O(ϵ2)

Hence, if 2|λ1| > T(mi,mi,mi) : ⟨y1,mi⟩ < ⟨y0,mi⟩ and ⟨y1,v1⟩ > ⟨y0,v1⟩. Whichmeans that if any of the eigenvalues of theHessianmatrix atmi is smaller than−2T(mi,mi,mi),then the minimum is unstable under power iteration and the algorithm will diverge awayfrom it.
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Figure 4.4: For different initialization, we plot T(vi,vi,vi) at each iteration i : in the topusing a simple power iteration and in the bottom using a symmetrized power iteration(n = 200 and β = 1.2βth)
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This simple first order approximation analysis is enough to capture the behavior ofSMPI when escaping localminima. Indeed, we can see in the Figure 4.5, a numerical exam-ple that illustrates thismechanism. mj denotes the closest localminimumwhose basin of
attraction is slowing the gradient descent. wjmin denotes the eigenvector associated to thesmallest eigenvalue to the Hessianmatrix atmj . vi is the vector obtained after i iterationson a random initialization. In Figure 4.a, SMPI gets temporarily stuck in a local minimamj(a stopping condition based on two consecutive iterations will likely trigger early stoppingin this local minimum), we observe that at the same time ⟨vi+1 − vi,w

jmin⟩ grows and
⟨ vi+1 − vi
∥vi+1 − vi∥

,wjmin⟩ becomes close to 1. This illustrates an oscillation around the min-
imum mj along the axis corresponding to the minimal eigenvector wjmin of T(:,mi, :):
wjmin before diverging away from it as pictured in Figure 4.c. This exact same pattern hap-pens in most of the initializations that succesfully converge towards the signal. In theappendix, we give numerical results on the averaged number of escaped minima.

Theoretical expression for the plateau in section 4.1

Let’s consider v the final minima obtained by the maximum likehood estimator, giventhat it is a minima of a symmetric tensor we have the equality
T(:,v,v)

∥T(:,v,v)∥
= v (4.10)

Computing the scalar product with v0 of each side and using that T = Z + βv⊗3
0 wehave

⟨Z(:,v,v),v0⟩+ β⟨v,v0⟩2 = ⟨v,v0⟩||T(:,v,v)|| (4.11)
so

⟨Z(:,v,v),v0⟩ = ⟨v,v0⟩(||T(:,v,v)|| − β⟨v,v0⟩) (4.12)
On the other side, we also have

∥T(:,v,v)∥ =
∥∥Z(:,v,v) + β⟨v,v0⟩2v0

∥∥ (4.13)
so

∥T(:,v,v)∥2 = ∥Z(:,v,v)∥2 + β2⟨v,v0⟩4 + 2β⟨v,v0⟩2⟨Z(:,v,v),v0⟩ (4.14)
Thus
⟨Z(:,v,v),v0⟩
||Z(:,v,v)||

=
⟨v,v0⟩(||T(:,v,v)|| − β⟨v,v0⟩)√

∥T(:,v,v)∥2 − β2⟨v,v0⟩4 − 2β⟨v,v0⟩2⟨Z(:,v,v),v0⟩
(4.15)

replacing the obtaining expression of ⟨Z(:,v,v),v0⟩ in the right side of the equation

⟨Z(:,v,v),v0⟩
||Z(:,v,v)||

=
⟨v,v0⟩(||T(:,v,v)|| − β⟨v,v0⟩)√

∥T(:,v,v)∥2 + β2⟨v,v0⟩4 − 2β⟨v,v0⟩3∥T(:,v,v)∥
. (4.16)
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Figure 4.5: In (a) we observe that the algorithm gets stuck temporiraly in the basin ofattraction of a local minimum mj . vi+1 − vi becomes correlated to wjmin (the smallest
eigenvector ofT(:,mi, :): wjmin as illustrated in (b)) and its norm grows until the algorithmdiverges away frommj . This simple mechanism is illustrated in (c)
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The role of a polynomial iterations

It is commonly assumed that Tensor power iteration functions by increasing the correla-tion with the signal at each step similarly to thematrix case. [RM14] performed a heuristicanalysis with a zero order approximation that suggests that an initialization that verifies
β⟨v,v0⟩ > 1 is required for the method to succeed by increasing the correlation. Yet, theresults in Figure 4 left, where we plot in red the initial correlation of successful vectors,strongly suggests that the success is not correlated with its initial correlation. Moreover,Figure 4 right where we plot the correlation with the signal in function of the iterationshows that SMPI has a first long phase of fluctuation of exploring the landscape. Indeed,the operating mode of power iteration seems to be different when we consider moder-ately long times (O(n)), which indicates that this new mechanism is fundamentally differ-ent from what happens in the matrix case, and that a polynomial number of iterations isrequired. Indeed a logarithmic convergence without exploration of the landscape wouldrequire a large initial correlation with the signal vector. Below the threshold O(n1/2), thishas an exponentially small probability to happen given that the distribution of the corre-lation of a random vector v with the signal follows a normal law. A recent paper [DH22]shows that power iteration fails with a number lower than polynomial using communica-tion complexity.
The role of a polynomial initialisation

In Table 4.3, we reported in green the average of the number of initializations requiredto reach a success rate of r = 99% with miter = 10 ∗ n over 10 independent runs foreach n with SMPI. This is calculated by computing the percentage of successful initializa-tions p and then using the formula that gives the probability that at at least one of theinitializations succeeds: 1 − (1 − p)m99% = 0.99. In red we reported the number of ini-tializations required for the naive power initialization with logarithmic steps to succeed,which is approximately exponential. The drastic discrepancy between the two quantitiessuggest that SMPI has a polynomial complexity (and not an exponential complexity) evenfor n > 1000.
n 50 100 200 400

exp(n) ≃ 1021 1043 1086 10173

minit - 99% 10 45 71 228
Table 4.3: In green the average number of initializations required for a recovery rate suc-cess of 99% where we see that it is linear in n. In red the approximation of exp(n) whichis the number of required initializations if the complexity were exponential.

4.3.2 Insight on the success

Tensor power iteration with a random initialization is supposed to perform poorly witha computational threshold scaling as n1/2 [RM14] in contrast with other algorithms (suchas unfolding, sum of squares, homotopy, etc.) whose algorithms thresholds scale as n1/4.In order to understand the reason behind this failure, a first line of research focused on
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the complexity of the landscape (such as [BAMMN19] and [RBABC19]) showing the exis-tence of an exponential number of spurious minima where the algorithm could get stuck.However, a more recent paper [BAGJ+20] provided a proof for the failure of Langevin dy-namics as well as gradient descent with infinitely small learning rate suggesting that thefailure of local algorithms are "actually due to the weakness of the signal in the region of
maximal entropy for the uninformative prior".

It is thus very interesting to take advantage of the numerical analysis we performedon SMPI to understand how it would be able to bypass this these possible explanations tothe failure of local iterative algorithms. (i) In the previous subsection, we observed that forthemajority of the successful convergence towards the signal, the algorithm runs throughmany spurious minima but is still able to escape them thanks to its large step size. Thisprovides a possible explanation in how SMPI is able to navigate through such a roughlandscape in order to attain the signal vector. (ii) Numerical simulations for a low enoughSNR and a large enough n (e.g. n ≥ 100) shows that for every successful convergencetowards the signal, it is the gradient associated to the noise Z(:,v,v) that not only trig-gers the convergence but also carries it. This mechanism that we exhibited is consistentwith [BAGJ+20] and the fact that the signal is indeed too small for its associated gradientto converge towards the signal by itself. However, our results bring a novel importantelement (which has never been considered before to the best of our knowledge) which isthat the noise gradient is also able to play an crucial role in the convergence. Thus, thanksto this phenomenon, the smallness of the signal does not necessarily imply the failure ofthe algorithm.
4.4 Numerical simulations details
Simulations for the comparison between SMPI and the unfolding method for n = 1000were run on a cloud provider (AWS). All the other simulations were run in Python on aDell computer running Ubuntu 18.04.5 LTS with eight Intel Core i7-4800MQ processors at2.70 GHz and 16GB of RAM.

Spike with different dimensions

In Figure 4.7, we investigate the case of recovering a spike v1 ⊗ v2 ⊗ v3 with differentdimensions T = β
(
n1+n2+n3

3

)1/2
v1 ⊗ v2 ⊗ v3 + Z. For different sets of three dimensions

{(50, 75, 100), (75, 75, 75), (50, 50, 150), (50, 100, 100)} we plot the correlation between theoutputs of the algorithm and the signal vectors (in red ⟨v̂1,v1⟩, in blue ⟨v̂2,v2⟩ and ingreen ⟨v̂3,v3⟩) averaged over 50 different realizations. We see that the empirical thresh-old matches (n1 +n2 +n3)
1/2 which corresponds to the optimal theoretical threshold fora tensor with dimension n1 ⊗ n2 ⊗ n3.

Multiple spikes case

We investigate in Figure 4.8 the performance of the variant of SMPI for CP decompo-sition. We take β equal for all the spikes since it is considered as the most difficult casefor spectral algorithms.
We repeat 30 times the following instance:
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Figure 4.7: For different sets of three dimensions (n1, n2, n3), we generate different real-
izations of T = β

(
n1+n2+n3

3

)1/2
v1 ⊗ v2 ⊗ v3 + Z where Z is a gaussian random tensor.We plot the correlation between the output of Algorithm 5 and the signal vector (in redfor ⟨v̂1,v1⟩, in blue for ⟨v̂2,v2⟩ and in green for ⟨v̂3,v3⟩) in function of β.

• Generate the tensor Z with iid Gaussian components
• Generate nspikes independent unitary random vectors. Each of these vectors is ob-tained by generating a vector with iid Gaussian components and then normalizingit.
• Compute T = Z + β

∑m
l=1 vl

• Plot the percentage of successfully recovered vectors by algorithm 6, naive poweriteration and the CP decomposition algorithm provided by the package TensorLy[KPAP19].
In Figure 4.8, we compare the percentage of succesfully recovered vectors with a naivepower iteration and the CP decomposition algorithm provided by the package TensorLy[KPAP19]. We see that our algorithm outperforms existing methods.
We investigate in Figure 4.9 the case of a number of spikes larger than the dimension

nspikes > n. We see that even if the number of spikes is larger than the dimension, thealgorithm still outperforms other methods.
4.4.1 The averaged number of escaped spurious minima for a successful

initialization in function of n

In Table 4.4, we counted, for a successful initialization, the averaged number of spuriousminima where the algorithm gets temporarily stuck before escaping thanks to its largestep size. For different values of n, we repeated the experience for 20 independent in-stances and averaged the number of escaped minima before converging to the signal.
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Figure 4.8: For a number of spikes equal to 20, we plot the percentage of recovered spikesfor different β for n = 100 in the top and n = 150 in the bottom. We see that SMPI (blue)outperforms the naive power iteration algorithm (green) and the TensorLy algorithm (or-ange)

Table 4.4: The averaged number of escaped spuriousminima for a successful initializationin function of n
n 50 100 150 200number of escaped minima 0.63 1.11 1.23 2.16
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Figure 4.9: For a number of spikes equal to 150, we plot the percentage of recoveredspikes in function of β averaged over 50 different tensors T with n = 100

4.4.2 Practical applications: Hyperspectral images (HSI).

As explained in [Nas13], "Typically, a hyperspectral spectrometer provides hundreds ofnarrow contiguous bands over a wide range of the electromagnetic spectrum. Hyper-spectral sensors measure the reflective (or emissive) properties of objects in the visibleand short-wave infrared (IR) regions (or the mid-wave and long-wave IR regions) of thespectrum. Processing of these data allows algorithms to detect and identify targets ofinterest in a hyperspectral scene by exploiting the spectral signatures of the materials".
Denoising is an important preprocessing step to further analyze a hyperspectral image(HSI). The common denoising procedures are either based on 2-dimensional (2D) meth-ods (mainly 2D filters) or tensor decomposition methods. In particular, there is in generaltwo mainly used models for tensor decomposition: Tucker decomposition and CP de-composition (also called PARAFAC) that have different advantages and shortcomings. Adetailed survey of these methods could be found in [KB09] for example.
In [LBF12], the authors compared CP decompositionmethod based on the AlternatingLeast Square (ALS) algorithm with existent methods (two-dimensional filter and Tucker3that is based on a Tucker decomposition) to denoise HSI. They performed their experi-ments on a real world data: the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)HSI, an airborne hyperspectral system flown by NASA/Jet Propulsion Laboratory (JPL). Toanalyze quantitatively the denoising results, they compare the signal-to-noise ratio (SNR)of the denoised image that is defined as:

SNRout = 10 log10
||Ŷ||2

||Y − Ŷ||2
(4.17)

where Y is the original image and Ŷ the estimated image after denoising.
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Figure 4.10: The case n = 1000 in the left and the performance of SMPI in the case of
k = 4 in the right

Their numerical results show that the CP decomposition model using the ALS algo-rithm performs better than other considered methods as a denoising procedure.
In order to judge the performance of our algorithm, we perform the same experi-ment with the same estimator and compare it with the ALS algorithm using the PythonTensorLy package [KPAP16]. The hyperspectral image we use is the open source datagiven in [MGT+18] that we normalize. It consists of a tensor of size R425×861×475 where

425 is the number of spectral bands and 865× 475 is the spatial resolution.
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CP decomposition model decomposes a tensor as a sum of rank-one tensors (that wecall spikes). Thus, we first compare the SNR for different number of spikes in Table 4.5.Then we compare the time taken for each algorithm (in seconds) in Table 4.6.

Table 4.5: Comparison between ALS based on TensorLy and SMPI
nspikes 150 200 400 800ALS (TensorLy) 43.58 54.24 60.58 66.53SMPI 44.24 54.53 60.93 66.91

Table 4.6: Time for each method
nspikes 150 200 400 800ALS (TensorLy) 4 377 1566 2325SMPI 33 387 995 1823

We see that the proposed SMPI method gives better denoising results independentlyof the number of spikes. And we see that the ALS algorithm (using the TensorLy package)is faster for small number of spikes but becomes slower than SMPI for a larger number ofspikes. Given that the optimal number of spikes is in general> 100 (in [LBF12] the optimalwas for 169 spikes), this suggests that SMPI gives better results in a shorter amount in timethan ALS.
More generally, it is important to note that there is many more practical applicationswhere CP decomposition and where SMPI could be an excellent candidate for improvingexistent performance. Here is a non-exhaustive list of such applications:
In telecommunication, CPdecomposition is used for Tensor-basedmodulation [DLG20].It used for "Massive random access, whereby a large number of transmitters communi-cate with a single receiver, constitutes a key design challenge for future generations ofwireless systems."
An important other application is the convolutional neural networks compression: forexample a CP decomposition method based on power iteration has been suggested in[AL17] that showed a significant reduction in memory and computation cost. Given thatour method could be seen as a refinement of the simple power iteration method, webelieve that it could be very interesting to try SMPI on these models.
In [SB20], where different types of higher order data in manufacturing processes aredescribed, and their potential usage is addressed using methods like CP tensor decom-position.
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4.5 Potential impact and open questions

4.5.1 Insights on the gradient-based exploration of high-dimensional non-
convex landscapes

Many recent papers [MBC+19, MKUZ19, MBC+20] utilized the landscape of Tensor PCAand its variant Matrix Tensor PCA in order to investigate the behavior of gradient descentin non convex high dimensional landscapes even in regimes where it should be hard. Tothe best of our knowledge, the mechanism we exhibit has not been considered before.This may be due to the fact that a large step size is required especially that our resultssuggest that this may be fundamentally important . Thus, this algorithm could bring anovel perspective in how the random landscape itself can play an important role in theconvergence towards the signal. Furthermore, it pushes us to be careful when general-izing results obtained using gradient flow to results on gradient descent with large stepsize.
4.5.2 Insights on the statistical-computational gap conjecture

Comparison with the predicted maximal theoretical results

[JLM+20] gives an analytical expression for the asymptotic theoretical optimal corre-lation with the signal vector for n → ∞. We plot in Figure 4.11 the asymptotical curvein dashed line next to the results of SMPI for n = 50, 75, 100, 150, 300, 400. We obtaina remarkable result: the empirical performance of SMPI converges towards the optimalperformance for n → ∞. Indeed the transition gets sharper when n grows and its be-havior gets closer to a discontinuous transition. Thus, these results suggest that not onlythe SMPI algorithm outperforms the state of the art but it may be matching the optimalinformation theory performance.
Empirical scaling of the threshold

More specifically, to quantify this scaling, we will assume that the threshold could be writ-ten as β = cnα and our aim is to recover α empirically. Given n1 and n2, two values of n,we have:
log(βn1) = log(c) + α log(n1) (4.18)
log(βn2) = log(c) + α log(n2) (4.19)

Thus, the empirical α can be computed from the empirical thresholds as follow:
αemp =

log
(
β
emp
n2

)
− log

(
β
emp
n1

)
log(n2)− log(n1)

(4.20)

In the Table 4.7, we fix n1 = 100 and vary n2 in the set {150, 200, 400, 800}. We per-form 50 times the experiment for each n2 and define βemp as the smaller β such that
⟨v,v0⟩ > 0.95⟨v,v0⟩th where ⟨v,v0⟩th is the theoretical optimal correlation in the large n
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Figure 4.11: Asymptotic behavior of SMPI method (denoted St) illustrated by differentresults on various values of n (from 50 to 400). The dashed line (Opt∞) corresponds tothe optimal theoretical result for n =∞.

limit given in [JLM+20]. The four methods have approximately constant α, which corrob-orate our assumption that the threshold behaves like β = cnα in this range of n. SimplePI, Homotopy and Unfolding exhibits empirical thresholds similar to their theoreticallyconjectured ones (respectively 1
2 ,

1
4 ,

1
4 ), while SMPI has a threshold approximately equalto zero (slightly negative as its performance improves with n).

Table 4.7: Experimental scaling for a non-symm. tensor for simple power iteration, un-folding, homotopy and SMPI
n2 150 200 400 800Simple PI 0.541 0.528 0.531 0.513Homotopy 0.235 0.245 0.248 0.246Unfolding 0.23 0.248 0.26 0.2516SMPI -0.063 -0.052 -0.053 -0.036

4.5.3 Discussion on a potential finite size effects

It is logical and important to first consider the possibility that the experimental results thatwe obtained could be due to finite size effects. Therefore, we stress that themain aim andmotivation of this work is not closing the gap but rather to provide novel theoretical andexperimental insights that will help us understand better this conjectured gap either toprove it rigorously or to rule it out.
First, it is important to note that, for the best of our knowledge, all existent algorithmsexhibit negligible finite size effects for n > 100. Indeed, it is claimed that the empiricalbehavior of algorithms matches the theoretical behavior for n ≥ 50 for Unfolding and
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Tensor Power Iteration [RM14], n ≥ 30 for Averaged Gradient Descent, n ≥ 100 for Ro-bust Tensor Power iteration [WA16] and n ≥ 50 for Higher Order Orthogonal Iteration ofTensors (HOOI) [ZX18]. In our case, SMPI exhibits a constant threshold for 100 ≤ n ≤ 1000.Secondly, it could be interesting to discuss our results in light to a recent paper [BKW20]on the importance of considering finite size effects for low degree polynomial methodsin a matrix model. We discuss the fundamental difference between our results and theirobservations:
• In their paper, the final asymptotic true result and the conjectured result by [MR15]differ only by a constant factor (√2) (and is due to a slow convergence speed of
O(n−1/2) to the asymptotic value according to [BKW20]). In contrast, in our case,constant factors are not relevant. Furthermore, the difference between the thresh-old of our empirical results and the naive power iteration is fundamentally differentand differ by a factor of n1/2. Therefore, it seems unlikely that a slow convergencespeed similar to the one in [BKW20] will cause such a fundamental and massivechange in the asymptotic behavior. More specifically, the algorithmic feasibility ofSMPI can be quantified by the number of initializations necessary to recover thesignal with a linear number of iterations (if it is polynomial or exponential). As weshow in our Table 4.7 of our main paper, the increase of required initialization hasan empirical linear scaling up to n = 800. So it may be extremely unlikely that it willsuddenly jump to an exponential number.

• It is important to point out that the dynamics of the empirical value is also fun-damentally different. Indeed, in the case of [BKW20], the empirical performancestagnates at the perfect theoretical bound 1 until n = 104, where it begins decreas-ing and converges to the true asymptotic value 1.8 as n increases. This decreaseof performance as n increases is very typical of finite size effects. In contrast, thedynamics of the evolution of the performance of SMPI is fundamentally different: inFigure 3.a of our paper, we observe that as n grows, the average correlation actuallyimproves and converges towards the theoretical result!
• Moreover, note that, their problematic concerns the matrix case. However, we ar-gue that we can’t compare directly n for a tensorT and amatrixM. Indeed, there ismore randomvariables in a tensorwithn1 = 103 than in amatrixwithn2 = 104 giventhat n3

1 > n2
2. In addition, updating the vector with a power iteration forM.v (where

M has n2 elements) consists in a sum of 104 (pondered) random gaussian variables,while T.vv (where T has n1 elements) consists in a sum of 106 (pondered) randomvariables. The same goes for the operator norm of the matrix maxv∈Sn2
Mvv that

sums n2
2 variables and the tensormaxv∈Sn1

Tvvv that sums n3
1 variables (note thatthe Maximum likehood estimator returns the vector that maximises the operatornorm). Thus, Central limit theorem suggests that a tensor with n1 = 103 shouldhave less fluctuations and finite size effects than a matrix with n2 = 104. Finally,and as explained in our answer to first point of the reviewer 3, n = 105 for a tensorwill require a storage capacity of 8PetaBytes that is 100 times larger than the besthigh-memory offers of cloud computing.



Chapter 5

Conclusion and perspectives

5.1 Conclusion

The contribution of this thesis could be divided in two main projects. In the first one, weintroduced a novel framework for the tensor decomposition based on trace invariants.Within this framework, we provide different algorithms to recover a signal vector withtheoretical guarantees. These algorithmsuse tensor contractions that has a high potentialof parallelization and computing optimization. We illustrate the practical pertinence ofour framework by presenting some examples of algorithms as well as generalizations ofthese algorithms for Canonical polyadic (CP) decomposition and Tucker decompositionmethods. Our experimental results show that the tetrahedral graph performs better thanthe the state of the art for Tensor PCA, and that its tensor decomposition generalizationsshow a better robustness to noise comparing to existent algorithms. Interestingly, ourframework is also able to extend the theoretical and practical study of tensor PCA to newand less restrictive situations like data where the dimensions of the axes are different.Important directions of future research is to explore the potential ofmore general graphs,as well as investigate the new proposed theoretical threshold for different dimensions inthe context of tensor decomposition.
In the secondproject, we introduced anovel algorithmnamedSelectiveMultiple PowerIteration (SMPI) for the Tensor PCA problem. Various numerical simulations for k = 3 inthe conventionally considered range n ≤ 1000 show that the experimental performanceof SMPI improves drastically upon existent algorithms and becomes comparable to thetheoretical optimal recovery. We also provide in the supplementary material multiplevariants of this algorithm to tackle low-rank CP tensor decomposition. These proposedalgorithms also outperforms existent methods even on real data which shows a huge po-tential impact for practical applications. Thus, for future work, it seems very interestingto go further in terms of theoretical investigations of these new insights offered by SMPIand also their consequences for related problems: the study of the behavior of gradientdescent methods for the optimization in high-dimensional non-convex landscapes thatare present in various machine learning problems and also the study of the conjecturedstatistical-algorithmic gap.

97
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5.2 Perspectives

Applications

One important perspective is to look more profoundly at the potential applications andmore extensive examples and models where these new tools could be useful. Indeed,real life applications concern size scales similar to our experiments where we obtainedvery encouraging preliminary results and a substantial empirical improvement over thestate of the art was observed. Indeed, Tensor decomposition have been used to a largeand various number of fields. This could cover for example the compression of neuralnetworks, or the denoising of hyperspectral images. There have been multiple works[AL17,WY+20,WGY21] on the compression of neural network that helps the interpretabil-ity and the speed of neural network by reducing the size of each tensor layer.
There is multiple methods that investigate algorithms based on deflation [dSCdA15a].That is an algorithm that perform CP decomposition of a high rank from an algorithmthat performs a rank-one approximation. The performance of these methods may differwhether the rank is low or large.
For some applications, we can study adaptation of our frameworks and methods toother type of data such as sparse tensors [NWZ20, Cd21].

Spin glass

Another direction of research concerns optimization of Spherical p-spin glass, that is ap-proximating the deepest minimum value by searching whether a near optimal configura-tion can be computed in polynomial time rather than exponential [EAMS21]. Preliminaryresults and empirical observation seems to suggest that we are able to recover a poly-nomial number of vectors among which the signal vector is found before the statisticalthreshold as long as we are above the critical threshold. However, we find deeperminimaso for Tensor PCA, Maximum Likehood Estimator won’t be able to indicate which vector isthe signal. But for optimization purposes, it could be very interesting to investigate suchintriguing results.
Combination of graphs

One could ask oneself what is the best class of graphs. A further idea is to investigate if asum of graphs provide better results. Our first experiments shows a high promise. Thisis based on the simple fact that by summing two different variables, the variance of theirsum is smaller than the sum of their variance. Variance of the noise matrix gets smaller,but the pure signal matrix adds as it is. Empirical results on the sum of two matricesconfirm this intuition. This is illustrated in the Figure 5.1
Random Tensor Theory for SMPI

Oleg Evnin [Evn20] began a study of power iterations based on random tensor theory andtrace invariants. As we explained in Chapter 2, it amounts to the study of the associatedgraph illustrated in Figure 5.2. Based on the hypothesis in 4.6, the objective is to prove
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Figure 5.1: A finite sum of graphs might improve the performance
that the expectation of this graph is non zero at the first order of 1/N . Given our empiricalresults, it is interesting to further pursue this investigation by considering a polynomialnumber of iterations. This could be done by adapting the tools used by Evnin and ex-amining the rate of growth of a random initial vector under successive applications of anonlinear map defined by the random tensor.

Figure 5.2: The graph associated to the power iteration method with 3 iterations for aninitialization v. The cross represents the vector v and the black dot the tensor T

Discreet step size investigation for SMPI

[BAGJ21, BAGJ22] proposed a novel approach to study statistics associated to the stochas-tic gradient descent (SGD) depending on the initialization and the discreet step size. Theyfound out a new threshold for the step size above which the behavior of SGD changesfundamentally. Adapting this approach for SMPI could be extremely useful for the theo-retical understanding of its performance and the importance of discreet variable step sizein SMPI. On the other hand, obtaining theoretical understanding of SMPI through this ap-proach may bring important insights on the performance of SGD in the deep learningframework.
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Synthèse de la thèse en Français :

L’intelligence artificielle (IA) et l’apprentissage automatique (ML) ont démontré leur poten-tiel pour révolutionner les industries, les services publics et la société, atteignant oumêmedépassant les niveaux humains deperformance en termes deprécision pour plusieurs ap-plications, tels que la reconnaissance d’images et de la parole [MKS+15] et la traductionlinguistique [YHPC18].
S’appuyant sur son énorme potentiel, l’IA gagne rapidement en influence dans la viequotidienne des gens et dans des domaines professionnels tels que la santé, l’éducation,la recherche scientifique, les communications, les transports, la sécurité et l’art. Cepen-dant, alors même que les systèmes d’IA commencent à être largement déployés dansl’économie, de multiples problèmes associés à l’IA s’amplifient.
Unedifficultémajeure fréquemment évoquée est l’interprétabilité desméthodes. Celas’est aggravé avec la diffusion des technologies basées sur le ML dans des domaines cri-tiques pour la sécurité tels que les soins de santé, la finance, le droit, la défense et la gou-vernance, qui exigent la responsabilité des décisions et de la manière dont les donnéessont utilisées. En effet, de tels domaines nécessitent la confiance des utilisateurs dansune décision qui est obtenue en ayant une méthode qui est facilement interprétable, liéeà l’utilisateur, connecte la décision avec des informations contextuelles, des lois connueset des expériences antérieures et reflète le mécanisme de pensée de l’utilisateur pouratteindre la décision.
D’autre part, de plus en plus de travaux se concentrent sur la construction demodèleslégers de ML tels que les petits réseaux de neurones (pour les appareils Internet desobjets (IoT), la formation en temps réel, etc.) qui nécessitentmoins de puissance de calcul,sont plus pratiques, intéressants, utiles et généralement plus interprétables.
Pour résoudre ces problèmes, diverses recherches ont été menées pour améliorerla prise de décision impartiale et impartiale, améliorer la capacité de généralisation desmodèles à des domaines de données plus larges et développer des explications pour lesmodèlesML. Ces objectifs sont fortement dépendants les uns des autres et l’interprétabilitéest un aspect fondamental qui améliore les deux autres.
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Deux principaux axes de recherche sont poursuivis pour améliorer l’interprétabilité :
1. Développer et améliorer des approches intrinsèquement explicables, égalementconnues sous le nom de modèles en boîte blanche, tels que les arbres de décisionet les modèles de régression linéaire.
2. Fournir des explications post-hoc pour les modèles déjà formés, dits "boîte noire".
Une démarche commune à ces deux axes de recherche repose sur le développementde nouveaux outils tensoriels.
Les tenseurs sont un type de structure de données qui généralise les vecteurs et lesmatrices à des dimensions supérieures ou égales à trois. Ils sont devenus omniprésentsdans l’apprentissage automatique moderne en raison de leurs capacités à conserver et àcapturer une structure multidimensionnelle essentielle pour de multiples applications.
Les réseauxdeneurones profonds joignent généralement des tenseurs d’ordre supérieurvia des architectures telles que des couches convolutives, comme illustré sur la figure 1.2.En fait, la capacité des réseaux de neurones convolutifs profonds à préserver la structurelocale de l’entrée est considérée comme une propriété cruciale pour les grandes perfor-mances obtenues [KPAP16].
L’analyse en composantes principales tensorielle (Tensor PCA) :

Le tenseur PCA a été introduit dans les travaux pionniers de [RM14] et consiste àrécupérer unpic de signalv⊗k
0 qui a été corrompupar un tenseur de bruitZ : T = Z+βv⊗k

0où v0 est un vecteur unitaire et β le rapport signal sur bruit (SNR). Lamotivation de TensorPCA est triple :
• Le tenseur PCA pourrait être considéré comme un simple cas de décomposition dutenseur. Cependant, il a unemotivation différente qui est l’étude théorique des lim-itations de calcul dans le régime de très faible SNR alors que la littérature sur ladécomposition du tenseur aborde principalement des applications pratiques, sou-vent dans un grand SNR. Pourtant, les algorithmes développés pour Tensor PCApourraient être généralisés pour traiter la décomposition de Tensor comme dans[WA16].
• En plus de cela, Tensor PCAest également souvent utilisé commeproblèmed’inférenceprototypique pour l’étude théorique de la difficulté de calcul de l’optimisation dansdes paysages non convexes de grandedimension, enparticulier enutilisant l’algorithmetrès répandudedescente de gradient et ses variantes ( [BAGJ+20,MKUZ19,MBC+19,MBC+20]). En effet, ces algorithmes sont utilisés avec un grand succès empiriquedans de nombreux domaines du ML comme le Deep Learning, mais malheureuse-ment ils sont généralement dépourvus de garanties théoriques. Comprendre ladynamique des méthodes de descente de gradient dans des paysages spécifiquestels que Tensor PCA pourrait apporter de nouvelles informations.
• L’une des principales caractéristiques de Tensor PCA est son écart algorithmiquestatistique conjecturé : alors que la théorie de l’informationmontre qu’il est théorique-ment possible de récupérer le signal pour β ∼ O(1), tous les algorithmes existants
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ont été montrés ou conjecturés avoir un seuil algorithmique pour k ≥ 3 d’au moins
β ∼ O(n(k−2)/4). Ainsi Tensor PCA est considéré comme un cas d’étude intéressantd’un tel écart qui apparaît dans divers autres problèmes (voir les références dans[BAGJ+20] et [LZ20]).

Première approche : Théorie des tenseurs aléatoires (RTT) pour
la Tensor PCA

Nous avons d’abord proposé dans la première section de cette thèse un cadre théoriquepermettant récupérer le signal dans le modèle Tensor PCA en utilisant des invariants detrace. Mais d’abord, donnons l’idée générale du cadre proposé. Il est usuel dans le casde la PCA matricielle d’utiliser la théorie spectrale associée aux matrices (valeurs pro-pres et vecteurs propres) pour sa simplicité et ses excellentes performances. Cependant,la généralisation directe des valeurs propres et des vecteurs propres au cas du tenseurn’est pas pratique car leur nombre devient exponentiel et leur définition est ambigüe.Notre approche consiste donc à construire une matrice à partir du tenseur étudié, cequi nous permettra d’exploiter la théorie spectrale bien maîtrisée des matrices afin derécupérer le signal. Cependant, il y a deux principales caractéristiques importantes queces matrices doivent posséder pour qu’elles soient utiles : elles doivent être pertinentes,dans le sens où elles doivent révéler l’information/signal caché dans le tenseur même enrégime de signal faible, et elles doivent également être faciles à étudier d’un point de vueprobabiliste afin d’apporter des garanties théoriques. De manière pratique, notre cadrethéorique basé sur la Théorie des tenseurs aléatoires (RTT) nous permet de sélectionnerdes matrices qui répondent à ces exigences. En effet, nous fournissons des matrices ca-pables d’obtenir le signal dans le régime de bruit élevé, et nous avons accès à des outilscombinatoires énumératifs simples afin d’avoir des garanties théoriques sur leurs perfor-mances.

La théorie des tenseurs aléatoires (RTT)

La théorie des tenseurs aléatoires (RTT) fournit un ensemble d’outils combinatoires dédiésà l’étude des graphes invariants de trace [Gur17]. Les invariants de trace d’un tenseur
T ∈

⊗k
i=1Rni sont des scalaires de réseaux de tenseurs qui sont invariants par les trans-formations O(n1)× · · · ×O(nk) :

Ti1...ik −→ T′
i1...ik

=
∑
j1...jk

O
(1)
i1j1

. . . O
(k)
ikjk

Tj1...jk

RTT permet d’obtenir des résultats probabilistes importants sur les invariants de trace enutilisant une combinatoire énumérative simple. En particulier, il donne un moyen simplede calculer lesmoments (espérance, variance, etc.) de la distribution de ces scalaires pourdes tenseurs aléatoires. Ces invariants peuvent être schématisés par des graphes commeillustré dans la figure A.1.
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(a) Tijk (b) TijkTijk

(c) TijkTij′k′

Ti′jk′Ti′j′k (d) TijjTikk

Figure A.1: Illustrations d’exemples d’invariants.
Matrices associées pour les traces d’invariants et nouveaux outils

Étant donné que notre objectif de Tensor PCA est de récupérer le signal, nous devrionstrouver des objets mathématiques capables de fournir un vecteur. A cet effet, nous in-troduisons un nouvel ensemble d’outils sous forme dematrices. On noteMG,e la matriceobtenue en coupant une arête e d’un graphe G en deux demi-arêtes (voir Figure A.2 pourun exemple). Cette coupure revient à ne pas sommer sur les deux indices i1 et i2 as-sociés à ces deux demi-arêtes et à les utiliser pour indexer la matrice à la place. Noussupprimerons l’indice G, e de la matrice lorsque le choix du graphe et de l’arête sera clair.Avantageusement, nous pouvons calculer les normes d’opérateur de ces matrices en util-isant les mêmes outils de RTT.
arête e

IG(T) = TijkTijk

i1 i2

MG,e ≡ (Ti1jkTi2jk)i1,i2∈[n]

Scinder l’arête e

Figure A.2: Obtention d’une matrice à partir d’un invariant de trace shcématisé par ungraphe G.
En utilisant ces outils et cet algorithme, nous sommesmaintenant enmesure d’étudierles performances de notre cadre dans divers contextes théoriques. Nous commençonspar étudier les algorithmes associés à deux invariants de trace de degré 2. Ils sont consti-tués du diagramme melonique et du diagramme têtard. Fait intéressant, il s’avère qu’ilssont équivalents aux deux algorithmes de l’état de l’art pour Tensor PCA, le dépliementdu tenseur et la méthode basée sur l’homotopie, comme illustré sur la figure 3.12. En-suite, nous décidons d’aller plus loin en termes de degré de graphe et d’étudier les al-gorithmes associés aux graphes parfaits à une factorisation (constitués par le tétraèdrequand k = 3).
Les deux dernières sous-sections de cette section illustrent la versatilité de ce cadrethéorique. Nous étudions le cas où les dimensions ni du tenseur T (T ∈ ⊗k

i=1Rni ) nesont pas nécessairement égales. Ce qui est important pour les applications pratiquesoù les dimensions sont naturellement asymétriques. Dans la dernière sous-section, nousprouvons que nosméthodes nous permettent de dériver un nouveau seuil algorithmiquepour des cas plus généraux. Ce qui est à notre connaissance le premier à généraliser leseuil nk/4 pour un tenseur T ∈ (Rn)⊗k. Ce cadre nous permet de dériver un nouveau
seuil théorique max

(
(
∏k

i=1 ni)
1/4, n

1/2
i

) pour des tenseurs de dimensions, qui sont très
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courantes dans les applications réelles.

Seconde approche : Nouvel algorithme nommé SMPI

Dans ce chapitre, nous avons introduit un nouvel algorithme nommé Selective MultiplePower Iteration (SMPI) pour l’important problème Tensor PCA.
L’algorithme SMPI proposé (Algorithme 1) consiste à appliquer, en parallèle, la méth-oded’itérationdepuissance avecmiter itérations àminit initialisations aléatoires différentes.Ensuite, SMPI utilise l’estimateur du maximum de vraisemblance pour sélectionner levecteur de sortie dans ce sous-ensemble en choisissant le vecteur quimaximiseT(v,v,v).

Illustration du principe de Selective Multiple Power Iteration
Tensor T = Z + βv⊗k

0

Entrée

v1Première étape : Générerminit vecteurs aléatoires.

Seconde étape : Itérermiter fois : vj+1
i =

Tvj
i v

j
i∥∥∥Tvj

i v
j
i

∥∥∥

. . . vminit

vmiter
1

. . . vmiter
minit

... ...

v

Sortie

Troisième étape: Choisir le vecteur v =
argmax1≤i≤minit (T.vmiter

i .vmiter
i .vmiter

i ) :

Figure A.3: Figure illustrative pour l’algorithme SMPI

Les propriétés essentielles de SMPI

Nous soulignons ici une différence importante et fondamentale entre notre algorithmeet les algorithmes précédents basés sur l’itération de puissance. Pour que cette méthoderéussisse dans le réglage SNR faible, nous avons besoin de ces cinq fonctionnalités que,à notre connaissance, nous sommes les premiers à imposer (voir Tableau A.1) :
1. Utilisation d’une itération de puissance ou d’une descente de gradient avec une taillede pas suffisamment grande.
2. Dans le cas d’une itération de puissance et d’un tenseur non symétrique, utiliser laversion symétrisée (ou de manière équivalente, symétriser le tenseur).
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3. Interdire un critère d’arrêt sur deux itérations consécutives (comme 1−|⟨vi−1,vi⟩| <

ε pour ε > 0) et à la place, utiliser un critères basés sur des itérations non consécu-tives distantes de Λ : 1− ⟨vi−Λ,vi⟩ < ε et Λ = O(n).
4. Utilisant au moins un nombre polynomial d’itérations.
5. Utilisant au moins un nombre polynomial d’initialisations.

Table A.1: Les cinq caractéristiques essentielles de SMPI par rapport aux travaux précé-dents portant sur l’itération de puissance
Papier Symétrie Pas

discret
Nbr. poly.
d’initialisat.

Nbr. poly.
d’iterations

Pas de stop
conditionWang et al.,2017 [WDDFS17] Oui Oui Non Non Non

Huang et al.,2020 [HHYC20] Non Oui Oui Oui Oui
Ben Arous et al.,2020 [BAGJ+20] Oui Non Oui Oui Oui
Dudeja et al.,2022 [DH22] Oui Oui Oui Non Oui

SMPI,2021 Oui Oui Oui Oui Oui

Résultats

Diverses simulations numériques pour k = 3 dans la plage conventionnellement con-sidérée n ≤ 1000 montrent que les performances expérimentales de SMPI s’améliorentconsidérablement par rapport aux algorithmes existants et deviennent comparables à larécupération optimale théorique. Nous fournissons également de multiples variantes decet algorithme pour aborder la décomposition du tenseur Canonical polyadic (CP) de basrang. Ces algorithmes proposés surpassent également les méthodes existantes, mêmesur des données réelles, ce qui montre un très grand impact potentiel pour les applica-tions pratiques.
De plus, nous présentons de nouveaux résultats théoriques sur le comportement desméthodes SMPI et de descente de gradient pour l’optimisation dans des paysages nonconvexes de grande dimension qui sont présents dans divers problèmes d’apprentissageautomatique. Notons que,même si SMPI présente des résultats empiriques remarquables,nous ne donnons pas de garanties théoriques sur les performances de cet algorithmedans ce travail. Pour les applications critiques, cela peut être un inconvénient par rapportà certains algorithmes existants malgré leurs performances plus faibles (par exemple, lesalgorithmes du cadre théorique précedemment introduit ou Sum-of-Squares).
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Perspectives

Applications

Une perspective importante est d’examiner plus en profondeur les applications poten-tielles et des exemples et modèles plus généraux où ces nouveaux outils pourraient êtreutiles. En effet, les applications réelles concernent des échelles de taille similaires à nosexpériences où nous avons obtenu des résultats préliminaires très encourageants et uneamélioration empirique substantielle par rapport à l’état de l’art a été observée. En effet,la décomposition du Tenseur a été utilisée pour un nombre important et varié de do-maines. Cela pourrait couvrir par exemple la compression de réseaux de neurones, ou ledébruitage d’images hyperspectrales. Il y a eu plusieurs travaux [AL17, WY+20, WGY21]sur la compression de réseaux de neurones qui aide l’interprétabilité et la vitesse duréseau de neurones en réduisant la taille de chaque couche de tenseur.
Il existe plusieursméthodes qui étudient les algorithmesbasés sur la déflation [dSCdA15a].C’est un algorithme qui effectue une décomposition CP d’un rang élevé à partir d’un algo-rithme qui effectue une approximation de rang un. Les performances de ces méthodespeuvent différer selon que le rang est faible ou élevé.
Pour certaines applications, nous pouvons étudier l’adaptation denos cadres théoriqueset méthodes à d’autres types de données comme les tenseurs creux [NWZ20, Cd21].

Spin glass

Une autre direction de recherche concerne l’optimisation du verre sphérique p-spin, c’est-à-dire l’approximation de la valeur minimale la plus profonde en cherchant si une config-uration quasi optimale peut être calculée en temps polynomial plutôt qu’exponentielle[EAMS21]. Les résultats préliminaires et l’observation empirique semblent suggérer quenous sommes capables de récupérer un nombre polynomial de vecteurs parmi lesquelsle vecteur signal se trouve avant le seuil statistique tant que nous sommes au-dessus duseuil critique. Cependant, nous trouvons des minima plus profonds, donc pour TensorPCA, l’estimateur de similarité maximale ne pourra pas indiquer quel vecteur est le sig-nal. Mais à des fins d’optimisation, il pourrait être très intéressant d’étudier des résultatsaussi intrigants.

Combinaison de graphes

On pourrait se demander quelle est la meilleure classe de graphes. Une autre idée con-siste à rechercher si une somme de graphiques fournit de meilleurs résultats. Nos pre-mières expériences sont très prometteuses. Ceci est basé sur le simple fait qu’en som-mant deux variables différentes, la variance de leur somme est inférieure à la somme deleur variance. La variance de la matrice de bruit diminue, mais la matrice de signal purs’ajoute telle quelle. Des résultats empiriques sur la somme de deux matrices confirmentcette intuition. Ceci est illustré dans la figure 5.1
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Théorie des tenseurs aléatoires pour SMPI

Oleg Evnin [Evn20] a commencéune étudedes itérations depuissance basée sur la théoriedes tenseurs aléatoires et les invariants de trace. Commenous l’avons expliqué au chapitre2, cela revient à l’étude du graphe associé illustré sur la figure A.4. En se basant surl’hypothèse de 4.6, l’objectif est de prouver que l’espérance de ce graphe est non nulleau premier ordre de 1/N . Compte tenu de nos résultats empiriques, il est intéressant depoursuivre cette investigation en considérant un nombre polynomial d’itérations. Celapourrait être fait en adaptant les outils utilisés par Evnin et en examinant le taux decroissance d’un vecteur initial aléatoire sous des applications successives d’une carte nonlinéaire définie par le tenseur aléatoire.

Figure A.4: Le graphe associé à la méthode d’itération puissance à 3 itérations pour uneinitialisation v. La croix représente le vecteur v et le point noir le tenseur T

Etude sur la taille de pas discrets pour SMPI

[BAGJ22] a proposé une nouvelle approche pour étudier les statistiques associées à la de-scente de gradient stochastique (SGD) en fonction de l’initialisation et de la taille du pasdiscret. Ils ont découvert un nouveau seuil pour la taille du pas au-dessus duquel le com-portement de SGD change fondamentalement. L’adaptation de cette approche pour SMPIpourrait être extrêmement utile pour la compréhension théorique de ses performanceset de l’importance de la taille de pas variable discrète dans SMPI. D’autre part, l’obtentiond’une compréhension théorique de SMPI grâce à cette approche peut apporter des infor-mations importantes sur les performances de SGD dans le cadre de l’apprentissage enprofondeur.



Appendix B

Appendix Chapter Random Tensor

B.1 Gaussian expectation of trace invariants

Let’s consider a graph G of order d associated to a trace invariant IG(T) where T is atensor of order k. Since the trace invariant is a contraction of pairs of indices of d copiesof T, we denote the c-th index of the i-th copy of T by aic and the set of the d indices ofthe i-th copy by ajD. By the definition of the Gaussian measure we have the equation:

E(TrG(T)) =
∑
a

δGaa
∑

τ∈S(k)

k∏
j=1

δajDajDτ(j)
, (B.1)

where S(k) is the symmetric group (the group of all permutations of a set made of nelements, where we define a permutation of a set by an arrangement of its elements ina linear order. For example the permutations of {1, 2, 3} are (1, 2, 3), (1, 3, 2), (2, 1, 3),
(2, 3, 1), (3, 1, 2), (3, 2, 1).).∑

a indicates a sum over all the indices involved in the computation of the trace invari-ant, illustrated by a half-edge in the graph (we have k×d indices in total: k indices for eachone of the d copies of T of the trace invariant expression). δGaa indicates that contractedindices (illustrated by being two ends of the same edge) of the tensors have to be equal.The term δajDajDτ(j)
indicates that we set equal the c-th indices of the copy j and τ(j) of T

for c ∈ {1, . . . , d}
In order to have a clearer representation of the expression in equation B.1, in par-ticular the sum over the symmetric group, we introduce the concept of covering graphused in [Gur17]: a covering graph of G consists in adding d/2 new edges of color 0 (alsocalled propagators) relying pairwise the vertices of G (Figure 3.2 for an example). We usethe covering graphs to illustrate the permutations τ ∈ S(k). Then, an edge of color 0between two vertices i and j will identify all the indices of the i-th and j-th copies of T.Thus, it will be equivalent to the term δajDajDτ(j)

. Using the covering graph, we will be able
to rewrite equation B.1.
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For example, in the case where the edges could have only one color, we have theformula:

E(TrG(T)) =
∑

G′,G′\E0(G′)=G

∑
aa

 3∏
c=1

∏
ec=(vj ,vk)∈Ec(G)

δajc,akc


 ∏

e0=(vp,vq)∈E0(G)

δap1,aq1δap2,aq2δap3,aq3

 ,

(B.2)

Where we denote Ec(G) the set of edges of color c of G. Thus {G′,G′\E0(G′) = G} denotesthe graphs which restrict to the graph G when we remove their edges of color 0, whichare by the definition the covering graphs.
Let c1, c2 ∈ {0, . . . , d} be two different colors of edges. We denote F c1,c2(G) the num-ber of closed cycles (that we also call face) of 2 colors of G. More explicitly, it consists ofthe number of connected subgraphs left whenwe keep in G only the edges of colors c1, c2.We denote F (G) ≡

∑
c1 ̸=c2∈{1,...,d} F

c1,c2(G).
Then, with a little work (see [Gur14] for a proof), we obtain :

E(TrG(T)) =
∑

G′,G′\E0(G′)=G

nF (G′)−F (G) =
∑

G′,G′\E0(G′)=G

n
∑

c F
0,c(G′). (B.3)

This will be the expression we will use to calculate the expectations of our graphs if eachedges has only one color.
B.2 Useful theorems.
The following theorems will be useful for the demonstrations of the proposed theorems.

• Wedin perturbation ([Wed72]): LetM = βv0v
⊤
0 +N a squarematrixwith ∥v0∥ = 1.Let v denote the eigenvector with the largest eigenvalue ofM . If β > 2∥N∥op then:

1− ⟨v,v0⟩ ≤
8∥N∥op

β2
. (B.4)

• Chebyshev inequality ([Ros14]): Let X be a random variable with finite expectedvalue µ and finite non-zero variance σ2. Then for any real number C > 0,
Pr(|X − µ| ≥ Cσ) ≤ 1

C2
. (B.5)

where Pr denotes the probability.
• Gelfand’s Formula ([Gel41]): For any matrix norm ∥.∥, we have:

ρ(A) = lim
s→∞

∥As∥
1
s . (B.6)
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where ρ(A) is the spectral radius ofA: the largest absolute value of its eigenvalues.
In particular, ifA is a real matrix, we can choose the Frobenius norm:

∥A∥F =
√trace(A⊤A). (B.7)

B.3 The perfect one-factorization graph.
In themathematical field of graph theory, a graphG is said to beone-factorizable ([Wag92])if:

• It is k-regular, which means that each vertex is incident to exactly k edges.
• Its edges can be colored in k colors such that no two edges incident to the samevertex have the same color.

A perfect one-factorization of G happens if, for every two colors c1 and c2 of the k colors,restricting G to the edges of color c1 and c2 and removing all the edges colored differently,leads to a single connected cycle. In other words, the number of the faces associated tothe colors c1 and c2 is always equal to one: F c1,c2(G) = 1 ∀c1, c2. We illustrate this propertyin Figure B.1 where we see that restricting to the red and green colors, or the red and bluecolors for a complete graph for k = 5, leads to a single connected cycle.
It is conjectured ([Wag92]) that they exist for all n but, until now, they were provenonly for prime numbers and up to 56. We use this particular set of graphs because of itscombinatorial simplicity. The perfect one-factorization graphs have already been studiedin the context of random tensors in [FRV19a].

(a) Complete graph for k = 5

Figure B.1: Complete graph for k = 5 and some two colors restriction
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[PTC15] Anh-Huy Phan, Petr Tichavskỳ, and Andrzej Cichocki. Tensor deflation forcandecomp/parafac—part i: Alternating subspace update algorithm. IEEE
Transactions on signal Processing, 63(22):5924–5938, 2015.

[PWB+20] Amelia Perry, Alexander S Wein, Afonso S Bandeira, et al. Statistical limitsof spiked tensor models. In Annales de l’Institut Henri Poincaré, Probabilités
et Statistiques, volume 56, pages 230–264. Institut Henri Poincaré, 2020.

[Qi05] Liqun Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic
Computation, 40(6):1302 – 1324, 2005.

[RBABC19] Valentina Ros, Gerard Ben Arous, Giulio Biroli, and Chiara Cammarota.Complex energy landscapes in spiked-tensor and simple glassy models:Ruggedness, arrangements of local minima, and phase transitions. Phys-
ical Review X, 9(1):011003, 2019.

[RD91] James O Ramsay and CJ1125714 Dalzell. Some tools for functional dataanalysis. Journal of the Royal Statistical Society: Series B (Methodological),53(3):539–561, 1991.
[RM14] Emile Richard and Andrea Montanari. A statistical model for tensor pca. In

Advances in Neural Information Processing Systems, pages 2897–2905, 2014.
[Ros14] Sheldon Ross. A first course in probability. Pearson, 2014.
[SB20] Weike Sun and Richard D Braatz. Opportunities in tensorial data analyticsfor chemical and biologicalmanufacturing processes. Computers & Chemical

Engineering, page 107099, 2020.
[ŠBP21] Boštjan Šumak, Saša Brdnik, and Maja Pušnik. Sensors and artificial intelli-gencemethods and algorithms for human–computer intelligent interaction:A systematic mapping study. Sensors, 22(1):20, 2021.
[SCZL18] Qiquan Shi, Yiu-Ming Cheung, Qibin Zhao, and Haiping Lu. Feature extrac-tion for incomplete data via low-rank tensor decomposition with featureregularization. IEEE transactions on neural networks and learning systems,30(6):1803–1817, 2018.



120 BIBLIOGRAPHY

[Tur09] Alan M Turing. Computing machinery and intelligence. In Parsing the turing
test, pages 23–65. Springer, 2009.

[VT02] M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of imageensembles: Tensorfaces. In European conference on computer vision, pages447–460. Springer, 2002.
[VT04] M Alex O Vasilescu and Demetri Terzopoulos. Tensortextures: multilinearimage-based rendering. ACM Transactions on Graphics (TOG), 23(3):336–342,2004.
[WA16] Yining Wang and Animashree Anandkumar. Online and differentially-private tensor decomposition. In Proceedings of the 30th International Con-

ference on Neural Information Processing Systems, NIPS’16, page 3539–3547,Red Hook, NY, USA, 2016. Curran Associates Inc.
[Wag92] David G. Wagner. On the perfect one—factorization conjecture. Discrete

Mathematics, 104(2):211 – 215, 1992.
[WDDFS17] Miaoyan Wang, Khanh Dao Duc, Jonathan Fischer, and Yun S. Song. Oper-ator norm inequalities between tensor unfoldings on the partition lattice.

Linear Algebra and its Applications, 520:44–66, May 2017.
[WEAM19] Alexander S Wein, Ahmed El Alaoui, and Cristopher Moore. The kikuchi hi-erarchy and tensor pca. In 2019 IEEE 60th Annual Symposium on Foundations

of Computer Science (FOCS), pages 1446–1468. IEEE, 2019.
[Wed72] Per-Åke Wedin. Perturbation bounds in connection with singular value de-composition. BIT Numerical Mathematics, 12(1):99–111, 1972.
[WGY21] YinanWang, Weihong “Grace” Guo, and Xiaowei Yue. Tensor decompositionto compress convolutional layers in deep learning. IISE Transactions, pages1–33, 2021.
[WY+20] Yinan Wang, Xiaowei Yue, et al. Cpac-conv: Cp-decomposition to approx-imately compress convolutional layers in deep learning. arXiv preprint

arXiv:2005.13746, 2020.
[YAD19] Farzane Yahyanejad, Réka Albert, and Bhaskar DasGupta. A survey ofsome tensor analysis techniques for biological systems. Quantitative Biol-

ogy, 7(4):266–277, 2019.
[YHPC18] Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Re-cent trends in deep learning based natural language processing. ieee Com-

putational intelligenCe magazine, 13(3):55–75, 2018.
[ZX18] Anru Zhang and Dong Xia. Tensor svd: Statistical and computational limits.

IEEE Transactions on Information Theory, 64(11):7311–7338, 2018.


	Introduction
	Artificial Intelligence
	Future challenges for AI
	Research directions
	Tensorial approach

	Tensorial tools from theoretical physics perspective
	Tensor PCA model and its motivations.

	Tensor PCA : Intersection of fundamentally different approaches
	From Tensor PCA to the CANDECOMP/PARAFAC Tensor Decomposition
	Matrix PCA
	Tensor decomposition
	Tucker decomposition
	Tensor PCA and algorithms

	Glassy systems and rough landscapes
	Glasses
	Spin glass and Mean field
	Spherical p-spin glass model
	Tensor PCA landscape as a prototypical inference problem and exploration of complex landscapes

	The conjectured statistical algorithmic gap: computational hardness
	Statistical computational gap in inference problems
	Statistical computational gap in Tensor PCA
	Existent approaches for computational hardness of statistical problems


	Random Tensor Theory for Tensor PCA
	Brief review of Random Tensor Theory
	From eigenvalues to trace invariants
	Trace invariants and their representations as graphs
	Combinatorial tools for statistics of trace invariants

	Random Tensor Theory for Tensor PCA
	Matrices associated to trace invariants and new tools
	Tensor PCA framework for algorithms associated to a trace invariant
	Some derived algorithms from the new framework
	New theoretical threshold for an asymetrical tensor with different dimensions n1 =n2 =…=nk

	Generalization to Tensor decomposition
	 Adaptation to low-rank CP decomposition
	 Adaptation to Tucker decomposition

	Numerical experiments
	Tensor PCA
	Memory and time requirements of the methods
	CP and Tucker decomposition on synthetic and real data


	A new algorithm : Selective Multiple Power Iteration (SMPI)
	Power iteration based algorithms
	General Principle of SMPI
	The essential features of SMPI
	Generalization to Tensor decomposition

	Empirical insights
	Theoretical insights on the SMPI algorithm
	Insight on the success

	Numerical simulations details
	The averaged number of escaped spurious minima for a successful initialization in function of n
	Practical applications: Hyperspectral images (HSI). 

	Potential impact and open questions
	Insights on the gradient-based exploration of high-dimensional non-convex landscapes
	Insights on the statistical-computational gap conjecture
	Discussion on a potential finite size effects


	Conclusion and perspectives
	Conclusion
	Perspectives

	Synthèse de la thèse en Français :
	Appendix Chapter Random Tensor
	Gaussian expectation of trace invariants
	Useful theorems.
	The perfect one-factorization graph.


