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La contribution de cette thése se divise en deux
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théorique adapté aux tenseurs, inspiré par des travaux
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Abstract: This thesis deals with tensorial principal
component analysis (PCA). The introduction notes the
growing interest in tensorial tools in the field of Artifi-
cial Intelligence (Al). Finding new Al methods and al-
gorithms that are less opaque and that require less data
than deep learning is crucial to facilitate the adoption
of Al in new application domains. The second chapter
emphasizes the more general importance of the study
of tensorial PCA by highlighting its key position at the
intersection of very active research subjects from three
different disciplines, applied mathematics, the physics
of disordered systems, and theoretical computer sci-
ence.

The contribution of this thesis is divided into two

parts. The first consists of a new theoretical frame-
work adapted to tensors, inspired by recent research
work in high energy physics. This framework makes
it possible to improve the results on synthetic data as
well as in certain concrete applications. It also makes
it possible to give new theoretical guarantees for more
general situations, such as a tensor with unequal di-
mensions. The second contribution introduces a new
method based on a more empirical approach. It pro-
vides new insights that lead us to question certain con-
jectures such as those related to the behavior and per-
formance of the tensor power iteration method. These
results could bring new essential elements to the study
of the statistical-computational gap and the behavior
of gradient descent in deep learning.




Contents

1

Introduction 11
1.1 Artificial Intelligence . . . . . . . . . . e 11
1.2 Futurechallengesfor Al . . . . . . . . 12
1.2.1 Researchdirections . . ... ... .. . . ... . ... 14
1.2.2 Tensorialapproach . . ... ... ... . . . .. ... . . 15
1.3 Tensorial tools from theoretical physics perspective. . . . . . ... ... .. 15
1.4 Tensor PCA model and its motivations. . . . . ... ... ... ........ 17
Tensor PCA: Intersection of fundamentally different approaches 19
2.1 From Tensor PCA to the CANDECOMP/PARAFAC Tensor Decomposition . . 20
2.1.1 Matrix PCA . L e e 20
2.1.2 Tensordecomposition. . . . . . ... . . e 21
2.1.3 Tuckerdecomposition. . . . . . . . ... 23
2.1.4 Tensor PCAandalgorithms . . . . ... ... ... ... ........ 24
2.2 Glassy systems and rough landscapes. . . . .. ... ... ... ... . ... 25
221 Glasses ... e 25
2.2.2 Spinglassand Meanfield . . . ... ... ... ... ... L. 26
2.2.3 Spherical p-spinglassmodel . . . ... ... oo oo 0oL 27
2.2.4 Tensor PCA landscape as a prototypical inference problem and ex-
ploration of complex landscapes. . . . . .. ... ... ... ... .. 27
2.3 The conjectured statistical algorithmic gap: computational hardness . . . . 30
2.3.1 Statistical computational gap in inference problems . . . ... ... 30
2.3.2 Statistical computational gap in Tensor PCA . . . . . ... ... ... 30
2.3.3 Existent approaches for computational hardness of statistical prob-
lems . . 32
Random Tensor Theory for Tensor PCA 34
3.1 Briefreview of Random Tensor Theory . . . ... ... ... ... ...... 34
3.1.1 From eigenvalues to traceinvariants . . ... ............. 34
3.1.2 Trace invariants and their representations as graphs . . . . . .. .. 36
3.1.3 Combinatorial tools for statistics of trace invariants . . . . ... ... 36
3.2 Random Tensor Theory for TensorPCA . . . . . . . . . . ... ... .. ... 39
3.2.1 Matrices associated to trace invariants and newtools . . . . . . . .. 39

3.2.2 Tensor PCA framework for algorithms associated to a trace invariant 43

3



4 CONTENTS
3.2.3 Some derived algorithms from the new framework . . . . ... ... 51
3.2.4 New theoretical threshold for an asymetrical tensor with different
dimensionsS ny # Mo # ... F Nk v v v v v e e e e e e e 55
3.3 Generalization to Tensor decomposition . . . .. ... ... ... ...... 58
3.3.1 Adaptation to low-rank CP decomposition . . . . ... ... ..... 58
3.3.2 Adaptation to Tucker decomposition . . . . ... ... . ... .... 58
3.4 Numericalexperiments . . . . . . . . . . i i e 59
3470 TensorPCA . . . o o o 60
3.4.2 Memory and time requirements of the methods . . . ... ... .. 63
3.4.3 CP and Tucker decomposition on syntheticand realdata. . . . . . . 66
4 A new algorithm : Selective Multiple Power Iteration (SMPI) 73
4.1 Power iteration based algorithms . . . . .. ... ... .. ... . ... 73
4.2 General Principle of SMPI . . . . . . . . o e 75
4.2.1 The essential featuresof SMPI . . . . ... ... ... ......... 75
4.2.2 Generalization to Tensor decomposition . . . .. ... ... ..... 77
43 Empiricalinsights . . . . .. ... . 78
4.3.1 Theoretical insights on the SMPI algorithm . . . . . . ... ... ... 79
43.2 Insightonthesuccess . . . ... ... .. ... ... 86
4.4 Numerical simulationsdetails . . . ... ...... ... .. ... . .... 88
4.4.1 The averaged number of escaped spurious minima for a successful
initialization in functionofn . . . . ... ... .. o o L 89
4.4.2 Practical applications: Hyperspectral images (HSI). . . ... ... .. 91
4.5 Potential impactand openquestions . . . ... ... ... ... ... 94
4.5.1 Insights on the gradient-based exploration of high-dimensional non-
convexlandscapes . . . . ... e 94
4.5.2 Insights on the statistical-computational gap conjecture . . ... .. 94
4.5.3 Discussion on a potential finite sizeeffects . . . . .. ... ... ... 95
5 Conclusion and perspectives 97
51 Conclusion . . . .. 97
5.2 Perspectives . . . ... e 98
A Synthése de la thése en Francais : 100
B Appendix Chapter Random Tensor 108
B.1 Gaussian expectation of trace invariants . . . ... ... ... ........ 108
B.2 Usefultheorems.. . . . . . . . . . . . e 109

B.3 The perfect one-factorizationgraph.. . . . . . ... ... ... . ..., . 110



List of Figures

1.1 Subjective and rough classification of ML methods depending on their Ac-

curacy Interpretability trade-off . . . . . ... o oo
1.2 Tensorsinneuralnetworks. . . ... ... ... .. ... . . . . ... ... .
1.3 Example of graphs and their associated invariants. . . . ... ... ... ..

2.1 Examplesoftensorialdata . . ... ... ... ... . . ... ... .. ...,
2.2 CPdecompositionillustration. . . ... ... ... ... ... . .. .. ...,
2.3 Tucker decompositioniillustration. . . . . .. ... ... ... ... L.
2.4 Rough landscape illustration . . . ... ... ... ... . ... ...
2.5 Evolution of the minima with the SNR. The light orange zone indicates the
zone with an exponential number of minima. The equator is the zone with
the most numerous and deepest minima. A straight line indicates the pres-
ence of the global minimum, while a dashed line is associated to only local
MINIMA. . . . o e e e e e
2.6 Asymptotic correlation of the Maximum Likehood Estimator with the signal
asafunctionoftheSNRB. . .. . . . . . . . . . . . .o
2.7 lllustration of the statistical-computationalgap. . . . ... ... ... ....

3.1 Example of graphs and their associated invariants. . . . ... ... ... ..
3.2 Tetrahedral andits coveringgraph . . ... ... ... .. ... .......
3.3 The faces of the first coveringgraph . . . . . . . .. .. ... ... .. ....
3.4 Example of a covering graph contributing to the variance . ... ... ...
3.5 Obtaining a matrix by cutting the edge of a trace invariant graph G.
3.6 Amixed graphanditstwocycles. . . .. ... ... .. ... ...
3.7 Example of a pure signal graph in the top and of intermediate graphs in the
bottom . . . .
3.8 Decomposition of a matrix graph and the melon and tetrahedral examples
3.9 Cycle with an open edge for the expectation ofamatrix . .. ........
3.10 Two covering graphs for the graph of Tr (M "M)?) . . ... ... .. ..
3.11 The covering graph contributing by n*%/? to the variance, implying that no
algorithm associated to a single graph could recover a signal below the ac-
tual computational threshold. . . . . . ... ... ... .. ... ... . ...
3.12 Equivalence between algorithms associated to graphs and state of the art
methods. . . . . . ..

36



LIST OF FIGURES

3.13 Decomposition of atadpolematrix . . ... ... ... ... ... ... ... 53
3.14 The two covering graphs of Tr((M —E(M))?) .. ... . ....... ... 56
3.15 Elementary sub-graph completely connected to the elementary sub-graph
nexttoit . . . . . o e 57
3.16 Elementary sub-graph not completely connected to the elementary sub-
graphnexttoit . .. . . . . . e 57
3.17 Comparison of different methods for asymmetric tensor forn =100 . . . . 61
3.18 Comparison of different methods for symmetric recovery forn = 100. . . . 61
3.19 Comparison of different methods for symmetric recovery forn = 150. . . . 62
3.20 Comparison of different methods for symmetric recovery forn =200. . . . 62
3.21 Recovery of a spike with differentdimensions. . . . . . .. ... ... .. .. 63
3.22 Recovery of vgwhereng > nins . . . . . . v o oo i e 64

3.23 Correlation with the signal vector in function of the number of iterations
of the power iteration for n = 100. In red an initialization with v, for the
comparison. In blue, orange and green an initialization with the output of
respectively the tetrahedral, the unfolding and the homotopy algorithms. . 65

3.24 Comparison CP decomposition methods for n = 100 and nspikes = 20. . . . 67
3.25 Comparison Tucker decomposition methods for n = 100 and r; = ro =
r3 = 20 L e e e e e e 68
3.26 Average of the correlation of the recovered vector with their corresponding
signal vector in function of the number of spikes forn = 100and 5 =30. . 69
3.27 Recovery of many spikes withnonequal 5; . . . . .. ... ... ....... 70
4.1 |lllustrative figure for the SMPI algorithm . . . . ... ... .......... 76

4.2 Comparison of the results of SMPI with TensorLy (TenLy) and the State-
of-the-art represented here by the Unfolding (Unf) and Homotopy-based
(Hom) methods for four values of the dimension of each axe of the tensor
(n = 100, 200, 400). The results consist of the correlation between the out-

put of each algorithm and the signalvector. . . . ... ... ......... 80
4.3 In blue, the correlation (v;, vy) at each iteration i. In orange in the left, the
correlation (Hg—x”,v@. In orange in the right, the ratio % ........ 81

4.4 For different initialization, we plot T(v;, v;,v;) at each iteration i : in the
top using a simple power iteration and in the bottom using a symmetrized
power iteration (n =200and 8 =1.28h) . .« v v v v i i 83
4.5 In (a) we observe that the algorithm gets stuck temporiraly in the basin of
attraction of a local minimum m;. v;1 —v; becomes correlated to w’ (the

min
smallest eigenvector of T(:,m;,:): wﬁmn as illustrated in (b)) and its norm
grows until the algorithm diverges away from m;. This simple mechanism
isillustrated in (C) . . . . . o v o e e e e 85

4.6 Top : In blue the distribution of the correlation between the signal and all
the initializations, and in red the correlations of the initializations that suc-
ceeded. Bottom: Each color represents the trajectory of the algorithm for
aninitalization (n =200, 85=1.2). . . . . . . i i e 87



LIST OF FIGURES

4.7

4.8

4.9

For different sets of three dimensions (n1, na, n3), we generate different re-

alizations of T = f8 (%ﬁ"i”)l/2 v1 ® v ® v3 + Z where Z is a gaussian
random tensor. We plot the correlation between the output of Algorithm 5
and the signal vector (in red for (v, v1), in blue for (vs, v2) and in green for
(Us,v3))infunctionof . . . . . ... L
For a number of spikes equal to 20, we plot the percentage of recovered
spikes for different g for n = 100 in the top and n = 150 in the bottom.
We see that SMPI (blue) outperforms the naive power iteration algorithm
(green) and the TensorLy algorithm (orange) . . . . . . . ... ... ... ..
For a number of spikes equal to 150, we plot the percentage of recovered
spikes in function of 3 averaged over 50 different tensors T with n = 100 .

4.10 The case n = 1000 in the left and the performance of SMPI in the case of

4.11

5.1
5.2

A1
A2

A3
A4

B.1

kE=4intheright . . . . . . . . . . . . e
Asymptotic behavior of SMPI method (denoted St) illustrated by different
results on various values of n (from 50 to 400). The dashed line (Opt o)
corresponds to the optimal theoretical resultforn =oco. . . . . . .. . ...

A finite sum of graphs might improve the performance . . . . . ... .. ..
The graph associated to the power iteration method with 3 iterations for
an initialization v. The cross represents the vector v and the black dot the
tensor T . . . . e e

lllustrations d'exemples d’'invariants. . . . ... ... ... ... .......
Obtention d'une matrice a partir d'un invariant de trace shcématisé par un
graphe G. . . . e
Figure illustrative pour l'algorithme SMPI . . . . . . ... ... ... ....
Le graphe associé a la méthode d'itération puissance a 3 itérations pour une
initialisation v. La croix représente le vecteur v et le point noir le tenseur T

Complete graph for kK = 5 and some two colors restriction . . . . ... ...

89

90

91

92

95

99

99

103

103
104

107



List of Tables

3.1
3.2

3.3

3.4

4.1

4.2
4.3

4.4
4.5

4.6
4.7

A

Algorithmic threshold, time and space requirements for each method . .. 66
We compare the tetrahedral algorithm with the melonic algorithm and the
ALS algorithm from TensorLy. . . . ... ... .. ... . .. . ... ... 71

We compare HOOI and the proposed Tetra-HOOI algorithms for a fixed
value of the noise intensity (A = 1000). We compute the average and stan-

dard deviation (over 5 runs) of the Frobenius norm for different values of

the rank of the matrices involved in this type of methods (r1,r2,73). . ... 72
We compare HOOI and the proposed Tetra-HOOI algorithms for a fixed
value of the rank of the matrices involved in this type of methods (p1, p2, p3) =
(10,10, 10). We compute the average and standard deviation (over 5 runs)

of the Frobenius norm for different values of the noise intensity (). . ... 72

The five essential features of SMPI compared to previous works investigat-
ing Power Iteration. . . . . . . . . . e 75
Experimental plateaufor S =1.44yn . . . . . . . . . o o 82
In green the average number of initializations required for a recovery rate
success of 99% where we see that it is linear in n. In red the approximation
of exp(n) which is the number of required initializations if the complexity

were exponential. . . ... 86
The averaged number of escaped spurious minima for a successful initial-

izationin functionofn. . . . . ... Lo 90
Comparison between ALS based on TensorLyand SMPI . . . .. ... ... 93
Timeforeachmethod . . . . . ... ... . .. . . 93
Experimental scaling for a non-symm. tensor for simple power iteration,

unfolding, homotopyand SMPI. . . . . . ... ... .. ... .. . . . ... 95

Les cing caractéristiques essentielles de SMPI par rapport aux travaux précé-
dents portant sur l'itérationde puissance . . . . . . ... ... .. oo 105



Acknowledgements:

First and foremost | am extremely grateful to my supervisors, Prof. Vincent Rivasseau
and Dr. Mohamed Tamaazousti for their invaluable guidance and constant support dur-
ing these three years. They have always been incredibly available and generous with their
time, advice and constructive feedback. Vincent has been an exceptional adviser despite
the various difficulties encountered during my PhD studies. He showed me the impor-
tance of open-mindedness and curiosity in science by continuously searching and con-
fronting new challenges and novel domains with original approaches and great enthusi-
asm. Mohamed has been an exceptional mentor, instructing me the importance of having
a well thought out strategy and a pedagogical scientific communication in research. He
introduced me to research for concrete applications and inspired me by his openness and
continuous drive and passion for learning new tools and acquiring knowledge in diverse
new scientific fields. | feel very fortunate to be able to continue collaborating with them.

I would also like to express my sincere thanks for the two referees of my thesis: Prof.
Gérard Ben Arous and Prof. Razvan Gurau, for the time spent reading my manuscript
and their very enriching comments. | would also like to thank Prof. Alice Guionnet, Prof.
Mustapha Lebbah and Dr. Valentina Ros to have accepted to be members of my PhD
defense committee and for their interesting questions and feedback.

| want to thank my PhD colleagues in CEA who accompanied me during this process,
Adrian and Jade. | am also very grateful to my colleagues Vincent, Dine, Vasily, Riccardo,
Zakarya, Parham and all the others in LVML.

| would like to extend my sincere thanks to all the members of the Tensor Club that
| had a great enjoyment to meet in Bordeaux and Heidelberg, as well as along the semi-
nars of Tensor Club. These meetings and discussions were a very agreeable, fruitful and
excellent research experience. Thanks should also go to Virginie who was of a great help
for the various and complicated administrative tasks during my PhD.

| want to thank my professors at ENS Cachan, Sorbonnes University and ENS Ulm as
well as my supervisors in Aveiro, Lund and Paris for providing me the education and the
research experience that were extremely useful for my work.

I am also grateful to my friends and relatives Mikael, Francois, Melanie, Fahmi, Hanen,
Oussema, Wiem, Ali, Anass, Larbi, Tasnime, Ayoub, Aymen, Marwen and many others who
encouraged me and made the past 3 years very enjoyable.

Finally, I would like to thank my family for their backing and encouragement. Special
thanks goes out to my young niece Chems and to my parents: Abdallah and Noura for
their inestimable support, assistance and guidance during all my studies.



Notations

Tr(.) Trace operator

E Expectation operator

Var(.) Variance operator

Covar(., .) Covariance operator

.1 Transpose operator

||l Norm operator

d0;; Kronecker symbol

® Outer product

T M. ,v Tensors, matrices and vectors

Tijk, M;j,v; Components of tensors, matrices and vectors

[p] Theset{1,..,p}

A real p—th order tensor T € @?_; R™ is a member of the tensor product of Eu-
clidean spaces R™ i € [p]. Itis symmetricif Ty, 4, = Tr())..+,) VT € Sp Where Sy is the

symmetric group of degree k.

Foravectorve R", v®*? =v®v® - - ®v € @"R" denotes its p-th tensor power.

Tv,w,z) = (T, vw®z) = Zijk T;jkviw; 2y is the euclidean product between the

tensors Tandv @ w ® z.

T(:,w, z) is the vector whose i-th entry is >, Tijrwjz, and T(:,:, z) is the matrix

whose i, jth elementis >, T;ji2k.
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Introduction

1.1 Artificial Intelligence . . . . . . . ... L 11
1.2 FuturechallengesforAl . . .. . . . . . . . . 12
1.2.1 Researchdirections . . . ... ... ... . . ... ... 14
1.2.2 Tensorialapproach . ... ... . ... .. ... . . . . . . ... . 15
1.3 Tensorial tools from theoretical physics perspective. . . . . ... ... ... 15
1.4 Tensor PCAmodel and its motivations. . . . . ... ... ... ........ 17

1.1 Artificial Intelligence

Artificial Intelligence (Al) is humanity’s attempt to automate/delegate human cognitive
abilities through technology. This simulation of intelligence can relate to reasoning and
decision (critical reasoning) [Pom97], understanding of natural language [YHPC18], vi-
sual perception (interpretation of and deriving meaningful information from images and
scenes) [FJYT19], auditory data (understanding of spoken language) [GME11] as well as
various other sensors [SBP21]. The concept of Artificial intelligence long precedes the ar-
rival of computing. The idea that a created object is capable of producing or obtaining a
consciousness similar to that of man is present in Greek mythology, ancient Egypt, Jewish
folklore (the Golem) and many other ancient cultures.

The earliest substantial work in the field of artificial intelligence was done in the mid-
20th century by the British logician and computer pioneer Alan Turing. His seminal paper
"Computing Machinery and Intelligence" [Tur09] crystallizes ideas about the possibility of
programming an electronic computer to behave intelligently and how to test its intelli-
gence.

Modern Al is a rich field encompassing diverse major branches such as robotics or
expert systems. One important subarea of Al is Machine learning (ML) [Mah20]. It allows
machines to learn from data without being programmed explicitly so. ML and data-driven
statistical techniques gained momentum in recent years due to an incredible increase in

11



12 CHAPTER 1. INTRODUCTION

the number and complexity of data available [BNO6, GBC16]. Machine-learning systems
are nowadays used for object recognition in images, automatic speech recognition, rec-
ommender systems that suggests relevant news items or products to users, and selecting
relevant results of search.

There are three main machine learning paradigms: unsupervised, supervised and re-
inforcement learning [AAJM™20]. Unsupervised learning is a type of machine learning al-
gorithm used to draw inferences from datasets consisting of input data without labelled
responses. The most common unsupervised learning method is cluster analysis, which is
used for exploratory data analysis to find hidden patterns or grouping in data. Other un-
supervised approaches include Association Rules (mainly Apriori algorithm) and Dimen-
sionality reduction (Principal component analysis, Singular Value decomposition, Autoen-
coder). Supervised learning involves making a prediction based on a set of pre-specified
input and output variables. There are a number of statistical tools used for supervised
learning. Some examples include traditional statistical prediction methods like regression
models (e.g. regression splines, projection pursuit regression, penalized regression) that
involve fitting a model to data, evaluating the fit and estimating parameters that are later
used in a predictive equation. Other tools include tree-based methods (e.g. classification
and regression trees and random forests), which successively partition a data set based
on the relationships between predictor variables and a target (outcome) variable. Other
examples include neural networks, discriminant functions and linear classifiers, support
vector classifiers and machines. Finally, the Reinforcement Learning model learns from
the mistakes and the feedback provided on those mistakes.

Artificial intelligence (Al) and machine learning (ML) have demonstrated their poten-
tial to revolutionize industries,public services, and society, achieving or even surpassing
human levels of performance in terms of accuracy for a range of problems, such as image
and speech recognition [MKS™15] and language translation [YHPC18].

1.2 Future challenges for Al

Building on its tremendous potentiality, Al is rapidly gaining influence in people’s daily
lives and in professional fields like healthcare, education, scientific research, communi-
cations, transportation, security, and art. However, at the same time that Al systems are
starting to be deployed widely into the economy, multiple issues associated with Al are
becoming magnified.

A major problem frequently referred to is the interpretability of the methods. This
issue heightened with the diffusion of ML-based technologies in safety-critical domains
such as healthcare, finance, law, defense and governance which require accountability for
decisions and for how data is used in making decisions. Indeed, such fields require trust
of users in a decision which is achieved by having a method that is easily interpretable,
relatable to the user, connects the decision with contextual information, known laws and
prior experiences and reflects the thinking mechanism of the user in reaching a decision.
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Figure 1.1: Subjective and rough classification of ML methods depending on their Accu-
racy Interpretability trade-off

Similar concerns are of ethical nature and range from the possibility of criminality,
fraud and identity theft to harassment and discriminatory decisions or spreading of dis-
information.

Moreover, several of the most-used methods suffer from the scarcity of data in some
applications as well as the discrepancy between the training test and the real life data
in others. Indeed, in practice, ML models are applied to data in real-world settings that
rarely match the training distribution. The reliability of a model depends upon its ability
to accommodate underrepresented or imbalanced data material and make relevant de-
cisions in a broad array of scenarios. This requirement is fairly linked to interpretability
as understanding how a model works allows to get some intuitions that may be helpful
for this purpose.

On the other hand, there have been growing work focusing on building light ML mod-
els such as small neural networks (for Internet-of-things (loT) devices, real-time training,
etc.) that require less computing power and are more practically interesting and useful
and generally more interpretable.

Limits of current methods

Applying ML techniques without careful consideration of their assumptions and limi-
tations may lead to a dilapidation of valuable resources and incorrect scientific inferences.
There are various existent and frequently used ML methods, they all come with their ad-
vantages and drawbacks.
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Classical statistical methods are widely utilized in most of the day-to-day applications
with simple requirements of time and resources. They are well understood by the scien-
tific community. They are thus considered to be transparent and practical tools. However,
their performance are less satisfactory when complex data with high number of variables
are investigated.

Non-traditional machine learning approaches help in overcoming some of these clas-
sical models limitations but bring new drawbacks. Among others, the most important
one is their poor interpretability. For example, in a deep neural network, one may de-
termine mathematically which nodes of the neural network were activated, but we lack
understanding of how neurons behaved collectively to arrive at the final output. This
characteristic gives neural network the property of being a "black box". Figure 1.1 gives
a rough and subjective classification of methods based on their accuracy-interpretability
trade-off.

These new highly sophisticated methods also commonly necessitate a large amount
of data that is densely and uniformly distributed. Indeed, although deep learning models
have made exciting progress in vision, language, and other fields [GBC16], the strong
performance of such models is generally heavily dependent on having test data drawn
from the same distribution as their training set.

It is frequent that these large and complex models, after deployment, fail to achieve
the reported high accuracies, lead to unfair decisions, and sometimes provide shocking
predictions contradicting the most basic principles of common sense.

1.2.1 Research directions

To address these issues, various research has been done to improve unbiased and im-
partial decision-making, enhance the generalization ability of models to broader data do-
mains and develop explanations for ML models. These objectives are heavily dependent
on each other and the interpretability is a fundamental aspect that improves the two oth-
ers.

Recent achievements in machine learning have been performed in applications that
did not require high interpretability such as online advertisement and research results.
Thus, most methods are not very keen in interpretability constraints, as their objectives
did not require it. This may lead to the incorrect assumption that the most accurate meth-
ods should inherently uninterpretable and complicated.

When researchers gain a deeper understanding on the models they build, it allows
them to produce Al systems that are better able to serve the humans who rely upon
them, as more interpretable models often become more accurate.

There is two main lines of research pursued to improve interpretability:

1. Developing and improving approaches that are inherently explainable, also known
as white-box models, such as decision trees and linear regression models.

2. Providing post-hoc explanations for already trained, so-called ‘black-box’, models.
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Figure 1.2: Tensors in neural networks.

A common approach for these two lines of research is based on developing new ten-
sorial tools.

1.2.2 Tensorial approach

Tensors are a type of data structure that generalizes vectors and matrices to dimensions
superior or equal to three. They became ubiquitous in modern machine learning given
their abilities to retain and capture multidimensional structure that is essential for multi-
ple applications.

Deep neural networks typically map between higher-order tensors through architec-
tures such as convolutional layers, as illustrated in Figure 1.2. In fact, the ability of deep
convolutional neural networks to preserve the local structure of the input is considered
to be a property that is crucial for the great performances achieved [KPAP16].

1.3 Tensorial tools from theoretical physics perspective

This present work was initiated as part of a collaboration between the |JCLab laboratory
(formerly LPT) in Orsay, through my thesis director Vincent Rivasseau and the LVML vision
laboratory at the CEA.

Within CEA LIST, the Vision Laboratory for Modeling and Localization is in charge of
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a research activity initiated in the 90s on the themes of computer vision and machine
learning for applications dealing with localization in the environment, precise location of
objects, 3D reconstruction, augmented reality, diminished reality, realistic rendering. Its
mission consists in transferring these technologies to the industrial world and is carried
out upstream by developing state-of-the-art analysis methods in collaboration with the
academic world and downstream by adapting these technologies to the application con-
texts of our industrial partners, from proof of concept to pre-industrial prototypes.

The identity of lJCLab is centered on the field of "the physics of two infinities" and
their applications. The scientific activities of [JCLab are structured in 7 scientific poles:
Astroparticles, Astrophysics and Cosmology; Physics of Accelerators; High Energy Physics;
Nuclear physics; Theoretical Physics; Energy and environment; Health. The mathematical
physics group studies on the one hand algebraic and geometric methods in various fields
ranging from non-commutative geometry to quantum field theory, on the other hand
classical analysis and functional analysis in quantum mechanics and field theory.

Random Tensor Theory (RTT) provides a set of combinatorial tools dedicated to the
study of trace invariant graphs [Gur17]. Trace invariants of a tensor T € ®f:1 R™ are
tensor networks scalars that are invariant under the following O(ny) x - - - x O(ny) trans-
formations:

J1---Jk
RTT allows to obtain important probabilistic results on trace invariants by using simple
enumerative combinatorics. In particular, it gives a simple way to compute the moments
(expected value, variance, etc.) of the distribution of these scalars for random tensors. In
the following, it should be understood from the context that

Animportant conceptin problems involving matrices is the spectral theory. It refers to
the study of eigenvalues and eigenvectors of a matrix and it is of fundamental importance
in numerous areas. Equivalently, the traces of the n first matrix powers

Tr<AAT) , Tr<(AAT)2), o ,Tr((AAT)”>

contain the same information as the eigenvalues (in absolute value) since each set can be
inferred from the other through some basic algebraic operations.

In the tensor case, the concept of eigenvalue and eigenvector is ill-defined and not
practical giving that the number of eigenvalues is exponential with the dimension n [Qi05,
CS13] and computing them is very complicated. In contrast, we have a very convenient
generalization of the traces of the power matrices for the tensors that we call trace invari-
ants.

Let's give a formal definition of trace invariants. Let T be a tensor whose entries are
Ti, ...q,.- Let's define a contraction of a pair of indices as setting them equal to each other
and summing over them, as in calculating the trace of a matrix (A4;; — > .-, As). The
trace invariants of the tensor T correspond to the different ways to contract pairs of in-
dices in a product of an even number of copies of T. The degree of the trace invariants
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Figure 1.3: Example of graphs and their associated invariants.

consists in the number of copies of T contracted. For example, Zil inis Vivinis Tiyigiz @Nd
D iyinis Tininis Tivigig @re trace invariants of degree 2.

A trace invariant of degree d of a tensor T of order k admits a practical graphical
representation as an edge colored graph G obtained by following two steps: we first draw
dvertices representing the d different copies of T. The indices of each copy is represented
by k half-edges with a different color in {1,...,k} for each index position as shown in
Figure 1.3a. Then, when two different indices are contracted in the tensor invariant, we
connect their corresponding half-edges in G. Reciprocally, to obtain the tensor invariant
associated to a graph G with d vertices, we take d copies of T (one for each vertex), we
associate a color for each index position {1,...,k}, and we contract the indices of the
d copies of T following the coloring of the edges connecting the vertices. We denote
this invariant Ig(T). Three important examples of trace invariants worth mentioning are:
the melon diagram (Figure 1.3b), the tetrahedral (1.3c) and the tadpole (1.3d). [ABGD20]
provides a thorough study about the number of trace invariants for a given degree d.

1.4 Tensor PCA model and its motivations.

Tensor PCA was introduced in the pioneer work of [RM14] and consists in recovering a
signal spike v{?k that has been corrupted by a noise tensor Z: T = Z + Bv{?k where vy is
a unitary vector and g the Signal-to-Noise Ratio (SNR). The motivation for Tensor PCA is
three-fold:

1) Tensor PCA could be considered as a simple case of Tensor decomposition. How-
ever, it has a different motivation which is the theoretical study of the computational
limitations in the very low SNR regime while the Tensor decomposition literature mainly
address practical applications, often in a large SNR. Yet, algorithms developed for Tensor
PCA could be generalised to address Tensor decomposition as in [WA16].

2)In addition to that, Tensor PCAis also often used as a prototypical inference problem
for the theoretical study of the computational hardness of optimization in high-dimensional
non-convex landscapes, in particular using the well spread gradient descent algorithm
and its variants ([BAG)*20, MKUZ19, MBC*19, MBC"20]). Indeed, these algorithms are
used with great empirical success in many ML areas such as Deep Learning, but unfortu-
nately they are generally devoid of theoretical guarantees. Understanding the dynamics
of gradient descent methods in specific landscapes such as Tensor PCA could bring new
insights.
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3) One of the main characteristic of Tensor PCA is its conjectured statistical algorithmic
gap: while information theory shows that it is theoretically possible to recover the signal
for 5 ~ O(1), all existent algorithms have been shown or conjectured to have an algo-
rithmic threshold for k > 3 of at least 3 ~ O(n(¥=2)/4). Thus Tensor PCA is considered
as an interesting study case of such a gap that appears in various other problems (see
references in [BAG)™20] and [LZ20]).

Simple and symmetrized power iteration The simple power iteration consists in per-
forming the following operation v « M Given a non-symmetrical tensor, we define
the symmetrized power iteration as:

v TG, v,v)+ T(v,:,v) + T(v,v,:)
TG, v,v)+ T(v,:,v) + T(v,v,:)|

(1.1)

Performing a symmetrized power iteration on a tensor T amounts to perform a sim-
ple power iteration on the symmetrized tensor Tsym = ZaeSk To(in)o(is)..o(iy)- Unless
specified otherwise, we restrict ourselves to a symmetrical tensor and k = 3, that can
easily be generalized to an asymmetrical tensor (by symmetrizing the tensor) and k& > 4.
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2.1 From Tensor PCA to the CANDECOMP/PARAFAC Tensor De-
composition

2.1.1 Matrix PCA

Matrix Principal Component Analysis (PCA) is a statistical technique for multivariate analy-
sis first introduced in 1901 [Pea01] and has since become one of the most used statistical
methods thanks to its efficiency, simplicity and large number of fields of application. The
basic idea of PCA is to perform a dimensionality reduction on a large dataset while keep-
ing most of the statistical information, leading to low-dimensional representations of the
datasets in an adaptive and insightful way.

Matrix PCA does so by creating new uncorrelated variables that successively maxi-
mize variance. Finding such new variables, the principal components, reduces to solving
an eigenvalue/ eigenvector problem. Indeed, a set of observations is given in the form of p
n—dimensional vectors {1, ..., x,}, or equivalently a n x p matrix X = (x1,...,x,). The
objective of this method is to seek new uncorrelated variables consisting in linear com-
binations of the vectors x;;<;<, that maximize the variance. These linear combinations
could be written as Zle a;x; = Xawherea = (a1, ..., ap) with the additional constraint
|la|| = 1. The variances of this new variable is equal to Var(Xa) = a’ Sa where S is the
sample covariance matrix associated to the dataset X defined as

1 n
S = D (i —z)(xi—2)" 2.1)

n—14%
=1

where & = %ij:l x; is the sample mean vector. Given that S is a p x p real symmetric
matrix, it has exactly p eigenvalues )\, associated to eigenvectors that form an orthonor-
mal set of vectors. The eigenvectors associated to the largest eigenvalue of S solves the
problem. They are uncorrelated given that for two such linear combinations X a; and
Xay, COV&I"(Xak,Xak/) = af/Sak = A\ .Qp = 5k,k’- X ay, are thus called the princi-
pal components.

Sa—)a=0<= Sa=X\a (2.2)

PCA has an intuitive geometric interpretation as searching the eigendecomposition of
the covariance matrix S amounts to performing a singular value decomposition (SVD) on
the centred data matrix defined as X* = (1 — z,...,x, — @) given that

(n—1)8 = (X*)TX* (2.3)

Several adaptations of PCA have been developed and tailored for various objectives
and data types in different disciplines such as Robust Principle Component Analysis (RPCA)
[CLMW11]which is an adaptation less sensitive to outliers, Multiple Correspondence Anal-
ysis (MCA) for categorical variables [GB06], Multiple Factor Analysis (MFA) [AV07] for vari-
ables structured by sets, Functional principal component analysis for continuous variables
[RD91], PCA for interval type data [CCDS97]. etc.
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Figure 2.1: Examples of tensorial data

2.1.2 Tensor decomposition

Advances in data acquisition and storage technology have enabled the acquisition of mas-
sive amounts of data in a wide range of emerging applications. In particular, numerous
applications across the physical, biological, social and engineering sciences generate large
multidimensional, multi-relational and/or multi-modal data (see Figure 2.1). Efficient anal-
ysis of this data requires dimensionality reduction techniques. However, traditionally em-
ployed matrix decompositions techniques such as the singular value decomposition (SVD)
and principal component analysis (PCA) can become inadequate when dealing with mul-
tidimensional data. This is because reshaping multi-modal data into matrices, or data
flattening, can fail to reveal important structures in the data.

The research on multinilear generalizations of linear algebra tools has been very ex-
tensive and rich. Tensor decompositions overcome the information loss from flattening.
These “tensor methods” have found applications in many fields, including quantitative
biology [YAD19], computer graphics [VT04], Hyperspectral analysis [MDDN18], Outlier
Detection Methods [DJPM18], Data Recover [SCZL18], Image classification [FHO8], face
recognition [VT02], quantum computing [PKYA21] and wireless communication [DLG20,
CAVP21], among other areas. Thus, tensor generalizations to the standard algorithms
of linear algebra have the potential to substantially enlarge the arsenal of core tools in
numerical computation.

Tensor decomposition is a fundamental unsupervised machine learning method in
data science, with applications including network analysis and sensor data processing.
From the various generalizations of matrix SVD to tensors, there is two main tensor de-
compositions that have been successfully used in numerous applications: (i) CANDECOMP/PARAFAC
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Figure 2.2: CP decomposition illustration.

(CP) decomposition that consists in approximating a tensor with a sum of rank-one ten-
sors. [AGHT14, AGJ15, WA16]. One of the most used algorithms is Alternative Least
Squares (ALS) [CLDAQ9]. (ii) Tucker decomposition that approximates the initial tensor
with one small core tensor and a set of matrices [ZX18]. HOSVD [DLDMV00a] and HOOI
[DLDMVO0Ob] are the most popular algorithms for this model and their statistical limits
have been studied in [ZX18].

CP decomposition

The CANDECOMP/PARAFAC (CP) tensor decomposition is a popular dimensionality-reduction
method for multiway data. The canonical CP tensor decomposition expresses an N-way
tensor as a sum of rank-one tensors to extract multi-modal structure as illustrated in 2.2.
Structural features in the dataset are represented as rank-1 tensors, which reduces the
size and complexity of the data. An important interest in resorting to CP tensor decom-
position, compared to more standard matrix-based approaches, lies in the uniqueness
of the decomposition. This form of dimensionality reduction has many applications in-
cluding data decomposition into explanatory factors, dimensionality reduction, filling in
missing data, and data compression. It has been used to analyze multiway datasets in
a variety of domains including neuroscience [NLK™20], quantum chemistry [HTG17], cy-
bersecurity [BSBE™ 16], latent variable modeling such as hidden Markov models [HKZ12],
independent component analysis [BS05] and topic models [AHK12] and so on.

More precisely, CP Tensor Decomposition of a tensor consists in expressing a tensor
as a sum of r rank-one tensors:

T=) Ml ®...0) (2.4)

i=1

with \; € R,vj(.i) e R, je{1,...,k} and ris the rank of the tensor which is the minimal
number of rank-one components that can be summed to express T.

In practice, tensors describe data that is corrupted by noise so one resorts to the ap-
proximate decomposition for a given rank r :

(2.5)

arg min
)‘i’ =1

T - Z)\i(vgi) Q- ®v,(:))
1=1

ol?
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Many algorithms for CP tensor decomposition have been developed in the last years,
and many of them are based on methods for best rank-one approximation [dSCdA15a].
The basic idea is to compute successive rank-one approximations of and subtracting it at
each step in order to compute the full CP decomposition.

2.1.3 Tucker decomposition

The Tucker decomposition is a generalization of the SVD to higher-order tensors (ie. ar-
rays with more than two indices). This decomposition plays an important role in various
domains, such as quantum chemistry [BLHG10], signal processing [MB05] among many
others (the multiple applications are detailed in reviews like [KB09]).

In this case we write the tensor as

T:g><1 U1 X9 U2 ><3U3 (26)

where U; € RPvxdi B ¢ RP2xd2 € ¢ RP3%4 gre the factor matrices, x; stands for
the mode-i product defined in [KB09] and G € R%1*492x43 js denoted the core tensor and
characterizes the interactions between the different components of the factor matrices.
This is illustrated in Figure 2.3.

HOSVD HOSVD method consists for the factor matrices to be
U, = first ry left singular vectors of T )

U, = first ry left singular vectors of Ty, @7
Us = first r3 left singular vectors of T

and the core tensor G

G=Tx Ul xoU] x3UF (2.8)
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The n-rank Given a Tucker decomposition of the tensor T, the n-rank corresponds to
the tuple of the dimensions (dy, dz, d3) of the core tensor.

2.1.4 Tensor PCA and algorithms

Tensor PCA could be seen as a special case that is common to both CP and Tucker de-
composition, for a rank of one and a n-rank of (1,1,1) respectively. Indeed, Tensor PCA
algorithms aim to find the best rank-one approximation for the input tensor.

Multiple Cp tensor decomposition methods based on been proposed that are based
on successive rank-one approximation in [dSCdA15b, PTC15]. These methods consist in
careful and subtle deflations as the standard procedure of computing successive rank-one
approximations followed by subtractions is not as performant for tensors as for matrices.

Also, trying and modelizing new theoretical models of algorithms in this simple model
could be beneficial as it could be easy to generalize it to the tensor decomposition case.
One can take as example the deflation method.

Thus, given that Tensor PCA algorithms aim to compute the best rank-one tensor ap-
proximation, they could prove useful for Tensor decomposition in general.

which has various applications such as topic modelling [AGJ15], community detection
[AGHK13], etc. CP Tensor decomposition also proved useful in the context of deep neu-
ral networks, particularly in compressing Convolutional Neural Networks to reduce the
memory and the computational cost [AL17, WY*20], Tensor faces [VT02], Hyperspectral
imagery [LB13], chemical materials [SB20], multimodal data fusion [LAJ15], data mining
[PFS16], etc.

Tensor PCA algorithms

Several algorithms have been developed to tackle the tensor PCA problem. [RM14] an-
alyzed many algorithms theoretically and empirically (in a range of 25 < n < 800). The
tensor unfolding algorithm showed an empirical threshold of 3 ~ n!/4 while naive power
iteration with a random initialization performed much worse with an empirical threshold
of nl/2. [HSSS16] provided an algorithm based on sum-of-squares, which was the first
with theoretical guarantees whose threshold matches n!/4. Other studied methods have
been inspired by different perspectives like homotopy in [ADGM17a], statistical physics
(IBAG)"20], [WEAM19] and [BCRT20]), quantum computing [Has20], low-degree polyno-
mials [KWB19], statistical query [DH21], random tensor theory [OTR22] as well as renor-
malization group [LOST21].

Power iteration is a simple method that has been extensively used in multiple tensor
problems [AGH" 12, AGHK13]. [RM14] investigated the empirical performance of power
iteration with a random initialization in the range of n € [50,800] and observed an em-
pirical threshold of n'/2. Through an improved noise analysis, [WA16] showed that for a
symmetrical tensor, power iteration is indeed able to recover the signal for a SNR 3 above
n'/2 with a constant number of initialization and a number of iterations logarithmic on n.
Their experiments in the range of n € [25,...,250] suggested that this threshold is tight.
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A recent paper [HHYC20] investigates the simple power iteration for a non-symmetric
tensor for Tensor PCA, they prove that the algorithmic threshold is strictly equal to n'/2.
The results of their experiments for n € [200,...,800] match their theoretical results.
In this paper, we aim to draw attention to a surprising observation that contrasts with
previous work: if we impose five essential features for an algorithm based on power iter-
ation or gradient descent (use a symmetrized power iteration, impose a polynomial num-
ber of initializations and iterations, etc.), we observe that a novel powerful mechanism
for the convergence towards the signal takes place, leading to a fundamentally different
performance. In fact, for n € [50,1000], SMPI is the first algorithm to exhibit an empiri-
cal threshold corresponding to O(1) and whose results matches the theoretically-optimal
correlation at large n.

2.2 Glassy systems and rough landscapes

2.2.1 Glasses

Standard condensed matter has generally tended to focus on ordered and equilibrium
physics. However, since a few decades (the 1970s), the scientific community has started
to take more and more interest in disordered and non-equilibrium physics, which has
become a big part of statistical physics. The reason for this development is the incredible
wealth of behaviors in these systems and the multitude of their applications in materials
science, as well as the variety of conceptual problems involved in understanding these
behaviors.

A system is considered out of equilibrium if it undergoes a continuous change of its
mechanical and statistical properties. Interestingly, the vast majority of daily physical pro-
cesses, from biology to industry, are out of equilibrium. Thus, the theoretical tools devel-
oped to address non-equilibrium dynamics can prove useful in a wide variety of contexts,
from mechanics of granular systems to artificial intelligence.

There may be various reasons for not reaching equilibrium. Generally, this is because
the time required for the system to attain equilibrium is larger than the observation time
scale. In other cases, the action of external forces keep the system out of equilibrium.

Within non-equilibrium physics, one subject has in particular been the subject of very
rich and fruitful research: glassy systems. Glasses are amorphous structures (a solid that
lacks the long-range order) which experience a so-called vitreous transition (the reverse
is called a glass transition). When the temperature of a liquid is rapidly reduced (the sys-
tem is then said to be quenched), there comes a time when the viscosity highly drops
and becomes considered as a glass. The glass-transition temperature 7T} is the range
of temperature at which this transition occurs. Below it, the relaxation time becomes
exceedingly long which prevents the system to reach equilibrium in laboratory or even
geological time scales. There are several examples of such material and they vary greatly
in size, from macroscopic to microscopic, such as heated metals that are supercooled to
form glasses instead of crystals, plastics, colloidal dispersion, and even many biological
tissues .



26 CHAPTER 2. TENSOR PCA : INTERSECTION OF FUNDAMENTALLY DIFFERENT APPROACHES

The nature of the glass transition is one of the major unsolved questions of condensed
matter science. Below the glass transition temperature T, the system remain stuck for a
very long time and seems to be frozen in amorphous configurations and the number of
these configurations is exponentially large in the system size. The extremely slow relax-
ation to equilibrium is characterized by the time elapsed so far, sometimes called “age”
[BAO3, CKR94].

2.2.2 Spin glass and Mean field

The modern theory of spin glasses began with the work of Edwards and Anderson [EA75]
on the simple model associated to equation 2.9. Spin glasses are metals with several scat-
tered magnetized defects that exhibits both quenched disorder and frustration (compet-
ing interactions). A quenched disorder describes the fact that the J;; in equation 2.9 are
random scalars that are constant in the timescales associated to the fluctuations of the
o;. The frustration property is due to the fact that the interactions are competing and
no ground state is able to satisfy them all, which is the reason of the huge number of
ground states. Although, the interactions that define the spin glass are in principle quan-
tum mechanical, a classical statistical mechanics approach is enough to recover many of
the important phenomena observed down to very low temperatures in a wide variety of
spin glasses, provided that we are able to address the complications that arises from the
guenched randomness inherent to spin glasses. Indeed, this quenched disorder leads
to the absence of spatial symmetries that usually extensively simplify the mathematical
study of homogeneous systems such as crystals. Although many basic questions remain
open, the study of spin glasses already allowed to uncover numerous important new ideas
and techniques that could have wide applicability.

H=—> Juyos0y (2.9)

(z,y)

Spin glasses models can also have an addition applying an external magnetic field.

H=-> Juyowoy—hY on (2.10)
(z,y) z

Strong phenomenological analogies has been unveiled between glassy systems and
spin glasses such as glassy dynamics and the aging phenomenon. Glassy systems pro-
vide thus simpler models that can be studied analytically. In particular, mean- field mod-
els have been most valuable in clarifying some of the basic theoretical issues of glassy
systems. Mean field theory of spin glass consists in assuming a large number of spins
(thus the absence of space limits) and a equivalent interaction coupling between them
which facilitate mathematical analysis. It provided the first quantitative analysis of rough
high-dimensional landscapes, in particular of the number and the properties of the crit-
ical points, and of the associated dynamics. Yet, the applicability of the results of mean
field models to finite dimensional systems is still not very clear.
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H=> Jijuoioion (2.11)

Z‘?j?k

2.2.3 Spherical p-spin glass model

The p-spin spherical spin glass model, has attracted a lot of interest in the study of spin
glasses. It is a simpler than the Sherrington-Kirkpatrick model and its static and dynamic
properties could be studied. In particular, the metastable states could be approximately
counted and studied, and the Langevin dynamics shows the aging behavior.

Although the models on which we concentrate are simple in the sense discussed
above one needs to master many analytical methods to extract all the richness of their
behavior. The model is defined by the Hamiltonian

H=— > Tii.i,0i0...0i (2.12)

i1ig..ip

2.2.4 Tensor PCA landscape as a prototypical inference problem and explo-
ration of complex landscapes

Different complex physical systems are characterized by energy functions. Their land-
scapes possess multiple local minima that are associated to configurations of the system
and are separated by barriers, an example is illustrated in Figure 2.4. Complex physical
systems are generally characterized by very rough landscapes, which means a large num-
ber of such local minima with large barriers to traverse in order to pass from one to the
other. Spin glasses, and in particular spherical p-spin glass are typical examples for rough
landscapes and their analytical properties have been mathematically studied. This could
be essential for the understanding of important physical phenomena such as aging. A
graphical example of such landscape is in Figure 2.4.

Deriving new insights on rough landscapes is not only important for the understanding
of glassy phenomenon, but is relevant for several areas such as protein folding in biology,
string theory in physics, and neural network in machine learning. It could be useful to
create and improve algorithms and methods.

Studying the energy landscape aims to have a better understanding of the dynamical
behavior of algorithms, in particular local algorithms such as gradient descent and its
variants. Given that this questions arises in multiple disciplines especially in computer
science. As an example we can give neural networks.

Multiple popular methods in machine learning are based on gradient descent with
a lot of success in practice, yet the theoretical analysis of their success is still unclear.
Indeed, gradient descent are usually used to optimize high dimensional non convex land-
scapes with exponentially large number in the system size of local minima, yet gradient
descent is able to find relevant optimums and do not get trapped in spurious ones.
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Figure 2.4: Rough landscape illustration

Note that [CHM™*15] investigated a very similar landscape to Tensor PCA in order to
gain insights on neural network landscapes.

In more details, the problem consists in analyzing the statistical properties of functions
defined on very high dimensional spaces. Important statistical information that have been
computed is the number of critical points for a given index (number of positive directions)
at a given energy, in particular the number of minima and the spectral properties of their
corresponding Hessian. This helps to give insights on the dynamics of local algorithms
such as gradient descent within these landscapes.

For random landscapes, these questions can be approached within a statistical frame-
work. The spherical p-spin model gives one of the simplestincarnations of a random land-
scape. In this model the random fluctuations give rise to a rugged landscape [RBABC19],
with an exponentially-large (in the dimension N ) number N exp(N + o(NN)) of stationary
points, being their ‘complexity’.

Tensor PCA, as well as a weaker version of it, the matrix-tensor PCA introduced in
[MBC*20], has been considered by the scientific community as a prototypical inference
problem in order to analyze the interplay between the loss landscape and performance
of descent algorithms [MKUZ19, MBC*20, BAG)*20]. They show that there is a region of
parameters where the gradient-flow algorithm finds a good global minimum despite the
presence of exponentially many spurious local minima and show that this is achieved by
surfing on saddles that have strong negative direction towards the global minima.

The paper [RBABC19] show that p-spin glass exhibits two transitions that we denote
Be and fBstat as illustrated in Figure 2.5. First, for g < f., the most numerous and deep-
est minima only achieve asymptotically vanishing correlation with the signal. The zone
with an exponential number of minima form a band. For 5. < 8 < Bstat, there is a lo-
cal minimum with non-trivial correlation that detaches itself but the maximum likelihood
estimator still has vanishing correlation. Finally, for SBstat < S the maximum likelihood
estimator has strictly positive correlation.
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Figure 2.5: Evolution of the minima with the SNR. The light orange zone indicates the zone
with an exponential number of minima. The equator is the zone with the most numerous
and deepest minima. A straight line indicates the presence of the global minimum, while
a dashed line is associated to only local minima.
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2.3 The conjectured statistical algorithmic gap: computational
hardness

2.3.1 Statistical computational gap in inference problems

The statistical-computational gap is an empirical attribute that is common to various dif-
ferent inference problems. It describes the fact that inference has been proven possible,
from an information-theoretically point of view, above a given threshold that we denote
statistical (or theoretical) threshold; yet no polynomial-time algorithms is known to suc-
ceed below a second larger threshold denoted the computational (or algorithmic) thresh-
old. This intriguing experimental property has attracted a huge amount of interest, es-
pecially since it has been observed that several central inference problems exhibit such
a gap, including sparse PCA [BR13], tensor PCA [RM14], planted clique [Jer92], random
constraint satisfaction problems [ACO08], and many others.

The true nature of this statistical-computational gap is still enigmatic, as it is still not
clear whether it is characteristic of an inherent computational intractability in the models
that exhibit it, or if a successful algorithm with appropriate properties still needs to be
uncovered.

For that purpose, multiple studies addressed this question and obtained important re-
sults. These works can roughly categorized in two distinct but complementary approaches:

+ Establishing computational equivalence between different problems via average re-
ducing. Typically, one proves that the studied problem is at least as difficult as the
average case of a standard model which is presumed to be hard.

+ Ruling out families of known algorithms through the study of specific classes of al-
gorithms as well as properties of the geometric landscape associated to the model
investigated. Characterizing geometric properties of the problem mainly aims at un-
derstanding the behavior of local algorithms such as the gradient-based methods.

2.3.2 Statistical computational gap in Tensor PCA
The statistical threshold of Tensor PCA

Investigating the statistical threshold is less intricate than addressing the computational
threshold. Different theoretical tools have been wielded in order to study the best statis-
tical threshold above which inference is possible if we remove the polynomial-complexity
constraints.

[JLM*20] gave an exact expression for the statistical threshold fSstat. They showed
that the maximum likelihood estimator is the most optimal of all measurable estimators
in regard of the correlation with the signal vector vy above the statistical threshold. This
optimal correlation is reproduced in Figure 2.6. Similarly to the BBP transition for matri-
ces [BBAPO5], the maximum likelihood estimator shows a discontinuous transition: The
optimal correlation with the signal vector is equal to zero below the statistical threshold
but achieves a correlation close to 1 above the statistical threshold.
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Figure 2.6: Asymptotic correlation of the Maximum Likehood Estimator with the signal as
a function of the SNR £.

Among the many tools used to address the statistical threshold, we mention the ex-
ample of random tensor models (that we present in more details in the next section).
[Gur20] proposed a generalisation of the Wigner law to real symmetric tensors. This gen-
eralization is based on a new resolvent. He then shows analytically that the expectation
of the newly introduced resolvent exhibits a sharp transition at the statistical threshold.
This method presents the advantage of being understandable in terms of the eigenvec-
tors concept in tensors.

NP Hardness of Tensor PCA

With the rise of use of tensor methods, researchers has beeninterested in the computabil-
ity of multiple tensor problems. It has been shown in [HL13] that, in general, they are
fundamentally more difficult compared to their matrix counterpart . In particular, [HL13]
proved the following theorem on approximating a tensor with a single rank-one element.

Theorem 1. [HL13] Rank-1 tensor approximation is NP-hard

However, NP-hardness only suggests that there exist hard problem instances. This
does not rule out the computability of these problems on specific cases of tensors, for
instance a low-rank tensor disturbed by a Gaussian random tensor. This represents the
distinction between a worst-case problem where every instance need to be solved and
an average-case problem which requires only specific instances to be computable. The
latter case is more difficult than and overall very different from the former.
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Figure 2.7: Illustration of the statistical-computational gap.

Algorithmic threshold from existent algorithms

While [RM14] proved that the optimal theoretical threshold is of order 3o = O(1), many
of the suggested methods have been predicted (based on empirical results for 25 < n <
1000) to have at best an algorithmic threshold of O(n!/*). This led to a conjecture that
it is not possible to achieve the recovery of the signal vector with polynomial time for a
B below O(n'/*). A rich theoretical literature emerged in order to understand the fun-
damental reason behind the apparent computational hardness of Tensor PCA. Average-
case reduction has been investigated in [BB20, LZ20]. While several papers (such as
[PWB™20, LML*17, RBABC19, JLM*20]) provided new results on the statistical threshold
of Tensor PCA, there have been many results for thresholds of specific algorithmic mod-
els. In particular, [KWB19] proves the failure of low-degree methods for 1 < 8 < n!/4
and surveys a recent and interesting line of research that explores the conjecture that
the failure of low-degree methods indicates the existence of statistical algorithmic gap in
high-dimensional inference problems. [BAGJ™20] provides a possible explanation for the
failure of the Langevin dynamics and gradient descent (in the infinitely small learning rate
limit) which is another class of algorithms.

2.3.3 Existent approaches for computational hardness of statistical prob-
lems

This discrepancy between the statistical and computational thresholds the conjecture of
a statistical-computational gap illustrated in Figure 2.7.

Average-Case Hardness of Hypergraphic Planted Clique Detection

Zhang [ZX18] showed a hardness equivalence between Hypergraph Planted Clique (HPC)
detection conjecture and Tensor PCA. Luo and Zhang [LZ20] provides some evidence for
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Hypergraph Planted Clique (HPC) detection conjecture and investigates the equivalence
of computational hardnes between HPC and Planted Clique (PC).

Overlap Gap

The overlap gap is a geometrical property that has been shown to be present in most
models known to exhibit a statistical-computational gap. It allows to rule out algorithms
classes that shows an input stability which means that a small perturbation on the input
leads to a small perturbation on the output. [Gam21].

Low degree polynomials

the low-degree polynomial model cover all the algorithms which outputs could be ex-
pressed as a polynomial of degree bounded by O(log(n)) on the input entries where n
is the system size. This encompasses methods such as Approximate Message Passing
[DMMOQ9, BM11], spectral methods, power iteration with a logarithmic number of itera-
tions, etc. This model raised a lot of interest as a framework for addressing the statistical-
computational gaps. Indeed, it has been shown that low-degree polynomials are able to
match the best algorithmic performance for multiple standard inference problems, for
instance planted clique [BHK™19], sparse PCA [DKWB19] and Tensor PCA [HKP*17]. This
led to a conjecture that low-degree polynomials could indicate the success of failure of
algorithms [Hop18].
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3.1 Brief review of Random Tensor Theory

3.1.1 From eigenvalues to trace invariants

An important concept in problems involving matrices is the spectral theory. It refers to
the study of eigenvalues and eigenvectors of a matrix. It is of fundamental importance in
many areas. In machine learning, the matrix PCA computes the eigenvectors and eigen-
values of the covariance matrix of the features to perform a dimensional reduction while

34
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ensuring most of the key information is maintained. In this case, the eigenvalues is a
very efficient tool to describe data variability. In the case of signal processing, eigenvalue
can contain information about the intensity of the signal, while the eigenvector points
out to its direction. Lastly, a more theoretical example involves quantum physics where
the spectrum of the matrix operator is used to calculate the energy levels and the state
associated.

In all of these examples, an important property of the eigenvalues of a n-dimensional
matrix M is its invariance under orthogonal transformations {M — OMO~!,0 ¢
O(n)} where O(n) is the n-dimensional orthogonal group (i.e. the group of real matri-
ces that satisfies OO " = I,,, which should not be confused with the computational com-
plexity O(n)). Since these transformations essentially just rotate the basis to define the
coordinate system, they must not affect intrinsic information like data variability, signal
intensity or the energy of a system. The eigenvalues are able to capture some of these
inherent information, but recovering the complete general information requires comput-
ing their respective eigenvectors (for example to find the principal component, the direc-
tion of the signal or the physical state). There are more such invariants than eigenval-
ues. Another important set worth mentioning are the traces of the n first matrix powers
Tr(A), Tr(A?),..., Tr(A™). Obtaining them uses slightly different methods than eigen-
values, but they contain the same information since each set can be inferred from the
other through some basic algebraic operations.

Onthe basis of the matrix case, we expect thatforatensor T € ®f:1 R, tensor quan-

tities that are invariant under orthogonal transformations (7,1 » — Oéll)bl . Oi’,f)bk Tyt e
3 375 j% 3T

for O € O(n;) Vi € [k]) should capture similar intrinsic information like the intensity
of the signal, and conceivably, there should be other objects related to these quantities
that are able to indicate the direction of the signal. However, the concept of eigenvalue
and eigenvector is ill defined in the tensor case and not practical giving that the number
of eigenvalues is exponential with the dimension n ([Qi05], [CS13]) and computing them
is very complicated. In contrast, we have a very convenient generalization of the traces
of the power matrices for the tensors that we call trace invariants. They have been ex-
tensively studied during the last years in the context of high energy physics and many
important properties have been proven ([Gur17]).

Random Tensor Theory (RTT) provides a set of combinatorial tools dedicated to the
study of trace invariant graphs [Gur17]. Trace invariants of a tensor T € ®f:1 R™ are
tensor networks scalars that are invariant under the following O(n1) x - - - x O(ny) trans-
formations:

Tiriy — Tgl...ik = Z O?Sil;l e Oz(;]:])'ijl---jk
J1--Jk
RTT allows to obtain important probabilistic results on trace invariants by using simple
enumerative combinatorics. In particular, it gives a simple way to compute the moments
(expected value, variance, etc.) of the distribution of these scalars for random tensors. In
the following, it should be understood from the context that

Einstein summation convention: It is important to keep in mind throughout the
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Figure 3.1: Example of graphs and their associated invariants.

paper that we will follow the Einstein summation convention: when an index variable ap-
pears twice in a single term and is not otherwise defined, it implies summation of that
term over all the values of the index. For example: T Tiji = 3% Tige Tiji- Itis a
common convention when addressing tensor problems that helps to make the equations
more comprehensible.

3.1.2 Trace invariants and their representations as graphs

We first give a more formal definition of trace invariants. Let T be a tensor whose entries
are T;, ... Let's define a contraction of a pair of indices as setting them equal to each
other and summing over them, as in calculating the trace of a matrix (A;; — > ; A).
The trace invariants of the tensor T correspond to the different ways to contract pairs of
indices in a product of an even number of copies of T. The degree of the trace invariants
consists in the number of copies of T contracted. For example, > Tiyigis Tiyigis @Nd
Zi1,z‘2,z‘3 Tivivio Tiyisgis @re trace invariants of degree 2.

11,92,13

A trace invariant of degree d of a tensor T of order k£ admits a practical graphical
representation as an edge colored graph G obtained by following two steps: we first draw
dvertices representing the d different copies of T. The indices of each copy is represented
by k half-edges with a different color in {1,...,k} for each index position as shown in
Figure 3.1a. Then, when two different indices are contracted in the tensor invariant, we
connect their corresponding half-edges in G. Reciprocally, to obtain the tensor invariant
associated to a graph G with d vertices, we take d copies of T (one for each vertex), we
associate a color for each index position {1,...,k}, and we contract the indices of the
d copies of T following the coloring of the edges connecting the vertices. We denote
this invariant Ig(T). Three important examples of trace invariants worth mentioning are:
the melon diagram (Figure 3.1b), the tetrahedral (3.1c) and the tadpole (3.1d). [ABGD20]
provides a thorough study about the number of trace invariants for a given degree d.

3.1.3 Combinatorial tools for statistics of trace invariants
Covering graph:

In order to be able to compute the moments of trace invariants in a simple way, we
introduce the concept of covering graph used in [Gur14]: a covering graph of G consists
in adding d/2 new edges of color 0 (also called propagators) relying pairwise the vertices
of G. In order to distinguish these edges, we will represent them as dashed lines. If we
denote £°(G) the edges of color 0 of a graph G, then {G’,G'\€°(G’') = G} denotes the
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_____

Figure 3.2: Tetrahedral and its covering graph

graphs which restrict to the graph G when we remove their edges of color 0. These are by
the definition the covering graphs. In Figure 3.2 we represent the three covering graphs
of the tetrahedral grapha s an example.

Faces of a graph:

Let c1,c2 € {0,...,d} be two different colors of edges. We denote F“2(G) the num-
ber of closed cycles (that we also call faces) of 2 colors of G. More explicitly, it consists
of the number of connected sub-graphs left when we keep in G only the edges of colors
c1,c2. In Figure 3.3, we represent the faces that include the color 0 of the first covering
graph of the tetrahedral trace graph.

Simple expectation formula of a trace invariant:

Given a trace invariant Ig(T) and its associated graph G, we can now give a simple
formula provided in [Gur17] and based on the two previous concepts to compute the
expectations of trace invariants of a random tensor T whose components are normally
distributed

E(Ig(T) = Y. nX@) (3.1)
G',G"\E9(G")=G
This will be the formula (of enumerative combinatorial nature) that we will use to calculate
the expectations of our graphs. We call the expectation and the variance of a graph,
the expectation and variance of the tensor invariant associated to it. The details of its
derivation are given in the appendix B.

Example of an expectation calculation: the tetrahedral graph Let's calculate the
expectation of the tetrahedral graph B:

The first step is to find all the covering graphs of the tetrahedral (drawn in Figure 3.2).
Then, for each of the three covering graphs, and for each color ¢ we count the number of
faces associated to the colors (0, ¢). We drew in Figure 3.3 the faces for the different colors
for the first graph. For every covering graph, there is one color having two faces (the red
for the first covering graph) and two colors having only one face. Hence the expectation
of the tetrahedral graph is given by 3n*:

E(Ig(T)) — Z an FOe(gh) _ n2+1+1 + n1+2+1 + n1+1+2 _ 3n4. (3.2)
g/7g1\50(g/):g
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Figure 3.3: The faces of the first covering graph

Variance formula:

Let's denote the graph corresponding to the invariant Ig = Ig.1g, that consists in two
copies of G, by G x G. The variance formula is
Var(Ig) = E(I§) — E(Ig)*

3.3
— E(Igxg) — E(lg)? &3

Thus, computing the variance for an invariant associated to a graph could be done by
using the equation 3.1 for G x G but by taking into account only covering graphs which
are connected (there is at least a propagator linking the two copies such as in Figure 3.4)
given that E(Ig)? is the contribution of the disconnected covering graphs . An example of
the connected covering graph to be included is given in 3.4.

Var(Ig(T)) = > ne P0G, (3.4)
G'.G"\EY(G")=GxG

G’connected

- - -

- - o

- - -

S m e ==

I

Figure 3.4: Example of a covering graph contributing to the variance
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3.2 Random Tensor Theory for Tensor PCA

In this section, we will first demonstrate how to recover the signal in the Tensor PCA model
using trace invariants. But first we give the general idea of the proposed framework. As
we previously explained, generalizing eigenvalues and eigenvectors to the tensor case
is not convenient. Thus, our approach is to associate a matrix to the tensor of interest
in order to recover the signal by exploiting the well mastered spectral theory of matrices.
However, there is two main important characteristics for these matrices that are required
forthemto be of interest: they have to be relevant, in the sense that they should reveal the
information/signal hidden in the tensor even in low signal regime, and they also have to be
easy to study from a probabilistic point of view in order to provide theoretical guarantees.
Conveniently, RTT allows us to select matrices that meet these requirements. Indeed, we
provide matrices that are able to obtain the signal in the high noise regime, and we have
access to simple enumerative combinatorial tools in order to have theoretical guarantees
for their performance.

In the remaining of this thesis, we will loosen the definition of an invariant as it will be
no more restricted to product of random tensors but could also be an expression of the
signal spike tensor v?k. We will need in this case the generalization of the formula for the
expectation of such invariants.

3.2.1 Matrices associated to trace invariants and new tools

Given that our the objective of Tensor PCA is to recover the signal, we should find math-
ematical objects that are able to provide a vector. To this effect, we introduce a new set
of tools in the form of matrices. We denote by Mg . the matrix obtained by cutting an
edge e of a graph G in two half edges (see Figure 3.5 for an example). This cut amounts
to not summing over the two indices i; and iy associated to these two half-edges and
using them to index the matrix instead. We will drop the index G, e of the matrix when
the choice of the graph and edge is clear. Advantageously, we can compute the operator
norms of these matrices using the same tools described above.

edgee - Cut the edge ¢ i1 2
=——e > =———e
IQ(T) = TijA- TijA’ Mg, = (Tiljl" Ti2jl;)i1,i2€[n]

Figure 3.5: Obtaining a matrix by cutting the edge of a trace invariant graph G.

Operator norm of a matrix.

In our proofs we will use Wedin perturbation theorem (stated in Appendix B). This the-
orem requires computing the operator norm of a matrix Mg . that will be in our case
associated to a graph G and an edge e.

Let A € C"*™beamatrixand Ay, ..., A\, its(real or complex) eigenvalues. The spectral
radius of A is its highest eigenvalue in absolute value. In particular, when a matrix A is
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symmetric, we have the result p(A) = [|Al|,,. Thus, in order to compute the operator
norm of a given matrix M, we can determine the spectral radius of the symmetric matrix
A = MM and take its square root since HATAHOIO = ||A||§p.

In order to compute the spectral radius of A = M " M, we use Gelfand’s Formula
(stated in Appendix B) with the Frobenius norm. Thus, the formula to keep in mind for
computing the operator norm of a matrix M is:

1/2r
1 T r
IM], = lim Tr((M M) ) (3.5)

If we denote Amax the largest eigenvalue of M in absolute value, we have Tr((M " M)") e

n.|Amax|- Given that Amax is @ polynomial of at most degree n of the components of M
which are products of Gaussian variables, its expectation exists and is finite. The domi-
nated convergence theorem for random variables thus states that

1/2r 1/2r
E(|M] ) = E(TgngoTr<(MTM)T) ) = lim E(Tr((MTM)T) ) (3.6)

r—00

Expectation formula in the case of a graph with an open edge.

We encounter this case when we want to study the statistics of a matrix built out of a trace
invariant graph.

Let's consider a graph G of order d associated to a trace invariant Ig(T) where T is a
tensor of order k. Since the trace invariant is a contraction of pairs of indices of d copies
of T, we denote the c-th index of the i-th copy of T by af and the set of the d indices of
the i-th copy by a?.

By the definition of the Gaussian measure we have the equation (more details on this
formula is given in the appendix B):

25 > H5 (3.7)

J JTU)
T€G(k) j=1

>, indicates a sum over all the indices involved in the computation of the trace invari-
ant, illustrated by a half-edge in the graph (we have k x d indices in total: k indices for each
one of the d copies of T of the trace invariant expression). 9, indicates that contracted
indices (illustrated by being two ends of the same edge) of the tensors have to be equal.

The term ¢, Po,D indicates that we set equal the c-th indices of the copy j and 7(j) of T
JT(j

force {1,...,d}.

Cutting an edge of color ¢ between the i-th and the j-th copies of the tensor, removes
the contraction of two indices and leaves them free as variables i1 and is. Then in the
formula 3.7, we replace 6@@2 by 5a;,z‘15¢2,a; with iy and is fixed. Thus, to compute the
expectation we use the formula 3.1 with the following addition: if a face of color 0, ¢ con-
tains only one of the two vertices of the open edge (if the graph is connected, this only
happens when we calculate the variance), its contribution is equal to one. If it contains
the two vertices, it is §;, i,.
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Figure 3.6: A mixed graph and its two cycles

Expectation formula in the case of a graph with edges of mixed color

For a general trace invariant, an edge can have two half edges of different colors. The
propagators (edges of color 0) still identify all the indices of their two end vertices as for-
mulated in the equation 3.7. So we adapt the steps in [Gur14] to obtain the equivalent
equation 3.8 of the equation B.2 for this new situation. More precisely, the cycles that we
will count in a covering graph G’ of G are built by beginning from a half-edge of G then
alternating until they go back to the starting half-edge, by:

+ going from a half-edge of G of color ¢; # 0 to its associated half edge of color 2.

+ going through the propagator to the half-edge of color ¢, connected to the other
end of the propagator.

E(IQ(T)) — Z nmixed cycles (3.8)
G',G'\&%(G")=G

This is illustrated in the Figure 3.6.

Expectation formulain the case of a graph with a mix of spikes and random tensors.

We encounter this case when we want to calculate the contribution of the signal to an
invariant, which lead us to replace a vertex by the tensorial product of our signal vector.
Since we are interested by an expectation, and knowing that the Gaussian distribution is
invariant by rotation, we may as well take the signal vector as the unit vector (1,0,...,0).
Then in the formula B.2 in the appendix B, we replace (5(15,%- by 5(1;;,0 and we restrict the
propagators to the tensors vertices. First, we notice that if there is an odd number of
spikes, the expectation will be equal to zero. Furthermore, there is no free sum if the
index identified in a cycle ends up with a contraction with a spike. Thus, its contribution
will be equal to one.

Decomposition of a graph/matrix by explicitly writing the signal and noise terms:

In Tensor PCA, we can represent the tensor from which we hope to extract the signal
graphically as:

Tijl...jk_l :\/ﬁﬁ ViVjy «« Vjp_4 + Zijl---jk_1
{ X
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Let's decompose a tensor invariant Ig(T) of degree d using the graphical decomposi-
tion of T = Z + Bv®*. In each of the graphs illustrating the decomposition (like in Figure
3.7), we call each vertex: a spike vertex if it corresponds to the spike tensor v®3 and a pure
noise vertex if it corresponds to the random tensor Z. This leads us to denote the graphs
illustrating the decomposition of the tensor invariant (that we will call the decomposition
graphs):

+ The pure noise graph: the graph where all the vertices are replaced by pure noise
vertices. It gives a contribution of Ig(Z).

+ The pure signal graph: the graph where all the vertices are spike vertices. It gives a
contribution of 3<.

+ The intermediate graphs: All the other graphs, which have a mix of noise vertices
and spike vertices.

(a) Pure signal graph

Figure 3.7: Example of a pure signal graph in the top and of intermediate graphs in the
bottom

A similar decomposition can be carried out for the matrix based on a graph G and
an edge e. Let's consider a tensor T, a graph G and its associated trace invariant Ig(T).
Let's denote I;(T) the invariant associated to the sub-graph obtained by removing from
G the edge e and its two vertices and denote IV (T) = I;(Z) and I/ (T) = I;(T) — 157 (T)
where . We can distinguish three kind of contributions to the matrix Mg . that we denote
Méf\é), Mgz and Mg?, illustrated in Figure 3.8 (where we denoted the invariant I;(T) by
I’ and dropped the index G, e for simplicity).

We also define the pure signal spike matrix as

Mé,se)(T) = Mg .(v/nBv§"*) (3.9)

E(SY)
n

Lemma 2. E(MWN)) = I

Proof. Let M be the matrix obtained by cutting the edge e of a trace invariant graph G.
The equation 3.7 could be interpreted as identifying the indices ¢ and j that are ends of
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Figure 3.8: Decomposition of a matrix graph and the melon and tetrahedral examples

a same edge by including a factor ¢;;. Hence, the non diagonal components M;;, i # j
have a null expectation since the cycle involving the edge e will identify i and j with a
;5 = 0. By invariance, {E(Mj;)};c[, are all equal. Then, by linearity of the expectation,

E(My) = E(Tx(M))/n = E(1§") /n. =

Using the lemma 2, we identify three possible phases depending on which matrix op-
erator norm is much larger than the others:

* No detection and no recovery: If || M) —E(M M) > [[MD]| [ MBI
then no recovery and no detection is possible we can't distinguish if there is a signal.
It is for example the phase for 5 — 0.

+ Detection but no recovery: If HMU)HOp > | MW — E(MUV))HOp, HM(R)HOp then
detection but no recovery. We can detect the presence of the signal (thanks to the
highest eigenvalue) but we can't recover the signal vector since the leading eigen-
vector is not correlated to the signal vector.

+ Detection and recovery: || M(? Hop > ||M®Y) —E(M(N))Hop,
cover the signal vector. It is for example the phase for § — oc.

HM(I)HOP. We re-

3.2.2 Tensor PCA framework for algorithms associated to a trace invariant

Note that our results hold for the large n limit, and the experimental results suggest that
the approximation of large n limit is valid for n > 25. We claim that an event X occurs
with high probability if Probability(X) — 1 when n — oc.
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(b) The cycle containing the open edge
contributing by d;;

Figure 3.9: Cycle with an open edge for the expectation of a matrix
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(b) Covering graph not contributing
(a) Covering graph contributing to E(Tr((M — E(M))?))

Figure 3.10: Two covering graphs for the graph of Tr((M " M)?)

The idea of our proofs is to decompose the matrix Mg . into a sum of terms by writing
T = Z+/nBv®* asillustrated in Figure 3.8. Intuitively, our proofs consist in showing that
if the signal is large enough the term that only involves a product of the signal fv®* will
dominate, at large n, the other terms. Thus, the largest eigenvector of Mg . will be close
to vg. Therefore, each proof of theoretical guarantees of a graph will mainly consist in
bounding the operator norm of the different terms in the sum illustrated in Figure 3.8 by
using enumerative combinatorics as described in the precedent section.

Definitions and lemmas
We begin by giving useful lemmas and definitions that will be used in the proofs.

Simplification of the notations: In the remainder of this section, we will often as-
sume that the matrix is symmetric to simplify the notations. One should keep in mind
that if the matrix is not symmetric, we have to consider A = M " M instead of just M,
which affect only the notations in the proofs.

The graph used to investigate the operator norm of a matrix:

Let A = Mg Mg, where Mg is the matrix associated to a graph G and an edge e.
The trace of the power r of A, Tr(A") can be represented as the graph gluing the open
edges of 2r sub-graphs G’ where G’ is the graph G with the edge e open, that represents
the matrix Mg . (see Figure 3.10). We denote the total graph representing Trace(A") by
gtot_

Elementary sub-graph: We call the elementary sub-graphs of G representing

Tr((MTM)T) the sub-graph corresponding to a single matrix M. Thus, G*! consists in
gluing together 2r elementary graphs, like in Figure 3.10.

Internal propagator: We call a propagator of a covering graph an internal propagator
if it connects two vertices of the same elementary sub-graph.

Lemma 3. The covering graphs involved in the calculation of E(Tr(M — E(M))") are the
same that are involved in the calculation of E(Tr(MT™)) minus the covering graphs where one
of the elementary sub-graphs has only internal propagators.
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Proof. We can first begin by showing that if we have two matrices M; of degree d; and M,
of degree ds with open edges of the same color denoted /, the covering graphs involved
in Tr((M; — E(M;))Ms-) are the covering graphs of Tr(Mj M3) minus the ones where
the propagators are internal.

Let's denote the graph associated to Tr(M; M,) by G. To distinguish the d; + ds ver-
tices and their indices, we assign numbers to each vertex. Namely the vertices of M; are
denoted by 1,...,d; with 1 and 2 associated to the two vertices adjacent to the open edge
of My, andd; +1,...,d;+ds for My where the vertices of the open edge of My are d; +1,
d1 + 2.

We denote all the indices by a, and the indices of all colors associated to a vertex m
by a?.

A subset of the symmetric group o(d; + dg) are the permutations which could be writ-
ten as 75 where 7 is a permutation of (1,...,d;) and 75 is a permutation of (dy,...,d; +
da).

We denote by the symbol 69, the § of all the indices that are contracted in the graph
g.

Let G; the graph associated to M without the open edges and G, the graph associated
to M, without the open edges.

We have
E(Ml)ij _6a1l z6aQZ J Z 591 Z Héal'Da (3.10)
a#al an TEG dl)
d1+d2
E(Tr(M; My)) Zé > 1 duper,, (3.11)

T7E€S(d1+d2) =1

Since the edges of G are the union of the edges of G; and G, and two edges of color
[ connecting the vertices of the open edges: 1 with d; + 1 and 2 with d; + 2, we have:
69, = 09095 5,1 . This let us write:

aa “aa a17ad1+1 a2,ad1+

E(Tr((M; — E(M;))Ms>))
d1+d2

_ g
ILAND DI | EE
a Tee(d1+d2) p=1 (3.12)
d1+d2
B Z H apDaT (p) H 6ana7/'32(Q)]’
TlGG(dl) TQE@(dg)p 1 q=d1+1

Thus, the only permutations that are not cancelled are the permutations that does
not leave invariant the subset {1,...,d;}, which means that 3i € {1,...,d;} such that
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7(i) € {d1 + 1,...,d; + d2}. These permutations correspond to the covering graphs that
does not have only internal propagators connecting the vertices of M. This proves our
claim.

We can then generalize to the case of a product of multiple matrices by induction,
which proves Lemma 3. O

Comparison of the contributions of the graphs and of the matrices:

In our framework, we will in general compare a graph made only of the noise tensor
Z that we denote G; with a graph made only of signal spike v§k that we denote G,. We
say that the graph Gs has a much larger contribution than the graph G; if

lim \/E(12,)/Ig, =0 (3.13)

n—oo
with high probability.

This is based on the combination of the Chebyshev inequality and Cauchy-Schwarz
inequality.

a|E(Ig, )| +5\Nar(Ig,) < \/aE(Ig,)? + AVar(Ig,) < max(a, /) /E(IZ) a.f>0 (3.14)

Inthe case of a matrix M with an open edge of color [, we compare the operator norms

lim, 00 Tr((MTM)T)WT, which requires to compare the contributions of the graphs
Tr((M"M)"). We note that

Var(Tr((MTM)’”)) < n4JE(Tr((MTM)2r)) (3.15)

Indeed, the graph of Tr((M " M)?r) could be seen as taking two copies of the graph of
Tr((M T M)"), cutting in each copy an edge linking two elementary sub-graphs, and glu-
ing the two copies through the cut edges. The difference of contribution of an equivalent
covering graph between Tr((M " M)?r) and two copies of the graph of Tr((M " M)")
will be at most n*, due to the four vertices in the two edges that we cut. Based on Cheby-
shev inequality, we only need to compute the expectation of the operator norm of M for
comparison purposes.

We can now state the important algorithm that will be essential for this section. It is
important to keep in mind that the following claims concern the large n limit. Empirically,
the approximation of large n limit seems valid for n > 25.

The proposed algorithm 1 is able to recover the spike in a tensor T through the con-
struction of the matrix of size n x n Mg (T) associated to a given graph G and edge
€.

Theorem 4. Let G be a graph of degree d and an edge e, 3 ... > 0 so that Algorithm 1 with
the matrix Mg .(T) gives an estimator v strongly correlated to vy ( (v, vo) > 0.9) for B > Byec.
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Algorithm 1: Recovery algorithm associated to the graph G and edge e

Input: The tensor T = /nfv$* +Z

Goal: Estimate vy.

Calculate the matrix Mg .(T)

Compute its top eigenvector by matrix power iteration (repeat v; < M;;v;).
Output: Obtaining an estimated vector v

Proof. Letn € N, G a graph of degree d and M; . the matrix obtained by cutting the edge
e. As we previously explained, studying the statistical properties of the operator norm

comes down to studying the graph Tr((MgT’eMg,e)T). If we decompose the matrix Mg .

as a sum of terms by using T = Z + ﬁﬁv?k, it is clear that when § — oo for a fixed
n, the matrix with the largest operator norm will be the one where all the vertices are
spike vertices (it will have a factor of %), and which is proportional to vv ". Thus, applying
Wedin perturbation theorem proves that 95,ec such that V3 > Srec the largest eigenvector
of Mg . will be close to vy, and therefore the recovery is possible. 0O

Example: If we take the matrix defined as (Mg c )i i, = Tiyjk Tiyji We have (Mg )i i, =
Zilijiij + \/ﬁB(Ziljk(vgg?’)mk + Zizjk('vgb?))iljk) + nﬁz('vg)il (Uo)m. So intuitively, in the
large 3 limit Mg, ; will be approximately proportional to (vo);, (v0)i,-

Since the algorithm 1 consists in algebraic operations on the tensors entries, it is very
suitable for a parallel architecture (for example by computing independently each entry
of the matrix Mg .(T)). The following Theorem 5 gives a lower bound to the threshold
above which we can recover a spike using a single graph of finite size (independent of
n). Interestingly, this threshold which appears naturally in our framework, matches the
threshold below which there is no known algorithm that is able to recover the spike in
polynomial time. We call the Gaussian variance of a graph G, the variance of the invariant
Ig(B) where B;;;, are Gaussian random.

Theorem 5. Let k > 3. It is not possible to recover the signal of a constant degree using a
single graph below the threshold 3 = O(n*=2)/%) which is the minimal Gaussian variance of
any graph G.

Proof. We aim to prove that E((Ig)?) > n/2 for any graph G with Gaussian tensor. As
previously noted, the graph corresponding to the invariant (Ig)? consists in two copies of
G that we denote (G)?, as in Figure 3.11. A simple way to prove our claim, is to exhibit for
any graph G a covering graph for (G)? that gives a contribution of n%/2, Such a covering
graph is obtained by connecting each vertex of G to its equivalent in the second copy as
shown in Figure 3.11. All the cycles for the colors 0, ¢ will be of length 2 (consisting in an
edge and its equivalent in the other copy). Their total number is equal to dk/2, so this
covering graph gives a contribution equal to n%/2. Since the expectation is equal to the
sum of the contributions of the covering graphs, the variance will always be larger than
n/% A similar argument proves that the expectation of TI“((MMT)T)Q will be always

superior to n"?,
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Figure 3.11: The covering graph contributing by n*%/2 to the variance, implying that no

algorithm associated to a single graph could recover a signal below the actual computa-
tional threshold.

O

The following lemma 6 has as an important consequence that if we want to investigate
if a matrix associated to a graph G and edge e recovers the signal at 3 = O(n'/4), we can
disregard the intermediate matrices and compare only M%) and M (@), This will be used
implicitly in the remaining of the proofs.

Lemma 6. If for 3 > n*=2/4, the norm operator of the pure signal matrix M) is larger
than the norm operator of the pure noise matrix M), the operator norm of M) is negligible
comparing to the operator norm of M) for 8 > n(k=2)/4,

Proof. The proof is based on the fact that the expectation of the square of a connected
graph with mixed noise and signal spikes can't be larger than the square of its pure noise
equivalent graph below 3 = O(nk=2/4)_ Thus, given that the pure signal graph is a poly-
nomial on g with higher degree than the intermediate graphs, it means that it will have
the larger contribution for 8 > n(k=2)/4,
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We will consider a general graph associated to an invariant but the demonstration for
the matrices M follows the same steps but instead of G2, one has to consider Tr(M")?.

Let G a connected graph whose signal G° (G with only signal spikes vertices) and noise

graphs GV (G with only Gaussian tensor vertices) has a similar operator norm for g =
(k—2)/4
n .

Let's assume that an intermediate graph G'" (with r vertices replaced by signal spikes)
has a largest contribution than GV for 3 < n(k=2)/4, Let's take the covering graph of (G'"")?
that is responsible for the largest contribution.

We build a covering graph for the pure noise graph (GV)? from this covering graph
that has a superior or equal contribution than the initial covering graph for (G'"*)2. To do
so, we disconnect the propagators that are connected to signal spike vertices from these
signal vertices and glue them together (in any way we want), while we connect by a new
propagator each signal spike vertex to its equivalent in the mirror graph. This covering
graph will give a superior or equal contribution to the expectation of the square of the
intermediate graph since:

+ The cycles that didn't involve a spike stay give the same contributions

* The cycles that involved a spike were giving a contribution equal to one in addition
to the (/nB)? direct contributions of the p signal spikes vertices. But in the new
covering graph of the pure noise graph, the contribution of these cycles will be n3?/4,
Indeed each cycle has at most four signal spike vertices, as it connects a signal spike
to its equivalent in the mirror graph.

Comparison of matrices that appears in our

decomposition

One needs to only compare the pure noise matrix and the pure signal matrix to
determine if the algorithm associated to a connected graph succeeds above the

computational threshold n'T.

Using these tools and this algorithm, we are now able to investigate the performance
of our framework in various theoretical settings. In the first two paragraphs, we study
the algorithms associated to two trace invariants of degree 2. They consist of the melonic
diagram and the tadpole diagram. Interestingly, it turns out that they are equivalent to
the two state-of-the-art algorithms for Tensor PCA the tensor unfolding and homotopy-
based method as illustrated in Figure 3.12. Thus, we decide to goes further in terms of
graph's degree and investigate the algorithms associated to the perfect one-factorization
graphs (consisting in the tetrahedral when k& = 3). In the last subsection, we will prove
that our methods allows us to derive a new algorithmic threshold for more general cases.
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State of the art methods Our new method

Figure 3.12: Equivalence between algorithms associated to graphs and state of the art
methods.

A framework that provides algorithms with different

performance/complexity trade-offs

This framework offers multiple algorithms with different performance-complexity
trade-off. The state-of-the-art algorithms correspond to degree two invariants.
Higher degree graphs offer better empirical results but with higher computational
complexity.

3.2.3 Some derived algorithms from the new framework

In this subsection we will investigate the melon graph and the tadpole graph. These
two invariants of degree two actually correspond to existent algorithms that represents
the state of the art, respectively the Tensor Unfolding and homotopy-based algorithms.
Thus, we take a step forward and investigate a higher degree graph. the perfect one-
factorization, that is the tetrahedral in the case k = 3 is a good choice for a next step to
investigate how algorithms associated to higher degrees graphs perform.

Melonic graph

Let's consider the invariant T;, ;, Ti,. i, (illustrated by the graph in Figure 3.1b when k =
3). Its recovery algorithm (with the matrix obtained by cutting any of the edges) is similar
to the tensor unfolding method presented in [MR15].

Theorem 7. The algorithm 1 with a matrix Mg . where G is the melon graph with B,.. =
O(n'k=2)/4Y in linear time and O(n?) memory requirement.
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Proof. Let's prove by induction the following
E(Tr (M~ E(M))(M ~E(M))7)")) < nfr*! 3.16)

where M is the matrix associated to the melon by opening one of its edge (all the edges
are equivalent in this situation given that the dimensions are equal).

« For r = 1itis straightforward by simply enumerating the cycles and applying the
formula 3.1.

« Letr > 1 and let's assume the statement is true for all v’ < r. Let's consider one of
its elementary sub-graphs (defined in the beginning of the section). Using lemma 3,
we can divide the edges of the sub-graph in two sets:

- The k — 1 edges that are in faces of at least two edges.
- One external edge divided in half edges.

If the £ — 1 edges are in faces of exactly two edges, it means that the propagators
at both the left and right vertices are connected to the two vertices of another ele-
mentary sub-graph.

This will lead to two possibilities:

- The two elementary sub-graphs are next to each other. The expectation of
Tr((MMT)”) is equal to the expectation of the graph after removing these
two elementary sub-graphs and connecting the two left open edges, to which
we add the contribution of n* from the two elementary sub-graphs. Using the
induction hypothesis, the graph with the two sub-graphs removed has a con-
tribution of maximum n*("—Y+1_Combining them we have a total contribution
of pk(r=D+1+k — phr+l which proves the theorem.

- The two sub-graphs are not next to each other: Then the open edges have a
maximal contribution of 1/2. Cutting this elementary sub-graph and using the
induction hypothesis proves the theorem.

Thus, using Gelfand's Formula, the norm operator is equal to n*/2. The signal matrix
has an operator norm equal to (y/n3)2, which gives a recovery threshold for the
melonic algorithm of 3 = n(¥=2)/4 using Wedin perturbation.

For the symmetric case, since Tsfim = res, Tr(i)r()r(k) Where &y is the symmetric

1,

group introduced previously. We just need to expand the melonic matrix T; %" T/%/" in
function of the asymmetric tensor T. We obtain a sum of nine matrices (corresponding to
graphs with mixed colors). We can show that the operator norm of each of these matrices

is at most equal to n3/2. O

Tadpole graph

Figure 3.1d has a special characteristic: we can obtain two disconnected parts by cutting
only one line. Therefore, the matrix obtained by cutting that edge is of rank one (in the
form of vv ). Thus, the vector v has a weak correlation with the signal vg, which allow
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= ZjjiZiskk + B (vi;Zigux + iy Ziyjj) + oy,
G O=00O+CG<O+0=0+ =0

Figure 3.13: Decomposition of a tadpole matrix

the tensor power iteration (v; <— T;;,vjvi) to empirically recover it (formal proofs require
to consider some more sophisticated variants of power iteration like in [ADGM17b] and
[BCRT20]). This algorithm is a variant of the already existent homotopy algorithm.

Theorem 8. The tadpole graph allows to recover the signal vector for k > 3and 3 = O(n(kF=2)/4)
by using local algorithms to enhance the signal contribution of the vector T;;;.

Proof. Using the matrix decomposition illustrated in 3.13, we can see that we have a sum
of four matrices of rank one. Using the usual formula to calculate the expectation of the
operator norm of the matrices we obtain:

MO = w2
O] =
o M| = 2

we can see that the first one dominates by n!/% the last one (consisting in the signal
vector) so we are able to use power iteration or one of its variants (like in [ADGM17b] and
[BCRT20]) to recover it.

O

Tensor invariant based on the perfect one-factorization graphs

The theoretical physics community that had developed the theory of trace invariants
for tensor have made a particular focus on a family of graphs called the perfect one-
factorization graphs [FRV19b] (more details in the appendix). This focus is motivated by
their nice combinatorial properties due to their symmetries. It was then natural for us to
explore the algorithmic potential of these graphs in our tensor decomposition context.
Our first candidate was the simplest next graph which is of degree strictly superior to two
named tetrahedral graph. Our investigation through the tetrahedral shows that for k = 3,
the algorithms based on the tetrahedral graph shows a very interesting improvement of
empirical results and thus highlights the richness of the proposed framework. Moreover,
the properties of this family of graphs also simplify the proofs for recovery theorems.
Therefore, the standard methods involved in the demonstrations of these theorems are
instructive for the study of more general graphs.

Theorem 9. The algorithm associated to a perfect one-factorization graph is able to recover
the signal vector for 3 = O(n(kF=2)/4),
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Proof. Let G; be the elementary sub-graphs of G = Tr((M)") and let's define (si)icqo,....r}
such that s;/2 is equal to the number of propagators having their two vertices in the sub-
graph g; (the internal propagators). Thus, we have s/2 = ). s;/2 internal propagators in
total. We can divide the edges of the sub-graph G; in three classes. Each edge could be
part of a face of either one edge, two edges, three edges, etc.. Let's count how many we
can have of each type in an optimal configuration (maximizing the number of faces) for
each class.

+ Edges only connected to internal propagators, there is at most >, s;(s; — 1)/2 of
such edges.

- We can have a maximum of s; /2 faces of one edge since that is the number of
internal edges.

- Then, from the s;(s; — 2)/2 remaining ones, if we want to put them in faces of
two edges, the two edges needs too to be in the same sub-graph. We can create
amaximum of s;/2(s;/2—1)/2 = s;(s; —2)/8 different couples of propagators.
Each couple can't create more than one face since otherwise it will contradict
the maximally single trace hypothesis of the graph. So there is a maximum of
si(si —2)/4 edges that can be put in two edges faces.

- The remaining s;(s; — 2)/4 will be in faces of at least three edges.

+ Edges connected to one internal and one external propagator, there is at most
> ;si(k+1—s;) of such edges. They have to be in faces of at least three edges.

+ Edges only connected to external propagators, there is at most
> i ((k+1—s;)(k —s4)/2) such edges. They can only be put in faces of at least two
edges.

+ The open edge (defined as the two half-edges we use to glue the elementary sub-
graphs to the rest of the graph) can be put in a face of maximum one edge.

So we have a maximal number of faces given by:

"L osi(si—2)  si(si—2)

;(2 + 8 + 12

Si(k/“l—l—si) (k‘+1—5i)(k}—8i)—2
3 * 4

_i k(k+1)_844k—3si—4+1
= 4 ' 24 2/

Let's focus on the case where s; = 0. If all the points of the elementary sub-graph
are connected to points of only one other elementary sub-graph, then the two vertices
of the open edge connect to the same elementary sub-graph. In that case the open edge
has a contribution of at most 1/2. In the other case, then there is at least k& edges which
contributes only by at most 1/3 making them lose 1/6. Either way the contribution of the
sub-graph can't go further then k(k + 1)/4. Taking into account this observation, we can
write the maximal number of faces as:

+ +1) (3.17)
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" (k(k+1) 4k —3s;—4  1—0dg,0
z;( R o +— ) (3.18)

We can easily check that this quantity is always smaller than M for k > 5. The
case k = 3 (the tetrahedral) and & = 4 could be easily done by manually counting the
number of cycles. Thus

1/r
lim Tr((M(N))’"> ~nt (3.19)

r—00

Onthe other hand, the operator norm of the pure signal matrix M (%) is equal to (y/n3)*+1)
thanks to the k + 1 vertices. M%) dominates M) for 8 > £22. This completes the
proof. O

3.2.4 New theoretical threshold for an asymetrical tensor with different
dimensions n; # ny # ... # ng

We consider the more general case where the tensor T has axes of different dimensions
n; (T € ®f:1 R™). We can assume without any loss of generality thatn; > ng > -+ > ny.

T=0Fv1®  -Quy,+Z where v;eR" n;eN. (3.20)

Our framework naturally handles this case and allows us to derive a new algorithmic
threshold. It s, to the best of our knowledge, the first generalization of the threshold 5 =
n(k=2)/* derived in [RM14] when n; = n Vi € [k] and appears easily using our framework.

Theorem 10. Using the melon graph, the threshold for v, is given by max ((Hle ng) /4, n}/2>

while the thresholds for v;, j > 2 are equal to ([TF_, n;)'/*

This result coincides with the previously known threshold when n; = n. We also note
that the threshold max ((]_[f:1 ni)1/4, n}/Q) for vy is not surprising. Indeed, if nyg = -+ =
ny = 1, the tensor can be seen as a vector of dimension n;. And since the expectation of

the norm of a random Gaussian vector is n}/Q, B8 > n}/Q is required to be able to detect
the signal vector.

Proof. Let's consider the melonic graph with the edge associated to the index of the space
of dimension n; open. It is associated to the matrix:
My, =T, T; (3.21)

18 —1P8 410k P91 8 —1q0 41 T

For simplicity the graphs will be drawn for k£ = 3.
We will treat two separate cases:
* Casen; < H”Z
i#l
r/2

7

Let's prove by induction the statement: S,.: E[Tr((M — E(M))")] ~ n; [[%_, n
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- Initialisation with » = 2: For M — E(M) we have the following graph and its
covering graphs:

A ,
’ \ ‘s P
] ] N Ve
¢’
1 1 s<
1 | YRR
1 ] ,' N
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Figure 3.14: The two covering graphs of Tr((M — E(M))?)

which gives
k k k
E(Tr((M —E(M))") = n [ [ ni + [ e < 20 [ 0}
=1 =1 i=1

- Assume S, is true for all ¥’ < r, let's prove for r that no covering graph has a
contribution strictly superior to n; []%_, nz/Q and then, that we can provide a
covering graph that contribute by exactly n; Hle n;«/2 when r is even.

* |n the case where there is no cycle of color [ of length 1 (which means a
propagator that shares the same ends that an edge of color [), then all
edges have a contribution of 1/2 at maximum to the number of faces (no
internal propagators are allowed in the covering graph of E(Tr((M — E(M))")
given lemma 3). So the contribution of that covering graph will be at most

equal to ["_, n}/%.

7

* |n case there is such a propagator, which means that there is a propagator
coinciding with an edge of color [ between two elementary sub-graphs.
Let » Then either the two other ends of the two elementary sub-graphs
are connected by a propagator like in 3.15 or not like in 3.16.

- In the first case, the total number of cycles will be at most equal to one
cycle of each color, plus the number of cycles of a graph with » — 2
elementary sub-graphs, which is n; [T, ng/? This could be seen as
counting the cycles in the two connected elementary sub-graphs and
then removing them from the graph Tr((M — E(M))") and replacing
them by an edge of color [ to count the remaining cycles as illustrated
in 3.15.

- In the second case, we can remove the cycle of one edge of color ! and
mix the two elementary sub-graphs adjacent to it into one, as it will not
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Figure 3.15: Elementary sub-graph completely connected to the elementary sub-graph
next to it
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Figure 3.16: Elementary sub-graph not completely connected to the elementary sub-

graph next to it

change the number of remaining cycles. We thus have a contribution
of n; from the cycle associated to the the removed edge, and a con-
tribution of n; Hle nETﬁl)/Q from the remaining graph using then the
induction hypothesis. Given that we are in the case of n; < J[, ,, n;, the
total contribution n; xny [T%_, n{" ™Y/ < n, [T, n/? which proves the
statement.

- The covering graph with propagators disposed as in Figure 3.15 will have a
contribution of exactly nj [, n; if r is even.

* Casen; > H”l

Let's prove by induction the statement: S;: E[Tr((M — E(M))")] ~ nj [, -

- Initialisation with » = 2: For M — E(M) we have the covering graphs in Figure
3.14 which checks S5

- Assume S, is true for all 7/ < r, let's prove for r that no covering graph has
a contribution strictly superior to nj [, ,,; n; and then that we can provide a
covering graph that contribute by exactly nj [ ], ,; n.

* |n the case where there is no cycle of color [ of length 1 (which means a
propagator that shares the same ends that an edge of color [), then all
edges have a contribution of 1/2 at maximum. So the contribution of that

covering graph will be at most equal to Hle n

r/2

7

* |n case there is such a propagator, which means that there is a propaga-
tor coinciding with an edge of color [ between two elementary sub-graphs.
Then either the two other ends of the two elementary sub-graphs are con-
nected by a propagator like in Figure 3.15 or not.

- In the first case, the total number of cycles will be at most equal to one

cycle of each color, plus the number of cycles of a graph with » — 2
elementary sub-graphs, so the contribution of the covering graph will
be at most n] 2 [Tizmi % T1%_, ni, which is smaller than nJ [Tz i
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- In the second case (the case of Figure 3.16), by induction the number
of cycles will be at most the number of cycles in the remaining » — 1
elementary sub-graphs plus a cycle of color blue. Thus, it is at most

equal to nj [, ., ns-

* The covering graph consisting in propagators coinciding with blue edges
has a contribution exactly equal to nj [, ., ni.

Thus, in the case n; < H n;, the pure signal matrix will have a larger operator norm if
i#l
1
B> (I, ni)% and in the second case 3 > n} O

Theoretical guarantees for more general situations

This framework allows us to derive a new theoretical threshold
max ((Hf:1 n,-)l/‘*,n;/Q) for tensors with different dimensions, which are very

common in real life applications.

3.3 Generalization to Tensor decomposition

3.3.1 Adaptation to low-rank CP decomposition

We consider a symmetric tensor with multiple orthogonal spikes.

P
T=> BwP+Z where (v,v;)=0 Vi#j. (3.22)
=1

Theorem 11. If we have a number of spikes p that is constant in respect to n, we can recover
the p spikes by an alternating the use of melonic diagram, power iteration and deflation.

We first use the tetrahedral diagram to obtain a vector correlated with the signal vec-
tors, then we follow by power iteration to obtain a normalized vector v highly correlated to
one of the spikes and then deflation which consists in replacing the tensor T by T — av®3
where o = T.v®3. The experimental results suggest that it works not only for small values
of p but also for a number of spikes up to n.

3.3.2 Adaptation to Tucker decomposition

We consider the decomposition of a tensor into a set of matrices (loadings) with orthog-
onal columns and a core tensor. Thus, we adapted in a simple way our framework to this
other decomposition scheme. This highlights how generic and important this new frame-
work is. We compared the principal methods of Tucker decomposition with a straightfor-
ward adaptation of these methods where we use the matrix associated to the tetrahedral
instead of the melonic (tensor unfolding matrices) that are initially used in these methods
(as loadings in the initialization as well as in the power iteration).



3.4. NUMERICAL EXPERIMENTS 59

Algorithm 2: Recovery algorithm for for CP decomposition

Input: The tensor T = Y0 /nBv® +Z
Goal: Estimate {v;})_, and {5;}]_;.

E=10

TO=T

Compute the matrix Mg .(T)
Compute its k top eigenvectors and eigenvalues.
Output: Estimated vectors {9;}]_; = argmaXe: ¢ /|=p 2_wee ¥ (¥, v, v) and

BzEal/\/ﬁ

NowuwhkhwnN-=

The case r=1 It is straightforward to see that when r; = ro = r3 = 1, HOOI is exactly
equivalent to Tensor Unfolding with power iteration. From a theoretical point of view, not
only our algorithm also achieve the optimal estimation error rate but we also unveiled a
new phase transition appearing in the asymmetric case when the tensor dimensions are
of the form nl > n2xn3. This was not studied in [ZX18] as they considered only the cases
where 3C an universal constant such that ny, ng, n3g < Cp min(ni, ng, n3).

The case r>1 We adapted the framework to the Tucker decomposition case to com-
pare to HOOI. Indeed one straightforward application of our new results is to replace the
matricization M, which correspond to the melonic graph (since SVD(M)=
Eigenvalues(MM ") with a new matricization corresponding to the tetrahedral graph. =
We perform SVD on the tetrahedral matrices.

Algorithm 3: Recovery algorithm for for Tucker decomposition
Input: The tensor T = Y"7_, \/ﬁﬁlv?‘q’ + Z, Minit, Miter.&,A(~ n)
Goal: Estimate {v;})_, and {;}_;.
for j=0to 3 do
Compute the matrix Mg .(T) associated to an edge corresponding to the index i
end for
Use the previously computed matrices as an initialisation matrix for Tucker
decomposition.
7: Output: Estimated vectors mode matrices and core tensor.

ouwhwnNn=

3.4 Numerical experiments

In this section we will investigate the empirical results of the previously mentioned ap-
plications in order to see if they match with our theoretical results. We restrict to the di-
mension k = 3 for simplicity. Simulations were run in Python on a Dell computer running
Ubuntu 18.04.5 LTS with eight Intel Core i7-4800MQ processors at 2.70 GHz and 16GB of
RAM.
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3.4.1 Tensor PCA
Settings and comparison of methods for Tensor PCA
Each experiment is an independent instance consisting in the following steps:

+ We generate randomly the n components of the signal vector vy and then normalize
it.

* We generate randomly the n® components of the random tensor Z. If we are in the
symmetric case, we symmetrize it with the same normalization than [RM14]):

Zijk = (Ziji + Zinj + Zjir + Zjki + Znij + Ziji) V12

* We compute thetensor T =Z + Jﬁ,@v?k

+ We compute our matrix associated to the invariant M constructed from T using
the numpy method tensordot in Python.

+ We compute its leading eigenvector v

+ We plot the correlation between the vector resulted from the algorithm v and the
signal vector we aim to recover vy (namely the scalar product < v, vg >).

We focus on the symmetric case and, as in [RM14], for every algorithm we use two
variants: the simple algorithm outputting v and an algorithm where we apply 100 power
iterations on v: v; < Tyj,vjvy, distinguishable by a prefix "p-". In Figures 3.18, 3.19 and
3.20, we run 200 experiments for each value of g and plot the 95% confidence interval of
the correlation of the vector recovered with the signal vector. We compare our method
(tetrahedral) to other algorithmic methods: the melonic (tensor unfolding) [RM14] and
the homotopy [ADGM17b]. To the best of our knowledge, they give the state of art re-
spectively for the symmetric and asymmetric tensor [BCRT20]. Other methods exist but
are either too computationally expensive (sum of squares) or are variants of these algo-
rithms.

We see in Figure 3.17 that in the asymmetric case that the tetrahedral algorithm per-
forms the best.

Spike with different dimensions:

We aim to recover the three vectors vy, v and vs from a tensor Z + fv; ® vy ® vs.
We repeat 100 times each instance consisting in choosing randomly v;,v2 and v3 and
the Gaussian random tensor Z and we plot the correlation of the signal vectors with the
vectors recovered using the tetrahedral.

In detail, each experiment is an independent instance consisting in the following steps:

+ We generate randomly the ny, ny and ng components of respectively the signal vec-
tors vy, vo and v3 and then normalize them.

+ We generate randomly the n; x ng x ng components of the random tensor Z.

* We compute the tensor T = Z + fv; ® va ® v3
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Figure 3.18: Comparison of different methods for symmetric recovery for n = 100.
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Figure 3.19: Comparison of different methods for symmetric recovery for n = 150.

1.0
Method
0.8 —— p-tetr
— p-mel
A
506 —— hom
>
~
y 0.4
0.2
0.0

1.2 13 14 15 16 17 1.8
B

Figure 3.20: Comparison of different methods for symmetric recovery for n = 200.

+ We compute the three matrices to recover each of the vectors by opening an edge
of the color corresponding to the position of the vector using the numpy method
tensordot in Python.
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Figure 3.21: Recovery of a spike with different dimensions.

+ We compute their leading eigenvectors.

* We plot the correlation between the vectors resulted from the algorithm and their
corresponding signal vectors we aim to recover vy, v2 and v (namely scalar product
< v,v; >).

We see in the Figure 3.21 that the threshold (n;nyn3)'/4 for the three vectors matches
perfectly with the experiences when ng < nj.ny. We also see that when ns > nj.no the re-
covery of vz (in green and with the diamond and square markers) have a different asymp-
totic behavior than v; and vy (it becomes né/Q since né/Q > (n1n2n3)1/4), corresponding
to what our theoretical study predicted.

We see in the Figure 3.22 that when n3 > nins, the asymptotic behavior of the recov-
ery threshold of v3 matches with our theoretical result n1/2

The number of iterations of power iteration for each method Inthe symmetric case,
we plot in Figure 3.23 the number of iterations needed for the power iteration method
to converge with an initialization given by the result of one of the methods we compare:
tetrahedral, unfolding, homotopy. In addition to these methods, we plot in red (that we
call perf) the correlation of the power iteration starting from the signal vector vy.

Empirical results shows the fast convergence using the power iteration method fol-
lowing the tetrahedral method.

3.4.2 Memory and time requirements of the methods

General requirements:
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Figure 3.22: Recovery of vz where ng > nins

Since our method consists on computing algebraic operations on tensors entries to
store in matrix n x n, the naive recovery method for a tensor of order k and for a tensor
invariant of degree d would require O(n?) space requirements and O(n*?) time complex-
ity.

However, similarly to the matrix case where naive implementation requires n® but
different methods propose better asymptotic bounds on the time required to multiply
matrices, it is possible to simplify the computations by using decomposition on blocks
(IMKVT13]). There has been recently encouraging research investigating the optimization
of tensor contractions ([KSRH* 18], [Mat18],[HMvdG18]) in the same way it was done for
matrix calculations, especially with the rise of the use of tensorial objects. The ability to
be parallelized (each component of the matrix Mg . can be computed independently) is
also an important feature of our methods for practical applications.

Tetrahedral method with O(n*) time and O(n?) space requirement:

The unfolding algorithm (melonic) was proven to have a nearly linear time (O(n?),
since the input tensor is of size n3, O notation neglects logarithmic factors).

_ We use a similar approach to provide a recovery algorithm for the tetrahedral with
O(n*) time and O(n?) space requirement.

Indeed, using the decomposition previously described, we can prove that there is an
gap between the highest eigenvalue \; ~ $* and the second largest one \,. Thus, we
can use matrix power method in order to recover the leading eigenvector v < M "v with
log(n) complexity (the convergence of the matrix power method is geometric with ratio

|A1/A2)).

This lets us calculate the leading eigenvector of the matrix associated to the tetrahe-
dral: M!

ivio = Tivgk Tigj'kr Tijrk Tijhr-
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Figure 3.23: Correlation with the signal vector in function of the number of iterations of
the power iteration for n = 100. In red an initialization with vo for the comparison. In
blue, orange and green an initialization with the output of respectively the tetrahedral,
the unfolding and the homotopy algorithms.
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We can compute find the leading eigenvector in a time of O(n*) and space O(n?).
Indeed each iteration of the matrix power iteration method requires two intermediate
matrices we denote A, B and a intermediate 3—dimensional tensor we denote C, in every
step there is at most n* operations. we follow these steps:

* We take an initial vector v

* We compute the matrix A defined as A = Ty, 11005,

* We compute the tensor C defined as G/, = Ajrir Tijrg

* We compute the matrix B defined as as By; = Gk, Tijrr
* Return the vector v’ defined as v, = By; Ty, ji
Comparison between different methods

. We use our results and the results reported in [ADGM17b] to fill the Table 3.1. O and
Q) notation ignores logarithmic factors.

Thus, our framework could be seen as providing multiple algorithms from which we
could choose from depending in how much we prioritize the performance over the speed.

Table 3.1: Algorithmic threshold, time and space requirements for each method

Method Time Space | Threshold
e etoing | 0w | o) | et
Tetrahedral recovery | O(n?) O(n3) Q(n®*)
Sum of squares > Qn8) | > Qb)) | Qn3/4)
Homotopy O(n?) O(n) Q(n®*)
Information-theoretic | Exp O(n) Q(n'/?)

3.4.3 CP and Tucker decomposition on synthetic and real data

In Figure 3.24 and 3.25, we compare the proposed tensor decomposition algorithms that
we derived from our framework with the state of the art for both CP and Tucker decom-
positions. The comparisons are done for n = 100 and for different 5 over 20 independent
runs.

The figure 3.24 concerns the CP decomposition and suggests that the proposed Tetra-
hedral (Tetra) method is more robust to noise than the commonly used algorithm of the
TensorlLy package (based on ALS), as well as the power iteration method. For Tucker de-
composition in Figure 3.25, the results show that the proposed method (Tetra HOOI) pro-
vides better results than HOOI and HOSVD in the symmetric case with r; = ry = r3 = 20
in the large noise regime. Furthermore, we carried out experiments on structured real
data, the Yale Face Database B [LHKO5]. In more details, we considered a set of stacked
face images that form this database as an initial tensor to which we added Gaussian noise.
First, we compare HOOI and the proposed Tetra-HOOI algorithms for a fixed value of the
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rank of the matrices involved in this type of methods (r1,r2,73) = (10, 10, 10) and for dif-
ferent values of the noise intensity (\). To evaluate the denoising performance of those
methods, we compute the average and standard deviation (over 5 runs) of the Frobenius
norm H)ﬁ\_,ﬁ'” where V is the input tensor and X is the output of the algorithm. The re-
sults which are reported in the table 3.4 show that Tetra HOOI again outperforms HOOI
even on real data. Note that, we obtained similar results for a fixed (A = 1000) and for
different values of (r1,72,73). Note that the Frobenius norm of the difference between

two completely uncorrelated normalized vectors is equal to 2.

100
|
|
|
L 80
O
A
[}
g 60 Method
A —— Tetra
40 TensorLy
—— Powerlter
2.6 2.8 3.0 3.2

Figure 3.24: Comparison CP decomposition methods for n = 100 and nspikes = 20.
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Figure 3.25: Comparison Tucker decomposition methods for n = 100 and r; = ry = r3 =
20

The settings
CP decomposition on synthetic data

We choose to take the 3; equal since we expect it to be the hardest case (it is more difficult
to distinguish the spikes). Each experiment is an independent instance consisting in the
following steps:

+ We generate randomly the p orthogonal vectors v; and then normalize them.
- Generate the components of v; randomly.
- Vj € [i] we compute v; < v; — (v, v;)v; in order to have orthogonal spikes.
- Normalize v;

+ We generate randomly the n components of the random tensor Z.

* We compute the tensor T = Z + 3, Biv®?

+ We compute the matrix associated to the tetrahedral with the numpy method ten-
sordot in Python.

* We compute its eigenvectors x;.
+ We iterate the following steps beginning from i =0to i = p:
- We use the power iteration method on x; with 100 iterations.

- We update thetensor T «+ T — aix?g where a; = Tjp () () k(i)
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+ Since the vectors x; are not necessarily ordered, we want to make a one for one
correspondence with the vectors v;. So for vy, we search for the x; that maximizes
(x;,v;). We call rename it w;. Then for the other v; we search for the x; that maxi-
mizes (x;,v;) inthe set X = {x;, j € [p|]} \ {wk, k € [i — 1]}. In that way, for each
v; there is a one to one correspondence to a vector x; that we rename w;.

+ We plot the correlation between the vectors resulted from the algorithm w; and the
signal vectors we aim to recover v; (namely scalar product (w;, v;)) for each .

We see that empirically, our method is able to recover any number of spikes inferior
to n, and with a similar threshold than with a single spike.
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Figure 3.26: Average of the correlation of the recovered vector with their corresponding
signal vector in function of the number of spikes for n = 100 and 8 = 30

We see in Figure 3.27 that when the spacing between the 5; gets bigger, it is easier to
retrieve the signal vectors, since it will be easier to distinguish them. Thus, the case where
all B; are equal seems to be the hardest case.

CP decomposition on real data

We apply our CP decomposition on a real application that consists in the Hyperspectral
images (HSI). As explained in [Nas13], "Typically, a hyperspectral spectrometer provides
hundreds of narrow contiguous bands over a wide range of the electromagnetic spec-
trum. Hyperspectral sensors measure the reflective (or emissive) properties of objects
in the visible and short-wave infrared (IR) regions (or the mid-wave and long-wave IR re-
gions) of the spectrum. Processing of these data allows algorithms to detect and identify
targets of interest in a hyperspectral scene by exploiting the spectral signatures of the
materials".

Denoisingis animportant preprocessing step to further analyze a hyperspectral image
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(HSI). The common denoising procedures are either based on 2-dimensional (2D) meth-
ods (mainly 2D filters) or tensor decomposition methods.

In [LBF12], the authors compared CP decomposition method based on the Alternating
Least Square (ALS) algorithm with existent methods (two-dimensional filter and Tucker3
that is based on a Tucker decomposition) to denoise HSI. They performed their experi-
ments on a real world data: the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
HSI, an airborne hyperspectral system flown by NASA/Jet Propulsion Laboratory (JPL). To
analyze quantitatively the denoising results, they compare the signal-to-noise ratio (SNR)
of the denoised image that is defined as:

1]

SNRout — 1010g10 I —
=2

(3.23)

where Y is the original image and ) the estimated image after denoising.

Their numerical results show that the CP decomposition model using the ALS algo-
rithm performs better than other considered methods as a denoising procedure.

In order to judge the performance of our algorithm, we perform the same experi-
ment with the same estimator and compare it with the ALS algorithm using the Python
TensorLy package [KPAP16]. The hyperspectral image we use is the open source data
given in [MGT*18] that we normalize. It consists of a tensor of size R425%861x475 \yhere
425 is the number of spectral bands and 865 x 475 is the spatial resolution.

CP decomposition model decomposes a tensor as a sum of rank-one tensors (that we
call spikes). Thus, we compare the SNR for different number of spikes in Table 3.2

Npikes | 1 | 3 | 5 | 10
TensorLy 41.88 42.75 43.58 46.81

Melonic 41.88 43.20 43.99 46.2
Tetra 41.88 43.22 44.33 47.28

Table 3.2: We compare the tetrahedral algorithm with the melonic algorithm and the ALS
algorithm from TensorLy.

Tucker decomposition on real data To evaluate the denoising performance of the dif-
ferent Tucker decomposition methods, we compute the average and standard deviation
(over 5 runs) of the Frobenius norm. The results which are reported in the table 3.3 for
fixed rank and table 3.4 for g3 fixed show that Tetra HOOI again outperforms HOOI even
on real data.
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(ri,r2,73) | (5,7,10) | (10,20,30) | (15,15,15) | (20, 20, 20)

HOOI 0.673 1.143 0.977 1.183
£0.010 £0.003 £0.005 +0.001
Tetra- 0.621 0.713 0.666 0.965

HOOI +0.009 £0.020 +0.017 £0.009

Table 3.3: We compare HOOI and the proposed Tetra-HOOI algorithms for a fixed value
of the noise intensity (A = 1000). We compute the average and standard deviation (over

5 runs) of the Frobenius norm for different values of the rank of the matrices involved in
this type of methods (71,2, r3).

B | 900 1100 1300 1500

0.696 0.845 0.993 1.125
+0.008 | £0.006 | +0.008 | =£0.007
Tetra- 0.610 0.648 0.707 0.754
HOOIl | +0.017 | £0.010 | £0.019 | +0.013

HOO!I

Table 3.4: We compare HOOI and the proposed Tetra-HOOI algorithms for a fixed value
of the rank of the matrices involved in this type of methods (p1,p2,p3) = (10,10, 10).

We compute the average and standard deviation (over 5 runs) of the Frobenius norm for
different values of the noise intensity (5).
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4.1 Power iteration based algorithms

Power iteration is a simple method that has been extensively used in multiple tensor
problems [AGHT 12, AGHK13]. [RM14] investigated the empirical performance of power
iteration with a random initialization in the range of n € [50, 800] and observed an empir-
ical threshold of n!/2. The conclusion to which they arrive when using a naive approach

73



74 CHAPTER 4. A NEW ALGORITHM : SELECTIVE MULTIPLE POWER ITERATION (SMPI)

is the following.
ol — BT§_11)0 +n12g

527_3(k_1) + 1

+o(1) (4.1)

where g ~ N(0,lx) and o(1) is a vector whose norm converges to zero in probability as
n — oo. However this is not rigorous and may overlook some subtle mechanism.

Through an improved noise analysis, [WA16] showed that for a symmetrical tensor,
power iteration is indeed able to recover the signal for a SNR 3 above n'/2 with a constant
number of initialization and a number of iterations logarithmic on n. Their experiments
in the range of n € [25,...,250] suggested that this threshold is tight. A recent paper
[HHYC20] investigates the simple power iteration for a non-symmetric tensor for Tensor
PCA, they prove that the algorithmic threshold is strictly equal to n!/? as an asymetrical
power iteration with a random initialization outputs a random vector below this threshold.
The results of their experiments for n € [200, ..., 800] match their theoretical results.

The algorithm of [BCRT20] consists in choosing one initial point z that they consider
as a center of mass and that will be updated at each step. Then, they sample R points
that are orthogonal to zy. After evaluating the gradient on each of the R points, they
average them and use the obtained gradient in order to update the position of the centre
of mass zy. Moreover they have a stopping condition given by ||z (t) — z(t — 1)||, < €. Also,
they require a "rate n small enough so that the discrete updates in the algorithm can be
considered a good approximation of a continuous time algorithm." The idea of [BCRT20]
is that "One can then substantially reduce the noise by evaluating an empirical average
of the gradient obtained as a sum over many random independent positions in the space
of parameters to be optimized". Averaging these gradients obtained from independent
points will lower the norm of g5 compared to v, as they state: "In fact, the average over
the replicas leads to a relative amplification of the informative contribution produced by
the signal with respect to the noise. " However their algorithm has a theoretical limit as
"the smoothing of the landscape using different replicas becomes ineffective when R >
Ropt ~ N(k—1)/2" which correspond to the threshold limit of n'/4, Under that threshold
gs will be too small and could not be boosted enough so that it becomes stronger than

gnN-.

In this section, we aim to draw attention to a surprising observation that contrasts with
previous work: if we impose five essential features for an algorithm based on power iter-
ation or gradient descent (use a symmetrized power iteration, impose a polynomial num-
ber of initializations and iterations, etc.), we observe that a novel powerful mechanism
for the convergence towards the signal takes place, leading to a fundamentally different
performance. In fact, for n € [50,1000], SMPI is the first algorithm to exhibit an empiri-
cal threshold corresponding to O(1) and whose results matches the theoretically-optimal
correlation at large n.

Link between Power Iteration and Gradient descent

Maximising T (v, v,v) is equivalent to finding the minimum of the cost function de-
fined as H(v) = —T(v,v,v) [BCRT20]. Given that we restrict ourselves to the unit sphere
St = {v € R" | v/||v|| = 1}, the gradient is equal to g = VH(v) — (VH(v).v).v which
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will be for our model g = —T(:,v,v) + T(v, v, v).v. Therefore, power iteration could be
written as:
T(: — T .
b Tevw)  —g+ T
T(v,v,v) ’

- o) (9,
1T v,v)] T(v,v,v)

We can see that the power iteration could be seen as a gradient descent with an adaptive

step size equal to 1/(T (v, v, v)). This step size has the convenient particularity that it is

large for a random v but becomes small for vectors v such that T(v,v,v) is large, for
example when we are close to a minimum of H.

4.2 General Principle of SMPI

Table 4.1: The five essential features of SMPI compared to previous works investigating
Power Iteration

Paper Symmetry z:ies;r;:: ofI:r(: ilzi.:;\rI‘its,at. ofPi:g;\:‘igns N:oi\tc? |':|pc:rr: ®
20¥\;a[r\1/§§ |t3ia:|s1 7] Yes Yes No No No
23;(? FET :\t(glz'b] No Yes Yes Yes Yes
gggoA [rlg/gcss Jitzacl)']' s No Yes Yes Yes
EZ)EJJSZej[aDT-'IEZa;], Yes Yes Yes No Yes
SZI\(;I; 1' Yes Yes Yes Yes Vo

The proposed SMPI (Algorithm 1) consists in applying, in parallel, the power iteration
method with miter iterations to minit different random initialization. Then, SMPI uses the
maximum likelihood estimator to select the output vector in this subset by choosing the
vector that maximizes T (v, v, v).

4.2.1 The essential features of SMPI

We stress here an important and fundamental difference between our algorithm with
previous algorithms based on power iteration. In order for this method to succeed in the
low SNR setting, we need these five features that, for the best of our knowledge, we are
the first to impose:

1. Using power iteration or a gradient descent with a large enough step size.

2. In the case of power iteration and non-symmetric tensor, using the symmetrized
version (or equivalently, symmetrize the tensor).
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lllustration of the principle of Selective Multiple Power Iteration

Input

Tensor T = Z + Bvi*

First step: Generate mjyit random vectors. . e

~ j+1 To]v]
Second step: Iterate mjr times : v} = ——
HT’U]-UJ

(22 ‘

Third step: Choose the vector v =
arg Maxi<i<m, (1.0, .0, v, ) :

Output

Figure 4.1: lllustrative figure for the SMPI algorithm

Algorithm 4: Selective Multiple Power Iteration

1: Input: The tensor T =Z + 61)89’“, Minit > 101, Miter > 100, A
2: Goal: Estimate wvy.

3: for =0 to mjni: do

4:  Generate a random vector v; o

5. for j=0 to mitr do

. o T(vig,viy)
P T T v, o)
7 if 7> A and |<'Uz',ija'vi7j>| > 1—ethen
8: Vimijter = ,Ui’j
9: break
10: end if
11:  end for
12: end for

13: Select the vector v = arg maxi<i<miy, ¥ (Vimiers Vi,mier > Vi miter)
14: Output: the estimated vector v

3. Prohibiting a stopping criteria on two consecutive iterations (such as 1—|(v;_1, v;)| <
e for e > 0) and instead, use a criteria based on non-consecutive iterations distant
by A:1— (vi_a,vi) <eand A = O(n).

4. Using at least a polynomial number of iterations.
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5. Using at least a polynomial number of initialization.

4.2.2 Generalization to Tensor decomposition

SMPI is simple, parallelizable and easy to generalize. In fact, we proposed two variants of
SMPI to deal with the recovery of a spike with different dimensions and with the multi-
ple spikes recovery (related to CP tensor decomposition problem). These proposed algo-
rithms outperform existent methods in this context which shows a huge potential impact
of SMPI for practical applications.

Algorithm for spike with different dimensions

In order to make these tools versatile, less restrictive and usable for a majority of
applications, we have to consider the case where the dimensions are different: n; #
ny # ng.. For example in a video, there is no reason to impose that the time dimension
is equal to the two spatial dimensions. Thus the problem is to infer a spike in the form of
v ® vy ® v3 from the following tensor

1/2
ny+no+n
T:B<1323> v ® vy ® V3 + Z, (4.3)

where Z € R™M®™®ns js 3 tensor with random gaussian entries. Algorithm 5 is an adap-
tation of SMPI to tackle this model.

Algorithm 5: Recovery algorithm for a spike with different dimensions

Input: The tensor T = 8 (%)1/2 Vg @ vy @ Ve + Z, Minit, Miter

Goal: Estimate v,, vy, ve.

Generate mjnir random vectors {v; }1<i<,, and initialize v,? = v? = v.0 = v;;
Perform mijer times power iteration:

'Ub'Z+1 « T(Uaz+la 5 ch)/“T(vag+1a 5 ,ch)

A=

- o .
vafr <—T(:,vbg,vcg)/HT(:,vbg,vCJ)

)

i

| (4.4)

j+1 j+1 j+1 j+1 j+1
od e T(wad ol /[ Td el

Miter

5: Select the vectors (vaf, vy, Vef) = arg maxi<i<mpy, T(Va;
6: Output: Obtaining estimated vectors (v, ¢, vy 5, V)

Miter miter) .

I vbi ) vci

Low-rank CP decomposition algorithm

We consider a generalization of the tensor PCA where we consider the problem of
estimating multiple signal vectors. In this case, we can write the symmetric tensor with
multiple spikes as:

p
T=) Vs’ +Z (4.5)
=1
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The algorithm 6 is a simple variant of SMPI. Although it shares some similarities with
existing methods based on power iteration such as [WA16], it is fundamentally different
in its operating mode. Indeed, it is to the best of our knowledge, the first algorithm that
is able to take advantage of the noise-based convergence mechanism given that it shares
the same essential features with SMPI. This difference is illustrated by the substantial
improvement over existing algorithms on our numerical experiments that we present in
the next section.

Algorithm 6: Recovery algorithm for for CP decomposition

1. Input: The tensor T = Y1, /B> + Z, minit, Miter,,Al~ n)
2: Goal: Estimate {v;}/_; and {5;}]_,.
3:£=10

4 T0=T

s: for i=0 to mj,it do

6: Generate a random vector v;

7. for j=0 to mijtr do

T, v, 4,05
8: Vij+1 = Z( b2 %51)
[T (i, 1) |
9: end for
10: if H,U@miterf/\’ Ui:miter” Z 1-e¢ then
1 a; = (TPl )
: +1 _ i ®k

12: T =T - T,
13: 8 = g + {viymiter}
14:  else

15: TH =T

16:  end if

17: end for

18: Output: Estimated vectors {9;}]_, = argmaXe: ¢ /|=p 2wee ¥ (¥, v, v) and

Br=ai/vn

4.3 Empirical insights

In Figure 4.2, we compare the results of our algorithm with the state of artfor g € {1.2, 1.3,
1.4,1.8,2.2} and for n € {100,200,400}. We averaged over 50 different realizations of
T = Z + /npBv®3 where Z is a tensor with random Gaussian components. We plot the
correlation of the vector v output by each algorithm with the signal vector vy as well as
the 95% confidence interval bars. The algorithms considered are SMPI (that we perform
after symmetrizing the tensor T), the Homotopy-based algorithm (Hom) [ADGM17b], the
Unfolding algorithm [RM14] (which are considered as the two main successful algorithms
for Tensor PCA), as well as the CP tensor decomposition algorithm of the Python package
TensorLy [KPAP19] used with a rank equal to one. Similar results are obtained for n =
1000 (only for SMPI and Homotopy) and on the non symmetric case and are provided in
the Appendix.



4.3. EMPIRICAL INSIGHTS 79

The range of n used is the range commonly considered in empirical investigations of
algorithms on Tensor PCA. Indeed, for n = 1000 the tensor has 10° non-zero entries which
becomes extremely costly in memory and computational power. Furthermore, to the best
of our knowledge, all algorithms investigated exhibited negligible finite size effects in this
range of n (more details in subsection 4.5.3). We observe in Figure 4.2, that even for small
instances of n, like n = 100, our algorithm performs significantly better than the state of
art. The gap between the results of our algorithm and the state of art drastically increases
with n.

Complexity of SMPI

The complexity of SMPI is equal to minit X Mmiter X n2. In practice, minit = Miter = 100
already gives us excellent results for a SNR in the range 1 < 8 < n'/%, the complexity is
thus ~ 10n*.

4.3.1 Theoretical insights on the SMPI algorithm
The new surprising empirical observation

Probability (Success from a random initialization after n power iterations) ~ —

vn

(4.6)

The mechanism: the role of the noise for signal recovery

In the power iteration, let's denote the part associated to the noise gy and the one asso-
ciated to the signal gs.

T(,v,v)=2Z(:,v,v) + ,3<’U,U0>2110 4.7)
=gn +9s (4.8)

In Figure 4.3, we illustrate by an example, a pattern observed on all successful con-
vergence in low SNR. For a given random initialization v', we plot in blue (in both the top
and bottom subfigures) the correlation between the signal vg and v (obtained after i it-
erations on v'). In the top subfigure, we plot in orange the correlation between v, and
gn/|lgn ||, the normalized gradient associated to the noise tensor. In the bottom we plot
in orange the ratio between the contribution of the noise gradient to vy: g0 = (gn, vo)vo
and the signal gradient gs. We observe an unexpected result: the gradient Z(:, v*, v*) is
non-trivially correlated to vg and thus partially converges to vg. Moreover, the spikes in
the right figure at the beginning of the convergence suggest that Z(:, v’, v?) triggers the
convergence towards vy as it gives the largest contribution to the component of v corre-
lated to vy at the start of the convergence. This suggests that the gradient associated to
the noise actually triggers the convergence towards the signal.
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Figure 4.2: Comparison of the results of SMPI with TensorLy (TenLy) and the State-of-the-
art represented here by the Unfolding (Unf) and Homotopy-based (Hom) methods for
four values of the dimension of each axe of the tensor (n = 100, 200, 400). The results
consist of the correlation between the output of each algorithm and the signal vector.
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Figure 4.3: In blue, the correlation (v;,vy) at each iteration i. In orange in the left, the

correlation <Hg—x”,vo>. In orange in the right, the ratio %

Towards the quantification of this mechanism

Let's denote v* the output of the MLE (i.e. v* = arg max,|—1(T(v,v,v) ) and o the
gn
P =

lgn

vp) with its theoretical value obtained for n — oo using analytic formula for

output of SMPI. We can compare the experimental value of the plateau of (
( Z(:,,9)
1Z(:.0,9)[)”
| T(:,v*, v*)|| and (v*, vy) provided in [JLM*20] and the following formula for (%, v0)
(a proof could be found in appendix 4.3.1):

(v, 20) ([T, v, v)|| = B{v, o))

(4.9)
VITCw,0) 2 + 8200, 0} — 26(0,00)? T(: 0, 0)]

Z(:, v, v)
1Z( ot o)

)

For 8 = 1.44y/n, the theoretical value is
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give the average and the standard deviation obtained experimentally for different n. We
see that the theoretical value 0.496 is well inside the error bar and that the standard de-
viation gets smaller as n grows. This shows an excellent adequacy between the empirical
results of the plateau related to v and the theoretical expectation related to v*. For that
matter, it suggests that the exploration of the landscape of Tensor PCA by SMPI already
reached the large n regime in the experimental values of n considered.

Table 4.2: Experimental plateau for 5 = 1.44\/n

n 50 100 | 150 | 200 | 400
¢ vy 0469 0518 0,507 70487 | 0511
1Z(:,5,0)] | £0.148 | £0.074 | +0.056 | £0.038 | £0.025

Importance of the main features of SMPI
Importance of the symmetrized power iteration

For a non-symmetrical tensor, [HHYC20] proved that simple power iteration exhibits an
algorithmic threshold strictly equal to n'/2. For a SNR below this threshold, the output of
the power iteration behaves like a random vector at each iteration. In Figure 4.4 we plot
T (v, v, v;) for asimple power iteration (in the left) and for a symmetrized power iteration
(in the right) for a non-symmetrical tensor and for small SNR (5 = 1.2, where Sy, is the
theoretical optimal threshold [JLM*20]). We observe that while the result of simple power
iteration matches the theoretical results obtained in [HHYC20], the symmetrized power
iteration exhibits a fundamentally different and unexpected behavior that, to the best
of our knowledge, has not been fully investigated so far. The fundamentally different
behavior is very likely to its correspondence to a gradient descent that we explained in
the beginning of this section.

The role of a large step size and the stopping condition

The landscape of the cost function H(v) = —T (v, v,v) is characterized by an exponen-
tially large number of critical points [RBABC19]. To understand how a large step size (or
equivalently the use of symmetrized power iteration) is essential for the gradient descent
to escape many of the spurious minima that it may get trapped in, let's denote m; a min-
imum of v — T(v,v,v) and {v;}i1<i<, the eigenvalues of the matrix T(:,:,m;). Let's

. L o i m; + ev

assume that we are in the vicinity of m; and initialize with yy, = % and let's note
€

T(:,90,90)

Yy = ————————.Thus
I T( 90, 0)|l

T(:v y07y0) :T(:)miami) + 25T(:a mi’vl) =+ 0(62)
:T(mi,mi, m;)m; + € 2\1v1 + 0(62)

Hence, if 2|\i[ > T(m;, mi,m;) @ (y1,mi) < (yo,m;) and (y1,v1) > (yo,v1). Which
means thatif any of the eigenvalues of the Hessian matrix at m; is smaller than —2T (m;, m;, m;),
then the minimum is unstable under power iteration and the algorithm will diverge away

from it.
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Figure 4.4: For different initialization, we plot T(v;, v;, v;) at each iteration i : in the top
using a simple power iteration and in the bottom using a symmetrized power iteration
(n =200 and 8 = 1.28)
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This simple first order approximation analysis is enough to capture the behavior of
SMPIwhen escaping local minima. Indeed, we can see in the Figure 4.5, a numerical exam-
ple thatillustrates this mechanism. m; denotes the closest local minimum whose basin of
attraction is slowing the gradient descent. wfmn denotes the eigenvector associated to the
smallest eigenvalue to the Hessian matrix at m;. v; is the vector obtained after i iterations
on a random initialization. In Figure 4.a, SMPI gets temporarily stuck in a local minima m;
(a stopping condition based on two consecutive iterations will likely trigger early stopping
in this local minimum), we observe that at the same time (v, — vi,wﬁmn> grows and

Vit1 — U j
S NI
[igr — i7" ‘
imum m; along the axis corresponding to the minimal eigenvector w? .= of T(:,m,,:):
wfnm before diverging away from it as pictured in Figure 4.c. This exact same pattern hap-
pens in most of the initializations that succesfully converge towards the signal. In the
appendix, we give numerical results on the averaged number of escaped minima.

) becomes close to 1. This illustrates an oscillation around the min-

Theoretical expression for the plateau in section 4.1

Let's consider v the final minima obtained by the maximum likehood estimator, given
that it is a minima of a symmetric tensor we have the equality

T(,v,v)
Teoo)) " (4.10)

Computing the scalar product with v of each side and using that T = Z + Bv* we
have

(Z(:,0,v),v0) + B(v,v0)* = (v,00)||T(:;, v, v)]| (4.11)
SO
(2(:,v,v),v0) = (v,v0)([|T(:,v,0)[| = B{v,v0)) (4.12)
On the other side, we also have
IT(:,0,0)| = ||Z(:,v,v) 4+ B{v, vo) vo| (4.13)
SO
ITCv,0)[17 = 12, 0,0) 1 + B2(v, v0)* + 26(v,v0)*(Z(:, v, v), v0) (4.14)
Thus
(Z(:,v,v),v0) (v, v0)(IIT(:, v, v)|| = B{w, v0))

_ (4.15)
VITG v, )l = 82(0,v0) " — 28(0, 00)2(Z(:, v, v), v5)

1Z(, v, V)l

replacing the obtaining expression of (Z(:,v,v), v) in the right side of the equation

(Z(:,v,v)7v0> o <’U,’UU>(HT(:,’U,’U)|| —B(v,v0>)

— (4.16)
12Cw2)l T v, 0) 2 4+ 8200, v0) — 280,00 TCLv,0)]
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Figure 4.5: In (a) we observe that the algorithm gets stuck temporiraly in the basin of
attraction of a local minimum m;. v;;1 — v; becomes correlated to w! .= (the smallest

eigenvector of T(:, m;,:): wf.mn as illustrated in (b)) and its norm grows until the algorithm

diverges away from m;. This simple mechanism is illustrated in (c)
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The role of a polynomial iterations

It is commonly assumed that Tensor power iteration functions by increasing the correla-
tion with the signal at each step similarly to the matrix case. [RM14] performed a heuristic
analysis with a zero order approximation that suggests that an initialization that verifies
B{v,vg) > 1is required for the method to succeed by increasing the correlation. Yet, the
results in Figure 4 left, where we plot in red the initial correlation of successful vectors,
strongly suggests that the success is not correlated with its initial correlation. Moreover,
Figure 4 right where we plot the correlation with the signal in function of the iteration
shows that SMPI has a first long phase of fluctuation of exploring the landscape. Indeed,
the operating mode of power iteration seems to be different when we consider moder-
ately long times (O(n)), which indicates that this new mechanism is fundamentally differ-
ent from what happens in the matrix case, and that a polynomial number of iterations is
required. Indeed a logarithmic convergence without exploration of the landscape would
require a large initial correlation with the signal vector. Below the threshold O(n!/?), this
has an exponentially small probability to happen given that the distribution of the corre-
lation of a random vector v with the signal follows a normal law. A recent paper [DH22]
shows that power iteration fails with a number lower than polynomial using communica-
tion complexity.

The role of a polynomial initialisation

In Table 4.3, we reported in green the average of the number of initializations required
to reach a success rate of »r = 99% with mj,r = 10 % n over 10 independent runs for
each n with SMPI. This is calculated by computing the percentage of successful initializa-
tions p and then using the formula that gives the probability that at at least one of the
initializations succeeds: 1 — (1 — p)™9% = 0.99. In red we reported the number of ini-
tializations required for the naive power initialization with logarithmic steps to succeed,
which is approximately exponential. The drastic discrepancy between the two quantities
suggest that SMPI has a polynomial complexity (and not an exponential complexity) even
for n > 1000.

n 50 | 100 | 200 | 400
exp(n) ~ | 102t | 10 | 108¢ | 10'73
Minit - 99% | 10 45 71 228

Table 4.3: In green the average number of initializations required for a recovery rate suc-
cess of 99% where we see that it is linear in n. In red the approximation of exp(n) which
is the number of required initializations if the complexity were exponential.

4.3.2 Insight on the success

Tensor power iteration with a random initialization is supposed to perform poorly with
a computational threshold scaling as n!/2 [RM14] in contrast with other algorithms (such
as unfolding, sum of squares, homotopy, etc.) whose algorithms thresholds scale as n'/%.
In order to understand the reason behind this failure, a first line of research focused on
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Figure 4.6: Top : In blue the distribution of the correlation between the signal and all the
initializations, and in red the correlations of the initializations that succeeded. Bottom:
Each color represents the trajectory of the algorithm for an initalization (n = 200, g = 1.2).
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the complexity of the landscape (such as [BAMMN19] and [RBABC19]) showing the exis-
tence of an exponential number of spurious minima where the algorithm could get stuck.
However, a more recent paper [BAG)*20] provided a proof for the failure of Langevin dy-
namics as well as gradient descent with infinitely small learning rate suggesting that the
failure of local algorithms are "actually due to the weakness of the signal in the region of
maximal entropy for the uninformative prior".

It is thus very interesting to take advantage of the numerical analysis we performed
on SMPI to understand how it would be able to bypass this these possible explanations to
the failure of local iterative algorithms. (i) In the previous subsection, we observed that for
the majority of the successful convergence towards the signal, the algorithm runs through
many spurious minima but is still able to escape them thanks to its large step size. This
provides a possible explanation in how SMPI is able to navigate through such a rough
landscape in order to attain the signal vector. (ii) Numerical simulations for a low enough
SNR and a large enough n (e.g. n > 100) shows that for every successful convergence
towards the signal, it is the gradient associated to the noise Z(:, v, v) that not only trig-
gers the convergence but also carries it. This mechanism that we exhibited is consistent
with [BAGJ20] and the fact that the signal is indeed too small for its associated gradient
to converge towards the signal by itself. However, our results bring a novel important
element (which has never been considered before to the best of our knowledge) which is
that the noise gradient is also able to play an crucial role in the convergence. Thus, thanks
to this phenomenon, the smallness of the signal does not necessarily imply the failure of
the algorithm.

4.4 Numerical simulations details

Simulations for the comparison between SMPI and the unfolding method for n = 1000
were run on a cloud provider (AWS). All the other simulations were run in Python on a
Dell computer running Ubuntu 18.04.5 LTS with eight Intel Core i7-4800MQ processors at
2.70 GHz and 16GB of RAM.

Spike with different dimensions

In Figure 4.7, we investigate the case of recovering a spike v; ® vy ® v3 with different
dimensions T = 3 (%)”2 v ® v2 ® v3 + Z. For different sets of three dimensions
{(50,75,100), (75,75,75), (50, 50, 150), (50, 100, 100) } we plot the correlation between the
outputs of the algorithm and the signal vectors (in red (v1,v1), in blue (v2,v2) and in
green (vs, vs)) averaged over 50 different realizations. We see that the empirical thresh-
old matches (n; +n2 + n3)1/2 which corresponds to the optimal theoretical threshold for
a tensor with dimension n; ® ny ® nas.

Multiple spikes case

We investigate in Figure 4.8 the performance of the variant of SMPI for CP decompo-
sition. We take 3 equal for all the spikes since it is considered as the most difficult case
for spectral algorithms.

We repeat 30 times the following instance:
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Figure 4.7: For different sets of three dimensions (n1, n2,n3), we generate different real-
izations of T = f8 (%)1/2 v1 ® v ® v3 + Z where Z is a gaussian random tensor.
We plot the correlation between the output of Algorithm 5 and the signal vector (in red
for (¥1,v1), in blue for (v5, v2) and in green for (vs3, v3)) in function of 3.

+ Generate the tensor Z with iid Gaussian components

* Generate nspikes independent unitary random vectors. Each of these vectors is ob-
tained by generating a vector with iid Gaussian components and then normalizing
it.

« Compute T=Z+35>", v

* Plot the percentage of successfully recovered vectors by algorithm 6, naive power
iteration and the CP decomposition algorithm provided by the package TensorLy
[KPAP19].

In Figure 4.8, we compare the percentage of succesfully recovered vectors with a naive
power iteration and the CP decomposition algorithm provided by the package TensorLy
[KPAP19]. We see that our algorithm outperforms existing methods.

We investigate in Figure 4.9 the case of a number of spikes larger than the dimension
nspikes > 1. We see that even if the number of spikes is larger than the dimension, the
algorithm still outperforms other methods.

4.41 The averaged number of escaped spurious minima for a successful
initialization in function of n

In Table 4.4, we counted, for a successful initialization, the averaged number of spurious
minima where the algorithm gets temporarily stuck before escaping thanks to its large
step size. For different values of n, we repeated the experience for 20 independent in-
stances and averaged the number of escaped minima before converging to the signal.
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Figure 4.8: For a number of spikes equal to 20, we plot the percentage of recovered spikes
for different 5 for n = 100 in the top and n = 150 in the bottom. We see that SMPI (blue)
outperforms the naive power iteration algorithm (green) and the TensorLy algorithm (or-
ange)

Table 4.4: The averaged number of escaped spurious minima for a successful initialization
in function of n

n 50 | 100 | 150 | 200
number of escaped minima | 0.63 | 1.11 | 1.23 | 2.16
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Figure 4.9: For a number of spikes equal to 150, we plot the percentage of recovered
spikes in function of 5 averaged over 50 different tensors T with n = 100

4.4.2 Practical applications: Hyperspectral images (HSI).

As explained in [Nas13], "Typically, a hyperspectral spectrometer provides hundreds of
narrow contiguous bands over a wide range of the electromagnetic spectrum. Hyper-
spectral sensors measure the reflective (or emissive) properties of objects in the visible
and short-wave infrared (IR) regions (or the mid-wave and long-wave IR regions) of the
spectrum. Processing of these data allows algorithms to detect and identify targets of
interest in a hyperspectral scene by exploiting the spectral signatures of the materials".

Denoisingis animportant preprocessing step to further analyze a hyperspectral image
(HSI). The common denoising procedures are either based on 2-dimensional (2D) meth-
ods (mainly 2D filters) or tensor decomposition methods. In particular, there is in general
two mainly used models for tensor decomposition: Tucker decomposition and CP de-
composition (also called PARAFAC) that have different advantages and shortcomings. A
detailed survey of these methods could be found in [KB09] for example.

In [LBF12], the authors compared CP decomposition method based on the Alternating
Least Square (ALS) algorithm with existent methods (two-dimensional filter and Tucker3
that is based on a Tucker decomposition) to denoise HSI. They performed their experi-
ments on a real world data: the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
HSI, an airborne hyperspectral system flown by NASA/Jet Propulsion Laboratory (JPL). To
analyze quantitatively the denoising results, they compare the signal-to-noise ratio (SNR)
of the denoised image that is defined as:

192
1Y =2

where Y is the original image and ) the estimated image after denoising.

SNRout = 101logyg (4.17)
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Figure 4.10: The case n = 1000 in the left and the performance of SMPI in the case of
k =4 in the right

Their numerical results show that the CP decomposition model using the ALS algo-
rithm performs better than other considered methods as a denoising procedure.

In order to judge the performance of our algorithm, we perform the same experi-
ment with the same estimator and compare it with the ALS algorithm using the Python
TensorLy package [KPAP16]. The hyperspectral image we use is the open source data
given in [MGT*18] that we normalize. It consists of a tensor of size R425%861x475 \yhere
425 is the number of spectral bands and 865 x 475 is the spatial resolution.
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CP decomposition model decomposes a tensor as a sum of rank-one tensors (that we
call spikes). Thus, we first compare the SNR for different number of spikes in Table 4.5.
Then we compare the time taken for each algorithm (in seconds) in Table 4.6.

Table 4.5: Comparison between ALS based on TensorLy and SMPI

Nspikes 150 | 200 | 400 | 800
ALS (Tensorly) | 43.58 | 54.24 | 60.58 | 66.53
SMPI 44.24 | 54.53 | 60.93 | 66.91

Table 4.6: Time for each method

ALS (TensorLy) | 4 | 377 | 1566 | 2325
SMPI 33 | 387 | 995 | 1823

We see that the proposed SMPI method gives better denoising results independently
of the number of spikes. And we see that the ALS algorithm (using the TensorLy package)
is faster for small number of spikes but becomes slower than SMPI for a larger number of
spikes. Given that the optimal number of spikes is in general > 100 (in [LBF12] the optimal
was for 169 spikes), this suggests that SMPI gives better results in a shorter amountin time
than ALS.

More generally, it is important to note that there is many more practical applications
where CP decomposition and where SMPI could be an excellent candidate for improving
existent performance. Here is a non-exhaustive list of such applications:

In telecommunication, CP decomposition is used for Tensor-based modulation [DLG20].
It used for "Massive random access, whereby a large number of transmitters communi-
cate with a single receiver, constitutes a key design challenge for future generations of
wireless systems."

An important other application is the convolutional neural networks compression: for
example a CP decomposition method based on power iteration has been suggested in
[AL17] that showed a significant reduction in memory and computation cost. Given that
our method could be seen as a refinement of the simple power iteration method, we
believe that it could be very interesting to try SMPI on these models.

In [SB20], where different types of higher order data in manufacturing processes are
described, and their potential usage is addressed using methods like CP tensor decom-
position.
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4.5 Potential impact and open questions

4.5.1 Insights on the gradient-based exploration of high-dimensional non-
convex landscapes

Many recent papers [MBC*19, MKUZ19, MBC*20] utilized the landscape of Tensor PCA
and its variant Matrix Tensor PCA in order to investigate the behavior of gradient descent
in non convex high dimensional landscapes even in regimes where it should be hard. To
the best of our knowledge, the mechanism we exhibit has not been considered before.
This may be due to the fact that a large step size is required especially that our results
suggest that this may be fundamentally important . Thus, this algorithm could bring a
novel perspective in how the random landscape itself can play an important role in the
convergence towards the signal. Furthermore, it pushes us to be careful when general-
izing results obtained using gradient flow to results on gradient descent with large step
size.

4.5.2 Insights on the statistical-computational gap conjecture
Comparison with the predicted maximal theoretical results

[JLM*20] gives an analytical expression for the asymptotic theoretical optimal corre-
lation with the signal vector for n — oo. We plot in Figure 4.11 the asymptotical curve
in dashed line next to the results of SMPI for n = 50, 75,100, 150, 300,400. We obtain
a remarkable result: the empirical performance of SMPI converges towards the optimal
performance for n — oo. Indeed the transition gets sharper when n grows and its be-
havior gets closer to a discontinuous transition. Thus, these results suggest that not only
the SMPI algorithm outperforms the state of the art but it may be matching the optimal
information theory performance.

Empirical scaling of the threshold

More specifically, to quantify this scaling, we will assume that the threshold could be writ-
ten as 8 = cn® and our aim is to recover a empirically. Given ny and ny, two values of n,
we have:

log(Bn,) = log(c) + alog(ny) (4.18)
log(Bn,) = log(c) + alog(nz) (4.19)

Thus, the empirical o can be computed from the empirical thresholds as follow:

log(Bny ") — log(Bmy ")
log(ngz) — log(n1)

(4.20)

Qemp =

In the Table 4.7, we fix n; = 100 and vary nq in the set {150, 200, 400,800}. We per-
form 50 times the experiment for each ny and define 5¢™MP as the smaller 8 such that
(v,v9) > 0.95(v, vg)tn Where (v, vg)y, is the theoretical optimal correlation in the large n
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Figure 4.11: Asymptotic behavior of SMPI method (denoted St) illustrated by different
results on various values of n (from 50 to 400). The dashed line (Opt oo) corresponds to
the optimal theoretical result for n = oc.

limit given in JLM™20]. The four methods have approximately constant «, which corrob-
orate our assumption that the threshold behaves like 8 = ¢n® in this range of n. Simple
Pl, Homotopy and Unfolding exhibits empirical thresholds similar to their theoretically
conjectured ones (respectively 3, 1, 1), while SMPI has a threshold approximately equal
to zero (slightly negative as its performance improves with n).

Table 4.7: Experimental scaling for a non-symm. tensor for simple power iteration, un-
folding, homotopy and SMPI

ng 150 200 400 800
Simple Pl | 0.541 | 0.528 | 0.531 | 0.513
Homotopy | 0.235 | 0.245 | 0.248 | 0.246
Unfolding | 0.23 | 0.248 | 0.26 | 0.2516

SMPI -0.063 | -0.052 | -0.053 | -0.036

4.5.3 Discussion on a potential finite size effects

Itis logical and important to first consider the possibility that the experimental results that
we obtained could be due to finite size effects. Therefore, we stress that the main aim and
motivation of this work is not closing the gap but rather to provide novel theoretical and
experimental insights that will help us understand better this conjectured gap either to
prove it rigorously or to rule it out.

First, itis important to note that, for the best of our knowledge, all existent algorithms
exhibit negligible finite size effects for n > 100. Indeed, it is claimed that the empirical
behavior of algorithms matches the theoretical behavior for n > 50 for Unfolding and
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Tensor Power Iteration [RM14], n > 30 for Averaged Gradient Descent, n > 100 for Ro-
bust Tensor Power iteration [WA16] and n > 50 for Higher Order Orthogonal Iteration of
Tensors (HOOI) [ZX18]. In our case, SMPI exhibits a constant threshold for 100 < n < 1000.
Secondly, it could be interesting to discuss our results in light to a recent paper [BKW20]
on the importance of considering finite size effects for low degree polynomial methods
in a matrix model. We discuss the fundamental difference between our results and their
observations:

* In their paper, the final asymptotic true result and the conjectured result by [MR15]
differ only by a constant factor (v/2) (and is due to a slow convergence speed of
O(n*1/2) to the asymptotic value according to [BKW20]). In contrast, in our case,
constant factors are not relevant. Furthermore, the difference between the thresh-
old of our empirical results and the naive power iteration is fundamentally different
and differ by a factor of n'/2. Therefore, it seems unlikely that a slow convergence
speed similar to the one in [BKW20] will cause such a fundamental and massive
change in the asymptotic behavior. More specifically, the algorithmic feasibility of
SMPI can be quantified by the number of initializations necessary to recover the
signal with a linear number of iterations (if it is polynomial or exponential). As we
show in our Table 4.7 of our main paper, the increase of required initialization has
an empirical linear scaling up to n = 800. So it may be extremely unlikely that it will
suddenly jump to an exponential number.

« It is important to point out that the dynamics of the empirical value is also fun-
damentally different. Indeed, in the case of [BKW20], the empirical performance
stagnates at the perfect theoretical bound 1 until n = 104, where it begins decreas-
ing and converges to the true asymptotic value 1.8 as n increases. This decrease
of performance as n increases is very typical of finite size effects. In contrast, the
dynamics of the evolution of the performance of SMPI is fundamentally different: in
Figure 3.a of our paper, we observe that as n grows, the average correlation actually
improves and converges towards the theoretical result!

* Moreover, note that, their problematic concerns the matrix case. However, we ar-
gue that we can't compare directly n for a tensor T and a matrix M. Indeed, there is
more random variables in a tensor with n; = 103 than in a matrix with ny = 10* given
that n$ > n2. In addition, updating the vector with a power iteration for M.v (where
M has n, elements) consists in a sum of 10* (pondered) random gaussian variables,
while T.vv (where T has n; elements) consists in a sum of 10° (pondered) random
variables. The same goes for the operator norm of the matrix max,es,, Mvv that
sums n3 variables and the tensor maxyes,, Tvvv that sums n3 variables (note that
the Maximum likehood estimator returns the vector that maximises the operator
norm). Thus, Central limit theorem suggests that a tensor with n; = 10% should
have less fluctuations and finite size effects than a matrix with no = 10%. Finally,
and as explained in our answer to first point of the reviewer 3, n = 10° for a tensor
will require a storage capacity of 8PetaBytes that is 100 times larger than the best
high-memory offers of cloud computing.



Chapter 5

Conclusion and perspectives

5.1 Conclusion

The contribution of this thesis could be divided in two main projects. In the first one, we
introduced a novel framework for the tensor decomposition based on trace invariants.
Within this framework, we provide different algorithms to recover a signal vector with
theoretical guarantees. These algorithms use tensor contractions that has a high potential
of parallelization and computing optimization. We illustrate the practical pertinence of
our framework by presenting some examples of algorithms as well as generalizations of
these algorithms for Canonical polyadic (CP) decomposition and Tucker decomposition
methods. Our experimental results show that the tetrahedral graph performs better than
the the state of the art for Tensor PCA, and that its tensor decomposition generalizations
show a better robustness to noise comparing to existent algorithms. Interestingly, our
framework is also able to extend the theoretical and practical study of tensor PCA to new
and less restrictive situations like data where the dimensions of the axes are different.
Important directions of future research is to explore the potential of more general graphs,
as well as investigate the new proposed theoretical threshold for different dimensions in
the context of tensor decomposition.

Inthe second project, we introduced a novel algorithm named Selective Multiple Power
Iteration (SMPI) for the Tensor PCA problem. Various numerical simulations for & = 3 in
the conventionally considered range n < 1000 show that the experimental performance
of SMPI improves drastically upon existent algorithms and becomes comparable to the
theoretical optimal recovery. We also provide in the supplementary material multiple
variants of this algorithm to tackle low-rank CP tensor decomposition. These proposed
algorithms also outperforms existent methods even on real data which shows a huge po-
tential impact for practical applications. Thus, for future work, it seems very interesting
to go further in terms of theoretical investigations of these new insights offered by SMPI
and also their consequences for related problems: the study of the behavior of gradient
descent methods for the optimization in high-dimensional non-convex landscapes that
are present in various machine learning problems and also the study of the conjectured
statistical-algorithmic gap.

97



98 CHAPTER 5. CONCLUSION AND PERSPECTIVES

5.2 Perspectives

Applications

One important perspective is to look more profoundly at the potential applications and
more extensive examples and models where these new tools could be useful. Indeed,
real life applications concern size scales similar to our experiments where we obtained
very encouraging preliminary results and a substantial empirical improvement over the
state of the art was observed. Indeed, Tensor decomposition have been used to a large
and various number of fields. This could cover for example the compression of neural
networks, or the denoising of hyperspectral images. There have been multiple works
[AL17, WYT20, WGY21] on the compression of neural network that helps the interpretabil-
ity and the speed of neural network by reducing the size of each tensor layer.

There is multiple methods that investigate algorithms based on deflation [dSCdA15a].
That is an algorithm that perform CP decomposition of a high rank from an algorithm
that performs a rank-one approximation. The performance of these methods may differ
whether the rank is low or large.

For some applications, we can study adaptation of our frameworks and methods to
other type of data such as sparse tensors [NWZ20, Cd21].

Spin glass

Another direction of research concerns optimization of Spherical p-spin glass, that is ap-
proximating the deepest minimum value by searching whether a near optimal configura-
tion can be computed in polynomial time rather than exponential [EAMS21]. Preliminary
results and empirical observation seems to suggest that we are able to recover a poly-
nomial number of vectors among which the signal vector is found before the statistical
threshold as long as we are above the critical threshold. However, we find deeper minima
so for Tensor PCA, Maximum Likehood Estimator won't be able to indicate which vector is
the signal. But for optimization purposes, it could be very interesting to investigate such
intriguing results.

Combination of graphs

One could ask oneself what is the best class of graphs. A further idea is to investigate if a
sum of graphs provide better results. Our first experiments shows a high promise. This
is based on the simple fact that by summing two different variables, the variance of their
sum is smaller than the sum of their variance. Variance of the noise matrix gets smaller,
but the pure signal matrix adds as it is. Empirical results on the sum of two matrices
confirm this intuition. This is illustrated in the Figure 5.1

Random Tensor Theory for SMPI

Oleg Evnin [Evn20] began a study of power iterations based on random tensor theory and
trace invariants. As we explained in Chapter 2, it amounts to the study of the associated
graph illustrated in Figure 5.2. Based on the hypothesis in 4.6, the objective is to prove
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Figure 5.1: A finite sum of graphs might improve the performance

that the expectation of this graph is non zero at the first order of 1/N. Given our empirical
results, it is interesting to further pursue this investigation by considering a polynomial
number of iterations. This could be done by adapting the tools used by Evnin and ex-
amining the rate of growth of a random initial vector under successive applications of a
nonlinear map defined by the random tensor.

Figure 5.2: The graph associated to the power iteration method with 3 iterations for an
initialization v. The cross represents the vector v and the black dot the tensor T

Discreet step size investigation for SMPI

[BAG)21, BAGJ22] proposed a novel approach to study statistics associated to the stochas-
tic gradient descent (SGD) depending on the initialization and the discreet step size. They
found out a new threshold for the step size above which the behavior of SGD changes
fundamentally. Adapting this approach for SMPI could be extremely useful for the theo-
retical understanding of its performance and the importance of discreet variable step size
in SMPI. On the other hand, obtaining theoretical understanding of SMPI through this ap-
proach may bring important insights on the performance of SGD in the deep learning
framework.



Appendix A

Synthese de la thése en Francgais:

L'intelligence artificielle (IA) et 'apprentissage automatique (ML) ont démontré leur poten-
tiel pour révolutionner les industries, les services publics et la société, atteignant ou méme
dépassant les niveaux humains de performance en termes de précision pour plusieurs ap-
plications, tels que la reconnaissance d'images et de la parole [MKS™15] et la traduction
linguistique [YHPC18].

S'appuyant sur son énorme potentiel, I'|A gagne rapidement en influence dans la vie
quotidienne des gens et dans des domaines professionnels tels que la santé, I'éducation,
la recherche scientifique, les communications, les transports, la sécurité et l'art. Cepen-
dant, alors méme que les systemes d'IA commencent a étre largement déployés dans
I'économie, de multiples problémes associés a I'lA s'amplifient.

Une difficulté majeure fréquemment évoquée est I'interprétabilité des méthodes. Cela
s'est aggravé avec la diffusion des technologies basées sur le ML dans des domaines cri-
tiques pour la sécurité tels que les soins de santé, la finance, le droit, la défense et la gou-
vernance, qui exigent la responsabilité des décisions et de la maniére dont les données
sont utilisées. En effet, de tels domaines nécessitent la confiance des utilisateurs dans
une décision qui est obtenue en ayant une méthode qui est facilement interprétable, liée
a l'utilisateur, connecte la décision avec des informations contextuelles, des lois connues
et des expériences antérieures et reflete le mécanisme de pensée de l'utilisateur pour
atteindre la décision.

D'autre part, de plus en plus de travaux se concentrent sur la construction de modeles
légers de ML tels que les petits réseaux de neurones (pour les appareils Internet des
objets (IoT), la formation en temps réel, etc.) qui nécessitent moins de puissance de calcul,
sont plus pratiques, intéressants, utiles et généralement plus interprétables.

Pour résoudre ces problemes, diverses recherches ont été menées pour améliorer
la prise de décision impartiale et impartiale, améliorer la capacité de généralisation des
modeles a des domaines de données plus larges et développer des explications pour les
modeles ML. Ces objectifs sont fortement dépendants les uns des autres et I'interprétabilité
est un aspect fondamental qui améliore les deux autres.
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Deux principaux axes de recherche sont poursuivis pour améliorer l'interprétabilité :

1. Développer et améliorer des approches intrinsequement explicables, également
connues sous le nom de modeles en boite blanche, tels que les arbres de décision
et les modeles de régression linéaire.

2. Fournir des explications post-hoc pour les modéles déja formés, dits "boite noire".

Une démarche commune a ces deux axes de recherche repose sur le développement
de nouveaux outils tensoriels.

Les tenseurs sont un type de structure de données qui généralise les vecteurs et les
matrices a des dimensions supérieures ou égales a trois. lls sont devenus omniprésents
dans l'apprentissage automatique moderne en raison de leurs capacités a conserver et a
capturer une structure multidimensionnelle essentielle pour de multiples applications.

Les réseaux de neurones profonds joignent généralement des tenseurs d'ordre supérieur
via des architectures telles que des couches convolutives, comme illustré sur la figure 1.2.
En fait, la capacité des réseaux de neurones convolutifs profonds a préserver la structure
locale de I'entrée est considérée comme une propriété cruciale pour les grandes perfor-
mances obtenues [KPAP16].

L'analyse en composantes principales tensorielle (Tensor PCA) :

Le tenseur PCA a été introduit dans les travaux pionniers de [RM14] et consiste a
récupérer un pic de signal 'vg@k quiaété corrompu paruntenseurdebruitZ: T = Z+Bv8§k
oU vy est un vecteur unitaire et 5 le rapport signal sur bruit (SNR). La motivation de Tensor
PCA est triple:

+ Le tenseur PCA pourrait étre considéré comme un simple cas de décomposition du
tenseur. Cependant, il a une motivation différente qui est I'étude théorique des lim-
itations de calcul dans le régime de tres faible SNR alors que la littérature sur la
décomposition du tenseur aborde principalement des applications pratiques, sou-
vent dans un grand SNR. Pourtant, les algorithmes développés pour Tensor PCA
pourraient étre généralisés pour traiter la décomposition de Tensor comme dans
[WA16].

* Enplusde cela, Tensor PCA est également souvent utilisé comme probleme d'inférence
prototypique pour I'étude théorique de la difficulté de calcul de I'optimisation dans
des paysages non convexes de grande dimension, en particulier en utilisant I'algorithme
treés répandu de descente de gradient et ses variantes ([BAG) 20, MKUZ19, MBC* 19,
MBC™20]). En effet, ces algorithmes sont utilisés avec un grand succés empirique
dans de nombreux domaines du ML comme le Deep Learning, mais malheureuse-
ment ils sont généralement dépourvus de garanties théoriques. Comprendre la
dynamique des méthodes de descente de gradient dans des paysages spécifiques
tels que Tensor PCA pourrait apporter de nouvelles informations.

+ L'une des principales caractéristiques de Tensor PCA est son écart algorithmique
statistique conjecturé: alors que la théorie de I'information montre qu'il est théorique-
ment possible de récupérer le signal pour 5 ~ O(1), tous les algorithmes existants



102 APPENDIX A. SYNTHESE DE LA THESE EN FRANCAIS :

ont été montrés ou conjecturés avoir un seuil algorithmique pour & > 3 d'au moins
B ~ O(nk=2)/%)_ Ainsi Tensor PCA est considéré comme un cas d'étude intéressant
d'un tel écart qui apparait dans divers autres problemes (voir les références dans
[BAG)'20] et [LZ20]).

Premiére approche : Théorie des tenseurs aléatoires (RTT) pour
la Tensor PCA

Nous avons d'abord proposé dans la premiére section de cette thése un cadre théorique
permettant récupérer le signal dans le modeéle Tensor PCA en utilisant des invariants de
trace. Mais d'abord, donnons l'idée générale du cadre proposé. Il est usuel dans le cas
de la PCA matricielle d'utiliser la théorie spectrale associée aux matrices (valeurs pro-
pres et vecteurs propres) pour sa simplicité et ses excellentes performances. Cependant,
la généralisation directe des valeurs propres et des vecteurs propres au cas du tenseur
n'est pas pratique car leur nombre devient exponentiel et leur définition est ambigue.
Notre approche consiste donc a construire une matrice a partir du tenseur étudié, ce
qui nous permettra d'exploiter la théorie spectrale bien maitrisée des matrices afin de
récupérer le signal. Cependant, il y a deux principales caractéristiques importantes que
ces matrices doivent posséder pour qu'elles soient utiles : elles doivent étre pertinentes,
dans le sens ou elles doivent révéler I'information/signal caché dans le tenseur méme en
régime de signal faible, et elles doivent également étre faciles a étudier d'un point de vue
probabiliste afin d'apporter des garanties théoriques. De maniére pratique, notre cadre
théorique basé sur la Théorie des tenseurs aléatoires (RTT) nous permet de sélectionner
des matrices qui répondent a ces exigences. En effet, nous fournissons des matrices ca-
pables d'obtenir le signal dans le régime de bruit élevé, et nous avons accés a des outils
combinatoires énumératifs simples afin d'avoir des garanties théoriques sur leurs perfor-
mances.

La théorie des tenseurs aléatoires (RTT)

La théorie des tenseurs aléatoires (RTT) fournit un ensemble d’outils combinatoires dédiés
a I'étude des graphes invariants de trace [Gur17]. Les invariants de trace d'un tenseur
T e ®f:1 R™ sont des scalaires de réseaux de tenseurs qui sont invariants par les trans-
formations O(n1) x -+ x O(ny) :

1 k
J1--Jk

RTT permet d'obtenir des résultats probabilistes importants sur les invariants de trace en
utilisant une combinatoire énumérative simple. En particulier, il donne un moyen simple
de calculer les moments (espérance, variance, etc.) de la distribution de ces scalaires pour
des tenseurs aléatoires. Ces invariants peuvent étre schématisés par des graphes comme
illustré dans la figure A.1.
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Figure A.1: lllustrations d’exemples d'invariants.

Matrices associées pour les traces d'invariants et nouveaux outils

Etant donné que notre objectif de Tensor PCA est de récupérer le signal, nous devrions
trouver des objets mathématiques capables de fournir un vecteur. A cet effet, nous in-
troduisons un nouvel ensemble d’outils sous forme de matrices. On note Mg . la matrice
obtenue en coupant une aréte e d'un graphe G en deux demi-arétes (voir Figure A.2 pour
un exemple). Cette coupure revient a ne pas sommer sur les deux indices i; et is as-
sociés a ces deux demi-arétes et a les utiliser pour indexer la matrice a la place. Nous
supprimerons l'indice G, e de la matrice lorsque le choix du graphe et de I'aréte sera clair.
Avantageusement, nous pouvons calculer les normes d'opérateur de ces matrices en util-
isant les mémes outils de RTT.

aréte e ~_ Scinder l'aréte e i
——e - =——e
Ig(T) = Ty Tiji Mg e = (Tiyji Tigjr )iy ineln]

Figure A.2: Obtention d’'une matrice a partir d'un invariant de trace shcématisé par un
graphe G.

En utilisant ces outils et cet algorithme, nous sommes maintenant en mesure d'étudier
les performances de notre cadre dans divers contextes théoriques. Nous commencons
par étudier les algorithmes associés a deux invariants de trace de degré 2. lls sont consti-
tués du diagramme melonique et du diagramme tétard. Fait intéressant, il s'avere qu'ils
sont équivalents aux deux algorithmes de I'état de I'art pour Tensor PCA, le dépliement
du tenseur et la méthode basée sur 'lhomotopie, comme illustré sur la figure 3.12. En-
suite, nous décidons d'aller plus loin en termes de degré de graphe et d'étudier les al-
gorithmes associés aux graphes parfaits a une factorisation (constitués par le tétraedre
quand k = 3).

Les deux derniéres sous-sections de cette section illustrent la versatilité de ce cadre
théorique. Nous étudions le cas ou les dimensions n; du tenseur T (T € ®f:1 R"™) ne
sont pas nécessairement égales. Ce qui est important pour les applications pratiques
ou les dimensions sont naturellement asymétriques. Dans la derniere sous-section, nous
prouvons que nos méthodes nous permettent de dériver un nouveau seuil algorithmique
pour des cas plus généraux. Ce qui est a notre connaissance le premier a généraliser le

seuil n*/* pour un tenseur T € (R")®*. Ce cadre nous permet de dériver un nouveau

seuil théorique max ((Hle n;)t4, n3/2> pour des tenseurs de dimensions, qui sont trés



104 APPENDIX A. SYNTHESE DE LA THESE EN FRANCAIS :

courantes dans les applications réelles.

Seconde approche : Nouvel algorithme nommé SMPI

Dans ce chapitre, nous avons introduit un nouvel algorithme nommé Selective Multiple
Power Iteration (SMPI) pour limportant probleme Tensor PCA.

L'algorithme SMPI proposé (Algorithme 1) consiste a appliquer, en paralléle, la méth-
ode d'itération de puissance avec mjtr itérations a minit initialisations aléatoires différentes.
Ensuite, SMPI utilise I'estimateur du maximum de vraisemblance pour sélectionner le
vecteur de sortie dans ce sous-ensemble en choisissant le vecteur qui maximise T (v, v, v).

lllustration du principe de Selective Multiple Power Iteration Entrée

Tensor T = Z + Bui*

Premiére étape : Générer mjnjt vecteurs aléatoires. ... D’mmn
" . . ; Tvlv!
Seconde étape : Itérer mijtr fois : vf“ = — . .
Jayd H .
7ol |
mj mi
O I K
Troisiéme étape: Choisir le vecteur v =
mj mj M .
arg Maxi<i<m, (1.0, .0, ©.v; ).
Sortie

Figure A.3: Figure illustrative pour l'algorithme SMPI

Les propriétés essentielles de SMPI

Nous soulignons ici une différence importante et fondamentale entre notre algorithme
et les algorithmes précédents basés sur l'itération de puissance. Pour que cette méthode
réussisse dans le réglage SNR faible, nous avons besoin de ces cing fonctionnalités que,
a notre connaissance, nous sommes les premiers a imposer (voir Tableau A.1) :

1. Utilisation d'une itération de puissance ou d'une descente de gradient avec une taille
de pas suffisamment grande.

2. Dans le cas d'une itération de puissance et d'un tenseur non symétrique, utiliser la
version symétrisée (ou de maniére équivalente, symétriser le tenseur).
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3. Interdire un critéere d'arrét sur deux itérations consécutives (comme 1 — |[(v;_1, v;)| <
e pour € > 0) et a la place, utiliser un critéres basés sur des itérations non consécu-
tives distantesde A : 1 — (v,_p,v;) < e et A = O(n).

4. Utilisant au moins un nombre polynomial d'itérations.

5. Utilisant au moins un nombre polynomial d'initialisations.

Table A.1: Les cinq caractéristiques essentielles de SMPI par rapport aux travaux précé-
dents portant sur l'itération de puissance

Pas Nbr. poly. Nbr. poly. | Pas de stop

Papier Symétrie discret | d'initialisat. | d'iterations | condition
zoﬂa[r\]/%s;; 7] Oui Oui Non Non Non
23;;?&:\52'2'6] Non | Oui oui oui oui
gg’;(f[r;:éffzaé’]' oui Non oui oui oui
gggzeijﬁzaZ"]' oui Oui Oui Non Oui
SZI\(;I;I Oui Oui Oui Oui Oui
Résultats

Diverses simulations numériques pour k& = 3 dans la plage conventionnellement con-
sidérée n < 1000 montrent que les performances expérimentales de SMPI s'améliorent
considérablement par rapport aux algorithmes existants et deviennent comparables a la
récupération optimale théorique. Nous fournissons également de multiples variantes de
cet algorithme pour aborder la décomposition du tenseur Canonical polyadic (CP) de bas
rang. Ces algorithmes proposés surpassent également les méthodes existantes, méme
sur des données réelles, ce qui montre un tres grand impact potentiel pour les applica-
tions pratiques.

De plus, nous présentons de nouveaux résultats théoriques sur le comportement des
méthodes SMPI et de descente de gradient pour l'optimisation dans des paysages non
convexes de grande dimension qui sont présents dans divers problemes d'apprentissage
automatique. Notons que, méme si SMPI présente des résultats empiriques remarquables,
nous ne donnons pas de garanties théoriques sur les performances de cet algorithme
dans ce travail. Pour les applications critiques, cela peut étre un inconvénient par rapport
a certains algorithmes existants malgré leurs performances plus faibles (par exemple, les
algorithmes du cadre théorique précedemment introduit ou Sum-of-Squares).
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Perspectives

Applications

Une perspective importante est d'examiner plus en profondeur les applications poten-
tielles et des exemples et modeles plus généraux ou ces nouveaux outils pourraient étre
utiles. En effet, les applications réelles concernent des échelles de taille similaires a nos
expériences ou nous avons obtenu des résultats préliminaires trés encourageants et une
amélioration empirique substantielle par rapport a I'état de I'art a été observée. En effet,
la décomposition du Tenseur a été utilisée pour un nombre important et varié de do-
maines. Cela pourrait couvrir par exemple la compression de réseaux de neurones, ou le
débruitage d'images hyperspectrales. Iy a eu plusieurs travaux [AL17, WY20, WGY21]
sur la compression de réseaux de neurones qui aide l'interprétabilité et la vitesse du
réseau de neurones en réduisant la taille de chaque couche de tenseur.

[l existe plusieurs méthodes qui étudient les algorithmes basés sur la déflation [dSCdA15a].
C'est un algorithme qui effectue une décomposition CP d'un rang élevé a partir d'un algo-
rithme qui effectue une approximation de rang un. Les performances de ces méthodes
peuvent différer selon que le rang est faible ou élevé.

Pour certaines applications, nous pouvons étudier 'adaptation de nos cadres théoriques
et méthodes a d'autres types de données comme les tenseurs creux [NWZ20, Cd21].

Spin glass

Une autre direction de recherche concerne I'optimisation du verre sphérique p-spin, c'est-
a-dire I'approximation de la valeur minimale la plus profonde en cherchant si une config-
uration quasi optimale peut étre calculée en temps polynomial plutét qu'exponentielle
[EAMS21]. Les résultats préliminaires et I'observation empirique semblent suggérer que
nous sommes capables de récupérer un nombre polynomial de vecteurs parmi lesquels
le vecteur signal se trouve avant le seuil statistique tant que nous sommes au-dessus du
seuil critique. Cependant, nous trouvons des minima plus profonds, donc pour Tensor
PCA, l'estimateur de similarité maximale ne pourra pas indiquer quel vecteur est le sig-
nal. Mais a des fins d'optimisation, il pourrait étre tres intéressant d'étudier des résultats
aussi intrigants.

Combinaison de graphes

On pourrait se demander quelle est la meilleure classe de graphes. Une autre idée con-
siste a rechercher si une somme de graphiques fournit de meilleurs résultats. Nos pre-
mieres expériences sont treés prometteuses. Ceci est basé sur le simple fait qu’en som-
mant deux variables différentes, la variance de leur somme est inférieure a la somme de
leur variance. La variance de la matrice de bruit diminue, mais la matrice de signal pur
s'ajoute telle quelle. Des résultats empiriques sur la somme de deux matrices confirment
cette intuition. Ceci est illustré dans la figure 5.1
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Théorie des tenseurs aléatoires pour SMPI

Oleg Evnin [Evn20] a commencé une étude des itérations de puissance basée sur la théorie
des tenseurs aléatoires et les invariants de trace. Comme nous l'avons expliqué au chapitre
2, cela revient a I'étude du graphe associé illustré sur la figure A.4. En se basant sur
I'hypothése de 4.6, I'objectif est de prouver que l'espérance de ce graphe est non nulle
au premier ordre de 1/N. Compte tenu de nos résultats empiriques, il est intéressant de
poursuivre cette investigation en considérant un nombre polynomial d'itérations. Cela
pourrait étre fait en adaptant les outils utilisés par Evnin et en examinant le taux de
croissance d'un vecteur initial aléatoire sous des applications successives d’'une carte non
linéaire définie par le tenseur aléatoire.

Figure A.4: Le graphe associé a la méthode d'itération puissance a 3 itérations pour une
initialisation v. La croix représente le vecteur v et le point noir le tenseur T

Etude sur la taille de pas discrets pour SMPI

[BAG)22] a proposé une nouvelle approche pour étudier les statistiques associées a la de-
scente de gradient stochastique (SGD) en fonction de linitialisation et de la taille du pas
discret. lls ont découvert un nouveau seuil pour la taille du pas au-dessus duquel le com-
portement de SGD change fondamentalement. L'adaptation de cette approche pour SMPI
pourrait étre extrémement utile pour la compréhension théorique de ses performances
et de I'importance de la taille de pas variable discrete dans SMPI. D'autre part, 'obtention
d’'une compréhension théorique de SMPI grace a cette approche peut apporter des infor-
mations importantes sur les performances de SGD dans le cadre de l'apprentissage en
profondeur.
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Appendix Chapter Random Tensor

B.1 Gaussian expectation of trace invariants

Let's consider a graph G of order d associated to a trace invariant Ig(T) where T is a
tensor of order k. Since the trace invariant is a contraction of pairs of indices of d copies
of T, we denote the c¢-th index of the i-th copy of T by a;¢ and the set of the d indices of
the i-th copy by a;P. By the definition of the Gaussian measure we have the equation:

k
E(Trg(T) =>_ 0% D> [l0uras, (B.1)
a 1

T€S(k) j=

where &(k) is the symmetric group (the group of all permutations of a set made of n
elements, where we define a permutation of a set by an arrangement of its elements in
a linear order. For example the permutations of {1, 2,3} are (1,2, 3),(1,3,2),(2,1, 3),
(2,3,1),(3,1,2),(3,2,1).).

> . indicates a sum over all the indices involved in the computation of the trace invari-
ant, illustrated by a half-edge in the graph (we have k x d indices in total: k indices for each
one of the d copies of T of the trace invariant expression). §9, indicates that contracted
indices (illustrated by being two ends of the same edge) of the tensors have to be equal.
The term %paj?m indicates that we set equal the ¢-th indices of the copy j and 7(j) of T

force {1,...,d}

In order to have a clearer representation of the expression in equation B.1, in par-
ticular the sum over the symmetric group, we introduce the concept of covering graph
used in [Gur17]: a covering graph of G consists in adding d/2 new edges of color 0 (also
called propagators) relying pairwise the vertices of G (Figure 3.2 for an example). We use
the covering graphs to illustrate the permutations 7 € &(k). Then, an edge of color 0
between two vertices i and j will identify all the indices of the i-th and j-th copies of T.
Thus, it will be equivalent to the term 5aj17ajf(j)- Using the covering graph, we will be able

to rewrite equation B.1.
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For example, in the case where the edges could have only one color, we have the
formula:

3
E(Trg(T)) = > Y I 11 Ja;e ane

G, g'\E0(g")=g aa \c=lec=(vj,vx)€E(G)

11 Oyt ag10a,2,0g200,% a0 |
eV=(

vp,vq)€EC(G)

Where we denote £¢(G) the set of edges of color c of G. Thus {G’, G'\E°(G’) = G} denotes
the graphs which restrict to the graph G when we remove their edges of color 0, which
are by the definition the covering graphs.

Let ¢y, co € {0,...,d} be two different colors of edges. We denote F1>2(G) the num-
ber of closed cycles (that we also call face) of 2 colors of G. More explicitly, it consists of
the number of connected subgraphs left when we keep in G only the edges of colors ¢y, cs.
We denote F(G) = 261#26{1’.”@} Feue2(G).

Then, with a little work (see [Gur14] for a proof), we obtain :
E(Trg(T) = Y of@-F@O = § ki), (B.3)
g/ﬁg/\g()(g/):g g/g/\gO(g/):g

This will be the expression we will use to calculate the expectations of our graphs if each
edges has only one color.

B.2 Useful theorems.

The following theorems will be useful for the demonstrations of the proposed theorems.

« Wedin perturbation ([Wed72]): Let M = BvovoTJrNa square matrix with ||vg|| = 1.

Let v denote the eigenvector with the largest eigenvalue of M. If 3 > 2[|N||,, then:

8|V [ op
62

1—(v,v9) <

. (B.4)

+ Chebyshev inequality ([Ros14]): Let X be a random variable with finite expected
value p and finite non-zero variance 2. Then for any real number C > 0,

1
Pr(|X —p| > Co) < Yo7k (B.5)
where Pr denotes the probability.
+ Gelfand’'s Formula ([Gel41]): For any matrix norm |||, we have:
1
p(A) = lim ||A%]5. (B.6)

5—00
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where p(A) is the spectral radius of A: the largest absolute value of its eigenvalues.

In particular, if A is a real matrix, we can choose the Frobenius norm:

|Allg = y/trace(AT A). (B.7)

B.3 The perfect one-factorization graph.

In the mathematical field of graph theory, a graph G is said to be one-factorizable ([Wag92])
if:

* Itis k-regular, which means that each vertex is incident to exactly k edges.

* Its edges can be colored in k colors such that no two edges incident to the same
vertex have the same color.

A perfect one-factorization of G happens if, for every two colors ¢; and ¢, of the & colors,
restricting G to the edges of color ¢; and ¢o and removing all the edges colored differently,
leads to a single connected cycle. In other words, the number of the faces associated to
the colors ¢; and ¢z is always equal to one: F1°2(G) = 1 V¢, co. Weillustrate this property
in Figure B.1 where we see that restricting to the red and green colors, or the red and blue
colors for a complete graph for k = 5, leads to a single connected cycle.

It is conjectured ([Wag92]) that they exist for all n but, until now, they were proven
only for prime numbers and up to 56. We use this particular set of graphs because of its
combinatorial simplicity. The perfect one-factorization graphs have already been studied
in the context of random tensors in [FRV19a].

(@) Complete graph for k =5

Figure B.1: Complete graph for k = 5 and some two colors restriction



Bibliography

[AAJM+20]

[ABGD20]

[ACO08]

[ADGM17a]

[ADGM17b]

[AGHT12]

[AGHT14]

[AGHK13]

[AG)15]

Mohamed Alloghani, Dhiya Al-Jumeily, Jamila Mustafina, Abir Hussain, and
Ahmed ] Aljaaf. A systematic review on supervised and unsupervised ma-
chine learning algorithms for data science. Supervised and unsupervised
learning for data science, pages 3-21, 2020.

Remi C. Avohou, Joseph Ben Geloun, and Nicolas Dub. On the counting of
O(N) tensor invariants. Adv. Theor. Math. Phys., 24(4):821-878, 2020.

Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase
transitions. In 2008 49th Annual IEEE Symposium on Foundations of Computer
Science, pages 793-802. IEEE, 2008.

Anima Anandkumar, Yuan Deng, Rong Ge, and Hossein Mobahi. Homotopy
analysis for tensor pca. In Satyen Kale and Ohad Shamir, editors, Proceed-
ings of the 2017 Conference on Learning Theory, volume 65 of Proceedings of
Machine Learning Research, pages 79-104. PMLR, 07-10 Jul 2017.

Anima Anandkumar, Yuan Deng, Rong Ge, and Hossein Mobahi. Homotopy
analysis for tensor pca. In Conference on Learning Theory, pages 79-104.
PMLR, 2017.

Anima Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Matus Tel-
garsky. Tensor decompositions for learning latent variable models. arXiv
preprint arXiv:1210.7559, 2012.

Animashree Anandkumar, Rong Ge, Daniel Hsu, Sham M Kakade, and Ma-
tus Telgarsky. Tensor decompositions for learning latent variable models.
Journal of Machine Learning Research, 15:2773-2832, 2014.

Animashree Anandkumar, Rong Ge, Daniel Hsu, and Sham Kakade. A tensor
spectral approach to learning mixed membership community models. In
Conference on Learning Theory, pages 867-881. PMLR, 2013.

Animashree Anandkumar, Rong Ge, and Majid Janzamin. Learning over-
complete latent variable models through tensor methods. In Conference on
Learning Theory, pages 36-112. PMLR, 2015.

111



112

[AHK12]

[AL17]

[AVT07]

[BAO3]

[BAG)*20]

[BAGJ21]

[BAGJ22]

[BAMMN19]

[BB20]

[BBAPOS5]

[BCRT20]

[BHK'19]

BIBLIOGRAPHY

Animashree Anandkumar, Daniel Hsu, and Sham M Kakade. A method of
moments for mixture models and hidden markov models. In Conference on
Learning Theory, pages 33-1. JMLR Workshop and Conference Proceedings,
2012.

Marcella Astrid and Seung-lk Lee. Cp-decomposition with tensor power
method for convolutional neural networks compression. In 2077 IEEE In-
ternational Conference on Big Data and Smart Computing (BigComp), pages
115-118. IEEE, 2017.

Hervé Abdi, Dominique Valentin, et al. Multiple factor analysis (mfa). Ency-
clopedia of measurement and statistics, pages 657-663, 2007.

Gérard Ben-Arous.  Aging and spin-glass dynamics.  arXiv preprint
math/0304364, 2003.

Gerard Ben Arous, Reza Gheissari, Aukosh Jagannath, et al. Algorithmic
thresholds for tensor pca. Annals of Probability, 48(4):2052-2087, 2020.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. Online stochastic
gradient descent on non-convex losses from high-dimensional inference. J.
Mach. Learn. Res., 22:106-1, 2021.

Gerard Ben Arous, Reza Gheissari, and Aukosh Jagannath. High-
dimensional limit theorems for sgd: Effective dynamics and critical scaling.
arXiv preprint arXiv:2206.04030, 2022.

Gerard Ben Arous, Song Mei, Andrea Montanari, and Mihai Nica. The land-
scape of the spiked tensor model. Communications on Pure and Applied
Mathematics, 72(11):2282-2330, 2019.

Matthew Brennan and Guy Bresler. Reducibility and statistical-
computational gaps from secret leakage. In Conference on Learning
Theory, pages 648-847. PMLR, 2020.

Jinho Baik, Gérard Ben Arous, and Sandrine Péché. Phase transition of the
largest eigenvalue for nonnull complex sample covariance matrices. The
Annals of Probability, 33(5):1643-1697, 2005.

Giulio Biroli, Chiara Cammarota, and Federico Ricci-Tersenghi. How to iron
out rough landscapes and get optimal performances: averaged gradient
descent and its application to tensor pca. Journal of Physics A: Mathematical
and Theoretical, 53(17):174003, 2020.

Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur
Moitra, and Aaron Potechin. A nearly tight sum-of-squares lower bound
for the planted clique problem. SIAM Journal on Computing, 48(2):687-735,
2019.



BIBLIOGRAPHY 113

[BKW20] Afonso S Bandeira, Dmitriy Kunisky, and Alexander S Wein. Average-case
integrality gap for non-negative principal component analysis. arXiv preprint
arXiv:2012.02243, 2020.

[BLHG10] Franziska Bell, Daniel S Lambrecht, and Martin Head-Gordon. Higher or-
der singular value decomposition in quantum chemistry. Molecular Physics,
108(19-20):2759-2773, 2010.

[BM11] Mohsen Bayati and Andrea Montanari. The dynamics of message passing
on dense graphs, with applications to compressed sensing. [EEE Transac-
tions on Information Theory, 57(2):764-785, 2011.

[BNO6] Christopher M Bishop and Nasser M Nasrabadi. Pattern recognition and ma-
chine learning, volume 4. Springer, 2006.

[BR13] Quentin Berthet and Philippe Rigollet. Computational lower bounds for
sparse pca. arXiv preprint arXiv:1304.0828, 2013.

[BSO5] Christian F Beckmann and Stephen M Smith. Tensorial extensions of in-
dependent component analysis for multisubject fmri analysis. Neuroimage,
25(1):294-311, 2005.

[BSBET16] David Bruns-Smith, Muthu M Baskaran, James Ezick, Tom Henretty, and
Richard Lethin. Cyber security through multidimensional data decomposi-
tions. In 2076 Cybersecurity Symposium (CYBERSEC), pages 59-67. IEEE, 2016.

[CAVP21] Hongyang Chen, Fauzia Ahmad, Sergiy Vorobyov, and Fatih Porikli. Tensor
decompositions in wireless communications and mimo radar. /EEE Journal
of Selected Topics in Signal Processing, 15(3):438-453, 2021.

[CCDS97] Pierre Cazes, Ahlame Chouakria, Edwin Diday, and Yves Schektman. Exten-
sion de l'analyse en composantes principales a des données de type inter-
valle. Revue de Statistique appliquée, 45(3):5-24, 1997.

[Cd21] Davin Choo and Tommaso d'Orsi. The complexity of sparse tensor pca.
Advances in Neural Information Processing Systems, 34:7993-8005, 2021.

[CHM*15] Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous,
and Yann LeCun. The loss surfaces of multilayer networks. In Artificial intel-
ligence and statistics, pages 192-204. PMLR, 2015.

[CKR94] LF Cugliandolo, ] Kurchan, and F Ritort. Evidence of aging in spin-glass mean-
field models. Physical Review B, 49(9):6331, 1994.

[CLDAQ9] Pierre Comon, Xavier Luciani, and André LF De Almeida. Tensor decompo-
sitions, alternating least squares and other tales. Journal of Chemometrics:
A Journal of the Chemometrics Society, 23(7-8):393-405, 2009.

[CLMW11] Emmanuel ] Candes, Xiaodong Li, Yi Ma, and John Wright. Robust principal
component analysis? Journal of the ACM (JACM), 58(3):1-37, 2011.



114

[CS13]

[DH21]

[DH22]

[DJPM18]

[DKWB19]

[DLDMVO00a]

[DLDMVO0O0b]

[DLG20]

[DMMO9]

[dSCdA15a]

[dSCdA15b]

[EA75]

[EAMS21]

BIBLIOGRAPHY

Dustin Cartwright and Bernd Sturmfels. The number of eigenvalues of a
tensor. Linear algebra and its applications, 438(2):942-952, 2013.

Rishabh Dudeja and Daniel Hsu. Statistical query lower bounds for tensor
pca. Journal of Machine Learning Research, 22(83):1-51, 2021.

Rishabh Dudeja and Daniel Hsu. Statistical-computational trade-offs in ten-
sor pca and related problems via communication complexity. arXiv preprint
arXiv:2204.07526, 2022.

Xiaowu Deng, Peng Jiang, Xiaoning Peng, and Chungiao Mi. An intelligent
outlier detection method with one class support tucker machine and ge-
netic algorithm toward big sensor data in internet of things. IEEE Transac-
tions on Industrial Electronics, 66(6):4672-4683, 2018.

Yunzi Ding, Dmitriy Kunisky, Alexander S Wein, and Afonso S Ban-
deira. Subexponential-time algorithms for sparse pca. arXiv preprint
arXiv:1907.11635, 2019.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear sin-
gular value decomposition. SIAM journal on Matrix Analysis and Applications,
21(4):1253-1278, 2000.

Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best rank-
1 and rank-(r 1, r 2,...,, rn) approximation of higher-order tensors. SIAM jour-
nal on Matrix Analysis and Applications, 21(4):1324-1342, 2000.

Alexis Decurninge, Ingmar Land, and Maxime Guillaud. Tensor-based mod-
ulation for unsourced massive random access. [EEE Wireless Communica-
tions Letters, 2020.

David L Donoho, Arian Maleki, and Andrea Montanari. Message-passing
algorithms for compressed sensing. Proceedings of the National Academy of
Sciences, 106(45):18914-18919, 2009.

Alex P da Silva, Pierre Comon, and André LF de Almeida. An iterative defla-
tion algorithm for exact cp tensor decomposition. In 2075 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 3961-
3965. IEEE, 2015.

Alex Pereira da Silva, Pierre Comon, and Andre Lima Ferrer de Almeida.
Rank-1 tensor approximation methods and application to deflation. arXiv
preprint arXiv:1508.05273, 2015.

Samuel Frederick Edwards and Phil W Anderson. Theory of spin glasses.
Journal of Physics F: Metal Physics, 5(5):965, 1975.

Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Optimization of
mean-field spin glasses. The Annals of Probability, 49(6):2922-2960, 2021.



BIBLIOGRAPHY 115

[Evn20] Oleg Evnin. Melonic dominance and the largest eigenvalue of a large ran-

dom tensor. arXiv preprint arXiv:2003.11220, 2020.

[FHO8] Yun Fu and Thomas S Huang. Image classification using correlation tensor

[FYT19]

[FRV19a]

[FRV19b]

[Gam21]

[GBO6]

[GBC16]

[Gel41]
[GME11]

[Gur14]

[Gur17]

[Gur20]

[Has20]

analysis. IEEE Transactions on Image Processing, 17(2):226-234, 2008.

Xin Feng, Youni Jiang, Xuejiao Yang, Ming Du, and Xin Li. Computer vision
algorithms and hardware implementations: A survey. Integration, 69:309-
320, 2019.

Frank Ferrari, Vincent Rivasseau, and Guillaume Valette. A New Large
N Expansion for General Matrix-Tensor Models. Commun. Math. Phys.,
370(2):403-448, 2019.

Frank Ferrari, Vincent Rivasseau, and Guillaume Valette. A new large n ex-
pansion for general matrix-tensor models. Communications in Mathematical
Physics, 370(2):403-448, 2019.

David Gamarnik. The overlap gap property: A topological barrier to optimiz-
ing over random structures. Proceedings of the National Academy of Sciences,
118(41):e2108492118, 2021.

Michael Greenacre and Jorg Blasius. Multiple correspondence analysis and
related methods. Chapman and Hall/CRC, 2006.

lan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT
press, 2016.

Izrail Gelfand. Normierte ringe. Matematicheskii Sbornik, 9(1):3-24, 1941.

Ben Gold, Nelson Morgan, and Dan Ellis. Speech and audio signal processing:
processing and perception of speech and music. John Wiley & Sons, 2011.

Razvan Gurau. Universality for Random Tensors. Ann. Inst. H. Poincare
Probab. Statist., 50(4):1474-1525, 2014.

R. Gurau. Random Tensors. Oxford University Press, 2017.

Razvan Gurau. On the generalization of the wigner semicircle law to real
symmetric tensors. arXiv preprint arXiv:2004.02660, 2020.

Matthew B. Hastings. Classical and Quantum Algorithms for Tensor Princi-
pal Component Analysis. Quantum, 4:237, February 2020.

[HHYC20] Jiaoyang Huang, Daniel Z Huang, Qing Yang, and Guang Cheng. Power iter-

[HKPT17]

ation for tensor pca. arXiv preprint arXiv:2012.13669, 2020.

Samuel B Hopkins, Pravesh K Kothari, Aaron Potechin, Prasad Raghaven-
dra, Tselil Schramm, and David Steurer. The power of sum-of-squares for
detecting hidden structures. In 2017 IEEE 58th Annual Symposium on Foun-
dations of Computer Science (FOCS), pages 720-731. IEEE, 2017.



116 BIBLIOGRAPHY

[HKZ12] Daniel Hsu, Sham M Kakade, and Tong Zhang. A spectral algorithm for
learning hidden markov models. Journal of Computer and System Sciences,
78(5):1460-1480, 2012.

[HL13] Christopher ] Hillar and Lek-Heng Lim. Most tensor problems are np-hard.
Journal of the ACM (JACM), 60(6):1-39, 2013.

[HMvdG18] Jianyu Huang, Devin A Matthews, and Robert A van de Geijn. Strassen’s
algorithm for tensor contraction. SIAM Journal on Scientific Computing,
40(3):C305-C326, 2018.

[Hop18] Samuel Hopkins. Statistical inference and the sum of squares method. PhD
thesis, Cornell University, 2018.

[HSSS16] Samuel B Hopkins, Tselil Schramm, Jonathan Shi, and David Steurer. Fast
spectral algorithms from sum-of-squares proofs: tensor decomposition
and planted sparse vectors. In Proceedings of the forty-eighth annual ACM
symposium on Theory of Computing, pages 178-191, 2016.

[HTG17] Felix Hummel, Theodoros Tsatsoulis, and Andreas Grlneis. Low rank fac-
torization of the coulomb integrals for periodic coupled cluster theory. The
Journal of chemical physics, 146(12):124105, 2017.

[Jer92] MarkJerrum. Large cliques elude the metropolis process. Random Structures
& Algorithms, 3(4):347-359, 1992.

JLM*20] Aukosh Jagannath, Patrick Lopatto, Leo Miolane, et al. Statistical thresholds
for tensor pca. Annals of Applied Probability, 30(4):1910-1933, 2020.

[KBO9] Tamara G Kolda and Brett W Bader. Tensor decompositions and applica-
tions. SIAM review, 51(3):455-500, 2009.

[KPAP16] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Ten-
sorly: Tensor learning in python. arXiv preprint arXiv:1610.09555, 2016.

[KPAP19] Jean Kossaifi, Yannis Panagakis, Anima Anandkumar, and Maja Pantic. Ten-
sorly: Tensor learning in python. Journal of Machine Learning Research,
20(26):1-6, 2019.

[KSRHT18] Jinsung Kim, Aravind Sukumaran-Rajam, Changwan Hong, Ajay Panyala, Ro-
hit Kumar Srivastava, Sriram Krishnamoorthy, and Ponnuswamy Sadayap-
pan. Optimizing tensor contractions in ccsd (t) for efficient execution on
gpus. In Proceedings of the 2018 International Conference on Supercomputing,
pages 96-106, 2018.

[KWB19] Dmitriy Kunisky, Alexander S Wein, and Afonso S Bandeira. Notes on com-
putational hardness of hypothesis testing: Predictions using the low-degree
likelihood ratio. arXiv preprint arXiv:1907.11636, 2019.



BIBLIOGRAPHY 17

[LAJ15]

[LB13]

[LBF12]

[LHKO5]

[LMLT17]

[LOST21]

[LZ20]

[Mah20]

[Mat18]

[MBO5]

[MBCt19]

[MBC*20]

Dana Lahat, Tulay Adali, and Christian Jutten. Multimodal data fusion: an
overview of methods, challenges, and prospects. Proceedings of the IEEE,
103(9):1449-1477, 2015.

Tao Lin and Salah Bourennane. Survey of hyperspectral image denoising
methods based on tensor decompositions. EURASIP journal on Advances in
Signal Processing, 2013(1):1-11, 2013.

Xuefeng Liu, Salah Bourennane, and Caroline Fossati. Denoising of hyper-
spectral images using the parafac model and statistical performance anal-
ysis. IEEE Transactions on Geoscience and Remote Sensing, 50(10):3717-3724,
2012.

Kuang-Chih Lee, Jeffrey Ho, and David | Kriegman. Acquiring linear sub-
spaces for face recognition under variable lighting. IEEE Transactions on pat-
tern analysis and machine intelligence, 27(5):684-698, 2005.

Thibault Lesieur, Léo Miolane, Marc Lelarge, Florent Krzakala, and Lenka
Zdeborova. Statistical and computational phase transitions in spiked tensor
estimation. In 2017 IEEE International Symposium on Information Theory (ISIT),
pages 511-515. IEEE, 2017.

Vincent Lahoche, Mohamed Ouerfelli, Dine Ousmane Samary, and Mo-
hamed Tamaazousti. Field theoretical approach for signal detection in
nearly continuous positive spectra ii: Tensorial data. Entropy, 23(7):795,
2021.

Yuetian Luo and Anru R Zhang. Open problem: Average-case hardness of
hypergraphic planted clique detection. In Conference on Learning Theory,
pages 3852-3856. PMLR, 2020.

Batta Mahesh. Machine learning algorithms-a review. International Journal
of Science and Research (I/SR).[Internet], 9:381-386, 2020.

Devin A Matthews. High-performance tensor contraction without transpo-
sition. SIAM Journal on Scientific Computing, 40(1):C1-C24, 2018.

Damien Muti and Salah Bourennane. Multidimensional filtering based on a
tensor approach. Signal Processing, 85(12):2338-2353, 2005.

Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krza-
kala, and Lenka Zdeborova. Who is afraid of big bad minima? anal-
ysis of gradient-flow in a spiked matrix-tensor model. arXiv preprint
arXiv:1907.08226, 2019.

Stefano Sarao Mannelli, Giulio Biroli, Chiara Cammarota, Florent Krzakala,
Pierfrancesco Urbani, and Lenka Zdeborova. Marvels and pitfalls of the
langevin algorithm in noisy high-dimensional inference. Physical Review X,
10(1):011057, 2020.



118

[MDDN18]

[MGT*18]

[MKSt15]

[MKUZ19]

[MKVT13]

[MR15]

[Nas13]

[NLK*20]

[NWZ20]

[OTR22]

[Pea01]

BIBLIOGRAPHY

Konstantinos Makantasis, Anastasios D Doulamis, Nikolaos D Doulamis,
and Antonis Nikitakis. Tensor-based classification models for hyperspec-
tral data analysis. [EEE Transactions on Geoscience and Remote Sensing,
56(12):6884-6898, 2018.

CE Miller, RO Green, DR Thompson, AK Thorpe, M Eastwood, IB Mccubbin,
W Olson-Duvall, M Bernas, CM Sarture, S Nolte, et al. Above: Hyperspectral
imagery from aviris-ng, alaskan and canadian arctic, 2017-2018. ORNL DAAC,
2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Ve-
ness, Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, et al. Human-level control through deep reinforce-
ment learning. nature, 518(7540):529-533, 2015.

Stefano Sarao Mannelli, Florent Krzakala, Pierfrancesco Urbani, and Lenka
Zdeborova. Passed & spurious: Descent algorithms and local minima in
spiked matrix-tensor models. In international conference on machine learn-
ing, pages 4333-4342. PMLR, 2019.

Wenjing Ma, Sriram Krishnamoorthy, Oreste Villa, Karol Kowalski, and
Gagan Agrawal. Optimizing tensor contraction expressions for hybrid cpu-
gpu execution. Cluster computing, 16(1):131-155, 2013.

Andrea Montanari and Emile Richard. Non-negative principal component
analysis: Message passing algorithms and sharp asymptotics. IEEE Transac-
tions on Information Theory, 62(3):1458-1484, 2015.

Nasser M Nasrabadi. Hyperspectral target detection: An overview of cur-
rent and future challenges. [EEE Signal Processing Magazine, 31(1):34-44,
2013.

Kristina Naskovska, Stephan Lau, Alexey A Korobkov, Jens Haueisen, and
Martin Haardt. Coupled cp decomposition of simultaneous meg-eeg signals
for differentiating oscillators during photic driving. Frontiers in neuroscience,
14:261, 2020.

Jonathan Niles-Weed and llias Zadik. The all-or-nothing phenomenon
in sparse tensor pca. Advances in Neural Information Processing Systems,
33:17674-17684, 2020.

Mohamed Ouerfelli, Mohamed Tamaazousti, and Vincent Rivasseau. Ran-
dom tensor theory for tensor decomposition. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 2022.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in
space. The London, Edinburgh, and Dublin philosophical magazine and journal
of science, 2(11):559-572, 1901.



BIBLIOGRAPHY 119

[PES16]

[PKYA21]

[Pom97]

[PTC15]

[PWB*20]

[Qi05]

[RBABC19]

[RD91]

[RM14]

[Ros14]

[SB20]

[SBP21]

[SCZL18]

Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos.
Tensors for data mining and data fusion: Models, applications, and scalable
algorithms. ACM Transactions on Intelligent Systems and Technology (TIST),
8(2):1-44, 2016.

Taylor L Patti, Jean Kossaifi, Susanne F Yelin, and Anima Anandkumar.
Tensorly-quantum: Quantum machine learning with tensor methods. arXiv
preprint arXiv:2112.10239, 2021.

Jean-Charles Pomerol. Artificial intelligence and human decision making.
European Journal of Operational Research, 99(1):3-25, 1997.

Anh-Huy Phan, Petr Tichavsky, and Andrzej Cichocki. Tensor deflation for
candecomp/parafac—part i: Alternating subspace update algorithm. [EEE
Transactions on signal Processing, 63(22):5924-5938, 2015.

Amelia Perry, Alexander S Wein, Afonso S Bandeira, et al. Statistical limits
of spiked tensor models. In Annales de l'Institut Henri Poincaré, Probabilités
et Statistiques, volume 56, pages 230-264. Institut Henri Poincaré, 2020.

Liqun Qi. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic
Computation, 40(6):1302 - 1324, 2005.

Valentina Ros, Gerard Ben Arous, Giulio Biroli, and Chiara Cammarota.
Complex energy landscapes in spiked-tensor and simple glassy models:
Ruggedness, arrangements of local minima, and phase transitions. Phys-
ical Review X, 9(1):011003, 2019.

James O Ramsay and CJ1125714 Dalzell. Some tools for functional data
analysis. Journal of the Royal Statistical Society: Series B (Methodological),
53(3):539-561, 1991.

Emile Richard and Andrea Montanari. A statistical model for tensor pca. In
Advances in Neural Information Processing Systems, pages 2897-2905, 2014.

Sheldon Ross. A first course in probability. Pearson, 2014.

Weike Sun and Richard D Braatz. Opportunities in tensorial data analytics
for chemical and biological manufacturing processes. Computers & Chemical
Engineering, page 107099, 2020.

Bostjan Sumak, Sa3a Brdnik, and Maja Pu3nik. Sensors and artificial intelli-
gence methods and algorithms for human-computer intelligent interaction:
A systematic mapping study. Sensors, 22(1):20, 2021.

Qiquan Shi, Yiu-Ming Cheung, Qibin Zhao, and Haiping Lu. Feature extrac-
tion for incomplete data via low-rank tensor decomposition with feature
regularization. [EEE transactions on neural networks and learning systems,
30(6):1803-1817, 2018.



120

[Tur09]

[VTO2]

[VTO04]

[WA16]

[Wag92]

[WDDFS171]

[WEAM19]

[Wed72]

[WGY21]

[WYT20]

[YAD19]

[YHPC18]

[ZX18]

BIBLIOGRAPHY

Alan M Turing. Computing machinery and intelligence. In Parsing the turing
test, pages 23-65. Springer, 2009.

M Alex O Vasilescu and Demetri Terzopoulos. Multilinear analysis of image
ensembles: Tensorfaces. In European conference on computer vision, pages
447-460. Springer, 2002.

M Alex O Vasilescu and Demetri Terzopoulos. Tensortextures: multilinear
image-based rendering. ACM Transactions on Graphics (TOG), 23(3):336-342,
2004.

Yining Wang and Animashree Anandkumar. Online and differentially-
private tensor decomposition. In Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, NIPS'16, page 3539-3547,
Red Hook, NY, USA, 2016. Curran Associates Inc.

David G. Wagner. On the perfect one—factorization conjecture. Discrete
Mathematics, 104(2):211 - 215, 1992.

Miaoyan Wang, Khanh Dao Duc, Jonathan Fischer, and Yun S. Song. Oper-
ator norm inequalities between tensor unfoldings on the partition lattice.
Linear Algebra and its Applications, 520:44-66, May 2017.

Alexander S Wein, Ahmed El Alaoui, and Cristopher Moore. The kikuchi hi-
erarchy and tensor pca. In 20719 IEEE 60th Annual Symposium on Foundations
of Computer Science (FOCS), pages 1446-1468. IEEE, 2019.

Per-Ake Wedin. Perturbation bounds in connection with singular value de-
composition. BIT Numerical Mathematics, 12(1):99-111, 1972.

Yinan Wang, Weihong “Grace” Guo, and Xiaowei Yue. Tensor decomposition
to compress convolutional layers in deep learning. /ISE Transactions, pages
1-33, 2021.

Yinan Wang, Xiaowei Yue, et al. Cpac-conv: Cp-decomposition to approx-
imately compress convolutional layers in deep learning. arXiv preprint
arXiv:2005.13746, 2020.

Farzane Yahyanejad, Réka Albert, and Bhaskar DasGupta. A survey of
some tensor analysis techniques for biological systems. Quantitative Biol-
ogy, 7(4):266-277, 2019.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik Cambria. Re-
cent trends in deep learning based natural language processing. ieee Com-
putational intelligenCe magazine, 13(3):55-75, 2018.

Anru Zhang and Dong Xia. Tensor svd: Statistical and computational limits.
IEEE Transactions on Information Theory, 64(11):7311-7338, 2018.



	Introduction
	Artificial Intelligence
	Future challenges for AI
	Research directions
	Tensorial approach

	Tensorial tools from theoretical physics perspective
	Tensor PCA model and its motivations.

	Tensor PCA : Intersection of fundamentally different approaches
	From Tensor PCA to the CANDECOMP/PARAFAC Tensor Decomposition
	Matrix PCA
	Tensor decomposition
	Tucker decomposition
	Tensor PCA and algorithms

	Glassy systems and rough landscapes
	Glasses
	Spin glass and Mean field
	Spherical p-spin glass model
	Tensor PCA landscape as a prototypical inference problem and exploration of complex landscapes

	The conjectured statistical algorithmic gap: computational hardness
	Statistical computational gap in inference problems
	Statistical computational gap in Tensor PCA
	Existent approaches for computational hardness of statistical problems


	Random Tensor Theory for Tensor PCA
	Brief review of Random Tensor Theory
	From eigenvalues to trace invariants
	Trace invariants and their representations as graphs
	Combinatorial tools for statistics of trace invariants

	Random Tensor Theory for Tensor PCA
	Matrices associated to trace invariants and new tools
	Tensor PCA framework for algorithms associated to a trace invariant
	Some derived algorithms from the new framework
	New theoretical threshold for an asymetrical tensor with different dimensions n1 =n2 =…=nk

	Generalization to Tensor decomposition
	 Adaptation to low-rank CP decomposition
	 Adaptation to Tucker decomposition

	Numerical experiments
	Tensor PCA
	Memory and time requirements of the methods
	CP and Tucker decomposition on synthetic and real data


	A new algorithm : Selective Multiple Power Iteration (SMPI)
	Power iteration based algorithms
	General Principle of SMPI
	The essential features of SMPI
	Generalization to Tensor decomposition

	Empirical insights
	Theoretical insights on the SMPI algorithm
	Insight on the success

	Numerical simulations details
	The averaged number of escaped spurious minima for a successful initialization in function of n
	Practical applications: Hyperspectral images (HSI). 

	Potential impact and open questions
	Insights on the gradient-based exploration of high-dimensional non-convex landscapes
	Insights on the statistical-computational gap conjecture
	Discussion on a potential finite size effects


	Conclusion and perspectives
	Conclusion
	Perspectives

	Synthèse de la thèse en Français :
	Appendix Chapter Random Tensor
	Gaussian expectation of trace invariants
	Useful theorems.
	The perfect one-factorization graph.


