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I last gave a seminar at KEK in 2014, titled “Non-perturbative quantum field theory on curved 
manifolds”, so I am here to give a once-per-decade update.

The motivation today is still the same as back then:  the microscopic physics explaining the 
Higgs mechanism remains unclear.  It could be due to new strong dynamics, which would make 
the Higgs boson a composite particle.

It was long realized that a composite Higgs mechanism is a problem for the Yukawa mechanism 
of fermion mass generation since it would naturally lead FCNC through four-fermi operators. 
Yukawa !""	 !$$

%!"#
 FCNC !""	 !""

%!"#
 where 𝑞 are SM fermions and 𝑄 are Higgs constituents. Δ is scaling 

dimension of $𝑄𝑄 mass operator. Suppressing FCNC requires Λ	 > 1000 TeV.

The apparent solution, also long known, is a near-conformal (walking) gauge theory.

Studying near-conformal gauge theories on the lattice using traditional methods is challenging 
due to the very long correlation lengths and very slow approach to the continuum limit.

History -  Near-Conformal Field Theories
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• Eigenstates of Hamiltonian defined on 
surfaces of constant Euclidean time.

• Eigenstates labeled by spatial momenta 𝑝⃗ 
due to translation invariance.

• Dynamical dispersion relation:
𝐸&' = 𝑝⃗ ' +𝑚&

'

• Correlations:

𝐶 𝑝⃗, 𝑡, 𝑡 ʹ =3
&
𝐴&(𝑝⃗)	𝑒)*$ +)+

ʹ

• Conformal correlations are power-law.

• Eigenstates of Dilatation operator defined 
on surfaces of constant radius.

• Eigenstates labeled by angular momenta 
ℓ,𝑚ℓ  due to rotational invariance.

• Dynamical dispersion relation (conformal):
Δ𝒪,ℓ = Δ𝒪,/ + 	ℓ

• Correlations (conformal):
𝐶 ℓ, 𝑡, 𝑡 ʹ =3

𝒪
𝐵(Δ𝒪, ℓ)	𝑒)0𝒪,ℓ +)+

ʹ

• Near-conformal would modify integer 
spacing and t-dependence.
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Hamiltonian vs. Radial quantization
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• ℝ×Icosahedron with Ising action.
– Scale Invariance 👍 but no rotational invariance:

not conformal 👎.

• ℝ×Cubic sphere with Ising action.
– Frustrated scale invariance 👎. 

• ℝ×𝕊' with unequal areas and lengths and classically perfect 𝜙1 action 
using finite element method (FEM).
– Frustrated scale invariance 👎.

• ℝ×𝕊' with equal area prescription of [Tegmark 1996] and FEM action.
– Better but still frustrated scale invariance 👎.

• Frustration means can’t make theory critical everywhere.

History -  Attempts at Radial Quantization of D=3 critical Ising model
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• I concluded my 2014 KEK seminar by mentioning we would explore perturbative one- and 
two-loop quantum counterterms to the classical FEM action: Quantum Finite Elements (QFE)
– Works on discretization with unequal lengths and areas.

– One limitation: the lattice coupling must be small enough for lattice perturbation theory to be valid.

– Divergences not a problem on lattice, bare mass is fine-tuned to critical surface.

– Finite parts of relevant diagrams include contributions from non-uniform UV cutoff.

– Also, discovered a novel irrelevant contribution 𝑅𝑖𝑐	𝜙) due to non-uniform curvature density ~𝒪(𝑎*.,-).

Quantum Finite Elements – A method that works
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x,t1 x,t1 y,t2
λ + λ2

SQFE = S - L V[h [6.\o6Gx - 24.\5bG~3)] ¢;,x · 
t,x 
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Demonstration that QFE works in three plots: (1) Binder Cumulant
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• 4th-order Binder cumulant is a common observable used to locate the 
critical surface:

𝑈1 =
3
2
1 −

𝑀1

3 𝑀' ' , 𝑀 =3
2
𝑔2	𝜙2	

• The figure shows the Ising model on ℝ×Icosahedron is critical, FEM 
𝜙1 theory is not, and QFE 𝜙1 theory restores criticality.

• Finite size scaling:
𝑈1 𝑚/

', 𝜆/ = 𝑈1,345+ + 𝐴 𝑚/
' −𝑚/,345+

' 𝑎)6.8 + 𝐵	𝑎/.9 +⋯

• Brower, GTF, Neuberger, PLB 271 (2013) 299.

• A. Gasbarro et al, PRD 104 (2021) 094502.
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Demonstration that QFE works in three plots: (2) Two-Point Function
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• Extract scaling dimensions for lowest 𝑍'-odd 
scalar with different angular momenta ℓ.

𝐶 ℓ, 𝑡, 𝑡 ʹ =3
𝒪
𝐵(Δ𝒪, ℓ)	𝑒)0𝒪,ℓ +)+

ʹ

• Compare to conformal dispersion relation:
Δ𝒪,ℓ = Δ𝒪,/ + 	ℓ

• Dispersion relation indicates full Poincare 
invariance recovered in continuum limit.

• Conformal invariance requires scale invariance 
and Poincare invariance.

• ℝ×Icosahedron had scale invariance but small 
breaking of rotational invariance, not conformal.

• Note Ricci term artifact.
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Demonstration that QFE works in three plots: (3) Ricci-Improved Action
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• Ricci term on a sphere is normally just a 
constant that is absorbed by a shift in 
the bare mass: 𝑚/

' → 𝑚/
' + 𝑅)'

• On our lattice, uniform curvature was 
achieved in continuum limit, but 
curvature density was not uniform.

• Effect computable in PT and can be 
cancelled with a counterterm.
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Four-point Function – Essential for Studying CFTs
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even spin & 
parity

• Full data of CFT is scaling dimensions Δ𝒪 and OPE coeffs 𝑓𝒪#𝒪.𝒪/.

• OPE coeffs computed easily in radial quantization using partial 
wave expansion.  Lüscher’s method for a cylinder.

• Conformal blocks 𝐵&,;(Δ𝒪) are known functions with no free 
parameters, like 𝑌ℓ< for conformal symmetry.  Possible question 
with best choice of normalization for lattice studies.
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Four-point Function – Data Analysis
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• Simultaneous fits to 𝑐/(𝑡) and 𝑐'(𝑡) using four 
primaries 𝒪 = 𝜖, 𝜖 ʹ, 𝑇, 𝑇ʹand 𝑛 ∈ [0,20] and various 
[𝑡<5&,𝑡<=2] combinations.

• Final results using Bayesian model averaging [Jay, 
Neil, 2020].

• Conformal Blocks: Hogervorst and Rychkov 2013,
M. S. Costa et al. 2016.

• QFE: Anna-Maria Glück et al. 2023.
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Four-point Function – Continuum extrapolation at small fixed bare 𝒎𝟎
𝟐, 𝝀𝟎
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• Extrapolation to continuum limit and again Bayesian model averaging to estimate extrapolated 
values.

• Note Δ> consistent with 3, which is required for energy-momentum tensor.
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Four-point Function – Ratios of OPE coefficients
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• Ratios of OPE coefficients agree with conformal bootstrap.  Not sure why:
– Maybe a normalization issue with conformal blocks?

– Maybe 𝑚*
) not tuned accurately enough to 𝑚*,0123

)  at fixed 𝜆*?

– Maybe 𝑚*
) and 𝜆* must also be tuned simultaneously to zero when using perturbative counterterms?
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Going Beyond Perturbative QFE: Affine Conjecture
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• We can keep the icosahedral graph the same and move the points on the surface of the 
sphere to make the deficit angles and dual areas as identical as possible (curvature density).

• But, the triangles will never be equilateral. So, when projected onto the tangent plane it will 
look like an affine transformation.  Nearby lattice points will have slightly different tangent 
planes with different affine transformations: smooth affine connection describes how the affine 
transformation varies from point to point.

Tangent Plane

Icosahedral Plane

Spherical Surface

~r1

~r2

~r3

✓

Spherical Center

Equilateral Triangle  Plane 

Affine Projected Triangle 
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Going Beyond Perturbative QFE: Affine Conjecture Problem
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• Geometry tells us that at each lattice point on the sphere, there will be a tangent plane that is 
an affine transformation of a regular lattice with a known set of lengths.

• Lattice QFT challenge: can we find the anisotropic lattice action which non-perturbatively has 
the same set of lengths at the critical point?

• Yes! In one case at least, the D=2 critical Ising model on an affine transformed triangular lattice 
can be solve analytically [Evan Owen and Brower, 2023].

sinh(2K1) = `⇤1/`1 , sinh(2K2) = `⇤2/`2 , sinh(2K3) = `⇤3/`3
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Going Beyond Perturbative QFE: Affine Conjecture Problem
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• Next, move points to minimize deviation in scalar curvature density and find target lengths.

• Using given lengths, assign couplings everywhere.  Note, only ratios of couplings important.  
There will be an overall inverse temperature 𝛽 that needs to be tuned to find the critical surface 
for the sphere which will be different from the plane.

• Note perturbative counterterms are not needed.
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Results for Ising Model on 𝕊𝟐: Rotational Invariance
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• Evan Owen Ph.D. Thesis 2023

• Plot shows measure of breaking of 
rotational invariance:
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Results for Ising Model on 𝕊𝟐: Rotational Invariance
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• Evan Owen Ph.D. Thesis 2023

• Plot shows measure of breaking of 
conformal invariance:

𝛿ℓ ∝ WΔℓ − Δ/ − ℓ
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Results for Ising Model on 𝕊𝟐: Scaling Dimension of 𝒁𝟐-odd scalar 𝝈

20 May 2024 Matching Curved Lattices to Anisotropic Tangent Planes ー G. T. Fleming (FNAL)

• Evan Owen Ph.D. Thesis 2023

• Exact value is known:
Δ? = X1 8

• Expected power of lattice artifact 
known from finite-size scaling:

𝑎
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1)'

• Work in progress to repeat 
calculation on ℝ×𝕊' by GS Jin-Yun 
Lin (CMU).

• Work in progress by Nobuyuki 
Matsumoto (Boston U) on extraction 
of Energy-Momentum Tensor.
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Affine Conjecture in Higher Dimensions
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• Testing the affine conjecture in higher dimensions (ℝ×𝕊A) requires 
finding anisotropic actions for three-dimensional affine transformed 
lattices.

• Choice is face-centered cubic (FCC) lattices, since the number of 
unique links (6) matches the number of parameters of the affine 
transformation.

• FCC lattices can tile the interiors of the 600 tetrahedral faces of the 
600-cell, the higher-dimensional analog of the icosahedron.

• One problem is FCC lattice has alternating cells of tetrahedrons and 
octahedrons, not simplicial! Need to figure out how to break 
octahedrons into tetrahedrons without introducing three new 
independent parameters.

• Think of FCC as red-black cubic lattice.  FCC links connect nearest 
red-red sites and black sites sit at center of octahedra.  Adding red-
black links makes the lattice simplicial.
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Multihistogram Reweighting [Ferrenberg, Swendsen 1989]
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• Affine FCC partition function

𝑍 𝐾6, ⋯ , 𝐾8 =	 3
B$C	±6

𝑒E#B$B$56#F⋯FE7B$B$567 , 	 𝐸&,Î = −𝑠&𝑠&FÎ	

• Multihistogram master equation (solved iteratively)

𝑍J =3
4C6

K

3
5C6

L8 1

∑;C6K 𝑁;	𝑍;)6	𝑒
(E9)E:)O*8,;

where 𝑅 is number of runs, 𝑁4 is length of run 𝑟, 𝐸4,5 are energies
on 𝑖-th configuration of run 𝑟.

• Observables for any other nearby 𝐾:

𝒪(𝐾) =
1

𝑍(𝐾)
3
4C6

K
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5C6

L8 𝒪4,5
∑;C6K 𝑁;	𝑍;)6	𝑒

(E)E:)O*8,;

𝑍 𝐾 =3
4C6

K
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5C6

L8 1

∑;C6K 𝑁;	𝑍;)6	𝑒
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Affine Conjecture in Higher Dimensions
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• First test: E.
E#
= E/

E#
= 1, E<

E#
= E=

E#
= E7

E#
∈ {0.94,0.97,1.00,1.03,1.06}

• 𝐾6 is tuned close to critical point.

• Solve multihistogram consistency condition
for all 35 runs, each run 𝑁4 = 50,000 configs.
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Next Steps for FCC lattice
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• Using multihistogram reweighting, find critical 
surface 𝐾345+ by identifying peak in 𝐶𝑜𝑣(𝐸, 𝐸). In 
general, it is a 5-d surface with permutation 
symmetry.

• Then, along critical surface compute two-point 
function:

𝑠 𝑥⃗ 𝑠(0) =
1

𝑥5	𝐺5;(𝐾345+)	𝑥;
0>

• Numerically, try to find the matrix 𝐺5;(𝐾345+) that 
best fits the two-point function data in elliptical 
region (curve collapse).

• Caution, avoid 𝑥⃗ too large due to finite volume 
effects of affine transformation on torus.  This is 
often called the modular torus.

𝐶𝑜𝑣(𝐸, 𝐸)

𝐾!,#$%&

Owen, Brower 2023
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Conclusions
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• Radial quantization would be an ideal tool to study conformal and near-conformal theories.

• We have used radial quantization to solve the critical 3-D Ising model in two limits:
– Perturbative 𝜆𝜙, quantum field theory as 𝜆 → 0 along critical surface with counter terms.

– Ising spin model (𝜆 → ∞ limit of 𝜆𝜙, theory) using affine conjecture without counterterms.

• In near future, we should be able to solve critical 3-D Ising model 𝜆𝜙1 theory at fixed 𝜆 without 
counterterms using affine conjecture.

• Starting work on radial quantization on ℝ×𝕊A by first attempting to solve the critical 3-D Ising 
model on 𝕊A using 600-cell discretization and affine-transformed FCC lattice tangent planes.

• Multihistogram reweighting plays an essential role in finding the 5-d critical surface
𝐾6,345+ X𝐾'

𝐾6 , ⋯ , X𝐾8
𝐾6

• As an aside, this method can help us define a local energy-momentum tensor operator since 
insertion of this operator induces the affine transformation.
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