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Abstract: Quantum Generative Adversarial Networks (QGANSs) represent a useful development in
quantum machine learning, using the particular properties of quantum mechanics to solve the chal-
lenges of data analysis and modeling. This paper brings up a general analysis of five QGAN architec-
tures, focusing on their evolution, strengths, weaknesses, and limitations in noisy intermediate-scale
quantum (NISQ) devices. Primary methods like Entangling Quantum GAN (EQ-GAN) and Quantum
state fidelity (QuGAN) concentrate on stability, convergence, and robust performance on small-scale
datasets such as 2 x 2 grayscale images. Intermediate models such as Image Quantum GAN (IQ-
GAN) and Experimental Quantum GAN (EXQGAN) provide new ideas like trainable encoders and
patch-based sub-generators that are scalable to 8 x 8 datasets with increasing noise resilience. The
most advanced method is Parameterized Quantum Wasserstein GAN (PQWGAN), which uses a
hybrid quantum-classical structure to obtain high-resolution image processing for 28 x 28 grayscale
datasets while trying to maintain parameter efficiency. This study explores, analyzes, and summarizes
critical problems of QGANS, including accuracy, convergence, parameter efficiency, image quality,
performance metrics, and training stability under noisy conditions. In addition, developing QGANSs
can generate and train parameters in quantum approximation optimization algorithms. One of the
useful applications of QGAN is generating medical datasets that can generate medical images from
limited datasets to train specific medical models for the recognition of diseases.

Keywords: Quantum Generative Adversarial Network (QGAN); generator; discriminator; QGAN
architectures

MSC: 68T07; 81-05

1. Introduction

Generative Adversarial Networks (GANSs) [1] represent an adversarial game such
as police and banknote forgery that involve two neural networks. Such a network needs
to have a lot of resources and data to train. On the other hand, according to Quantum
Mechanics and Quantum physics, a new branch of computer science was born under
Quantum computing, which, with the entry of quantum in this area, caused quantum GAN
in 2018 to be born [2]. This birth provided quantum resources for GANs. Although there
are many problems in this way such as making qubits, noise environments, decoherence,
entanglements, and so on, scientists and researchers are trying to solve them.

In this paper, we collected advanced methods that improved some problems with
using QGAN for generating images. We will introduce key terminology, background of
mathematics and notation in quantum computing, generative adversarial networks, and
Wasserstein GAN (WGAN) [3], which are crucial for the paper.

Motivated by these limitations, we arranged a survey about QGAN to resolve them.
In this survey, collecting and a detailed analysis of all five pioneering articles in the field
of Quantum Generative Adversarial Networks (QGANSs) is presented. The first major
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contribution we bring to this debate is a different categorization scheme of QGANSs that
helps provide a clearer and more exhaustive taxonomy of the extant literature. This new
way of approaching categorization aids in understanding the principles, concepts, and
methods that encompass the approach and the differences and improvements implemented
in each category. After that, the results outlined in these initial papers have been compared.
In this way, it was possible to systematically compare their results, which allowed the
identification of each method’s relative advantages and disadvantages.

The remainder of this paper is organized as follows: The introduction and funda-
mentals of QGAN are introduced in Section 2. Section 3 describes the existing QGAN
architectures for generating synthetic images. Section 4 will discuss and compare the
papers. The challenges and limitations are examined in Section 5. Sections 6 and 7 will
address the conclusions and future studies, respectively.

1.1. Background on Quantum Computing

Hilbert space is a vector space that is defined by the inner product on it. The inner
product of two vectors that say vector states, like ¢ and ¢, is represented by (i|¢). The
amount of overlap between two vectors that have the very definition in linear algebra
and operators can show with matrices [4]. This major, according to the fundamentals of
quantum mechanics, says information about the state of atoms and that each electron can
according to its spin provide different states and with Heisenberg’s uncertainty principle
produce 0s and 1s simultaneously which is quantum Superposition. The superposition
status caused a new concept; its name is qubit. Qubits include 0s and 1s simultaneously in
superposition before being measured. Qubits can be in 0 or 1 mode as shown [5]:

(-

Basis States :
0
(3)=m

Qubits can be in 0 or 1 mode simultaneously; therefore, a qubit is shown [6]:

) = () = olo) + Bl o)

where \/ (|) = 1is a normalization condition. The tensor products of the matrices will
be shown by [6]:
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This operator creates a combination system that the entanglement will be in.

When measuring, the quantum state will collapse and be one of them (0 or 1). It should
be known that the information for the transfer on bits and qubits is the same. However,
it is interesting that n bits can transfer n Os or 1s but n qubits will make Hilbert’s space
with 2" superposition for the transfer. That means this difference is in the stream of qubits.
For example, 2 qubits provide us 22 bits, and the dimensions of Hilbert’s space increase
exponentially [7].

a o

«|00) + B|01) + |10) + A|11) 4)

There is another display for a quantum state whose name is a density matrix of vectors.
This presentation is appropriate for the trace of the result. This operator known as the outer
product is the following:

p =)yl ©)
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The mixed quantum state is:

ZPi|¢i><lPi| (6)

where ) p; = 1, and p; > 0 [6,8], and there is a matrix which is called Unitary Matrix.
It means UUT = U'U = I, where 1 is the conjugate transpose. The unitary matrix
is important because it can normalize gates and be used to represent gates that cause
reversible gates. Gate Models in quantum computing have two basic concepts, circuit and
gate, which complement each other. Circuits, which are somehow qubits, are a sequence of
blocks to understand rudimentary operations, and these blocks involve gates. Somehow,
operations on qubits are encrypted by gates. When the number of qubits is more than one,
gates can make the entanglement state. The simplest state to represent a single-qubit gate
is a 2 x 2 matrix. The Pauli gates are one of the groups of single-qubit gates that each
qubit can write a linear combination of Pauli gates. The three important Pauli gates are the
x-gate, y-gate, and z-gate; they show rotations of 180 degrees around x- the x-axis, y-axis,

and z-axis [8,9].
S 01 S 0 —i - — 1 0 @)
7 \10) YT\ o 0) P \0 -1

Hadamard gate creates a superposition state. The matrix representation of the
Hadamard gate [9] is as follows:

()

The Hadamard Gate has effects on 10), 11) and then changes into a superposition
state. Interestingly, if we apply the Hadamard gate again on the previous Hadamard gate,
then qubit comes out of the superposition [9].

€ 1
V2 V2

Another important gate is the CNOT gate, which as the control gate works on two
qubits. The first bit is the control qubit, and the second bit is the target qubit. The CNOT
gate flips the target qubit’s state if and only if the control qubit is in state |1), but it is
unchanged if the control qubit is in state |0). The CNOT gate is used to create entanglement
between qubits [6].

H|0) = —=(10) + 1)), H|1) = —=(]0) = 1)) ©)

0,0) — [0,0), [0,1) — [0,1), [1,0) — |1,1), |1,1) — |1,0) (10)

The swap gate works on two qubits and exchanges the place of the first bit with the
second one. This gate allows for the sorting of qubits in a quantum circuit [6].

0,0) — [0,0), [0,1) — [1,0), [1,0) = [0,1), |1,1) — |1,1) (11)

This gate works on three qubits and can accomplish basic reversible logic operations
if and only if both control qubits (the first and second qubits) are in state |1). Then, the
Toffoli gate applies a NOT operation to a target qubit (the third qubit). Otherwise, the target
qubit is unchanged. In other words, if both control qubits are in the state |1), the target
qubit is changed. If one of the control qubits is in the state |0), the target qubit remains
unchanged [6].

11,1,0) = [1,1,1),]1,1,1) — [1,1,0) (12)

1.2. Generative Adversarial Network

This form of deep learning network consists of two distinct neural networks [1]. The
generator (G) is designed to create fake data from a Gaussian noise vector (z). In contrast,
the discriminator (D) is responsible for identifying and distinguishing real data from the
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fake data produced by the generator [1]. Thus, it is imperative for this network to utilize real
data. In this configuration, the discriminator takes in two inputs: one being real data and
the other being the output generated by the generator. For example, the discriminator plays
a role, like the police, in determining whether real banknotes are fake, and the generator
plays the role of a forger. This game helps both improve in their job. There should be a loss
function that calculates the performance of the discriminator and generator. Figure 1 shows
this structure. However, such a function consists of two parts; one part is a loss function for
the discriminator that is shown as follow [1]:

Lpilog f(D(x)) (13)

The f is a non-linearizer function. As usual, sigmoid is used. Therefore, the result will
be [0, 1]. If the output of the sigmoid is 1 and around 1, it means the log will be zero, so
there is no loss. For fake input G(z), if the D network can determine all G(z) are fake, it will
return zero for such inputs. Therefore, one can write as follows [1]:

Lpy = log(1 - f(D(G(2)))) (14)

By summation two, the previous equations can follow [1]:

Lp = Lp1 + Lpz = log f(D(x)) +log(1 — f(D(G(z)))) (15)

Lp should maximize because the argument of the log is [0, 1], and for the log such
values have negative value, so we must maximize that loss function to approach zero. On
the other hand, the loss function of the generator should be minimized because it means
the generator could create fake data that is very similar to real data. Consequently, we can
update Equation (15) [1]:

min max log f(D(x)) + log(1 - f(D(G(z)))) (16)

About predicted labels, it must be said that if the output of the discriminator, which
is a probability function, is greater than 0.5, then the discriminator will label it real and
otherwise will label it fake. We can update Formula (16). Let P, be a probability distribution
from real data and P, be a probability distribution of fixed noise. The E is the expected
value. Therefore, the Formula (4) will be updated similarly below [1]:

min max Ey.p, log f(D(x)) + Ez~p, log(1 — f(D(G(2)))) (17)

To update the parameters of

1 the discriminator's network
‘ i ) [

Real data ] Lpy

X " diseriminator
Gaussian Output
M.. generator Fake data _I—P L D2
Z G(z) =il
L To update the parameters of

the generator's network

Figure 1. Operation of the GANs loss function.

Algorithm 1 indicates the way of function for the previous description [1].
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Algorithm 1. Minibatch stochastic gradient descent to train GAN. The count steps are
shown with k, which is a hyperparameter for applying the discriminator, and for
achieving the least cost used k =1

for the number of training iterations do

for k steps do
. Sample minibatch of m noise samples {z(l), ., zlm } from noise prior pg(z).
° Sample minibatch of m examples {xm, e, xm) } from data-generating

distribution pgu4,(x).
. Update the discriminator by ascending its stochastic gradient:

9 L5, s (0(x) +ee(i - £(2 (7))

end for
. Sample minibatch of m noise samples {z(l), oo, zm } from noise prior pg(z).
° Update the discriminator by ascending its stochastic gradient:

i L o1 (0(c(:9)))):
end for

The gradient-based updates can use any standard gradient-based learning rule. In
addition, the momentum is used in the algorithm.

1.3. Wasserstein GAN (WGAN)

The metrics defined in the original GANs to calculate distance and convergence
between two probability distributions such as Pr and Pg are the Total Variation (TV) distance
and the Kullback-Leibler (KL) divergence, shown in the following [3,10]:

5(Pr, Pg) = sup |P(a;) — Pq(a;)| (18)
aj€each point in distributions
_ Pr(x)
KL(BIP) = [1og( 0 ) B(x) dnto (19)

where y is the measure defined. The Jensen-Shannon (JS) divergence formula is the
following that is popular to use and symmetrical [3,10]:

JS(Pr, Pg) = KL(P;||P) +KL(Pg]||P) (20)

where P, = P’erpg , and we can choose Py, as y in (19). On the other hand, there is another

metric named The Earth-Mover (EM) distance or Wasserstein-1 [3]:

W(PL Py = dnf L Eeallx =yl 1)

where H(Pr, Pg) is the common distribution y(x, y) with fringe P, and Pg, respectively.
Therefore, the W can calculate the optimal cost better than the JS. The JS estimates dis-
tance point by point while the Wasserstein metric calculates the cost of transporting one
probability distribution to another. In this situation, the discriminator gives a score that
is the Wasserstein distance between Pr and Pg, such as a critic [3]. The critic’s gradients
have better results than the discriminator because the generator will train more easily and
optimally. Since vanishing gradients are important, this method will guarantee that the
gradient will not vanish. Since this formula is used from the 1-Lipschitz constraint, it was
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suggested to cut the gradients of each critical parameter inside a specified range, such
as [—0.01, 0.01]. However, such work, in a large gradient, reduces the rate of reaching
optimism, but in small sizes, the gradient will vanish [3,11]. Gulrajani et al. [12] provided
the WGAN-GP, which uses a gradient penalty (GP) for the 1-Lipschitz restriction. Thus,
the previous formula was updated like follow as:

min max Evp, (D(x)) ~ E.p, (D(G(2))) = AEsp (IV: D), = 1)7) (22
G DeD

where A is a constant, and P is a distribution sampled uniformly in between P, and Pg. This

method is known as WGAN-GP. The WGAN-GP is capable of training random architectures

to some minimum Inception score. It can train on 32 X 32 pixels with acceptable quality [13].

2. Introduction and Fundamentals of QGANSs

In this section, we aim to introduce the structure of QGAN, which includes three parts.

2.1. Introduction to QGAN

In GAN:s, scientists assume while training that the generators and discriminators have
an infinity capacity, which means they can encode every function and distribution, but
classical computers cannot support such ideas. Therefore, scientists try to employ quantum
computing properties to improve the capacity of the GANs. Here there are two neural
networks, the generator (G) and the discriminator (D), and the input data. We can define
four models of QGANSs that were adopted from the idea of quantum computing in the
following Figure 2 to comprehend better [14]. The general idea of QGANSs, which is shown
in Figure 3, is the same as GANs; however, there is a difference in that at least part of this
network is quantum mode such as input data, the generator, or the discriminator [14]. We
can discuss the three models of QGAN. They are (1) Quantum Data, Quantum generator,
and Quantum discriminator; (2) Quantum Data, Quantum or Classical discriminator, and
Classical generator; and (3) Classical data, Quantum generator, and discriminator.

Type of Algorithm

classical quantum

CC  CQ
QC QQ

Figure 2. The CC means the data and the algorithms are classic, but the quantum concept, methods,
or process has helped improve the classical algorithms. The CQ means the data is classic and the

classical

Type of Data

quantum

algorithms are quantum. The QC means the data is quantum (such as chemistry data) and the
algorithms are classic. The QQ means the data and the algorithms are quantum. https://commons.
wikimedia.org/wiki/File:Qml_approaches.tif?page=1 (accessed on 2 November 2024).

Real Data >
Gaussian ‘ Diertiinatar |Real) or |Fake)
Noise *—ﬂ*’ Generator
12) o

Figure 3. The view of QGAN.


https://commons.wikimedia.org/wiki/File:Qml_approaches.tif?page=1
https://commons.wikimedia.org/wiki/File:Qml_approaches.tif?page=1
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2.2. Structures of QGAN

As mentioned before, we aim to discuss the structures of the QGAN in this part.

2.2.1. Quantum Data, Quantum Generator, and Quantum Discriminator

In this case, we suppose real data, the generator, and the discriminator are quantum.
Let us provide some notations to comprehend better; therefore, we assign a label |A) to real
data (R) such that output will be a density matrix (pIA{) [15]:

R(|A)) = pX (23)

As we know, the generator wants to generate a similar sample to the real data. The
quantum systems perform that by variational quantum circuits (VQCs) that are constructed
by gates and parametrized by vector ;. The generator receives two quantum states as
input; one of them is the label |A), and another is the Gaussian noise |Z) (as usual) to create
the following quantum state:

G(bc, |AZ) =05 (06, Z) = [ (Z))(yr(2)] (24)

where p$ and create a unitary fixed state for each A, |Z) as output is similar to real data [15].
The discriminator must realize which data entered is real or fake. It is useful to know that
first, the discriminator attempts to develop its approach to discriminate between real data
and fake data; then through feedback from the discriminator, the generator will update to
get better. Figure 4 shows this structure. This minimax game will be played between the
discriminator and the generator; the main type of input data is statistical distributions that
are encoded quantum. This game will continue until the probability of finding real data
from fake data is % in the discriminator; then this game will finish [2]. The discriminator is
parameterized by a vector fp. The discriminator has two inputs. One of them is from a real

R
data label |A); another is output from the generator that we can show by p{" notation. Here
there is a qubit to measure [15].

—
OutD —p
D(6p)
|4)
|4} ——»
R/G
)
|Z) ——»

Figure 4. The general structure of QGAN.

The next step is the measurement and optimization we can define a cost function
as [15]:

A

minmaxV (6g,0p) = ne}in max% Y Pr((D(6p,|A)), R(|A)) = |Real)) N (D(6p, |A)), G(bg, |A, Z)) = |fake)) ) (25)

6c 6p

p A=1

where the labels are countable, and A is the cardinality of them. The expectation value is
equivalent to the following that will appear on the measurement qubits of the discrimina-
tor [15]:

Z = |real)(real| — |fake)(fake| (26)
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2.2.2. Quantum Data, Classical Generator, and Quantum or Classical Discriminator

The main part of GAN systems is to train based on statistical distributions and prob-
abilities. Suppose we have quantum real data (such as chemistry quantum data) that
is generated by a quantum system and measured by Py (x) for outcomes x. Since the
generator is classic and the data are quantum, because of the quantum advantage such
a generator will not be able to generate such data P, that exactly fits the real data unless
it has high-scale resources. Thus, we can have the minimum error in the positive part of
Pirye — Pg. This occurrence shows us the advantage of quantum, and it means there is still
no classical algorithm that can compete with quantum states except exponential [2].

Lloyd and Weedbrook say in [2] “If the discriminator has access to a quantum infor-
mation processor to adjust her measurement strategy, then we conjecture that she can find
the optimal measurement to discriminate between the quantumly generated data and the
classically generated data. If the discriminator only has access to classical information
processing, then we conjecture that she can’t determine the optimal measurement”.

2.2.3. Classical Data, Discriminator, and Generator Quantum

QGAN is widely favored due to the prevalence of classic datasets, including images,
voices, finance, and similar categories. For the QGAN type, we need to have an embedding
from classical data to quantum states |v;). The important benefit of such QGAN is the
power of the processor for N-dimensional vector using log N qubits while classical uses
N bits. Also, the time process is for QGANSs, O (poly(log N)), and the classical model is
O(N?) [2,16]. To reproduce real data, we need to know the covariance matrix that can be
put forward by C = % L0 ol formula where M is the number of the normalized vector v;

1

that equates to the density matrix p = 2 Y|v;) (v; [2,16].
i

3. Architectures and Algorithms

This section outlines several methods and algorithms suggested by scientists and pro-
vides a comparative assessment of their respective merits. In this context, we highlight the
contributions of Murphy et al. [17] published in 2021, which presents a groundbreaking ar-
chitecture known as “Entangling Quantum Generative Adversarial Networks (EQ-GANs)”.
This framework represents an innovative approach to Quantum Generative Adversarial
Networks (QGANS) [17]. This architecture says some restrictions of existing QGANSs, such
as non-convergence, fluctuations, and model collapse, by using quantum entanglement
to improve adversarial training. EQ-GAN allows the discriminator to entangle true and
generated quantum data, enabling more accurate fidelity measurements and guaranteeing
convergence to a Nash equilibrium. The architecture covers a parameterized, unsuitable
ancilla-free swap test to evaluate the similarity between true and generated quantum states.

In their 2021 work, “Quantum state fidelity,” Samuel A. Stein et al. [18] introduced
a Quantum Generative Adversarial Network (QGAN) that utilizes quantum modes for
both the generator and the discriminator. A new measurement method, the SWAP test, was
used to measure the fidelity of two quantum states as input. It is designed such that the
architecture can beat classical GAN problems like mode collapse and vanishing gradients
or clean up the mess or high computational cost that follows it by pushing the limits
of computer science with quantum computing. QuGAN is fully quantum, and both the
generator and discriminator are implemented as quantum neural networks that operate
only on quantum circuits and then use quantum state fidelity-based loss functions. The
generator generates quantum states from latent variables, and the discriminator measures
them to real quantum states using a SWAP test. This approach ensures both parts operate
in the quantum state, and it optimizes the process through gradient-based updates from
fidelity measurements. Cheng Chu et al. [19] in 2023 developed the “Image Quantum
GAN (IQGAN),” which represents a significant enhancement of Quantum Generative
Adversarial Networks (QGANS) tailored for the processing of image data. This work intro-
duces an innovative trainable multiqubit encoding alongside a novel quantum circuit that
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successfully removes the necessity for costly operations like CNOT. It utilizes alternative
gates, namely CRX, CROT, and ISWAP, for the creation of entanglement, offering a more
cost-effective solution compared to traditional CNOT gates. IQGAN includes dynamic
encoding and less costly entanglement gates, which help enhance the data representation of
quantum computing and its efficiency on quantum computers. Hence, more experiments
reveal that IQGAN is superior to the standard QGAN, while still noting that it is quite
sensitive to the trade-off between the model’s added layers and its exposure to quantum
noise. In summary, IQGAN presents enhancements to enhance the performance of QGANs
in quantum computers sensibly.

In their 2021 publication “Experimental Quantum Generative Adversarial Networks
for Image Generation,” He-Liang Huang et al. [19] propose two methodologies, namely
Quantum Patch GAN (QPGAN) and Quantum Batch GAN (QBGAN). These methodolo-
gies enhance the efficiency of quantum resource usage, enabling improved functionality in
the context of near-term quantum devices. QPGAN operates with a restricted set of qubits
to generate image patches, utilizing several quantum sub-generators in conjunction with
a classical discriminator. Conversely, QBGAN employs a more extensive qubit array and
capitalizes on quantum parallelism to achieve efficient training through a fully quantum
architecture. The experimental results indicate that although QPGAN generally outper-
forms its counterpart, QBGAN demonstrates superior efficiency in terms of time. Both
methodologies highlight the significant potential of quantum GANSs, particularly when
deployed on NISQ computers, for practical applications in image processing.

The research conducted by Shu Lok Tsang et al. [20] in 2023 introduces the Parameter-
ized Quantum Wasserstein Generative Adversarial Network (PQWGAN), a novel approach
that integrates both quantum and classical computational techniques to improve the gener-
ation of high-resolution images. PQWGAN combines a quantum generator with a classical
critic, reflecting the trend in many quantum applications that utilize both quantum and
classical computing to enhance outcomes, similar to the methodologies employed in patch
strategy QGAN and WGAN-GP [12]. The classical critic, represented by a neural network,
assesses these images while guiding the generator for future improvements. Consequently,
the training framework is structured using a patch strategy alongside WGAN-GP to ensure
both stability and efficacy. Evaluations conducted on the MNIST and Fashion MNIST
datasets indicate that the POQWGAN produces images that closely resemble authentic ones.

3.1. Entangling Quantum Generative Adversarial Networks

EQ-GAN [17] presents an innovative architecture for Quantum Generative QGANs
designed to address particular challenges, including issues of non-convergence, oscillations,
and mode collapse. EQ-GAN uses quantum entanglement in the discriminator to improve
adversarial training, making sure of convergence to a Nash equilibrium and developing
robustness against errors in noisy quantum devices. Unlike old QGANS, the discriminator
in EQ-GAN entangles real data o and fake data. (0 (6 ) ), using fidelity-based measurements

such as: )
DI (p(65)) = (Tr oho(6;)0 ) 27)

which guarantees superior convergence properties. The EQ-GAN training is related to a

minimax optimization problem that the generator and the discriminator are optimized

by using the cost function rr(}in rrbaxV (0, 64) = r%in max [1— Dy (64, p(05))] where
8 d g d

Dy (64, p(6;)) is the parameterization of the swap test result. Since the loss function

NI—=

is not optimal, assume, the discriminator measures |0) states in output, if ngt achieves
a SWAP test (Dg (9;” t,p(Gg)) =1+ %D{;d (p (%))) then D, helps the discriminator to
approach the optimal point [17,21]. A SWAP test needs two double-qubit gates such that

if we have n-qubit states, 2n qubits will require more overhead. Hence, the discriminator
uses a parameterized destructive ancilla-free swap test [17,21].
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The EQ-GAN development increases state generation p(6) and fidelity measurement
D,. in an adversarial strategy. Provided the new cost function that is following, it guaran-
tees a Nash equilibrium. Let a SWAP test with U(6;) = exp(—i6;CSWAP) that has control
through an angle 6, [17,22].

The input states are p;;, = [i)(¢| and o = |{) (| for the discriminator that changes
into the following formula [17,22]:

isin Gd

equal HU (6)HI0),|)18) = 0021}, [10) ) — [9)12)] + 510, [ (e7% + cos0a) [¢}[2) — isinal)9)] (29

According to circuit ansatz in (29), the maximum angle between two arbitrary states
in the SWAP test will be § = 7. For example, to calculate the probability of state |0), the
parameters of the SWAP test are determined by the angle 6.

Dy (64, 0(65)) = % |1+ cos? 6, +sin® 64 DS (p(6) )| (29)

Choosing unsuitable parameters can lead to divergences in the loss function and the
inability to optimize gradient descent. Instead of adversarially training the parametric
swap test employed as a discriminator in EQ-GAN, a frozen discriminator might apply a
perfect swap test with each iteration. This may also lead the generator circuit to converge
on the real data. Because EQ-GAN is unknown by the specific parameter of a perfect swap
test, a suitable ansatz can learn to fix coherent problems found on quantum hardware.
For example, parametric gates such as conditional Z phase, single qubit Z phase, and
swap angles in two-qubit entangling gates may change and fluctuate with time. The big
differences in single-qubit and two-qubit Z rotation angles will substantially decrease by
entering extra single-qubit Z phase compensations. The discriminator is generated with
flexible Z rotation angles to minimize CZ gate errors. This allows the generator to be closer
to the real data state by adjusting X and Z rotation angles [17,23].

Using frozen swap tests on EQ-GAN results in superior performance than those
of traditional supervised methods on Google’s Sycamore quantum processor. It finds
that the state fidelity error for the perfect swap test is (2.4 £+ 0.5) x 10~#, while EQ-GAN
achieves (0.6 4 0.2) x 10~* in noisy environments. Additionally, EQ-GAN appeared to
train reliably on data, avoiding the behaviors of excess variability seen in QuGANSs. In
practical applications in quantum machine learning, it uses this architecture, for example,
to generate approximate Quantum Random Access Memory (QRAM). This is shown by
training a quantum neural network (QNN) on EQ-GAN-generated QRAM on a two-peak
Gaussian dataset, which achieves 69% accuracy compared to 53% accuracy for exact data
sampling. In noiseless setups, EQ-GAN also handles challenges with vanishing gradients
that have commonly been encountered when employing perfect swap tests. Equipped
with dynamically optimizing the discriminator, EQ-GAN can sidestep gradient issues such
that the generator converges on the true data state. Nevertheless, these architectures are
presented to be scalable, yet they face limited scalability in terms of circuit depth in current
quantum hardware.

To summarize, our EQ-GAN framework shows how to resolve difficult convergence
and robustness challenges in quantum generative modeling while providing practical
utility in quantum machine learning.

3.2. Quantum State Fidelity

Samuel A. Stein et al. [18] provide a new method for quantum generative adversarial
networks (GANs) using quantum state fidelity as a metric for loss functions. The generator
and discriminator in QuUGAN use quantum circuits and quantum state fidelity to guide the
adversarial learning process. This structure uses quantum state fidelity computed via the
swap test [17] as the loss metric. Deep learning in a quantum system is often represented by
groups of quantum gates that perform specialized data manipulations [24]. Parameterized
gates modify the quantum state in specified methods [25]. Ref. [18] says key challenges
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in classical GANSs, such as mode collapse, vanishing gradients, and high computational
requirements, and offers a new approach to GANs through quantum computing, namely
QuGAN, achieving improved stability and efficiency. The generator and discriminator in
QuGAN are implemented as quantum neural networks operating entirely on quantum
circuits and guided by quantum state fidelity in the adversarial learning process. First, two
states |¢,) and |$) as input enter a system that measures their fidelity, and then there is
an ancilla qubit that is in a [+) state passed to the system during this process. The result
follows as [18]:

statepefor = 5 (10, ¢, %) +[1,¢,9))
Stateasier = (10, ¢, ) +[1,9,9))
Next, the ancilla qubit will go by from a Hadamard gate so that the result follows as:

(30)

statepefor = 5 (10, ¢, 9) + 1,4, 9))

state = 3(10, ¢, ) + |1, ¢,9) + 0, ¥,¢) — |1, 9,9)) = (31)
310 9) + 1w, ) + 31 &, 9) — ¢, 9))

To measure the probability of |0) state, we need to square the coefficient of |0). Also,
we talked about the fidelity of |ip) and |¢) states which is a number in [0.5, 1] that when
two states are perpendicular to each other their inner product is 0 and their fidelity will be
0.5. (if their inner product is 1, their fidelity will be 1); then according to the descriptions,
we have the following to measure the |0) state [18]:

1 1
PMeusure(|O>) = 2 + §|<¢‘lp>|2 (32)

To continue, we describe how such a fidelity model works. Here are two classical and
quantum computers that on the classical computer were designed quantum circuits. It
will pass the parameterized quantum circuits from the classical computer to the quantum
computer and the end returns calculated fidelity. First, classical data will be embedded
in quantum mode with an angle encoding. Figure 5 pictures it. After that, we enter the
step of parameterizing that will be performed by the quantum circuits that the first layer
was utilized by Ry (6) gates which are single qubit gates. The second layer was applied
by Ryy(0) gates which are dual qubits. The third layer, the entanglement layer was run
through by CRy(6) (Control Ry(6)). In this step, quantum circuits load in a quantum
computer. It should be highlighted that the presence of an ancilla qubit is crucial for the
fidelity calculation to ensure the result is stored. In this step, three positions will occur on
the quantum computer whether optimizing the generator or optimizing the discriminator
or in the end step sample G state.

The quantum circuits attempt to realize which data are real or fake by measuring
the loss function of the discriminator and the generator that follows the formula for loss
function. After calculating loss functions, it is time to optimize by loss functions. The
common method to optimize is gradient descent, and this architecture follows similarly
to classical GAN [26]. When calculating the gradient of parameters, the loss function of
the discriminator with regard to the generator and real data will update itself. The loss
functions for the discriminator and generator are [18]:

Dioss = E|log(D(1(&,8)%) )| + E[log (1= D(I(%.6)*))] (33)

Gioss = E[1og(D(1(7,0)I) )] (34)
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Figure 5. The structure of Quantum state fidelity.

Then the generator, according to the discriminator, will update its performance. The
differential equation that follows helps calculate the gradient [18].

G-200+5) (- 3) ®

In [18], QuGAN has four main components: The generator circuit, discriminator
circuit, data loading circuit, and an ancilla qubit for fidelity measurements are also present.
Measurement on noisy intermediate-scale quantum (NISQ) devices is simplified by the
main qubit ancilla. The resulting design also provides robust performance. It evaluated
the model on the MNIST dataset, with dimensionality reduced from 784 to 4 by Principal
Component Analysis (PCA) because of the limitation of the current quantum hardware.
Inverse PCA was used to transform transformed back-generated quantum states into
images for visualization. The performance of the model was evaluated with Hellinger
distance, a probability distribution comparison metric. It also shows that classical GANs
with small parameter counts can achieve the same level of generalization as QuGAN
(Hellinger Distance 0.1951). For instance, classical GAN with 20 parameters can have a
distance of 0.4448, but QuUGAN with 10 parameters for the generator and discriminator.
QuGAN has better stability and consistent convergence compared to other quantum GANs
such as Qi-GAN and TFQ-GAN. QiGAN learns neither consistently nor reliably, with
less than 0.5% improvement, TFQ-GAN still less than 48.33% AVD (Hellinger Distance),
and QuGAN has reached a minimum of 48.33% AVD (Hellinger Distance) over 25 epochs.
Experiments on the IBM-Q Melbourne quantum processor further validated the stability of
QuGAN. Real quantum hardware introduces inherent noise, which QuGAN still performed
robustly, achieving a Hellinger distance of 0.280 in simulation and 0.337 on the actual
quantum processor due to hardware noise.

Per experiment, unlike classical GANs, QuGAN reduces parameter counts by 94.98%,
with similar or better performance. Another virtue of this quantum GAN architecture is that
it also helps avoid the instability and inefficiency of existing quantum GAN architectures.
It illustrates the model’s capability for effective learning of complex data distributions by
generating MNIST samples that converged to recognizable digits. Nevertheless, the paper
notes limitations associated with present quantum hardware constraints, like qubit limits
and noise.
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3.3. Image Quantum GAN (IQGAN)

Some works on QNN inspire GANs [27-29], while Chu et al. [30] bring up that
their method is focused on where there is classical data while the generator and the
discriminator are in quantum mode. The dataset is the MNIST with NISQ. They claim that
standard quantum encoding put forward by the previous methods declines potentially
generating QGAN; therefore, they provide multiqubit, more trainable encoding [17,18].
Then, they put forward a generator circuit ansatz that decreases CNOT gates (circuit depth).
These improvements help implement NISQ devices and have superior performance on
IBM computers as well. The previous method of classical data like x was a vector as
input that was embedded in a quantum state like |¢,), then the generator generates
synthetic G(6;) from |9, (6,)) through quantum circuits. Next, the discriminator with
D (o), |p)), and the SWAP test will calculate the fidelity of real data |1,) and fake data
o). Meanwhile, PCA [31] was used for dimension reduction in the previous method
because of a double qubit as input and a single qubit in the circuit block, some problems in
unfit should be adjusted. The quantum fidelity quality of images was low through angle
encoding because of the existence of periodic sine and cosine periodic functions that cause
distorted images [18]. IQGAN has two novel ideas the first one is about encoding data
with modification arcsin(x.6;) to embed to a quantum state unlike [32] that use arctan and
the other one is the use of a specific circuit without cost CNOT or double qubit to perform
entanglement. The first novel idea is about embedding data that the previous method used
from fixed encoding (arcsin/x) while in this method was proposed dynamic encoding and
trainable that has a theta parameter that appeared in arcsin(x.6;) function as commonly.
The set theta includes parameters that were trained before where the clusters of data were
separated. The encoder has been trained using a preparing dataset CIFAR10 [33] which
T = {(x;, y;)|0 <i < N — 1}, where x; is an n-dimensional vector and y; is the label. They

—1
create a quantum set 0y, = Nik kz [¥o (xj) ) (o (x)| by randomly choosing N inputs from
=0

class yi, (Te = {(xj, ¥&)|0 < j < Ny —1}), and sending them into the encoder. Then it
trains the encoder to find the optimum values 6; to maximize the distance of 0y, and 0y, at
k # m. After that, IQGAN employs trained values for (arcsinx.;) as starting parameters.
As a test dataset to maximize separability among data clusters, 6; is pre-trained on datasets
such as CIFAR10. Such an adaptive approach improves the expressivity of quantum neural
networks (QNNs) and also provides a robust initialization for training GANs. The second
novel idea is this method using parametric gates like CRX, CROT(¢, 8, w), and a fixed
ISWAP instead of CNOT to create entanglement because as we know CNOT gate is very
costly for us whether hardware or implement. IQGAN devises the compact quantum
generator that does away with complex two-qubit entanglement gates, such as CNOT
gates. IQGAN replaces these gates with simpler or no entanglement gates so that the circuit
depth is greatly reduced, and hardware is significantly less required without degrading
performance. The fidelity achieved by this compact generator is experimentally compared
with that of more complex designs, and hardware costs are reduced by 6x. The generator
and discriminator of IQGAN are trained with a fidelity-based loss function. The training
objective minimizes the difference between real and generated data states, measured by
quantum fidelity:

L(0) = myin[1— (yo|po (62))’ (36)

where <lP0"1ij (6g))* quantifies the similarity between the real state ¢, and generated

state ¢),. The results show using IBM’s 5-qubit quantum processor (IBM Quito) [34] and
PennyLane simulators [35] high performance of IQGAN compared to old quantum GANs,
such as QuGAN 2021 and EQ-GAN. Compared to previously developed methods, IQGAN
produces MNIST images that are more clear and accurate. Outputs of QuGAN 2021 are
distorted and blurred, especially for digit ‘3, whereas EQ-GAN has an unsatisfactory
image quality while IQGAN yields stable and clear quantum images, including on the
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real quantum hardware. It converges in 10 iterations and has a final fidelity score between
generated quantum states and target quantum states equal to 0.966, thus being much better
than other models. Furthermore, it is transformed using its trainable encoder, which speeds
up learning and provides improved fidelity by 0.039. In addition, the trainable encoder
outperforms its fixed counterpart by up to 4 percent for downstream classification tasks,
especially if the input size is large and the model is complex.

To evaluate, the dataset is MNIST [36] and used PennyLane library [35] to implemented
on the simulator and used 5-qubits on an IBM quantum computer [34]. It compares
EQGAN [17] and IQGAN with ADAM optimizer [37], learning rate = 0.001, batch size = 32,
and epochs = 30 will train also The learning rate is scheduled by CosineAnnealingL.R with
a Ty of 30.

The function of TE increases when the number of qubits increases, for example on
MNIST-4 for input sizes of 2 X 2 and 4 x 4. The next improvement of TE increases with
the model complexity, for instance, MNIST2 and MNIST-4 with both 16-qubit inputs. Both
methods show consistent convergence after ten iterations, demonstrating that IQGAN
achieves a high more than 0.92 state overlap with the target inputs. The suggested TE
produced less fidelity (e.g., 0.85 vs. 0.90) in early rounds, but the final taught fidelity is
~0.039 greater (0.966 vs. 0.927) than FE. Also, the acquired fidelity of TE rises quicker than
that of FE, mostly due to the TE circuit’s greater flexibility and adaptability and its richer
expressive potential. The original pictures are downsampledto1 x 2,1 x 4,1 x 6,and 1 x
8 vectors using the PCA technique. However, the quality of the target pictures improves
monotonically with input size, and the fidelity of taught images to original inputs declines.
A quantum system with more qubits and gates is more sensitive to noise. In this scenario, a
more advanced IQGAN circuit raises the model’s expressive capability, but quantum noise
from excessive overhead diminishes overall fidelity.

Ultimately, IQGAN offers, on average, enhanced image quality relative to other so-
phisticated quantum GANSs, alongside a faster convergence rate. It also demands reduced
hardware resources and demonstrates improved noise tolerance for quantum generative
modeling on NISQ devices. Possible further research areas include further application of
IQGAN on bigger data sets such as CIFAR10 and ImageNet [38], as well as extensions of
the generator network and the activation of superior techniques for error reduction.

3.4. Experimental Quantum Generative Adversarial Networks for Image Generation

He-Liang Huang et al. [19], in Experimental Quantum Generative Adversarial Net-
works for Image Generation (Abbreviation EXQGAN), provided two strategies based on
the number of qubits and features. The goal of this method is the optimal use of quantum
resources and the providing of high quality in image generation. These two methods are
quantum patch GAN (QPGAN) which N < [log M| and quantum batch GAN (QBGAN)
which N > [log M| where N is the qubits count and M is the feature dimension count.
Specifically, the quantum patch GAN was made to use quantum resources better and
generate high dimensional features, but quantum batch GAN is to train in parallel because
there are enough quantum resources.

The quantum patch GAN where N < [log M| has the quantum generator and the
classical discriminator such that because of lack of resources, the discriminator is classic.
In this situation, the generator consists of several sub generators {Gt}thl where T is
O(%) That is useful for a distributed quantum system to train in parallel or a
single qubit system for linear training, while in classical GAN this method is equivalent
mini batch [39]. Each qubit has the task to generate a part of the image that at the end
of generating composes together and provides the final image. G;s are parameterized
with Ug, (6;) that output is a state |G¢(Z)) (|G¢(Z)) = Ug,(6+)|Z)). Let X be the generated
sample and x be real data, the loss function that has been used to optimize 6 and v is
follow as:

min max = Ey.p,,,, (v [108 Dy (¥)] + E.p(z) (log {1 — Dy [Gp (2)]}) (37)
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where Py;;,(x) is the distribution of real data and P(z) is the probability of Gaussian
distribution to enter the generator. The circuit of the quantum generator encodes data
with two RY gates as input, then entangled qubits via CNOT gates and measurements
for classical output. Figures 6 and 7 show quantum generator circuits and patch QGAN
structure, respectively. To test the performance of the quantum patch GAN, it runs on a
superconducting quantum processor to generate handwritten digit images for “0” and
“1”. The superconducting quantum processor has 12 qubits on a one-dimensional (1D)
chain, with a maximum of six neighboring qubits selected during the experiment. About
fidelities of single-qubit and controlled-Z gates are around 0.9994 and 0.985, respectively.
The training 1000 examples are 8 x 8-pixel images with M = 64. In the experimental settings
for quantum patch GAN, weset T=4, N =5.

@ rake
Generator

@ Real

0[0|©[0[Q/0
418101010/0
9Q|9]010/6/O
0l0[0l0/00

Discriminator

016/0(0/0/0
Real Data

Figure 7. Scheme of quantum patch GAN.

In the quantum batch GAN where N > [log M| both the generator and the discrimi-
nator are in quantum mode because enough resources are available. The loss function is the
same as (35), but the method work is different. First, the N qubits available are divided into
two parts: the feature register (Rp) and the index register (Rj). The Rr will encode with Np
qubits that consist of the feature information, and the R; records with are encoded with
\/LNT ;|z> 11 xi)p by the use of the amplitude encoding method. Having an index register

helps us work on N, to gain the gradient more efficiently. Since one can train N, samples
through superposition simultaneously, the training process is more efficient because of
the existence of quantum batch GAN. On the other hand, quantum batch GAN uses the
quantum discriminator for binary classification, measuring one qubit should be sufficient
for determining between real and fake images. As a result, quantum batch GAN requires
very few observations. To validate its generative capabilities, Quantum Batch uses GAN
to generate gray-scale bar images. Experimental parameter settings T =1, N =3, | By |

=1 (or N; = 0), and the quantum generator has a total of nine trainable parameters [40].
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Quantum discrimination has a total of 12 trainable parameters. Quantum batch GAN can
achieve the same FD (the Fréchet distance) [41] score as quantum patch GAN, indicating
that it can be used to solve image processing challenges. This indicates a significantly
lower performance of quantum batch GAN compared to quantum patch GAN, due to its
quantum selectivity major. Due to the restricted number of training parameters used in the
medium, we can see the decreased performance of the quantum batch GAN against the
quantum patch GAN. In summary, this work is a first step towards connecting quantum
and traditional generative learning. It shows that near-term quantum devices could be
used for important applications, like generating real-world digital images. Additionally,
these findings suggest that quantum GANs might offer advantages, such as reducing
the number of training parameters and improving computational efficiency in the NISQ
environment [42]. Finally, the outcomes revealed that the proposed QGAN carried out
small-scale grayscale images with high realism. Finally, the performance of the QGAN was
evaluated by the fidelity score of 0.912 of the fake quantum states with the real ones when
the number of training iterations was about 15. The convergence of the three parameters
did not significantly change through training, apart from slight fluctuations caused by
increased hardware noise. Paired with the evaluation of the generated samples based on
comparisons, the performance of the QGAN was shown to improve across the iterations to
be a near-likeness of the structure pattern in the original data. In the aspect of hardware
efficiency, fewer qubits and fewer numbers of circuits were implemented into the model
and hence were fine-tuned to meet NISQ device constraints. On this account, the QGAN
outcomes were found to be adequately favorable with the standard GAN models while
using the limited data set considered in the research. However, they found that general
scaling to larger, analytically intensive datasets is still not possible due to some constraints
in quantum hardware that exist today.

3.5. Hybrid Quantum—Classical Generative Adversarial Network for High-Resolution
Image Generation

In their research, Shu Lok Tsang et al. [20] propose the continuation of the quantum
patch GAN, introducing a novel aspect by merging it with the Wasserstein GAN gradient
penalty (WGAN-GP). This integration is intended to facilitate the generation of high-
resolution grayscale images measuring 28 x 28 pixels. Quantum sub-generators, based on
quantum computation, are utilized on image patches to reduce the number of trainable
parameters yet achieve approximately the same image quality as classical WGAN-GP
models. It has better convergence inherited from WGAN, and the other is improved in
training and not using PCA for dimension reduction. In this method, the generator receives
an N-dimensional vector z from a specific probability distribution such as uniform or
Gaussian (P;) then a layer Ry rotation encodes z that will have |z):

|z) = Ry (z1)RY (22) ... RY (zn) 0) (38)
where z; is the rotation angle and |0>®N is the initial state. After going through layers
that parameterize each qubit with R(¢,6,w) = Rz(w)Ry(8)Rz(¢) [43] then each qubit
will be entangled with an adjacent qubit by the CNOT gate. This order (ZYZ) is suitable
when you aim to implement them on real quantum computers. The parametric layers are
unitary matrices like U (¢;, 0;, w;) that apply on state |z) that generates a part of the image
by sub-generator [20].

;) = U(epi, 6;, w))]|z) (39)

As we know, the nonlinearity for activation function in neural network classic is a
strong benefit. Therefore, we apply a partial measurement like M on ancilla qubits whereas
after measurement we have the situation of qubits as follows:
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The existence |yg,) in the denominator and numerator causes nonlinearity. After
measurement of each qubit as a sub-generator we have:

Gi(z) = [0(0), p(1),...,p(2°7")] (42)

We want each part of the generator’s output to fall between 0 and 1, so they can be
considered pixel values. While we could technically use the probabilities as pixel values,
doing so would cause issues due to the normalization constraint, preventing us from
obtaining the desired pixel values. Therefore, we use the following formula:

Gi(z) = n,mG(igi)(Z)) (43)

Because the quantum circuit’s outputs are a power of 2 s, we preserve the initial

H ijw pixels to construct the necessary patch dimensions. Finally, the output from all the

sub-generators is combined to generate a picture of dimension H x W.

G(z) = [G{ (z), ...,G;(z)r (44)

The whole of this process is collected in Algorithm 2.

Algorithm 2. To generate an Image from the Patch Quantum Generator [20]

Input: Image dimensions H x W, number of ancilla qubits A, number of data qubits D,
number of sub-generator layers L, number of patches P, generator parameters
6 = [0y,..., 0p), latent variable z.
fori=1,..., Pdo
[9i) «— Ui 1,6]2)
10) (0] **) 1] e, ) ¥,

— Tr ( : X
Po A( (v;](10) (01 * ) 1w,
Measure pp in computational basis to obtain
Gi(z) « [p(O)(, )p(l), o p(2P7Y)]

Gi z

Gl/ (Z) — max(G;(2))
Discard excess pixel values to obtain

G/ (2) « Gl(z)[: 1]

1

end for ;
G(z) = [G](2), ..., Gp(2)]
Return G(z)

In WGAN-GP, the critic’s role is to take an image and calculate the Wasserstein distance.
There are challenges for the quantum critic. First, loading high-dimensional data into a
quantum circuit is difficult because it demands a lot of quantum resources. Second, the
learning process for quantum circuits is not as well understood as it is for classical neural
networks. The training algorithm for PQWGAN is similar to the WGAN-GP training
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algorithm but uses quantum generators (see Algorithm 3). With the generator divided
into sub-generators, we need to update the parameters of each sub-generator based on the
loss calculated from the entire image by gradient [44]. The loss function L(w, 6) depends
on both the critic and generator parameters. If we have N sub generators, each with n
parameters, the generator’s parameters can be represented as a vector:

0=1[61,...,0n.] = [91,1,...,91.,1,...,GNG,l,...,GNG,n] (45)

The gradient of the j-th parameter of the i-th sub-generator is:

8<La<;:f”> _ §(<L(w, Ot Byt e Ben) ) (L(@,000 8= D)) (46)

Algorithm 3. PQWGAN training algorithm [20]

Input: Gradient penalty coefficient A, Critic iterations per generator iteration nc,
number of epochs 1,5, batch size m, Adam hyperparameters 771, 772, p1, B2. Initialize
critic parameters w, sub-generator parameters 6.

forepoch =1,..., nepocps do

fort=1,..., ncdo

fori=1,...,mdo

Sample real data x ~ Py, latent variable z ~ p, random number e ~ UJ0,1]

x" < quantum — generator (6,z)

£ ex+(1—e)x

Lp) « D(x') = D(x) + A(IVz D), - 1)?

end for
mo .

w — Adam (anl1 > Lg),w, 1, B1, ﬁz)
i=1

end for

fori=1,...,mdo
Sample real data x ~ Py, latent variable z ~ p,
x" < quantum — generator (6,z)

LY « —D(x)

end for
mo .

0 < Adam <Vw,}1 )y Lg),Q, 12, B1, ﬁz)
i=1

end for

To evaluate, the datasets are the MINST and the FMINST [45]; the first one is hand-
written digits, and the second one is clothes, shoes, and accessories. All images are 28 x 28
pixels and 1000 samples of each class are used as a train set. The implementation was used
with Python 3, PyTorch, and PennyLane. The classical discriminator in PQWGAN with the
role of a critic is fully connected with two hidden layers with 512 and 256 neurons. Also,
the activation function is the ReLU, and the output layer has a neuron without an activation
function. While, the WGAN-GP has three hidden layers with 256, 512, and 1024 neurons,
and the activation function is the ReLU. Also, the output layer has tanh as the activation.
About hyperparameters, A = 10, nc = 5, the optimizer is Adam [37], B = 0, B2 = 0.9, and
learning rates are 0.1 and 0.0002. As an experience, the uniform distribution is better than
Gaussian, so the uniform distribution with [0, 1] is used for implementation. The batch size
is 25 and the iterations are 600. For the MNIST dataset, digits 0 and 1 will be generated,
and for the FMNIST dataset, T-shirts and trousers.

The results show its efficacy in generating high-resolution (28 x 28) grayscale images
with a reduced number of trainable parameters than classical models. It shows that
PQWGAN was able to generate high-quality images similar to classical WGAN-GP models
for the MNIST dataset, such as digit generation “0” and “1” with the trainable parameters.
The model also does well on more complex datasets, the Fashion MNIST (FMNIST) and
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tri-class MNIST (digits ‘0’, “1’, and ‘3’), while more complexity causes lower performance
in terms of keenness, although this required more layers and qubits to improve it. The
results show the state of patches, qubits, layers, and total parameters: With increasing
the number of patches, the number of qubits and layers reduces, and total parameters
are nearly equal. For example, when there is one patch with 10 qubits and 153 layers,
the number of parameters is 5049. Whereas, with 28 patches with 5 qubits and 10 layers,
the total parameters are still 5040. Increasing layers with the same number of patches,
such as 28 patches and 15 layers, the parameters will be 7560. Therefore, increasing the
number of qubits, like 10 qubits, needs more layers (153) to maintain a consistent parameter
count (5049). This balance indicates a swap between qubits and layers while ensuring
parameter stability across configurations. There is an indirect relation between the number
of layers and parameters; it means more parameters with fewer layers for NISQ devices.
In particular, this makes scalability and resource-efficient quantum generative modeling
optimized for particular tasks and with hardware limitations.

For example, PQWGAN is shown to have encoded the underlying data distribution
in the latent space successfully. On the MNIST dataset, more complexity needs further
challenges, such as tri-class MNIST and FMNIST datasets, but PQWGAN still has good
performance despite the need for more time.

4. Discussion and Comparative Analysis of the Papers

These papers focus on the same topics: improvement of QGAN architectures for noisy
intermediate-scale quantum (NISQ) devices and optimizing them under limitations such
as the number of qubits and noisy environments. In all studies, image generation is a main
task, from simple 2 x 2 grayscale images to more complex 28 x 28 grayscale MNIST and
Fashion MNIST (FMNIST).

All of these frameworks focus on computational efficiency by moving from classical
GAN s in reducing the number of trainable parameters and maintaining better performance.
For compatibility with existing hardware, they use quantum circuit optimization techniques
for minimum depth in the circuits and the minimum number of gates. Robustness to
quantum noise also appears in the form of decoherence and gate errors that each paper
tries to provide solutions for. There is a summary of the papers in Table 1.

Collectively, the papers look into different quantum and hybrid quantum (classical)
generative adversarial networks (QGANSs) for image synthesis and optimization of ar-
chitectures for noisy intermediate-scale quantum (NISQ) devices. While common issues
such as scalability, noise resilience, and efficient resources are shown, each paper states
different advancements. While they differ in detail, all of them use quantum properties like
superposition and entanglement to learn better.

EQ-GAN introduces a fidelity-based loss function for convergence and stability during
training. It proposes quantum-specific fidelity metrics to generate data that are stable but
have limitations in scalability because it focuses on synthetic datasets and QRAM-based
image generation.

QuGAN:Ss use the loss metric in their model, which is quantum state fidelity, and it
generates 2 x 2 grayscale images with relatively low parameter counts (~5040). Although
QuGAN obtains strong fidelity scores and robustness in quantum noise, it is limited by the
small datasets and scalability.

IQGAN expands these methods by including a trainable quantum encoder and a
compact generator that lowers hardware costs without reduction in performance. This
structure generates 8 x 8 grayscale images well. It is both scalable and efficient while still
using moderate resources. Moreover, its robustness to noise makes it a good candidate for
NISQ devices.

EXQGAN is built with the concept of patching, which divides the generator into
sub-generators that also help optimize resources. This method shows good scalability for
generating 8x8 grayscale images of handwritten characters and bar patterns, and with
distributed quantum resources, tries to save resources.
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Table 1. A summary of the papers.
Aspect EQ-GAN QuGAN IQGAN EXQGAN PQWGAN
. Hybrid
. Two strategies: .
Introduced Quantum fidelit Trainable encoder Quantum Patch quantum-classical
Main Contribution  fidelity-based loss Y and compact approach for
as the loss metric. - GAN and Batch - -
for convergence. generator design. GAN high-resolution
’ images.
QRAM state 8 x 8 grayscale Handwritten digits MNIST and
. 2 x 2 grayscale . i i i Fashion MNIST
Datasets generation, . images (“0 (“0” and “1”) and
svntheti 1 images (MNIST). a1 bar i (28 x 28
ynthetic samples. an ). ar images.
grayscale).
Scalable through .
Limited to QRAM 2 % 2 image size Efficient for 8 x §; patching; Besttzc;;al;ﬂ;tg, up
Scalability and synthetic o ge sz, challenges with challenges in high . .
limited scalability. ) . high-resolution
datasets. higher complexity. parameter .
. images.
efficiency.
11‘;23:;2 ~5000 ~5040 ~5000-7600 ~5000-7600 ~5000-5500 (5376)
Fidelity-based . Compact generator Divided generator Hybrid
. Parameterized with reduced . .
Generator Design quantum o into quantum-classical
quantum circuits. entanglement
generator. sub-generators. patches.
gates.
Discriminator Quantum fidelity Quantum Classical or Classical for Patch . C'las'smal .
Design measurements discriminator quantum GAN, quantum for discriminator in
’ ' discriminator. Batch GAN. patches.
ca . High-resolution
Performance Fidelity, Fidelity, Hellinger Image quality, Fréchet distance quality, latent
Metri convergence k hardware .
etrics 3 distance. . (FD), efficiency. space
stability. efficiency. . .
interpolation.

PQWGAN shows the improvement of scalability, as hybrid quantum-classical methods

are used to generate high-resolution, 28 x 28 grayscale images from MNIST and Fashion
MNIST datasets. PQWGAN combines quantum sub-generators with classical patches
using a combination of Wasserstein GAN with the Gradient Penalty (WGAN-GP) and then
generates high-quality images with fewer parameters than their classical counterparts.

Though POWGAN succeeds when it works on larger datasets, it needs more hard-
ware for more complexity. Their key commons are their focus on improvement to NISQ
limitations, circuit design optimization, and using the lower trainable parameters while
increasing performance. The topic of noise resilience and finding ways to minimize the
impact of decoherence and gate error are followed in all papers. However, scalability varies
significantly.

EQ-GAN and QuGAN work on small datasets, while IQGAN, EXQGAN, and PQW-
GAN talk significantly higher resolution and scale to higher scales; also, PQWGAN is
making the most significant improvements in scalability. IQGAN and EXQGAN affect
the balance between parameter counts and image qualities successfully based on compact
designs and patch-based strategies that are suitable for limited hardware.

Hybrid methods focus on higher-resolution tasks that are more complex and can
be used by PQWGAN. Performance metrics like fidelity scores, Fréchet distances, and
latent space interpolation show different strengths. PQWGAN achieves the best results in
high-resolution generation, while IQGAN and EXQGAN balance efficiency and quality
for moderate resolutions. Table 2 shows the noise resilience and stability of complex data
based on performance metrics.
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Table 2. Comparison of Performance Metrics, Noise Resilience, and Scalability Across QGAN Models.

Paper Performance Metric Noise Resilience Scalability to Complex Data
EQ-GAN Fidelity, convergence Moderate Low
QuGAN Fidelity, Hellinger dist. Moderate Low
IQGAN Image quality, FD score High Moderate
EXQGAN FD score High Moderate
Resolution, . .
PQWGAN interpolation High High

5. Challenges and Limitations

The PQWGAN model identifies challenges related to data complexity and conver-
gence, suggesting that future research should focus on optimizing quantum circuits and
scaling up quantum models as quantum technology advances. Both EQ-GAN and QuGAN
emphasize the need to address noise-related issues and refine the training process to
enhance convergence and generative performance, especially in more complex scenarios.

QPGAN and QBGAN underscore the potential for optimizing quantum GAN archi-
tectures, particularly in managing larger datasets and mitigating issues such as “barren
plateaus” in the parameter space. Challenges arising affect QGANSs in a great way due to
the following reasons: leakage of information in quantum systems and complexity arising
since information may leak in the intermediate process, resulting in various challenges
to QGANSs. Present-day quantum computers have problems such as limitations in the
coherence times of qubits; current gates have errors; all these factors affect the performance
and reliability of the systems. The QGANS are affected in generating sophisticated and high-
resolution images because of the limited underlying qubits of current quantum computers.
Moreover, it could be said that quantum noise influences computational processes, which
means that the quality of the generated images could be compromised. Training stability is
another major challenge that organizations face concerning big data analytics. Because of
the adversarial structure in GANS, the training is unstable per se, and the QGANSs suffer
from quantum noise and errors further deteriorating the stability. Data representation also
presents challenges in this regard. There are issues with efficiently loading classical image
data into registers of a quantum system while preserving information. It is also seen that
high-dimensional image data needs to be processed carefully to avoid exponential resource
consumption in quantum form. Demanding requirements are necessary to create QGANSs,
which makes demand rather high.

To be precise, high-q image synthesis requires many qubits and some quantum gates,
which are not available now at present. The assessment of QGANSs may be problematic
and the benchmarking much more so. Since there are no standards for comparing QGANs
to classical types of GANS, it is necessary to create them in order to understand the
strengths and weaknesses of the method proposed. Algorithm design and selection shall
be considered with great attention. This result is obtained because effective QGANs might
require hybrid quantum-classical approaches, in which some calculations are performed
using classical computers.

The greatest challenge in designing such combinations of these algorithms is to identify
which will be more efficient. Similar to classical GANs, QGANSs are also prone to overfitting
the training data and tend to develop poor generalization when tested on new data. It
is always a question of how to make the QGANSs generalizable. Moreover, the existing
quantum systems can only process small data sets, which in a way hinders the learning of
complicated image distributions in QGANS.

When it comes to applying the ideas to solve global issues, there may be some measures
paid to ensure trainability and avoid reaching a barren plateau [46]. The optimization of a
minimax loss in Equation (17) encounters barren plateaus particularly, what effects various
loss functions and approaches to optimization have on quantum GANSs. Understanding
this topic to the greatest extent enables the development of more efficient quantum GANS.
An approach to overcome barren plateaus may be the proposal of a barren plateaus-
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immune ansatz [47,48], instead of a hardware-efficient ansatz for the implementation of the
corresponding quantum generator or discriminator. Moreover, the idea of the suggested
quantum patch GAN shows that there is a way to get rid of barren plateaus and noise.

Quantum patch GAN training ability can be justified with the help of the decomposi-
tion of large-size issues into ones of a smaller size. Because of these reasons, one perhaps
exciting research area to explore is to carry out experimental studies of quantum GANs
on larger data sets. It should be noted that even though quantum GANSs are capable of
partial optimization of quantum system imperfections, there is a main guideline on how to
enhance the performance of quantum GANs which is to contribute to the constant enhance-
ment of quantum processors, for instance, the extent of qubits, the level of connectivity, the
degree of system noise, and the period of decoherence time but in term of time it takes time.
As a part of the study to understand the usefulness of quantum GANS, it can implement
the structure on quantum computers of continually growing capabilities to solve various
complicated real-world generation problems.

6. Conclusions

The discussed papers demonstrate several architectures, properties, and develop-
ments in quantum GANs (QGANSs) for generating images and point to helpful paths for
improving their performance in quantum machine learning. Each method has strengths
and weaknesses, which suggest ways to improve scalability, noise resilience, and parameter
efficiency and provide for superior and more robust quantum generative modeling.

In terms of accuracy and convergence, EQ-GAN and QuGAN focus on convergence
and accuracy. An improvement of 53% accuracy to 69% on sampling on variational QRAM
is obtained by EQ-GAN. Additionally, it demonstrates high convergence capability, even
globally optimal Nash equilibrium in noisy environments, and is higher than other QGAN
models. The QuGAN is also trying to minimize Hellinger distance and achieves a 48.33% re-
duction of 25 epochs that better test performance on IBM-Q “Melbourne”. It also shows that
the Quantum Patch GAN (QPGAN) and Quantum Batch GAN (QBGAN) have high fidelity
and efficiency under limitations on current quantum resources. While QPGAN is good at
structured image generation, QBGAN is efficient with training using quantum parallelism.

In terms of parameter efficiency, it is one of the most important developments in
QGAN:S. It shows that PQWGAN has high-quality image generation with 5376 trainable
parameters (three orders of magnitude fewer than 1.46 M for classical WGAN-GP) while
maintaining similar performance. Also, QBGAN has good fidelity with only nine param-
eters of the generator and twelve parameters of the discriminator, showing its efficiency.
However, EQ-GAN and QuGAN focus on stability and robustness under noise conditions
instead of parameter efficiency. The differences in the QGAN provide the different priorities
that these methods may prioritize based on the applications and hardware limitations they
are designed for.

In terms of training and noise resilience, robustness is important for QGAN structures,
and reduction in noise is an important factor as well. EQ-GAN and QuGAN show consid-
erable robustness to noise, ensuring their compatibility with NISQ devices. For instance,
QuGAN efficiency increased when evaluating experiments on noisy platforms such as
IBM-Q “Melbourne,” such that QuUGAN stays convergence in the long run. In addition, it is
indicated that QPGAN and QBGAN are noise-resistant, where QPGAN has used features
of parallel training while QBGAN has used quantum superposition for efficient training.

Finally, these papers organize how QGAN research is built from basic models of
EQ-GAN and QuGAN that pay attention to stability and robustness and then go forward
with the latest frameworks of PQWGAN that update hybrid quantum-classical approaches
to scalability and parameter reduction. However, there are still problems such as noise
influence and quantum hardware, but these papers describe what further investigations
should be based on. Table 3 shows the summary of contributions and insights from QGAN
research papers.
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Table 3. Summary of key contributions and insights from QGAN research papers.

Aspect Key Insights

EQ-GAN achieves 69% accuracy on variational QRAM, QuGAN
Accuracy and Convergence  reduces Hellinger Distance by 48.33%. QPGAN excels in
structured image generation, QBGAN uses parallelism.

PQWGAN achieves high quality with 5376 parameters, QBGAN
Parameter Efficiency uses only 9 parameters in the generator. EQ-GAN and QuGAN
focus on robustness over parameter efficiency.

PQWGAN and QPGAN generate high-quality images but
PQWGAN struggles with sharpness on complex images like
trousers. EQ-GAN and QuGAN focus on distribution
improvement.

Image Generation Quality

EQ-GAN and QuGAN are resilient to noise and perform well on
noisy quantum hardware. QPGAN benefits from parallel training,
QBGAN uses quantum superposition for stability.

From foundational designs (EQ-GAN, QuGAN) to advanced
Overall Contribution hybrid architectures (PQWGAN), these papers address scalability,
efficiency, and noise resilience for real-world QGAN applications.

Training and Noise
Resilience

7. Future Studies and Applications

There will be a need for further research on the quantum generative adversarial
networks (QGANS) by incorporating other sophisticated quantum algorithms such as
quantum neural networks (QNNs) and quantum reinforcement learning (QRL) for better
learning of complex data distributions and better adaptability and robustness. Dynamic
feedback loops of quantum-classical could also be able to optimize the training. Decoher-
ence and gate errors are significantly important for scaling QGANSs, and for this reason,
error management and fault tolerance are very essential. Moreover, other distributed
quantum computing strategies and existing architectures suitable for larger datasets, such
as CIFAR10 and ImageNet, will enhance scalability, therefore increasing efficiency in terms
of parameters.

Conditional Image Generation or Time Series models could be developed as task-
specific hybrid frameworks to expand the use of QGANSs, which can be complemented by
latent space analysis for improving interpolation quality and understanding the impacts
of quantum operations on the generative capabilities of QGANSs. Public benchmarking
protocols and common datasets should be set to compare QGANs with CGANs and other
frameworks to accommodate scalable, robust, and comparably efficient metrics. The
practical uses of QGAN are numerous and progressive.

In data synthesis and augmentation, qGANSs can create new samples of data for gross
classes such as healthcare, genomics, and cybersecurity and mitigate the scarcity of such
datasets. In drug design, it can perform molecular modeling much faster and may help
to build new compounds when coupled with quantum chemistry algorithms. Real-world
applications of QGANSs are expected to lie in environmental and climate modeling by
mimicking patterns, the promotion of renewable energy systems by enhancement, and the
prediction of natural disasters. In finance, QGANs can produce fake financial time-series
data, find the best portfolio allocation methods, and emulate the market’s behavior to be
usable for fraud identification and risk analysis. QGANSs also have future scope in super-
resolution image synthesis for scenarios like medical imagery, remote sensors, autonomous
vehicles, quantum radar, precise direction communication signal processing, etc.

In education, the interactive tools powered by QGAN can be used to teach teach-
ers and other professionals what quantum computing is and how to design prototypes
of algorithms within virtual spaces. Furthermore, QGANs could be useful for other
combinatorial objectives such as Max-Cut and Traveling Salesman through initializing
quantum approximate optimization algorithms (QAOAs) or classical optimization solvers
efficiently. Specifically in the creative industries, it could produce content for music, visual
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arts, and even the narratives behind a story, all of which would make the application
for quantum-assisted creativity richer. Integration with gaming and virtual reality could
create compelling first-person experiences. That is why, overcoming current limitations
and building on distinctive strengths, QGANs can become an indispensable foundation for
extending the collaboration between quantum computing and Al, machine learning, and
their applications in various branches of science to technology and practical life.
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