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ABsTRACT: In high-energy physics it is a recurring challenge to efficiently and precisely (enough)
calculate the global significance of, e.g., a potential new resonance. We propose a new method that
models the significance in the search region as a Gaussian Process. The kernel of the Gaussian
Process is approximated with a covariance matrix and is calculated with a carefully designed set of
background-only data sets, comparable in number to the random background-only data sets used
in a typical analysis that relies on the average upcrossings of the significance. The trials factor
for both low and moderate significances can subsequently be calculated to the desired precision
with a computationally inexpensive random sampling of the Gaussian Process. In addition, once
the covariance of the Gaussian Process is determined, the average number of upcrossings can be
computed analytically. In our work we give some highlights of the analytic calculation and also
discuss some peculiarities of the trials factor estimation on a finite grid. We illustrate the method
with studies of three complementary statistical models.
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1 Introduction

In a typical search for a new particle or resonance in a high-energy physics experiment, the statistical
model consists of a relatively narrow signal peak on top of a broad background in the invariant mass
spectrum. In general, the location of the signal is not known a priori so the likelihood is maximized
for signal masses and amplitudes in the “search region” of mass. In some models the width of
the signal is not uniquely specified, leading to a 2-dimensional search region. The background
model has typically one or more nuisance parameters that describe the form and normalization
of the background distribution. The signal parameters such as width and mass, however, are not
defined under the background hypothesis. In this case, the significance at the location of maximum
likelihood of the signal plus background hypothesis (local significance) should be reduced to account
for random fluctuations of the background that can occur anywhere in the search region. The
corrected significance is called “global significance”, and the ratio between the corresponding global
and local p-values or tail probabilities, which is a function of the observed local significance, is
called the “trials factor” (TF). The whole situation is often referred to in high energy physics as the
“look-elsewhere effect”.

The most straightforward way to estimate the trials factor is to analyse a large ensemble of
Monte Carlo data sets (toy data sets or “toys”) generated from the background model and to count
how many times the significance exceeds a local significance level. However, Monte Carlo toys are
usually expensive to analyse in terms of computational resources.

Gross and Vitells, in their studies of the look-elsewhere effect [1, 2], suggested a way to estimate
the upper bound on the trials factor, which for large local significances > 30 approaches the true
value. Their method sets the upper bound to the trials factor based on the average Euler characteristic



of the y? field, a field that emerges from the signal nuisance parameter scan. In the one-dimensional
case the average Euler characteristic can be estimated from the average number of upcrossings
(figure 1) counted at some reference level of local significance and then propagated to higher levels.
This method, however, can be very conservative when applied to lower significances. In this work,
we argue that a relatively small number of carefully designed background toys can be used efficiently
to provide more precise and less conservative estimates for the trials factor, as well as more precise
estimates for low-significance upcrossings.

We focus on models with a test statistic that follows a y? distribution with 1 degree of freedom.
This allows us to turn the y? field into a significance field (figure 1) that we then propose in section 2
to approximate with a Gaussian Process (GP) whose kernel is approximated with a covariance
matrix calculated with the carefully designed toys. The resulting GP allows us to efficiently sample
approximate Monte Carlo toys and, therefore, to quickly evaluate the trials factor via an approximate
brute force method.

It is worth mentioning that the idea of using the GP in relation to hypothesis testing when a
nuisance parameter is present only under the alternative is not new and was studied by Davies [3].
We, however, build on top of this idea with a suggestion of a practical way to estimate the GP kernel.

As described in section 2.1, once the covariance of the GP is determined, the average number of
upcrossings can, in fact, be computed analytically. We also discuss some peculiarities of the trials
factor estimation on a finite grid in section 2.2.

We demonstrate our method applied to the background template model used by Gross and Vitells
(GV) in their study (section 3.1) as well as exponential background models with 1-dimensional
(section 3.2) and 2-dimensional (section 3.3) search regions inspired by searches for a resonance due
to H — vy decays in proton-proton collisions at the Large Hadron Collider [4, 5].
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Figure 1. An example of a significance field (blue curve) for a likelihood ratio scan of the invariant mass of
the Higgs boson in a study of brute force (BF) toys. Red dots denote locations of the upcrossings of threshold
0.5 by this significance curve.

The Jupyter notebook and the data that were used to produce figures for this paper are publicly
available at Zenodo [6]. The Python package that we developed and used to produce and fit the data
sets, which is also extensively used in the notebook for visualizations, is also publicly available [7] and
includes the documentation [8] with recipes of how to reproduce the results we present in this work.



2 Method

In resonance searches the signal model has a nuisance parameter M that is not present under the
background-only hypothesis and that denotes the set of points that constitute the search region. The
search region itself may be one-dimensional, for a case when the mass of a hypothetical particle
is unknown, or many dimensional, for example 2-dimensional, when the decay width is also not
specified uniquely. We elaborate on the 2-D search region in section 3.3.

We focus on the case where the signal model has 1 free parameter (e.g. signal amplitude
or strength u, that we assume is fitted unconstrained!) for each point in M, therefore the profile
likelihood test statistic .

£(0,0)
L(4.M.0)

follows a y? distribution with 1 degree of freedom in the large sample limit [9]. Here 6 is one or

t(M) = 2InA(M), A(M) = 2.1)

more additional nuisance parameters that maximize the likelihood under the background (6) or
signal plus background (6) hypotheses.
We want to construct a standard normal random variable from 7(M). For large samples:

Vi) ~ [ = INO. D). 22)

To restore the sign of the standard normal distribution we use the sign of the signal strength (i, which
is known to be normally distributed around 0 in the absence of signal, in the large sample limit as a
maximum likelihood estimator.

We then construct the normally distributed significance Z(M) as follows:

Z(M) = +t(M) sign . (2.3)

To compute the trials factor we need to determine, under the background hypothesis Hy : u = 0,
the probability that Z(M) exceeds the local significance observed in the data for any M in the
search region.

We propose to approximate the ensemble of curves Z (M) with a family of samples from some
Gaussian Process. Such an approximation increases the performance of the sampling without
introducing significant bias. Properties of Z-curves (significance curves) are reflected in the GP
mean, that should be set to 0, and the kernel K with K(M;, M;) = 1, i.e., the kernel must have 1 on
the diagonal.

The crucial step of our proposal is to estimate 3., which is the covariance matrix, an approximation
of the GP kernel evaluated on the grid specific to the problem. Properties of the kernel K, and
subsequently of the covariance matrix 3, can be formally expressed as follows:

2[1' = Ccov [Z(Ml),Z(M/)] 5 (24)

$i=1.

'We need both positive and negative values of the best-fit signal strength /i to be able to reconstruct the sign of the
significance and, therefore, both sides of its distribution. This is a crucial step required to treat the significance as a GP,
which is at the core of the method suggested in this paper. We, however, argue that unconstrained fits generally are not an
issue for analyses of large samples, while analyses of small samples can benefit from brute force calculations of the TF
with no significant penalty in performance.



The significance Z evaluated on the grid becomes a multivariate Gaussian random vector Z with
covariance 3:
7 ~N(0,%). (2.5)

Similarly to the concept of the Asimov data set that may be used to estimate the expected local
significance [10], we propose to use a special set of background Asimov data sets to estimate the GP
covariance, and subsequently estimate the global significance.

The set of Asimov data sets is constructed as follows:

1. Specify the binning of the data (for example invariant mass m) and the grid of scan points for
the signal hypothesis (i.e. values for M).

2. Construct the Asimov data set for the background model.

3. For each chosen data bin produce a new data set, where a 1o~ upward fluctuation is introduced
in that bin of the background Asimov data set (see section 3 for concrete examples).

We assume that the data in different bins are uncorrelated.? To construct the approximate
covariance, using eq. (2.4), we also use the fact that the covariance matrix of a sample of independent
measurements can be decomposed into a sum of the partial covariances, in our case calculated from
the set of Asimov data sets:

Gl = Z2%(My) - Z*(M;), (2.6)
¢ = Z éa, 2.7)

where index a enumerates Asimov data sets and C is a sum of partial covariances. Note, however,
the expression for the partial covariance C¢ does not include the sample mean. It was intentionally
set to 0, because we know the mean of the significance should be 0. We also know that variance
of the significances is 1, so the final touch is to impose 1 on the diagonal of 3. by rescaling the C
as follows:

CiiCjj
By normalizing this way, we again use the assumption that data in the bins are uncorrelated and we
also assume that the covariance structure is approximately independent of the scale of a fluctuation.

2.1 Number of upcrossings directly from the covariance matrix

Given a differentiable kernel for a Gaussian Process, it is possible to calculate the average number of
upcrossings at any level without recourse to any random sampling [11, 12]. This represents a small
advancement with respect to the Gross and Vitells extrapolation method.

To motivate the formula in eq. (2.14) for the density of upcrossings that we used directly in the
form presented by Lutes et al. [11, Example 7.2], we first cite the generic expression for the density

2There are situations when this assumption is not valid. This happens, for example, in analyses that allow each event to
be reconstructed in multiple ways, and these reconstructed configurations contribute to the distribution of the observable
simultaneously. One can also think of events recorded very closely in time becoming correlated due to out of time pile-up,
when the detector does not have time to relax to its initial state.



vy (u,t) of the average number of upcrossings of the level u by any stochastic process X(¢) [11,
eq. (7.3)]:

50 = pxo @) [ vpxolv 1 X0) = uldy. 29)
When X (¢) is a Gaussian process, px(;) is the corresponding Gaussian density. The derivative

X(t), when conditioned on X (¢) = u, follows a Gaussian distribution with mean y, and standard
deviation o:

Px)v | X(@) =u] = N(ux(2), 0% (1)) [v], (2.10)
_ Ki(t,t) 0. (1)
Ux(t) = K. u=pe(t,t) o) u, (2.11)

o (1) = 0'.\/1 - p%(t,t),

where o (1) = 4/K (¢, 1) is the standard deviation of the GP and N [v] is a Gaussian pdf evaluated at
v. The above expressions use a dot notation for derivatives along a single or both axes:

0K (x, %K (x,
Ko(x,y) = oK x.y) y), Keo(x,y) = I K(x.y) y). (2.12)
ay 0x0y
Consequently, the effective derivatives of the standard deviation and correlation are:
Ko(x,)
0(t) = NEal1.0), palty) = i) (2.13)
o (x)oe(y)

The expression for the density v} (u, t) of the average number of upcrossings at the level u by
the non-stationary GP with a covariance kernel K and zero mean was derived by Lutes et al. [11,
Example 7.2] by integrating explicitly eq. (2.9) with the conditional Gaussian distribution py
substituted from eq. (2.10) and is:

2

) =220 u*<z>¢[”*(t)]+a*—me_£:’)’ : 2.14)
V2ro (1) o) V2r

where @ is the cumulative density function (CDF) of the standard normal distribution.

The analytic results above are valid for a continuous differentiable GP kernel. To evaluate these
expressions numerically it proved useful to apply 2D spline interpolation to our covariance matrices
before computing the derivatives. In this way we managed to reduce the uncertainty introduced by
the coarse grid without sacrificing performance much, because spline interpolation provides exact
spline derivatives straightaway. We then used Simpson quadrature to integrate the computed density
over the mass range.

2.2 Effect of coarse binning on upcrossings

The Gross and Vitells upper bound is based on the average number of upcrossings of some level u by
the significance curve Z(M). When computing this number numerically, from MC toys, some finite
resolution grid is used to approximate the curve. It turns out that the resolution of the grid affects



the resulting number of upcrossings. In this section we investigate this effect, which is relevant for
any Gross and Vitells procedure, whether it is based on brute force toys or on the suggested GP toys.

We illustrate the effect on an example of an analytically defined Gaussian process with a squared
exponential kernel:

(x-y)?

K(x,y)=e o , a*>=10. (2.15)

We generated 10° samples from this GP and counted the average number of upcrossings above the level
Z = 0.2 on a set of grids with different resolutions. In figure 2 we show how the accuracy decreases
with the resolution, starting when the bin size exceeds about one third of the correlation length.
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Figure 2. The average number of upcrossings as a function of bin size. The analytical estimation for the
average number of upcrossings (red dashed line) was calculated following section 2.1 for a squared exponential
kernel (eq. (2.15)). The average number of upcrossings for various bin sizes was estimated from 10® GP toys
(black dots connected by a gray line). The statistical errors are smaller than the size of the dots.

The underestimation of the number of upcrossings affects the upper bound for the global
significance, i.e. the numerator of the trials factor, subsequently the trials factor itself will be
underestimated. The local significance, however, which is the denominator, is also affected by the
finite grid resolution. The tip of the peak at high significance most probably will appear between
grid points, therefore the local significance will also be underestimated.

We investigated the dependency of the effective peak width on its height. We sampled 10° toys
from the GP (eq. (2.15)). For each sample we detected the highest point (Xmax, Ymax), chose a window
of 40 around it to select one peak and fitted it with a squared exponential shape y = A%e(*~5 ’IC LD,
For each sample we recorded a pair (ymax, C), where C is the effective peak width. We then removed
the failed fit outliers by rejecting the 1% lowest and 1% highest heights. We observed that the
average width of the peak decreases with its height (figure 3), therefore, the finite grid effect on the
trials factor gains a slight compensation.

With the Asimov set of samples we are not trying to improve this particular aspect of the Gross
and Vitells approach, yet, GP toys are also affected by the choice of the grid so we wanted to shed
more light on this caveat. Although we are not very concerned by the choice of a grid for the signal
nuisance parameters, of course it makes good sense to choose a grid that allows peaks to be described
by at least a handful of points.
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Figure 3. The average effective width of the highest peak of GP samples for a squared exponential kernel
(eq. (2.15)) as a function of its height for 10° GP toys (black dots) fitted to a linear trend (red dashed line).

3 Examples

The models we use as examples are inspired by searches for new resonances. The invariant masses of
signal candidates are binned. Two of the search models have signals with specified widths whereas
the third includes the signal width as a free parameter (on a grid) in the likelihood maximization.

3.1 Background template model

Gross and Vitells used this model in their study [1]. It consists of a fixed background shape modeled
by the probability density function of the Rayleigh distribution with scale parameter 0, and a
Gaussian signal with resolution oz (M) that grows linearly with mass. Background counts D; are
sampled from the Poisson distribution with the rate by - b; in each bin i of the data grid m; defined
as follows:3

m?
i

b= NZie 27 (3.1)
Op

D; ~ Poisson[bg - b;],

where N was chosen such that )} b; = 1 and, therefore, b is the total number of events we expect to
observe.

To test the precision of our GP-based approximation of the trials factor we compute the baseline
via 10°® brute force MC simulations of the experiment. We scan each background simulation by
testing signal hypotheses for M in a range that is narrower, in this example, than the data grid m:

_ (mi-M)?
5i(M) = ———¢ 2300, (3.2)
l \/ﬂO'S(M)
M
os(M)=A (1 + E) )

30p =40GeV, by = 2000, A =2.5GeV, B =50GeV, m; =0.5-154.5GeV with a step of 1 GeV, M; =5 —-120GeV
with a step of 0.25 GeV.



and maximize the likelihood with Poisson statistics in the bins of data:

N; = usi(M) + Bb, (33)
~log L(u, M, p) = = ) Dilog(Ni) + ) Ni,

where y and 8 correspond to the numbers of inferred signal and background events that we vary to
maximize the likelihood £ with respect to data D;, and M is the nuisance parameter that defines
the location of the hypothetical signal peak (the constant term of log £, which plays no role in the
maximization, is not shown).

An example of a background simulation and the corresponding significance curve are shown
in figure 4. As a cross-check we compute the average number of upcrossings for the significance
threshold of V0.5, the same threshold Gross and Vitells used in their work. We get 4.3071 + 0.0016
upcrossings, which is consistent with their result of 4.34 + 0.11.

Next, we generate the set of Asimov background data sets. In this case there are 155 of them,
one for each bin of data. One of the Asimov data sets and the corresponding significance curve are
shown in figure 4 for comparison.
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Figure 4. A background sample, an Asimov toy and the corresponding significance curves from the
Background template model. In (a) we show an example of a brute force toy sampled from the background
template (orange dots) and one data set from the set of Asimov data sets (blue dots). The red arrow specifies
the bin that was distorted in this particular Asimov data set. In (b) we show the significance curves from the
signal plus background fits for the toy sample (orange line) and the Asimov data set (blue line).

For each Asimov data set we compute the partial covariance (see figure 5(a)), then we sum them
and normalize according to eq. (2.7) to produce the Asimov GP covariance, shown in figure 5(b).
As expected, the width of the ridge on the diagonal of the covariance matrix is seen to have the same
trend as the signal resolution that grows linearly with the mass hypothesis (eq. (3.2)).

Before using the covariance matrix to sample the significance curves, let us first evaluate how
well we approximate the covariance matrix estimated from the brute force toys. For this we subtract
the Asimov covariance, shown in figure 5(b), from the covariance matrix constructed from 10° brute
force toys, shown in figure 6(a), and plot the difference between the two covariances in figure 6(b).
The differences between Asimov and brute force covariance are 100 times smaller than the values
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sets and the full Asimov GP covariance (b) for the Background template model.
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Figure 6. The difference (b) between the brute force (a) and Asimov (figure 5(b)) covariance matrices
calculated for the Background template model.

in the covariance itself. We obtain similar patterns of differences for statistically independent
simulations, so we conclude the pattern is systematic.

In our experience, the trials factor appears to be the most sensitive metric to evaluate approx-
imations of the global significance. We estimate the trials factor from 360 - 10 significance curves
sampled from the Asimov GP. In figure 7 we compare the Asimov GP trials factor, as a function
of the local significance, to the brute force approach and approximations that include the Gross and
Vitells upper bound and the rule of thumb estimate. The latter was calculated as a ratio of the mass
range to the signal resolution, that we average, afterwards, over the mass range, since the resolution
changes with the energy scale. We explore the sensitivity of the TF to the Asimov GP deviations by
amplifying the difference between Asimov GP covariance and the brute force covariance by factors
of 10 upwards and downwards. From this simple sensitivity analysis we see that visible deviations
only appear in the very high significance region (here ~ 607), in which also the Asimov GP approach



is affected by coarse binning effects, and in which the Gross and Vitells upper bound serves as a
good approximation to the true TF value. In the same figure we also show that the analytic method
described in section 2.1 is in excellent agreement with the Gross and Vitells extrapolated upper bound.

We observe a significant deviation of the Asimov GP from the brute force trials factor estimate
at high local significance levels. Qualitatively, we attribute this to the non-gaussianity of the errors
introduced by Poissonian statistics that we approximated with a Gaussian distribution. Since the
Poisson density is not symmetric around the mean, and is more pronounced for large upward
fluctuations, the approximating Gaussian distribution gains upward bias. This effect is smaller at low
local significances because the Poisson distribution can be well approximated by a quadratic shape
around the mean. We confirmed this by studying the trials factors for larger integrated background
rates and observing that the differences at high significance were reduced.
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Figure 7. Trials Factor TF as a function of local significance Zj,c, for the Background template model. We
estimated TF from 10° brute force toys (green dots) and compare it to the Asimov GP results (orange line).
We color in gray the area enclosed between the two amplified lines from the TF sensitivity study for the
Asimov covariance (section 3.1). The solid blue line shows the Gross and Vitells upper bound [1, eq. (3)]
extrapolated from the reference significance threshold V0.5 (marked by the black cross on the plot). For
comparison we show the semi-analytical estimate (section 2.1) of the Gross and Vitells upper bound (red
dashed line) and the rule of thumb (black line).

3.2 H — yy inspired model
This model is inspired by the ATLAS and CMS searches for the Higgs boson decaying to 2

photons [4, 5]. In this case the background is modeled as an exponential distribution with Gaussian
errors o in each bin of data. In order to challenge our method with a more realistic background
scenario, in addition to the normalization bg, the rate parameter a; is also unconstrained in the
maximum likelihood fits:#
bi(ap) = e mim100)as, (3.4)
Di ~ N(bo - bi,op).

We also simplify the signal model by setting its resolution o to a constant:

1 _ (m-M)?
si(M) = T e 2% . (3.5
O

4qp, = 0.033GeV~L, bo = 10, o, = 0.3, o5 = 5GeV, m; = M; = 100 — 160 GeV with a step of 1 GeV.

~-10-



We unify the grids and use the same bins for both sampling of the MC toys (m;) and signal location
scan (M;). The structure of the likelihood function in this case is:

N;i = psi(M) + pbi(ap), (3.6)
~log L(u, M, B, ap) = 3" (N; = D)),
i
Following the same algorithm as for the Gross and Vitells model, we first show an example

of the brute force and Asimov background samples (figure 8(a)) together with the corresponding
significance curves (figure 8(b)).
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Figure 8. A background sample, an Asimov toy (a) and the corresponding significance curves (b) from the
H — vy inspired model. See the detailed explanation of the two plots in figure 4.

Already from the background fit to the Asimov sample (figure 8(b)), we can see that the
increased flexibility of the background model introduces more sophisticated long-range correlations.
Notice the asymmetry between the left and right sides of the peak. When the signal hypothesis is
near the Asimov fluctuation at 120 GeV, the signal part of the model accommodates it, but well
below and above this the rate parameter of the background model tries to compensate for the local
excess, which distorts the background model and leads to weak but clear regions of long-range
anti-correlation and correlation. We confirm this observation from the plots of the GP covariance
that we estimate from the Asimov samples (figure 9(b)).

We then compare the Asimov covariance to the one calculated with brute force (figure 10). It
shows the same degree of accuracy as we have observed for the Background template model: the
differences between the Asimov and brute force covariances are 100 times smaller than the values of
the covariance itself.

The various computations of the trials factor for the H — vy inspired model are shown in
figure 11. Since the likelihood and the generation of Monte Carlo data sets both use a Gaussian pdf
for the data in each bin, there is no significant difference between the brute force and GP results at
high significance, in contrast to the results for the Background template model.

3.3 H — yy model with 2-dimensional search region

We keep the background model unchanged from the 1-D example (eq. (3.4)), however, we want
to study a signal model with more than one nuisance parameter. In this case a 1-dimensional

—11 =
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Figure 9. The partial contribution to the covariance S(M;, M 1) (a) from the 145.5 GeV Asimov data set and
the full Asimov GP covariance (b) for the H — 7y inspired model.
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Figure 10. The difference (b) between the brute force (a) and Asimov (figure 9(b)) covariance matrices
calculated for the H — yy inspired model.
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Figure 11. Trials Factor TF as a function of local significance Zjocy for the H — yy inspired model. See the
detailed explanation of the plot in figure 7.
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significance curve becomes a multidimensional surface. However, each point on this surface still
behaves like a standard normal random variable. As defined in section 2, M denotes the set of points
that constitute the search region.

For example, in the 2-D case, when in addition to mass ms we also add width o as a
second nuisance parameter, M gains a second axis, consequently, the significance surface becomes
2-dimensional. The signal model for this example is>

_ (m;-ms)?

e 205 3.7)

si(M) = si(mg, o5) = \/2_71'0'S
The likelihood function is the same as for the 1-D case (see eq. (3.6)).

For the covariance calculation the situation does not change if we think in terms of M, i.e., the
expressions in eq. (2.4) still hold. For visualization, on the contrary, it is convenient to distinguish
between mass and width dimensions. The transition between M,,,,,, that preserves mass and width
correspondingly, and M; can be constructed as follows:

{M.M>, ...} (3.8)

)
{Miy, ..., M .M, ..., Moy, My, ...}.

In figure 12 we visualize the Asimov covariance matrix in the 2-dimensional case, which we
unwrapped according to eq. (3.8). We also show different projections of this covariance and compare
the Asimov covariance to the brute force covariance computed with 3 - 10° toys in figure 13. We
again observe that the differences between covariances (figure 13(e)) are 100 times smaller than the
values in the covariance matrix in figure 12.

(a) (b)

Figure 12. 4D covariance matrix M;; unwrapped into 2D following eq. (3.8) (a) and its transposed version (b),
for the H — vy inspired model with a 2D search region. For the purpose of illustration, the less frequently
changing dimension on each plot has a reduced number of points, consequently, the plots have a reduced
number of “squares”. The notation M;; emphasises that the grid was artificially downsampled.

Sap = 0.033GeV, by = 10, 03, = 0.3GeV, M;; = (a;,bj), m; = 100 — 160GeV with a step of 1GeV; a; =
100 — 160 GeV and b; = 1 — 10 GeV with 61 points on the grid each.
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Figure 13. Covariance for the 2D H — yy model (in the 2D case a covariance between two significance
surfaces). The covariance between the point on the first surface and 1 chosen point of mass and width
(mg = 140GeV, o, = 2.5GeV) from the second surface is shown in (a). The covariance between the slices of
surfaces, where oy was fixed for both surfaces, is shown in (b) for oy = 3.25 GeV and in (d) for oy = 7 GeV.
Similarly, (c) shows the pattern for the slices where mi; is set to 130 GeV for both surfaces. The histogram
in (e) shows the distribution of the values in the cells of the matrix of differences between the brute force and
Asimov covariances, where N denotes the absolute bin counts.

The trials factors we obtained for this model are shown in figure 14. In this case the Vitells and
Gross upper bound [2] is based on the Euler characteristic of the 2-dimensional significance surface.
The upper bound calculation requires the Euler characteristic to be known at two significance levels
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Figure 14. Trials Factor TF as a function of local significance Zjy, for the H — yy inspired model with
2D search region. The green dots, orange line, and gray area are explained in figure 7. The solid blue line
shows the Vitells and Gross upper bound [2] extrapolated from the two reference significance thresholds
(V0.5 and 1) (black crosses).

(black crosses) before extrapolation. From the qualitative comparison of figure 14 to figure 7 and
figure 11 it seems that for a higher dimensional search region, the Vitells and Gross upper bound
becomes even more conservative.

4 Performance analysis

Several times in our work we mentioned that GP toys are more efficient in comparison to brute force
toys. In this section we will quantify this statement.
We chose the Hyy inspired model as a benchmark. There were two reasons that guided our choice:

* The Hyy inspired model is more complex than the background template model,

* Adding more dimensions, according to section 3.3, only increases the number of fits per MC
sample, but does not change the relative fitting performance.

Fitting on a regular laptop with 4 cores and one Python process, it took us 9 m 30 sec to produce 10
significance curves, which is 62 000 fits for the 61-bin grid, or about 2 significance curves per second.

To estimate the covariance matrix with our proposed set of Asimov samples requires (61 + 1) X
61 = 3782 fits to obtain 61 significance curves, which took 23 seconds, or also about 2 significance
curves per second. Having the covariance, we then managed to produce 10 - 10° GP toys in 27 sec,
or roughly 4 x 10° GP toys per brute force toy.

In summary, for little additional effort and CPU time, we can create much larger samples to
estimate global p-values or average up-crossings.

5 Conclusion

A precise estimation of the look-elsewhere effect in searches for new resonances in high energy physics
is challenging. Existing methods are overly conservative unless the observed local significance
is high enough. In this paper we proposed and evaluated a new approach based on Gaussian
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processes. The new approach doesn’t eliminate the production of Monte Carlo “toys”, however, the
computational process becomes much more efficient. We tested the approach on several models,
including models with more than 1 nuisance parameter, that intentionally were constructed to have
different statistical features. The trials factors calculated with our new approach and with large
samples of brute force Monte Carlo simulations showed excellent agreement. As a cross-check,
we reproduced the result of the Gross and Vitells paper [1] that introduced the high-significance
approximation based on upcrossings. An actual realization of the method and implementation of the
test models was published and is available for use out of the box [7].
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