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ABSTRACT

Exotic hadrons are theoretical structures allowed by our current understanding of Quan-
tum Chromodynamics (QCD), lying outside the traditional ¢g, gqq, or ggg understanding
of mesons and baryons. These exotic hadrons potentially give us a unique window into the
properties of the gluon, the nature of color confinement, and the strong interaction. As we
progress through the precision-era of particle physics and experiments such as BESIII, Belle,
BaBar, LHCDb, GlueX, and PANDA amass experimental data across the expected mass ranges
of exotic hadrons (such as hybrid mesons with both Gg quark content and a gluonic compo-
nent), theoretical predictions of the individual mass states and the overall multiplet structure
are crucial in identifying exotic states as well as departures from predicted behaviour. Using
the methodology of QCD sum-rules (QCDSRs), we explore the properties of exotic hadrons,
and discuss the QCDSR methodology and its extensions.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

We live in the age of Large Hadron Colliders, big data, and precision physics. The Standard
Model of fundamental interactions has withstood every test against it to date, and is our best
understanding of how fundamental particles interact with one another. And yet, we know
this understanding is incomplete. For example, the Standard Model accounts for only visible
matter, approximately 4% of what we observe to be a part of the universe; however this
does not mean we understand this fraction completely. Basic questions about the nature of
the fundamental degrees of freedom contained in the Standard Model go unanswered to this
day. Why are there three generations of quarks? Why are only colourless states observed?
How does the strong interaction generalize to bound-states of four or more quarks? Can we
observe bound states of gluons? All of these questions and more still lie within the realm
of the Standard Model and are fundamental to our understanding of visible matter that we
interact with every day, literally the building blocks of our existence.

It wasn’t long after the experimental establishment of quarks (following the seminal work
of Gell-Mann and Zweig [10, [I1]) that theorists began to play with the idea of multi-quark
hadrons, or other bound states of quarks and gluons as described by the conventional quark
model, a classification of hadronic states characterized by ¢g or qqq/qqq internal quark struc-
ture [12, 13]. These novel hadronic states are not precluded by our current understanding of
quantum chromodynamics (QCD) and the observation of colour confinement; their existence
and structural properties are, in many cases, still an open question. This possibility of novel
structures outside of the conventional meson (¢g) or baryon/antibaryon (gqq/Gqq) paradigm

can be seen throughout the history of particle physics as physicists have tried to explain



and categorize new experimental observations such as the scalar meson states [14], Roper
resonance [15], or, in recent years, the XYZ resonances [10] 17, [I8]. In each of these cases,
bound states of quarks were discovered in excess of those predicted by the conventional quark

model; these overpopulations of hadronic states is a signal of something different.

Recent experimental observations have elevated multi-quark bound states such as four-
quark and five-quark structures out of the realm of theoretical possibility. For example,
observation of the Z.(3900) by BESIII [19], and the later confirmation by Belle [20] exper-
imentally established the existence of a bosonic non-gq state at a high degree of statistical
certainty with many in the community pointing towards a four-quark interpretation [I]. The
surprising observation of two five-quark states at the LHCb [2I] and the most recent observa-
tion of a third state [22] has yet to be confirmed; however, the GlueX experiment underway
at Jefferson Lab expects to provide insight on the lighter five-quark states reported by the
LHCD [23, 24].

Perhaps the more peculiar exotic hadron structures beyond the conventional quark model
are those that involve the gauge boson of QCD, the gluon. The non-perturbative nature
of the strong interaction distinguishes itself from the well-understood theory of Quantum
Electrodynamics (QED) through a self-interacting gauge boson; unlike the photon, the gluon
carries colour charge, allowing it to self-interact and (theoretically) act as constituents of
hadrons. Theoretical predictions of hybrid states (hybrid mesons containing a ¢¢ pair and
a valence gluon or hybrid baryons/antibaryons containing ¢qq/GGq and a valence gluon) as
well as bound states containing only gluons (glueballs) have all been commonly discussed
throughout the literature with experimental candidates for both hybrid states and glueballs
currently under investigation [I, 25]. While both hybrid mesons and hybrid baryons have
been theorized, closed-flavour hybrid mesons tend to occupy the attention of the literature
as they can carry quantum numbers that are indisputably outside the conventional quark
model (“exotic” JFY); we examine both non-exotic and exotic J and JF hybrid systems
in Chapters [3] and [ respectively. In contrast to the closed-flavour hybrid mesons, hybrid
baryons carry J¥ quantum numbers indistinguishable from their conventional counterparts.
This, coupled with inconclusive understanding of the already crowded conventional spectrum

of baryons, makes distinguishing hybrid baryon states an experimental and theoretical chal-



lenge. We review the status of the hybrid baryon literature from a QCDSR perspective in
Chapter [6] To date, there are two promising experiments with a primary mandate of explor-
ing hybrid meson states: GlueX, which is well underway at Jefferson Lab [24] and PANDA,
currently under construction in Darmstadt, Germany [26]. Additionally, the CLAS12 exper-
iment at JLAB [27] is conducting a search for hybrid baryons based on lattice QCD (LQCD)
calculations performed in 2012 [28]. It is an exciting time for exotic hadron spectroscopy,
and with precise experimental data being generated, a complementary demand for analysis

and modeling by theorists is emerging.

However, the technical challenges corresponding to the non-perturbative nature of QCD
often means applying a model-based approximation or calculating under a set of simplifying
assumptions. Given this, it is necessary to consult a variety of computational methods in
order to ensure an alignment in the theoretical predictions corresponding to a particular
experimental prediction; common approaches in the literature include LQCD [28] 29] [30],
Dyson-Schwinger Equations (DSE) [31], and chiral Lagrangian methods [14] 32} [33], [34] along
with other effective theories [35]. Our approach focuses on a QCD sum rules (QCDSR)
methodology which has a long history of successfully predicting properties of QCD bound
states [30, [37] (see also Refs. [18, [38], 39, 40] for reviews). As with LQCD, QCDSR is rooted

in calculating correlation functions of composite operators,

tr(q) = [ e O[T je(a)30)10). (1)

where the composite operators jr are operators constructed from quantum fields describing
the valence content and quantum numbers of a particular state I'. This can be calculated
within QCD by addressing non-perturbative effects using an operator product expansion
(OPE). The correlation functions calculated in a QCD framework are then connected to

low-energy hadronic physics through a dispersion relation such as

1 [ Imll(¢t)
HQQ:—/ —— L dt+ -, Q> 0. 1.2
(@) =~ Q) (1.2)
where ? is the euclideanized momentum scale, --- represents subtraction constants that

will need to be accounted for, and t; is an energy threshold for the state described by II.
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In the context of QCDSR, there are a variety of different spectral sum rules that can be
used to extract information about this connection between QCD (a natural description of
the high-energy physics) and hadronic physics (naturally describing the low-energy regime),
but all are derived beginning with a dispersion relation such as this which connects high- and
low-energy behaviour. We explore Laplace and Gaussian QCDSRs extensively in our work
(see Chapters 3| and . This dispersion relation represents one of the challenges inherent in
QCD and hadronic physics: because of the phenomenon of confinement, the quark and gluon
constituents of hadronic matter are the most fundamental descriptions of hadronic bound
states, yet we only directly observe the bound state hadrons. This quark-hadron duality was
one of the motivations for our work connecting two theoretical frameworks for the first time,
chiral Lagrangians and QCDSR (Chapter , in order to better understand the connection

between a hadronic framework and a QCD framework.

What follows is my contribution to our understanding of exotic hadrons, a piece of the
puzzle in the larger question of how to understand the strong interaction. I begin with a brief
overview of the formalism relevant to my research (Chapter , and proceed through an anal-
ysis of different exotic hadronic systems covering four peer-reviewed publications. In Chapter
B, T discuss open-flavour heavy-light hybrid mesons. My contributions to this work begin with
the calculation of the multichannel correlation functions, forming the LSRs for each of the
sixteen J(© (charm and bottom) channels, analysis of LSRs to extract mass predictions
from each of the stable channels, performing the error analyses, and interpreting the overall
results. In addition, I performed all of the mixing analysis, designed the figures, and I led
in the writing and editing of the final manuscript. In Chapter {4 I move onto closed-flavour
light hybrid mesons, Here, my contributions to these works include the analysis of correlator
and extraction of sum rule predictions, application of different models within GSR analysis
and determination of best fits, the Holder inequality derivation within GSRs, performing the
error analyses, designing the figures, and writing & editing of both manuscripts. Shifting
away from hybrid mesons, in Chapter [5] I discuss the light scalar mesons. My contributions
to both of these works pertain to the QCDSR analysis. In the case of the isotriplet analysis,
I rederived and made corrections to expressions used in the previous work, improved the

optimization procedure, explored the inclusion of updated sum rule parameter values within
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the analysis, designed Figure 5.4, and edited the manuscript. In the case of the isodoublet
analysis, I performed a full analysis and determination of scale factors from GSRs applying
the optimization procedure I developed in the isotriplet case, designed the figures, and led
in the writing and editing of the manuscript. In Chapter [0 I end with my preliminary work
on hybrid baryon systems, and finally, in Chapter [7] I highlight the contributions of this
work, and look forward towards the future of exotic hadrons both experimentally and within

QCDSRs.



CHAPTER 2

METHODOLOGY

2.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) in its modern form is described by the classical La-
grangian satisfying an SU(3)colour local gauge symmetry

Laen(x) = @a)i) — m)a(x) — + (Co, ()", (21)

which, when expanded in terms of the quark fields ¢(z) and gluon fields Bjj(z), and including

the Fadeev-Popov ghosts ¢%(z) [41] and covariant gauge fixing terms becomes (see e.g.,

Ref. [42]),

Lacn(x) = = 5 [0,BL)] 0" B () — 0" BL(@)] — o [0,BL()] [ B2 ()]

+ % (Ga(z)aqa('x)) - % [au(_]a(x)] Yqa(T) — mq%(x)qa(:r)

30PN 05 (2) B) — Sou e [,B() — 0B BL)B(w) (22)
= 70 Foteoac BL() B ) B () B ()
— [040a(7)] 0" Pa(x) + gsfave [Outa(x)] du(z) B (2),

where a sum over quark flavours is implied, and «a is a gauge-fixing parameter. The following
conventions are used in equations (2.1)) and (2.2]), and throughout this work unless otherwise
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noted:

of = %)\35 (2.3)
Gu(z) =1° (GZV(ZB)) =t (GMB;L(:U) — &,Bg(x) + gsf“bCBbu(x)Bc,,(x)) (2.4)
Dy() = 9, — igd* Bi(x) 25)
g:
@ = (2.6)

where g, is the strong coupling, ) are the Gell-Mann matrices, f2 are the structure constants,
and m, are quark masses. Unless otherwise stated, the metric convention used throughout
this work is

g = diag(l,—1,—1,-1), (2.7)

and the typical “slash” notation has been implemented, i.e.,

D= D" (2.8)

P=pu" (2.9)

The 75 matrix is defined in four spacetime dimensions as

Y5 = 1707172735 (2.10)

and satisfies
{15,7"} =0 (2.11)
(v5)* = 1. (2.12)

In d-dimensional calculations, we use a 75 convention in which (2.11))—(2.12]) hold [43].

The QCD Lagrangian in ([2.2) is the theoretical foundation for our understanding of the
strong interaction today. It is built upon decades of experimental observation and testing
(including asymptotic freedom, confinement, and spontaneous symmetry breaking), and en-

codes a depth of theoretical knowledge within its structure and symmetry. The following
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sections very briefly explore some of the experimental motivation behind our understanding

of the strong interaction, and the development of the theoretical framework encapsulated in

2.

2.1.1 Particles and Interactions

In our current understanding of the Standard Model of particle physics (see Figure [2.1]), the
strong interaction involves three generations of quark pairs interacting through eight vector

gauge bosons, the gluon.

down

@ strange

s
O,

bottom

Figure 2.1: The Standard Model of particle physics. Particles considered within QCD
are highlighted. Figure modified from [5].

Some consequences of constituent quarks were first observed in Gell-Mann and Ne’eman’s
individual classification of the known mesons and baryons of the time [12] [13]. The organiza-
tion of states by electric charge and “strangeness” (a quantity that would later be associated
with the constituent strange quark content) formed geometric structures in the space of
quantum numbers, such as the hexagonal structure seen in the pseudoscalar nonet of figure

2.2



charge

strangeness
o
:I
>
—
+

1 / K

Figure 2.2: Pseudoscalar nonet with electric charge presented in units of e.

This pursuit of an analogue to the periodic table of elements for subatomic particles
revealed a pattern that Gell-Mann and Zweig (again, independently) later ascribed to an un-
derlying structure of constituent spin-1/2 particles [10] [IT]. However, this model of hadronic
structure carried predictions that raised important concerns at the time: these constituents
were proposed to carry fractional electric charge, had no experimental evidence of existing
outside of hadronic bound states, and in some cases appeared to violate the Pauli exclu-
sion principle. It would take some years until this model would be widely-accepted, with

important discoveries in those intervening years that would shed light on these concerns.

2.1.2 Asymptotic Freedom and Confinement

The strength of the strong interaction at the one loop level is characterized by the scale-

dependent QCD strong coupling for n; flavours anchored at a reference energy corresponding
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to M,
as(M)

e (= e log ()

as(Q) (2.13)

Characteristic to QCD is the phenomenon of asymptotic freedom [44] 45]; at high energy
scales (2 1GeV), the strong interaction between quarks and gluons becomes weak, and as the
energy scale decreases the coupling between constituents becomes stronger. At low energies
(< 1GeV), the phenomenon of colour confinement is observed: experimentally, free quarks
or any other coloured states are not observed. Instead of breaking apart into constituent
pieces, hadrons involved in collisions of sufficient energy will produce hadronic jets formed
through ¢g pair production, discussed in more detail in Section 2.1.3.2] At high energies,
perturbation theory is sufficient to describe strong dynamics. It is at these energies where
particle colliders have performed important precision tests on the theory of QCD [I]. At lower
energies, untangling QCD becomes more complicated. Non-perturbative effects contribute
significantly, and as the strength of the coupling at these energies is large, a perturbative
expansion is no longer a viable tool. Over time, there have been different approaches to
overcoming this challenge in order to gain understanding of the strong interaction; some
model the interactions between quarks and gluons using a model potential [46] while other
methods exchange the fundamental degrees of freedom of quarks and gluons in favour of
effective degrees of freedom, i.e., the bound state hadrons [14], [33] 34]. Methods like QCD
sum rules (QCDSR) [36, 37, 47, 48] [49] 50, 51, 52] and lattice QCD (LQCD) [28, 29] 30]
attempt to characterize the non-perturbative behaviour directly by using properties of the

QCD vacuum or by numerically evaluating the path integral.

2.1.3 Symmetries

At the heart of modern particle physics is the idea of symmetry. Symmetries inform us about
conserved physical quantities through Noether’s theorem, while deviations from symmetries
can signal particle properties (e.g., Nambu-Goldstone bosons). The QCD Lagrangian ({2.1))

exhibits several important symmetries that inform the properties of the strong interaction.

10



2.1.3.1 SU(Ny)g x SU(Ny) Chiral Symmetry

The foundation of Gell-Mann and Ne’eman’s geometric nonets of the conventional quark
model [12| [13] found in Figure [2.2]is the SU(3)r flavour symmetry of the underlying quark
structure of the hadrons, manifesting as patterns in their observable properties. This flavour
symmetry is only approximate however, as the light quark flavours that make up the hadronic

nonets (up, down, and strange quarks) all carry different masses (Table .

flavour | mass (GeV)
up 0.00216
down 0.00467
strange 0.093
charm 1.27
bottom 4.18
top 172.9

Table 2.1: Summary of quark masses [I]. Light quark masses (up, down, strange)
are referenced to renormalization scale of 2 GeV, while charm and bottom quarks are
referenced to a renormalization scale corresponding to the MS masses in question (7,
and T respectively), and the top quark mass is a direct measurement from ¢f event
kinematics [1].

However, the three lightest quarks are much lighter than the characteristic scale of QCD
(~ 1GeV). These comparably small quark masses point towards an important foundational
piece of QCD and hadronic physics. Consider the following parameterization of the quark
fields in the QCD Lagrangian (2.1)):

qr(r) = I'rq(z) (2.14)
qr(z) = I'rq(z) (2.15)
q(x) = qr(z) + qr(z) (2.16)

where R and L indicate the right- and left-handed chiral representations, and we have defined

11



chiral projection operators I'y,  as

T = 2(1+7%) (2.17)

Tr= 51— %) (2.18)

We note that our chiral operators (2.17)) have the properties

Tp+Tp=1 (2.19)
I'irl'tr=Trr (2.20)
[, Tp =Rl = 0. (2.21)

Under this parameterization, our QCD Lagrangian (2.1)) becomes
N _ _ _ _ I (2
L(x) = q(x) (i) — m)q(x) = qrilqr + qrilPar — (Gumeqr + GrMaqr) — 1 (Ge)". (2:22)

By considering the chiral limit (m, — 0), our QCD Lagrangian can be parameterized
into two unmixed left- and right-handed pieces, eliminating the cross-terms spoiling the chiral
symmetry in ([2.22))

£(2) = aribas + GriDan — 7 (Gl)’- (2.23)

The limit of m, — 0 reveals the underlying SU(Ny)r x SU(Ny), chiral symmetry present in
(massless) QCD. This chiral symmetry is explicitly broken by the quark masses. We can also
see this explicit symmetry breaking in terms of the vector and axial vector currents, which
are related to the SU(Ny)r x SU(Ny)p chiral symmetry. If we return to the case where

mg 7# 0, we can form the chiral currents,

i = vy (2.24)

Ik = YrY"VR, (2.25)

12



which combine to form the vector (V#) and axial vector (A*) Noether currents

VE = i + i = 9" (2.26)

AR = 5 — jr = Pyt (2.27)

We see that while the vector current is conserved, the axial current (2.27) is not, thanks to

the anticommutation relation {v,,75} = 0; taking four-divergences, our currents in ([2.26)

and ([2.27) become

0, V* =0 (2.28)
0, A" = 2imysib. (2.29)

Here, we see explicitly that while the vector current V# is conserved, the axial current A*
component of the chiral symmetry is not, and is explicitly broken due to the massive quarks.
It is worth mentioning that even in the chiral limit m, — 0, the axial current is still not
conserved; anomalous symmetry breaking occurs due to instanton effects, leading to the U (1)

axial anomaly [53].

In addition to the explicit breaking of chiral symmetry, there is also strong evidence for
the spontaneous breaking of chiral symmetry in QCD. Examining a few well-defined hadronic
states reveals an interesting pattern. Comparing across Tables and 2.3] we see that a
significant difference in masses exists for states carrying the same quark content. For example,
there exists a &~ 600 MeV difference between the ¥ and p® mesons. This mass difference is
unusual, and unique to these light quark meson states; a comparison of the pseudoscalar and
vector masses of the J/1¢ charmonium states show that the masses are nearly degenerate at

2.98 GeV and 3.10 GeV for the pseudoscalar and vector states respectively [1].

This large difference in masses in the pseudoscalar nonet signals there is something unique
about the light pseudoscalars. Using Nambu-Goldstone’s theorem [54, 55], and considering
QCD in the chiral limit, the pseudoscalars can be interpreted as Nambu-Goldstone bosons
reflecting a spontaneously broken chiral symmetry associated with the axial current [50],

ie., SUNf)g x SU(N¢)p, — SU(Ny)y. However, the explicit symmetry breaking resulting
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Meson | Quark Content | Isospin, I | Charge | J7©) Mass (MeV)
0 75 (utt — dd) 1 0 0~ | 134.9770 £ 0.0005
mt ud 1 +1 0~ | 139.57061 = 0.00024
m du 1 -1 0~ | 139.57061 =+ 0.00024
Ky ds z 0 0~ 497.611 +0.013
Ky sd > 0 0~ 497.611 £ 0.013
KT us 5 +1 0~ 493.677 + 0.016
K- SU_ : -1 0~ 493.677 £ 0.016
n | g5(ul+dd — 2s5) 0 0 0—F 547.862 % 0.017
n 75 (uti + dd + 53) 0 0 0+ 957.78 £ 0.06

Table 2.2: Properties of the pseudoscalar nonet depicted in Figure [1]. The JF©)
column indicates the total angular momentum J, parity P, and (depending on whether
the state carries the symmetry) charge conjugation C. These discrete symmetries are
discussed in further detail later on in this chapter.

from the small but nonzero light quark masses means that the spontaneous chiral symmetry
breaking is only approximate, generating pseudo-Nambu-Goldstone bosons with small masses.
The consideration of pseudoscalars as pseudo-Nambu-Goldstone bosons is supported strongly
by experimental evidence and multiple theoretical approaches, including the existence of a
nonzero vacuum expectation value (VEV) associated with the spontaneously broken chiral

symmetry

(0] grgr + qrqr |0) = (0] gq |0) # 0, (2.30)

which was predicted before the formulation of QCD, known as the Gell-Mann-Oakes-Renner

(GMOR) relation [57],

r
gl = m g2 (2:31)

relating the chiral condensate to the mass of the pion and the pion coupling constant.

Because the u and d masses are much smaller than the s mass, SU(Ny)g x SU(Ny)L
chiral symmetry is best realized for the two lightest quark flavours (Ny = 2) as evidenced by
the relatively smaller pion masses; however, it is generally a good approximation for all three

of the light quarks (N = 3) relative to the characteristic energy scale of QCD (=~ 1 GeV).
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Meson | Quark Content | Isospin, I | Charge | JF(©) Mass (MeV)
pO(770) | 5 (ua — dd) 1 0 1=~ 775.26 + 0.25
p*(770) ud 1 +1 1- 775.11 4-0.34
p~(770) di 1 -1 1~ 775.11 £ 0.34
K;(892) ds . 0 1~ 895.55 4 0.20
K;(892) sd 5 0 1~ 895.55 + 0.20

K*+(892) us > +1 1- 891.76 4 0.25
K*~(892) su 3 -1 1~ 891.76 £ 0.25

w(782) 75 (utt + dd) 0 0 1 782.65 + 0.12

$(1020) S5 0 0 17~ | 1019.461 +0.019

Table 2.3: Properties of the vector nonet [I]. The J7(©) column indicates the total
angular momentum .J, parity P, and (depending on whether the state carries the sym-
metry) charge conjugation C. These discrete symmetries are discussed in further detail
later on in this chapter.

2.1.3.2 SU(3) Colour Charge

Gell-Mann and Zweig’s conceptualization of quarks [10] [11] required the addition of a quan-
tum number exclusive to the strong interaction, due to the apparent contradiction of the
Pauli exclusion principle in experimentally observed flavour-homogenous baryon states such
as the AT and the Q~. This led to the introduction of a “colour charge” by O.W. Greenberg
[58], in analogy to additive colour mixing. Experimental evidence since then has supported
the consistency of three colour charges within QCD [I]. In the modern context of QCD,
the Lagrangian is invariant under local SU(3) colour transformations; colour charge

manifests as the charge associated with the SU(3) local gauge transformation. Examining

just the quark portion of (2.1)),
Equark(x) = q_l(x) (Z’Y'u (au - ngt%BZ<x)) - mq) Qj(x), (232)

where the indices on the quark fields indicate colour, i.e.,

q(x) = | q(x) (2.33)



with {r,b, g} indicating the different colors of quarks, and where t{; are the 3 x 3 Gell-Mann
matrices and the group generators of SU(3). These generators are defined by infinitesimal
rotations in quark colour space, and representations of these generators satisfy the same
commutation relations as the generators. QCD is built from the fundamental representation,
the conjugate of the fundamental representation, and the adjoint representation, which turn
out to describe colour dynamics for the quarks, anti-quarks, and gluons respectively. The

fundamental representation satisfies the commutator
[t2, "] =it (2.34)

where % are structure constants, and the 8 x 8 adjoint representation is defined through

the structure constants

(tfl)bc = _ifabc- (2-35)

Central to this conceptualization of colour charge and the SU(3)c gauge symmetry is the
experimental observation that quarks are not observed outside of a bound state; hadrons must
exist in some colour singlet state. This axiom of QCD is called colour confinement, which
is an experimentally-driven concept combining what is known about colour charge and the
asymptotic freedom of the strong coupling. No analytic formulation of colour confinement
exists, however the flux tube model of QCD point towards an overall consistency of this
formulation [59]. Figure illustrates what happens as the quarks in a hadronic bound
state become separated by greater and greater distances due to colour confinement and
asymptotic freedom. In ¢ states, the potential between quarks has been shown to be well-
approximated by a “Coulomb plus linear” potential model [60], 6], 62], meaning that as a
quark-antiquark pair in a meson state is separated, the interaction energy between the qq
pair linearly increases. At some point, it becomes more energetically favorable for a quark-
antiquark pair to be generated from the vacuum through mass-energy equivalence. We see
this experimentally through the appearance of hadronic jets: directed showers of hadronic

matter generated in high-energy collisions.
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Figure 2.3: Illustration of colour confinement in a meson.

2.1.3.3 J, P,C Quantum Numbers

Important to identifying and categorizing hadronic states are three quantum numbers: the
total angular momentum .J, the parity P, and the charge parity C'. The total angular
momentum J is the magnitude of the vector sum of the orbital and spin angular momentum
of a quantum system. The parity operator P represents a discrete symmetry in the reversal
of spatial orientation (i.e., ¥ — —&), and the charge parity operator C represents a discrete
symmetry in the exchange of particle to antiparticle (¢ — ¢ and vice versa). All hadrons are
eigenstates of P, and hadrons that are their own antiparticle are eigenstates of C' (such as

closed-flavour states).
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In his early formulation of the quark model [10], Gell-Mann categorized mesons and
baryons according to the nature of their total angular momentum: mesons held integer values
of J, and baryons held half-integer values of J. For many years, this has been synonymous
with mesons corresponding to ¢ states, and baryons (or antibaryons) corresponding to qqq
(or Gqq) states, forming what we will commonly refer to as the conventional quark model.
However with recent observations of tetraquark [20] [63] and pentaquark states [211, 22], Gell-
Mann’s more general intention for this terminology finds new life. The discrete symmetries
P and C have become important for determining whether an observed hadronic states fits
within the conventional quark model, or whether it carries some underlying exotic structure.

For example, a conventional qqg meson has a parity given by
P = (—1)"1, (2.36)

and a charge parity of
C = (—1)5, (2.37)

where L and S are the orbital and total spin angular momentum quantum numbers respec-
tively. If we consider a scalar state J = 0, we can construct a conventional meson state in
two ways: an antialigned pair of ¢¢ spin states with an orbital angular momentum of L = 0
or an aligned pair of ¢ spin states with an antialigned oribital excitation of L = 1. We
can see that this dictates a very predictable set of quantum numbers for a meson within the

conventional quark model,

JPCe {07t 0Tt} (2.38)

However, if the structure deviates from a conventional q¢ paradigm, exotic quantum numbers
such as

Jreefot, 0 (2.39)

JPC’

are possible due to the extra degrees of freedom. These exotic are important signatures

of hadronic structure beyond the quark model (such as hybrid mesons or tetraquark states),
and are the focus of experimental efforts such as GlueX [25] and PANDA [26]. However, not

JPC’

all exotic hadrons carry distinct signatures such as these. In systems where C-parity is
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not defined, and no symmetry exists in exchanging particles with antiparticles, only a definite
JP may be determined. Baryons are one example where no definite C-parity exists. In these
systems, hadronic structures beyond the conventional quark model have no “smoking gun”
signal provided by exotic JP¢, and signals of exotic states are expected to be mixed with
those of conventional states carrying similar quantum numbers. We will see this difficulty
explicitly in looking at open-flavour hybrid mesons [49] in Chapter , the scalar meson states
[33, 34] in Chapter [5| as well as our discussion on hybrid baryons in Chapter @

2.2 QCD Sum Rules

Developed by Shifman, Vainshtein, and Zakharov [36] B7] (see also [38|, 39, [40] for reviews),
QCD sum rules (QCDSR) were developed as a way to access hadronic physics observables
from a subatomic description of quarks and gluons (i.e., QCD). Theoretical predictions of cor-
relation functions of composite hadronic operators are constructed using an operator product
expansion, and related to phenomenological resonance models through dispersion relations.
Through application of a transformation, spectral sum rules may be defined. These sum
rules can take on a variety of forms, generally categorized by the weighting of the correlation

function against a kernel of some form.

2.2.1 Correlation Functions and Hadronic Currents

Hadronic currents are composite operators conforming to the desired symmetry and valence
content requirements of the system in question. For example, in a hybrid meson system
composed of light quark-antiquark pairs ¢(z) and ¢(z), a hadronic current describing the

system could take the form
Ju (2) = igsGi(2)t° Gy, I750;(0) (2.40)
where I'V represents different combinations of Dirac structures, for example

e {v", v}, (2.41)
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and G, represents the gluon field strength tensor or its dual,

g., € {Gs,, G4}, (2.42)

nZ

a1 a
where the dual gluon field strength tensor, G}, = 5€,p0 Gy,

and G, is defined in (2.4). Each
combination of ' and G, describes different parity (P) and charge-parity (C') quantum
numbers. This arises from the transformation properties of the Dirac matrices and Levi-

Civita tensor from parity and charge-parity transformations [53]. Different combinations of

JPC JPC

correspond to distinct physical states; by calculating all combinations of available
in a system, the multiplet structure of a given set of constituents may be determined. This
has been done in early sum rules treatments of hadronic systems [64] [65], and more recently

in LQCD frameworks [28], 30], in addition to our own work [49].

2.2.2 Operator Product Expansion

The correlation function is evaluated within QCD through the use of an operator product
expansion (OPE). Due to its large coupling constant at low energies, QCD is inherently
a non-perturbative theory; this behaviour is described by the inclusion of non-zero vacuum
expectation values (VEVs) as operators in the OPE. Given an expectation value of a product

of operators O; and O, acting at different spacetime coordinates, the OPE states that

(O1(x)0a(y)) = lim > Cul = 1){On(y))- (243)

The OPE allows the expansion of the product of nonlocal operators in into a sum of
local operators O,, weighted by some perturbative coefficients C), called Wilson coefficients.
Essentially, the energetic behaviour of QCD is partitioned into the high-energy regime (purely
perturbative contributions i.e., O, — 1) and the low-energy regime (non-perturbative con-
tributions parameterized by nonzero VEVs). For example, for a hadronic current such as

(2-40),

(7u(2)75(0)) = C1(2)1 + Ca(2)(Gq) + Ca(2)(G?) + Cs(w){qoGa) + ... (2.44)
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Here, each term of the OPE corresponds to a family of Feynman diagrams, where the co-
efficients C),(z) are calculated perturbatively, and (qq), (G?), (7oGq), ... are nonzero VEVs
parameterizing the QCD vacuum. The subscript represents the mass dimension of the op-
erator such that the series is organized in terms of increasing mass dimension. Forming
expressions in terms of each of these local, nonzero VEVs from our composite operators
and constituent fields is a matter of considering their symmetry properties; these nonzero
VEVs are a property of the QCD vacuum, and as such they must be local, gauge invariant,
Lorentz invariant, colourless, and (as a property of the vacuum) be constructed of metrics
and Dirac matrices [42]. We also rely on the symmetry properties of the fields in question.
For example, the gluon field-strength tensor wa(x) is antisymmetric under the interchange
of Lorentz indices u <+ v. Note that no Cy(z) (dimension-two) term exists in due
to the requirements of Lorentz and gauge symmetry. These symmetry restrictions as well
as the QCD equations of motion are sufficient to restrict the form of these nonzero VEVs
[66, 64]. The following are lowest-order expansions of nonzero VEVs used throughout this
work (a more detailed derivation of the following may be found in [67]). Where necessary,

the fixed-point gauge condition at leading order

Bu(x) = %x“’GW(O), (2.45)
has been applied [68, 69, [70].
(G ()G 0)) = 5 T 0 Bt 09 (2.46)
@ @) = Wy, (2.47)
o0 (BRI 00) = g0 (2.13)
(0] (DGO = o () (2.9

21



(9°G?)

9o G ()G () Gha(0)) = (@ 4) 9770893 = Gnolasgsr)

= (9raYop9rn — GnaYopyxr) (2.50)
~ (Gro9ardsn — GnoGargsr)

+ (9ra9or98y — GnaGorgsr)] -

_i{g’G?) -
<[Dw17 [DwQa GMPH Gua> - d(d — 2) (d + 2) Guwiwo (gngg gpl/gua)
_ i{g’G)
2d(d —2)(d + 2)
% [Gunw (GornGpo — GurpGuo) — Guso (GonnGo — Gon )] (2-01)
3i{g>G?)

(

p il
2d(d —1)(d — 2)(d + 2)
X Gorv (GuanGpo = GunpGuo) = Juno (GoanGpy = GuopGpw )]

where d is spacetime dimension, o" = % [7*, "], and the values of the nonzero VEV param-
eters ((qq), (GG), (go - Gq), (g>G?)) may be found in the literature (see [40] for a summary
of recent values). The OPE is part of the foundation of the QCDSR methodology. Dia-
grammatically, we represent the non-perturbative contributions to the correlation function
as Feynman diagrams with broken lines (see Figure . These nonzero VEVs are also re-

ferred to as condensates; the lowest dimension condensate, m,(gq), corresponds to the chiral

condensate of QCD manifesting from the spontaneous symmetry breaking of chiral symmetry.

To calculate the Wilson coefficients in the OPE, a coordinate space methodology is used
[42]; Wick’s theorem is applied to the correlator of interest, leaving uncontracted fields corre-
sponding to the nonzero VEV associated with the Wilson coefficient of interest. If necessary,
a fixed-point gauge is applied to uncontracted fields [68, [69], and the uncontracted fields
are expressed in terms of the local nonzero VEVs shown in . Note that it has been
shown that the use of a fixed-point gauge does not conflict with the covariant gauge used for
gauge-fixing and quantization in the QCD Lagrangian [70]. Finally, after Fourier transform-
ing to momentum space, any coordinate terms from the VEV expansion become momentum
derivative operators and zero-momentum insertions; from here, we can apply loop momentum

methods to finish evaluating the Wilson coefficient.
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Figure 2.4: An example of a non-perturbative condensate diagram within QCDSR.
This depicts a quark condensate characterized by the chiral condensate vacuum expec-
tation value m,(qq).

2.2.3 Dispersion Relations and Spectral Sum-Rules

The methodology of QCDSR begins with a dispersion relation |71 [72] (see also [47]),

2y _ > Phad(t) 2
H(Q)_/to gt @ (2.52)

defined in terms of the euclideanized momentum @2, and where t, represents the physi-
cal threshold of the system. This expression relates the QQCD description of hadrons found
through calculating correlation functions of composite operators (LHS) to the phenomeno-
logical side described by experimental hadronic physics (RHS). This is commonly described
as quark-hadron duality; the energy regime describing the degrees of freedom within QCD
(quarks and gluons) does not naturally connect with the regime describing the degrees of free-
dom of experimental hadronic physics (mesons and baryons, for example). The dispersion
relation connects these low- and high-energy regimes. The hadronic spectral func-
tion, p"2d(t), is often described using some model corresponding to an appropriate resonance
shape. The right side also contains low-energy constants (polynomials in Q?, denoted by the

- in ) which are not always well-known. In order to evaluate , typically some

sort of integral transform 7 is considered which eliminates these unknown polynomials. In
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general, this turns (2.52)) into the form

TUHQ%}:/deWQQJMM%m (2.53)

to

where K(7;,t) is some kernel associated with a particular category of spectral sum rule,

dependant on some set of characteristic energy scales 7;.

2.2.3.1 Laplace Sum Rules

Laplace sum rules (LSRs), also known as Borel sum rules, are named due to the resulting

kernel K(7,t) = e~ ™, and lead to (2.53)) becoming

mm:/t%”w%mt (2.54)
to

The derivation of these sum rules starts with the application of a Borel transform to the

dispersion relation ([2.52)), where the Borel transform operator is defined as

s ()Y N
B_N’anioo ) (dQ2> . (2.55)
T=N/Q?

Applying 1) to (2.52), weighted with (—Q2)k for k > 0 (alongside a convenient factor of

1), gives

15[ @] <L [T s [C ] a (256)
_% / h P () tF (re7'T) dt, (2.57)

where t, is the physical threshold for the hadronic system of interest. The application of the
Borel operator in eliminates all purely polynomial structures in %, which simplifies the
dispersion relation through removal of the (unknown) low-energy constants. From Ref. [42],
we use the identity B [ t+Q2)] = (=1)**7e7'" to evaluate the transform on the RHS. Phe-
nomenologically, the resulting Laplace kernel weights the hadronic spectral function phad(t),

and preferentially amplifies lower-energy states. Figure|2.5|shows this demonstrated on a toy
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Spectral Function

R phad (t) phad (t) e—tr

Figure 2.5: Weighting of the Laplace kernel on a toy spectral function.

spectral function. By suppressing resonances lying at higher energies, LSRs are well-suited
for probing the ground state of hadronic systems, and reduce the dependence on high-energy

continuum-like features.

To evaluate the transform applied to the correlation function on the LHS of (2.56)), we

note that the Borel transform may be related to the inverse Laplace transform [42] by

SBIF@) =L 7 (@), 2.58)

and the problem of evaluating the transform of the correlation function on the LHS of ({2.56))
becomes a matter of evaluating the contour integral defined by the inverse Laplace transform.

The inverse Laplace transform is defined by

@) =g [ e @), 25)

C2mi Sy i
where the integration is performed along a contour in the complex plane, where b is defined
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to the right of any complex branch and pole structure in f (Q?).

Im [Q?] - ~

Re [Q?]

~

Figure 2.6: Integration contour for inverse Laplace transform

Consider the contour of integration I' for (2.59) shown in Figure Using Cauchy’s
integral theorem, we instead evaluate the integral along the closed contour Z?:l I'; depicted

in Figure [2.7]
(---)d@* = 0. (2.60)

fi;l +To4+T34+T44+T'54+T6
By taking the radius of the semicircular contour R — oo, we can recover the result of ([2.59))

by relating the contour I' to the branch structure in the deformed contour depicted in Figure

2.7 that is,

/bﬂm(--.)cicg2 = lim [ (---)dQ* = — lim (---)d@? (2.61)

—ioo R=o0 Jp, R=00 J 1,4 Ty 4 Ty+T54T

In evaluating the contour integral as shown, the LHS of equation (2.56)) typically reduces

to the following form (depending on the complex structure of the problem at hand)

L7 QY] = / OOe”%ImHOPE(t) dt (2.62)

to

“B Q)]
+f(7), (2.63)
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Re [Q7]

Figure 2.7: Deformed contour around branch structure in red.

where f (7) represents the contributions coming from the pole structure, and where we have
explicitly labeled %ImHOPE(t) to emphasize that this describes the QCD side of the dispersion
relation, calculated through application of the OPE; the imaginary part of II°TF results
from using the Schwarz reflection principle in the evaluation of the contour integral. For
the hadronic side of the dispersion relation, we must propose an appropriate model for the
hadronic spectral function. Perhaps the simplest model we can consider is a narrow resonance

plus continuum model [36] 37, [73],
1
PP () = fEmS0(t —m2) + 0(t — s0)—ImITOPE(2), (2.64)
T

where fy is the dimensionless coupling strength, my is the hadronic mass (we have assumed
our correlator is of mass dimension six), 6 is the Heaviside step function, and sq is the onset
of the continuum in GeV?. At high energies characterized by the onset of the continuum,
perturbation theory dominates the strong interaction, and so our OPE is a good description
of the high-energy behaviour. At lower energies, we are interested in extracting the properties
of the ground state, which we model with a Dirac delta distribution. If there were any width
effects present, they have been shown to scale like myI't [74], where my is the hadronic

mass, [' is the resonance width, and 7 is our introduced Borel parameter. Applying this
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model to the RHS of ([2.56]) gives us

o o 1
/ PPty e T dt = fAmSe T 4 / eI —ImIIO®(¢t)dt (2.65)
to S0 m
and so, with (2.63) and ({2.65)), (2.56) becomes
OO 1 * 1
/ e T =ImIIOPP () dt + f (1) = fEmbe ™" 4 / e~ —ImITOY®(¢)dt. (2.66)
to ™ S0 ™

Grouping the terms that depend on the OPE into an expression coming solely from QCD,
we arrive at a final formulation of our LSR expression that we define to be Ry(, so)

50 1 2
Ro(T, s0) = / e T —ImIICYE(t) dt + f (1) = fEmbe ™. (2.67)

to ™
Strictly speaking, this expression generalizes to a family of sum rules with different weights
characterized by an integer k£ > 0, where more generally,

50 1 2
Ry(T,80) = / the ™ ZImIIOPE () dt + f (k,7) = fEmS ke muT. (2.68)
to ™

Using a combination of different weights, the hadronic mass can be extracted from the QCD

side of equation ([2.68|)
Ri1(7,80)

= 2.69
Rk(T, 50) mHa ( )

where 7 is the Borel parameter characterizing the sum rule window where the OPE is conver-
gent, and s¢ is the continuum onset, characterizing the region of the spectral function where

perturbative QCD dominates.

2.2.3.2 Gaussian Sum Rules

Much like LSRs, Gaussian sum rules (GSRs) are also named by the form of their kernel,
taking a slightly more complicated form than their LSR counterpart, where
_(-t)?

Gi(3,7) = /t h (ﬁ) (1) di. (2.70)
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The derivation for these sum rules is similar to that of the LSRs with some notable deviations;
a detailed description of the derivation may be found in Refs. [0, [75], [76]. Unlike the LSR,
the GSR is defined with an extra degree of freedom s as well as a parameter 7. It should be
explicitly noted that the parameter 7 within the GSR construction has no relationship to the
Borel parameter 7 defined in a LSR context. Contrasted with the preferential weighting of
the spectral function in the case of the LSR, the Gaussian kernel in the GSR weights
the spectral function p"24(¢) equally when ¢t = 3, allowing the GSR methodology to probe
a wide range of energies by scanning through the energy parameter s. While it can be
problematic to examine resonance width effects or mixing using LSR given higher energy
states are supressed by design, the Gaussian weighting of the GSR as well as the capacity
to scan through different energy scales makes this formulation of QCDSR a natural choice
to explore more complex resonance models and quantum mechanical mixing, particularly in

JPC

states with conventional or states with undefined C-parity.

2.2.4 Optimizing Sum Rules

By forming the Gaussian and Laplace spectral sum rules, the parameter 7 is introduced as
a result of applying the transform. In the case of GSRs, there is an additional parameter §
allowing the exploration of a wide range in energies. In order to ensure the accuracy of the

resulting sum rule predictions, a few restrictions must be considered.

2.2.4.1 LSR Constraints

Because our analysis of QCDSR relies on both perturbative calculations and the properties
of the OPE truncated at a particular order, we must check that any predicted results
within the sum rules framework ensures convergence of the OPE; that is, the correlation
function must have a dominant contribution from perturbation theory, with higher dimen-
sional condensate terms contributing less and less to the overall result. Ensuring that the
nonperturbative contributions to the calculation are controlled gives us a low-energy bound

on our analysis, or an upper-bound on the value of 7 within LSRs [30], B7]. A set of typical
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constraints would look like

RP(7) 1
Rike“(f) <3 (2.71)
Ri2(m)] 1
=) | <3 (2.72)

To fix an upper bound on 7, a nominal requirement of ~ 30% is set for the upper bound on
the contribution of dimension four condensates (m,(gg) and (G?)) relative to the expected
dominant contribution from perturbation theory, as well as that of the dimension six con-
densates (m,(goGq), (¢>G®), and (gqqq)) relative to the dimension four condensates. Similar

conditions for higher-dimensional condensates could be applied if necessary.

For a high-energy bound on the LSRs analysis (or a lower-bound on 1), we require that
the mass prediction of the ground state energy is not contaminated by the QCD continuum
or suppressed excited resonances [36, 37]. This can be thought of as a “signal-to-noise”
condition; we impose a minimum threshold of an acceptable level of signal (the ground state

resonance) against the background (the QCD continuum). That is, the ratio of integrals

%0 e tTImIl(¢t)dt
fMQe mII(z)

A N (O
fMQe mII(z)

PC (so,7) (2.73)
Typically the value of the pole contribution (2.73|) is constrained to be > 10% [77]. The
combination of these two requirements on the value of 7 form a range of values where a
T-independent solution for the hadronic mass may be found. This is commonly referred to

as the Borel window.

2.2.4.2 GSR Constraints

The introduction of the energy parameter § as well as the shape of the Gaussian kernel make
applying the same constraints as considered in the case of LSRs difficult. While convergence
of the OPE and matters of pole dominance remain important, an approach more natural to

the GSRs is applied.

When initially derived and proposed [75], a parallel between the GSRs and the classical
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one-dimensional heat equation was drawn. The GSR Gj(3, 7) satisfies

82Gk(§, 7') . 8Gk(§, T)

2.74
052 or (2.74)

where § and 7 take the place of position and time in the classical case, respectively. Through
this lens, we find a soft upper bound on the value of 7; the time-asymmetric nature of the
heat equation reveals to us that larger values of 7 will “wash out” the original GSR. It serves
us best then to extract predictions from the GSRs at as low of a value of 7 as can be managed.
While this doesn’t provide an explicit upper-bound on the parameter 7, it does allow us to
compare the behaviour across multiple values of 7 and take the lowest value possible. But
what then, of the lower bound on 77 Due to the renormalization-group invariance of ,
previous applications of GSRs [9] have determined the natural renormalization scheme for a

GSR analysis with logarithmic dependence in the perturbative contribution to be

/OOO log" (%) exp (—%) dt = v? /Ooo dx log” () exp [— <2V\2/:; - #) 2] , (2.75)

that is, the renormalization-group equation is satisfied with the running coupling constant

a(v) and the renormalization scale of v* = /7. This provides us a natural lower bound
on the value of the GSR parameter 7; depending on the system of interest, the value of 7
will depend on what the appropriate scale of interest is. We will see this carried out when

examining light hybrid states with GSRs in Chapter

There have been efforts to develop alternative methods of extracting predictions from
QCD sum rules without the need of a Borel window, which can be difficult to determine [7§].
In the case of the GSRs, there is no standard methodology for ensuring OPE convergence
and enforcing the pole contribution as there is in the LSRs; the parameter 7 is distinct in
each methodology, and the idea of a Borel window is not well-defined in a GSR approach.
With this in mind, we can look towards a more fundamental way of constraining our sum

rules. A more general form of the Cauchy-Schwarz inequality, called the Holder inequality,

/: oo du‘ < (/tt ! (t)lpdu>; </tt g (t)|qdu>; , (276)
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provided that

1 1
P q

Using the positivity of the spectral function p to define the integration measure, this can

be related to both the LSR and GSR expressions. For LSRs, provided 0 < w < 1 and
Tmax — Tmin > 0), equations (2.76)) and (2.77)) result in [78, [79]

ACO (WTmin + (1 - W)Tmaxa SO) S /v‘z)u (Tmina SO) L(l)_w (Tmaxy 50) . (278>

In Chapter |4}, equations (2.76)) and (2.77]) are applied to the GSRs for the first time, resulting

n

. (MQ +(1- w)ﬁ> 3 (mz +(1- w)ﬁ> =R

o To 1

e T1T2 A
8,8
"Nwn+ 1 —w)n 7"

X G (11, 8,50) Gy~ (1,3, 50) - (2.79)

assuming 0 < w < 1. A full derivation of (2.79) may be found in Appendix [A]

2.3 Regularization

To extract meaningful finite results from a QFT, typically a regularization procedure of
some kind must be implemented. Regularization is the process of parameterizing divergences
within a QFT such that we can perform the resulting loop integrals without being hindered
by the infinities that might arise [53]. Typically, regularization is followed by a systematic
renormalization procedure (discussed in the next section) which eliminates the divergent
terms, resulting in a finite prediction. Throughout this work, we use the process of dimen-
sional regularization [80]: by evaluating our integrals in a d = 4 + 2¢ dimensional spacetime,
divergences are parameterized by ein terms (for an integer n > 0). In applying dimensional
regularization to a QCDSR calculation, we must ensure that all aspects of the calculations
are represented in terms of d dimensions. Integrals for two-point functions involving light
quarks for the most part are well known and tabulated (see Ref. [42]). For two-loop calcula-

tions with arbitrary masses, we rely on the Mathematica package TARCER. [81] which uses
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recursion relationships [82], 83] to reduce two-point function two-loop integrals to a set of

known master integrals ,

Af{lVlﬂm} ETAI[d> 0, {{Vla ml}}]
1 / Ak,
= |

B({iV17m1}7{Vz,mz} ETBI[d> q27 {{’/17 ml}a {VQa mz}}]

1 / 'k (2.80)
w2 ) (kg = md)” ((k — q)® —m3)™
J?V1,m1}7{ug,m2}7{u37m3} ETJI[CL q27 {{Vh m1}> {V2> mQ}’ {V3’ m3}}]
_i/ dk,d%,
w0 (k= md)" (k= ka)® = m3)” (ks — q)* —m3)™

By using dimensionally regularized results for the master integrals in (2.80]), we obtain di-
mensionally regulated results for our two-loop, two-point correlation function. For exam-
ple, results necessary to evaluate the correlation function of the heavy-light hybrid case are

[42], 1’4, [85), 186]

Mo (1-2).
| ipal (AT (B+a—9)
Bdma :Z_l——angB 2 2
{5 mh g0y = (=177 (m?) NOIRO
Bra—g ¢
X 2F1 6 ﬁ ga 2|%] ) (282)
2
. L, TE-D)Tw+2-dr(2-9)
J?”vm}v{lvo}v{lvo} - (_1)1 (m2)d i ) F (g) F (V> 2
2—-4,v+2-d ¢
xoR |17 %] , (2.83)
2

where the hypergeometric function o F} is defined by

2 Fy [a’cblzl = i (@) (0)r 2 (2.84)

— (o nl
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and where the Pochhammer symbol defining (2.84)) is expressed in terms of Gamma functions

(a), = % (2.85)

Whether or not a calculation can be done analytically depends on whether appropriate di-
mensionally regularized integral results are available for the loop topology of the calculation
in question. For multi-loop light quark systems such as the light hybrid baryons, the absence
of a mass term simplifies the calculation such that it can be done iteratively using results
for the integrals of two-point functions containing light quarks [42]. Other topologies such
as three-point functions can be more difficult to solve analytically (particularly in the case
of massive quarks); numerical methods using sector decomposition [87, 88 [89] may be useful

in these cases.

2.4 Renormalization

In QCD, as we move past tree-level calculations and explore higher and higher orders of loop
calculations, the need for a renormalization prescription becomes apparent; loop integrals
exhibit ultraviolet and infrared (UV and IR) divergent behaviour that hampers a physical
interpretation. This renormalization formally manifests in the inclusion of renormalization
coefficients in the renormalized Lagrangian. The guiding principle of renormalization is
simple: observable quantities should be finite and calculable from the underlying Lagrangian.
Following that, the divergent behaviour of these integrals may be removed by including
counterterm diagrams that serve to cancel the divergent behaviour of the calculation. In

general, we can think of the Lagrangian as three different pieces
L= ‘CO + ‘Cint + Ect' (286)

Here, the Lagrangian £ has been broken into the free Lagrangian £, describing the kinematics
of the theory, the interaction Lagrangian describing the dynamics of the theory L, and the

counterterm Lagrangian L. For example, in a simple ¢* scalar theory, the bare Lagrangian
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expressed in terms of bare fields and parameters is

1 2 Mo o
Ly = 5 (Outpo)” — 7%, (2.87)
and the (bare) interaction piece is
Ao
Ling = Tl 0 (2.88)

where a subscript “0” indicates a bare quantity. For a theory to be considered renormalizable,
only a finite number of terms may be added to the Lagrangian corresponding to terms in the
original bare Lagrangian. The counterterm piece of the Lagrangian for the case of ¢* theory
is

Co

Lo === (0u00)" +

Chulti
2

Cryo 4
41 @

Pn + (2.89)

where the values of the C’s are such that any divergences of the form % for n a positive integer

en
arising from our dimensional regularization are cancelled and a finite prediction remains.

Typically, the renormalization coefficients are defined as
Z;=(1-C) (2.90)

such that
_ 1 2 :U(Q) 2 Ao 4
L= Z¢§ (0uto)” — Zu?% - ZAEQ%» (2.91)

and finally, renormalized fields and couplings are defined to be

or =2, by (2.92)
pr =22 g (2.93)
AR = Z2Z;* . (2.94)

This renormalization can be generalized in order to leverage the Feynman diagram formalism;
counterterm diagrams associated with a loop divergence may be included in a calculation as
shown in Figure[2.8l Although this formalism has been generalized to the fields and couplings
of QCD, a detailed look at the renormalization of QCD is beyond the scope of this work, and
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may be found in Ref. [42], for example.

)
&

Figure 2.8: An example of a counterterm contribution and its associated divergent
diagram in a ¢* self-energy.

In calculating correlation functions of currents, when confronted with divergences that
cannot be renormalized with the inclusion of a Lagrangian counterterm (i.e., a non-local
divergence [90]), a composite operator renormalization procedure must be applied to the
constructed current, and operator mixing with appropriate lower-dimensional currents must
be considered [48]. Recall that, in renormalizing the operators and parameters in a QFT,
new fields and physical parameters were defined in terms of the bare fields and parameters
and the necessary renormalization coefficients. In these cases, the integrals resulting from
the Feynman diagrams in question contained overall divergences that could be subtracted.
However, in forming local composite operators such as , we take the product of these
renormalized fields. Unfortunately, constructing a composite operator as a product of renor-
malized fields does not mean the result will also be renormalized. If we consider our OPE

[@-43),

(01(2)0a(y)) = Y Cule = 4){On(y)) (2.95)

we can imagine a product of two operators at z and y that are well-defined, but diverge
as * — y. This necessitates a formalism for renormalizing composite operators. Given

some composite operator J, the renormalized operator (distinguished by square brackets) is
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expressed formally as

] =" ZaA, (2.96)

where A represent all possible unrenormalized composite operators that carry the same sym-
metries and quantum numbers as J. This describes operator mixing within the formalism
of composite operator renormalization; as a general result, a composite operator J may mix
with other composite operators A provided they have the same quantum numbers and carry
dimension equal to or less than that of J [90]. This is directly tied to the renormalizability
of the theory being considered; Z;4 in equation (2.96|) must have dimensions dim (Z;4) > 0,
and by dimensional analysis this implies that the currents A must have dim (A) < dim (Z;4)
[90]. These renormalized composite operators will generate additional diagrams that must
be considered for a calculation to be finite. For example, consider a correlation function built

from a renormalized vector current [J,] = Z;1J, + Z 2 jﬂ,

(Q [T (2)] [T 0)]719) =|Zn [P (T I]IR) + 1 2201 T, T 12) (2.0
+ Zn Zyp QIS + 251 22401, TS|),

where ju is an operator that mixes with the composite operator in question J,. We see on
the RHS of that the complete renormalized calculation requires the consideration of
off-diagonal correlation functions as well as a contribution from the diagonal correlator of
j“. The complete process has been done for some hybrid currents such as the light exotic
vector hybrid meson [91], but as such calculations can be complex, in general limited results

are available for other composite operators.

2.5 Mixing

While we have briefly discussed the mathematical necessity of operator mixing above in the
context of renormalization, there is another important consideration of mixing distinct from
the composite operator formalism discussed in Section 2.4 In Section [2.1.3.3] we reviewed
JPC’

how exotic are considered a clean signal of exotic structure beyond the conventional

quark model, making these primary targets for observation by experiments such as GlueX
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[25]. However, exotic hadrons can still be constructed with conventional quantum numbers.
As with any quantum mechanical system, we must account for all possible outcomes, and,
as such, we must consider quantum mechanical mixing between states carrying the same
quantum numbers. Due to this mixing, a current with a particular set of J"¢ may non-
trivially probe other states carrying the same quantum numbers. For example, in the absence

of mixing, for a hypothetical pure hybrid current jfj () we would expect

(0l |h) # 0 (2.98)
(0l5]cy =0, (2.99)

where |h) represents some hybrid state and |¢) represents a conventional state. When mixing

occurs, the operator probes both states such that

(0l |h) # 0 (2.100)

(0]50]e) # 0. (2.101)

Within the framework of QCDSR, by generalizing our resonance plus continuum model ([2.64])
to a distributed resonance model, we can consider mixing between states that are widely-
separated. A variety of mixing models may be tested to discern what best characterizes the

hadronic mixing; available options include a square wave (or a single wide resonance)

phad (t) o 7Tf

= ST [0 (t — m} +mul) — 0 (t —m3 — muT)], (2.102)

a double narrow resonance model,
ph(t) = fimio(t —mi) + f3m3(t —m3), (2.103)

or some combination of the two, such as a wide plus narrow resonance model

phad (t) o 7Tf

= 5 |0 (E=mi +mal) =0 (¢ —mi —mal)] + fymso(t —mp).  (2.104)
1
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While it is possible to consider mixing within a LSR methodology [50], because of the sup-
pression of higher energies characteristic of the LSRs, a GSR approach may be preferred
when analyzing systems that exhibit mixing [9, [51] as GSRs treat the ground and excited

state resonances with similar sensitivity.

39



CHAPTER 3

HeEAVvY-LI1GHT HYBRIDS

3.1 Open-Flavour Hybrids

3.1.1 Motivation and Background

The previously discussed quarkonium-like light hybrid mesons carry flavour-paired constituent
quarks (“closed” meson states due to symmetry in valence quark flavour content), giving
some of them unique experimental signatures due to exotic J©¢ combinations not seen in
the conventional quark model spectrum. Because of the possibility of these clean experimen-
tal signals and their energetic accessibility, they have attracted much attention and study.
Less-studied in the literature are states that bridge the spectrum between the light and the
heavy quarkonium-like states, states that carry a flavour asymmetry in their valence quark
content. We borrow the language found in previous studies of hybrid mesons with similar

valence quark structure [92, [93], and call these open-flavour hybrid meson states.

The consequence of considering open-flavour hybrid meson states is that, because of
the asymmetric flavour structure of the valence quarks, these states do not carry a well-
defined charge-parity quantum number C'. As such, to experimentally determine whether an
observed open-flavour state is a conventional or hybrid meson, it is necessary to carefully
identify the gg meson spectrum and determine theoretical predictions of any exotics carrying
similar properties in the same mass range. An overpopulation of states observed in in the
conventional meson spectrum would be a signal of other exotic states.

While the mass spectra of closed flavour hybrid meson states have been carefully investi-
gated using a variety of methodologies [30], 64], 65, 04, [95], open flavour hybrid meson states

have attracted considerably less attention. This is likely because of the relative difficulty in
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(a) Closed-flavour conventional meson (b) Open-flavour conventional struc-
structure ture

experimentally observing these states. In contrast, the resources for experimental searches of
hybrid mesons (both closed and open-flavour) are at an all-time high, with two experiments
being of notable interest to our work. The first, GlueX, is currently searching for signals of
light closed-flavour hybrid candidates [23]. The second experimental collaboration, PANDA,
is currently under construction and aims to examine exotic states in the mass range contain-
ing open-charm and closed-charm conventional mesons, as well as provide a precision analysis
of the conventional spectrum [26]. In anticipation of its launch and in awareness of the need
for theoretical predictions to investigate the nature of exotics of open-flavour structure, we
were motivated to pursue a systematic multi-channel analysis of heavy-strange and heavy-
nonstrange hybrid mesons. In this way, we could not only provide mass predictions for the

states in question, but multiplet structures as well.

In the process of calculating the open-flavour heavy-light spectrum, several aspects of the
calculation came to our attention: consequences from calculating with composite operators,
conventional J* opening the door to meson-hybrid mixing, and the nature of distinct hadronic
currents carrying identical J¥. My contributions to this work begin with the calculation of
the multichannel correlation functions, forming the LSRs for each of the sixteen J”(©) (charm
and bottom) channels, analysis of LSRs to extract mass predictions from each of the stable
channels, performing the error analyses, and interpreting the overall results. In addition, I

performed all of the mixing analysis, designed the figures, and I led in the writing and editing
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of the final manuscript.

The following work may be found published in:

Masses of open-flavour heavy-light hybrids from QCD sum rules,
J. Ho, D. Harnett, T.G. Steele. J. High Energ. Phys. (2017) 2017:149.
doi:10.1007/JHEP05(2017)149

3.2 Manuscript: Masses of open-flavour heavy-light

hybrids from QCD sum rules

Abstract: We use QCD Laplace sum-rules to predict masses of open-flavour heavy-
light hybrids where one of the hybrids constituent quarks is a charm or bottom and
the other is an up, down, or strange. We compute leading-order, diagonal correlation
functions of several hybrid interpolating currents, taking into account QCD conden-
sates up to dimension-six, and extract hybrid mass predictions for all J* € {0%, 1%},
as well as explore possible mixing effects with conventional quark-antiquark mesons.
Within theoretical uncertainties, our results are consistent with a degeneracy between
the heavy-nonstrange and heavy-strange hybrids in all J¥ channels. We find a similar
mass hierarchy of 11, 17, and 07 states (a 1 state lighter than essentially degenerate
17 and 0" states) in both the charm and bottom sectors, and discuss an interpretation
for the 0~ states. If conventional meson mixing is present the effect is an increase in
the hybrid mass prediction, and we estimate an upper bound on this effect.

3.2.1 Introduction

Hybrids are hypothesized, beyond-the-quark-model hadrons that exhibit explicit quark, anti-
quark, and gluonic degrees of freedom. They are colour singlets and so should be permissible
within quantum chromodynamics (QCD); thus, the question of their existence provides us
with a key test of our characterization of confinement. Despite nearly four decades of search-
ing, hybrids have not yet been conclusively identified in experiment. There are, however, a
number of noteworthy candidates. For example, the Particle Data Group (PDG) [2] lists a
pair of tentative resonances, the 7;(1400) and the 7;(1600), both with exotic JF¢ =17%, a
combination inaccessible to conventional quark-antiquark mesons [73], [94]. There are several
non-exotic hybrid prospects as well. For instance, each of the resonances ¢(2170), X(3872),
Y (3940), and Y (4260) has been singled out as a possible hybrid or at least as a mixed hadron
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containing a hybrid component [96], (97, [98] [99], 100, [101].

Definitively assigning a hybrid interpretation to an observed resonance would be greatly
facilitated by agreement between theory and experiment concerning the candidate hybrid’s
mass. Previous calculations aimed at predicting hybrid masses have been made using a
constituent gluon model [102], the MIT bag model [103, 104], and the flux tube model [46],
105, [T06] as well as through the QCD-based approaches of QCD sum-rules [73] [77, 05, 100,
107, (108, (109, [0, [T1T, 112, (13} (114}, (115} [116], lattice QCD [29} 17, 118, [119], and Heavy
Quark Effective Theory [120]. Unfortunately, as of yet, there is little consensus concerning

hybrid masses.

To date, closed-flavour (hidden-flavour or quarkonium) hybrids have received more atten-
tion than open-flavour hybrids likely because most promising hybrid candidates are closed.
Furthermore, closed-flavour hybrids allow for exotic J©¢ quantum numbers; open-flavour
hybrids, on the other hand, are not eigenstates of C-parity, and so are characterized by
non-exotic J¥ quantum numbers. However, the recent observation of the fully-open-flavour
X(5568) containing a heavy (bottom) quark [121}, 122] may be a precursor to additional open-
flavour discoveries that do not have a simple quark-model explanation (e.g., the X(5568) has
been studied as a bdsu tetraquark [123]). Hence, computing masses of open hybrids contain-

ing heavy quarks is timely and of phenomenological relevance.

Ground state masses of bottom-charm hybrids were recently computed using QCD sum-
rules in [93]; therefore, we focus on a QCD sum-rules analysis of open-flavour heavy-light
hybrids i.e., hybrids containing one heavy quark (charm or bottom) and one light quark (up,

down, or strange).

The seminal application of QCD Laplace sum-rules to open-flavour hybrids was performed
by Govaerts, Reinders, and Weyers [124] (hereafter referred to as GRW). Therein, they
considered four distinct currents covering J € {0, 1} in an effort to compute a comprehensive
collection of hybrid masses. Their QCD correlator calculations took into account perturbation
theory as well as mass-dimension-three (i.e., 3d) quark and 4d gluon condensate contributions.
Precisely half of the analyses stabilized and yielded viable mass predictions. However, for all
heavy-light hybrids, the ground state hybrid mass was uncomfortably close to the continuum

threshold (with a typical separation of roughly 10 MeV), so that even a modest hadron width
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would result in the resonance essentially merging with the continuum [124].

In this article, we extend the work of GRW by including both 5d mixed and 6d gluon
condensate contributions in our correlator calculations. As noted in GRW, for open-flavour
heavy-light hybrids, condensates involving light quarks could be enhanced by a heavy quark
mass allowing for the possibility of a numerically significant contribution to the sum-rules.
By this reasoning, the 5d mixed condensate should also be included. As for the 6d gluon
condensate, recent sum-rules analyses of closed-flavour heavy hybrids [77, 100, 115, [116]
have demonstrated that it is important and can have a stabilizing effect on what were,
in the pioneering work [64, [125], unstable analyses. We also consider the possibility that
conventional quark-antiquark mesons couple to the hybrid current, and demonstrate that this
leads to an increase in the predicted value of the hybrid mass. A methodology is developed
to estimate an upper bound on this mass increase in each channel.

This paper is organized as follows: in Section [3.2.2] we define the currents that we use
to probe open-flavour heavy-light hybrids and compute corresponding correlation functions;
in Section [3.2.3] we generate QCD sum-rules for each of the correlators; in Section [3.2.4] we
present our analysis methodology as well as our mass predictions for those channels which
stabilized; in Section [3.2.5| we consider the effects of mixing; and, in Section [3.2.6], we discuss

our results and compare them to GRW and to contemporary predictions made using lattice

QCD.

3.2.2 Currents and Correlators

Following GRW, we define open-flavour heavy-light hybrid interpolating currents
= 0N (3.1)
j,u - 2 q up .

where g, is the strong coupling and A* are the Gell-Mann matrices. The field () represents
a heavy charm or bottom quark with mass Mg whereas ¢ represents a light up, down, or

strange quark with mass m,. The Dirac matrix I'* satisfies

I'” e {y, v}, (3.2)
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and the tensor Q;jp satisfies

Gu €{GLp G} (3-3)
where G}, is the gluon field strength and

~a 1 a
Gup = §€MPVUGVJ (34)

is its dual defined using the totally antisymmetric Levi-Civita symbol €,,,,-
For each of the four currents defined through (3.1])—(3.3)), we consider a diagonal correla-

tion function

Mu(q) = [ % e Ol @)55(0)00) (3.5)
- %H(O)(QQ) + (qgg” - g;w> (), (3.6)

where II(O) probes spin-0 states and II") probes spin-1 states. Each of II®) and II™" couples
to a particular parity value, and, in the case of closed-flavour hybrids, also to a particular
C-parity value; however, as noted in Section [3.2.1] open-flavour hybrids are not C-parity
eigenstates. Regardless, we will refer to I and II") using the J¥¢ assignments they would
have if we were investigating closed- rather than open-flavour hybrids. But, to stress that
the C-value cannot be taken literally, we will enclose it in brackets (a notation employed
in [31, 03]). In Table , we provide a breakdown of which currents couple to which JZ(©)

combinations.

Table 3.1: The J”(©) combinations probed through different choices of I'” (3.2)) and
G (33

NG gzp JFP©)

AP qu 0+, 1=
v Ge, 0-(H), 1+(+)
Y5 Gzp 0~ 1)
VP Gzp 0t(=), 1-()

We calculate the correlators (3.5)) within the operator product expansion (OPE) in which

perturbation theory is supplemented by a collection of non-perturbative terms, each of which
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is the product of a perturbatively computed Wilson coefficient and a non-zero vacuum ex-
pectation value (VEV) corresponding to a QCD condensate. We include condensates up to

6d:

(@q) = (@) (3.7)

(aG?) = (asG3,GL) (3.8)
(g0 Ga) = (970l \op Gl ) (3.9)
(°G®) = (g2 f™ Gy, G G, (3.10)

respectively referred to as the 3d quark condensate, the 4d gluon condensate, the 5d mixed
condensate, and the 6d gluon condensate. Superscripts on light quark fields are colour indices
whereas subscripts are Dirac indices, and o = %[fy“, ~*]. The Wilson coefficients (including
perturbation theory) are computed to leading-order (LO) in g, using coordinate-space fixed-
point gauge techniques (see [42], 126], for example). Note that LO contributions to
associated with 6d quark condensates are O(g?); our calculation is actually O(g3), and so
6d quark condensates have been excluded from (3.7)—-(3.10). (In Ref. [77] the numerical
effect of the 6d quark condensates has been shown to be small compared to the 6d gluon
condensate). Light quark mass effects are included in perturbation theory through a next-
to-leading-order light quark mass expansion, and at leading-order in all other OPE terms.
The contributing Feynman diagrams are depicted in Figure where we follow as closely
as possible the labeling scheme of [95]. (Note that there is no Diagram IV in Figure
because, in [95], Diagram IV corresponds to an OPE contribution stemming from 6d quark
condensates that is absent in the open-flavour heavy-light systems.) The MS-scheme with
the D = 4 + 2¢ convention is used, and p is the corresponding renormalization scale. We
use the program TARCER [81], which implements the recurrence algorithm of [82] [83], to
express each diagram in terms of a small collection of master integrals, all of which are well-
known. Following [43], we employ a dimensionally regularized s that satisfies 72 = 1 and
{75, 7"} = 0. Note that the imaginary parts of Diagrams I-III were actually first computed

between [64] and GRW; for these three diagrams, we were able to successfully bench-mark

LAll Feynman diagrams are drawn using JaxoDraw [6]
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our results against that original work.

Diagram XII, a 5d mixed condensate contribution, generates some complications. Focus-
ing on the lower portion of the diagram, we see a heavy quark propagator carrying momentum
q multiplied by a divergent, one-loop sub-graph. Correspondingly, Diagram XII contributes

to the correlator a non-local divergence proportional to

1

e (3.11)

Following [97], this divergence is eliminated by renormalization of the composite opera-
tors (3.1) which induces mixing with either Qv,q or Qv,7vsq. Specifically, for those operators
with ['” = 4 (recall (3.2)), this mixing results in

, , Méas_
Ju—Ju+k - Qg (3.12)
whereas, for those with ['? = v*v5, we have
. ) Méas_
Ju = Ju+ k—— Q7750 (3.13)

where k is an as yet undetermined constant emerging from renormalization. For currents
that mix according to (3.12), the VEV under the integral on the right-hand side of (3.5]) gets

modified as follows:

(0175, (x)45(0)]0) = (0]7j,.(2)55(0)]0)

MC%OZS — -+ *Méas . —
= (0] Q () ua() 75 (0)]0) + b= (0] ()70}, Q(0)]0)  (3.14)

with an analogous expression for operators that mix according to (3.13). The first term on
the right-hand side of corresponds to the diagrams of Figure whereas the last two
terms give rise to new, renormalization-induced contributions to the OPE. Almost all of these
new contributions are sub-leading in g,, however, and so are ignored. The only exceptions
are those containing the 5d mixed condensate ; these give rise to the pair of diagrams

depicted in Figure |3.3] Both of these tree-level diagrams contain a heavy quark propagator
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Tt

(a) Diagram I (LO perturba- (b) Diagram II (dimension- (c¢) Diagram III (dimension-
tion theory) four) four)

AT,

(d) Diagram VII (dimension- (e) Diagram VIII (dimension- (f) Diagram IX (dimension-
five) five) five)

<3S QY

(h) Diagram XI (dimension- (i) Diagram XII (dimension-

(g) Diagram X (dimension-

five) five)

(j) Diagram XIII (dimension- (k) Diagram
five) (dimension-five)

Figure 3.2: The Feynman diagrams calculated for the correlator (3.5)). Single solid
lines correspond to light quark propagators whereas double solid lines correspond to
heavy quark propagators.
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with momentum ¢ and are multiplied by a factor of % in 1) precisely what is needed to
cancel the non-local divergence ({3.11))

Figure 3.3: Renormalization-induced Feynman diagrams. Square insertion represents
the mixing current.

Summing the diagrams from Figures and [3.3] and then determining the constant k

from (3.12)) or (3.13)) such that all non-local divergences are eliminated, we find for either
O or I from (3.6) that

M6 Qs er er . er
M) = e [ 192 log(1 — =)+ [ (2 Lin(2) + )]

M3mgos 1 o
i o s+ 4P 5]
Mo (g
%Tiq@ [f(qq)(z) log(1 — 2) + c(qq)z}
M3 {aG?)
% (199D (2)Tog(1 — 2) + l99)2]
Moas(ggoGq) T e G e 2 . Z
log(1 — |
T amenz |1 Flesll = 2) + ST (z)— log 2 )t (2)(1—2)
(*G®)
1027252 [f(GGG)<z) log(l — Z) + C(GGG)Z}
(3.15)
where
¢ o
T 3.16
Mg

and where Liy(2) is the dilogarithm function defined by

Lia(2) / Thiohg, (3.17)

t
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Table 3.2: The polynomials and constants of perturbation theory.

J S (2) 5" (z) ey
0 —3+30z+202% — 6027 + 1521 — 22° —602z2 -3
1 —1—14022 410023 + 452* —42°  602%(1 +22) -1

Table 3.3: The polynomials and constants of the light quark mass correction to per-
turbation theory.

JP©) F(2) ()

07 3(1—6z+ 1822 —102° —32%) —362° 3
0~ —3(1 — 62+ 1822 — 102° — 3z%)  36z° -3
0~ 3(1—6z+1822 —102° —32%)  —362° 3
07 —3(1 — 62+ 1822 — 102° — 3z%)  36z° -3
1+ 1— 62+ 1822 — 1023 — 324 —122% 1
1) —(1—62+1822 —102° — 32%) 1220 -1
1= 1— 62+ 1822 —102% — 324 —122% 1
1) (1 =62 +1822 —102° —32%) 1220 -1

The remaining quantities in are listed in Tables for the distinct JZ(©) com-
binations under consideration. Also, in Table [3.8] we give the values determined for the
renormalization parameter k. Finally, we note that, for the sake of brevity, we have omitted
all polynomials in z corresponding to dispersion-relation subtractions from (3.15)) and Tables

to As discussed in Section [3.2.3] these subtraction constants do not contribute to

the Laplace sum-rules.

Table 3.4: The polynomials and constants of the 3d quark condensate contribution.

(
0FH  —(1—-2)° -1
0= (1—-2)3 1
0= —(1-2)2 -1
0= (1-2)3 1
1f8 —lé(l - ng —1§
1—(+) 51(1 - Z) 3 §1
i (D



Table 3.5: The polynomials and constants of the 4d gluon condensate contribution.

JP©) FEO () AGG)
0T 3(1—2)%(1 + 22) 3
0~ 3(1—2)%(1 +22) 3
0= —3(1-2)%(1+22) -3
0 —3(1—2)%2(1+4+22) -3
1 —(1—2)%(1—42) -1
170 —(1—2)2(1—42) -1
1= (1= 2)%(1 — 42) 1
1+ (1—2)%(1 - 42) 1

Table 3.6: The polynomials and constants of the 5d mixed condensate contribution.

JP©) A9V (2) ) 15797 (2)

0 18(1 —2)(13 +22)  —36(17 — 2) 9(26 + 27z — 212?)
0~ —18(1—2)(13+22)  36(17 — 2) —9(26 + 272 — 212?)
0~ —18(1 —2)(27+22)  —=36(T+2)  —3(162 — 351z + 292?)
0T 18(1 — 2)(27 + 22) 36(7 + 2) 3(162 — 3512 + 2922)
1+ —6(1 — 2)(27 —382)  12(21 +192)  —(162 + 3692 + 20522)
1= 6(1—2)(27 —382) —12(21+192) 162 + 369z + 20522
1= 6(1—2)(13 —382)  12(51 — 192) 78 — 9992 + 56922
1) —6(1 — 2)(13 = 382) —12(51 —192)  —(78 — 999z + 56922)

Table 3.7: The polynomials and constants of the 6d gluon condensate contribution.

JPC)  fGGO) (4)  HGGE)

0 -3 -3
0~ -3 -3
0~ 3 3
0+(=) 3 3
1+ 1—2z 1
1) 1—2z 1
1= —(1-22) -1
e —(1-22) -1
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Table 3.8: The renormalization parameter k£ from (]3.12D and (]3.13[}.

JP(C) k
S 2t
0-C) 2
0~ _%
0+=) _%
1+(+) _g
1-=) _g
1-(+) _%
- di
1+ —-3

3.2.3 QCD Laplace Sum-Rules

Viewed as a function of Euclidean momentum Q? = —¢?, each of II¥) and 1™ from (i3.6))

satisfies a dispersion relation

8 o]
2 Q ImlI(#) 2
——dt+ -, >0 3.18
Q)= | i o Q (319)
where --- represents subtractions constants, collectively a third degree polynomial in Q2

and ty represents the appropriate physical threshold. The quantity II on the left-hand side
of (3.18)) is identified with the OPE result (3.15)) while ImlII on the right-hand side of (3.18)) is
the hadronic spectral function. To eliminate the (generally unknown) subtraction constants

and enhance the ground state contribution to the integral, the Borel transform

N A
B= Im & (dQ2> (3.19)
T=N/Q?

is applied to (3.18)) weighted by (—Q?)* for k > 0 to yield the k'"-order Laplace sum-rule
(LSR) [36, 37]

Ri(1) = / h tke_”%ImH(t) dt, Re() = —B{ (—Q*)*I(Q?)} . (3.20)

to

The Borel transform annihilates polynomials in @ which eliminates dispersion-relation sub-
traction constants and justifies our omission of polynomials (divergent or not) from (3.15)).

The exponential kernel on the right-hand side of (3.20]) suppresses contributions from excited
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resonances and the continuum relative to the ground state.

In a typical QCD sum-rules analysis, the hadronic spectral function is parametrized using
a small number of hadronic quantities, predictions for which are then extracted using a fitting

procedure. We employ the “single narrow resonance plus continuum” model [36, 37]

L1nTi(e) = £2m56(t — m2) + 0(t — so)~ImITOPE (1) (3.21)
T T

where mpy is the ground state resonance mass, fy is its coupling strength, 6 is a Heaviside

HOPE

step function, sqg is the continuum threshold and Im is the imaginary part of the QCD

expression for II given in (3.15). Substituting (3.21)) into (3.20)) gives

> 1
Ri(7) = f?{m?j%e_m%” +/ the ™ ZImITOPE (¢)dt, (3.22)

S0 ™

and, defining continuum-subtracted LSRs by

o 1
Ri(T, s0) = Ri(7) — / ke ZImITOPE (¢)dt, (3.23)
S0 m
we find, between ([3.22)) and (3.23)), the result
Ri(T, 50) = fAmS ke ™, (3.24)

Finally, using (3.24)), we obtain
Ri(T, 50)

— =my, 3.25
R(] (7_7 SO) H ( )
the central equation of our analysis methodology.

To develop an OPE expression for Ry (7, so), we exploit a relationship between the Borel

transform and the inverse Laplace transform £~ [36, [37]

SB{I@)} = £ (1@
| petiso ] (3.26)
oo J@)eaQ?

N 2mi c—100
where ¢ is chosen such that f(Q?) is analytic to the right of the integration contour in the
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Table 3.9: The constants a and b from ([3.27)).

JPE) g b
0t 18 9
0-=) 18 -9
0-4) 9 .15
0t 9 15
17 15 23
1= 15 23
1= 12 -1
17 12 11

complex Q?-plane. Applying definitions (3.20) and (3.23) to (3.15) and using (3.26)), it is
straightforward to show that

S0

2 2 1
Ro(T, s0) = Mé /MQ e_zMQT—ImHOPE(xMé) dx
1 T

—M3T 33 — 2
e Me" MPas(9goGq) M
Q Q
1 —= b 2
+ 108 [aog(# )+ } (3.27)

and

d
Ri(7, s0) = —ERo(ﬂ S0) (3.28)

where a, b are constants given in Table for each JP(©) combination under investigation.
Note that the definite integral in can be evaluated exactly; however, the result is rather
long and not particularly illuminating, and so is omitted for brevity.
Renormalization-group (RG) improvement [127] dictates that the coupling constant and
quark masses in be replaced by their (one-loop, MS) running counterparts. The

running coupling is given by

as(MX)
L+ 15 (33 — 2Np) o (M) log ()

a(p) = (3.29)

where N is the number of active quark flavors and My is a reference scale for experimental

values of a,. In addition, the running heavy quark mass can be expressed as

12

M) = M(TD) {js(%} (3.30)




where M is defined by M (M) = M, and the running light quark mass can be expressed as

m() = m(2 GeV) {%} s (3.31)

in anticipation of using the Ref. [2] light-quark mass values at 2 GeV. For charm systems,
we use the renormalization scale y = M = M, while for bottom systems ¢ = M = M, with

PDG values [2]
M, = (1.275 £ 0.025) GeV, M, = (4.18 £ 0.03) GeV. (3.32)

We then evaluate a; via (3.29)) within the relevant flavour thresholds using appropriate Ref. [2]

reference values at the 7 and Z masses
as(M;) =0.330 £0.014, a,(Mz) = 0.1185 % 0.0006. (3.33)
Lastly, we use the following values for the light quark masses [2]

(2 GeV) = % ma(2 GeV) + ma(2 GeV)] = (3.40 + 0.25) MoV | (3.34)

ms(2 GeV) = (93.5 & 2.5) MeV . (3.35)

The QCD predictions ([3.15]) have isospin symmetry because (uu) = (dd) = (nn) and the sub-
leading effect of nonstrange quark masses is negligible (i.e., we are effectively in the chiral

limit for nonstrange systems).

In addition to specifying expressions for the running coupling and quark masses, we
must also specify the numerical values of the condensates (3.7)—(3.10]). Because of the form
of (3.15)), for (gq) we consider the product

M(qq) = <%> (mgq) (3.36)

as both & and (mgq) are RG-invariant quantities. From PCAC [57] (using Ref. [47] conven-
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tions), we have

1
(mynn) = —§f72m72r (3.37)
_ 1
(moss) = — [ (3.38)
where PDG values are used for the meson masses [2] and the decay constants are [12§]

fr=922435MeV , fx =110.044.2 MeV. (3.39)

The quark mass ratios of strange to light and charm to strange quarks are given in [2];
however, in order to consider the RG-invariant product (3.36|) for all open-flavor combinations
of interest, we must combine results from [2] with bottom-flavoured ratios obtained on the

lattice [129]. The resulting ratios and their errors (treated in quadrature) are

M, M, s M.

- ( ) <m ) = 322.6 & 13.6, = 11.73 £ 0.25, (3.40)
mo, mg my, ms
M, M, M. M,
o ( ”) < ) — 1460.7 + 64.0, b = 52.55 + 1.30. (3.41)
my, Mc my, ms

For the purely gluonic condensates (3.8)) and (3.10)), we use values from [130} 131, 132]:

(aG?) = (0.075 + 0.020) GeV* (3.42)
(°G®) = ((8:2 £ 1.0) GeV?) (aG?). (3.43)

The 5d mixed condensate can be related to the 3d quark condensate through [109, 133} 132,

134]
W_’—Gq> = M? = (0.840.1) GeV. (3.44)
(@q)
Because we are using to specify the chiral-violating condensates, in the analysis below,
the (Gq) effects are subsumed within dimension-four contributions and (ggoGq) effects within
dimension-six contributions. As noted above, we choose the central value of the renormal-

ization scale p to be M, for the charm systems and M, for the bottom systems.

26



3.2.4 Analysis Methodology and Results

In order to extract stable mass predictions from the QCD sum-rule, we require a suitable
range of values for our Borel scale (7) within which our analysis can be considered reliable.
Within this range, we perform a fitting (i.e., minimization) procedure to obtain an opti-
mized value of the continuum onset (sg) associated with our resulting mass prediction. We
determine the bounds of our Borel scale by examining two conditions: the convergence of
the OPE, and the pole contribution to the overall mass prediction, mirroring our previous
work done in charmonium and bottomonium systems [77]. To enforce OPE convergence
and obtain an upper-bound on our Borel window (7y,4.), We require that contributions to
the dimension-four condensate be less than one-third that of the perturbative contribution,
and the dimension-six gluon condensate contribute less than one-third of the dimension-four

condensate contributions. (See Figure for an example.)

To determine a lower bound for our Borel window, we examine the pole contribution

defined as .
f]\/f% e " ImlI(¢)dt

PC = .
(s0,7) [ et ImII(¢)dt

Mg

(3.45)

The pole contribution constraint can also be understood as a suppression of excited state
contributions. To extract a lower bound for our Borel window (7,,;,), we must first provide
a reasonable estimate of the continuum sy as a seed value for the minimization. To do this,

we look for stability in the hadronic mass prediction as a function of sq with variations in 7
(Figure 3.5)).
We optimize the initial sq and my predictions by minimizing
2

o3 (R ) b0

=1

where we sum over an equally-spaced discretized 7 range inside the Borel window.

Minimizing ([3.46]) results in an optimized values for the continuum sy3. Once s is found,
we may use (3.45)) to determine a lower bound on 7 by requiring a pole contribution of at least
10%. Note that this procedure involving ([3.45)) should be iterated to ensure that the values
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of sg and 7,,;, are self-consistent. Once the hadronic mass prediction has been extracted, we
may return to (3.24) to solve for the hybrid coupling from the 7 critical point of fy using

the optimized continuum value and hadronic mass prediction.

We present results for the Borel window, continuum, and predicted hybrid mass and
couplings for open-charm and open-bottom hybrids in Tables through [3.13] and in
Figs. and [3.7 Channels that do not stabilize have been omitted from the tables. The
errors presented encapsulate contributions added in quadrature from the heavy quark masses,
quark mass ratios, ay reference values, and the condensate values. We also include estimations
of the error due to truncation of the OPE series by comparing mass predictions with and
without 6d contributions and due to variations in the 7 window of 10%. Uncertainties
associated with the renormalization scale follow the methodology established in Ref. [135]
which doubled the resulting uncertainty associated with variations in the renormalization

scale of = £0.1 GeV (charm systems) and du = +0.5 GeV (bottom systems).

Table 3.10: QCD sum-rules analysis results for ground state charm-nonstrange hy-

brids.
JPC i (GeV™2)  Toaye (GeV™2) 59650 (GeV?)  mpy +0my (GeV)  fZ x 106

0T 0.08 0.25 26.1 + 6.0 4.55 4+ 0.43 7.47
0-) 0.07 0.17 31.84+4.2 5.07 +0.31 7.28
1= 0.09 0.29 247+ 2.5 4.40 +0.19 12.4
1) 0.15 0.35 147+ 1.6 3.39 +0.18 9.87

Table 3.11: QCD sum-rules analysis results for ground state charm-strange hybrids.
JPC i (GeV™2)  Toaye (GeV™2) 5o £ 650 (GeV?)  mpy +0my (GeV)  fZ x 106

0+ 0.08 0.24 25.2+5.2 4.49 + 0.40 7.36
0-() 0.07 0.17 30.4+ 5.2 4.98 +0.39 2.03
1-&) 0.10 0.30 23.1+24 428 +0.19 11.0
176 0.18 0.34 125+1.1 3.15+0.14 8.45

As a validation of our analysis, we also consider ratios of higher-weight sum-rules which

serve as a generalization of ((3.25)):

Rk+1(7‘, SU) 2

BeaaT o) _ (3.47)

In Table [3.14] Table [3.15 and Figure [3.8] we compare the nonstrange sum-rule ratios for
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Table 3.12: QCD sum-rules analysis results for ground state bottom-nonstrange hy-

brids.

JPC i (GeV™2) Toax (GeV™2) 5o+ 359 (GeV?)  my £ 0my (GeV) [ x 10°
0+t 0.03 0.12 92.5+15.6 8.57 +0.51 1.28
0~ 0.05 0.09 59.1 4+ 3.9 7.01 +0.21 0.516
1-=) 0.03 0.10 94.7+ 7.5 8.74 +0.25 1.76
1+ 0.03 0.14 86.7 + 11.1 80.30 + 0.41 1.66

Table 3.13: QCD sum-rules analysis results for ground state bottom-strange hybrids.

JPC i (GeV™2)  Thax (GeV™2) 5o £ 650 (GeV?) mpy + dmpy (GeV) [ x 10°
0T 0.04 0.11 79.9 + 13.0 8.14 + 0.49 0.817
0~ 0.06 0.10 55.1 4+ 4.0 6.79 + 0.22 0.434
1-=) 0.03 0.10 87.6 £9.9 8.46 + 0.32 1.24
176 0.04 0.15 81.7+ 15.7 8.02 + 0.59 1.39

k = 0,1,2. Although the higher-weight ratios have greater sensitivity to the high-energy
region of the spectral function (excited states and QCD continuum), the hadronic mass scales
emerging from the various weights are remarkably consistent, indicating that the sum-rule

window has been well-chosen to emphasize the lightest hybrid state via the pole contribution

criterion ({3.45)).

3.2.5 Mixing Effects

Asnoted in Section the open-flavor structure of the hybrid systems in question precludes
the possibility of explicitly exotic JZ¢ states. As such, we might expect a degree of mixing
with conventional mesonic states. In our previous work on heavy quarkonium hybrids [77],

this possibility of mixing was examined through the addition of a conventional meson to the

Table 3.14: Charm-Nonstrange Masses from Higher-Weight Sum-Rules (GeV)

gP©) JRL [Rs  [Rs
Ry Ry Ro>
) 454 454 4.59
0-) 507 5.07 5.12
)
)

4.40 439 445
3.39 339 345
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Table 3.15: Bottom-Nonstrange Masses from Higher-Weight Sum-Rules (GeV)

JgP@©)  JBRL [Ry  [Rs
Ro R Ro
0tH) 857 852 8.60
0t 701 7.01 7.06
)
)

8.7 871 880
80.30 8.20 8.29

single narrow resonance model ([3.21]) such that (3.24]) becomes

R, s0) = fmii e i 4 2, mig e e (3.48)

where the parameters f.,n, and meq,, are the coupling constant and mass of the ground state
conventional meson sharing the same J” values. By including these terms, we can form a

sum-rule coupled to the conventional state,

2
Rl(Ta 80) - gonvmignve MeonoT (349)

2
RO(T’ 50) - c%mvmgonve Meonv™

my =

which can be used to investigate the dependence of the hybrid mass on the coupling to the
conventional state by using known values of conventional meson masses to specify m.,n,. We
see in the resulting Figure that increasing the coupling to the conventional state tends
to increase the hybrid mass prediction, indicating our results presented here may correspond
to a lower bound on the hybrid mass if mixing with conventional states is substantial. From
Figure [3.9] we estimate an upper bound on the increased hybrid mass by implementing
the condition that the coupling of the hybrid current to the conventional state f.,,, be no
more than half the coupling of the hybrid current to the hybrid state fy (Tables to
. In the simplest mixing scenario this limit on f..,, corresponds to a mixing angle of
approximately half that of a maximal mixing between conventional and hybrid mesons. The
estimated effect of mixing on the hybrid mass prediction is summarized in Table [3.16} and

shows interesting dependence on J¥.
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Table 3.16: Effect on hybrid mass prediction from mixing with conventional meson
states. Masses from Tables to are summarized with dm,,;, expressing in-

% = % due to coupling to the lowest-lying
conventional state with appropriate quantum numbers according to PDG [2]. Entries

have been omitted where no conventional meson state has been tabulated.

creased mass range with mixing up to

Flavour JP mpg (GeV) PDG State Meonn(GeV)  +0mpis (GeV)

Charm-nonstrange 0% 4.54 D;; (2400)° 2.318 0.02
0~ 5.07 D° 1.865 0.00

1- 4.40 D* (2007)° 2.007 0.01

1+ 3.39 D, (2420)° 2.420 0.05

Charm-strange ~ 0F 4.49 D*, (2317)F 2.318 0.02
0~ 4.98 D* 1.969 0.00

1~ 4.28 D** 2.112 0.02

1+ 3.15 Dy (2460)* 2.460 0.06

Bottom-nonstrange 07 8.57 - - -
0~ 7.01 By 5.279 0.19

1~ 8.74 B* 5.324 0.32

1t 80.30 B (5721)° 5.726 0.74

Bottom-strange ~ 0* 8.14 - - -
0~ 6.79 B 5.367 0.44

1~ 8.46 B 5.416 0.35

1+ 8.02 By (5830)° 5.828 0.72
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Table 3.17: Comparison of central values against GRW mass predictions for ¢qG
hybrids (¢ = {u, d}).

JE marw(GeV)  my (GeV)

0t 4.0 4.54
0~ 4.5 2.07
1 3.6 4.40
1t 3.4 3.39

3.2.6 Discussion

For each open-flavour heavy-light hybrid combination under consideration, we performed a
LSRs analysis of all eight JZ(©) combinations defined according to Table . As can be
inferred from Tables [3.10}H3.13] as well as Figure [3.7, half of the analyses stabilized; the
other half did not. In particular, the J7(©) € {0+(+) 1=(5) 1+(2)} analyses were stable while
the JP(© ¢ {0+(2) 1+(H) 1=} were unstable. For charm-light hybrids, the 0~(7) sector
stabilized whereas the 0~() sector did not. For bottom-light hybrids, this situation was
reversed: the 0~(F) sector stabilized while the 0~(~) sector did not. This should be contrasted
with GRW for which the stable channels were J©(©) ¢ {0+ 0= 1+ 1= for all
heavy-light flavour hybrids. Comparing to GRW by truncating our additional condensate
terms, we find that this change in stability originates from the addition of the 5d and 6d
condensate terms. Note that, for all heavy-light quark combinations considered, we did
arrive at a unique mass prediction for each J¥. GRW found something similar, but, as can
be seen from Tables and [3.18], the central value of our mass predictions differ significantly
from that of GRW in all channels except the 17 charm-nonstrange. However, we note that
GRW observed a change in the C' value for currents that stabilized as the heavy quark mass
increased, a feature shared in our analysis where the charm 07~ and bottom 0~" channels

stabilized.

In all stable channels, the most significant non-perturbative contribution to the LSRs is
the 4d gluon condensate term of the OPE. At the corresponding optimized value of sy and
over the Borel window indicated in Tables [3.10H3.13] the 4d gluon condensate term accounts
for roughly 10-30% of the area underneath the Ry(7, s¢) curve. The second most significant

contribution comes from the 3d quark condensate term which accounts for roughly 10% of
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Table 3.18: Comparison of central values against GRW mass predictions for bgG
hybrids (¢ = {u,d}).

JP mGRW(GeV) my (GGV)

0t 6.8 8.57
0~ 7.7 7.01
1~ 6.7 8.74
1t 6.5 8.26

the area while the 5d mixed and 6d gluon condensate contributions each account for < 5%.
Light quark mass corrections to massless perturbation theory are numerically insignificant
leading to isospin invariance of our results.

The dominant contributions to the error in both the charm and bottom systems come from
the gluon condensates, and the truncation of the OPE. All channels are relatively insensitive
to uncertainties in the quark condensate, the heavy quark masses, the quark mass ratios, the
reference values of g, and variations in the 7 range and renormalization scales.

Within computational uncertainty, we cannot preclude degeneracy between the mass spec-
tra of the heavy-nonstrange hybrid systems and their heavy-strange counterparts. (Compare
Tables and as well as Tables and [3.13] Also, see Figure[3.7]) This can be at-
tributed to the small size of the light quark mass correction to massless perturbation theory
and to the presence of a heavy quark mass factor as opposed to a light quark mass factor in
the 3d quark and 5d mixed condensate contributions to the OPE.

Apart from the 0~ states, both the charm and bottom cases share a mass hierarchy
pattern for the 17, 1~ and 07 states where the 17 state is lighter than essentially degenerate
1~ and 0" states. The 0~ states have different roles in the mass hierarchies in the charm and
bottom sector, which we hypothesize as originating from the differing C' quantum numbers
associated with their currents. Although open-flavour systems do not have a well-defined C
quantum number, Ref. [31] attributes physical meaning to C' in the internal structures of
hybrids and finds that the 0~(-) structure is heavier than the 0~(*), identical to the pattern
we observe in Fig. [3.7}

In GRW, for each heavy-light hybrid channel whose LSR analysis was stable, the authors
pointed out that the difference between the square of the predicted resonance mass and

the continuum threshold parameter was small, typically a couple of hundred MeV which
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did not seem to allow for much in the way of resonance width. In our updated analysis,
Tables shows that even a relatively wide resonance would be well-separated from
the continuum.

We can compare our negative parity charm hybrid results to those computed on the lattice
in [I19]. In general, our predictions are heavier and show a larger mass splitting between
states.

In summary, we have performed a QCD LSR analysis of spin-0,1, heavy-light open flavour
hybrids. In the OPE, we included condensates up to dimension-six as well as leading-order
light quark mass corrections to massless perturbation theory. For all flavour combinations,
we extracted a single mass prediction for each J¥ € {0%, 1¥} (see Tables [3.1013.13). Our
results were isospin-invariant and within theoretical uncertainties, we could not preclude
degeneracy under the exchange of light nonstrange and strange quarks. We find similar
mass hierarchy patterns in the charm and bottom sectors for the 1*¥ and 0T states, and that
Ref. [31] provides a natural interpretation for our 0~ mass predictions. Finally, given that
open-flavour hybrids cannot take on exotic J©'¢, mixing with conventional mesons could be
important; our analysis suggests that such mixing would tend to increase the hybrid mass

predictions, and we have estimated an upper bound on this effect.
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channels.
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CHAPTER 4

LIGHT HYBRID MESONS

4.1 Light Hybrid Mesons

A considerable mountain of literature has been dedicated to the search for hybrid mesons,
particularly those containing light valence quarks (i.e., up, down, or strange) [30, (64, [65]
95]. In general, matching an experimentally observed state to a phenomenological model
requires the consideration of hadron mass, decay paths, resonance widths, and coupling
strengths. However, the novel structure of hybrid mesons and multiquark states provides
an additional possibility—exotic quantum numbers. These signals are unambiguous signs of
hadronic structures not described within the conventional quark model. This is advantageous,
particularly in the range of ~ 1 — 2GeV where (as we will discuss in Chapter many

resonances remain unidentified.

4.1.1 Exotic Light J”¢ = 0"~ Hybrid Meson

As reviewed in Section , exotic JFC are phenomenologically exciting signals, pointing
towards physics not described by the conventional quark model. Not only is the possibility
of contamination through mixing greatly reduced, but exotic J©“ demands a novel hadron
structure; only hybrid mesons and evenly-populated multiquarks may carry these distinct
quantum numbers. A large body of predictions from QCD sum rules, lattice QCD, and
other methodologies [94] supporting a light exotic vector hybrid meson with JF¢ = 1=
existing between 1.5 — 1.8 GeV [94], and a broader multiplet structure is predicted from
lattice QCD [30]. The 1~ exotic hybrid is expected to be the lightest close-flavoured hybrid

meson, but, while the theoretical literature is full of predictions around the properties of
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the 171, calculations on other exotic light hybrids has been sparse. In particular, the 07—
light hybrid meson has been previously studied in the framework of QCD sum rules, but
a stable analysis has only been found for higher-dimension currents using an estimate for
the low-energy theorem [136, 137]. In an early analysis of the 07—, the authors noted that
distributed resonance strength could help stabilize the analysis [I36]; in GSRs, the weighting
of the spectral function is distinct from the LSR approach, opening the possibility of a stable
analysis. We explored a number of different distributed models, and found that a double-
narrow resonance fit the QCDSR predictions best, predicting the masses of two hadronic

states coupling to the hybrid current [51].

4.1.2 The Y (2175) and exotic candidates

Without the constraint of exotic quantum numbers, identification of hadronic states be-
yond the conventional quark model becomes more complicated. In the case of conventional
quantum numbers, it becomes possible for exotic states to mix with conventional states.
Additionally, the mass spectrum must contend with the addition of radially excited states.
Many observed resonances remain unidentified, waiting for more experimental data or more
sophisticated analyses to untangle their nature. This is true throughout the energy spectrum;
at low energies below ~ 2 GeV, an overpopulation of scalar mesons and long-predicted (but
yet unidentified) gluonium states crowd the spectrum, and theoretical methods are challenged
by the importance of non-perturbative dynamics at these scales. At higher energies above
2 GeV, the XYZ resonances and their analogues begin to appear [16, [17]. While the conven-
tional quark model is well-understood at these higher energies, and excited states are better
identified than in the light domain, there still exists a multitude of states not explained by the
conventional quark model yet to be identified. Some of these states have been confirmed as
exotic four-quark states [20, [63], opening the door for exotic explanations of other members of
these mysterious XYZ resonances. Though below the charmonium threshold, the Y (2175) is
among these unidentified states [138]. With production modes similar to the Y (4260) [T, 138],
it has been suggested to be similar in structure [139], which is favoured to be a charmonium
hybrid candidate. The J”¢ = 1=~ resonance carries conventional quantum numbers, and has

been proposed as a hybrid meson, four-quark, or radially-excited strangeonium-like state, to
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name a few [29] 06, 106, 124, 140l 141, 142} 143, 144, [145| 146l 147, 148 149, 150, 151} 152].
Using a similar GSR methodology as for the 07~ system, we investigated how the phenomeno-
logical inputs from experiment fit with the predictions from QCDSRs, and (assuming mixing
with a hybrid state) to what degree the Y (2175) coupled to a hybrid current [52]. We found
that the Y (2175) did not display a particularly strong hybrid character, and put bounds on
the coupling to the hybrid current. My contributions to these works include the analysis of
correlator and extraction of sum rule predictions, application of different models within GSR
analysis and determination of best fits, the Holder inequality derivation within GSRs, per-
forming the error analyses, designing the figures, and writing & editing of both manuscripts.

The following works may be found published in:

Mass calculations of light quarkonium, exotic J*¢ = 07 hybrid
mesons from Gaussian sum rules,

J. Ho, R. Berg, T.G. Steele, W. Chen, and D. Harnett Phys. Rev. D
98, 096020 doi:10.1103/PhysRevD.98.096020

and

Is the Y (2175) a Strangeonium Hybrid Meson?,
J. Ho, R. Berg, T.G. Steele, W. Chen, and D. Harnett Phys. Rev. D
100, 034012 doi:10.1103 /PhysRevD.100.034012

4.2 Manuscript: Mass Calculations of Light
Quarkonium, Exotic J7¢ = 07~ Hybrid Mesons

from Gaussian Sum-Rules

Abstract: We extend previous calculations of leading-order correlation functions of
spin-0 and spin-1 light quarkonium hybrids to include QCD condensates of dimensions
five and six, with a view to improving the stability of QCD sum-rules analyses in
previously unstable channels. Based on these calculations, prior analyses in the liter-
ature, and its experimental importance, we identify the exotic J©¢ = 0t~ channel as
the most promising for detailed study. Using Gaussian sum rules constrained by the
Holder inequality, we calculate masses of light (nonstrange and strange) quarkonium
hybrid mesons with J¢ = 07~. A model-independent analysis of the hadronic spectral
function indicates that there is distributed resonance strength in this channel. Hence,
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we study two hadronic models with distributed resonance strength: a single wide reso-
nance model and a double narrow resonance model. The single wide resonance model
is disfavored as it leads to an anomalously large resonance width (greater than 1 GeV).
The double narrow resonance model yields excellent agreement between QCD and phe-
nomenology: in both nonstrange and strange cases, we find hybrid masses of 2.60 GeV
and 3.57 GeV.

4.2.1 Introduction

It has long been conjectured that hadrons could exist beyond the conventional quark model
of quark-antiquark (¢¢) mesons and three-quark (gqq, GGq) baryons. In particular, colour-
singlet hybrid mesons consisting of a quark, antiquark, and explicit gluonic degree of free-
dom have a long history [35]. While evidence of hadronic structures outside of the con-
ventional model has been accumulating with experimental observations and confirmations of
tetraquarks [63] 20, 19] and pentaquarks [21], an experimental confirmation of hybrid mesons
has eluded observation. Designed to search for light hybrid mesons (particularly those with
exotic JP¢ that do not exist in the conventional quark model), the GlueX experiment at
Jefferson Lab [25] is currently underway, and is anticipated to give crucial insight into the
existence and structure of light hybrids.

The characterization of light hybrid states within the framework of QCD is important.
Identifying the spectrum of the lightest hybrid supermultiplet (JX¢ € {17, (0, 1, 2)~*},
where the ¢g are in an S-wave configuration) and the neighbouring larger supermultiplet
(JPC € {0, 17—, 2t 3%, (0,1,2)""}, where the ¢ are in a P-wave configuration) is
of particular interest from an experimental perspective, and is aligned with the mandate of
the GlueX experiment [25]. There have been numerous studies done on light quark hybrids
covering a range of quantum numbers using QCD Laplace sum-rules (LSRs) [73], 91, [95] 107,
108, (109, 12, 136, 137, (153, (154, 155, 156, 157, 158, 159, [160], lattice QCD [29, B0], the
Schwinger-Dyson formalism [92, [161) 162], the flux tube model [105, 106], and the MIT bag
model [163] 104]. In particular, Reference [136] contains a comprehensive LSRs analysis of
light hybrids for all JF¢ with J € {0, 1} that takes into account condensates up to dimension
four (i.e., 4d). Analyses of the 07", 077, 177 and 17~ sectors were stable; analyses of the

07—, 0%, 177, and 1~ sectors were unstable. Expected to be the lightest hybrid with exotic
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quantum numbers, the 17" has been the subject of much additional study. Reference [95]
contains a (error-free) 1-1 hybrid correlator that includes condensates up to 6d. By analyzing
lower-weight LSRs than those used in [130], the authors arrived at a stable mass prediction.
Subsequently, a variety of improvements (e.g., radiative corrections and higher dimension
condensates) were included in the 17" hybrid correlator, and the LSRs analyses were updated
accordingly [73], 011 112} 157, 158, 159]. In the LSRs analysis of [137], a stable mass prediction
for the 0 was found using a current different from that of [I36]. The only stable LSRs
analysis of the 07~ channel [I55] used higher-dimension currents and required estimation of
the low-energy theorem term from other channels, introducing multiple sources of theoretical

uncertainty. Thus, further QCD sum-rules studies of the 07~ channel are necessary.

In [93, 100, 116} [164], it was found that the inclusion of higher-dimension condensates
stabilized previously unstable LSRs analyses from [I36] of hybrids containing heavy quarks.
Therefore, in Section we provide a systematic computation of leading-order (LO) 5d
and 6d condensate contributions for all light quarkonium hybrids of spin-zero and spin-
one. Unfortunately, as discussed in Section [4.2.3] these higher-dimension condensates do not
stabilize the unstable light hybrid LSRs analyses as they do for heavy hybrids. However,
in [136], it was proposed that the instability in the LSRs might be resolved by accounting
for finite width effects, an issue also raised in [I55]. As we show in Section a model-
independent analysis of the 0"~ hadronic spectral function indicates that there is distributed
(as opposed to concentrated) resonance strength in this channel. To explore width effects and
the possibility of excited states, we depart from previous LSRs methods. Gaussian sum-rules
(GSRs) [75] are sensitive probes of width effects and both ground and excited states, and
have been shown to be a powerful and versatile analysis methodology [9, [165] [166], [167]. In
particular, the QCD sum-rules paradigm of the p meson was used to benchmark and validate
these GSR methodologies [9]. Thus, in this article, we use GSRs to investigate the possibility
of distributed resonance strength in the exotic 07~ light hybrid channel.

In Section we calculate LO spin-0 and spin-1 correlation functions of light quarko-
nium hybrid currents, including condensates up to 6d. Section [4.2.3|includes a review of the

GSRs formalism, and a theoretical constraint on the GSRs based on the Holder inequality is

developed in Section 4.2.4, The GSRs analysis methodology and results for the 07~ channel
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are presented in Section [4.2.5( with concluding remarks in Section |4.2.6]

4.2.2 Hybrid Currents and Correlation Functions

To investigate light quarkonium hybrids, we use currents of the form
Ju = 9sq1"t*G 4, (4.1)

where ¢ is a light (nonstrange or strange) quark field and ¢* are generators of the fundamental

representation of SU(3). Each combination of Gj, € {Ga G“ = e””p“Ga } and Dirac

s

structure IV together corresponds to particular values of JE¢ [95, [136]; these combinations

are summarized in Table .11

v gzy JPC

Y CEZV 0++7 1-t
o[ Ge, | 07t 1t
Vs | Go, | 07, 1t
Vs | Gy, || 077, 177

Table 4.1: The J’¢ combinations probed through different choices of I'V and ggy

in (4.1).

For each current (4.1), we calculate and decompose a diagonal correlation function as

follows:
M (q) = i / dhz ¢ (0]7,(2)71(0)[0) (4.2)
quqv qu.9v
= BnR) ¢ (B g, )0 (43)

where I1(O) probes spin-0 states and II™V) probes spin-1 states.
The calculation of is performed in the framework of the operator product expansion
(OPE),
Q7 {0(x)0(0)}[€2) = ZC )(Q]: 0 (0) - |£2). (4.4)

In (4.4), the vacuum expectation value (VEV) of a time-ordered, non-local product of com-
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posite operators is expanded in a series, each term of which is a product of a perturbative
Wilson coefficient C,(z) and a nonzero VEV of a local composite operator O,(0), i.e., a
condensate. The condensates parameterize the nonperturbative nature of the QCD vacuum,

and we include in our correlator calculations the following set:

(q9) = (@7q") (4.5)

(aG?) = (GG (4.6)
(9G0Gq) = (gsG5 ol Nes G5 (4.7)
(§°G® = (g2 f™Ge, G G (4.8)
(@qaq) = (@7 q}), (4.9)

respectively the 3d quark condensate, the 4d gluon condensate, the 5d mixed condensate,
the 6d gluon condensate, and the 6d quark condensate. In 7, superscripts on quark
fields are colour indices whereas subscripts are Dirac indices and o = %[7“, v’]. Regarding
Wilson coefficients, we consider LO calculations in ay, and we compute O (m?) light quark
mass corrections to perturbation theory as a way to distinguish between the nonstrange-
and strange-flavored cases, similar to [49]. Also, the values of , , and depend
on whether the light quarks are nonstrange or strange. The diagrams representative of the

correlation function calculation are displayed in Figure |4.1

We use dimensional regularization in D = 4 + 2¢ dimensions at MS renormalization scale
p. The program TARCER [I68] is utilized to reduce the resulting integrals to a selection of

well-known master integrals using the Tarasov recurrence relations [82], 83].

All of the correlators defined between (4.1)) and Table can be written in general as

7



o >

(a) Diagram I (LO perturba- (b) Diagram II (dimension- (¢) Diagram III (dimension-
tion theory) three) four)

:@%@@

(d) Diagram IV (dimension- (e) Diagram V (dimension- (f) Diagram VI (dimension-

SlX SlX SlX

(g) Diagram VII (dimension- (h) Diagram VIII (i) Diagram IX (dimension-
five) (dimension-five) five)

oI55

(j) Diagram X (dimension- (k) Diagram XI (dimension- (1) Diagram XII (dimension-

five) five) five)
(m) Diagram XIIT (n) Diagram
(dimension-five) (dimension-five)

Figure 4.1: The Feynman diagrams calculated for the correlator (4.2). Feynman
diagrams were created using JaxoDraw [6].
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2¢

I (q2) =0, (A1q6 + A2m2q4) {log (_M_ZQ) + 1 }
+ (A1g%aG?) + ay(Asg®mlaq) + A5 (@) + Aslg*G?) + Agm{gioGa)) )

9
X {log <_q2) + 1} (4.10)
1 €
+ a, (Big° + Bym*q* + Bsg*m(qq) + Big* (aG?)

+ Bs(qq)* + Bs(g°G®) + Bym(gqoGq))

where we have suppressed the superscript (J) on the left-hand side. The coefficients A;
and B; contained in (4.10]) are given in Tables and respectively. We note that, as
Diagram IV has no loops, Aj is trivially zero. In all channels, perturbation theory, the 3d
quark condensate term, and the 4d gluon condensate term were benchmarked against [136].
The 0-~ and 1~ correlators were benchmarked against [95].
Table 4.2: Coefficients of the logarithmic and divergent terms of the perturbative and
condensate contributions to the correlation function for the JP¢ summarized in

Table .

0++ 17+ 0—— 1+f 07+ 1++ 0+f 1
A ! ! 1 1 1 1 ! 1
1 48073 24073 48073 24073 48073 24073 48073 24073
1 1 5 1 1 5
As 0 1273 1673 4873 0 1273 1673 1873
A 1 _2 _1 _4 1 _2 _1 _4
3 3 97 3 97 3T 97 3T 91
A 1 __1 1 __1 __1 1 _ 1 1
4 247 367 241 367 247 367 247 367
As 0 0 0 0 0 0 0 0
Ag 0 0 0 0 0 0 0 0
1 11 _ 19 _1 _ 11 19
Az o7 0 2n 2n o7 0 2n 2n

4.2.3 QCD Sum Rules

Each function I1V)(¢?) defined in (4.3)) satisfies a dispersion relation at Euclidean momentum
Q2 - _q2 > 07

11 (Q?) :QS/OO L) dt+ -, (4.11)

1 tH(t+Q?)
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Table 4.3: Coefficients of the finite terms of the perturbative and condensate contri-
butions to the correlation function (4.10) for the J¥ summarized in Table .

O++ 17+ 0~ 1+f 07+ 1++ 0+f 1——
B 97 39 97 39 19 7 19 77
1 1920073 320073 1920073 320073 640073 960073 640073 960073
B 1 7 55 109 1 13 31 23
2 3273 3273 38473 38473 3273 9673 38473 12873
B _1 7 1 17 1 __5 _ 1 __7
3 21 27T 61 27T 61 27 21 27T
B 13 11 13 11 5 7 5 7
4 1447w 2167 1447 2167 1447 2167 1447 2167
_4n 4 4 4 8 8
Bs 3 9 3 9 0 9 0 9
B 1 1 1 1 5 5 5 5
6 19272 19272 19272 19272 19272 19272 19272 19272
B 461 | 83 731 1019 217 265 41 71
7 17287 17287 17287 17287 17287 17287 17287 1728w

where we have again suppressed the superscript (J). In , to is a hadron produc-
tion threshold and --- are subtraction constants, together a third degree polynomial in Q2.
Equation connects theoretical predictions of QCD; i.e., I1(Q?) on the left-hand side, to
properties of hadrons contained in ImlI(¢), the hadronic spectral function, on the right-hand

side.

Regarding (4.11)), to eliminate subtraction constants and to accentuate the low-energy
region of the integral on the right-hand side, some transformation is typically applied. A

popular choice is to formulate unsubtracted LSRs of (usually nonnegative) integer weight k,

Ri(Mp) = Mg Afégﬁ% ( ;(C]?\;)N <dg2)N{<—Q2)kH(Q2)}7 (4.12)

at Borel parameter Mp [36], [37, 47, [169]. Details on how to evaluate (4.12)) for a correlator
such as (4.10)), denoted II2CP from here on to emphasize that it is a quantity calculated using
QCD, can be found in the literature (e.g., [36]). The result is

> > 1
Ri(Mp) = / tke_t/MB}ImHQCD(t)dt (4.13)
0

for k € {0, 1, 2,...} and where
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%ImHQCD(t) = —Ajat® — Ayaam?®t?
— Asat(migq) — Ast{aG?) (4.14)
— Arasm{gqoGq).
Recall, the A; are given in Table [4.2]

In (4.11), we impose on ImlI(¢) a general resonances-plus-continuum model with onset of
the QCD continuum at threshold s,

ImII(t) = () + 6 (t — s0) ImIIP(2), (4.15)

where p'd(¢) represents the resonance content of the hadronic spectral function and () is
the Heaviside step function. To isolate the resonance contributions to the LSRs, we consider

(continuum-) subtracted LSRs

o 1
Ri(Mg, s0) = Re(Mp) — / the /M ZImIT9CP (1) dt. (4.16)
m

S0

Then, Equations (4.11))—(4.13)), (4.15), and (4.16]) together imply that

o 1
Ri(Mg, so) = / tke_t/M%—phad(t) dt (4.17)
T

to

where

SO 1
Ri(Mp, so) = / tke’t/Mf?;ImHQCD(t) dt (4.18)
0

and (again) ImII?CP(#) is given in (4.14]).

There are a number of interesting observations we can make concerning the LSRs of light
quarkonium hybrids. In particular, the 6d gluon condensate terms do not contain a logarithm,
i.e., Ag = 0 for all J¥¢ values considered (see Table , and hence do not contribute to the
imaginary part (4.14). This result is surprising: both Diagrams V and VI (see Figure [4.1)
have logarithmic contributions, but they cancel when the two diagrams are added together.

Thus, the LO 6d gluon condensate terms cannot stabilize light quarkonium hybrid LSRs
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analyses as they have done in some heavy quarkonium hybrid analyses [93| 100} 116}, [164].

Another observation relates to the mixed condensate contributions. Using (4.12)), if we
try to formulate k£ = —1 (i.e., lower-weight) unsubtracted LSRs, we get a piece that formally
looks like the right-hand side of (4.13]) at £ = —1 and another piece:

- B0 - Bl’) — (4 Br ) mlggoC). (4.19)

If A; # 0, then neither piece is well-defined: the integral from diverges and
contains a e~ field theory divergence. But for J7¢ € {17+, 1%}, we find that A; = 0 which
allows for the construction of lower-weight LSRs in these two channels. Unlike the £ = 0
LSRs, the K = —1 LSRs do receive contributions from the 6d quark and gluon condensates as
both B; and Bg are nonzero. An analysis of these £ = —1 LSRs does require some knowledge

of the subtraction constants in (4.11]).

As noted in Section in the multi-channel LSRs analysis of [136], the 07—, 0,
17—, and 1~ sectors were unstable. The 1-1 has since been stabilized using lower-weight
LSRs [95], and the 0" has been stabilized [137] using a different current than that used
in [I36]. That leaves the non-exotic 17~ and the exotic 07~ channels. Given the GlueX
emphasis on exotics and the possible complicated features of mixing between hybrids and
conventional quark mesons in the 17~ channel, we focus our attention on 07~ light quarko-
nium hybrids. Attempts to stabilize the 07~ channel have involved higher-dimension cur-
rents combined with lower-weight sum-rules requiring estimation of the dispersion-relation
low-energy constant within the analysis [I55]. Because higher-dimension currents tend to en-
hance the continuum, the mass determination combined with an estimated low-energy term

merits further study.
As in [I36], we perform a conventional single narrow resonance (SNR) LSRs analysis of
the 07~ channel by letting
P (t) = mf2o(t — my) (4.20)

in (4.17) where f is the resonance coupling and my is its mass. We include our higher-
dimension condensate contributions as well as updated QCD parameter values, yet the anal-

ysis remains unstable. The 5d mixed condensate term in the LSRs is small, and, as noted
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above, the 6d condensates do not contribute at all. In [136], it was suggested that the insta-
bility in this channel could be related to a distribution of resonance strength. To investigate
this possibility, we use GSRs, an alternative to LSRs which provide a fundamentally dif-
ferent weighting of the hadronic spectral function that makes them well-suited to analyzing
distributed resonance strength hadron models. Unsubtracted GSRs of integer weight k are

defined as [75]

(4.21)

y ( d )N{(§+m>kn(—§—m)_

(5 — iA)FTI(—5 + iA)
dA? iA ‘

Details on how to evaluate (4.21)) for a correlator such as (4.10)) can be found in [9] [75, [165].
The result is

5—t 1
Gr(s, 1) = /tk = ITQCP () dt (4.22)

™

VArT
for k € {0, 1, 2,...} and where 2ImII®CP(¢) is given in (4.14). Subtracted GSRs are defined
in much the same way as subtracted LSRs leading to the following GSRs analogues of (4.17)

and ([19):

(st 1

Gr(8, 7, so0) \/ﬁ ;phad(t) dt (4.23)
where
_ G t)2
Gr(8, 7, S0) / the™
\/471'7' (4.24)

1
x —ImIIP(t) dt.
™

The difference between (4.17)—(4.18) and (4.23)—(4.24)) is in the kernel of the integrals:

a decaying exponential for LSRs and a Gaussian for GSRs. The two sum-rules represent
fundamentally different weightings of the spectral function p"*d(t); whereas in the LSRs have

a duality interval of width ~ 1/M% near the low-energy threshold of the spectral function,
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the GSRs have a duality interval of width ~ /27 near § (4.23). In the 7 — 0T limit, we have

1 5—1)2
T =55 1), (4.25)

lim

0% VAT

which, when applied to (4.23)), yields

1
: a ok had /3 5
y 1 - . .
lim Gk(S T SQ) S P (S) fOI' S > 1 (4 26)

T—07F v

Hence, at least in principle, p"4(¢) can be extracted directly from GSRs. Realistically, the
7 — 07 limit cannot be achieved, however, because, through renormalization-group (RG)
improvement (see Section , the renormalization scale at which « is evaluated decreases
with decreasing 7 [75]. Nevertheless, it is desirable to use low values of 7 to minimize the
smearing of p"*d(¢) by the kernel of the GSRs. To further emphasize this, we draw upon an
analogy introduced in the seminal GSRs paper [75]. Gaussian sum-rules satisfy the classical

heat equation
82Gk (§7 T, 80) _ aGk (‘§7 T, 50)
082 B or ’

(4.27)

reinterpreting the parameter s as “position”, the Gaussian width 7 as “time”, and the GSRs
Gr(8, 7, so) as “temperature”. The smaller the value of 7 (i.e. the less “time” that has

passed), the better we may assess the original (i.e., 7 — 0%) “temperature” distribution (i.e.,

O]

Compared to LSRs, GSRs permit greater access to the structure of p"®(¢). The LSRs
methodology is specifically formulated to accentuate the ground state region of the hadronic
spectral function while suppressing higher energies. With GSRs, this need not be the case
as §, the position of the Gaussian kernel’s peak, is a free parameter. By varying s, GSRs can
probe a wide region of the hadronic spectral function with the same sensitivity as the ground
state region. As such, GSRs are generally preferable to LSRs when studying distributed
resonance strength models, as demonstrated in the successful analysis of the p meson using

GSRs methodology [9]. Integrating (4.23) with respect to § gives

oo o 1
/ Gr(3, T, so)déz/ th—phad(¢) dt (4.28)

0 to ™
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from which we recognize the quantity on the left-hand side as the finite-energy sum-rule of
weight k. As shown in [75], a resonance plus continuum model evolved through the diffusion
equation only reproduces the QQCD prediction at large energy scales if sy is constrained
by . To isolate the information contained in the GSRs formalism that is independent
of (4.28)), we consider normalized Gaussian sum-rules (NGSRs) [9]

R Gy, (8,7, 50)

N ==~ 07 4.29
k (87 T, SO) Mk,o (7_7 50) ) ( )

i.e., GSRs scaled by their 0™-order moments My, o(8, 7) where, in general,
My (T, 80) = / §"Gy (8,7, 80) ds. (4.30)

Combining (4.23), (4.28)), and (4.29), we get a NGSRs analogue of (4.23]),

L e L (1) gy

Ni(3, 7, 59) = V=2 a (4.31)

ftzo tk%phad (t) dt

Finally, to emphasize the low-energy region of the spectral function, we work with the lowest-
weight sum-rules (i.e., & = 0) as in previous applications of GSRs to the prediction of

resonance properties [9, [165].

4.2.4 Holder Inequality

Previous investigations of hadronic systems using LSRs have employed Holder inequalities to
restrict the set of allowed 7 and sq values [170, 171, 172]. The Holder Inequality is expressed

generally as

/:f(t)g(t) du] < ( /tlt2|f<t>rpdu)’l’
< /t:2|g<t>|qom)é
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under the condition
1 1

— 4 =1 (4.33)
P q
and where du is an arbitrary integration measure. From positivity of the hadronic spectral
function for diagonal correlators, we can use ImIT®“P(#) > 0 to form an integration measure.
Substituting this integration measure into leads to restrictions on the allowed values

of §, 7, and sg in the GSRs. We consider the inequality (4.32)) with the assignments

dp = TmIIQCP(¢)dt (4.34)

a

_G-v?
f@:ﬁ(ié%) (4.35)

b

_G=n?
gt)=1° ( i ) (4.36)

tl = to, t2 = S0 (437)

a+b=1 (4.38)
where a4+ 3 is a non-negative integer. Defining

T T
— — and ™ = — 4.39
1 ap anda Ty bq7 ( )

the inequality (4.32) becomes

1

1
“ TiI\2p (T2 2¢
Gavs (8300 < ()7 ()

(4.40)

1 1
X GZ‘ZP (T17 <§7 SO) g’ (7-27 §7 30)

where we have used Gy, (7, §, sg) > 0, the weakest constraint on the GSRs that emerges from

positivity of the spectral function. We define w as follows:

1 1
w=-<«=l-w=-,0<w<l1 (4.41)
p q
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and consider (4.40) with zero-weight GSRs (i.e., « = 5 = 0),

1—

Go (1, 8, s9) < (E>; (E>2w

T T (4.42)
X GBJ (7'1, §, 80) G(l]_w (’7'2, §, 80> .
Equations (4.38]), (4.39), and (4.41]) together imply that
172
_ 4.43
T (1 —w)m + wn (4.43)
which, when substituted into (4.42)), gives
w 1-w
Go T1To as) < I—wn+wn\? [((1-—w)mn+wn) 2
(1 —w)m + wny To T
X G(g (’7'1, §, So) G(l)_w (TQ, §, So) . (444)
Following [T72], we set
=T (4.45)
Ty =T+ 0T (4.46)

which implies

0= (w(T ;5(:)15(?_ ik 80) _ (“(T + f:):ag - W)T) g (w(f + 57): (1- w)7> 15

x Gy (1, 8, s0) Gy~ (T 407, 8, s9). (4.47)

We can perform a local analysis of (4.47) by expanding about 67 = 0,
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, 2 / 1!
Gy (3,1, Go (3,1, Gy (8,78
(,u((,u — 1) (1 — 272 <—G(O)E§7Ta sg;) + 27 (2 (GgEsA,T,sg;) +7 (G?)((L@»Tasg))))) (57—)2

4712

0<

where primes indicate 7-derivatives. Then, (4.41)) and (4.48) together imply

’ 2 ’ ”
. Go(8, 7, s0) Go(8, 7, s0) Gy (8, 7, so)
H =1_972 (20> 7/ or (2 2022 0 7D/ Z0\% °» 7Y/ > 0.
(87 " SO) ’ (G0<§a T, 80) e GO(éa T, 80) 7 G0(§7 T, 80) N
(4.49)
At some (7, 8, sp), if the GSR Go(3, 7, s¢) is to be consistent with a positive hadronic spectral

function, then it must satisfy the inequality (4.49).

4.2.5 Analysis Methodology and Results

Before we can analyze 07~ light quarkonium hybrids using (4.31)), we need to discuss the QCD
parameters appearing in (4.10)), i.e., the coupling, the quark mass, and the QCD condensates.

To implement RG improvement we replace o, and m in (4.10) by one-loop, MS running

quantities [75]. In our analysis, we use the QCD running coupling anchored at the 7-lepton

mass,
o, (M
on(p) = e W (450)
1+ 295 (33 — 2ny) log (45 )
where we use PDG [173] values for the 7 mass and
as (M) = 0.325 £ 0.015. (4.51)
For the light quark masses, we use
m() = m(2 Gev) [ el (4.52)
w = s (2 GeV) ’ ‘
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where

1
m(2 GeV) = = (m,(2 GeV) + my(2 GeV))

2 (4.53)
= 3.5107 MeV

for nonstrange quarks and

m(2 GeV) = 9675 MeV (4.54)

for strange quarks [I73]. In both (4.50) and (4.52), we set ny = 4.

Renormalization-group arguments identify our renormalization scale as u = 7'/4 [0, [75],
putting a lower bound on our choice of 7 restricted by the reliability of perturbation theory.
A related issue associated with 7 is reliability of the GSRs as quantified by the relative
contributions of perturbative versus non-perturbative effects and the relative contributions of

the resonance versus continuum. We therefore restrict our analysis to 7 > M?* approximately

equivalent to 7 > 10 GeV* as discussed in Section We also work with an upper bound
7 < 20 GeV* emerging from the Holder inequality constraint (4.49)), as presented in detail in
Section [4.2.5]

Turning to the condensates, the value of the RG-invariant quantity (mgq) is well-known

from PCAC [57]. Using the conventions of [47], we have

_ —3f2m2, for nonstrange ¢
—1f2mi, for strange ¢

where PDG values are used for the meson masses [I73] and the decay constants are [12§]
fr=(92.2£3.5) MeV , fx = (110.0 + 4.2) MeV. (4.56)
We use the following value for the 4d gluon condensate [I74]:
(aG?) = (0.075 £ 0.020) GeV*. (4.57)

The nonstrange- and strange-flavored 5d mixed condensates are estimated by [175], [176] to
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be

m{gqoGq) 9 9
—2 T =M= (0.84+0.1) GeV~. 4.58
<mqq> 0 ( ) ( )

Finally, we note that while the 6d quark and gluon condensates were included in the correlator

calculation (4.10]), Table shows that neither contributes to the & = 0 GSRs (4.24]) or
NGSRs (£.29).

As noted in Section [4.2.3) a SNR analysis of 07~ light quarkonium hybrids fails within
the LSRs methodology, and so we turn our attention to models with distributed resonance
strength using GSRs. As confirmation of the consistency between the LSRs and GSRs
methodology, we analysed the original stabilizing channels in the LSRs methodology JF¢ €
{0%%, 1%£} [136] and found excellent agreement between the results for both mass predictions
and continuum onsets. To confirm the need for a distributed resonance model in the case of

JFPC = 0%~ we consider the quantity [165]

Moo (7, s0) Mo (7, s0)\°
2 _ 0,2\/, =20 0,1\ 715 20
= — 4.59
UO(T? SO) M()’()(T, 50) (MO,()(T, 30) ( )

where the QCD moments, My, (7, so), were defined in - Combining (4.23]) and ( -

gives

. ) ftz"(t? + 27)pPd(¢) dt
o\!s 20) = fto phad(¢) dt

4.60
ﬁ tphad )dt 2 ( )
f had
to
For a SNR model, substituting (4.20)) into - 4.60]) yields
oo(T, s0) = 2. (4.61)

Hence, the quantity o2(7, so) — 27 provides a QCD-calculated, model-independent way to
assess the suitability of representing a particular hadronic spectral function as a single narrow
resonance. If o2(7, so) — 27 ~ 0, then a single narrow resonance model is appropriate. On

the other hand, if 63(7, so) — 27 % 0, then the hadronic spectral function has distributed
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resonance strength. And so, in Figure , we plot the QCD prediction 02(7, sq) — 27 versus
7 for nonstrange quarks at several values of s, over the range 10 GeV? < 55 < 30 GeV?.
Clearly, 02(7, so) — 27 % 0, providing further motivation to consider models other than the

SNR. An analogous analysis for strange quarks leads to the same conclusion.

25 .
T 20! ]
-]
S — §p=10 GeV?
'N:' 15; 7 so=15 GeV?
I ] So=20 GeV?
o 10t - 5
o 1 — sp=25 GeV
R 5. 1 — 5,=30 GeV?
J ]
10 12 14 16 18 20

T [GeV*]

Figure 4.2: The QCD prediction for the quantity o2 —27 (where 02 is defined in (4.59)))
for nonstrange quarks versus 7 at several values of the continuum threshold s.

If the distributed resonance strength indicated by Figure is due to a single wide
resonance (SWR), then we can determine a rough lower bound on the resonance’s width

using a rectangular pulse resonance model,

phad (t) o 7Tf

= ST 6 (t —mF +myl) — 0 (t —mi; —mul)], (4.62)

where f is the resonance’s coupling, I' is its width, and my is its mass. Substituting (4.62))

into gives

1
o2(T, 80) = 2T + gszQ (4.63)
1
— I'= —/3(0d(7, s0) — 27). (4.64)
my
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From (4.64)), we see that I' decreases as my increases. However, to ensure that the resonance

does not merge with the continuum, we require
m3; +myl < s (4.65)

which implies that the largest possible resonance mass for a particular sq is given by

M7, max(T, 50) = \/ 50— /3(03(, 50) — 27) (4.66)

where we have used (4.63). By letting my — mpy max in (4.64), we find that the smallest

possible resonance width for a particular sy is given by

3(c(T, so) — 27) '
so — /3(a2(T, s0) — 27)

LCiin (7, S0) = (4.67)

From Figure , we see that o2(7, o) — 27 shows almost no 7-dependence; hence, the same
can be said about Iy, (7, sp). In Figure , we plot Twin(7, s0) versus so at 7 = 10 GeV*
for nonstrange quarks. An analogous plot for strange quarks looks nearly identical. At
so = 10 GeV?, we find that ', &~ 1.46 GeV, far larger than a typical hadron width. As
Sp increases, so too does I'y;,. For these reasons, we abandon SWR models in favour of a

multi-resonance model.

We consider a double narrow resonance (DNR) model
phad(g) = 7r( 26 (t—m2) + 26 (t —m2) ) (4.68)

where f;, fo and my, my are the resonances’ couplings and masses respectively. Substitut-

ing (4.68) into (4.31)) gives

(4.69)
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1.9} -

[Cmin(T,S0) [GeV]

15} -

10 15 20 25 30
s, [GeV?]

Figure 4.3: Minimum rectangular pulse resonance width, I'y;, from (4.67), at 7 =
10 GeV* for nonstrange quarks versus the continuum threshold, s.
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where

ft f3
= = 1-r= .
i+ 13 i+ 13

At fixed values of 7 and sy, we perform a fit of (4.69)) over § E| to find best fit parameters for

(4.70)

r, my, and mo. In Figure we plot the best fit r versus sy at 7 = 10 GeV* for nonstrange
quarks. Again, an analogous plot for strange quarks looks nearly identical. From the s¢-
stability in 7 versus sp, we determine an optimized continuum onset for both the nonstrange-
and strange-flavored cases as

soP' = (14.5 £+ 1.2) GeV? (4.71)

where the uncertainties originate from the QCD input parameters; details of the uncertainty
analysis are discussed below. Then, a fit to (4.69)) at sy = 14.5 GeV? and 7 = 10 GeV*, leads
to DNR model parameters

r = 0.712 4 0.005 (4.72)
my = 3.57 £ 0.15GeV (4.73)
my = 2.60 £ 0.14 GeV (4.74)

in the nonstrange-flavored case and

r=0.711 % 0.005 (4.75)
my = 3.57 £ 0.13GeV (4.76)
my = 2.60 £+ 0.14 GeV (4.77)

in the strange-flavored case. Figure[4.5]shows negligible 7 dependence in the mass predictions.
Figure shows comparisons between the the NGSRs and the DNR model (respectively
the left- and right-hand sides of ) for parameters — at 7 = 10 GeV* and
7 = 20 GeV*. We note that the strange and nonstrange 0t~ hybrid mass predictions are
degenerate within the uncertainties of our analysis; we find this to be consistent with other

recent SR analyses [49,[177]. We note that the correlator terms that contain the strange quark

lusing the Mathematica v11 command NonlinearModelFit
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mass and condensates are numerically small in our calculation, and do not significantly impact
the resulting mass prediction. The relatively small numerical difference between strange and
non-strange 07~ hybrids could suggest a dominance of constituent gluonic effects in these

systems.
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10 12 14 16 18 20
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Figure 4.4: Plot of the best fit » (defined in (4.70) to (4.69) at 7 = 10 GeV* as a

function of continuum threshold, sg.

Utilizing the Holder Inequality test (4.49), we can perform a consistency check on our
analysis. To determine whether is satisfied within the expected uncertainties of the
GSRs, we examine the inequality at sgpt = 14.5 GeV? for various values of 7. Because our
QCD calculations of Wilson coefficients are truncated perturbative series in «y, in addition to
the QCD parameter uncertainties, we use the 1= channel [91] to provide an estimated next-
order perturbative correction characteristic of hybrid correlators. We find that the Holder
inequality constraint is violated for 7 > 20 GeV*, and the inequality test for the

minimum value 7 = 10 GeV* is shown in Figure Thus, the 7 range used in our analysis,

10 GeV* < 7 < 20 GeV*, is consistent with the Hélder inequality.
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Figure 4.5: Plot of 0t~ light quarkonium hybrid masses m, (7, so**) and my (7, sg™)

of the DNR model (4.68) at continuum threshold sg** = 14.5 GeV>.
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Figure 4.6: Comparison of the two sides of for nonstrange DNR parame-
ters (4.72)-(4.74) and for 7 = 10 GeV* and 7 = 20 GeV* at ' = 14.5 GeV2. Solid
curves correspond to the left-hand side of ; dots correspond to the right-hand side
at selected values of s.
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To explore the lower bound on 7 in more detail, we consider OPE convergence and reso-
nance dominance in the GSR. As in LSRs, a reliable GSR analysis requires that perturbation
theory dominates power-law corrections and that the resonance contributions dominate the
continuum. The average relative contribution of the non-perturbative terms is calculated
over the region 10 GeV? — /27 < § < 10GeV? 4+ /27 to encompass the peak in Figure
For 7 = 10GeV*, the s-averaged non-perturbative contributions are less than 20% of the
total and are thus safely controlled. As 7 decreases, the relative non-perturbative contri-
bution increases (e.g., to 25% at 7 = 5GeV*). The relative contribution of the resonance
versus continuum contribution is much more sensitive to 7. For 7 = 10 GeV* the s-averaged
ratio of resonance to continuum effects is 50% but for 7 = 5GeV* the ratio decreases to
30%. We thus conclude that the criteria of OPE convergence and resonance dominance
requires 7 > 10 GeV* for a reliable GSR analysis. The combination of the Holder inequal-
ity, OPE convergence, and resonance dominance constrains our GSR window of analysis to

10 GeV* < 7 < 20 GeV™.
We verify the sy optimization (4.71)) obtained from Figureby looking at an independent

analysis developed in [165] based on the properties of the § peak position (maximum) of the
NGSRs. For the SNR model (4.20)) the s-peak occurs at § = m?, independent of 7. Thus,
an alternative sg-optimization criterion for the SNR is minimizing the 7-dependence of the

peak position Speax (7, so) defined implicitly from

0
— NEP (3, 7, s0) =0. (4.78)

ok 5=3pcak (T, 50)
For the DNR model (4.68)), the peak position acquires 7-dependence modeled by

A B C D
Speak (T, SO) :A—F?—Fﬁ‘i‘; (479)

where the unknown parameters {A, B, C, D} are constrained by minimizing the x>

20 GeV* B C D 2
A+Z2+ 54+ 5
X*(A,B,C,D,s) = Y ( L -~ 1) . (4.80)

7=10 GeV*

By minimizing (4.80) with respect to A, B, C, D, and sq, we find an optimum continuum
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Figure 4.7: Plot of inequality test (4.49) for 7 = 10 GeV* with error bars displayed.

Errors are due to variations in the condensate parameters, variations in ay, and uncer-

tainties in sg** (4.71).
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threshold sgpt = 14.0 GeV? in excellent agreement with the value obtained in (4.71]).

To obtain errors in sg™, 7, my, and my, we examine how the errors in the QCD param-
eters impact the values of these optimized parameters by varying each independently and
examining the impact on the model parameters. Additionally, there exists a methodological
error in determining sgpt as the variance in the QCD parameters will affect the stability point
of . Contributions to the error in s;** are summarized in Table [4.4] and contributions to the
error in the DNR model parameters are summarized in Tables [4.5]4.7 The dominant error

pt

in s;”" comes from the variation in (aG?); in determining errors in the DNR parameters,

the error in r is driven by the variation in (a«G?) while the dominant errors in the masses
my and my arise from variations in sg™, followed by (aG?). Errors in (gq) and (ggoGq)
contribute negligibly in the error of all DNR parameters. Adding the values summarized in
Tables in quadrature gives us a conservative error estimate summarized in Table
as the driving errors in each parameter are approximately equivalent for the upper and lower
bounds of the corresponding QCD parameters, we express our DNR parameters —
with symmetric error, taking the most conservative bound.
Table 4.4: Contributions to s> error at 7 = 10GeV* due to variations in QCD

parameter error. Columns 40 indicate variations in DNR parameters at the upper
(+9) and lower (—d) bounds of the corresponding QCD parameters.

Error Source Nonstrange Strange
+0 —6 +0 -0
(mqq) 5.62 x 1073 | —6.74 x 107* | 9.38 x 1073 3.09 x 1073
(aG?) —9.20 x 107" | 118 x 10° | —9.16 x 10~* | 1.18 x 10°
(gq0Gq) 111 x107* | 1.00x 1073 | 3.66 x 1073 | 4.77 x 1073
P 1.70 x 1071 | =1.86 x 107! | 1.74 x 107! | —1.82 x 107!

4.2.6 Discussion

We have calculated 5d and 6d QCD condensate contributions to all spin-0 and spin-1 light
quarkonium hybrid correlators with the goal of obtaining QCD LSRs mass predictions in

the previously-unstable channels of [I36]. However, the 6d gluon and quark condensate
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Table 4.5: Contributions to r error at 7 = 10 GeV* due to variations in QCD param-
eter error. Columns +¢ indicate variations in DNR parameters at the upper (+49) and
lower (—9) bounds of the corresponding QCD parameters.

Frror Sotrce Nonstrange Strange
+0 —0 +0 -0
(mqq) —2.86 x 1070 | 2.76 x 107 | —2.58 x 1076 | 3.04 x 1076
(aG?) 479 x 107% | —4.66 x 1073 47973 —4.66 x 1073
(gGoGq) 143 %1070 | —1.34 x10% | 1.70 x 107 | —1.06 x 10~
Qg ~7.93x107* | 873x107* | —=7.93 x 107*| 8.73 x 10~*
soP* 509 % 107* | 353 x107* | 357 x107* | 4.81 x 10~*

Table 4.6: Contributions to m; error at 7 = 10GeV* due to variations in QCD
parameter error. Columns 40 indicate variations in DNR parameters at the upper
(4+0) and lower (—d) bounds of the corresponding QCD parameters.

Nonstrange Strange
Error Source & &
+0 -0 +4 —0
(mqq) —6.84 x 1076 | 658 x 1076 | —=7.06x 1076 | 6.35 x 107
aG? 579 x 1072 | =7.02x 1073 | 5.79x 1072 | =7.02 x 1073
(

(9GoGq) —3.07x107%] 3.01x10% | —=3.29x 1076 | 2.79 x 107
Ol —1.06 x1073 | 1.13x107% | —=1.06 x 1073 | 1.13 x 1073
sgpt 1.48 x 1071 | =121 x 1071 | 149 x 107! | —1.20 x 107!

contributions do not have an imaginary part and hence do not contribute to the LSRs. Also,
the 5d mixed condensate contributions turn out to be small. We therefore focused on the
suggestion of References [130], [I55] that a distribution of resonance strength could be the
source of instability, a scenario ideally suited to GSRs methods [9} [75, [165]. The 07~ channel
was chosen for detailed investigation because of its phenomenological significance in light
of the GlueX experiment. Furthermore, a model-independent analysis of the 07~ hadronic

spectral function implies that there is a distribution of resonance strength in this channel.

In examining the SWR (4.62) and DNR (4.68) models, we found that the DNR model
provided excellent agreement between QCD and phenomenology. (See Figure [4.6]) The
SWR model was rejected on the basis of an atypically large resonance width. In the DNR
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Table 4.7: Contributions to my error at 7

parameter error.
(4+6) and lower (—4) bounds of the corresponding QCD parameters.

10 GeV* due to variations in QCD
Columns +6 indicate variations in DNR parameters at the upper

Nonstrange Strange
Error Source
+0 -0 +0 —0

(mqq) —3.72x107° | 358 x107° | =3.79 x 107° | 3.51 x 107°
<04G2> 2.81 x 1072 —3.64 x 1072 2.81 x 1072 —3.64 x 1072
(g@an) —2.01 x 107° 1.99 x 10~° —2.08 x 107° 1.93 x 107°
Ol —536x 1072 | 563 x103 | =5.36 x 1073 | 5.63 x 1073

sgpt 1.40 x 107! —1.12 x 107! 1.40 x 1071 —1.11 x 107!

Table 4.8: Calculated total errors in sgpt, r, my, my from contributions in Tables

_EI_

Value
Parameter
Nonstrange Strange
soPt 14.5752 14.5752
r 0.712 £ 0.005 | 0.711 £ 0.005
m 3.577015 3.570 18
ms 2.607015 2.607015

model, we find degenerate predictions in the case of both nonstrange and strange quark states
from the 07~ current: a 2.60 + 0.14 GeV state (2.60 &+ 0.14 GeV in the strange case) with
29% relative coupling, and a state at 3.57 + 0.15 GeV (3.57 + 0.13 GeV) with 71% relative
coupling. The smaller coupling of the light state suggests the possibility of mixing with a
tetraquark because the expected tetraquark mass range is above 2 GeV [I7§].

The lighter state is consistent with recent lattice results that find a predominantly non-
strange state around 2.4 GeV and a predominantly strange state around 2.5 GeV in the
0%~ channel with m, = 391 MeV [30]. Our lighter-state mass determination is somewhat
larger than the 2.1-2.5 GeV range of central values in [I55]. The literature does not provide
a clear interpretation of the heavier 07~ state; however lattice studies [30] of the lightest
hybrid meson supermultiplet suggest that the 0%~ state exists as part of an excited hybrid

supermultiplet with radially-excited ¢g pair (i.e., quark total angular momentum L, = 1).
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We suggest that this heavier second state arising in the GSRs is a manifestation of an excited
hybrid state.

In conclusion, we investigated light quarkonium, exotic (JF¢ = 0*~) hybrid mesons
with SWR and DNR models using a GSRs analysis. We disfavoured the SWR model as
the predicted resonance width was too large. The double-narrow resonance model yielded
two 07~ hybrid states: (2.60 £ 0.14) GeV and (3.57 £ 0.15) GeV ((2.60 & 0.14) GeV and
(3.57£0.13) GeV in the strange case). Additionally, we explored using the Holder inequality

derived for the GSRs as a consistency check on our analysis.
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4.3 Manuscript: Is the Y (2175) a Strangeonium Hybrid
Meson?

Abstract: QCD Gaussian sum-rules are used to explore the vector (J©¢ = 1) strangeo-
nium hybrid interpretation of the Y (2175). Using a two-resonance model consisting of
the Y/ (2175) and an additional resonance, we find that the relative resonance strength of
the Y (2175) in the Gaussian sum-rules is less than 5% that of a heavier 2.9 GeV state.
This small relative strength presents a challenge to a dominantly-hybrid interpretation
of the Y (2175).

4.3.1 Introduction

The initial state radiation (ISR) process in eTe™ annihilation is a very useful technique to
search for vector states (i.e., J©¢ = 177) in B-factories. In 2006, the BaBar Collaboration
studied the cross sections for the ISR processes ete™ — KTK - ntr~ andete™ — KT K 77"
up to 4.5 GeV, aiming to confirm the existence of the Y (4260) in the ¢7m channels. Instead of
observing the Y'(4260), however, they found a new resonance structure in the ¢(1020) fo(980)
channel, which was named the Y (2175) [I79]. (It is also known as the ¢(2170) [1]). This
resonance was later confirmed by BaBar [180, [181], [182], BES [138], and Belle [I83] and
recently by BESIII [I84] I85]. Its mass and decay width are M = (2188 £ 10) MeV and
[ = (83 £ 12) MeV and its quantum numbers are I¢JF¢ = 0-1-~ [1].

To date, the nature of the Y (2175) is still unknown. Based on strange quarkonium mass
predictions using a relativized potential model, only the 33S; and 23D, s5 states are ex-
pected to have masses close to that of the Y (2175) [140]. However, both interpretations are
disfavoured as the corresponding resonance width predictions are significantly larger than
the width of the Y(2175). The width of the 335 s5 state was predicted to be 378 MeV
using the 3Py decay model [141] whereas the width of the 23D, s5 state was predicted to
be 167 MeV in the 3P model and 212 MeV in the flux tube breaking model [142]. Another
possible interpretation of the Y (2175) is that of a strangeonium hybrid meson (i.e., 5gs).
Masses of vector strangeonium hybrid mesons have been computed using several methodolo-
gies including the flux tube model [59] 106, 143, 186], lattice QCD [29], and QCD Laplace

sum-rules (LSRs) [I87]. The flux tube model calculation of [106] found a vector strangeonium
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hybrid mass of 2.1-2.2 GeV. The lattice QCD analysis of [29] found a vector strangeonium
hybrid mass between 2.4 GeV and 2.5 GeV while the LSRs calculation of [I87] found a heavier
mass of (2.9 +0.3) GeV. Yet another possible interpretation of the Y (2175) is that of a ssss
tetraquark. In [144], the masses of vector ssss tetraquarks were investigated. Two states
were predicted with respective masses (2.34 +0.17) GeV and (2.41 £0.25) GeV. Other LSRs
analyses of ss5§ tetraquarks can be found in [I45] 146]. Furthermore, the Y (2175) has also
been proposed as a molecular state of AA [147, [148]. In [147], a chromomagnetic interaction
Hamiltonian was used to predict a hexaquark of mass 2.184 GeV that is strongly coupled
to the AA channel. In [I48], a one-boson-exchange potential model was used to predict a
AA mass between 2.149 GeV and 2.181 GeV. Also, the Y (2175) has been interpreted as a
dynamically generated resonance of ¢ f,(980) [149, 150, 151, [152].

Decay modes and rates will be crucial to determining the nature of the Y (2175). In [I41],
it was predicted using the 3Py model that the most important decay modes of the 33S; s5
meson would be K*K*, KK*(1410), and K K;(1270) whereas the K K mode would be very
weak. In [142], it was predicted using the 3P, model that the most important decay modes
of the 23D; s5 meson would be K K (1460), K K*(1410), K K;(1270), and K*K*. While not
dominant, the K K decay mode was predicted to have a partial width of about 0.06. In [96],
it was predicted using flux tube and constituent gluon models that the most important decay
modes of a vector strangeonium hybrid would be K K;(1400), K K,(1270), K K*(1410), and
K K5(1430), each containing a S-wave meson plus a P-wave meson, due to the S+ P selection
rule [46l (96l [188]. Also, it was noted that the ¢f;(980) mode could be significant. Of
particular interest are the KK, K*K* and K K(1460) modes which are predicted to be zero
for a strangeonium hybrid interpretation (the usual rule that suppresses or even forbids hybrid
decays to pairs of S-wave mesons [46], [105] [189]). For the ssss tetraquark interpretation, it
has been suggested that the 1¢ channel should be one of the dominant decay modes due to
the large phase space in the fall-apart mechanism [96]. However, in [190], it was argued that
the n¢ decay mode would be greatly suppressed and that the ¢f,(980), hyn, and hin’ modes
would be most important. For the AA interpretation of the Y (2175), the KK decay mode
was predicted to dominate [I91]. At present, the data concerning decay modes and rates of

the Y(2175) is incomplete, making it difficult to draw any definitive conclusions [1J.
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As they are both observed in ISR processes, the Y (4260) and Y (2175) states have the
same quantum numbers, and are often considered as analogous states in the hidden-charm
and hidden-strange sectors respectively [179, 192, 193]. Perhaps determining the nature of
one will shed light on the other. Since the Y (4260) has been identified as a good candidate
for charmonium hybrid ¢ge [50, O8], 194] or hidden-charm tetraquark state gcgc [195], the
Y (2175) meson may also be interpreted as a hybrid or tetraquark candidate.

In this work, we use QCD Gaussian sum-rules (GSRs) methods to study the strangeonium
hybrid possibility for Y (2175). In contrast to previous analyses of strangeonium hybrids
using LSRs [187], the use of GSRs enables an exploration of the possibility of multiple states
with hybrid components, allowing us to examine the scenario of a hybrid component of the
Y (2175). We find little evidence in support of the Y (2175) having a significant strangeonium
hybrid component.

4.3.2 The Correlator and Gaussian Sum-Rules

We investigate vector strangeonium hybrids through the correlator

() = 55 (28 = g ) [ o=@l 0)10) (481)

where D is spacetime dimension and where the current j, is given by

G = %W%Aaézps. (4.82)

In 1' s is a strange quark field and éfw is the dual gluon field strength tensor,

N(L 1 a
Gl = QGquCGw@ (4.83)

wp

defined in terms of the Levi-Civita symbol, €.

Between [I87] and [51], the quantity I1(¢?) from has been computed to leading-order
(LO) in a5 = g within the operator product expansion (OPE). In [I87], the perturbative and
dimension-four (i.e. 4d) quark and gluon condensate contributions were calculated. In [51],

the 5d mixed, 6d quark, and 6d gluon condensate contributions were calculated as well as
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O(m?) corrections to perturbation theory where my is the strange quark mass. Denoting the

result as I19CP(¢?) to emphasize that it is a QCD calculation, we have

6 5m2q4 4q2
TIQCD (2} — Qs [ g 4 _ M s
(¢") 52072 ¥ qgnz T g (M%)

T
2 2
q 9 19a,mg —q
g 1 — 4.84
1L (ag?) 4 B <gqaaq>) og( w) (4.84)
where
(ms3s) = (ms55sy) (4.85)
(aG?) = (GG (4.86)
(g70Gq) = (9570t Noy G, s)) (4.87)

are respectively the 4d strange quark condensate, the 4d gluon condensate, and the 5d mixed
strange quark condensate. In 7, subscripts on strange quarks are Dirac indices,
superscripts are colour indices, and o* = ﬁ[v“, 7*]. In computing , divergent inte-
grals were handled through dimensional regularization in D = 4 + 2¢ dimensions at MS-
renormalization scale p. A dimensionally regularized ~s satisfying {vs,7*} = 0 and 72 = 1
was used following the prescription of [I96]. Also, TARCER [I16§], a Mathematica imple-
mentation of the recurrence relations of [82, 83], was employed to reduce the set of needed
integral results to a small, well-known collection. An irrelevant polynomial in ¢ has been
omitted from as it ultimately does not contribute to the GSRs used in this article
(see below). Included in this omitted polynomial are the 6d quark and gluon condensate

contributions, both of which are constant for this channel as discussed in [51].

The quantity II(¢?) in (4.81)) is related to its imaginary part, i.e., the hadronic spectral

function, through a dispersion relation

1t - & [Ty 59

at Euclidean momentum Q? = —¢*> > 0. In (4.88)), ¢, is a hadron production threshold

and --- represents subtraction constants, collectively a third degree polynomial in Q2. On
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the left-hand side of (4.88)), we identify IT with TI®P of (4.84)). On the right-hand side, we

partition the hadronic spectral function using a resonance-plus-continuum decomposition,

1 1
—TmII(t) = p"®d(t) + O(t — s0)—ImITP (1), (4.89)
m 7T
where pP@d(t) represents the resonance contribution to ImII(¢) and (¢t — s¢) is a Heaviside

step function shifted to the continuum threshold parameter sg.

In , to eliminate subtraction constants as well as the aforementioned polynomials
omitted from and to enhance the resonance contribution relative to the continuum
contribution to the integral on the right-hand side, some transform is typically applied leading
to some corresponding variant of QCD sum-rules. Laplace sum-rules, for example, are a
common choice (e.g., see [36, B7, 47, 169]). Here, we instead choose to work with (lowest-

weight) GSRs defined as [197]

o \/g e (;(?VQ))N<CZZQ)N{H(—§—z’A)i—AH(—§+iA)}' (4£90)

T=AZ2/(4N)

Discussions of how to evaluate definition (4.90) for a correlator such as (4.84) can be found
n [197, 9, [165]. Substituting (4.89) into (4.88) and applying (4.90)), we find

1 _Gy? t) 1
GOP(3, ) = —TmITP (1) dt (4.91)
7 \/47‘(‘7‘
1 > S— t 1
— G5, 1) \/4_ ()dt+\/4_/ S ~Iml19P(¢) dt. (4.92)
T 7T Jsg

Subtracting the continuum contribution,

55—t 1
¢ )—1 T19CP (1) dt, (4.93)

1
VATT Js
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from (4.91)) and (4.92)) leads to subtracted GSRs

st) 1

GP(5, 7, 50) ImHQCD (t)dt (4.94)

\/ 47TT
\/ 4t

— GP(3, 7, 59)

ad(¢) dt. (4.95)

Finally, calculating ImIT®“P(¢) from (4.84) and substituting the result into the right-hand
side of (4.94)), we find

1 0 -2 [« 3 S5m2t? 4t
GQCD (5 = / = = — —{(m,s 4.96
Sms) == | ¢ T\ T\ om0 T ager g e (4.96)
t 9 19asmg , _
— dt.
t3p-taGT) + — <QQUGCI>)

Note that the definite integral in can be evaluated in terms of error functions. The
kernel of the subtracted GSRs is a Gaussian of width /27 centred at §. As discussed
n [9) 51} 165, 167], GSRs are particularly well-suited to the study of multi-resonance hadron
models as, by varying s, excited and ground state resonances can be probed with similar

sensitivity.

Renormalization-group (RG) improvement of (4.96) amounts to replacing as and mg by
running quantities at the scale u? = /7 (e.g., [197,198]). The one-loop, MS running coupling

at ny = 4 active quark flavours is

S MT
N pp—_LL (1.97)
25 2
1+ 5-as(M;)log (]@—2)
where [1]
M. =1.77686 & 0.00012 GeV (4.98)
oy (M,) = 0.325 £ 0.015. (4.99)

Since the previous analysis of strangeonium hybrid mesons using QCD sum-rules [I87], the
condensate parameters and quark masses are now known more precisely. In addition to

the inclusion of higher-dimensional condensates terms in (4.84)), we update the values and
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uncertainties in the QCD parameters used in [I87]. The running strange quark mass is

ms(p) = ms(2 GeV) (%) " (4.100)
where [1]
m,(2 GeV) = 967 MeV. (4.101)

The value of the RG-invariant 4d strange quark condensate is known from PCAC,

1
(my3s) = -3 frm3., (4.102)
where [I}, [128]
my = (493.677 £ 0.016) MeV (4.103)
frx = (110.0 & 4.2) MeV (4.104)

For the 4d gluon condensate, we use the value from [174],
(aG?) = (0.075 4+ 0.020) GeV. (4.105)

For the 5d mixed strange quark condensate, we use the estimate from [175] [176],

ms(ggoGq)

ss) = M; = (0.8 +0.1) GeV>. (4.106)

Integrating (4.95)) with respect to § gives

/ GP (5, 7, 50) ds :/ PP (t) dt. (4.107)

to

The quantity on the LHS of is the lowest-weight finite energy sum-rule (FESR),
and, as shown in [197], the spectral function decomposition only reproduces the QCD
prediction at high energy scales if sq is constrained by . To isolate the information in
the GSRs that is independent of the FESR constraint , we define normalized GSRs
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(NGSRs) [,
GQCD(‘§7 T, 80)

NP (5 = 4.108
(87 T, 80) ffooo GQCD(g, T, 50) ds ( )
which, from (4.95) and (4.107]), implies that
had
g (1) dt
NQD(5 7 50) = \/AF f? A di (4.109)

4.3.3 Analysis Methodology and Results

Previous work using LSRs used a single-narrow resonance model and resulted in a strangeo-
nium hybrid mass prediction significantly heavier than the Y (2175) [I87]. Compared with
that analysis, we include 5d and 6d condensate terms in the OPE and use updated QCD
parameter values. Also, as outlined above, Gaussian sum-rules have the ability to probe
multiple states in the spectral function. We can therefore update and extend the analysis of
Ref. [187] and test the hypothesis of a Y (2175) hybrid component by using a double-narrow

resonance model for the hadronic spectral function

had( ) fl ( %) + f22§ (t — mg) . (4110)

This double narrow-resonance model in (4.95) provides the hadronic contribution, i.e., the

right-hand side, to the NGSRs (4.109)),

had | 4 1 _G=mD? _(-m3)?
Nbad (5 1) = Ner= (re T 4+ (l—r)e ), (4.111)

where the normalized couplings are defined as

_ R L f3
i+ i+ 13

<1. (4.112)

We fix one of our modelled resonances (m;) using the experimental value given in Refs. [I]
199],
m1 = My (2175) = 2.188 GeV, (4113)
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and the additional resonance (my) provides the necessary degrees of freedom in the model

for the possibility that the Y (2175) decouples (i.e., that m; has normalized coupling r = 0).

We choose the width of the Gaussian kernel to be 7 = 10 GeV*, in line with our previous
GSRs analysis of light hybrids [51]. Since this resolution is much larger than the experi-
mental width of the Y (2175) (i.e., /7 > myI'), the narrow width model is an excellent
approximation for the Y (2175). For the undetermined resonance my, we assume that it is
similarly narrow compared to the Gaussian kernel resolution; this assumption is revisited in
the results of our analysis presented below. To determine the remaining unknown quantities
{ma, 7,50} in our model we seek the best fit of the the § dependence of the QCD prediction
and hadronic model by minimizing the 2,

X2 (r,ma, 50) = ff [Nhad (3, 7) — NQ°D (3, Tso)]2 : (4.114)

Smin
where we use 161 equally spaced § points with §,,;,, = —10 GeV* and 8. = 30 GeV*. This
region safely encloses the resonances resulting from our analysis as outlined below. Note that
the minimization is constrained by the physical condition 0 <r < 1in . The resulting

prediction of the resonance parameters and continuum onset is

soP' = 9.7+ 1.0 GeV? (4.115)
my = mg = 2.90 £0.16 GeV (4.116)
r <0.033. (4.117)

The uncertainties in f are obtained by varying the values of the QCD input
parameters, and calculating the deviation from the central values in quadrature. Errors are
dominated by the variation in («G?). An upper bound on r is provided because of the
r > 0 constraint. Figure [4.8| shows that the fit between the QCD prediction and hadronic
model is excellent; there is no evidence of any deviations that would suggest a need to refine
the model (e.g., inclusion of a numerically-large width /7 ~ myI" for my). Figure also
shows that the fitted region —10 GeV? < § < 30 GeV? encloses the regions where the NGSRs

are numerically significant. As a further validation of our results, we note that our mass
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Figure 4.8: Double-narrow resonance model N"4 (3, 7) (solid blue curve) and com-
pared to QCD prediction NRCP(3, 7, 5) (orange points) for 7 = 10GeV*. Central
values of the QCD condensates and the corresponding fitted parameters have been
used.

prediction for my is consistent with previous LSRs analyses [187].

The key aspect of our results f is the small relative resonance strength
r < 3.3% of the Y(2175) compared to mgy, which seems to preclude a predominant hybrid
component of the Y (2175). We can obtain a more conservative bound on r by calculating
the so dependence of r (i.e., choosing so and only fitting r and my) and then considering the
variation of r within the region of uncertainty in sy from . The result of this analysis

leads to the bound r < 5% as shown in Figure 4.9, A similar analysis for my is shown in

Figure [£.10]

4.3.4 Discussion

In summary, we have used QCD GSRs to study the strangeonium hybrid interpretation of
the Y (2175). Compared to a previous LSRs analysis of vector strangeonium hybrids [187],
our calculation includes 5d and 6d condensate contributions, strange quark mass corrections
to perturbation theory, and updated QCD parameter values. Furthermore, the advantage
of the GSRs approach over the LSRs approach is its comparable sensitivity to multiple

states in a hadronic spectral function. This allowed us to explore the relative coupling to
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Figure 4.9: Predicted coupling r to Y (2175) state as a function of the continuum
onset so. The vertical band highlights the optimized value of continuum onset s3** with
corresponding error (4.115). The physical constraint » > 0 has been imposed in the
analysis.
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Figure 4.10: Predicted vector strangeonium hybrid mass ms as a function of the
continuum onset sg. The vertical band highlights the optimized value of continuum
onset s0°* with corresponding error (4.115).
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the hybrid current of the Y (2175) and an additional unknown resonance. We found
excellent agreement between the QCD prediction and hadronic model, and determined an
upper bound r < 5% for the relative coupling strength of the Y (2175). In other words, we
found no evidence for a significant strangeonium hybrid component of the Y (2175).
Recently, a structure of mass (2239 £+ 13.3) MeV and width (139.8 + 24.0) MeV (where
we have combined statistical and systematic uncertainties) was observed in et e~ — KT K~
with the BES III detector [200]. If the structure can be identified with the Y (2175), then
the observed KK decay mode would disfavour the 335, strangeonium meson, strangeonium
hybrid, and ssss tetraquark interpretations. On the other hand, if the structure can not
be identified with the Y (2175), then the lack of observed KK decay mode would disfavour
the 23D, strangeonium meson and AA interpretations. Clearly, further experimental and

theoretical studies are needed.
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CHAPTER 5

CHIRAL LAGRANGIANS AND QCD Sum RULES

5.1 The Scalar Meson Puzzle

While the focus of Chapters |3|and [4] has been on hybrid mesons in a wide energy range, they
are one member of several exotic hadrons that are of experimental interest, all in an attempt
to characterize and understand the strong interaction. The notion of exotic hadrons is not
a new one; in the same paper over fifty years ago that Gell-Mann proposed his theory of
quarks [I0], he suggested a redefinition of mesons and baryons to include similarly-spinned

and yet to be observed hadrons containing four and five quarks.

5.1.1 Scalar Mesons

The light scalar mesons have been motivating research and questions about the nature of the
strong interaction for decades. In the limit of equal quark mass, Gell-Mann and Ne’eman
constructed the Eightfold Way [12) [13], which constructed a geometric representation of
mesons and baryons using the underlying SU(3)r quark flavour symmetry present. Figures
and show the pseudoscalar and vector meson representations originating from their

work. Similar constructions can be made for the spin 1/2 and 3/2 baryons.

However, classifying the scalar meson states (J£ = 0%) in the same way has proven to
be challenging. To date, there exists an overpopulation of experimentally observed scalar
mesons at the energies where a nonet is expected to emerge [I]; further, these states do
not follow the same mass hierarchy as the pseudoscalar and vector states, leading many
to believe a number of these states belong to a second nonet—a grouping of four-quark

states [14]. Figure shows a prediction of what the four-quark nonet is predicted to look
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Figure 5.1: Geometric groupings of (a) pseudoscalar and (b) vector meson nonets
according to strange quark content and electric charge presented in units of e.

like using known scalar meson states [14], while Figures [5.3a and [5.3b| show maps of the

pseudoscalar nonet mass hierarchy compared with that of the proposed scalar nonet mass
hierarchy shown in Figure 5.2l A similar prediction of a nonet structure for the scalar
mesons is more difficult; candidates include the ag(1430), fo(1370), K¢(1430), fo(1500), and
the fo(1710), which leaves one state as excess. However, the f,(1500) and f,(1710) states are
glueball candidates; identifying the glueball from these states could resolve the excess and

clarify which of the remaining states belong to the lowest-lying scalar meson nonet. [14], 201].

To complicate matters, a gluonium state is also predicted in the same range, and signifi-
cant mixing with meson states has also been predicted [48, 202]. The difficulty in identifying
the structure of these states lies not only in the theoretical difficulties in describing non-
perturbative dynamics at these lower energies, but also in the distinctly broad resonance

widths these states exhibit, and the need for more precise experimental data on them [14].

5.1.2 Chiral Lagrangians and QCD Sum Rules

As a way of approaching the inherent non-perturbative nature of the strong interaction, some
have traded the fundamental quark degrees of freedom for a description of strong dynamics
using the experimentally observed hadronic degrees of freedom; chiral Lagrangians are one

such approach. In the papers that follow, we considered two unmixed scalar nonets S and
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Figure 5.2: Predicted scalar nonet of four-quark states.
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Figure 5.3: Interpolating surface mapping hadronic masses which demonstrate con-
trasting mass hierarchies of (a) pseudoscalars nonet in Fig. compared with pro-
posed (b) scalar nonets shown in Fig[5.2] Vector nonet mass hierarchy mirrors that of
the pseudoscalar nonet hierarchy.
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S’ of two- and four-quark states respectively

Stoaf kT Soadd KT
S = ag S22 KO | S = ay s kY (5.1)
k- K S8 KR S’g
which form chiral nonets
M=S+i¢ (5.2)
M =S +id, (5.3)

where ¢ and ¢’ represent pseudoscalar meson nonets similar to S and S’. Using the trans-
formation properties of M and M’ under chiral symmetry, we related them to their quark

content through scale factor matrices

M = Iy Moco (5.4)

MI = IM'M(/QCD' (55)

where M and M’ are the physical, mesonic-level nonets and Mqcp and M(qp, are the QCD-

level nonet descriptions. Here, the matrices I, and I, are scale-factor matrices

m 1
]M:—A—quﬂ_?]M/:FX]]_, (56)

where A and A’ are constant scale factors with units of energy, and m, = (m, + mq) /2. In
each paper, we investigate a specific set of isopartners; in Ref. [33] the isotriplets a(980) —
ao(1450), and in Ref. [34] the isodoublets K (800)— K(1430). We find remarkable agreement
between scale factors A and A’ from each individual analysis indicating a consistency with
the requirements of chiral symmetry, and that the scale factors demonstrate very little de-
pendence on the energy scale, suggesting that approximating the scale factor as a constant is

justified within an estimated error of 5%. These results show an emerging consistency in our
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methodology, promising a robust connection between the chiral Lagrangian methodology and
QCD sum-rules. My contributions to both of these works pertain to the QCDSR analysis. In
the case of the isotriplet analysis, I rederived and made corrections to expressions used in the
previous work, improved the optimization procedure, explored the inclusion of updated sum
rule parameter values within the analysis, designed Figure 5.4, and edited the manuscript.
In the case of the isodoublet analysis, I performed a full analysis and determination of scale
factors from GSRs applying the optimization procedure I developed in the isotriplet case,

designed the figures, and led in the writing and editing of the manuscript.

The following works may be found published in:

The Bridge Between Chiral Lagrangians and QQCD Sum-Rules,
Amir H. Fariborz, J. Ho, A. Pokraka, T.G. Steele.

Nucl. Part. Phys. Proc., Vol. 309-311 (2020) 119-123.
d0i:10.1016/j.nuclphysbps.2019.11.021

and

Universal scale factors relating mesonic fields and quark operators,
Amir H. Fariborz, J. Ho, T.G. Steele.

Mod. Phys. Lett. A25, 21, 2050173 (2020),
doi:10.1142/S0217732320501734

5.2 Manuscript: The Bridge Between Chiral Lagrangians
and QCD Sum-Rules

Abstract: Properties of the scale-factor matrices forming a bridge between the mesonic
fields of chiral Lagrangians and quark-level structures of QCD sum-rules are reviewed.
The scale-factor matrices combined with mixing angles provide a physical projection of
a QCD correlation function matrix that disentangles the mesonic states. This method-
ology is illustrated for the isotriplet ag(980) —ao(1450) system, and the scale factors are
determined from the combined inputs of QCD sum-rules and chiral Lagrangians. The
resulting scale factors are shown to be in good agreement with the vacuum expectation
values in the chiral Lagrangian framework. The sensitivity of the scale factors on the
gluon condensate QCD sum-rule parameter is explored.
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5.2.1 Introduction

The interpretation of the light scalar mesons in terms of the underlying quark and gluonic
substructures is one of the most challenging aspects of hadronic physics [1I, 203, 204]. Given
the highly-populated scalar states below 2 GeV, the scenario of a mixture of a two-quark
nonet, a four-quark nonet, and gluonium seems natural [7, 201, 205, 206, 207, 208, 209]
210, 211]. In this scenario, the inverted scalar mass spectrum for four-quark states is an
important theoretical feature that emerges in the MIT bag model [212] and in QCD sum-
rules [213, 214, 2T5], 216].

Chiral Lagrangian methods, in either the linear [7, 207, 210, 211] or non-linear models
[205] 208, 217, 218, 219] 220], 221], are founded on chiral symmetry and its breakdown, and the
model parameters are determined from fits to experimental data. For the scalar sector, the
mixings among scalar states provides implicit information on their quark substructure, with
the lighter states being primarily four-quark compositions while the heavier are primarily
two-quark states [7, 219, 208]. An important feature in these chiral Lagrangian analyses is
the significant mixture of gluonium in two of the states [201, 208 222], a feature that also
emerges from QCD sum-rule analyses (see e.g., [8, 167, 223, 224, 225 226] and review of
earlier results in Ref. [38]), and in other methods [227], 22§].

Both chiral Lagrangian and QCD sum-rule studies of scalar mesons have their limitations.
For example, although Uy, (1) symmetry provides a fundamental distinction between two-
quark and four-quark compositions in chiral Lagrangians [7, 210, 211], there is no way to
distinguish between different substructures (e.g, molecular versus diquark). This limitation
can be potentially addressed by QCD sum-rules because the field-theoretical results depend
on the specific four-quark composition. Similarly, QCD sum-rules are based on quark-hadron
duality [36, 37, 169] and require parameterization of the spectral function. In the case of
broad, light, and overlapping states such as those found in the scalar sector (e.g., the o
meson) a simple Breit-Wigner parameterization may be insufficient. This limitation can
potentially be overcome by guidance on resonance shapes from chiral Lagrangian approaches
that have been fitted to experimental data. A precise linkage between chiral Lagrangians

and QCD sum-rules could thus lead to synergies for deeper understandings of low-energy
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hadronic physics and open new insights and avenues of exploration.

In Ref. [32] this linkage between QQCD sum-rules and chiral Lagrangians was developed
and validated for the I = 1 scalar channel. The key aspect of the resulting bridge connecting
QCD sum-rules and chiral Lagrangians are scale factor matrices that combine with mixing
angles to form a physical projection of the QCD correlation function onto single hadronic
states. In this proceedings article the properties of the scale factor matrices and the projection
formalism will be reviewed along with the application to the I = 1 channel. The analysis of
Ref. [32] is extended to study the dependence of the scale factors on the gluon condensate (a
key non-perturbative parameter in QCD sum-rules) to reflect its most recent determination

[229].

The generalized linear sigma model in the notation of Refs. [7, 210, 211] contains two
chiral nonets M and M’ respectively representing a two-quark nonet and a four-quark nonet
structure. The two nonets have the same chiral transformation properties but have different

Ua(1) charges:

M — UMUL,, — M—e™M

M — U MU, M —e M. (5.7)
The nonets are expressed in terms of their scalar and pseudoscalar components

M = S+i¢
M = S +i¢ (5.8)

where the two scalar meson nonets contain the two- and four-quark “bare” (unmixed) scalars

1 + + 11 1+ 1+
Si ay K S'hody K
I 2NN
S=lay 52 |, S=1ay 5% &° (5.9)
- ~ =0
Kk~ R S3 KTORD S

and similar matrices for ¢ and ¢'.
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We now map M and M’ to their QCD counterparts Mqcp and Mcp having appropriate

chiral transformation properties. In particular,

(Mqep)h o (qr)*(r)a = (Sqcp)! = ¢ud” (5.10)

where as will be seen below there is no loss of generality in the choice of the Sqcp propor-
tionality constant. A similar expression exists for S{QCD in terms of four-quark operators,
but because of the many possible choices the specific form will be given below. The QCD
operators and mesonic fields are related by scale factor matrices I; and I, that align the

mass dimensions

M = IyMqep, M' = Inp Migep - (5.11)

The properties of the scale factor matrices are governed by chiral symmetry. Since both M

and Mgcp have the transformation properties of (5.7]), we have

M — ULIMMQCDU}; = ]MULMQCDU;

= [UL,IM] =0. (512)
A similar analysis for the transformation of M yields
[Ugr, In] =0 . (5.13)

Egs. (5.12)) and (5.13)) must also apply to I, because the chiral transformation properties
of M and M’ are identical
[Ur, Ipp) =0=[Up, Ip] =0 (5.14)

Collectively Eqgs. (5.12)—(5.14)) imply that the scale factor matrices are multiples of the iden-
tity matrix
1

m
IM__A_??Xl?IM,:FX]l? (515)

where the (constant) scale factor quantities A and A’ have dimensions of energy that must
be determined and the quark mass factor m, = (m, + m,)/2 has been chosen to result in

renormalization-group invariant currents as discussed below.
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The specific example of the isotriplets a¢(980) and ay(1450) illustrates the determination
of the scale factors and the detailed implementation of the bridge between chiral Lagrangians
and QCD sum-rules. The physical states are mixtures of the chiral Lagrangian fields S and
S’ which are then related to QCD operators

ag(980) (St —53)/v2
A = =L
a3(1450) (81— 873) /V2
= L;'1,J9P (5.16)

where L, is the rotation matrix for isovectors of Ref. [7], I, is formed out of the scale factors
defined for the two chiral nonets in ((5.11)) and J2P is constructed from two- and four-quark

operators

cosf, —sind, _I;q 0
L)'= , I, = (5.17)
sinf, cosb, 0 ﬁ

1| (Sacp); — (Sacp)s

V2

JACP = (5.18)

(Shep); — (Shen)s

Because Eq. (5.16) defines the physical aq states, the projected physical currents J¥ are
defined by
JP =L, P (5.19)

A physical correlation function matrix ITI¥ is then constructed from a physical projection of

a QCD correlation function matrix I19¢P

7(Q% = T°ne™ (@7, T°=1,L, (5.20)
P () = (0| T [JEP (2) 2P (0)] |0) (5.21)

where 77 denotes the transpose of the matrix 7. Although the development of (5.20]) was
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in the context of the ay system, the relation for the projected physical correlator is easily
generalized by the appropriate rotation matrix and scale factor matrix.

The physical correlator matrix is diagonal, providing a self-consistency condition relating
elements of the QCD correlation function matrix. For example, the case of the 2 x 2 aq
system leads to the following constraint from the vanishing of off-diagonal elementﬂ

ach _ ~1%H%CD 15+ ~1(§H§2CD 2

12 — ~a o ~a a . (5.22)
11 22+ 12712

The relation can be used in different ways depending on whether it is feasible to
calculate the off-diagonal QCD correlator. In the a case, the leading corrections to the off
diagonal correlator are a difficult four-loop topology, so will be used as input for H%CD.

In QCD sum-rule methodologies, an integral transform is applied to a dispersion relation
relating the QCD and hadronic contributions to the projected physical correlators [36], 37,
169]. The mixing angle matrix L, must be chosen to isolate individual states so it is important
to use a sum-rule method that can check whether a residual effect of multiple states is
occurring because of an insufficiently accurate mixing matrix. Laplace sum-rules are not
ideal for this purpose because they suppress heavier states, so Gaussian sum-rules will be
employed because they provide similar weight to all states [9, [75]. The hadronic part of the
Gaussian sum-rule is given by

o

GH(3,7) = dt exp {—

AT

} Pt (t) . (5.23)

Sth

In (5.23)), the hadronic spectral function is determined via the mesonic fields and a QCD

continuum above the continuum threshold sg.

p(t) = %ImHH(t) (5.24)

I (4°) = / d'z (0| T [Ay(x)A,;(0)] |0)

1
= by <m2 T '—i—cont.) (5.25)

B :
ai — 47 T Mgl g5

'Eq. (5.22) corrects a minor typographical error in Ref. [32].
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The effect of final-state interactions in the 7n channel is not significant and therefore in the
first approximation is neglected here. The last term denoted by “cont” represents the QCD
continuum contribution inherent in QCD sum-rule methods [36] 37, 169]. The hadronic and

QCD contributions to the Gaussians sum-rules are now equated:
GT (5,7) = TGP (3,7, 50) T* (5.26)

where the QCD continuum has been absorbed from the hadronic side into the QCD contri-
butions. Methods for calculating the QCD prediction GRP from the underlying correlation
function are reviewed in Ref. [9]. The hadronic side of is diagonal because the states
have been disentangled by the rotation matrix and the QCD side of is diagonalized

by imposing the constraint (|5.22))

G = — TGP (5.27)
0 (GM)y

The resulting diagonal elements of ((5.27)) are given by

G (3,7) = aAGRCP (s T, sg“) — bBGSOP (ST ng) (5.28)

G (5.7) = —aBGE” (5,7, 5) +0AGE™ (5,75

cos? 0 sin’ @
A= ©« __  B= a 5.29
cos? 6, — sin? 6, cos? 6, — sin? 6, ( )
m? 1
_ Ty

a= . b= Tk (5.30)

where the QCD continuum has been absorbed into the QCD Gaussian sum-rules, G¥ and

2

p is combined with

G1IL respectively represent ag(980) and a(1450), and the factor of m
G%CD for renormalization-group purposes. Note that each sum-rule has its own continuum
threshold represented by s(()l) and s(()z), and the constraint (5.22)) has been used within the

QCD prediction.
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The QCD currents in (5.18]) used to construct the QCD sum-rules are [215] 216, 9]

J1 _
Jeep — , Ji = (au —dd) /V2 (5.31)
Ja
sing p T o T
Jy = W%C’m%sﬁ (da’Y 75085 —a 5)
(5.32)

+ %bd507u55 (Ja’y“C’Eg taef)—urd
where C is the charge conjugation operator and cot ¢ = 1/+/2 [215], 216]. Expressions for the
resulting QCD sum-rules can be found in Refs. [§, 9, 215 216] along with the necessary QCD
input parameters (e.g., QCD condensates). The choice 7 = 3 GeV* has been made, consistent
with the central value used in Refs. [8, 0]. The physical mass and width of the a, states are
used along with cos 6, = 0.493 from chiral Lagrangians [7]. Two different values of the gluon
condensate are considered: (aG?) = 0.07 GeV* as used in Ref. [32] and (aG?) = 0.06 GeV*
corresponding to the lower bound determined in Ref. [229]. For the strange quark condensate
we use (5s) = 0.8(qq) (see e.g., Refs. [169, 40]) in conjunction with ms/m, = 27.3 [I] and
PCAC for m,{(qq).

Egs. are solved for the (constant) scale factors A and A’, and a procedure is de-
veloped to optimize the continuum thresholds that minimize the s dependence of the scale
factors. Fig. shows the § dependence of the scale factors for the optimized values of the
continuum for the two values of the gluon condensate (aG?). The remarkable independence
of the scale factors on the auxiliary sum-rule parameter § clearly demonstrates validity of

the bridge connecting QQCD sum-rules and chiral Lagrangians.

The best-fit predictions of the scale factors and continuum thresholds are given in Ta-

ble along with the vacuum expectation value

_ mg(tu)

(S1) = ——5— (5.33)

The QCD predictions for the vacuum expectation value are in excellent agreement with the

chiral Lagrangian value (S}) = 0.056 GeV [7]. The scale factor A’ can also be related to a
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vacuum expectation value using the vacuum saturation hypothesis

(dd)(5s)

($'7) =131 G

(5.34)

The QCD side of is not a renormalization-group invariant quantity so it is not clear
how to choose a renormalization scale for comparison. An estimate of the QCD value yields
(S"1) &~ 0.08 GeV which is in reasonable agreement with the chiral Lagrangian value (S'}) ~
0.03GeV [7] considering that the vacuum saturation hypothesis and renormalization scale

dependence effects could each introduce a factor of 2-3.

@G s sY A N (S
0.07 1.50 3.14 0.108 0.270 0.067
0.06 1.53 3.13 0.109 0.267 0.065

Table 5.1: Values for the optimized scale factors {A, A’} and continuum thresholds
{sél), 582)} and vacuum expectation value (S}) for different inputs of the gluon con-

densate (aG?). All quantities are in appropriate powers of GeV.

Two other aspects were explored in the analysis. Variations away from the chiral La-
grangian mixing angle cosf, = 0.493 were explored, and the optimized y? used to measure
the variations of the scale factors from a constant value increased when the mixing angle was
decreased to cosf, = 0.4 and increased to cosf, = 0.6, suggesting the possibility that QCD
sum-rules could help distinguish between different chiral Lagrangian mixing scenarios. The
physical-projection constraint was also explored by comparing the Gaussian sum-rule
obtained from the constraint with the estimated leading-order perturbative contribution. The
good agreement in the order-of-magnitudes emerging from the constraint and perturbative
estimates shown in Fig. implies that the physical projection of the full QCD sum-rule
matrix would be nearly diagonal.

In summary, it has been shown how chiral symmetry governs the properties of scale
factor matrices that serve as a bridge connecting QCD sum-rules and chiral Lagrangians.
These scale factor matrices combine with a mixing matrix that projects QCD sum-rules onto
physical mesonic states. The ag system was used to illustrate the extraction of the scale

factors using the combined information from chiral Lagrangians and QCD sum-rules. The
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Figure 5.4: The scale factors A (lower pair of curves) and A’ (upper pair of curves)
are shown as a function of § for optimized continuum thresholds in Table [5.1] Solid
curves use the value («G?) = 0.06 GeV* as QCD input and the dashed curves are for
(aG?) = 0.07GeV*. The mixing angle cosf, = 0.493 of Ref. [7] has been used along
with 7 = 3GeV* as in Refs. [8, ]

extracted scale factors were remarkably independent of auxiliary sum-rule parameters and
result in excellent agreement with renormalization-group invariant chiral Lagrangian vacuum
expectation values, providing an important validation of the methodology to bridge QCD
sum-rules and chiral Lagrangians. In future work, the connection between chiral Lagrangians
and QCD sum-rules will continue to be explored for other states in the scalar nonets. A key
test of the bridge connecting QCD sum-rules and chiral Lagrangians will be to establish the

universality of the scale factors for other sectors of the the scalar nonet.
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Figure 5.5: Off-diagonal Gaussian sum-rule G5 emerging from the QCD constraint
(5.22)) (solid curve) compared with the estimated leading-order perturbative QCD con-
tribution (dashed-curve). The optimized parameters from the first row of Table
have been used along with 7 = 3 GeV* as in Refs. [8,[9]. All scales in GeV units.
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5.3 Manuscript: Universal scale factors relating mesonic
fields and quark operators

Abstract: Scale factor matrices relating mesonic fields in chiral Lagrangians and
quark-level operators of QCD sum-rules are shown to be constrained by chiral sym-
metry, resulting in universal scale factors for each chiral nonet. Built upon this in-
terplay between chiral Lagrangians and QCD sum-rules, the scale factors relating the
ag isotriplet scalar mesons to their underlying quark composite field were recently de-
termined. It is shown that the same technique when applied to Kj isodoublet scalars
reproduces the same scale factors, confirming the universality property and further val-
idating this connection between chiral Lagrangians and QCD sum-rules which can have
nontrivial impacts on our understanding of the low-energy QCD, in general, and the
physics of scalar mesons in particular.

5.3.1 Introduction

In the absence of an exact solution to the strong coupling limit of QCD in terms of fundamen-
tal quarks, we are forced to accept a less ambitious viewpoint in which the light hadrons are
the runner-up candidates for the appropriate low-energy degrees of freedom. Such secondary
viewpoints have also been proven to be very challenging; nevertheless, the great efforts by
many investigators have led to significant progress over the past several decades and resulted
in development of important frameworks such as chiral perturbation theory and various ef-
fective models [, [14), 230]. Such frameworks have enjoyed the blessing of fundamental QCD
by respecting several guiding principles such as chiral symmetry (and its breakdown), U(1)a
axial anomaly and various assumptions about the QCD vacuum.

However, the quest for understanding the strong interaction phenomena at low-energies
based on fundamental QCD has never stopped and important attempts have been made,
most important of which is the approach of the lattice QCD program, which despite all the
technical challenges has made an enormous progress [1]. Still, a framework that can directly
connect the low-energy strong interaction data to the fundamental quarks and gluons has not
yet emerged. Particularly in the scalar meson sector of low-energy QCD, establishing such
a connection is even less trivial. On the experimental side, some of these states are broad

and overlap with nearby states, leaving some of their experimental properties vague. On the
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theoretical side, explaining their mass spectrum and decay properties requires a description
beyond the conventional quark-antiquark pattern. For the case of isosinglet scalars, the
complexities are significantly greater because these states have the same quantum numbers
of the QCD vacuum, which can develop a vacuum expectation value and spontaneously break
the chiral symmetry. This means that understanding the substructure of isosinglet scalars,
which can be composed of not only various two- and four-quark fields but also of glue, is
naturally nontrivial and perhaps beyond the current reach of lattice simulations. For a full
understanding of scalar sector, it is vital to seek a bridge that can connect the low-energy
data all the way to fundamental QCD. Such a solid bridge currently does not exist, and

awaits the exact solution to nonperturbative QCD.

In Refs. [32], B3] we demonstrated how a linkage between two existing frameworks, QCD
sum-rules [36, B7, 169] (that significantly connect fundamental QCD to hadronic physics
through duality relations) and chiral Lagrangians (which are appropriately designed in terms
of the hadron fields and can be conveniently used to describe low-energy data) can provide
an approximation of such a bridge. This linkage occurs through scale-factor matrices relating
mesonic fields of chiral Lagrangians to quark-level structures of QCD sum-rules. Specifically,
the scale factors were first determined for the isovector scalar sector [32), B3] by connecting
the QCD sum-rules to the chiral Lagrangian described by the generalized linear sigma model
[7, 211]. However, chiral symmetry requires that the scale factors must be universal for all
members of the chiral nonets. In the present work, we demonstrate that the same scale
factors are remarkably recovered in the isodoublet scalar sector, providing a crucial test of

the universality property.

Establishing universality of these scale factors is essential for exploiting the bridge between
chiral Lagrangians and QCD sum-rules to address the long-standing puzzles in the isoscalar
sector. The exact relationship between the composite fields of quarks representing a mesonic
state (which requires a mass dimension of three or higher), and that of a single mesonic
field (of mass dimension one) is not known. We have assumed [32], B3] that this relationship
is of a simple form where the underlying composite fields of quarks inside a scalar meson
are linearly proportional to the meson field. If this assumption is a good approximation to

the exact relationship between the meson fields and their underlying quark fields, then the

132



scale factor adjusting the mass dimensions should reflect certain characteristics of the meson.
Chiral symmetry requires that all members of the same chiral nonet have the same scale
factor [32,33] (i.e., the universality condition), which is examined in this work, in testing the
proposed bridge, by independently computing the scale factors for the K isodoublet scalar
system and comparing with the previous computation of these factors for the aq isovector

system of Refs. [32], 33].

At the mesonic level, our framework is the generalized linear sigma model of [7, 211] that
we use to demonstrate the bridge between chiral Lagrangians and QCD sum-rules. This
framework is formulated in terms of a quark-antiquark chiral nonet and a four-quark chiral
nonet, and even though there are no direct connections to the underlying quark world, the
distinction between two and four-quark nonets is made through the U(1)s anomaly. It is
shown in [7, 211] (and references therein) how the framework can intake various low-energy
experimental data to disentangle two- from four-quark components of each members of the
scalar meson nonet. While this information is valuable it is not complete. Several four-quark
composite fields, each with the same overall quantum numbers of a given scalar meson, can
be formed out of different combinations of color and spin (see for example [210]), but these
combinations cannot be disentangled solely on the basis of chiral symmetry — a limitation of
chiral Lagrangians (such as those of [7, 211]). QCD sum-rules, on the other hand, have their
own limitations — although they directly utilize the specific quark currents, but when probing
a complicated scalar meson substructure for which there are numerous possibilities for mixing
among two- and four-quark currents, the disentanglement of two- from four-quarks is difficult
to achieve in a self contained manner within its framework. Addressing these limitations are
examples of the mutual benefits that this bridge provides: The disentanglement of two- from
four-quark currents that can be determined at the mesonic level can enhance (and simplify)
the overall analysis of QCD sum-rules, and reciprocally, the self consistency checks within
the QCD sum-rules can favor one combination of four-quark currents versus the other and
remedy a gap in the chiral Lagrangian approach which, due to the lack of direct connection
to the underlying quark fields, is oblivious to various four-quark currents. Establishing an
interplay between chiral Lagrangians and QCD sum-rules has been the centerpiece of our

proposal in Refs. [32 [33]. This idea is not limited to the scalar channel and/or a specific
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type of chiral Lagrangian or a particular variant of QCD sum-rules.

We begin by defining our notation. At the mesonic level, we employ the generalized linear
sigma model of [7, 211] which is formulated in terms of two chiral nonets M and M’ that
respectively represent a quark-antiquark nonet and a four-quark nonet (a “molecule” type
and/or a diquark-antidiquark type) underlying substructure. Both chiral nonets transform

in the same way under chiral transformation but differently under U(1)x:

M — U, MU, M — M

M - U, M UL M — e M (5.35)

The axial charge is the main tool for distinguishing these two nonets. Each of these two

chiral nonets can be expressed in terms of a scalar and pseudoscalar meson nonet

M = S+i¢
M = §+i¢ (5.36)

where the two scalar meson nonets contain the two- and four-quark “bare” (unmixed) scalars

1 + + 11 1+ 1+
S; ay K Shody K
!
= | - = |~ e
S=1lay 52 0|, S=|ay 52 &° (5.37)
- - S0 o3
k= R S KT kTS

and similar matrices for ¢ and ¢’. The framework of Ref. [7, 211], 210] provides a detailed
analysis of the mixing between these two “bare” nonets and how that results in a description
of mass spectrum, decay widths and scattering analysis of scalar as well as pseudoscalar
mesons below and above 1 GeV. In this picture and of specific interest in this work, the
physical isodoublet scalars Kj(700) and K(1430) become a linear admixture of two- and
four-quark components x and k' respectively. Understanding the physical characteristics
of K;(700), particularly its substructure, has posed many challenges and has resulted in

numerous investigations [I]. Particularly, the possibility of a non-quark-antiquark nature of
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this state has been extensively studied [7, 205, 2111, 231, 232], 233] 234] 235, 236], 237, 238,
239, 240).

The transformation properties as well as the decompositions are direct conse-
quences of the assumed underlying quark configurations. The two mesonic-level chiral nonets
M and M’ can be mapped to the quark-level chiral nonets Mqcp and M. For example,
Eq. implies

(Mqen)h o (Gr)"(q1)a = (Sqep), X gad” - (5.38)

To make the exact connection to the quark world we need to make a specific choice for the
proportionality factor, and with no loss of generality we choose (SQCD)Z = ¢,¢°. Similarly,
M{ep can be mapped to quark-level composite field configurations. However, in this case
there are several options, each representing a different angular momentum, spin, flavor and
color configurations for diquark-antidiquark combination. Here we do not list such quark
configurations and the specific form used for our analysis will be given below.

We assume a simple relationship between the quark-level nonets Mqgcep and M'gep and
the physical mesonic-level nonets M and M’ via a scale-factor matrix that adjusts the mass
dimensions

M =IyMqcep, M' = Iy M gep - (5.39)
As shown in [32, [33], chiral symmetry imposes the following constraints on the scale factor

matrices

[Ur, In] = U, In] = 0, (5.40)
[Ur, In] = [Ur, L] = 0, (5.41)

implying that the scale matrices are multiples of the identity matrix

m 1
IM:_A_;]Xﬂ’IM/:FX]l’ (542)

where the (constant) scale factor quantities A and A’ have dimensions of energy that must
be determined, and the quark mass factor m, = (m, + mg)/2 has been chosen to result

in renormalization-group invariant currents as discussed below. This methodology can be
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generalized to include additional substructures (e.g., glueball components) through an ad-
ditional scale factor. The scale factors A and A’ have been determined in the study of ag
isotriplet states [32, [33] and will be redetermined here for isodoublet system to demonstrate

universality.

We now consider the specific example of the isodoublets Kj(700) and Kj(1430), for which

the physical states are related to the QCD operators via

K (700) S3
K= =L! = L', J9P (5.43)

K (1430) (S");

where L' is the rotation matrix that disentangles two- from four-quark components of
isodoublets, I, is formed out of the scale factors defined for the two chiral nonets in (5.42)),
and JCP is constructed from two- and four-quark operators (the specific form will be given

below):

cosf, —sinb, —52 0
Lt = , 1= : (5.44)
sinf,., cos0,. 0 ﬁ

Since (5.43)) relates the physical states to QCD operators, we define the projected physical

currents JE = L11, J9P that define a physical correlation function matrix IT¥ constructed

from a physically-projected QCD correlation function matrix IT9CP

n7(Q%) = T*IP(Q)T", T%=1.L, (5.45)
3P () = (O|T [J3P () J2°P(0)1] |0) (5.46)

where 7% denotes the transpose of the matrix 7.

The projected physical correlator matrix is diagonal, providing a self-consistency condition
between elements of the QCD correlation function matrix. In our 2 x 2 K isodoublet

system we have the following constraint from the vanishing of off-diagonal elements (A minor
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typographical error in Ref. [32] is corrected in (5.47) and [33].)

- CD — CD
| THIE TS + TS T
T+ T T

3P = (5.47)

The relation ([5.47)) will be used as input for H%CD because the QCD off-diagonal correlator

is unknown and not readily calculable because of its complicated higher-loop topology.

QCD sum-rule methodologies are based on quark-hadron duality, and apply an integral
transform to a dispersion relation relating the QCD and hadronic contributions to the pro-
jected physical correlators [36], 37, [169]. The mixing matrix L, must disentangle individual
states so a sum-rule method is needed to check whether a residual effect of multiple states
is occurring because of an insufficiently accurate mixing matrix. Laplace sum-rules are not
suitable because they suppress heavier states, so Gaussian sum-rules will be employed be-
cause they provide similar weight to all states [9, 197]. The hadronic part of the Gaussian

sum-rule is given by

o0

GH(5,7) = \/i? dt exp {y] pH(t) . (5.48)

The hadronic spectral function p* in ([5.48)) is determined from the mesonic fields and a QCD

continuum above the continuum threshold sq:

) — %ImHH(t)JrH(t—so) %ImHQCD(t) (5.49)
() = / d'z €% (0|T [Ki(x)K}(O)} 10)
5 (mii—(ﬂl—immrm) | (5.50)

The last term in (5.49) represents the QCD continuum contribution inherent in QCD sum-
rule methods [36, 37, [169]. The effect of final state interactions in the 7K channel is quite
large near the kappa pole. Within the framework of generalized linear sigma model, these

are estimated in [241].
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The hadronic and QCD contributions to the Gaussian sum-rules are now equated:
GH (3,7) = TEGYCP (3,7, 50) T" (5.51)

where the QCD continuum has been absorbed from the hadronic side into the QCD contri-
butions. Methods for calculating the QCD prediction GRP from the underlying correlation
function are reviewed in [9]. The QCD side of (5.51)) is diagonalized via the constraint ([5.47))

and the hadronic side of (5.51)) is diagonal because the rotation matrix disentangles the states

(GMy 0 ~
G = = TrGPT™ . (5.52)

0 (GM)y

The resulting diagonal elements of (5.52) are given by

G (5, 7) = aAGECP (s T, s(()l)> — bBGETP <§,T, sé”) (5.53)
GLL(5,7) = —aBGRP (5 T, 50 ) + bAGECP ( 8,7, 5[()2)>
cos? 0 sin’ @
A= : B = = 5.54
cos?f, —sin’ 0, ’ cos? 6, — sin? 0, (5:54)
m? 1
_ ey

where G and G, respectively represent K (700) and K (1430) contributions, and the factor
of mg is combined with G%CD for renormalization-group purposes. Note that each sum-rule
has its own continuum threshold represented by 3(()1) and 3(()2), and the constraint (5.47)) has

been used within the QCD prediction.

The scale factors A and A’ for the isodoublet K scalar meson system can now be calcu-
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lated. The QCD currents in (5.43)) are

Ji _
JACP = , Ji=ds (5.56)
J2

Jo = sin(¢)ul Cy,v555 (Jav“%Cﬂg —a 6)

+ cos(¢)de, Cyuss (dur'Culy + a < B)

(5.57)

where C' is the charge conjugation operator and cot ¢ = 1/4/2 [215, 216]. Given an input
of cosf, = 0.4161 from chiral Lagrangians [7, 211] and the physical mass and width of the
K} states, (we use m, = 824MeV, I'y = 478 MeV for the K§(700) and myx = 1425 MeV,
'k = 270MeV for the K(1430) to be consistent with [I]) one can solve for the
(constant) scale factors A and A’, and optimize the continuum thresholds to minimize the 3

dependence of the scale factors.

The correlation function for the two-quark current J; is given in [226, 242] and the meth-

ods of [9] can then be used to form the Gaussian sum-rule:

G?ch (éa T, 80) =

S

0
3 17 a Qg t .
= 1+ —2) 0% g [ —
87T2/tdt {( + 3 7T) - og(ﬁﬂW(t,s,T)
0
S0 (5.58)

+ mnep; tJ; (pc\/E> Y1 (Pc\/E> W(t,8,7) dt

+enf (4—) bsr=tcion - = 1cion)| |
W (t,5,7)= \/;T_T exp{ <— (t ;ff) } (5.59)

1 1
(C101) = (madg) + 5 (msSs) + — (@ G”) (5.60)
1 1
(C508) = —= (msqoGq) — = (mySoGs)
2 2 (5.61)
167 48 '

- S ((qg)* + (3s)°) — 3 @ (79) (5s) .

where ¢ denotes the non-strange u, d quarks. Because G%CD is being combined with mg, the
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combination satisfies a homogenous renormalization-group equation, which requires evaluat-
ing all running quantities at the renormalization scale v* = /7 [9]. Similarly, the Gaussian
sum-rule related to the four-quark current J; is obtained via

S0

GP (5.7, 59) — / QW (£ 5,7) P20 (1) (5.62)
0

where pQCP(t) is given in [215, 216]. Because this result is leading-order, renormalization
of the current J, represents a higher-order effect and the Gaussian sum-rule G%CD effec-
tively satisfies a homogenous renormalization-group equation, allowing application of the
renormalization-group results of Ref. [0]. For the QCD input parameters we use PDG val-
ues [I] (quark masses, and «ay) and the following QCD condensate [169, 174 [175] [176] and

instanton liquid model parameters [243], 244]

(,G*) = 0.07 GeV*, (5.63)
laoGa) _ (50Gs) _ ) g ey (5.64)

(q9) (ss)
(@) = (—0.24CeV)? | (55) = 0.8(q) (5.65)
n.=28.0x10"* GeV* |, p =1/600MeV . (5.66)
m, =170 MeV , m; = 220 MeV (5.67)

The ms/m, ratio is of particular importance because it appears in both the QCD inputs
and as a parameter in the chiral Lagrangian analysis. We choose 7 = 3 GeV* consistent with

the central value used in Refs. [9] [165].

Fig. [5.6] shows the § dependence of the scale factors for the optimized values of the
continuum for both the ay [32, B3] and K channels. The ay channel results have been
updated from [32], B3] to use cosf, = 0.6304 consistent with the mgy/m, mass ratio used
for the K analysis. The remarkable independence of the scale factors on the auxiliary
sum-rule parameter § demonstrates the validity of the scale-factor matrices connecting chiral
Lagrangians mesonic fields and the quark-level operators in QCD sum-rules. As is evident

from Table [5.2] the best-fit predictions of the scale factors clearly demonstrate the crucial
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universality property required by chiral symmetry.

In addition to providing a bridge between chiral Lagrangians and QCD sum-rules, the
scale factors can also be related to the chiral Lagrangian vacuum expectations values via
(ST = —my(au)/A® and (S}) ~ 1.31(dd)(5s)/A’®. The relation (S'}) is approximate be-
cause it depends on the renormalization scale and relies upon the vacuum saturation approx-
imation. As discussed in [32, 33], the resulting agreement is excellent for (S]) and provides

the approximate scale for (S'}).

Scale Factor (MeV)
350

300

250 F

200

150}

[>]

11070 5
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Figure 5.6: The scale factors A (lower pair of curves) and A’ (upper pair of curves)
are shown as a function of § for optimized continuum thresholds in Table Solid
curves are for the Kj channel and dashed curves are for the ay channel.

Channel s(()l) 352) A N
K 1.61 3.04 0.114 0.276
ao 1.68 2.88 0.106 0.282

Table 5.2: Values for the optimized scale factors A, A’ and continuum thresholds

s(()l), s(()z) for the ap and K channels. All quantities are in appropriate powers of GeV.

In summary, it has been shown that chiral symmetry transformation properties require
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that the scale factor matrices serving as a bridge connecting QCD sum-rules and chiral
Lagrangians must contain universal scale factors for all sectors of the chiral nonets. The
scale factors determined in this work for the Kj system are in remarkable agreement with
the corresponding values previously found in the ag channel [32 [33] (see Table7 providing
a key demonstration of the universality property. With evidence for universal scale factors
now established, more complicated sectors of the scalar nonets can therefore be simplified by
taking input of the universal scale factors from other channels in the nonet. This powerful
synergy between chiral Lagrangians and QCD will enable future progress on more challenging

and controversial aspects of low-energy hadronic physics.
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CHAPTER 6

HYBRID BARYONS

6.1 Hybrid Baryons

As has been discussed in the preceding chapters, since the early formulation of the conven-
tional quark model by Gell-Mann and Zweig [10) [11], hadronic states not conforming to ¢g,
qqq, or 4qq structures have been imagined, and are allowed within QCD. Experiments have
observed and confirmed some of these multi-quark state predictions [19, 20]; however, identi-
fication and confirmation of states with valence gluon content has been elusive. Experiments
are now underway to search for the lowest-lying hybrid meson (¢gq) and scalar glueball (gg)
hadronic states [25].

A less discussed variation on structures beyond the conventional quark model is the
hybrid baryon. Analogous to the ggq structure of the hybrid meson, the hybrid baryon is a
colour-singlet set of three quarks (antiquarks) and a constituent gluon. Unlike quarkonium-
like hybrid mesons, the hybrid baryon spectrum does not carry the “smoking gun” exotic
quantum number signatures that their hybrid meson analogues can; hybrid baryons, like
their conventional counterparts, carry half-integer total angular momentum J, and parity
P € {—1,+1}. Identification of hybrid baryons must be through examining decay processes
or through observation of overpopulated states i.e., more states of a certain quantum number
than predicted by a conventional model. This challenge in identifying hybrid baryons is
magnified by the fact that even the conventional baryon spectrum is poorly understood [245],
as many states predicted by the conventional quark model have yet to be experimentally
observed.

Here we examine the experimental foundation for hybrid baryons, and discuss their status

in the context of the QCD sum-rule methodology.
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6.1.1 Experimental Searches for Hybrid Baryons

Initial interest in hybrid baryon states was kindled by the observation of the Roper resonance
[15], a JP = ;— state now known as the N(1440)%+. The resonance was measured to
be analogous to the proton, but with 50% more mass [246]. The Roper resonance was
understood within the constituent quark model to be consistent with a n = 2 (where n is
the radial quantum number) radial excitation of a nucleon state; however, it was observed
with a mass less than the lower-energy the n = 1 excitation, the N (1535)%_ [246]. This
inconsistency between the measured mass of the Roper resonance and theoretical predictions
of the excitations of the nucleon led some to later propose the Roper resonance as a possible
hybrid baryon candidate [4, 247, 248]. However, in 2009 it was determined that the mass
difference in the constituent quark model could be explained by pion-shielding [246], and the
Roper resonance was indeed a n = 2 radial excitation of the nucleon.

Though the Roper resonance is no longer favoured as a hybrid baryon candidate, there
still remains an active effort to refine our understanding of the baryonic spectrum, and search
for hybrid baryon states in the process. Next door to the GlueX experiment at JLab, the
CLAS12 collaboration has a mandate to map nucleon excitation masses for all J € {%,%
states of P € {—1,+1} for masses up to 3GeV [27]. Through a detailed mapping of the
baryonic mass spectrum, we should be able to identify if the hybrid baryon exists by looking
for extraneous states compared to those that can be identified by the conventional quark

model, strong decays, or by finding states with anomalous EM couplings [249).

6.1.2 Hybrid Baryons in QCD Sum-rules

The earliest study of hybrid baryons in QCD sum-rules [3] was based upon the original gqq

baryon studies of Toffe [250], and examined J* = %Jr hybrid baryons utilizing the current
n = [u"" (2)Cy'u’(z)] fy“GZU(x) (tddi(x))ce“bc, (6.1)

where i represents a spinor index, u” () is a transposed quark spinor, {a, b, ¢} are quark color

indices, d is a gluon color index, and {y, o} are Lorentz indices. Given the symmetries of the
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current (6.1]), the two-point function can be written in terms of two form-factors

My(q) =i [ e 0T {na),(0)} 10 (6.2
= Hl (QQ) gz’j + HQ (q2) (5” (63)
Through a standard pole plus continuum modelling of the phenomenological side of the sum-

rule, Ref. [3] arrives at the following relationships between II; and IIy, through the hybrid

baryon resonance coupling Ay, the hybrid baryon mass My, and the Borel parameter M,

Ay =T (M?) 175 (6.4)
N
M2

A} =10, (M?) WeM?v/MQ. (6.5)
N

Combining these equations allows the extraction of the hybrid baryon mass My. Martyneko

extracted a mass prediction of My = 2.1GeV [3].

Another paper was later published by an independent group reviewing the work of Mar-
tyneko [3], and included nucleon mixing effects [4]. Conflicts between the papers emerged; a
number of correlator disagreements with [3] are highlighted in [4], including the dimension
four NLO and dimension six LO gluon condensates, and the dimension five mixed conden-
sate. The authors in [4] maintained that the Feynman diagrams calculated were identical
to [3]. As well, the resulting continuum, coupling, Borel, and mass parameters between the
two papers disagree considerably; the updated analysis in Ref. [4] predicted My = 1.5GeV,

though this could be accounted for through the addition of nucleon mixing.

Other methodologies give some insight into what the spectrum of hybrid baryons may look
like. The earliest calculations on hybrid baryons in the literature were done using potential
models, including the bag model [247, 251], large N. QCD [252], and the flux tube model
[253]. These methodologies predict similar masses for the J¥ = %+ hybrid baryons, with
the bag model predicting masses of 1.6 — 1.8 GeV [247], and the flux tube model predicting
degeneracy between the J' = {%+, %+} hybrid baryons with a mass of My = 1.87GeV.

More recently, LQCD calculations have predicted a preliminary spectrum of hybrid baryon

states using a pion mass of m, = 396, 524, and 702 MeV [28]. These calculations at heavy

145



pion masses put the JZ = {%+, %+} hybrid baryons at My = 2.5 — 2.7 GeV, which could

line up with the existing literature in the chiral limit.

6.1.3 Calculation of the Correlation Function

To resolve the tension in the current sum-rule literature, we calculated analytical forms
for the leading order correlation function using dimensional regularization including non-
perturbative effects up to dimension six gluon and quark condensates. A summary of our

correlator calculations as well as the corresponding correlators from [3, 4] are included in

Table [6.11

Some methodological issues common to both papers bring into question the viability of
the resulting predictions. In both calculations, the LO dimension four condensate does not
contribute to the sum-rule. This necessitates the calculation of the NLO contribution; how-
ever, the diagrams calculated by both groups (Fig. do not form a complete representation
of the NLO dimension four gluon condensate topologies (Fig. .

As well, both calculations omit restricting the Borel window such that OPE convergence
is enforced and the pole contribution is constrained. We can take the original analysis from
Martynenko [3] and the subsequent analysis from Kisslinger [4] and examine the convergence
of the OPE and the resulting Borel window as a way of assessing the validity of the sum

rules.

A summary of the correlators in [3| [4] are presented alongside our own calculations of
the leading order contributions in Table We note that while our results follow a com-
plete dimensional regularization prescription (including the d dependence contained in the
expressions for the nonzero VEVSs), neither of the previous works follow this convention. In
addition, Martynenko [3] includes O (m) corrections, while Kisslinger et.al [4] work in the
chiral limit. We see, as highlighted in [4], differences emerge in the correlator calcuation,
particularly in the dimension four, five, and six condensate contributions.

(1)

As reported in [3], the optimized parameters for the continuum onsets s, ’ and 382)

as well

146



(a) Diagram I (LO perturba- (b) Diagram II (dimension- (c) Diagram III (dimension-
tion theory) three) four)

(d) Diagram IV (dimension- (e) Diagram V (dimension-

five) five) (f) Diagram VI (dimension-

five)

(g) Diagram VII (dimension- (h) Diagram VIl

fv0) (dimension-five) (i) Diagram IX (dimension-

six gluon)

(j) Diagram X (dimension-six (k) Diagram XI (dimension-
gluon) six quark)

Figure 6.1: Leading order Feynman diagrams calculated for light hybrid baryon, up
to and including dimension six condensates.
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FIG. 1.

Figure 6.2: Original Feynman diagrams calculated in [3, [4]; figure taken from [3].

(d)

(f)

Figure 6.3: Next-to-leading order dimension four gluon condensate contributions.
Topologies (a), (b), (e), and (f) are not accounted for in [3], 4].
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Martynenko [3] Kisslinger et.al [4] This work
PT 921607r6 9216070 27648075¢ 9216070
log(—f) (a°+3ma'd)(dq) 10g<—§>q6<riq> 6/ 10g<—%>‘16<‘?‘1>
v < ) v
3D Quark 115277 T o1sent 1608w + 230471
q* log (J—Q> (96wm<02)+37¢<ac2>) 17¢* log G%) ¢{aG?) e
v HG?)
4D Gluon 7379875 - 7379875 614474
' 510g(75—2) (q4 104 mg? g)(qUGq) 5log (*Zé)(f@gG(D 71::;2:2(1)
5D Mixed | — 204874 - 102474 71log (—3—2) (a* = L% ma?g) (q0Ga)
( ) ( 2) * 204874
¢’ log( — %5 (39m+7g)< 3G3) ?log| — L3 ) ¢4(g>G3) 4 33
v >4(g°G®)
6D Gluon — 245765 - 307270 T 230474
210g(—i>(¢ 3m)(qqqq) 210g(—£)¢<qqqq> 210g<—i>¢<qqqq)
6D Quark T 3672 3672

Table 6.1: Summary of hybrid baryon correlators across the literature organized by
contribution to the OPE, including calculations from this work. Note that our calcu-
lation only reflects leading order contributions in the dimension four gluon condensate,
while [3], 4] include 4D NLO corrections.

as the calculated ground state hybrid baryon mass My are given to be

s(()l) = 6.3GeV?

s = 6.1 GeV?

The parameters as reported in [4] are

In both analyses, an approximate Borel scale of 7

My = 2.1GeV.
Y — 2.80 GeV?
s = 2.95GeV?

~ _1

~ —
2
Mg,

(6.9)
(6.10)
(6.11)

is taken. Using these criteria, we

can compare the relative contributions of the perturbative and nonperturbative components

to investigate the predicted convergence of the OPE (Figures - .
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Figure 6.4: Percentage breakdown
of the absolute contributions of each
portion of the IT; (inner ring) and Il
(outer ring) correlators from [3] using

parameters in -

Figure 6.6: Percentage breakdown
of the absolute contributions of each
portion of the II; (inner ring) and IIy
(outer ring) correlators from [4] using

parameters in — (6.11)*.
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Figure 6.5: Percentage breakdown
of the contributions of each portion of
the II; (left) and II (right) correla-
tors from [3] with relative signs intact

using parameters in - *.
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Figure 6.7: Percentage breakdown
of the contributions of each portion of

the II; (left) and II, (right) correla-
tors from [4] with relative signs intact

using parameters in — (6.11)*.



In the Borel window specified in [3], II; is predominantly composed of perturbative con-
tributions (Fig. ; however, the relative contributions between the dimension four NLO
and dimension six LO condensate terms are not in line with the requirements of OPE conver-
gence [49]. In the analysis from [4], we see that OPE convergence within the Borel window
is significantly worse, with the leading order contribution to II; coming from the dimension
six LO gluon contribution. In both analyses, we see that Il is only composed of dimension
three and dimension five condensate terms (Fig. and , carrying opposite signs in both
cases (Fig. and [6.7).

While our calculations of the correlator presented in Table do not resolve any dis-
agreements in correlator construction between Refs. [3 4], our analysis of these works does
raise concerns regarding the validity of these sum rules with the relative contributions in-
dicating convergence issues in the relevant OPEs, and inconsistencies in the calculation of
NLO dimension four condensate contributions. A careful treatment of a QCDSR analysis

concerning the hybrid baryons is still needed.

*Abbreviations in Figures to correspond to different contributions to IT; (left) and Il from the
OPE; PT is perturbation theory, 3D is the dimension three quark condensate, 4D is the dimension four gluon
condensate, 5D is the dimension five mixed condensate, 6Dg is the dimension six gluon condensate, and 6Dq
is the dimension six quark condensate.
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CHAPTER 7

THE END

Since the conception of quarks [10, 11, 12] 13], physicists have imagined how the con-
stituents of mesons and baryons might behave and interact to form new, novel forms of
matter. We have only recently begun to see experimental hints of such diversity of struc-
tures through the observations and confirmation of multiquark states at modern particle
colliders [19, 20, 2], 122]; these results make the next chapter of hadronic physics an ex-
citing prospect as we search for other exotic states, particularly those with explicit gluonic
content [25]. Many questions within QCD are still unanswered; a deeper investigation into
the nature of the strong interaction between quarks and gluons, the internal structure of
hadrons (distinguishing different models of hybrid and multiquark states in particular), and
the mechanism of confinement are just some of the challenges facing physicists. To overcome
the challenges associated with the non-perturbative nature of QCD, multiple methodologies
must be employed to ensure a complete understanding of the dynamics of the strong interac-
tion. This includes model-based approaches, lattice QCD [28], 29, [30], the Dyson-Schwinger
Bethe-Salpeter equations [31], and QCD sum rules [36] 37, [49] 511, 15| 165, 167, 254]. Our
methodology follows the tradition of the last approach, and we have explored approaches that
augment the sum rule methodology with computational tools and new analytic approaches
to extract improved predictions of exotic hadron states to be tested against this and future
generations of high-energy physics experiments [24] 25|, 26].

The focus of this work on exotic hadrons began with examining hybrid meson struc-
tures [49, 51, 52] and predicting hybrid mass and multiplet structures across both closed
and open-flavour hybrid mesons; this is an area of hadronic physics that still requires much
experimental work. At higher masses, more sophisticated detectors are necessary to distin-

guish conventional states and their exotic counterparts, both in the measurement of mass and
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decay properties. At lower masses, the GlueX experiment is well underway in their search
for the lowest-lying hybrid multiplet [24] 25]; with any luck, their search for the exotic 17
vector will be successful, and we may begin studying properties of the gluon directly as a
constituent particle. Finally, as we progress further into the non-perturbative realm of QCD,
at masses lower than 1 GeV the scalar meson puzzle emerges [14), [33] 34]. The behaviour of
low-energy QCD at these scales suggests a tendency towards exotic four-quark structures,
perhaps due to an attractive force between mesons [14]. At these energies, difficulties on
both the experimental and theoretical side emerge making interpretation of the data in this
domain unclear. Often, theoretical methods in these energies will approximate fundamental
quark degrees of freedom with approximate hadronic degrees of freedom due to the compli-
cated non-perturbative effects. My work at these energies focuses on joining hadron-level
and quark-level methods to leverage benefits from both paradigms in an effort to understand
more about the structure and composition of these exotic hadrons at low energies [33] [34].
To date, we have found excellent agreement between scale factors determined from mixing
between two and four-quark nonets in both the isodoublet and isotriplet scalar mesons, indi-
cating a robust relationship between the quark-level description of QCD sum rules, and the
meson-level description from chiral Lagrangians. Finally, as we look forward to upcoming
and next-generation experimental searches [27], I assess what work needs to be done in the
future of QCD sum rules predicting properties of the experimentally and theoretically more

complex hybrid baryon states.

QCD sum rules has had a long history with many successes in extracting bound-state pre-
dictions from the fundamental degrees of freedom of the strong interaction. While calculating
masses is an important piece of identifying exotic hadron states, predictions around decay
widths and mechanisms are also necessary; this could be an avenue of future work in exotic
hadron theory. Computational tools are now widely available that empower the calculation
of higher-order processes, both in terms of loops and number of external particles. Improv-
ing the precision of theoretical methods is vital to keep pace with the precise experimental
data coming from modern experiments. By exploring different approaches and applications
of QCD sum rules, modernizing the methodology with computational tools, and improving

upon the existing formalism through cooperation with other approaches, perhaps we may
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move closer towards a stronger understanding of quarks, gluons, and how they interact.
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APPENDIX A

DERIVATION OF THE HOLDER INEQUALITY IN GAUS-

SIAN SUM-RULES

A.1 Deriving the Holder Inequalities for Gaussian Sum-
Rules

Previous investigations of hadronic systems analyzed using Laplace sum-rules have utilized
Holder inequalities to fundamentally restrict the 7 window [79, [I71]. Here, we derive expres-
sions for the Holder inequalities in the framework of Gaussian sum-rules.

The Holder inequality is expressed generally as

[ rosoal< ([ \f<t>|pdu>’l’ ([ (t)\qdu>}l , (A1)

under the condition that

oy (A.2)
b q

We consider the Gaussian sum-rule (GSR), defined as

(s-1)?

@mﬁﬁ@:/ T (£) 5 S ", (A.3)

to VATT

Given that ImlI (¢) is positive for diagonal correlators, we can define a measure, and consider
inequality (A.1) with the assignments

dp = ImlI (¢) dt (A.4)
a 67% ’
fi)y=t (@) (A.5)
— i
g(t)=t ( \/ﬁ) (A.6)
t1 =10, 12 = 50 (A.7)
a+b=1 a+p8€Z (A.8)
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With these definitions, our Holder inequality becomes

s 6_(5:5)2 a+b s 6_(5202 al|P %
toth . Imll (t) dt| < / ¢ - Tl (¢) dt
/to ( vVarT ) ®) s ( vVarT ) ®)

Q=

(=12 b9

X /to tﬁ<\/%> ImII(t)dt | . (A.9)

We recognize the left side of this inequality as the definition of the GSR ( - fork=a+p
subject to (A.8). Thus,

3=

o2y 4P

50 e ar
t* ImlII (¢) d¢
/to < VAarT ) (®)
(s z>2
X / ImIT (¢
to
S0 ap(.s )2
/ tap 4T
to 47TT

—bgq (3-1)

K Bal——— | Im E T, %0, S
X (/to t (mbq>1 H()dt) , {7, to, 50, } > 0. (A.10)

’Goc-‘rﬂ (7_7 §> SO)l

Q=

IA

. . . . \/ap®? N T .
We can clean this expression up by introducing a factor of vap™ OT e into each integral

on the right side,

(s-1)?

50 o e \/a_pap P
Gays(T,8,80) < / tP — — | ImII (¢) d¢
‘ +pB ( 0)| ( o ( m P \/@ p) ( ) >

S g 1
X (/t B4 ( N \/‘/b__qbq>1 I1(t) dt) (A.11)

1
(=) P
<1 ! /sotap N IT (¢) dt
< 2 —F——ap | 1M
Vap™ \/qu to 47ralp g
1
50 e_bq(SZt)2 1
X P ———— | ImII (¢)dt | . (A.12)
bq
to dmg
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Factoring out the appropriate power of our denominator, we can simplify the right side in

terms of our GSR (A.3)),

R 1 1 1 1
|Ga+5 (Ta S, SO)| S a

b a—1 p—1
Vapr \/bq |\ S

47?&
1
80 —bq<§7;£> 1
x / toa | S| ImlI (¢) dt
to 47TbT—q
1 1 1 1
|GO¢+B (7_7 S, S )’ S\/a—a b a1 b1
p \/b_q 47TL p 47Tbl q
ap q
LT Nk (T
X Gép (a—p,s,so) G, <@,3,30> . (A.13)

We can further simplify the coefficient on the right side using (A.8§]),

) 1 1 1
‘Ga+,3 (7—78780)’ S_ 1 1
T TP E
ap bq
I (T
X Gap (@, S, So> Gﬁq (E, S, 80) . (A14)
Defining aT—p =1 and bT—q = 79, and recognizing that }D + % =1,
TNz (T2\27 2 3
Gass (. 5, 50)| < (?1) v (f) "Gy (11,8, 50) G, (T2, 8, 50) (A.15)

We can parameterize (A.15)) by allowing

1
_:w’

=l-w 0<w<l1 (A.16)
p

|

and consider the zero-weight GSR (o = = 0), such that

R TING /7o) 52 » R iy .
\Go(r,s,so)|§<—1> (—2> G¥ (11, 5, 50) GL™ (7, &, 50) - (A.17)

T T

However, we must be certain that our assignment of 7 and 7 satisfy the requirements of
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(A.8). We require that

a+b=1
() ()
7—]_ 7—2
Sr=—2 (A.18)

- WTo =+ (1 — U))Tl
So, our final expression for the zero-weight GSR is

Gy T1T2 sl < wry + (1 —w)m B wr+ (1 —w)n =
WTy + (1 — W)Tl

T2 1
x G (11,8, 50) Gé_w (72,8, 50) - (A.19)
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