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Abstract
The extension of point-to-point communication to multi-node configurations has significant
applications in internet and telecommunication networks. Quantum resources promise notable
advantages in such settings. Here, we demonstrate a novel quantum advantage in simulating
multiple access channels (MACs)-a common network configuration where multiple distant
senders transmit messages to a single receiver (e.g. the uplink from several mobile phones to a
server). Specifically, we show that qubit transmission outperforms its classical counterpart, even
when the latter is supplemented with classical shared randomness. Remarkably, unlike the seminal
quantum superdense coding protocol, this advantage is achieved without any pre-shared
entanglement between the senders and the receiver-a feat prohibited by Holevo and
Frenkel–Weiner no-go theorems in the one-sender-one-receiver scenario. The receiver’s ability to
simultaneously decode quantum systems from multiple senders underpins this distinct advantage
in the MAC setup. Some of our MAC designs are inspired by constructs in quantum foundations,
such as the Pusey–Barrett–Rudolph theorem and ‘quantum nonlocality without entanglement’.
Beyond network applications, this quantum advantage reveals a deeper connection to ‘quantum
nonlocality without inputs’ phenomenon and suggests potential for semi-device-independent
certification of entangled measurements.

1. Introduction

The elementary model of communication, originally formulated in Claude Shannon’s seminal 1948 work
[1], addresses the reliable transmission of information between two distant servers. Its quantum
counterpart-quantum Shannon theory [2]-seeks to exploit the non-classical properties of quantum systems
to enhance information transmission rates [3]. For instance, the celebrated quantum superdense coding
protocol leverages quantum entanglement, pre-shared between a sender and a receiver, to transmit two bits
of classical information by communicating a two-level quantum system [4]. Subsequently, this study was
extended to noisy quantum channels, leading to the concept of entanglement-assisted classical capacity of a
quantum channel [5–7]. However, quantum advantages come with inherent limitations, such as the Holevo’s
theorem, which constrains the communication capacity of a quantum system to be the same as its classical
counterpart in the absence of any pre-shared entanglement [8]. More recently, Frenkel and Weiner extended
this result, showing that any input–output correlation achievable with an n-level quantum system can also be
achieved through an n-state classical system when no entanglement is pre-shared between the sender and
receiver [9]. This, in turn, renders the ‘signaling dimension’ of quantum and classical systems identical,
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further motivating the study of the structure of composite physical systems based on timelike correlations.
[10] (see also [11–13]).

Here, we present a novel advantage of quantum communication in the network setting involving
multiple distant parties exchanging information among themselves [14]. Specifically, we demonstrate that
communicating a quantum system outperforms its classical counterpart in a widely used communication
network called the multiple access channel (MAC) [15–18]. Crucially, unlike the superdense coding protocol,
this advantage is achieved without any pre-shared entanglement between the senders and receivers. A MAC
involves multiple distant senders transmitting their respective messages to a common receiver, such as the
uplink signals from several mobile users on the ground to a common satellite server (see figure 1). In
simulating a MAC, the goal is to replicate its function with minimal communication between the senders and
the receiver. Remarkably, we identify instances where transmitting qubits from each sender enables MAC
simulation tasks that become infeasible when qubit channels are replaced with classical bit (c-bit) channels.
Moreover, this quantum advantage persists even when the classical channels are supplemented with
unlimited classical correlations (also called shared randomness (SR)). Notably, some of our MAC designs
draw inspiration from well-known results in quantum foundations. For instance, building on the
Pusey–Barrett–Rudolph (PBR) theorem [19], which establishes that the quantum wavefunction represents
the reality of a physical system rather than merely a description of it, we construct a two-sender MAC that
demonstrates the desired quantum advantage. We then explore another intriguing concept, known as
‘quantum nonlocality without entanglement’ (QNWE) [20], where an orthogonal product basis of a
composite quantum system cannot be perfectly discriminated using local operations and classical
communication (LOCC). However, being mutually orthogonal, these states can be perfectly distinguished
under global operations. Leveraging this concept we design a distinct three-sender MAC. We further propose
a generic approach to construct a class of MACs, all demonstrating quantum advantages. Importantly, the
origin of the quantum advantages crucially lies in the receiver’s ability to jointly process the quantum systems
received from multiple senders, enabling global decoding that surpasses the limitations imposed by the
Holevo–Frenkel–Weiner no-go theorems in one-sender-one-receiver communication setups [8, 9].

2. Communication in network scenario

The simplest communication setup involves a sender and a receiver, with their shared goal reducing to the
task of channel simulation. A channel connecting the sender S and receiver R is mathematically described as
a stochastic map from the sender’s input alphabet to the receiver’s output alphabet. This is expressed by the
probability vectorN = {p(a|x) | a ∈ A,x ∈ X}, where X denotes the sender’s input set, A the receiver’s
output set, and p(a|x) the probability of output a ∈ A given input x ∈ X, satisfying

∑
a∈A p(a|x) = 1 for all

x ∈ X. To simulate the channel, the sender encodes input x into a physical state ωx, which is transmitted to the
receiver via a channel described by the action Λ : Ωin → Ωout, where Ωin and Ωout are the state spaces of input
and output systems, respectively. The channel may distort the transmitted state, resulting in ωy at the receiver
instead of ωx. The receiver then performs an operationO on the received state, producing an output a ∈ A.
In an ideal noiseless scenario, the task may require the receiver to infer the sender’s input x. The information
transfer is quantified by the mutual information I(X : A), which measures the shared information between X
and A, i.e. I(X : A) =H(X)−H(X|A), whereH(X) is the entropy of X, andH(X|A) is the conditional entropy
of X given A, defined as H(X|A) =H(X,A)−H(A). This quantifies the average uncertainty about X given
knowledge of A. When the sender uses a two-level classical system (a cbit) to encode X, the maximummutual
information the receiver can achieve is 1 bit. For its quantum counterpart, the qubit, infinite pure-state
encodings are possible. However, the no-go theorem of Holevo establishes that even for qubits, the mutual
information remains bounded by 1 bit. More recently a stricter version of this no-go result is established by
Frenkel and Weiner [9]. They have demonstrated that the set of achievable probability distributions {p(a|x)}
using an n-level quantum system is identical to that achievable by an n-level classical system. Notably, this
result assumes SR as a free resource. Subsequent studies, however, explored scenarios where SR is treated as a
costly resource, leading to advantages of qubit communication over it classical counterpart [21–23].

An important question here concerns the status of Frenkel and Weiner kind of no-go result in network
settings. We investigate a particular network scenario that involves multiple senders and a single receiver,
commonly known as the MAC. Mathematically, a MAC is represented as a stochastic map from the input
alphabets of the senders to the output alphabet of the receiver. A MAC with K senders {Si}Ki=1 and one
receiver R is described by the probability vectorN K = {p(a|x1, . . . ,xK) | a ∈ A,xi ∈ Xi}, where Xi is the input
set of the ith sender, A is the receiver’s output set, and p(a|x1, . . . ,xK) represents the probability of outcome
a ∈ A given inputs xi ∈ Xi. This satisfies

∑
a∈A p(a|x1, . . . ,xK) = 1 for all x⃗= (x1, . . . ,xK) ∈

∏K
i=1Xi. We

demonstrate that quantum communication offers significant advantages over classical communication in
certain channel simulation tasks, even when the receiver shares independent unlimited classical correlations
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with each sender. Furthermore, in the more general scenario where global classical correlations exist among
all parties, quantum communication still outperforms classical methods. This result challenges the
Frenkel–Weiner no-go theorem in the context of network communication. The observed quantum advantage
is initially achieved through the use of entangled measurements by the receiver. Remarkably, we also show
that entangled measurements are not necessary as separable measurements can also achieve similar quantum
advantage. This finding broadens the scope of quantum advantage in network communication and
highlights its robustness across different measurement paradigms.

3. Results

Consider the scenario where each sender transmits only 1 bit of classical information to the receiver to
simulate a given MAC. Without local or SR, the parties must rely solely on classical deterministic strategies.

Definition 1. A classical deterministic strategy utilizing 1-bit communication from each sender to the receiver
is defined by an ordered tuple (E1, · · · ,EK,D), where Ei : Xi 7→ {0,1} for i ∈ {1, · · · ,K}maps the input set of
the ith sender to a single bit, and D : {0,1}K 7→ Amaps the bits received from all senders to the output set A.

By Ei we denote the set of all possible deterministic encodings for the ith sender, whileD represents the
set of all possible deterministic decodings for the receiver. The number of such strategies is finite whenever
the sets Xi and A have finite cardinalities, and the set of all probability vectors obtained using such strategies,
denoted as CK

ds, forms a non-convex set in Rn, where the exact value of n depends on the cardinalities of the
input and output sets. When each party randomizes their respective deterministic strategies locally, they
implement a classical local strategy represented by the ordered tuple (P(E1), . . . ,P(EK),P(D)) of probability
distributions. Here, P(Ei) denotes the distribution over encoding functions, and P(D) denotes the
distribution over decoding functions. Set of all such strategies, denoted as CK

ls , again forms a non-convex set.
The introduction of SR among the parties enables them to employ correlated classical strategies.

Definition 2. A correlated classical strategy leverages classical SR and is represented by a probability distribu-
tion P(E1 × ·· ·× EK ×D) over the deterministic strategies.

For finite input–output cases, the collection of all correlated classical strategies, denoted as CK
cs, forms a

polytope embedded in Rn. The extreme points of this polytope correspond to the deterministic strategies.
Different physical configurations arise depending on the type of SR available. In definition 2, SR is permitted
among all possible subgroups of the parties, and the SR resource in this configuration is denoted as $G. On
the other hand, ∪K

i=1$RSi denotes a configuration in which the receiver shares classical correlations with each
sender independently (see figure 1)5. Unless specified otherwise, it will be assumed that an unlimited
amount of SR is permitted among the parties within a designated subgroup. Strategies allowing SR among
only some subgroups of parties form non-convex sets that lie strictly between CK

ls and C
K
cs. Moving to the

quantum setup, with qubit communication, a quantum deterministic strategy is defined as follows.

Definition 3. A quantum deterministic strategy utilizing 1-qubit communication from each sender to the
receiver is an ordered tuple

(
Eq1, · · · ,E

q
K,D

q
)
. Here, Eqi : xi 7→ |ψxi〉Si ∈ C2

Si is the encoding strategy for the ith
sender, mapping each input xi ∈ Xi to a qubit state |ψxi〉. The decoding process is governed by Dq, which is

defined as {Πl ∈ P
(
⊗K

i=1C2
Si

)
|
∑|A|

l=1Πl = I}, representing a positive operator-valued measure (POVM) with
|A| outcomes that the receiver uses for decoding.

In definition 3, P(H) denotes the set of positive operators acting on the Hilbert spaceH. The set of
quantum deterministic strategies is denoted as QK

ds. Like C
K
cs, we can also define the set QK

cs, where each
sender transmits one-qubit to the receiver and classical SR is available among them. For the case involving a
single sender, with the input set denoted as X, the Frenkel–Weiner result implies that Q1

cs = C
1
cs for all input

cardinalities |X| and output cardinalities |A|. This finding rules out any potential advantage of qubit
communication over c-bit communication in the point-to-point communication scenario [9]. Interestingly,
in the following, we establish that a Frenkel–Weiner kind of limitation theorem does not apply to MACs
involving more than one sender. We substantiate this claim by demonstrating novel advantages of qubit
communication over its classical counterpart in two-sender and three-sender MACs.

Quantum advantages.– Extending beyond the point-to-point communication framework, in our first
example we examine a MAC comprising two senders and a single receiver. Each sender is assigned
independent two-bit strings, x ∈ {0,1}2 and y ∈ {0,1}2, respectively, while the receiver generates a two-bit

5 For clarity, consider the shared resource $S1S3R ∪ $S1S5 . While $S1S3R enables S1, S3, and R to correlate their encoding-decoding strategies,
S1 and S5 can only correlate their encoding strategies through $S1S5 . It is important to note that, given the resources $S1S3R ∪ $S1S5 , S3 and
S5 cannot employ a correlated strategy.
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Figure 1.Multiple access channel with K distant senders and one receiver,N K ≡ {p(a|x1, · · · ,xK) | a ∈ A, xi ∈ Xi}. Left figure
depicts each sender shares independent correlation with the receiver, whereas the right figure illustrates the global correlation
shared among all senders and the receiver.

output string, a ∈ {0,1}2. The quantum strategy employed to reproduce the MAC is as follows: the senders
respectively employ the encodings{

Eq1 : 00 7→ |0〉, 01 7→ |+〉, 10 7→ |−〉, 11 7→ |1〉
Eq2 : 00 7→ |0〉, 01 7→ |−〉, 10 7→ |+〉, 11 7→ |1〉

}
; (1)

where {|0〉, |1〉} is the computational basis of C2, and |±〉 := (|0〉± |1〉)/
√
2. The receiver performs a

four-outcome two-qubit maximally entangled basis measurement on the qubits received from the senders:

M :=
{
|ψij〉〈ψij|; |ψij〉 :=

(
I⊗H1−jXi⊕jZi⊕j

)
|ϕ+〉, i, j ∈ {0,1}

}
and decodes the two-bit outcome, denoted by a, as ‘i (i⊕ j)’ when the projector |ψij〉〈ψij| clicks. Here,
|ϕ+〉 := (|00〉+ |11〉)/

√
2, H : |0〉 (|1〉)→ |+〉 (|−〉), and X,Z are the Pauli gates. The resulting MAC can be

compactly represented as,N 2
PBR ≡

{
p(a|x,y) | a,x,y ∈ {0,1}2

}
, where

p(a|x,y) =


1/2, when a= x⊕ y;
0, when a= x⊕ y;
1/4, otherwise;

(2)

a= x⊕ y denotes bit-wise XOR, i.e. ai = xi ⊕ yi for i = 1,2 (explicit form of the stochastic matrix is
provided in the appendix A). Notably, this quantum strategy draws inspiration from the renowned PBR
theorem in quantum foundations [19], which in turn suggests the nameN 2

PBR for the resulting MAC. By
construction,N 2

PBR allows a simulation strategy in Q2
ds. We now proceed to establish an impossibility result

regarding simulation of this MAC with qubit communication replaced by its classical counterpart.

Proposition 1. N 2
PBR cannot be simulated using 1-bit communication from each sender to the receiver, even

when the communication channels are supplemented with the classical SR of type $RS1 ∪ $RS2 .

Proof. (Outline) It is important to note that a limited number of conditional probabilities in N 2
PBR ≡

{p(a|x,y)} are zero. We begin by identifying the classical deterministic strategies that adhere to these
zero conditions. Notably, only 48 deterministic strategies within C2

ds are compatible with these constraints.
Subsequently, we demonstrate that any strategy derived from convex combinations of these 48 deterministic
strategies, which reproducesN 2

PBR, necessitates that all three parties share global randomness $G among them-
selves. This completes the proof, with comprehensive calculations detailed in the appendix A.

Proposition 1 underscores the advantages of qubit communication over classical bits (c-bits) within a
network communication framework. However, it is essential to recognize that the quantum advantage is
somewhat constrained. While c-bit channels supplemented with the side resource ∪2

i=1$RSi are insufficient to
simulateN 2

PBR, a classical strategy can be employed if the resource $G, i.e. global SR among the three parties,
is permitted.

4
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Figure 2. Encoding strategies in Polygon MACs (m= 5,6, · · · ,9). Upon receiving the input u, each sender prepares a qubit state
ρu =

1
2
(I+ cos(2πu/m)σZ + sin(2πu/m)σX) from the XZ plane of the Bloch sphere and sends the encoded state to the

receiver, wherem denotes the number of vertices of the polygon. Encoding for (a) pentagon-MAC (m= 5) (b) hexagon-MAC
(m= 6), and (c) nonagon-MAC (m= 9) are shown above.

Table 1. Quantum advantage in simulating polygon-MAC.

N 2
m Classical bound (km) Quantum value

m= 5 w5[pc]⩽ 4 15(
√
5− 1)/4≈ 4.63525

m= 6 w6[pc]⩽ 6 6.75
m= 7 w7[pc]⩽ 2 ≈ 2.61443
m= 8 w8[pc]⩽ 8 12

√
2 − 8≈ 8.97056

m= 9 w9[pc]⩽ 2 ≈ 2.76003

PolygonMAC: We now present a class of two-sender MACs that exhibit a more pronounced quantum
advantage, where classical strategies become unattainable even with the inclusion of the side resource $G. In
this setup, the senders receive inputs x and y from the set {0, . . . ,m− 1}, while the receiver generates a binary
output a ∈ {0,1}. The probabilities {p(a= 0|x,y)} uniquely characterize the MAC, as the other probability
values are determined by normalization. Denoting p(a= 0|x,y) as p(x,y), we define the MAC
N 2

m ≡ {p(x,y)} as

p(x,y) := Tr
[
|ϕ+〉〈ϕ+|ρx ⊗ ρy

]
,

where, |ϕ+〉 := (|00〉+ |11〉)/
√
2,

and ρu =
1

2
(I+ cos(2πu/m)σZ + sin(2πu/m)σX) , (3)

for u ∈ {x,y} (see figure 2). It follows from our construction that all these MACs can be effectively simulated
using a quantum strategy based on qubit encoding. The encoding states reside on the vertices of anm-sided
polygon situated in the xz-plane of the Bloch sphere, and we thus refer to them as polygon-MACs. Our next
result demonstrates a more significant quantum advantage in simulating these polygon-MACs.

Proposition 2. For m ∈ {5, . . . ,9}, the polygon-MACsN 2
m cannot be simulated using the classical strategies C2

cs.

Proof. Since the set of strategies C2
cs is convex and compact, we can employ the classic Minkowski–Hahn–

Banach hyperplane separation theorem from convex analysis. This theorem allows construction of a witness
operator (or hyperplane) to check whether a given point lies within a convex compact set or not [24]. For each
m ∈ {5, . . . ,9}we come up with the an explicit witness operatorwm. Accordingly, for any strategy pc ∈ C

2
cs the

following inequality is satisfied

wm [pc] := wm · pc =
∑
x,y

wx,y
m pc (x,y)⩽ km, (4)

where km denotes the optimal valued achieved through the strategies from the set C2
cs, and it is determined by

evaluatingwm[pc] for all deterministic strategies. Representingwm ≡ (wx,y
m ) as amatrix, withwx,y

m as the element
in the xth row and yth column, the explicit forms of the witness operators are detailed in the appendix B.
The quantum strategy, as defined in equation (3), yields a value exceeding km. The classical bounds and their
corresponding quantum violations are summarized in table 1. This concludes the proof.

The quantum advantages established in propositions 1 and 2 differ from those in communication
complexity scenarios [25]. In communication complexity, the goal is to compute a function with inputs
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Figure 3. Q3
ds strategy simulating the MACN 3

shift. While the encoding states are symmetrically chosen from the xz-plane of the
Bloch sphere, the receiver employs the decoding measurement in SHIFT basis [20].

distributed among distant parties while minimizing communication among the parties. Examples of
quantum advantages include quantum random access codes (RACs) [26–28], where non-classical properties
are exploited in both encoding and decoding steps. The sender encodes the inputs in system’s states prepared
in quantum superposition (a nonclassical feature), while the receiver selects decoding measurements from a
set of incompatible measurements (again a nonclassical feature). In Holevo and Frenkel–Weiner
point-to-point communication, the lack of input to the receiver precludes the use of non-classical features at
the decoding step. Nevertheless, propositions 1 and 2 demonstrate that quantum advantages can still be
realized when multiple senders are involved. In such cases, the receiver can perform global measurements,
such as entangled basis measurements, on the received quantum systems, thereby enabling these advantages.

Naturally, the question arises: is an entangled basis measurement necessary to achieve such an advantage?
Interestingly, we will now demonstrate that this is not the case in general. For this, we consider a MAC
involving three senders and one receiver. Each sender is provided with independent two-bit strings as inputs,
X,Y,Z ∈ {0,1}×2, while the receiver produces a three-bit string output A ∈ {0,1}×3. Here, we adopt a
reverse engineering approach to introduce the quantum strategy in Q3

ds that leads to the desired MAC (see
figure 3). The receiver employs a decoding measurement in a product basis known as the SHIFT ensemble,
and we will refer to the resulting MAC asN 3

shift. The resulting MAC can be expressed compactly as

N 3
shift ≡

{
p(a|x,y,z) = ζη+ζ

(3−η)
−

}
, (5)

x,y,z ∈ {0,1}×2
, a ∈ {0,1}×3

, ζ± :=
1

2

(
1± 1√

2

)
,

where, p(a|x,y,z) := 2δ3,η − 3δ2,η − 2δ1,η − 2δ0,η,

η :=


δx1,a1 + δy1,a2 + δz1,a3 , if a1 = a2 = a3,

δx1,0 + δy1,1 + δz2,a3 , if a1 = a2 6= a3,

δx1,1 + δy2,a2 + δz1,0, if a3 = a1 6= a2,

δx2,a1 + δy1,0 + δz1,1, if a2 = a3 6= a1.

 (6)

Here, δ denotes the Kronecker Delta symbol. Notably, the SHIFT measurement demonstrates the
phenomenon of ‘quantum nonlocality without entanglement’ (QNWE) [20] (see also [29]), and its
implementation requires a global interaction among the three qubits [30]. Our next result establishes that
N 3

shift cannot be simulated using the corresponding classical strategies.

Proposition 3. The MACN 3
shift cannot be simulated using any strategy from the set C3

cs.

6
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Proof. Denoting the input string as s= s1s2, encoding states of the respective senders are given by

ψs ≡ |ψs〉〈ψs|=
1

2

[
I+

(−1)s1√
2
σZ +

(−1)s2√
2
σX

]
, (7)

where s ∈ {x,y,z}. It is important to note that the encoding states are symmetrically chosen from the xz-plane
of the Bloch sphere. For decoding, the receiver performs SHIFT basis measurement [20] on the three qubits
received from the senders and decodes the outcome according to the following strategy:

|ϕ0〉 := |000〉 7→ 000, |ϕ1〉 := |01−〉 7→ 001,

|ϕ2〉 := |1− 0〉 7→ 010, |ϕ3〉 := |+ 01〉 7→ 011,

|ϕ4〉 := | − 01〉 7→ 100, |ϕ5〉 := |1+ 0〉 7→ 101,

|ϕ6〉 := |01+〉 7→ 110, |ϕ7〉 := |111〉 7→ 111

 . (8)

The 8× 64 stochastic matrix of N 3
shift has some interesting symmetry. To note this symmetry, consider the

case where all the senders have input ‘0’, i.e., x = y = z = 00. The probabilities of different outcomes at the
receiver’s end read as: {

p(000) = ζ3+, p(011) = p(101) = p(110) = ζ2+ζ−

p(001) = p(010) = p(100) = ζ2−ζ+, p(111) = ζ3−,

}
,

where ζ± := 1
2 (1±

1√
2
). In other words, exactly one outcome occurs with probability ζ3+, exactly three occur

with probability ζ2−ζ+, exactly three occur with probability ζ−ζ
2
+, and the remaining one occurs with probab-

ility ζ3−.Interestingly, for any of the input-triples ( x, y, z) ∈ {0,1}×2 ×{0,1}×2 ×{0,1}×2 , exactly the same
pattern with the same probabilities hold (we call it the “1− 3− 3− 1” pattern). Thus, each of the columns of
this 8× 64 Stochastic matrixN 3

shift are identical up-to some permutation of the rows. Consider now a witness
operatorWshift ≡ {Wa|x,y,z | x,y,z ∈ {0,1}×2, a ∈ {0,1}×3}, where

Wa|x,y,z := 2δ3,η − 3δ2,η − 2δ1,η − 2δ0,η . (9)

Here, η is as defined in equation (6). We now proceed to evaluate the value ofN 3
shift for this witness operation,

which becomes

Wshift

[
N 3

shift

]
≡Wshift · N 3

shift

:=
∑
x,y,z,a

Wa|x,y,z× p(a|x,y,z)

=
∑
x,y,z

{∑
a

Wa|x,y,z× p(a|x,y,z)

}

=
∑
x,y,z

{
3∑

η=0

[1× (+2)δ3,η + 3× (−3)δ2,η

+3× (−2)δ1,η + 1× (−2)δ0,η]× ζη+ζ
(3−η)
−

}
=

∑
x,y,z

{
2ζ3+ − 9ζ2+ζ− − 6ζ2−ζ+ − 2ζ3−

}
= 64×

{
2ζ3+ − 9ζ2+ζ− − 6ζ2−ζ+ − 2ζ3−

}
= 10

(
5
√
2− 6

)
≈ 10.7107 . (10)

To establish the quantum advantage we are now left to show that any strategy in C3
cs yields a value lower than

quantum value for the witness operatorWshift. In appendix C we systematically analyze all the deterministic
classical strategies and show that the classical values are upper bounded by 8. This completes the proof.

7
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Proposition 3 offers an additional insight. As noted by Bennett and Shor [31], depending on whether
product or entangled states are used at the input, and product or entangled measurements are performed at
the output, the classical capacity of a quantum channel can be defined in four different ways. While all of
them are the same for perfect quantum channels, for noisy channels a distinct advantage can be obtained
invoking entanglement at encoding and decoding steps, enhancing capacity beyond that achievable with
product encoding and product decoding [32–34]. However, when product decoding is used, this advantage
vanishes, even if entangled states are employed in encoding [35]. Notably, proposition 3 demonstrates that a
product-basis measurement exhibiting QNWE can still be advantageous for simulating a MAC.

At this point, we end by noting down another important observation.

Observation 1. The MACsN 2
PBR,N 3

shift, andN 2
m can all be simulated using 1-cbit communication from each

sender to the receiver, provided each communication line is assisted by a two-qubit maximally entangled state.

This observation follows directly from the well-known ‘remote state preparation’ (RSP) protocol
[36–38]. In all cases, the encoding states are selected from great circles on the Bloch sphere, as prescribed by
the RSP protocol. Using a maximally entangled state shared with the receiver, the senders can remotely
prepare the encoding states at the receiver’s end by transmitting just 1 bit of classical communication. The
decoding step then proceeds as in qubit-based protocols.

4. Noise-robustness of the quantum advantage

Noise is an unavoidable challenge in any communication channel, and its impact becomes even more critical
in quantum systems. Even a tiny thermal noise can disrupt the encoded quantum information. Additionally,
the decoding measurement can be noisy making it difficult to achieve the targeted goal. Therefore, it is
essential to explore whether the quantum advantage holds up in noisy conditions. In this context, we focus
primarily on the polygon MAC, although similar analyses can be extended to other scenarios as well.
Depolarizing noise (D) is a type of noise that affects the entire Bloch sphere uniformly. This noise can occur
experimentally when Alice is unable to create perfect quantum states, ideally represented as

ρk =
1

2
[I+ n̂k · σ⃗] .

Instead, the vector n̂k is uniformly distributed within a cone on the Bloch sphere, which subtends a solid
angle Ω at the origin and is aligned along the axis n̂k. (see figure 4). For such a noise Dϵ, specified by
depolarizing parameter ϵ ∈ [0,1], a state ρk =

1
2 [I+ n̂k.σ⃗] gets modified as

Dϵ (ρk) := (1− ϵ)ρk + ϵ
I
2
=

1

2
[I+(1− ϵ) n̂k.σ⃗]

=
1

2
[I+Dϵ (n̂k) .σ⃗] , Dϵ (n̂k) := (1− ϵ) n̂k. (11)

Similarly, the POVM element |ϕ+〉〈ϕ+| get modified to,

Dϵ ⊗Dϵ
(
|ϕ+〉〈ϕ+|

)
:= (1− ϵ)

2 |ϕ+〉〈ϕ+|+ ϵ(2− ϵ)
I
2
⊗ I

2
. (12)

We, know that the ideal encoding and decoding protocol results in p(x,y) := Tr
[
|ϕ+〉〈ϕ+|ρx ⊗ ρy

]
(equation (3)). Now consider that both the sender’s encoding protocol undergoes the same depolarizing
noise Dϵ

S. The receiver’s decoding, let us say, gets affected with depolarizing noise Dϵ
R. Hence, the modified

probability reads as

pnoisy(x,y) :=Tr
[
Dϵ
R ⊗Dϵ

R(|ϕ+〉〈ϕ+|)
(
Dϵ
S(ρx)⊗Dϵ

S(ρy)
)]

=Tr
[{

(1− ϵR)
2|ϕ+〉〈ϕ+|+ ϵR(2− ϵR)

I
2
⊗ I

2

}
· 1
2

{
I+(1− ϵS)

(
cos(2π x/m)σZ + sin(2π x/m)σX

)}
⊗ 1

2

{
I+(1− ϵS)

(
cos(2π y/m)σZ + sin(2π y/m)σX

)}]
.

8
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Figure 4. The noise robustness for different polygon MACs is shown in the above figure. (Inset) When subjected to depolarizing
noise, the encoded states contract within the Bloch sphere. It is assumed that both the encoded states and the decoding effects are
affected by this noise in a similar manner.

With the encoding and decoding protocol for the polygon MAC unchanged, in the presence of
depolarizing noise at the encoding and decoding site, we find a range wherein there is a quantum advantage
over the classical bound as listed in table 1. See figure 4 which captures the noise robustness of the various
polygon MACs.

5. Discussions

Quantum advantages are elusive, challenging to establish, and often constrained by fundamental no-go
theorems. For instance, while quantum computing can offer speedups over classical computers for certain
problems, the set of functions computable by quantum mechanics remains identical to those computable by
classical physics. Similarly, in point-to-point communication, the Holevo–Frenkel–Weiner results limit the
usefulness of quantum systems when no entanglement is shared between sender and receiver. However, in
this work, we demonstrate that such limitations do not apply in a network communication setting.
Specifically, in simulating multiple-sender-to-one-receiver channels, our study reveals a novel advantage of
qubit communication over the corresponding classical resources. Notably, this advantage is distinct from
recent studies on MACs [39–41], which show that nonlocal correlations shared among distant senders can
increase channel capacities. As noted, our construction in Proposition 1 is inspired by the PBR theorem,
which asserts the ψ-ontic nature of quantum wavefunctions, implying a direct correspondence with physical
reality [42]. Exploring a deeper link between the ψ-onticity of wavefunctions and the quantum advantage
reported here would be fascinating.

It is important to note that the quantum advantages in propositions 1 and 2 do not depend on
incompatible measurements at the decoding stage; instead, they involve measurements using entangled
projectors. Such measurements are known to be crucial in the phenomenon of ‘quantum-nonlocality-
without-inputs’ [43]. Investigating the connection between this quantum advantage and network nonlocality
[44] is a promising direction for future work. Moreover, our construction provides a pathway for
semi-device-independent certification of entangled measurements [45–47]. In particular, in the polygon
MAC, it is worth exploring the optimal violation of the respective witness operations when Bob performs a
two-qubit product basis measurement on the encoded states received from the senders. By assuming the
encoding processes to be trusted while treating the decoding process as a black box, violations of these
threshold values would constitute a semi-device-independent certification of entangled measurements.
Proposition 3 further highlights the critical role of QNWE in establishing qubit advantages over classical bits

9
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in network communication scenarios. Many other product bases exhibiting QNWE have been documented,
with recent studies introducing various new variants of this phenomenon [48–50]. Exploring these
constructions to establish quantum advantages in MAC scenarios would be highly interesting.

The physical implementation of the proposed protocols necessitates the preparation of pure qubit states.
Given the inherent fragility of quantum states, one approach is to utilize the quantum state purification
protocol proposed in [51], which has been experimentally demonstrated in [52]. This purification process
enhances the fidelity of the quantum states, making them more robust for subsequent operations.
Implementation of PBR MAC and polygon MACs further requires the capability to perform entanglement
basis measurements, a technique that has already been realized across various quantum architectures,
including photonic systems, silicon processor, and trapped ions [53–57]. These existing experimental
advancements provide a solid foundation for realizing the protocols discussed. However, several loopholes
must be addressed to demonstrate the reported quantum advantage in experiments. Firstly, the locality
loophole-in our setup, we assume no communication among the distant senders. This can be addressed by
ensuring that the encoding events of different senders are spacelike separated. Additionally, we assume the
freedom of choice assumption, which ensures that the inputs sent to different senders are independent.
Furthermore, when implementing the protocol in photonic architectures, one must also address the detection
loophole.
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Appendix A. Proof of proposition 1

Represented as a stochastic matrix, the MACN 2
PBR reads as

N 2
PBR ≡

a\x, y 00, 00 00, 01 00, 10 00, 11 01, 00 01, 01 01, 10 01, 11 10, 00 10, 01 10, 10 10, 11 11, 00 11, 01 11, 10 11, 11

00 1/2 1/4 1/4 0 1/4 1/2 0 1/4 1/4 0 1/2 1/4 0 1/4 1/4 1/2

01 1/4 1/2 0 1/4 1/2 1/4 1/4 0 0 1/4 1/4 1/2 1/4 0 1/2 1/4

10 1/4 0 1/2 1/4 0 1/4 1/4 1/2 1/2 1/4 1/4 0 1/4 1/2 0 1/4

11 0 1/4 1/4 1/2 1/4 0 1/2 1/4 1/4 1/2 0 1/4 1/2 1/4 1/4 0

.

As it turns out few of the conditional probabilities inN 2
PBR are zero. In particular

p(a|x,y) = 0, when a1 = x1 ⊕ y1 ∧ a2 = x2 ⊕ y2. (A1)

10
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Table 2. An instance of disallowed encoding.

αβ x1x2 y1y2 x1 ⊕ y1 x2 ⊕ y2 x1 ⊕ y1 x2 ⊕ y2

00

00 00 0 0 11
00 01 0 1 10
00 10 1 0 01
01 00 0 1 10
01 01 0 0 11
01 10 1 1 00

A classical deterministic strategy S ≡ (E1,E2,D) ∈ C2
ds aiming to simulateN 2

PBR must satisfy these
requirements. Let us denote the deterministic encodings by the senders and decoding by the receiver as below

E1 : {0,1}⊗2 3 x≡ x1x2 7→ α ∈ {0,1} , (A2a)

E2 : {0,1}⊗2 3 y≡ y1y2 7→ β ∈ {0,1} , (A2b)

D : α×β 7→ a≡ a1a2 ∈ {0,1}×2
. (A2c)

The following observations are crucial.

Observation 2. For the fixed encoding strategies employed by the senders, the conditions in equation (A1)
impose constraints on the permissible decoding strategies at the receiver’s end. For example, if the senders
utilize the encoding method

E1 : 00 7→ 0& {01,10,11} 7→ 1; (A3a)

E2 : 00 7→ 0& {01,10,11} 7→ 1. (A3b)

The receiver cannot employ the decoding strategies D : 00 7→ 11, as it yields p(11|00,00) = 1, a violation
of the requirement (A1). Therefore, for the given encoding this particular decoding is not allowed.

Observation 3. For certain encoding strategies, there does not exist any decoding strategy compatible with
the requirement (A1). To see an explicit example, consider the following encodings

E1 : {00,01} 7→ 0& {10,11} 7→ 1; (A4a)

E2 : {00,01,10} 7→ 0& 11 7→ 1. (A4b)

In table 2, we analyze the case when the receiver gets α= 0 and β= 0 from the two senders, respectively.
While decoding, the message αβ = 00 must be decoded as one of four possible outcomes a= a1a2 ∈ {0,1}×2.
As evident from the last column of table 2, whatever output is decoded for the message αβ = 00 the condi-
tion (A1) gets violated.

These observations lead us to the following general lemma.

Lemma 1. Encoding strategics where the four inputs are grouped in two disjoint set with equal cardinalities for
both the senders are the only possible encodings compatible for simulating the MACN 2

PBR.

Proof. A generic encoding, E1 : x 7→ α, employed by the sender S1 (and similarly for the sender S2) is a parti-
tion of the input strings x ∈ {0,1}×2 into two disjoint sets xα, i.e.

x= x0 ∪ x1, such that x0 ∩ x1 = ∅. (A5)

Let, cardinalities of the sets x0 and x1 be c and 4− c, respectively, with c ∈ {0,1,2,3,4}. As the partitions with
|x0|= c and |x0|= 4− c are same under relabeling, it is thus sufficient to analyze the cases c ∈ {0,1,2}.

Let us first consider the case where |x0|= 2 and |y0|= 1. The first sender can employ one of the following
strategies,

e1 := E1stbit : {00,01} 7→ 0, {10,11} 7→ 1; (A6a)

e2 := E2ndbit : {00,10} 7→ 0, {01,11} 7→ 1; (A6b)

e3 := Epar : {00,11} 7→ 0, {01,10} 7→ 1; (A6c)
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Table 3. Allowed decoding strategies for the encoding E1 = e1 = E2.

αβ x1x2 y1y2 x1 ⊕ y1 x2 ⊕ y2 x1 ⊕ y1 x2 ⊕ y2

Compatible
Decoding a1a2

00

00 00 0 0 11

00 or 01
00 01 0 1 10
01 00 0 1 10
01 01 0 0 11

01

00 10 1 0 01

11 or 10
00 11 1 1 00
01 10 1 1 00
01 11 1 0 01

10

10 00 1 0 01

11 or 10
10 01 1 1 00
11 00 1 1 00
11 01 1 0 01

11

10 10 0 0 11

00 or 01
10 11 0 1 10
11 10 0 1 10
11 11 0 0 11

and the encoding of the second sender can be represented as

E1|3i,j : ij 7→ 0,
{̄
ij, īj, ī̄j

}
7→ 1, where i, j ∈ {0,1} . (A7)

As it turns out, whatever encodings are followed by the senders, a situation like Observation 3 arises. Same will
be the case whenever |x0|= 1 & |y0|= 2 as well as |x0|< 2 & |y0|< 2. This concludes the proof.

Among the allowed encodings E1,E2 ∈
{
e1,e2,e3

}
, following observations are further relevant.

Observation 4. There does not exist a valid decoding compatible with (A1) whenever the senders employ
encoding E1 = eu and E2 = ev, with u 6= v and u,v,∈ {1,2,3}.

Observation 5. For each of the encoding E1 = eu = E2, there are 16 possible decoding dwu leading to valid
strategies Suw ≡ (eu,eu,dwu ) that are compatible with (A1); u ∈ {1,2,3} and w ∈ {1, · · · ,16}. For instance, for
the encoding E1 = e1 = E2 the allowed decoding strategies are listed in table 3.

Remark 1. The senders and receiver can further employ a strategy Su[pw] =
∑

w pwSuw, where {pw}w denotes
a probability distribution. Such a strategy can be employed using local randomness at receiver’s end. As we
note, none of these strategies can simulate the MACN 2

PBR. This can also be argued with simple reasoning. In
this strategy, the encoding of the sender is fixed and there are only 16 compatible decoding strategies exist. Any
communication αβ can be decoded into two possible outcomes which in turn leads to the impossibility of the
simulation of MAC N 2

PBR. For instance, it is clear from the above table that mixing all compatible decoding
strategies for this fixed encoding will results in p(10|00,00) = 0.

Remark 2. The senders and receiver can also employ a strategy S[puw] =
∑

uw puwSuw, where {puw}uw
denotes classical correlation shared among the senders and receiver. As it turns out the strategy S[ 1

32 ] =∑2
u=1

∑16
w=1

1
32S

uw simulates theMACN 2
PBR. Importantly, this strategy cannot be implemented through 1-cbit

channel from each sender to the receiver assisted with SR resource $RS1 ∪ $RS1 . However, it can be implemented
if the resource $G is allowed to be shared.

12
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Appendix B. Proof of proposition 2

Witness operators for the polygon MAC are analogous to Bell-type inequalities for the space-like separated
scenario. Here we construct linear inequalities for eachm ∈ {5, · · · ,9}. For a given strategy pc ∈ C

2
cs , the

inequality is given by

wm [pc] := wm · pc :=
∑
x,y

wx,y
m pc (x,y)⩽ km, (B1)

w5 =


0 1 −3 −5 3
3 0 1 −3 −5
−5 3 0 1 −3
−3 −5 3 0 1
1 −3 −5 3 0

 ; w6 =



0 4 −4 −4 −5 2
2 0 4 −4 −4 −2
−5 2 0 4 −7 −10
−4 −5 2 0 4 −4
−4 −4 −2 2 0 4
4 −7 −4 −5 2 0

 ;

w7 =



0 1 −1 −1 −1 −1 1
1 0 1 −1 −1 −1 −1
−1 1 0 1 −1 −1 −1
−1 −1 1 0 1 −1 −1
−1 −1 −1 1 0 1 −1
−1 −1 −1 −1 1 0 1
1 −1 −1 −1 −1 1 0


; w8 =



0 0 0 0 0 0 0 0
1 0 7 0 −11 0 −5 0
0 0 0 0 0 0 0 0
−5 0 1 0 7 0 −11 0
0 0 0 0 0 0 0 0

−11 0 −5 0 1 0 7 0
0 0 0 0 0 0 0 0
7 0 −11 0 −5 0 1 0


;

w9 =



0 0 1 −1 −1 −1 −1 1 0
0 0 0 1 −1 −1 −1 −1 1
1 0 0 0 1 −1 −1 −1 −1
−1 1 0 0 0 1 −1 −1 −1
−1 −1 1 0 0 0 1 −1 −1
−1 −1 −1 1 0 0 0 1 −1
−1 −1 −1 −1 1 0 0 0 1
1 −1 −1 −1 −1 1 0 0 0
0 1 −1 −1 −1 −1 1 0 0


.

Appendix C. Proof of proposition 3

Here, we prove that for any strategy in C3
cs the payoff is upper bounded by 8. Since C3

cs forms a convex set and
since the witnessWshift is linear, the optimal payoff will be achieved for some strategy belonging to C3

ds. A
strategy in C3

ds will lead to a 8× 64 Stochastic matrix Sd ≡ {pd(a|x,y,z)}, where all the entries pd(a|x,y,z)
are ‘0’ or ‘1’. For such a strategy the payoff reads as

Wshift [Sd] =
∑
x,y,z,a

Wa|x,y,z× pd (a|x,y,z) =
∑
x,y,z,a

pd(a|x,y,z)=1

Wa|x,y,z . (C1)

Instead of considering all the deterministic strategies, we will try to find optimal deterministic decoding
strategy for a given deterministic encoding. For a clear exposition we explicitly analyze one such case.
Consider the encoding strategy where all senders send the first bit of their respective strings to the receiver,
i.e.

Ei = e1 := E1stbit : {00,01} 7→ 0, {10,11} 7→ 1; i ∈ {1,2,3} . (C2)

The procedure of finding the optimal decoding strategy for this encoding is described in table 4. It turns out
that optimal decoding yields the payoff 8.
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Table 4. In the first column, αβγ denotes the message receiver gets from the senders. Second column lists the set of inputs (x,y,z)
leading to the corresponding communication αβγ due to the encoding (C2). The symbols χijk in columns (3-10) denote the payoff
obtained for the communication αβγ, given that the receiver decodes αβγ 7→ ijk. For instance, if the receiver decodes the
communication ‘000’ to output ‘000’, i.e. (αβγ = 000) 7→ (ijk= 000), then according to the witnessWshift as defined in equation (9),
the payoff for all the possible inputs {(00,00,00),(00,00,01),(00,01,00),(00,01,01),(01,00,00),(01,00,01),
(01,01,00),(01,01,01)} is+2, leading to χ000 = 8× 2= 16. On the other hand, if the receiver decodes (αβγ = 000) 7→ (ijk= 001),
then the inputs {(00,00,01),(00,01,01),(01,00,01),(01,01,01)} have payoff−3 each, and the remaining four possible inputs have
payoff−2 each. Thus, χ001 = 4× (−3)+ 4× (−2) =−20. Rightmost column lists the best possible payoff for the communication
αβγ.

αβγ Possible inputs (x,y,z)≡ (x1x2,y1y2,z1z2) χ000 χ001 χ010 χ011 χ100 χ101 χ110 χ111

Optimal
Decoding

Best
Payoff

000
(00,00,00), (00,00,01), (00,01,00), (00,01,01),

16 −20 −20 −20 −20 −20 −20 −16 000 16
(01,00,00),(01,00,01), (01,01,00), (01,01,01)

001
(00,00,10), (00,00,11), (00,01,10), (00,01,11), −24 −20 −16 −4 −4 −16 −20 −16 011/100 −4
(01,00,10), (01,00,11), (01,01,10), (01,01,11)

010
(00,10,00), (00,10,01), (00,11,00), (00,11,01), −24 −4 −20 −16 −16 −20 −4 −16 001/110 −4
(01,10,00), (01,10,01), (01,11,00), (01,11,01)

011
(00,10,10), (00,10,11), (00,11,10), (00,11,11), −16 −4 −16 −20 −20 −16 −4 −24 001/110 −4
(01,10,10), (01,10,11), (01,11,10), (01,11,11)

100
(10,00,00), (10,00,01), (10,01,00), (10,01,01), −24 −16 −4 −20 −20 −4 −16 −16 010/101 −4
(11,00,00), (11,00,01), (11,01,00), (11,01,01)

101
(10,00,10), (10,00,11), (10,01,10), (10,01,11), −16 −16 −20 −4 −4 −20 −16 −24 011/100 −4
(11,00,10), (11,00,11), (11,01,10), (11,01,11)

110
(10,10,00), (10,10,01), (10,11,00), (10,11,01), −16 −20 −4 −16 −16 −4 −20 −24 010/101 −4
(11,10,00), (11,10,01), (11,11,00), (11,11,01)

111
(10,10,10), (10,10,11), (10,11,10), (10,11,11), −16 −20 −20 −20 −20 −20 −20 16 111 16
(11,10,10), (11,10,11), (11,11,10), (11,11,11)

Total Payoff (TP) 8

Up-to the freedom of relabeling, each sender can chose their deterministic encoding from the following
set of eight deterministic encodings:

E ≡



e0 := Econst : {00,01,10,11} 7→ 0, {} 7→ 1; e1 := E1stbit : {00,01} 7→ 0, {10,11} 7→ 1;

e2 := E2ndbit : {00,10} 7→ 0, {01,11} 7→ 1; e3 := Epar : {00,11} 7→ 0, {01,10} 7→ 1;

e4 := E1|300 : {00} 7→ 0, {01,10,11} 7→ 1; e5 := E1|301 : {01} 7→ 0, {00,10,11} 7→ 1;

e6 := E1|310 : {10} 7→ 0, {00,01,11} 7→ 1; e7 := E1|311 : {11} 7→ 0, {00,01,10} 7→ 1;


. (C3)

While in table 4 we analyze the case where three senders follow the encoding
(
e1,e1,e1

)
, similar analysis can

be accomplished efficiently for 83 different encoding triples (ep,eq,er) ∈ E ×E ×E , where
p,q, r ∈ {0,1, · · · ,7}. In table 5 we list the optimal total payoff (TP) for all these encodings, which in turn
proves the claim of proposition 3.
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Table 5. Optimal total payoff (TP) are listed for all the 83 encoding strategies (ei,ej,ek)≡ (i, j,k), for i, j,k ∈ {0,1, · · · ,7}. The optimal
classical payoff turns out to be 8, achieved for the encoding (e1,e1,e1)≡ (1,1,1).
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