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Abstract. The jet formalism for Classical Field theories is extended to the

setting of Lie algebroids. We define the analog of the concept of jet of a section
of a bundle and we study some of the geometric structures of the jet manifold.

When a Lagrangian function is given, we find the equations of motion in terms

of a Cartan form canonically associated to the Lagrangian. The Hamiltonian
formalism is also extended to this setting and we find the relation between

the solutions of both formalism. When the first Lie algebroid is a tangent
bundle we give a variational description of the equations of motion. In addition

to the standard case, our formalism includes as particular examples the case

of systems with symmetry (covariant Euler-Poincaré and Lagrange Poincaré
cases), variational problems for holomorphic maps, Sigma models or Chern-

Simons theories. One of the advantages of our theory is that it is based in the

existence of a multisymplectic form on a Lie algebroid.

1. Introduction. The idea of using Lie algebroids in Mechanics is due to Wein-
stein [67]. He showed that it is possible to give a common description of the most
interesting classical mechanical systems by using the geometry of Lie algebroids
(and their discrete analogs using Lie groupoids). The theory includes as particular
cases systems with holonomic constraints, systems defined on Lie algebras, sys-
tems with symmetry and systems defined on semidirect products, described by the
Euler-Lagrange equations (also known in each case as constrained Euler-Lagrange,
Euler-Poincaré, Lagrange-Poincaré or Hammel equations [10]).

Following the ideas by Klein [39], a geometric formalism was introduced in [50],
showing that the Euler-Lagrange equations are obtained be means of a symplectic
equation. Here symplectic is to be understood in the context of Lie algebroids,
i.e. a regular skew-symmetric bilinear form which is closed with respect to the
exterior differential operator defined by the Lie algebroid structure. A Hamiltonian
symplectic description was defined in [49] and further developed in [15]. Also a
rigorous variational description was given in [54] and some application to control
theory were given in [11, 51, 53].

Later, in [62, 63, 55] this theory was extended to time-dependent Classical Me-
chanics by introducing a generalization of the notion of Lie algebroid when the
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bundle is no longer a vector bundle but an affine bundle (see also [31, 36]). The
particular case considered in [63] is the analog of a first jet bundle of a bundle
M → R, and hence it is but a particular case of a first order Field Theory for a 1-
dimensional space-time. Therefore, it is natural to investigate whether it is possible
to extend our formalism to the case of a general Field Theory, where the space-time
manifold is no longer one dimensional, and where the field equations are defined in
terms of a variational problem.

The today standard formalism in classical Field Theory is the multisymplectic
approach. It was implicit in the work of De Donder [12] and Lepage [41], and it
was rediscovered later on in the context of relativistic field theories [26, 24, 38,
1]. See also [6, 28, 29, 27, 18, 21, 19, 20, 33, 34, 59]. A recent renewed interest
in multisymplectic geometry is in part motivated by the discovery of numerical
integrators which preserve the multisymplectic form [3, 45, 46]

There exists other approaches in the literature, as it is the case of the polysym-
plectic formalism in its various versions: Günther’s formalism [32, 16, 17, 56, 47]
and that of Sardanashvily and coworkers [44, 25, 61]. See also [37, 58, 40, 48]. They
will not be considered in this paper.

Generally speaking, there are three different but closely related aspects in the
analysis of first order field theories:

• variational approach, which leads to the Euler-Lagrange equations,
• multisymplectic formalism on the first jet bundle, and
• infinite-dimensional approach on the space of Cauchy data.

In a previous paper [52] we have studied several aspects of the variational ap-
proach to the theory formulated in the context of Lie algebroids, a review of which is
presented here in a more intrinsic way. The aim of this paper is to develop the mul-
tisymplectic formalism for those variational problems defined over Lie algebroids,
and we will leave for the future the study of the infinite-dimensional formalism.

The standard geometrical approach to the Lagrangian description of first order
classical field theories [6, 18, 28] is based on the canonical structures on the first
order jet bundle [64] of a fiber bundle whose sections are the fields of the theory.
Thinking of a Lie algebroid as a substitute for the tangent bundle to a manifold,
the analog of the field bundle to be considered here is a surjective morphism of Lie
algebroids π : E → F .

In the standard theory, a 1-jet of a section of a bundle is but the tangent map
to that section at the given point, and therefore it is a linear map between tangent
spaces which has to be a section of the tangent of the projection map. In our theory,
the analog object is a linear map from a fiber of F to a fiber of E which is a section
of the projection π. The space Jπ of these maps has the structure of an affine
bundle and carries similar canonical structures to those of the first jet bundle, and
it is in that space where our theory is based. In particular, in the affine dual of Jπ
there exists a canonical multisymplectic form, which allows to define a Hamiltonian
formalism.

One relevant feature of our theory is that it is a multisymplectic theory, i.e. in
both the (regular) Lagrangian and the Hamiltonian approaches, the field equations
are expressed in term of a multisymplectic form Ω, as the equations for some sections
Ψ satisfying an equation of the form Ψ?iXΩ = 0. In this way it is possible to extend
the category of multisymplectic manifolds to the category of multisymplectic Lie
algebroids, where it is possible to study reduction within this category.
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The situation is to be compared with the so called covariant reduction the-
ory [9, 8, 7]. There the field equations are obtained by reducing the variational
problem, i.e. by restricting the variations to those coming from variations for the
original unreduced problem. Therefore, that equations are of different form in each
case, Euler-Poincaré, Lagrange-Poincaré for a system with symmetry and (a some-
how different) Lagrange-Poincaré for semidirect products. In contrast, our theory
includes all these cases as particular cases and the equations are always of the same
form. This fact must be important in the general theory of reduction.

The organization of the paper is as follows. In section 2 we will recall some dif-
ferential geometric structures related to Lie algebroids, as the exterior differential,
the tangent prolongation of a bundle with respect to a Lie algebroid, the tangent
prolongation of a bundle map with respect to a morphism of Lie algebroids, and
the flow defined by a section. In section 3 we define the manifold of jets in this
generalized sense, and we will show that it is (the total space of) an affine bundle.
The anchor and the bracket of the Lie algebroid introduce more structure which is
presented there. In section 4 we consider repeated jets. This is necessary since the
equations in our theory are, as in the standard case, second order partial differen-
tial equations (generally speaking). This leads us to the definition of holonomic and
semiholonomic jets. The relation of jets on Lie algebroids and ordinary jets is stud-
ied in section 5 where we also show how to associate a partial differential equation to
a submanifold of Jπ. We pay special attention to the conditions relating holonomic
jets and morphisms of Lie algebroids. In section 6 we introduce the Lagrangian de-
scription of a Field Theory defined by a Lagrangian on Jπ. The equations of motion
are expressed in terms of a Cartan form and of its differential, the multisymplectic
form. In section 7 we show that, in the case F = TN , the equations obtained by the
multisymplectic formalism coincide with the Euler-Lagrange equations determined
by constrained variational calculus. The Hamiltonian counterpart is studied in sec-
tion 8. We show the relation between the solutions in the Hamiltonian and in the
Lagrangian approaches. In section 9 we show some examples where the theory can
be applied and to end the paper we discuss some open problems and future work.

We finally mention that related ideas to those explained in this paper have been
recently considered by Strobl and coworkers [66, 2] in the study of Poisson Sigma
models and other related topological field theories.

Notation. All manifolds and maps are taken in the C∞ category. The set of
smooth functions on a manifold M will be denoted by C∞(M). The set of smooth
vector fields on a manifold M will be denoted X(M). The set of smooth sections
of a fiber bundle π : B → M will be denoted Sec(π) or Sec(B) when there is no
possible confusion.

The tensor product of a vector bundle τ : E → M by itself p times will be
denoted by τ⊗p : E⊗p → M , and similarly the exterior power will be denoted by
τ∧p : E∧p →M . The set of sections of the dual τ∗∧p : (E∗)∧p →M will be denoted

by
∧p

E. For p = 0 we have
∧0

E = C∞(M).
By a bundle map from π : P → M to π′ : P ′ → M ′ we mean a pair Φ = (Φ,Φ)

with Φ: P → P ′ and Φ: M → M ′ satisfying π′ ◦ Φ = Φ ◦ π. The map Φ is said to
be the base map. If P and P ′ are vector bundles and Φ is fiberwise linear we say
that Φ is a vector bundle map.

Let τ : E → M and τ ′ : E′ → M ′ be two vector bundles. Consider two points
m ∈M and m′ ∈M ′, and a linear map φ : Em → E′m′ . The transpose or dual map
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is a map φ? : E′∗m′ → E∗m given by 〈φ?α, a〉 = 〈α, φ(a)〉, for every α ∈ E′∗m′ . This
action extends to covariant tensors as usual. If moreover φ is invertible, then we
can extend φ? also to contravariant tensors. We just need to define it for vectors:
if ζ ∈ E′m′ then φ?ζ = φ−1(ζ) ∈ Em.

The notion of pullback of a tensor field by a vector bundle map needs some
attention. Given a vector bundle map Φ = (Φ,Φ) from the vector bundle τ : E →M
to the vector bundle τ ′ : E′ → M ′ we define the pullback operator as follows. For
every section β of the p-covariant tensor bundle ⊗pE′∗ →M ′ we define the section
Φ?β of ⊗pE∗ →M by

(Φ?β)m(a1, a2, . . . , ap) = βΦ(m)

(
Φ(a1),Φ(a2), . . . ,Φ(ap)

)
,

for every a1, . . . , ap ∈ Em. The tensor Φ?β is said to be the pullback of β by Φ.
For a function f ∈ C∞(M ′) (i.e. for p = 0) we just set Φ?f = Φ∗f = f ◦ Φ.

It follows that Φ?(α ⊗ β) = (Φ?α) ⊗ (Φ?β). When Φ is fiberwise invertible, we
define the pullback of a section σ of E′ by (Φ?σ)m = (Φm)−1(σ(Φ(m)), where Φm
is the restriction of Φ to the fiber Em over m ∈M . Thus, the pullback of any tensor
field is defined.

In the case of the tangent bundles E = TM and E′ = TM ′, and the tangent
map Tϕ : TM → TM ′ of a map ϕ : M →M ′ we have that (Tϕ, ϕ)?β = ϕ∗β is the
ordinary pullback by ϕ of the covariant tensor field β on M ′. Notice the difference
between the symbols ? (star) and ∗ (asterisque).

2. Preliminaries on Lie algebroids. In this section we introduce some well
known notions and develop new concepts concerning Lie algebroids that are neces-
sary for the further developments. We refer the reader to [4, 42, 43, 35] for details
about Lie groupoids, Lie algebroids and their role in differential geometry. While
our main interest is in Lie algebroids, we will consider as an intermediate step the
category of anchored vector bundles [5, 60].

Lie algebroids. Let M be an n-dimensional manifold and let τ : E → M be a
vector bundle. A vector bundle map ρ : E → TM over the identity is called an
anchor map. The vector bundle E together with an anchor map ρ is said to be an
anchored vector bundle. A structure of Lie algebroid on E is given by a Lie
algebra structure on the C∞(M)-module of sections of the bundle, (Sec(E), [· , ·]),
together with an anchor map, satisfying the compatibility condition

[σ, fη] = f [σ, η] +
(
ρ(σ)f

)
η.

Here f is a smooth function on M , σ, η are sections of E and we have denoted by
ρ(σ) the vector field on M given by ρ(σ)(m) = ρ(σ(m)). From the compatibility
condition and the Jacobi identity, it follows that the map σ 7→ ρ(σ) is a Lie algebra
homomorphism from Sec(E) to X(M).

It is convenient to think of a Lie algebroid, and more generally an anchored
vector bundle, as a substitute of the tangent bundle of M . In this way, one regards
an element a of E as a generalized velocity, and the actual velocity v is obtained
when applying the anchor to a, i.e., v = ρ(a). A curve a : [t0, t1]→ E is said to be
admissible if ṁ(t) = ρ(a(t)), where m(t) = τ(a(t)) is the base curve.

When E carries a Lie algebroid structure, the image of the anchor map, ρ(E),
defines an integrable smooth generalized distribution on M . Therefore, M is foliated
by the integral leaves of ρ(E), which are called the leaves of the Lie algebroid. It
follows that a(t) is admissible if and only if the curve m(t) lies on a leaf of the Lie
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algebroid, and that two points are in the same leaf if and only if they are connected
by (the base curve of) an admissible curve.

A Lie algebroid is said to be transitive if it has only one leaf, which is obviously
equal to M . It is easy to see that E is transitive if and only if ρ is surjective. If E
is not transitive, then the restriction of the Lie algebroid to a leaf L ⊂M , E|L → L
is transitive.

Given local coordinates (xi) in the base manifold M and a local basis {eα} of
sections of E, we have local coordinates (xi, yα) in E. If a ∈ Em is an element then
we can write a = aαeα(m) and thus the coordinates of a are (mi, aα), where mi are
the coordinates of the point m. The anchor map is locally determined by the local
functions ρiα on M defined by ρ(eα) = ρiα(∂/∂xi). In addition, for a Lie algebroid,
the Lie bracket is determined by the functions Cαβγ defined by [eα, eβ ] = Cγαβeγ .

The functions ρiα and Cαβγ are said to be the structure functions of the Lie algebroid
in this coordinate system. They satisfy the following relations

ρjα
∂ρiβ
∂xj
− ρjβ

∂ρiα
∂xj

= ρiγC
γ
αβ , and

∑
cyclic(α,β,γ)

[
ρiα
∂Cνβγ
∂xi

+ CµανC
ν
βγ

]
= 0,

which are called the structure equations of the Lie algebroid.

Exterior differential. The anchor ρ allows to define the differential of a function
on the base manifold with respect to an element a ∈ E. It is given by

df(a) = ρ(a)f.

It follows that the differential of f at the point m ∈M is an element of E∗m.
Moreover, a structure of Lie algebroid on E allows to extend the differential to

sections of the bundle
∧p

E which we will call just p-forms. If ω ∈ Sec(
∧p

E) then

dω ∈ Sec(
∧p+1

E) is defined by

dω(σ0, σ1, . . . , σp) =
∑
i

(−1)iρ(σi)ω(σ0, . . . , σ̂i, . . . , σp)+

+
∑
i<j

(−1)i+jω([σi, σj ], σ0, . . . , σ̂i, . . . , σ̂j , . . . , σp).

It follows that d is a cohomology operator, that is d2 = 0.
Locally the exterior differential is determined by

dxi = ρiαe
α and deγ = −1

2
Cγαβe

α ∧ eβ .

In the rest of the paper the symbol d will refer to the exterior differential on the
Lie algebroid E and not to the ordinary exterior differential on a manifold.

The usual Cartan calculus extends to the case of Lie algebroids (see [57]). For
every section σ of E we have a derivation iσ (contraction) of degree −1 and a
derivation dσ = iσ ◦ d + d ◦ iσ (Lie derivative) of degree 0. Since d2 = 0 we have
that dσ ◦ d = d ◦ dσ. Nevertheless, notice that there are derivations of degree 0 that
commutes with the exterior differential d but are not Lie derivatives.

Admissible maps and morphisms. Let τ : E → M and τ ′ : E′ → M ′ be two
anchored vector bundles, with anchor maps ρ : E → TM and ρ′ : E′ → TM ′. Let
Φ = (Φ,Φ) be a vector bundle map, that is Φ: E → E′ is a fiberwise linear map
over Φ: M → M ′. We will say that Φ is admissible if it maps admissible curves
into admissible curves. It follows that Φ is admissible if and only if TΦ ◦ ρ = ρ′ ◦Φ.
This condition can be conveniently expressed in terms of the exterior differential as
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follows. The map Φ is admissible if and only if Φ?df = dΦ?f for every function
f ∈ C∞(M ′).

If E and E′ are Lie algebroids, then we say that Φ is a morphism if Φ?dθ = dΦ?θ
for every θ ∈ Sec(

∧
E). Obviously, a morphism is an admissible map. It is clear that

an admissible map can be properly called a morphism of anchored vector bundles;
nevertheless since our main interest is in Lie algebroids we will reserve the word
morphism for a morphism of Lie algebroids.

Let (xi) be a local coordinate system on M and (x′i) a local coordinate system
on M ′. Let {eα} and {e′α} be local basis of sections of E and E′, respectively, and
{eα} and {e′α} the dual basis. The bundle map Φ is determined by the relations
Φ?x′i = φi(x) and Φ?e′α = φαβ(x)eβ for certain local functions φi and φαβ on M .
Then Φ is admissible if and only if

ρjα
∂φi

∂xj
= ρ′iβφ

β
α.

The map Φ is a morphism of Lie algebroids if and only if

φβγC
γ
αδ =

(
ρiα
∂φβδ
∂xi
− ρiδ

∂φβα
∂xi

)
+ C ′βθσφ

θ
αφ

σ
δ ,

in addition to the admissibility condition above. In these expressions ρiα, Cαβγ are

the structure functions on E and ρ′iα, C ′αβγ are the structure functions on E′.

The prolongation of a Lie algebroid. (See [50, 55, 60, 15]) Let π : P →M be a
bundle with base manifold M . Thinking of E as a substitute of the tangent bundle
to M , the tangent bundle to P is not the appropriate space to describe dynamical
systems on P . This is clear if we note that the projection to M of a vector tangent
to P is a vector tangent to M , and what one would like instead is an element of E,
the ‘new’ tangent bundle of M .

A space which takes into account this restriction is the E-tangent bundle of P ,
also called the prolongation of P with respect to E, which we denote here by T EP .
It is defined as the vector bundle τEP : T EP → P whose fiber at a point p ∈ Pm is
the vector space

T Ep P = { (b, v) ∈ Em × TpP | ρ(b) = Tpπ(v) } .

We will frequently use the redundant notation (p, b, v) to denote the element (b, v) ∈
TpE. In this way, the map τEP is just the projection onto the first factor. The anchor
of T EP is the projection onto the third factor, that is, the map ρ1 : T EP → TP
given by ρ1(p, b, v) = v.

We also consider the map T π : T EP → E defined by T π(p, b, v) = b. The bundle
map (T π, π) will also be denoted by T π. The origin of the notation T π will become
clear later on. An element Z = (p, b, v) ∈ T EP is said to be vertical if it projects
to zero, that is T π(Z) = 0. Therefore it is of the form (p, 0, v), with v a vertical
vector tangent to P at p.

Given local coordinates (xi, uA) on P and a local basis {eα} of sections of E, we
can define a local basis {Xα,VA} of sections of T EP by

Xα(p) =
(
p, eα(π(p)), ρiα

∂

∂xi

∣∣∣
p

)
and VA(p) =

(
p, 0,

∂

∂uA

∣∣∣
p

)
.
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If (p, b, v) is an element of T EP , with b = zαeα, then v is of the form v = ρiαz
α ∂
∂xi +

vA ∂
∂uA

, and we can write

(p, b, v) = zαXα(p) + vAVA(p).

Vertical elements are linear combinations of {VA}.
The anchor map ρ1 applied to a section Z of T EP with local expression Z =

ZαXα + V AVA is the vector field on E whose coordinate expression is

ρ1(Z) = ρiαZ
α ∂

∂xi
+ V A

∂

∂uA
.

If E carries a Lie algebroid structure, then so does T EP . The Lie bracket
associated can be easily defined in terms of projectable sections as follows. A
section Z of T EP is said to be projectable if there exists a section σ of E such that
T π ◦ Z = σ ◦ π. Equivalently, a section Z is projectable if and only if it is of the
form Z(p) = (p, σ(π(p)), X(p)), for some section σ of E and some vector field X on
E. The Lie bracket of two projectable sections Z1 and Z2 is then given by

[Z1, Z2](p) = (p, [σ1, σ2](m), [X1, X2](p)), p ∈ P, m = π(p).

It is easy to see that [Z1, Z2](p) is an element of T Ep P for every p ∈ P . Since

any section of T EP can be locally written as a linear combination of projectable
sections, the definition of the Lie bracket for arbitrary sections of T EP follows.

The Lie brackets of the elements of the basis are

[Xα,Xβ ] = Cγαβ Xγ , [Xα,VB ] = 0 and [VA,VB ] = 0.

and the exterior differential is determined by

dxi = ρiαX
α duA = VA

and

dXγ = −1

2
CγαβX

α ∧ Xβ dVA = 0,

where {Xα,VA} is the dual basis to {Xα,VA}.

Prolongation of a map. The tangent map extends to a map between the pro-
longations whenever we have an admissible map. Let Ψ = (Ψ,Ψ) be a bundle map
from the bundle π : P → M to the bundle π′ : P ′ → M ′. Let Φ = (Φ,Φ) be an
admissible map from τ : E →M to τ ′ : E′ →M ′. Moreover, assume that both base
maps coincide, Ψ = Φ. The prolongation of Ψ with respect to Φ is the mapping

T ΦΨ: T EP → T E′P ′ defined by

T ΦΨ(p, b, v) = (Ψ(p),Φ(b), TpΨ(v)).

It is clear from the definition that T ΦΨ ≡ (T ΦΨ,Ψ) is a vector bundle map from

τEP : T EP → P to τE
′

P ′ : T E′P ′ → P ′. We frequently refer to this map as the
Φ-tangent to Ψ.

Proposition 2.1. The map T ΦΨ is an admissible map. Moreover, T ΦΨ is a
morphism of Lie algebroids if and only if Φ is a morphism of Lie algebroids.

Proof. It is clearly admissible because ρ1 ◦ T ΦΨ = TΨ ◦ ρ1. Therefore we have
d(T ΦΨ)?F = (T ΦΨ)?dF for every function F ∈ C∞(P ′). In order to prove that
d(T ΦΨ)?β = (T ΦΨ)?dβ for every β ∈ Sec(E′∗), we take into account that every

1-form on T E′P ′ can be expressed as a linear combination of exact forms dF and
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basic forms (T π′)?θ, for F ∈ C∞(P ′) and θ ∈ Sec(E′∗). (This is clear in coordinates
where Xα = (T π)?eα and VA = dyA). Therefore it is enough to prove that relation
for this kind of forms.

For an exact 1-form β = dF we have

d(T ΦΨ)?dF − (T ΦΨ)?ddF = dd(T ΦΨ)?F − 0 = 0

where we have used that T ΦΨ is admissible.
For a basic form β = (T π′)?θ we have

d(T ΦΨ)?(T π′)?θ = d(T π′ ◦ T ΦΨ)?θ = d(Φ ◦ T π)?θ = d(T π)?Φ?θ = (T π)?dΦ?θ,

where we have used that T π is a morphism. On the other hand

(T ΦΨ)?d(T π′)?θ = (T ΦΨ)?(T π′)?dθ = (T π′ ◦ T ΦΨ)?dθ = (Φ ◦ T π)?dθ = (T π)?Φ?dθ,

where we have used that T π′ is a morphism. Therefore, T ΦΨ is a morphism if and
only if

(T π)?(dΦ?θ − Φ?dθ) = 0.

Since T π is surjective the above equation holds if and only if Φ is a morphism.

Given local coordinates xi onM and x′i onM ′, local adapted coordinates (xi, uA)
on P and (x′i, u′A) on P ′ and local basis of sections {eα} of E and {e′α} of E′, the
maps Φ and Ψ are determined by Φ?e′α = Φαβe

β and Ψ(x, u) = (φi(x), ψA(x, u)).

Then the action of T ΦΨ is given by

(T ΦΨ)?X′α = ΦαβX
β

(T ΦΨ)?V′A = ρiα
∂ψA

∂xi
Xα +

∂ΨA

∂uB
VB ,

Equivalently, for every p ∈ P we have

T Φ
p Ψ(Xα(p)) = Φβα(m)X′β(p′) + ρiα(m)

∂ΨB

∂xi
(p)V′B(p′),

T Φ
p Ψ(VA(p)) =

∂ΨB

∂uA
(p)V′B(p′),

where m = π(p) and p′ = Ψ(p).

Remark. The following special situations are relevant:

• If E = E′ and the base map of Ψ is the identity in M , Ψ = idM , we can
always take as Φ the identity in E, Φ = id = (idE , idM ). In this case, we will
simplify the notation and we will write T Ψ instead of T idΨ.

• We can consider as the bundle P the degenerate case of idM : M →M . Then
we have a canonical identification E ≡ T EM , given explicitly by a ∈ E ≡
(m, a, ρ(a)) ∈ T EM , where m = τ(a).

• With this identification, the map T π : T EP → T EM ≡ E is just (p, a, v) 7→
(m, a, ρ(a)) ≡ a, which justifies the notation T π for the projection onto the
second factor.

• Moreover, if Φ = (Φ,Φ) is an admissible map from the bundle τ : E → M

to the bundle τ ′ : E′ → M ′, then we can identify the maps Φ ≡ T ΦΦ and
therefore Φ ≡ T ΦΦ.

We finally mention that the composition of prolongation maps is the prolonga-
tions of the composition. Indeed, let Ψ′ be another bundle map from π′ : P ′ →M ′ to
another bundle π′′ : P ′′ →M ′′ and Φ′ be another admissible map from τ ′ : E′ →M ′

to τ ′′ : E′′ →M ′′ both over the same base map. Since Φ and Φ′ are admissible maps



CLASSICAL FIELD THEORY ON LIE ALGEBROIDS 101

then so is Φ′ ◦Φ, and thus we can define the prolongation of Ψ′ ◦Ψ with respect to
Φ′ ◦ Φ. We have that T Φ′◦Φ(Ψ′ ◦Ψ) = (T Φ′Ψ′) ◦ (T ΦΨ).

Flow of a section. Every section of a Lie algebroid has an associated local flow
composed of morphisms of Lie algebroids as we are going to explain next. In this
context, by a flow on a bundle τ : E →M we mean a family of vector bundle maps
Φs = (Φs,Φs) where Φs is a flow (in the ordinary sense) on the manifold E and Φs
is a flow (in the ordinary sense) on the manifold M .

Theorem 2.2. Let σ be a section of a Lie algebroid τ : E → M . There exists a
local flow Φs on the bundle τ : E →M such that

dσθ =
d

ds
Φ?sθ

∣∣∣
s=0

,

for any section θ of
∧
E. For every fixed s, the map Φs is a morphism of Lie

algebroids. The base flow Φs : M → M is the flow (in the ordinary sense) of the
vector field ρ(σ) ∈ X(M).

Proof. Indeed, let XC
σ be the vector field on E determined by its action on fiberwise

linear functions,

XC
σ θ̂ = d̂σθ,

for every section θ of E∗, and which is known as the complete lift of σ (see [30, 50]).
It follows that XC

σ ∈ X(E) is projectable and projects to the vector field ρ(σ) ∈
X(M). Thus, if we consider the flow Φs of XC

σ and the flow Φs of ρ(σ), we have
that Φs = (Φs,Φs) is a flow on the bundle τ : E →M . Moreover, since XC

σ is linear
(maps linear functions into linear functions) we have that Φs are vector bundle
maps.

In order to prove the relation dσθ = d
dsΦ?sθ

∣∣∣
s=0

, it is enough to prove it for

1-forms. If θ be a section of E∗, then for every m ∈M and a ∈ Em we have

〈(dσθ)m, a〉 = d̂σθ(a) = (XC
σ θ̂)(a) =

d

ds
(θ̂ ◦ Φs)

∣∣∣
s=0

(a)

=
d

ds
〈θΦs(m),Φs(a)〉

∣∣∣
s=0

=
d

ds
Φ?sθ

∣∣∣
s=0

(a).

Moreover, the maps Φs are morphisms of Lie algebroids. Indeed, from the relation

d ◦ dσ = dσ ◦ d we have that d
ds (Φ?sdθ − dΦ?sθ)

∣∣∣
s=0

= 0 for every section θ of E∗. It

follows that Φ?sdθ = dΦ?sθ, so that Φs is a morphism.

By duality, we have that

dσζ =
d

ds
Φ?sζ

∣∣∣
s=0

for every section ζ of E. Therefore we have a similar formula for the derivative of
any tensorfield.

Remark. Alternatively one can describe the flow of a section in terms of Poisson
geometry. A Lie algebroid structure is equivalent to a fiberwise linear Poisson
structure on the dual E∗. The section σ defines a linear function in E∗, and thus
has an associated Hamiltonian vector field. The flow of this vector field is the
transpose of the flow defined here. Since the flow of a Hamiltonian vector field
leaves invariant the Poisson tensor its dual is a morphism of Lie algebroids. See [23]
for the details.
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Remark. In the case of the standard Lie algebroid E = TM we have that a section
σ is but a vector field on M . In this case, the flow defined by the section σ is but
Φs = (Tφs, φs) where φs is the ordinary flow of the vector field σ.

In the case of a projectable section of T EP the flow can be expressed in terms
of the flows of its components.

Proposition 2.3. Let Z be a projectable section of T EP and let σ ∈ Sec(E) the
section to which it projects. Let Φs be the flow of the section σ. Let Ψs be the flow
of the vector field ρ1(Z) ∈ X(P ), Ψs the flow of the vector field ρ(σ) ∈ X(M), and
Ψs = (Ψs,Ψs). The flow of Z is T ΦsΨs.

Proof. We first note that T ΦsΨs is well defined since the base maps of both Φs and

Ψs are equal to the flow of ρ(σ). We have to prove that dZβ = d
ds (T ΦsΨs)

?β
∣∣∣
s=0

,

for every form β ∈
∧
T EP . But it is sufficient to prove it for 0-forms and 1-forms.

For a function F ∈ C∞(P ) we have that

dZF = ρ1(Z)F =
d

ds
F ◦Ψs

∣∣∣
s=0

=
d

ds
(T ΦsΨs)

?F
∣∣∣
s=0

.

For 1-forms it is sufficient to prove the property for exact and basic 1-forms. For
an exact form β = dF we have

dZdF = ddZF = d
d

ds
(T ΦsΨs)

?F
∣∣∣
s=0

=
d

ds
d(T ΦsΨs)

?F
∣∣∣
s=0

=
d

ds
(T ΦsΨs)

?dF
∣∣∣
s=0

.

Finally for a basic form β = (T π)?θ we have

dZ [(T π)?θ] = (T π)?dσθ = (T π)?
d

ds
Φ?sθ

∣∣∣
s=0

=
d

ds
(T π)?Φ?sθ

∣∣∣
s=0

=
d

ds
(Φs ◦ T π)?θ

∣∣∣
s=0

=
d

ds
(T π ◦ T ΦsΨs)

?θ
∣∣∣
s=0

=
d

ds
(T ΦsΨs)

?[(T π)?θ]
∣∣∣
s=0

,

which ends the proof.

3. Jets. In this section we introduce our generalization of the space of jets, which
will be the manifold where the Lagrangian of a field theory is defined. The key
idea is to substitute the tangent bundle of a manifold by an appropriate Lie alge-
broid. To clarify the exposition we will introduce the concepts in an incremental
manner, defining the concepts first on vector spaces, then on vector bundles and
later introducing the anchor and finally the Lie algebroid structure.

Splittings of exact sequences. Let F and E be two finite dimensional real vector
spaces and let π : E → F be a surjective linear map. If we denote by K the kernel
of π, we have the following exact sequence

0 −→ K
i−→ E

π−→ F −→ 0,

where i is the canonical inclusion. Therefore we have the induced sequence

0 −→ Lin(F,K)
i◦−→ Lin(F,E)

π◦−→ Lin(F, F ) −→ 0.

For every linear map ζ : F → F we set

Linζ(F,E) = {φ ∈ Lin(F,E) | π ◦ φ = ζ } .
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It follows that Linζ(F,E) is an affine subspace of Lin(F,E) with underlying vector

space Lin0(F,E) = Lin(F,K). For ζ = idF we have that Linid(F,E) is the set of
splittings of the original sequence and it is a model for all that affine spaces. The
following diagram explain the situation

0 // Lin(F,K)
i◦ // Lin(F,E)

π◦ // Lin(F, F ) // 0

Linid(F,E)

OO

constant=id

88
.

The vector space dual to Lin(F,E) is Lin(F,E)∗ = Lin(E,F ), with the pairing

〈p, w〉 = tr(p ◦ w) = tr(w ◦ p),

for p ∈ Lin(E,F ) and w ∈ Lin(F,E). It follows that any element p ∈ Lin(E,F ) can
be identified with an element p̃ in the bidual space Lin(F,E)∗ = Lin(E,F )∗∗, that
is, with a linear function p̃ : Lin(F,E)→ R given by p̃(w) = tr(p◦w). By restricting

to the affine space Linid(F,E) we get affine functions p̂ : Linid(F,E)→ R explicitly
given by

p̂(φ) = tr(p ◦ φ).

The linear function p̄ associated to the affine function p̂ is obtained by restriction
of p̃ to Lin(F,K), that is, p̄(ψ) = tr(p|K ◦Ψ).

Obviously any linear map from Lin(F,E) to R is of the form p̃ for a unique
p. Also, every affine function is of the form p̂, but notice that there can be many
elements p giving the same affine function. If p, q ∈ Lin(E,F ) are such that p̂ =
q̂ then p|K = q|K and tr(p − q) = 0, where p − q is to be understood as an
endomorphism of F .

Let us fix basis {ēa} in F and {ea, eα} in E, adapted to π, that is, such that
π(ea) = ēa and π(eα) = 0. Then we have the following expressions

w = ēb ⊗ (yab ea + yαb eα) w ∈ Lin(F,E)

p = (pabe
b + paαe

α)⊗ ēa p ∈ Lin(E,F )

φ = ēa ⊗ (ea + yαa eα) φ ∈ Linid(F,E)

ψ = ēa ⊗ yαa eα ψ ∈ Lin(F,K),

and the corresponding linear and affine functions are

p̃ = paby
b
a + paαy

α
a and p̂ = paa + paαy

α
a .

The linear function associated to p̂ is p̄ = paαy
α
a . In particular we have that π ∈

Lin(E,F ) and π̂ = tr(id) = dimF is constant. From this expression it is clear that
two elements p and q define the same affine function if and only if paα = qaα and
pab − qab is trace free.

Vector bundles. We consider now two vector bundles τEM : E →M and τFN : F →
N and a surjective vector bundle map π : E → F over the map π : M → N , as it is
shown in the diagram

E

τEM
��

π // F

τFN
��

M
π
// N
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Moreover, we will assume that π is a surjective submersion, so that π : M → N is a
smooth fiber bundle. By the symbol π we mean the vector bundle map π = (π, π).
We will denote by K →M the kernel of the map π, which is a vector bundle over M .
Given a point m ∈M , if we denote n = π(m), we have the following exact sequence

0 −→ Km −→ Em −→ Fn −→ 0,

and we can perform point by point similar constructions to those given above.
We will use the notations Lmπ ≡ Lin(Fn, Em), Jmπ ≡ Linid(Fn, Em) and Vmπ ≡

Lin(Fn,Km), that is,

Lmπ = {w : Fn → Em | w is linear }
Jmπ = {φ ∈ Lmπ | π ◦ φ = idFn }
Vmπ = {ψ ∈ Lmπ | π ◦ ψ = 0 } .

Therefore Lmπ is a vector space, Vmπ is a vector subspace of Lmπ and Jmπ is an
affine subspace of Lmπ modeled on the vector space is Vmπ. The dual vector space
of Lmπ is L∗mπ ≡ Lin(Em, Fn), that is,

L∗mπ = { p : Em → Fn | p linear }
By taking the union, Lπ = ∪m∈MLmπ, Jπ = ∪m∈MJmπ and Vπ = ∪m∈MVmπ,

we get the vector bundle π̃10 : Lπ → M , the vector subbundle π10 : Vπ → M and
the affine subbundle π10 : Jπ → M modeled on the vector bundle Vπ. The vector
bundle dual to Lπ is L∗π = ∪m∈ML∗mπ → M . We also consider the projection
π1 : Jπ → N given by composition π1 = π ◦ π10.

Every section θ ∈ Sec(L∗π) defines the fiberwise linear function θ̃ ∈ C∞(Lπ) by

θ̃(z) = tr(θm ◦ z), for z ∈ Lπ and where m = π̃10(z). Its restriction to Jπ defines

the affine function θ̂ ∈ C∞(Jπ) by

θ̂(φ) = tr(θm ◦ φ),

for φ ∈ Jπ and where m = π10(φ).

Remark. In the standard case one has a bundle ν : M → N and then considers
the tangent spaces at m ∈ M and n = ν(m) ∈ N together with the differential of
the projection Tmν : TmM → TnN . If we set π = (Tν, ν), an element φ ∈ Jmπ is a
linear map φ : TnN → TmM such that Tmν ◦ φ = idTnN . It follows that there exist
sections ϕ of ν such that ϕ(n) = m and Tnϕ = φ. Thus, in the case of the tangent
bundles τN : F ≡ TN → N and τM : E ≡ TM → M with π = (Tν, ν), an element
φ ∈ Jmπ can be identified with a 1-jet at the point m, i.e. an equivalence class of
sections which has the same value and same first derivative at the point m. With
the standard notations [64], we have that J1ν ≡ Jπ. Obviously, this example leads
our developments throughout this paper.

In view of this fact, an element of Jmπ will be simply called a jet at the point
m ∈M and accordingly the bundle Jπ is said to be the first jet bundle of π.

Local coordinates on Jπ are given as follows. We consider local coordinates (x̄i)
on N and (xi, uA) on M adapted to the projection π, that is x̄i ◦ π = xi. We also
consider local basis of sections {ēa} of F and {ea, eα} of E adapted to the projection
π, that is π ◦ ea = ēa ◦π and π ◦ eα = 0. In this way {eα} is a base of sections of K.
An element w in Lmπ is of the form w = (wbaeb + wαa eα) ⊗ ēa, and it is in Jmπ if
and only if wba = δba, i.e. an element φ in Jπ is of the form φ = (ea + φαaeα)⊗ ēa. If
we set yαa (φ) = φαa , we have adapted local coordinates (xi, uA, yαa ) on Jπ. Similarly,
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an element ψ ∈ Vmπ is of the form ψ = ψαa eα ⊗ ea. If we set yαa (ψ) = ψαa , we have
adapted local coordinates (xi, uA, yαa ) on Vπ. As usual, we use the same name for
the coordinates in an affine bundle and in the vector bundle on which it is modeled.
A section of L∗π is of the form θ = (θab (x)eb+ θaα(x)eα)⊗ ēa, and the affine function
defined by θ is

θ̂ = θaa(x) + θaα(x)yαa .

Anchor. We now assume that the given vector bundles are anchored vector bun-
dles, that is, we have two vector bundle maps ρF : F → TN and ρE : E → TM over
the identity in N and M respectively.

We will assume that the map π is admissible, that is dπ?f = π?df , where on
the left d stands for the exterior differential in E while on the right d stands for
the exterior differential in F . Let us see what this condition means in terms of the
components of the anchor.

The anchor is determined by the differential of the coordinate functions dx̄i =
ρ̄iaē

a on F and dxi = ρiae
a + ρiαe

α, duA = ρAa e
a + ρAαe

α on E. Applying the
admissibility condition to the coordinate functions x̄i we get

ρ̄iae
a = π?(dx̄i) = d(π?x̄i) = dxi = ρiae

a + ρiαe
α,

where we have used that π?ēa = ea. Therefore ρ̄ia = ρia (is a basic function) and
ρiα = 0. We have

dx̄i = ρiaē
a and

{
dxi = ρiae

a

duA = ρAa e
a + ρAαe

α,

and equivalently

ρF (ēa) = ρia
∂

∂x̄i
and


ρE(ea) = ρia

∂

∂xi
+ ρAa

∂

∂uA

ρE(eα) = ρAα
∂

∂uA
,

with ρia = ρia(x), ρAa = ρAa (x, u) and ρAα = ρAα (x, u).
The anchor allows to define the concept of total derivative of a function with

respect to a section. Given a section σ ∈ Sec(F ), the total derivative of a function

f ∈ C∞(M) with respect to σ is the function d̂f ⊗ σ, i.e. the affine function asso-
ciated to df ⊗ σ ∈ Sec(L∗π). In particular, the total derivative with respect to the

element ēa of the local basis of sections of F , will be denoted by f́|a. In this way, if

σ = σaēa then d̂f ⊗ σ = f́|aσ
a, where the coordinate expression of f́|a is

f́|a = ρia
∂f

∂xi
+ (ρAa + ρAαy

α
a )

∂f

∂uA
.

In particular, for the coordinate functions we have x́i|a = ρia and úA|a = ρAa + ρAαy
α
a ,

so that the chain rule f́|a = ∂f
∂xi x́

i
|a + ∂f

∂uA
úA|a applies.

Notice that, for a basic function f (i.e. the pullback of a function in the base

N) we have that f́|a = ρia
∂f
∂xi are just the (pullback of the) components of df in the

basis {ēa}.

Bracket. Let us finally assume that we have Lie algebroid structures on τFN : F →
N and on τEM : E →M , and that the projection π is a morphism of Lie algebroids.
The kernel K of π is a π-ideal, that is, the bracket of two projectable sections is
projectable, and the bracket of a projectable section with a section of K is again a
section of K.
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This can be locally seen in the vanishing of some structure functions. The mor-
phism condition π?(dθ) = d(π?θ) applied to the 1-forms θ = ēa gives

π?(dēa) = π?
(
−1

2
C̄abcē

b ∧ ēc
)

= −1

2
C̄abce

b ∧ ec

d(π?ēa) = −1

2
Cabce

b ∧ ec − Cabγeb ∧ eγ −
1

2
Caβγe

b ∧ eγ ,

that is
C̄abc = Cabc Cabγ = 0 and Caβγ = 0.

It follows that Cabc is a basic function and that the exterior differentials in F and E
are determined by

dēa = −1

2
Cabcē

b ∧ ēc and

{
dea = − 1

2C
a
bce

b ∧ ec

deα = − 1
2C

α
bce

b ∧ ec − Cαbγeb ∧ eγ − 1
2C

α
βγe

β ∧ eγ .
Equivalently, we have the following expressions for the various brackets

[ēa, ēb] = Ccabēc and


[ea, eb] = Cγabeγ + Ccabec

[ea, eβ ] = Cγaβeγ

[eα, eβ ] = Cγαβeγ .

Remark. It follows from our local calculations that one can avoid the extra bar in
the notation as long as one is working with functions and sections of F ∗ and E∗,
but one has to be careful when working with sections of F and E. More explicitly,
one can omit the bar about coordinates x̄i and forms ēa but we must use a bar when
referring to the elements ēa of the basis of sections of F , in order to distinguish it
from the sections ea of E. In what follows we will omit the bar over the coordinates
xi but to avoid any confusion we will explicitly distinguish ēa and ēa, from ea and
ea, respectively.

Affine structure functions. The structure functions can be combined to give
some affine functions which contains part of the structure of Lie algebroid and that
will naturally appear in our treatment of Lagrangian Field Theory.

We define the affine functions Zαaγ and Zαac by

Zαaγ = ̂(deγe
α)⊗ ēa and Zαac = ̂(dece

α)⊗ ēa.
Explicitly, we have

Zαaγ = Cαaγ + Cαβγy
β
a and Zαac = Cαac + Cαβcy

β
a .

Indeed,

(deγe
α)⊗ ēa = ieγ

(
−1

2
Cαbce

b ∧ ec − Cαbθeb ∧ eθ −
1

2
Cαβθe

β ∧ eθ
)
⊗ ēa

= (Cαbγe
b + Cαβγe

β)⊗ ēa,
and thus

Zαaγ = ̂(Cαbγe
b + Cαβγe

β)⊗ ēa = Cαaγ + Cαβγy
β
a .

Similarly

(dece
α)⊗ ēa = iec

(
−1

2
Cαbde

b ∧ ed − Cαbθeb ∧ eθ −
1

2
Cαβθe

β ∧ eθ
)
⊗ ēa

= (Cαbce
b + Cαβce

β)⊗ ēa,
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and thus

Zαac = ̂(Cαbce
b + Cαβce

β)⊗ ēa = Cαac + Cαβcy
β
a .

Notice that ̂(deγe
b)⊗ ēa=0 and that ̂(dece

b)⊗ ēa = Cbac. For completeness we will

sometimes write Zbac = Cbac and Zbaγ = 0.

4. Repeated jets and second-order jets. The equations for a (standard) classi-
cal Field Theory are generally second-order partial differential equations. In geomet-
ric terms, this equations determine a submanifold of the manifold of second-order
jets, also called 2-jets. Therefore, we need to define the analog of a second-order
jet in this generalized setting. In order to do that we follow the identification of a
2-jet with a holonomic repeated first-order jet (see [64]). Therefore, we need a Lie
algebroid with base Jπ (which will be just prolongations of Jπ with respect to E)
and a surjective morphism to F . Then we will consider jets for this morphism and
we will select those who satisfy some holonomy condition. This holonomy condition
is expressed in terms of the contact ideal, that will also be defined here.

Prolongation of Jπ. We consider the E-tangent bundle T EJπ to the jet manifold
Jπ. Recall that the fibre of this bundle at the point φ ∈ Jmπ is

T Eφ Jπ =
{

(a, V ) ∈ Em × TφJπ
∣∣ ρ(a) = Tπ10(V )

}
.

Local coordinates (xi, uA) on M and a local basis {ea, eα} of sections of E determine
local coordinates (xi, uA, yαa ) on Jπ and a local basis {Xa,Xα,Vaα} of sections of
T EJπ as was explained in section 2. Explicitly, those sections are given by

Xa(φ) = (φ, ea(m), ρia
∂

∂xi
+ ρAa

∂

∂uA
)

Xα(φ) = (φ, eα(m), ρAα
∂

∂uA
)

Vaα(φ) = (φ, 0m,
∂

∂yαa
).

With this settings, an element Z = (φ, a, V ) ∈ T Eφ Jπ can be written as Z = abXb +

aαXα+V αa Vaα, and the components a and V has the local expression a = abeb+a
αeα

and

V = ρ1(Z) = ρiba
b ∂

∂xi
+ (ρAb a

b + ρAαa
α)

∂

∂uA
+ V αa

∂

∂yαa
.

The brackets of the elements in that basis are

[Xa,Xb] = CcabXc + CγabXγ [Xa,Xβ ] = CγaβXγ [Xα,Xβ ] = CγαβXγ

[Xa,V
b
β ] = 0 [Xα,V

b
β ] = 0 [Vaα,V

b
β ] = 0.

The dual basis will be denoted {Xa,Xα,Vαa} and the exterior differential on T EJπ
is determined by the differential of the coordinate functions

dxi = ρiaX
a

duA = ρAa X
a + ρAαX

α

dyαa = Vαa ,
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and the differential of the elements of the basis

dXa = −1

2
CabcX

b ∧ Xc

dXα = −1

2
CαbcX

b ∧ Xc − CαbγXb ∧ Xγ − 1

2
CαβγX

β ∧ Xγ

dVαa = 0.

Finally, defining the map π10 = T π10 we have that the bundle map π10 =

(π10, π10) is a surjective morphism from the Lie algebroid τEJπ : T EJπ → Jπ to the

Lie algebroid τEM : E →M . We will also consider the projection π1(φ, a, V ) = π(a),
so that the bundle map π1 = (π1, π1) is a surjective morphism from the Lie algebroid

τEJπ : T EJπ → Jπ to the Lie algebroid τFN : F → N . Notice that π1 is just the
composition π1 = π ◦ π10.

Repeated jets. Once we have defined the first jet manifold Jπ, we can iterate the
process by considering the Lie algebroids τFN : F → N and τEJπ : T EJπ → Jπ, the
projection π1

T EJπ

τEJπ
��

π1 // F

τFN
��

Jπ
π1

// N

and the set of jets of the above diagram which is the manifold Jπ1 fibred over Jπ.
An element ψ of Jπ1 at the point φ ∈ Jπ is thus a linear map ψ : Fn → T Eφ Jπ such

that π1 ◦ ψ = idFn , where n = π1(φ). Let us see the explicit form of ψ.

Proposition 4.1. An element ψ ∈ Jπ1 is of the form (φ, ζ, V ) for φ, ζ ∈ Jπ with
π10(φ) = π10(ζ) and V : Fπ1(φ) → TφJπ a linear map satisfying Tπ10 ◦ V = ρE ◦ ζ.

Proof. Indeed, ψ is a linear map ψ : Fn → T Eφ Jπ, so that it is of the form ψ(b) =

(φ, ζ(b), V (b)) for some linear maps ζ : Fn → Em and V : Fn → TφJπ. The condition
π1 ◦ψ = idFn is just π(ζ(b)) = b, for every b ∈ Fn, i.e. π ◦ ζ = idFn , which is just to
say that ζ is an element of Jπ. Moreover, ψ(b) is an element of T EJπ, so that we
have Tπ10(V (b)) = ρE(ζ(b)), for every b ∈ Fn. In other words Tπ10◦V = ρE ◦ζ.

Local coordinates (xi, uA) and a local basis of sections {ea, eα} as before, pro-
vide natural local coordinates for Jπ1. The three components of an element ψ =
(φ, ζ, V ) ∈ Jπ1 are locally of the form

φ = (ea + yαa eα)⊗ ēa, ζ = (ea + zαa eα)⊗ ēa,

and

V =

(
ρia

∂

∂xi
+ (ρAa + ρAαz

α
a )

∂

∂uA
+ yβba

∂

∂yβb

)
⊗ ēa.

Therefore, (xi, uA, yαa , z
α
a , y

α
ba) are local coordinates for ψ. In terms of this coordi-

nates and the associated local basis of T EJπ we have the local expression

ψ = (Xa + zαaXα + yαbaV
b
α)⊗ ēa.
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Contact forms. Contact forms are 1-forms on T EJπ which satisfies a property of
verticality, as it is explained in what follows. A jet φ ∈ Jmπ, being a splitting of
an exact sequence, determines two complementary projectors hφ : Em → Em and
vφ : Em → Em given by

hφ(a) = φ(π(a)) and vφ(a) = a− φ(π(a)).

An element Z = (φ, a, V ) ∈ T EJπ is said to be horizontal if a is horizontal with
respect to φ, that is, vφ(a) = 0. In coordinates a horizontal element is of the form

Z = ab(Xb|φ + yβb Xβ |φ) + V βb Vbβ |φ,

where yαa are the coordinates of φ. Let (T EJπ)∗ the vector bundle dual to T EJπ.
An element µ ∈ (T Eφ Jπ)∗ is said to be vertical if it vanishes on every horizontal

element at φ. It follows that a vertical element is of the form µ = µα(Xα|φ−yαaXa|φ),
where yαa are the coordinates of φ.

A contact 1-form is a section of (T EJπ)∗ which is vertical at every point. It
follows that it is a semibasic form and that the set of contact 1-forms is spanned by
the forms θα = Xα − yαaXa.

Every contact 1-form can be obtained as follows. Given a section α of π10
∗(E∗) (a

section of E∗ along π10) we define the contact 1-form ᾰ by means of 〈ᾰ, (φ, a, V )〉 =
〈αφ, vφ(a)〉, for (φ, a, V ) ∈ Jπ.

The
∧

(T EJπ)-module generated by contact 1-forms is said to be the contact
module and will be denoted by Mc. Since T EJπ is a Lie algebroid, we have a
differential on it, and we can consider the differential ideal generated by contact
1-forms. This ideal is said to be the contact ideal and will be denoted Ic. The
contact ideal and the contact module are different (as sets), that is the contact ideal
is not generated by contact 1-forms. Indeed, an easy calculation shows that

dθα +
1

2
Cαβγθ

β ∧ θγ + ZαbγX
b ∧ θγ =

= Xa ∧ Vαa +
1

2

(
yαaC

a
bc − Cαβγy

β
b y

γ
c − Cαbγyγc + Cαcγy

γ
b + Cαbc

)
Xb ∧ Xc,

which cannot be written in the form Aαβ ∧ θβ .

Second-order jets. We define here the analog of the second order jet bundle as a
submanifold of the repeated first jet bundle, in the same way as in the standard the-
ory the manifold J2ν can be considered as the submanifold of J1(J1ν) of holonomic
jets.

Definition 4.2. A jet ψ ∈ Jφπ1 is said to be semiholonomic if ψ?θ = 0 for every
element θ in the contact module Mc at φ. The set of all semiholonomic jets will be

denoted Ĵπ1, that is,

Ĵπ1 = {ψ ∈ Jπ1 | ψ?θ = 0 for every θ ∈Mc } .

Proposition 4.3. An element ψ ∈ Jφπ1 is semiholonomic if and only if it is of the
form ψ = (φ, φ, V ). In other words if and only if it satisfies T π10 ◦ ψ = τEJπ(ψ).

Proof. Indeed, this is equivalent to vφ ◦ ζ = 0 which implies ζ = φ. A proof in
coordinates is as follows. If the coordinates of φ are (xi, uA, yαa ), and the local
expression of ψ ∈ Jφπ1 is ψ = (Xa + zαaXα + yαbaV

b
α)⊗ ēa, then

ψ?θα = ψ?(Xα − yαaXa) = (zαa − yαa )ēα,

so that ψ?θα = 0 if and only if zαa = yαa which is equivalent to φ = ζ.
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In the local coordinate system (xi, uA, yαa , z
α
a , y

α
ab) on Jπ1, the coordinates of

a semiholonomic jet are of the form (xi, uA, yαa , y
α
a , y

α
ab), and thus the set Ĵπ1 of

semiholonomic jets is a submanifold of Jπ1 in which we have local coordinates
(xi, uA, yαa , y

α
ab).

Definition 4.4. A jet ψ ∈ Jφπ1 is said to be holonomic if ψ?θ = 0 for every
element θ in the contact ideal Ic at φ. The set of all holonomic jets will be denoted
J2π, that is,

J2π = {ψ ∈ Jπ1 | ψ?θ = 0 for every θ ∈ Ic } .

Holonomic jets play the role of second-order jets in the case of the standard
theory of jet bundles, and we frequently refer to a holonomic jet as a second order
jet or simply as a 2-jet.

From the definition it follows that a holonomic jet is necessarily semiholonomic,
but notice that not every semiholonomic jet is holonomic.

Proposition 4.5. A semiholonomic jet ψ is holonomic if its coordinates satisfy the
equations Mα

ab = 0, where the local functions Mα
ab are defined by

M
γ
ab ≡ y

γ
ab − y

γ
ba + Cγbαy

α
a − C

γ
aβy

β
b − C

γ
αβy

α
a y

β
b + yγcC

c
ab + Cγab.

Proof. Indeed, from the above expression of dθα we have

ψ?dθα = ψ?(Xb ∧ Vαb +
1

2

(
yαaC

a
bc − Cαβγy

β
b y

γ
c − Cαbγyγc + Cαcγy

γ
b + Cαbc

)
Xb ∧ Xc)

=
1

2

(
yαbc − yαcb + yαaC

a
bc − Cαβγy

β
b y

γ
c − Cαbγyγc + Cαcγy

γ
b + Cαbc

)
ēb ∧ ēc

=
1

2
Mα
bcē

b ∧ ēc

from where the result immediately follows.

Remark. The above condition is to be interpreted point by point. That is, we take
the value of any contact form at the point φ and then take the pullback. We did
not write explicitly the point φ in order to simplify the reading of the formulas.

The condition Mα
bc = 0 admits a geometrical interpretation as the condition for

ψ to be the jet of a morphism of Lie algebroids (see section 5). Therefore we refer
to it as the infinitesimal morphism condition.

Remark. In the standard case where E = TM and F = TN with coordinate basis
of vector fields the above conditions reduce to uAij = uAji, which is the point-wise

condition for the matrix uAij to be the Hessian of some functions uA(x).

From the above proposition we see that J2π is a submanifold of Jπ1 and that
local coordinates for J2π are (xi, uA, yαa , y

α
ab) for a ≤ b. The coordinates yαab for

a > b are determined by the equations Mα
ab = 0.

5. Morphisms and admissible maps. By a section of π we mean a vector bundle
map Φ such that π ◦ Φ = id, which explicitly means π ◦ Φ = idN and π ◦ Φ = idF
(In other words we consider only linear sections of π). The set of sections of π will
be denoted by Sec(π). The set of those sections of π which are admissible as a

map between anchored vector bundles will be denoted by Secadm(π), and the set of
those sections of π which are a morphism of Lie algebroids will be denoted by M(π).

Clearly M(π) ⊂ Secadm(π) ⊂ Sec(π). We will find in this section local conditions
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for a section to be an admissible map between anchored vector bundles and local
conditions for a section to be a morphism of Lie algebroids.

Taking adapted local coordinates (xi, uA) on M , the map Φ has the expression
Φ(xi) = (xi, φA(x)). If we moreover take an adapted basis {ea, eα} of local sections
of E, then the expression of Φ is given by Φ(ēa) = ea + φαaeα, so that the map Φ
is determined by the functions

(
φA(x), φαa (x)

)
locally defined on N . The pullback

of the coordinate functions is Φ?xi = xi and Φ?uA = φA and the pullback of dual
basis is Φ?ea = ēa and Φ?eα = φαa ē

a

Let us see what the admissibility condition Φ?(df) = d(Φ?f) means for this maps.
As before, we impose this condition to the coordinate functions. Taking f = xi we
get an identity (i.e. no new condition arises), and taking f = uA we get

dφA = d(Φ?uA) = Φ?(duA) = Φ?(ρAa e
a + ρAαe

α) = [(ρAa ◦ Φ) + (ρAα ◦ Φ)φαa ] ēα,

from where we get that Φ is an admissible map if and only if

ρia
∂φA

∂xi
= (ρAa ◦ Φ) + (ρAα ◦ Φ)φαa .

In order to simplify the writing, we can omit the composition with Φ, since we
know that this is an equation to be satisfied at the point m = Φ(n) = (xi, φA(x))
for every n ∈ N . (This is but the usual practice). With this convention, the above
equation is written as

ρia
∂uA

∂xi
= ρAa + ρAαy

α
a .

Let us now see what the condition of being a morphism means in coordinates.
If we impose Φ?dea = dΦ?ea we get an identity, so that we just have to impose
Φ?deα = dΦ?eα. On one hand we have

d(Φ?eα) = d(φαa ē
a) =

1

2

(
ρib
∂φαc
∂xi
− ρic

∂φαb
∂xi
− φαaCabc

)
ēb ∧ ēc

and on the other hand

Φ?d(eα) = −Φ?
(

1

2
Cαβγe

β ∧ eγ − Cαbγeb ∧ eγ −
1

2
Cαbce

b ∧ ec
)

= −1

2

(
Cαβγφ

β
b φ

γ
c + Cαbγφ

γ
c − Cαcγφ

γ
b − C

α
bc

)
ēb ∧ ēc

Thus, the bundle map Φ is a morphism if and only if it satisfies

ρib
∂φαc
∂xi
− ρic

∂φαb
∂xi
− φαaCabc + Cαβγφ

β
b φ

γ
c + Cαbγφ

γ
c − Cαcγφ

γ
b = Cαbc,

in addition to the admissibility condition. As before, in this equation is to be
satisfied at every point m = Φ(n) in the image of Φ.

Taking into account our notation f́|a = ρia
∂f
∂xi for a function f ∈ C∞(N) we can

write the above expressions as

úA|a = ρAa + ρAαy
α
a

ýαc|b − ý
α
b|c + Cαbγy

γ
c − Cαcγy

γ
b + Cαβγy

β
b y

γ
c − yαaCabc = Cαbc.

where we recall that this equations are to be satisfied at every point m = Φ(n).
Notice the similarity between the above expression and the infinitesimal morphism
condition Mα

bc = 0. The following subsections will make clear this relation.



112 EDUARDO MARTÍNEZ

Remark. In the standard case where E = TM and F = TN with coordinate basis
of vector fields the above morphism conditions reduce to

yAi =
∂uA

∂xi
and

∂yAi
∂xj

=
∂yAj
∂xi

.

It follows that every admissible map is a morphism, and moreover is the tangent
map of a section of ν. Therefore, in the standard case, by considering morphisms
we are just considering 1-jet prolongation of sections of the base bundle.

Sections of π1. At this point we want to make clear the equivalence between
sections of π1 : Jπ → N and vector bundle maps which are sections of π.

Indeed, let Φ ∈ Sec(π) be a section of π. For every point n ∈ N , the restriction
of Φ to the fibre Fn is a map from Fn to the fibre Em, where m = Φ(n). This map
Φn ≡ Φ

∣∣
Fn

: Fn → Em satisfies π ◦ Φn = idFn and thus Φn ∈ Jmπ. In this way, we

have defined a map Φ̌: N → Jπ given by Φ̌(n) = Φn. The map Φ̌ is a section of π1;
indeed, for every n ∈ N ,

(π1 ◦ Φ̌)(n) = π1(Φ̌(n)) = π
(
π10(Φn)

)
= π(m) = n.

Conversely, given a section Ψ: N → Jπ of π1, we define the map Φ: N → M
by Φ = π10 ◦ Ψ. Thus Φ is a section of π and for every n ∈ N we have that
Ψ(n) ∈ JΦ(n)π. Therefore Ψ(n), being a jet, is a map Ψ(n) : Fn → EΦ(n) such that

π ◦ Φ = idFn . Consider now the map Φ: F → E given by Φ(b) = Ψ(n)(b) for every
b ∈ F , where n = τFN (b). In this way we have that Φ = (Φ,Φ) is a linear bundle
map and

(π ◦ Φ)(b) = π(Ψ(n)(b)) = b

for every b ∈ F and where n = τFN (b), so that Φ is a section of π. By construction,

it is clear that Φ
∣∣
Fn

= Ψ(n) for every n ∈ N , so that Φ̌ = Ψ. Thus we have proved

the following result.

Proposition 5.1. There is a one to one correspondence between the set Sec(π) of
vector bundle maps which are sections of π and the set of sections of π1.

Moreover, Φ̌ is a fibred map over Φ, i.e. π10 ◦ Φ̌ = Φ. We will denote by Φ̌ the

bundle map Φ̌ = (Φ̌,Φ) (from the bundle id : N → N to the bundle π10 : Jπ →M).
The above equivalence is important since we will look for equations to be satisfied

by a vector bundle map Φ, and this will be reformulated as an equation on Jπ, which
is to be satisfied by the associated map Φ̌. Moreover, we will impose to Φ to be a
morphism of Lie algebroids, so that we need a condition expressed in terms of jets
equivalent to the admissibility and the morphism condition.

Jet prolongation of sections of π. Let Φ = (Φ,Φ) be a section of π which is

admissible as a map between anchored vector bundles, i.e. Φ ∈ Secadm(π), and we
consider the associated map Φ̌: N → Jπ of π1. Since the base map of both Φ and Φ̌

is Φ and Φ is admissible, we can construct the prolongation map T ΦΦ̌ : F ≡ T FN →
T EJπ, and hence the bundle map Φ(1) = T ΦΦ̌ = (T ΦΦ̌, Φ̌) from τFN : F → N to
τEJπ : T EJπ → Jπ. This map is a section of π1 and moreover it is admissible

Φ(1) ∈ Secadm(π1). The section of (π1)1 : Jπ1 → N associated to Φ(1) will be

denoted Φ̌(1) .
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Definition 5.2. The map Φ(1) is said to be the first jet prolongation of Φ, and
the section Φ̌(1) is said to be the first jet prolongation of the section Φ̌.

Proposition 5.3. For every admissible section Φ ∈ Secadm(π) the section Φ̌(1) is
semiholonomic.

Proof. Indeed, the explicit expression of Φ(1) is

Φ(1)

n (b) = T ΦΦ̌(n, b, ρF (b)) =
(
Φ̌(n),Φ(b), T Φ̌(ρF (b))

)
=
(
Φn,Φn(b), T Φ̌(ρF (b))

)
.

so that Φ̌(1)(n) = (Φn,Φn, T Φ̌ ◦ ρF
)

is semiholonomic for every n ∈ N .

In local coordinates (xi, uA, yαa , z
α
a , y

α
ab) in Jπ1, if the expression of Φ̌ is Φ̌(x) =

(xi, φA, φαa ), then the expression of Φ̌(1) is Φ̌(1)(x) = (xi, φA, φαa , φ
α
a , φ́

β
b|a). Indeed,

from the general expression of the prolongation of a map with respect to a morphism
we have

Φ(1)?Xa = (T ΦΦ̌)?Xa = ēa

Φ(1)?Xα = (T ΦΦ̌)?Xα = φαa ē
a

Φ(1)?V
β
b = (T ΦΦ̌)?Vβb = dφβb = φ́βb|aē

a,

so that

Φ(1) = (Xa + φαaXα + φ́βb|aV
β
b )⊗ ēa,

which is equivalent to the above coordinate expression.
From this local result we see that, if Φ is an admissible section of π, then Φ is a

morphism if and only if Φ̌(1) is holonomic, i.e. takes values in J2π. In the following
subsection we will perform a more detailed study of this fact.

Morphisms and holonomic jets. The equations for a classical Field Theory
as they arise from variational calculus are equations for a morphism of Lie alge-
broids [52]. On the other hand, the equations that we are going to set are equations
for jets. Therefore, it is necessary to find conditions that select jets of morphism
among the set of jet of general maps. In this section we will find such condition in
terms of holonomy.

Proposition 5.4. Let Ψ ∈ Sec(π1) be such that the associated map Ψ̌ is a semi-
holonomic section and let Φ̌ be the section of π1 to which it projects. Then

1. The bundle map Ψ is admissible if and only if Φ is admissible and Ψ = Φ(1).
2. The bundle map Ψ is a morphism of Lie algebroids if and only if Ψ = Φ(1)

and Φ is a morphism of Lie algebroids.

Proof. In local adapted coordinates (xi, uA, yαa , z
α
a , y

α
ab) on Jπ1 we have that the

section Ψ̌ associated to Ψ is Ψ̌(x) = (xi, φA(x), φαa (x), ψβa , ψ
β
ba) so that the action

of Ψ by pullback is

Ψ?xi = xi Ψ?Xa = ēa

Ψ?uA = φA Ψ?Xβ = ψβa ē
a

Ψ?yαa = φαa Ψ?V
β
b = ψβbaē

a.

Let us see the conditions for Ψ to be an admissible map between anchored bun-
dles. We impose Ψ?df = dΨ?f for the coordinate functions. For f = xi we get an
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identity. For f = uA we have

Ψ?duA − dΨ?uA = Ψ?(ρAa X
a + ρAαX

α)− dφA =

(
ρAa + ρAαψ

α
a − ρia

∂φA

∂xi

)
ēa.

Finally for f = yβb we have

Ψ?dyβb − dΨ?yβb = Ψ?V
β
b − dφ

β
b =

(
ψβba − ρ

i
a

∂φβb
∂xi

)
ēa

Therefore, the map Ψ is admissible if and only if

(a) φ́A|a = ρAa + ρAαψ
α
a , and

(b) φ́βb|a = ψβba.

We now impose Ψ?dθ = dΨ?θ for θ an element in the dual basis {Xa,Xβ ,Vβb }.
For θ = Xa we get an identity. For θ = Xα we have

Ψ?dXα = Ψ?

(
−1

2
CαβγX

β ∧ Xγ − CαbγXb ∧ Xγ − 1

2
CαbcX

b ∧ Xc
)

= −1

2

(
Cαβγψ

β
b ψ

γ
c + Cαbγψ

γ
c − Cαcβψ

β
b − C

α
bc

)
ēb ∧ ēc,

and

dΨ?Xα = d(ψαa ē
a) = −1

2

(
ρic
∂ψαb
∂xi

− ρib
∂ψαc
∂xi

+ ψαaC
a
bc

)
ēb ∧ ēc.

Finally, for θ = V
β
b = dyβb we also get an identity

dΨ?Vαa −Ψ?dVαa = dΨ?dyαa = ddΨ?yαa = 0,

provided that the admissibility conditions hold.
Therefore, Ψ is a morphism if and only if in addition to (a) and (b) it satisfies

the equation

(c) ψ́αb|c − ψ́
α
c|b − C

α
βγψ

β
b ψ

γ
c − Cαbγψγc + Cαcβψ

β
b + ψαaC

a
bc + Cαbc = 0.

Let us consider a semiholonomic section Ψ̌, so that ψαa = φαa . Then the above

condition (a) reads φ́A|a = ρAa +ρAαφ
α
a which is but the admissibility conditions for the

map Φ, and condition (b) reads φ́βb|a = ψβba, which is just expressing that Ψ = Φ(1).

This proves the first statement.
Moreover, the section Ψ is a morphism if it is admissible, and therefore it is of

the form Ψ = Φ(1) for Φ admissible, and in addition it satisfies condition (c) which
is just expressing that the admissible map Φ is a morphism. This proves the second
statement.

Obviously the relation between Ψ and Φ is by projection (both projections):
T π10 ◦Ψ(n) = Φn = (π1)10(Ψ(n)) for all n ∈ N .

Corollary 5.5. Let Φ be an admissible section of π. Then Φ is a morphism of Lie
algebroids if and only if Φ̌(1) is holonomic

Proof. Notice first that, by the above proposition, if Φ is admissible then Ψ = Φ(1)

is semiholonomic and admissible, i.e. satisfies conditions (a) y (b) in the proof of
the theorem. The result follows by noticing that Φ(1) is holonomic if and only if
Mα
ab = 0, which is just condition (c).



CLASSICAL FIELD THEORY ON LIE ALGEBROIDS 115

6. The Lagrangian formalism. We consider a Lagrangian function L ∈ C∞(Jπ)
and a fixed nowhere-vanishing form ω ∈

∧r
F of maximal degree r = rank(F ), to

which we refer as the volume form. We will denote by ω̃ = π?1ω the pullback of the
volume form to T EJπ by the projection π1. The product L = Lω̃ ∈

∧r T EJπ will
be called the Lagrangian density.

We will define in this section the Cartan forms associated to the Lagrangian and,
in terms of them, we will get a system of partial differential equations which will
be called the Euler-Lagrange partial differential equations. In order to do that we
will consider the analogs of the the vertical lifting and the vertical endomorphism
in the standard theory.

Vertical lifting. The bundle Jπ being affine has a well defined vertical lifting map.
If φ ∈ Jmπ then we have a map V

φ : Vmπ → TφJπ, given by

ψVφ f =
d

dt
f(φ+ tψ)

∣∣∣
t=0

,

for every function f ∈ C∞(Jπ). Moreover, in the special case of Jπ, we have
some additional structure. Indeed, an element φ is but a splitting of an exact
sequence, and we have the associated vertical projector vφ : Em → Km ⊂ Em given
by vφ(a) = a − φ(π(a)). This allows to extend the vertical lifting operation to
elements ϕ ∈ Lmπ, by (vφ ◦ ϕ)Vφ , which is well defined because Im(vφ) ⊂ Km.

Definition 6.1. The map ξV : π10
∗(Lπ)→ T EJπ given by

ξV (φ, ϕ) =
(
φ, 0, (vφ ◦ ϕ)Vφ

)
.

is said to be the vertical lifting map.

In coordinates, if φ = (ea + yαa eα) ⊗ ēa and ϕ = (ϕbaeb + ϕαaeα) ⊗ ēa then
vφ = eα ⊗ (eα − yαa ea) and ξV (φ, ϕ) = (ϕαa − yαb ϕba)Vaα.

This construction will be generally used in the case of a map ϕ of the form
ϕ = b⊗ λ, with b ∈ Em and λ ∈ Fn. In such case

ξV (φ, b⊗ λ) =
(
φ, 0, (vφ(b)⊗ λ)Vφ

)
,

and its coordinate expression is ξV (φ, b⊗ λ) = λa(bα − yαc bc)Vaα.

Vertical endomorphism. Given a section ν ∈ Sec(F ∗) we can define a linear
map Sν : T EJπ → T EJπ, known as the vertical endomorphism, by means of
projection and vertical lifting. If Z = (φ, a, V ) ∈ T EJπ then

Sν(Z) = ξV
(
φ, a⊗ νn

)
,

where m = π10(φ) and n = π(m).
From this expression it is clear that Sν depends linearly in ν, a fact which helps

to find the coordinate expression of Sν . If ν = νaē
a and we denote Sa ≡ Sēa then

Sν = νaS
a and

Sa(Xb(φ)) = Sa
(
φ, eb, ρ

i
b

∂

∂xi
+ ρAb

∂

∂uA

)
= ξV (φ, vφ(eb)⊗ ēa)

= −yαb ξV (φ, eα ⊗ ēa) = −yαb Vaα(φ),

Sa(Xβ(φ)) = Sa
(
φ, eβ , ρ

A
β

∂

∂uA

)
= ξV (φ, vφ(eβ)⊗ ēa) = Vaβ(φ)

and

Sa(Vbβ(φ)) = Sa
(
φ, 0,

∂

∂yβb

)
= ξV (φ, 0) = 0.
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Thus the coordinate expression of Sa is Sa = (Xα−yαb Xb)⊗Vaα = θα⊗Vaα, where we
recall that θα = Xα−yαb Xb are the elements of a basis of contact 1-forms. Therefore
the expression of the vertical endomorphism is

S = θα ⊗ ēa ⊗ Vaα.

As usual we will denote Sω the r-form obtained by contraction (of the second
tensorial factor) with the volume form ω. In coordinates

Sω = θα ∧ ωa ⊗ Vaα,

with ωa = iēaω.

Cartan forms. With the help of the vertical endomorphism we define the La-
grangian multimomentum r-form ΘL ∈

∧r T EJπ by

ΘL = Sω(dL) + Lω,

which in local coordinates reads

ΘL =
∂L

∂yαa
θα ∧ ωa + Lω.

By taking the differential of the multimomentum form we have the Lagrangian
multisymplectic (r + 1)-form ΩL = −dΘL. In coordinates we have

ΩL =
1

2

[
∂2L

∂yβa∂uB
ρBγ −

∂2L

∂yγa∂uB
ρBβ +

∂L

∂yα
Cαβγ

]
θβ ∧ θγ ∧ ωa+

+
∂2L

∂yαa ∂y
β
b

θα ∧ V
β
b ∧ ωa+

+

[
∂2L

∂yαa ∂u
B

(ρBa + ρBβ y
β
a ) +

∂2L

∂yαa ∂x
i
ρia +

∂L

∂yαa
Cbba −

∂L

∂yγa
Zγaα −

∂L

∂uA
ρAα

]
θα ∧ ω.

Euler-Lagrange equations. By a solution of the Hamiltonian system defined by
a Lagrangian L we mean a morphism Φ: F → E such that its prolongation satisfies
the equation

Φ(1)?(iXΩL) = 0,

for every section X of T EJπ vertical over F . The above equations are said to be the
Euler-Lagrange equations for the Lagrangian L. We will obtain in this section
the local expression of this equations and the system of partial differential equations
which defines.

We will start from a slightly more general point of view and we will look for
sections Ψ of π1 such that they satisfy the so called De Donder equations,

Ψ?(iXΩL) = 0,

for every section X of T EJπ vertical over F . Later on we will impose that Ψ is
admissible and finally a morphism.

Since Ψ is a section of π1 it has an associated section Φ ∈ Sec(π), such that

Φ̌ = Ψ. In coordinates Ψ is of the form Ψ = (Xa + ψαaXα + ψβbaV
b
β) ⊗ ēa and the

base map Φ is of the form Φ(x) = (xi, φA(x), φαa (x)). Therefore we have

Ψ?xi = xi Ψ?Xa = ēa

Ψ?uA = φA Ψ?Xβ = ψβa ē
a

Ψ?yαa = φαa Ψ?V
β
b = ψβbaē

a.
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Taking X = Vbβ in the De Donder equations we get

iXΩL = − ∂2L

∂yαa ∂y
β
b

θα ∧ ωa

and thus

Ψ?(iXΩL) = − ∂2L

∂yαa ∂y
β
b

(ψαa − φαa ) ∧ ω

which vanishes if and only if

∂2L

∂yαa ∂y
β
b

(ψαa − φαa ) = 0.

We will say that the Lagrangian is regular if the linear map ξαa 7→ ∂2L

∂yαa ∂y
β
b

ξαa is

regular at every point. In the case of a regular Lagrangian the solution of the above
equation is just ψαa = φαa , that is Ψ is semiholonomic. On the other hand, if the
section Ψ is semiholonomic, the above conditions are always satisfied, that is

Proposition 6.2. If Ψ is a semiholonomic section then Ψ?(iXΩL) = 0 for every
section X of T EJπ vertical over E.

In general we will be treating with singular Lagrangians. Therefore, in what
follows we will consider only semiholonomic sections.

Taking now X = Xα we obtain

iXΩL = =
1

2

[
∂2L

∂yαa ∂u
B
ρBβ −

∂2L

∂yβa∂uB
ρBα +

∂L

∂yγ
Cγαβ

]
θβ ∧ ωa +

∂2L

∂yαa ∂y
β
b

V
β
b ∧ ωa+

+

[
∂2L

∂yαa ∂u
B

(ρBa + ρBβ Φβa) +
∂2L

∂yαa ∂x
i
ρia +

∂L

∂yαa
Cbba −

∂L

∂yγa
Zγaα −

∂L

∂uA
ρAα

]
ω.

and thus

Ψ?(iXΩL) =

[
∂2L

∂yαa ∂y
β
b

ψβba +
∂2L

∂yαa ∂u
B

(ρBa + ρBβ φ
β
a) +

∂2L

∂yαa ∂x
i
ρia +

+
∂L

∂yαa
Cbba −

∂L

∂yγa
Zγaα −

∂L

∂uA
ρAα

]
ω,

so that the coefficients ψαba must satisfy

∂2L

∂yαa ∂y
β
b

ψβba+
∂2L

∂yαa ∂u
B

(ρBa +ρBβ φ
β
a)+

∂2L

∂yαa ∂x
i
ρia+

∂L

∂yαa
Cbba−

∂L

∂yγa
Zγaα−

∂L

∂uA
ρAα = 0.

In addition to this equations we have the admissibility condition. As a conse-
quence of proposition 5.4, if Ψ is semiholonomic and admissible, then Ψ = Φ(1) with
Φ admissible. Thus

φ́A|a = ρAa + ρAαφ
α
a and φ́βb|a = ψβba,

so that the first three terms in the above equation are but the expression of the
total derivative of ∂L/∂yαa , so that we finally get(

∂L

∂yαa

)′
|a

+
∂L

∂yαa
Cbba −

∂L

∂yγa
Zγaα −

∂L

∂uA
ρAα = 0.
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If we finally impose that Ψ is not only admissible but a morphism (i.e. Φ is a
morphism) we get the system of partial differential equations

ρia
∂uA

∂xi
= ρAa + ρAαy

α
a ρia

∂yβb
∂xi

= yβba(
yγab + Cγbαy

α
a

)
−
(
yγba + Cγaβy

β
b

)
− Cγαβy

α
a y

β
b + yγcC

c
ab + Cγab = 0(

∂L

∂yαa

)′
|a

+
∂L

∂yαa
Cbba −

∂L

∂yγa
Zγaα −

∂L

∂uA
ρAα = 0,

which are said to be the Euler-Lagrange partial differential equations.

Alternative expression of ΩL and the Euler-Lagrange form. If we introduce

the forms θβb = V
β
b − y

β
baX

a, which are forms on T EJ2π, then the pullback of ΩL to
T EJ2π is (we omit the pullback in the notation)

ΩL =
1

2

[
∂2L

∂yβa∂uB
ρBγ −

∂2L

∂yγa∂uB
ρBβ +

∂L

∂yα
Cαβγ

]
θβ ∧ θγ ∧ ωa+

+
∂2L

∂yαa ∂y
β
b

θα ∧ θβb ∧ ωa+

+

[
∂2L

∂yαa ∂y
β
b

yβba +
∂2L

∂yαa ∂u
B

(ρBa + ρBβ y
β
a ) +

∂2L

∂yαa ∂x
i
ρia+

+
∂L

∂yαa
Cbba −

∂L

∂yγa
Zγaα −

∂L

∂uA
ρAα

]
θα ∧ ω.

and the last term is the Euler-Lagrange (r + 1)-form

δL =

[(
∂L

∂yαa

)′
|a

+ Cbba

(
∂L

∂yαa

)
− ∂L

∂yγa
Zγaα −

∂L

∂uA
ρAα

]
θα ∧ ω.

The Euler-Lagrange equations can be written as δL = 0, which define a subset (a
submanifold under some regularity conditions) of J2π on which the jet prolongation
Φ(1) of a solution Φ has to take value.

7. Variational calculus. In this section we will show that, in the case F = TN ,
our formalism admits a variational description, i.e. the Euler-Lagrange equations
obtained by the multisymplectic formalism are the equations for critical sections of
a constrained variational problem [52].

Variational problem. We consider the following variational problem: Given a
Lagrangian function L ∈ C∞(Jπ) and a volume form ω on N , find the critical
points of the action functional

S(Φ) =

∫
N

(L ◦ Φ̌)ω

defined on the set of morphisms sections of π, that is, on the set M(π).
The above variational problem is a constrained problem, not only because the

condition π ◦ Φ = idF , which can be easily solved, but because we are restricting
Φ to be a morphism of Lie algebroids, which is a condition on the derivatives of Φ.
We will explicitly find some curves in the space of morphisms which will allow us
to get the equations satisfied by the critical sections.
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In order to use all our geometric machinery, we will reformulate the variational
problem. If we consider the Lagrangian density L = Lω̃ ∈

∧
T EJπ, then we have

that
(L ◦ Φ̌)ω = Φ(1)?L.

Indeed, the base map of Φ(1) is Φ̌ so that we have Φ(1)?L = L ◦ Φ̌. Moreover, since
Φ(1) is a section of π1, we have that Φ(1)?ω̃ = ω. Therefore we can write the action
as S(Φ) =

∫
N

Φ(1)?L.
On the other hand, since the difference between L and ΘL is a contact form

and Φ(1) is semiholonomic, we have that Φ(1)?L = Φ(1)?ΘL. Therefore the action
functional can be rewritten as

S(Φ) =

∫
N

Φ(1)?ΘL.

In order to find admissible variations we consider sections of E and the associated
flow. With the help of this flow we can transform morphisms of Lie algebroids into
morphisms of Lie algebroids as it is explained in the next subsection.

Jet prolongation of maps and sections. In this subsection we return momen-
tarily to the general case of a general Lie algebroid F .

Consider a vector bundle map Ψ = (Ψ,Ψ) from E to E which induces the identity
in F , that is π ◦Ψ = π, or explicitly π ◦Ψ = π and π ◦Ψ = π. The map Ψ induces

a map between jets Ψ̌ : Jπ → Jπ by composition, Ψ̌(φ) = Ψ ◦ φ. The map Ψ̌ is well

defined since π ◦ (Ψ̌(φ)) = π ◦ Ψ ◦ φ = π ◦ φ = id, that is, the image of Ψ̌ is in

Jπ. Moreover, Ψ̌ is a fiberwise affine map over the map Ψ. Thus we have the affine

bundle map Ψ̌ = (Ψ̌,Ψ) from π10 : Jπ → M to itself. By tangent prolongation we

have the bundle map Ψ(1) = T ΨΨ̌ from τEJπ : T EJπ → Jπ to itself which will be
called the jet-prolongation of Ψ.

Proposition 7.1. Let Φ = (Φ,Φ) be a section of π and Ψ a vector bundle map over
the identity in F . We consider the transformed map Φ′ = Ψ ◦ Φ, i.e. Ψ′ = Ψ ◦ Φ
and Φ′ = Ψ ◦ Φ. Then

1. The maps Φ̌ and Φ̌′ associated to Φ and Φ′ are related by Φ̌′ = Ψ̌ ◦ Φ̌.
2. The jet prolongation of Φ and of Φ′ are related by Φ′

(1)
= Ψ(1) ◦ Φ(1).

Proof. Indeed, the base maps are Φ′ = Ψ ◦ Φ, and for every n ∈ N ,

Φ̌
′
(n) = Φ

′
n = Ψ ◦ Φn = Ψ ◦ (Φ̌(n)) = Ψ̌(Φ̌(n)),

which proves the first. For the second we have

Φ′
(1)

= T Φ′Φ̌′ = T Ψ◦ΦΨ̌ ◦ Φ̌ = T ΨΨ̌ ◦ T ΦΦ̌ = Ψ(1) ◦ Φ(1),

where we have used the composition property for E-tangent prolongations.

We will say that a section σ of E is π-vertical if it projects to the zero section
on F , that is π ◦ σ = 0. Let σ be a π-vertical section of E, and consider the flow
Ψs = (Ψs,Ψs) of σ. We recall that Ψs is the flow of the vector field ρ(σ).

The associated map Ψ̌s is a flow on the manifold Jπ and we denote by X̌σ ∈ X(Jπ)
its infinitesimal generator. It follows that Tπ10 ◦ X̌σ = ρ(σ)◦π10 and thus for every

m ∈ M and every φ ∈ Jmπ we have that (φ, σ(m), X̌σ(φ)) is an element of T EJπ
at the point φ. Therefore we have defined a section σ(1) ∈ Sec(T EJπ) given by

σ(1)(φ) = (φ, σ(m), X̌σ(φ)),
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where m = π10(φ). This section is said to be the jet-prolongation of σ ∈ Sec(E)
or the complete lift to Jπ of the section σ.

Proposition 7.2. The first jet prolongation of a π-vertical section satisfies the
following properties

1. The jet prolongation σ(1) of σ is projectable and projects to σ.
2. The jet prolongation σ(1) of σ preserves the contact ideal, that is, if θ is a

contact form then dσ(1)θ is a contact form.
3. The jet prolongation σ(1) of σ is the only section of T EJπ which satisfies the

above two properties (1) and (2).
4. The flow of the jet prolongation σ(1) is Ψ(1)

s , where Ψs is the flow of the section
σ.

5. If the local expression of the section σ is σ = σαeα, then the local expression
of the the jet prolongation of σ is

σ(1) = σαXα + (σ́α|a + Zαaβσ
β)Vaα

Proof. Property (1) is obvious from the definition of σ(1) and property (4) follows
from proposition 2.3.

To prove (2) we notice that if Ψ is a bundle map and if β is a section of E∗ and

β̆ is the associated contact form then Ψ(1)?β̆ = ˘Ψ?β, the contact form associated to
Ψ?β. Then (2) follows since the flow of σ(1) is Ψ(1)

s .
In local coordinates, from property (1) we have that σ(1) has the form σ(1) =

σαXα + σαaV
a
α, for some functions σαa . Then taking the Lie derivative of a contact

form θα = Xα − yαaXa we get

dσ(1)θα = iσ(1)dθα + diσ(1)θα

= Cαβγσ
γθβ + Zαaγσ

γXa − σαaXa + dσα

= (Zαaγσ
γ + σ́α|a − σ

α
a )Xa +

(
ρAβ

∂σα

∂uA
+ Cαβγσ

γ

)
θβ .

which is a contact form if and only if σαa = σ́α|a + Zαaγσ
γ . This proves (5). Finally,

property (3) follows from the above coordinate expression.

Proposition 7.3. If f ∈ C∞(N) then (fσ)(1) = fσ(1) + (df ⊗ σ)V .

Proof. Both (fσ)(1) and fσ(1) project to fσ, so that they differ in a vertical section
V = (fσ)(1) − fσ(1). From the coordinate expression of σ(1) we have that V =

f́|aσ
αVaα which is but the local expression of (df ⊗ σ)V .

Remark. In more generality, one can define the complete lift of any section σ of E
which is projectable to a section σ̄ of F , not necessarily the zero section. Indeed, we
just need to define the flow of the vector field ρ1(σ(1)). The flow Ψs of the section σ
projects to the flow Φs of the section σ̄, that is π ◦Ψs = Φs ◦π. Then we can define
the maps JΨs : Jπ → Jπ by means of JΨs(φ) = Ψs ◦ φ ◦ Φ−s. This maps define
a local flow on the manifold Jπ whose infinitesimal generator is (by definition) the
vector field ρ1(σ(1)).

Even more generally, one can define the complete lift of a nonprojectable section
σ of E by imposing the first two conditions in proposition 7.2. We will not study
such constructions in this paper since we will not need it.
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Equations for critical sections. Going back to our variational problem for F =
TN , let Φ be a critical point of S. An admissible variation of Φ is but a curve
in M(π) starting at Φ, that is a map s 7→ Φs such that Φs is (for every fixed
s) a section of π and a morphism of Lie algebroids. To find one of such curves
we consider a π-vertical section σ of E (thus its flow Ψs : E → E projects to the
identity in F = TN) with compact support. It follows that, for every fixed s, the
bundle map Φs = Ψs ◦ Φ is a section of π and a morphism of Lie algebroids, that
is, s 7→ Φs is a curve in M(π). Thus we have that

0 =
d

ds
S(Φs)

∣∣∣
s=0

=

∫
N

d

ds
Φ(1)

s
?ΘL

∣∣∣
s=0

=

∫
N

d

ds

(
Ψ(1)

s ◦ Φ(1))?ΘL

)∣∣∣
s=0

=

∫
N

d

ds
Φ(1)?

(
Ψ(1)

s
?ΘL

)∣∣∣
s=0

=

∫
N

Φ(1)? d

ds

(
Ψ(1)

s
?ΘL

)∣∣∣
s=0

=

∫
N

Φ(1)?dσ(1)ΘL,

where we have used that Φ(1)
s = Ψ(1)

s ◦ Φ(1) and that Ψ(1)
s is the flow of the jet

prolongation σ(1) of the section σ.
Using that dσ(1) = iσ(1) ◦d+d◦iσ(1) we have that dσ(1)ΘL = iσ(1)dΘL+diσ(1)ΘL =

−iσ(1)ΩL + diσ(1)ΘL, so that

0 =

∫
N

Φ(1)?dσ(1)ΘL = −
∫
N

Φ(1)?iσ(1)ΩL +

∫
N

Φ(1)?diσ(1)ΘL.

The second term vanishes; indeed ΘL is semibasic, so that iσ(1)ΘL depends only on
the values of σ, not on their derivatives, and since σ has compact support we have
that ∫

N

Φ(1)?diσ(1)ΘL =

∫
N

d[Φ(1)?iσ(1)ΘL] = 0.

Therefore we get

0 =

∫
N

Φ(1)?iσ(1)ΩL.

We now prove that this implies Φ(1)?iσ(1)ΩL = 0 for every σ. Indeed, if we take the
section fσ, for f ∈ C∞(N), then (fσ)(1) = fσ(1) + (df ⊗ σ)V , so that

Φ(1)?i(fσ)(1)ΩL = fΦ(1)?iσ(1)ΩL + Φ(1)?i(df⊗σ)V ΩL.

But Φ(1) is semiholonomic and (df ⊗ σ)V is vertical, so that by proposition 6.2 we
have Φ(1)?i(df⊗σ)V ΩL = 0. Therefore

0 =

∫
N

Φ(1)?i(fσ)(1)ΩL =

∫
N

f [Φ(1)?iσ(1)ΩL],

for every function f ∈ C∞(N). From the fundamental theorem of the Calculus of
Variations we get that Φ(1)?iσ(1)ΩL = 0 for every σ.

Finally we show that this condition is equivalent to Φ(1)?iXΩL = 0 for every
π1-vertical section X of T EJπ. Indeed, the above equation is tensorial in X, so
that it is equivalent to the same condition for projectable sections X. But if X is
projectable and projects to σ, then X = σ(1) + V for some vertical section. Thus
Φ(1)?iXΩL = Φ(1)?iσ(1)ΩL + Φ(1)?iV ΩL, but the last term vanishes because V is
vertical and Φ(1) is semiholonomic.

Therefore, in the case of a tangent bundle F = TN with the standard Lie alge-
broid structure, we have proved that

Theorem 7.4. The following conditions are equivalent:

1. A morphism Φ is a critical section of S.
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2. In local coordinates such that the volume form is ω = dx1 ∧ · · · ∧ dxr and
ρia = δia, the components yαa of a vector bundle map Φ ∈ Sec(π) satisfy the
system of partial differential equations

∂uA

∂xa
= ρAa + ρAαy

α
a

∂yαa
∂xb
− ∂yαb
∂xa

+ Cαbγy
γ
a − Cαaγy

γ
b + Cαβγy

β
b y

γ
a + Cαab = 0

d

dxa

(
∂L

∂yαa

)
=

∂L

∂yγa
Zγaα +

∂L

∂uA
ρAα .

3. A morphism Φ satisfies the Euler-Lagrange equations Φ(1)?iXΩL = 0, for
every π1-vertical section X.

Proof. The equivalence of (1) and (3) has been already established. In order to
prove that (2) is equivalent to (3) we just have to notice that

Cabc = 0 and f́|a =
df

dxa

because ei = ∂/∂xi is a coordinate basis.

Noether’s theorem. Noether’s theorem is a consequence of the existence of a
variational description of the problem. In the standard case [18], when the La-
grangian is invariant by the first jet prolongation of a vertical vector field Z then
the Noether current J = iZ(1)ΘL is a conserved current. By a conserved current we
mean a (r − 1)-form such that its pullback by any solution of the Euler-Lagrange
equations is a closed form on the base manifold N . Therefore the integral of the
(r − 1)-form J over any closed (r − 1)-dimensional submanifold vanishes.

We will show that a similar statement can be obtained for a field theory over
general Lie algebroids F and E: for every symmetry of the Lagrangian we get a
form which is closed over every solution of the Euler-Lagrange equations. But now
the word conserved has only a partial meaning, because when the Lie algebroid F
is not TN we do not have a volume integral neither a Stokes theorem.

In what follows in this subsection F is a general Lie algebroid, not necessarily a
tangent bundle.

Following the steps in the derivation of the equation for critical sections, if σ is
any π-vertical section of E (we do not need it to be compactly supported) we have
that

Φ(1)?dσ(1)L = d[Φ(1)?iσ(1)ΘL]− Φ(1)?iσ(1)ΩL,

It follows that if Φ is a solution of the Euler-Lagrange equations Φ(1)?iσ(1)ΩL = 0,
then

Φ(1)?dσ(1)L = d[Φ(1)?iσ(1)ΘL].

The above is the base of Noether’s theorem.

Definition 7.5. We will say that the Lagrangian density L is invariant under a
π-vertical section σ ∈ Sec(E) if dσ(1)L = 0.

It follows from this definition that L is invariant under σ if and only if it is
invariant under the flow of σ(1), that is Φ(1)

s
?L = L.

Definition 7.6. An (r − 1)-form λ is said to be a conserved current if Φ(1)?λ is
a closed form for any solution Φ of the Euler-Lagrange equations.
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With these definitions and taking into account the above arguments we have the
following result.

Theorem 7.7. Let σ ∈ Sec(E) be a π-vertical section. If the Lagrangian density is
invariant under σ then iσ(1)ΘL is a conserved current.

Proof. If dσ(1)L = 0, from the relation Φ(1)?dσ(1)L = d[Φ(1)?iσ(1)ΘL], we have that
d[Φ(1)?iσ(1)ΘL], for every solution Φ of the Euler-Lagrange equations.

We insist however that the lack of an integral description does not allow to
interpret this as a conservation law in the classical sense.

8. The Hamiltonian formalism. For the Hamiltonian approach we consider the
affine dual of Jπ. This is the bundle whose fiber over m ∈ M is the set of all
affine maps from Jmπ to R. As in the standard case, there is a more convenient
representation of this bundle as a bundle of r-forms, which we will denote by the
same symbol. Explicitly, we consider the bundle π10

† : J†π → M whose fibre at
m ∈M is

J†mπ = {λ ∈ (E∗m)∧r | ik1ik2λ = 0 for all k1, k2 ∈ Km } .
An element in J†π has the local expression λ = λ0ω+ λaαe

α ∧ωa and it is identified
with the affine map λ0 + λaαy

α
a . We thus have local coordinates (xi, uA, µ0, µ

a
α) on

J†π, where µ0 and µaα are the functions given by µ0(λ) = λ0 and µaα(λ) = λaα. We
also consider the E-tangent bundle to J†π, whose fibre at the point λ is

T Eλ J†π =
{

(a, V ) ∈ Em × TλJ†π
∣∣ ρE(a) = Tπ10

†(V )
}
,

and the projection π10
† = T π10

†, which defines the bundle map π†10 = (π10
†, π10

†).

On J†π we have a canonically defined r-form Θ, the multimomentum form,

given by Θλ = (π†10)?λ, or explicitly,

Θλ(Z1, Z2, . . . , Zr) = λ(a1, a2, . . . , ar),

for Zi = (λ, ai, Vi) ∈ T Eλ J†π, i = 1, . . . , r. The canonical multimomentum form has
the local expression

Θ = µ0ω + µaαX
α ∧ ωa.

The differential of the canonical multimomentum form is (minus) the canonical
multisymplectic form on J†π, that is Ω = −dΘ. Its local expression is

Ω = Xα ∧ Paα ∧ ωa +
1

2
µaγC

γ
αβX

α ∧ Xβ ∧ ωa − P0 ∧ ω − µaγ(Cγaα + Cbabδ
γ
α)Xα ∧ ω.

We also consider the bundle dual to Vπ represented as the bundle π10
∗ : V∗π →M

whose fibre at m ∈ M is the set of all linear maps ξ : Km → F
∧(r−1)
n , where

n = π(m). An element of V∗π is of the form ξ = ξaαe
α ∧ ωa, and therefore we have

local coordinates (xi, uA, µaα) on V∗π, where µaα(ξ) = ξaα.
We have used the same symbol for the coordinates µaα in J†π and in V∗π because

the manifold J†π is fibred over the manifold V∗π. Indeed, an element λ in J†mπ is an
affine map and therefore has an associated linear map, which is represented as an
element of V∗π, and thus provides a surjective submersion ` : J†π → V∗π. As before,
we consider the E-tangent bundle T EV∗π whose fibre at ξ ∈ V∗π is

T Eξ V∗π =
{

(a, V ) ∈ Em × TξV∗π
∣∣ ρE(a) = Tπ10

∗(V )
}
.

In order to avoid confusions, the basis of local sections of T EJ†π will be denoted
(Xa,Xα,P

0,Pαa ) and similarly, the basis of local sections of T EV∗π will be denoted
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(Xa,Xα,P
α
a ). That is, we will denote the vertical elements

(
ξ, 0, ∂

∂µaα

)
by Pαa instead

of Vαa as above in the general theory. Accordingly, the dual basis will be denoted
(Xa,Xα,P0,P

a
α) and (Xa,Xα,Paα), respectively.

Liouville-Cartan forms. By a Hamiltonian section we mean a section of the
bundle ` : J†π → V∗π. With the help of a Hamiltonian section h we can pullback
the canonical multimomentum and multisymplectic forms to V∗π,

Θh = (T h)?Θ and Ωh = (T h)?Ω.

Notice that Ωh = −dΘh since T h is a morphism of Lie algebroids. Locally, a
Hamiltonian section h is determined by a local function H(xi, uA, µaα) by means
of h(xi, uA, µaα) = (xi, uA, µaα,−H(xi, uA, µaα)), that is, the coordinate µ0 is deter-
mined by µ0 = −H(xi, uA, µaα). It follows that the forms Θh and Ωh have the local
expression

Θh = µaαX
α ∧ ωa −Hω

and

Ωh = Xα ∧ Paα ∧ ωa +
1

2
µaγC

γ
αβX

α ∧ Xβ ∧ ωa + dH ∧ ω − µaγ(Cγaα + Cbabδ
γ
α)Xα ∧ ω.

Hamilton equations. A solution of the Hamiltonian system defined by a Hamil-
tonian section h is a morphism Λ from τFN : F → N to τEV∗π : T EV∗π → V∗π such

that
Λ? (iXΩh) = 0,

for every section X of T EV∗π vertical over F . The above equations are said to be
the Hamiltonian field equations.

Such a map Λ has the local expression Λ = (Xa+ΛαaXα+ΛcγaP
γ
a)⊗ ēa. By taking

the section X = Pαa in the Hamilton equations we get

iXΩ =
∂H

∂µaα
ω − Xα ∧ ωa

and then

Λ?(iXΩ) =

(
∂H

∂µaα
− Λαa

)
ω,

from where we get

Λαa =
∂H

∂µaα
.

Taking now the section X = Xα in the Hamilton equations we get

iXΩ =

(
ρAα

∂H

∂uA
− µcγ(Cγcα + Cbabδ

γ
α)

)
ω +

(
Paα + µaγC

γ
αβX

β
)
∧ ωa

and thus

Λ?(iXΩ) =

(
ρAα

∂H

∂uA
− µcγ(Cγcα + CγβαΛβα) + Λcαc − µcγCbab

)
ω,

from where we get the relation

Λcαc = −ρAα
∂H

∂uA
+ µcγ

(
Cγcα + CγβαΛβc

)
− µaβCbab.

It follows that the Hamiltonian field equations are

Λαa =
∂H

∂µaα
and Λcαc + µbαC

c
bc = −ρAα

∂H

∂uA
+ µcγ

(
Cγcα + Cγβα

∂H

∂µcβ

)
.
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Notice that they do not determine Λ, but they provide the value of Λcαc the trace
of Λaαb.

On the other hand, the map Λ must be a morphism; in particular it is an admis-
sible map ρ1 ◦ Λ = TΛ ◦ ρF , which in coordinates reads

ρia
∂uA

∂xi
= ρAa + ρAαΛαa and ρia

∂µcγ
∂xi

= Λcγa.

The additional properties for being a morphism are(
∂H

∂µaα

)′
|b
−
(
∂H

∂µbα

)′
|a

+ Cαβγ
∂H

∂µbβ

∂H

∂µaγ
+ Cαbγ

∂H

∂µaγ
− Cαaγ

∂H

∂µbγ
+ Cαba = 0

and

Λaαb|c − Λaαc|b = ΛaαdC
d
cb,

but this one is a consequence of the admissibility conditions. Therefore we get the
system of partial differential equations

ρia
∂uA

∂xi
= ρAa + ρAα

∂H

∂µaα(
∂H

∂µaα

)′
|b
−
(
∂H

∂µbα

)′
|a

+ Cαβγ
∂H

∂µbβ

∂H

∂µaγ
+ Cαbγ

∂H

∂µaγ
− Cαaγ

∂H

∂µbγ
+ Cαba = 0

ρic
∂µcα
∂xi

+ µbαC
c
bc = −ρAα

∂H

∂uA
+ µcγ

(
Cγcα + Cγβα

∂H

∂µcβ

)
.

which will be called the Hamiltonian partial differential equations.

The Legendre transformation. Let φ0 ∈ Jπ and m = π10(φ0). We define

F̂L(φ0) ∈ J†mπ as follows. For every φ ∈ Jmπ, we consider the map t 7→ ϕ(t) =

L(φ0 + t(φ−φ0)). The value of F̂L(φ0) over φ is the first order affine approximation
of ϕ at t = 0,

F̂L(φ0)(φ) = ϕ(0) + ϕ′(0).

The map F̂L : Jπ → J†π is said to be the Legendre map or the Legrendre transfor-
mation.

In coordinates, if φ0 = (ea + yαa eα) ⊗ ēa and φ = (ea + zαa eα) ⊗ ēa, then ϕ(t) =
L(xi, uA, yαa + t(zαa − yαa )), so that

F̂L(φ0)(φ) = ϕ(0) + ϕ′(0) = L(xi, uA, yαa ) +
∂L

∂yαa
(xi, uA, yαa )(zαa − yαa ),

which under the canonical identification (p+ paαz
α
a ) ≡ pω + paαe

α ∧ ωa corresponds
to

F̂L(φ0)(φ) =
∂L

∂yαa
(eα − yαb eb) ∧ ωa +

(
L− ∂L

∂yαa
yαa

)
ω,

It follows from this expression that F̂L is smooth and that (T F̂L)?Θ = ΘL. There-

fore (T F̂L)?Ω = ΩL

Finally, the reduced Legendre transformation is the map FL : Jπ → V∗π given by

projection FL = ` ◦ F̂L. In coordinates, if ψ ∈ Vπ has coordinates ψ = (xi, uA, vαa )
then we have

FL(φ0)(ψ) =
∂L

∂yαa
(xi, uA, yαa ) vαa ,
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which under the canonical identification paαz
α
a ≡ paαeα ∧ ωa corresponds to

FL(φ0)(ψ) =
∂L

∂yαa
eα ∧ ωa.

In local coordinates the tangent prolongation of the Legendre transformation is
given by

(T F̂L)?xi = xi (T F̂L)?Xa = Xa

(T F̂L)?uA = uA (T F̂L)?Xα = Xα

(T F̂L)?µ0 = L− ∂L

∂yα
yαa ≡ EL (T F̂L)?P0 = dEL

(T F̂L)?µaα =
∂L

∂yα
(T F̂L)?Paα = d

(
∂L

∂yα

)
and

(T FL)?xi = xi (T FL)?Xa = Xa

(T FL)?uA = uA (T FL)?Xα = Xα

(T FL)?µaα =
∂L

∂yα
(T FL)?Paα = d

(
∂L

∂yα

)
Equivalence. If the Legendre transformation FL is a (global) diffeomorphism we
will say that the Lagrangian is hyperregular. In this case both formalisms, the
Lagrangian and the Hamiltonian, are equivalent.

Proposition 8.1. The following conditions are equivalent:

1. FL is a local diffeomorphism.
2. For every φ ∈ Jπ the linear map TφFL is invertible.
3. The Lagrangian L is regular.

Proof. [(1) ⇔ (2)] If FL is a local diffeomorphism, then TFL is invertible. Thus,
for every φ ∈ Jπ we have that (FL(φ), a, V ) 7→ (φ, a, (TφFL)−1(V )) is the inverse
of TφFL. Conversely, if TφFL is invertible for every φ ∈ Jπ, and V ∈ TφJπ is such
that TΦFL(V ) = 0, then V is vertical (because FL is a map over the identity) and
thus

TφFL(φ, 0, V ) = (FL(φ), 0, TφFL(V )) = (FL(φ), 0, 0).

Since TφFL in invertible, we get that V = 0.
[(2)⇔ (3)] From the local expression of the prolongation of FL we get that TφFL

is invertible if and only if the matrix ∂2L

∂yαa ∂y
β
b

is invertible, which is equivalent to the

regularity of the Lagrangian.

Theorem 8.2. Let L be a hyperregular Lagrangian. If Φ is a solution of the Euler-
Lagrange equations then Λ = T FL ◦ Φ(1) is a solution of the Hamiltonian field
equations. Conversely, if Λ is a solution of the Hamiltonian field equations then
there exists one and only one solution Φ of the Euler-Lagrange equations such that
Λ = T FL ◦ Φ(1).

Proof. Let Φ ∈ Sec(π) be a solution of the Euler-Lagrange equations and define
Λ = T FL ◦ Φ(1). Then Λ is a morphism, because so is Φ(1) and T FL. Moreover, it
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is a solution of the Hamiltonian field equations. Indeed, if X and Y are such that
T FL ◦ Y = X ◦ FL, then

Λ?iXΩ = Φ(1)?(T FL)?iXΩ = Φ(1)?iY (T FL)?Ω = Φ(1)iY ΩL.

If Φ is a solution of the Euler-Lagrange equations then the right hand side vanishes
for every Y vertical, and then the left hand side vanishes for every X vertical.
(Notice that if Y is vertical and arbitrary so is X.)

Conversely, let Λ be a solution of the Hamiltonian field equations, and define
Ψ = (T FL)−1 ◦ Λ. Then, for every vertical Y we have

Ψ?iY ΩL = Ψ?iY (T FL)?Ω = Ψ?(T FL)?iXΩ = (T FL ◦Ψ)?iXΩ = Λ?iXΩ.

so that Ψ satisfies Ψ?iXΩL = 0, for every vertical X. Since the Lagrangian is
regular we have that Ψ is semiholonomic. But since Λ is a morphism, so is Ψ, and
hence Ψ is jet prolongation Ψ = Φ(1) with Φ a morphism. Therefore Φ ∈ Sec(π) is
a solution of the Euler-Lagrange field equations.

Unfortunately, the most interesting examples of Lagrangian field theories are
singular, so that the above result does not apply. In such cases we can proceed as
in [13] or alternatively as it is explained in the next subsection.

The unified formalism. Probably the best alternative in the analysis of the
Hamiltonian equations is the so-called unified formalism [22, 14].

Consider the fibred product Jπ ×M V∗π → M , and the map λL : Jπ ×M V∗π →
J†π defined by

λL(φ, ψ)(φ′) = L(φ) + ψ(φ′ − φ).

In local coordinates, if φ = (xi, uA, yαa ), ψ = (xi, uA, µaα) and φ′ = (xi, uA, zαa ), then

λL(φ, ψ)(φ′) = L(xi, uA, yαa ) + µaα(zαa − yαa ).

Thus the coordinates of λL(φ, ψ) are (xi, uA, L(xi, uA, yαa )− µaαyαa , µaα), that is the
value of the coordinate µ0 of λL(φ, ψ) is µ0 = L(xi, uA, yαa )− µaαyαa .

We consider the E-tangent bundle τEJπ×MV∗π : T E(Jπ ×M V∗π) → Jπ ×M V∗π

and the projections υ10 and υ1 from this bundle to τEM : E → M and τFN : F → N ,
respectively.

By pulling back the canonical multisymplectic form Ω on J†π to Jπ ×M V∗π by
T λL we get a multisymplectic form ΩL on Jπ ×M V∗π,

ΩL = (T λL)?Ω,

in terms of which we set the field equations. Notice that if we define ΘL = (T λL)?Θ
then ΩL = −dΘL. In coordinates

ΘL = (L− µaαyαa )ω + µaαX
α ∧ ωa = Lω + µaαθ

α ∧ ωa.

Definition 8.3. By a solution of unified field equations we mean a morphism Υ ∈
Sec(υ1) such that Υ?(iXΩL) = 0 for every υ1-vertical section X of T E(Jπ×M V∗π).

We will see that this equations reproduce the field equations and the semiholon-
omy condition.

The section Υ is of the form Υ = (Ψ,Λ), where Ψ is a section of Jπ and Λ is a
section of V∗π, both projecting to the same section of π. It is easy to see that Υ is a
morphism of Lie algebroids if and only if Ψ and Λ are morphisms of Lie algebroids.
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We consider the forms ∆L = ΘL − (T pr1)?ΘL and ΞL = ΩL − (T pr1)?ΩL, so
that ΞL = −d∆L. In coordinates we have that

∆L =

(
µaα −

∂L

∂yαa

)
θα ∧ ωa.

Proposition 8.4. Let Υ ∈ Sec(υ1) be a morphism, and Ψ,Λ its components.

1. Υ?iZΩL = 0 for every T pr1-vertical section Z if and only if Ψ is semiholo-
nomic (and hence holonomic).

2. Υ?iZΩL = 0 for every T υ-vertical section Z if and only if Ψ is semiholonomic
and Im Υ ⊂ Graph(FL).

3. Υ?iZΩL = 0 for every T υ-vertical section Z if and only if Υ?iWΩL = 0 for
every section W .

Proof. Indeed, for Z = Pαa we have that

iPαaΞL = −θα ∧ ωa,

so that Υ?iPαaΞL = Ψ?θα ∧ ω vanishes if and only if Ψ is semiholonomic. Since Ψ
is a morphism we have that Ψ is holonomic. This proves the first condition.

For the second we have

iVaαΞL =
∂2L

∂yαa ∂y
β
b

θβ ∧ ωb +

(
µaα −

∂L

∂yαa

)
ω.

Therefore Υ?iZΩL = 0 for Z = Pαa and Z = Vaα if and only if Ψ is semiholonomic

and Υ?
(
µaα − ∂L

∂yαa

)
= 0, that is, Υ takes values on the graph of the Legendre

transformation FL.
Finally, for the third we take Z = Xα and thus

iXαΞL = −dXα∆L + d(iXα∆L).

The pullback by Υ of the second term vanishes because Υ? commutes with d and

Υ?iXα∆L = Υ?

(
µaα −

∂L

∂yαa

)
ωa = 0.

Thus we have Υ?iXαΞL = −Υ?dXα∆L which vanishes as a consequence of the first
two properties

Υ?dXα∆L = Υ?

[
dXα

(
µbβ −

∂L

∂yβb

)] [
Υ?θβ ∧ ωa

]
+

+ Υ?

(
µbβ −

∂L

∂yβb

)
Υ?
[
dXα(θβ ∧ ωb)

]
= 0 + 0 = 0.

This proves the third.

We notice that if Ψ is semiholonomic and Υ = (Ψ,Λ) is a morphism of Lie
algebroids (admissible is sufficient) such that the base map is in the graph of the
Legendre transformation, Im Υ ⊂ Graph(FL), then Υ itself is in the graph of T FL,
that is, Λ = T FL◦Ψ. Indeed, if we denote by ζ the bundle map ζ = Υ−(Ψ, T FL◦Ψ),
then we have that ζ?xi = 0, ζ?uA = 0, ζ?yαa = 0 and

ζ?µaα =

(
µaα −

∂L

∂yαa

)
◦Υ,
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which vanishes if Im Υ ⊂ Graph(FL). Moreover we have that ζ?Xa = 0, ζ?Xα = 0
(because Ψ is semiholonomic), ζ?Vαa = 0, and

ζ?Paα = ζ?dµaα = dζ?µaα = d

[(
µaα −

∂L

∂yαa

)
◦Υ

]
,

which vanishes because Im Υ ⊂ Graph(FL).

Proposition 8.5. Let Υ = (Ψ,Λ) be a solution of the unified field equations. Then
Ψ = Φ(1) with Φ a solution of the Euler-Lagrange equations and Λ = T FL ◦ Φ(1).

Conversely, if Φ is solution of the Euler-Lagrange equations then Υ = (Φ(1), T FL◦
Φ(1)) is a solution of the unified field equations.

Proof. Let Υ be a solution of the unified field equations. Then if Z = (X,Y ) is a
section of T EJπ ×M V∗π we have

Ψ?iXΩL = Υ?iZΞL.

Thus for a T pr1-vertical Z we have that X = 0, and thus Υ?iZΞL = 0, so that Ψ
is semiholonomic, and hence holonomic Ψ = Φ(1). On the other hand if Z is T pr2-
vertical, then X is vertical and by proposition 6.2 we get that Ψ?iXΩL = 0. Thus
Υ?iZΞL = 0 and it follows that Υ is in the graph of the Legendre transformation,
i.e. it is of the form Υ = (Ψ, T FL ◦Ψ). Finally, since Υ?iZΞL vanishes for verticals
Z, it vanishes for every Z, and hence Ψ?iXΩL = 0. Thus Ψ = Φ(1) satisfies the De
Donder equations, i.e. Φ is a solution of the Euler-Lagrange equations.

Conversely, let Φ be a solution of the Euler-Lagrange equations and set Υ =
(Φ(1), T FL ◦ Φ(1)). Since Φ is a morphism so is Φ(1), hence so is T FL ◦ Φ(1) and
hence so is Υ. Thus

Υ?iZΩL = Ψ?iXΩL + Υ?iZΞL = Υ?iZΞL,

which vanishes because Φ(1) is semiholonomic and (by definition) the image of Υ is
contained in the graph of the Legendre transformation.

9. Examples.

Standard case. In the standard case, we consider a bundle π : M → N , the stan-
dard Lie algebroids F = TN and E = TM and the tangent map π = Tπ : TM →
TN . Then we have that Jπ = J1π. Thus we recover the standard first order Field
Theory defined on sections on the bundle M . If we take coordinate basis, we recover
the local expression of the Euler-Lagrange field equations and the Hamiltonian field
equations. Moreover, if we take general non-coordinate basis of vector fields, our
equations provides an expression of the standard Euler-Lagrange and Hamiltonian
field equations written in pseudo-coordinates.

In particular, one can take an Ehresmann connection on the bundle π : M → N
and use an adapted local basis made of horizontal and vertical vector fields

ēi =
∂

∂xi
and


ei =

∂

∂xi
− ΓAi

∂

∂uA

eA =
∂

∂uA
,

where ΓAi are the coefficients of the nonlinear connection in the given coordinate
system. Then we have the brackets

[ei, ej ] = RAijeA, [ei, eB ] = ΓAiBeA and [eA, eB ] = 0,
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where we have written ΓBiA = ∂ΓBi /∂u
A and where RAij is the curvature tensor of

the nonlinear connection we have chosen,

RAij =
∂ΓAi
∂xj

−
∂ΓAj
∂xi

+ ΓBi ΓAjB − ΓBj ΓAiB .

The components of the anchor are ρij = δij , ρ
A
i = ΓAi and ρAB = δAB so that the

Euler-Lagrange equations are

∂uA

∂xi
+ ΓAi = yAi

∂yAi
∂xj

−
∂yAj
∂xi

+ ΓAjBy
B
i − ΓAiBy

B
j +RAij = 0

d

dxi

(
∂L

∂yAi

)
− ΓBiA

∂L

∂yBi
=

∂L

∂uA
.

On the Hamiltonian side we have the Hamiltonian field equations

∂uA

∂xi
+ ΓAi =

∂H

∂µiA

d

dxj

(
∂H

∂µiA

)
− d

dxi

(
∂H

∂µjA

)
+ ΓAjB

∂H

∂µiB
− ΓAiB

∂H

∂µjB
+RAij = 0

∂µiA
∂xi

− µiBΓBiA = − ∂H
∂uA

.

See [6, 18, 21] for alternative derivations of this equations.

Time-dependent mechanics. In [62, 63] we developed a theory of Lagrangian
and Hamiltonian mechanics for time dependent systems defined on Lie algebroids,
where the base manifold is fibred over the real line R. Later, in [55], we generalize
such results to the case of a general manifold (not necessarily fibred over R) which
was based on the notion of Lie algebroid structure over an affine bundle. Since
time-dependent mechanics is but a 1-dimensional Field Theory, our results must be
related to that.

The case where the manifold M is fibred over R fits in the scheme developed in
this paper as follows. Consider a Lie algebroid τEM : E → M and the standard Lie
algebroid τR : TR→ R. We consider the Lie subalgebroid K = ker(π) and define

A =

{
a ∈ E

∣∣∣∣ π(a) =
∂

∂t

}
.

Then A is an affine subbundle modeled on K and the ‘bidual’ of A is (A†)∗ = E.
Moreover, the Lie algebroid structure on E defines by restriction a Lie algebroid
structure on the affine bundle A.

Conversely, let A be an affine bundle with a Lie algebroid structure as in [55].
Then the vector bundle E ≡ (A†)∗ has an induced Lie algebroid structure. If ρ̃ is
the anchor of this bundle then the map π defined by π(z) = Tπ(ρ̃(z)) is a morphism.
Moreover we have that A =

{
a ∈ E

∣∣ π(a) = ∂
∂t

}
as above.

We have a canonical identification of A with Jπ. Indeed, let T : Jπ → A be the
map T (φ) = Φ( ∂∂t ). Then T is well defined, i.e. T (φ) ∈ A because

π(a) = π(φ(
∂

∂t
)) = (π ◦ φ)(

∂

∂t
) =

∂

∂t
.
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The inverse of the map T is clearly T−1(a) = a dt, where by φ = a dt we mean the
map φ(τ ∂∂t ) = τa. One can easily follow the correspondences between both theories.
For instance the vertical endomorphism Sdt associated to the volume form dt is the
vertical endomorphism as defined in [55].

The morphism condition is just the admissibility condition so that the Euler-
Lagrange equations are

duA

dt
= ρA0 + ρAαy

α

d

dt

(
∂L

∂yα

)
=

∂L

∂yγ
(Cγ0α + Cγβαy

β) +
∂L

∂uA
ρAα ,

where we have written x0 ≡ t and yα0 ≡ yα. This expression is in agreement
with [55]. For the Hamilton equations we have

duA

dt
= ρA0 + ρAα

∂H

∂µα
dµα
dt

= µγ(Cγ0α + Cγβα
∂H

∂µβ
)− ρAα

∂H

∂uA
.

where we have written µ0
α ≡ µα.

The autonomous case. A very common case in applications is that of systems
depending on morphisms from a Lie algebroid to another one, which are not sections
of any bundle. In this case we construct the bundle E as the product of both
algebroids. We assume that we have two Lie algebroids τFN : F → N and τGQ : G→ Q
over different bases and we set M = N ×Q and E = F ×G, where the projections
are both the projection over the first factor π(n, q) = n and π(a, k) = a. The anchor
is the sum of the anchors and the bracket is determined by the brackets of sections
of F and G (a section of F commutes with a section of G).

In this case a jet at a point (n, q) is of the form φ(a) = (a, ζ(a)), so that it is
equivalent to a map ζ : Fn → Gq. Therefore, in what follows we identify Jπ with
the set of linear maps from a fibre of F to a fibre of G. This is further justified by
the fact that a map Φ: F → G is a morphism of Lie algebroids if and only if the
section (id,Φ): F → F ×G of π is a morphism of Lie algebroids.

Taking coordinates xi in N and uA in Q we therefore have that

ρAa = 0, Cαab = 0 and Cαaβ = 0.

The affine functions Zγaα reduce to Zγaα = Cγβαy
β
a and thus the Euler-Lagrange

equations are (
∂L

∂yαa

)′
|a

+ Cbba

(
∂L

∂yαa

)
=

∂L

∂yγa
Cγβαy

β
a +

∂L

∂uA
ρAα .

In the more particular and common case where F = TN we can take a coordinate
basis, so that we also have ρab = δab and Ccab = 0. Therefore the Euler-Lagrange
partial differential equations are

∂uA

∂xa
= ρAαy

α
a

d

dxa

(
∂L

∂yαa

)
=

∂L

∂yγa
Cγβαy

β
a +

∂L

∂uA
ρAα
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∂yαa
∂xb
− ∂yαb
∂xa

+ Cαβγy
β
b y

γ
a = 0.

In this autonomous case Hamilton differential equations take the form

∂uA

∂xa
= ρAαy

α
a

∂µaα
∂xa

= µaγC
γ
βα

∂H

∂µaβ
− ∂H

∂uA
ρAα

d

dxb

(
∂H

∂µaα

)
− d

dxa

(
∂H

∂µbα

)
+ Cαβγ

∂H

∂µbβ

∂H

∂µaγ
= 0.

Autonomous Classical Mechanics. When moreover F = TR → R then we recover
Weinstein’s equations for a Lagrangian system on a Lie algebroid

duA

dt
= ρAαy

α

d

dt

(
∂L

∂yα

)
=

∂L

∂yγ
Cγβαy

β +
∂L

∂uA
ρAα ,

where, as before, we have written x0 ≡ t and yα0 ≡ yα. For the Hamilton equations
we have

duA

dt
= ρAα

∂H

∂µα
dµα
dt

= µγC
γ
βα

∂H

∂µβ
− ρAα

∂H

∂uA
.

where we have written µ0
α ≡ µ0

α.

Poisson Sigma model. As an example of autonomous theory, we consider a 2-
dimensional manifold N and its tangent bundle F = TN . On the other hand,
consider a Poisson manifold (Q,Λ). Then the cotangent bundle G = T ∗Q has
a Lie algebroid structure, where the anchor is ρ(σ) = Λ(σ, · ) and the bracket is
[σ, η] = dρ(σ)η−dρ(η)σ−dΛ(σ, η), where d is the ordinary exterior differential on the
manifoldQ (i.e. the exterior differential of the standard Lie algebroid τQ : TQ→ Q).

The Lagrangian density for the Poisson Sigma model is L(φ) = − 1
2φ

?Λ. In

coordinates (x1, x2) on N and (uA) in Q we have that Λ = 1
2ΛJK ∂

∂uJ
∧ ∂
∂uK

. A jet

at the point (n, q) is a map φ : TnN → T ∗qQ, locally given by φ = yKidu
K ⊗ dxi.

Thus we have local coordinates (xi, uK , yKi) on Jπ. The local expression of the
Lagrangian density is

L = −1

2
ΛJKAJ ∧AK = −1

2
ΛJKyJ1yK2 dx

1 ∧ dx2.

where we have written AK = Φ?(∂/∂uK) = yKidx
i.

A long but straightforward calculation shows that for the Euler-Lagrange equa-
tion

d

dxa

(
∂L

∂yαa

)
=

∂L

∂yγa
Cγβαy

β
a +

∂L

∂uA
ρAα

the right hand side vanishes while the left hand side reduces to

1

2
ΛLJ

(
yL2|1 − yL1|2 +

∂ΛMK

∂uL
yM1yK2

)
= 0.
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In view of the morphism condition, we see that this equation vanishes. Thus the
field equations are just

∂uJ

∂xa
+ ΛJKyKa = 0

∂yJa
∂xb

− ∂yJb
∂xa

+
∂ΛKL

∂uJ
yKbyLa = 0,

or in other words

dφJ + ΛJKAK = 0

dAJ +
1

2
ΛKL,J AK ∧AL = 0.

The conventional Lagrangian density for the Poisson Sigma model [66] is L′ =
tr(Φ ∧ TΦ) + 1

2Φ?Λ, which in coordinates reads L′ = AJ ∧ dφJ + 1
2ΛJKAJ ∧ AK .

The difference between L′ and L is a multiple of the admissibility condition dφJ +
ΛJKAK ;

L′ − L = AJ ∧ dφJ +
1

2
ΛJKAJ ∧AK +

1

2
ΛJKAJ ∧AK = AJ ∧ (dφJ + ΛJKAK).

Therefore both Lagrangians coincide on admissible maps, and hence on morphisms,
so that the actions defined by them are equal.

Remark. In the conventional analysis of the Poisson Sigma model [66] the mor-
phism condition is not imposed a priori and it is a result of the field equations. The
1-form AJ acts as a Lagrange multiplier and something special occurs for this model
since the multiplier is known in advance, not as consequence of the field equations.

Remark. In more generality, one can consider a presymplectic Lie algebroid, that
is, a Lie algebroid with a 2-cocycle Ω, and the Lagrangian density L = − 1

2Φ?Ω.
The Euler-Lagrange equations vanishes as a consequence of the morphism condition
and the closure of Ω so that we again get a topological theory. In this way one can
generalize the theory for Poisson structures to a theory for Dirac structures.

Holomorphic maps. Given two complex manifolds (N, JN ) and (M,JM ) a map
ϕ : N →M is a holomorphic map if its tangent map commutes the complex struc-
tures, that is, Tϕ ◦ JN = JM ◦ Tϕ. In many applications one has to consider a
Lagrangian depending on holomorphic sections of a bundle ν : M → N , the projec-
tion ν being holomorphic Tν ◦ JM = JN ◦ Tν. Our theory can include also such
systems as follows.

Since a complex structure J on a manifold Q satisfies d2
J = 0, we have that TQ

can be endowed with a Lie algebroid structure in which the exterior differential is
dJ = [iJ , d

TQ]. Therefore a first idea is to use such Lie algebroid structures on
both complex manifolds. Nevertheless, we have that a bundle map Φ = (Φ,Φ) is a
morphism if and only if it is admissible, i.e. JM ◦ Φ = TΦ ◦ JN , which determines
the map Φ by Φ = −JM ◦ TΦ ◦ JN . Therefore, we do not get a holomorphic maps
except if we impose the additional condition Φ = TΦ.

Since tangent maps are the only morphisms between tangent bundles (with the
standard Lie algebroid structure), we can solve the problem by considering together
both Lie algebroid structures on a complex manifold Q,

• the standard one, where the exterior differential is the standard exterior dif-
ferential dTQ,and



134 EDUARDO MARTÍNEZ

• the Lie algebroid structure provided by the complex structure, where the
exterior differential is dJ = [iJ , d

TQ].

Notice that both structures are compatible in the sense that [dJ , d
TQ] = 0.

This is done by introducing an additional parameter λ ∈ R as follows. For a
complex manifold (Q, J) we set G = R × TQ → R × Q, the vector bundle with
projection τGR×Q(λ, v) = (λ, τQ(v)). On G we consider the Lie algebroid structure

given by the exterior differential d = dTQ + λdJ , with dλ = 0. Then it is clear that
d2 = 0 so that we have endowed G with a Lie algebroid structure. The anchor is
ρG = (0, idTQ + λJ), that is

ρG(λ, v) = (0, v + λJv) ∈ TR× TQ,

We consider the above construction for the complex manifold N and we get the
Lie algebroid F = R × N , and for the complex manifold M and we get the Lie
algebroid E = R×M . The projection π = (π, π) given by π(λ, v) = (λ, Tν(v)) and
π(λ,m) = (λ, ν(m)) is a morphism of Lie algebroids since ν is holomorphic.

Given a map Φ = (Φ,Φ) form TN to TM we have a the bundle map Φ′ from

F to E defined by Φ
′
(λ,w) = (λ,Φ(w)) and Φ′(λ, n) = (λ,Φ(n)). Then Φ′ is a

morphism of Lie algebroids if and only if Φ is a holomorphic map and Φ = TΦ.

Indeed, Φ′ is a morphism if and only if it is admissible ρE ◦Φ
′

= TΦ′ ◦ ρF . This is
equivalent to

(0,Φ(w) + λJM (Φ(w))) = (0, TΦ(w) + λTΦ(JN (w)))

for every (λ,w) ∈ F , which finally is equivalent to

Φ = TΦ and JM ◦ TΦ = TΦ ◦ JN .

Conversely, if Ψ is a morphism form F to E, which is λ independent, then Ψ = Φ′

for some holomorphic map Φ and with Φ = TΦ. Obviously, Φ′ is a section of π if
and only if Φ is a section of ν.

Systems with symmetry. The case of a system with symmetry is very important
in Physics. We consider a principal bundle ν : P →M with structure group G and
we set N = M , F = TN and E = TP/G (the Atiyah algebroid of P ), with
π = ([Tν], idM ). (Here [Tν]([v]) = Tν(v) for [v] ∈ TP/G.) Sections of π are just
principal connections on P and a section is a morphism if and only if it is a flat
connection. The kernel K is just the adjoint bundle (P × g)/G→M .

An adequate choice of a local basis of sections of F , K and E is as follows. Take
a coordinate basis ēi = ∂/∂xi for F = TM , take a basis {εα} of the Lie algebra
g and the corresponding sections of the adjoint bundle {eα}, so that Cγαβ are the

structure constants of the Lie algebra. Finally we take sections {ei} of E such that
ei projects to ēi, that is, we chose a (local) connection and ei is the horizontal
lift of ēi. Thus we have [ei, ej ] = Ωαijeα and [ei, eα] = 0. In this case there are no

coordinates uA, and with the above choice of basis we have that the Euler-Lagrange
equations are

∂yαa
∂xb
− ∂yαb
∂xa

+ Cαβγy
β
b y

γ
a + Ωαab = 0

d

dxa

(
∂L

∂yαa

)
− ∂L

∂yγa
Cγβαy

β
a = 0.
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In particular, if we chose a flat connection for the definition of our sections (for
instance a solution of our variational problem or just a coordinate basis) then this
equations reduce to

∂yαa
∂xb
− ∂yαb
∂xa

+ Cαβγy
β
b y

γ
a = 0

d

dxa

(
∂L

∂yαa

)
− ∂L

∂yγa
Cγβαy

β
a = 0,

which are the so called Euler-Poincaré equations [9, 8].
The case considered in [7] where the Lagrangian has only a partial symmetry can

be analised in a similar way.

10. Conclusions and outlook. We have developed a consistent Field Theory
defined over Lie algebroids, finding the Euler-Lagrange equations via a multisym-
plectic form. We also proved that when the base Lie algebroid is a tangent bundle
we have a variational formulation. The admissible variations are determined by the
geometry of the problem and are not prescribed in an ad hoc manner. It will be
interesting to find a variational formulation for the general case.

Particular cases of our Euler-Lagrange equations are the Euler-Poincaré equa-
tions for a system defined on the bundle of connections of a principal bundle, the
Lagrange-Poincaré equations for systems defined on a bundle of homogeneous spaces
and the Lagrange-Poincaré for systems defined in semidirect products. Our formal-
ism can also describe variational problems defined for holomorphic maps.

We have also studied a Hamiltonian formalism and we have proved the equiv-
alence with the Lagrangian formalism in the cases of a hyperregular Lagrangian.
Moreover, we have defined a unified formalism which incorporates the relevant as-
pects of both the Lagrangian and the Hamiltonian formalism.

Among the many advantages of our treatment we mention that it is a multi-
symplectic theory, that is the field equations are obtained via a multisymplectic
equation. This will help in studying the theory of reduction of systems with sym-
metry and to establish a procedure of reduction by stages. In this respect, the
results by Śniatycki [65] are relevant.

On the other hand, there are many aspects that has been left out of this paper
and can be interesting in it own. For instance, the geometry of our extended notion
of jet bundles needs to be studied in more detail, defining the total and contact
differential which will allow to write the Euler-Lagrange equations in a simplified
way. Systems of partial differential equations are also worth to study and condition
for the formal integrability of such systems has to be established. For that, it is
obviously necessary to define the concept of higher-order jets.

Finally, in [55] we gave an axiomatic definition of a Lie algebroid structure over
an affine bundle which encodes the geometric structure necessary for developing
time-dependent Classical Mechanics. It would be nice to isolate the geometric
structure necessary for developing field theories defining what could be called a Lie
multialgebroid.
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