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ABSTRACT

We carry out an exhaustive analysis of lepton flavor violating processes
within the Simplest Little Higgs model. Its discovery could be expected
from either u — e conversion in nuclei, p — ey or p — 3e decays. Then, the
tau sector could help discriminating this model not only via t — ¢y ({ = p, e)
and T — 3{ decays, but also by means of { — T conversion in nuclei, which
is promising in this respect. Although the model violates slightly custodial
symmetry, acommodating the recent CDF M,y measurement is in tension
with electroweak precision data. In addition, we show how SM neutrino
masses could be introduced in this model.
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RESUMEN

Llevamos a cabo un andlisis exhaustivo de los procesos que violan el sa-
bor de los leptones dentro del modelo mds sencillo de Little Higgs. Su des-
cubrimiento podria esperarse de la conversiéon de p — e en ntcleos, p — ey
o desintegraciones de u — 3e. Entonces, el sector tau podria ayudar a dis-
criminar este modelo no solo a través de los decaimientos T — ¢y ({ =, e)y
T — 3{, sino también por medio de conversién de { — T en ntcleos, lo cual es
prometedor a este aspecto. Aunque el modelo viola ligeramente la simetria
de custodia, acomodar la medicién CDF My, reciente estd en tensién con
los datos de precision electrodébil. Ademds, mostramos como las masas de
neutrinos del modelo estdndar podrian introducirse en este modelo.
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INTRODUCTION

With the discovery of the Higgs boson [1, 2] the Standard Model of par-
ticle physics (SM) [3, 4, 5] was completed. Powerful and praiseworthy as it
is, a Higgs mass value in the electroweak scale, v, calls for a deeper under-
standing of the hierarchy concept.

Assuming the SM is a low-energy effective theory of a more general high-
energy theory, generalizing it at a high-energy scale A >> v, raises the
question: Is there new physics between these two energy scales? Hierarchy
problem or the fine tuning problem [6] is the reason motivating the existence of
new physics, that lies between v and A. In the context of the SM, it means
that the Higgs boson mass receives quadratically divergent loop contribu-
tions which are much larger than its measured value, and require a corre-
spondingly large bare mass value so that the fine-tuned cancellation between
both yields the observed my ~ 125 GeV. These leading quantum corrections
are only cancelled when the parameters are fine-tuned. Nevertheless after
the LEP experiment and their Electroweak Precision Data (EWPD) [7] a Lit-
tle hierarchy problem emerged [8], given that LEP measurements prevented
new physics near v. There must be then a little hierarchy between v and the
lightest new physics scale, which should lie above the TeV.

Many beyond SM theories have been used to alleviate the hierarchy prob-
lem, like supersymmetry, technicolor, extra dimensions and Little Higgs.
Our approach belongs to the last one. Little Higgs models [9, 10, 11, 12,
13, 14] postpone the hierarchy problem in the SM, introducing adequate
new particles under an enlarged symmetry at an energy scale of some TeVs.
All these models are based on the idea that the Higgs is a Pseudo Nambu-
Goldstone boson (pNGB), which arises from some approximate spontaneously
broken symmetry at a scale f 2 TeV. This new symmetry is introduced to
protect the Higgs mass from large quantum corrections and the Higgs fields
are taken to be NGBs corresponding to a spontaneously broken global sym-
metry of a new strongly interacting sector. As a result of this novel non-
perturbative dynamics, additional new physics is expected at a scale ~ 47f.

Through the years many Little Higgs models have already been constructed,
in which the new particles depend on the particular symmetry of the model.
We can divide Little Higgs models into two categories [15]: product group
models, where the SM gauge group arises from the diagonal breaking of two
or more gauge groups, i.e, (SU(2) x U(1))™ and Simple group models where
the SM gauge group stems from the breaking of a single larger group, i.e,
SU(N) x U(1). One the most important product group model realizations of
the Little Higgs model is the T-parity extension proposed by Cheng and Low
[16]. LFV has been extensively studied within this model [17, 18, 19, 20, 21,

XVil
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22, 23]. In these models, there is no need to enlarge the SM matter sector and
the collective breaking can be realized with just one sigma model, although
there is more freedom related to the extra gauge couplings, and a discrete
symmetry needs to be imposed to comply with EWPD. On the other hand,
a simple group model that is popular by its minimality (N = 3 above) is the
Simplest Little Higgs (SLH) that was proposed by Kaplan and Schmaltz [24,
25], which we will use. In this case an additional fermion field is needed
for the SM doublets to become triplets. In the lepton sector this is a heavy
quasi-Dirac neutrino, which drives LFV. The situation is more involved in
the quark counterpart, where there are two possible embeddings, as we will
explain. LFV has already been studied within the SLH in slightly different
approaches [26, 27, 28, 29, 30] >. However, leptonic tau decays and { — 7
conversion in nuclei did not receive much attention because they are less
restrictive than the analogous muon processes, according to experimental
limits, several orders of magnitude weaker for taus. We will include them
here for the first time, mainly to increase the model-discriminating power
adding these observables to our toolkit. We will not discuss Z [29] or Higgs
[28] LFV decays as their branching fractions turn out to be < 10~ and
< 10712, respectively3., far away from current or near-future bounds. Sim-
ilarly, we will not address semileptonic LFV T decays as purely lepton LFV
T decays have always a few orders of magnitude larger branching fractions
[26, 27] (see, however ref. [31]).

LFV in the charged lepton sector is long sought as it will surely be due
to new physics, given the GIM-like [32] suppression of SM contributions
in presence of massive neutrinos [33, 34, 35]. There are very stringent
bounds [36] from MEG [37], SINDRUM [38], SINDRUM-II [39], BaBar [40]
and Belle [41]. There also is and will be a plethora of experiments contribut-
ing to this quest: MEG-II [42], PRISM/PRIME [43], Muze [44], Mu3se [45],
COMET [46], DeeMe [47], Belle II [48], ... enhancing the case for studying
the related phenomenology. In the case of { — T nuclei conversion there are
still no experimental limits for this phenomenon (recently been studied [49,
50, 51]). Ref. [52] pointed out that the NA64 experiment could be able to
search for it, as well as the proposed muon collider [53] or the electron-ion
collider [54, 55], among others. Indeed, as u© — e conversion in nuclei is
synergic with the LFV p decays in p — e transitions; we will find that in
the T <> { ({ = e, 1) processes, conversion in nuclei will put significant con-
straints together with the purely leptonic T LFV decays.

This work is divided into the following parts:

THE FIRST CHAPTER offers a general vision of quantum field theory and
particle physics, including some problems of the Standard Model.

THE SECOND CHAPTER gives the introduction to the hierarchy problem and
the solution proposed by Little Higgs models.

2Only ref. [28] considered three heavy neutrinos with general mixing, as we do here.
3These upper bounds correspond to the range of the SLH model parameters that we
study, see chapter 5
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THIRD CHAPTER develops the full structure of the LFV processes.

FOURTH CHAPTER contains the formalism to introduce mass to the neu-
trinos in the SLH model.

FIFTH CHAPTER shows the numerical results of this work.
SIXTH CHAPTER shows the conclusions and future work perspectives.
APPENDIX A shows some useful mathematical results for our work.

APPENDIX B shows some extra plots that were not considered in the
main discussion.






1 FOUNDATIONS

Men of learning suspect a little about
this world, and ignore it mostly.

Wise men have interpreted

dreams, and the gods

have laughed.

— H.P. Lovecraft

The Standard Model (SM) is the most rigorous theory of particle physics,
incredibly precise and accurate in its predictions. It mathematically lays out
the 17 building blocks of nature: six quarks, six leptons, four force-carrier
particles, and the Higgs boson. These are ruled by the electromagnetic, weak
and strong forces. The known elementary interactions (except for gravita-
tional interactions) are described by a Lagrangian density defined in terms
of a set of local symmetries and an observed particle spectrum.

In 2012 CMS and ATLAS collaboration data showed the existence of a spin
zero resonance of mass around 125 GeV [1], [2]. This particle has been iden-
tified as the boson of the Higgs mechanism, responsible for the mass of the
SM particles. Nevertheless, there remain observations without explanation
within the SM. Only around 5% of the Universe energy content is explained
by ordinary matter. Then, around 27% of the energy seems to require an
explanation in terms of the so-called “dark matter”, while the rest is known
as the “dark energy”, which explains the accelerated expansion of the Uni-
verse. Besides, the SM does not explain massive neutrinos and it contains
no mechanism to describe the matter/antimatter asymmetry present in the
Universe either. So although the Standard Model accurately describes the
phenomena within its domain, it is still incomplete. Perhaps it is only a part
of a bigger picture that includes new physics hidden deep in the subatomic
world or in the dark recesses of the universe.

This chapter is mainly based on the references [56, 57, 58, 59, 60].

1.1 STANDARD MODEL OF PARTICLE PHYSICS

All the matter that is contained in the universe is made of small "blocks"
of matter, the elementary particles. These particles can be divided into two
groups: leptons and quarks, each group contains six particles (and their an-
tiparticles), which are grouped in pairs or generations. From galaxies and
stars to molecules and atoms, all the stable matter that exists in our uni-
verse is made from particles that belong to the first generation. Leptons and



quarks belong to a broader group called fermions. By the other hand all the
interactions in the universe are represented by the four fundamental forces:
he strong force, the weak force, the electromagnetic force, and the gravita-
tional force. Three of the fundamental forces result from the exchange of
force-carrier particles which belong to another group called bosons. Elemen-
tary particles interact between them exchanging discrete amounts of energy
by exchanging bosons with each other. Each fundamental force has its own
corresponding boson: the strong force is carried by the gluon, the electromag-
netic force is carried by the photon, and the W and Z bosons are responsible
for the weak force, although not yet found, the “graviton” should be the
corresponding force-carrying particle of gravity, see figure 1.

Figure 1: Elementary particles [61].

1.1.1 Lagrangian density and Particle content

The Standard Model explains the strong and electroweak forces, which
are incorporated via the gauge group SU(3). x SU(2)r x U(1)y. We can
construct a universal gauge-covariant derivative in any representation of the
local gauge group:

ig ig’ igs
2 2 2
where: T, are the three generator of SU(2), A, are the eight generators of
SU(3), g, g’, gs are the weak, hypercharge, strong coupling constants; fi-
nally Wq, Y and G4 are the gauge bosons fields. This description of the
gauge-covariant derivative will work for any particle in any representation
of the Standard Model, for example, in the fundamental representation the
generators T, are the Pauli matrices and A, are the Gell-Mann matrices.

Dy =0y + =WapTa+ —BuY + 252Gy (1)

The full Lagrangian density can be broken down into three pieces:

LSM = Lfermions +Lsca1ar +£gauge bosonss (2)

where Lfermions contains Dirac Lagrangian terms with gauge-covariant
derivatives, Yukawa mass terms, (and possible neutrino mass terms of any
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type), Lscalar contains the Higgs kinetic term with gauge-covariant deriva-
tive and the Higgs self-potential terms and Lgquge—bosons contains the
gauge boson kinetic terms, including the self-interactions necessary for lo-
cal gauge invariance. We will use the notation for the multiplets:

(color representation, weak multiplet dimension) e charge - (3)
¢ Fermions

There are the three generations of the left-handed leptons:

\yeL = (112)_%1
Yoo =(1,2)_1, (4)
\PTL = (1/2)7 ’

W=

each doublet contains one charged lepton and its corresponding neutrino.
There are the right-handed leptons:
“yeR = (1/])71/

Yur = (1,1)_1, (5)
Yer =(1,1) 1.

Then there are the quarks, which are color triplets:

11luL = (3/2)%/ 1PLLR = (3/1)%/ 11ISR = (3/1)_%/
\PCL = (312)%/ WdR = (3/])_%1 WtR = (3/])%/ (6)
\ytL = (3/2)%/ WCR = (3/1)%/ \be = (3/])_%

All the multiplets so far are composed of spinors. The Standard Model
requires one scalar Higgs doublet:

@ =(1,2);. (7)

that’s the complete matter content of the SM but we need to take into account
the gauge bosons which are necessary for the local gauge invariance. Using
the matter and covariant derivative, the first piece of the Lagrangian density
can be written:

\/sz

v

Lfermions = i‘Pqu®uW]~/ - (‘Ijﬂ_d)lyfR +\PfL®WfR + hC) ’ (8)
where the index j runs over each fermion multiplet, f runs over each fermion
type, and the prime indicates the weak interaction eigenstates, which are
related to the mass eigenstates by unitary mixing matrices’ and v is the
electroweak symmetry-breaking vacuum expectation value (vev).

'For quarks, the mixing matrix is the CKM matrix, and for leptons (if we consider right-
handed neutrinos) it is the analogous PMNS matrix.

3
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e Scalar

The Lagrangian Density terms pertaining to the scalar doublet are:

Locatar = (D, @) (DH®) —V (@10}, ©)

scalar-vector interaction terms arise here because of the covariant derivatives.
The scalar potential must be of a form which leads to spontaneous symme-
try breaking of the SU(2); x U(1)y symmetry and renormalizability, and is
taken to be:

v(qﬂq>) — 120 0 + A (0D)?, (10)
where u? < 0 and A > 0.
¢ Gauge Bosons

Finally, there are the gauge boson terms:

1 1 1
Lgauge bosons — _Zwauvwgv - ZBPLVBLW - ZGapVGgV/ (11)
where the weak, strong and hypercharge field strength tensors are, respec-

tively,

Wau-v = auwav - aVWaLL - ge(leWbHWCV’
Gauv = aHGay*avGaufgsfachbp.GCV/ (12)
Bp_y - aqu - aVBu/

were €qpc and fqpe are the structure constants of SU(2) and SU(3) respec-
tively. The Lagrangian density interpreted as a quantum field theory, de-
scribes the fundamental theory of particle physics.

1.1.2 Renormalizability and Unitarity

Adding the Higgs sector, the SM contains 19 free parameters: the 9 fermion
masses, 3 gauge couplings, the Higgs mass and vev, 3 mixing angles and 1
CPV phase from the CKM matrix, and 0qcp, which characterizes the QCD
vacuum. All free parameters in the theory have to be fixed by experimental
observables. The renormalization procedure is used to absorb the diver-
gences (infinities) arising in computations of physical quantities in perturba-
tive quantum field theory. This implies that the original parameters defining
the theory in the Lagrangian will have a dependence on the energy scale
after renormalization is performed, so they are said to “run” with energy;
i.e. have different values in the infrared (IR) with respect to the ultraviolet
(UV). This running is given by the Renormalization Group Equations (RGEs).

There is the possibility of having massive gauge bosons in a gauge-invariant
way without a Higgs particle in the spectrum, this constitutes a non renor-
malizable theory. For instance, it turns out that the scattering of longitu-
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dinally polarized W bosons grows with the square of the energy, which
eventually violates the perturbative unitarity of the theory:

EX>Mw 92

4MZ,

where Myy is the W mass and s and t are the so-called Mandelstam vari-
ables, related to the kinematics of the process. In the case of the SM this loss
of perturbativity occurs at around 2 — 3 TeV. There are then two possibili-
ties: either the theory just becomes strongly coupled at high energies, thus
appearing to lose unitarity in the perturbative expansion, or new degrees of
freedom appear to restore unitarity, which is what indeed happens in the
SM Higgs mechanism.

AWIW = wiwy) (s+1t) x E? (13)

1.2 SPONTANEOUS SYMMETRY BREAKING OF A GLOBAL
SYMMETRY

A symmetry is said to be present when there is a transformation on the
variables of a system leaving the essential physics unchanged and one of
the most important developments in quantum field theory has been the re-
alization that there is more than one way in which symmetries and broken
symmetries can manifest themselves in physical system. Sometimes it is
useful to think in terms of symmetries in situations when the physics is in-
variant under a transformation just approximately. Usually in these cases the
Lagrangian contains parameters such that when set to zero the symmetry is
recovered.

Depending on the dynamics of the theory, a symmetry in the Lagrangian
may either remain exact or be broken:

e The symmetry can be explicitly broken if there are terms in the La-
grangian that are not invariant under the associated transformation.
These terms might be small, as in the case of an approximate symme-

try.

o It may happen that the ground state of the theory does not display the
full symmetry of the Lagrangian and, as a consequence, the symmetry
is lost in the spectrum of physical states; so the symmetry can be said
to be hidden.

e Finally, it is possible that a symmetry in the Lagrangian is conserved
at the classical level; but it is broken by quantum effects through an
anomaly.

About 1960 Nambu and Goldstone realised the significance of this notion
in condensed matter physics [62, 63, 64, 65, 66], and Nambu in particular
speculated on its applications to particle physics. In 1964 Higgs pointed out
that the consequences of spontaneous symmetry breaking in gauge theories
are very different from those in non-gauge theories [67, 68].

5
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1.2.1  Classical symmetry

Eugene Wigner defined what symmetry meant and explained how a sym-
metry transformation could be represented by either a unitary or anti-unitary
operator in the Hilbert space in elementary quantum mechanics [69]. Its
characteristic signature is degenerate multiplet structure for the spectrum,
and the violation of this kind of symmetry involves explicit symmetry break-
ing terms in the Hamiltonian that lift the multiplet degeneracies. A good
example is provided by a spherical quantum-mechanical system such as an
atom.

In the present discussion there are other two symmetry modes of more
interest: the realization of a symmetry in the Goldstone or Higgs mode is
commonly termed spontaneous symmetry breaking. The difference between
the Goldstone and Higgs modes is simply that the spontaneous symmetry
breaking occurs in the presence of a local gauge symmetry for the Higgs
mode. The crucial distinction between symmetry implementation in the
Wigner, Goldstone, and Higgs modes lies in the structure of the vacuum.
The Lagrangian of a system may be invariant under transformation by some
unitary representation U of a symmetry group, however, for a perturbative
quantum field theory we build states from the vacuum and the theory re-
quires specification of the symmetry for this state, as well as that of the
Lagrangian. If the Lagrangian is invariant under a set of transformations
the symmetry is implemented in the

o Wigner mode if the vacuum |0) is also invariant:

ujo) = 10), (14)

o The Goldstone mode if the vacuum is not invariant and the Lagrangian
symmetry is global:

ul0) #10) (global symmetry), (15)

o The Higgs mode if the vacuum is not invariant and the Lagrangian sym-
metry is local gauge symmetry:

ulo) #10)  (local symmetry). (16)

We begin with an analysis of spontaneous symmetry breaking in classical
field theory. Consider a real scalar ¢ theory Lagrangian,

1 B2 5 Ay

Z B — —p2 =

this Lagrangian has a discrete symmetry: it is invariant under the operation
¢ — —¢.

Two qualitatively different cases may be distinguished, depending on the
sign of the coefficient u?, the potential for p> > 0 and p? < 0 is shown in
fig.2

L=
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u2>0,A>0 u2<0,A>0

V(¢) V(¢)

Figure 2: Potential for u? > 0 and p? < 0.

The case with p? > 0 corresponds to the Wigner mode, so we have for the
vacuum expectation value of the field:

(b)o = (0l0) = 0. (18)

Now consider the case p? < 0, the potential has minima at:

2
(D)o = i@/T“ = +tv. (19)

Now there are two degenerate vacuum states, the minima at ($)p = v
are equivalent and either may be chosen as the classical ground (vacuum)
state of the system. The original Lagrangian is invariant under the discrete
symmetry; however once the vacuum is chosen it is no longer invariant
under the transformation ¢ — —d¢. This is a typical case of spontaneous
symmetry breaking. To interpret this theory, suppose that the system is near
one of the minima (say the positive one) and an infinitesimal fluctuation is
sufficient to drive the system into this minimum. Then it is convenient to
define

E(x) = d(x) —v. (20)

In terms of this new variable the vacuum state is (§)o = 0, and the La-
grangian density is:

1 1
FOuEME — AV E? —Ave® — JAE", (21)
which has no apparent reflection symmetry. In fact, the symmetry is there
because the original Lagrangian possessed such a symmetry, but it has been

hidden. For small oscillations about the classical vacuum:

L=

1
Lo~ zauaa“a— AW2E2, (22)

which is the Lagrangian density of a free scalar field of mass mg = \/—2p?.
This example contains most of the features that characterize spontaneous
symmetry breaking:

7
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o There is a nonzero expectation value of some field in the vacuum state.

¢ The resulting classical theory has a degenerate vacuum, with the choice
among the equivalent vacua being completely arbitrary.

e The chosen vacuum state does not possess the same symmetry as the
Lagrangian.

e Expanded around the chosen vacuum, the original symmetry of the
Lagrangian is no longer apparent. The degenerate vacua are related to
each other by symmetry operations, which tells us that the symmetry
is still there, but it is not manifest; it is hidden.

¢ Once the theory develops degenerate vacua the origin becomes an un-
stable point. Thus the symmetry may be “broken spontaneously” in
the absence of external intervention.

o If the spontaneously broken symmetry is a continuous global symme-
try, one massless scalar field (Nambu-Goldstone boson) must appear
in the theory for each group generator that has been broken.

e If a continuous local gauge symmetry is spontaneously broken no
Nambu-Goldstone bosons are produced, and the gauge bosons may
acquire a mass without spoiling gauge invariance (Higgs mechanism).

1.2.2 The linear Sigma Model

A more interesting theory arises when the broken symmetry is continu-
ous, rather than discrete. The most important example is a generalization
of the preceding theory called the linear sigma model. This model was intro-
duced to study the spontaneous breaking of QCD chiral symmetry [70]. The
Lagrangian of the linear sigma model involves a set of N real scalar fields

bt (x):

1 ; 1 . A 212
£ =5 (00 + 512 ()" =7 ()] (23)

the Lagrangian (23) is invariant under the symmetry:

2

' =RV, (24)
for any N x N orthogonal matrix R. The group of transformations (24) is
just the rotation group in N dimensions, also known as the N dimensional
orthogonal group or simply O(N), which has %N(N — 1) generators.

Again the lowest energy classical configuration is a constant field (¢')o,
whose value minimizes the potential (see figure 3):

VoY) =5 ) 2 ] @s)

This potential is minimized for any ('), that satisfies:



1.2 SPONTANEOUS SYMMETRY BREAKING OF A GLOBAL SYMMETRY |

) 2
(PY)o = i\/? = 4v. (26)

This condition determines only the length of the vector (¢p1)o; its direction is
arbitrary. It is conventional to choose coordinates so that (¢')o points in the
Nth direction:

i
\ﬁ' (27)

In contrast to our earlier example, this vacuum state is invariant under a
subgroup of the original group: the group O(N — 1), which does not mix the
last field with the others. The generators of O(N — 1) are % (N—1)(N—-2)
and the difference between the number of generators for the original group
O(N) and the residual group O(N —1) is N — 1; thus, there are N — 1 broken
generators.

We can now define a set of shifted fields by writing:
o' = (m*,v+o(x), k=1,...,N-1 (28)

It is straightforward to rewrite the Lagrangian (23) in terms of the 7 and o
fields:

(29)

9
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Figure 3: Potential for spontaneous breaking of a continuous O(N) symmetry,
drawn for the case N = 2. Oscillations along the trough of the poten-
tial correspond to the massless ¢ fields.

We obtain a massive o field just as in the previous section and also a set
of N — 1 massless 7 fields, these are the Nambu-Goldstone bosons. The origi-
nal O(N) symmetry is hidden, leaving only the subgroup O(N — 1), which
rotates the 7t fields among themselves. The ¢ fields describe oscillations of
¢! in the radial direction, the massless ¢ fields describe oscillations of ¢*
in the tangential directions, along the trough of the potential. The trough
is an (N — 1) dimensional surface, and all N — 1 directions are equivalent,
reflecting the unbroken O(N — 1) symmetry.

The appearance of massless scalar fields is a specific example of a general
phenomenon in the spontaneous breaking of global symmetries that is im-
portant enough to have achieved the status of a theorem [62, 63, 64, 65, 66]
(see appendix A for the proof):

¢ Goldstone Theorem: If a continuous global symmetry is broken sponta-
neously, for each broken group generator there must appear a massless particle
in the theory.

This theorem can also be understood in terms of a coset space: The Gold-
stone bosons associated with the spontaneous symmetry breaking from G —
H are described by the coset space G/H, and their number is dimG/H =
dimG — dimH.

In any field theory that obeys the usual axioms, including locality, Lorentz
invariance, and positive-definite norm on the Hilbert space, if an exact con-
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tinuous symmetry of the Lagrangian is not a symmetry of the physical vac-
uum, then the theory must contain a massless spin zero particle whose quan-
tum numbers are those of the broken group generators.

1.2.3 Non Linear Sigma Model

The previous discussion is an example of a spontaneous breaking of a sym-
metry that is realized in a linear way. It is however possible to implement the
spontaneous breaking in a non-linear fashion by integrating out the radial
field. In this limit, the remaining Lagrangian consists of the kinetic term on
the ¢, subject to the constraint that the potential on these fields equals its
minimum value:

1 . . . .
£=30,6'9"¢", and V(¢}) =V ((¢)0). (30)

The Lagrangian is still invariant under G, and so is the condition for the min-
imum. But G is spontaneously broken to H, and the model only describes
the Goldstone bosons. The true dynamical fields are no longer the fields ¢?,
since they are related to one another by the constraint V (¢p*) = V ({(¢p*)o).
Introducing true dynamical fields may be done by solving the constraint.

Consider the previous example, a vector of N real scalar fields ¢! with a
quartic potential:

- . . 2
Vo) = (09 -7 [@0)7] v=y/k G

now we know that the vacuum expectation value can be written as (¢p1)y =
vdi N The constraint over the potential is given by d'd' = v2. Eliminat-
ing the only non-Goldstone field ¢™ (in the previous section this field is

represented by the o field) using:

O‘E(I)N:\/mr with i=1,...,N—1. (32)

In the previous section the fields dtwithi=1,...,N—1is represented by
the 7t fields. The resulting Lagrangian is now a non linear sigma model, with
Lagrangian:

1(7-0,7)*

T -
Lep = 50um- 0 A+ 05— (33)

2
Before eliminating ¢n, the Lagrangian £ was invariant under SO(N). What
happened with this symmetry? Has it completely disappeared or is its pres-
ence just more difficult to detect?

Since SO(N — 1) leaves ¢ invariant, the only concern is with the transfor-
mations in SO(N) modulo those in SO(N —1). Using SO(N — 1) symmetry,
these are equivalent to rotations g between ¢ and ¢, which leave ¢ with
i=1,...,N—1invariant:

11
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d1) [ cosax sinax) (¢
J <¢N> B <—sinoc cos oc) <¢N> ’ (34)

Since ¢n has been eliminated from the Lagrangian £gg, only the action of
g on ¢7 is of interest in examining the symmetries of Lgg,

g(b1) = b1 cos a+/v2 — 2 sinc, (35)

Notice that from this relation the one for ¢ follows:

gldn) = \/vz — (Bz + cl)% — (7 cos o+ dn sinoc)2 = ¢n cos x — by sin «,
(36)
as a result, the Lagrangian is still invariant g (Lgg) = Lgg. But, the novelty
is that the symmetry is realized in a nonlinear way.

1.3 SPONTANEOUS SYMMETRY BREAKING OF A GAUGE
SYMMETRY

The Goldstone theorem applies to any field theory obeying the “normal
postulates” such as locality, Lorentz invariance, and positive definite norm
on the Hilbert space but the paucity of massless scalar or pseudoscalar par-
ticles in nature would seem to preclude the use of spontaneous symmetry
breaking in realistic quantum field theories. However gauge field theories
do not fit into that category: there is no single gauge in which such theories
simultaneously fulfill each of these conditions.

Thus we are led to investigate whether the Goldstone theorem works in
a theory possessing a local gauge invariance. We will find that there is an
unexpected relation between the massless gauge fields and the Goldstone
bosons produced by the spontaneous symmetry breaking that can be ar-
ranged so as to eliminate the massless Goldstone bosons and give a mass to
the gauge quanta without spoiling the gauge invariance or renormalizability
of the theory. This formalism is called the Higgs mechanism [67, 68].

1.3.1  Spontaneous breaking of a gauge symmetry

The simplest example of the Higgs mechanism is provided by the Abelian
Higgs model, which is the gauge invariant U(1) theory. In the absence of spon-
taneous symmetry breaking it would describe the ordinary electrodynamics
of charged scalars. The Lagrangian density is:

2]
£ = (Du) (D) — 20T —A (610) —ZFnP,  (37)

where A is positive and

¢ 1+id2), (38)

1
- 5@
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D¥ = 0¥ +1igA¥, (39)

Fuv = 0 Ay —0vA L. (40)
The Lagrangian is invariant under global U(1) rotations and under the
local gauge transformations:
b(x) — e 1% (x),
Ap(x) = Ap(x) —0po(x).
As in the first example, two possibilities may be distinguished:

(41)

o u?>0
The potential has a minimum at ¢ = ¢t = 0 that is unique. The
symmetry of the Lagrangian is also the symmetry of the ground state,
and the spectrum is simply that of ordinary QED of charged scalars
with a massless photon A" and a pair of scalar fields ¢ and ¢t with a
common mass (L.

e w2 <0

This case corresponds to a spontaneously broken local symmetry. We
must analyse this situation carefully.

The potential has a continuum of absolute minima, corresponding to a
continuum of degenerate vacua, at

_ 2
(¢)o = % = % (42)

with v real and positive, and expanding in polar coordinates:

(x) = = [y n(x)] et 0

7
1 am) +Ex) ...

V2

Then the Lagrangian appropriate for the study of small oscillations is:

(43)

1 1
£ 5 (0ym) (3¥n) + win? + 3 (0,8 (94E) + quALO¥E

: 1 (44)
+ quvauA” — ;PP

now this looks like the Lagrangian density of a quantum field theory with
three fields: 1, £ and A*. From our study of the Goldstone phenomenon,
the 1 field, which corresponds to radial oscillations, has a mass:

my =/ —2p? (45)

as implied by the term u’n?. The gauge field A* appears to have acquired
a mass as implied by the term %qzvauA”, but it is mixed up in the penul-
timate term with the £ field which seems to be massless.

13
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An astute choice of gauge will make it easier to sort out the spectrum of
the spontaneously broken theory. To this end, it is convenient to rewrite the
terms involving A" and & as:

2,,2
q°v 1 LI
> (Au+ qva”‘t’) (A + qva £, (46)

a form that pleads for the gauge transformation

/ 1
Au—>AM:Au+a6”£, (47)
which corresponds to the phase rotation on the scalar field

v+
7

Knowing that the Lagrangian is locally gauge invariant, we may return to
the original expression (37) to compute:

b — e TN Vp(x) (48)

22, 1
(3um) (3%n) +2u2n2] + T AL A - PR (49)

L= 2 4

51

In this gauge the particle spectrum is manifest:
e Ann field with mass mﬁ = —2u?,
e A massive vector field A/H with mass m? = qzvz,

e No & field.

By our choice of gauge, the ¢ field has disappeared from the Lagrangian
(we say that it has been gauged away). The gauge transformation (47) shows
that what was formerly the & field has become the longitudinal component
of the massive vector field A’u. Before spontaneous symmetry breaking, the
theory had four particle degrees of freedom: two scalars ¢ and ¢ plus two
helicity states of the massless gauge field A . After spontaneous symmetry
breaking, we are left with one scalar particle 1 plus three helicity states of
the massive gauge field A;u for a total of four particle degrees of freedom.

Thus no massless fields appear, and the Goldstone theorem does not apply to
a local gauge theory. The massless field & that was gauged away reappears
as a longitudinal polarization degree of freedom for the vector field, giving it a
mass. The massive scalar field 1 is called the physical Higgs field, and the
special gauge in which the particle spectrum is manifest for spontaneous
breaking of a local gauge symmetry is called the Unitary Gauge. This type
of symmetry realization is called the Higgs mode and the distinctive of this
signature is the acquisition of mass by gauge bosons at the expense of would-
be Goldstone bosons, which vanish from the theory.
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1.3.2 Higgs Mechanism in the Electroweak Gauge Group

The SM Lagrangian density as presented above is not realistic because
bare mass terms are not allowed for the electroweak gauge bosons or for
the fermions. We want to generate masses for three gauge fields: W, W~
and Z; while keeping the photon, A, massless (since the symmetry break-
ing only affects the EW gauge sector, the gluons will remain massless all
along). That makes three degrees of freedom will be needed to become the
longitudinal modes of the massive bosons. As explained throughout the pre-
vious sections, one needs to introduce a new field with a potential that keeps
the Lagrangian invariant under SU(2)p x U(1)y; while making the vacuum
not invariant under the EW gauge symmetry. The simplest solution to this
that also preserves the renormalizability of the Lagrangian is to introduce a
complex SU(2); doublet @.

o
@) () w

The most general gauge invariant Lagrangian for the Higgs field that can
be constructed with renormalizable interactions is:

Ly =Dy @D*® -V (D) — [QrdYuUr + QL®YpDg + L ®@YgEg +hc],

(51)
the gauge covariant derivative is:
. .
D, = <au + S taWan + 1‘2913“> o, (52)

and Yy, Yp, Yg are the so-called Yukawa matrices, which contain the cou-
plings of the Higgs boson with the three families of fermions. The Yukawa
term for the up-type quark has to be constructed with the charge conjugate
of the Higgs field in order to preserve the EW gauge group:

d =i’ = <_¢(§T_> , (53)

where the complex conjugation makes the term invariant under hyper-
charge and the antisymmetric tensor, €i; = (i'cz)ij, contracts the left-handed
doublets in a way SU(2); is preserved.

The square of the covariant derivative leads to three and four-points inter-
actions between the gauge and Higgs fields. The equation (10) is the Higgs
potential, for u? < 0 there will be spontaneous symmetry breaking, and the
vev of (0|¢°|0) will generate the W and Z masses. The A term describes a
quartic self-interaction A (¢—¢+ + d)OTq)O)Z between the Higgs fields. Vac-
uum stability requieres A > 0.

It is convenient to rewrite @ in a hermitian basis as:

B ¢+>_ 75 (@1 +id2)
¢= <¢° - (b(¢3+i¢4) ’ G4)

15
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where ¢; = cbz represents four hermitian fields. In this new basis the
Higgs potential becomes?:

5 /4 4 2
v A
v(ote) = & <Z q»%) +37 (Z d>%> , (55)
i=1 i=1
now we can choose the axis in this four dimensional space so that (0|$;/0) =
0,i=1,2,4 and (0|d3]|0) = v, thus:
)
'\) 7
(56)

A
v—|—4v4

which must be minimized with respect to v. Two important cases are
illustrated in figure 2. For 12 > 0 the minimum occurs atv = 0 and SU(2); x
U(1)y is unbroken at the minimum. On the other hand, for u? < 0 the v =10
symmetric point is unstable, and the minimum occurs for v # 0, breaking
the SU(2)r x U(1)y symmetry.

— (0|®[0) =v =

N‘-":N ﬁ‘_‘

Vv (cDan) S V) =

The point is found by requiring

OV (2 4 a2 — _ =
acbv_v(” +AV?) =0 — v =/ (57)

The dividing point pu? = 0 cannot be treated classically, it is necessary to
consider the one loop corrections to the effective potential, in which case it
is found that the symmetry is again spontaneously broken [71].

Using the case u? < 0, the generators corresponding to L', [2and I3 —Y
are spontaneously broken,

Liv = :[()750 i=1,2,3 Yv—\f<> (58)

However the vacuum carries no electric charge (Qv = Y)v =0), so the
U(1)q of electromagnetism is not broken.

To find the masses of the physical particles it is necessary to quantize
around the classical vacuum, i.e., write ¢ = v+ ¢’, where ¢’ are quantum
fields with zero vacuum expectation value. To display the physical particles
it is useful to rewrite the four components of ®@ in terms of a new set of
variables using the Kibble transformation [72]:

1 (s (0
(D—ﬁe viH)” (59)

where the L' are the three broken generators and H is the physical Higgs
boson. The three hermitian fields & would be the massless pseudoscalar
Goldstones bosons, these would have no potential and would only appear

2The potential V is O(4) ~ SU(2) x SU(2) invariant, this is an accidental symmetry.
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as derivatives. In this parametrization is made explicit that ® contains four
real degrees of freedom: three phases (the would-be-NGBs), and a radial
excitation, the physical Higgs boson field that remains in the particle spec-
trum.

A theory can be quantized in the unitary gauge and the 't Hooft gauge.
As we will see in the next chapter, each gauge has its advantages and disad-
vantages, for the purpose of this section we will use the unitary gauge for
displaying the particle content of the theory, this is possible doing a gauge
transformation, the NGBs are “eaten” by the gauge boson fields:

T o 1 (0
O -0 =e (D_ﬂ vt/ (60)
The Higgs covariant kinetic energy term takes the following simple form
in this gauge:

/

1 270
(Du(ID)Jr (DHD) = 3 (0 v) %Tawau + ngu] <v> +H terms. (61)

For now we concentrate on the part depending only on v. The equation
(61) can be rewritten using;:

W = BW3 V20 W V21w, (62)
where
Wi:W1:FiW2, Ti:T1iiT2, 63)
V2 V2
to obtain
22 1 V2 [—g/B, +gW3]”
LW"‘HW; - (gz + 9,2) A Rt - 1
* ? LoVt (64

2
=MEZWrHrw— + &z“z
= w w 2 4

where W are the complex charged gauge bosons which will mediate the
charged current interactions, and:

—9'By +gW}
Vgi+g?

is a massive hermitian vector boson which will mediate the new neutral
current interaction predicted by SU(2)r x U(T)y. In the second form, 6., is
the weak mixing angle, that rotates the mass matrix to provide the neutral
mass eigenstates and it is related to the gauge coupling constants as:

Z = —sin 0,,B + cos 0,, W3, (65)

!/ /

= sin6,, = g—, cos 0, = i, (66)
gz gz

tan9,, =

@ [Q

17
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where
9z =Vg*+g"2 (67)

The weak angle is not a prediction of the SM; but a free parameter, with
sin? 0,, ~ 0.23 from experimental data [36]. The combination of B and W3
orthogonal to Z is the photon, with field

A = c0s 0,,B + sin 0,, W3, (68)

which remains massless, and the electromagnetic coupling is:

e = gsin0,, = g’ cos0,,. (69)

The (tree-level) masses are predicted to be:

gv gzv Mw

M = -, = — = , M frd O,
w 2 2 cos 0, A (70)
implying the relation
MZ
.2 w
sin“0,, =1— . (71)
M3

Going back to the scalar sector, the full Higgs part of the Lagrangian is:

£L=D,®'D*D — V(D)

= M{py W Wy, <1 +H>Z +Im2zez <1 +H>2+1 (uH)* —V (D)
w v N 2 VA K v 2 4
(72)
where in unitary gauge the Higgs potential (55) becomes
ut 2142 3 A
V(@)%—ﬁ—uH + AvH +ZH' (73)

The equation (72) describes the quartic interactions ZZH?, WTW~ and the
trilinear ones ZZH and WW~H. Also this equation includes the canonical
kinetic energy term and potential for the Higgs. In the equation (73) the first
term is constant, which reflects the fact that V is defined so that V(0) = 0,
and therefore V < 0 at minimum. A constant term is irrelevant to physics in
the absence of gravity3. The second term in V represents a (tree level) mass

MP = —2u% = 20, (74)

for the Higgs boson, notice that both My and A are unknown parameters
in the SM. However, it turns out that the vacuum expectation value of the
Higgs field, v is precisely the EW energy scale, vew, which can be related
through the Fermi constant, Gr:

3But is one of the most serious problems of the SM when gravity is incorporated be-
cause it acts like a cosmological constant much larger (and of opposite sign) than allowed by
observations.
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Ge_ 1 _ ¢
V2 i, 8ME,

= v =vegw = 246GeV, (75)

thus the EW scale v can be determined form the EW gauge bosons masses
and be extracted for instance from the muon decay rate [36]. The last two
terms in V are, respectively, the induced cubic and quartic self-interactions
of the Higgs.

The fermions acquire a mass through the Yukawa interactions with the

Higgs field. In the unitary gauge the Yukawa Lagrangian reads:

_v+H

V2

Ly = [U]_YuUR + DLYDDR + I__]_YEER + h.C.] , (76)

therefore, once the Higgs boson acquires a vev, and after rotation to the
fermion mass eigenstate basis all fermions are given a mass that can be
schematically written as:

Nk (77)

where yy is the Yukawa coupling for each fermion. Note that the Higgs
mechanism does not provide any explanation for the disparity of fermion
masses, often referred to as the flavor puzzle.

1.4 WHY BEYOND STANDARD MODEL?

The success of this theory as a description of the observed behaviour of
fundamental particles has been extraordinary. Yet there is universal consen-
sus that the theory as it stands cannot be complete, regardless of its remark-
able success within its domain of applicability. Instead, the Standard Model
must be the low energy effective manifestation of a more comprehensive the-
ory; some arguments are “empirical”, in the sense that the theory does not
explain all the observed properties of matter in the universe, as we would
expect of a theory of fundamental particles.

Although the original formulation did not provide for massive neutri-
nos,they are easily incorporated by the addition of right-handed states vg
(in the case that the neutrinos are of Dirac, but then the are also Majorana)
or as higher-dimensional operators (in the case that the neutrinos are of
Majorana), however this model has too many free parameters to be a final
theory, for massless neutrinos the SM has 20 free parameters, but taking into
account massive neutrinos there are another 7 (9) in the case of Dirac (Ma-
jorana). The complications of the Standard Model can also be described in
terms of a number of problems.
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1.4.1  Charge Quantization

One of the most important empirical observations about nature is that
the electric charges of elementary particles appear to be quantized. All SM
particles have charges which are integer multiples of e/3, which thus seems
to be the fundamental unit of charge. A deeper theoretical understanding of
this electric charge quantization is necessary because it allows the electrical
neutrality of atoms (|qp| = [qel). Historically, one of the first attempts to
solve this puzzle was proposed by Klein [73] in the context of theories of
gravitation in higher dimensions, also Dirac found that using his theory of
magnetic monopoles [74] the existence of a fundamental unit of charge was
necessary.

Electric charge quantization is considered to be a problem in the standard
model because the complete gauge group SU(3). x SU(2); x U(T)y is not
a compact simple group. This problem is specifically related to the group
U(1)y. It was point out in Ref. [75] that group theory may be used to show
that observables from the generators of simple groups can always be chosen
to have rational eigenvalues, but U(1) is not a simple group and therefore
there is no group-theoretic reason for the eigenvalues of the generator to be
rational.

1.4.2 Matter-Antimatter Asymmetry

Physicists believe that the Big Bang should have created equal amounts
of matter and antimatter in the early universe, however, everything in our
universe, from the smallest cell in the Earth to the biggest galaxy is made
entirely of matter which means that there is not much antimatter to be found
in our universe. If ny is the number density of the baryons (matter), ng is
the number density of the antibaryons (antimatter) and n, is the number
density of the photons then the baryon asymmetry parameter 1 is defined

by:

Ny — Ny ng
==, 8
n o n, (78)
where ng = np —ny is the net baryon number density. The WMAP experi-
ment [76] found that the baryon-photon ratio for our universe is:

n~6.1x10"1° (79)

This experimental evidence of more matter than antimatter in our universe
is known as the matter-antimatter asymmetry (or the baryon asymmetry) of
the universe. Neither the standard model of particles or the general relativity
can explain this experimental evidence and for this reason one of the greatest
challenges in physics is to figure out what happened to the antimatter, in
other words, why we see an matter-antimatter asymmetry.
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Andrei Sakharov in 1967, proposed [77] three necessary conditions that
a baryon-generating interaction must satisfy to produce a matter-antimatter
asymmetry in the universe.

¢ Baryon number B violation.
o C symmetry and CP symmetry violation.
e Interactions out of thermal equilibrium.

These conditions were inspired by the discoveries of the cosmic back-
ground radiation [78] and CP-violation in the neutral kaon system [79]. The
Standard Model imply that there are just as many antimatter in the universe
as matter because provides processes which create (or destroy) matter and
antimatter in equal amounts. But if the Standard Model is a true description
of reality, where is all this antimatter? Processes which do not treat matter
and antimatter symmetrically are possible at the high energies which char-
acterized the early universe but are not observed at the lower energies scales
of the present universe, such events (including proton decay) can occur in
Grand Unification Theories (GUTs) and supersymmetric (SUSY) models via
hypothetical massive bosons such as the X boson.

1.4.3 Dark Matter and Dark Energy

Vera Rubin and W. Kent Ford confirmed its existence by the observation
that the stars are orbiting the galaxy’s centre with such speed that the gravity
generated by their observable matter could not possibly hold them together.
Some non luminous matter that we have yet to detect directly is giving these
galaxies extra mass, generating the extra gravity they need to stay intact;
this unknown matter was called dark matter since it is not visible (it does not
appear to interact with the electromagnetic field and is, therefore, difficult
to detect) [8o]. The Standard Model has no explanation for the observed
dark matter, which represent approximately the 27% of all the matter in the
universe. An attractive possibility for dark matter is some new kind of ele-
mentary particle that has not yet been discovered and it must barely interact
with ordinary matter and radiation, except (of course) through gravity. This
possibility is the weakly interacting massive particles, one early candidate for
a WIMP was the axion, a very light pseudoscalar arising from a new global
U(1) symmetry introduced to solve the strong CP problem of QCD [81].
Another approach is to introduce a discrete, conserved R parity into super-
symmetric models, which leads to a stable dark matter candidate, such as
a neutralino or a gravitino. However, there are still a few dark matter possi-
bilities that are viable, this may consist of small primordial dark holes, relic
extinguished stars of various types, and "Jupiter-like objects", collectively
these possiblities are referred to as Massive Compact Halo Objects (MACHOs).

The universe is full of matter and the attractive force of gravity pulls all
matter together, one might think that the universe has enough energy den-
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sity to stop its expansion and collapse. The universe is full of matter and the
force of gravity pulls all matter together, for this reason that physicists as-
sumed that the attractive force of gravity would slow down the expansion of
the universe over time. Observations of supernovae in 1998 from the Hubble
Space Telescope (HST) telescope showed that the expansion of the universe
has not been slowing due to gravity, it has been accelerating instead [82, 83].
The name given to the mysterious force that is causing the rate of expan-
sion of our universe to accelerate over time is Dark energy. Dark energy is
one of the most relevant mysteries for theoretical physics, the only proof of
its existence it is the effect on the universe’s expansion. It turns out that
roughly 68% of the universe is dark energy. Dark matter makes up about
27%. The rest (mainly baryons) adds up to less than 5% of the universe. Two
proposals for explication of the dark energy are the cosmological constant,
representing a constant energy density related whit the space itself, and it
would explain why it is not diluted with the expansion of the universe. An-
other explanation is that it is a new kind of dynamical energy, like a fifth
fundamental force which remains unknown, called quintessence", after the
fifth element of the Greek philosophers.

1.4.4 The Gravity Problem

All the fundamental particles described by the Standard Model represent
ordinary matter, so according with gravity force, hey must interact gravita-
tionally. However general relativity is not a quantum theory, and there is no
simple way to introduce one within the SM context, in general grounds we
need to adopt as a local gauge symmetry the proper orthochronous Lorentz
group. Some possible solutions include Kaluza-Klein and supergravity the-
ories but do not yield renormalizable theories of quantum gravity. Another
set of solutions are superstring theories, which unify gravity with the SM
and may be finite theories of quantum gravity. This problem is the most
obvious deficiency of the Standard Model.

In addition to the fact that gravity is not unified and quantized there is
another difficult mismatch between the vacuum energy it predicts with that
estimated from cosmological measurements [83, 84]. The first source to con-
sider is the ground state energy density of the Higgs field potential [85,
86]. After the spontaneous symmetry breaking we have the minimum of the
Higgs field at the electroweak scale v, such that (0[V(v)|0) = — 4 /4X. This
number is of great importance when the SM is coupled to gravity, because it
contributes to the cosmological constant:

/\cosm = /\bare + /\SSB/ (80)

where Apqre = 8mGNV(0) is the primordial constant, i.e, is the value of the
energy of the vacuum in the absence of spontaneous symmetry breaking.
Assg is the part generated by the Higgs mechanism:
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|Assg| = 8mGn] (O[VI0) | ~ T0°® Agps. (81)

It is some 10°° times larger in magnitude than the observed value Aqps ~
(0.0042eV)*/8nGnand it is of the wrong sign. The problem becomes even
worse in superstring theories,where one expects a vacuum energy of O(M3}),
leading to [Assg| > 1023 Aops. This is unacceptable and some physicists call
it "the largest discrepancy between theory and experiment in all of science".

1.4.5 Hierarchy Problem

The last problem that I will discuss is the so called hierarchy or fine tuning
problem associated with the mass of the Higgs boson. In the standard Model
one introduces an elementary Higgs to generate masses for the W, Z and
fermions, but scalar fields in quantum field theory, and so the Higgs boson,
are subject to quadratically divergent contributions to their mass squared
from loop processes:

2
bare

M{ = (M) pare + 0 (A, g% h2) A2, (82)

where A is the next higher scale in the theory. If the next scale is gravity,
A is the Planck scale Mp ~ 10'? GeV or in a GUTs, A is to be order the unifi-
cation scale A ~ 10'*GeV. Hence, the natural scale for My is O(A), which is
much larger that the measured value. These large mass contributions must
then be offset by precise values of the Lagrangian coefficients p and A in
order to achieve the observed electroweak scale, in other words there must
be a fine-tuned and apparently highly contrived cancellation between the
bare value and the correction to more than 30 decimals places in the case of
gravity.

One proposed solution is that one may solve the hierarchy problem via su-
persymmetry, the superpartners of the SM particles, having different statis-
tics, contribute to the radiative corrections to the Higgs mass with the op-
posite sign than the SM particles. In the limit of exact supersymmetry, all
corrections to M#, cancel. Another way to avoid the problem is the Higgs
boson being is a composite state, and the compositeness scale is around the
TeV, then the corrections to its mass are cutoff at the TeV scale, one example
of these models are the Little Higgs models, in which the Higgs is a pseudo-
Nambu-Godstone boson and its mass is protected by some global symmetry.
This thesis focuses in the study of lepton flavor violating within one of such
models.

1.5 HUNTING FOR NEW PHYSICS

Now that we have discussed the SM of particle physics elements and its
problems, we are going to explore the quest for new physics beyond the
SM (BSM). Search for new physics effects could be done in two ways, direct
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and indirect tests, the former is carried out testing specific models and the
latter is undertaken through precision measurements of SM processes. Over
time, high-precision measurements of electroweak observables have found
remarkable agreement with the SM, leading to stringent constraints on BSM
effects [36, 87, 88].

In the following we are going to discuss (briefly) the precision electroweak
physics, which is related with leptons and electroweak gauge bosons (quark-
based observables are also important but are not relevant for this work).
Some quantities that are sensitive to electroweak physics and have been very
well measured are [36]:

e The electromagnetic coupling

The fine structure constant, «, quantifies the strength of the electromagnetic
interaction between elementary charged particles and can be estimated from
the electron anomalous magnetic moment [89], a. = (1159652180.91 +0.26) X
10~ 12, but it is also possible to obtain « from the combined measurements
of the Rydberg constant and atomic masses with interferometry of atomic
recoil kinematics with 3/Rb [9o] and '33Cs [91]. Combining these methods
leads to the world average of o1 = 137.035999084(21). This value of the
fine-structure constant corresponds to very low energy limit. In electroweak
renormalization schemes, it is convenient to define a running « dependent
on the energy scale of the process. In the modified minimal subtraction (MS)
scheme we have &(°)(Mz)~! = 127.952 + 0.009.

e Fermi Constant

The Fermi constant can be obtained from the u lifetime formula:

GZm> _ /m?2 m2\ & (m m2\ &% (m
w0 = S () [y (28 By, () 2] gy

192m3 2 2 2 72
where

mz mz
F( ;) = 0.99981295, H; ( ;) = —1.80793,

my my

2 (84)
H, <m§> — 6.64, &' (my) =135.901.
o8

The first term in eq. (83) represents the tree level contribution. H; and
H, contain QED corrections (H; also captures hadronic vacuum polariza-
tion effects) [92, 93]. Altogether, this yields the Fermi constant value Gf =
1.1663787(6) x 107> GeV~2.

¢ The weak mixing angle

The weak mixing angle is a parameter of the electroweak interaction, and is
usually denoted as 6. This weak mixing angle can be measured using the
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on-shell or the MS scheme, here we are going to follow the last one. In this
prescription we introduce the quantity:

A /2

024 ol (O
SO = 5+ g %)

where the couplings § and §’ are defined by modified minimal subtraction
and for most of the electroweak processes we define the scale p = Mz. The
on-shell and MS definitions are related by:

sin? By (Mz) = 82 = ¢ (my, M) sdy = (1.0351 £0.0003) s3,.  (86)

For low-energy physics we use the weak mixing angle as §3 = sin By (Mo).

In the table 1 we show the numerical value of the weak mixing angle in the
different schemes [36].

Scheme Notation Value Uncertainty

On-shell st 0.22337  £0.00010
MS §2 0.23121  £0.00004
MS 82 0.23857  +0.00005

Table 1: Numerical values for sin? O in different schemes.

Of course, there are a lot more electroweak precision data like the muon
anomalous magnetic moment, the polarization asymmetry in Z boson pro-
duction, Z and W pole physics among others, see [36] for more details.

We note that there are many loops that can contribute to radiative correc-
tions of the electroweak observables (discussed above), since they are given
at tree-level by gauge boson exchange, the major contributions come from
vacuum polarization amplitudes, which involves the third family of quarks
and Higgs boson. These are called oblique corrections.

Figure 4: One-loop corrections to weak-interactions observables: electromagnetic
coupling, G, Z and W pole mass.
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All these corrections have been taken into account in the numerical results
shown above

1.5.1 Custodial symmetry, T, S and U

From the SM we know that the mass ratio of W and Z gauge boson at tree
level, is the quotient between weak and electromagnetic gauge couplings
My _ ¢’

2
M% = gz+g/z = cos” Ow. (87)

The relation (87) is a consequence of the spontaneous symmetry breaking
of the gauge symmetry through the Higgs mechanism with a single SU(2)
doublet. It is useful to define the p-parameter as:

My

—_— 88
M2 cos? 0., (88)

p =
in the SM the tree-level value is pg = 1, but what guarantees that py = 1
holds?, the answer lies in an accidental symmetry. To see this symmetry we
need explore the Higgs field and potential

_L h3 +1ihy
_\/Z hy +1ihy /)’

22y, (89)
V(H):A(HTH—V> =2 (2 +h3+hi+ni—?)%,

2 2

the potential in eq (89) is invariant under a SO(4) symmetry, under which
the quadruplet (h1, h;, h3, hs) transforms in the fundamental representation.
Note that SO(4) has twice generators than SU(2). When H gets its vev (hy =
v,hy = h3 = hy = 0) the symmetry is broken as SO(4) — SO(3). Thus there
are actually three unbroken (global) symmetry directions in the Higgs sector
of the SM. In other words, there is a residual global SU(2) symmetry after
electroweak symmetry breaking. This is known as custodial SU(2).

The custodial SU(2) symmetry relates SU(2)yeqx partners, such as the up
and down quarks. The Yukawa couplings generally do not respect custodial
SU(2), however, the breaking is a small effect since most of the Yukawa
couplings are small (this is not true for the top quark). To see how the top
quark affects the p parameter, we first need a better definition, in terms of
the MS scheme [36],

2

M
00 = rgp with p = 1.01019 £ 0.00009, (90)
VAYA

which describes new sources of SU(2) breaking that cannot be accounted for
by the SM Higgs doublet or by m. effects. The current experimental value

is [36]

po = 1.00038 + 0.00020. (91)
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Looking for deviations of pp = 1 can tell us about custodial-SU(2) violat-
ing interactions, although it is necessary to have some additional ways to
constrain new physics. In a more general analysis thus we classify those
results in different classes of BSM theories. A classic example is the S, T,
U parameters, also known as oblique parameters, proposed by Peskin and
Takeuchi [94] (and generalized by others [95, 96]):

&Mz) o ) = TRAWIMR) —TIRRY(0) _ ¢z 25" (M3
482 M3, sz M2 02)
IRLAU
M
&(Mz) o _ TI3e"(My) —TI39™(0) &5 —§5 m3ew(M3)
482¢2 7 M2 ¢z8z M2
Mmew(M3) (93)
MZ
. Myw(0)  TZZ¥0)  p—1
&(Mz)T = V{AV%VV - Z]\ZA% = &V (94)

Here new means that S, T and U are normalized by subtracting off the
Standard Model prediction. The standard model valueis T = S = U = 0.
T parameter measures custodial-SU(2) violation, since it is equivalent to p.
S parameter can be used to constrain the number of fermion families (even
if custodial-SU(2) were preserved), under the assumption that there are no
new contributions to T or U. S and T tend to give stronger constraints on
BSM physics than U. The current experimental value for these parameters
are [36]:

S =—0.01+0.10,
T =0.03+0.12, (95)
U =0.02+0.11,

if we set U = 0 (U is suppressed by and additional factor M2 ,,/M2) we
get [36]

S =0.00£0.07,

6
T = 0.05 = 0.06. (96)
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There are more things in Heaven
and Earth, Horatio, than are
dreamt of in your

philosophy.
— William Shakespeare

2.1 NATURALNESS AND THE HIERARCHY PROBLEM

Hierarchy is an important concept in theoretical physics, comes from the
mathematical structure of physics and enables us to understand the domain
of validity of certain theories using their energy scales

Physical Theory Energy Scale
Atomic Physics ~1eV-10KeV
Nuclear Physics ~1MeV -1GeV
Electro-Weak theory ~10% GeV - (?) GeV
Grand Unified Theories ~ 10" GeV
String Theory ~ 10" GeV

Table 2: Physical theories and their relevant domain.

As already mentioned in the previous chapter, most physicist regard the
SM as an effective theory, that at some higher energy scale A must become
inadequate. This scale must be in the multi-TeV range and, therefore, higher
than the Electroweak scale v. Thus, A acts as a cut-off which separates
low-energy interaction sector and the strongly-interacting sector at higher
energies. One might ask: what kind of new particles and interactions lie
beyond the electroweak scale? Decades of effort and experimental searching
suggest that the answer is the simplest one, nothing. Except for the well-
known standard model particles there is nothing all the way (in principle) up
to a scale of GUTs. One reason that there must be new physics between the
Electroweak scale v and the high energy scale A, is the hierarchy problem.
This problem is also called the fine tuning problem and it was described by
Georgi, Quinn and Weinberg in 1974 [6], which says that scalar particles in
an effective field theory would have fine tuning due the hierarchy between
different energy scales. In the context of the SM, the problem arises from the
fact that there are quadratically divergent loop contributions to the Higgs
mass, which are much greater that the expected (and measured) value of
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the Higgs mass itself. These large quantum corrections are only cancelled
when the parameters in the theory (such as the tree-level mass parameter)
are finely tuned *. This is considered unnatural.

What is the meaning of technical-natural in physics?, this notion in particle
physics is often formulated in terms of the definition given by t'Hooft [97]:

e At any energy scale , a physical parameter or set of physical parame-
ters o () is allowed to be very small only if the replacement o; (1) =0
would increase the symmetry of the system.

For example my is, technically natural. Setting m; — 0 introduces Chiral
symmetry. The ratio Mz /Mpianck is an unnatural example. There has been
occasions where naturalness has been a guide for new physics, an example
of this is the prediction of the charm quark mass [98]. A quite accurate
estimation of the charm quark mass was proposed in order to explain the
suppression of flavor changing neutral currents in kaon physics through the
GIM mechanism [32].

Here the Higgs mass is very small compared to the high energy scale
A and the replacement by 0 does not increase the symmetry. Hence it is
also (technically) unnatural. Suppose the standard model has a cutoff A.
Unknown physics resides in the gauge couplings, Yukawa couplings and
the Higgs potential, these parameters depend on the structure of a more
complete theory.

- - A Y

Figure 5: The one loop corrections to the Higgs mass parameter in the SM.
For a Higgs potential of the form (73):

V(H) = —p?[H2 +AH, (97)

the loops of the figure 5 will contribute to —u? — (—uz)b are du? (see [99]
for more details) where
A? 9g2
2 _ a2 79 42

where A is cut off of the theory. The energy scale of the standard model
or the mass of every ordinary particle in the standard model is proportional

oyt

It should be emphasized that (in principle) it is not a real physical problem however, for
there is no physical law or principle that would forbid such a fine tuning. It can be seen as
an aesthetic problem.
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to the vacuum expectation value of the Higgs field. This is obtained by
minimizing the Higgs potential. From electro-weak measurements on gauge
boson masses we know that v ~ 246 GeV. Similarly the physical Higgs mass
is:

My = V/—2u2 = V2Av = 125GeV, (99)

which implies A ~ 0.13 ~ 1/8. The physical value of v and A embrace
all the quantum corrections in the potential, which in principle, include the
quadratically sensitive shift to the mass parameter p. If A > TeV we would
find 5u? > (—p?), ., leading to the so-called hierarchy problem. There-
fore, the bare mass parameter (—u)pqre must be fine-tuned to cancel large
quantum corrections to get the correct (physical) p parameter, the bigger
the cutoff, the bigger the problem. Suppose we had considered some grand
unified theory to replace the standard model at a scale of A = 10'* GeV.

2 —u2 2

_ % _ ( p’/\)zbare n 16]712 —6y? + 9% 2| ~ 1026, (100)

From equation (100) we find that the bare Higgs mass parameter would
have to be finely tuned 26 orders of magnitude to cancel all the quantum
corrections and reproduce a low energy scale, a small physical Higgs mass
and therefore, the masses of the standard model particles. In other words,
If the Higgs boson is coupled to the new physics (NP) sector, its mass gets
loop corrections from the new heavy particles which are quadratic in their
mass M ~ A, this is considered as a problem for a UV completion of the SM.

Note that the hierarchy problem is related to elementary scalars. Why
not with fermions or gauge bosons? the reason is that in the limit when
their masses go to zero, a new symmetry will appear in the Lagrangian.
A new chiral symmetry will appear for fermion masses in the m — 0
limit, protecting their masses from large unsuppressed corrections. This is
achieved because the quantum correctios are proportional to the mass itself:
dm o mlog 2. For gauge bosons there is an unbroken gauge symmetry in
the My — 0 limit, and similarly, it ensure that 5M%/v x M%,V log MAW

In conclusion, the hierarchy problem appears whenever there is NP with
particles of mass A that couple to the Higgs proportionally to its own mass.
This means that the Higgs is sensitive to any beyond standard model (BSM)
scale coupled to it.

2.1.1 Little Hierarchy Problem

If the SM is an effective theory, with new degrees of freedom at higher
energies, these heavy degrees of freedom are integrated out to generate a
theory that cuts off divergent momentum integrals at the scale of these heavy
tields. However, the validity of this theory, diminishes as the scale of new
physics is approached. After the LEP experiments [7] a little hierarchy problem
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emerged [8], LEP results forbade new physics close to the Electroweak scale,
and so there must be a little hierarchy between the Electroweak scale and the
scale of new physics. In the years following the Higgs boson discovery [1, 2]
the absence of new physics near the Electroweak scale leading us to believe
that the cut-off of the SM is not near the weak scale and that new physics
will appears above the TeV scale.

Let us assume that the SM is valid up to the energy scale A = 10 TeV. The
three most significant quadratically divergent contributions involve the top
quark?, the gauge bosons and the Higgs boson itself. The contributions of
those diagrams in figure 5 are [13]:

3
top loop — 8?9%/\2 ~—(2 TeV)?, (101)
T 242 2
gauge loop 1629 A~ (700 GeV)*, (102)
. 1 242 2
Higgs loop ] 67{2}\ A~ (500 GeV)~, (103)
tree loops

/

2
mh~
(200 GeV)
top| gauge higgs

Figure 6: A graphical illustration of the fine tuning of the Higgs boson mass in a
SM with a cut off of A =10 TeV [13].

To obtain the value of the Higgs mass fine tuning at the 1% level is re-
quired. If the SM has been proved experimentally near to 1 TeV, why physics
beyond the SM has not been found? If we take A = 1 TeV, the contribution
from the top loop (which is the largest) is about (200 GeV)?, so there is
no need for fine tuning and therefore, we would expect find new physics

2In principle we have to take the other quark loops into account, but we see that these con-
_ 2 A2
tributions depend on the mass. So for the bottom quark we have: % ~ —(45 GeV)?,
which does not really require fine tuning. The other quarks also contribute, but even less.
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around 1 TeV. To obtain a weak-scale expectation value for the Higgs with
no less than 10% fine tuning, the naturalness arguments are used to predict
aspects of the new physics, also predict bounds for the energy scale at which
they arise

Mop S2 TV,  Agauge S5 TeV,  Aniggs S10 TeV.  (104)

Equation (104) means that the top, gauge, and Higgs loops are bounded
by their own scales. This implies that there are new particles with masses
not greater than the corresponding cut offs, that couple to the Higgs and that
cancel the quadratically divergent contributions from the SM. EW precision
measurements put significant constrains on higher dimensional operators,
that need to be suppressed by energy scales of 5 — 10 TeV. This seems to
indicate that there is no new physics up to ~ 10 TeV, which creates a tension
with the above naturalness requirement that new physics should appear at
~ 1 TeV. This tension is known as the little hierarchy problem.

A resolution to the little hierarchy problem requires a model that pro-
poses new physics at a scale high enough to be allowed by current observa-
tional limits while requiring as little fine tuning as possible. Popular theo-
ries included supersymmetric theories, technicolor theories and large extra
dimensions. Another type of theory that solves this problem stabilizing the
Higgs mass in a natural way and exploring the possibility that the Higgs is
a pseudo Nambu Goldstone boson, are called Little Higgs models.

2.2 LITTLE HIGGS MODELS

A Little Higgs model is a beyond Standard Model (SM) theory that post-
pones the hierarchy Problem that comes up in the SM introducing new par-
ticles at an energy of 1 TeV up to a higher scale of energy. These models
are based in an old idea which is inspired by the Pions of QCD, that the
(light) Higgs is a Pseudo Nambu-Goldstone boson (PNGB), that arises from
some spontaneously broken (approximate) symmetry, the first attempts to
construct this model were not successful, however a new kind of mathemat-
ical structure like dimensional deconstruction and collective symmetry breaking
allowed Nima Arkani-Hamed, Andy Cohen and Howard Georgi create the
tist prototype of this theory [10], but it was a "toy" model. The first realistic
model (Little Higgs) was develop by Nima Arkani-Hamed, Andy Cohen and
Ann Nelson [12]. The key ideas of Little Higgs theories can be summarized
by the following points [100]:

o The Higgs fields are Goldstone bosons, associated with some global
symmetry breaking at a higher scale A.

o The Higgs fields acquire a mass through (collective) symmetry break-
ing at the electroweak scale and then become pseudo-Goldstone bosons.
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The Higgs fields are protected by the approximate global symmetry,
and it is free from one-loop quadratic sensitivity up to the scale A, and
therefore remain light.

To protect the Higgs mass from large quantum corrections, a global sym-
metry of a new strongly interacting sector is necessary and then, the Higgs
tields are taken to be NGBs corresponding to this spontaneously broken
global symmetry. As seen in the previous chapter, an exact NGB only has
derivative interactions, therefore a tree-level mass for the Higgs boson can-
not be generated. However, due to the Higgs boson couplings with gauge
bosons, fermions, and itself, the symmetry is only approximate because
these terms explicitly break the global symmetry. A potential and a mass
term for the Higgs are generated via quantum effects involving the symme-
try breaking interactions.

In consequence, these models are characterized by the existence of sepa-
rate energy scales in the theory. On the one hand, there is the characteristic
scale of the strongly interacting sector, A. On the other hand, below, there
is the characteristic scale of the vacuum expectation value which breaks the
global symmetry, denoted as f. By naive dimensional analysis [101] one can
establish a relation between the two scales:

A ~ 4rf, (105)

these two scales are separated by a gap, alike the gap between the light
mesons and the other heavier resonances that exist in QCD. The low energy
degrees of freedom in Little Higgs models are described by non linear sigma
models. In the energy gap between f and A, Little Higgs models are weakly
interacting but above the compositeness scale A = 4nf the theory becomes
strongly interacting. These models contain the SM particles and extra vector
bosons, scalars and fermions. These new particles can have order f masses.

Many Little Higgs models have already been constructed in the last few
years, the new particles depend on the particular symmetry of the model.
As shown in Ref. [15], without loss of generality, we can divide Little Higgs
models into two categories:

Product group Models: In these models the SM SU(2) gauge group
arises from the diagonal breaking of two or more gauge groups. These
models contain a product of multiple SU(2) gauge bosons at the TeV
scale which are obtained from the diagonal breaking of two or even
more gauge groups down to SU(2);. When we expand the fields
around the vacuum expectation value, all the generators that are not
affected by the diagonal breaking of the SU(2)’s to SU(2)r are still
Nambu-Golsdtone bosons and we can choose one as the SM Higgs to
achieve the spontaneous electroweak symmetry breaking. All this can
be embedded in one non-linear sigma model field.

Simple group Models: In these models the SM SU(2) gauge group
arises from the breaking of a single larger group down to an SU(2)



subgroup. These kinds of models have two major differences that
distinguish them from the product group models. First these mod-
els contain an SU(N) x U(1) gauge symmetry that is broken down to
SU(2)r x U(T)y. There are not free parameters because the gauge cou-
plings of SU(N) x U(T) are fixed in terms of the SU(2) x U(1)y gauge
couplings. In these models the SM gauge bosons and fermions repre-
sentations must be extended to transform as a representation of SU(N).
This gives rise to additional heavy fermions per generation and forbids
mixing between the SM W gauge bosons and their TeV scale counter-
parts, in contrast to the product group model. Second, to implement
the collective symmetry breaking, we require at least two sigma-model
multiplets.

Here we will give some examples of Little Higgs models in addition to
the Littlest Higgs model introduced by Arkani-Hamed [12] and the T-parity
extension to that model proposed by Cheng and Low [16]. In these models
the heavy particles are odd under T-parity and the light SM particles are
even, but we will not discuss T-parity here.

Simplest Little Higgs: This model is the smallest simple group model.
It is represented by two non linear sigma models and the high energy
breaking scales f; of the NGBs fields ¢; differ from each other [24, 25].
This model has difficulties in adding a Higgs quartic potential without
introducing additional fine tuning.

SU(4) x U(1) — SuU(2) x U(1): Another simple group model also de-
scribed by [25]. This model is very closely related to the Simplest Little
Higgs. It has 4 instead of 2 ¢ fields which make easier to implement
the Higgs quartic term.

Minimal moose model: The minimal moose model is a product group
model which transforms under two different gauge groups. Generally
a moose model? consists of a global GN symmetry which transform
as bifundamental representation under its composite fields ¢;. At
some high energy breaking scale a subset of each symmetry is then
gauged. This forces the bifundamental condensates to break down to
the SM at the TeV scale. The minimal moose is just the smallest mooose
model [10, 102].

Antisymmetric Condensate model: This model breaks a global SU(6)
to a global Sp(6) subgroup at a high energy breaking scale f. Simul-
taneously a [SU(2) x U(1 )]2 contained in SU(6) is broken down diago-
nally to the Electroweak SM group [103].

31t is called a moose model after the moose diagrams that can be formed from its symmetry
groups.
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2.2.1  CCWZ formalism for Goldstone bosons

The general formalism for effective Lagrangians for spontaneously broken
symmetries was worked out by Callan, Coleman, Wess, and Zumino [104,
105]. This formalism allows to write general low-energy effective Lagrangians
for strongly (or weakly) coupled theories whit a generic G — H sponta-
neous symmetry breaking pattern, describing the Goldstone bosons associ-
ated with the symmetry breaking and the heavy resonances. This formalism
can be extended to incorporate explicit symmetry breaking.

Consider a classical field theory with n scalar fields oA, A=1,...,n with
a Lagrangian:

L = Lyin —V (¢7), (106)

which is invariant under the Lie group G acting on the scalar fields. The
minimum-energy state of the potential is given by (¢”), and we assume
there is a subgroup HeG under which the vacuum configuration is invariant,
ie. h(p?N) = (¢) Vhe H. There is a spontaneous symmetry breaking
of the global symmetry group G down to a subgroup H, in the vacuum
configuration. From the Goldstone’s theorem we know that there is a zero
eigenvalue of the scalar mass matrix for each generator of the coset G/H. Itis
straightforward to introduce a parametrisation of the Goldstone bosons for
a generic spontaneous symmetry breaking pattern G/H. This prescription
is given by the CCWZ formalism, which we will review in the following
(See [106] for a more pedagogical and explicit discussion).

Let ¢(x) be a set of scalar fields transforming linearly under the continu-
ous global symmetry group G:

g:¢—gob. (107)

We denote the generators of the subgroup H and the coset G/H as T® and
X¢ respectively, the CCWZ prescription is to parametrise ¢(x) as:

d(x) = E(x) () = e I X Ty, (108)

Were 1t (x) are the Nambu-Goldstone bosons fields, (¢) is the vacuum
expectation value which realizes the symmetry breaking G — H, and f sets
the scale of the symmetry breaking, is a parameter with mass-dimension.
The CCWZ formalism is independent of the representation of ¢ under G.

One might think that also &(x) transforms linearly as ¢(x) under the ac-
tion of g € G, but this is not true (not in generally): under a global symme-
try transformation g, the matrix &(x) is transformed to a new matrix g&(x),
which is in general cannot be parameterize as ¢(x):

g:&(x) = g&(x) # el XYL, (109)

We can use the fact that the vacuum (¢) is invariant under transformations
of the subgroup H, to have a well-defined linear transformation for ¢(x)
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h{$p)=(p), VheH. (110)
To find a matrix Uy € H such that g&(x)UL(g,Tt) is in standard form:

gb(x) = g [E(x) (b)] = g&(x)Ul, (g, MU (g, 70) (db)
— g&()Uf,(g,7) (b) = &'(x) (db).

The matrix UL (g, ) depends on g and &: so, under a transformation g € G
the Nambu-Goldstone boson fields transform non-linearly as:

(111)

g: &(x) = g&(x)U, (g, ). (112)

At the same time, & transforms linearly under transformations of the un-
broken subgroup H

h:&(x) = h&x)h. (113)

We are going to use an example to show how works the CCWZ parametri-
sation. Consider a theory whit a symmetry breaking pattern SU(N) —
SU(N —1) and a single scalar field ¢. Each symmetry can be represented
with the generators number, so in order to determining the number of bro-
ken generators we need to look the difference in number of generators be-
tween the original group SU(N) and the new one SU(N —1):

(N2—1)—[(N—1)2—1 —IN-—T, (114)

we should thus obtain 2N — 1 Nambu-Goldstone bosons. We are going to

choose the following parametrization of our vacuum expectation value f in
order to break the group SU(N) to SU(N —1):

m° M 0
s _aya 1
(b:E.(D ethX/f(b:eX _ . . . ,
() () = exp | o ;
T TN —(N=1)n° 1
(115)

where 7 = (77,...,mNn_1) are complex fields, while m° is real, representing
the 2N — 1 Nambu-Goldstone bosons of the theory. This way of parametriz-
ing symmetry breaking in a non linear sigma model is called the CCWZ
parametrization.

We are interesting on the transformation properties of the complex Nambu-
Goldstone boson fields. Let’s focus on how they transform under the broken
and unbroken symmetry groups. Under the unbroken SU(N — 1) group, ¢
transforms as:

a - _ava : ayay(f
¢ T Unord = (Unore™ XUl ) Unoo () = e/ TermXUie) (g,
(116)
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We have used that the vacuum (¢) is invariant under unbroken Uy _
transformations. Therefore the Nambu-Goldstone bosons transform linearly
under the unbroken SU(N — 1) group as:

mexe I Uy mexeud, ;. (117)
Where, a SU(N — 1) — SU(N) transformation can be written as:

Un_1 O
Un :( N 1), (118)

from equation (118) we can see that the N — 1 complex Goldstone bosons
transform in the fundamental representation of SU(N —1):

0 =@ 0 =@ 1 0 HN_17_T
Y (d (o8, S

Under a symmetry transformation of the broken coset group* G/H we
have, on the other hand:

uG/HeiﬂaXa/f (b) =exp |1 <6(L)T g‘)} exp Lt (7% Z)] (d)
=exp |i (:T g‘ﬂ exp Ll: (7; Tg)] UL (o, 7T) (d)

—ew |1 (on 5] @,
) (120)

to get the equation (120) we use the Baker-Campbell-Hausdorff formula
until the second order. This equation defining a non-linear transformation
law for the Goldstone bosons. Note that, to linear order in «, the transforma-
tion (120) reduces to a shift transformation (Nambu-Goldstone bosons shift
under the group SU(N), because at leading order they only have derivative
couplings):

ﬁgﬁ’:ﬁ—ka-f—i-O(ocz). (121)

The most general effective field theory for Nambu-Goldstone boson (all
the heavy fields are integrated out) can be constructed write down all Lorentz
and G invariant terms that has only derivative couplings, however, for gen-
eral G and H, this is not trivial. For example, if we consider two-derivatives
term, one could use the field &(x) in the parameterization (108)

fZTrlauE,Iz, (122)

but in general this term is not G invariant

F2Trjd, £% — F2Tr |3, (ga(x)uT(x)) 2 # £2Tel0 .82, (123)

4Remember that G = SU(N) and H = SU(N —1).



2.2 LITTLE HIGGS MODELS |

because of the x dependence in U(g, 7t)eH. It can be shown that:

T, = Tr [ (0,87) €8T (3"8)| = Tr {(fjauaf (sjaua)] . (124)
the object £79,,& decomposes as:

£, =vaT* +paxe, (125)

it can be shown that v, = v{iT® and p,, = p;X* are transformed as

vy — U(v, +9,) U
(126)
pu — Up. Ut

The field v, transforms like a connection, while with p, we are able to
construct a G invariant two-derivatives term, but it has a non-trivial term is
given by:

L =f2Tr [PuPL] . (127)
However the form of p,, and v, depends on the specific groups G and H.

If the Lie algebra of the coset space G/H is a symmetric space> everything
can be simplified, roughly speaking, a symmetric space is a coset space whit
an involutive automorphism on the generators:

T —>T¢, X% — —X¢, (128)

applying the automorphism to eq. (125), we find that p,, is given by:

1
— _ (gt _ T
P =5 (Efoue—ea,el). (129)
We can thus rewrite the two-derivative term of eq. (127) as:
fZ
L= ZTr|6HZ|2, (130)

the equation (130) contains the NGB kinetic term canonically normalized,
where we have defined

=gl =82 =X (131)

with & the image of & under the automorphism. From eq. (112), we see
that X transforms as

g5y, (132)

5In mathematics, a symmetric space is a pseudo-Riemannian manifold whose group of
symmetries contains an inversion symmetry about every point. From the point of view of Lie
theory, a symmetric space is the quotient G/H of a connected Lie group G by a Lie subgroup
H which is (a connected component of) the invariant group of an involution of G.
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where § is the image of g under the automorphism. Therefore, in symmet-
ric spaces we can construct a Goldstone matrix X that is an element of G/H
but transforms linearly under G.

We can then summarize the CCWZ formalism with a prescription for con-
structing the most general effective field theory of only NGBs degrees of
freedom:

Identify the groups G and H describing the spontaneous symmetry
breaking pattern.

Construct the NGB matrix &(x) and consequently the quantities p,., v,
or X(x) depending on whether the coset G/H is a symmetric group or
not.

Write all Lorentz and G invariant terms with p,, v, (or 9,,X) as build-
ing blocks, with increasing number of derivatives.

Identify the finite cut off up to which the theory is valid.

2.2.2 Collective Symmetry Breaking

We are going to use as an example the symmetry breaking of a global
group SU(3) down to SU(2) to give a notion about the collective symme-
try breaking. According with the previous section, there are five broken
generators, so five massless NGB’s will appear, four of them form a SU(2)
(complex) doublet, which only has derivative terms. However, when we add
couplings to the gauge bosons and fermions, we are adding non-derivative
terms which explicitly do not respect the SU(3) symmetry [107]. This re-
sults in the Nambu-Goldstone bosons becoming pseudo- Nambu-Goldstone
bosons. If we assume that these terms are added with a very small coupling
€, all the non-derivative interactions will be proportional to e.

Collective symmetry breaking works with two (or more) couplings in such
a way that both couplings on their own preserve the original symmetry, but
together they break the symmetry. Roughly speaking, we can consider the
SU(3) invariant Lagrangian £y, and then, we add two sets of interactions
L1 2:

L=Lo+e1L1+e2L5. (133)

We see that each term with the e; with i = 1,2 separately conserve an
SU(3) symmetry, in consequence there are two SU(3) symmetries. Only
when both terms are taken together the symmetries are broken to the diago-
nal subgroup. It is said that the symmetry is collectively broken by the action
of the two terms: if one of the two €; is set to zero, restores the full two-group
symmetry, leaving us with exactly massless Nambu-Goldstone bosons in the
coset space. Only when both terms are non-zero the remaining symmetry is
the diagonal subgroup, leaving us with massive pseudo Nambu-Goldstone
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bosons. In the following section we will present illustrations of the Little
Higgs idea and collective symmetry breaking.

2.2.3 The road to the Simplest Little Higgs model

In this section we will consider a toy model to illustrate the idea of collec-
tive symmetry breaking and then, we will see how this model is related with
the Simplest Little Higgs model [25, 24]. Consider a theory with a global
SU(3) symmetry, spontaneously broken to an SU(2) subgroup at the scale
f, by a vacuum condensate transforming in the fundamental representation.
This condensate can be written as:

0
() =do = (0) (134)
f

The first thing we can do is count the number of broken generators, which
by Goldstone’s theorem equals the number of NGBs:

Nnges = (32 —1)— (22 —1) =5. (135)

Following the CCWZ prescription we can describe this theory of NGBs by
the SU(3)/SU(2) non-linear sigma model

0
b= e¥”¢0 —ei™Ta (O) , (136)

with TT(x) = Zi:4 14 (x)Tq and 7t¢(x) the 5 NBGs. The generators Ty, ..., Tg
correspond to the broken generators of SU(3) and the ones Ty, T,, T3 leave
the ground state invariant. Writing TT as a matrix gives:

% 0 % (7’[1 — iT[z)
M= 1 0 1 e 3 (3 —im) | . (137)
3 (M +imp) 5 (m3 +img) —7%

We redefine the NGBs, 5 — ?n, % (11 —1imp) — hy, % (13 —1imy) — hy
to obtain:

N (lax2 02x1 02x2 haxi
m=- , 8
4 <01><2 —2>+<h;[><2 0 > (13 )
note that h is a doublet under the unbroken SU(2) symmetry, i.e. h is
a complex scalar like the Standard Model Higgs, but it is also a NGB that,
shifts under "broken" SU(3) transformations. Moreover, we have the 1 state
which transforms as a singlet under SU(2) and for now we may ignore it. To

see what kind of self-interactions we get for h, we expand the eq. (136) with
IT as in eq.(138):
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_ i[02x2 haxs 02x1) _ (02x1) , . (h2x1) 1 [02x3
q)_eXp[f(hﬁXz 0 >]< f >_( f )“( 0 ) 2f \hin ) T
(139)
Therefore, we would only expect derivative terms for 7; to appear. This

NLSM involves non-renormalizable interactions, because we are working
with an effective theory that is valid below a cut off, A.

To obtain a low-energy effective interactions we write all SU(3) invariant
terms constructed with ¢ and with increasing powers of ¢ derivatives. The
first two terms with zero derivatives are T = 2 and ¢*PCPpappde = 0
(because of symmetry and antisymmetry). The next relevant term is one
with two derivatives, and turns be the most important one: auqﬂauq):

0,070 p = 0 hidrh + %au (htn)a* (nfh), (140)

There is a kinetic term for the Higgs doublet and interactions which are
suppressed by the symmetry breaking scale f. The second term in equation
(140) produces a loop correction to the kinetic term, and as an effective the-
ory we expect that the interactions to become comparable to the tree-level
kinetic term at the cut off scale A. We can make a rough estimate of the cut

off in this theory by computing the loop diagram in the figure 7:

Figure 7: One loop corrections to the kinetic term for h.

This correction becomes O(1) if:

1 [ d% 1 1 A IkBE 2mPA?
2J42 = 4J dQJ dm'% =
) 2m)* ks f2(2m)" Jss 0 k= f202m)*2
/\2
=——5~1
lem?2f2 7
so as a relation between the cut off and f we find A ~ 4nf (as found by
naive dimensional analysis). For energies above A, interactions in this model
violate unitarity and the theory must be UV completed.

(141)

Until now, we have a theory which produces a Higgs-like doublet which
is a NGB that transforms under an unbroken SU(2). As we know the dou-
blet only have derivative interactions (due to the shift symmetry), therefore
no mass term can arise. In addition, there can be no gauge or Yukawa cou-
plings or a quartic potential for this reason. To obtain the standard model
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Higgs boson we need to incorporate these interactions in the theory. We
know that in order to get a Higgs potential the SU(3) group must be explic-
itly broken, this can be done by gauging an SU(2) subgroup®. The explicit
breaking generates a potential for the (p)NGBs through SU(2) gauge bosons
loops. Mathematically we do this by replacing partial derivatives with co-
variant ones, the gauge fields live in the unbroken SU(2) subspace (ignoring
hypercharge for the moment):

0p — Op —igWi(x)Te, (142)

where g is the gauge coupling constant, the W} are the SU(2) gauge fields,
and the T%(a = 1,2,3) are gauged generators given by:

a2 0
T = (G 0/ 0) ’ (143)

the 0 being the Pauli matrices. Expanding the Higgs kinetic term, we
now find:

. (W, O 2

LH=|Du¢|2: ‘auq)_lg( OPL o> d)‘
. W. 0 . WH 0 W, 0 2
:|au¢|2+1g¢f( o O) a“¢196u¢f( 0 o)‘“gz‘( 0 o) d

1
= 3, nfoMh+ 50, (hth) ¥ (n'h) +ighfW,a*h —igd hfWHh

+g*WiWHh'h,
(144)
The interactions in equation (144), lead to quadratically divergent Feyn-
man diagrams (see figure 8) which are present in the Standard Models. The
global SU(3) invariance is explicitly broken via the interaction IgWHhI2 with
the SU(2) gauge bosons W.

Figure 8: Quadratically divergent one loop contributions to the Higgs boson mass
and quartic coupling from the gauge sector.

Both diagrams are quadratically divergent, and the loop momentum inte-
grals need to be cut off at a certain ultraviolet energy scale to obtain a finite
result:

6Note that the SU(2) subgroup does not generically coincide with the subgroup H =
SU(2) that survives the spontaneous breaking at f.
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2
9 2
Vi_toop (@) x W/\ hih, (145)

The result above is the kind of quadratic dependence on the cut off scale,
that we were trying to solve. Now, let us calculate the Higgs potential in a
more efficient way following the Reference [99], the first step is to extract the
term quadratic in W from the eq. (144)

Ly D 92‘ (V\é” g) d)‘z = M? (h) Wiw, (146)
where
I
M(h) =gPp =g < . 8) b, (147)

is a Higgs dependent mass matrix for W,,, and we use an SU(3) breaking
spurion’ P from this term we can compute the Coleman-Weinberg poten-
tial [71] for the Higgs, which arise to radiative corrections from the gauge
bosons. This potential is given by:

2

~ J6n2

Vew (h) Tr [MTM} 2 43

2 T
3 Tr [MTM} log [M M] , (148)

A2
The Higgs potential is quadratically divergent, because MM is not 1.
Which means,

Tr [MTM} - ?Z[\zzTr [¢TPTP¢} _ A (149)

A2 g
1672

Vew (h) = Ten2

If not for the spurion P, the quadratic divergence would be proportional

to ¢Td which is independent of h. We see that gauging only the SU(2)

causes the appearance of quadratically divergent 1-loop contributions from

the gauge bosons, despite the fact that we have the right gauge couplings.

Now if we gauge the entire SU(3) group, we have the following covariant
derivative:

Oud — (0, —1gGLT?) b = (0, —1gG) b, (150)
that containing the 8 SU(3) gauge bosons, so the Lagrangian for the kinetic
Higgs term is:

L1 =IDudP = (3,07 +igd Gy ) (3"d —igGud)

8 8 2
i 1 i
= doe " GeTe—— Y (3.ma) T e
8 : 2
22 Z
=g f <a_4 <Gﬁ— gfauﬂa> ) +h0t

7A spurion is a fictitious, auxiliary field that can be used to parameterize any symmetry
breaking and to determine all operators invariant under the symmetry
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We can redefine our gauge bosons as:

G/ua = Gg—g]fauna, (152)
so we have eaten our Goldstone bosons and generated mass terms for 5
of our gauge bosons (those lying in the coset space SU(3)/SU(2)). However,
our Higgs field has also vanished. In other words, we applied a gauge
transformation, by redefining our gauge fields, and as a result our Higgs
field was lost. As our expression is gauge invariant, this means our Higgs
field is unphysical. In terms of the Coleman-Weinberg potential, we get rid
of the spurious PTP in eq.(149) and the quadratic divergence becomes:

A e alg] SO
Tem? 16m?
which is independent on hih and the Higgs boson becomes into a Gold-

stone boson which gives mass of order f to the heavy gauge bosons. Finally,

we introduce the gauge couplings in a collective manner to preserves the

Higgs boson uneaten and avoid quadratically divergent contributions to the

Higgs mass. We introduce two copies of the non linear sigma field ¢ . The

two fields form condensates at the scales f; and f5, this can be written as:

0 0
<¢1><0>: <¢2><0>- (154)
f1 fy

We are assuming for simplicity identical and aligned vacuum expecta-
tion values® so that f; = f; = f. The global symmetry is therefore ex-
tended to SU(3); x SU(3), and is spontaneously broken by (¢1) and ($2)
to SU(2); x SU(2),, generating 10 NGBs. We then gauge the diagonal sub-
group SU(3)p C SU(3); x SU(3)2, as a result the global symmetry is also
explicitly broken, leaving a singlet and complex doublet as massless NGBs.
We can parametrize this breaking by two non linear sigma fields ¢1 and ¢,
in the first and second coset space SU(3)/SU(2), respectively:

0 0
1 =eil (O) , dy=eim (O) . (155)
f f

Now we must add two covariant derivative terms to the Lagrangian. Note
that the covariant derivative is the same for both fields

Vew (h) +... (153)

Ly =Dud1l* +Dyudo?, with D, =0,—1gGTe. (156)

If we assume that the gauge coupling of ¢1 is set to zero, the SU(3); global
symmetry will be restore, and we would have a complex doublet as an exact
NGB associated with the coset SU(3)1/SU(2)4, by the other hand, the other
complex doublet would be eaten by the heavy SU(3) gauge bosons. The
same argument is valid if we turn off the gauge coupling to ¢>. Only when

8Later we will work with an misalignment between vevs.
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the gauge couplings for both ¢1 and ¢, are present the global symmetry is
broken, massive SU(3) gauge bosons can be generated and the Higgs (now a
pseudo—Nambu-Goldstone boson) can develop a potential. This implies that
any term contributing to the mass of the Higgs must come from diagrams
that contain both g7 and g,. The two TT; filds can be parametrized as:

0 0
d1 =erltei™ (0) , py=e Mrer (0> / (157)
f f

in eq. (156) TTj represent the part that is coaligned with the SU(3) gauge
bosons and can be eaten by them (like in eq. (151)), i.e, TI|| is an unphysical
matrix which means that 5 SU(3) gauge bosons in SU(3)/SU(2) acquire mass
of order gf. This matrix can be removed by a gauge transformation. The per-
pendicular 1T, is the part where ¢1 and ¢, are perpendicular to the gauge
bosons, leading as a result that this part remains massless and it cannot be
removed by a gauge transformation and thus represents a physical matrix.
The action of both fields can generate a potential for these NGBS, which
break the symmetry explicitly leading a set of pNGBs that can then cause
spontaneous electroweak symmetry breaking, as the Higgs in the Standard
Model.

We are going to work in the unitary gauge because has the advantage of
working with the physical spectrum of particles. So, we rotate TT away, this
leaves us with the two perpendicular fields (also, we leave out the singlet
state):

B i[02x2 haxs 02x1 _ 10252 hag
o=ee g (2 )] () emew [ )] €
(158)
the different possible products of ¢ and ¢, yields:

_ip, i 0
|d>];d>1\ = (01x2 f)le FMierL < ZfX]) =f2,

i i 0
pSbal = (01x2 fle e < ZfX]) =2,
f
[ 2t (02x2 hza) 2 hh'z,o 0241 n
f\nl , o 2\ o1x2  hfh /) 7

=12 _2hth+...

_i i 0
|¢J{¢2‘:(0]X2 f)e fﬂJ.e fnL<2x]>,

= (01x2 f)

(™)

(159)

021
f

).
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Figure 9: (a) Quadratically divergent one loop contributions which do not con-
tribute to the Higgs potential and (b) logarithmic divergent contributions
to the Higgs mass.

Diagrams (a) in fig. 9 (come from terms like IDHq)iIZ) do not generate a
quadratic divergent contribution to the Higgs mass at one loop level as in eq.

(153) because they have no h dependence, and these diagrams contribute

A2 2 A2f2
Vew(di) = T2 ZTI' |:¢1¢1i| S Te2 (9% + 9%) +.o. (160)
i=1

However, we have a third diagram that contribute to the radiative genera-
tion of a Higgs potential, which is the diagram (b) of the figure 9, where both
¢1 and ¢, are directly coupled through a gauge boson loop. By counting
powers of momentum, we see that diagrams with both ¢ fields are loga-
rithmically divergent and give contribution to the Higgs mass-squared at
one-loop level as:

3 2.2 /\2 2 ZfZ
it o] s < 15

Finally, we avoid one loop quadratic divergences to the Higgs mass with
the collective symmetry breaking mechanism. For example if we take g7 =
g2 = g equal to the SU(2) gauge coupling, p ~ v and f ~ 1 TeV this gives
a contribution to the Higgs mass-squared of the order M#, ~ O (100G eVv)?,
which looks pretty well. Summarizing, if two ¢ fields are involved the 1T
can contribute to the Higgs mass, but not quadratically, only logarithmically
which ensure that the little hierarchy problem is solved up to the cut off en-
ergy scale A. It is important to highlight that in this model the cancellation
of the gauge bosons quadratic divergences happens between same spin part-
ners (spin 1 heavy particles) due to the collective symmetry breaking, unlike
other models with supersymmetry where the cancellation happens between
opposite spin partners. In the Following we are going to introduce fermions
to this model.

/\2
Vew (¢1,2) = log FhTh—k ... (161)
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We have removed the quadratic correction to the Higgs potential in the
gauge sector, nevertheless the largest contribution to quadratic corrections
to the Higgs mass comes from the fermionic sector, more specifically from
the top quark due to its large Yukawa coupling, for this reason we are going
to focus only on this family. We introduce SU(3) symmetries in the Yukawa
couplings which are broken collectively. To do this we need enlarge the
standard model SU(2) doublet into SU(3) triplets of the gauge group. We in-
troduce heavy degrees of freedom, to cancel large Higgs mass contributions
from SM degrees of freedom, therefore we add a new left-handed fermion T
with charge 2/3 which will mix with the SM top quark:

Y= (}%) = (?) . (162)

To get the right Yukawa couplings, we need to include the corresponding
right-handed partners t{, b€, t§, where t§ is the Dirac partner of T, so that
we can write

T
Ly = M oIWtS + AT WS + he. = (t5,t5) (? i;) Y +he (163)
22
The Lagrangian above exhibits collective breaking in a very similar man-
ner to eq. (156), if one of the couplings is set to zero, the symmetry of the
above equation (163) is enhanced to SU(3) x SU(3) ,only when both cou-
plings are present the diagonal symmetry SU(3)p is preserved. In a similar
way to the gauge bosons only those terms that include both Ay and A, will
contribute to the Higgs potential at one-loop level. For simplicity, we con-
sider the simple case of symmetric couplings Ay = A2 = A/v2. We expand
the ¢; fields in terms of the Higgs:

A i fo2x2 hyy; 1 (hhiy.o 0247 Q
Ly = ){T— - - t§
v V2 [(O ’ ){ f (hhz 0 > 2f2 ( o1x2  h'h i T) "

i fo02x2 hoxi 1 (hhiy. 0247 Q
)T+ - —— tS| +he
Tee ){ +f<hhz 0 ) 2f2<01x2 hth) " T) 2T

_ A T (tS +t§) + ihTQ (t§ —t$) hThT(tC t$) h

_ﬁ 2+ 1 +1 Q 22— 14 —ﬁ 2+ 1 +... .C.
hth

— Af <1 — 2f2> TTC+Ah'Qt° +...+he,

(164)
where we defined the singlet partners of heavy top and top quark respec-
tively:

TC — tg\_/‘_j%
2 7
tC _ tC (165)
tC — 2 1
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Since the last term of the second line in eq. (164) is the standard model
top Yukawa coupling, we identify A = A¢. Now, we found that the tree level
mass of the heavy top quark T is A(f and the T fermion couples to the Higgs
doublet with a coupling constant of A¢/2f. We can now draw the Feynman
diagrams given in the figure 10, and we will see that the quadratic divergent
contributions to the Higgs mass-squared cancel.

Figure 10: Quadratically divergent one loop contributions to the Coleman Wein-
berg scalar potential from the top sector.

At one-loop level these two contributions cancel, because the quadratic
divergent part of the Coleman Weinberg effective potential contains only
terms which are independent of the Higgs mass:

Vew () ~ — g ATy [ME () M (0]

(166)
~NAZ (@101 + @) ~ 22N 4
where the top mass matrix is
M, (o) = (M) (167)
7\2(1?;

In other words, the heavy top partner loop quadratic divergence has com-
pensated the contribution coming from the SM loop. As we point out before
this cancellation occurs between same spin particles, unlike for example in
Supersymmetry. According to the collective symmetry breaking structure,
the only terms that can contribute to the Higgs boson potential are those pro-
portional to both A; and A;. The lowest order relevant loop diagram is pro-
portional to (A1A2)? and generates a Higgs mass and quartic self-interaction.
This one-loop diagram (see figure 11) contains four fermionic propagators
and is, therefore, only logarithmically divergent.
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Figure 11: Logarithmically divergent one loop contribution to the Coleman Wein-
berg scalar potential from the top sector.

Similar to the gauge sector, the mass contribution is

42 2

Vew (§1,2) ~ %IOg [ﬁz} h'h+... (168)
Again, if we take the value for f ~ 1 TeV as in the case of gauge boson
the Higgs mass-squared is order O (M2, ). We have shown an explicit
example of a Little Higgs theory with a toy model to demonstrate the way
in which collective symmetry breaking is used to reduce the fine tuning in
models that realize the Higgs as a pseudo Nambu-Goldstone boson of a
spontaneously broken approximate global symmetry. In a realistic physical
model we need to take the hypercharge into account, so we must enlarge
SU(3) — SU(2) to SU(3) x U(1) — SU(2)r x U(1)y. This will be done in the

next section with the full Simplest Little Higgs model.

2.3 SIMPLEST LITTLE HIGGS

We are going to develop the main characteristics of this model first intro-
duced in refs. [24, 25]. The Higgs fields are Goldstone bosons which are as-
sociated with a new global symmetry breaking at a high scale f ~ O(10 TeV).
The Higgs fields will acquire a mass and become pseudo-Goldstone bosons
via collective symmetry breaking at the electroweak scale, v. This mass will
be light compared to f, since it is protected by the approximate global sym-
metry and is free from quadratic divergences at one-loop. Through this
section we develop the fields expansion of the theory. We remind this was
done in ref. [15] using the unitary gauge, though we follow the notation of
ref. [26] and use the 't Hooft-Feynman gauge.

The SLH model is constructed by expanding the SM SU(3). x SU(2)r x
U(1)y gauge group to SU(3). x SU(3)r x U(T)x. In this case the SU(2) dou-
blets of the SM have to be enlarged to SU(3) triplets and additional SU(3)¢
gauge bosons appear. The subscript x indicates a new x-hypercharge. Fol-



2.3 SIMPLEST LITTLE HIGGS \

lowing the usual convention, the quantum numbers of the fundamental
fermions in the model will be indicated using the notation:

(color representation, weak multiplet 1rep1resen’cation)X_Hy]Percharge . (169)

The SU(3)r x U(1)x gauge symmetry is broken down to the SM elec-
troweak gauge group by two scalar fields ®; and ®;, which transform as
complex triplets. The model contains a global [SU(3) x U(1 )12 symmetry.
The diagonal subgroup 9 is gauged so the gauge symmetry is [SU(3) x U(T)].
The symmetry is spontaneously broken by the vacuum in that the scalar
fields assume vacuum expectation values. These vacuum expectation values
are not assumed to be equal and designated f; and f,. So schematically

[SU(3) x U(1)]% — [SU(2) x U(1)]%. (170)

In the above, the gauge symmetry is also broken: [SU(3) x U(T1)] —
[SU(2) x U(1)], where the latter is the gauge symmetry of the SM. From this
symmetry breaking we get five Nambu-Goldstone bosons from each scalar
field (so 10 group generators are broken). Five linear combination of NGB’s
(corresponding to the diagonal symmetry) are eaten by the Higgs mecha-
nism, they are in a sense, non-physical and form the longitudinal degrees
of freedom of new massive gauge fields with masses of order f. The five
orthogonal linear combinations are PNGB’s, corresponding to the symmetry
which is explicitly broken by the gauge interactions. So, after the symmetry
breaking we are left with 5 physical NGB’s, 4 of these form the complex
Higgs doublet (h) and the last is a real scalar field called . The SU(3)
symmetries of the @ fields are spontaneously broken by non-zero vacuum
expectation values, which are chosen to be aligned but not necessarily equal

in magnitude:
0 0
(@= 1| © (@)= [ © (171)
fep/ (3 8/ (1)

Originally, f ~ T TeV was considered but larger values are assumed nowa-
days, according to LHC searches [36]. The subscripts indicate the [SU(3) x
U (1)l x [SU(3) x U(1)], transformation properties of each condensate. How-
ever, under the full gauge group SU(3). x SU(3)r x U(1)x, @7 and @, have

quantum numbers (1,3) 1

2.3.1  Particle Content

The SM fermions are embedded into SU(3); triplets. For the lepton sec-
tor case the enlarging is straightforward, but for the quark sector this is not

9In group theory, given a group G, the diagonal subgroup of the n-fold direct product is
the subgroup (g, g,...,g), with g an element of G.
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obvious. There are two choices of representations for the quarks. In the Uni-
versal Embedding, the representation is the same for each generation, but not
all gauge anomalies are cancelled within the model *°. The other represen-
tation is the Anomaly-free embedding where all gauge anomalies are cancelled.
The cost, however, is placing the first and second generation quarks in a dif-
ferent representation than the third generation quarks. In both embeddings
the lepton sector remains equal, but right-handed neutrinos are omitted, so
neutrinos are treated as massless '*.

Leptons
In all the cases, the first generation of leptons is
Y =(13)_1,

er = (1,1)_,, (172)

NR = (1/1)0/

w|

Explicitly:

Y = e (173)
L

where a phase 1, is needed to get real masses and lepton mixing angles.
Here we get a new massive lepton N, with the usual standard model elec-
tron and electron neutrino. This structure will be replicated for the second
and third generations.

Quarks

In the Universal Embedding the first generation of quarks have the following
quantum numbers:

Y = (3,3)% ,
UR = (3,1)% , )
174
dR - (3/ 1)_% ’
uR — (3/1)%
where
u
Yur= | d (175)
iu L

later, we can note (with the charge operator) that the quarks u and d
belong to the SM and that the new quark U has charge +3. For the other

°In this case there must be new physics, beyond the SLH, obviously. In any case, the sen-
sitivity of the Higgs mass to the cutoff at two loops, within the SLH, requires this additional
new physics at scales not much larger than f (typically A ~ 47f).

"Ref. [108] extended the SLH accounting for the measured neutrino masses.
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two generations this structure reproduces the quarks of the SM ¢,s,b,t, and
new massive quarks C and T.

In the anomaly-free embedding, the third generation of quarks is the same
as in the universal representation, but the first two generations are in the
representation:

\yuL — (3/3)0 7

uR = (311)11

W

176

dR = (3/ 1)%] ( 7 )

DR = (3/ 1)%]

That is, the triplets are in the anti-fundamental representation of SU(3),

and the x — hypercharges have been modified. The new massive quark is

now labeled D instead of U (and S replaces C) because it has a charge of —%.
Explicitly the triplet is :

7

11juL = —u . (177)
iD L
again, in both embeddings, the phase i is needed to produce real masses
and mixing angles.

2.4 FEYNMAN RULES FOR THE SLH MODEL

The nonlinear fields ®; and @, have six real components each, but are
also subject to a normalization constraint, so for the two fields we have 10
real degrees of freedom', which will emerge as the longitudinal modes of
the three massive gauge bosons of the SM: (2%, W+t,W~), also the longi-
tudinal modes of five new massive gauge bosons: (Z',Y, Y, X~,X"), the
Standard Model Higgs scalar (H), and one additional massive pseudoscalar

m).

The two scalar triplets are introduced as nonlinear sigma fields and they
can be parameterized in the following manner, to realize the spontaneous
global symmetry breaking pattern:

/ 0
10 itg®
O =exp <f> exp ( i > 0|, (179)
fCB
o . 0
D, =exp e exp (—1®> o1, (180)
f ftg g

SUB) xU(M]2 — 2[32=1)+1] =18

SU2) x UM —2[22=1)+1]=38
so we have 18 — 8 = 10 NGB'’s that are not physical particles.

(178)
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where we have introduced the short notation: sg = sinf3, cg = cos 3,
tg = tan 3. This parametrization has the form of an SU(3) (broken) transfor-
mation. ® and @’ are 3 x 3 matrix fields, parametrized as:

. 5 (181)
’ (4]
© ﬁ”xﬁ(?z 0)’
where
ho o_ | + +
h= Ny h _—2(V+H—1x), h™ =—¢—,
; . (182)
k: <k > ko _ o — 1w
x /)7 V2

Here h is an SU(2) doublet, becoming the SM Higgs doublet, and 1 is a
real SU(2) singlet, that will play no role in the next development (see [15,
109, 110, 111, 112] for details). We will assume that only the real part of hO
may acquire a non-zero vacuum expectation value. At this point you can
follow two paths:

¢ Unitary Gauge

The nonphysical eaten fields (©') must be rotated away through a SU(3); x
U(T)x transformation and gives only the physical particle spectrum. The
physical fields can not be simultaneously rotated away because of the sign
difference. What remains still is an SU(2) symmetry:

0
itp©®
Q7 =exp (1 i > 0], (183)
fCB
0
i©
D, =exp <—1> ( 01, (184)
tp
fSB
with vt
v
0 0 —75
0= 0 0 0 , (185)
(v+H)
s 00
The Higgs scalar H is then expressed as an excitation around the vacuum
expectation value:
v+H
h = ( \oﬁ ) (186)

with the electroweak scale given by v = v/2(h®) ~ 246 GeV*3.

~1,2
13Remember that v = (ﬁGF>
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¢ 't Hooft-Feynman Gauge

Nonphysical fields are preserved in this gauge and the fields expansion are
the same that in the equations (179), (180). In this gauge, loop calculations
are easier than in the unitary gauge but there exist more Feynman diagrams.
In the following work we use this gauge.

The fields @; can be expanded in powers of ¥, in this work only the order

0 (‘;—;) is necessary, then the fields will be expanded to the fourth order:

0
0, = exp (1@ ) 122 25 b 2zt 5 (hn')3,, h2x1 6fghh har | [ 4
=8 h§X2 hThhT1X2 1— 2f2hTh+ (hth)2 /) \f

6f3 244 cp
(1@ ) 12x2 — zfztz hhis. + 24f4t4 (hh')3, , _f7h2X1 + 6f3t3 hh'h;, 0
D, =exp i .
ftBhTXZ + 6f3 3 h hhT] X2 1— ZthZ h'Th—’_ 24f4 4 (hfh) fS[S
(187)
2.4.1  Gauge Sector
The SU(3)r x U(T)x is made a local symmetry by the introduction of the
gauge-covariant derivative
Dy, = 0y — igA%T, +ig QyB* - 9w (188)
| U — 98 9 o8 a gX X s gX W,
where g is the Standard Model weak couplings constant and g« is a new
U(1)x coupling constant. A7 and B} denote SU(3)r and U(1)x gauge fields.
The kinetic terms for the ¢ field can be written as:
Lo = (D*01)T (D,®1) + (D*®,)" (D, @y). (189)
The SU(3); gauge fields can be written, in the fundamental representation,
as:
1_:a2 4 _:a5
ALT A (]) 01 g A (]) (1) g ] AM(:'A2 AH_olAu QE‘_}Q?
wla=2 |\ T A U S I
0 0 0 0 0 -2 AL TIAL A HIAY 0
Aﬁ1OOAﬁ]OO 10\/\(/):[Y8
=— |0 =1 Of+=—%(0 T 0 |+— (W, Xy
20 0 o) M3\ o0 2/ V2V xi o

(190)
The first diagonal terms will join with the generator of U(1)x to form the
neutral gauge bosons A, Zﬁ, Z/u. In the third term three pairs of conjugate
particles can be recognized, since the upper left 2 x 2 sub-matrix contains the
unbroken SU(2), we can identify W* as the Standard Model charged gauge
bosons.
From the covariant derivative on the ®; fields one can find the particular
spectrum of the gauge fields and their masses:
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2
(DHo;)" Z[ LOMD; — 1079 <9A3Ta—;gXBﬁ> D;
j=1

M

—
—_

, 1
+10] <9A3Ta — 3gXB§L> oHo;

2
+o! (gAgTa — ;gxsﬁ) cpj],

(191)
the first part of the equation (191) gives the kinetic terms of the Higgs boson,
the second and third terms give the interaction between the gauge bosons
and the NGBs and the last term gives us the masses of the physical particles
to the desired order. The following arrangement can be made in the fourth
term:

2 2
1
E d)}L <gAﬁTa — 39XB’:L> ®; — Trace

i=1

(gAgTa 3gXBX> Z@ of

(192)
The trace is a linear operator and the important thing that is necessary to
calculate is:

(hth)® (sd | cd Jhnth (s
2 hih— 312 %""% 0 I 6 sp
Y 00! = 0 0 0
i=1 Ohhth (B <} ) (nth)® (sh  cd
1 3f (CB_B 0 f —hTh—F 372 g‘i‘g
wiH)?? _ (vrH)t (5§ e g ) (sp e
2 1272\ cZ2 " 53 3V2f B p
= 0 0 0
N s O T 2 (vH)? | (vrH)! [(sp <}
V3o (CB_SB 0 ="+ e (gt
(193)
here it is important note that the quantity hh'h has a different meaning from
(v+H)?

hh'h, 4, the latter is a vector and the former is the scalar: 7

Inserting the equation (193) into (192), but in order to relate the X-hypercharge
and SU(3)r gauge couplings to the Standard Model counterparts, we do
not yet assume a vacuum expectation value for the Higgs, the mass eigen-
states (and masses) that are present before spontaneous electroweak symme-
try breaking can be found, in other words, the spontaneous breaking of the
SUB)r x U(1)x — SU(2)r x U(1)y symmetry is made:
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Trace

2 2
(gA&Ta 3ng*) Z

2 2
2 ASg B hth)® (s cf
= gx;xmr( 9+u9’<> [fZ_hchr( ) 56, %

2 N

2 Alg A%g BXg,\’ hh)? [sh el
+ g—W:[Wﬂ*—i— ug—i- g+ kI Th—( 2) *E‘f‘*g
2 2 23 3 3f cg  Sg
2 3u g 2g,B*\] 2hhth (¢} s}
N e P 90T<A9A9 9x >] B SB
Ti|Zwoxtry Ly - + B _"B) the
[z : 2\ T3 3 3t \sp cp
252
97t Lotvo
+ SR,
(194)

At this point, we can see that only five of the nine gauge bosons acquire
masses of the order f ~ TeV: two combinations of A}, and A7 which form

Yﬁm and two combination of Aﬁ and AZL which form Xff. Together, these
particles form an SU(2) doublet of new heavy gauge bosons with the same
masses; also it is possible to find neutral gauge bosons, the gauge fields
which correspond to the diagonal generators T® and Qy mix to form mass
eigenstates, which are:

Ly = \/ﬁ [\ng ngﬁ} ,
h (195)
1
Bu= iy |9xAS +V3gB3| .
X

We can proof that the boson Z, acquires a mass term "4 meanwhile the
orthogonal combination of Z,, remains massless and it represents the hyper-
charge gauge boson B,,.

So, we obtained five combinations of gauge fields that acquire mass, which
correspond to the broken generators:

22
o) _ 1 (a4 5 2 _9f
Yo ﬂ(A TiAY), Myo = =5—
+_ U a6 a7 2 g
Xuzﬁ(AuilAu), My = =5 (196)
V3gA% — g BX f2
2 = 97t — 9x = MZZ:—(SQZ%—Q,%)
T V3P H g ?

and three combinations are massless, among them the bosons W+ of the
standard model :

™This gauge boson does not represent the Z boson of the standard model or his heavy
partner Z’ that will be found after consider a vacuum expectation value for the Higgs field.
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1
Wi = 7 (Al FiA3),

8
_ 9xAL+ V3B (197)

3
Ad.

The covariant derivative can be rewritten in terms of the mass eigenstates:

Dy =, — \17[ (T +1iT2) + W, (T) —iT,)]
\—ﬁ Y8 (T +iTs) + Y2 (Ty — iT5) |
\f [X (Tg +1iT7) +X+ (Te —iT7)]
(198)
iggxV/3 [ Ts ]
_9IxVY B N
MRV At IV R

C B e g

from the last equation we can find the hypercharge coupling, that is the
coupling to B, and is equal to

FggxV3 g (100)
B 2 2 2 199
V39 + 9% 1+399X2

and also we find the hypercharge generator:

Y = _Ts + Qx- (200)

V3

We note that the masses of the heavy bosons are uniquely determined
once the symmetry breaking scale f is fixed. Now we break the electroweak
symmetry if we assume a vacuum expectation value for the Higgs in the
equation (194), in other words, we consider the spontaneous breaking of the
symmetry SU(2)p x U(T)y — U(1)gm. We will find that the vector bosons
W get mass and the mass of the heavy doublet is split:
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Trace

(gAgTa 3ngX) Zcp ol

2
2 A8 BX +H)? +H)* [sh ch
g ug ng 2 (V ) (V ) B B
= Lxixn g (2 2RI g2 i
27w +< 33 ) [ * *

2 A3 A8 Bx < 2
+ 9w:w**+< 5‘9+ h9 4 Zu

v+H? v+ H)? §+§
C% S

2 23 3 2 122 z
2 3u 81 xp 3 (3 §3
.[g n g T(A g AStg 2g.B >] (v+H) B B
+1 W, X 4 ==Y — + — —— | +hc
[2 V2t 2 2V3 3 3v2f \sp  cp
2¢2
97t otyo
+ YR,
(201)

The masses of the unmixed gauge bosons up to order O(v*/f%) can now
be read directly from this Lagrangian term [26]:

2 (¢4 c4 242 2 4 (¢4 4
gv A% B + g A% v B B fv—
Lmass 255~ l‘—@cz(cgﬁsﬁﬂw W e e T )| T
fz 2,,3 c3 53
SIE BB woxte e
6v/2f sp €

(202)
We need to rotate the original fields to eliminate the mixed terms as fol-
lows:

. 3
wE wEe <Cﬁ SB) X*,

3v2f3 \'s cp
DA (203)
Xty XE 4 BB\ wt
3v2f3 \sp cp

The physical states W and X differ from the interaction states only by a
term of order v3/f3 [26]. This does not matter for the following calculations,
but is important in determining the Goldstone bosons states. The masses of
the physical fields are [26]:

2 4 4

gv v g, Sp

M 1—— [ B2k
w= 2! 1212 <sg+c,§>]’

(204)
gf v2 v B 5?5 gf V2
Mx="2|T-S+t5az |+t || ~%=1-75|
V2 4f2 - 2414 2 sza V2 42
The neutral gauge bosons sector is more complicated because is non-
diagonal at order OW*/14):

A3
Lmass DM%YOHYELT + (A3 /AS/ Bx) M A8 (205)
Bx
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with
g’A g’A 9g:A
4 4+/3 6
Mo | 9?2 9 _g’A  gaA _ gg.f? (206)
43 3 4 2V3 3V3 ’
9gxA  ggxA _ ggxf? g3 f?
6 2v3 33 9
where
2 4 4 4
v AV Cp 3[5
A=———— |2+ 2. 20
2 122 (sé c2 (207)

The matrix M needs to be diagonalized (see apenddix A) to get the physi-
cal fields. Masses at order O(v2/f2) are [26]:

1 1 b
Lmass DMYOHYIT 4+ EMézuzu + EMé,Z MZ.+ EM%A“AH, (208)

Ma =0,
gf

My = 2,

T2

My, = V2fg (1—(3_%)#) (209)
/3_t\2/\/ 16C%Vf2

Mo — 9 (4 V2 (-2 )z_i ﬁ+§
27 2ew 162 w 122 cé sé ’

where the first order mixing matrix for gauge bosons is:

0 - ,
As — ‘W W z
_ w Sw Sw
As | =| V3 w3 V3 Z |. (210

Bx tw /3—t3, /3—t3, A
V3 Swy\ 73 twy T3

It is important to recall that the SLH model has no custodial symme-
try [113, 114], i.e. there cannot be a SU(2)r x SU(2)r embedded into the
SU(2)r x U(1)y to which the SU(3); x U(T)y breaks spontaneously. How-

2

ever the parameter p = C;vl vz =~ 1 only gets corrections at O(v?/f?) and the
wirtz
breaking of this symmetry is very small (a model with custodial symmetry

has been proposed in ref. [115]), see section 5.1.

Using the equation (210) it is possible to rewrite the covariant derivative in
terms of the mass eigenstates after the spontaneous electroweak symmetry
breaking:
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[W: (Th +1iT2) + W, (Tq — iTz)]
[Yg (T4 +1Ts) + YOI (T4 — iTS)}

Xy (Te +iT7) + Xt (Te —1T7)] (211)

ig

\/3—13
+igswAuLQ,

it was found that the coupling of the photon is equal to e = gs,, and the
generators have the form:

+ 97, (~2Q+Y) + .12
Cw

Q=T+, (212)

212

T4 =V3T8 + 2.

The quadratic couplings of the Higgs with one heavy and one SM gauge

boson induce, after the electroweak symmetry breaking, a mixing between

them. But in our model this only affects the definition of the Z, and Z/u
bosons, so, the physical states require the replacements:

Z,—Z,+8zZy, Zy—Zy—57Z,, (213)
where
(1—1t3) /3 —t3V?

= 21
5z S : (214)

Finally, the appropriate form of the covariant derivative that will be used
to find the interactions between the heavy and SM gauge bosons is:

(Wi (T +iT2) + W, (T) —iT2)]
[Yﬁ (Ta +1Ts) + YO (T4 — iTs)}

(X (Te +1iT7) + X1 (Te —iT7)]
5 (215)
+ 37, <—c$VQ YR TZ>

V3—t3

’ ¢
+ngu<5z(c5vQ—Y)+ v TZ>

3—t2
+1igswALQ,

Taking the gauge bosons rotations (210) and (213) into account, the rele-
vant Feynman rules can be obtained. Now we only need the charged Gold-
stone eigenstates since neutral pNGBs do not contribute to LFV processes.
The mixing of pNGBs and gauge bosons are of the form V*9,,¢. The kinetic
terms for the pNGBs and the Goldstones-gauge mixing terms read [26]:
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v2 cl sy v2
Lod|1- o b, auq>+a“q>+{1—2fz} duxTMx

) (0uxToMp™ +oux 0 ™),

2 4 4 2 3 3
9V Vo [Cp  Sp v v (B SB +
£ W= | [1T—=— | 2+ |0 —— | B ——L |~
@ 2t ”2[( 6f2(sr23+c(23 3 s e )0
3 3 2
_gf | v2 (e sp + v +
X “=|— 22— o —(1—=— )"
+ uﬁsz <Sf3 CB (I) Zfz x
(217)

As in the case of W and X gauge bosons, it is necessary to rotate their
would-be longitudinal degrees of freedom, to express the interaction eigen-
states in terms of the final pNGB eigenstates up to order O(v?/f?):

(216)

+h.c.

(218)

For the calculation of these states we use the relations (203) to obtain the
v2 /f2 corrections. Taking egs. (210), (213) and (218) into account, the relevant
Feynman rules can now be obtained.

2.4.2 Vector-Boson Lagrangian

The kinetic Lagrangian of the gauge bosons gives rise to the trilinear'>
gauge bosons couplings necessary for our calculation. It can be written as*®:

HVBX}LVI G},LV = g [Dp/ DV] ’ (219)

the results'” to order O(vZ/f2) are given in tables 3 and 4 [26]:

5Quartic gauge bosons couplings also arise, but are irrelevant for our work.

16 Another way to write the lagrangian is: £g = f%BQWBXFW — %A‘”W/\ﬂv with AR, =
OuAS —vAL + gfqpcARAS.

7Through this work we have found a few typos in the Feynman rules and form factors
given previously.
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ViV;V; gViViVi ViVyV, VvV,
AXTX ~1 AWHWS ]
ZXTX™ Tonsw [C%v —sjy +ewdz M] zwtw- e
Z/XTX~ ZCv]vSW [—62 (c\z,v — s\z,v) +ewi/3— t%/v} Z'WHW-— _%

Table 3: Feynman rules for the trilinear gauge boson couplings V. (p1)
Vi (p2) V, (p3). All these couplings have the generic form:

Vivivy [guv (P2 =P1)p+ 9vo (P3—P2)y + Gup (P —ps)v} (j labels the
particle-antiparticle gauge boson pair in the vertex). All four-momenta are
taken incoming.

ieg

63

Svv K VSS G
xEXFy +iMx vxExF +1
dPEWFy +iMw YoEHT +1
tyT . sty | s Mx(T+t5) +,F WSty 1=ty
xTXTZ  FiMx Torr s j:lézzs‘(/v Tf?%v Ix*x :FZZSWC\;V qtézzsw T;t@
. . My (1—t + Ciy—S 1—t
PEWFZ +FiMwtw F 16z ———% ZOFPT  FRo WOz — A
V312 Zswew 2sw/3—t2
£XF7/ +i Mx (1+t3,) +1i5 Sv]:/l c%vivs\z/v Z/'xExF 1—t2, i;WC\ZN, 2
X 1725W T—té\, WzZMX7swew X—X :FZSW /73%\2/\/ Z7swew
+\A/F 7/ . 17t%/v . It 4T 17t%,v C%,vf
dTWTZ $1MW75W /737t%/‘/:|:152MWtW VAN ORI () :Fzsw\/3—t\2,v:|:62 Zswew

Table 4: Vertices [SVH*VY] = ieKg"*Y and [V*S(p1)S(p2)] = ieG (p1 —p2)™.

Since the W and Z bosons embody the SU(2) subalgebra in SU(3), it is

not surprising that its trilinear couplings is unchanged to the leading order.

Further, a check of the available structure constants *® of SU(3) will show
that none of the new off-diagonal gauge bosons X*, Y°, YOI can decay to
any combination of only Standard Model gauge bosons A, Z, W+, and it can
also be noted that, since there is no SU(3) structure constant with indices 3
and 8, there can not be trilinear coupling with any two of the diagonal gauge
bosons A, Z, Z'.

2.4.3 Fermion Sector

As anticipated, the SM fermion SU(2) doublets must be enlarged to SU(3)
triplets. In addition, in order to give mass to the new third components of
the SU(3)-triplet fermions, new SU(3)-singlet fermions must be introduced.

BThe independent antisymmetric structure constants of SU(3) are: fiy3 = 1, f147 =
f426 = f257 = f345 = f516 = fe37 = 3, fass = fe78 = @
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Then each lepton family consists of an SU(3) left-handed triplet 3 and two
right-handed singlets 1. A right-handed neutrino is not included, leaving
them massless as in the SM:

L= & iND, frm,  Ngm, (220)

where m is the generation index. There are three new heavy neutral states
N, defined with a phase i, necessary to get real masses and lepton mixing
angles. In the case that we want to give mass to the SM neutrinos, one
would need extra singlets to define Dirac neutrinos or new terms that break
lepton number to introduce Majorana masses for the SM neutrinos, as shown
in refs. [108, 116, 117]. The structure of the quark fields depends on the
embedding we select:

¢ Universal embedding

All generations carry identical gauge quantum numbers and the SU(3)1 x
U(1)x gauge group is anomalous (the SM SU(2) x U(1)y gauge group re-
mains anomaly-free). Each quark family consists of an SU(3) left-handed
triplet 3 and three right-handed singlets 1:

o =(ur dr iUp),,, Urm, drm, Urm. (221)

The new massive quarks U, C and T have charge —1—%.
¢ Anomaly free embedding

In this configuration we take different charge assignments for the different
generations of quarks triplets, the third generation of quarks is the same as
in the Universal representation, but the first two generations are in the anti-
fundamental representation of SU(3) [118]:

Qo =(dp —ur iDy), dg, ug, Dg,
Q) =(st —cr iS1), sk, cr, Sk (222)
Ql = (tp by iTy), tr, br, Tg,

such that with this new charge assignment all anomalies cancel [119, 120].
The new massive quarks are now labeled D and S because of their charge
of —%, and we have again a massive quark T. In both embeddings, the
phase i is needed to produce real masses and mixing angles. Table 5 collects
the gauge representations and hypercharges for the fermion sector in both
embeddings.
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Universal Embedding
Fermion Q12 93 urm, Urm drm Lim Nrm erm
Qx charge 1/3 1/3 2/3 -1/3 -1/3 0 —1
Su() rep. 3 3 1 1 3 1 1

Anomaly free Embedding

Fermion QI,Z Q3 URm, TRm dRm/ DRmr SRm I—111 NRm eRm
Qx charge 0 1/3 2/3 —-1/3 —-1/3 0 —1
Su(3) rep. 3 3 1 1 3 1 1

Table 5: Quark quantum numbers in different embeddings.

Leptons

The Yukawa sector of the SLH model collects the flavour structure of the
theory. Lepton masses follow from the Yukawa Lagrangian, and are gen-
erated by two types of terms: linear and bilinear in the ® fields. This La-
grangian can be written as:

AT t AT ipiTk
Ly D l)\N NRm(Dsz + Tﬂkmeijkd% (Dan +h.c., (223)
where A is the ultraviolet cut-off of the theory. Here m and n are gen-
eration indices, whereas 1i,j, k are SU(3) indices. Notice that AN has been
taken diagonal. However A, does not need to be aligned in flavor space. Af-
ter spontaneous electroweak symmetry breaking, this Lagrangian yields the
lepton masses and the heavy masses up to O(v?/f%) [26]:
52\ . -
Ly D —fSBAR} [(] — 2V> NrmNim — SVNRm‘VLm]
v (224)
+ &g —=A" " lrmlin +hec,
B \ﬁ A ¢ Rmiln

where

Y V2 V2 3?5 C%

YT, T l] Tar e (c%js%)] o @)

here &, represents the mixing angle between a heavy neutrino and a SM

neutrino of the same generation. Notice that the rotation that diagonalizes

AN does not necessarily diagonalize A¢, meaning that there is a mixing be-

tween the charged leptons and heavy neutrinos mediated by the charged

gauge bosons. Charged leptons mass eigenstates and flavour eigenstates are
related by the rotation:

Um — (Vel),, = V™, (226)
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where V™ is a CKM-like matrix. Furthermore, according to (224) each
heavy neutrino is mixed just with the light neutrino of the same family. To
separate them, we rotate only the left-handed sector. To order O(v?/f?), the
physical states for the neutrinos are given by:

<VL> _ -5 s, (vm>
Ne /. 8y ]—67% Ne

After the Spontaneous Symmetry Breaking, in the mass eigenstates basis, the
matrix Aj"™ is diagonal. The lepton masses up to O(2/f2) are [26]:

(227)

me, = (228)

g, TV
B \/Z/\yei’

where y, is the eigenvalue of the A; matrix, and we rotate in the same way
the SM charged leptons and neutrinos, because in this work we consider
massless SM neutrinos. We note that, in the physical basis, Higgs LFV in-
teractions arise at one loop [28], which makes Higgs-mediated contributions
negligible in the processes under study. Finally, the heavy neutrino masses
are:

mn, = fs[g,)\{‘\] . (229)

For a complete description of the lepton sector it is necessary to calculate
the vertices of a Goldstone boson with a lepton pair. These vertices are
obtained from the lepton kinetic Lagrangian, which can be written as:

LF = 1I)n{ivwll’nu Y= (Lm/ eRmrNRm) . (230)

The covariant derivative was given in eq. (188) with the Qx charges in
Table 5. The vertices of Goldstone bosons and leptons are collected in the
following [26]:

We highlight that the non-chirally suppressed couplings of the heavy neu-
trinos showcase their non-decoupling behaviour, which was stressed before
(see e.g. [17, 18]). To get those couplings it is necessary to use eqgs. (218),
(226) and (227). Some couplings vanish because they would be proportional
to SM neutrino masses, that we neglect.
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SFF gL gr

XN b fﬁwMTan (1-83/2) vt A (1-83/2) v
xUNm Aoy (1-83/2) vime — ﬁ‘SW D (1 —§2/2) Vim
G Nl 5\/% T\T/\lANVLn Em 5y fs 4 TTL‘L
SN SV v “SFV;“ i
xtvil; 0 V;TW n}\;l“;

xLivy Sy \f;SW n,\}& 0

¢ Vil 0 e w (1-83/2)

O v~ (1-83/2) 0

Table 6: Vertices [SFF] = ie (g Pr. + grPr) for the lepton sector.

V. fifm Vertex g{f_ifm g]\{f_ifm
Al 1 1
ts 1 53
W N —&+ ﬁngemi 0
7 2s2,—1 5z(2s3,—1) 5
2t 2CV\A\ZSW Zch%N\W/3—t%,v tw c?, sz—vt%\/
o 1-52 5z(1-2s%)
ZV1V1 Zcwsw ZSWC%N /737“2/‘/ 0
N 5 52
ZNiNi Sw¢§*t6v 2cwsw 0
ZN vy —8y g Vi 0
Xt vl —5y ;SW 0
+N i 82 mi
XNl A= (1-%) v 0
YO\_/i\/l 6V\/§SW 0
ON: N oyt
YON; Ny Sy 0
YOV N S (1-83) vt 0
Sw
YON Vi —82 f; v 0
w
5 0. 25 —1 Sz(] ZS%/V) s
z bk 2chWW 312, Zswew C%A/\/\é%t%v —dztw
o 2s2,—1 (3 t%/v)é%c%/\/ 5
L Vivi 72%%‘;‘/\/@ 1— 252, — Tonkew 0
Z'NiN; ZSWW [2-85 (3—1t5,)] 0
Z'Nomvs B3ty i 0

ZSW

Table 7: Vertices [VMff] = iey" (g1 PL + grPRr) for the lepton sector [26].
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It is possible to find the SM couplings with v2/f2 corrections (in &, and
dz), new couplings of the heavy gauge bosons to leptons, couplings of the
SM gauge bosons to the new heavy neutral leptons and couplings of the
new gauge bosons with the new heavy neutral leptons. Entries of the table
7 were obtained using equations (226) and (227).

Quarks in the Anomaly free Embedding

The Yukawa couplings are found by contracting the fermion fields with
the scalar sets into singlets in all possible ways. For the anomaly free embed-
ding, the basic Yukawa Lagrangian reads [26]:

m
Ly D N ah;01Qs +irtud; Qs + i}\%aRmeijkq)il ®),Qk
_ _ Amn ) . (231)
+iAdrdr, Ql o, +irdndi, Ql o, +iquLRmeijkCD?1CD? Qk,

wheren=1,2;1,j,k =1,2,3 are SU(3) indices; drm = {dr, s, br, Dgr,Sr};
Urm = {ug, cg, tr, Tr}; Uks and uZ; are linear combinations of tg and Tg;
dy; and dy, are linear combinations of dg and D for n = 1 and of sg and

Sg forn =2:

Mcpups +A5spugs —Aspups +Alcpugs

N vy e s e [PV L S e

Dy = MTegdpy +A9'spdg; dg = —AY'spdg; +A{ cpdg, o)
VOrra 087 VO et

Sp = A?ZCBdRzJF)‘z spda  sp = _}‘gzsﬁdRzJFMizCBdRz .
VM) 2+ (A2 2 V(M) 3+ (M) 2

We have obtained heavy states with corresponding large mass and light
orthogonal states which remain massless at this point. In general, A{ can be
taken diagonal and, to avoid large quark flavour changing effects, we also
assume 7\‘21 to be diagonal [15]. Corrections of the order v2 /2 to vertices are
only needed for particles involved in triangle diagrams and, since quarks
only appear in box diagrams, O(v/f) precision is sufficient. Then, before the
SEWSB we obtain the following masses for the heavy quarks:

mT_f\/A + }\t) Sﬁ’
mp —f\/ M2+ (A1) s, (233)

ms =/ (A82)? ¢ + (A42) s2.

After the SEWSB, the quark mass terms work out as follows to leading
order [26]:
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2 2
spep [T -]y AAL ]
Lmassj mTTRTL‘F\f ~ ) — RtL_ﬁ = 2 zth]_
\/ (A})7cg +(AY) " s3 \/(7‘1) g+ (A5) 55
2 da1 2
] v spes [T = ()] v AdTAG] ]
—mpDgrD — — Drdr + — de]_
V2 (A1) 3+ (A1) 53 V2 e+ (1)’
2 2
v se )-8 AI27g2 ]
—mgSrS — — 5 5 Sgsy + — 5 SRSL
VORI 04)s VI 08 e+ (85
LV g 0 VA b s he
\ﬁ/\u RmULn \/Z/\b RmUL -C. ( )
234

In general, the couplings A" and A['™ generate a misalignment between
the up and down sectors in the mass basis, causing the CKM matrix to
appear, these couplings also provoke a misalighement between heavy and
SM quarks, but since in this work we are interested in LFV, we will assume
no flavour mixing in the quark sector for simplicity, so we demand A{' =
A = 0 for all the couplings that mix different families or heavy and light
quarks. SEWSB also induces mixing between heavy left-handed quarks and
the SM quarks, mixing that we keep. We rotate the left-handed fields to
obtain the physical quarks states [26]:

T — Tp 4+ 6+¢tr,
tr =t —0¢Tp,
Dp — Dp 4 64dt,
di — dp —64D¢,
St — St +dss1,

(235)

SL—>S]_—655L,
where
2 2
v secp [(AY) —w)}
V2P (M) R+ (A5)7s

v S8Cp [(»ﬂ) —<~”>2}
V2f ()\d1) +(}\d1) 2’
[
)’

t =

5qg = — (236)

5B
v SBCB 7\?’2 7\d2)2]

VZE (AM2)% el + (A§2)% 53

are complex in general. Taking all this into account we get the SM quark
masses:
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mg = —

mg — —

vf

7\11,
CV2A
vf
_ )\22,
VA
vf
=—— A3,
ﬁ/\
7\t)\t
, (237)
\f\/ A% ed + (A
Ad])\dl
2 V4
% 2. /(173 + (A1) 53
_ v Af2AS2
2 2
VIV e+ 047) 5

Like for the lepton sector we need the quark-gauge Lagrangian to com-
plete the review of the quark couplings. In the anomaly free embedding we

have:

Ly = leD;Qm + 11RnliwuuRnl + aRmiwddRm

+ TR:quTR + DRiwdDR + SRiwdSR.

(238)

Remembering that the first two families are in the anti-fundamental repre-

sentation:

D12, = O +19ALTS,

. igx x
DY, = 0, —igA{Ta + “2*B}

2igx (239)
Dii = 0w+ =57B,

ig
D =0y — 3 BL.

With this information and redefining the Goldstone fields as given in (218),
we can obtain the relevant quark-Goldstone boson couplings™ for our pro-
cesses, which are given in table 8 [26]:

We found a few typos in these Feynman rules given in the work [26].
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SFF gL gr
— 1 7MDm 1 My
X Dmlm Mx Vasw Mx Vasw
_3 s Mg
X dmum 0 dm My \/ESW
s i ’\/lDm _oKx iTnum
d) Dmum 5d‘“ﬁsw Mw dm Mw V2sw
Cb_a U _imdm 1 iy,

m=m Mw \/zSW Mw \/ZSW

(a) First and second family, where uym, = u,c
and dm (Dm) =d,s(D,S).

71

SFF gL gr

+7 _My_1 mp 1
XTTO N Vrew Mx Vasw

4T * Mp 1
x"tb 0 t My Vs

+T i Mt * imyp 1
dTTb ¢ 25w M 8% My Vasw

+T _ imt 1 _imb 1
O My Visw Mw Visw

(b) Third family.

Table 8: Vertices [SFF] = ie (gL Pr + grPr) for the quark sector in the anomaly-free

embedding entering in our calculation.

We remind that all quark flavor changing vertices were removed, so there
is no CKM-like matrix. For the anomaly-free embedding the vector-quark
interactions are given in table 9 [26]:

VFF gL gr
- 2 2
YUmUm -3 -3
3 1 1
Ydmdm 3 3
— 1 * 1
W=D um dm Vasw 0
— 3 1
W-dmum e 0
— 40\2/\/71 2SW
Zumum 6CWSW _3CW
= —1-2c%, Sw
dedm 6CWSW 3CW
X" Dmum _\/Zisw 0
—3 * i
X dmum d1n \/ZSW O
3—t2 —2t3
Z'tu w W
mem 6sw 3swy/3—t3,
Z'dmd 3ty By
m-Ym
osw 3swr/3—t3,

(a) First and second family, where uy, = u,c
and dm(Dm) =d,s(D,S).

VFF gL gr
vit -3 -3
vbb %
WHTb -6 ¢z15 0
w
Wtib 0
V2
Z— 4(:\2/\/8‘—/\/] ZSW
tt 6CWSW _3CW
- —1-2¢3
b s 3ew
X*Tb  —— 0
w
Xttb 8= 0
V2
7%t fsft%,svw —2t%,
6swy/3—t3,  3swy/3-t3,
I —3—t}, t2,
Z'vb

6sw/ 3—’(%\/

(b) Third family.

Table 9: Vertices [VHFF] = iey* (g1 PL + grPRr) for the quark sector in the Anomaly-
free embedding.

Quarks in the Universal Embedding

The situation is similar in the universal embedding although the Yukawa
Lagrangian is different:



72 | BACKGROUND

)\m
Lmass ) 17\unuan) Qn + lxunuRn(Dan + lT dRmeljk(D (D Qn +h.c.
(240)
Here m,n = 1,2,3 are generation indices and 1,j,k = 1,2,3 are SU(3)
indices; d, runs over the down quarks (d, s, b) and ul{z are linear combina-
tions of the orthogonal light and heavy up quarks states:

Aun Aun 2

1
cBuRn + 2 sﬁuRn

Jrm?Zed + (s

uRn =

(241)

URn = > 2 2, .
VO e+ 4m)° 53
Analogously to the anomaly free case, A}* can be made diagonal by a field

redefinition and A} is also taken diagonal to avoid large quark flavor effects.
The mass terms are [26]:

2 2
spep [(A4)7 — (Agm
eps 5y ) e+ ) sl + e L)~ O

e - g7

v N vf s
URnULn + W)\R dridy; + h.c.

VIV e+ () s

unjun
)\1 )\2

(242)

We have neglected terms proportional to v2/f2. We will again ignore all

generation mixing terms. This means setting 7\? = AL5i;. The only mixing

effect in which we are interested corresponds to terms involving the light

and heavy up quarks of each generation. The following rotation of the left-
handed fields is required to obtain diagonal mass terms:

uLn — uLn + 6unul_n/

243)
Upn — uLn - 6unLlI_'ru ( 3
where
2 2
v osees [(F)T - (87’ ”
Un = wn) 2 w2 2
V2E () eg + () sp
The quark masses to order v/f are:
2
=f )\un 2 )\un) 2
5B
Mhun = \/> un 2 2 un 2 ' (245)
2,/(w (7\ )22
My vf L

= Ay-
n ﬁ/\d
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The quark-gauge Lagrangian is more symmetric for the universal embed-
ding:

L= QmiDLQm + 11RmimuuRm + aRmiwddRm + 11RmimuuRm (246)

where

DL =9, —igAaTe + “9XpY,

3
2igy
Dl =du+—5-By, (247)
d 1gx
Dif =0~ 5"BY.

The Feynman rules*® for quark-Goldstone couplings to order O(v/f) are
given in table 10 [26]:

SFF gL gr
+17 _Muw 1 Mdy 1
X Umdm Mx Vasw Mx V2sw
4= * Mg 1
X U dm 0 o, M NG
477 i Mum * imdm 1
d)+ﬂ d o imuy, 1 _imdm 1
m=m MW \/ZSW MW \/ZSW

Table 10: Vertices [SFF] = ie (g P + grPr) for the quark sector in the universal
embedding entering our calculations, where um (Un) = u,c, t(W,C,T)
and d,y = d,s,b.

For the universal embedding the vector-quark interactions are given in
table 11 [26]:

29We found differences in these Feynman rules and those given in [26].
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VFF gL gr
_ 2 2
YUmUm 3 3
= 1 1
Ydmdm 3 3
WU, d —5* 0
m4“m Um \/ZSW
+ = 1
W limdm @SW 0
_ 4CW7] 2sw
Zumum 6CWSW _3CW
3 7]72(:\2/\/ Sw
dedm 6CWSW 3CW
X U dm — ﬁiSW 0
X mdm =87, 5 0
_ 3+t2 —2t2
Z'tqu — W W
e 6swr/3—t3,  3swy/3-td,
- 3 t2 t2
Z'dmdm i W

 6swi/3—t,

3sw/ 371‘.%‘/

Table 11: Vertices [VMFF] = iey" (g1 PL + grPRr) for the quark sector in the univer-
sal embedding, where um (Um) =u,c,t(U,C,T) and dm, =d, s, b.



LEPTON FLAVOUR VIOLATION
PROCESSES

We must know. We will know.

— David Hilbert

Although the particle physics is well understood and described by the
Standard Model, there remain many unanswered questions. One example
lies in the lepton sector; in the SM three generations of leptons exist, which
appear in doublets as shown below:

First generation e v
Second generation w v,
Third generation T v«

Table 12: Generations for the lepton sector.

These three families of leptons seem to be an exact replica of one another
(except for the mass), because the weak coupling strengths to the gauge
bosons are the same, within the experimental precision [36]. This property,
rooted in gauge symmetry, is known as Lepton universality. A quantum num-
ber is associated to each lepton called Lepton Flavour, which is different for
each generation: this number is 1 for leptons, —1 for antileptons and 0 oth-
erwise.

Experimentally lepton flavour is a conserved quantity, however within the
SM nothing tells us that lepton flavour needs to be a conserved quantity, so
one can speculate that some global or accidental symmetry is responsible
for the apparent conservation of lepton flavour. In the past, it was assumed
that lepton flavour is a conserved quantity because of the degeneracy of
the neutrino masses, i.e, they are massless. This assumption implies that
there is not a mass matrix that needs to be diagonalized (this constrasts
with the CKM matrix in the quark sector), then by definition, neutrinos
are flavour eigenstates. Currently processes have been found in which the
eigenstates of a certain flavour of the initial neutrinos are different from the
final eigenstates, so, as with the quarks and the CKM matrix, the flavour
eigenstates are not identical to the mass eigenstates because the mass of
the neutrinos is non-zero and there are mixing angles and therefore, the
violation of leptonic flavour is allowed in the sector of neutral leptons.

No processes have been detected in which there is a violation of flavour
in the charged sector, however, due to the aforementioned, it is hoped to see
processes in which the violation of the lepton flavour in the charged sector is
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manifested. The principal motivation to study processes with lepton flavour
violation in the charged sector (cLFV) is that it will be an immediate proof
of physics beyond the SM (and not simply in the form of neutrino masses,
as we will discuss). There are many models of new physics that can lead
o "observable" cLFV introducing new sources of lepton flavour violation,
as well as new operators at the origin of the flavour violating transitions
and decays. A first generic approach (independent of the model) consists
in describing the interactions with cLFV using higher-dimensional operators
(d > 4), so the new low-energy effective Lagrangian can be written as:

4+n
Leff LSM + Z O4+TL, (248)

n>1

in which A denotes the scale of new physics and €, O the effective cou-
plings and operators, with the former corresponding to complex matrices
in flavour space, but there exist a large number of dimension six opera-
tors, whose low-energy effects include cLFV. Regarding the cLFV dimension-
six operators, these can be loosely classified as dipole, four-fermion and
scalar/vector operators. A second phenomenological approach consists in
considering specific new physics models or theories, some examples are:
supersymmetric (SUSY) extensions of the SM, little(st) Higgs models, extra-
dimensional models, among others.

In minimal extensions of the Standard Model (that includes right handed
neutrinos allowing for small neutrino Dirac masses), a loop is induced at
electroweak energy scales that allows decays with flavour violation, the
branching ratio of these processes are not possible to measure, for example
for a decay of the type {, — {gy we have [34, 35, 121]:

2

Bl — Lpy) = <1074, (249)

Zu uﬁl

where AmZ, are the differences among the neutrino squared masses, My
is the mass of the W boson and Uy; are the elements of the neutrino mixing
matrix, this branching ratio is outside the experimental limit by many orders
of magnitude (more than forty). In the following decade, better precision is
expected in branching ratios where flavour violation is allowed which could
eventually unveil physics beyond the SM.

W

3.1 FLAVOR VIOLATION IN CHARGED LEPTONIC PRO-
CESSES

As it was mentioned already cLFV is a clear signal of new physics and
its search has continued from the early 1940’s. The most important searches
have used the muon state because of the high statistics available in muon
beams.



3.1 FLAVOR VIOLATION IN CHARGED LEPTONIC PROCESSES \

The experimental observation of cLFV is the goal of a bunch of excel-
lent dedicated experiments like, for instance, MEG [37], SINDRUM [38] and
Mu3ze [45] in the search of muon decays, and those looking for muon conver-
sion in the presence of nuclei, SINDRUM II [39], Muze [44] or COMET [46],
PRISM/PRIME [43]. The first generation of B-factories, (that stand for T fac-
tories too) like BaBar [40] or Belle [41], have joined in the pursuit of cLFV
decays coming from the T lepton. The study of LFV in decays of the tau lep-
ton are also one of the main goals of the future SuperKEKB/Belle II project
at KEK in Japan [48].

3.1.1  Experimental situation of the processes p — ey, p — 3eand p—e
conversion

The first search for the process p — ey, was performed by Hincks and
Pontecorvo [122], now MEG II at Paul Scherrer Institute searches for the
ut — ety decay with a design sensitivity of 6 x 10714 [42]. There are two
major backgrounds: one is a prompt background from radiative muon decay
nt — et vev,y. The other background is an accidental coincidence of a e
in a normal p-decay. The current limits for LFV processes in muons are:

Process Current Limit

BR (u—ey) 42x107"3 [123]
BR (n — eee) 1x10712 [38]

Table 13: Expected 90% CL upper limits on LFV decays with muons.

The decay 1 — 3e is of great interest; it is sensitive to supersymmetry, Lit-
tle Higgs scenarios, leptoquarks, and other new physics models. This mode
has been examined in Littlest Higgs scenarios [124] and in the Simplest Little
Higgs model(SLH) [26]. The Mu3e experiment [45] in under construction at
Paul Scherrer Institut and aims at reaching a 10~'¢ sensitivity in two succes-
sive phases and improving the former result by 3 orders of magnitude.

Another process that has close relation with 1 — ey is the coherent p—e
conversion’, in these processes negative muons are captured in a target of
atomic nuclei to form muonic atoms. The muon then converts into an elec-
tron in the nuclear field without creating a neutrino. The present sensitivities
of the 1 — e conversion rates in different nuclei are collected here [39]:

'Coherent conversion is the process ut~N — e~ N in which the nucleus N remains in its
initial state.
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Process current sensitivity

BR (L —e:Au) <7x10713
BR (i — e: Ti) <43x10712
BR (i — e: Pb) <46x101

Table 14: Current bounds at 90% on the branching ratios for various targets in p—e
conversion.

We see that the strongest limit is set by the gold target. In the future
PRISM/PRIME collaboration is expected to improve the bounds on uN —
eN by several orders of magnitude.

In the minimal SM with massless neutrinos, lepton flavour is conserved
separately for each generation. This is not necessarily true if new particles
or new interactions beyond the SM are introduced. In SUSY models, the
origin of LFV could be interactions at a very high energy scale, or the mass
scale of a heavy right handed Majorana neutrino that appears in the see-
saw mechanism. The effective Lagrangians for muon LFV process can be
grouped into two types: photonic and four-fermion interactions [125]. The
effective Lagrangian for p* — e*tvy is given by:

AGr

Lpﬁey = \/z

where Ag and A[ are coupling constants that correspond to p* — e}y
and ut — ey processes, respectively. For the p* — etete™ decay and
- —e conversion, off-shell photon emission also contributes, the general
photonic amplitude is:

(muARrArOver F*Y + myALfipo*VerFuy +hc),  (250)

Lo * = 2 2 uv_qvqu
Mphotonlc— eAu(q)ue(pe)[(fEO(q )+'Y5fMO(q ))YV g qz

T (02 +vsfer () 229 10 b))

My
(251)
The electromagnetic form factors fgo, fe1, fmo, fm1 are functions of mo-
mentum transfer. The general four fermion couplings could introduce p* —

etete™ decay and p~ — e~ conversion, and are given by the interactions:

_ Gr _ _ o _ _
Eﬁiﬁeph"t" = _ﬁ (91 firer €rer + g2fir erEL R + g3ARY  ERERY LER

+ gafiryreréryper + gsiry"eréryper + gefir v eréryper
+ h.c.).

(252)
For the p=~ — e~ conversion process, the relevant interactions are written
as:
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_ph Gr 5 e d
LponTphote = —\ﬁzq:u,d,s [ (9Ls(q)BLHR + GRS (q)ERHL) G4

gLP(q)CLHR + QRP(q)éRHL) qvsq
ILv(q)ELY HL + 9RV(q)ERYMUR) AV (253)
ILA(q)ELYMHL + 9RA(q)ERYHHR) GY Y54

_— N N /N

+
_|_
_|_
+

7 (9LT(q)BLO™"V R + gRT(q)EROMV L) GOy +h-C-}-

Here, the flavor-changing quark currents are not included and the four
fermion coupling constants g, depend on the model beyond the SM [126,

127].

3.1.2 Flavor Violation in the Tau physics

The EW interactions of the SM has been successfully tested with a very
high accuracy, however the physics of the tau lepton is very important for
studying strong interactions effects at low energies [128], because the T is the
only lepton that can decay into hadrons and with its semileptonic decays we
can study the hadronic weak currents.

Actually the B factories have explored LFV T decays, the reason is that
its decays provide a great variety of opportunities to probe new interactions
and new sources of CP violation and these processes are theoretically clean
compared to charm and bottom decay processes. There are three important
physical observables potentially sensitive to new physics effects in charged
lepton processes, namely the anomalous magnetic moment (g —2), the EDM,
and cLFV, the main goal of this work is studying the cLFV processes. An
important feature of Tt cLFV searches is the range of processes that can be
studied. If we compare to the p cLFV case where u* — ety, pt — etete™
and p — e conversion in a nuclei are the three major processes, there are
many possible T cLFV decay modes in which searches can be carried out at
B factories. For example, there are six different flavor combinations in T to
three-charged-lepton decay processes, to be compared in the muon case to
only ut — etete™, and there are many cLFV t decay modes with hadrons
in the final state that have been searched for experimentally [36]:
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Process Present Bound
BR (T — ey) 33x10°8
BR (T — puy) 44 %108
BR (T — eee) 2.7 %1078
BR (Tt — puu) 21 %1078

BR (t- — e ptu) 2.7 x 1078
BR (T~ — pu ete) 1.8x 1078
BR (T~ —efp ) 1.7 x10~8
BR (T~ = utee) 1.5%x10°8

Table 15: Current experimental bounds for several LFV observables of interest at
20% CL.

With 50 ab~! of data, the Belle II experiment is expected to be able to
probe LFV in T decays at the level of 10~7.The expected sensitivities for
some processes in the Belle II experiment [48] are shown in Table 16:

Process 5ab! 50 ab~!

BR(tT—py) 10x1077 3x1077
BR (T — pup) 3x1077 1x1077
BR(T—un) 5x1077 2x10°7

Table 16: Expected 90% CL upper limits on T — py, T — ppp, and T — un with
5ab~! and 50ab~! data sets from Belle IT and Super KEKB.

In the case of the u — e nuclei conversion the experiments are performed
at low energy and the muon becomes bounded before decaying in orbit or
being captured by the nucleus. The experiments with T leptons are different,
for the u — T conversion is expected to occur by deep inelastic scattering of
the lepton off the nucleus, thus these experiments are based on a fixed-target
nucleus hit by an incoming lepton beam of a given flavour {. There are still
no experimental limits for this phenomenon, but its feasibility at NA64 has
been pointed out in ref. [52]:

RE—T)~T10713 —10712, (254)

It is expected that future fixed target experiments like the muon collider [53]
or the electron-ion collider (EIC) [54, 55] could consider to look for this con-
version.
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3.2 LEPTON FLAVOUR VIOLATING DECAYS IN THE SIM-
PLEST LITTLE HIGGS MODEL?

The SLH model extends the SM group, SU(2)r x U(1)y, to a gauge group
SU(3)r x U(1)x, that requires to enlarge the SU(2) doublets of the SM into
SU(3) triplets, adding also other SU(3) gauge bosons. Then the SU(3)r x
U(1)x gauge symmetry breaks down spontaneously to the SM EW group by
two complex scalar fields @ ,, triplets under SU(3).

LFV decays in the SLH model arise at one loop level and they are driven
by the presence of the heavy neutrinos Nj in connivance with the rotation of
light lepton fields Vg ). There are two generic topologies participating in this
amplitude:

o Penguin diagrams, namely { — {{y, Z,Z’}, followed by {y,Z,Z'} —
Laly,

¢ Box diagrams.

In principle there should be also a penguin contribution with a Higgs boson
¢ — {xH, however the coupling of the Higgs to the light fermions H —
€.{4, has an intrinsic suppression due to the small mass of the fermions and,
therefore, we do not take this into account. As there is no contribution from
the SLH model to our processes at tree level, the calculation, at one loop, has
to be finite. In the following;:

o Up) = be(pr) +...

e We calculate our amplitudes as an expansion, until the second order
of the parameter: v/f,

[ ] pz :m%’

2 _ 2
° py=mg =0.

In the Unitary Gauge only physical states appear in the calculation. The
price to pay is that we have to use the unitary propagator for the gauge
vector bosons and the calculation looks more divergent. However the best
strategy is to use the 't Hooft-Feynman gauge for easier divergence cancella-
tion.

3.3 GENERAL STRUCTURE OF THE LFV PROCESSES

The contributions of the SM to the LFV processes { — oy and { — {04 {p
are negligible for they are proportional to the observed neutrino masses [33,
34, 35, 129], nevertheless the new Little Higgs contributions can be a priori

*the material in the rest of this chapter and the next ones is based on our pa-
per [ramirez:2022zpk].
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large. The effective LFV V| {{ vertex with V,, =y, Z, Z' is sketched in figure
12.

La
Figure 12: Effective LFV vertex, where V,, =v,Z,Z’.

The most general structure for on-shell fermions can be written as :

irt(p,p1) =ie [v“ (FYPL+FEPR) — (iFN + FYys) o*VQy
(255)
+ (iFY +Fpys) Q”] ,

where Q = p —p; is the vector boson momentum. Three body lepton
decays ¢ — U Lo by receive contributions from penguin and box diagrams as
we show in figure 13.

f, fa

Figure 13: Generic penguin and box diagrams for £ — £ {q .

There are seven possible decays:

(@) T = pup T,
(b) T —p e,
(© T —epuput,
(d T —e e uh,
() T —u e et
) T —e e e,

(g) u —eeet.

We divide them into three categories according to the leptonic flavours
in the final state: Category (i) comprises all the decays where { = {4 =
lp (i.e. the decays (a), (f) and (g)), this kind of decays receive the name
of same-flavors decays. Category (ii) contains all the decays where either
b # lp and €y = lp, or € = {p and €y # {p (i.e. the decays (c) and (e)),
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this category is known as same-sign decays. And lastly, all the decays with
final leptons having & # v, {4 # {p belong to the category (iii) (i.e. the
decays (b) and (d)), the so-called wrong-sign decays. Finally, we studied the
{N — €4 N conversion processes ({ = u, e, {4 = T,e) whose form factors look
very similar to the same flavors category decays.

3.3.1 L — vl decays

The amplitude { — (.Y is proportional to the vertex in figure 12, however
as shown in refs. [17, 130] the form factors F?_//R = 0 when V is an on-shell
photon. The scalar and pseudoscalar form factors F;/’P do not contribute for
real V and are negligible for virtual V in the processes under study. Neglect-
ing mg, < my the total width for { — {47y is given by:

3
M€= tay) = 55 (IFf* + [FY[). (256)

The branching ratio is obtained dividing by the SM decay width which, at
leading order, is:

2.5
Ggmy, Xy

I (E) — ei\/]’\_/i) = 1073/ F=—F/7—]5,
1927t ﬂ]\/[%v

(257)
o —
%% S\Z/V .

In the case of T decays the SM branching ratio must be multiplyied by ~
0.17 to take into account both lepton Michel and hadron decay channels. For
these calculations we have approximated all the integrations until O (v?/f?)
and then neglected the ratios:

=0. (258)

Figure 14: Feynman diagrams for { — y{q
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We can classify the contributions to { — {,y into two types of topolo-
gies (see figure 14): loop diagrams with heavy X gauge bosons and with W
bosons (with corresponding Goldstone bosons x and ¢, equivalent to their
longitudinal polarizations). Since only dipole form factors contribute to this
process, we have:

Fy = FKA{X"‘F ’W’

(259)
Ff = Fg‘x +FE’W'
Defining the mass ratios:
M3, M2,
Xi=—1t~0(1), w= ~ 0 (v2/f2), (260)
M M2

we find the following contribution to the dipole form factors for the X-
mediated diagrams [26]:
: aw m s
Flx = =1 x = Te M§ (1-82) 3 VE¥VItEy (xg),  (261)
i

where

- ~ _ _ 3.
Fx(x) = M% [za —3Ci1—x (Co +3Cy + zcnﬂ
6
_§_3x—15x2—6x3+ 3x? loglx] (262)
T6  1200—x)3 " 2(1—x)F o8
These contributions are equal to those of the SM with massive neutrinos,
replacing X — W, N; — v; and Vim 5 Vpamns. For tiny neutrino masses,

Xi = m%,i/MW <1,

Fu(x) — % — } +O(x32) (263)

and we recover a well known result [34, 35, 121] bounded by neutrino
oscillation experiments:

2
Amﬂ

B(h— ey)s Z VERins VN ot Ve <1074 (264)
i=2,3

Expressions for the loop functions are collected in Appendix A and take
the value with Q? = 0 for an on-shell photon. For the W-based diagrams,

we obtain [26]:

& m 'L* 1
Rty ==l = jgop, 8 2 VOV Fw ba/e), - G6s)

with

- - _ 3.
Fw(x) = Mjy (—2C1 +3C11) + M{, <co+c1 —zcn>, (266)
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that we rewrite as:

to keep leading order terms at O(v2/f2). The first term of the form factor
in (267) is already of order O(v?/f?), so when multiplied by &2 the result
becomes order O(v*/f*), which we neglect. Then, this contribution to the
form factor is:

- - R
Fw (x) = xMk (co +Ci — zcn>

268
_x(8x2+5x—7)+x2(3x—2)10 . (268)
T 1200—x)p 201 —x)F o8
in agreement with ref. [26]. The whole dipole form factors are thus:
2
oy Sw My Laixy it | VY 2
F?\//l = —'LFE = EMi\ZN ;VZ t V}f |:2f2FX (Xi) + 6VFW (Xi_/(l)) . (269)

3.32 {— Lal.l, decays

The contributions to the transition amplitude of the LFV three body decays
can be summarized as [26]:

M= Mypenguin =+ MZ‘penguin + MZ’penguin + Mpoxes - (270)

We define the amplitudes and form factors as:
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2
e . v
Mypenguin =@a(p1) [Q*y™ (ATPL+ AFPR) + meic"VQy (ASPL + A5PR)] ulp)

x w(p2)yuv(ps) — (p1 < p2),

e2

Mzpenguin Zwﬂ(m ) by (FLPL + FrPr)Iu(p)t(p2) [yp (ZFPL + ZRPr)Iv(p3)
z

—(p1 < p2),
62 ’ ’
Mzrpenguin ZM%,ﬂ(m ) [y (FLPL + FrPr)] u(p)a(p2) [Yu <ZLaPL + ZRaPR>] v(p3)
—(p1 < p2),
Mooxes =€*BF [a(p1)y*Pru(p)] [@lp2)yuPLv(ps)]
+e?BY [w(p1)y*Pru(p)] [lp2)y . Prv(p3)]
+e? BY{[a(p1 )y*Prulp)]l [w(p2)y, Prv(ps)] — (p1  p2)}
+e?BY{[a(p1)v*Prulp)] [(p2)vuPLv(ps)]l — (p1 < p2)}
+e?BE{[a(pr)Pru(p)] [(p2)PLv(ps)l — (p1  p2)}
+e?BE{[T(p1)Pru(p)] [(p2)Prv(p3)] — (p1 4 P2)}
+e?BE{[Tu(p1) o™ PLu(p)] [@(p2) oy PLv(ps)] — (p1 ¢ p2)}
+e?BR{[t(p1)o*YPru(p)] [a(p2) 0wy Prv(p3)] — (p1 <> P2)},
(271)
where
Ay =— (FY +1iFY) /m¢ A =— (FY, —iFY) /my
AT =H/Q? AY =Fp/Q°
FL =—F¢ Fr = —F& (272)
F{ = —F¢ Ff = —F%.

We can use egs. (271) to obtain the partial decay width for the same flavors
decays [26]:
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2
M0 lalaly) = oon

AT + |AR)? =2 (ATAR + ATATR £ hee)

(sl + A8 (Fros || - 5) +%< 'y @W%(%
+ 35 (1B [B5) +6 (|8 + B ) -3 RBX 4+ h.c)

ATBT + ARBR* + ATBE + ARBY* +hee)

Byl

*+[85[)

_l’_

N?U

+AEBR* + ASBR* + ARBL* 4 hec.

w\—‘W\NW\—‘N

/—HAA
N

(\m\ + [Fre|?) +[Fuel* + [Fec |
Fip +BRFap + BSFi g + BYFR +he) +2 (AYF L + ARFig +hec)
ATFig +ARFR +he) —4 (ARFf + ASFRg +hee)

+ o+ o+

—~~
>
‘—"l_'

—2(AjFRp +AS R+hc)}

(273)
where

FLZg FRZ8 (274)

Some box form factors have been redefined to include the contributions
from the Z’ penguins:

BF — BY =BL+2F],
BX — BY = BY + 2Ffg,

BY — BY =BL +F{g, (75)
BY = BXY =BX +F},
with
Fio = F/LZZILQ/ Frr = F{QZZ%QI
M2, M2,
; (276)

- _Fzg e RZ®
LR Mz s RL MZZ/

In our case many of the form factors vanish. The relevant penguin dia-
grams are listed in figure 15.

PHOTON PENGUINS

The dipole form factors are the same as in the { — £,y case and for those
terms we can set Q2 = 0, since Q? is small in these processes. The form
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factors F g are linear in Q? and we neglect terms of order m% /M?, which
means that Fr =~ 0. The contribution of diagrams with X bosons is:

X . .
Flix = 5 (1-83) ) VEViGx(xy),

47t - (277)
1
where
1 = — | P =
Gx(x) = —5 +B1+6Co0 +x | 5B1+ Coo —MxCo
_ 1—
-Q? (za +2C11> (278)
2 2
:AX+SL§(G“ (x)+0 (S{“)
where (AW is defined analogously below)
2 M%
AX == —yg +1og(4m) —log <2X>
e W
(279)

MZ
-8 —os (3

diverges in four dimensions.
The terms that are not proportional to Q? are cancelled by GIM mecha-
nism, therefore the contribution to the form factor is [26]:

2 4
Gx (%) :TS[ZG“ (x)+0 (]8[4> , (280)
X

5 x(124x—7x%)  x*(12—10x 4+ x?)

(9 1

Ox == =g 120 okl (8D
Then, the contributions of the X-diagrams is:

|y = aw Q° (1-383) Z Vi VG (xi) - (282)
LiIxX — 4 MZ
The W-based diagrams contribute with [26]4:
Xw (2 Cqixy /il
1
where
1 2 1
Gw(x):z B1—6C00+M2 Coo-l—zB-i-M Co

(284)

2 2
_—AW+A%VG(”( )+o<§4 ) ,

41t is important to note that in this work we found a discrepancy in the contribution of
the W boson based diagrams and the paper [26].
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(1) __1_x(—2+7x—11x2) x4 g
Gw (¥) =—¢ 20— a2 —xt sk (285)
that is:
Loix
Flw = Mz 6ZZV Vi‘Gy (xi/w). (286)

z7

N, ¢ N, ¢
Z Vin z Y S,
Vi !
I I
¢

Vi Sy _at
.

w,.z.Z’dei:E; 'hZ-Z"VV\F:A E
7 .

Vi 0 Sm A,

Figure 15: Relevant triangle and self-energy diagrams for { — {, (¥}, decays, where
Vin =X, Wand S, =x, d.

Z PENGUINS

In this case there are three pieces: two of them involve only heavy neutri-
nos in the loop (F£ |y, F£ |y, ), and the third contains one heavy and one light
neutrino (F% ‘hl), with either gauge boson,

FE =FE | + FElw + FEl e (287)

Again we neglect m% /M? terms. The Z dipole form factors F%A,E (which
are chirality flipping) can be neglected as compared to F£. The X-based
diagrams result in [26]°:

z tairyit | Swdz ) 2 )
F]_|X 47_[ CWSWZV \'4 [\/ﬁl (Xl)+6VHX(Xl) ’ (288)
where
6x — x?2 8x
Ix(x) = + log[x],
X =509 a2 o8 (280)
X
Hx(x) = 7 + 20 —x) log[x]

5in this work we found differences in the terms Ix(x) and Hx(x) with respect to the
published work [26].
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The W boson diagrams give the following contribution [26]°:

2 42
s aw 52 Cainsil 5 , 2+ (1T =ty)tg)
Frlw = chzw ; Viervt [— cwHw (xi/w) + 8% 3 Iw (xi/w)
2 (1—2s2,)%t362
Sw w/) g%y
+ <—2 + 8C¢V RW(Xi/w)] ’
(290)
where (the Ry contribution turns out to be negligible)
1 5x 5x2
H =- 1
wi) =g+ 30— T ap—xz 108
2x% +3x x?
Iw(x) =— 0 (%2 log[x], (291)
2
X X
Rw(x) = + 5 log[x].

40—%) " 2(1—x)

Diagrams where the Z couples one heavy to one light neutrino contribute
with [26]:

x 85 il A A
FEl = G = ZVEE VI [Coo(Miy, 05 xi/w) — Coo(ME, 05%:)]
T swew (202)
o 52 .
= e LV VI Hz (i /w) — Hz ()l
T SwCw
where”:
x log[x]
H = —92
Z' PENGUINS
Here we have two contributions:
FE = FE Ix + FE T, (204)

there is no piece analogous to Fﬂhl since the Z’ has an additional v?/f?
suppression from its propagator that makes those terms subleading. The
form factors read [26]°:

z. _ 9w | Lainy /il )
FI_ ‘X - ;V t Vl IX(Xl)z (295)

an sW\/S—t%V

6In this part, we found that the factor —c,z,v that multiplies to Hyy was omitted in [26].
7Here we found a difference by a factor of 2 with respect to [26].
8Here we found again the same term R,, that was omitted in [26].
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’ [0 6 62 *
F% lw = (;7/\_[/\/722\/8“ vit Tw(xi/w)
3—t i
(296)

P20 w],
Cw

where Ix, Iw and Ry, are defined in equation (289) and (291). We note
that the pieces with a (1 —2s?,) prefactor are numerically suppressed and
can be neglected.

BOX DIAGRAMS

Only W and X particles can be involved in the loop (see figure 16). Crossed
diagrams, not shown in the figure, contribute a factor 2 due to Fierz iden-
tities [131]. In the limit of zero external momenta (all internal masses are
much larger than the muon or tau mass) all of them have the same form
(being proportional to a scalar integral over the internal momentum).

Neglecting m¢/M, we have contributions only to the B} form factor, di-
vided in three terms:

B} =B"[x + B lw + B lwx, (297)

where (only the numerically relevant terms below were quoted in ref. [26],
as it happens in other box contributions)?: :

oaw 5 2XiX;
Bilw = > —-—5 Y Xij do(xi/w,x;/w) + ]dO(Xi/erj/w)],
8m sW 7\/12 Z ( ) 2
(298)
oow (1—282) XiXi\ ~
BHX = Q 5\2/\/ M%( ZXU ( : J) dO(XiIXj) —ZXindo(Xi/Xj) ’
ij
(299)
x 6
Bllwx = W quxlxj [ do(w,xi,%j) — 2do(w,xi,xj)], (300)
and

Xij = Vzui*viqvjfa'z (301)

encodes all flavor mixing.

9In this case, the first and third contribution to BHW are numerically irrelevant in the
form factor.
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! — U
1 N

llv +1
1

/_’_\

X
/_’_\

Figure 16: Relevant box diagrams for { — ££q{, decays.

3.3.3 {— 4lylq decays

Now, we analyse the same-sign category, i.e. the decays of the form {(p) —
U (P1)€a(p2)la(p3). We note that in this case the amplitude has no crossed
penguin diagrams contributions due to swapping { and {, because it will
be a two-loop process. Therefore, the amplitude for the same-sign decays has
no p1 > pz term in eqgs. (271). However, for the box amplitudes there are
additional diagrams for swapping ¢y and {,. Furthermore, now there is no
symmetry factor of 1/2 in the phase space integration because all three final
leptons are distinguishable. The final decay width can be written as [20]:

2.5
M€ btala) = 520 [2 (JAF? + AR [?) =4 (AFASR + ASAT® +hc)

#4 (JASP +|ASP) (4105 | 2] <7 [Pl + [P+ el + el

(Bt Bra [+ [Bual? + [Bral” +  (|Bus| + [Brs|”) +12 ([Bual” + Bral?)
+ (AR L+ ARFRg + ALF R + ARFRL +he) — 2 (AR + ASFRg + ARFr g + ASFR L +hee)
+ (ATBT* + ARBR* + ATBE* + ARBR* + hic.) — 2 (ASBT* + ASBY* + ASBR* + ARBY* +hic)
+ (FLL]?HL* + FRRE$* + FLRBIZ‘* + FRLBZR* +h.C.) ],
(302)
with the same simplifying definitions as in eqgs. (274) and (276), however

the redefinitions of the box form factors are almost the same that in the egs.
(275) but, in this case we use:

By — By =By +Fi,
BY — BY =B + Fig,
L 8L _ pl , ¢/ (303)
BZ — BZ == BZ +FLR’

BY — BY = BX +Ff,.
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As in the example above many of the form factors are zero so the decay
width will be simplified. These decays receive contributions from the pen-
guin diagrams in figure 15. We take the following approximations:

2 2 2 2
My My _mfk _ My

ML M, M% My,

=0, (304)

which means that the form factor in equations (277)-(296) are the same in
this category, also the dipole form factors are the same. On the other hand
the contributions from four-point form factors can be written in the generic
form [20]:

B 0 laly
Fa4 ZX KateFy (Mg, Mg, --4) (305)

where we have defined the flavor mixing coefficients:
Xffk( ala kai*vi€|vjea|2 + Vfai*vifvekj*vjfa’ (306)

and the second term exchanges {x and {,. Thus, the box form factors™
contributing in this category are represented in figure 16:

oow (1 —282 XiXi\ ~
Bilx = %:[(S%VM%) fjwaea (1 + l4)> do(xi, %) — 2xix4 do(xi,xj)],
D)
(307)
—0‘7"‘/& 1 L Lol XiX; inxj ' '
Thw = Tom s2, M2, &= Xii (]+4w )do(xl/w Xj/w) + ) do(xi/w,xj/w)|,
ij
(308)
1.
BHWX 167’[5 MZ ZXMk(’, (’.axlx]’ lzdo(w,xi,x]-) —Zdo(w,xi,x]-)] .
w

(309)

Another difference between these box form factors and those given in the

equations (298)-(300) is that here we do not have crossed diagrams, so no
factor of 2 comes from the Fierz identities.

334 {— Lalylp decays

In the category of wrong-sign decays we have the double flavor violating
three-body process: {(p) — La(p1)la(p2)lb(p3), in this case the amplitude
does not receive contributions from the three-point form factors'?, the box

°Tt is important to note that all the footnotes given in the decays of category same-flavors
are the same in the case of the decays in the category same-sign.
" Contributions of Z, Z' and y penguin diagrams start at 2 loops.
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contributions on the other hand are the same that in same flavors category.
The total decay width is [20]:

M (¢ Lalaly) = 192 [\BL\ +[BY|*+2 (|BE[* + [BE[*) + (\Bg\z +[B5[%)

(\BH +|BY| ) 3 (BYB;L +BEB;R +he) ]

(310)

as in the previous cases, many of the form factors are zero. These kind of
processes can receive contributions from box diagrams that conserve lepton
number (LNC) like in figure 16 and diagrams with explicit lepton number
violation (LNV), but in our setting we cannot construct box diagrams with
LNV vertices because we lack Majorana particles for these contributions. The
relevant box form factors are almost the same that in the equations (298)-
(300) but the flavor mixing coefficient now differs:

xatato — ylabryilylajryils (311)

Then, the box form factors are:

x 54 i\ 3 2%iX;
BHW Siwii X” alaly ( 47;) dO(Xi/wlxj/w) + 12) do(Xi/(,U,x]-/w)],
T sy Miy 5 w w
(312)
(1—282) s
L 00alql
Brbx = 87T sWM2 Z ’ < l4]) dO(Xi/XJ’)_zxixjdo(xi,xj)],
(313)
Bl = o tetetiyx; | 1o, xi,%5) — 2ol %1, x5)
Twx = 87'[ 2 M\Z/V ZX XiX; 2 ol, Xq,Xj) —«do(W,Xq,Xj) |-
i
(314)

In the wrong sign decays there is a mixing of the three families in the flavor
coefficients, unlike in the same flavors and same sign decays where only two
families of leptons are mixing.

3.3.5 W — e conversion in nuclei

As we have already said 1 — e nuclei conversion is similar to p — eeé and
differs only in that the lower part of the diagrams is coupled to quarks. It
does not have crossed penguin and box diagrams because we have a coher-
ent sum of quarks composing the probed nucleus. Also, we do not have

identical particles in the final state. We will write the amplitudes as follows
[26]:
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2
e .
Mypeng = — —Qzaga(m ) [Q*y™ (ATPL +ARPR) +imea™Y Qy (ASPL + ARPR) Jue(p)

X Uq(P2)QqYuvq(p3),
2
e
MZpeng :Wﬂea(Pl ) Iy" (FLPL + FrPRr)I we (p)ﬂq (‘pz)yu (ZEPL + ZEPR) Vq (P3),
Z
2
e
Mzrpeng =3 Wt (P1) [Y* (FLPL + FrPr)] we(p)iq(p2)vu (Z{7PL 4+ ZgPR) vq(p3),
Z/
M’gox :ezB%qﬂfa (P1)y"Prue (‘P)ﬂq (Pz)Y”Pqu (p3)-

(315)
We have already taken into account that the only non-zero form factor is

B! due to the fact that the SLH couplings are primarily left-handed. This
gives for the corresponding conversion width in a nucleus with Z protons
and N neutrons [26]:

4
M(uN — eN) = ch@mq)Rmﬁ‘zz (AT =A%)
z (316)
—(2Z+N)BL, —(Z+2N)Bh,

7

where Z.¢¢ is the nucleus effective charge for the lepton { and F(q) the asso-
ciated form factor. The vertex form factors are as for { — £ € {, and were
given in (2772). We have also defined:

(Zi+Z)F (27 +Zg")F
M2 M2,

pL L
B]q :B1q+ ’ (317)

to include the contributions from the Z’ penguins. In the case of muons
the conversion rate is obtained by dividing by the muon capture rate:

Mp—e)

R= (318)

I—‘c apt

The nuclei we will consider are ﬁgTi and 1737Au, whose relevant parame-
ters are listed in table 17.

Nucleus Z N Zggr F(q) Teapt [GeV]

22T 22 26 176 054 1.7x107'8
79;Au 79 118 335 0.16 8.6x10'8

Table 17: Relevant input parameters for the nuclei under study (see refs. [132, 133]).

Only the box form factors need to be recalculated and these are of course
embedding-dependent. We stress that we neglect any quark mixing effect
for simplicity.
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Figure 17: Relevant box diagrams for {N — {;N conversion, where Vy(Sn) =
X/W(X/ d))/ um(dm) = ulc(d/s) and um(Dm) = u/ C(D/S)

In this approximation, only diagrams with a D quark appear in the anomaly-
free embedding while only diagrams with a U quark are included for the
universal embedding. Diagrams proportional to w and with light quarks ap-
pear in both embeddings but will be found to be a subleading contribution.

In the anomaly-free embedding we obtain [26]"*:

oaw (1—62) N XD, X1\ %
BL,, Ix = 16\;/7\/1WZVEQ1 Vw{ ( +%) do (xi,xp,,) + 2xixp,, do (xi,XD,, )
1
— 4084, |zao (Xi,de)],

X ~ ~
Blunlw = Joe o Mz Zv“al*vw[ Banl? (4+ 72250 ) do (xi/@,xp,, /) —4do (xi/w,Xa,, /)

X
S0 (53, + 812, )do (xi/w,xp,, /@) |,

B o = S (128 15 yeatye [0y (Ba +83,.) xDypxi (do (w,x0,x0,,)
Tum 167 5%\/ M%/V - m dm m i 7 Xis m
_do (CU/Xi/XDm)>
4
+ wdy (84, + 87, ) [4 (do (w,xi,xp,,) — do (w,x4,%q,,)) —Xixp,, do (W, Xi, XD, )] ],
(319)
Bl =0. (320)
In the universal embedding we find [26]:
Blu, =0, (321)

21t is important to remark that, in the form factors, terms related with the light quark
are numerically negligible compared with the others terms, as we have already pointed out.
In the form factor B%u\w, like in the equation (298), the first and third contribution do not
appear, also in B%u\xw contributions proportional to w do not appear in ref. [26], but all
those contributions are numerically irrelevant. This also occurs in the Universal embedding.
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xXw (1
16m SWM2

. XU, X4\ ~
B%dm|x Z Viatryit [ (1 %) do (xi,xu,,) — 2xixu,, do (xi,xu,,)

+ |5um|2d0 (X4, Xy, ) }

x . X -
Bra, Iw = 1g;/ts MZ ZV(}"11 Vit |:|5um|2 ( élliwzl) do (xi/w,xu,,/w)
w

+do (xi/w, xum/w) HRn (2, + 812 )do (xi/w, xu, /) |,

1—
Bia, Ixw = ;xg;/[( MZ ZVW*VW[ vy (5um+5>ﬁm)xumxi<do(w,xi,xum)

do (w,xq,xu,,) )

4
+ wdy (8uy + 8%, ) (do (w, x4, %) — do (w, xi, xu,, ) +xixu,, do (w,xi,xu,,)) }
(322)
with
XD, =Mp, /M%, xu, =My, /Mk, (323)
2
Xd,, = mﬁm/Mz, X um/T\/l2 323

3.3.6 {— T conversion in nuclei

The study of { — T conversion differs from the well-known p — e case. The
latter is a low-energy process, while the former could be probed via a deep
inelastic scattering (DIS) of the initial lepton beam. In a DIS the leptons break
the nucleons inside the atomic nuclei and interact with the partons (quarks
and gluons) leading to any hadronic final state; thus we are only interested
in the { +N(A, Z) — T+ X case, where X could be any hadrons in which we
do not focus. One important piece in this analysis corresponds to the par-
ton distribution functions (PDFs) encoding the low-energy non-perturbative
QCD effects. Thus, perturbative effects (6) and the long-distance contribu-
tions (H) are splitted, via QCD factorization theorems, in the following way:

o =0 H. (324)

Such oversimplified form of the convolution cannot hold because o¢_+
depends on all partons inside the nucleons, so this calculation is correct up to
some scale, which is usually taken as Q2 = —q? where q? is the momentum
transfer of the process. In addition, PDFs are characterized by the Lorentz
invariant quantity &, which represents the fraction of the momentum carried
by the interacting parton. Considering both quantities, one should write:

o =06 (5 Q%) ®@H(§Q?) . (325)

In this work we are dealing with heavy nuclei (Fe and Pb) and as pointed
out in ref. [134], binding effects alter the long-distance behavior at different
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& scales. To account for this, we use the fit of the nuclear parton distribution
functions (nPDFs) provided by the NCTQz15 project [135] which is incorpo-
rated in the ManeParse Mathematica package [136]. Also, to consider the
running of the quark masses with the scale Q% we incorporate the RunDec
Mathematica package [137]. The perturbative cross sections are (no contri-
bution from gluons arises at lowest order in the SLH and there are no quark
FCNCs in our setting) [50]:

d?6 (0qi(EP) — tqi) | M (£ Q2
aaQzr  Tem (s mgmy) (526)
dzﬁ((’«qi%T%(ﬁP)) _ 1 |M"(E, Q2)|2 ’
d£dQ2 167 (s(g), m2,m2) 19 ’

where p; = &P is the fraction of the nucleus total momentum P carried
by the parton, thus we consider m? = £2M?. It is necessary to add the
same processes but with anti-quarks because the cross section and the non-
perturbative behavior is not the same in both cases. The total cross section
can be expressed as the sum of the cross section over the nucleons of the
nuclei [52]:

o+ (AZ) 51+ X)=Zol+p—=>T+X)+(A=Z)ol+n =T+ X),

(327)
here the nucleon cross section is [50], [52]:
b 4?6 ((q:(EP) - 7q1)
{(+N = T+X) = J J dedQ? . “Hg, (£,Q%
! e ; e Joz (6 44° [ d&dQ? @ (&Q)
d?6 (0q: — 1qi(EP)) 2

dE,sz Hﬁlt (‘E/Q )}/ (525)

32

where Hg, (§,Q?) and Hg, (§ Q?) are the quark and anti-quark PDFs,
respectively, and nuclear targets under consideration are Fe with A = 56,
Z = 26 and Pb with A = 207, Z = 82. The integration limits can be
found in ref.[50]. Penguin form factors (quarks and anti-quarks) are the
same than for the u — e conversion and quark box form factors are com-
puted from the Feynman diagrams in figure 17 (for anti-quarks we need to
invert the lower fermion line). Quark box form factors are the same than
in egs. (319)-(323), and the anti-quarks box form factors can be obtained
from those equations as well. When we invert the lower fermion line we
exchange the diagrams for the different embeddings: quark diagrams in
the Anomaly free (Universal) embedding are then related to antiquark di-
agrams in the Universal (Anomaly free) embedding, therefore we need to
change {um, U} < {dm,Dm} in those equations (and the overall mixing
coefficient, so that it corresponds to { — T transitions), to get the anti-quark
box form factors. Again, diagrams with light quarks and those which are
proportional to w give subleading corrections. The squared amplitude can



3.3 GENERAL STRUCTURE OF THE LFV PROCESSES | 99

be computed from egs.(315), leading to the result (we use the Mandelstam
variables s = (pg —|—pi)2, t=(pe¢ —PT)Z =—Q%u=(p: —PT)Z ):

4e* Q2
(Q2)?
+ (mi—&—EZMZ +Q? —s) (m%—f—&zl\/lz —u) + (m% + &2M? —s) (m% + &£2M? + Q? —u)}

2
[Ag2|"mi
2
+amf (£2M2 +m? —u) (£2M? +mf +Q* —u)

\qu(é, Q2)|2 =

[(Q2)2|AU 2 [qu EM (m% tm2 4 Q2>

[ (m% tm2 4 QZ)Z (aZMZ +m+Q? —zaMmq)

+ (mf+m2+Q?) [ (mf+m2) (6eMmq — £2M? —m2 - Q?)

— (s—m%—&—m%—u) (s—m%—f—m%—u”

+am? [(s—mf - £2M?) (s—m? - £2M2 - Q?) —4eMmqmi] |

+ mgqu (AL1AR: + AR2ATY) | (6EMmg — £2M2? —m2 — Q?) (mf + Q? ~m2)
+ (uf £2M? —m7 — Qz) (s —ms —3&2M? —2m2 +2u)

+ (S—EZMZ—m%—QZ) (u—E,ZMZ—m%”

—4e* [‘Bﬁ] ]2 (EZM2 —I—m% — s) (E,ZMZ + m% + Q2 —u)

+[Bf, | (EZMZ +m2 —u) (EZM2 +m24+Q2— s)

+&Mmg (mf +m2+Q?) (B, B +EEZE§T)]

+4e'Qq (A1 B3 + BLAL) | (82M2 +m2+ Q2 —5) (£2M2 +m2 )
+EMmg (m% +md + QZ) ]

+4e'Qq (A B + B ATy | (2M2 +mi+ Q2 —u) (£2M% +mf —s)
+EMmg (m% +md + QZ) }

e*Qqmg
QZ
v (u—mi—&,zMz) (52M2+2m%+Q2+s+2u) +3 (s —i—u—EZMZ) (E,ZMZ +m$+Q2—u)

(Ar2B[; +B{,A%,)

(m% + Q2 — m%) (E,z M? + mﬁ + Q2 — GE,Mmq) — 4Q2 (s + m%)

+u(£2M2+m$+Q2—u> +m?2 (s+u—m$—m%—£2M2) +m? (m%—szJru—mi—s)}

e*Qqmg
QZ
+ <£2M2 —I—m%—u) (E,ZMZ—FZm%—m%—FQZ +s—2u) +3 (£2M2+m%—s) (E,ZMZ—Fm% —I—Qz—u)

+ (AR2BlT + B AR2)

- (m% +Q2+ mi) (aZMZ +md+Q2 - 6£Mmq)

+2m2 (£2M? +m + Q? — 6EMmy ) ]

(329)
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where

B, =B, +FIL+F ], Bl =F+F% (330)

To find the squared amplitude for anti-quarks we only replace s < u in
eq. (329). We note that the dominant contributions come from the Ilf%ﬂ1 2|2
terms.



4 NEUTRINOS IN THE SIMPLEST
LITTLE HIGGS

What we observe is not nature itself,
but nature exposed to our method
of questioning.

— Werner Heisenberg

In the original formulation of the SM model the neutrinos are massless, be-
cause in nature there aren not vg singlet states which form a Dirac pair with
the right-handed electrons, i.e., neutrinos are left-handed. However, the SM
must be extended to account for the evidence of neutrino oscillations [138,
139, 140] which implies non-zero masses and mixings for the active neutri-
nos. The most straightforward extension is the so-called vSM [141], which
adds right-handed gauge singlets for the three neutrinos, thus (just like
for the other fermions) we can generate a Dirac mass for the neutrinos
via Yukawa couplings. Nevertheless, if we take into account the tiny ob-
served mass for neutrinos, we would require extremely suppressed Yukawa
couplings: A, ~ 10~12, this value suggests that other mechanism could be
responsible for neutrinos masses, as it is unnaturally small.

Another way to introduce neutrino masses is given by the see-saw mech-
anism [142, 143, 144] which predicts the existence of two kind of neutrinos:
the left-handed (which have been observed) and the heavy right-handed neu-
trinos (which are yet undiscovered) and the later could be Majorana parti-
cles (they are their own antiparticles if lepton number is not conserved). The
spectrum for these models are three Majorana fields with mass ~ M and
the three light neutrinos with mass m, ~ A2 /M, which means the higher
the mass of the right-handed neutrino, the lower the mass of the left-handed
neutrinos. In order to obtain the observed light neutrino mass around eV, M
is required to be of order 10’ —10"°GeV. Nevertheless, Ref. [108] pointed
out that this realization of neutrino masses is inconsistent with Little Higgs
models, because the M scale gives a large contribution to the Higgs mass,
proportional to M2. Recently, it was shown in [21] that the inverse see-saw
of type I is able to reproduce current data in the Littlest Higgs model with T-
parity *. In this work we are going to follow the proposal given in Ref. [108],
which involves a quasi-Dirac field at the TeV scale and a small Majorana
mass terms that breaks lepton number. In this way, novel sources of LFV
will be generated, still LNV effects will remain suppressed.

"We have verified, however, that it is not possible to apply it to the Simplest Little Higgs
model, because of the different multiplet structure.
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4.1 INTRODUCING MAJORANA NEUTRINOS

As we can see from equations (223) and (224) neutrinos in the SLH model
arise from the linear term in the Yukawa Lagrangian. Those neutrinos could
be accommodated in the following way to first order in v/f:

0 0 cpVA
—_ — \/j ‘VL
—Ly=(v¢ Np Ng) oA 0 fsgA| | N, (331)
CcpV
[\35 fSB)\ 0 NR

each entry standing for a 3 x 3 matrix accounting for the 3 lepton families.
If we diagonalize this matrix, we find the following eigenvalues:

x1 =0, x23 =FfsgAy/1+ 52, (332)

at this stage we have 3 strictly massless neutrinos and three exact heavy
Dirac fields with mass Mp ~ Afsg (the sign in the second and third eigen-
value correspond to particle and antiparticle). The relation between flavor
and mass eigenstates is given by:

2 5y 5y
L S 1732 2) (1 5\252 L
EL - - - ]ﬁ” (%{) ]]:]]L N C55)
R 0 73 73 R

equation (333) is equivalent to eq. (227). To introduce a Majorana mass for
the SM neutrinos we allow the breaking of lepton number symmetry, this
is done by introducing a Majorana mass term for the Ny singlet, which is
allowed because it transforms trivially under the gauge group. The Yukawa
Lagrangian now reads

R AT . 1 .
Ly D AINR @ L, + ‘%Tekmeijkcps Lk — EHNRNCR +he,  (334)

the mass matrix now has an additional element:

0 0 CpVA

S V2 VL
—ﬁy = (‘Vf NE NR) 0 0 Mp N |, (335)

C\ﬁ/\;\ Mp N

the eigenvalues for eq. (335) now are:
my =0, M ] (u:FZM 1482 4+ 2 ) (336)
v=0, MLr=75 D :
2 Y aMg

Here still we have SM massless neutrinos, but now we have a quasi-Dirac
field because the mass of the left-handed N and the right-handed singlet
Nr are split due to the introduction of the Majorana mass for the singlet.
The masses are split at order O(p/f). The SM neutrinos get mass at the loop
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level (we do not dwell into this here as it is immaterial for the discussion of
LFV in the charged lepton sector). The diagram in figure 18 generates the
effective dimension five operator which gives rise to a radiatively induced
Majorana mass for the light neutrinos.

' 6'52
- -~ ‘ -~ ~
| ’ ~ Il
®1, v _ \ @1
/ o) \
! \
L | 1 I
p— e —p—L—«¢
Ny, N,

Figure 18: Diagram for Majorana mass.

The effective dimension five operator is [108]:

2
Ls = /};— (t@y) (®]L) +he
2%

_ M Sé"zvcv _VPSBCB ey, _ VISBCB e, L 22 ReNy | 4 hie
ATz T g T T g TR TSI R

(337)
With the equations (337) and (335) we can construct the full mass matrix:

VL
—Ly=(¥f Nf Ng)Mpm [ NL |, (338)
NC
R
with
7\25%5\)2 _)\72 vfsgcp cpVA
I
Mom = [ —p2xfeece ZOE g |- (339)
Eﬁ\)?\ }\f\/
vz Sp H

To obtain the eigenvalues of this matrix, it is necessary to make some
approximations, which are justified by the following hierarchy between the
matrix elements:

)\23%5\12 )\2 VfogCB ?\2C|23f2
A, T Ay V2 A

now the eigenvalues have the approximate values of:

A >AvsSs p> [ , (340)

2.2.2
z)\sﬁv
2Ny

my

1 u?
Mir ~ = M 1462
, LR~ 5 (w D +05 + 4M2D> , (341)
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we have finally achieved massive SM neutrinos and we found that the
two previously non-zero eigenvalues barely change, this is because the 2 x 2
upper block in the matrix is small enough to appreciably alter the result
given in eq. (336). Now, we solve the loop diagram in figure 18 to estimate
the A, cut-off, which value is [108]:

1 UK x—1— IOg[X] . Mlzﬁiggs
[ th —_ 99>
/\y 47'[21,:28%5 |: (] — X)z , W1 X M%) ’ (342)

where « is the Higgs quartic coupling. With the eq. (342), the heavy and
light neutrino masses per family are:

252 1
mVNV}\Ku{X 1 log[x]],

T 12 82 (1—x)2

2 (343)
; )

1
M ~ — M 1462
LR <H¥ Dy/1+05 + M2

from eq. (343) we see that if we take u — 0 light neutrino mass is exactly
zero, lepton number symmetry is restored, and the heavy neutrinos are an
exact Dirac field (as it must be). As we explained before, the 2 x 2 upper
block in the mass matrix barely changes the eigenvalues and the same is
true for the eigenvectors therefore the flavor and mass eigenstates are related
(approximately) by the following transformation:

2 5y 5y
Ny | = —dy — /3 Nr |, (344)
N 0 (1-8272)  (1-8%/2) | \ Ng

V2 V2

the transformation given in (344) is almost the same that the equation (333),
the only difference is in the state associated with the component N§. As in
the chapter 2, we again have the same CKM-like matrix which encodes the
flavor-mixing coefficients. It is also straightforward to see that the previ-
ous results are unchanged, because we have the same transformation in the
fields vi and Np, but now we have one more contribution from the compo-
nent Ni. In the following we present the relevant Feynman rules involving
the new state N§.
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V. fifm Vertex gff_if’“ 9‘\2” i
W+Nmei 6V \fswv 0
_ 53
Z:N;LN:L stm 4chW 0
ZNwvi S e Y °
_ 52 8
ZN;iN; T Acwsw zsw\/éft%v ©
X+ Rl CO-%)ve 0
mti T 2sw ( - 7) ¢
. 1
Z NiN; dsw/3-1h, [2 -5 (2 N t%/V” 0
I = 1 2 2
Z NiNji m [_2+6 (2_tW)} 0
! = 6 3
Z vai ZQVB 0

Table 18: Vertices [VVff] =iey" (gr Pr + grPr) for the new state N denoted as N
(not to be confused with N, which is already in the original version of the

SLH).
SFF gL gr

XNl 0 r— e (1-82/2) v

X UNm e (1-83/2) vime 0

& Nl 0 —by i L VP

¢ LN, By 7o Vim 0

Table 19: Vertices [SFF] =1ie (gr P1 + grPr) for the new state N denoted as N.

With the Feynman rules given in the tables 18 and 19 we can calculate
the new contributions to the LFV processes studied before. We expect an

increase in the results presented (which are displayed in the next chapter),

however that analysis will be presented elsewhere.
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5 NUMERICAL RESULTS

It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.

If it doesn’t agree with experiment,

it’s wrong.

— R. P. Feynman

In this section we show and discuss the numerical results of our 16 LFV
processes exposed above. The first step is setting the range for the free pa-
rameters of SLH model: f, tg, My, 0+, V& and 84, as we motivate in the
following. Dependence of the u — e observables on these parameters is
studied in detail in ref. [17] for the case of two heavy neutrinos. Approxi-
mate cancellations between the 'y 4+ Z penguins and box contributions were
already noted in this reference (for p — e transitions). These effects strongly
depend on the specific region in the parameter space of the SLH model and,
because of that, we will not dwell into them here.

The scale of compositeness, f, can be estimated through the direct search
of Z’ bosons at LHC [145], where the lower limit is set as [146] f > 7.5 TeV
at 95% C.L. Following the analysis given in ref. [147] we fix the upper limit
f < 85 TeV. Above these energies, SLH loses consistency.

The ratio of the two vevs tg = f1/f; is another important free parameter
of this model. A perturbative unitarity analysis [147] binds 1 < tg < 9. For
small f (10 < f(TeV) < 20), tg can vary freely in this interval, while for
20 < f(TeV) < 80, the approximate relation tg = %f (TeV) — %—g holds.

Heavy neutrinos are responsible for the LFV lepton decays, however this
"little" neutrino masses are unknown. We will, nevertheless, follow ref. [28]
and take the ratios involving them as: 0.1 < x7 < 0.25, 1.Tx7 < x2 < 10xq,
1.1x2 < x3 < 10x, (we remind that x; depends quadratically on the N;
mass), where we include the cases of a small splitting x, = 1.1x7 and a large
one x2 = 10x7 (analogously for x3).

The mixing of the "little" and light neutrino of the same family is encapsu-
lated in 8, and, according to data, 0 < 0.05 [26, 148, 149], that we will take.

We do not have any information of the mixing matrix V*! between charged
leptons and "little" neutrinos, which can be parameterized in the standard
form [36]. According to ref. [28], we have scanned over —1 < si; < 1 ensur-
ing the low-energy restrictions and, in addition, we assumed for simplicity
CP conservation (phase in V* set to zero).
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Finally, the mixing between the heavy quarks and the corresponding SM
quarks is parameterized by the 64 parameters. We follow the arguments
of ref.[15] and assume that the mixing effects are suppressed in the down-
quark (up-quark) sector for the Anomaly free (Universal) embedding in the
tg > 1 regime, so it implies: &4 = F06, where the upper sign is for the
Anomaly free (q = D, S) and the lower sign is for the Universal embedding
(g = U,C). We also follow the proposal of ref.[26] and take the reference
values for the ratios of heavy quark masses as xyy = xp = xc =xs = 1.

As we have already mentioned, there are still no experimental limits for
{ — 7 conversion, but if we consider the expected sensitivity of NA64 experi-
ment we can express the conversion probability as the ratio [52]:

_o({+N—=T1+X)

R= c(l+N = +X)

~1071 =107, (345)

where the denominator is the dominant contribution to the inclusive { + N
processes due to the bremsstrahlung of leptons off nuclei [52]:

(e4+Fe — e+X)=0.129 x 10° GeV 2,
(u+Fe = n+X) =0.692 GeV~2,
(e+Pb—e+X)=1.165x10° GeV 2,
(L+Pb = pu+X) =6.607 GeV 2.

(0)

(0)
(346)

(0)

(0)

As representative energy for the initial electron or muon beam we take
Ee = 100 GeV and E,, = 150 GeV. We do the analysis within a Monte Carlo
simulation with all channels sharing the free parameters enumerated above.
In the following table we summarize our mean values, the present experi-
mental bounds [36] and the future expected sensitivities (whose values were
taken from ref. [150] and references therein).



NUMERICAL RESULTS | 109

LFV decays Experimental Limits Our mean values Future sensitivity
L — ey 42x10°13 21x 10714 6x 1071
L — eeé 1.0x 10712 57x 10712 10-16
T ey 33x10°8 5.6 x 10712 3x10°7
T wy 44 %108 23x 10712 107
T — eeé 27 %1078 3.2x 10712 (2—5)x 10710
T — Huf 2.1 %108 1.6x 10712 (2—5)x 10710
T— eupt 27x107°8 21x10712 (2—5)x 10710
T — peé 1.8x 108 1.0x 10712 (2—5)x 10710
T — Uue 1.7 x 108 3.8x10°18 (2—5)x 10710
T — eefi 1.5%x 1078 5.6x 10718 (2—5)x 10710
uTi — eTi 43 %1012 6.8 x 107 1% (AF), 8.6 x 107 % (U) 1018

HAU — eAu 7.0x 10713 8.2 x 107 (AF), 1.1 x 10713 (U) -
eFe — TFe - 9.2 x 10720 (AF), 9.3 x 10720 (U) -

ePb — TPb - 1.6 x 10717 (AF), 1.6 x 1017 (U) -

uFe — tFe - 6.2 x 107'® (AF), 6.2 x 10~1¢ (U) -

uPb — TPb - 9.6 x 1071° (AF), 9.8 x 10~1¢ (U) -

Table 20: Mean values of branching ratios and conversion rates (where AF stands
for Anomaly Free embedding and U stands for Universal embedding)
against current upper limits at go % confidence level and future sensitivi-
ties.

In the case of muon decays, our results are below the experimental limit
by one (u — ey) and three (1 — 3e) orders of magnitude, the mean values
of nuclei conversion in both embeddings are below the upper bounds by
one or two orders of magnitude. For the case of Au nuclei conversion in
the Universal embedding our mean value is only a factor ~ 7 below the
experimental limit.

We turn now to LFV transitions involving the tau flavour. For the cases
of T — ¢y ({ = e, pn), same flavor and same sign decays, our results are
below the experimental limits by four orders of magnitude (not for wrong
sign decays, which are six orders of magnitude further suppressed). For
the case of { — T conversion, we find that the mean values with electrons
are too small for the expected sensitivity of the NA64 experiment. However,
the analogous processes with muons are only slightly below their forecasted
sensitivity, and in principle could be tested with future experiments.
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From these results we verify that muon physics is the best candidate to
test LFV; our mean values are of the same order (1 — ey) or higher (1 — 3e,
uTi — eTi) than the future sensitivity and will set the strongest limits. For
tau decays, our mean values are still below the future sensitivity and only
next generations of B factories could be able to search for them, according
to the SLH model. Still, p — T conversion in nuclei appears promising
as a discovery tool to first measure LFV involving the tau flavor. Conse-
quently, it can play a significant role in characterizing the underlying new
physics causing charged LFV, as can be checked from the correlations amid
processes, that we discuss next.

We show in figs. 19-23 a selected set of scatter plots comparing the dif-
ferent processes. Fig.19a plots BR(n — ey) vs. BR(p — eee), which are
moderately correlated. A similar, though softened, trend is observed in the
accompanying figure BR(u — ey) vs. BR(t — ey) (despite they differ in the
flavor coefficients). Figure 19b and 20a should be understood together. In
these plots, we show the correlation between same flavor decay against the
same sign and wrong sign decays, respectively. We see that BR(t — eeé)
keeps a big correlation with BR(t — eufi) and the opposite happens with
BR(t — pee). This is also caused by the corresponding flavor coefficients,
as expected. The comparison between same flavor and wrong sign decays is
quite different, because wrong sign are decays with only box contributions,
so no correlation is expected in those plots (however the lower panel of fig.
20a exhibits a small one, albeit this will be very challenging to probe, given
the big suppression of the wrong-sign decays in our setting). We do not
show other analogous plots including, for instance, the T — 3u decay (see
appendix B).

BRI eeé)

BR(T-ey)

107 107 102 107 107 107° 0™ 107 0% 10 0™ 0 0™ w0 w0 107

BR(u~ey) BR(T- eeé)

(@) BR(n — ey) vs. BR(1n — ee€), BR(t = ey) (b) BR(T — ee€) vs. BR(T — ppe), BR(t — pee)

Figure 19: Scatter plots for { — ¢’y and some ¢ — 3{¢’ decays.
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«  Anomaly Free

BR(T > eyi)
R(u—e:Ti)
<

10 Anomaly Free

BR(t - eefl)
3
R(u—e:Au)

10” 10° 10° 10" w0t 0™ 40 107" 107 107 107 107 107 107 107
BR(T - eeé) BR(u - eeé)

(@) BR(t — eee) vs. BR(t — eefi), BR(t — eufr) (b) BR(n — eeé) vs. R(n—e: Ti), R(p — e: Au)

Figure 20: Scatter plots for { — 3¢’ decays and { — ¢’ nuclei conversion.

In plots 20b and 21a we show the scatter plot for the BR(p — 3e) against
R(w — e) nuclei conversion. The result for Ti and Au nuclei are almost
the same, and in general the outcome for both embeddings is very simi-
lar. However, results for nuclei conversion in Ti show a bigger correlation
than the results for Au, being the dependence stronger in the Anomaly free
embedding. Plot 21b shows the comparison of nuclei conversion in both em-
beddings (which is the reason why we draw the x-axis in both plots). Our
results are alike in both, with stronger correlation in the Universal embed-
ding.

*  Universal *  Universal

R(u-e:Ti)

«  Universal -3« Anomaly

R(u—e:Ti)

107 107 107 107" 107" 10" 107 107 107 107" 107" 107 107"
BR(u - eeé) R(u—e:Au)

(@) BR(n — eee) vs. R(p — e:Ti), R(L — e: Au) (b) R(n— e:Ti) vs. R(L — e: Au)

Figure 21: Scatter plots for p — 3e and p — e nuclei conversion.

The scatter plots in fig. 22 show the comparison of BR(t — 3p) with p — 1
nuclei conversion, the general behavior in both embeddings is the same, but
small differences lie in the non-perturbative behavior of quarks and anti-
quarks inside the heavy nuclei under consideration. However, as we can
see in table 20 these differences are negligible in the expected probabilities.
Again, the strongest correlations are found in the Universal embedding. Fi-
nally, the scatter plot in figure 23 compares the u — T conversion in both
embeddings. We see a perfect correlation in the Anomaly free embedding
that is a bit degraded for the universal case. We do not show analogous cor-
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relations (even if with three orders of magnitude smaller probabilities) for
e — T nuclei conversion.

o Anomaly

107 107! 107 107 107 107 107 107! 107 107 107 10°
BR(T = upa) BR(T = upa)

(@) BR(t — ppft) vs. R(pn — t:Fe), R(L— T:Pb) (b) BR(t — pppt) vs. R(nw — t:Fe), R( — T: Pb)

Figure 22: Scatter plots for T — 3p and p — T nuclei conversion.

S,

«  Anomaly

R(u-T:Fe)
3 3 3 3 3
1

R(u~T:Fe)
3 3 3

S,

3
S,

107 107 107 107" 107° 10"
R(u—T:Pb)

Figure 23: R(p — T: Pb) vs. R(pn — 7: Fe)

5.1 THE CDF MW MEASUREMENT WITHIN THE SLH
MODEL

As a timely topic, we will finally discuss the implications, within the SLH,
of the new measurement of the W boson mass given by the CDF collabo-
ration with a result My, = (80.4335 + 0.0094) GeV [151], that shows a dis-
crepancy of 7o with the SM prediction My, = (80.357 £ 0.006) GeV and is
also in tension with respect to the world average My, = (80.379 £0.012)
GeV [36]. Including the CDF measurement, the new world average would
be My = (80.4242 £+ 0.0087) GeV. As already mentioned before, SLH does
not have SU(2) custodial symmetry, and the tree-level SM relation p = 1 is
no longer valid:

VZ 2 2
P=1+8?(]—tw) . (347)



5.1 THE CDF Myy MEASUREMENT WITHIN THE SLH MODEL |

In the SM the p parameter is p = 1 at tree level, and the EWPD, upon
the inclusion of radiative corrections, yields p = 1.00038 £ 0.00020 [36], such
deviation from the SM value can be encoded as:

v? 2\2 _
5p = 52 (1—tyy) =, (348)

where T together with S and U are the oblique parameters [152, 94] which
can parametrize potential new physics affecting electroweak two-point Green
functions. We are going to use the formalism given in references [153, 154]
to show how heavy Z’ bosons can modify the oblique parameters and, since
SLH is not an Universal theory®’, these corrections cannot be fully repre-
sented with four universal parameters: S, T, Y, W. Nevertheless, the corre-
sponding effects can be well approximated with this formalism. SM corre-
sponds to T = S = W = Y = 0 and these new parameters are related to
the usual oblique ones as S = 45%,\/?» Joand T = T/ o, the U parameter cor-
responds to dimension-eight operators, and because f > v, we can neglect
it.

A generic model with a Z’ boson is determined by few quantities: gauge
coupling gz/, Mass Mz, the couplings to the Higgs boson Z{,, and to the left
and right fermion multiplets Z{, Z/, Zb, Z!, Z}; (but we can omit quark data
because they are less precise that the leptons ones). From ref. [153] we get
that a generic model with Z’ boson contributes to the universal parameters

as [153]:

~ MZ 29z7/Z]
S~ Mi\z/v (bw—by/tw) (bw—bytw— 9z H)
z/ 9
A Mz ZQZ’Z, 2
T W (c tW+H> — b3
M%, [ y g w
M2
W — Wby,
Mz (349)
Miv, 2
Y =~ M2 by,
Z/
29z/
by = Yoo (ZiYr —Z{Ye)
_9z/Z;
Y lee ’
In chapter 2 we can find all the necessary coefficients:
9 / / | \/g 2 9/
= D, Z = Z - — 2z = -t
9z % L HT5/3 2% w
3 (350)
2
3=, 70 =35k,

With egs. (350), egs. (349) reduce to:

TAn universal theory is such that Z’ couples to the fermions universally (which does not
occur in SLH) or proportionally to the SM vectors.

13
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N A 4AM3 4Y
Tro, S5 Nss=4W=—5-. (351)
M2, (3—t) tw

From the above equations, we see that corrections to the T parameter due
to the Z’ boson are negligible, however we could estimate them using the
fact that T = T = 8§p. We present our results taking into account the PDG
average and the update including the new measurement of the W boson

mass.
SM EWPD My = 80.357 GeV M,y = 80.4242 GeV

p 1 1.00038 =+ 0.00020 1.0004758 1.0016013

T o - 5x 104 1.6x103

S o - 7 %1073 7% 1073
0.03+0.12

T o 0.07 0.22
0.05 4+ 0.06
—0.01+£0.10

S o 0.008 0.008
0.00 4 0.07

Table 21: Values of oblique parameters according to EWPD and using instead My
as in the PDG [36], or from the CDF measurement [151]. Two values are
given for T and S. The upper one is obtained fitting also U (for which
0.0240.11 is obtained) and the second one setting U = 0 [36].

< 80.1

My (GeV)

P
= A‘ﬁ’!

80.0

ST

799

—-== My =80.4242 GeV
—-—- My =80.379 GeV

©® O1ONEH ST

0 20 40 60 80
f(TeV)

Figure 24: Corrections to the W boson mass provided by the SLH compared to its
measurement, using My, = 80.379 GeV.
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My (GeV)

--- My=280.4242 GeV
=== My=280.379 GeV

0 20 40 60 80
f(TeV)

Figure 25: Corrections to the W boson mass provided by the SLH compared to its
measurement, using Myy = 80.4242 GeV.

My (Gev)

=== My =80.4242 GeV'
——- My =80.379 GoV

0 2 r &0 £
frev)

Figure 26: Zoom in on scatter plot using My, = 80.379 GeV.

045

My (GeV)

—=- My =80.4242 GeV'
——- My =80.379 GeV

0 2 o ) 0
frev)

Figure 27: Zoom in on scatter plot using My, = 80.4242 GeV.
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Plots 24-27 show the corrections that SLH provided to the W boson mass
for different values of f >. When we use as input the PDG average, the
corrections to Myy agree within the uncertainties. In the supplementary
axes of plot 24, we show the distribution for the values of My, and f. For
Mw most of the values are around the PDG average, and for f most of
them are within [8.5,40] TeV. Then, in plot 26 we zoom in to show that SLH
reproduces the world average for the W mass in the range f € [16,22] TeV.
Also for larger f, values of Myy are inside the uncertainties. For plots 25
and 27 we use as input the new world average including the CDF II result.
For the range f € [8,27] TeV, the PDG world average and the new one can
be reproduced in the SLH model but the marginal distribution shows that
getting the PDG average is unlikely. In the range f € [23,84] TeV, the W mass
is always below the central value, but still within its uncertainties.

___________ Mw_=_&0_4242§Ge\L_________________

80.4 My =80.379 eV -0.06
1
1
1
80.3 ! . 0.05
1
1
i
__ 802 ! - 0.04
> i
& 1
~ 80.1 T=D.03 o
S i - 0.03
= 1
1
1
80.0 -
7 - 0.02
1
1
1
79.9 1
i - 0.01
1
i
79.8 ! ©
-0.10 -0.05 0.00 0.05 0.10 0.15

—

Figure 28: Correction to the oblique parameters S and T in the SLH, using My =
80.379 GeV.

*tan 3 is also varied, although not shown. All pairs (f,tan ) considered satisfy experi-
mental limits on the LFV processes studied before. Collider limits and unitarity bounds are
also respected.
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Figure 29: Correction to the oblique parameters S and T in the SLH, using My =
80.4242 GeV.

Finally, figures 28 and 29 shows the corrections to the oblique parameters
S and T in the SLH, and for the different values of the My,. In figure 28
we use the PDG value, and show that the oblique parameters agree with the
EWPD within uncertainties. This means that although SLH modifies the p
and T parameters, it is only slightly, without conflicting with the SM. For
the S parameter all values agree with the SM as well. Now in plot 29 we
show the corrections to the oblique parameters with the average including
the CDF II measurement, and show that T is outside the EWPD (corrections
to the S parameter are negligible, as shown in table 21) confidence interval.






CONCLUSIONS AND
PERSPECTIVES

One of the virtues of the SLH model is its minimality, extending the SM
gauge group to SU(3). x SU(3)r x U(1)x attempting to understand the hier-
archy problem related to the Higgs boson mass value in presence of generic
new physics coupling to it. As a simple group model, it has a small number
of unknown parameters and new heavy particles. These allow the appear-
ance of lepton flavor violation processes driven by three heavy neutrinos,
with signals that could in principle be probed in current and forthcoming
experiments. In this work we have examined the most relevant LFV pro-
cesses: { — Lqy, L — (Lol and (N — (4N, which arise at one loop within
the SLH. We have computed the relevant observables as an expansion in v/f,
keeping the results at O(v?/f%). To carry out our numerical calculations, we
have floated the free parameters within the allowed region (by other mea-
surements and perturbativity), ensuring that all experimental upper limits
were satisfied.

As it is well-known, processes with muons would most likely be the dis-
covery channels for LFV. Within the SLH, this can be expected either from
conversions in nuclei, p — ey or p — 3e. However, those with taus (not
considered exhaustively in previous SLH analyses) will then be needed for
characterizing the underlying new physics. We have found that -in anal-
ogy with the role of © — e conversion in nuclei amid p — e transitions-,
{ — 7 conversion in nuclei are synergic with the T — fy and T — 3{ de-
cays in probing LFV transitions involving taus. We hope that our work and
other recent related studies motivate the experimental collaborations (Belle-
II, NA64, EIC, muon collider, etc.) to pursue the corresponding dedicated
searches. Finally, we verified that -although the SLH modifies the p param-
eter and can in principle accommodate the recent CDF My, measurement-,
this is in tension with electroweak precision data.

The most straightforward perspective of this work (for which preliminary
results are included in this thesis) is its extension including three quasi-Dirac
TeV scale neutrinos, to account for the observed neutrino masses without
spoiling the naturally small radiative corrections to the Higgs mass that arise
within the traditional SLH. Based on the experience with the Littlest Higgs
model with T parity, we envisage that enlarging the SLH this way, will result
in predictions for the different LFV processes closer to the current experimen-
tal limits. In addition to this virtue, it would provide a common solution to
the naturalness of the Higgs mass and to the tiny neutrino masses, which
makes it theoretically appealing, and it may also explain the baryon asym-
metry of the universe via Leptogenesis. This interesting analysis will be
completed and presented elsewhere.
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A MATHEMATICAL RESULTS

Here we show some useful mathematical results for this work.

A1 GOLDSTONE THEOREM

In this section we will see a general proof of Goldstone’s theorem for
classical scalar field theories. Consider a Lagrangian:

1 ) )
£=350u0 0 " =V I(d), (352)

and is invariant under a global symmetry group whose algebra is spanned
by N generators, iTi‘]? with ae[l,...,N]. Under an infinitesimal transforma-
tion, parametrized by some ¢ < 1, the fields transform according to:

O (x) = b1 — TSP (x). (353)

The invariance of the Lagrangian under the transformation imposes a con-
dition on the potential:

£ (04— eTg0!) — £ (0)

) . ) oV
V(@ e TE0) -V (8) =g

On the other hand, the vacuum state corresponds to a field configuration
that minimizes the potential:

(354)

e“T{;d)j =0, for any ¢“.

oV ()
o

=0. (355)
(dHo
If the symmetry is spontaneously broken so the vacuum is invariant only
under a subset of transformations, and there are (N — k) broken generators,
then the conditions are:

T3(¢)) =0, (foranyi), aell,... K,
a4 . (356)
31|T1j<¢]>7éol delk+1,...,N].

Differentiating the equation (354), the potential invariance condition, with
respect to ¥ and evaluating at the vacuum, gives a new condition:

52V
dpiopk

oV
St

a

5V :
T5¢) =0= ik =0, (357)

St D)

T3(d)) +

(oh) (dHo
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whose last term vanishes due to equation (355):

52V Wi
SPIOPF T5(d))o =0. (358)

(dHo

According to Tg(d)j) # 0 for (N —K) generators, so the equation (358)
implies that the second derivative of the potential at the vacuum has pre-
cisely (N —K) eigenstates with vanishing eigenvalue. From the variation of
the action, it can be seen that the excitations around the vacuum, 7i(x) =
$H(x) — (p¥(x)), must satisfy the Klein Gordon equation:

52V ,
500 ™ (x) = 0. (359)

(dHo

5150,0" +

Therefore, the (N — k) zero eigenvalues of the second derivative of the
potential should correspond to (N — k) massless particles in the spectrum:
the Goldstone bosons. Finally, the fact that the Lagrangian is nevertheless
invariant under the (N — k) transformations, means that it has to be invariant
under shifts of the corresponding Goldstone fields. Therefore, when the
Lagrangian is written in terms of the physical fields, it can only contain
derivative couplings of the GBs. For this reason, it can be said that the shift
symmetry forbids a mass term for them.

A.2 DIAGONALIZING MATRICES

Consider an n x n matrix A that has n linearly independent eigenvectors
v; corresponding to eigenvalues A;. Let P the matrix which has the v;’s as
its columns. P is invertible (det P # 0). Notice that P~ 'v; is the i-th column
of P~1P = 1. This means that P~ 'v; is the i-th column of the identity matrix
ey.

P_]vi =ey, (360)
This implies:
P 'AP=P 'A[vy,va,..., V]
=P 1 [Avy,Ava, ..., Avn]

=P T [A1vi,A2v2, .., Anvnl
= [MP V1, AP g, AP Ty

=[\je1,A2€2,..., Anen] (361)
M 0 ... 0

0 A ... O

0 0 ... Ay
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So A can be diagonalized by a matrix P as in the foregoing such that:
P~TAP =D, (362)

where D is a diagonal matrix with the eigenvalues of A on the diagonal.
The eigenvectors are automatically linearly independent if the eigenvalues
are distinct, meaning that they are all different. If A is a symmetric ma-
trix (A = AT) then the eigenvectors of different eigenvalues are orthogonal
to each other. Namely, suppose that we have eigenvalues A7 and A; corre-
sponding to eigenvalues v and w:

AMV-w=Av-w=v-ATw=v.-Aw=v-Aw=Av-w. (363)

This can only true if v.-w = 0, thus if v and w are orthogonal. There are
always n linearly independent eigenvectors if A is symmetric, so A will be
diagonalizable. If the entries of A are all real, then there exist n mutually
orthogonal eigenvectors. The matrix P then contains n orthogonal columns
and also its inverse is equal to cPT, where c is a normalization factor. Matri-
ces for which P~! = PT are called orthogonal matrices. Thus real symmetric
matrices can be diagonalized by the orthogonal matrices P.

PTAP=D, if A=AT (364)

A.2.1 Diagonalizing Matrix before the SEWSB

In this part we obtain the mass eigenstates and the masses of the neutral
gauge bosons before the spontaneous electroweak symmetry breaking. From
the equation (194) we recognize the mixing between weak eigenstates of the
bosons Aﬁ and B:

V3 3 3 9 3V3

we can reordering the last equation in the following form

2
A8 BX 2 2 2
) <_u9 n H9X> — 2 <9AﬁA8“+ Ixpxprr— gngﬁB"”) (365)

A
(As BX)M< . ) (366)
with
@2 gar
M= 2. 3P (367)
- 3V3 7

The eigenvalues of the matrix M are:

2 5. 2
=5 (39" +9%), (368)

and the normalized corresponding eigenvectors are:

AM=0, A
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VI = —F——= ;o V)= e , (369)
V392 +92 \ V3g V397 + 95 \ —9x

the basis change matrix is:

1 Ix \/39>
= 0
V32 + g2 (\/39 —gx (370)
so, the mass matrix is:
0 0
PTMP=D = 2 (371)
(0 v (3g% + 9%))

then the gauge bosons Aﬁ and Bj; in terms of the mass eigenstates are:

ALY _p( Bu
BT Zu )’
1
8 _
Ap = \/W [QXBH+\/§QZ’H} ’ (372)

Bﬁ—m[\fg]% },

or
_ 1 8 x
oo Neoar gt V3o, -
Ty = 7TZ+9X |V39AS — 9B .

A.2.2 Diagonalizing Matrix after the SEWSB

Now we obtain the mass eigenstates and the masses of the neutral gauge
bosons after the spontaneous electroweak symmetry breaking. From the
equation (201) we recognize the mixing between weak eigenstates of the
bosons Af‘u Aﬁ and Bl

2 2
A8 BX A3 A3 BX
_ H9+ n9x (fZ—A)+ u9_|_ u9+ n9x A
V3 3 2 2V3 3
9 AYEI 29 Al 3uas ZQQXA supx |, [(95FF AN Lsuas
7] =—A A 4\/3/\ A c —A Bu+ 31 A Ap

+2gg <A _ >A8“BX sz"“B"
*\2v3 3v3 ko9

reordering the last equation we obtain:

(374)
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A3
(A3 Ag Bx)M | Asg (375)
Bx
with
g’A g’Aa ggxA
) W3 6
M= | 92 ¢ g’A  ggA _ ggf?
- 43 4 . 2V3 R 23\/5 ’
99xA  g9xA _ ggxf 9xf
2 4 4 4
v v s, Sp
h A=——— | =24+ 2
where 2 1212 <sé +cé)

The eigenvalues of the matrix M are:

125

122, 9% P05 03\ 49 (B o ap
M =0, Az =1 3<9 +3)$ 9<9 +3> +3<3+4>(A — Af2)

(377)

for the main purpose of this work, we need to take the mass of the gauge

bosons up to order O(v?/f?), so we expand the eigenvalues A; 3 in a Taylor’s
series:

1 a?v2 2 (¢4 4 2
)\2:79" 1= BB _L(]_t‘zm)z ,
2 4¢3, 6f2 \cg s 8f2
(378)
1 2f2g% | (3—t%)v?
3=5 -
2312, 8f2c2

and the corresponding first order normalized eigenvectors are:

v Sw v s3, v 312,
1= \/g 7 2 = cw\/§ 7 3 = - \/g 7
Cw Y w w
£V3-t 575 312 t—\/g
(379)

the basis change matrix is:

0 Cw —Sw
o 37’&%\, 512/\; _ Sw
P= 3 Cw\/g \/g 7 (380)
tw S \/3_1:12/\» c \/3_t%v
V3 w 3 w 3

so, the mass matrix is:
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12292 (3-t%)
2342 [] 822 0 0
PPMP=D = 2.2 2 [ st c 2 2
0 Ly s [1—&(6%5;;)—;#(1—%)] 0
0 0 0
(381)
then the gauge bosons A2, A% and BY in terms of the mass eigenstates
are:
Al =cwZy— swAu,
2
A3 = /1 z’ Sw_z o+ Wa
" CW\[ \f (382)
tw / /
Bﬁ:ﬁzﬁ—i—sw 1—?“’Zu+cw 1—?“’Au,
or

X

—=B%,
\/g S8

2 t2
Z, = cwAl + ”\”[Aﬁ +sw\/1= 3B (383)
3 Sw A8 t%v X
AH = —SWAu—%Au‘i‘CW 1 _?BH

A.3 LOOP FUNCTIONS

8
Z, =— 1—?WA .

A general one-loop tensor integral in D dimensions with N legs and P
integration momenta in the numerator is represented as [155]:

i _ qu qQu;...q
TN = 4 DJ wp
]67’[2 H1-e P H (27’[)D DOD1 cee DN_1 ’ (384)

where

Do=q?>—mj+ie, Di=(q+ki)>—mi+ie, i=1,...,N—1. (385)

The vectors K; are the sum of external momenta pj:

ki =p1, ka=p1+p2, ..., kno1 = Zpi- (386)

These tensor integrals are invariant under permutations of propagators
D; and symmetric in the Lorentz indices. Generally we define T' = A,
T2 = B, etc. The scalar integrals are Ay, By, etc. Lorentz covariance allows
decomposing equation (384) into a linear combination of tensors constructed
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with the metric and the external momenta, however this basis is not unique,
we could use any set of linearly independent momenta and g, [156]. For
this work we use the decompositions:

B =kquB1,
CFL = k] HC1 +k2uC2/

2
Cuv = guvCoo + Z KinkjvCij,

Lj=1

3 (387)
Dy =) kiuDy,
i=1

3
Dyuv = guvDoo + Z kiuijDij‘
ij=1

These functions have been calculated for the argument configuration re-
quired by the processes under study, obtaining the results presented in the
following. All of them agree with those collected in the appendix B of ref.

[17].

Two-point functions

There appear:

dPq {1,q"}
217 (g2 ~m3) [(a+p)* ~m3]

i
16m2

{Bo,B*}(args) = P J ( (388)

Their tensor coefficients depend on the invariant quantities (args)= (p?, m3, m?).
Functions B = B (0, M%,M3) and B = B (0, M3, M%) read

o (3) o ()

(389)
M2 — M2

v~ -+ e o (35) + 2 (-2 (35

B]:— —+

Ac
: 4 (MF - M3)°
=—Bo—By,
(390)
with Ac = 1 —y +log(4n) encoding the ultraviolet divergences in D = 4
dimensions.

Three-point functions

In this case there arise:
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dPq {1,9",q9"*q"}

' _[Co, CH, CHYY(args) = 4DJ ,
167[2{ 0 Hargs) = (2m)P (qz_m(z)) [(q_’_p])z_mﬂ {(q—i—pz)z—m%
(391)
with p2 = p? =0and Q% = (p—p1 )%, so that only the following general
types are necessary for us: C = C (O, QZ, 0,M?2, M%, M%) (we define the mass
ratio x = M%/M%):

1T [T—x+log(x) Q? —2—3x+6x2—x3—6x10g(x) 4
C"‘M%[ (1—x)° *M%( 1201 —x)3 )| +oreh,

1 4x—3—%2 —2log(x)

—Cy— 2
T 11 —18x + 9x% — 2x3 + 6log(x) 5
= :2 = —
Ci1 =C22=2Cy2 M 1801 —x)3 +0(Q7),
1 Q2 /11 —18x+9x2—2x3+6log(x) 4
— B = :
Coo="3B1 3z < 720 — %) )+O(Q )

_ (392)
Now, defining C = C (0, Q%,0, M3, M$, M$):

— 1 [—1+x—xlog(x 2 /14 6x—3x% —2x3 + 6x%log(x
S | ) o)
: —x) M 12(1 —x)
—~ = 1 1—4x+3x2—2leog(x) 5
C1 _CZ_W 4(]_3)3 +O(Q )/
- = — T —2+49x—18x% +11x3 — 6x> log(x) 2
Cir —sz—ZCu—W 180 —x)° +0(Q7),
— T— Q% [—2+9%—18x2 +11x3 — 6x3 log(x) 4
Coo =381 M2 < 72(1—x)* +0(QY-
(393)

Alternatively, defining ¢ = (O, QZ,O, M2, M%,O), which is symmetric un-
der the exchange M1 <+ M,

2
Coo = % (3 +2A —2log (T;)) + Z(lf %ﬁj +0(QY).  (394)

Four-point functions
Those needed are all ultraviolet convergent:

dPq {1,q",q"*q"}
27P DoDiDD;" %)

i _
W{DO/DH,D“V}(GTQS) = H4 DJ
where:

DO:qz—m(z), Di:(q+pi)2—miz, i=1,2,3. (396)
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Vvﬂh(arg8)==(p%,pﬁ,pﬁ,pi,(p1—sz)z,(pz-%pg) Tn%,n1p1n2,nn3) Zero
external momenta will be set, so we only need:

;D :u4DJ qu |

Tom? (2m)® (a2 —mg) (a2 —m7) (g2 —m3) (g2 —m3)’
LDOO _ H4_DJ dPq q2 |
Tom? 4 ) 2mP (g2 —m§) (¢? —m7) (42 —m3) (¢ —m3)

(397)
In terms of the mass ratios x = mj /mo, y = mz/mo, z = 1113/111O the
previous integrals read:

_oan xlog[x] _ y logly]
do(x,y,2) = mgDo = (T—x)(x—y)(x—2) (1T-y)x—y)ly—2z
N zloglz]
(1-2)(x—2z)(y—2)
) B , - zlog[ ] B gzlog[y]
do(x,y,z) = 4mgDoo = T—x)(x—y)(x—z) (1—y)x—y)(y—2)
z? log|z]

+

(1—2)(x=2)(y—2)°
(398)
The case in which z — 1 (argument omitted below) is also necessary, read-

ing:

x log[x] _ ylogly] 1 }

d°(x’”):_[m—x)2(x—y) Ay (X 0—y)

2 2 (399)
do(x ):_{ x“loglx]  y~loglyl N 1
T I S x—y) -y x—y  0—x -y






ADDITIONAL PLOTS

In this appendix we show some results that were not included in the main
discussion, since the graphs are analogous to those already shown and do
not provide new information.

In figure 30a we show the correlation of BR(t — ey) against other decays.
As we expected there is not a testable correlation with the wrong sign decay
BR(T — eefi) but with the same flavor decay BR(T — eee) there is a cor-
relation which is like the analogous processes with muons (see figure 19a).
In figure 30b we show the behavior of the three same flavor decays, we see
a small correlation in our results, that are basically the same for the cases
of BR(t — 3¢), { = e, u against BR(n — eee), although the decay width is
essentially the same, flavor coefficients are different in all the cases.

BR(T - eeé)
3

BR(T - i)

107 107 107" 107 107" 10" 107 107 107 107 107 107 107"

BR(T-ey) BR(u - eeé)

(@) BR(t — ey) vs. BR(t — eeé), BR(t — eeft) (b) BR(n — eeé) vs. BR(t — upft), BR(t — eeé)

Figure 30: Scatter plots for £ — ¢’y and some ¢ — 3{’ decays.

BR(T - peé)
BR(T - efi)

BR(T - ué)
3

BR(T - eejfi)
3

107" 0 107" 107" 107" 107
BR(T = upa) BR(T = ppfa)

(@) BR(t — pppt) vs. BR(T — ppe), BR(t — pnee) (b) BR(T — ppfi) vs. BR(t — eefi), BR(T — epfi)

Figure 31: Scatter plots for { — 3¢’ decays.
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In figure 31 we show the analogous processes of figures 19b and 20a. In
this plot we see the same behavior, where there is a big correlation between
BR(t — ppit) and BR(t — peeé) and a small one with BR(t — epft), and the
correlation with the wrong sign decays is quite small (as in the electron case),
however, correlation is bigger in the case of the same flavor coefficients that
in the case of different ones. In figures 32, 33 we show the analogous pro-
cesses (with electrons) of figures 22, 23, in which we see a similar behavior
that in the muon case but with a suppression of three orders of magnitude.

e Anomaly 7 s Universal

R(e-T:Fe)

*  Anomaly ©  Universal

R(e-T:Pb)

10 10 10 10" w0 10 107" 10 10 10 10 10" w0 10 10 10
BR(T - eeé) BR(T - eeé)

(@) BR(t — eee) vs. R(e — T:Fe), R(e — t:Pb) (b) BR(t — eee) vs. R(e — T: Fe), R(e — T: Pb)

Figure 32: Scatter plots for { — ¢’ nuclei conversion.

_7 s Anomaly

R(e—T:Fe)

R(e-T:Fe)

2 20 -18 -16

10° 10° 10° 107 10° 10° 10 10
R(e - T:Pb)

Figure 33: R(e — 1: Pb) vs. R(e — 7: Fe)
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