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We present N = 2 supersymmetric non-Abelian duality-symmetry between a tensor multiplet and an 
extra vector multiplet in D = 3 + 2 dimensions. Our system has the Yang-Mills (YM) vector multiplet 
(Aμ

I , λI ), a tensor-multiplet (Bμν
I , χ I , ϕ I ), and an extra vector multiplet (Cμ

I , ρ I , σ I ). The index 
I=1,2,··· ,dimG is for the adjoint representation of a non-Abelian group G . The Aμ

I is the conventional 
YM gauge field, Bμν

I is a non-Abelian tensor field, while ϕ I and σ I are scalar fields. The λI , χ I and ρ I

are Majorana fermions in the 2 of Sp(1). The Bμν
I and Cμ

I -fields have their respective field-strengths 
defined by Gμνρ

I ≡ +3D��μBνρ�� I + 3 f I J K F��μν
J Cρ�� K and Hμν

I ≡ +2D��μCν�� I + mBμν
I + f I J K φ J Hμν

K −
f I J K σ J Fμν

K . The duality relationship is Hμν
I = (1/6) εμν

ρστ Gρστ
I − (1/2) f I J K (λ J γμνχ

K ), with 
its super-partner relationships: ϕ I = −σ I , χ I = −ρ I . Since Hστ

I contains mBστ
I linearly, this is a 

‘massive’ self-dual relationship. Interestingly, the closure of supersymmetries shows the intrinsic global 
scale symmetry: δζ (Bμν

I , χ I , ϕ I , Cμ
I , ρ I , σ I ) = +mζ(Bμν

I , χ I , ϕ I , Cμ
I , ρ I , σ I ). By certain dimensional-

reduction scheme into D = 2 + 2, we show that self-dual supersymmetric tensor multiplet is generated. 
We deduce that our present theory in D = 3 + 2 can serve as the underlying ‘Master Theory’ of a similar 
system in D = 2 + 2.

© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

In our recent paper [1], we have presented a self-dual Yang-Mills vector multiplet (YMVM) in D = 2 +2 space-time dimensions coupled 
to a self-dual tensor multiplet (TM) and an extra vector multiplet (EVM). The study of self-dual supersymmetric YM theories in D = 2 + 2
[2][3] was motivated by Atiyah’s conjecture [4] that all bosonic integrable systems in dimensions 1 ≤ D ≤ 3 are generated by the self-
dual YM theory in D = 2 + 2. In other words, the self-dual YM theory in D = 2 + 2 is conjectured to be the ‘Master Theory’ of all 
bosonic integrable systems. It is then natural to expect that its supersymmetrized conjecture i.e., the supersymmetric self-dual YM theories 
in D = 2 + 2 will generate all supersymmetric integrable systems in 1 ≤ D ≤ 3. As such, it is natural to expect that our recent theory [1]
generates supersymmetric integrable models in 1 ≤ D ≤ 3, as well.

Additionally, expectations such as above compel one to explore even higher-dimensional ‘Grand Master Theory’ that generates self-
dual supersymmetric theories in D = 2 + 2 [2][3][1][5]. If we are to consider such a theory, the space-time dimensions should have at 
least two time-coordinates, because of the overlap with theories in D = 2 + 2 [2][3][1]. In fact, in our recent paper [5], we have shown 
that our N = 2 supersymmetric theory in D = 3 + 3 actually generates N = 1 supersymmetric self-dual non-Abelian tensor multiplet in 
D = 2 + 2. In this present paper, we establish a supersymmetric theory with odd-dimensional duality in D = 3 + 2 generating self-dual 
supersymmetric tensor multiplet in D = 2 + 2 [1]. Even though D = 3 + 3 is higher dimensional than D = 3 + 2, our new result is that 
odd-dimensional self-dual theory can also generate D = 2 + 2 self-dual non-Abelian TM [1].

There are two new aspects in our present approach: (i) We need space-time with the signature (+, +, +, −, −) instead of the conven-
tional (+, +, +, +, −) [6][7], due to the two time-coordinates needed. This is similar to our recent theory in D = 3 + 3 [5] instead of the 
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conventional D = 5 + 1 [8][9]. (ii) There have been no works formulating supersymmetric odd-dimensional self-duality for non-Abelian 
tensor-multiplet in the past in D = 3 + 2.

Close considerations reveal that there is a good analogy between TMs in D = 3 + 2 and D = 2 + 2. The TM (Bμν
I , χ I , ϕ I ) in D = 3 + 2

with 4 +4 degrees of freedom (DOF) has formally the same field content as the TM (Bμν
I , χ I , ϕ I ) in D = 2 +2 with 2 +2 DOF. In particular, 

the analog of the duality relationship2 Gμνρ
I ∗= +εμνρ

σ Dσ σ I in D = 2 +2 [3] is like Gμνρ
I = +(1/2) εμνρ

στ Hστ
I in D = 3 +2. The latter 

is known as the ‘odd-dimensional self-duality’ between a tensor field-strength and its mass-term [10][11], if Hστ
I contains the Stueckelberg 

type [12] mass-term mBμν
I . A typical example for odd-dimensional self-duality is the 3D case [10][11]3:

mAμ
∗= + 1

2
εμ

ρσ Fρσ . (1.1)

Here the left-side is regarded as the ‘mass’-term of the Abelian vector Aμ . The gauge non-invariant left-side can be improved by a gauge-
invariant field-strength Hμ ≡ ∂μϕ+mAμ of a scalar ϕ . It is much like the Proca-Stueckelberg mechanism [12], where the field-redefinition 
can absorb the ∂μϕ , and one again goes back to (1.1). Even though general examples in odd dimensions for purely-bosonic and Abelian 
systems were given in [10], and non-Abelian cases are considered in 3D [11], still no simultaneous accomplishment of supersymmetrization, 
D = 3 + 2-extension and non-Abelianization was achieved thereafter, including [11].

Our objective is to find a ‘Master Theory’ more fundamental than self-dual supersymmetric systems in D = 2 + 2 [1]. The simplest 
choice is to consider D = 3 + 2 space-time. To this end, we also need to follow the formulations in [6], and make use of a VM, paying 
attention to the subtle difference between D = 3 + 2 and D = 4 + 1.

Another important point is the lack of action formulation for massive self-dualities in 4k + 1 = 5, 9, 13, · · · -dimensional space-time. For 
example, consider the 5D case. A 2nd-rank tensor Bμν has its self-duality

mBμν
I ∗= + 1

6
εμνρστ G(0)

μνρ , (1.2)

where G(0)
ρστ ≡ 3∂��ρ Bστ�� . A candidate lagrangian is

L = + 1
4

m2(Bμν)2 + 1
24

m εμνρστ Bμν G(0)
ρστ . (1.3)

This lagrangian looks like yielding the self-duality (1.1) as its B-field equation. However, the 2nd term in (1.3) is actually a total divergence
by itself, and will not yield the ε G-term in (1.2). As the sign change by index-flipping shows, this total-divergence problem arises in 
odd-dimensions 4k + 1 = 5, 9, 14, · · · , but not in D = 4k − 1 = 3, 7, · · · . In [10], this problem with general D = 4k + 1 was described as 
‘tachyon’-problem. This crucial difference between D = 4k − 1 and D = 4k + 1 was not discussed in [11]. Such a tachyonic problem is not
the essential problem here, since we are dealing with D = 3 + 2 dimensions with two time coordinates. However, the total-divergence 
problem persists against the action principle in 5D. For this reason, we have to rely on an action-less formulation without field equations.

There is an additional problem with the fermionic mass-term that vanishes identically. This is because in D = 3 + 2, the flipping 
property of fermionic-bilinears gives the identically-vanishing mass-term like (ψψ) ≡ 0, as the n = 0 case shown in (2.3a) later. For these 
reasons, we heavily rely on the field-equation analysis instead of lagrangian formulation.

Independent of odd-dimensional self-duality itself [10], 5D space-time dimension has additional interest, because of Randall-Sundrum 
type brane-world scenario [13], and its supersymmetrization [14]. Even though our present metric-signagure differs from D = 4 + 1, there 
are still potential interest to consider supersymmetric theories in D = 3 + 2. In fact, plural versions [15] of M-theories [16] were found in 
D = 9 + 2 and D = 6 + 5, yielding type-IIA string theories [17] in D = 10 + 0, D = 9 + 1, D = 8 + 2, D = 6 + 4 and D = 5 + 5, which are 
linked each other by duality-transformations.

In the present paper, we take the first step toward the non-Abelianization and supersymmetrization of the original odd-dimensional 
self-duality [10] into D = 3 + 2 space-time. After preliminary preparations in the next section, we present the total system in section 3. In 
section 4, we show that our system in D = 3 + 2 actually generates self-dual tensor multiplet in D = 2 + 2. The concluding remarks are 
given in section 5.

2. Preliminaries

We start with the preliminaries for clarity in presentation. First of all, the fermions in D = 3 +2 are assigned with an additional doublet 
index of e.g., Sp(1), because of the required 4 + 4 DOF. This has been well-known in the case of D = 4 + 1 [18][6], similar to D = 3 + 2.

The odd-dimensional self-duality (1.1) in 3D is generalized in 5D to the case of a second-rank tensor Bμν
I as

Hμν
I ∗= + 1

6
εμν

ρστ Gρστ
I , (2.1)

where Hμν
I ≡ 2D��μCν�� I + mBμν

I 4 and Gμνρ
I ≡ 3D��μBνρ

I + 3 f I J K Fμν
J Cρ�� I are respectively the field-strengths of Cμ

I and Bμν
I . As in 

(1.1), the left side has now the ‘mass’ term of Bμν
I . Because of the non-Abelian tensor involved, we need to adopt the general formulation 

of tensor-hierarchy [19][20]. In other words, we need at least one tensor Bμν
I and one extra vector Cμ

I , in addition to a vector for YM 
gauge group. This fixes the ‘candidate multiplets’ in our system as the YMVM (Aμ

I , λI , φ I ), a TM (Bμν
I , χ I , ϕ I ) and an extra vector-

multiplet (EVM) (Cμ
I , ρ I , σ I ). All of these multiplets are in the adjoint representation of the gauge group. These multiplets are parallel to 

the self-dual tensor multiplet in D = 2 + 2 [1]. Each of these multiplets has the 4 + 4 DOF, modulo their adjoint indices.

2 The symbol ∗= stands for a duality relationship or an equality that holds by the use of the duality, that is distinguished from usual algebraic equalities or field equations.
3 Our convention in D = 3 +2 is such as (1/n!)εμ1 ···μ5−n��n��ε��n��ν1 ···ν5−n = +(5 −n)! δ��μ1

ν1 · · · δμ5−n��ν5−n , and (1/n!) εμ1 ···μ5−n
��n��γ��n�� = (−1)n(n−1)/2γμ1 ···μ5−n . Here the symbol 

��n�� is for totally antisymmetric n-indices.
4 The definitions of the H-field strength are temporarily simplified here for the sake of argument, but their final forms will be defined later by (3.4c) with the additional 

φH and σ F -terms. Also in the supersymmetric case later as in (3.1), the right side of (2.1) will also get a fermionic bilinear term.
2
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As has been mentioned, the duality (2.1) obstructs the action principle, because the lagrangian term of the type H ∧ G has only a total 
divergence at the lowest order: (1/24) εμνρστ Hμν

I Gρστ
I ∇=O(�3).5 This feature is valid even with our covariantized field strengths such 

as Gμνρ
I and Hμν

I . For this reason, we have to rely only on field equations instead of the action principle.
Similar to D = 4 + 1 case [6][7], we need to assign the fermions to carry an additional 2-index of, e.g., Sp(1). To be more specific, a 

Majorana fermion in D = 3 + 2 has 2 on-shell physical degrees of freedom, just in D = 3 + 1. Moreover, the right DOF for an N = 2 vector 
multiplet must be 4 + 4, because a vector in D = 3 + 2 already has 3 (but not 2) DOF as in D = 4 + 1 [6]. For this reason, the DOF of a 
gaugino should be doubled to have 4 on-shell DOF, and a scalar must be also present in the multiplet. For this reason, the gaugino in our 
YMVM (Aμ

I , λI , φ I ) should be in the 2 of Sp(1). Accordingly, we introduce the 2 × 2 matrices of Sp(1)-generators ti
(i=1,2,3) [5]:(

(τ1)a
b
)

=
(

0 −i
−i 0

)
,

(
(τ2)a

b
)

=
(

0 −1
1 0

)
,

(
(τ3)a

b
)

=
(−i 0

0 i

)
, (2.2a)

(εab) =
(

0 1
−1 0

)
, τ iτ j = −δi j I + ε i jkτ k . (2.2b)

The multiplication is performed in an Sp(1)-covariant way, e.g., (τ iτ j)a
b ≡ (τ i)a

c(τ j)c
b, (τ I )ab ≡ (τ i)a

cεcb = +(τ I )ba (a,b,···=1,2), etc.
Following [18], the flipping and hermiticity properties of scalar products of Majorana spinors ψ and χ in D = 3 + 2 are

(ψγ ��n��χ) = −(−1)n(n−1)/2(χγ ��n��ψ) , (ψγ ��n��τ iχ) = (−1)n(n−1)/2(χγ ��n��τ iψ) , (2.3a)

(ψγ ��n��χ)† = +(ψγ ��n��χ) , (2.3b)

where ψ and χ here carry the doublet-index a=1,2 of Sp(1). Accordingly, (ψγ ��n��τ iχ) ≡ (τ i)a
b(ψaγ ��n��χb), etc. The importance of 

these doublet representations in the flipping property (2.3a) is reflected in the case of n = 1 in the translation parameter ξμ ≡
+2(ε1γ

με2) in the commutator of two supersymmetry transformations. This is because the parameter ξμ ≡ +2(ε1γ
με2) = −2(ε2γ

με1)

in � �δQ (ε1), δQ (ε2)� � = δP (ξμ) should be antisymmetric under ε1 ↔ ε2. If ψ and χ in (2.3a) were singlets instead of doublets of Sp(1), 
then the flipping would be (ψγ μχ) = +(χγ μψ), leading to ξμ ≡ +2(ε1γ

με2) = +2(ε2γ
με1) symmetric in ε1 ↔ ε2, which would not be

acceptable. Therefore, the doubling of the Majorana spinor as the 2 of Sp(1) is needed with the contraction by the anti-symmetric met-
ric εab = −εba like ξμ ≡ +2(ε1γ

με2) = +2(ε1
aγ με2a) = +2εab(ε1bγ

με2a) = +2εab(ε2aγ
με1b) = −2εba(ε2aγ

με1b) = −2(ε2
bγ με1b) =

−2(ε2γ
με1).

The Fierz-rearrangement formula for Majorana spinors in the 2 of Sp(1) is given by

(ψχ)(ρω) = − 1
8

(ψω)(ρχ) + 1
8

(ψτ iω)(ρτ iχ) − 1
8

(ψγμψω)(ργ μχ) + 1
8

(ψγμτ iω)(ργ μτ iχ)

+ 1
16

(ψγμνω)(ργ μνχ) − 1
16

(ψγμντ
iω)(ργ μντ iχ) . (2.4)

As is seen from our self-dual TM in D = 2 +2 [1], the tensor-hierarchy with the Proca-Stueckelberg-type field-strength [12] necessitates 
the fermions to be massive. As will be shown below, in the usual D = 4 + 1, such a massive fermion leads to a tachyonic field equation. 
However, since our space-time is D = 3 + 2, it does not pose the ‘tachyon problem’ for massive fields.

To clarify this, consider the conventional D = 4 +1 case [6][7]. According to [18], the hermiticity requires the presence of the imaginary 
unit ‘i’ in front of some fermionic bilinears. This result follows from the general analysis in [18]:

(ψγ ��n��χ)† = −(−1)n(ψγ ��n��χ) , (2.5)

in contrast to (2.3b). For example, n = 0 needs ‘i’, while n = 1 does not need it to make each of i(ψχ) and (ψγ μχ) hermitian [6]. 
Accordingly, the right field-equation for a massive Majorana fermion in D = 4 + 1 needs the imaginary unit ‘i’ as the relative coefficient 
ratio between the kinetic and the mass term6:

/∂ψ
.= imψ =⇒ ∂2

μψ
.= +/∂(imψ)

.= (im)(im)ψ = −m2ψ =⇒ ∂2
μψ + m2ψ

.= 0 . (2.6)

In D = 4 + 1, such a Klein-Gordon equation has a tachyonic mass term. In contrast in our D = 3 + 2, we do not need to worry about this 
for the two reasons: (i) The signature of the metric (+, +, +, −, −) implies that tachyonic field-equation will not matter. This resembles 
D = 2 + 2. (ii) Since the presence of the massive field equation is inevitable for tensor-hierarchy formulations [19][20] via generalized 
Stueckelberg mechanisms [12], D = 3 + 2 instead of D = 4 + 1 is the right space-time, where tensor-hierarchy formulation is realized.

3. Self-dual non-Abelian tensor-multiplet in D = 3 + 2

After these preliminaries, we are now ready to present the formulation of our total system. First, there are three multiplets in our 
system: YMVM (Aμ

I , λI , φ I ), TM (Bμν
I , χ I , ϕ I ) and EVM (Cμ

I , ρ I , σ I ). Second, due to the doubling of fermions needed, supersymme-
try parameter should be assigned in the 2 of Sp(1). In this sense, our supersymmetry is extended N = 2 supersymmetry. Third, our 
supersymmetric duality-relationship is

Hμν
I ∗= + 1

6
εμν

ρστ Gρστ
I − 1

2
f I J K (λ J γμνχ

K ) , (3.1)

where the last term is required by N = 2 supersymmetry. Our N = 2 supersymmetry requires its super-partner conditions

5 We use the symbol ∇= for an equality up to a total divergence, while O(�n) for the n-th order term in fundamental fields symbolized by �.
6 The symbol .= stands for a field equation, or an equality that holds by the use of field equations, that is distinguished from usual algebraic equalities or field equations.
3
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ϕ I ∗= −σ I , χ I ∗= −ρ I . (3.2)

Our N = 2 supersymmetry transformation rule is fixed as

δQ Aμ
I = + (εγμλI ) , (3.3a)

δQ λI = + 1
2

(γ μνε)Fμν
I − (γ με)Dμφ I , (3.3b)

δQ φ I = + (ελI ) , (3.3c)

δQ Bμν
I = + (εγμνχ

I ) − 2 f I J K (εγ��μλ J )Cν��K (3.3d)

δQ χ I = + 1
6

(γ μνρε)Gμνρ
I − (γ με)Dμϕ I + mεϕ I − mf I J K εϕ J φK

+ 1
8

f I J K (γμνε)(λ J γ μνχ K ) + 1
4
(τ iε)(λ J τ iχ K ) − 1

4
(τ iγμε)(λ J γ μτ iχ K ) , (3.3e)

δQ ϕ I = + (εχ I ) , (3.3f)

δQ Cμ
I = + (εγμρ I ) − f I J K φ J (εγμρK ) + f I J K σ J (εγμλK ) , (3.3g)

δQ ρ I = + 1
2

(γ μνε)
[

Hμν
I + 1

2
f I J K (λ

J
γμνχ

K )
]
+ (γ με)Dμϕ I + mεϕ I + mf I J K εϕ J φK

− 1
8

f I J K (γμνε)(λ J γ μνχ K ) − 1
4

(τ iε)(λ J τ iχ K ) + 1
4

(γμτ iε)(λ J γ μτ iχ K ) , (3.3h)

δQ σ I = + (ερ I ) . (3.3i)

These equations are valid up to O(�3).7

The field-strengths F , G and H of the potentials A, B and C are defined by

Fμν
I ≡ + ∂μ Aν

I − ∂ν Aμ
I + mf I J K Aμ

J Aν
K , (3.4a)

Gμνρ
I ≡ + 3D��μBνρ�� I + 3 f I J K F��μν

J Cρ��K , (3.4b)

Hμν
I ≡ + 2D��μCν�� I + mBμν

I + f I J K φ J Hμν
K − f I J K σ J Fμν

K . (3.4c)

Note that the 3rd and 4th terms in (3.4c) are not required by tensor-hierarchy consistency [19][20], but by supersymmetry. They satisfy 
their proper Bianchi identities

D��μFνρ�� I ≡0 , (3.5a)

D��μGνρσ �� I ≡ + 3
2

f I J K F��μν
J Hρσ ��K , (3.5b)

D��μHνρ�� I ≡ + 1
2

mGμνρ
I − f I J K Hμν

J Dρ��φK + f I J K F��μν
J Dρ��σ K + 1

3
f I J K φ J Gμνρ

K . (3.5c)

Eqs. (3.5b,c) are valid up to O(�3)-terms. The general variations of the field strengths F , G and H are

δFμν
I = + 2D��μ(δAν�� I ) , (3.6a)

δGμνρ
I =3D��μ(̃δ Bνρ�� I ) − 3 f I J K (̃δ C��μ J )Fνρ��K + 3 f I J K (δA��μ J )Hνρ��K (3.6b)

δHμν
I =2D��μ(̃δ Cν�� I ) + m(̃δ Bμν

I ) − mf I J K (̃δ Bμν
J )φK

+ f I J K (δφ J )Hμν
K − 2 f I J K (̃δ C��μ J )Dν��φK

− f I J K (δσ J )Fμν
K + 2 f I J K (δA��μ J )Dν��σ K , (3.6c)

δ̃ Bμν
I ≡ + δBμν

I + 2 f I J K (δA��μ J )Cν��K , (3.6d)

δ̃ Cμ
I ≡ + δCμ

I + f I J K φ J (̃δ Cμ
K ) − f I J K σ J (δAμ

K ) . (3.6e)

In addition to the supersymmetric dualities (3.1) and (3.2), the dynamics of our system is determined by the field equations

/DλI + mf I J K λ J φK .= 0 , (3.7a)

/Dχ I + mχ I − 1
4

f I J K (γ μνχ J )Fμν
K + 1

2
f I J K (γ μχ J )DμφK − 1

4
f I J K (γ μνλ J )Hμν

K

− 1
2

f I J K (γ μλ J )DμϕK + 1
2

mf I J K λ J ϕK − mf I J K χ J φK .= 0 , (3.7b)

Dν Fμ
ν I − mf I J K φ J DμφK + 1

2
mf I J K (λ J γμλK )

.= 0 , (3.7c)

D2
μφ I − 1

2
mf I J K (λ J λK )

.= 0 , (3.7d)

D2
μϕ − m2ϕ I − 1

2
f I J K Fμν

J Hμν K − f I J K (Dμφ J )(DμϕK )

− mf I J K (λ J χ K ) − 2m2 f I J K φ J ϕK .= 0 . (3.7e)

7 Similarly, our field equations e.g., (3.7) will be also valid up to O(�3)−terms.
4
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Dρ Gμν
ρ I − mHμν

I − mf I J K (λ J γμνχ
K )

− f I J K Gμν
ρ J DρφK − 1

2
εμνρστ Fρσ

J Dτ ϕ
K + f I J K φ J Hμν

K

− f I J K (λ J γ��μDν��χ K ) + f I J K (χ J γ��μDν��λK )
.= 0 , (3.7f)

Dν Hμ
ν I − 1

2
f I J K Fνρ

J Gμ
νρ K − 1

2
mf I J K (λ J γμχ K )

+ 1
2

f I J K (χ J DμλK ) − 1
2

f I J K (λ J Dμχ K )
.= 0 . (3.7g)

These field equations are valid up to O(�3). Due to (3.2), i.e. the proportionalities σ I .= − ϕ I as well as ρ I .= − χ I , we skip the field 
equations of σ I and ρ I . Eq. (3.7f) and (3.7g) are the corollaries of the duality (3.1) by taking its divergences.

The mutual consistency of these field equations under supersymmetry can be confirmed as usual by their variations under supersym-
metry. First, the mutual consistency between λI , Aμ

I and φ I -field equations (3.7a,c,d) is easy to confirm, e.g.,

δQ

[
+/DλI + mf I J K λ J φK

]
= +(γ με)

[
−Dν Fμ

ν I − 1
2

mf I J K (λ J γμλK ) + mf I J K φ J DμφK
]

+ ε
[
−D2

μφ I + 1
2

mf I J K (λ J λK )
] .= 0 , (3.8)

upon the use of (3.7c,d). We can also take δQ of the Aμ
I and φ I -field equations, whose details are skipped here.

Second, the χ-field equation (3.7b) is obtained by the δQ -variation of the duality relationship (3.1):

δQ

[
+Gμνρ

I − 1

2
εμνρ

στ Hστ
I + 1

2
f I J K (λ J γμνρχ K )

]
∗= +εγμνρ

[
/Dχ I + mχ I − 1

4
f I J K γ στχ J Fστ

K + 1
2

f I J K (γ σχ J )Dσ φK − 1
4

f I J K (γ στ λ J )Hστ
K

− 1
2

f I J K (γ σ χ J )Dσ ϕK + 1
2

mf I J K λ J ϕK − mf I J K χ J φK
] .= 0 (Q .E.D.) (3.9)

As the 1st equality ∗= shows, we have used the duality (3.1), such as re-expressing the field-strength G by H . The last equality .= holds 
upon the use of the χ-field equation (3.7b).

Third, the ϕ I -field equation (3.7e) is obtained by the δQ -variation of the χ-field equation (3.7b):

δQ

[
+ /Dχ I + mχ I − 1

4
f I J K (γ μνχ J )Fμν

K + 1
2

f I J K (γ μχ J )DμφK − 1
4

f I J K (γ μνλ J )Hμν
K

− 1
2

f I J K (γ μλ J )DμϕK + 1
2

mf I J K λ J ϕK − mf I J K χ J φK
]

∗= − ε
[
+ D2

μϕ I − m2ϕ I − 1
2

f I J K Fμν
J Hμν K

− f I J K (Dμφ J )(DμϕK ) − 2m2 f I J K φ J ϕK − mf I J K (λ J χ K )
] .= 0 . (3.10)

In the 1st equality ∗=, we have used only the duality (3.1), but not field equations in (3.7).
As in the general tensor-hierarchy formulations [19][20], the tensor B and the vector C have their proper tensorial transformations:

δβ Bμν
I =2D��μβν�� I , δβ Cμ

I = −mβμ
I , (3.11a)

δγ Bμν
I = + f I J K γ J Fμν

K , δγ Cμ
I = +Dμγ I . (3.11b)

It is straightforward to show the invariances of the G and H-field strengths: δβ Gμνρ
I = δβ Hμν

I = 0, δγ Gμνρ
I = δγ Hμν

I = 0.
As an additional confirmation, we give the closure of two supersymmetries:

��δQ (ε1), δQ (ε2)�� = δξ + δα + δβ + δγ + δζ , (3.12)

where δξ and δα are respectively the translation and YM-gauge transformations. The δβ , δγ and global scale transformation δζ have the 
parameters:

ξμ ≡ + 2(ε1γ
με2) , α I ≡ −ξμ Aμ

I , (3.13a)

βμ
I ≡ − ξν Bνμ

I − ξμϕ I + ζ Cμ
I , γ I ≡ −ξμCμ

I − 2ζϕ I , ζ ≡ +(ε2ε1) , (3.13b)

δξ Z I ≡ + ξμ∂μ Z I , δα Z
′ I = −mf I J K α J Z

′ K , δα Aμ
I = Dμα I , δζ Y I = +mζ Y I , (3.13c)

where Z I is any field in our system with the adjoint index I , Z
′ I is any field except for Aμ

I , while Y I ∈ {Bμν
I , χ I , ϕ I , Cμ

I , ρ I , σ I }. The δβ

and δγ are the same as in (3.11). The YMVM fields are all intact under δζ .
Note the existence of the intrinsic global scale transformations for our fields Y I , which is a new feature of our present system that has 

not been encountered in the past in tensor-hierarchy formulations [19][20].
5
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As additional important confirmation, we can see the divergences of (3.7f):

0
?=Dν

[
Dρ Gμνρ I − mHμν I − mf I J K (λ J γ μνχ K )

− f I J K Gμνρ J DρφK − 1
2
εμνρστ Fρσ

J Dτ ϕ
K + f I J K φ J Hμν K

− f I J K (λ J γ ��μDν��χ K ) + f I J K (χ J γ ��μDν��λK )
]

.= +
(

1
2

− 1 + 1
2

)
mf I J K (χ J DμλK ) +

(
− 1

2
+ 1 − 1

2

)
mf I J K (λ J Dμχ)

+
(
− 1

2
+ 1 − 1

2

)
m2 f I J K (λ J γμχ K ) = 0 (Q .E.D.) (3.14)

Here we have used (3.7g) and fermionic field equations (3.7a) and (3.7b). This result is also valid up to O(�3).
We have so far fixed our field equations (3.7) and our transformation rule (3.3) up to O(�3)-terms. This principle is based on our past 

experience that any supersymmetric theory with lowest-order interactions will not encounter inconsistency at higher-orders. Also, fixing 
higher-order terms is beyond the scope of this Letter.

Before closing this section, we mention a natural question whether our present theory in D = 3 + 2 comes from higher-dimensional 
theories, such as in D = 3 + 3 [5]. Judged by the certain similarities of the field contents of these two theories, we conjecture that our 
D = 3 + 3 [5] will yield our present D = 3 + 2 theory by certain dimensional reductions. We have not performed its detailed computation, 
which is beyond the scope of this paper.

4. Reduction to self-dual TM in D = 2 + 2

The original motivation of our present theory is to formulate a self-dual theory in D = 3 + 2 as the possible fundamental ‘Master 
Theory’ of D = 2 + 2 self-dual theories [2][3][1]. To this end, it should be demonstrated that the self-dual tensor multiplet given in [1] is 
generated by dimensional-reduction and truncation. The resulting theory in D = (2, 2) in this section will be what is called “Theory-I” in 
[5].8

Here we take advantage of the similarity between the tensor multiplets in D = 3 + 2 and D = 2 + 2. For example, the latter field 
contents: YMVM (Aμ

I , λ− I ), TM (Kμν
I , ζ+ I , M I ) and EVM (Nμ

I , η− I ) are parallel to the former.9

The original supersymmetry transformation rule in D = 3 + 2 is10

δQ Âμ̂
I = + (̂εγ̂μ̂λ̂I ) , (4.1a)

δQ λ̂I = + 1
2

(γ̂ μ̂ν̂ ε̂) F̂μ̂ν̂
I − (γ̂ μ̂ε̂)D̂μ̂φ̂ I , (4.1b)

δQ φ̂ I = + (̂ελ̂I ) , (4.1c)

δQ B̂μ̂ν̂
I = + (̂εγμ̂ν̂ χ̂

I ) − 2 f I J K (̂εγ̂��μ̂λ̂ J )̂C ν̂��K (4.1d)

δQ χ̂ I = + 1
6

(γ̂ μ̂ν̂ρ̂ ε̂)Ĝμ̂ν̂ρ̂
I − (γ̂ μ̂ε̂)D̂μ̂ϕ̂ I + mε̂ϕ̂ I − mf I J K ε̂ϕ̂ J φ̂K

+ 1
8

f I J K (γ̂μ̂ν̂ ε̂)(̂λ J γ̂ μ̂ν̂ χ̂ K ) + 1
4
(τ i ε̂)(̂λ J τ iχ̂ K ) − 1

4
(τ i γ̂μ̂ε̂)(̂λ J γ̂ μ̂τ iχ̂ K ) , (4.1e)

δQ ϕ̂ I = + (̂εχ̂ I ) , (4.1f)

δQ Ĉμ̂
I = + (̂εγ̂μ̂ρ̂ I ) − f I J K φ̂ J (̂εγ̂μ̂ρ̂K ) + f I J K σ̂ J (̂εγ̂μ̂λ̂K ) . (4.1g)

We have skipped δQ ρ̂ I and δQ σ̂ I , because of ρ̂ I .= − χ̂ I and σ̂ I .= − ϕ̂ I .
We fix the signatures of our D = 3 + 2 metric as

d̂s2 = +(dx1)2 + (dx2)2 − (dx3)2 − (dx4)2 + (dy)2 , (4.2)

regarding the y ≡ x5-coordinate as the extra dimension from the D = 2 + 2 viewpoint. Our resulting field content YMVM, TM and EVM 
[1][5] in D = 2 + 2 in our dimensional-reduction rule are

Âμ̂
I =

{
Âμ

I = Aμ
I (μ̂=μ) ,

Â5
I = 0 (μ̂=5) ,

(4.3a)

B̂μ̂ν̂
I =

{
B̂μν

I = Kμν
I (μ̂=μ;ν̂=ν) ,

B̂μ5
I = Nμ

I (μ̂=μ;ν̂=5) ,
(4.3b)

Ĉμ̂
I =

{
Ĉμ

I = Nμ
I (μ̂=μ) ,

Ĉ5
I = −M I (μ̂=5) ,

(4.3c)

φ̂ I =0 , ϕ̂ I = −σ̂ I = M I , (4.3d)

8 We conjecture that “Theory-II” will be also obtained, whose confirmation is beyond the scope of this paper.
9 Here the subscripts ± are for the chiralities in D = 2 + 2. The fields Kμν

I , ζ+ I , M I , Nμ
I , and η− I respectively correspond to Bμν

I , χ+ I , ϕ I , Cμ
I , and ρ− I in [1].

10 Only in this section, we use all fields and indices in D = 3 + 2 with hats, in order to distinguish them from D = 2 + 2 quantities without hats. Our convention in D = 2 + 2
is such as (1/n!) ε ε��n��ν1 ···ν4−n = +(−1)n(4 − n)! δ��μ1

ν1 · · · δμ4−n��ν4−n , and (1/n!) εμ1 ···μ4−n
��n��γ��n�� = −(−1)(n−1)(n−2)/2γ5γ��n�� .
μ1 ···μ4−n��n��

6
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λ̂a
I =

{̂
λ−1

I = +λ− I , λ̂+1
I = 0 (a=1) ,

λ̂−2
I = +λ− I , λ̂+2

I = 0 (a=2) ,
(4.3e)

χ̂a
I =

{
χ̂+1

I = +ζ+ I , χ̂−1
I = −η− I − f I J K λ− J M K (a=1) ,

χ̂+2
I = +ζ+ I , χ̂−2

I = −η− I − f I J K λ− J M K (a=2) ,
(4.3f)

ρ̂a
I = − χ̂a

I , (4.3g)

ε̂a =
{
ε−1 = + 1

2
ε− , ε+1 = − 1

2
ε+ (a=1) ,

ε−2 = + 1
2
ε− , ε+2 = + 1

2
ε+ (a=2) .

(4.3h)

Each of λ− I , ζ+ I , η− I and ε± is Majorana-Weyl spinor in D = 2 + 2 [2][3] with its indicated chirality. We also require that

∂y X̂ I = 0 , ∂y Ŷ I = +mŶ I , (4.4)

where X̂ I ∈ { Âμ̂
I , ̂λI , ̂φ I } and Ŷ I ∈ {B̂μ̂ν̂

I , ̂χ I , ̂ϕ I , ̂Cμ̂
I , ̂ρ I , ̂σ I }.

This reduction-rule looks unconventional compared with generalized dimensional reduction [21], but its validity is supported by the 
following three viewpoints: First, eq. (4.4) is regarded as the dimensional reduction rule for non-compact isometry for the y-coordinate, 
corresponding to the δζ in (3.13). To be more specific, we can assign the extra factor emy to each of the fields in the TM and EVM, like 
B̂μ̂ν̂

I (x, y) = emy Bμ̂ν̂
I (x), etc. Second, in the usual reduction only for one extra dimension, we allow only compact isometry with eimy

instead of the non-compact function emy . This is because we have to exclude tachyonic mass-terms in the resulting lower-dimensional 
theory. Since our resulting theory is in D = 2 + 2, where tachyonic mass-term is harmless, we can allow such a function emy . Third, as long 
as such a configuration with emy satisfies the original field equations in D = 3 + 2, there should be no inconsistency with this prescription, 
as can be easily confirmed.

We also add the motive for such an unconventional dependence as (4.4): An intuitive reasoning is that our fermion χ I in the TM 
D = 3 + 2 is essentially massive, as its field equation (3.7) shows, while in D = 2 + 2, the fermion ζ+ I in the TM is massless, as its 
field equation (4.7c) below shows. This implies that the original mass-term for χ I in D = 3 + 2 should be canceled to get the massless
ζ+ I -field equation. In order to cancel such an unwanted mass-term by the γ5-linear term in /̂Dχ̂ I = /Dχ̂ I + γ 5∂̂yχ̂

I , we need the special 
y-dependence (4.4). Technical details will be given after (4.8).

Note that half of original minimal 8 supersymmetries in D = 3 + 2 is halved into 4 supersymmetries in D = 2 + 2 by our dimensional 
reduction rule such as (4.3h). These remaining 4 supersymmetries correspond to N = (1, 1) supersymmetries in terms of Majorana-Weyl 
spinors with the two parameters ε+ and ε− .

After applying these to (4.1), we get the final N = 1 supersymmetry transformation rule in D = 2 + 2 [1]:

δQ Aμ
I = + (ε+γμλ− I ) , (4.5a)

δQ λ− I = + 1
4

(γ μνε−)Fμν
I , (4.5b)

δQ Kμν
I = + (ε+γμνζ+ I ) − 2 f I J K (ε+γ��μ|λ− J )N|ν��K (4.5d)

δQ ζ+ I = + 1
12

(γ μνρε−)Lμνρ
I − 1

2
(γ με−)DμM I + f I J K e+(λ− J η−K ) , (4.5e)

δQ M I = + (ε+ζ+ I ) , (4.5f)

δQ Nμ
I = + (ε+γμη− I ) , (4.5g)

δQ η− I = + 1
4

(γ μνε−)Pμν
I − mε−M I . (4.5h)

These are nothing but the transformation rule in D = 2 + 2 given in [1] up to unessential re-scalings of fields. The field-strengths L and P
are defined by [1][5]

Lμνρ
I ≡ +3D��μKνρ�� I − 3 f I J K N��μ J Fνρ��K , Pμν

I ≡ +2D��μNν�� I + mKμν
I . (4.6)

Similarly, the dimensional-reduction rule (4.3) applied to our field equations (3.7) yields the field equations in D = 2 + 2:

/Dλ− I .= 0 , (4.7a)

/Dη− I − 2mζ+ I .= 0 , (4.7b)

/Dζ+ I − 1
4

f I J K (γ μνλ− J )Pμν
K + 1

4
f I J K (γ μνη− J )Fμν

K + mf I J K λ− J M K .= 0 , (4.7c)

Fμν
I ∗= + 1

2
εμν

ρσ Fρσ
I , (4.7d)

Lμνρ
I ∗= −εμνρ

σ Dσ M I , DμM I ∗= + 1
6
εμ

ρστ Lρστ
I , (4.7e)

Pμν
I ∗= + 1

2
εμν

ρσ Pρσ
I , (4.7f)

D2
μM I .= + 1 f I J K Fμν

J HμνK . (4.7g)

2
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These agree with the field equations in D = 2 + 2 [1][5], as desired.
To demonstrate computations in our dimensional-reduction, we show the example of δQ ζ+ I :

δQ ζ+ I =δQ χ+1
I = + 1

12
(γ μνρε−)Lμνρ

I +
[
− 1

2
(γ με−)DμM I +�����1

2
mε+M I

]
−�����1

2
mε+M I

+ 1
8

[
−4 f I J K ε+(λ− J η−K )

]
+ 1

8

[
−4 f I J K ε+(λ− J η−K )

]
(4.8a)

= + 1
12

(γ μνρε−)Lμνρ
I − 1

2
(γ νε−)DμM I − f I J K ε+(λ− J η−K ) , (4.8b)

in agreement with (4.5e). In (4.8a), in the cancellation of two mε+M I -terms, the first one is from (γ 5ε+)∂5ϕ̂ = +mε+M I that cancels the 
original mε+M I -term, yielding no linear mε+M I -term in δQ ζ+ I .

As we promised, the technical reason for the special y-dependence (4.4) is elucidated by the following example. If we apply our 
dimensional-reduction rule (4.3) and (4.4) to the negative-chirality component of the χ̂ I -field equation (3.7b), we get

0
?=
[
+ (̂/Dχ̂

1
I )− + mχ̂−1

I − 1
4

f I J K (γ̂ μ̂ν̂ χ̂1
J )− F̂μ̂ν̂

K − 1
4

f I J K (γ̂ μ̂ν̂ λ̂1
J )− Ĥμ̂ν̂

K

− 1
2

f I J K (γ̂ μ̂λ̂1
J )− D̂μ̂ϕ̂K + 1

2
mf I J K λ̂−1

J ϕ̂K − mf I J K χ̂−1
J φ̂K

]
+ (1→2) (4.9a)

=(+/Dζ+ I −���mη− I ) +���mη− I + 1
4

f I J K (γ μνη− J )Fμν
J

− 1
4

f I J K (γ μνλ− J )Pμν
J + mf I J K λ− J M K .= 0 (Q .E.D.). (4.9b)

Here the subscript − is for the negative-chirality in D = 2 + 2. In (4.9a), “+(1→2)” implies that the terms with the subscript a=1 in 
the preceding brackets replaced by a=2 should be added. The first −mη− I -term in (4.9b) is from γ 5∂5χ−1

I , which cancels the original 
+mη−

I -term from the χ̂ I -field equation.

Even though we do not give all details, there are many other consistency confirmations. For example, we can show that δQ (χ−1
I −

χ−2
I ) = 0:

0
?= δQ (χ−1

I − χ−2
I ) = − 1

12
(γ μνρε+)Lμνρ

I + 1
2
(γ με+)DμM I ∗= 0 . (4.10)

In the last equality, the duality relation (4.7e) has been used.
As the last remark, we mention what the most-important self-duality relations (3.1) and (3.2) yield after our dimensional reduction 

(4.3). First, the ��μν��-component of (3.1) produces the self-duality (4.7f) for Pμν
I . Note that the F M-terms cancel between left and right 

sides, due to the F -duality (4.7d). Second, the ��5μ��-component of (3.1) yields the duality (4.7e) between L and DM . Note that the fermionic 
quadratic term disappears because of (4.3e) and (4.3f). As for (3.2), ϕ̂ I ∗= − σ̂ I has been already identified as the M I -field in (4.3d), while 
χ̂ I ∗= − ρ̂ I has been also given in (4.3g).

5. Summary and concluding remarks

In this Letter, we have established the N = 2 supersymmetric system of odd-dimensional self-duality between a TM and an EVM in 
D = 3 + 2. Our formulation is nothing but the generalization of Abelian ‘odd-dimensional self-duality’ [10] to D = 3 + 2.

We accomplished this formulation by combining three important concepts: (i) The odd-dimensional self-duality [10], (ii) The so-called 
tensor-hierarchy [19][20], and (iii) N = 2 Supersymmetry in D = 3 + 2. To our knowledge, there has been no formulation that realized 
both the ‘non-Abelianization’ and supersymmetrization of odd-dimensional self-duality [10] in 5D.

Our objective has been to establish a higher-dimensional ‘Master Theory’ more fundamental than self-dual supersymmetric YM theories 
in D = 2 + 2 [2][3][1], which in turn generate integrable systems in 1 ≤ D ≤ 3, following the Atiyah’s conjecture for purely-bosonic case 
[4]. In the present paper, we have achieved this objective by reaching our self-dual TM in D = 2 + 2 [1] upon a dimensional-reduction. 
In other words, our present D = 3 + 2 theory does serve as the ‘Master Theory’ for the self-dual TM theory in D = 2 + 2 [1]. Since the 
self-dual super-YM multiplet in D = 2 + 2 itself is already generated by our new theory in D = 3 + 2, it is established that our system 
also generates supersymmetric integrable systems in 1 ≤ D ≤ 3. In other words, we are finding more and more fundamental theories for 
self-dual super-YM theories in D = 2 + 2 [2][3] in higher dimensions.

Our dimensional-reduction in section 4 is highly non-trivial, because the process should be consistent with supersymmetry both in 
D = 3 + 2 and D = 2 + 2. If the total system consisted only of purely-bosonic fields, the process would be much simpler. The dimensional-
reduction rule in section 4 is consistent both with tensor-hierarchy formulation [19][20] and N = 2 supersymmetry.

As a by-product, we have also established the existence of global scale invariance (3.13c) inherent in our system, as the commutator 
of two supersymmetries yields. Our global scale symmetry acts on all fields in the TM and EVM with the common scaling-weight. To our 
knowledge, there was no such multiplets presented in the past with supersymmetric non-Abelian tensor-formulation.

Our dimensional-reduction rule is unconventional, because it does not follow the traditional dimensional-reduction, such as the simple 
dimensional reduction [21], but is based on non-compact isometry. The isometry is associated with the scale covariance (3.13c) of the fields 
in TM and EVM. The two time-coordinates in D = 2 + 2 also justifies the exponential factor emy in (4.4) instead of the usual compact 
one eimy , because we do not have to worry about possible tachyons in D = 2 + 2. Our non-trivial reduction rule also shows that our 
D = 3 + 2 theory can be regarded as the fundamental ‘Master-Theory’ in D = 3 + 2 generating the self-dual TM system in D = 2 + 2. Such 
a relationship has never been presented in the past.

We mention that our formulation is the action-less system, as explained in the Introduction. As described with (1.3), the main reason 
is that the possible lagrangian term like εμνρστ Bμν

I Gρστ
I turns out to be a surface-term. Additionally, as was described at the end of 
8
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section 2, an additional reason is that any mass-term of a Majorana-spinor is identically vanishing in D = 3 + 2, due to (2.3a). This gives 
a new motivation of studying analogous system in higher odd-dimensions.

Because of the signature (+, +, +, −, −) of the metric, there arises no problem with tachyons, just as in the case of self-dual theories 
in D = 2 + 2 [2][3]. This situation is different from the conventional D = 4 + 1 case [6][7], in which the mass term of a fermion leads 
to tachyonic Klein-Gordon equation, as discussed with (2.6). This is because tensor-hierarchy formulations [19][20] generally result in 
massive fields via generalized Stueckelberg mechanisms [12], that necessitate massive fermions which in turn lead to tachyons. The very 
first paper [10] on odd-dimensional self-duality did not have enough motivation to generalize it to non-Abelian supersymmetric case, 
without the recent development in tensor-hierarchy [19][20] and supersymmetric self-duality in D = 2 + 2 [2][3].

Our formulation also gives a strong motivation to study odd-dimensional self-duality with plural time-coordinates, that has never 
been well-explored in the past. In [5], we presented a theory in D = 3 + 3 based on similar philosophy from possible a ‘Master-Theory’ 
viewpoint [5]. The theory in D = 3 + 3 [5] even higher than D = 3 + 2 is more fundamental than the latter, as the ‘Grand-Master Theory’. 
However, the present result gives yet another new direction in D = 3 + 2 with odd-dimensional self-duality, that was originated in [10], but 
has never been well studied in the past for non-Abelian and supersymmetric cases in dimensions higher than 3D.

Once we have established a duality-symmetric system in D = 3 + 2, it remains to explore, if similar formulations exist in higher odd 
dimensions, that are even more fundamental than our present theory in D = 3 + 2, or previous self-dual supersymmetric theories in 
D = 3 + 3 [5], as well.
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