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Prefazione

La struttura di questa tesi può sembrare strana, e in effetti, a mio parere, lo
è.

Essa consta di tre capitoli in lingua italiana all’interno dei quali viene
introdotto l’argomento di studio di questa tesi di ricerca, si enunciano i
risultati ottenuti e le principali considerazioni. La seconda parte, inclusa in
questo documento sotto forma di allegato e scritta in lingua inglese, è la tesi
vera è propria.

Chiaramente, questa suddivizione linguistica comporta inevitabili ridon-
zanze e ripetizioni. Mi accingo dunque a illuminarvi sul motivo di tale,
apparentemente, infelice scelta stilistica. Nel mondo scientifico, la lingua in-
glese è oggigiorno la lingua ufficiale. Redarre una tesi in inglese è un grosso
vantaggio perchè è direttamente spendibile nel “mercato” scientifico, vale a
dire pubblicarla se il lavoro ne è degno o semplicemente presentarla in una
università non italiana. Tale discorso assume ancora maggior valore quando,
come nel presente caso, la materia in questione è molto tecnica e rivolta ad
un ristretto pubblico di specialisti. D’altra parte, le leggi dell’Università di
Parma non permettono al candidato di scrivere un documento di tesi ufficiale
in una lingua straniera. Il risultato del compromesso al quale si è giunti è
rappresentato dalle seguenti pagine.

L’invito a coloro che non avessero particolari problemi con la lingua in-
glese e che fossero interessati all’argomento trattato, è di iniziare a leggere
direttamente a partire dall’allegato.
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Capitolo A

La corrispondenza AdS/CFT

Nella teoria quantistica dei campi gli oggetti di studio fondamentali sono
le particelle elementari presenti in natura, che vengono rappresentate come
punti matematici nello spazio-tempo. La teoria di stringa è una radicale
generalizzazione della teoria quantistica dei campi in cui gli oggetti fonda-
mentali sono invece linee o loop 1-dimensionali, in cui le varie particelle
elementari osservate corrispondono a differenti modi vibrazionali della strin-
ga. Purtroppo non è ancora possibile isolare e osservare direttamente una
stringa in natura, ma ponendosi molto lontano da essa, studiandola quindi a
basse energie, è possibile osservare le sue oscillazioni puntiformi e misurare
le particelle elementari associate. Il notevole vantaggio di questa descrizione
è che mentre ci sono molte particelle elementari, esisterebbe una solo ente, la
stringa, in grado di spiegarne le diverse proprietá. Questo argomento è una
prima indicazione che la teoria di stringa possa rappresentare una teoria di
unificata per le interazioni fondamentali.

Tra gli stati a massa nulla nello spettro della stringa è presente inoltre
una particella a spin 2 che interagisce come un gravitone. In realtà, le uniche
interazioni massless consistenti a spin 2 sono le interazioni gravitazionali. La
teoria di stringa, dunque, include in maniera naturale la relatività generale,
e questa caratteristica la candida come una teoria di gravità́, unificata con
tutte le forze fondamentali. La teoria di stringa è quindi una teoria gravitá
quantistica consistente, libera da divergenze ultraviolette, la quale necessita
del gravitone per la sua consistenza globale.

In questo ultimo decennio, grande interesse è stato dedicato alla connes-
sione tra la teoria di stringa e la teoria dei campi, in particolare studiando la
dualità tra una teoria di stringa in uno spazio-tempo di Anti-de Sitter e una
teoria di campo conforme. Questa equivalenza, nota come corrispondenza
AdS/CFT, è stata originariamente congetturata da Maldacena [1], sebbene
indicazioni della equivalenza erano già presenti in lavori precendenti [2, 3, 4].
Da un lato della corrispondenza abbiamo la teoria di stringa di tipo IIB 10-
dimensionale sullo spazio prodotto AdS5 × S5, dove la 5-forma di flusso di
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tipo IIB attraverso S5 è un intero N e entrambi gli AdS5 e S5 hanno lo stesso
raggio L dato da L4 = 4πgsNα

′2, dove gs è la costante di accoppiamento
di stringa. Dall’altro lato della corrispondenza abbiamo invece la teoria di
Yang Mills 4-dimensionale, con massima supersimmetria N = 4 , gruppo di
gauge SU(N) e costante di accoppiamento g2

Y M = gs, nella fase conforme.
La congettura di Maldacena afferma che queste due teorie, compresi ope-
ratori osservabili, stati, funzioni di correlazione e dinamiche complete, sono
equivalenti una all’altra. Nella forma più forte della congettura, la corri-
spondenza vale per tutti i valori di N e per tutti i regimi della costante di
accoppiamento gs = g2

Y M . Finora si è introdotta l’idea principale alla base
della corrispondenza: vale la pena, a questo punto, di discutere l’argomento
più in dettaglio.

La teoria N = 4 SYM è classicamente conforme, la sua funzione beta è
nulla ed è quindi una teoria di campo quantistica conforme. I gradi di libertà
sono un campo di gauge Aµ, sei scalari Φi e quattro spinori di Majorana Ψ, i
quali tutti trasformano nella rappresentazione aggiunta del gruppo di gauge.
La Lagrangiana, nella spazio euclideo, è data da

L =
1

g2
Y M

Tr







1

2
F 2

µν + (DµΦi)
2 −

∑

i<j

[Φi,Φj ]
2 + iΨ̄ΓµDµΨ + iΨ̄Γi[Φi,Ψ]







.

Questa azione può essere ottenuta come una riduzione dimensionale della
teoria 10-dimensionale N = 1 SYM a 4 dimensioni. Questa caratteristica si
riflette nella notazione usata, nella quale i fermioni sono inseriti in un singolo
spinore di Majorana-Weyl 10-dimensionale a 16 componenti dove (Γµ,Γi)
rappresentano le matrici di Dirac 10-dimensionali nella rappresentazione di
Majorana-Weyl.

La soluzione duale di supergravità è data dalla geometria near-horizon di
una black D3-brana con N unità di flusso-RR. Questo soluzione corrisponde
in teoria di stringa ad uno stato di N D3-brane coincidenti. La metrica
rilevante può essere scritta nella forma

ds2 = L2 dx
µdxµ + dyidyi

y2
, µ = 1, ..., 4, i = 1, ..., 6 . (A.0.1)

Il vettore di modulo unitario yi/y2 parametrizza S5 mentre xµ, y sono le
coordinate di AdS5. Dalla forma esplicita dell’equazione (A.0.1) è evidente
che AdS5 e S5 hanno lo stesso raggio di curvatura L. Il bordo dello spazio
è situato a y = 0, mentre l’orizzonte di AdS5 è locato a y = ∞. La metrica
scritta esplicitamente nella forma di prodotto dei due spazi è

ds2 = L2dx
2
µ + dy2

y2
+ L2dΩ2

S5 . (A.0.2)
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Nella corrispondenza AdS/CFT, il raggio L è legato alla costante di accop-
piamento di Yang Mills dalla relazione

L =
√
α′ (g2

Y MN
)1/4

. (A.0.3)

L’elemento di linea (A.0.1) è invariante sotto le trasformazioni di coor-
dinate che formano il gruppo di isometria di AdS5, SO(2, 4). Il rima-
nente gruppo di isometria di (A.0.1) è il gruppo di simmetria di S5, va-
le a dire SO(6) ∼ SU(4). Unendo queste simmetrie geometriche con la
supersimmetria, si ottiene il super-gruppo di Lie SU(2, 2|4).

Dal punto di vista della teoria di gauge, le simmetrie bosoniche sono date
dal gruppo SO(2, 4) che rappresenta la simmetria conforme e dal gruppo
SU(4) che rappresenta la R-simmetria della teoria SYM. Consistemente le
trasformazioni del gruppo SO(2, 4) che lasciano invariante la metrica di AdS5

(A.0.1) si riducono a trasformazioni conformi sul bordo, dove le osservabili
della teoria di campo sono definite.

La teoria di stringa sulla metrica di background (A.0.1) è un σ-model con
costante di accoppiamento data dall’inverso della tensione di stringa effettiva
adimensionale

T = L2/2πα′ =
√

g2
Y MN/2π . (A.0.4)

Inoltre, la constante di accoppiamento di stringa gs e la corrispondente di
Yang Mills gY M sono legate dalla relazione

gs = 4πg2
YM . (A.0.5)

Questa relazione può essere capita dal fatto che l’azione della teoria di gauge,
a fronte della quale la costante di accoppiamento di gauge appare come un
fattore del tipo 1/g2

Y M , è ottenuta perturbativamente in teoria di stringa all’
ordine 1/gs.

Con queste identificazioni, la teoria di stringa e la teoria SYM sono con-
getturate essere equivalenti. Purtroppo è difficile riuscire a trovare conferme
esplicite generali essendo entrambi i lati della corrispondenza rappresenta-
ti da sistemi fortemente interagenti. Tuttavia, in alcuni limiti la conget-
tura offre possibilitá tutt’altro che banali. Primo fra tutti, il limite di ’t
Hooft [5] nella teoria super Yang Mills (SYM), in cui la costante di ’t Hooft
λ ≡ g2

Y MN è fissata mentre N → ∞, corrisponde alla teoria di stringa classi-
ca su AdS5×S5, vale a dire senza loop di stringa. In altre parole, la teoria di
stringa classica su AdS5 ×S5fornisce una formulazione Lagrangiana classica
della dinamica a grande N della teoria N = 4 SYM.

La teoria ha ancora una parametro libero λ. Una forma ancora più debole
della corrispondenza consiste nel prendere il limite λ→ ∞, il quale riduce la
teoria classica di stringa alla supergravità classica di tipo IIB su AdS5 ×S5.
In questo modo, la dinamica ad accoppiamento forte nella teoria N = 4
SYM è mappata nella dinamica classica a basse energie in supergravità.
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Le implicazioni della congettura sono notevoli, siccome la corrispondenza
è tra una teoria della gravità 10-dimensionale e una teoria 4-dimensionale
senza gravità. Il fatto che tutti i gradi di libertà 10-dimensionali siano in
qualche modo codificati in una teoria in 4 dimensioni che vive nel bordo
di AdS5, suggerisce che la dinamica di gravità di volume è il risultato di
una immagine olografica generata dalla dinamica della teoria del bordo. Per
questo motivo, spesso la corrispondenza è nota come olografica.

La più limpida evidenza in supporto alla congettura di Maldacena è costi-
tuita dalla simmetria. Le simmetrie globali in entrambi i lati della corrispon-
denza si combinano nel super-gruppo di Lie SU(2, 2|4), come già accennato
sopra. In aggiunta, non solo le simmetrie globali coincidono, ma anche le pro-
prietá di quegli oggetti che portano le rappresentazioni del gruppo di simme-
tria (per esempio lo spettro degli operatori chirali in teoria di campo e i campi
in supergravità sono correlati)[6]. Entrambe le teorie inoltre posseggono una
dualità SL(2,Z) nota anche come dualità di Montonen-Olive.

Il fatto che la teoria N = 4 SYM è superconforme restringe notevol-
mente la forma delle funzioni di correlazione e, in diversi casi, le protegge
da correzioni radiative, in modo tale che la dipendenza dalla costante di
accoppiamento risulti banale. Un certo numero di tali quantità sono state
calcolate usando la corrispondenza AdS/CFT e si è trovato accordo con il li-
mite di campi liberi. Questo può essere visto come una simultanea conferma
dei teoremi di non rinormalizzazione supersimmetrici e delle predizioni della
corrispondenza AdS/CFT. Esempi di questo tipo sono le funzioni a due e tre
punti degli operatori chirali primari[7].

Nell’ambito della corrispondenza AdS/CFT, quantità calcolate a costan-
te di accoppiamento debole usando la descrizione delle teoria di gauge sono
legate a quantità calcolate a costante di accoppiamento forte usando le tec-
niche proprie della teoria di stringa. Purtroppo, il range di validità dei due
approcci non si sovrappongono e, di conseguenza, è molto difficile confronta-
re i risultati ottenuti perturbativamente con quelli di teoria di stringa. Per
fortuna qualche eccezione esiste. Per esempio, usando il Bethe-ansatz per
calcolare le dimensioni anomale di operatori locali è possibile interpolare al-
cuni risultati da accoppiamento debole a forte. Un altro esempio è il loop di
Wilson circolare, il cui valore di aspettazione sul vuoto calcolato dal punto
di vista della teoria di gauge sembra essere descritto da un modello di ma-
trici [8, 9]. Questi risultati sono in accordo con i calcoli di teoria di stringa
comprendendo sia una serie infinita di correzioni in 1/N , sia alcune proposte

di calcoli di stringa validi per tutti gli ordini in 1/
√

g2
Y MN [10].

La corrispondenza originale è tra la teoria N = 4 SYM nella sua fase
conforme e la teoria di stringa sullo spazio AdS5 × S5. Tale corrispondenza
assume ancora più valore considerando che la congettura può essere estesa
a situazioni senza l’invarianza conforme e con meno, o addirittura nessuna,
supersimmetria. In tali casi, lo spazio-tempo AdS5 × S5è rimpiazzato da
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altre varietà o soluzioni di orbifold della teoria di stringa di tipo IIB.
Uno degli scopi di questo lavoro è cercare di estendere alcuni risultati

noti per la teoria N = 4 SYM a teorie con meno supersimmetria, nell’ambi-
to della corrispondenza AdS/CFT. Si considera una teoria di gauge N = 1
supersimmetrica ottenuta mediante una deformazione marginale, rappresen-
tata da un parametro reale β, della teoria N = 4 SYM. La teoria è descritta
dal superpotenziale deformato

ihTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) , (A.0.6)

dove Φi sono i tre supercampi chirali N = 1. La teoria è conforme quanti-
sticamente a patto che una certa condizione sui parametri h, β e la costante
di accoppiamento di gauge τ sia soddisfatta. La teoria risultante preser-
va una supersimmetria superconforme N = 1 e ha una simmetria globale
U(1) × U(1)

U(1)1 : (Φ1,Φ2,Φ3) → (Φ1, e
i∂1Φ2, e

−i∂1Φ3)

U(1)2 : (Φ1,Φ2,Φ3) → (e−i∂2Φ1, e
i∂2Φ2,Φ3). (A.0.7)

La rimanente R-simmetria U(1) agisce come

U(1)R : (Φ1,Φ2,Φ3) → ei∂(Φ1,Φ2,Φ3). (A.0.8)

Mettendo tutto insieme, la teoria N = 1 SYM β-deformata è invariante sotto
una simmetria U(1)3.

La descrizione duale in supergravità della teoria β-deformata è stata ri-
cavata da Lunin e Maldacena in [11]. Il background di Lunin-Maldacena può
essere ottenuto dallo spazio prodotto AdS5×S5attraverso una trasformazio-
ne di T-dualità, uno shift sulle coordinate e infine un’altra T-dualità. Tutte
queste trasformazioni agiscono sulla 5-sfera dello spazio originale, mentre la
parte di AdS5 non viene intaccata dalla deformazione. In tutto il lavoro ci
concentreremo sul caso in cui β sia reale, in modo che la teoria così ottenuta
sia una deformazione esatta della teoria originale N = 4 SYM. La descrizione
di supergravità è valida nel limite di curvatura piccola

L = (4πgsN)1/4 ≫ 1 (A.0.9)

e piccole deformazioni
Lβ ≪ 1 (A.0.10)

mentre
L2β := γ̂ fissata. (A.0.11)

In generale, supponiamo di conoscere il duale gravitazionale della teoria ori-
ginale, cioè non deformata, e che questa geometria abbia due isometrie as-
sociate alle due simmetrie globali U(1). La geometria, dunque, contiene



11

al suo interno un toro bidimensionale. La descrizione gravitazionale della
deformazione (A.0.6) consiste solo nell’effettuare la seguente sostituzione

τ ≡ B + i
√
g −→ τγ =

τ

1 + γτ
(A.0.12)

nella soluzione originale, dove
√
g è il volume del toro bidimensionale e B e’

il flusso del campo Bµν . È possibile vedere (A.0.12) come una trasformazione
che genera soluzioni. In altre parole, si riduce la teoria 10-dimensionale a 8
dimensioni sul toro bidimensionale. La teoria gravitazionale 8-dimensionale
è invariante sotto la trasformazione SL(2,R) che agisce sul parametro τ .
Si nota che la deformazione (A.0.12) è un particolare elemento del gruppo
SL(2,R), il quale ha la proprietà fondamentale di produrre una metrica
non singolare se la metrica originale è non singolare. Un’altra caratteristica
importante della trasformazione (A.0.6) è che non cambia la topologia della
soluzione.



Capitolo B

Loop di Wilson e superfici
minimali

Una delle osservabili più interessanti nelle teorie di gauge è l’operatore loop
di Wilson, il P-esponenziale del campo di gauge

W =
1

N
Tr P exp

(

i

∮

Aµdx
µ

)

(B.0.1)

dove la traccia è presa nella rappresentazione fondamentale. Il loop di Wilson
può essere definito per ogni percorso chiuso nello spazio, fornendo così una
grande classe di osservabili gauge invarianti. In effetti, questi operatori, e i
prodotti degli stessi, formano una base completa di operatori gauge invarianti
nella teoria di puro Yang Mills.

Una delle applicazioni fisiche del loop di Wilson deriva dal fatto che
ad un quark infinitamente massivo nella rappresentazione fondamentale del
gruppo di gauge, che si muove lungo il percorso identificato dal loop, può
essere associato il fattore di fase (B.0.1). In questo modo gli effetti dinamici
delle forze di gauge su sorgenti di quark esterne vengono misurate dal loop
di Wilson. In particolare, per una coppia quark anti-quark statici, il loop di
Wilson è l’esponenziale del potenziale effettivo tra i quark e costituisce un
parametro d’ordine per il confinamento.

La corrispondenza AdS/CFT afferma che la teoria di stringa di tipo IIB
nello spazio AdS5 × S5è duale alla teoria N = 4 super Yang Mills in 4 di-
mensioni. Questa teoria di gauge, però, non contiene quark nella rappresen-
tazione fondamenttale del gruppo di gauge. Per costruire il loop di Wilson,
si ricordi la riduzione dimensionale della teoria N = 1 SYM in 10 dimen-
sioni. Si considerino N + 1 D3-brane coincidenti, e si separi una D-brana
dalle rimanenti N portandola molto lontana dalle altre. In questo modo
abbiamo rotto la simmetria SU(N + 1) → SU(N) × U(1). Per grande N , è
possibile ignorare i campi sulla brana lontana, eccetto la stringa aperta che
si allunga tra essa e le altre N brane. Lo stato fondamentale di tale stringa
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aperta corrisponde ai bosoni W e i loro superpartner del gruppo di gauge
rotto SU(N), le cui traiettorie producono lo stesso effetto di una particella
infinitivamente massiva nella rappresentazione fondamentale.

In questa procedura, oltre all’accoppiamento del loop con il campo di gau-
ge, appare un accoppiamento aggiuntivo con gli scalari Φi, che si ottengono
mediante la riduzione dimensionale dalla teoria 10-dimensionale. Quando lo
spazio 4-dimensionale ha segnatura euclidea, il fattore di fase associato al
loop è dato dal valore di aspettazione sul vuoto dell’operatore

W =
1

N
Tr P exp

(∮

(iAµdx
µ + |ẋ|θiΦi)ds

)

. (B.0.2)

Si noti che il fattore di fase nella teoria euclidea non è una vera fase, ma
contiene una parte reale. Le variabili θi sono coordinate angolari che para-
metrizzano S5.

Questo operatore gioca un ruolo più importante dell’usuale loop di Wil-
son (B.0.1) nell’ambito della corrispondenza AdS/CFT. Una ragione in fa-
vore di questa affermazione è la supersimmetria. Le trasformazioni di super-
simmetria dei campi di gauge e scalari sono date da

δǫAµ(x) = Ψ̄Γµǫ, δǫΦi(x) = Ψ̄(x)Γiǫ. (B.0.3)

Sotto queste trasformazioni di supersimmetria, l’esponente del loop di Wilson
varia della quantità

Ψ̄
(

iΓµẋ
µ(s) − Γiθ

i|ẋ(s)|
)

ǫ. (B.0.4)

La combinazione lineare delle matrici di Dirac
(

iΓµẋ
µ(s) − Γiθ

i|ẋ(s)|
)

ha
otto autofunzioni relative all’autovalore nulla, come si può facilmente vedere
quadrando la matrice. Se queste autofunzioni non dipendono dal parametro
del loop s, l’operatore (B.0.2) mantiene quindi metà della supersimmetria.
In realtà questo accade solo quando il percorso C è una linea retta. In questo
caso W [C] è un operatore BPS che commuta con metà delle supercariche e,
proprio per questo, sembra sia protetto da correzioni radiative. Effettiva-
mente, sia all’ordine dominante in teoria delle perturbazioni e sia nel limite
a strong coupling, calcolato dalla corrispondenza AdS/CFT, risulta essere
indipendente dalla costante di accoppiamento e in particolare

〈W (straight line)〉 = 1. (B.0.5)

Nel caso invece di un loop di Wilson che in generale è un curva liscia ancora si
ha supersimmetria locale, e si hanno proprietà ultraviolette migliori rispetto
a quelle del loop di Wilson convenzionale (B.0.1).

Come si è già affermato, la corrispondenza AdS/CFT può essere utilizzata
per calcolare il valore di aspettazione di un loop di Wilson nel limite N → ∞,
λ→ ∞. Nel primo limite, il valore di aspettazione del loop di Wilson è dato
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dall’azione di una stringa aperta le cui estremità sono forzate lungo la curva
che definisce il loop al bordo dello spazio

〈W [C]〉 =

∫

∂X=C
DX exp(−

√
λS[X]), (B.0.6)

dove X rappresenta tutte le coordinate della stringa, sia bosoniche che fer-
mioniche, e S[X] è un’appropriata azione di stringa. Nel limite di accoppia-
mento forte, la tensione di stringa T =

√
λ/2π diventa grande e sopprime le

fluttuazioni di stringa. L’integrale (B.0.6) è dominato dall’azione bosonica
al suo punto sella, che corrisponde ad una superficie minimale in AdS5 × S5

〈W 〉 ≃ K exp(−
√
λA). (B.0.7)

dove K è una costante di normalizzazione ed A l’area della superficie.
L’azione di stringa al punto sella è ottenuta minimizzando l’azione di

Nambu-Goto o, equivalentemente, l’azione di Polyakov

Area(C) =

∫

d2σ
1

Y 2

√

det
ab

(∂aXµ∂bXµ + ∂aY ∂bY ). (B.0.8)

Per determinare il fattore di normalizzazione in (B.0.7) si dovrebbe calcolare
la funzione a due punti. In realtà, l’azione corretta da inserire in (B.0.7) non
è l’area A della superficie descritta dalla stringa, ma la sua trasformata di
Legendre rispetto alle sei coordinate ortogonali alla D3-brane. Questa mo-
difica non cambia le equazioni del moto, e le soluzioni sono ancora superfici
minimali. Effettivamente l’area della superficie il cui bordo è il loop C è
infinita. Questa parte dell’area divergente deve essere cancellata dal termi-
ne di massa del bosone W, che si dimostra essere proprio la trasformata di
Legendre dell’area stessa.

Diversi aspetti della soluzione duale in supergravità del loop di Wilson
nella teoria N = 1 β-deformata SYM sono già stati studiati [12, 13]. Ancora,
però, non si è identificata la forma precisa dell’operatore di teoria di campo
duale alle configurazioni di supergravità. In questo lavoro si è mostrato
che l’operatore loop di Wilson definito in (B.0.2) è non BPS, cioè non è
supersimmetrico, siccome i bosoni di gauge e gli scalari della teoria sono
in multipletti di supersimmetria N = 1 diversi, e di conseguenza, le loro
rispettive variazioni di supersimmetria non possono cancellarsi a vicenda.
Inoltre, neanche la supersimmetria conforme mescola questi multipletti. Si
dimostra che anche permettendo un accoppiamento fermionico generico, non
è possibile costruire un loop di Wilson supersimmetrico. Appare dunque
impossibile construire un operatore loop di Wilson che rispetti alcune delle
simmetrie superconformi N = 1 della teoria β-deformata SYM.

Benchè il loop di Wilson (B.0.2) non sia BPS, in questo lavoro si for-
niscono diverse evidenze che, se il coupling con gli scalari soddisfa la solita
condizione di BPS località ẋ2 = ẏ2, esso possegga una proprietà fondamen-
tale del loop di Wilson BPS nella teoria N = 4 SYM, cioè che abbia valore
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di aspettazione sul vuoto finito. Seguendo la nomenclatura in [14], chiamia-
mo questo tipo di operatori loop di Wilson quasi BPS. La caratteristica che
sembra emergere dagli esempi si considerano in seguito, è che non solo questi
operatori hanno un valore di aspettazioni finito, ma coincide esattamente con
il valore che si trova nella teoria non deformata, almeno a strong coupling.

I loop di Wilson per i quali si è calcolato il valore di aspettazione sul
vuoto nella teoria N = 1 β-deformata SYM sono i seguenti (per i calcoli si
fa riferimento all’Allegato):

• Due longitudini su una due-sfera connesse da un angolo δ arbitrario.
L’accoppiamento scalare corrispondente è costituito da due punti sul-
l’equatore di S̃2 ⊂ S̃5 separati da un angolo pari a π−δ, dove con S̃n si
indica una sfera n-dimensionale β-deformata. Nella teoria N = 4 SYM
tale loop identifica un operatore 1/4 BPS. Per ricavare la soluzione di
stringa duale si è notato che tale operatore è legato da una proiezione
stereografica ad un loop di Wilson definito da due raggi semi-infiniti
sul piano con angolo d’apertura pari a δ.

• Loop toroidali, costruiti considerando S3 come una fibrazione di Hopf,
vale a dire come una fibra S1 sopra la varietà S2. Si sono considerati
dapprima loop associati a latitudini sulla base di Hopf, e successiva-
mente più generali loop doppiamente periodici su qualunque toro in
S3. In entrambi i casi l’accoppiamento con gli scalari è tutt’altro che
banale, in quanto si verifica una periodicità su S̃5.

In tutti i casi considerati, il valore di aspettazione per il loop di Wilson
coincide con quello calcolato nella teoria non deformata in [15]. Si noti
che ciò avviene anche per loop che non sono lisci, come nel caso delle due
longitudini, nel quale sono presenti due cuspidi.

Altre osservabili molto interessanti, oltre ai valori di aspettazione sul
vuoto di loop di Wilson, sono le funzioni di correlazione di due loop. Si è
affrontato lo studio del correlatore di due loop circolari che descrivono pa-
ralleli su S2 nella teoria β-deformata. Questa quantità è nota in letteratura
nella teoria N = 4 SYM [16, 17], e presenta un interessante fenomeno di
transizione di fase detta di Gross-Ooguri [18]. La motivazione per la transi-
zione di fase di Gross-Ooguri [19] è che l’azione di stringa, vale a dire l’area
di una superficie minimale delimitata dal loop, genericamente ha due punti
sella in competizione. La superficie minimale può avere la topologia di un
anello (si considera qui il caso in cui i due cerchi hanno orientazione oppo-
sta) o può essere composta da due superfici sconnesse, ognuna delle quali è la
superficie relativa ad un singolo loop. L’anello chiaramente spanna un’area
minore quando i loop sono sufficientemente vicini. Ma l’area dell’anello cre-
sce quando la separazione tra i cerchi aumenta e, eventualmente, la superficie
disconnessa diventa energeticamente favorita. A grandi distanze, la stringa
si comporta classicamente solo in vicinanza dei loop e il correlatore connesso
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è saturato da scambi perturbativi dei modi di supergravità più leggeri tra
le parti disconnesse del worldsheet classico. Il salto tra i due punti sella
dovrebbe condurre alla transizione di fase nel correlatore dei loop di Wilson
come funzione della separazione tra i due loop e i loro raggi.

L’ansatz che viene considerato studia due cerchi concentrici nello spazio
AdS5, ma le soluzioni trovate non differiscono da quelle in studiate in [16, 17],
dove si considerano due cerchi concentrici di raggi uguali prima e diversi poi,
giacenti su piani paralleli. Infatti, due cerchi concentrici su piani paralleli
definiscono una due-sfera o un piano in R4. Siccome è possibile legare una
due-sfera a un piano mediante una trasformazione confome, i due sistemi
considerati sono equivalenti.

Per quanto riguarda l’accoppiamento con gli scalari, ogni loop è accop-
piato ad un cerchio sulla sfera deformata, così che si ha una doppia rotazione,
altamente non banale, su S̃5. Il risultato che si trova per il correlatore è an-
cora una volta uguale al risultato per la quantità calcolata nella teoria non
deformata. Si è svolto il calcolo sia per il caso in cui i cerchi hanno la stessa
orientazione sia nel caso in cui abbiano orientazione opposta. La principale
conseguenza di questo risultato è che il sistema presenta la stessa transizione
di fase di Gross-Ooguri osservata in [18] per il caso non deformato.

È importante notare che nonostante i valori di aspettazione dei loop di
Wilson e dei correlatori sono uguali nelle due teorie considerate, le solu-
zioni di stringa duali a tali loop sono diverse. Infatti, nella teoria N = 1
β-deformata SYM è presente un angolo aggiuntivo sulla sfera deformata S̃5,
necessario per la consistenza della soluzione con le condizioni al contorno,
a causa del fatto che nella teoria β-deformata il campo B è acceso. Tale
angolo è proporzionale al parametro della deformazione γ̂ = L2β e si annulla
nel limite di deformazione nulla β = 0, ritrovando così la soluzione non de-
formata. La deformazione è parametrizzata in qualche modo da tale angolo,
ma non influenza l’azione di stringa che così risulta indipendente dalla de-
formazione. Si noti che la tale cancellazione avviene prima della procedura
di regolarizzazione dell’azione mediante la trasformata di Legendre.

Per affrontare esplicitamente i calcoli di cui si sono riportati i risultati
risulta notevole notare che l’azione di Polyakov di una stringa in AdS5×S5è
espressa in termini dell’usuale modello σ

1

4πα′

∫

dτ dσ
√
g gαβ∂αX

M∂βX
NGMN (B.0.9)

dove GMN è la metrica di target per il nostro spazio prodotto. L’anstaz
che si considera permette di fattorizzare il modello σ in una parte di pu-
ro AdS5 e una parte di puro S5, permettendo di maneggiare equazioni del
moto indipendenti per le rispettive variabili. Queste due parti dell’anstaz
sono connesse solo in due modi. Il primo è il range di validità delle coordi-
nate di worldsheet, che chiaramente deve coincidere su entrambi gli spazi.
Il secondo sono le condizioni di Virasoro, che sono date dall’annullamento
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del tensore energia-momento. Quindi, risulta molto conveniente considerare
separatamente anstaz per AdS5 e S5. Questa infatti è la strategia seguita in
Appendice.



Capitolo C

Loop di Wilson
supersimmetrici e pure spinors

La totalità dei loop di Wilson supersimmetrici studiati finora nell’ambito
della teoria N = 4 SYM appartengono a due classi: i loop che descrivono
un percorso arbitrario su R4, scoperti da Zarembo in [20] e i loop di forma
arbitraria su una tre-sfera S3 ⊂ R4, scoperti da Drukker, Giombi, Ricci e
Trancanelli in [21], anche conosciuti come loop di DGRT. I loop di Zarembo
hanno valore di aspettazione sul vuoto banale su R4 e sono gli stessi loop
di Wilson che appaiono nel Langlands twist topologico della teoria N = 4
SYM [22]. I loop studiati in questo lavoro nella teoria N = 1 β deforma-
ta SYM appartengono alla classe dei loop di DGRT. Non è stato chiaro se
queste due classi contengono tutti i possibili loop di Wilson supersimmetrici
fino a che Pestun e Dymarsky hanno risposto in modo sistematico a questa
domanda: in [23] i due autori hanno trovato tutti i possibili operatori loop
di Wilson W che sono invarianti almeno sotto una simmetria superconforme
Q. In aggiunta, hanno classificato le sottoclassi di coppie (Q,W ) modulo
equivalenza sotto l’azione del gruppo superconforme di N = 4 SYM. Il ri-
sultato principale è che emergono loop di Wilson supersimmetrici che non
erano stati identificati prima. In diversi casi questi nuovi operatori coinvol-
gono accoppiamenti complessi ai campi scalari che li distinguono nettamente
dai casi studiati precedentemente. In alcuni casi i nuovi operatori possono
essere legati ai loop precedenti tramite una trasformazione conforme com-
plessificata. Comunque, a meno di definire la teoria su uno spazio-tempo
complessificato, rimanendo nell’ambito della teoria convenzionale formulata
nello spazio Euclideo reale, i nuovi operatori non sono equivalenti a quelli
precedentemente conosciuti.

L’ingrediente cruciale nella costruzione di tali operatori sono i cosiddet-
ti pure spinors 10-dimensionali. Per definizione, uno spinore ǫ nel gruppo
Spin(R2n) è detto puro se è annichilato da metà delle matrici gamma. In
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altre parole, esiste un sottospazio di dimensione n, L ⊂ R2n ⊗ C tale che

vIΓIǫ = 0 ⇔ v ∈ L . (C.0.1)

Di conseguenza, un pure spinor definisce una struttura quasi complessa sullo
spazio vettoriale R2n ⊗ C dicendo che L è lo spazio dei vettori anti-olomorfi
L = V (0,1).

La loro importanza non deve essere così sorprendente siccome la teoria
N = 4 SYM in 4 dimensioni si ottiene come riduzione dimensionale della teo-
ria N = 1 SYM, nella quale i pure spinors emergono naturalmente [24]. In-
fatti, lo spinore ǫ(x) (che in generale dipende dalle variabili di spazio-tempo)
che parametrizza le trasformazioni superconformi della teoria N = 4 SYM,
può essere visto come la riduzione di uno spinore chirale 10-dimensionale.

Localmente ad un punto x dello spazio-tempo, il loop di Wilson può essere
descritto dal vettore tangente alla curva e all’accoppiamento scalare in x. È
possibile combinare questi dati in un unico vettore v(x) 10-dimensionale. La
condizione che il loop di Wilson rispetti la supersimmetria generata dallo
spinore ǫ(x) si traduce in un sistema di equazioni su v(x). Si osservano due
differenti situazioni:

• Se ǫ(x) non è un pure spinor, il sistema di equazioni ha una soluzione
unica, e il vettore tangente alla curva e l’accoppiamento con gli scalari
in x sono completamente fissati. In altre parole, il vettore tangente
alla curva e l’accoppiamento scalare possono essere combinati in un
unico vettore v(x) 10-dimensionale. Le curve, generate in questo mo-
do a partire da un parametro di supersimmetria ǫ(x) generico, non
sono altro che le orbite della trasformazione conforme generata da Q2

ǫ ,
dove si indicano con Qα le supercariche di Poincaré della teoria. Se,
come è naturale, si chiede che le orbite siano compatte, allora, modulo
equivalenza conforme, le sole curve compatte sono le figure di Lissajous
(p, q), dove p

q ∈ Q è il rapporto dei due autovalori della matrice che

rappresenta l’azione di Q2 sullo spazio-tempo R4.

• Se ǫ(x) è un pure spinor allora ci sono più soluzioni per il vettore v(x).
Più precisamente, un pure spinor ǫ(x) definisce una struttura quasi
complessa 10-dimensionale J(x), e la condizione che il loop di Wilson
sia supersimmetrico si traduce nella condizione che v(x) sia un vettore
anti-olomorfo rispetto a J(x). All’interno del sottospazio Σ dello spazio
dove ǫ(x) è un pure spinor c’è uno spazio ricco di soluzioni per loop
di Wilson supersimmetrici. In generale, per qualunque curva che giace
in Σ si possono trovare accoppiamenti scalari in modo che il loop di
Wilson risulti supersimmetrico.

Lo spinore di supersimmetria ǫ(x) della teoria N = 4 SYM può essere
naturalmente esteso nello spazio AdS5 × S5dove assume il ruolo di spinore
di supersimmetria della teoria di stringa di tipo IIB.
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In questo ambito, lo scopo di questo lavoro è stato quello di trovare la
soluzione di stringa duale a loop di Wilson generati dalle figure di Lissa-
jous (p, q), e calcolarne poi il valore di aspettazione sul vuoto, per la teoria
N = 4 SYM. Il risultato ottenuto a strong coupling dalla teoria di stringa
è consistente con quello calcolato a weak coupling attraverso la teoria delle
perturbazioni. La caratteristica comune di queste soluzioni è che si verifica
sempre una cancellazione esatta tra l’azione di S5 e quella di AdS5. Di conse-
guenza, il valore di aspettazione sul vuoto dell’operatore ha una dipendenza
molto semplice in termini dei parametri che definiscono il loop, vale a dire p

q .
Si è verificato che anche per questo nuovo tipo di loop si ritrovano gli stessi
risultati nella teoria β-deformata.

Inoltre, il correlatore di due cerchi di raggi generici è stato calcolato. Il
risultato del caso limite in cui i due cerchi sono coincidenti suggerisce che
la soluzione connessa potrebbe non esistere. Questo perchè il valore dell’a-
zione di stringa coincide esattamente con il valore che darebbe la soluzione
disconnessa, cioè la somma delle aree dei singoli cerchi. È naturale, dun-
que, porsi la domanda se la soluzione connessa esiste o, in altre parole, se si
verifica transizione di fase di Gross-Ooguri. I diversi scenari che si possono
presentare sono i seguenti:

• Non è presente transizione di fase, non esiste la soluzione connessa e
dunque la soluzione è descritta dalle superfici dei due cerchi separata-
mente.

• Non è presente transizione di fase, però esiste la soluzione connessa,
che è sottodominante rispetto a quella disconnessa.

• Il sistema presenta transizione di fase, e per certi valori dei parametri
la soluzione connessa è dominante rispetto a quella disconnessa.

Per rispondere a tale questito, la strategia è stata la seguente: si è fissato uno
dei due cerchi all’equatore di S2, e si è tenuto come parametro libero il raggio
dell’altro cerchio. In virtù dei nuovi accoppiamenti scalari di Pestun, tutte
le altre quantità sono fissate dalla geometria, una volta fissata la distanza
tra i due cerchi. Si noti come questo non accade per i loop di Wilson di
DGRT. Attraverso opportuni cambi di variabili, è possibile arrivare a scrivere
una singola equazione che, al variare del raggio del cerchio “libero”, descrive
una curva nel diagramma di fase di Gross-Ooguri. A seconda del fatto che
questa curva intersechi o meno la curva di transizione di fase, oppure in quale
regione del diagramma giaccia piuttosto che in un’altra, sarà verificata una
delle ipotesi presentate sopra.



Allegato



Introduction

In conventional quantum field theory, the fundamental objects are math-
ematical points in spacetime, modeling the elementary point particles of
nature. String theory is a rather radical generalization of quantum field the-
ory whereby the fundamental objects are extended, one-dimensional lines or
loops. The various elementary particles observed in nature correspond to
different vibrational modes of the string. While we cannot see a string (yet)
in nature, if we are very far away from it we will be able to see its point-like
oscillations, and hence measure the elementary particles that it produces.
The main advantage of this description is that while there are many par-
ticles, there is only one string. This indicates that strings could serve as a
good starting point for a unified field theory of the fundamental interactions.

Moreover, among the massless string states, there is a spin 2 particle that
interacts like a graviton. In fact, the only consistent interactions of massless
spin 2 particles are gravitational interactions. Thus string theory naturally
includes general relativity, and it was thereby proposed as a unified theory
of the fundamental forces of nature, including gravity, rather than a theory
of hadrons. Indeed, string theory is a consistent quantum theory, free from
ultraviolet divergences, which necessarily requires gravitation for its overall
consistency.

In the last decade, great interest has been given to the connection be-
tween string and field theory, namely the duality between a string theory
in a space Anti-de-Sitter and a conformal field theory. This equivalence,
known as AdS/CFT correspondence, has been originally conjecturated by
Maldacena [1], even though indications of the equivalence had been already
given in previous works [2, 3, 4]. On one side of the correspondence, we have
10-dimensional Type IIB string theory on the product space AdS5 × S5,
where the Type IIB 5-form flux through S5 is an integer N and the equal
radii L of AdS5 and S5 are given by L4 = 4πgsNα

′2, where gs is the string
coupling. On the other side of the correspondence, we have 4-dimensional
super-Yang-Mills (SYM) theory with maximal N = 4 supersymmetry, gauge
group SU(N), Yang-Mills coupling g2

Y M = gs in the conformal phase. The
AdS/CFT conjecture states that these two theories, including operator ob-
servables, states, correlation functions and full dynamics, are equivalent to
one another.
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In the strongest form of the conjecture, the correspondence is to hold for
all values of N and all regimes of coupling gs = g2

Y M . Certain limits of the
conjecture are, however, also highly non-trivial. The ‘t Hooft limit on the
SYM-side, in which λ ≡ g2

Y MN is fixed as N → ∞ corresponds to classical

string theory on AdS5 × S5 (no string loops) on the AdS-side. In this sense,
classical string theory on AdS5 × S5 provides with a classical Lagrangian
formulation of the large N dynamics of N = 4 SYM theory. A further limit
λ→ ∞ reduces classical string theory to classical Type IIB supergravity on
AdS5 × S5. Thus, strong coupling dynamics in SYM theory (at least in the
large N limit) is mapped onto classical low energy dynamics in supergravity
and string theory, a problem that offers a reasonable chance for solution.

The correspondence is a strong-weak duality: it relates the nonperturba-
tive strong coupling regime of one theory to the weak coupling perturbative
regime of the other. On one hand, supergravity limit of superstring theory
should describe the strong coupling regime of gauge theory. On the other
hand, perturbative regime λ = Ng2

Y M of gauge theory should describe the
strongly coupled string theory.

The conjecture is remarkable because its correspondence is between a 10-
dimensional theory of gravity and a 4-dimensional theory without gravity at
all, in fact, with spin ≤ 1 particles only. The fact that all the 10-dimensional
dynamical degrees of freedom can somehow be encoded in a 4-dimensional
theory living at the boundary of AdS5 suggests that the gravity bulk dy-
namics results from a holographic image generated by the dynamics of the
boundary theory. Therefore, the correspondence is also often referred to as
holographic.

The original correspondence is between a N = 4 SYM theory in its con-
formal phase and string theory on AdS5 × S5. The power of the correspon-
dence is further evidenced by the fact that the conjecture may be adapted to
situations without conformal invariance and with less or no supersymmetry
on the SYM side. The AdS5 ×S5 space-time is then replaced by other man-
ifold or orbifold solutions to Type IIB theory, whose study is usually more
involved than was the case for AdS5 ×S5 but still reveals useful information
on SYM theory.

One of the goals of this work is to try to extend some of these results to
theories with less supersymmetries. We will consider an N = 1 supersym-
metric gauge theory obtained by a marginal β-deformation of the N = 4
SYM [25, 26, 27].

The supergravity dual of the β-deformed SYM was found by Lunin and
Maldacena in [11]. The Lunin-Maldacena background can be obtained from
the AdS5 × S5 via a series of T-duality transformation, shift and T-duality
transformation acting on the five-sphere, whereas the AdS space is untouched
by the deformation. We will look at the real β case throughout the work, so
that the theory is an exact deformation of the original theory.

Wilson loops are extended object which are related to the propagation of
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SU(N) bosons in N = 4 SYM theory and supersymmetry implies here that
scalar fields must also couple to the contour. In particular, the expectation
value of the Wilson operator is the phase factor associated to the propagation
of the boson.

In AdS/CFT correspondence, the computation of the exact expectation
value of the Wilson loop, in the limit of large ’t Hooft coupling, turns into
a problem of finding the minimal area swept by the string worldsheet whose
boundary is the Wilson loop itself.

In this work, we would like to analyze aspects of the supergravity dual
of Wilson loops in the β-deformed SYM theory. Within this framework of
the Lunin-Maldacena background, we prove that the vacuum expectation
value of Wilson loops coincide with the value found in the undeformed the-
ory. Moreover, we show that this results does not hold for 1/2 or 1/4 BPS
Wilson loop only, the cases treated in literature so far, but also for operators
that preserve a less amount of supersymmetry (for example, the toroidal
loop which are 1/8 BPS operators), or even non-BPS operators. This last
case corresponds to correlators of Wilson loops. In this contest, the same
Gross-Ooguri phase transition, namely the transition through the solution
described by a connected minimal surface to a disconnected one, is obtained
in the two theories. This result reinforces the conjecture that the expectation
value of the Wilson loop in N = 1 β-deformed SYM might be described by
the same matrix model as in the non-deformed theory.

We then turn to consider toroidal loops with a different scalar coupling
on S5, proposed recently by Dymarsky and Pestun [23]: they proved that
the two classes of couplings contain all possible supersymmetric Wilson loop
with this type of geometry. In N = 4 SYM theory, the result obtained at
strong coupling matches with the result calculated at weak coupling using
perturbation theory. The common feature of these solution is an exact can-
cellation between the S5 part of the action and a piece of the AdS5 part of
the action. As a consequence, the expectation value of such operators posses
a trivial dependence on the parameters that define the loops. Moreover, we
show that even for this new type of Wilson loop the same results are obtained
in the N = 1 β-deformed SYM.

Furthermore, we evaluate the correlator of two circles of generic radii.
The result found for the action when the two circles are coincident suggests
us that the connected solution might not exist. This because the value of the
string action is equal to the value of the disconnected solution, that is the
value of the circles separately. It is worth to ask if the connected solution
effectively exists, namely if the Gross-Ooguri phase transition take places.
We derived an equation that describes a curve in the Gross-Ooguri phase
diagram. Our next step will be to determine if this curve intersects the
phase transition line or if it lies in only one single region of the diagram,
that is no phase transition takes place.

The work is organized as follow. In the first chapter we give a brief
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introduction to the AdS/CFT correspondence. We describe the main fea-
tures of the AdS5×S5 space where the string theory lives and the conformal
group, which is the bosonic sector of the supersymmetry group of the two
theories. We then give a precise formulation of the correspondence, underly-
ing its three different limits of validity. Finally, we provide some basic tests
which have confirmed the soundness of the conjecture, namely the symmetry
matching and the holographic principle, which permits to relate the observ-
ables of the two theories.

In the second chapter, we introduce the notion of Wilson loop as known
from field theory and extend it to be suitable for our N = 4 SYM theory,
including the coupling to the scalar fields. We then describe how to associate
a regularized area to the loops by defining a modified string action by a
Legendre transform of the Nambu-Goto action.

In the third chapter, we introduce the N = 1 β-deformed SYM theory.
We show that it is effectively a marginal deformation of N = 4 SYM, and
we recall how the supergravity solution, leading to the Lunin-Maldacena
background, is obtained. Then we describe how extended objects like D-
brane are modified between the two geometries. Finally, we introduce the
Wilson loop in the β-deformed theory and we show that it cannot be a
BPS operator since the gauge bosons and scalars are in different N = 1
supersymmetry multiplets.

In the forth chapter, we begin the computation of expectation value of
Wilson loop. We start with a well-known example in order to familiarize
with the analysis of such problems and to prove explicitly the equivalence of
the Nambu-Goto and the Polyakov formulations. Then, we evaluate the dual
string solution of certain class of Wilson loop in the β-deformed theory, and
we conclude that, although the solutions are different from the undeformed
ones, the results for the vev of the Wilson loops are exactly the same.

In the fifth chapter, we turn to the computation of correlators of circular
Wilson loops in the N = 1 β-deformed SYM theory. Again, the results we
find agree completely with the values found in the undeformed theory.

In the sixth chapter, we introduce another class of supersymmetric Wil-
son loops, with a different scalar coupling on S5. In N = 4 SYM theory, the
result obtained at strong coupling matches with the result calculated at weak
coupling using perturbation theory. We show that the expectation value of
such operators posses a trivial dependence on the parameters that define the
loops, due to a exact cancelation within the string action. We show that even
for this new type of Wilson loop the same results are obtained in the N = 1
β-deformed SYM. Furthermore, we evaluate the correlator of two circles of
generic radii, and the result seems to suggests that the connected solution
might not exists, that is no Gross-Ooguri phase transition takes place.



Chapter 1

AdS/CFT correspondence

The AdS/CFT correspondence [1] is a conjecture about the connection be-
tween string theory on certain curved background and field theory. The
conjecture asserts that string theory on the space AdS5 × S5 is dual to a
conformal quantum field theory, which lives on the boundary of AdS5.

In this chapter we shall recall some basic properties of anti de Sitter
spaces, the fact that they may be associated to a boundary and that the
isometry group of anti de Sitter space can be viewed as the conformal group
on the boundary. Furthermore, we shall presents the correspondence in
more detail, and explain its three relevant limits of validity. Finally, we shall
present the most important evidences that seem to confirm the conjecture.

1.1 AdS geometry

We consider here Euclidean metric. D-dimensional Anti de Sitter spaces are
solutions of the empty space Einstein equation with positive cosmological
constant1

Rµν − 1

2
gµνR =

1

2
Λgµν

R =
D

2 −D
Λ















⇒ Rµν =
Λ

2 −D
gµν . (1.1.1)

AdS spaces satisfy an additional symmetry

Rµνρσ =
R

D(D − 1)
(gνσgµρ − gνρgµσ) . (1.1.2)

Let us proceed to the construction of such spaces. We start by consid-
ering an (n + 1)-dimensional AdSn+1 as imbedded in an Euclidean (n + 2)-
dimensional space with coordinates (xa) = (x0, x1, ..., xn, xn+1) , on which

1De Sitter spaces are solution of empty space Einstein equation with negative cosmo-
logical constant

26
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we take the metric

ds2 = (dx0)2 − (dx1)2 − · · · − (dxn+1)2 (1.1.3)

and the scalar product
x1 · x2 = ηabx

a
1x

b
2 (1.1.4)

where ηab = diag(+,−,−, ...,−).
The quantity

x2 ≡ (x0)2 −
n+1
∑

i=1

(xi)2 (1.1.5)

is preserved by the action of the group SO(1, n + 1)

xa → x′a = Λa
bx

b, Λa
b ∈ SO(1, n + 1) . (1.1.6)

We define AdSn+1 by the condition

x2 = L2 (1.1.7)

where L is a constant and it is called the “radius” of AdS.
We want to show, as (1.1.6) suggests, that the isometry group of AdSn+1

is SO(1, n+ 1). Let us take three points xa
0, x

a
0 + dxa

(1) and xa
0 + dxa

(2) lying

in AdSn+1, and their images x′a0, x
′a
0 + dx′a(1) and x′a0 + dx′a(2) under the

SO(1, n + 1) transformation defined in (1.1.6). Obviously, these points are
included in AdSn+1 as well and, in addition the following identity holds

dx(1) · dx(2) = dx′(1) · dx′(2) . (1.1.8)

Hence, the embedding metric on AdSn+1 is SO(1, n+ 1) invariant.

Now we want to find out explicit expressions of the coordinates in AdSn+1

spaces. Let us take a different set of coordinates (ρ, zµ) on the (n + 2)-
dimensional embedding space, where (zµ) = (z1, ..., zn+1) are the coordinates
on AdSn+1, related to the previous ones by the following relations

x0 = ρ
1 + z2

1 − z2

xµ = ρ
2zµ

1 − z2
, µ = 1, ..., n + 1

(1.1.9)

where we have defined

z2 ≡ (z1)2 + ...+ (zn)2 + (zn+1)2 . (1.1.10)

A simple calculation shows that x2 = ρ2, and consequently the AdS condition
(1.1.7) is fulfilled when ρ = L. From (1.1.9) we work out the metric in the
new coordinates

ds2 = dρ2 − 4ρ2

(1 − z2)2
dz2 . (1.1.11)
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Hence the metric factorizes into a trivial radial part and a AdS part

gµν =
4L2

(1 − z2)2
ηµν . (1.1.12)

Let us prove that the metric (1.1.12) satisfies the Einstein equation (1.1.1)
and (1.1.2). In other words, we want to show that Rµν ∝ gµν and find the
proportionality constant in terms of the dimension D and the AdS radius L.

Let us take a conformally flat metric

gµν(z) = eφ(z)ηµν . (1.1.13)

We recover (1.1.12) by setting

φ(z) = ln 4L2 − 2 ln(1 − z2) . (1.1.14)

First, we recall the definitions of the Christoffel symbols and the Riemann
tensor

Γµ
νρ =

1

2
gµλ(∂νgρλ + ∂ρgνλ − ∂λgνρ) (1.1.15)

Rµ
νρσ = ∂ρΓ

µ
νσ − ∂σΓµ

νρ + Γµ
λρΓ

λ
νσ − Γµ

λσΓλ
νρ . (1.1.16)

Then, the calculus is quite simple

Γµ
νρ =

1

2
(∂νφδ

µ
ρ + ∂ρφδ

µ
ν − ∂µφηνρ)

∂ρΓ
µ
νσ − ∂σΓµ

νρ =
1

2
(δµ

σ∂ρ∂νφ+ δµ
ν ∂ρ∂σφ− ηνσ∂ρ∂

µφ)

−1

2

(

δµ
ρ ∂σ∂νφ+ δµ

ν ∂σ∂ρφ− ηνρ∂σ∂
µφ
)

=
1

2

(

δµ
σ∂ρ∂νφ− δµ

ρ ∂σ∂νφ− ηνσ∂ρ∂
µφ+ ηνρ∂σ∂

µφ
)

Γµ
λρΓ

λ
νσ − Γµ

λσΓλ
νρ =

1

4

(

δµ
σ∂νφ∂ρφ+ ηρν∂

µφ∂σφ+ ηνσδ
µ
ρ (∂φ)2

)

−1

4

(

δµ
ρ ∂νφ∂σφ+ ησν∂

µφ∂ρφ+ ηνρδ
µ
σ (∂φ)2

)

(1.1.17)

when the derivatives of the conformal scaling factor are

∂µφ∂νφ =
16zµzν

(1 − z2)2

∂µ∂νφ =
4

1 − z2
ηµν +

8zµzν
(1 − z2)2

.

(1.1.18)

The equation of maximal symmetry (1.1.2) is satisfied since

Rµ
νρσ = − 4

(1 − z2)2
(

ηνσδ
µ
ρ − ηνρδ

µ
σ

)

= − 1

L2
(−gνρδ

µ
σ + gνσδ

µ
ρ ) . (1.1.19)
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Contracting (1.1.16) we work out the expression for the Ricci tensor,

Rνσ = −D − 1

L2
gνσ (1.1.20)

when in our case D = n+ 1, and (1.1.1) is indeed satisfied with the cosmo-
logical constant

Λ =
n(n− 1)

L2
=

(D − 1)(D − 2)

L2
. (1.1.21)

Hence, our definition of AdS (1.1.7) as a submanifold of a Euclidean embed-
ding space is indeed correct.

It turns useful to describe Euclidean AdSn+1 by introducing the so called
“light cone” coordinates

u = x0 + xn+1, v = x0 − xn+1 . (1.1.22)

The condition (1.1.7) then becomes

x2 = uv − ~x2 = L2 (1.1.23)

where ~x = (x1, . . . , xn).
We now turn to consider various set of coordinate on AdSn+1 and the

corresponding metrics.

Maldacena coordinates

We define

ξα ≡ xα

u
, α = 1, ..., n

~ξ2 ≡
n
∑

α=1

(ξα)2 .
(1.1.24)

From (1.1.23) we have

x2 = uv − ~x2 = uv − u2~ξ2 = L2

⇒ v = ξ2u+
L2

u
. (1.1.25)

We use the set (u, ξα) on AdSn+1, and it is simple to work out the metric

(ds2)AdSn+1
=
L2du2

u2
+ u2d~ξ2 . (1.1.26)

This set of coordinates is the one used by Maldacena in [1].
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Poincaré coordinates

We take the set (ξ0, ~ξ) ≡ (u−1, ~ξ) on AdSn+1, where we have put the
radius of the space L equal to one. The metric is then given by

(ds2)AdSn+1
=

1

(ξ0)2

(

(dξ0)2 + d~ξ2
)

. (1.1.27)

This set is identified with Poincaré coordinates on the projective plane.

1.1.1 The boundary of AdS

Now we turn to the problem of how a sort of projective boundary arise in
anti de Sitter space. We consider the points (x0, xµ) ∈ AdSn+1 in embedding
space and take the limit in which x is large. Let us redefine the coordinates

xa = Rx̃a, u = Rũ, v = Rṽ . (1.1.28)

Now we consider the limit R→ ∞. Hence

x2 = L2 ⇒ ũṽ − ~̃x2 = L2/R2 → 0 . (1.1.29)

Therefore, the condition that identifies the boundary is

ũṽ − ~̃x2 = 0 . (1.1.30)

We note that in our limit, R can be replaced without loss of generality by tR
with t real. Then, the boundary is identified with the projective equivalence
classes

uv − ~y2 = 0

(u, v, ~y) ∼ t(u, v, ~y)

from which we see that the boundary is n dimensional, as we expected for it
to be.

Next, we can use the equivalence scaling to probe the topology of the
boundary. We note that the boundary condition (1.1.31) may be written as

(x0)2 − (xn+1)2 = 1 = ~x2 (1.1.31)

with Euclidean signature. It is straightforward to conclude that the bound-
ary has the topology of S1 × Sn−1.

The equivalence scaling may also be used to find appropriate coordinates
on the boundary. Indeed

v 6= 0
scaling−−−−→ v = 1 ⇒ u = ~x2 (1.1.32)

u 6= 0
scaling−−−−→ u = 1 ⇒ v = ~̃x2 (1.1.33)
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and the connection between the two sets is

~̃x =
~x

x2
. (1.1.34)

If one of the two conditions holds, only one of the two sets may be used

v = 0 ⇒ ~̃x = ~0 (1.1.35)

u = 0 ⇒ ~x = ~0 . (1.1.36)

In fact, we may think of the one point (1.1.35) as the point at infinity in the
~x coordinates, and analogously for (1.1.36). This argument shows that the
boundary (1.1.31) is already compactified.

1.2 The conformal group

In this section, we want to demonstrate that the isometry group SO(1, n+1)
acts on the boundary as the conformal group acting on Euclidean space.

We begin our analysis by checking that the dimension of the conformal
group of a n-dimensional Euclidean space is the same as the dimension of
SO(1, n+1), which is 1

2 (n+2)(n+1), i.e., the number of linearly independent
antisymmetric (n+ 2)× (n+ 2) matrices. By the other hand, the conformal
group is generated by translations Pµ, Lorentz transformation Lµν , dilations
D and special conformal transformations Kµ. Pµ and Lµν together form the
Poincaré group, which has dimension 1

2n(n+ 1). The dilations D have unit
dimension since they act as

~x→ λ~x, λ ∈ R (1.2.1)

while the special conformal transformations are given by

x′µ =
xµ + αµx2

1 + 2~α · ~x+ α2x2
(1.2.2)

which provide additional n generators. Thus, the number of generators of the
conformal group is exactly 1

2(n+ 2)(n+ 1), as we claimed, so this concludes
our dimensional analysis.

Now we dive into the main point of this section, that is to demonstrate
that SO(1, n+1) acts on the boundary points exactly as the conformal group.
Let us take a point (u, v, ~x) in AdSn+1. Clearly, it satisfies the AdS relation
uv − ~x2 = L2, and we consider a transformation through SO(1, n + 1)

Λ





u
v
~x



 =





u′

v′

~x′



 , Λ ∈ SO(1, n + 1) (1.2.3)

where Λ preserves the norm of the vector, so that u′v′ − ~x′
2

= L2.
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As we have seen in the previous section, a point (u, v, ~x) on the boundary
of AdSn+1 satisfies the following relations

(i) uv − ~x2 = 0 (1.2.4)

(ii) (u, v, ~x) ∼ λ(u, v, ~x) (1.2.5)

and Λ acts on it as before.
Now we take Λ to be infinitesimal, Λ = 1n+2+ω, where the (n+2)×(n+2)

dimensional matrix ω is an infinitesimal transformation. The condition Λ ∈
SO(1, n+1), that is, the norm is preserved by the transformation, turns into
a condition on the form of ω

ω =





a 0 ~αT

0 −a ~βT

1
2
~β 1

2~α ωn



 (1.2.6)

where ~α, ~β are n-vectors columns and ωn is an n× n antisymmetric matrix.

It is straightforward to show that u′v′ − ~x′
2

= uv − ~x2 to the first order
in the infinitesimal parameters a, ~α, ~β and ωn, by simply writing the explicit
mapping

(1n+2 + ω)





u
v
~x



 =





u′

v′

~x′



 =







u(1 + a) + ~α · ~x
v(1 − a) + ~β · ~x

(

~x+ u
2
~β + v

2~α
)

+ ωn~x






. (1.2.7)

Let us take v = 1, u = ~x2 on the boundary2. Within this choice, a point
on the boundary is represented by the coordinate ~x. Now we map the point
according to (1.2.7) and we apply (1.2.5) in order to rescale the transformed
point in the same convention v′ = 1. The explicit mapping is

~x→ ~x′/v′ = ~y(1 + a− ~β · ~x) +
x2

2
~β +

1

2
~α+ ωn~x . (1.2.8)

We want to show that (1.2.8) is actually a general conformal transformation.
If we put all parameters except ~α equal to zero we obtain a translation

~x→ ~x+
1

2
~α . (1.2.9)

If we allow only ωn to be non-zero we obtain a rotation

~x→ ~x+ ωn~x . (1.2.10)

If only a 6= 0 we pick a dilation

~x→ ~x(1 + a) . (1.2.11)

2This is rigorous for all points but one for which v = 0 corresponding to a point at
infinity on the boundary.
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At last, if we let only ~β 6= 0 we select a special conformal transformation.

~y → ~y(1 − ~β · ~y) +
1

2
y2~β . (1.2.12)

Indeed, by taking the first order expansion of (1.2.2)

~x→ ~x+ 1
2
~βx2

1 + ~β · ~x+ 1
4β

2x2
= ~x(1 − ~β · ~x) +

1

2
x2~β +O(β2) (1.2.13)

we find precisely (1.2.12).
Therefore, we have finally shown that the isometry group of AdSn+1,

SO(1, n + 1), acts as the conformal group on the boundary of AdSn+1.

1.3 Solitonic p-branes in low energy supergravity

The goal of this section is to briefly review the classical supergravity so-
lutions in presence of branes, considering both the so called extremal and
non-extremal solutions.

We begin by considering the generic Euclidean action in the Einstein
frame3 in D dimension

S = − 1

2κ2
D

∫

dDx
√
g{R − 1

2
gµν∂µφ∂νφ− 1

2

∑

n

1

n!
eanφF 2

n + ..} . (1.3.1)

Here φ is the dilaton, Fn’s are the n-form field strengths belonging to the
RR sector and the dots represent fermionic terms. For IIA strings we only
have even values of n while for IIB strings we only have odd values of n.

We shall search for classical solutions of the type of flat translationally in-
variant p-branes, which are isotropic in transverse directions. We decompose
the dimension of the theory as

D = p+ 1 + d (1.3.2)

where d is the dimension of the transverse space to the p-brane.
To fix our notation, we choose coordinates appropriate for our ansatz

zµ = (t, xi, ya), µ = 0, ...,D − 1; i = 1, 2, ..., p; a = 1, 2, ..., d (1.3.3)

and a metric suitable for the symmetries of the theory

ds2 = gµνdz
µdzν = sB2dt2 +C2

p
∑

i=1

(dxi)2 + F 2dr2 +G2r2dΩ2
d−1 (1.3.4)

3We switch from the Einstein frame to the string frame by a certain Weyl rescaling

gEinst
µν = e−

1

2
φg

string
µν
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where all components only depend on the transverse “length square” coordi-
nate r2 =

∑d
a=1(y

a)2, and dΩ2
d−1 is the metric on the unit sphere Sd−1 in

the transverse space.
Now we are ready to write the equations of motion for the action (1.3.1)

Rµ
ν =

1

2
∂µφ∂νφ+

1

2n!
eaφ

(

nFµξ2...ξnFνξ2...ξn
− n− 1

D − 2
δµ
νF

2
n

)

(1.3.5)

∇2φ =
1√
g
∂µ(

√
g∂νφg

µν) =
an

2n!
F 2

n (1.3.6)

0 = ∂µ(
√
geaφFµν2...νn) . (1.3.7)

As we will see, Fn 6= 0 only for one value of n, thus we consider only this
case from now on. In addition Fn must also satisfy the Bianchi identity

∂[µ1
Fµ2...µn+1] = 0 . (1.3.8)

Moreover, our ansatz requires that the metric ought to tend to a flat value
for r → ∞, that is, the coefficients B,C,F,G ought to tend to 1 in this limit.

We will see that our problem possesses a electric/magnetic duality. In-
deed if we define

F̃D−n = eaφ ∗ Fn (1.3.9)

where ∗F is the Hodge dual to n-form F , it is possible to show that the
equations (1.3.5)-(1.3.7) are invariant under the transformations

aφ→ −aφ, n→ D − n, Fn → F̃D−n . (1.3.10)

We explore first the electric case, in which the ansatz for the field strength
is

Fti1...ipr(r) = ǫi1...ipk(r) . (1.3.11)

If γαβ
is the metric on Sd−1 we can write

√
g = BCpF (Gr)d−1√γd−1 (1.3.12)

and using (1.3.6) we obtain

F ti1...ipr =
1

B2C2pF 2
ǫi1...ipk(r) . (1.3.13)

Plugging this into (1.3.7) we find
(

1

BCpF
(Gr)d−1eaφk(r)

)′
= 0 (1.3.14)

and the result is given by

k(r) = e−aφBCpF
Q

(Gr)d−1

Fti1...ipr = e i1...ipe
−aφBCpF

Q

(Gr)d−1
.

(1.3.15)
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Here Q is an integration constant that arise from

F̃α1...αd−1
=

√
γd−1 e α1...αd−1

Q

µp =
1√

16πGD

∫

Sd−1

F̃d−1 =
Ωd−1Q√
16πGD

(1.3.16)

where µp is the density of electric charge on the p-brane and Ωd−1 is the
volume of Sd−1.

Now we turn to the magnetic ansatz: from (1.3.9) we see that n =
D − (p+ 2) = d− 1 and the field strength tensor

Fα1...αd−1
=

√
γd−1 e α1...αd−1

Q(r) . (1.3.17)

This is simple to work out: the equation of motion for Fn (1.3.7) is trivially
satisfied, while in order for the Bianchi identity (1.3.8) to be fulfilled, Q
must be a constant. In an analogous way to (1.3.16) we write the density of
magnetic charge

gp =
1√

16πGD

∫

Sd−1

Fd−1 =
Ωd−1√
16πGD

Q . (1.3.18)

For the magnetic case, since

Fα1...αd−1 =
1√
γd−1

e α1...αd−1

Q

(Gr)2(d−1)
(1.3.19)

we easily find that

1

n!
F 2

n =
Q2

(Gr)2(d−1)

1

(n− 1)!
Fµξ2...ξnFνξ2...ξn

= δµ
ν

Q2

(Gr)2(d−1)

(1.3.20)

while the corresponding expression for the electric case are the same but
multiplied by a factor e−2aφ.

The next step is to find the form of the equations of motion for our
ansatz. To accomplish that, we must find out the Riemann tensor for the
metric. First, since the metric (1.3.4) is clearly diagonal, we rewrite it as

ds2 = (A0)
2(dz0)2 +

D−1
∑

µ=1

(Aµ)2(dzµ)2 . (1.3.21)

Then, it is simply a matter of calculus to find out the only non-vanishing
components of the Ricci tensor when the metric depends only on r [28]. It
will be useful to define the function f(r) by the relation

f(r)rd−1 ≡ BCpF−1(Gr)d−1 . (1.3.22)
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Now we are ready to write down the equations of motion for the metric and
the dilaton in the electric ansatz

Rt̄
t̄ = −(d− 2)e−anφn!

2(D − 2)
F 2

n ≡ −(d− 2)
K2

F 2

Rī
ī = −(d− 2)

K2

F 2

Rr̄
r̄ = −(d− 2)

K2

F 2
+

1

2F 2
(φ′)2

Rᾱ
ᾱ = (p+ 1)

K2

F 2

φ′′ + φ′(log(frd−1))′ = an(D − 2)K2

K2 ≡ 1

2(D − 2)
e−aφF 2 Q2

(Gr)2(d−1)
.

(1.3.23)

We have shown in the previous section that in order for the metric to assume
a form of the type of AdSq × SD−q, the Riemann tensor must be propor-
tional to the metric tensor, that is, it has to satisfy the empty space Einstein
equation. To realize that, we see from (1.3.23) that the dilaton has to de-
couple and becomes a constant, which we are free to set to zero. Therefore
the possible spaces are AdS4 × S7(2-branes) or AdS7 × S4(5-branes) which
both correspond to 11-dimensional supergravity, or AdS5 × S5(D3-branes)
corresponding to IIB string theory. We will concentrate our discussion on
this last case.

A little more effort [28] leads us to the final solution

ds2 = H−2 d−2

∆

(

sfdt2 +

p
∑

i=1

(dxi)2

)

+H2 p+1

∆

(

f−1dr2 + r2(dΩd−1)
2
)

(1.3.24)
where

B = f
1
2H− d−2

∆ , C = H− d−2

∆ , F = f−
1
2H

p+1

∆

G = H
p+1

∆ , eφ = HaD−2

∆

H = 1 +

(

h

r

)d−2

, f = 1 −
(r0
r

)d−2

∆ = (p+ 1)(d − 2) +
1

2
a2(D − 2)

h2(d−2) + rd−2
0 hd−2 =

∆Q2

2(d− 2)(D − 2)
. (1.3.25)

It is simple to check that indeed the diagonal metric tensor components tend
to 1 for r → ∞. The 5-form field strength, in the electric case, is given by

Fti1...ipr = e i1...ipH
−2 Q

rd−1
. (1.3.26)
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We point out that the solutions (1.3.24) and (1.3.25) are a 2-parameter
(r0, Q) sub-family of solutions. We have already seen in (1.3.16) that Q is
related to the mass and the density of charge of the D-brane. While for
r0 6= 0 a horizon develops at r = r0, by putting r0 = 0 we obtain the very
interesting so called extremal solution, which we will describe closely in the
next section.

1.3.1 The extremal solution

As we have already pointed out, the extremal solution is realized when we
require r0 to vanish. In a quantum description, this solution is consistent
with the brane in the ground state, whereas the non-extremal solution de-
scribes excitations of the branes. Here we consider no dilaton coupling, that
is, we require it to vanish as already mentioned above, and we concentrate
on the n = 5 case.

We can simplify the general solution by noticing that in this case the
following identity holds

h4 =
Q

4
(1.3.27)

that comes from the fact that ∆ = 2(D − 2) = 16. Then

f(r) ≡ 1

H = 1 +
Q

4r4

ds2 = H− 1

2 (sdt2 +

3
∑

i=1

(dxi)2) +H
1

2

6
∑

a=1

(dya)2

6
∑

a=1

(dya)2 ≡ dr2 + r2(dΩ5)
2 .

(1.3.28)

Following [29], we write the electric flux defined in (1.3.16) for a single D3-
brane

µ3 = T3

√

16πG10 (1.3.29)

where T3 is the D3-brane tension and G10 is the ten-dimensional Newton’s
constant

T3 =
2π

(2πℓs)4gs
(1.3.30)

G10 =
(2πℓs)

8

32π2
g2
s . (1.3.31)

We now take N coincident Dp-branes, therefore we set a sort of flux normal-
ization

µ3

T3

√
16πG10

= N (1.3.32)
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which, by (1.3.16), turns into a constraint for Q

QΩ5

15πG10

(2πℓ)4gs

2π
= N . (1.3.33)

According to (1.3.28) we obtain

H = 1 +
4πgsNℓ

4
s

r4
. (1.3.34)

We now introduce the scaled variable

U = r/ℓ2s (1.3.35)

and we consider α′ = ℓ2s → 0 as well as r → 0. The result is

H ≃ 4πgsN

U4ℓ4s

ds2 = ℓ2s

{

U2

√
4πgsN

dx2
4 +

√

4πgsN

(

dU2

U2
+ dΩ2

5

)}

=
U2

L2
dx̃2

4 + L2dU
2

U2
+ L2dΩ2

5

(1.3.36)

where x̃ is related to x by an appropriate scaling. (1.3.36) is precisely the
product metric of AdS5 × S5, where the radii of both spaces are the same
and it is given by L

L4 = 4πgsNℓ
4
s . (1.3.37)

We shall review these results in a deeper way in the next section.

1.4 The Maldacena limit

The Dp-brane is a (p + 1)-dimensional hyperplane in spacetime where an
open string can end. D-branes carry mass and charge, and therefore the
spacetime around them is curved. On the worldsheet of a type II string, the
left-moving degrees of freedom and the right-moving degrees of freedom carry
separate spacetime supercharges. Since the open string boundary condition
identifies the left and right movers, the D-brane breaks at least one half of
the spacetime supercharges. In type IIA (IIB) string theory, precisely one
half of the supersymmetry is preserved if p is even (odd), that is, it is 1/2
BPS.

Now we want to give a more physical interpretation of the general con-
struction that we have presented in the previous section. It was shown in
[4] that, if we put N Dp-branes on top of each other, the resulting (p + 1)-
dimensional hyperplane carries exactly N units of the (p + 1)-form charge.
Let us consider N parallel separated D3-branes, then the end points of an
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open string may or may not be attached to the same brane. If it is so, these
strings can have arbitrarily small length and will be massless. In the low
energy limit these excitation modes induce a massless U(1)N gauge theory
with N = 4 supersimmetry. An open string can, however, have its ends
attached to two different branes, then the mass of such a string cannot be
arbitrarily small. Indeed, the length of the string cannot be shorter than the
separation distance between the branes. In the limit where the N branes
tend to be coincident, all string states would be massless and the gauge
symmetry is increased to a U(N) gauge symmetry. Hence, in the low energy
limit, N coincident branes hold up an N = 4 Super Yang-Mills theory in
4-dimensions with gauge group SU(N)4.

Now we want to motivate the AdS/CFT correspondence by considering
excitations around the ground state and taking a low energy or decoupling
limit.

Let us take the metric of N coincident D3-branes

ds2 =

(

1 +
R4

y4

)− 1
2

ηijdx
idxj +

(

1 +
R4

y4

)
1
2

(dy2 + y2dΩ2
5) (1.4.1)

where ηij = diag(− + ++) and R is the radius of the D3-brane

R4 = 4πgsNα
′2 . (1.4.2)

In order to study such a geometry, we will consider to different regimes.
If we take y ≫ R we simply recover the flat space-time R10. Otherwise,

when y < R we obtain the geometry of the throat, that it will be singular
as y ≪ R. In order to understand it better, we introduce the coordinate

u ≡ R2

y
. (1.4.3)

The asymptotic form of the metric (1.4.1) in the large u limit is given by

ds2 = R2

[

1

u2
ηijdx

idxj +
1

u
du2 + dΩ2

5

]

. (1.4.4)

This geometry is described by the product of the five-sphere S5 and the
hyperbolic space AdS5, where both spaces have identical radius R. We refer
to this geometry close to the brane as AdS5 × S5.

The Maldacena limit corresponds to keeping fixed gs and N as well as all
physical length scales, while letting α′ → 0. In this limit, only the AdS5 ×
S5 region of the D3-brane geometry survives and contributes to the string
dynamics of physical processes, while the dynamics in the asymptotically
flat region decouples from the theory.

4We ignore the U(1) factor corresponding to the overall position of the branes.
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Figure 1.1: Space-time around D3-branes.

1.5 The Maldacena conjecture

The AdS/CFT correspondence [1] states the equivalence between the follow-
ing theories

• Type IIB superstring theory on AdS5 × S5 where both AdS5 and S5

have the same radius R, where the 5-form F+
5 has integer flux N =

∫

s5 F
+
5 and where the string coupling is gs;

• N = 4 super Yang-Mills theory in 4-dimensions, with gauge group
SU(N) and coupling gY M in its superconformal phase 5;

The identification between the parameters of the two theories is given by

gs = g2
Y M , R4 = 4πgsNα

′2 . (1.5.1)

This statement of the conjecture is referred to as the strong form, as it is
to hold for all values of N and of gs = g2

Y M , and it also implies that the
AdS5 × S5 background is an exact solution of type IIB superstring theory.
In addition to this, there are other two level of the conjecture.

5The physical states and operators are gauge invariant and trasform under unitary
representations of SU(2, 2|4).
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The ’t Hooft limit consists in keeping the ’t Hooft constant λ ≡ g2
Y MN

fixed and letting N → ∞. In Yang-Mills theory, this limit corresponds
to a topological expansion of the field theory’s Feynman diagrams while,
on the AdS side, the ’t Hooft limit corresponds to a weak coupling string
perturbation theory.

This form of the conjecture is clearly weaker than the previous version,
but it is very interesting since it states a correspondence between classical
string theory and the large N limit of gauge theories.

The weakest form of the conjecture is realized taking the ’t Hooft param-
eter λ ≫ 1 while N → ∞. In this case the conjecture relates the strong
coupling limit, or the λ−1/2 expansion, of the Yang-Mills theory with the
low energy, supergravity limit of type IIB superstring theory on AdS5 × S5.

Even this last version of the correspondence has profound consequences,
since it enables one to compute correlation functions in the large N , large
g2
Y MN limit. In fact, this limit contains the highly nontrivial sum of all pla-

nar Feynman diagrams, and emphasizes those diagrams which have infinitely
many vertices.

However, the predictions of the AdS/CFT correspondence are very dif-
ficult to check in a direct way, and the main evidence which supports the
correspondence comes from symmetry arguments.

1.6 Global symmetries

The natural first step is to compare global symmetries. In this section we
switch from the Euclidean to the Minkowski formulation of the theory, since
it is more natural in order to compare the symmetris. Therefore, the relevant
group of AdS5 it will be SO(2, 4) instead of SO(1, 5). The IIB string theory
has an isometry group SO(2, 4) × SO(6), the first being the isometry group
of AdS5, as we have already pointed out, while the last SO(6) being the
isometry group of S5. However, due to the presence of spinors, we must take
as the relevant group the product of the covering groups SU(4) of SO(6) and
SU(2, 2) of SO(2, 4), that is SU(2, 2) × SU(4). But a better looking at the
way the 32 Majorana spinor supercharges trasform under this group show us
the in fact the global symmetry is given by the Lie-supergroup SU(2, 2|4).

Now we ought to show that the global continuous symmetry group of
N = 4 SYM is given by the same supergroup. First of all, the theory being
conformal, it is invariant under the conformal group SO(2, 4) ∼ SU(2, 2).
The group SO(6) ∼ SU(4) comes from the R-symmetry of the theory, since
the different supercharges may be rotated into one another. To set this more
rigorous, let us consider the field content of the N = 1 ten dimensional pure
SYM. This theory contains the gauge potential aµ, µ = 0, . . . , 9 (8 bosonic
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physical degrees of freedom, the gluons) and the 8-dimensional Majorana-
Weyl gluinos λα, α = 1, . . . , 8 , all in the adjoint representation. Moreover,
the theory has 16 Majorana supercharges. Now, N = 4 SYM is obtained as
the dimensional reduction of such a theory: the gluon fields reduce to one
gauge field (2 degrees of freedom) producing 6 scalar fields, transforming
under the fundamental representation of SO(6) , and the gluino fields turn
into 4 Weyl spinors in 4 dimension (8 degrees of freedom). Finally, the 16
supercharges turn into 4 sets of complex Majoranas charges, transforming
under the fundamental and the antifundamental of the group SU(4). So,
the conformal group together with the R-symmetry give the supergroup
SU(2, 2|4) as the global symmetry of the field theory.

In N = 4 Super Yang-Mills theory there is also a Montonen-Olive or
S-duality, realized on the complex coupling constant τ by Möbius transfor-
mations in SL(2,Z)

τ =
θI

2π
+ i

4π

g2
Y M

(1.6.1)

where θI is the instanton angle. But also the IIB theory contains a SL(2,Z)
invariance, arising from compactification of M-theory on a 2-torus with mod-
ular parameter τ = χ+ ie−φ with χ the axion of IIB [30].

1.7 AdS/CFT fields, operators and correlators

The Maldacena conjecture establishes a duality between two theories: string
theory on a manifold of the form of AdSn × M, where M is a compactifi-
cation manifold, and an appropriate conformal field theory on the boundary
of AdSn. However, this conjecture does not state the precise way in which
these two theories are related. So far we have proved that the global sym-
metries on both sides of the correspondence agree. In this section we want
to demonstrate that also the representations, i.e. the states of the theories,
of the supergroup SU(2, 2|4) match on both sides.

We recall that the single color trace operators are the fundamental bricks
of our construction, since all higher trace operators may be compose using
the OPE. Therefore it is natural for single trace operators on the SYM side
to be correlated to single particle states on the AdS side, while multiple trace
states are regarded as bound states of these particle states.

Let us pick out the irreducible representations of the supergroup SU(2, 2|4)
on the string theory side. In order to do this, we identify all type IIB string
degrees of freedom as fields ϕ in AdS5 × S5. We split the metric

ds2 = gAdS
µν dzµdzν + gS

uvdy
udyv (1.7.1)

where zµ, µ = 0, 1, · · · , 4 are coordinates on AdS5 and yu, u = 1, · · · , 5 are
the corresponding on S5. It is useful to expand the fields ϕ(z, y) in a basis
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Type IIB string theory N = 4 conformal super Yang Mills

Supergravity Excitations Chiral primary + descendants
1/2 BPS, spin ≤ 2 O2 = trX{iXj} + desc.

Supergravity Kaluza-Klein Chiral primary + Descendants
1/2 BPS, spin ≤ 2 O∆ = trX{i1 · · ·Xi∆} + desc.

Type IIB massive string modes Non-Chiral operators, dimensions ∼ λ1/4

non-chiral, long multiplets e.g. Konishi trXiXi

Multiparticle states products of operators at distinct points
O∆1

(x1) · · · O∆n(xn)

Bound states product of operators at same point
O∆1

(x) · · · O∆n(x)

Table 1.1: Mapping between the representations of SU(2, 2|4) on both sides
of the correspondence.

Y∆(y) of spherical harmonics on S5

ϕ(z, y) =

∞
∑

∆=0

ϕ∆(z)Y∆(y) . (1.7.2)

We expect that fields compactified on S5 receive a contribution to the mass.
Indeed, from the eigenvalues of the Laplacian on S5, the following relations
between mass and scaling dimension hold

scalars m2 = ∆(∆ − 4)

spin 1/2, 3/2 |m| = ∆ − 2

p− form m2 = (∆ − p)(∆ + p− 4)

spin2 m2 = ∆(∆ − 4) .

(1.7.3)

We summarize the complete mapping between string and sugra states onto
super Yang Mills operators in Table 1.1.

We emphasize the result that the single trace half BPS operators in
the SYM theory correspond in a one-to-one way with the canonical fields
of supergravity, compactified on AdS5 × S5. Now we further discuss the
AdS/CFT correspondence by describing how correlators on both sides are
related.

Taking the Poincaré metric on Euclidean AdS5

ds2 =
1

z2
0

(dz2
0 + d~z2) (1.7.4)

the boundary of the space x0 = 0 is identified to be R4, where the metric
diverges. A Weyl rescaling is required to remove the overall factor and
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regularize the metric, but, in general, such rescaling is not unique. Thus, in
order to obtain a well-defined limit to the boundary we must require for the
boundary theory to be scale invariant. Indeed, N = 4 SYM theory is scale
invariant and it lives at the boundary of AdS5.

We suppose that the bulk fields ϕ∆(z) are asymptotically free, and the
two independent free solutions have the following asymptotic behaviors

ϕ0
∆(z0, ~z) =











z∆
0 if normalizable

z4−∆
0 if non-normalizable

. (1.7.5)

While the normalizable solutions are related to the vacuum expectation val-
ues of operators of dimensions ∆ and corresponding quantum numbers, the
non-normalizable solutions do not correspond to bulk excitations. In [6] it
was argued that they epitomize the coupling of external sources to the super-
gravity or string theory. The boundary fields related to the non normalizable
solution ϕ∆ are defined by

ϕ̄∆(~z) ≡ lim
z0→0

ϕ∆(z0, ~z)z
4−∆
0 . (1.7.6)

In order to realize the mapping between the correlators in the SYM theory
and the dynamics of string theory, we construct a standard generating func-
tional for all the correlators of single trace operators O∆ on the boundary

Z[{ϕ̄∆}] =
∑

q

1

q!

∫ q
∏

k=1

dnzk〈O1(z1) · · · Oq(zq)〉ϕ̄1(z1) · · · ϕ̄q(zq)

=

〈

exp

{

∫

dnz
∑

i

ϕ̄i(z)Oi(z)

}〉

.

(1.7.7)

If the operators Oi on the field theory living on the boundary have conformal
dimension ∆i then the currents ϕ̄i should have conformal dimension n −
∆i. Moreover, the relation (1.7.7) is supposed to hold order by order in a
perturbative expansion. The dynamics of Type IIB string theory on AdS5 ×
S5 is described by an action S[ϕ∆], which we can relate to the generating
functional (1.7.7) by

Z[{ϕ̄∆}] = extrem S[ϕ∆] (1.7.8)

where the extremum is taken over all fields which assume the asymptotic
behavior (1.7.6).

However, we note that N = 4 super-Yang-Mills theory is certainly not
a free quantum field theory, and generic correlators will receive quantum
corrections from their free field values, and therefore they will acquire non-
trivial coupling gs = g2

Y M dependence, but we will not discuss this matter
here.



Chapter 2

Wilson loops in N = 4 SYM

2.1 Definition

In gauge theories the Wilson loop operator W is defined as the path-ordered
exponential of the gauge field

W =
1

N
Tr P exp

(

i

∮

C
Aµdx

µ

)

(2.1.1)

with the trace in the fundamental representation and the integral is taken
over any closed path in space-time. The most famous physical application of
such an operators comes from the fact that they are the phase factor associ-
ated with the trajectory of a heavy quark in the fundamental representation
of the gauge group. Hence, the Wilson loop measures the effects of the gauge
dynamics on external quark sources. In particular, in the well known case
of a parallel quark anti-quark pair, the Wilson loop serves as an order pa-
rameter for confinement, since it is the exponent of the effective potential
between the quarks.

However, we easily see that the definition (2.1.1) does not fill in the case
of N = 4 SYM, since this theory does not contain quarks in the fundamental
representation. From the string point of view, we can construct the Wilson
loop by considering the usual system of N + 1 coincident D-branes and
separate one of them taking it far away from the others. In such a way, we
break the group SU(N+1) → SU(N)⊗U(1) and, for large N , we can ignore
the dynamics of the distant brane. The new features arise from the string
stretching between the stack of coincident branes and the separated one. The
ground state of this open string are the W -bosons and their superpartners
of the broken SU(N+1) gauge group. From the dimensional reduction from
the 10-dimensional pure gauge theory we get the correct form of the Wilson
loop in the Euclidean theory

W =
1

N
Tr P exp

(∮

C
(iAµdx

µ + |ẋ|θiΦi)ds

)

(2.1.2)

45
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where Φi are the extra six component of the gauge field and the θi coupling
to the scalar fields are angular coordinates of unit magnitude and can be
thought as coordinates on S5. Although the presence of the scalar coupling
in (2.1.2) might be seem surprisingly, we will show that it will be crucial to
preserve supersymmetry.

We note here that in the euclidean formulation the Wilson loop is no
longer a pure phase factor, because of the real term arising from the coupling
to the scalars. The operator in the trace is no longer an unitary operator,
hence the inequality 〈W 〉 ≤ 1 does not hold anymore.

Let us analyze more rigorously the supersymmetry of the Wilson loop.
Let us start from the general operator

W =
1

N
Tr P exp

(∮

C
(iAµdx

µ + Φiẏi)ds

)

. (2.1.3)

We can study the perturbation theory of the expectation value of the loop
〈W 〉 to the first order in g2

Y MN and we find that [31]

W = 1 +
g2
Y MN

4π2ǫ

∮

C
ds |ẋ|

(

1 − ẏ2

ẋ2

)

+ finite terms (2.1.4)

where ǫ is a cutoff1. We easily note that the linear divergence cancels only
when the constraint ẋ2 = ẏ2 is satisfied. It is possible to show [31] that
also at high order in the ’t Hooft constant the divergence cancels when the
constraint is satisfied.

2.2 Minimal surface in AdS space

In section 2.1 we have pointed out that the W-boson in string theory is
described by an open string stretching between a single separated D-brane
and the other N coincident D-branes. In the Maldacena limit, as we have
seen in section 1.4, the flat ten-dimensional space decouple and the N D-
branes are replaced by the AdS5 × S5 geometry, and the open string is
stretched from the boundary to the interior of AdS5. This reasoning makes
us aware that the Wilson loop operator and the string in AdS5 geometry are
related to each other.

The Maldacena conjecture tells us how effectively the expectation value
of the Wilson Loop is given in terms of the action of a string bounded by
the loop itself at the boundary of space

〈W [C]〉 =

∫

∂X=C
DX exp(−

√
λS[X]) (2.2.1)

where X represents both the bosonic and the fermionic coordinates of the
string and S[X] is a suitable string action. In the strong ’t Hooft limit,

1We have regularized the propagator replacing 1/x2 with 1/(x2 + ǫ2).
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that is, for large λ, we can approximate the integral to be the area A of the
minimal surface bounded by the contour C

〈W 〉 ≃ K exp(−
√
λA) (2.2.2)

where K is a normalization factor that may depend on the loop variables
(xµ, yi).

In fact, we will show below that the correct choice of the action is not
the area of the surface as in (2.2.2), but instead the Legendre transform of
it. While the value of the classical action for a surface is different than the
area, the equation of motion are unchanged and the solution are still minimal
surfaces.

2.2.1 Boundary conditions

In this section we will give a precise treatment of boundary conditions on
the string on AdS5 × S5 and how these are tied to another explanation of
the constraint ẋ2 = ẏ2, that was originally obtained by making use of the
coupling of the string to the gauge fields and to the scalars.

In order to do that, we start as usually by considering the ten-dimensional
N = 1 pure Super Yang-Mills, and analyzing the boundary conditions on
the bosonic variables. We recall that this theory is fulfilled by stocking the
space with D9-branes, and the Wilson loop is equivalent to an open string
constrained to end on the loop, therefore we assume to impose full Dirichlet
boundary conditions on the string worldsheet. Indeed, these conditions are
complementary to the full Neumann boundary conditions imposed along the
D9-brane.

We now reduce the theory to 4 dimensions by performing a T-duality
along 6 directions and, as a result, a string bounded along a D3-brane is
forced to obey 6 Dirichlet and 4 Neumann boundary conditions. Accordingly,
the Wilson loop operator in 4 dimension imposes complementary boundary
conditions, that is, 4 Dirichlet and 6 Neumann boundary conditions. We
parameterize the loop by the variables (xµ(s), yi(s)), where the 4 loop vari-
ables ẋµ are to be recognized as the 4 Dirichlet boundary conditions, while
the 6 loop variables ẏi as the 6 Neumann boundary conditions.

We select (τ, σ) to be the string wordsheet coordinates, in such a way
that the boundary is situated at σ = 0, and we take the following AdS5×S5

metric

ds2 =
√
λY −2





3
∑

µ=0

dXµdXµ +

6
∑

i=1

dY idY i



 (2.2.3)

where we put α′ = 1. Following the identification made above, we impose
Dirichlet conditions on Xµ

Xµ(τ, 0) = xµ(τ) (2.2.4)
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and Neumann condition on Y i, which we write as

J α
τ ∂αY

i(τ, 0) = ẏi(τ), (2.2.5)

up to a normalization constant2. J β
α is the complex structure defined on the

string worldsheet by means of the induced metric gαβ

J β
α =

1√
g
gαγǫ

γβ (2.2.6)

which enters in the condition (2.2.5) because of the reparametrization invari-
ance on the worldsheet.

The minimal surface obeying the boundary conditions (2.2.4) and (2.2.5)
may or may not end at the boundary of AdS5, therefore the condition
Y i(τ, 0) = 0, which identifies the boundary, is a supplemental Dirichlet con-
ditions. It can be shown that this condition is consistent with (2.2.5) if and
only if the loop variables satisfy the constraint ẋ2 = ẏ2. Let us take into con-
sideration the Hamilton-Jacobi equation for the area A of a minimal surface
that end along a loop parameterized by (Xµ(s), Y i(s)) in AdS5 × S5

(

δA

δXµ

)2

+

(

δA

δY i

)2

=
1

(2π)2Y 4

(

(∂τX
µ)2 + (∂τY

i)2
)

. (2.2.7)

It is useful rewrite this equation in terms of the momenta conjugate to the
Xµ’s and the Y i’s

δA

δXµ
=

1

2πY 2
J α

τ ∂αX
µ,

δA

δY i
=

1

2πY 2
J α

τ ∂αY
i . (2.2.8)

Substituting these expression into (2.2.7) we obtain

(J α
τ ∂αX

µ)2 + (J α
τ ∂αY

i)2 = (∂τX
µ)2 + (∂τY

i)2 . (2.2.9)

Implementing the boundary conditions (2.2.4) and (2.2.5) we get

ẋ2 − ẏ2 = (J α
τ ∂αX

µ)2 − (∂τY
i)2 . (2.2.10)

The last step is to impose the condition for the string worldsheet to end at
the boundary of AdS5. From Y i(τ, 0) we get ∂τY

i(τ, 0) = 0, so that the left
hand side of (2.2.10) cannot be negative. Furthermore, due to the factor Y −2

in (2.2.3), keeping J α
τ ∂αX

µ 6= 0 near the boundary costs a large area, so we
have to put it equal to zero at the boundary. Thus, we have demonstrated
that the condition ẋ2 = ẏ2 is required for a minimal surface ending at the
boundary of AdS5.

2However the condition ẋ2 = ẏ2 suggests that the normalization constant should be
equal to 1.
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We can show that, once the constraint ẋ2 = ẏ2 is satisfied, the 6 Neumann
boundary conditions (2.2.5) can be thought as Dirichlet conditions on S5.
Let us reparameterize the coordinates Y i as

Y i = Y θi (2.2.11)

where (θi)2 = 1. At the boundary of AdS5 the classical solution satisfies
∂αY

i = (∂αY )θi, therefore the conditions (2.2.5) become

θi(τ, 0) =
ẏi

|ẏ| (2.2.12)

which can be viewed as Dirichlet conditions on S5.

2.2.2 Legendre transform

As we have already pointed out above, the Wilson loop is associated to a
string which end points lying along the loop on the boundary of space, and
we expect that the string solution is described in terms of minimal surfaces.
However, there are many actions, which differ by boundary terms, whose
equations of motion are solved by minimal surfaces. These terms may be
important, since the surfaces we consider have boundaries. In (2.2.2) we
argued that 〈W 〉 was given in terms of the area A of the minimal surface.

The goal of this section is to show that the Wilson loop is actually de-
scribed by the Legendre transform of such an area. Since we are dealing with
the area of the minimal surface the most ordinary choice for the action is
the Nambu-Goto action3, which is a natural functional of Xµ(s) and Y i(s).
From (2.2.12) we see that this action is more suitable for the full Dirichlet
boundary conditions. However, we have seen in the previous section that
the loop variables ẏi force 6 Neumann conditions (2.2.5) on the coordinates
Y i. For this reason we consider the Legendre trasform

L̃ = L − ∂σ

(

PiY
i
)

(2.2.13)

Ã = A−
∮

dτPiY
i (2.2.14)

where Pi are the conjugate momenta to Y i

Pi =
δA

δ∂σY i
=

1

2π
√
λ

√
ggσα∂αY

jGij . (2.2.15)

It is simple to show that Ã is actually a functional of (Xµ, Pi). Let us
consider a variation of the area A under a general variation of the Y i’s

δA =

∫

dτdσ

(

δA

δY i
− ∂α

δA

δ∂αY i

)

δY i(τ, σ) +

∮

dτ
δA

δ∂σY i
δY i(τ, 0)

=

∮

dτPi(τ, 0)δY
i(τ, 0) . (2.2.16)

3In the following chapters we will use the Polyakov action, which is classically equivalent
to the Nambu-Goto action[32].
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We now implement the Legendre transform, obtaining

δÃ = −
∮

dτY i(τ, 0)δPi(τ, 0) . (2.2.17)

Hence Ã and, as a consequence, 〈W 〉 are functionals of the momenta Pi at
the boundary.

The Neumann conditions (2.2.5) turn into conditions on the momenta Pi

ẏi

2π
= P i = Y 2Pi . (2.2.18)

We assume here the loop variables ẏi(s) to be continuous. As a consequence,
from (2.2.12) and (2.2.11) we see that the Y i’s and the Pi’s are parallel to
each others. Within this assumption, we evaluate the Legendre transform

Ã = A− 1

2π

∮

dτ
ẏi

Y 2
Y i = A− 1

2π

∮

dτ
|ẏ|
Y

= A− 1

2πǫ

∮

ds|ẏ| . (2.2.19)

In the last equality we have set Y = ǫ, where ǫ is a regulator. In such a way,
we have obtained the regularize area for Y ≥ ǫ.

It is straightforward to show that the divergent piece of the area of the
minimal surface is proportional to the circumference of the loop L, that
is, the boundary of the surface. We consider the curve C parameterized
by (xµ(τ), yi(τ)) to run in the bulk of AdS5 × S5 and then we take the
projection into the boundary by letting yi → 0. In fact, we parameterize the
coordinates as follow

yi(τ) = θiǫ, Y i(τ, y) = yθi, Xµ(τ, y) = xµ(τ) + O(y2) (2.2.20)

where ǫ is the same regulator as in (2.1.4).
Now we are able to extract the divergent piece from the Nambu-Goto

action

A(C) =
1

2π

∫

dτdσ
1

Y 2

√

det
ab

〈∂aXµ∂bXµ + ∂aY i∂bY i =

=
1

2π

∫

dτ

∫

ǫ
dy

1

y2

√

Ẋ2 + Ẋ2X ′2 − (Ẋ ·X ′)2

=
1

2π

∫

dτ

∫

ǫ

dy

y2
〈
√
ẋ2 +O(y2) =

=
1

2πǫ
L(C) + finite terms . (2.2.21)

If we merge (2.2.21) and (2.2.19), we obtain

Ã =
1

2πǫ

∮

ds(|ẋ| − |ẏ|) + finite terms . (2.2.22)
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Hence, whenever the constraint ẋ2 = ẏ2 is fulfilled, the linear divergence
vanishes, and such loops, if smooth, do not require regularization. However,
if the loop has a cusp or an intersection, the linear divergence still cancels,
but it arise a logarithmic divergence

Ã ∼ − 1

2π
log

L

ǫ
+ finite terms . (2.2.23)

In fact, the constraint ẋ2 = ẏ2 is not satisfied either at a cusp or at an
intersection point [31].

2.3 Supersymmetric Wilson loops

The Euclidean action for the N = 4 Super Yang-Mills theory is unique and
given by

S =
1

g2

∫

d4xTr

{

1

2
F 2

µν + 〈DµΦi
2 − 1

2
[Φi,Φj ]

2 + Ψ̄ΓµDµΨ + iΨ̄Γi[Φi,Ψ]

}

(2.3.1)
where ΓM = (Γµ,Γi) are ten-dimensional Dirac matrices. The gauge fields
Aµ, the six scalars Φi (i = 4 . . . 9) and the four Majorana fermions ΨA are
all in the adjoint representation of SU(N), and we put fermions into a single
Majorana-Weyl spinor of Spin(9, 1).

The supersymmetry transformations of the bosonic field are

δǫAµ = Ψ̄Γµǫ (2.3.2)

δǫΦi = Ψ̄Γiǫ (2.3.3)

where the parameter of transformation ǫ is a ten-dimensional Majorana-Weyl
spinor.

The supersymmetry variation of the Wilson loop dual to the string in
AdS space is

δǫW =
1

N
TrP

∫

ds Ψ̄(iΓµẋµ + Γiθi|ẋ|)ǫ exp

∫

ds′ (iAµẋ
µ + Φiθ

i|ẋ|) .
(2.3.4)

In order to preserve some part of the supersymmetry we require that

(iΓµẋµ + Γiθi|ẋ|)ǫ = 0 . (2.3.5)

This equation has eight independent solution for every given s, due to the
fact that the combinations of Dirac matrices between brackets squares to
zero. Since these solutions, in general, will depend on s, the Wilson loop is
only locally supersymmetric, but the action is not locally symmetric. Then
we must require ǫ to be s-independent, and this will turn into a constraint on
xµ(s) and θi(s). In this picture, the number of conserved supercharges will be
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the same as the number of linearly independent supersymmetry parameters
ǫ that satisfy (2.3.5).

Let us begin with the simplest case, namely when we take θi to be a
constant. Then it is simple to see that the only solution to eq. (2.3.5)
is when the contour in R4 is a straight line. To show that, we choose the
parameterization of the contour such that |ẋ| = 1 and we differentiate (2.3.5)

iΓµẍµ ǫ = 0 (2.3.6)

which implies ẍ = 0 identically.
Although for a general loop with a curved contour in R4 and non con-

stant θi, (2.3.5) translates in an high redundant number of equation for 16
unknown quantities, it is possible to find non trivial solutions implementing
a simple ansatz. We require that the loop on S5 is given by the tangent
vector ẋµ, which actually lives on S3. Therefore, we need a map from S3 to
S5, which we define through an immersion of R4 in R6

xµ 7−→ xµM i
µ (2.3.7)

where the matrix M i
µ are a sort of projection operator4

Ws(C) =
1

N
Tr P exp

∮

C
dxµ (iAµ +M i

µΦi) . (2.3.8)

Then, our ansatz reads

θi = M i
µ

ẋµ

|ẋ| (2.3.9)

and the Wilson loop is given by

W =
1

N
Tr P exp

∮

C
dxµ (iAµ +M i

µΦi) . (2.3.10)

The supersymmetry equation (2.3.5) for this operator is

iẋµ(Γµ − iM i
µΓi)ǫ = 0 . (2.3.11)

It is straightforward to note that all the s-dependence disappears, and we
have to deal with four algebraic equations

(Γµ − iM i
µΓi)ǫ = 0 . (2.3.12)

4An explicit form of M i
µ is not required because of SO(4)×SO(6) global symmetry of

the theory.
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In order to solve these equations, let us define five pair of creation and
annihilation operators

aµ =
1

2
(Γµ − iM i

µΓi) (2.3.13)

aµ
† =

1

2
(Γµ + iM i

µΓi) (2.3.14)

a4 =
1

2
(vi

1Γ
i − ivi

2Γ
i) (2.3.15)

a4
† =

1

2
(vi

1Γ
i + ivi

2Γ
i) (2.3.16)

where the vectors v1,2 are taken as

M i
µv

i
1,2 = 0, v2

1,2 = 1 . (2.3.17)

These operators satisfy anti-commutation relations

{aM , aN
†} = δM

N . (2.3.18)

Using this Fock space representation we can rewrite (2.3.12) as

aµ|ǫ〉 = 0, µ = 0 . . . 3 . (2.3.19)

There are two states, with opposite chirality, that are solutions of the above
equation

|ǫ+〉 = a†0 . . . a
†
3|0〉 (2.3.20)

|ǫ−〉 = a†0 . . . a
†
3a

†
4|0〉 . (2.3.21)

In general, there exists only one Weyl spinor that satisfy the supersymme-
try equation (2.3.12) and the Wilson loop commutes with only one of the
sixteen supercharges. As a consequence, the operator defined in (2.3.10) is
supersymmetric and it will be 1/16 BPS.

We can also obtain Wilson loop more supersymmetric if we put some
constraint on the shape of the contour C. For example, a three dimensional
slice can be defined by the condition x0 = 0. It follows that only three of
(2.3.12) must be imposed in this case, and the state |ǫ〉 solution of (2.3.19)
will be annihilated only by three oscillators. In this way, we get additional
solutions to (2.3.20), given by

|ǫ(1)+ 〉 = a†0 . . . a
†
3|0〉 (2.3.22)

|ǫ(1)− 〉 = a†0 . . . a
†
3a

†
4|0〉 (2.3.23)

|ǫ(2)+ 〉 = a†1 . . . a
†
3|0〉 (2.3.24)

|ǫ(2)− 〉 = a†1 . . . a
†
3a

†
4|0〉 . (2.3.25)
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In this three dimensional case the Wilson loop commutes with two super-
charges, therefore it will be 1/8 BPS. Following the same reasoning, we find
that if the contour C lies in a two-dimensional slice the loop will commutes
with four supercharges and will preserve 1/4 of the supersymmetry. Finally,
if we constraint the contour C to be unidimensional we fall back in the fa-
mous case of the Wilson line with constant scalar coupling, which is known
to be 1/2 BPS.

2.4 More BPS Wilson loops

The naive BPS Wilson loops described in the last section have trivial ex-
pectation values [20], and they are annihilated by combinations of Poincaré
supercharges Qα alone.

Nevertheless, there exist other types of Wilson loop not captured in this
class. For example, an interesting operator is the circle with a coupling to
a single scalar. Its corresponding Wilson loop has a non-trivial expectation
value, but it preserves 1/2 of the supersymmetries. Therefore it cannot
be obtained by the above construction. Moreover, it has been found an
entire class of BPS Wilson loops which have non-unit expectation value in
[33, 21]. The supersymmetries preserved by this type of loops with non-trivial
expectation value always include combinations of superconformal generators
Sα with the usual Poincaré supercharges Qα. Explicitly, in this case, the
charges consist of a combination of the type

Q̄a = εα̇ȧ
(

Q̄a
α̇ȧ − S̄a

α̇ȧ

)

. (2.4.1)

The specific way in which they are constructed is by the twisting of the
supersymmetry group in order to couple the Wilson loop to the scalars in a
defined scheme.

It is believed that when the shape of these loops is contained in two-
sphere, the expectation value can be computed exactly in field theory by a
gaussian matrix model. This result has recently been proved for a particular
loop in this class, the circular Wilson loop[34]. We only recall here that
the basic ingredients in this construction are the invariant one-forms on the
group manifold SU(2) = S3, in fact these loops generically lie on a S3. We
will see that there are different interesting subclasses of such a construction,
and we will use them to test the N = 1 β-deformed SYM theory in chapter
4.

Let us review in more detail one of the most studied examples.

2.4.1 Circular loop

It is worth to propose here the circular Wilson loop because it provided
historically a direct test of AdS/CFT correspondence. In this case Erickson,
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Semenoff and Zarembo in [8] showed that all Feynman diagrams containing
interaction vertices cancel up two loops in the perturbative computation of
the expectation value: they conjectured that just planar diagrams with no
internal vertices contribute at any order of perturbation theory and they were
able to sum them. They observed that each planar diagram without internal
vertices gives an identical contribution to the Wilson loop expectation value.
Since each propagator just yields a constant [9] the sum is equivalent to a
calculation in a 0-dimensional field theory, namely a matrix model

〈Wcircle〉 =

〈

1

N
Tr expM

〉

=
1

Z

∫

DM
1

N
Tr exp(M) exp

(

−2N

λ
TrM2

)

(2.4.2)
that can be solved exactly in an expansion in powers of 1/N2. The result is

〈Wcircle〉 =
1

N
L1

N−1

(

− λ

4N

)

exp

(

λ

8N

)

=
2√
λ
I1(

√
λ) +

λ

48N2
I2(

√
λ) +

λ2

1280N4
I4(

√
λ) + . . . (2.4.3)

where

Lm
n (x) =

1

N !
L1

N−1

(

− λ

4N

)

exp

(

λ

8N

)

are the Laguerre polynomials. Taking the large λ = g2N limit we have

〈Wcircle〉 =
e
√

λ

(π/2)1/2λ3/4
. (2.4.4)

The result of the gauge field theory precisely agrees with the string compu-
tation in the same limit, which we will treat explicitly in section 4.2

〈Wcircle〉AdS/CFT ≃ e
√

λ . (2.4.5)

This is a strong evidence for the AdS/CFT correspondence, since the circular
Wilson loop has a non-trivial dependence on the coupling constant λ.



Chapter 3

N = 1 β-deformed SYM theory

Let us start by considering the N = 4 supersymmetric gauge theory. Using
the N = 1 superfield formulation, the superpotential of the theory is given
by

igTr(Φ1Φ2Φ3 − Φ1Φ3Φ2) (3.0.1)

where the Φ’s are chiral superfields in the adjoint representation of the gauge
group. In the course of this section, it will be useful work in components, so
we write the N = 4 SYM Lagrangian

L = Lb + Lf (3.0.2)

where Lb stands for the bosonic part of the Lagrangian

Lb = Tr

(

1

4
FµνFµν + (DµΦ̄i)(DµΦi)

−g
2

2
[Φi,Φj ][Φ̄

i, Φ̄j ] +
g2

4
[Φi, Φ̄

i][Φj , Φ̄
j ]

) (3.0.3)

and Lf for the fermionic one

Lf = Tr
(

λAσ
µDµλ̄

A − ig([λ4, λi]Φ̄
i + [λ̄4, λ̄i]Φi)

+
ig

2
(ǫijk[λi, λj ]Φk + ǫijk[λ̄

i, λ̄j ]Φ̄k)

)

.
(3.0.4)

In our convenction Φi i = 1, . . . , 3 are complex scalar field components of
the chiral superfield defined above, while λA = (λi, λ4) where λi are the
fermionic superpartner of the Φ’s and λ4 is the fermionic superpartner of
the gluon. The gauge group here and throughout this section is taken to be
SU(N).

In the next section we describe marginal deformations of this theory.

56
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3.1 Marginal deformations

It is possible to generalize N = 4 SYM and obtain a larger class of finite
4-dimensional field theories which preserve only N = 1 supersymmetry, by
implementing a marginal deformation of the superpotential

WN=4 = gTr(Φ1[Φ2,Φ3])

−→ WLS = κTr

(

Φ1[Φ2,Φ3]q +
h

3

(

(Φ1)3 + (Φ2)3 + (Φ3)3
)

)

(3.1.1)

where the q deformed commutator is defined as [Φi,Φj ]q = ΦiΦj−qΦjΦi. Let
us take a look at the symmetries: WN=4 is invariant under SU(3) × U(1)R,
but WLS generically breaks the SU(3) component to a discrete subgroup.
Therefore the replacement (3.1.1) breaks the supersymmetry of the theory
from N = 4 to N = 1. We notice that we are not considering the most
general marginal N = 1 deformation, but this is a 2-parameter subgroup
describing all exactly marginal theories. The proof of the finiteness of the
marginally deformed theories has been given by Leigh and Strassler[25]. In-
deed, they demonstrated that the condition for finiteness can be encoded in
a single function of the constant g, κ, q and h. Although this function is not
known in general, at one loop order is given by

2g2 = κκ̄

[

2

N2
(1 + q)(1 + q̄) +

(

1 − 4

N2

)

(

1 + qq̄ + hh̄
)

]

. (3.1.2)

Generally, this expression is modified, even in the planar limit, at four loop
order and higher. A special case is the so called real β deformed theory,
relative at h = 0 and q = eiβ with β real, which we will describe in more
detail in the next section. Indeed, in this case the finiteness condition (3.1.2)
is exact to all orders in the planar perturbation theory. Moreover, since
(3.1.2) reads g2 = κκ̄ and it does not depend on q, it is the same for the
N = 4 SYM.

Let us discuss briefly the symmetries of the full (q−h)-deformed theory.
In addition to the U(1)R symmetry preserved by the residual N = 1 sym-
metry, the theory has a remaining Z3 × Z3 symmetry. The action of such
symmetries are given by

ZA
3 : Φ1 → Φ2 , Φ2 → Φ3 , Φ3 → Φ1 (3.1.3)

ZB
3 : Φ1 → Φ1 , Φ2 → ωΦ2 , Φ3 → ω2Φ3 (3.1.4)

U(1)R : Φ1 → ωΦ1 , Φ2 → ωΦ2 , Φ3 → ω2Φ3 (3.1.5)

where ω3 = 1. These three symmetries does not commute with each other
and combined together they form a trihedral group. We end this short
analysis pointing out that the real β-deformed theory actually preserves a
larger U(1)3 subgroup of SU(3) × U(1)R.
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3.2 Real β-deformation

Here and throughout the rest of the paper, we will consider only real β-
deformations, corresponding to q̄ = 1/q, h = 0 and β ∈ R. In this setting,
the superpotential of the N = 4 SYM (3.0.1) is deformed into a simple
expression

igTr(Φ1Φ2Φ3 − Φ1Φ3Φ2) → igTr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) . (3.2.1)

In fact, the result of the deformation is the addition of certain phases in the
Lagrangian. We have already seen in the previous section that this theory
maintains N = 1 supersymmetry and preserves a global U(1)×U(1) non-R-
symmetry. Lunin and Maldacena showed [11] that the deformation (3.2.1)
can be seen as arising from a new definition of the product ∗ between fields
in the N = 4 SYM Lagrangian

f ∗ g ≡ eiπβ(Qf
1Qg

2−Qf
2Qg

1)fg . (3.2.2)

From the symmetry transformations (3.1.3) and (3.1.4) it is simple to find
the values of the charges for all superfields of the theory

Φ1 : (Q1 , Q2) = (0 ,−1) Φ̄1 : (Q1 , Q2) = (0 , 1)

Φ2 : (Q1 , Q2) = (1 , 1) Φ̄2 : (Q1 , Q2) = (−1 ,−1)

Φ3 : (Q1 , Q2) = (−1 , 0) Φ̄3 : (Q1 , Q2) = (1 , 0)

V : (Q1 , Q2) = (0 , 0)

From this it follows that

Tr(Φ1 ∗Φ2 ∗Φ3 − Φ1 ∗ Φ3 ∗Φ2) = Tr(eiπβΦ1Φ2Φ3 − e−iπβΦ1Φ3Φ2) (3.2.3)

which is exactly the same expression as (3.2.1). Hence, we have showed that
indeed the real β-deformed superpotential is caused by the product (3.2.2).

Now we are able to write the component Lagrangian of the real β-
deformed theory

L = Tr

(

1

4
FµνFµν + (DµΦ̄i)(DµΦi) −

g2

2
[Φi,Φj ]βij

[Φ̄i, Φ̄j]βij

+
g2

4
[Φi, Φ̄

i][Φj , Φ̄
j] + λAσ

µDµλ̄
A − ig([λ4, λi]Φ̄

i + [λ̄4, λ̄i]Φi)

+
ig

2
(ǫijk[λi, λj ]βij

Φk + ǫijk[λ̄
i, λ̄j ]βij

Φ̄k)

)

(3.2.4)

where the β-deformed commutator is defined in the same way as in (3.1.1)

[fi, gj ]βij
:= eiπβij figj − e−iπβij gjfi (3.2.5)
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Φ̄j λ̄jλiλj λ̄i

−g2 × e2πiβij ig ǫijk × eπiβij ig ǫijk × eπiβij

Φi Φj

Φ̄i

Φk Φ̄k

Figure 3.1: All β-dependent Feynman vertices in perturbation theory.

and the matrix βij is defined as

βij = −βji , β12 = −β13 = β23 := β . (3.2.6)

In Fig. 3.2 we have presented all the β-dependent Feynman vertices.
The first is a φ4 interaction and it is given by the third term of (3.2.4) while
the other two, coming from the last term of the Lagrangian, are Yukawa
interactions.

3.3 Supergravity solution

We have pointed out in the previous section that the β-deformed theory
has two U(1) symmetries, therefore let us consider a string theory with
such a symmetry realized geometrically. This means that we can take two
coordinates ϕ1, ϕ2 on which the two U(1) symmetries act as shifts. As a
result, we obtain a two torus parameterized by the ϕ’s, which will be fibered
over an eight dimensional manifold.

Let us consider a closed string theory compactified on a two torus. As a
consequence, the remaining eight dimensional theory is symmetric under a
SL(2,Z)× SL(2,Z) transformation, which acts on the complex structure of
the torus1 and on the complex parameter

τ = B12 + i
√
g (3.3.1)

where
√
g represent the volume of the two torus in string metric. If we

put ourselves at the supergravity level, the symmetry is enhanced to a full
SL(2,R) × SL(2,R), which obviously is not a symmetry of the full string
theory. The interesting feature of such a supergravity symmetry is that it
can be used as a solution generating transformation [35]. In our case, the

1However, this symmetry does not play an important role in our present discussion,
therefore we neglect it in the following.
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interesting SL(2,R) symmetry is the one which acts as on the parameter
defined in (3.3.1) as

τ → τ ′ =
τ

1 + γτ
. (3.3.2)

The transformation (3.3.2) is also called a TsT transformation, since we can
think of it as a result of doing a T-duality on one circle, then a shift of the
coordinates, and finally another T-duality. We referred to it as a solution
generation transformation because after implementing (3.3.2) we get a new
solution.

Now we want to convince ourselves that it we start with a non-singular
geometry, after applying (3.3.2) we obtain again a non-singular metric. Let
us start with a non-singular ten dimensional geometry and suppose that there
the B field vanishes when τ2 → 0. The original geometry is non-singular if τ1
tend to an integer when τ2 → 0, but we must avoid the case in which τ1 goes
to different integers if there are different regions where τ2 → 0. These are
the assumptions we have to require in order for the new geometry to be non-
singular. Indeed, it is possible to insert a singularity by means of an SL(2,R)
only in the points where the torus shrinks to zero size, when both τ2 and τ1
tend to zero. Therefore, by (3.3.2), τ ′ = τ for small τ , and, as a consequence,
the region near the possible singularity becomes equal to what it was before
the transformation. Hence, the new geometry is still non-singular, and it
shows that the topology of the solution remains the same.

Let us consider a D-brane, invariant under the U(1) × U(1) symmetry
in the original geometry. After applying (3.3.2) we obtain a corresponding
brane in the new geometry. Now we want to find out what field theory lives
on this transformed brane. The conjecture pointed out in [11] states that
the open string field theory on the brane living in the new geometry arise by
redefining the star product

f ∗γ g ≡ eiπγ(Q1
f
Q2

g−Q2
f
Q1

g)f ∗0 g (3.3.3)

when ∗0 is the product between fields in the open string field theory in the
original background. Comparing this to (3.2.2), Qi

f,g are the U(1) charges
of the fields f and g respectively. If we consider a open string field theory
with a B field turned on, the effective metric is the sum of the open string
metric and a non-commutativity parameter

Gij
open + Θij =

(

1

g +B

)ij

∼ 1

τ
. (3.3.4)

If we perform the transformation (3.3.2), we have

1

τ
→ 1

τ ′
=

1

τ
+ γ . (3.3.5)
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Hence, the effect of the deformation is the appearance of a non-commatutavity
parameter Θ12 = γ, namely, the B field is turned on in the new background,
while the open string metric remains the same.

Let us now examine branes located at the origin of the space, that is
the point where both circles reduce to zero size. Since the U(1) directions
are global symmetries of the field theory, for such a brane the star product
(3.3.3) does not lead to a non-commutative field theory at low energies. All
that happens applying (3.3.3) to the low energy conventional field theory
living on the brane is that we obtain another conventional field theory with
some phases in the Lagrangian. However, we might be concerned by the fact
that we are deriving the theory on the brane located at a point where the
volume of the torus shrinks to zero,

√
g = 0. A simple argument in favor of

this procedure is realized considering a D(p + 2) brane anti-brane system,
wrapped along the two torus, with a magnetic flux of their worldvolume
on the two torus in order to have net Dp brane charge. These branes can
annihilate via tachyon condensation to form the Dp brane at the origin and
the brane anti-brane system can be located far from the origin. This process
of tachyon condensation is insensitive to the Θ parameter in (3.3.4), so it
proceeds in the same way in the theory after the SL(2,R) transformation as
in the theory before the transformation. The net result is that we obtain the
same field theory on the Dp brane at the origin, but with the extra phases
(3.3.3).

A fundamental issue is to establish whether of not the deformation (3.3.3)
preserves supersymmetry. Let us start with the original ten dimensional
background possessing a supersymmetry invariant under U(1) ×U(1). As a
consequence, the deformed background will also be invariant under the same
supersymmetry. In our case, in which we have a D3-brane at the origin, the
theory is N = 1 supersymmetric.

So far we have analyzed the theory on the brane and how it is modified
after performing the deformation (3.3.2). Now we want to discuss the gravity
dual of these theories. The main concept is very simple: if we know the
gravity dual of the field theory living an a D-brane in the original background,
then the gravity dual of the deformed field theory living on the D-brane on
the new background is given by performing the SL(2,R) transformation
(3.3.2) on the original solution.

Now we will show explicitly how to get the exact gravity dual solution
for β-deformation, so we set γ = β and we keep it real.

We start by writing the metric2 of S5

ds2

R2
=

3
∑

i=1

dµ2
i + µ2

i dφ
2
i , with

∑

i

µ2
i = 1 (3.3.6)

2It is clear form the above discussion that the AdS5 part of the space will be unmodified
by the deformation.
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ds2

R2
= dα2 + s2αdθ

2 + c2α(dψ − dϕ2)
2

+ s2αc
2
θ(dψ + dϕ1 + dϕ2)

2 + s2αs
2
θ(dψ − dϕ1)

2

= dα2 + s2αdθ
2 +

9c2αs
2
αs

2
2θ

4c2α + s2αs
2
2θ

dψ2 + s2α
[

dϕ1 + c2θdϕ2 + c2θdψ
]2

+ (c2α + s2αs
2
θc

2
θ)

[

dϕ2 +
(−c2α + 2s2αs

2
θc

2
θ)

c2α + s2αs
2
θc

2
θ

dψ

]2

.

(3.3.7)
The coordinate ϕ1 and ϕ2 are shifted by the action of the two U(1) symme-
tries (3.1.3), (3.1.4). Therefore the metric of the two torus is given by the
last line of (3.3.7), and we can evaluate the τ parameter of this two torus

τ = i
√
g0 = i[R2s2α(c2α + s2αs

2
θc

2
θ)]

1/2 = iR(µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

1µ
2
3)

1/2 (3.3.8)

where R = (4πgsN)1/4. At this point we apply the transformation (3.3.2)
and we obtain the solution corresponding to the gravity dual of the β-
deformed theory in the string frame

ds2str = R2

[

ds2AdS5
+
∑

i

(dµ2
i +Gµ2

i dφ
2
i ) + γ̂2Gµ2

1µ
2
2µ

2
3(
∑

i

dφi)
2

]

(3.3.9)

G−1 = 1 + γ̂2(µ2
1µ

2
2 + µ2

2µ
2
3 + µ2

1µ
2
3) (3.3.10)

e2φ = e2φ0G, γ̂ = R2γ, R4 ≡ 4πeφ0N

BNS = γ̂R2G(µ2
1µ

2
2dφ1dφ2 + µ2

2µ
2
3dφ2dφ3 + µ2

3µ
2
1dφ3dφ1) (3.3.11)

C2 = −3γ(16πN)w1dψ , with dw1 = cαs
3
αsθcθdαdθ

C4 = (16πN)(w4 +Gw1dφ1dφ2dφ3)

F5 = (16πN)(ωAdS5
+GωS5) (3.3.12)

ωS5 = dw1dφ1dφ2dφ3 , ωAdS5
= dw4

where ωS5 is the volume element of a unit radius S5.
The regime of validity for this solution are given by

Rγ ≪ 1 , R≫ 1 . (3.3.13)

The first inequality represents the condition that the size of the two torus
does not become smaller than the string scale after the transformation.

3.4 TsT of D-branes

In this section our study focuses more precisely on D-brane in the Lunin-
Maldacena background. The idea is to consider a specific D-brane in the
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undeformed background and to map it via (3.3.2) to the corresponding con-
figuration in the deformed geometry. We note that this can be made ex-
plicitly because the transformation (3.3.2) that led to the deformed solution
(3.3.9) is equivalent to a TsT transformation of the undeformed AdS5 × S5

solution (3.3.6).
Let us review how the strategy operates from the TsT point of view. To

avoid confusion, we use the tilde to indicate coordinates in the undeformed
background. We start by redefining the coordinates which parameterize the
next-to-be deformed part of the sphere in the original AdS5 × S5 by the
relations

φ̃1 = ϕ̃3 − ϕ̃2 , φ̃2 = ϕ̃3 + ϕ̃1 + ϕ̃2 , φ̃3 = ϕ̃3 − ϕ̃1 . (3.4.1)

Performing a T-duality along ϕ1 direction takes to a type IIA solution, whose
coordinates we indicate as ˜̃ϕi. In this background, we perform a shift ˜̃ϕ2 →
˜̃ϕ2 + γ̂ ˜̃ϕ1 and, finally, we return to a type IIB background by acting with
another T-duality along ˜̃ϕ1.

Now we concentrate on the main goal of this section, that is, how bound-
ary conditions for open strings modify under the TsT transformation outlined
just above. The first step is write down the boundary condition obtained by
performing a T-duality along the X1 direction of a background with metric
Gµν and NSNS two-form Bµν in terms of the dual coordinate X̃1 = 1/X1

ǫαβ∂βX̃
1 = ηαβG1a∂βX

a − ǫαβB1a∂βX
a (3.4.2)

where the worldsheet coordinates are α, β = (τ, σ), ηαβ is the worldsheet
metric and we have defined ǫτσ = +1. In order to find a relation between
the coordinates of the undeformed and the deformed background we use
(3.4.2) twice and take into account the effect of the shift

G̃φ̃iφ̃j
∂αφ̃j = Gφiφj

∂αφj − ηαβǫ
βκBφiφj

∂κφj (3.4.3)

where the label i, j = 1, 2, 3.
In the original undeformed background the B̃µν vanishes and we consider

D-branes without any world-volume flux turned on along the φ̃i directions.
The boundary conditions for open strings ending on the brane along a φ̃i

direction are

∂σφ̃i = 0 (Neumann)

∂τ φ̃i = 0 (Dirichlet) .
(3.4.4)

In our analysis, we will consider only the direction φi of the five-sphere, since
the other coordinate are not modified by the TsT transformation. As we can
see in (3.3.9), in the undeformed background the NSNS two-form Bµν is no
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more vanishing and, in addition, we will consider a non-zero world-volume
flux Fab. Then, the boundary conditions are given by

Gφiφj
∂σφj + (Bφiφj

− 2πFφiφj
) ∂τφj = 0 (mixed Neumann)

∂τφi = 0 (Dirichlet) .
(3.4.5)

So far we have established that D-branes in the undeformed background are
characterized by boundary conditions (3.4.4), while D-branes in the deformed
background are characterized by boundary conditions (3.4.5). Now we want
to map the branes in the two geometries by using of the transformation
(3.4.3). Let us take into account all the four possible cases.

NNN conditions
Let us take Neumann boundary conditions along all three coordinates φ̃i

in the undeformed background. Applying the transformation (3.4.3) to the
first of (3.4.4) we find

Gφiφj
∂σφj +Bφiφj

∂τφj = 0 . (3.4.6)

This relation matches with the first of the (3.4.5) if we set Fφiφj
= 0, i.e., no

world-volume flux is turned on. As a result, if we start with Neumann bound-
ary conditions along all of the φ̃i directions in the undeformed background,
we end up with all Neumann boundary conditions along the φi directions in
the Lunin-Maldacena background with no world-volume flux.

DNN conditions
Now we consider a Dirichlet boundary condition along φ̃1 and Neumann

boundary condition along the remaining. In the same way, we apply the
transformation (3.4.3) to (3.4.4) and we obtain

Bφ1φj
∂σφj +Gφ1φj

∂τφj = 0 . (3.4.7)

This relation is not explicitly of the same form as the boundary condition in
(3.4.5). But, if we use (3.4.6) twice (for φ2 and φ3), (3.4.7) turns into a pure
Dirichlet boundary condition ∂τφ1 = 0. Therefore, as the same way as in the
previous case, the boundary conditions are mapped without changes from
the undeformed background to the deformed one, with no world-volume flux
turned on.

NDD conditions
Let us take in account the more interesting case in which we have two

Dirichlet and one Neumann boundary conditions in the undeformed back-
ground. This leads to the equations











Gφ1φj
∂σφj +Bφ1φj

∂τφj = 0

Bφ2φj
∂σφj +Gφ2φj

∂τφj = 0

Bφ3φj
∂σφj +Gφ3φj

∂τφj = 0

. (3.4.8)
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Using (3.3.11) and (3.3.11), the system reduces to










Gφ1φj
∂σφj +Bφ1φj

∂τφj = 0

Gφ2φj
∂σφj + (Bφ2φj

− R2

γ̂ ) ∂τφj = 0

Gφ3φj
∂σφj + (Bφ3φj

+ R2

γ̂ ) ∂τφj = 0

. (3.4.9)

It is clear that for the resulting D-brane these represents all Neumann bound-
ary conditions in the deformed background. Moreover, the world-volume has
increased its dimension by two and now wraps a two-torus spanned by the
coordinates φ2 and φ3. Furthermore, there is a world-volume flux along the
torus directions:

Fφ2φ3
=

1

2π

R2

γ̂
=

1

2π

1

γ
. (3.4.10)

We notice that since the world-volume is turned on a compact two-torus, it
must obey a quantization condition, which is satisfied when γ is rational,
γ = m

n where m,n are integers3.

DDD conditions
The last configuration is the case of all Dirichlet boundary conditions.

Let us switch to coordinates ϕi defined in (3.4.1). The resulting system of
equation reads











Gϕ1ϕj
∂σϕj + (Bϕ1ϕj

− R2

γ̂ ) ∂τϕj = 0

Gϕ2ϕj
∂σϕj + (Bϕ2ϕj

+ R2

γ̂ ) ∂τϕj = 0

∂τϕ3 = 0

. (3.4.11)

We see that the two initial Dirichlet conditions for ϕ1 and ϕ2 become Neu-
mann after the transformation, while ϕ3 simply remains Dirichlet. As a
consequence, the brane wraps again a two-torus, but this time it is parame-
terized by ϕ1 and ϕ2, and, similarly, the world-volume flux along the torus
is

Fϕ1ϕ2
=

1

2π

R2

γ̂
=

1

2π

1

γ
. (3.4.12)

Still, the reasoning about the quantization of the world-volume field strength
is the same as in the previous case, so the requirement is that γ has to be
rational.

3.5 β-deformed Wilson loops

We have already pointed out that Wilson loops in certain representations of
the gauge group are dual to D-brane configurations in the bulk geometry.

3For more generic value of γ, i.e. if γ is not rational, the brane must sit at special points
where the would-be Neumann directions shrink and the brane world-volume effectively
loses two directions.
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Our aim in this section is to study such objects in the Lunin-Maldacena
background.

For N = 4 SYM, n [36, 37, 38] it has been shown that for type IIB
string theory on AdS5 × S5, there are three objects preserving the same
supersymmetry and the same global symmetry SU(1, 1)×SU(2)×SO(5) as
the straight line Wilson loop:

• Fundamental string with AdS2 world-sheet,

• D5-brane with AdS2 × S4 world-volume (where S4 ⊂ S5),

• D3-brane with AdS2 × S2 world-volume (where S2 ⊂ AdS5).

The first corresponds to the original prescription by Maldacena [36], while
the study of D-brane configurations in the context of Wilson loops has been
initiated in [39].

The analysis of [39, 37, 38] shows that an AdS2 × S2 D3-brane with k
units of world-volume flux along the AdS2 directions represents a Wilson
loop in the k-index symmetric representation, while an AdS2 ×S4 D5-brane
with the same flux represents a Wilson loop in the k-index antisymmetric
representation. The proposal of [38] also includes Wilson loops in arbitrary
representations, which can be described as collections of either D3 or D5-
branes. From this perspective, the expectation value of the loop is computed
by evaluating the action of a probe D-brane in the AdS5 × S5background.

Our goal is then to perform an analogous study of D-brane configura-
tions which are dual to Wilson loops in (anti)symmetric representations
of the gauge group in the N = 1 β-deformed SYM theory. The strat-
egy we follow will be to follow the relevant D-branes of the undeformed
AdS5 × S5background through the TsT transformation which leads to the
LM background, making use of the results we presented in section 3.4.

The main results are that a Wilson loop in the gravity dual of the β-
deformed theory with k units of fundamental string charge can be related
by the following D-branes:

• D5-brane with AdS2 × S̃4 world-volume (where S̃4 is a deformed four-
sphere inside the deformed S5),

• D5-brane with AdS2 × S2 × T 2 world-volume (where S2 ⊂ AdS5 and
there is a world-volume flux F = 1

γ along the T 2 ⊂ S5. These config-
urations only exist for rational values of γ),

• D3-brane with AdS2 × S2 world-volume (where S2 ⊂ AdS5).

As in the undeformed AdS5×S5case, all of the above D-brane configurations
have a world-volume flux along the AdS2 part of the world-volume that gives
the appropriate fundamental string charge.

These D-brane configurations are found to preserve two U(1) symmetries,
given by appropriate combinations of the U(1)R ×U(1)1 ×U(1)2 symmetry
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of the theory. The main result we find is that the D-brane probes reproduce
the same results one finds in AdS5 × S5for Wilson loops in N = 4 SYM.

3.6 Supersymmetry

In this section we want to prove explicitly that the β-deformed SYM theory
is effectively N = 1 supersymmetric.

Let us start with the off-shell Lagrangian for the N = 1 β-deformed
theory

Lβ = Tr

(

− 1

4
FµνFµν +

i

2
λ̄γµ∇µλ+

1

2
D2

+
3
∑

i=1

(

1

2
∇µAi∇µAi +

1

2
∇µBi∇µBi +

i

2
ψ̄iγ

µ∇µψi

+
1

2
F 2

i +
1

2
G2

i − i[Ai.Bi]D − iψ̄i[λ,Ai] − iψ̄iγ5[λ,Bi]

)

− i

2

∑

ijk

ǫijk
(

ψ̄i[ψj , Ak]βjk
− ψ̄iγ5[ψj , Bk]βjk

+ [Ai, Aj ]βij
Fk

−[Bi, Bj ]βij
Fk + 2[Ai, Bj ]βij

Gk

)

)

(3.6.1)

where the β-deformed commutator is defined as in (3.2.5).
The equations of motion for the auxiliary fields are

D = i

3
∑

i=1

[Ai, Bj ] (3.6.2)

Fk =
i

2

∑

ij

ǫijk
(

[Ai, Aj ]βij
− [Bi, Bj ]βij

)

(3.6.3)

Gk = i
∑

ij

ǫijk[Ai, Bj ]βij
. (3.6.4)

We notice that the equation for the D field is exactly the same as in the
undeformed case.

We define four Majorana spinors by

λi = ψi for i = 1, 2, 3

λ4 = λ
(3.6.5)

and antisymmetric 4 × 4 matrices of scalars and pseudoscalars by

Aij = −ǫAk; Bij = −ǫijkBk

A4i = −Ai4 = Ai; B4i = −Bi4 = Bi .
(3.6.6)
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Our goal is to see if it is possible to rewrite the deformed Lagrangian defined
in (3.6.1) with enhanced supersymmetry. In order to do that we should
eliminate the auxiliary fields from (3.6.1) and try to find out an expression
for the Lagrangian that involves only O(4) invariant quantities, as the self-
dual and anti-self-dual tensors of O(4), respectively Aij and Bij . But a
more detailed analysis will show that the Lagrangian is not O(4) invariant.
Indeed, in order to express all the terms in the Lagrangian in an explicitly
O(4) invariant form we should be dealing with expressions similar to

∑

ij

∑

rsmn

∑

tupq

ǫrsiǫmniǫtujǫpqj[Ars, Amn]βij
[Atu, Apq]βij

. (3.6.7)

This expression is easily summed in the undeformed case, where βij = 0 ∀i, j,
and it yields to

4
∑

rsmn

[Ars, Amn][Ars, Amn] . (3.6.8)

However, it is not possible to resolve the sum over i, j in the deformed case,
due to the fact that such indices are involved in the definition of the β-
deformed commutator.

Now we take a Majorana parameter ξ and we have the following super-
symmetry transformations

δAµ = iξ̄γµλ

δλ = −1

2
iσµνξFµν − γ5ξD

δAi = ξ̄ψi (3.6.9)

δBi = ξ̄γ5ψi

δψi = −(Fi + γ5Gi)ξ − i/∂(Ai + γ5Bi)ξ

where the expression for the auxiliary fields D, F and G are obtained by their
equations of motion (3.6.2)-(3.6.4). It is clear that it is not possible to rewrite
the supersymmetry transformation (3.6.9) in terms of the O(4) invariant
quantities defined above. Thus, no supersymmetric extension is possible for
generic real β parameter and the theory is simple N = 1 supersymmetric.

3.6.1 Supersymmetric β-deformed Wilson loops

In section (2.3) we have discussed the supersymmetry property of Wilson
loops in N = 4 super Yang Mills. In particular, we have derived how the
shape of the contour influences the BPS property of the operator. Now we
want perform a similar analysis for Wilson loops in the β-deformed theory.
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Let us consider small β deformation, so that we can write the supersym-
metry transformation (3.6.9) at the first order in β parameter expansion

δAµ = iξ̄γµλ

δλ = −1

2
iσµνξFµν − iγ5ξ

3
∑

i=1

[Ai, Bj ]

δAi = ξ̄ψi (3.6.10)

δBi = ξ̄γ5ψi

δψk = − i

2

∑

ij

ǫijk([Ai, Aj ] − [Bi, Bj ] + 2γ5[Ai, Bj ])ξ − i/∂(Ak + γ5Bk)ξ

+
π

2

∑

ij

ǫijkβij ({Ai, Aj} − {Bi, Bj} + 2γ5{Ai, Bj}) ξ .

Moreover, if one digs a little bit inside the properties of the tensors involved
in the last expressions, it should be easy to see that ǫijkβij = β. The last
equation then becomes

δψk = − i

2

∑

ij

ǫijk([Ai, Aj ] − [Bi, Bj ] + 2γ5[Ai, Bj ])ξ − i/∂(Ak + γ5Bk)ξ

+β
π

2

∑

ij

({Ai, Aj} − {Bi, Bj} + 2γ5{Ai, Bj}) ξ . (3.6.11)

First, we notice that the supersymmetry transformation of the scalars and
boson are unaffected by β terms.

Now, let us recall the definition of the Wilson loop operator

W (C) =
1

N
Tr P exp

(∮

C
(iAµdx

µ + |ẋ|θiΦi)ds

)

(3.6.12)

where Φi = (Aj , Bk) , i = 1, . . . , 6 are the six scalars of the theory. In this
expression C is the contour parameterized in R4 by xµ(s) and θi is a unit
six-vector, assumed to be constant (no dependence on s). We can consider
the supersymmetry variation of the Wilson loops, which is given by

δW (C) =
1

N
TrP

[∫

ds(iδAµẋ
µ + δΦiθi|ẋ|) e

R

ds(iAµẋµ+Φiθi|ẋ|)
]

=
1

N
TrP

[∫

dsξ̄(−γµλẋ
µ + Ψiθ

i|ẋ|) e
R

ds(iAµ(x)ẋµ+Φi(x)θi|ẋ|)
]

(3.6.13)
where

Ψi =

{

ψi, if i = 1, 2, 3

γ5ψi−3, if i = 4, 5, 6
. (3.6.14)
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The result we find here is quite different from that we obtained in section
(2.3). Indeed, there we put fermions into a single 10 dimensional Majorana-
Weyl spinor of Spin(9, 1) and then we introduced ten dimensional Dirac
matrices (Γµ,Γi). As a result, the N = 4 action took a simple form as well
as the supersymmetry transformations for the bosonic fields, which were
given by

δAµ = Ψ̄Γµǫ (3.6.15)

δΦi = Ψ̄Γiǫ (3.6.16)

where ǫ is again a ten dimensional Majorana-Weyl spinor. We recall that
when we performed the variation on the loop in the undeformed theory and
then imposed it equal to zero the fermions factorize out and the condition
for the loop to be supersymmetric was simply

(iΓµẋ+ Γiθi|ẋ|)ǫ = 0 (3.6.17)

according to (2.3.11).
In the deformed case, even though the the supersymmetry transforma-

tions of the bosonic fields do not depend on β parameter, we ought to apply
the N = 1 transformations:

δAµ = iξ̄γµλ (3.6.18)

δAi = ξ̄ψi (3.6.19)

δBi = ξ̄γ5ψi . (3.6.20)

This prevent us to find for the loop in the deformed theory a supersymmetry
condition as simple as (2.3.11) in the undeformed theory.

The relevant issue it to note that the β-deformed SYM theory contains
two multiplets N = 1 invariant that do not mix themselves. While it is
possible to write the β-deformed Lagrangian as the undeformed N = 4 SYM
Lagrangian plus terms linear in β which broke the supersymmetry down
to N = 1, the same procedure cannot be done with the supersymmetry
transformations, which remain simply those of N = 1 SYM theory.



Chapter 4

D-brane configurations dual to
Wilson loops

4.1 The σ model in AdS5 × S5

The Polyakov action of a string in AdS5 ×S5 is given in terms of a standard
σ model

1

4πα′

∫

dτ dσ
√
g gαβ∂αX

M∂βX
NGMN . (4.1.1)

At this stage, GMN is the target space metric for our product space, where
both AdS5 and S5 have curvature radius equal to L. We have already pointed
out that the AdS/CFT correspondence relates it to the ’t Hooft coupling
λ = g2

Y MN of the dual gauge theory and the string scale by L4 = λα′2.
The ansatz we shall consider factorizes the σ model in (4.1.1) into an

AdS5 part and an S5 part, providing independent equations of motion for
the respective variables. These two parts of the ansatz are connected only in
two ways. One is the range of the world-sheet coordinates, which clearly has
to agree on both spaces, and the other are the Virasoro constraints. Hence,
it turns very worthwhile to consider the S5 and AdS5 parts of the ansatz
separately.

The Virasoro constraints are given by the vanishing of the stress-energy
tensor which in the conformal gauge is given by

Tσσ = −Tττ =
1

8πα′
[

∂σX
M∂σX

N − ∂τX
M∂τX

N
]

GMN = 0 ,

Tστ = Tτσ =
1

4πα′ ∂σX
M∂τX

NGMN = 0 .

(4.1.2)

Since our space has a product structure we can decompose the stress-
energy tensor into independent contributions from AdS5 and from S5

Tαβ = TAdS5

αβ + T S5

αβ . (4.1.3)
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The Virasoro constraints are then

TAdS5

αβ + T S5

αβ = 0. (4.1.4)

For notational simplicity we label a2 ≡ 8πα′T S5

σσ /L
2, and in AdS5 this pa-

rameter serves a role similar to a mass term coming from the Kaluza-Klein
reduction on the sphere.

Since the stress-energy tensors of both σ-models are separately conserved,
we have

∂σT
S5

σσ + ∂τT
S5

τσ = 0

∂σT
AdS5
σσ + ∂τT

AdS5
τσ = 0.

(4.1.5)

In the ansatze we will use below, T S5

στ is always constant, thus it follows that
a2 is constant, that may be either positive or negative. Using (4.1.4), the
second of (4.1.5) reads

TAdS5
σσ +

L2

8πα′ a
2 = 0. (4.1.6)

We will now focalize on the AdS5 part of the σ-model. As in the case of
the sphere, a simple description of the system is by taking Euclidean AdS5

as a hypersurface in flat six-dimensional Minkowski space. It is given by the
hyperboloid

−Y 2
0 + Y 2

1 + Y 2
2 + Y 2

3 + Y 2
4 + Y 2

5 = −L2. (4.1.7)

Now let us define the coordinates r0, r1, r2, v, φ1 and φ2 by

Y0 = Lr0 cosh v , Y5 = Lr0 sinh v ,

Y1 = Lr1 cosφ1 , Y2 = Lr1 sinφ1 ,

Y3 = Lr2 cosφ2 , Y4 = Lr2 sinφ2 .

(4.1.8)

Those coordinates satisfy the constraint −r20 + r21 + r22 = −1, and the metric
of the embedding flat Minkowski space is

ds2 = L2
(

−dr20 + r20dv
2 + dr21 + r21dφ

2
1 + dr22 + r22dφ

2
2

)

. (4.1.9)

In some of the specific examples we study below we will employ Poincaré
coordinates. We replace r0, r1, r2 and v with ŷ, r̂1 and r̂2 by the relations

r0 =

√

ŷ2 + r̂21 + r̂22
ŷ

, r1 =
r̂1
ŷ
, r2 =

r̂2
ŷ
, v = ln

√

ŷ2 + r̂21 + r̂22.

(4.1.10)
In the new coordinates the metric reads

ds2 =
L2

ŷ2

(

dŷ2 + dr̂21 + r̂21dφ
2
1 + dr̂22 + r̂22dφ

2
2

)

. (4.1.11)
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4.2 Maximal latitude in N = 4 SYM

We start our analysis with a famous example, the maximal latitude on S2 ⊂
AdS5, that is the circular Wilson loop in N = 4 super Yang Mills theory.
Our aim is to become familiar with the methods of analysis of such problems
as well as to see explicitly the equivalence of the classical solutions of the
Nambu-Goto and the Polyakov action.

We choose the scalar charge of the Wilson loop to be constant, so that
the string worldsheet lives at a single point on the 5-sphere.

4.2.1 Nambu-Goto action

In this example we use Poincaré coordinates, and the boundary is described
by flat R4. In this patch we describe a circle on the boundary by constant
r̂1 = r and r̂2 = 0. This coordinates parametrize an AdS2 subspace of AdS5

with the metric

ds2 =
L2

y2
(dy2 + dr2 + r2dφ2). (4.2.1)

We take r and φ as worldsheet coordinates and we expect, due to the sym-
metry of the loop, that the surface described by y does not depend on φ, so
we have

∂ax
µ∂bx

νgµν =

(

1
y2 (y′2 + 1) 0

0 r2

y2

)

. (4.2.2)

The Nambu-Goto action is given by

S =

√
λ

2π

∫

drdφ
r

y2

√

1 + y′2. (4.2.3)

In order to find the explicit form of the minimal surface we notice that the
energy is a conserved quantity

E = − 1

y2
√

1 + y′2
(4.2.4)

hence

y′2 =
1

y2E2
− 1. (4.2.5)

The solution of this differential equation gives us the right expression for the
minimal surface

y(r) =
√

R2 − r2 (4.2.6)
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where we have set E = 1/R and the integration constant equal to zero in
order to recover the circular loop in the boundary of AdS5. We notice that
y has its maximum at r = 0, that is, at the center of the loop. Plugging this
expression into the action we find

S =

√
λ

2π

∫

drdφ
Rr

(R2 − r2)3/2

= R
√
λ

∫

dr
r

(R2 − r2)3/2

= R
√
λ

∫

√
R2−ǫ2

0
dr

r

(R2 − r2)3/2

=
√
λ (

R

ǫ
− 1). (4.2.7)

where ǫ is a cutoff and the linear divergent term is cancelled by the Legendre
transform. Therefore, the vacuum expectation value of the Wilson loop is
given by

〈W 〉 = e−
√

λ (4.2.8)

as it should be [39].

4.2.2 Polyakov action

We take the AdS5 metric

ds2 = du2 + cosh2 u(dρ2 + sinh2 ρdψ2) + sinh2 u(dχ2 + sin2 χdφ2). (4.2.9)

In this framework we describe a circle on the boundary by setting r2 = 0
and the radius of the circle will be given by the value of v, R = exp v. We
identify (σ, τ) to be the worldsheet coordinates and it is natural to take the
ansatz

ρ = ρ(σ), ψ = τ, u = χ = φ = 0 (4.2.10)

that leads to the Polyakov action in the conformal gauge

S =

√
λ

4π

∫

dσdτ(ρ′2 + sinh2 ρ). (4.2.11)

The equation of motion is

ρ′′ = sinh ρ cosh ρ (4.2.12)

while the Virasoro constraint reads

ρ′2 = sinh2 ρ. (4.2.13)
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The solution is then given by

sinh ρ(σ) =
1

sinhσ
. (4.2.14)

An integration constant in this equation that shifts σ was set to zero so the
boundary of the world-sheet at σ = 0 is at the boundary of AdS5. Then, the
bulk part of the action is given by

S =

√
λ

2π

∫

dσdτ sinh2 ρ

=
√
λ

∫ ∞

σmin

dσ
1

sinh2 σ

=
√
λ (coth σmin − 1), (4.2.15)

where σmin is the cutoff. Again the divergent term will cancel against the
boundary term coming from the Legendre transform, and we obtain the same
result for the expectation value of the Wilson loop as in the previous case

〈W 〉 = e−
√

λ. (4.2.16)

4.3 Two longitudes in N = 4 SYM

In this section we will resolve the string dual of an 1/4 BPS Wilson loops in
N = 4 SYM theory, which is also a special case of the loops on S2 conjectured
to be computed by a gaussian matrix model. We will find a suitable ansatz
for the geometry of the loop and we will use the Polyakov formulation instead
of the Nambu-Goto one. We will see that this will be very useful when, in
the next section, we will solve the same loop in the N = 1 β-deformed SYM
theory.

We consider a loop made of two arcs of length π connected at an arbitrary
angle δ, i.e. two longitudes on the two-sphere. We parameterize the loop as
follows

xµ = (sin t, 0, cos t, 0) , 0 ≤ t ≤ π ,
xµ = (− cos δ sin t, − sin δ sin t, cos t, 0) , π ≤ t ≤ 2π .

(4.3.1)

We take the metric of AdS5 to be

ds2 = L2(−dr20 + r20dv
2 + dr21 + r21dφ

2
1 + dr22 + r22dφ

2
2) (4.3.2)

and these coordinates satisfy the constraint

−r20 + r21 + r22 = −1. (4.3.3)

In our coordinate system the boundary of AdS5, which is a four-sphere, is
given by r0 → ∞ or, equivalently, r1 → ∞. As in the previous case we



4.3. Two longitudes in N = 4 SYM 76

δ

π − δ

b.a.

Figure 4.1: 1/4-BPS Wilson loop made of two longitudes. In a. we show the
loop on S2 ⊂ R4 obtained by taking two longitudes, connected at an angle
δ. The corresponding scalar couplings in b. turn out to be two points on the
equator of S2 ⊂ S5 separated by an angle π − δ.

set r2 = φ2 = 0 and, after implementing the constraint (4.3.3), the metric
(4.3.2) becomes

ds2 = L2

(

(1 + r21)dv
2 +

1

1 + r21
dr21 + r21dφ

2
1

)

. (4.3.4)

If we perform the limit r1 → ∞, the boundary is then described be a two-
sphere

ds2 = L2r21(dv
2 + dφ2

1) (4.3.5)

spanned by the angles v and φ1. In this limit we recover the loop if we
set v = τ : [−∞,+∞] and φ1 = (0, δ) for the first and second branch,
respectively. Hence, the most natural AdS5 ansatz turns out to be

r0 = r0(σ), r1 = r1(σ), v = τ + α(σ), φ1 = φ1(σ), r2 = φ2 = 0
(4.3.6)

together with the S1 ansatz

ϕ = mτ + β(σ). (4.3.7)

The Polyakov action is given by

S =
L2

4πα′

∫

dσdτ [−r′02 + r′1
2 + r20 + r20α

′2 + r21φ
′
1
2 +m2 + β′2

+Λ(−r20 + r21 + 1)], (4.3.8)

where we have imposed the constraint (4.3.3) using the Lagrange multiplier
Λ. We notice that α, φ1 and β are cyclic, so we can express them in terms
of the conserved momenta

φ′1 =
p1

r21
, α′ =

p0

r20
, β′ = π. (4.3.9)
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The equations of motion for r0 and r1 are

r′′0 = (Λ − 1)r0 −
p2
0

r30
(4.3.10)

r′′1 = Λr1 +
p2
1

r31
. (4.3.11)

The diagonal component of the stress-energy tensor gives us the equation

−r′02
+ r′1

2
+
p2
0

r20
+
p2
1

r21
− r20 + π2 −m2 = 0. (4.3.12)

Using this constraint we can rewrite the Polyakov action in a very simple
form

S =
L2

4πα′

∫

dσdτ [2r20 + 2m2]. (4.3.13)

Moreover, the non-diagonal component of the stress-energy tensor gives us
the following condition

p0 +mπ = 0. (4.3.14)

Using the constraint (4.3.3), we can then eliminate r0 from (4.3.12) and the
Virasoro constraint (4.3.12) turns into an equation for r1

r′1
2

= 1 − π2 +m2 − p2
0 − p2

1 + (2 − π2 +m2)r21 + r41 −
p2
1

r21
. (4.3.15)

It turns to be useful to switch to the coordinate z = 1/r1, which reduces to
zero at the boundary. The equation (4.3.15) becomes

z′2 = 1 + (2 − π2 +m2)z2 − (π2 −m2 − 1 + p2
0 + p2

1)z
4 − p2

1z
6. (4.3.16)

Let us indicate z2
1 , z

2
2 and z2

3 as the solutions of the right-hand side of (4.3.16)
equal to zero. Then we can rewrite the above equation as

z′2 = p2
1(z

2
1 − z2)(z2

2 − z2)(z2
3 − z2). (4.3.17)

The solution can be written in terms of elliptic integrals

σ =
1

p1z2
√

z2
1 − z2

3

F

(

arcsin

√

z2(z2
3 − z2

1)

z2
3(z2 − z2

1)

∣

∣

∣

(z2
1 − z2

2)z
2
3

z2
2(z

2
1 − z2

3)

)

. (4.3.18)

Inverting this equation gives z, or r1 and r0, as a function of σ. From (4.3.18)
the full range of the worldsheet coordinate σ is given by the complete elliptic
integral

δσ =
2

p1z2
√

z2
1 − z2

3

K

(

(z2
1 − z2

2)z2
3

z2
2(z2

1 − z2
3)

)

. (4.3.19)
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For simplicity, we introduce the quantities

t =

√

z2(z2
3 − z2

1)

z2
3(z2 − z2

1)
, k =

(z2
1 − z2

2)z
2
3

z2
2(z2

1 − z2
3)
. (4.3.20)

Next we can integrate the angle φ1(σ):

φ1 − φi
1 =

∫

dσ
1

r21
= p1

∫

dz

z′
z2 = p1

∫

dt

t′
z(t)2

=
z2
1

z2
√

z2
1 − z2

3

[

F
(

arcsin t
∣

∣

∣k
)

− Π

(

z2
3

z2
3 − z2

1

, arcsin t
∣

∣

∣k

)]

(4.3.21)

where φi
1 = 0 is the initial boundary value at z = 0 and t′ is the derivative

of the variable defined in (4.3.20) with respect to the worldsheet variable σ.
This expression covers only half the worldsheet, while the other branch is
given by a similar expression shifted by the complete elliptic integrals

φ1 =
z2
1

z2
√

z2
1 − z2

3

[

2K (k) − 2Π

(

z2
3

z2
3 − z2

1

∣

∣

∣
k

)

−F
(

arcsin t
∣

∣

∣k
)

+ Π

(

z2
3

z2
3 − z2

1

, arcsin t
∣

∣

∣k

)]

. (4.3.22)

On the second branch, φ1 reaches the final value φf
1 , so the total change is

δ = δφ1 = φf
1 − φi

1 =
2z2

1

z2
√

z2
1 − z2

3

[

K (k) − Π

(

z2
3

z2
3 − z2

1

∣

∣

∣k

)]

. (4.3.23)

In a very similar way we integrate α(σ)

α = p0

∫

dσ
1

r20
= p0

∫

dz

z′
z2

z2 + 1
= p0

∫

dt

t′
z(t)2

z(t)2 + 1

=
p0z

2
1

p1z2(z
2
1 + 1)

√

z2
1 − z2

3

[

F
(

arcsin t
∣

∣

∣
k
)

− Π

(

z2
3(z2

1 + 1)

z2
3 − z2

1

, arcsin t
∣

∣

∣
k

)]

.

(4.3.24)

Again, the correct expression on the other half of the worldsheet is given by
a shift

α =
p0z

2
1

p1z2(z2
1 + 1)

√

z2
1 − z2

3

[

2K (k) − 2Π

(

z2
3(z2

1 + 1)

z2
3 − z2

1

∣

∣

∣k

)

−F
(

arcsin t
∣

∣

∣k
)

+ Π

(

z2
3(z2

1 + 1)

z2
3 − z2

1

, arcsin t
∣

∣

∣k

)]

. (4.3.25)



4.3. Two longitudes in N = 4 SYM 79

The last step is to evaluate the action

S =

√
λ

2π

∫

dσdτ (r20 +m2) =
T
√
λ

2π

∫

dz

z′

(

1 +
1

z2
+m2

)

=
1 + z2

1(1 +m2)

p1z2
1z2
√

z2
1 − z2

3

[F (arcsin t|k)]t+0

−
√

z2
1 − z2

3

p1z2
1z

2
3z2

[

1

t

√

(1 − k2t2)(1 − t2) − F (arcsin t|k) +E (arcsin t|k)
]t+

t0

= 2
1 + z2

1(1 +m2)

p1z2
1z2
√

z2
1 − z2

3

K (k) + 2

√

z2
1 − z2

3

p1z2
1z

2
3z2

[

1

t0
+K (k) − E (k)

]

. (4.3.26)

The 1/t0 term, where t0 is a cutoff at small t, is the standard linear divergency
and it will be regularized as usual by a boundary term.

Now it is worth to notice that the loop we are interested in is a special
case of the general ansatz (4.3.6) and (4.3.7) we made above. In fact, the
scalar coupling is constant, thus m = 0. Using the non diagonal Virasoro
constraint, this implies p0 = 0 ⇒ α = 0. Therefore, we can express the
solutions z2

1 , z
2
2 and z2

3 in terms of the quantities defined in [21]

z2
1 = −1, z2

2 = −p
2

b2
, z2

3 = b2. (4.3.27)

Then we have

t =

√

z2(1 + b2)

b2(1 + z2)
, k =

b2(p2 − b2)

p2(1 + b2)
. (4.3.28)

The string solutions are given by

σ =
b

p1p
√

1 + b2
F
(

arcsin t
∣

∣k
)

(4.3.29)

δσ =
2b

p1p
√

1 + b2
K (k) (4.3.30)

and

φ1 =
b

p
√

1 + b2

[

F
(

arcsin t
∣

∣k
)

− Π

(

b2

1 + b2
, arcsin t

∣

∣k

)]

φ1 =
b

p
√

1 + b2

[

2K (k) − 2Π

(

b2

1 + b2

∣

∣

∣k

)

− F
(

arcsin t
∣

∣k
)

+ Π

(

b2

1 + b2
, arcsin t

∣

∣

∣k

)]

(4.3.31)

on the first and second half of the worldsheet respectively. The separation
angle δ is then given by

δ =
2b

p
√

1 + b2

[

2K (k) − 2Π

(

b2

1 + b2

∣

∣

∣k

)]

. (4.3.32)
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Finally, the action

S = 2

√
1 + b2

p1pb

[

1

t0
+K (k) − E (k)

]

. (4.3.33)

So far, we have treated the general non-BPS case, that is, the non-
supersymmetric cusp in the plane with opening angle δ and arbitrary jump
in the scalar coupling.

The BPS loop is obtained by implementing the condition p1 = 1, and for
the other variables, b2 = p2 ⇒ k = 0, thus

t =

√

z2(1 + b2)

b2(1 + z2)
, k =

b2(p2 − b2)

p2(1 + b2)
. (4.3.34)

The string solutions are given by

σ =
1

√

1 + p2
arcsin

√

z2(1 + p2)

p2(1 + z2)
(4.3.35)

δσ =
π

√

1 + p2
. (4.3.36)

Since arctan( z2√
p2−z2

) = arcsin(z
p), we have

φ1 = arcsin
z

p
− 1
√

1 + p2
arcsin

√

z2(1 + p2)

p2(1 + z2)

φ1 = π − arcsin
z

p
− 1
√

1 + p2

(

π − arcsin

√

z2(1 + p2)

p2(1 + z2)

)
(4.3.37)

on the two half of the worldsheet. The equation (4.3.32) for the angle δ
becomes very simple

δ = π − π
√

1 + p2
(4.3.38)

as well as the expression for the action

S = 2
T
√
λ

2π

√

1 + p2

p2

[

1

t0
+K (k) − E (k)

]

= 2
T
√
λ

2π

1

pz0
. (4.3.39)

Now we want to show explicitly that the divergence 1/z0 cancels against the
Legendre transform of the action

SLT =

√
λ

2π

∫

dτdσz′
δL

δz′
= −

√
λ

2π

∫

dτ
dz

z′
z2 + 1

z2
= −S. (4.3.40)

so the full Lagrangian locally vanishes.
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Now we conformally transform to global AdS5 with metric

ds2 = L2[dρ2 + sinh2 ρ(dθ2 + sin2 θdφ2
1) + dφ2] (4.3.41)

where the relations between the new and the old coordinates (4.3.2) are

sinh ρ sin θ =
1

z
, cosh ρ =

1 + r2 + r2v2

2rv
(4.3.42)

where v = ln(r
√

1 + z2) and v = ln r on the boundary. The equation of
motion for z in the BPS case simply reads

z′2 = (1 + z2)2(p2 − z2). (4.3.43)

Thus the action becomes

S =

√
λ

2π

∫

dr

r

∫

dz

z′
1 + z2

z2
=

√
λ

2π

∫

dr

r

∫

dz
1

z2
√

p2 − z2

=

√
λ

2π

∫

dρ dθ
p sinh2 ρ sin θ

√

p2 sinh2 ρ sinh2 θ − 1
. (4.3.44)

It is not too complicated to integrate this expression. First, we notice that
for a fixed ρ the angle θ varies between the two roots of the equation

sin θ sinh ρ = 1/p (4.3.45)

and then it comes back. Therefore, the integration over θ contributes with
2π sinh ρ, while the remaining integral to perform over ρ is between the
minimal value, where sinh ρ = 1/p and a cutoff ρ0 at large ρ

S =
√
λ

∫

dρ sinh ρ =
√
λ

(

cosh ρ0 −
√

p2 + q

p

)

. (4.3.46)

As we will see, we cannot simply discard the divergent cosh ρ0 term, because
there is the possibility of some finite corrections left over from the diver-
gent piece. In global AdS the divergent Legendre transform which must be
subtracted to the bulk Lagrangian reads

Lbound = − coth ρ0 pρ = − coth ρ0 ρ
′ δLNG

δρ′
. (4.3.47)

Following [21], we evaluate the corresponding boundary action

Sbound = −
√
λ

2π

∫

dθ sin θ
p2 sinh2 ρ0(sinh2 ρ0 sin2 θ + 1) − cosh2 ρ0

p(sinh2 ρ0 sin2 θ + 1)
√

p2 sinh2 ρ0 sin2 θ − 1

≃ −
√
λ

(

sinh ρ0 −
coth ρ0

p
√

1 + p2

)

.

(4.3.48)
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Combining this with the bulk action (4.3.46), the divergences indeed cancel
and we get the final answer for the action of the string dual to the two-
longitudes Wilson loop

S = −
√

λ δ(2π − δ)

π
. (4.3.49)

This result is consistent with the conjectured relation with the gaussian
matrix model describing the zero-instanton sector of two-dimensional Yang-
Mills theory on the sphere [15].

4.4 Two longitudes in N = 1 β-deformed SYM

Now we turn to analyze the same loop made of two longitudes on the two-
sphere connected at an arbitrary angle δ in the N = 1 β-deformed SYM
theory1.

We recall that the Lunin-Maldacena metric is given by

ds2 = L2

[

ds2AdS5
+
∑

i

(dµ2
i +Gµ2

i dϕ
2
i ) + γ̂2Gµ1µ2µ3(

∑

i

dϕi)
2

]

(4.4.1)

where
G−1 = 1 + γ̂2(µ2

1µ
2
2 + µ2

2µ
2
3 + µ2

3µ
2
1) (4.4.2)

and the Euclidean AdS5 metric is the same as in (4.3.2).
We parametrize the loop as (x4 = 0 defines the two-sphere)

x1 = sin τ, x2 = 0, x3 = cos τ, 0 ≤ τ ≤ π

x1 = − cos δ sin τ, x2 = − sin δ sin τ, x3 = cos τ, π ≤ τ ≤ 2π
(4.4.3)

and the corresponding Wilson loop will couple to the scalars according to

θ5 = 0, θ2 = 1, 0 ≤ τ ≤ π

θ5 = sin δ, θ2 = − cos δ, π ≤ τ ≤ 2π.
(4.4.4)

Unlike the latitude loop, here we expected no time dependance in the scalar
coupling, since locally the loop is a maximal circle.

For the deformed S̃5, in the first branch, we parametrize the µi coordi-
nates via

µ1 = cos θ, µ2 = sin θ cosα, µ3 = sin θ sinα (4.4.5)

and consequently
∑

i dµ
2
i = dθ2 + sin2 θdα2.

1We notice that when δ = π the loop falls back to the 1/2-BPS circe in the undeformed
theory.
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In order to obtain the dual string configuration for the first branch we
note that

θ1 + iθ4 = µ1e
iϕ1 = 0

θ2 + iθ5 = µ2e
iϕ2 = 1

θ3 + iθ6 = µ3e
iϕ3 = 0.

(4.4.6)

Therefore, at the boundary the string solution must satisfy θ = π/2 and
α = ϕ1 = ϕ2 = ϕ3 = 0.

Similarly, for the second branch

θ1 + iθ4 = µ1e
iϕ1 = 0

θ2 + iθ5 = µ2e
iϕ2 = − cos δ + i sin δ

θ3 + iθ6 = µ3e
iϕ3 = 0.

(4.4.7)

Hence the string solution must satisfy θ = π/2, ϕ2 = π − δ and α = ϕ1 =
ϕ3 = 0 at the boundary. As a consequence, it is easy to see that the scalar
coupling turns out to be two points on the equator of the deformed sphere
S̃2 ⊂ S̃5 separated by an angle π − δ, similarly to the undeformed case.

However, due to the presence of the B-field

B = R2γ̂G(µ2
1µ

2
2dϕ1 ∧ dϕ2 + µ2

2µ
2
3dϕ2 ∧ dϕ3 + µ2

3µ
2
1dϕ3 ∧ dϕ1) (4.4.8)

we must consider an ansatz involving at least two additional angles, let us
say ϕ1 and ϕ2. Thus, let us consider the subspace AdS3 × S̃3 of AdS5 × S̃5,
where AdS3 is parametrized by r0, r1, v and φ1, and the deformed three-
sphere S̃3 is parametrized by the angles θ, ϕ1 and ϕ2. For these coordinates
we consider the following AdS5 ansatz

r0 = r0(σ), r1 = r1(σ), v = τ, φ1 = φ1(σ), r2 = φ2 = 0 (4.4.9)

together with the S̃3 ansatz

θ = θ(σ), ϕ1 = ϕ1(σ), ϕ2 = ϕ2(σ). (4.4.10)

The euclidean Polyakov action with the B coupling is given by

S =

√
λ

4π

∫

dσdτ
[

∂ax
µ∂ax

νgµν + ǫij∂ix
µ∂jx

νBµν)
]

=

√
λ

4π

∫

dσdτ
[

− r′0
2
+ r20 + r′1

2
+ r21φ

′
1
2
+ θ′2 +G cos2 θϕ′

1
2
+G sin2 θϕ′

2
2

− 2iγ̂G sin2 θ cos2 θ(ϕ̇1ϕ
′
2 − ϕ′

1ϕ̇2) + Λ(−r20 + r21 + 1)
]

=

√
λ

4π

∫

dσdτ
[

− r′0
2
+ r20 + r′1

2
+ r21φ

′
1
2
+ θ′2 +G cos2 θϕ′

1
2
+G sin2 θϕ′

2
2

+ Λ(−r20 + r21 + 1)
]

.

(4.4.11)
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The B coupling mixing term vanishes since the S̃3 angles do not depend on
the temporal coordinate τ in our ansatz (4.4.9). Since the coordinates φ1,
ϕ1 and ϕ2 are cyclic we can introduce the conserved momenta

φ′1 =
β

r21
, ϕ′

1 =
π1

cos2 θ
, ϕ′

2 =
π2

sin2 θ
. (4.4.12)

At the boundary the solution must satisfy θ = π/2 and ϕ1 = 0, so we must
set π1 = 0. As a result, the string solution does not involve the ϕ1 direction.

The same reasoning about ϕ2 lead us to set π2 =
π − δ

δ
.

The equations of motion for the other variables are given by

r′′0 = (Λ − 1)r0 (4.4.13)

r′′1 = Λr1 −
β

r31
(4.4.14)

θ′′ = ∂θ[G sin2 θ]ϕ′
2
2
. (4.4.15)

The resolution equation (4.4.15) of motion in terms of elliptic integrals is
quite complicated, but it is still possible. However, that solution is not
compatible with the boundary conditions, so we are forced to set θ = π/2
and, as a consequence, G = 1. The S̃ part of the metric then becomes simply
the metric of a undeformed S1 parametrized by the angle ϕ2, that is, we are
fallen back to the case of the two longitudes in the undeformed background.

Therefore, since the AdS5 part of the geometry is unmodified by the β-
deformation, we obtain for the Polyakov action the same result as in N = 4
SYM

S = −
√

λ δ(2π − δ)

π
. (4.4.16)

4.5 Toroidal loops in N = 1 β-deformed SYM

In this section we will find the dual string solution to a new interesting
system obtained by using the description of S3 as an Hopf fibration, namely
as a S1 bundle over S2. Explicitly, one can write the S3 metric as

ds2 =
1

4

(

dϑ2 + sinϑ2dφ2 + (dψ + cosϑ dφ)2
)

, (4.5.1)

where the range of the Euler angles is 0 ≤ ϑ ≤ π, 0 ≤ φ ≤ 2π and 0 ≤ ψ ≤
4π. The S1 fiber is parameterized by ψ, while the base S2 by (ϑ, φ).

Consider now a Wilson loop along a generic fiber. This loop will sit
at constant (ϑ, φ), while ψ varies along the curve. The fibers are non-
intersecting great circles of the S3, so they will each couple to a single scalar,
but the interesting fact is that all the circles in the same fibration will couple
to the same scalar, in this case Φ3.
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We first notice that such operators are 1/8 BPS in the undeformed theory,
so this may be an important check if we shall indeed find that the vev of
such type of loops in the β-deformed theory is the same as in the N = 4
SYM case. This because, as far as we know, no results are known about
β-deformed near 1/8 BPS Wilson loops.

Before going into the calculus ,we want to point out that the AdS5 and
the S̃5 parts of the σ-model completely decouple again. In principle the
two system may be coupled because of the Virasoro constraint, that is, the
vanishing of the stress-energy tensor, which should be satisfied by the entire
system. In this case, since we are dealing with only single loop, and not, for
example, correlator of two or more loops, the Virasoro constraint is indeed
satisfied independently on the two system separately [18]. As a consequence,
the action for the string will be the sum of AdS5 part and of the S5 part,
which we shall treat separately.

4.5.1 Two scalars

We take a multiply wrapped latitude curve with winding k on the Hopf base

ϕ = kτ, ϑ = ϑ0, 0 ≤ τ ≤ 2π (4.5.2)

and along the fibers, in order to obtain loops with enhanced supersymmetry,
we choose

ψ = −
∫ τ

0
dτ ′ϕ̇(τ ′) cos ϑ(τ ′) = −kτ cosϑ0. (4.5.3)

The condition for the loop to be closed leads the equation (4.5.3) to an
integral condition that it is equivalent to the fact that the area bound by the
curve should be quantized in units of 4π

∫

dϕdϑ sinϑ =

∫ 2π

0
dτϕ̇(τ)(1 − cos ϑ(τ)) = ϕ(2π) + ψ(2π). (4.5.4)

From this we notice that k cos ϑ0 should be an integer and we set k = k1 +k2

and k cos ϑ0 = k1 − k2 where k1 and k2 are integer. We can write the curve
in terms of the Cartesian coordinates

x1 =

√

k2

k
sin k1τ, x

2 =

√

k2

k
cos k1τ, x

3 =

√

k1

k
sin k2τ, x

4 =

√

k1

k
cos k2τ.

(4.5.5)
This is a motion on a torus inside S3 where the curve wraps the two cycles
k1 and k2 times.

The scalar couplings for these loops turn out to be

θ2 = cos(k2 − k1)τ, θ5 = sin(k2 − k1)τ. (4.5.6)

Thus, the coupling involves only two scalars.
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S̃5 part

In order to find the dual string configuration we set

θ1 + iθ4 = µ1e
iϕ1 = 0

θ2 + iθ5 = µ2e
iϕ2 = cos(k2 − k1)τ + i sin(k2 − k1)τ (4.5.7)

θ3 + iθ6 = µ3e
iϕ3 = 0

where the µi are given as usual by the (6.1.3). Then at the boundary we
have θ = π/2, ϕ2 = (k2 − k1)τ and α = ϕ1 = ϕ3 = 0. This is described by a
maximal latitude on S̃2 but, due to the B-field, we must consider an ansatz
involving an additional angle, say ϕ1, so we look for solutions of the form

θ = θ(σ), ϕ1 = ϕ1(σ), ϕ2 = (k2 − k1)τ. (4.5.8)

The S̃5 part of the action is2

SS̃5 =

√
λ

4π

∫

dσdτ
[

θ′2 +G cos2 θϕ′
1
2
+G sin2 θϕ̇2

2

−2iγ̂G sin2 θ cos2 θ(ϕ̇1ϕ
′
2 − ϕ′

1ϕ̇2)
]

=

√
λ

4π

∫

dσdτ
[

θ′2 −G cos2 θϕ′
1
2
+G(k2 − k1)

2 sin2 θ

−2(k2 − k1)γ̂G sin2 θ cos2 θϕ′
1

]

(4.5.9)

where in the last equality we have performed a Wick rotation ϕ1 → iϕ1 in
order to obtain a real configuration, and the G factor is given by

G−1 = 1 + γ̂2 sin2 θ cos2 θ. (4.5.10)

First, since ϕ1 is cyclic, we can express it in term of his conserved momentum

−G cos2 θϕ′
1 − (k2 − k1)γ̂G sin2 θ cos2 θ = π1 (4.5.11)

but, for the surface to be closed, we must set π1 = 0 and we have

ϕ′
1 = (k1 − k2)γ̂ sin2 θ. (4.5.12)

Substituting this equation in the S5 part of the Virasoro constraint we get
an equation for θ

θ′2 −G cos2 θϕ′
1
2 − (k2 − k1)

2G sin2 θ = 0

⇒ θ′2 = (k2 − k1)
2 sin2 θ. (4.5.13)

2For Euclidean space, the worldsheet coupling to the B-field get an extra −i factor
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The solutions of both equation are simply to find out

sin θ =
1

cosh[(k2 − k1)σ]
(4.5.14)

ϕ1 = γ̂ tanh[(k1 − k2)σ]. (4.5.15)

We check that our solution behaves correctly in the boundary limit

σ → 0 ⇒
{

sin θ → 1 ⇒ θ → π

2
ϕ1 → 0

. (4.5.16)

Next we evaluate the S̃5 action for this configuration

SS̃5 =

√
λ

4π

∫

dσdτ
[

(k2 − k1)
2 sin2 θ − (k2 − k1)

2γ̂2G sin2 θ cos2 θ

+G(k2 − k1)
2 sin2 θ + 2(k2 − k1)

2γ̂2G sin4 θ cos2 θ
]

=

√
λ

2π

∫

dσdτ
[

(k2 − k1)
2 sin2 θ

]

=
√
λ (k2 − k1)

2

∫ ∞

0
dσ

1

cosh2[(k2 − k1)σ]

=
√
λ (k2 − k1)

[

tanh[(k2 − k1)σ]
]∞

0

=
√
λ (k2 − k1). (4.5.17)

AdS5 part

For the AdS5 part of our space we take as the metric of the embedding flat
Minkowski space

ds2 = L2(−dr20 + r20dv
2 + dr21 + r21dφ

2
1 + dr22 + r22dφ

2
2) (4.5.18)

with the constraint −r20 + r21 + r22 = −1.
The ansatz for our system of periodic motion on T 2 is

ri = ri(σ), φ1 = k1τ, φ2 = k2τ (4.5.19)

and we set v to be constant. The AdS5 part of the action is

SAdS5
=

√
λ

4π

∫

dσdτ [−r′0
2
+r′1

2
+r′2

2
+r21k

2
1+r

2
2k

2
2+Λ(−r20+r21+r22)] (4.5.20)

where Λ is the usual Lagrange multiplier.
The equations of motion of the ri variables are

r′′0 = Λr0, r′′1 = (k2
1 + Λ)r1, r′′2 = (k2

2 + Λ)r2. (4.5.21)
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The AdS5 part of the Virasoro constraint give us the first integral of motion

−r′0
2
+ r′1

2
+ r′2

2 − r21k
2
1 − r22k

2
2 = 0. (4.5.22)

Using this equation we can rewrite the action as twice the kinetic piece

SAdS5
=

√
λ

2π

∫

dσdτ [r21k
2
1 + r22k

2
2 ]. (4.5.23)

The other integral of motion are

I0 = r20 −
1

k2
1

(r0r
′
1 − r1r

′
0)

2 − 1

k2
2

(r0r
′
2 − r2r

′
0)

2 (4.5.24)

I1 = r21 −
1

k2
1

(r0r
′
1 − r1r

′
0)

2 +
1

k2
1 − k2

2

(r1r
′
2 − r2r

′
1)

2 (4.5.25)

I2 = r22 −
1

k2
2

(r0r
′
2 − r2r

′
0)

2 +
1

k2
2 − k2

1

(r2r
′
1 − r1r

′
2)

2 (4.5.26)

but they are not independent, in fact the satisfy the condition −I0+I1+I2 =
−1. Studying such equations in the limit in which σ is infinite (in such limit
r1,r2 → 0 while r0 → 1), we find that the integration constant are I0 = 1
and I1 = I2 = 0.

In order to solve these equations we introduce the coordinates ζ1 and ζ2
as the roots of the equation

r20
ζ2

− r21
ζ2 − k2

1

− r22
ζ2 − k2

2

= 0. (4.5.27)

We find that

r0 =
ζ1ζ2
k1k2

, r1 =

√

(ζ2
1 − k2

1)(ζ
2
2 − k2

1)

k2
1(k

2
2 − k2

1)
, r2 =

√

(ζ2
1 − k2

2)(ζ
2
2 − k2

2)

k2
2(k

2
1 − k2

2)
.

(4.5.28)
Substituting these back into the (4.5.24) and (4.5.25) we obtain

ζ ′1 = ±(ζ2
1 − k2

1)(ζ
2
1 − k”

2)

ζ2
1 − ζ2

2

, ζ ′2 = ±(ζ2
2 − k2

1)(ζ
2
2 − k”

2)

ζ2
1 − ζ2

2

. (4.5.29)

Let us now assume, without loss of generality, that k1 < k2, then we can
take k1 ≤ ζ1 ≤ k2 ≤ ζ2 and the (4.5.29) becomes

ζ ′1 = −(ζ2
1 − k2

1)(ζ
2
1 − k”

2)

ζ2
1 − ζ2

2

, ζ ′2 =
(ζ2

2 − k2
1)(ζ

2
2 − k”

2)

ζ2
1 − ζ2

2

. (4.5.30)

We can now integrate the ratio of these two equations, and the solution is
given by

k1 arctanh
ζ1
k2

− k2 arctanh
ζ1
k1

+ k1 arctanh
ζ2
k2

− k2 arctanh
ζ2
k1

= c (4.5.31)
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where c is a constant, or
(

(ζ1 − k1)(ζ2 + k1)

(ζ1 + k1)(ζ2 − k1)

)k2
(

(k2 + ζ1)(ζ2 − k2)

(k2 − ζ1)(ζ2 + k2)

)k1

= C (4.5.32)

where the constant C is

C =

(

k2 −
√
k1k2

k2 +
√
k1k2

)k2
(√

k1k2 + k1√
k1k2 − k1

)k1

. (4.5.33)

Although it is not easy to invert this equation in order to find the ζ’s in
terms of the worldsheet variableσ, that is not necessary, because it turns out
that the action can be evaluated without that. In fact

SAdS5
=

√
λ

2π

∫

dσdτ [r21k
2
1 + r22k

2
2]

=
√
λ

∫

dσ

(

ζ ′1
2(ζ2

2 − ζ2
1 )

(ζ2
1 − k2

1)(k
2
2 − ζ2

1 )

ζ ′2
2(ζ2

2 − ζ2
1 )

(ζ2
2 − k2

1)(ζ
2
2 − k2

2)

)

= −
√
λ

(∫ k1

√
k1k2

dζ1 +

∫ k2

∞
dζ2

)

≃ −
√
λ
(

k1 + k2 −
√

k1k2

)

(4.5.34)

where in the last expression we have removed the divergence. If we combine
this result with the S̃5 part of the action (4.5.17) we finally get the total
action

S = −
√
λ
(

2k1 −
√

k1k2

)

(4.5.35)

which is exactly the same as in the undeformed case.

4.5.2 Three scalars

Now we want to extend this calculation to a general doubly-periodic loops
on any torus in S3. Again (θ, φ) will be the Hopf base, but now we shall not
fix the value of θ. In fact, we take the curve to be of the form

x1 = sin
ϑ

2
sin k1τ, x

2 = sin
ϑ

2
cos k1τ, x

3 = cos
ϑ

2
sin k2τ, x

4 = cos
ϑ

2
cos k2τ.

(4.5.36)
The scalar coupling now involve three scalars

θ1 =
1

√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2

(

k2 cos2 ϑ

2
− k1 sin2 ϑ

2

)

θ2 =
k1 + k2

2
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2

sinϑ cos(k2 − k1)τ (4.5.37)

θ5 =
k1 + k2

2
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2

sinϑ sin(k2 − k1)τ.
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S̃5 part

In order to find the dual string configuration we set

θ1 + iθ4 = µ1e
iϕ1 =

1
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2

(

k2 cos2 ϑ

2
− k1 sin2 ϑ

2

)

θ2 + iθ5 = µ2e
iϕ2 =

(k1 + k2) sin ϑ

2
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2

(

cos(k2 − k1)τ + i sin(k2 − k1)τ
)

θ3 + iθ6 = µ3e
iϕ3 = 0.

(4.5.38)

The boundary values are ϕ2 = (k2 − k1)τ and α = ϕ1 = ϕ3 = 0 as before,
while

sin θ0 =
(k1 + k2) sinϑ

2
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2

. (4.5.39)

We see that we do not have to introduce another additional angle to resolve
the problem, so the ansatz is the same as in (4.5.8).

We write down the S̃5 action

SS̃5 =

√
λ

4π

∫

dσdτ
[

θ′2 −G cos2 θϕ′
1
2
+G(k2 − k1)

2 sin2 θ

−2(k2 − k1)γ̂G sin2 θ cos2 θϕ′
1

]

(4.5.40)

where we have already performed a Wick rotation on ϕ1. From this it follows
that the action and, as a consequence, the equations of motion are the same
as in the previous case, a part from the fact that the boundary condition
(4.5.39) forces the integration constant σ0 to be non-zero. In fact, it is
straightforward to find out that the solution is given by

sin θ =
1

cosh[(k2 − k1)(σ0 ± σ)]
(4.5.41)

ϕ1 = γ̂
(

tanh(σ ± σ0) ∓ tanh(σ0)
)

. (4.5.42)

The sign choice corresponds to a surface wrapping the northern or the south-
ern hemisphere and the integration constant σ0 is chosen so that at σ = 0 it
reaches the boundary value

1

cosh[(k2 − k1)σ0]
=

(k1 + k2) sin ϑ

2
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2

. (4.5.43)
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The last step is to integrate the action

SS̃5 =

√
λ

2π

∫

dσdτ
[

(k2 − k1)
2 sin2 θ

]

=
√
λ (k2 − k1)

2

∫ ∞

0
dσ

1

cosh2[(k2 − k1)(σ0 ± σ)]

=
√
λ (k2 − k1)

[

± tanh[(k2 − k1)(σ0 ± σ)]
]∞

0

=
√
λ (k2 − k1)

(

1 ± tanh[(k2 − k1)σ0]
)

=
√
λ (k2 − k1)



1 ± k2 cos2 ϑ
2 − k2

1 sin2 ϑ
2

√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2



 . (4.5.44)

AdS5 part

The AdS5 solution for the more general case in which we consider any torus
inside S3 and we couple with three scalars, instead of two, is nearly the same
as the case of the latitude on the Hopf base. Indeed, if we follow the same
path we find the same solution for the ζ’s as in (4.5.32) but in that case the
constant has a different expression from (4.5.33), depending instead on the
radii sinϑ/2 and cos ϑ/2, which are encoded in the asymptotic values of r1
and r2

C =





k2 −
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2

k2 +
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2





k2 



√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2 + k1
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2 − k1





k1

.

(4.5.45)
In the same way we evaluate the AdS5 part of the action

SAdS5
=

√
λ

2π

∫

dσdτ [r21k
2
1 + r22k

2
2]

=
√
λ

∫

dσ

(

ζ ′1
2(ζ2

2 − ζ2
1 )

(ζ2
1 − k2

1)(k
2
2 − ζ2

1 )

ζ ′2
2(ζ2

2 − ζ2
1 )

(ζ2
2 − k2

1)(ζ
2
2 − k2

2)

)

= −
√
λ







∫ k1

k1k2√
k2
1

sin2 ϑ
2

+k2
2

cos2 ϑ
2

dζ1 +

∫ k2

∞
dζ2







≃ −
√
λ



k1 + k2 −
k1k2

√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2



 (4.5.46)

where again in the last equality the divergence has been removed.
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Combining together the two parts of the action we find

S =
√
λ



−2k1 ±
√

k2
1 sin2 ϑ

2
+ k2

2 cos2
ϑ

2
+ (1 ∓ 1)

k1k2
√

k2
1 sin2 ϑ

2 + k2
2 cos2 ϑ

2





(4.5.47)
which again is the same as in the undeformed case.



Chapter 5

Correlators of Wilson loops in
N = 1 β-deformed SYM

In this section we consider the correlator between two concentric circles in
N = 1 β-deformed theory, where the Wilson loop couples to scalars in a
periodic fashion. In fact, the same correlator with constant scalar coupling,
treated in the undeformed theory by [16, 17], receives no correction from the
deformed sphere, in a similar way we have seen for the two longitudes.

In our discussion, we study circles in the same plane, instead of taking
them lying on parallel planes. But two concentric circles on parallel planes
define a 2-sphere and, since we can relate any 2-sphere to the plane by a
conformal transformation, those system are equivalent.

Again the σ model decouples, so we consider the S̃5 part and the AdS5

part of the action separately.

5.0.3 S̃3 part

The ansatz for the coordinates in this case takes the form

θ = θ(σ), ϕ1 = ϕ1(σ), ϕ2 = mτ. (5.0.1)

The boundary conditions on the first circle are

θ = θi, ϕ1 = 0, ϕ2 = mτ (5.0.2)

while for the second circle

θ = θf , ϕ1 = 0, ϕ2 = mτ. (5.0.3)
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The S̃5 part of the action is

SS̃5 =

√
λ

4π

∫

dσdτ
[

θ′2 +G cos2 θϕ′
1
2
+G sin2 θϕ̇2

2

− 2iγ̂G sin2 θ cos2 θ(ϕ̇1ϕ
′
2 − ϕ′

1ϕ̇2)
]

=

√
λ

4π

∫

dσdτ
[

θ′2 −G cos2 θϕ′
1
2
+m2G sin2 θ − 2mγ̂G sin2 θ cos2 θϕ′

1

]

(5.0.4)

where in the last equality we have performed a Wick rotation ϕ1 → iϕ1

in order to obtain a real configuration, and the G factor is given again by
(4.5.10).

First, since ϕ1 is cyclic, we can express it in term of his conserved mo-
mentum

−G cos2 θϕ′
1 −mγ̂G sin2 θ cos2 θ = π1 (5.0.5)

but, for the surface to be closed, we must set π1 = 0 and we have

ϕ′
1 = −mγ̂ sin2 θ. (5.0.6)

Substituting this equation in the S̃5 part of the Virasoro constraint we get
an equation for θ

θ′2 −G cos2 θϕ′
1
2 −m2G sin2 θ = a2

⇒ θ′2 −m2 sin2 θ = a2. (5.0.7)

In some cases, for example when we consider the expectation value of a single
Wilson loop, the constant is a2 = 0, but in the cases involving the correlator
of two loops, a2 6= 0. For a2 > 0 the angle θ will be a monotonous function
of σ, and it is still possible to integrate (5.0.7) in terms of elliptic integrals
of the first kind with argument θ and modulus im/a

σ + σi = ±1

a
F
(

θ
∣

∣

∣
i
m

a

)

. (5.0.8)

Let us suppose that the surface starts at σ = 0 on the first loop, then σi is
fixed by

σi = ±1

a
F
(

θi

∣

∣

∣
i
m

a

)

(5.0.9)

and the range of the σ variable is given by

δσ =
1

a

∣

∣

∣F
(

θf

∣

∣

∣i
m

a

)

− F
(

θi

∣

∣

∣i
m

a

)∣

∣

∣ . (5.0.10)

We will have to check this with the AdS part of the ansatz.
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Substituting (5.0.6) back into (5.0.4) we find for the action

SS̃5 =

√
λ

2π

∫

dτdσm2 sin2 θ =
T
√
λ

2π

∫

dθ
m2 sin2 θ

|θ′|

=
T
√
λ

2π
a
[

E
(

θ
∣

∣

∣
i
m

a

)

− F
(

θ
∣

∣

∣
i
m

a

)]θf

θi

(5.0.11)

For a2 < 0 there will be an extremum for θ at some value θm, where
m2 sin2 θm = −a2. Let us express the above integrals in a more appropriate
form1 for this case

σ + σi = ±1

b
F

(

arccos
cos θ

cos θm

∣

∣

∣i cot θm

)

(5.0.12)

where we have introduced b2 = −a2 and sin θm = b/m. Again the value of
σi is fixed by plugging in the boundary value θi.

This solution (5.0.12) has turning points at θ = θm and θ = π− θm, and
in order to describe this solution we must take the two branches with the
opposite sign.

The full range of σ is now given by

δσ =
1

b

∣

∣

∣

∣

F

(

arccos
cos θf

cos θm

∣

∣

∣
i cot θm

)

± F

(

arccos
cos θi

cos θm

∣

∣

∣
i cot θm

)∣

∣

∣

∣

.

(5.0.13)
When there is a turning point along the worldsheet we have to add the
contributes of both branches, so we have to pick the positive sign, while the
negative sign is taken when there is no turning point.

Finally, the action is

SS̃5 =
T
√
λ

2π
b

[

E

(

arccos
cos θf

cos θm

∣

∣

∣
i cot θm

)

± E

(

arccos
cos θi

cos θm

∣

∣

∣
i cot θm

)]

(5.0.14)
where the choice of the sign is the same as in (5.0.13).

Finally, we notice that if we set θi = θf = π/2, it is possible a solution 2

with constant θ = π/2 and the kinetic part of the action is proportional to
the range of the worldsheet coordinate σ, which expression is given in terms
of complete elliptic integrals.

5.0.4 AdS5 part

We consider the following anstaz

r0 = r0(σ), r1 = r1(σ), v = v(σ), φ1 = kτ, r2 = φ2 = 0. (5.0.15)

1We note that the solutions (5.0.8), (5.0.10) and (5.0.11) are formally also valid for a2

negative.
2We notice that this solution is unstable, but it will play an interesting role when it

will be coupled with the AdS5 part.



96

The AdS5 part of the action is

SAdS5
=

L2

4πα′

∫

dσdτ [−r′0
2
+ r′1

2
+ r20v

′2 + r21k
2
1 + Λ(−r20 + r21)] (5.0.16)

where v is cyclic, so we can replace it with its conserved momentum

v′ =
p

r20
. (5.0.17)

The first integral of motion is simple the diagonal AdS contribution to the
stress-energy tensor

−r′0
2
+ r′1

2
+
p2

r20
− k2r21 + a2 = 0. (5.0.18)

The constant a2 is the same as on the S̃5 part of the action, so that together
the Virasoro constraint is satisfied.

We use the identity r20 = 1 + r21 so (5.0.18) turns in an equation for r1

r′1
2

= −a2 − p2 + (k2 − a2)r21 + k2r41 (5.0.19)

or, in terms of z = 1/r1

z′2 = k2 + (k2 − a2)z2 − (a2 + p2)z4. (5.0.20)

Here we discuss two cases: the first is for a2 + p2 > 0, when the equation
has a turning point, that is a maximal value for z beyond that the surface
goes back to the boundary, while the other one 3 is for a2 + p2 < 0, when
the surface reaches z = ∞ and we will have to analytically continue beyond
that point to get the second part of the string. In both cases, the surface
will reach the boundary twice, so it will correspond to the correlator of two
Wilson loops.

Let us start with the case a2 + p2 > 0: the solution is easily written in
terms of elliptic integrals of the first kind

σ =
z+
k
F

(

arcsin
z

z+

∣

∣

∣

z+
z−

)

(5.0.21)

where z2
± are the two roots of the polynomial on the right side of (5.0.20)

z2
± =

k2 − a2 ±
√

(a2 + k2)2 + 4k2p2

2(a2 + p2)
. (5.0.22)

3We note that a2 could be negative
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The full range of the worldsheet coordinate σ is given in terms of the complete
elliptic integrals

δσ =
2z+
k
K

(

z+
z−

)

. (5.0.23)

The next step is to integrate v

v − vi = p

∫

dσ
1

r20
= p

∫

dz

z′
z2

1 + z2

=
pz+
k

[

F

(

arcsin
z

z+

∣

∣

∣

z+
z−

)

− Π

(

−z2
+, arcsin

z

z+

∣

∣

∣

z+
z−

)] (5.0.24)

where vi is the initial value at z = 0. Since this expression covers only half
the worldsheet, in order to obtain the other branch we have to shift this
expression by the complete elliptic integrals

v − vi =
pz+
k

[

2K

(

z+
z−

)

− 2Π

(

−z2
+

∣

∣

∣

z+
z−

)

−F
(

arcsin
z

z+

∣

∣

∣

z+
z−

)

+ Π

(

−z2
+, arcsin

z

z+

∣

∣

∣

z+
z−

)]

.

(5.0.25)

On the second branch the surface reaches the final value vf , so the total
range is

δv = vf − vi =
2pz+
k

[

K

(

z+
z−

)

− Π

(

−z2
+

∣

∣

∣

z+
z−

)]

. (5.0.26)

The last step it to evaluate the action. To do it rightfully, we must include
the two branch and regularize the divergence near the boundary by the cutoff
z0

SAdS5
=

√
λ

2π

∫

dτdσ k2r21 =
√
λk2

∫

dz
1

z2z′

= −
√
λ 2k

[

1

z

√

(1 − z2

z2
+

)(1 − z2

z2
−

)

− 1

z+
F

(

arcsin
z

z+

∣

∣

∣

z+
z−

)

+
1

z+
E

(

arcsin
z

z+

∣

∣

∣

z+
z−

)]z+

z0

=
√
λ 2k

[

1

z0
− 1

z+
E

(

z+
z−

)

+
1

z+
K

(

z+
z−

)]

. (5.0.27)

The divergent term, as usual, is canceled by a boundary term.

The a2 + p2 < 0 case again describes the correlator of two circles, but the
orientation of the circles will be the opposite of the previous case. In fact,
now the two circles are orientated in the same direction.
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Since the roots z± defined in (5.0.22) now are imaginary, it is more con-
venient to define the positive constant b2 = −a2 and use

z̃2
± =

k2 + b2 ±
√

(b2 − k2)2 + 4k2p2

2(b2 − p2)
= −z2

±. (5.0.28)

Following the same procedure as above we find the solution in term of elliptic
integrals with a different modulus

σ =
z̃+
k
F

(

arcsin
z

z̃+

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)

. (5.0.29)

We notice that, after we have analytically continued the solution beyond z =
∞, the surface will reach the boundary at z = 0 again at arctan z/z+ = π.
Again the full range of σ is twice the complete elliptic integrals

δσ =
2z̃+
k
K

(
√

1 − z̃2
+

z̃2
−

)

. (5.0.30)

Next we integrate the coordinate v

v − vi =
pz̃3

+

k(z̃2
+ − 1)

[

F

(

arcsin
z

z̃+

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)

−Π

(

1 − z̃2
+, arcsin

z

z̃+

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)]

.

(5.0.31)

This expression is valid only for the first branch, while for the second half of
the worldsheet we have

v − vi =
pz̃3

+

k(z̃2
+ − 1)

[

2K

(
√

1 − z̃2
+

z̃2
−

)

− 2Π

(

1 − z̃2
+

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)

−F
(

arcsin
z

z̃+

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)

+ Π

(

1 − z̃2
+, arcsin

z

z̃+

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)]

.

(5.0.32)

The total change is

δv = vf − vi =
2pz̃3

+

k(z̃2
+ − 1)

[

K

(
√

1 − z̃2
+

z̃2
−

)

− Π

(

1 − z̃2
+

∣

∣

∣

√

1 − z̃2
+

z̃2
−

)]

.

(5.0.33)
Our last step is to evaluate the kinetic part of the action

SAdS5
= 2Skinetic

AdS5
= −

√
λ

2k

z̃+
E

(
√

1 − z̃2
+

z̃2
−

)

. (5.0.34)

The final result for the total action is given by the sum of (5.0.34) and
(5.0.14), and it reproduce exactly the value obtained for N = 4 SYM theory.



Chapter 6

Supersymmetric Wilson loops
and pure spinors

In the previous chapters we have studied a number of supersymmetric Wilson
loop, all of which are captured by two classes: the loops of arbitrary shape
on R4 found by Zarembo [20] and the loops of arbitrary shape on a three
sphere S3 ⊂ R4, also known as DGRT loops [21]. It has not been clear
whether these two classes contain all possible supersymmetric Wilson loop,
until Pestun and Dymarsky [23] gave a systematic answer to this question.
Indeed, they find all possible Wilson loop operators W that are invariant
at least under one superconformal symmetry Q. Moreover, they classify the
interesting subclasses of pairs (Q,W ) modulo equivalence under the action
of the superconformal group of N = 4 SYM.

They found new supersymmetric Wilson loops which in many cases, in-
volve complex scalar couplings that clearly distinguishes them from the pre-
viously studied cases. The crucial ingredient in their construction are the
ten-dimensional pure spinors. In fact, the space-time dependent spinor ǫ
that parametrizes the superconformal transformations of N = 4 SYM, can
be viewed as a reduction of a chiral ten-dimensional spinor.

Our aim is to study the dual gravity solution of this new class of loops
in the case in which the ten-dimensional supersymmetry generator spinor
ǫ(x) is not pure. In this case, the tangent vector to the curve and the scalar
couplings are completely fixed. The curve we will consider are (p, q) Lissajous
figures where p

q ∈ Q is rational1.

1In the following, we will indicate such a ratio as q. This will not lead to confusion,
since neither p, nor q will appear singularly.
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6.1 Lissajous figures

The curve in terms of cartesian coordinates is given by

x1 = sin
ϑ

2
cos τ, x2 = cos

ϑ

2
sin qτ, x3 = cos

ϑ

2
cos qτ, x4 = sin

ϑ

2
sin τ.

(6.1.1)
The normalized scalar coupling is given by

θ0 = − i
√

1 + (1 − q2) cos2 ϑ
2

θ5 = − i
√

1 + (1 − q2) cos2 ϑ
2

√

1 − q2 cos
ϑ

2
cos qτ (6.1.2)

θ9 =
i

√

1 + (1 − q2) cos2 ϑ
2

√

1 − q2 cos
ϑ

2
sin qτ.

In order to find the dual string configuration we parametrize as usual

µ1 = cos θ, µ2 = sin θ cosα, µ3 = sin θ sinα (6.1.3)

and we set

θ7 + iθ0 = µ1e
iϕ1 =

1
√

1 + (1 − q2) cos2 ϑ
2

θ9 + iθ5 = µ2e
ϕ2 =

√

1 − q2 cos ϑ
2

√

1 + (1 − q2) cos2 ϑ
2

(

cos qτ + i sin qτ
)

θ6 + iθ8 = µ3e
iϕ3 = 0.

(6.1.4)

The boundary values are ϕ2 = qτ and α = ϕ1 = ϕ3 = 0, while

sin θ0 =

√

1 − q2 cos ϑ
2

√

1 + (1 − q2) cos2 ϑ
2

. (6.1.5)

The σ model again decouples and we discuss the S5 and the AdS5 parts of
the action separately. Let us begin with the action of the five-sphere, and
afterward, we will see that the AdS part is quite straightforward.

Our S5 ansatz is
θ = θ(σ), ϕ2 = qτ. (6.1.6)

The S5 part of the action is

SS5 =

√
λ

4π

∫

dσdτ
[

θ′2 + sin2 θϕ̇2
2

]

=

√
λ

4π

∫

dσdτ
[

θ′2 + q2 sin2 θ
]

. (6.1.7)



6.1. Lissajous figures 101

The diagonal component of the stress-energy tensor gives us an equation for
θ

θ′2 − q2 sin2 θ = 0 (6.1.8)

together with the boundary condition (6.1.5).
The solution is given by

sin θ =
1

cosh[q(σ0 ± σ)]
. (6.1.9)

The sign choice corresponds to a surface wrapping the northern or the south-
ern hemisphere and the integration constant σ0 is chosen so that at σ = 0 it
reaches the boundary value

sin θ0 =
1

cosh(qσ0)
=

√

1 − q2 cos ϑ
2

√

1 + (1 − q2) cos2 ϑ
2

. (6.1.10)

The last step is to integrate the action, where for the curve to be closed, the
period over τ is 2π/q. Hence

SS5 =

√
λ

2π

∫

dσdτ
(

q2 sin2 θ
)

=
√
λ q

∫ ∞

0
dσ

1

cosh2[q(σ0 ± σ)]

=
√
λ
[

± tanh[q(σ0 ± σ)]
]∞

0

=
√
λ
(

1 ± tanh[qσ0]
)

=
√
λ



1 ± 1
√

1 + (1 − q2) cos2 ϑ
2



 . (6.1.11)

In order to find out the AdS5 contribute for the action, we note that
the loop described in (6.1.1) is a special case of toroidal loops that we have
already discussed in section 4.5. Indeed, we recover our present loop by
substituting k1 = 1 and k2 = q in (4.5.36). As a consequence we follow the
same procedure and we obtain the AdS5 kinetic part of the action

SAdS5
≃ −

√
λ





1

q
+ 1 − 1

√

sin2 ϑ
2 + q2 cos2 ϑ

2



 (6.1.12)

where we have already removed the usual linear divergence.
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Putting together (6.1.12) and (6.1.11) we obtain the total action

S =
√
λ



−1

q
+

1
√

sin2 ϑ
2 + q2 cos2 ϑ

2

± 1
√

1 − (1 − q2) cos2 ϑ
2





=
√
λ



−1

q
+ (1 ± 1)

1
√

1 − (1 − q2) cos2 ϑ
2



 . (6.1.13)

We notice that an exact cancellation between the S5 part of the action and
a piece of the AdS5 one take places.

6.1.1 q = 0 case

In this case the curve takes the form of a latitude

x1 = sin
ϑ

2
cos τ, x2 = 0, x3 = cos

ϑ

2
, x4 = sin

ϑ

2
sin τ (6.1.14)

and the scalar couplings simplify to

θ0 = − i
√

1 + cos2 ϑ
2

θ5 = − i
√

1 + cos2 ϑ
2

cos
ϑ

2

θ9 = 0.

(6.1.15)

We note that the time dependence disappears here, therefore the scalar cou-
plings are constants.

To find the dual string configuration, we parametrize the µi coordinates
as in (6.1.3) and we note that

θ7 + iθ0 = µ1e
iϕ1 =

1
√

1 + cos2 ϑ
2

θ9 + iθ5 = µ2e
ϕ2 =

cos ϑ
2

√

1 + cos2 ϑ
2

θ6 + iθ8 = µ3e
iϕ3 = 0.

(6.1.16)

At the boundary, the dual string configuration must satisfy α = ϕ1 = ϕ2 =
ϕ3 = 0, while

sin θ0 =
cos ϑ

2
√

1 + cos2 ϑ
2

(6.1.17)
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For the AdS5 part of he σ model we use the target space metric

ds2 = L2
(

− cosh2 ρ dt2 + dρ2 + sinh2 ρ(dχ2 + cos2 χdψ2 + sin2 χdφ2
)

.

Since the circle will follow the coordinate ψ on a latitude of the S3 on the
boundary of AdS5, we use the ansatz

ρ = ρ(σ) , ψ(τ) = τ , t = χ = φ = 0 (6.1.18)

that yields to the kinetic AdS action in conformal gauge

SAdS5
=

L2

4πα′

∫

dσ dτ
[

ρ′2 + sinh2 ρ
]

. (6.1.19)

The equation of motion for ρ is

ρ′′ = sinh ρ cosh ρ (6.1.20)

from which we obtain a first integral

ρ′2 − sinh2 ρ = c. (6.1.21)

In order to get a surface that corresponds to a single circle and not the
correlator or two one has to set c = 0, so the solution is

sinh ρ(σ) =
1

sinhσ
(6.1.22)

where an integration constant in this equation that shifts σ was set to zero
so the boundary of the world-sheet at σ = 0 is at the boundary of AdS5.

The bulk part of the classical action is proportional to the area

SAdS5
=

√
λ

∫

dσ sinh2 ρ =

∫ ∞

σmin

dσ
1

sinh2 σ
=

√
λ (coth σmin − 1)

=
√
λ (cosh ρmax − 1).

(6.1.23)
Here σmin is a cutoff on σ and ρmax the corresponding cutoff on ρ. The first
term is exactly the divergent part which is canceled by an extra boundary
term in the action.

From the boundary condition (6.1.17) our ansatz involves only the angle
θ = θ(σ), therefore the S5 part of the action reduces simply to

SS5 =

√
λ

4π

∫

dσdτ θ′2. (6.1.24)

Since the variable θ is cyclic, we could express its derivative in terms of the
conserved momenta, but the S5 part of the diagonal stress-energy tensor
forces it to vanish. Therefore θ results to be constant and its value is given
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by the boundary condition (6.1.17). As a consequence, the S5 part of the
action vanishes and it does not contribute to the vev of the Wilson loop
operator.

From this one finds that the expectation value of the Wilson loop at
strong coupling is given by

〈W 〉 = e−
√

λ . (6.1.25)

This is the same result we find in section 4.2.
Hence, the expectation value for a generic latitude coupled to scalars

in the way proposed by Dymarsky and Pestun is equal to the value for a
maximal latitude with the standard scalar couplings.

6.2 β-deformed Lissajous figures

Let us calculate the same Wilson loop considered in section 6.1 in N = 1
β-deformed SYM. The loop and the scalar coupling are defined in the same
way.

Our S̃5 ansatz is

θ = θ(σ), ϕ2 = qτ, ϕ1 = ϕ1(σ). (6.2.1)

As usual, due to the presence of the B-field, we must consider an ansatz
involving an additional angle ϕ1.

The S̃5 part of the action is

SS̃5 =

√
λ

4π

∫

dσdτ
[

θ′2 +G cos2 θϕ′
1
2
+G sin2 θϕ̇2

2

− 2iγ̂G sin2 θ cos2 θ(ϕ̇1ϕ
′
2 − ϕ′

1ϕ̇2)
]

=

√
λ

4π

∫

dσdτ
[

θ′2 −G cos2 θϕ′
1
2
+Gq2 sin2 θ − 2q2γ̂G sin2 θ cos2 θϕ′

1

]

(6.2.2)

where in the last equality we have performed a Wick rotation ϕ1 → iϕ1 in
order to obtain a real configuration, and the G factor is given by

G−1 = 1 + γ̂2 sin2 θ cos2 θ. (6.2.3)

Since ϕ1 is cyclic, we introduce his conserved momentum

−G cos2 θϕ′
1 − (k2 − k1)γ̂G sin2 θ cos2 θ = π (6.2.4)

but, for the surface to be closed, we must set π = 0 and we have

ϕ′
1 = (k1 − k2)γ̂ sin2 θ. (6.2.5)
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Substituting this equation in the S̃5 part of the Virasoro constraint we get
an equation for θ

θ′2 −G cos2 θϕ′
1
2 − q2G sin2 θ = 0

⇒ θ′2 = q2 sin2 θ (6.2.6)

together with the boundary condition (6.1.5), that forces the integration
constant σ0 to be non-zero. In fact, the solution is given by

sin θ =
1

cosh[q(σ0 ± σ)]
(6.2.7)

ϕ1 = γ̂
(

tanh(σ ± σ0) ∓ tanh(σ0)
)

. (6.2.8)

The sign choice corresponds to a surface wrapping the northern or the south-
ern hemisphere and the integration constant σ0 is chosen so that at σ = 0 it
reaches the boundary value

1

cosh[qσ0]
=

√

1 − q2 cos ϑ
2

√

1 + (1 − q2) cos2 ϑ
2

. (6.2.9)

The last step is to integrate the action

SS5 =

√
λ

2π

∫

dσdτ
(

q2 sin2 θ
)

=
√
λ q

∫ ∞

0
dσ

1

cosh2[q(σ0 ± σ)]

=
√
λ
[

± tanh[q(σ0 ± σ)]
]∞

0

=
√
λ
(

1 ± tanh[qσ0]
)

=
√
λ



1 ± 1
√

1 + (1 − q2) cos2 ϑ
2



 . (6.2.10)

This result matches exactly with the undeformed one.

6.3 Circles correlator in the q = 0 case

In this section we want to evaluate the correlator of two concentric circles
with the scalar coupling given by (6.1.15). Let us write explicitly the two
loops γ1 and γ2 in cartesian coordinates

γ1 : x1 = sin
ϑ1

2
cos τ, x2 = 0, x3 = cos

ϑ1

2
, x4 = sin

ϑ1

2
sin τ

γ2 : x1 = sin
ϑ2

2
cos τ, x2 = 0, x3 = cos

ϑ2

2
, x4 = sin

ϑ2

2
sin τ

(6.3.1)
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and the corresponding non-vanishing scalar coupling are simply obtained by
replacing ϑ with ϑ1, ϑ2 in (6.1.15)

γ1 : θ0 = − i
√

1 + cos2 ϑ1

2

, θ5 = − i cos ϑ1

2
√

1 + cos2 ϑ1

2

γ2 : θ0 = − i
√

1 + cos2 ϑ2

2

, θ5 = − i cos ϑ2

2
√

1 + cos2 ϑ2

2

.

(6.3.2)

Let us start with the S5 part of the σ model. It is simple to convince
ourselves that the correct ansatz should involve only one angle. The bound-
ary conditions for both circles are simply obtained from (6.1.16) and read
α = ϕ1 = ϕ2 = ϕ3 = 0 for both, while for the θ coordinate they reach
different values on the boundary

γ1 : sin θi
0 =

cos ϑ1

2
√

1 + cos2 ϑ1

2

γ2 : sin θf
0 =

cos ϑ2

2
√

1 + cos2 ϑ2

2

.

(6.3.3)

This means that both circles couple to fixed point on S5, but these points
are situated along the same longitude. Therefore, our ansatz involve only
one angle θ = θ(σ) and the S5 part of the action is simply

SS5 =

√
λ

4π

∫

dσdτ θ′2. (6.3.4)

Unlike (6.1.24), in this case the action will not vanish, due to different bound-
ary conditions. Again, θ is cyclic, then we can express its derivative in terms
of the conserved momenta Π, that is θ′ = Π. In this case we will keep Π 6= 0,
since we are dealing with correlators, and not expectation values, of Wilson
loops. It is simple now to integrate the equation of motion and obtain

θ = Πσ + θi
0 (6.3.5)

since θ(σ = 0) = θi. Then

SS5 =

√
λ

4π

∫

dσdτ Π2 =

√
λ

2
δσΠ2. (6.3.6)

We have already solved the AdS part of the σ model for the correlator
of two generic concentric circles in section (5.0.4). First, we notice that
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the coordinates (5.0.15) of the AdS5 metric we chose are related to our
parameters by

sin
ϑ1

2
= evi , sin

ϑ2

2
= evf , a = Π, k = 1. (6.3.7)

In this picture the angles ϑ1 and ϑ2 are the radii of the circles, and the
third condition is necessary to ensure that the total Virasoro constraint is
satisfied.

Using (6.3.7), the two roots of the polynomial on the right side of (5.0.20)
are given by

ẑ2
± =

1 − a2 ±
√

(a2 + 1)2 + 4p2

2(a2 + p2)
. (6.3.8)

Then, the solution for the worldsheet coordinate σ is again given in terms of
elliptic integrals of the first kind

σ = ẑ+F

(

arcsin
z

ẑ+

∣

∣

∣

ẑ+
ẑ−

)

(6.3.9)

and, similarly, the full range

δσ = 2ẑ+K

(

ẑ+
ẑ−

)

. (6.3.10)

Now we can find the value of the conserved momenta Π for this configuration

θ(δσ) = θf
0 =⇒ Π =

θf
0 − θi

0

δσ
. (6.3.11)

The results for v in both branches are

v − vi = pẑ+

[

F

(

arcsin
z

ẑ+

∣

∣

∣

ẑ+
ẑ−

)

− Π

(

−ẑ2
+, arcsin

z

ẑ+

∣

∣

∣

ẑ+
ẑ−

)]

v − vi = pẑ+

[

2K

(

ẑ+
ẑ−

)

− 2Π

(

−ẑ2
+

∣

∣

∣

ẑ+
ẑ−

)

−F
(

arcsin
z

ẑ+

∣

∣

∣

ẑ+
ẑ−

)

+ Π

(

−ẑ2
+, arcsin

z

ẑ+

∣

∣

∣

ẑ+
ẑ−

)]

(6.3.12)

and the total range is

δv = vf − vi = 2pẑ+

[

K

(

ẑ+
ẑ−

)

− Π

(

−ẑ2
+

∣

∣

∣

ẑ+
ẑ−

)]

(6.3.13)

which is related to the ratio of the radii of the loops by

sin ϑ1

2

sin ϑ2

2

= eδv . (6.3.14)
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Finally, the action

SAdS5
=

√
λ

2π

∫

dτdσ r21 −
√
λ

2
δσΠ2

≃ −2
√
λ

ẑ+

[

E

(

ẑ+
ẑ−

)

−K

(

ẑ+
ẑ−

)]

−
√
λ

2
δσΠ2 (6.3.15)

where we have already removed the usual linear divergence. We notice that
the second term cancels exactly the full S5 action, so that the full regularized
action is given in terms of complete integrals

S = −2
√
λ

ẑ+

[

E

(

ẑ+
ẑ−

)

−K

(

ẑ+
ẑ−

)]

. (6.3.16)

Here we have focus on the case for the circles to have opposite orientation,
but the procedure is exactly the same if they have the same orientation.

In principle, we could find the explicit dependence of the string action on
the radii parameter ϑ1 and ϑ2. In fact, we should invert (6.3.13) and, using
(6.3.14) we would find the value of the conserved momenta p in terms of the
parameters of the loops. Then we should substitute this value into (6.3.8)
and evaluate the elliptic integrals in (6.3.15). Although an analytic approach
seems quite impossible, it could be done numerically. The most interesting
result would be to verify if the Gross-Ooguri phase transition takes place.

6.3.1 Coincident circles

Let us now consider the case of coincident two circles on the boundary, that
corresponds to ϑ1 = ϑ2. In this case v does not vary, and we can set it to
zero. Therefore, in this case the ansatz involves only the coordinates r0, r1
and φ1, which parametrize an AdS2 subspace of AdS5.

We will consider the case a > 0, corresponding to the correlator of two
coincident circles of opposite orientation. Hence the solution is the same as
the more general case described in the previous section, providing that now
(6.3.8) becomes

ẑ+ =
1

a
, ẑ− = i. (6.3.17)

Hence

σ =
1

a
F

(

arcsin az
∣

∣

∣

i

a

)

. (6.3.18)

We notice that the coordinate z takes values between the boundary of AdS5,
when it is zero, and its maximum ẑ+, and then comes down to the boundary
of AdS5 again. Therefore the full range of σ is given by

δσ =
2

a
K

(

i

a

)

(6.3.19)
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It is easy to show that the regularized AdS5 action (6.3.16) turns into

SAdS5
= −2a

√
λ

[

E

(

i

a

)

−K

(

i

a

)]

−
√
λ

2
δσa2 (6.3.20)

where we recall from (6.3.7) that the Virasoro constraint forces Π = a.
However, since the circles are coincident they couple to the same constant
point in S5, since from ϑ1 = ϑ2 follows that θf

0 = θi
0, and (6.3.11) leads to

Π = 0. The S5 solution is then described by an angle θ = θi
0 constant, where

its value is fixed by the radius of the circles by (6.3.3). As a consequence, the
S5 part of the action vanishes and it does not contribute to the correlator.

Then, we have to find the solution for the AdS5 part of the model for
a = 0, which it is very simple as we will see. The equation of motion (5.0.20)
for z = 1/r1 in this case reads

z′2 = 1 + z2 (6.3.21)

which it is solved by
z = sinhσ. (6.3.22)

The action in this case is, after subtracting the divergence

S = SAdS5
= −2

√
λ. (6.3.23)

This is exactly the value known for the expectation value of two circle Wilson
loops in the disconnected phase.

6.4 Phase transition analysis

The result found in (6.3.23) for the two coincident circles suggests us that
the connected solution might not exist. This because the value of the string
action is equal to the value of the disconnected solution, that is the values of
the circles separately. It is worth to ask if the connected solution effectively
exists, namely if the Gross-Ooguri phase transition take places. In order to
answer such a question, we fix one of the two circles at the equator of S2,
and we keep the radius of the other circles as our free parameter. Due to
the new scalar couplings, all the other quantities are fixed by the geometry,
once we set the distance between the circles.

As we have already announced, we put one circle at the equator of S2, so
we set ϑ1 = π and ϑ2 = ϑ, while the other circles is defined by the equation

sin θf
0 =

cos ϑ
2

√

1 + cos2 ϑ
2

. (6.4.1)
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We introduce the relevant parameter ξ, which is the ratio of the radii of the
circles

sin ϑ1

2

sin ϑ2

2

=
1

sin ϑ
2

= ξ−1 = eδv . (6.4.2)

We can rewrite (6.4.1) in a more suitable form

θf
0 = arctan cos

ϑ

2
= arctan

√

1 − ξ2. (6.4.3)

Then, the equations (6.3.8)-(6.3.13) become

− ln ξ = 2pẑ+

[

K

(

ẑ+
ẑ−

)

− Π

(

−ẑ2
+

∣

∣

∣

ẑ+
ẑ−

)]

(6.4.4)

ẑ2
± =

1 − a2 ±
√

(a2 + 1)2 + 4p2

2(a2 + p2)
(6.4.5)

θf
0 = 2aẑ+K

(

ẑ+
ẑ−

)

. (6.4.6)

We define t = ẑ+

ẑ
−

and we choose t and ẑ+ as our variables. Explicitly

t2 =
1 − a2 +

√

(a2 + 1)2 + 4p2

1 − a2 −
√

(a2 + 1)2 + 4p2
(6.4.7)

from which we get an expression for p2

p2 = −(1 + a2t2)(a2 + t2)

(1 + t2)2
. (6.4.8)

Substituting this back into (6.4.5) we obtain two solution for ẑ+

ẑ2
+ = − 1 + t2

1 − a2
, ẑ2

+ = −1 + t−2

1 − a2
. (6.4.9)

We note that the two solution are related by the transformation t → 1/t.
Therefore, we have two possible values for a2

a2 =
1 + t2 + ẑ2

+

ẑ2
+

, a2 =
1 + t−2 + ẑ2

+

ẑ2
+

. (6.4.10)

Now, from (6.4.6) it is simple to obtain an expression for ξ

ξ2 = 1 − tan2

(

2
√

1 + t2 + ẑ2
+ K(t)

)

(6.4.11)

where we have chosen the first solutions in (6.4.9) and (6.4.10). Plugging
the first expression for a2 into (6.4.8), the equation (6.4.4) gives the final
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relation between t and ẑ+

ln

[

1 − tan2

(

2
√

1 + t2 + ẑ2
+ K(t)

)]

= (6.4.12)

± 4

ẑ+

√

(1 + ẑ2
+)(z2

+ + t2)

[

K

(

ẑ+
ẑ−

)

− Π

(

−ẑ2
+

∣

∣

∣

ẑ+
ẑ−

)]

.

This equation, as the radius of the “free” circle varies, describes a curve in
the Gross-Ooguri phase diagram. Our next step will be to determine if this
curve intersects the phase transition line or if it lies in only one single region
of the diagram, that is no phase transition takes place.



Conclusions and outlooks

In this work, we faced the study of the Wilson loop operator in two su-
persymmetric gauge theories, namely N = 4 super Yang Mills and a exact
marginal deformation of it, known as N = 1 β-deformed super Yang Mills.
Within the framework of the AdS/CFT correspondence, the vacuum expec-
tation value of the Wilson loop can be evaluated in string theory in the limit
of large gauge group parameter N and large ’t Hooft constant λ. More in
detail, Wilson loops are evaluated in these limits by finding the classical so-
lution of the string equation of motion in the product space AdS5 ×S5, and
analyzing the corresponding value of the string action.

Within this framework, we checked that the vacuum expectation value
for some Wilson loops in the two theories are equal. In particular, we showed
that this result does not hold for 1/2 or 1/4 BPS Wilson loop only, the only
cases treated in literature so far, but also for operators that preserve a less
amount of supersymmetry (for example, the toroidal loop which are 1/8 BPS
operators), or even non-BPS operators. This last case corresponds to Wilson
loops correlator. In this contest, the same Gross-Ooguri phase transition,
namely the transition through the solution described by a connected minimal
surface to a disconnected one, is obtained in the two theories. This result
reinforces the conjecture that the expectation value of the Wilson loop in
N = 1 β-deformed SYM at strong coupling is described by the same matrix
model as in the non-deformed theory. It would be worth to investigate
if there exist other loops, corresponding to relevant operators in the field
theories, that do not share the same expectation value. Another possibility
would be to check if the subleading corrections at order 1/N differ between
the two theories, and if it possible to calculate them at strong coupling with
the D-branes techniques we used in this work.

We have then turned to consider toroidal loops with a different scalar
coupling on S5 (Lissajous figures), proposed by Dymarsky and Pestun re-
cently: they proved that the two classes of coupling contain all possible
supersymmetric Wilson loops with this type of geometry. In N = 4 SYM
theory, the result obtained at strong coupling matches with the computation
at weak coupling performed using perturbation theory. The common feature
of these solutions is an exact cancelation between the S5 part of the action
and a piece of the AdS5 part of the action. As a consequence, the expecta-
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tion value of such operators posses a trivial dependence on the parameters
that define the loops. We have shown that even for this new type of Wilson
loop the same results are obtained in the N = 1 β-deformed SYM.

Furthermore, the correlator of the circles of generic radii has been eval-
uated. The result found for the action when the two circles are coincident
suggests us that the connected solution might not exist. This because the
value of the string action is equal to the value of the disconnected solution,
that is the sum of the values of the circles separately. It is worth to ask if
the connected solution effectively exists, namely if the Gross-Ooguri phase
transition take places. We derived an equation that describes a curve in
the Gross-Ooguri phase diagram. Our next step will be to determine if this
curve intersects the phase transition line or if it lies in only one single region
of the diagram, that is no phase transition takes place. If that would be the
case, the solution would be described by the same matrix model of a single
circular Wilson loop. Then, it would be interesting to try to evaluate the ex-
pectation value at strong coupling of the correlator of two generic Lissajous
loops, and see if a matrix model description is possible.
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