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Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Aspekten von Zielraumdualitäten innerhalb der
Theorie geschlossener bosonischer Strings. Zu Beginn wird eine Einführung in generalisierte
Geometrie gegeben, die das primäre mathematische Gerüst dieser Arbeit bildet. Analog
zur allgemeinen Relativitätstheorie als Theorie von Riemannschen Metriken wird eine vere-
inheitlichte Theorie zu formulieren versucht, die Hintergründe der String-Theorie – Rie-
mannsche Metriken sowie Kalb-Ramond Zweiformen – mithilfe von Courant-Algebroiden
auf dem generalisierten Tangentialbündel beschreibt. Die duale Konfiguration von Hin-
tergründen, gegeben durch eine Metrik und ein Bivektorfeld, wird durch das generalisierte
Kotangentialbündel beschrieben. Das Fehlen eines konventionellen Krümmungstensors
und die damit ausbleibende Möglichkeit, generalisierte Gravitationstheorien auf Courant-
Algebroiden zu formulieren, wird im Detail studiert. Dies führt zum Begriff der Lie-
Algebroide, deren Differentialgeometrie sich als adäquat zur Formulierung generalisierter
Gravitationstheorien herausstellt. Verschiedene solcher Theorien stehen durch geeignete
Homomorphismen in direkter Beziehung zueinander. Dies erweist sich als hilfreich für die
Beschreibung nicht-geometrischer Hintergründe.

Zielraumdualität wird durch die sogenannte O(d, d)-Dualität beschrieben, welche zwei-
dimensionale nicht-lineare Sigmamodelle für verschiedene Stringhintergründe als identisch
enthüllt, deren Hintergründe und Koordinaten durch O(d, d)-Transformationen miteinan-
der in Beziehung stehen. Dabei werden insbesondere die Integrabilitätsbedingungen an die
dualen Koordinaten mithilfe von Courant-Algebroiden studiert. Neben (nicht-abelscher)
T-Dualität beinhaltet O(d, d)-Dualität die neuartige Poisson-Dualität, welche von einer
Poissonstruktur induziert wird. T- und Poisson-Dualität werden auf den Drei-Torus mit
konstantem H-Fluss angewandt, was die Existenz von nicht-geometrischen Hintergründen
offenbart. Diese übersteigen konventionelle geometrische Konzepte aufgrund des Fehlens
einer globalen Beschreibung.

Das Problem der Beschreibung nicht-geometrische Hintergründe wird mithilfe von gen-
eralisierter Geometrie behandelt. Eine vereinheitlichte Erfassung T-dualer Hintergründe
basierend auf proto-Lie Bialgebroiden für geometrische und nicht-geometrische Hintergrün-
de wird vorgestellt. Zusammen bilden sie einen Courant-Algebroiden, dessen anomale
Jacobi-Identität Bedingungen für das gleichzeitige Auftreten dualer Flüsse liefert. Das
Fehlen genereller Gravitationstheorien führt zur Beschränkung auf Lie-Algebroide. Deren
Gravitationstheorien ermöglichen eine globale Beschreibung nicht-geometrischer Hinter-
gründe durch eine genaue Vorschrift der Kartenwechsel auf diesen Räumen. Diese Beschrei-
bung lässt sich auf alle möglichen Supergravitationstheorien übertragen.

Die Frage nach einer vereinheitlichten Beschreibung dualer Hintergründe wird durch



vi

einen Zugang mittels einer konformen Feldtheorie, die invariant ist unter T-Dualitäten,
wiederaufgenommen, indem duale Koordinaten als gleichwertig betrachtet werden. Die
modulare Invarianz der Zustandsumme auf dem Torus sowie die Prämisse der physikali-
schen intermediären Zustände in der Streuung vierer Tachyonen führt zwangsläufig zur
Auftreten der starken Zwangsbedingung der Doppelfeldtheorie für nicht-kompakte Räume.
Dies steht im Gegensatz zu torisch kompaktifizierten Räumen, die diese Zwangsbedingung
nicht erfordern. Damit werden das Auftreten der starken Zwangsbedingung aufgeklärt und
mögliche Abschwächungen plausibel gemacht.



Abstract

In this thesis various aspects of target-space duality in closed bosonic string theory are
studied. It begins by introducing generalized geometry as the main mathematical frame-
work. In analogy to general relativity with the Riemannian metric as dynamical quantity,
a unified description for string backgrounds – Riemannian metrics together with Kalb-
Ramond two-form fields – is approached via Courant algebroids on the generalized tangent
bundle equipped with a generalized metric. The dual background configuration, i.e. a met-
ric and a bivector field, is described by the generalized cotangent bundle. The absence of a
conventional curvature tensor and consequently the problem of defining generalized gravity
theories on Courant algebroids is investigated in detail. This leads to the introduction of
Lie algebroids whose differential geometry is suitable for the formulation of gravity theo-
ries. Different such theories are shown to be interrelated by appropriate homomorphisms.
This proves to be useful for describing non-geometric backgrounds.

Target-space duality is introduced in terms of O(d, d)-duality which identifies two-
dimensional non-linear sigma models for different string backgrounds as physically equiva-
lent under certain conditions: The backgrounds and coordinates of the dual theories have
to be related by certain O(d, d) transformations. In particular, integrability conditions of
the dual coordinates are formulated in terms of Courant algebroids. Apart from (non-
abelian) T-duality, O(d, d)-duality contains the novel Poisson-duality induced by Poisson
structures. T- and Poisson-duality are applied to the three-torus with constant H-flux
which shows the existence of non-geometric backgrounds. The latter exceed conventional
conceptions of geometry as they cannot be described globally.

The problem of describing non-geometric backgrounds is approached with generalizes
geometry. A unified description of T-dual backgrounds is given in terms of proto-Lie
bialgebroids – one for the geometric sector and another for the non-geometric one. They
combine into a Courant algebroid whose anomalous Jacobi identity provides conditions
for the concurrent appearance of dual fluxes. The absence of a gravity theory leads to
the restriction to Lie algebroids. Their gravity theories allow for a global description of
non-geometric backgrounds by an exact prescription for the patching of these backgrounds.
The description extends to all possible supergravity theories.

The question whether a unified description of dual backgrounds is possible is reconsid-
ered in a manifestly T-duality invariant conformal field theory approach. Dual coordinates
are treated on equal footing. Modular invariance of the one-loop partition function together
with the premise of physical intermediate states in four-tachyon scattering inevitably leads
to the appearance of the strong constraint of double field theory on non-compact spaces.
Toroidally compactified directions do not require a constraint. This explains the appear-
ance of the strong constraint and justifies possible attenuations.
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Chapter 1

Introduction

Gravity in conjunction with the weak, the electromagnetic, and the strong force constitute
the fundamental interactions in nature. Gravity is considerably weaker than the other
three and therefore irrelevant in sub-atomic processes described by the standard model of
particle physics – a particular quantum field theory. Yet, opposed to the weak and the
strong force it is believed to have an infinite range. Thus, along with the electromagnetic
force, gravity is predominant in the large scale universe.

At the Planck scale at approximately 1019GeV however, general relativity and quantum
field theory become both, equally important and individually invalid: A photon used to
measure objects smaller then the Planck length lPl ≈ 10−35m would collapse into a black
hole.1 Then quantum theory – responsible for the particle-like nature of a photon – is inap-
propriate as no meaningful measurement can be made and general relativity – responsible
for the imprint of matter on the shape of the space – is not able to describe the emerging
singularity. Consequently, the understanding of the Planck regime and in particular the
description of the very early universe (up to 10−43 seconds after the big bang singularity) as
well as the physics close to a black hole singularity requires the formulation of a quantum
theory of gravity.

Unfortunately experimental indications for pursuing certain directions towards quan-
tum gravity are hardly amenable owing to the magnitude of the Planck scale. As a com-
parison, the Large Hadron Collider works only at the electroweak scale of about 103GeV .
Measurements related to inflation may allow access to energies around 1016GeV with first
possible imprints of quantum gravity.2 So far, however, only theoretical principles are to
be followed.

The quest for finding a quantum gravity theory is closely connected with the concep-
tion of space. Spacetime is dynamical in the general theory of relativity. Its shape is

1The reduced Compton wavelength is λ = ~(Mc)−1 with c the speed of light and the Planck length is
lPl =

√
~Gc−3 with G the gravitational constant. Resolving Planck length requires a wavelength λ ≤ lPl,

which corresponds to a particle of mass M ≥ MPl =
√
~cG−1. The Schwarzschild radius for a particle of

Planck mass is rS = 2c−2GMPl = 2lPl. Hence λ ≤ rS , i.e. the corresponding particle would be smaller
than its own Schwarzschild radius. This results in a black hole.

21016GeV is the expected energy scale at which inflation occurs. Recently, hints for primordial B-modes
have been found [1]. A well-established theoretical explanation are primordial gravitational waves arising
from quantum fluctuations of the gravitational field amplified during inflation (see e.g. [2]). However, also
cosmic dust might be responsible for these findings [3].
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determined by the energy and matter content through the energy-momentum tensor with
gravity manifesting itself as geodesic motion of a free-falling object on this potentially
curved spacetime. The standard model of particle physics, on the other hand, is formu-
lated on a fixed background – the four-dimensional flat Minkowski space – and describes
the fundamental particles as well as the mediation of forces by point-like objects. Yet,
incorporating a dynamical spacetime into quantum field theory complicates the causal
description of physical processes: Near the Planck scale, quantum fluctuations cause a per-
manent change of the matter content and thereby an incessantly altering spacetime which
prevents a well-defined notion of causality. Along with the loss of the predictive power of a
perturbative quantization of gravity due to an infinite number of undetermined parameters
(non-renormalizability), this calls for approaches beyond general relativity and quantum
field theory to describe quantum gravity.

1.1 String theory

The failure of a conventional perturbative approach via point particles to quantize gravity
might indicate a mathematical inconsistency of the concept of space as a continuum of
points at very high energies or equivalently at very small length scales. So far, two strategies
have been adopted: Either studying mathematical structures such as non-commutative
geometries3 as well as certain ”discretizations” of space4 which dismiss the notion of points,
or changing the probe from a point particle to higher-dimensional objects.

In this thesis the latter approach will be followed by using string theory5, where the
probes are given by strings, i.e. one-dimensional objects. A string probes spacetime very
differently compared to point particles as it can wind around compact directions. Thereby
it is able to resolve global properties of a space invisible to a point particle.

String theory can be formulated as a two-dimensional non-linear sigma model which
describes the embedding of the two-dimensional surface stretched by a moving string –
a membrane – into a target-space, spacetime itself. This membrane is called worldsheet,
following the notion of a worldline for particles: The action describes the minimal surface
between two strings on a given spacetime analogous to the worldline describing the shortest
path between two points. This inconspicuous description has far reaching consequences
when it is quantized. The string admits infinitely many vibrational modes with every
single one constituting a state in the theory. Thus particles are described by the different
excitations of a single string, which generically include a graviton and gauge bosons. This
is remarkable since it constitutes a quantum theory including quantum gauge theory and
quantum gravity. So far, string theory is the only framework not only providing a consistent
quantum gravity but also unifying the two distinct fundamental theories.

The combination of gauge and gravity theory is a generic feature of string theory. How-
ever, realistic physical models have to be encountered within an enormous set of solutions.
Prior to quantization, string theory is unique, but there are four broad classes of consistent
quantum theories:

3Conne’s non-commutative geometry is introduced in [4] and several others are reviewed in [5].
4Loop quantum gravity and causal dynamical triangulation are reviewed for example in [6] and [7],

respectively.
5See for instance the introductory textbooks [8, 9, 10, 11, 12, 13].
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• the bosonic string. Consistency requires a critical spacetime dimension of 26. Con-
taining no fermions and showing a tachyonic state it is unphysical. Nonetheless, it
will be of main interest here as the major geometrical features are included.

• the type II superstring. The critical dimension is 10 and it includes fermions in a
supersymmetric manner without having a tachyon. The appearance of non-chiral
and chiral massless fermions further distinguishes type IIA and type IIB respectively.

• the heterotic superstring. It constitutes another supersymmetric theory in ten space-
time dimensions. Two types can be distinguished: one containing a SO(32) gauge
field and another containing an E8 × E8 gauge theory.

• the type I superstring. The only ten dimensional supersymmetric theory containing
open strings.

The classical theory admits two-dimensional conformal invariance which has to be pre-
served during quantization. This restricts the allowed spacetimes. Particularly the high
dimensionality of spacetime predicted by string theory has to be reduced in order to meet
the observation of a four-dimensional spacetime at the accessible energy scales; the re-
maining dimensions are compactified. As a result the superstring is considered on a space
M =M4×X6 with M4, a four-dimensional spacetime, and X6, a compact six-dimensional
space sufficiently small to remain hidden. For example, to recover the standard model, M4

must be the Minkowski space, yet for describing cosmology, M4 has to be the de Sitter
space. But still the possibilities for viable compact six-dimensional spaces – also known as
vacua – are vast. This is known as the string landscape.

Seen from the four-dimensional perspective, compactification introduces lots of scalar
fields describing for instance the size and shape of the internal space. However, there
are only two (or a few more) virtually confirmed scalar particles: the Higgs boson and
the inflaton(s). The remaining scalars have to be moved to currently undetectable regimes.
This procedure is calledmoduli stabilization and can be partially achieved by compactifying
on spaces equipped with additional fields and associated fluxes.6

Thus, despite the predictive power of the initial framework, consistent solutions are
far from unique and due to their abundance, finding realistic models proves difficult. In
principle, all known vacua can be scanned for realistic models, but the suitable solution
might not even be known. Nevertheless, string theory is not understood completely and
conceptual progress could achieve both, extension of the possibilities for finding realistic
models and narrowing down the possibilities by undiscovered consistency requirements.

1.2 Dualities

String theory is abounding in symmetries, including the remarkable equivalence of different
string theories. For example, type IIA theory compactified on a circle of radius R describes
the same physics as type IIB theory compactified on a circle of Radius 1/R. This T-duality
is just one instance in a web of dualities identifying all five superstring theories with each

6See [14] for a review.
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other (including M-theory). The present work investigates generalizations of T-duality due
to its geometric nature of relating string theories on very different spacetimes.

The massless sector common to all string theories is the bosonic NS-NS sector containing
a symmetric tensor field G, a two form field B called Kalb-Ramond field and a scalar field,
the dilaton φ. The Kalb-Ramond field can be considered the higher-dimensional analogue
of a gauge field and the dilaton is in some sense a quantum correction. In the worldsheet
description, these fields determine the shape of the spacetime on which the string resides.
To be more precise, the two-dimensional non-linear sigma model describing the worldsheet
Σ of a string embedded into the spacetime M is given by

S(G,B) =
1

4πα′

∫

Σ
d2σ
√
| deth|

(
hαβ Gab + εαβ Bab

)
∂αX

a ∂βX
b .

From the two-dimensional perspective7 the fields Xa are bosons while G and B are non-
constant couplings. From the spacetime point of view, however, Xa are the coordinates of
spacetime pulled-back to Σ, the symmetric tensor field G is a metric on M , and B induces
a torsion8 through the H-flux H = dB. Because the metric and the Kalb-Ramond field
constitute the data describing the spacetime on which the string evolves, the pair (G,B)
is called the background.

Now, T-duality identifies different backgrounds (G,B) and (g, b) related by the Buscher
rules [17, 18] as describing the same quantum physics, i.e. S(G,B) and S(g, b) provide
the same quantum theory [19]. For this reason it is referred to as target-space duality.
This is a genuine feature of string theory caused by the extended nature of the probe
in use and has far reaching implications. It has revealed the existence of higher dimen-
sional dynamical objects called D-branes [20], the mathematical connection between certain
Calabi-Yau manifolds called mirror symmetry [21], as well as exotic geometries including
non-commutative spaces9 called non-geometries [26, 27].

The unification of quantum theory with gravity is among the most intriguing problems in
fundamental physics for which string theory provides a promising framework. In order to
be able to utilize its rich structure for constructing realistic theories, further conceptual
progress is necessary.

Accordingly, this thesis focuses on the implications of target-space symmetries as they
serve the twofold desire phrased at the end of section 1.1: They extend the possibilities
of finding realistic models by revealing non-geometric backgrounds as possible vacua while
narrowing them down by identification. Moreover, they provide new insights into the ge-
ometry of spacetime near the Planck scale. A complete description of quantum gravity
requires a background-independent theory accounting for the permanent change of space-
time due to quantum fluctuations which is beyond the scope of the thesis.10

7Σ carries local coordinates with indices α, β and is equipped with a metric h. ε denotes the Levi-Civita
tensor with

√
| deth|ε ∈ {0,±1}.

8This is only true in the classical case. The failure of H contributing as torsion to quantum corrections
is discussed in [15, 16].

9In the case of open string theory, non-commutative geometry is well established [22, 23]. It can be
indirectly attributed to T-duality as being confined to D-branes. Non-commutative or even non-associative
geometry in closed string theory is still speculative [24, 25].

10A String field theory might achieve this goal [28, 29, 30].
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1.3 Thematic scope

In the following the main problems treated in the present work will be explained in more
detail.

1.3.1 T-duality

The section is devoted to a more extensive discussion of T-duality [31]. To begin with,
its appearance in the mass spectrum of the closed bosonic string compactified on a circle
of radius R is reviewed. The circle compactifications amounts to the choice of one direc-
tion, say X25(τ, σ) with τ being the time direction on the worldsheet and σ its circular
direction which is not periodic. Instead, the string can wind around the circular direction
as X25(τ, σ + 2π) = X25(τ, σ) + 2πRW with W ∈ Z being the number of windings. In
effect this means that the X25 direction has to be circled W times in order to return to
the initial point. Starting with the sigma model S(G = δ,B = 0), the dynamics governed
by the wave equation is solved by splitting the coordinates into left- and right-movers
Xa(τ, σ) = Xa

L(τ + σ) +Xa
R(τ − σ) which makes quantization simple. The mass M of the

N th excited state is then given by

α′M2 =
α′

R2
P 2 +

R2

α′ W
2 + 2(N − 2) ,

with P ∈ Z denoting the quantized momentum in the circular direction. Hence, the
spectrum is invariant under inversion of the radius of the circle R→ α′

R , accompanied with
a simultaneous interchange of momentum and winding modes P ↔W . This symmetry of
the spectrum extends to a symmetry of the whole theory by reflecting the right-moving
coordinate, i.e. X25

R → −X25
R , while leaving the left-moving part untouched.11 This

procedure also applies to toroidal compactifications – in particular Narain compactifications
[32] – and unveils the T-duality group O(d, d;Z). The flaw of this method is its confinement
to particular backgrounds and the requirement of the explicit solution of the theory.

In order to investigate the scope of T-duality, a sigma-model approach is taken [17,
19]. T-duality identifies the actions S(G,B) and S(g, b) for two different backgrounds as
equivalent. This can be shown by constructing an intermediate action from which both
possibilities of describing the same physics can be derived. In principle, the intermediate
model is obtained by gauging isometries: The initial background (G,B) admits isometries
when the action S(G,B) is invariant under spacetime diffeomorphisms in certain directions
which is a global symmetry from the two-dimensional worldsheet perspective. The global
symmetry is promoted to a local gauge symmetry. This requires the addition of an auxiliary
gauge field A with adjusted transformation properties.12 In order to be able to return to
the initial model, a Lagrange multiplier λ is introduced. The result is a gauged non-linear
sigma model S(G,B;A, λ). This model can be solved for λ, giving back the initial theory
S(G,B) by returning the solution back to the action. This procedure is termed integrating-

out λ. However, integrating-out A gives back a different theory which turns out to be the

11This reflection also applies to the fermionic coordinates for the superstring. In particular, reflecting the
right-moving fermion in the circular direction changes the chirality, giving rise to the interchange of IIA
and IIB theories.

12A is a one-form with values in the Lie algebra associated to the gauged (subgroup of the) isometry
group.
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sigma model S(g, b) in terms of a different background. This can also be realized in an
Hamiltonian approach via canonical transformations [33].

This method works well in the case of abelian isometries.13 However, gauging isometries
seems inappropriate for non-abelian isometries. Even if a background admitting non-
abelian isometries could be gauged consistently [36], the two emerging theories will not be
dual. This can be traced back to non-trivial holonomies of the gauge field, i.e. parallel
transport of a field around a loop in spacetime does not give back the initial field. The
possible holonomies must vanish in order to obtain an equivalent dual theory. In the abelian
case, the Lagrange multipliers do not transform under gauge transformations – they form a
gauge singlet – and can therefore be chosen periodically without difficulties. Choosing the
right periodicities then constrains the holonomies to vanish [19]. In the non-abelian case
however, the Lagrange multipliers transform under gauge transformations which makes
it impossible to introduce such periodicities constraining the holonomies to vanish [37].14

Even if the procedure is followed in spite of these subtleties, there is neither the possibility
to recover the initial model from integrating-out the Lagrange multipliers, nor is the dual
model really equivalent. Examples for this observation are studied in [38, 34, 37] and a
canonical approach can be found in [39]. Nevertheless, non-abelian T-duality was used
recently as solution generating technique in supergravity.15

Circumventing the approach of gauging isometries and thereby avoiding the introduc-
tion of a problematic auxiliary gauge field might lead to a more thorough understanding
of target space dualities. This will be addressed following [49], where a new method for
approaching target-space duality is developed. In particular, it contains non-abelian T-
dualities and a novel duality termed Poisson duality.

1.3.2 Non-geometric backgrounds

T-duality leads to backgrounds which extend the conventional notion of geometry. In the
following, this will be explained by means of simple examples whilst touching upon its
potential utility for constructing physical theories.

As mentioned before, abelian T-duality in a single direction, say the kth, interchanges
the initial background (G,B) with (g, b) via the Buscher rules

gkk =
1

Gkk
, gka = −Bka

Gkk
, gab = Gab −

GakGkb +BakBkb

Gkk
,

bka = −Gka

Gkk
, bab = Bab −

GakBkb +BakGkb

Gkk

with a, b 6= k. To get an idea of topology changes due to T-duality, the spacetimeM = R
2×

R
1,d−3 is considered. It is assumed to be equipped with the metric ds2 = dr2+r2dφ2+dx2,

where (r, φ) denote spherical coordinates on the plane R
2 and dx2 is the flat Minkowski

metric on R
1,d−3. In particular, this space is flat and has a vanishing Ricci scalar R = 0.

In a next step T-duality is performed along the isometric angular φ-direction. The Buscher

13Global issues are discussed in [34] and are revisited in [35].
14Even if consistent periodicities for the Langrange multipliers are introduced, they can not contribute

to a local action [37].
15See [40, 41, 42, 43, 44, 45, 46, 47, 48].
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rules give rise to the new metric ds̃2 = dr2+r−2dφ̃2+dx2. Thereby T-duality has inverted
the radial dependence of the angular direction. Although the initial metric was well-defined
even at r = 0, the dual metric is singular at that point. Furthermore the new Ricci scalar
R̃ = −2r−2 is singular at the origin as well. Hence, a singular space was obtained from a
simple flat one. This shows the peculiarity of T-duality: Although the dual space admits
singularities, it has to be considered a proper string background as it provides the same
quantum theory as the initial background.

This argument also applies to the aforementioned non-geometric backgrounds, but their
idiosyncrasy is of global nature. As the prototypical example, three spacetime directions
are assumed to be compactified on a flat, rectangular torus with metric ds2 = (dx1)2 +
(dx2)2 + (dx3)2. Since {x1, x2, x3} parametrize directions on the torus, they are periodic
and well-defined geometric entities have to be invariant under xi → xi + 2πn for some
integer n. Moreover, the torus is equipped with a linear Kalb-Ramond field B = hx3dx1 ∧
dx2 with h ∈ Z.16 Going around the x3-direction n times is non-trivial; it changes the
Kalb-Ramond field by 2πhndx1 ∧ dx2 = d(2πhnx1dx2). Thus, the change is an exact
one-form, i.e. the field changes by a gauge transformation B → B + dξ constituting a
symmetry of the theory. As a result the background just described is well-defined upon
invoking the target-space symmetries of string theory. The background admits isometries
along x1 and x2 which will be T-dualized together. The resulting background is described
by the metric ds̃2 = f(x3)[(dx1)2 + (dx2)2] + (dx3)2 and the Kalb-Ramond field b =
−hf(x3)x3dx1 ∧ dx2. The function f is given by f(x) = (1 − hx2)−1. As f(x) is not
2π-periodic, neither are g nor b. Also, the change of both g and b can not be compensated
by a coordinate transformation or a gauge transformation like in the previous case. Since
these two transformations build the target-space symmetry group of the bosonic string
– sometimes referred to as the geometric group – the latter background is called non-
geometric [27]. It is not well-defined globally but nevertheless provides a viable string
background. However, so-called β-transformations are the proper transition functions for
this background. They are not contained in the geometric group and can be considered as
a mixture of T-duality and gauge transformations. Nonetheless, it is important to notice
that there actually is a transformation serving as proper transition function17 even for non-
geometric backgrounds, which is not arbitrary: coordinate changes, gauge transformations,
β-transformations and T-duality in d-dimensions generate the indefinite orthogonal group
O(d, d).

The non-geometric background encountered above is known as the Q-flux background
or T-fold [50, 51]. The Q-flux is the analogue of the H-flux on the initial background.
The latter is given by H123 = (dB)123 = h while the former is given in terms of the
derivative of a bivector field β as Q12

3 = ∂3β
12 = h [27, 52]. The significance of the fluxes

is their appearance in the four-dimensional low energy effective theory associated with
the string: gauged supergravity.18 From the point of view of these theories, the existence
of non-geometric fluxes is inevitable in a complete description consistent with T-duality.
Especially in the example given above, there must exist yet another flux. The Q-flux

16This is only an approximate string vacuum as it is only valid up to linear order in H.
17Here the term transition function is understood in the precise sense of changing the local patch of the

vector bundle involved. In the case at hand, circling the x3-direction includes two local patches.
18Reviews are found in [53, 54].
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background is not isometric in the x3-direction and therefore T-duality is not applicable.
However, type IIA and type IIB supergravity only match completely under T-duality if a
flux associated to the forbidden third T-duality is introduced as well. Then, starting from
the flat torus with constant H-flux, the following chain of fluxes emerges:

Habc

TT (1)←−−→ fabc
TT (2)←−−→ Qab

c

TT (3)←−−→ Rabc .

The f -flux, also known as geometric flux, describes the twisted torus arising from a single
T-duality. The second T-duality gives the Q-flux introduced above and the R-flux is
conjectured from matching the supergravity theories [27, 55].

The R-flux was argued to elude a geometric description by conventional methods even
locally [27]. This seems to be connected to speculations about non-associative structures on
the corresponding spaces [56, 24, 25, 57]. However, string theory vacua, whose target-spaces
are inaccessible geometrically, are well-known in terms of asymmetric orbifold constructions
in conformal field theory [58]: The target space coordinates are described by the pulled-
back coordinates Xa, which split into a left and a right moving part (cf. the beginning
of section 1.3.1). The left- and right-movers can also be treated asymmetrically which
obstructs their forming of a sensible coordinate. The relation between the R-flux and
asymmetric strings was first noticed in [57] and further elaborated on in [59, 60].19

The immediate question concerning the benefit of non-geometric fluxes arises. One
could argue that although they are associated with formerly unknown geometries, they
have a well-understood dual counterpart providing the same physical theory. However, the
fluxes do appear in the superpotential of the low energy supergravity theories compactified
to four dimensions, providing additional parameters [27]. Nevertheless they do not comprise
additional degrees of freedom; the restrictions among the simultaneous appearance of the
geometric and non-geometric are studied in [27, 62, 63, 64].20 Two prominent applications
of non-geometric configurations are the following:

• Prior to the usage of non-geometric fluxes, stable four-dimensional de Sitter vacua
could not be found in string theory21 because there have always been tachyonic direc-
tions. Yet the cosmological constant is measured to be positive [68] and our universe is
spatially flat, so the large-scale spacetime geometry used in the cosmological standard
model – the Λ-CDM model – is de Sitter. Consequently the existence of such vacua is
of utmost importance to build cosmological models from string theory. Only recently
a scalar potential induced from geometric as well as non-geometric fluxes have been
used to stabilize the moduli in a meta-stable de Sitter minimum [69, 70, 71, 72, 73].

• Many gauged supergravity theories cannot stem from geometric string compactifica-
tions. This discrepancy between the landscape of string theory vacua and the possible
consistent effective field theories is known as the swampland [74, 75], which raises the
question whether some potentially realistic theories might be inaccessible via string
theory. However, at least part of the swampland can be explained by non-geometric
string theory compactifications [76, 77, 60].

19See also [61, 26] for general considerations.
20In the context of double field theory, the restrictions are studied in [65, 66].
21See e.g. [67]
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Apart from being an important step for understanding string theory more completely,
non-geometric fluxes introduce new possibilities for constructing realistic models.

A simultaneous mathematical description of (non-constant) geometric and non-geometric
fluxes [64] as well as the local geometric structure of the associated low energy effective
theories in ten dimensions will be presented in this thesis [78, 79, 80]. In particular, the
limitations upon a global description of non-geometric backgrounds will be addressed.

1.3.3 Double field theory

The geometric group of string theory consists of coordinate transformations as well as
gauge-transformations of the Kalb-Ramond fields. As mentioned in the previous section,
non-geometric backgrounds require transition functions beyond the geometric group. For
example, theQ-flux background is patched-up by β-transformations. In general, all possible
transition functions emerging from target space duality are elements of O(d, d). On that
account the conventional gravity theories arising as low-energy effective theories from string
theory are not suitable for a global description of such backgrounds.

Along with the T-duality group O(d, d;Z) for string theory compactified on a d-dimen-
sional torus [31], this motivated various attempts to construct duality or O(d, d) invariant
theories. In [81, 82], T-duality was realized as a world-sheet symmetry by treating left-
and right-moving degrees of freedom on equal footing and by considering objects invariant
under reflection of the right-moving coordinates. A geometric target space approach to
the problem was pursued in [50, 83, 51, 84]: The usual and the winding coordinates were
considered as coordinates of a doubled manifold, termed doubled geometry. Many quantum
aspects of this theory were studied further in [85, 86, 87], where in particular an O(d, d)
invariant target space effective action was presented. Arguably the most prevalent theory
now is double field theory (DFT).22 It was developed in [91, 92, 93, 94] as a covariant
doubled target space approach to duality symmetries. Whereas in the doubled geometry
approach the compact part of space is doubled, in double field theory the whole space-time
manifold is doubled.

All this approaches have in common a doubling of degrees of freedom, which have to be
reduced to the physical ones. Thus the imposing of constraints is necessary. Since in DFT
one treats the massless modes of the closed string, the level matching condition L0−L0 = 0
must be satisfied. This leads to the so-called weak constraint

∂a∂̃
af = 0 , (1.1)

where ∂a and ∂̃a denote derivatives with respect to the standard coordinates xa and the
winding coordinates x̃a, respectively. For consistency of DFT, i.e. in particular for the
closure of the symmetry algebra of generalized diffeomorphisms, a stronger version of this
constraint has been imposed [92, 94], namely

∂af ∂̃
ag + ∂̃af ∂ag = 0 (1.2)

for f, g physical fields depending on the doubled coordinates. But it turned out that this
ad hoc introduced strong constraint (1.2) is merely a sufficient condition for consistency. In

22Recent reviews can be found in [88, 89, 90]
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the so-called flux formulation of the DFT [95, 96, 97, 98, 99, 65], motivated by the vielbein
formalism of general relativity and the early work [91, 92], it was shown that a weaker
constraint, namely the so-called closure constraint, is also sufficient for consistency of DFT.
This is supported by the observation that Scherk-Schwarz reductions [100] of DFT lead to
consistent gauged supergravity theories in lower dimensions [99] without implementing the
strong constraint along the compact directions.23

Taking this into consideration, two fundamental aspects will be addressed in this thesis.

• DFT is not only invariant under the duality group O(d, d;Z) but includes general,
even non-constant O(d, d) transformations. However, evidence for duality beyond
abelian duality in toroidal backgrounds is scarce. Following [49], an extended sym-
metry structure encompassing in particular non-constant O(d, d) transformations will
be presented.

• The origin of the ad-hoc constraints is not clear: they are always introduced a pos-
teriori for consistency. It would be interesting to deduce the precise form of the con-
straints and to systematically distinguish the non-compact from the compact case.
This will be achieved in a duality-invariant worldsheet approach following [102].

1.3.4 Generalized geometry

General relativity is a theory of gravity in conformity with the fundamental principle of
relativity. The laws of nature are the same for any observer, i.e. in any coordinate system.
In mathematical terms, this is accounted for by the theory being formulated as differential
geometry on the tangent bundle24 equipped with a metric tensor, which is the dynamical
object in the theory. The tangent bundle is special in the following sense. For any choice
of local coordinates {xa} of the d-dimensional spacetime manifold, there is a local frame
{∂/∂xa}, the coordinate frame, on the tangent bundle. This frame changes by a GL(d)-
rotation if the coordinates are changed by a diffeomorphism. Hence, although every vector
bundle has this GL(d)-structure, the one of the tangent bundle is intimately connected
to changes of coordinates on the underlying manifold. Tensors such as the metric or
the curvature on the (co-)tangent bundle are invariant under coordinate changes. This is
reflected locally by a GL(d)-rotation associated to the diffeomorphism25 of the components
of the tensor, called the transition function.

As mentioned above, the manifest symmetry group of string theory is the geometric
group consisting of coordinate changes and gauge transformations of the Kalb-Ramond
field. Its effective theory is supergravity combining general relativity and Yang-Mills theory.
But string theory also allows for non-geometric backgrounds whose transition functions
are general elements of O(d, d). An associated geometrical theory analogous to general
relativity would therefore require an underlying bundle with the structure group O(d, d).
This is the generalized tangent bundle26 defined in generalized geometry [103, 104, 105].

23See [101] for a recent discussion about compactification of DFT on non-geometric backgrounds.
24Using the vielbein formalism provides an even more instructive picture: General relativity is formulated

on the frame bundle of the spacetime. The tangent bundle is the associated vector bundle to the frame
bundle, which is a GL(d)-principle bundle.

25The GL(d)-matrix associated to a diffeomorphism is the pullback of the latter.
26Analogous to the tangent bundle, it is the associated vector bundle to an O(d, d)-principle bundle.
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Therefore generalized geometry is a candidate for a unified description of dualities by
mimicking the constructions in general relativity.

The dynamical object in general relativity is the Riemannian metric which provides a
measure of distance on the tangent space. By its appearance in the Levi-Civita connection
and its ensuing appearance in the curvature tensor, it dynamically determines the shape of
spacetime. In string theory, the spacetime background is determined by the metric and the
Kalb-Ramond field and so the analogue of the Riemannian metric in generalized geometry
is expected to combine these two fields. This generalized metric

H(G,B) =

(
G−BG−1B BG−1

−G−1B G−1

)

appears in various contexts in string theory. It characterizes for example the Hamiltonian
density of the bosonic string sigma model and more specifically, it describes the contribution
of the zero modes to the mass spectrum of the string. It is also the most efficient description
of the action of duality on the background by conjugation with an O(d, d) transformation:
The dual background (g, b) is determined by H(g, b) = T tH(G,B)T with T ∈ O(d, d).
From a more mathematical point of view, the Riemannian metric corresponds to a reduction
of the structure group of the tangent bundle GL(d) to the orthogonal group O(d). Similarly,
the generalized metric reduces the O(d, d)-structure of the generalized cotangent bundle to
O(d)×O(d).

Thus, the generalized tangent bundle equipped with a generalized metric is the bosonic
string analogue of the tangent bundle with a Riemannian metric. The next step is to
set up a gravity theory on the generalized tangent bundle with H the dynamical field in
order to obtain a unified description of the bosonic string. This amounts to the definition
of a covariant derivative compatible with the changes of frame and a curvature tensor.
More specifically, Riemannian geometry is build on the tangent bundle equipped with a
metric, the Lie bracket and the partial derivative. By demanding torsion-freeness and
compatibility with the metric, the Levi-Civita connection is completely determined by the
partial derivative, the metric and the Lie bracket. Since the Riemann curvature tensor
is defined in terms of the Lie bracket and the Levi-Civita connection, its construction
does not require extra data. The Lie bracket is distinguished by its conservation under
diffeomorphisms – they form the unique automorphisms of the bracket. Accordingly the
ingredients for a gravity theory are

• a vector bundle with reduced structure group by a metric,

• a bracket conserved by the desired symmetries,

• a partial derivative mapping any smooth function to a section in the vector bundle.

The first prerequisite has already been discussed. As to the second and third point, the suit-
able structure on the generalized tangent bundle is a Courant algebroid [106]. Apart from
the bundle, it contains an anchor map which relates the generalized tangent bundle with
the tangent bundle. This allows for defining a partial derivative related to the conventional
one. The Courant bracket is uniquely determined by conservation under diffeomorphism
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and so-called exact B-transformations.27 The latter comply with gauge transformations
of the Kalb-Ramond field. With these structures at hand, a gravity theory governing the
dynamics of the generalized metric can be approached. However, it is neither possible to
find the analogue of the uniquely determined Levi-Civita connection nor to define a proper
curvature tensor.28 Both of these idiosyncrasies derive from to the anomalous structure of
the unique29 Courant bracket, i.e. the failure of the Jacobi identity and of the Leibniz rule.

A notion capable of carrying a consistent theory of gravity are Lie algebroids [108]
which can be obtained from Courant algebroids by restriction to Dirac structures. A
Lie algebroid is defined on a conventional vector bundle equipped with a non-anomalous
bracket and an anchor map relating it to the tangent bundle. Unfortunately, Lie algebroids
suffice neither for a unified description of the bosonic string, nor for incorporating the whole
duality group. Nevertheless they are well suited for describing the geometry and therefore
the gravity theory of non-geometric backgrounds by characterizing them patch-wise [80].
Moreover, they provide interesting connections between bosonic string theory and Poisson
geometry [79].

The present work provides an introduction to generalized geometry with the focus on its
inability to underlie generalized theories of gravity. This naturally leads to the introduction
of Lie algebroids, the geometry of which will be discussed in detail. These two theories
constitute the main mathematical framework of this thesis.

1.4 Structure of the thesis

The thesis is based on the papers [57, 16, 64, 78, 79, 80, 102, 49] with strong emphasis on
the last three.30

The thesis is organized as follows. In chapter 2 generalized geometry is introduced.
First, the generalized tangent bundle as well as the generalized cotangent bundle are de-
fined and equipped with a generalized metric. Then Courant algebroids are introduced and
explicit brackets for the generalized (co-)tangent bundle are constructed by implementing
their structure groups as automorphisms. The covariant derivative and the torsion ten-
sor are defined. By elaborating on the malfunction of the exterior covariant derivative,
Dirac structures and with them Lie algebroids appear naturally. The latter are discussed
in detail by describing their cohomology theory, their connection to Courant algebroids
via (proto-)Lie bialgebroids and their differential geometry. The main result of this sec-
tion is theorem 2.17 which describes the relation between gravity theories on different Lie
algebroids.

Chapter 3 focusses on the description of the target-space duality structure of closed
bosonic string theory. The background dependent constrained non-linear sigma model
description is introduced and reformulated in a Hamiltonian description. This reveals the
classical O(d, d)-duality structure to whose exploration the rest of the chapter is devoted.

27Although desired in the context of duality, a bracket with O(d, d) as automorphism group is not known.
It most likely requires a structure beyond the generalized cotangent bundle. Partially, this is achieved in
DFT by the C-bracket upon imposing constraints (the strong constraint or possible attenuations) .

28The Ricci tensor was defined indirectly in [107].
29Unique with respect to its automorphism group and the bundle.
30The first five papers are covered in [109]. In particular, [78] and [79] are special cases of [80].
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Its consistency requirements are described in terms of a Courant algebroid bridging this
novel approach to the common method of performing dualities. Examples of O(d, d)-duality
are given which contain T-duality and the new Poisson duality. Quantum corrections are
accounted for by shifting the dilaton in order to preserve conformal invariance. Finally, T-
and Poisson duality are applied to the flat rectangular three-torus with constant H-flux.
This gives rise to non-geometric backgrounds including the Q-flux T-fold.

The structure of non-geometric backgrounds is described in chapter 4. First, a mathe-
matical formalism in terms of proto-Lie bialgebroids and Courant algebroids is developed
in order to simultaneously describe all T-dual fluxes – including the non-geometric ones.
In particular, conditions for their concurrent appearance are given. The lack of general
gravity theories on Courant algebroids enforces the restriction to Lie algebroids. It is shown
that transition functions of backgrounds related by duality, including the non-geometric
backgrounds, are elements of O(d, d). Although the transitions can be complicated, the
geometric structure of the backgrounds is described efficiently in terms of Lie algebroids.
This allows to construct (super-)gravity theories on every patch. The (super-)gravity the-
ories on the different patches are related by theorem 2.17 which thereby provides a global
description of non-geometric backgrounds.

Chapter 5 aims at finding a duality-invariant theory using different methods. A simple
T-duality invariant conformal field theory arising from the free boson is constructed. Its
one-loop partition function as well as four-point scattering of T-duality invariant operators
is studied in order to check consistency of the theory. In non-compact directions the strong
constraint of DFT (1.2) is derived. It is a consequence of modular invariance of the partition
function and the premise of having physical intermediate states in the scattering of four
tachyons. Finally, the scattering of three gravitons is considered in order to determine the
effective theory associated to the T-duality invariant CFT. This is shown match with the
action of DFT.

The thesis closes with concluding remarks and an outlook in chapter 6.
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Chapter 2

Generalized geometry

A string is considered moving on a background determined by a (pseudo-)Riemannian
metric G, the Kalb-Ramond two-form B and the dilaton φ. The pair (G,B) is called a
background with the dilaton being a quantum correction. As will be shown in chapter 3,
T-duality or more generally O(d, d)-duality mixes the metric and the Kalb-Ramond field.
Hence a unified description of duality requires both fields to be treated on equal footing.
This also applies to the associated symmetries: The metric and its dynamical theory –
the general theory of relativity – are tightly connected to coordinate transformations. The
Kalb-Ramond field is a higher order gauge connection associated to a gerbe [110] with
gauge transformations its associated symmetry.

The combination of both concepts within one framework is the subject of generalized
geometry [103, 104, 111, 105], which is introduced in this chapter. A particular focus lies
on the formulation of a geometrical theory combining diffeomorphisms and gauge transfor-
mations.

2.1 The generalized tangent bundle

The infinitesimal generators of diffeomorphisms are vector fields, i.e. sections of the tangent
bundle TM . On the other hand, gauge transformations of the Kalb-Ramond field are
generated by one-forms, i.e. sections of the cotangent bundle T ∗M . The combination of
both can be achieved by defining the generalized tangent bundle as an extension

0 −→ T ∗M −→ E −→ TM −→ 0 (2.1)

in the following way. Locally on a patch Ui ⊂ M , E|Ui = TUi ⊕ T ∗Ui. Therefore the
sections A ∈ Γ(E) – called generalized vectors – can locally be written as A(i) = X(i) + ξ(i)
for X ∈ Γ(TM) and ξ ∈ Γ(T ∗M). A change of frame1 within TM or T ∗M is achieved by
GL(d)-transformations. Additionally, TM ⊕T ∗M on Ui and TM ⊕T ∗M on Uj are related
on the overlap Ui ∩ Uj by a B-transformation

e−B(X + ξ) = X + ξ − ιXB ≡
(

1 0
−B 1

)(
X
ξ

)
(2.2)

1Diffeomorphism are special changes of frame as they affect the coordinate frame.
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for B = dω(ij) a two-form with ω(ij) ∈ Γ(T ∗M) a connective structure on a gerbe [111, 112].
The group of B-transformations (2.2) will be denoted GB. The convenient representation
of generalized vectors as 2d-vectors has been introduced. Moreover, the entries of a d× d-
matrix T acting on a generalized vector (X, ξ)t have to be interpreted as linear maps:

T =

(
t11 t12
t21 t22

)
with

t11 : TM → TM ,
t12 : T ∗M → TM ,
t21 : TM → T ∗M ,
t22 : T ∗M → T ∗M .

(2.3)

In total, the general transition function for the vector bundle E is given by

g(ij) =

(
1 0

−dω(ij) 1

)(
A(ij) 0

0 A
−t
(ij)

)
, (2.4)

which is an element of the semi-direct product Gdω ⋊ GL(d) of exact B-transformations
(2.2) and changes of frame. Therefore the generalized tangent bundle can equivalently be
defined by giving the cocycles g(ij) for the patches {Ui}. In addition, E is equipped with
the natural inner product

〈X + ξ, Y + η〉 ≡
(
X
ξ

)t(
0 1

1 0

)

︸ ︷︷ ︸
≡η

(
Y
η

)
= ιXη + ιY ξ .

(2.5)

This inner product defines the indefinite orthogonal group O(d, d): T ∈ O(d, d) if and
only if 〈T A, T B〉 = 〈A,B〉. Just taking the bundle E defined by (2.1) together with (2.5)
actually defines an O(d, d)-structure bundle. However, the generalized tangent bundle is
defined by reducing O(d, d) to Gdω ⋊GL(d). The subgroup SO(d, d;C∞(M)) is generated
by the following three transformations

change of frames TA =

(
A 0
0 A

−t

)
with A ∈ GL(d)⊗ C∞(M) ,

B-transformations TB =

(
1 0
−B 1

)
with B ∈ GB ≡ Γ(Λ2T ∗M) ,

β-transformations Tβ =

(
1 −β
0 1

)
with β ∈ Gβ ≡ Γ(Λ2TM) .

(2.6)

The first two have been encountered in the structure group of the generalized tangent
bundle. As they are not contained in the latter, β-transformations play a special role.
The consequence of replacing B-transformations by β-transformations in the definition of
the generalized tangent bundle will be discussed in section 2.1.2. For generating the entire
group O(d, d) a further element of negative determinant is needed in addition to (2.6) which
changes the connected components [80]; being of major importance for the discussion of
duality it is taken to be

T-duality in kth direction TT(k) =

(
1− 1k 1k
1k 1− 1k

)
(2.7)
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with 1k the d × d-matrix with 1 as kth diagonal entry. In section 3.2.3, (2.7) is shown to
provide the description of the Buscher rules within O(d, d).

To summarize, the generalized tangent bundle E is defined by having structure group
Gdω ⋊ GL(d) and is equipped with the O(d, d)-invariant inner product 〈·, ·〉. In the next
subsection a reduction of the structure group of E is introduced.

2.1.1 Generalized metrics

In Riemannian geometry, which can be considered as differential geometry on the tangent
bundle, the structure group associated to changes of frames is GL(d). The implementation
of additional structure on the tangent bundle gives rise to a reduction of the structure group.
For example, the introduction of a Riemannian metric can equivalently be considered a
reduction of the structure group to the orthogonal group O(d). As being the dynamical
object in a geometrical theory of gravity, the introduction of a metric is inevitable.

Following this logic, the reduction of the structure group of the generalized tangent
bundle analogously to the reduction GL(d) → O(d) gives rise to the dynamical object
desired in the geometrical theory for the massless degrees of freedom of string theory. This
is achieved by reducing O(d, d)→ O(d)×O(d) via the following object.

Definition 2.1. A generalized metric is a splitting of the generalized tangent bundle E into
two rank-d subbundles C+ and C−, which are orthogonal as well as positive and negative
definite with respect to the inner product 〈·, ·〉 (2.5), respectively. Then E is the direct
sum E = C+ ⊕ C−.

The O(d)×O(d)-structure is defined by the conservation of 〈·, ·〉|C± . The subbundles can
explicitly be constructed from the background (G,B) by taking its graph:

C± = graphTM (B ±G) = {X + (B ±G)(X)} ⊂ E . (2.8)

Here the metric and the Kalb-Ramond field are considered as maps TM → T ∗M . This
connects to the conventional idea of a metric as a ruler on the space by defining the positive
definite symmetric bilinear form

G(A,B) = AtHB = 〈A, ηHB〉 = 〈A,B〉|C+
− 〈A,B〉|C− (2.9)

with H : E → E a symmetric automorphism. Thus H encodes the subbundles as C± =
1
2(idE ± ηH)(E), i.e. as ±1-eigenspaces of ηH, which requires (ηH)2 = 1. Using (2.8), this
allows to determine the automorphism:

H(G,B) =

(
G−BG−1B BG−1

−G−1B G−1

)
. (2.10)

Its specification being equivalent to the definition given above, H is referred to as general-
ized metric as well. In particular, G = 〈·, ·〉|C+

− 〈·, ·〉|C− . The group preserving 〈·, ·〉|C±
is O(d). Hence, this establishes the reduction of the structure group to O(d) × O(d) by
the introduction of the generalized metric (2.10), which plays an important role for the
discussion of dualities in string theory and provides a unified description of the metric and
the Kalb-Ramond field.
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2.1.2 The generalized cotangent bundle

Since duality puts the metric and the Kalb-Ramond field on similar footing, it seems equally
reasonable to consider the extension

0 −→ TM −→ E∗ −→ T ∗M −→ 0 (2.11)

of the cotangent bundle instead of the extension of the tangent bundle (2.1). The general-

ized cotangent bundle E∗ is also equipped with the inner product (2.5) but its transition
functions are comprised of changes of frames and β-transformations (2.6)

e−β(X + ξ) = X − ιξβ + ξ ≡
(
1 −β
0 1

)(
X
ξ

)
. (2.12)

The difficulty is to find the appropriate notion of exact β-transformations suitable for
string theory. The gauge transformations of the Kalb-Ramond field determine the de
Rham cohomology to be the right notion. This is only a particular example in the class of
Lie-algebroid cohomologies discussed in section 2.3.1. The appropriate cohomology for β-
transformations will be discovered in chapter 3 – for now, the associated nilpotent derivative
acting on multivector fields will be denoted dA. Then the transition functions are given by

g∗(ij) =

(
1 −dAX(ij)

0 1

)(
A(ij) 0

0 A
−t
(ij)

)
(2.13)

with X(ij) a vector field and dAX(ij) a bi-vector field. Hence the structure group of E∗

is GdAX ⋊ GL(d). It can be reduced to O(d)×O(d) analogous to the reduction presented
above. A splitting into the subbundles

C∗
± = graphT ∗M (β ± g) = {(β ± g)(ξ) + ξ} ⊂ E∗ (2.14)

is introduced with g a metric on the cotangent bundle and β a bi-vector. Then the gener-
alized metric on E∗ can equivalently be determined by

H∗(g, β) =

(
g−1 −g−1β
βg−1 g − βg−1β

)
. (2.15)

The role of this metric can be appreciated in the context of non-geometric frames, which
are studied in chapter 4.

2.2 Courant algebroids

Lie algebras with the Lie bracket are the algebraic structure of vector fields, the infinitesi-
mal generators of diffeomorphisms diff(M). Now the algebraic structure of the infinitesimal
generators of Gdω ⋊diff(M) is discussed in a similar fashion. The restriction of the general
linear group to the group of diffeomorphism is justified by the goal of describing the sym-
metries of string theory (cf. section 3.1). A Lie algebra is a vector space equipped with the
Lie bracket [·, ·], which satisfies the Jacobi identity JacLie(X,Y, Z) = 0 for the Jacobiator

JacLie(X,Y, Z) = [[X,Y ], Z] + [[Z,X], Y ] + [[Y, Z], X] . (2.16)

This notion can be generalized as follows.
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Definition 2.2 ([106]). A Courant algebroid is a quadruple C = (C, 〈·, ·〉, J·, ·K, α) consisting
of a vector bundle C →M equipped with an inner product 〈·, ·〉, an antisymmetric bracket
J·, ·K on Γ(C) and a smooth bundle map α : C → TM called the anchor. Introducing the
Nijenhuis tensor

T = 1
6 (〈Jc1, c2K, c3〉+ 〈Jc3, c1K, c2〉+ 〈Jc2, c3K, c1〉) (2.17)

for c1, c2, c3 ∈ Γ(C) and the differential D : C∞(M) → Γ(C) via 〈Df, c1〉 = α(c1)f , the
Courant algebroid has to satisfy the following properties:

• anchor property: α(Jc1, c2K) = [α(c1), α(c2)]

• Jacobi identity: JacC(c1, c2, c3) = DT (c1, c2, c3)

• Leibniz rule: Jc1, fc2K = fJc1, c2K + [α(c1)f ]c2 − 1
2〈c1, c2〉Df

• α ◦ D = 0

• α(c1)〈c2, c3〉 =
〈
Jc1, c2K + 1

2D〈c1, c2〉, c3
〉
+
〈
c2, Jc1, c3K + 1

2D〈c1, c3〉
〉

The Jacobi identity and the Leibniz rule have unusual defects whose consequences will be
encountered in the next section. However, the definition is tailor-made for serving as the
algebraic structure for the generators of the structure group of the generalized tangent
bundle much like the Lie bracket. This will be discussed in the following.

2.2.1 The Courant bracket and its symmetries

As the major example the natural Courant algebroid structure on the generalized tan-
gent bundle is presented. The action of infinitesimal diffeomorphisms is given by the Lie
derivative of vector fields; X.T = LXT for a tensor field T . In particular, on vector fields
and one-forms it acts as LXY = [X,Y ] and LXξ = ιXdξ + dιXξ, respectively. For the
generalized tangent bundle the infinitesimal action of B-transformations (2.2) given by
B.(X + ξ) = ιXB has to be considered as well. The Lie algebra of the group Gdξ ⋊ diff(M)
consists of sections X − dξ ∈ Γ(TM ⊕Λ2T ∗M) whose action on a generalized vector Y + η
is therefore given by

(X − dξ).(Y + η) = LX(Y + η)− ιY dξ = [X,Y ] + LXη − ιY dξ . (2.18)

This is sometimes referred to as generalized Lie derivative or Dorfman bracket (X + ξ) •
(Y + η). The Dorfman bracket satisfies similar properties as a Courant algebroid; the
major difference being its lack of antisymmetry. Given the Dorfman bracket (2.18) a
Courant bracket can be defined by [113]

JA,BK = 1
2(A •B −B •A) = [X,Y ] + LXη − LY ξ − 1

2d(ιXη − ιY ξ) . (2.19)

This is known as the Courant bracket. The associated Courant algebroid is E = (TM ⊕
T ∗M, 〈·, ·〉, J·, ·K, prTM ) with anchor prTM the projection on the tangent bundle. In partic-
ular, Df = df .
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The Lie bracket is preserved by diffeomorphisms, i.e. f∗[X,Y ] = [f∗X, f∗Y ] for f a
diffeomorphism. In fact, this is the only bundle automorphism of TM with this property
(cf. [104], proposition 3.22). As to the Courant bracket, the only two automorphisms of E
preserving it as well as the inner product are diffeomorphisms and B-transformations (2.2)
(cf. [104], proposition 3.23 & 3.24):

Proposition 2.3 ([104]). The group of bundle automorphisms E → E orthogonal with

respect to the inner product 〈·, ·〉 and preserving the bracket J·, ·K is Gdω⋊diff(M).

In this sense, the Courant bracket relates to the generalized tangent bundle as the Lie
bracket relates to the tangent bundle, justifying the notion of Courant algebroids.

The Courant bracket for the generalized cotangent bundle

As will be explained in detail in section 2.3.1, a nilpotent derivative is associated to a
Lie-algebroid bracket. A particular example is the exterior derivative d associated to the
Lie bracket. In this way, a proper notion of exactness for β-transformations is related to
a Lie-algebroid bracket [·, ·]A on the cotangent bundle. The brackets are also preserved
by diffeomorphisms. Thus the construction above can be repeated for the generalized
cotangent bundle, which yields the bracket

JA,BK∗ = [ξ, η]A + LξY − LηX − 1
2dA(ιξY − ιηX) (2.20)

with LξX = ιξdAX + dAιξX. This is a Courant algebroid E∗ on TM ⊕ T ∗M with anchor
α = ρ ◦ prT ∗M and Df = dAf . The injective homomorphism ρ : T ∗M → TM satisfies
ρ([ξ, η]A) = [ρ(ξ), ρ(η)] and is the anchor for the Lie algebroid A (cf. section 2.3). As
above, the bracket (2.20) is preserved under the structure group of E∗.

Proposition 2.4. The group of bundle automorphisms E∗ → E∗ orthogonal with respect

to the inner product 〈·, ·〉 and preserving the bracket J·, ·K∗ is GdAX⋊diff(M).

Proof. The coordinate-free notation makes invariance under changes of frames of (2.20)
manifest. Preservation under exact β-transformations (2.12) follows from

Jeβ(X + ξ), eβ(Y + η)K∗ = JX + ξ, Y + ηK∗ + Lξιηβ − Lηιξβ + dAιηιξβ

= JX + ξ, Y + ηK∗ + Lξιηβ − ιηdAιξβ
= JX + ξ, Y + ηK∗ + [Lξ, ιη]β + ιηιξdAβ

= eβ(JX + ξ, Y + ηK∗) + ιηιξdAβ .

In the first step antisymmetry of β was used and in the last step the identity [Lξ, ιη] =
ι[ξ,η]A (2.40). Therefore eβ preserves the bracket if β is A-closed, i.e. in particular for
β = dAX. For proving that these two groups are the only automorphisms, the existence
of an orthogonal bundle automorphism (f, F ) preserving the bracket is assumed. f is an
automorphism ofM and F an automorphism of E∗. Considering the change of frame given
by fc = diag(f∗, (f∗)−t) the pair (idM , G = f−1

c ◦ F ) is orthogonal and bracket-preserving
as well. Then for A,B ∈ Γ(E∗) and h ∈ C∞(M) this yields on the one hand

G(JA, hBK∗) = G
(
hJA,BK∗ + (α(A)h)B − 1

2〈A,B〉dAh
)

= hG(JA,BK∗) + (α(A)h)G(B)− 1
2〈A,B〉G(dAh)
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and on the other hand

JG(A), G(hB)K∗ = hJG(A), G(B)K∗ + (α (G(A))h)G(B)− 1
2〈G(A), G(B)〉dAh

= hG(JA,BK∗) + (α (G(A))h)G(B)− 1
2〈A,B〉dAh

by orthogonality. Comparing these evaluations gives

(α(A)h)G(B)− 1
2〈A,B〉G(dAh) = (α (G(A))h)G(B)− 1

2〈A,B〉dAh .

Suppose that A = ξ, B = η are one-forms such that 〈A,B〉 = 0. This gives α(G(ξ) −
ξ) = 0. This implies G(ξ) = ξ for all one-forms and therefore sets G = ( ∗ ∗

∗ 1 ). Taking
only vector fields restricts the automorphism to G = ( ∗ ∗

0 1 ). Then for general sections
A and B the last equation reduces to 〈A,B〉G(dAh) = 〈A,B〉dAh. This further reduces
the matrix to G = ( 1 ∗

0 1 ). Orthogonality with respect to the inner product forces the
remaining unknown entry to be an antisymmetric bivector field and preservation of the
bracket demands A-exactness. Hence G = f−1

c ◦ F = edAX , or equivalently F = fc ◦ edAX :
Every orthogonal, bracket-preserving automorphism is a composition of diffeomorphisms
and A-exact β-transformations.

Having established the natural algebraic structures on the generalized (co-)tangent
bundle, these can be used for constructing a dynamical theory for the generalized metric
H (H∗).

2.2.2 Towards a differential geometry

General relativity is a dynamical theory for a Riemannian metric with coordinate changes
a manifest symmetry. The main ingredient is the tangent bundle itself with its Lie algebra
structure for vector fields and the metric. The bracket and partial derivative are used to
explicitly construct the Levi-Civita connection via the Koszul formula, from which curva-
ture and torsion can be defined – they determine the shape of the space. The analogous
procedure in generalized geometry will be followed as far as possible in the present section.
In particular, a consistent definition of torsion and curvature within generalized geometry
would provide a unified description of string backgrounds.

The generalized covariant derivative

The main object in differential geometry for describing dynamics is the covariant derivative
or connection as it connects the different patches of a vector bundle. The aim of the
following is to find the right notions for derivatives in order to define torsion and curvature.

Definition 2.5. Let C = (C, 〈·, ·〉, J·, ·K, α) be a Courant algebroid and V a vector bundle.
A generalized covariant derivative ,or C-connection for short, on V is a bilinear map ∇ :
Γ(V )× Γ(C)→ Γ(V ) satisfying

∇fcs = f∇cs ,

∇c(fs) = [α(c)f ] s+ f∇cs
(2.21)

for all c ∈ Γ(C), s ∈ Γ(V ) and f ∈ C∞(M).
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The generalized covariant derivative can also be interpreted as a connection ∇ : Γ(V ) →
Γ(C∗ ⊗ V ) where C∗ is the dual bundle. A simple way of formulating the curvature in
differential geometry is using the exterior covariant derivative. To define it, the derivative
D has to be extended to sections Γ(Λ•C∗) analogous to the exterior derivative d. This is
achieved by defining

dCγ(c0, . . . , ck) =
k∑

i=0

(−1)i α(ci)γ
(
c0, . . . , ĉi, . . . , ck

)

+
∑

i<j

(−1)i+j γ
(
Jci, cjK, c0, . . . , ĉi, . . . , ĉj , . . . , ck

) (2.22)

with γ ∈ Γ(ΛkC∗) and the hat indicating omission of the entry. This is the usual way
of constructing the exterior derivative given a bracket and a partial derivative. However,
already nilpotency is a problem: Whereas for functions f it still satisfies

d2Cf(c0, c1) =
(
[α(c0), α(c1)]− α

(
Jc0, c1K

))
f = 0

by the anchor property, for a µ ∈ Γ(C∗) one obtains

d2Cµ(c0, c1, c2) = µ
(
JacC(c0, c1, c2)

)
= µ

(
DT (c0, c1, c2)

)
.

So the naive construction for an exterior derivative fails to be nilpotent. Even worse, the
exterior derivative of a section is not a tensor any more as it lacks function-linearity:

dCγ(fc0, . . . , ck) = fdCγ(c0, . . . , ck)

+
1

2

k∑

i=1

(−1)i〈c0, ci〉 γ(Df, c1, . . . , ĉi, . . . , ck) .

The defect is due to the anomalous Leibniz rule for the bracket J·, ·K. However, inspired by
[114] the bracket can be modified.

Proposition 2.6. The modified Courant bracket for a Courant algebroid C = (C, 〈·, ·〉,
J·, ·K, α) with generalized connection ∇ on C is given by

((c1, c2)) = Jc1, c2K− 1
2

(
〈∇c1, c2〉 − 〈c1,∇c2〉

)
(2.23)

with 〈〈∇c1, c2〉, c3〉 = 〈∇c3c1, c2〉 for c1, c2, c3 ∈ Γ(C). It satisfies the Leibniz rule ((c1, fc2)) =
f((c1, c2)) + [α(c1)f ]c2.

The claim can readily be checked from the definition and the Leibniz rule for Courant
algebroids. The disadvantage of this bracket is a complicated Jacobiator as well as the lack
of the anchor property. For the latter to hold, the anchor applied to the new term has to
vanish. However, for an arbitrary function f it satisfies

α(〈∇c1, c2〉)f = 〈Df, 〈∇c1, c2〉〉 = 〈∇Dfc1, c2〉 , (2.24)

which is neither vanishing in general nor symmetric.
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Using the formula (2.22) allows for defining a derivative d((·,·)) : Γ(Λ
kC∗)→ Γ(Λk+1C∗)

as it is antisymmetric and satisfies the Leibniz rule. However, it is also not nilpotent due
to the failure of the Jacobi identity. Since it maps tensors to tensors this derivative is
suitable for extending the generalized covariant derivative2 to a map ∇ : Γ(ΛkC∗ ⊗ V )→
Γ(Λk+1C∗ ⊗ V ) uniquely via3

∇(γ ⊗ s) = d((·,·))γ ⊗ s+ (−1)kγ ∧∇(s) (2.25)

for γ ∈ Γ(ΛkC∗) and s ∈ Γ(V ). The extension can explicitly be constructed using a formula
analogous to (2.22):

Proposition 2.7. For T ∈ Γ(ΛkC∗ ⊗ V ) the generalized exterior covariant derivative
(2.25) is given by

∇T (c0, . . . , ck) =
k∑

i=0

(−1)i∇ciT
(
c0, . . . , ĉi, . . . , ck

)

+
∑

i<j

(−1)i+j T
(
((ci, cj)), c0, . . . , ĉi, . . . , ĉj , . . . , ck

) (2.26)

with ci ∈ Γ(C). ∇T is C∞(M)-linear and satisfies the Leibniz rule ∇(fT ) = d((·,·))f ∧ T +
f∇T .

Proof. Consider T = γ⊗s. By the Leibniz rule for the generalized covariant derivative the
first line in (2.26) gives

∇ciT
(
c0, . . . , ĉi, . . . , ck

)
=
[
α(ci)γ

(
c0, . . . , ĉi, . . . , ck

)]
s

+ γ
(
c0, . . . , ĉi, . . . , ck

)
∇cis ,

whose first term combines with the second line in (2.26) to d((·,·)) via (2.22). The sign in
(2.25) arises from the possibilities of inserting k + 1 sections into γ ∧ ∇s in comparison
to the last term in the last equation. The linearity follows from the Leibniz rule of ((·, ·)).
The Leibniz rule is a direct consequence of (2.25) and the Leibniz rule for the generalized
covariant derivative.

Dirac structures

From now on ∇ denotes an E-connection on the generalized tangent bundle E with its
natural Courant algebroid structure E and is assumed to coincide with the connection in
the definition of the modified Courant bracket (2.23). In particular, generalized connections
on a Courant algebroid are assumed to be compatible with the inner product, i.e.

α(A)〈B,C〉 = 〈∇AB,C〉+ 〈B,∇AC〉 (2.27)

for A,B,C ∈ Γ(E). In this case it is important to notice that the inner product (2.5)
identifies E with its dual.

2Note that the generalized covariant derivative in the definition of ((·, ·)) may differ from this one.
3To be precise, the ∧ in (2.25) refers to an exterior product between γ and the Γ(C)-component of ∇s

which is tensored with the Γ(V )-component of ∇s: γ ∧∇s = (γ ∧ µ)⊗ t for ∇s = µ⊗ t.
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In Riemannian geometry the curvature can now be defined as composition of the exterior
covariant derivative, i.e. via ∇◦∇ (cf. def. 2.15). A crucial property of the curvature is its
function linearity in order to be tensorial in every entry. However the generalized exterior
covariant derivative satisfies

∇ ◦∇(fT ) = d2((·,·))f ∧ T + f∇ ◦∇T (2.28)

for T ∈ Γ(ΛkE ⊗ E) by using the Leibniz rule and (2.25). Thus function-linearity fails
by the absence of nilpotency. Using the 〈·, ·〉-compatibility of the generalized covariant
derivative and the axiom α ◦ D = 0, the nilpotency of d((·,·)) is spoiled as

d2((·,·))f(A,B) = α
(
〈∇A,B〉

)
f = 〈∇DfA,B〉 . (2.29)

In order for this to vanish and being able to define a proper curvature, one can proceed in
two ways:

• Imposing ∇DfA = 0. To this end, let {eM} be a frame for E. Then the E-
connection can locally be written as ∇eM = ωN

M ⊗ eN with ωN
M ∈ Γ(E). By

the Leibniz rule, the covariant derivative of an arbitrary section A = AMeM is
∇A = (DAM + ANωM

N ) ⊗ eM . In particular, using α ◦ D = 0, the case of inter-
est becomes ∇DfA = AN [α(ωM

N )f ]eM . Since A and f are arbitrary, α(ωM
N ) = 0

has to be demanded. However, for E with α = prTM , this restricts the connection
coefficient to be a one-form. This implies ∇ξA = 0 for all one-forms ξ, which in
turn restricts the generalized covariant derivative to be a conventional TM -covariant
derivative. Thus this option is not interesting.

• For ∇DfA 6= 0 the remaining possibility is 〈A,B〉 = 0 with A, B arbitrary. This
case is of particular interest as it renders the Courant bracket a bracket satisfying
the Jacobi identity and a regular Leibniz rule, cf. definition 2.2.

The second case is associated to the following structure for Courant algebroids.

Definition 2.8. Let C = (C, 〈·, ·〉, J·, ·K, α) be a Courant algebroid. A maximal-rank sub-
bundle D ⊂ C with Jd1, d2K ∈ Γ(D) for di ∈ D is called a Dirac structure if it is isotropic,
i.e. if 〈A,B〉 = 0 for all A,B ∈ D.

Any defect to common construction from Courant algebroids encountered so far have been
associated to the inner product. Hence isotropic subbundles allow to mimic the usual
constructions of differential geometry and in particular support the definition of a tensorial
curvature. Dirac structures are special case of Lie algebroids, which are discussed in the
next section.

2.3 Lie algebroids

Riemannian geometry and accordingly general relativity are concepts based on the mathe-
matical structures of the tangent bundle with its Lie algebra of vector fields. In principle,
differential geometry is determined by a vector bundle, a bracket and a derivative. This
can be considered the leitmotif for introducing Lie algebroids [108]:
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Definition 2.9. A Lie algebroid is a triple A = (A, [·, ·]A, ρ) consisting of a vector bundle
A → M , an antisymmetric, bilinear bracket [·, ·]A : Γ(A) × Γ(A) → Γ(A) satisfying the
Jacobi identity and a homomorphism ρ : A→ TM called the anchor. Moreover, it satisfies

• the anchor property ρ([s1, s2]A) = [ρ(s1), ρ(s2)],

• the Leibniz rule [s1, fs2]A = f [s1, s2]A + [ρ(s1)f ]s2

for all s1, s2 ∈ Γ(A) and f ∈ C∞(M).

The anchor property is redundant as it is a consequence of the Leibniz rule and the Jacobi
identity. However, this property is crucial as it connects a Lie algebroid to the tangent
bundle – the trivial Lie algebroid (TM, [·, ·], idTM ) (see figure 2.1).

ρ

M M

(TM, [·, ·])
(A, [·, ·]A)

Figure 2.1: The anchor map ρ : A → TM connects the Lie algebroid to the tangent bundle
with Lie bracket.

The bracket can be uniquely extended to Γ(Λ•A) by the Gerstenhaber properties

[s1, s2 ∧ s3]A = [s1, s2]A ∧ s3 + (−1)(k−1)l s2 ∧ [s1, s3]A

[s1, s2]A = −(−1)(k−1)(l−1)[s2, s1]A
(2.30)

for s1 ∈ Γ(ΛkA) and s2 ∈ Γ(ΛlA). In particular, on functions it is defined by [f, g]A = 0
and [s1, f ]A = ρ(s1)f .

The concept is illustrated by the following three examples:

• (g, [·, ·]g, idg) with g the Lie algebra to the Lie group G and [gi, gj ]g = fkijgk its Lie
bracket with structure constants fkij . Since g = T0G, the anchor is the identity
map. In this sense, the Lie algebra is considered a vector bundle over a single point
g→ {0}. This allows to interpret a Lie algebroid as a ”bundle of Lie algebras” which
in particular allows for non-constant structure coefficients. The associated structures
analogous to Lie groups are Lie groupoids.

• (D, J·, ·K, α) with D a Dirac structure for a Courant algebroid (C, 〈·, ·〉, J·, ·K, α). By
definition 2.8 and 2.2, a Dirac structure is a Lie algebroid. For example, TM is a
Dirac structure for the generalized tangent bundle E : it gives the trivial Lie algebroid
(TM, [·, ·], idTM ). The second instance is T ∗M as Dirac structure for the generalized
cotangent bundle E∗ and gives the Lie algebroid (T ∗M, [·, ·]A, ρ). An example for the
latter structure is given next.

• (T ∗M, [·, ·]K, β♯) with β ∈ Γ(Λ2TM) inducing the homomorphism β♯ : T ∗M →
TM ; ξ 7→ ξmβ

maea and the Koszul bracket

[ξ, η]K = Lβ♯ξη − ιβ♯ηdξ . (2.31)
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For this bracket to satisfy the Jacobi identity, β has to be a Poisson structure, i.e.
{f, g} = β(df, dg) has to be a Poisson bracket for all f, g ∈ C∞(M). This in turn is
the case if and only if Θ ∈ Γ(Λ3TM) given by

Θ = 1
2 [β, β]SN (2.32)

vanishes. Above the Lie bracket was extended by the Gerstenhaber properties (2.30)
to the Schouten-Nijenhuis bracket. The Koszul bracket is the natural geometric
structure in Poisson geometry.

The anchor of a Lie algebroid is a particular example of bundle homomorphisms preserving
the Lie algebroid structure. In general, they are defined as follows.

Definition 2.10. Let A1 = (A1, [·, ·]A1 , ρ1) and A2 = (A2, [·, ·]A2 , ρ2) be Lie algebroids
with A1/2 vector bundles over M . A bundle homomorphism Φ : A1 → A2 is called a Lie

algebroid homomorphism if it satisfies

ρ2 ◦ Φ = ρ1 and Φ([s1, s2]A1) = [Φ(s1),Φ(s2)]A2 (2.33)

for s1, s2 ∈ Γ(A1). The Lie algebroids are isomorphic – A1
∼= A2 – if the Lie algebroid

homomorphism is invertible.

Having introduced the basic notions for Lie algebroids, more advanced structures can be
discussed.

2.3.1 Lie-algebroid cohomology

As mentioned above, gauge transformations of the Kalb-Ramond field are described in
terms of the de Rham exterior derivative. However, also an alternating bivector field
appears in generalized geometry by considering β-transformations (2.12). The right notion
of exactness for alternating multivector fields can be described in terms of the cohomology
of a Lie algebroid on the cotangent bundle. Introducing the appropriate concepts is the
purpose of this section.

Definition 2.11. For a Lie algebroid A = (A, [·, ·]A, ρ) the exterior derivative dA :
Γ(ΛkA∗)→ Γ(Λk+1A∗) is given by

dAσ(s0, . . . , sk) =
k∑

i=0

(−1)i ρ(si)σ
(
s0, . . . , ŝi, . . . , sk

)

+
∑

i<j

(−1)i+j σ
(
[si, sj ]A, s0, . . . , ŝi, . . . , ŝj , . . . , sk

) (2.34)

with si ∈ Γ(A) and σ ∈ Γ(ΛkA∗).

This definition in analogous to (2.22). However, due to the Jacobi identity this derivative
is nilpotent. Moreover, the triple (Γ(Λ•A∗), dA,∧) is a differential graded algebra – this is
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equivalent to the definition of a Lie algebroid [115]. The kth Lie algebroid cohomology on
A is defined as

Hk
A =

ker
{
dA : Γ(ΛkA∗)→ Γ(Λk+1A∗)

}

im {dA : Γ(Λk−1A∗)→ Γ(ΛkA∗)} .
(2.35)

Sections in the class of zero in H•
A, i.e. ones of the form dAσ will be called A-exact. Lie

algebroid homomorphisms allow for a switching between the two associated cohomologies.
To this end the transpose of a linear map Φ : V1 → V2 is introduced as

Φt : V ∗
2 → V ∗

1 ; ω 7→ ω ◦ Φ , (2.36)

which naturally extends to linear maps between multisections of the same order. In par-
ticular, (⊗kΦt)(σ)(s1, . . . , sk) = σ(Φ(s1), . . . ,Φ(sk)) for σ ∈ Γ(ΛkV ∗

2 ) and si ∈ Γ(V1).

Proposition 2.12. Let Φ : A1 → A2 be a Lie algebroid homomorphism between A1 =
(A1, [·, ·]A1 , ρ1) and A2 = (A2, [·, ·]A2 , ρ2). Then the corresponding exterior derivatives are

associated via

(⊗•+1Φt) ◦ dA2 = dA1 ◦ (⊗•Φt) . (2.37)

Applying the properties of a Lie algebroid homomorphism within the defining formula
(2.34) proves the claim immediately. As particular example, the anchor of any Lie algebroid
connects its cohomology to the de Rham cohomology.

2.3.2 Lie bialgebroids and Courant algebroids

Lie algebroids can arise as Dirac structures of Courant algebroids. However, the converse
is possible as well [106, 113].

Definition 2.13. Let A = (A, [·, ·]A, ρ) and A∗ = (A∗, [·, ·]A∗ , ρ∗) be two Lie algebroids
with A∗ the dual vector bundle to A. Then the pair (A,A∗) is called a Lie bialgebroid if

dA([σ1, σ2]A∗) = [dAσ1, σ2]A∗ + (−1)k [σ1, dAσ2]A∗ (2.38)

for σ1 ∈ Γ(ΛkA∗) and σ2 ∈ Γ(Λ•A∗) ,i.e. if dA is a graded derivation for [·, ·]A∗ .

In particular, if (A,A∗) is a Lie bialgebroid, so is (A∗,A). In the definition, the Lie
algebroid bracket [·, ·]A∗ has been uniquely extended to a bracket on arbitrary alternating
multisections by the Gerstenhaber properties (2.30).

Another useful notion is the Lie derivative on a Lie algebroid A; it can be defined by
setting

LA
s f = ρ(s)f

LA
s1s2 = [s1, s2]A

LA
s σ = ιs ◦ dAσ + dA ◦ ιsσ

(2.39)
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with f ∈ C∞(M), s, s1, s2 ∈ Γ(A) and σ ∈ Γ(A∗). It extends to multisections by demanding
the product rule with respect to tensor products. The Lie derivative satisfies

[
LA
s1 , L

A
s2

]
= LA

[s1,s2]A[
LA
s1 , ιs2

]
= ι[s1,s2]A

LA
s

∣∣
Γ(Λ•A∗) ◦ dA = dA ◦ LA

s

∣∣
Γ(Λ•A∗)

LA
fsσ = dAf ∧ ιsσ + f LA

s σ .

(2.40)

The proofs are completely analogous to the proofs for the standard Lie derivative. Then a
Courant algebroid can be found as follows.

Proposition 2.14 ([106]). Let (A,A∗) be a Lie bialgebroid with anchor ρ and ρ∗, respec-
tively. Then the quadruple (A⊕A∗, 〈·, ·〉+, J·, ·K, α) with

α(s+ σ) = ρ(s) + ρ∗(σ)

〈s+ σ, t+ τ〉± = ιsτ ± ιtσ
Js+ σ, t+ τK = [s, t]A + LA

s τ − LA
t σ − 1

2dA〈s+ σ, t+ τ〉−
[σ, τ ]A∗ + LA∗

σ t− LA∗
τ s+ 1

2dA∗〈s+ σ, t+ τ〉−

(2.41)

for s, t ∈ Γ(A) and σ, τ ∈ Γ(A∗) is a Courant algebroid.

The compatibility condition (2.38) between the two Lie algebroids is important for proving
the Jacobi identity for the Courant bracket. Moreover, the converse is also true: If C is a
Courant algebroid with A1 and A2 transversal Dirac structures, i.e. C = A1 ⊕ A2, then
(A1,A2) with the associated Lie algebroid structures is a Lie bialgebroid. A1 and A2 are
dual under the inner product on C.

The most immediate example is (TM, T ∗M) with (TM, [·, ·], idTM ) and T ∗M equipped
with the trivial structure (bracket and anchor being zero-maps); it gives the Courant
bracket (2.19). Similarly, taking a Lie algebroid structure on T ∗M and TM with trivial
structure, the bracket (2.20) is obtained.

Proposition 2.14 was generalized to the case of proto-Lie bialgebroids in [113]. A proto-
Lie bialgebroid consists of two quasi-Lie algebroids with complicated compatibility condi-
tions. A quasi-Lie algebroid A is a Lie algebroid whose anchor property admits a defect

∆A(s1, s2) = ρ ([s1, s2]A)− [ρ(s1), ρ(s2)] . (2.42)

The compatibility conditions are most efficiently described in terms of supermanifolds and
A∞-structures, which are not covered in this thesis. A particular example of proto-Lie
bialgebroids is introduced in section 4.1 for studying non-geometric fluxes.

2.3.3 Differential geometry

As opposed to the Courant algebroid, curvature and torsion can be introduced as usual. Let
A = (A, [·, ·]A, ρ) be a Lie algebroid and let ∇ : Γ(A)→ Γ(A∗⊗A) be an A-connection – the
connection is defined as in 2.5. As above, the connection extends to the exterior connection
∇ : Γ(ΛkA∗ ⊗ A) → Γ(Λk+1A∗ ⊗ A) via (2.26) with respect to A. First, curvature and
torsion are defined.
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Definition 2.15. With the identity idA : A→ A considered as a section 1A ∈ Γ(A⊗A∗),
curvature and torsion are defined as

R = ∇ ◦∇ ∈ Γ
(
Λ2A∗ ⊗ End(A)

)
,

T = ∇1A ∈ Γ
(
Λ2A∗ ⊗A

)
,

(2.43)

respectively. End(A) = A∗ ⊗ A denotes the endomorphism bundle. Moreover, the Ricci

tensor Ric ∈ Γ(A∗ ⊗A∗) is defined as Ric(s1, s2) = tr(t 7→ R(t, s2)s1). If A is additionally
equipped with a metric g, the Ricci scalar is given by S = trgRic ∈ C∞(M).

The endomorphism-valuedness of the curvature is a consequence of (2.26) and the prop-
erties of the Lie algebroid bracket (cf. section 2.2.2). Using (2.26) the definition of the
curvature can be cast into the more familiar form

R(s1, s2)(s3) = [∇s1 ,∇s2 ]s3 −∇[s1,s2]As3 . (2.44)

Similarly, the torsion can be written as

T (s1, s2) = ∇s1s2 −∇s2s1 − [s1, s2]A . (2.45)

In a local frame {eα} for A with {eα} its dual, curvature and torsion are written as

Rα
βγδ = 〈eα, R(eγ , eδ)eβ〉 and Tα

βγ = 〈eα, T (eβ , eγ)〉 , (2.46)

respectively. Returning to the leitmotif of formulating geometry in particular in terms of
a bracket, the connection will be specified. A connection is said to be compatible with g
for g ∈ Γ(

⊙2A∗) a metric on A if

ρ(s1)g(s2, s3) = g(∇s1s2, s3) + g(s2,∇s1s3) (2.47)

for all s1, s2, s3 ∈ Γ(A). This allows to determine the connection in terms of the bracket,
the metric and the torsion as follows.

Proposition 2.16. Let g be a metric on A and ∇ an A-connection compatible with g. For

a given torsion T the connection is uniquely determined by the Koszul formula

g(∇s1s2, s3) =
1
2

[
ρ(s1)g(s2, s3) + ρ(s2)g(s3, s1)− ρ(s3)g(s1, s2)
+ g([s1, s2]A, s3) + g([s2, s3]A, s1)− g([s3, s1]A, s2)
+ g(T (s1, s2), s3) + g(T (s2, s3), s1)− g(T (s3, s1), s2)

] (2.48)

for all s1, s2, s3 ∈ Γ(A). This connection is called Bismut if g(T (s1, s2), s3) is totally

antisymmetric and Levi-Civita in the case of vanishing torsion.

The Koszul formula follows from successive application of (2.45) and (2.47). Uniqueness
is a consequence of the Koszul formula and non-degeneracy of the metric.

Having introduced the basic ingredients for formulating a theory of gravity on arbitrary
Lie algebroids, the relation between different such gravity theories can be studied. The
detailed analysis of these relations is done in chapter 4. The main mathematical input is
the following.
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Theorem 2.17. Let A1 = (A1, [·, ·]A1 , ρ1) and A2 = (A2, [·, ·]A2 , ρ2) be two Lie algebroids

and Φ : A1 → A2 an injective Lie algebroid homomorphism. Moreover, let ∇1/2 be the

Levi-Civita A1/2-connection compatible with the metric g1/2 and let the metrics be related

via ⊗2Φt(g2) = g1. Then the connections are related as

Φ [(∇1)s1s2] = (∇2)Φ(s1)Φ(s2) (2.49)

for all si ∈ Γ(A1). For the curvature R1/2 and torsion T1/2 on A1/2 this implies

Φ [R1(s1, s2)s3] = R2(Φ(s2),Φ(s2))Φ(s3) ,

Φ [T1(s1, s2)] = T2(Φ(s2),Φ(s2)) .
(2.50)

Proof. By using the relation between the metrics and the Koszul formula one finds

g2
(
Φ[(∇1)s1s2],Φ(s3)

)
= g1

(
(∇1)s1s2, s3

)

= 1
2

[
ρ2
(
Φ(s1)

)
g2
(
Φ(s2),Φ(s3)

)
+ g2

(
Φ([s1, s2]A1),Φ(s3)

)
+ . . .

]

= g2
(
(∇2)Φ(s1)Φ(s2),Φ(s3)

)

with the dots indicating the remaining permuted terms in the Koszul formula. In the
second step the Koszul formula for ∇1 was used together with the relations between the
metrics and ρ2 ◦ Φ = ρ1. In the last step Φ([s1, s2]A1) = [Φ(s1),Φ(s2)]A2 was used to
finally obtain the Koszul formula for ∇1. The first claim follows from non-degeneracy of
the metric. Using (2.44) and (2.45), the last claim readily follows from the first one and
the properties of Φ.

The relation to Riemannian geometry

The case of Φ being an invertible anchor is of particular interest in chapter 4. Then
theorem 2.17 relates the geometry on Lie algebroids to Riemannian geometry:

∇̂s1s2 = ρ−1
[
∇ρ(s1)ρ(s2)

]
,

R̂(s1, s2)s3 = ρ−1
[
R(ρ(s2), ρ(s2))ρ(s3)

]
,

T̂ (s1, s2) = ρ−1
[
T (ρ(s2), ρ(s2))

]
.

(2.51)

The hat indicates the objects on the Lie algebroid A whereas the un-hatted objects refer
to the tangent bundle. Moreover, if the A-connection is compatible with the insertion
〈·, ·〉 : A×A∗ → R; (s, σ) 7→ ιsσ, i.e.

ρ(t)〈s, σ〉 = 〈∇̂ts, σ〉+ 〈s, ∇̂tσ〉 (2.52)

for s, t ∈ Γ(A) and σ ∈ Γ(A∗), the connection can be extended to dual sections; also the
relation between the two connections extends to

∇̂sσ = ρt
[
∇ρ(s)ρ

−t(σ)
]
. (2.53)
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This can be seen as follows: Since 〈ρ(s), ρ−t(σ)〉 = σ(ρ−1 ◦ ρ(s)) = 〈s, σ〉 by definition of
the transposition and the insertion, compatibility of ∇ and ∇̂ with the latter gives

〈∇̂ts, σ〉+ 〈s, ∇̂tσ〉 =
〈
∇ρ(t)ρ(s), ρ

−t(σ)
〉
+
〈
ρ(s),∇ρ(t)ρ

−t(σ)
〉

=
〈
ρ(∇̂ts), ρ

−t(σ)
〉
+
〈
ρ(s),∇ρ(t)ρ

−t(σ)
〉

=
〈
∇̂ts, σ

〉
+
〈
s, ρt

[
∇ρ(t)ρ

−t(σ)
]〉
.

(2.54)

Comparing the second term on the left-hand side with the last term gives the desired
relation.

It is useful to give the local formulas. To this end, let {eα} and {ea} be a frames for A
and TM respectively. The anchor is written locally as

〈ρ(eα), ea〉 ≡ ρaα , 〈ρ−1(ea), e
α〉 ≡ ραa ,

〈eα, ρt(ea)〉 ≡ ρα
a , 〈ea, ρ−t(eα)〉 ≡ ρa

α .
(2.55)

The local expressions for curvature and torsion are

〈eα, R̂(eγ , eδ)eβ〉 = R̂α
βγδ and 〈eα, T̂ (eβ , eγ)〉 = T̂α

βγ (2.56)

and accordingly for the tangent bundle. With these assignments the relations (2.51) for
the curvatures and torsions locally read

R̂α
βγδ = ραa ρ

b
β ρ

c
γ ρ

d
δ R

a
bcd

R̂αβ = ρaα ρ
b
β Rab

R̂ = R

T̂α
βγ = ραa ρ

b
β ρ

c
γ T

a
bc .

(2.57)

Here R̂αβ = R̂γ
αγβ = Ric(eα, eβ) denotes the Ricci tensor and R̂ = gαβR̂αβ = S the Ricci

scalar. By (2.57), all the well-known properties of the Riemannian objects – (anti-)sym-
metries and Bianchi identities – carry over to the objects on the Lie algebroid.

2.4 Summary

The generalized tangent bundle has been described as a vector bundle with Gdω ⋊GL(d)-
structure and an O(d, d)-invariant inner product. In analogy to Riemannian geometry, the
structure group was reduced to O(d)×O(d) by the introduction of a generalized metric H.
In order to approach a dynamical theory for the generalized metric – a generalized gravity
theory analogous to general relativity as dynamical theory of a Riemannian metric – the
algebraic structure of the infinitesimal structure group has been formulated in terms of
Courant algebroids. As a novel result, the same has been done for the generalized cotan-
gent bundle – a vector bundle with GdAX ⋊GL(d)-structure. A connection on a Courant
algebroid has been introduced in order to define a curvature tensor. The obstructions
for constructing it have been systematically traced back to the unusual properties of the
Courant bracket. Circumventing these obstructions non-trivially has lead to the restriction
to Dirac structures.



32 2. Generalized geometry

Dirac structures are particular examples of Lie algebroids. The latter have been intro-
duced and their cohomology as well as a consistent differential geometry on them has been
discussed briefly. In particular, the precise relation between the geometries on different
Lie algebroids connected by a Lie algebroid homomorphism has been formulated in the
novel theorem 2.17. Finally, the relation between Riemannian geometry and Lie algebroid
geometry has been discussed in some detail.

In the next two chapters, the formalism presented above is used to reveal the geomet-
rical structures of dualities in string theory. Courant algebroids turn out to be the suitable
structure for combining the geometry of T-dual quantities, while Lie algebroids are used
to govern the dynamical theory for a string backgrounds locally. But first, a geometric ap-
proach to target-space dualities is presented to substantiate the necessity for a generalized
geometric approach to string theory.



Chapter 3

O(d, d)-duality

The main subject of this thesis is a geometric description of target-space dualities in string
theory and the treatment of unconventional implications thereof. To set the stage, this
chapter is devoted to the target-space duality structure of string theory and aims to provide
the necessary structures and most instructive examples. The approach followed here was
developed recently in [49]. Apart from the well-known T-duality, a new duality called
Poisson duality is discovered within this novel approach.

The chapter is organized as follows. In section 3.1 classical features of the string sigma
model are recapitulated. In particular, the appearance of O(d, d) is extracted from the
constraints in a Hamiltonian formulation followed by a brief review of the conventinal
approach to T-duality. Section 3.2 is devoted to the detailed discussion of O(d, d)-duality.
It includes the study of the integrability conditions for the mapping of coordinate one-forms
manifest in the isometry algebra, the main elements of O(d, d) and the special role of the
dilaton for duality on the quantum level. The section closes with an example providing a
new approximate non-geometric background.

3.1 The bosonic string sigma model

String theory is described in a background dependent fashion by a two-dimensional non-
linear sigma model. For discussing closed bosonic strings, Σ is a two-dimensional manifold
with metric1 h = diag(−1, 1) and ∂Σ = ∅. The worldsheet Σ is embedded into a d-
dimensional Riemannian manifold M via X : Σ →֒ M . Having local coordinates {xa}da=1

for M , their pull-back to Σ is denoted Xa = X∗xa. With ⋆ the Hodge operator with
respect to h, the action can be written as2

S(X;G,B) =
1

4πα′

∫

Σ

[
G(X)ab dX

a ∧ ⋆dXb +B(X)ab dX
a ∧ dXb

]
. (3.1)

1The sigma model (3.1) is invariant under two-dimensional Weyl rescalings and two-dimensional diffeo-
morphisms. Hence conformal gauge can be chosen.

2The conventions are as follows: The coordinates on Σ are {τ, σ} and the orientation is given by the
volume element dτ ∧ dσ. Then the Hodge operator is given by α ∧ ⋆β = h(α, β)dτ ∧ dσ for arbitrary
α, β ∈ Γ(ΛnT ∗Σ).
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G is a Riemannian metric3 on the target-space M and B a two-form; the pair (G,B) will
be called the background. The dilaton will be discussed separately in section 3.2.4 as it
contributes as quantum correction and breaks Weyl invariance already classically. The
immediate classical features of (3.1) are the following.

• Varying the action with respect to Xa yields the equation of motion

d ⋆ dXa + Γa
bc dX

b ∧ ⋆dXc = 1
2 G

amHmbc dX
b ∧ dXc (3.2)

with H = dB and Γa
bc =

1
2G

am(∂bGmc+∂cGmb−∂mGbc) the coefficients of the Levi-
Civita connection on TM . Possible boundary terms are neglected. For H = 0, (3.2)
is the generalization of the geodesic equation for a worldsheet. In the presence of
the H-term, (3.2) can be interpreted as geodesic motion of a membrane in Einstein-
Cartan theory with Bismut connection Γa

bc − 1
2G

amHmbc.

• The equation of motion for a general worldsheet metric h is vanishing of the energy-
momentum tensor, Tαβ = 0. In the conformal gauge chosen here, this has to be
considered as constraints which read

Gab(∂τX
a∂τX

b + ∂σX
a∂σX

b) = 0 ,

Gab ∂τX
a∂σX

b = 0 .
(3.3)

Hence the dynamics of the theory is determined by the equation of motion (3.2)
accompanied by the constraints (3.3).

From this – and especially from the interpretation of the equations of motion (3.2) – it can
be seen that the sigma model (3.1) describes the motion of a one-dimensional string by
describing the membrane it draws on the d-dimensional background.

Hamiltonian description

The Hamiltonian density can be determined from the Lagrangian density in (3.1) by
performing a Legendre transformation with respect to the canonical momentum and τ -
derivative of the coordinate fields Xa. In principle there are two possibilities for canoni-
cally conjugate variables to the coordinate field Xa, which will become important for the
discussion of duality:

• the canonical momentum Pa = ∂L
∂∂τXa = 1

2πα′ (−Gab∂τX
b +Bab∂σX

b),

• the canonical winding Wa = ∂L
∂∂σXa = 1

2πα′ (Gab∂σX
b −Bab∂τX

b).

However, by virtue of the first constraint in (3.3), the Hamiltonian density arising from a
Legendre transformation with respect to P and ∂τX coincides with the one resulting from
a transformation with respect to W and ∂σX since

∂τX
a Pa = ∂σX

aWa. (3.4)

3Positive definiteness of the metric is a crucial assumption for the following discussion.
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Performing the transformation L→ ∂τX
aPa − L = Ham, the Hamiltonian density can be

written as

Ham(X;G,B) = − 1

4πα′

(
∂σX
2πα′P

)t

H(G,B)

(
∂σX
2πα′P

)

=
1

4πα′

(
∂τX
−2πα′W

)t

H(G,B)

(
∂τX
−2πα′W

)
,

(3.5)

where H denotes the generalized metric (2.10). Defining the generalized vectors

AP (X) = ∂σX
a ∂

∂xa
+ 2πα′ Pa dx

a ,

AW (X) = ∂τX
a ∂

∂xa
− 2πα′Wa dx

a
(3.6)

in TM ⊕ T ∗M , the Hamiltonian density (3.5) is proportional to the squared length of AP

and AW as measured by the generalized metric (2.10):

Ham(X;G,B) = − 1
4πα′ ||AP ||2H = 1

4πα′ ||AW ||2H . (3.7)

Hence the Hamiltonian density of the sigma model for closed string theory can be inter-
preted as ”kinetic energy” in generalized geometry with respect to the generalized ”ve-
locities” AP/W . In this sense, the sigma model (3.1) is simple: It describes the geodesic
motion of a membrane on a background whose shape is determined by the minimizing
kinetic energy in generalized geometry.

3.1.1 Review of T-duality

The conventional procedure for obtaining T-dual sigma models outlined in section 1.3.1 by
gauging isometries will be reviewed briefly [19]. For simplicity, a single isometry generated
by a vector field k is considered. In the case of multiple non-abelian isometries the gauging
procedure can be found in [36]. With respect to the infinitesimal coordinate transformation

Xa → Xa + ǫ ka (3.8)

the sigma model (3.1) transforms as S → S + δS with

δS(X;G,B) =
ǫ

4πα′

∫

Σ

[
(LkG)ab dX

a ∧ ⋆dXb + (LkB)ab dX
a ∧ dXb

]
. (3.9)

Thus k generates an isometry if it satisfies

LkG = 0 & LkB = dν for ν ∈ Γ(T ∗M) . (3.10)

By using that a gauge transformation B → B+dω induces the transformation ν → ν+Lkω,
a gauge in which ν = 0 can be found. Assuming this gauge to be chosen in adapted
coordinates k = ∂

∂X1 allows to gauge the isometry generated by k via minimal coupling:
Introducing the gauge field A ∈ Γ(T ∗Σ) which transforms under the local version of (3.8)
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as δA = −dǫ , minimal coupling amounts to the substitution dX1 → DX1 = dX1 + A.
Choosing the gauge A → A − dX1, the gauged sigma model takes the form Sgauged =
S(Xm;G,B) + Sg with

Sg =
1

4πα′

∫

Σ

(
G11A ∧ ⋆A+ 2G1mA ∧ ⋆dXm + 2B1mA ∧ dXm − 2A ∧ dλ

)
(3.11)

for m 6= 1. Integrating out the Lagrange multiplier λ yields A = dX1 locally and gives
back the initial sigma model (3.1). Integrating out the gauge field yields

⋆A = − 1

G11

(
G1m ⋆dXm +B1m dX

m − dλ
)
. (3.12)

Plugging this back into the gauged action and considering dλ = dX̃1 as a new coordinate,
the resulting action can be written as (3.1) with the new background (g, b) given by the
Buscher rules [17]

g11 =
1

G11
, g1m = −B1m

G11
, gmn = Gmn −

Gm1G1n +Bm1B1n

G11
,

b1m = −G1m

G11
, bmn = Bmn −

Gm1B1n +Bm1G1n

G11
.

(3.13)

Hence, T-duality can be performed along the direction of an isometry and the dual back-
grounds are related by (3.13). It also introduces a new coordinate one-form dX̃ which can
be related to dX1 on-shell by (3.12): Identifying A = dX1 and dλ = dX̃1, (3.12) can be
written as

dX̃1 = G1a ⋆dX
a +B1adX

a . (3.14)

This is the conserved current associated to the isometry (3.8) generated by k = ∂
∂X1 . For

gauging multiple isometries {ki}, further conditions apart from (3.10) arise [36]: With
κi = νi − ιkiB such that ιkiH = dκi and [ki, kj ] = Fm

ijkm, also

Lkiκj = Fm
ij κm and 〈ki + κi, kj + κj〉 = 0 (3.15)

have to be satisfied. The second condition ensures the gauged sigma model to be free of
anomalies. These anomalies arise from the introduction of the auxiliary gauge field A.
It also causes problems for obtaining genuinely dual theories due to possible holonomies
[19, 34]. In the abelian case they can be compensated by assigning appropriate periodicities
to the Langrange multipliers λi. This is possible since λi does not transform under gauge
transformations if (3.15) is satisfied which allows to choose any periodicity in a consistent
manner. However, in the non-abelian case the Lagrange multipliers transform as δλi =
−Fm

niλmǫ
n and periodicities can not be assigned consistently anymore.

In the next chapter a different approach to duality is developed and the Buscher rules
(3.52) with (5.13) as well as the conditions (3.10), (3.15) are encountered as special cases.
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3.2 O(d, d)-duality

In this section a new way of performing duality is proposed by redefining the background
and identifying dual coordinates directly. This avoids the procedure of gauging and accord-
ingly circumvents the problem of anomalies and holonomies caused by the introduction of
an auxiliary gauge field.

Already on the classical level the indefinite orthogonal group O(d, d) appears naturally.
In terms of the generalized vector AP (3.6), the constraints (3.3), i.e. the components of
the energy momentum tensor can be rewritten as

At
P H(G,B)AP = 0 and At

P η AP = 〈AP , AP 〉 = 0 (3.16)

with 〈·, ·〉 the inner product (2.5). As the first constraint sets the Hamiltonian density to
zero, the constrained dynamics is completely governed by (3.4). The second constraint is
preserved by O(d, d)-transformations. Therefore all admissible generalized vectors solving
the second constraint in (3.16) are related by an O(d, d)-transformation via A′

P = T AP .
For A′

P to solve the first constraint as well, a compensating O(d, d)-conjugation with T −1

has to be applied to the generalized metric (2.10). This, in turn, leaves the Hamiltonian
density (3.5) and the energy momentum tensor (3.16) invariant. This classical duality will
be described in detail in the following.

3.2.1 Field redefinitions and duality

The admissible generalized vector AP will be transformed by4

T =

(
t11 t12
t21 t22

)
∈ O(d, d) with

t11 ≡ (t11)
a
ā : TM → TM

t12 ≡ (t12)
aā : T ∗M → TM

t21 ≡ (t21)aā : TM → T ∗M
t22 ≡ (t22)a

ā : T ∗M → T ∗M

(3.17)

as AP → T −1AP (cf. (2.3)). In order for the first constraint in (3.16) to remain satisfied
the generalized metric has to be conjugated with T simultaneously:

H(G,B)→ T tH(G,B) T ≡ H(g, b) . (3.18)

By (3.5), this simultaneous transformation leaves the Hamiltonian density invariant, giving
an equivalent theory. This specific equivalence will be called T -duality. First, the conjuga-
tion of the generalized metric is discussed in order to extract the dual background. Then
the rotation of the generalized vector is used to determine the dual phase space.

In (3.18), H(g, b) refers to a redefinition of the background in order for the generalized
metric to have the standard form (2.10) as follows.

Field redefinition ([80]). An O(d, d)-rotated generalized metric T tH(G,B)T takes the

form H(g, b) (2.10) with respect to the new background (g, b). In terms of the automorphism

γ = t22 + (G−B)t12 : T
∗M → T ∗M (3.19)

4The bar over the index indicates the one associated to the domain. As to operations with linear
maps, inversion swaps indices (e.g. t−1

11 ≡ (t11)
ā
a : TM → TM) and transposition commutes them (e.g.

tt11 ≡ (t11)ā
a : T ∗M → T ∗M). The combination f−t = (f−1)t is used as well.
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and δ = t21 + (G−B)t11, the new background (g, b) is given by

g = γ−1Gγ−t and b = γ−1(γ δt −G)γ−t . (3.20)

Proof. First, the invertibility of γ will be shown. Since O(d, d) is generated by the matrices
(2.6) and (2.7), one can proceed case-by-case. Since γA = A

−t and γB = 1 for changes of
frame and B-transformations, respectively, invertibility is obvious. For β-transformations
the map becomes γβ = 1− (G−B)β. Since G is positive definite by assumption, (G−B)
is positive definite by antisymmetry of B as well. As such, (G−B) has a positive definite
inverse which allows to write γβ = (G−B)[(G−B)−1− β]. Since β is also antisymmetric,
the matrix [(G − B)−1 − β] is also positive definite and therefore invertible. Hence γβ is
invertible as a product of invertible matrices. The remaining generator is T-duality in the
kth direction (2.7) with γT (k) = 1− 1k + (G−B)1k = 1− 1k +Gkk1k by antisymmetry of
B. Since det(γT (k)) = Gkk = G(ek, ek) 6= 0 by positive definiteness, it is invertible as well.
The relations (3.20) directly follow from the evaluation of (3.18).

The simultaneous rotation of the generalized vectors (3.6) gives rise to redefined phase
space coordinates. They can be read-off from the transformation

AP → T −1AP (X) ≡ A
P̃
(X̃) =

(
∂σX̃

2πα′P̃

)
(3.21)

and analogously for the winding vector. Using T −1 = ηT tη for all T ∈ O(d, d), the dual
pair becomes

∂σX̃
ā = −(t12)āmGma ∂τX

a +
[
(t22)

ā
a + (t12)

āmBma

]
∂σX

a ,

P̃ā = 1
2πα′

{
−(t11)āmGma ∂τX

a +
[
(t21)āa + (t11)ā

mBma

]
∂σX

a
}
.

(3.22)

For determining the dual coordinates the τ -derivative ofXa is required as well. In principle,
∂τ X̃

ā can be computed from the first Hamilton equation. Since the Hamiltonian densities
with respect to momentum and winding coincide by (3.4), it is easier to deduce it directly
from the winding vector A

W̃
(X̃) as above:

∂τ X̃
ā = −(t12)āmGma ∂σX

a +
[
(t22)

ā
a + (t12)

āmBma

]
∂τX

a ,

W̃ā = −1
2πα′

{
−(t11)āmGma ∂σX

a +
[
(t21)āa + (t11)ā

mBma

]
∂τX

a
}
.

(3.23)

Having determined both worldsheet derivatives of the dual coordinates5 X̃ ā, the main
result of this chapter can be formulated.

O(d, d)-duality. Let {ea}da=1 be a frame for TM . For T ∈ O(d, d; C∞(M)), the sigma

model S(X;G,B) (3.1) is T -dual to S(X̃; g, b) with the coordinates related via

dX̃ ā =
(
ι
t♯12e

āG
)
a
⋆dXa +

(
t♯22e

ā + ι
t♯12e

āB
)
a
dXa (3.24)

5Using the relations between the elements of the O(d, d)-matrix T −1, (3.22) and (3.23) satisfy the

constraint ∂τ X̃
āP̃ā = ∂σX̃

āW̃ā (3.4) as well.
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and the backgrounds related by the field redefinition (3.20), provided

L
t♯12e

āG = 0 and L
t♯12e

āB = −d
(
t♯22e

ā
)
. (3.25)

Here t♯12e
ā = (t12)

āmem and t♯22e
ā = (t22)

ā
me

m. The requirement (3.25) is the integrability

condition for (3.24).

Proof. Equation (3.24) is the combination of (3.22) and (3.23). The integrability condition
(3.25) can be deduced by differentiating (3.24) and using the equations of motion (3.2) as
well as ιvH = LvB − dιvB for any vector field v: (3.2) gives

(t12)
āmGma d ⋆ dX

a = X∗(L
t♯12e

āB − dιt♯12eāB
)
+ 1

2(t12)
ām∂mGabdX

a ∧ ⋆dXb

− (t12)
āmdGma ∧ ⋆dXa .

Plugging this into d(dX̃ ā) gives

d
(
dX̃ ā

)
= X∗[L

t♯12e
āB + d

(
t♯22e

ā
)]

+ 1
2

(
L
t♯12e

āG
)
ab
dXa ∧ ⋆dXb .

As the symmetric and antisymmetric parts have to vanish separately, (3.25) follows.

Further restrictions arise from the algebra spanned by the vectors t♯12e
ā, which will be

discussed in section 3.2.2. O(d, d)-duality can be described in terms of the duality map as
follows. By defining dX = dXaea ∈ Γ(TM ⊗ T ∗Σ), the duality automorphism

D : Γ(TM ⊗ T ∗Σ)→ Γ(TM ⊗ T ∗Σ) ; dX 7→ dX̃ = D(dX) (3.26)

follows from (3.24). In matrix notation it can be written globally as

D = tt12G⊗ ⋆+
(
tt22 + tt12B

)
⊗ idT ∗Σ . (3.27)

Indeed, the inverse of the duality map (3.27) can be easily determined by the inverse
procedure and reads

D−1 = t12 g ⊗ ⋆+
(
t11 + t12 b

)
⊗ idT ∗Σ (3.28)

in terms of the dual background (3.20). Hence O(d, d)-duality is invertible.

Duality and isometries

The dual coordinates (3.24) and the integrability conditions (3.25) can be interpreted as
follows. As shown in section 3.1.1, the sigma model (3.1) transforms under the infinitesimal
diffeomorphism Xa → Xa + ǫka, generated by the vector field k as S → S + δS with δS
given by (3.9). Thus, k generates an isometry if it satisfies (3.10), i.e.

LkG = 0 and LkB = dν for ν ∈ Γ(T ∗M) .

Comparing this with the integrability condition (3.25), t♯12e
ā is seen to generate an isometry

for (3.1). In particular, the one-form ν is explicitly determined as −t♯22eā. These special
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isometries will be called duality isometries. Assuming ǫ to be non-constant, the conserved
current associated to the isometry generated by k can be computed; it reads

Jk = (ιkG)a ⋆dX
a + (ιkB − ν)adXa.

Therefore the dual coordinates dX̃ ā (3.24) coincide with the conserved currents J
t♯12e

ā .

Hence the integrability condition (3.25) for the dual coordinates (3.24) ensures the vector

t♯12e
ā to generate an isometry and the duality map (3.27) interchanges the TM -valued

coordinate one-form dX with the TM -valued conserved current J = dX̃.

Is (3.24) a coordinate transformation?

By using the Poincaré lemma and the integrability conditions (3.25), (3.24) is locally exact.
Then the local primitive for dX̃ ā might be interpreted as dual pulled-back coordinate X̃ ā.
First, this raises the question whether the coordinates on the target-space are changed, i.e.
X̃ ā = X∗(x̃ā), or the embedding is changed, i.e. X̃ ā = X̃∗(xā). Second, it is not clear if
the resulting relation X̃ ā(X) is invertible, i.e. if Xa(X̃) can be found. In particular, both
questions are important for the interpretation of the field redefinition (3.20) due to (3.18),
since the new background still depends on the initial coordinates.6 This also effects the
interpretation of (3.28).

In the case of constant O(d, d)-transformations and constant backgrounds, (3.24) can
be integrated directly and the relation between the dual coordinates is invertible: The
equations of motion (3.2) reduces to the wave equation and is solved by Xa(τ, σ) =
Xa

+(σ
+) +Xa

−(σ
−) with the light-cone coordinates σ± = τ ± σ. Using that O(d, d)-duality

with respect to the unit matrix leaves everything invariant, (3.24) can be integrated to give

X̃ ā
+ =

[
(t22)

ā
a + (t12)

ām(Bma −Gma)
]
Xa

+

X̃ ā
− =

[
(t22)

ā
a + (t12)

ām(Bma +Gma)
]
Xa

− .
(3.29)

Invertibility of t22 + t12(B ± G) is equivalent to the invertibility of (3.19). Thus in this
case (3.24) gives rise to a proper change of coordinates. Keeping the necessity of a positive
definite metric for invertibility of (3.19) in mind, this shows that O(d, d)-duality includes
the well-known case of the T-duality group O(d, d;Z) for toroidal target-spaces; the trans-
formations have to be integer in order for the periodicities to be preserved (see e.g. [31]).7

The novelty is that O(d, d)-duality gives the precise relation between the dual coordinates.

Comment on global issues

In string theory the metric G on the whole target space has Lorentzian signature (d−1, 1).
However, for the map (3.19) responsible for the field redefinition to be invertible, the
signature was assumed to be Euclidean since positive definiteness was crucial in the proof
of invertibility. Thus O(d, d)-duality is specifically applicable to the compact space C of

6I thank the referee for pointing out this problem of interpretation.
7See sections 3.2.2 and 3.2.3 for further relations to the known cases.
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a string compactification Md = Md−dimC × C. The integrability conditions (3.25) ensure
dX̃ ā to be closed; exactness might be spoiled by the winding

c̃wind

(
X̃ ā
)
=

∮

γ
dX̃ ā

(3.30)

of X̃ ā around a compact direction in C; γ is a closed curve in Σ. This is related to the
winding number of the initial coordinate one-forms by (3.24).

3.2.2 The algebra of isometries and consistency

In this section the consistency of the integrability condition (3.25) is studied in terms the
associated isometry algebra. The aim is to formulate a Courant algebroid 2.2 taking into
account both integrability conditions at once.

O(d, d)-duality is feasible if t♯12e
ā generates isometries for (3.1). Moreover, the isometry

algebra has to close and has to satisfy the Jacobi identity. For their part, Killing vector
fields are closed: [t♯12e

ā, t♯12e
b̄] is a Killing vector field as well. However, consistent duality

isometries require [t♯12e
ā, t♯12e

b̄] to be a linear combination of the generators t♯12e
ā. This is

described in terms of Lie algebroids 2.9 in the following.

The vector fields t♯12e
ā generate non-abelian isometries with algebra

[
t♯12e

ā, t♯12e
b̄
]
=
[
Dā(t12)

b̄p −Db̄(t12)
āp + (t12)

ām (t12)
b̄n fpmn

]
ep

= Fm̄
āb̄ t♯12e

m̄ +Θmāb̄ em
(3.31)

with the differential Dā = (t12)
āmem. Hence the duality isometries do not span a closed

algebra in general. The defect is given by Θ ∈ Γ(
⊗3 TM), which can locally be written as

Θabc = (t12)
bm∂m(t12)

ca − (t12)
cm∂m(t12)

ba

− 1
2

[
(t12)

ma∂m(t12)
bc − (t12)

ma∂m(t12)
cb
]

+ (t12)
bm (t12)

cn famn − (t12)
ma (t12)

bn f cmn − (t12)
cm (t12)

na f bmn .

(3.32)

The structure constants Fā
b̄c̄ can be determined in terms of the structure constants [ea, eb] =

fmabem:

Fa
bc = 1

2

[
∂a(t12)

bc − ∂a(t12)cb
]
+ (t12)

bm f cam − (t12)
cm f bam . (3.33)

Thus the isometry algebra (3.31) closes if the defect (3.32) vanishes8, which is assumed
in the following. This condition can conveniently be studied in terms of Lie algebroids.
t♯12 maps T ∗M to TM and can therefore be applied to general one-forms ξ, η: t♯12ξ =
ξā(t12)

āmem. Then the Lie bracket gives

[
t♯12ξ, t

♯
12η
]
=
[
ξm̄D

m̄ηā − ηm̄Dm̄ξā + ξm̄ ηn̄ Fā
m̄n̄
]
t♯12e

ā . (3.34)

8This condition is only sufficient. However, for an antisymmetric t12 this is a natural construction.
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From this a Lie algebroid (T ∗M, [·, ·]iso, t♯12) can be deduced. As can readily be seen from
(3.34) and the properties of the Lie bracket, the bracket [·, ·]iso is given by

[ξ, η]iso =
[
ξm̄D

m̄ηā − ηm̄Dm̄ξā + ξm̄ ηn̄ Fā
m̄n̄
]
eā ∀ξ, η ∈ Γ(T ∗M) , (3.35)

which fulfills the anchor property by construction. This construction of a Lie algebroid is
analogous to the one introduced in [80]. From the anchor property it follows that if the
Lie algebroid bracket satisfies the Jacobi identity, the isometry algebra (3.31) satisfies it as
well. It is more instructive to study the Jacobi identity for [·, ·]iso. To this end, two cases
are distinguished.

• t12 antisymmetric: The bracket (3.35) can be written as

[ξ, η]iso = L
t♯12ξ

η − ι
t♯12η

dξ = [ξ, η]K , (3.36)

i.e. it coincides with the Koszul bracket (2.31). It satisfies the Jacobi identity and

anchor property (the anchor being t♯12) if t12 is a Poisson bi-vector; this is equivalent to
the vanishing of Θ (3.32), which now agrees with (2.32). Hence for t12 antisymmetric,
the isometry algebra (3.31) is a Lie algebra if and only if t12 is a Poisson bi-vector.

• t12 symmetric: The structure constant becomes very simple such that the Lie
algebroid bracket (3.35) reduces to

[ξ, η]iso = ι
t♯12ξ

dη − ι
t♯12η

dξ . (3.37)

The Jacobi identity can be checked by using vanishing of (3.32) and the Jacobi
identity for the Lie bracket.

The case of an antisymmetric t12 is of particular importance as it covers the case of β-
transformations (2.12) discussed in section 3.2.3.

Now the second condition in (3.25) will be discussed. Assuming Θ = 0, consistency
of the integrability conditions (3.25) with the algebra (3.31) requires the two ways of
evaluating L

[t♯12e
ā,t♯12e

b̄]
B to coincide:

dFm̄
āb̄ ∧ ι

t♯12e
m̄B − Fm̄

āb̄ d
(
t♯22e

m̄
)
= −d

[
L
t♯12e

ā

(
t♯22e

b̄
)
− L

t♯12e
b̄

(
t♯22e

ā
)]
. (3.38)

This in turn is only consistent if the left-hand-side is closed, which is equivalent to

dFm̄
āb̄ ∧ ι

t♯12e
m̄H = 0 . (3.39)

The two immediate solutions are as follows:

• Fm̄
āb̄ constant. This depends on the choice of frame {ea}da=1 for TM . Choosing a

holonomic frame such as the coordinate frame, F = 0 for t12 symmetric. For t12
antisymmetric, ∂d∂a(t12)

bc has to vanish. Thus the components are restricted to be
at most linear in the coordinates.
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• ι
t♯12e

m̄H = 0. This is equivalent to ι
t♯12e

m̄B+t♯22e
m̄ being closed. Since this requirement

is not met in the simplest examples of duality (see [27] or section 3.2.5), this option
will be discarded.

For a constant F , the consistency condition (3.38) reduces up to exact terms to

L
t♯12e

ā

(
t♯22e

b̄
)
− L

t♯12e
b̄

(
t♯22e

ā
)
= Fm̄

āb̄ t♯22e
m̄ . (3.40)

To summarize, the algebra of the generators of isometries t♯12e
ā closes and satisfies the

Jacobi identity if the defect Θ (3.32) vanishes. This is required by consistency of the

integrability condition L
t♯12e

āG = 0. Consistency of the condition L
t♯12e

āB = −d(t♯22eā) is

ensured by having constant structure coefficients Fā
b̄c̄ for the isometry algebra with the

condition (3.40). These two consistency conditions can be combined coherently into a
Courant algebroid.

The Courant algebroid of isometries

Above the consistency conditions on t♯12e
ā and t♯22e

ā have been formulated. For the former

this was accomplished by the introduction of the Lie algebroid (T ∗M, [·, ·]iso, t♯12). For the
latter the condition (3.40) has to be satisfied. Now both conditions are combined into a
Courant algebroid 2.2. The purpose for this is to bridge to the well-known approaches to
T-duality via gauging of (multiple) dualities [36].

It is convenient to introduce κ ∈ Γ(T ∗M⊗TM) given by κā = t♯22e
ā+ι

t♯12e
āB ∈ Γ(T ∗M).

Then the dual coordinates (3.24) read

dX̃ ā =
(
ι
t♯12e

āG
)
a
⋆dXa + κāa dX

a (3.41)

and with H = dB the integrability condition (3.25) becomes

L
t♯12e

āG = 0 and ι
t♯12e

āH = −dκā . (3.42)

Evaluating the second condition for the commutator gives

ι
[t♯12e

ā,t♯12e
b̄]
H = −d

(
L
t♯12e

āκ
b̄
)

(3.43)

As one can see, the one-form L
t♯12e

āκ
b̄ corresponds to the vector [t♯12e

ā, t♯12e
b̄]. This suggests

to combine t♯12e
ā and κā to a generalized vector with Dorfman bracket (2.18)

q
t♯12e

ā + κā, t♯12e
b̄ + κb̄

y
D
= [t♯12e

ā, t♯12e
b̄] + L

t♯12e
āκ

b̄ − ι
t♯12e

b̄dκ
ā + ι

t♯12e
āιt♯12eb̄

H , (3.44)

where the last two terms add-up to zero by the integrability conditions. The bracket (3.44)
is the H-twisted Dorfman bracket introduced in [116]. In [117] and more recently in [35],
this bracket was studied in the context of isometries. Assuming Θ = 0 and using that the
last two terms of (3.44) vanish by integrability, closure of the bracket requires

L
t♯12e

āκ
b̄ = Fm̄

āb̄ κm̄ . (3.45)
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Using the definition of κā, this can be seen to agree with the consistency condition (3.40)
up to exact terms. Hence the closure of the bracket (3.44) is equivalent to closure of the
isometry algebra (3.31) and the consistency condition (3.40). Therefore its consistency
summarizes the consistency of the isometry algebra with the integrability conditions by a
Courant algebroid (TM ⊕ T ∗M, J·, ·KD, prTM ).

The Courant-algebroid perspective provides the connection to the conventional ap-
proach to target space dualities presented in section 3.1.1. Gauging multiple (non-abelian)
isometries requires the additional conditions (3.15). Here the first condition arises as the
requirement (3.40) of closure of the Dorfman bracket (3.44). The second condition in (3.15)
ensures the absence of anomalies caused by the auxiliary gauge field. In the present case,
using the generalized vectors t♯12e

ā + κā, it reads

〈
t♯12e

ā + κā, t♯12e
b̄ + κb̄

〉
= 0 . (3.46)

This condition forces the subbundle spanned by t♯12e
ā + κā to be a Dirac structure 2.8 for

the Courant algebroid defined by (3.44). The Dirac condition (3.46) is non-physical since
the problem of anomalies is absent in the present approach, but it provides a mathematical
interpretation of the second condition in (3.15). By the duality map (3.27), (3.44) can be
considered the algebra of the conserved currents (3.24). Then (3.46) and (3.40) ensure
anomaly freedom and closure of the current algebra respectively [117].

As the present approach avoids gauging the isometries, anomaly free currents and
thereby the Dirac structure are not needed. In this sense, O(d, d)-duality requires less
conditions than the conventional procedure. However, the need for isometries and the first
condition in (3.15) in the conventional approach is recovered in terms of the integrability
conditions (3.25) as well as the closure conditions Θ = 0 and (3.40).

3.2.3 Examples of O(d, d)-duality: the prototypes

This section is devoted to the explicit construction of duality for the generators of O(d, d)-
transformations (2.6) and (2.7). The coordinate frame { ∂

∂xa }da=1 is considered for simplicity.

Changes of frame

Given an invertible d× d-matrix A, the O(d, d)-matrix

TA =

(
A 0
0 A−t

)
(3.47)

is considered. Applied to the generalized metric it gives

T t
AH(G,B) TA = H(AtGA,AtBA) . (3.48)

Therefore TA gives rise to a change of frame of the tangent bundle. In respect of O(d, d)-
duality, the integrability conditions (3.25) are satisfied trivially and the dual coordinates
are given by the change of frame dX̃ ā = A

ā
a dX

a. Since the background transforms with
the inverse, the dual action coincides with the initial one; S(X̃; g, b) = S(X;G,B).
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B-transformations

Given an antisymmetric d × d-matrix B corresponding to a two-form, a B-transformation
(2.2) is given by the matrix

TB =

(
1 0
−B 1

)
. (3.49)

Conjugating the generalized metric with it results in

T t
B
H(G,B) TB = H(G,B + B) . (3.50)

It corresponds to a gauge transformation for an exact B, i.e. a symmetry of (3.1). The
O(d, d)-duality is again trivial with dual coordinate one-form dX̃a = dXa. Therefore the
dual action becomes S(X̃; g, b) = S(X;G,B + B).

T-duality

The T-duality matrix (2.7) in the kth direction

TT (k) =

(
1− 1k 1k
1k 1− 1k

)
(3.51)

is considered [112]. From the field redefinition (3.20) the components of the new metric
and two-form can be determined. A tedious calculation leads to

gkk =
1

Gkk
, gka = −Bka

Gkk
, gab = Gab −

GakGkb +BakBkb

Gkk
,

bka = −Gka

Gkk
, bab = Bab −

GakBkb +BakGkb

Gkk

(3.52)

for a, b 6= k. These are the Buscher rules in the kth direction [17] (cf. (3.13)). For the
integrability condition (3.25) to be satisfied, the vector field ek has to be Killing with
LekB = 0. Moreover, vanishing of (3.32) and the Jacobi identity for the Killing algebra
(3.31) are trivial for a single T-duality. Then the dual coordinate one-forms are

dX̃k = Gka ⋆dX
a +BkadX

a & dX̃a = dXa for a 6= k . (3.53)

Indeed, (3.14) is recovered. Hence O(d, d)-duality yields T-duality presented in section 3.1.1
as a special case. In section 3.2.5 it is discussed in more detail.

β-transformations

For an antisymmetric bivector field β ∈ Γ(Λ2TM) corresponding to an antisymmetric
d× d-matrix,

Tβ =

(
1 −β
0 1

)
(3.54)
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is defined. The transformed background (3.20) induced by this β-transformation (2.12) is
given in terms of γβ = 1− (G−B)β (3.19) as

g = γ−1
β Gγ−t

β

b = γ−1
β

[
B − (G−B)β(G−B)t

]
γ−t
β .

(3.55)

Moreover, O(d, d)-duality is non-trivial: (3.25) requires β♯ea to be a Killing vector with
Lβ♯eaB = 0 and consistency of the Killing algebra demands β to be a Poisson bi-vector at
most linear in the coordinates. The dual coordinate one-forms (3.24) are

dX̃ ā = βāmGma ⋆dX
a + (βāmBma + δāa)dX

a . (3.56)

Hence, O(d, d)-duality establishes the classical equivalence between the sigma models S(X;
G,B) (3.1) and S(X̃; g, b) with the coordinates and the backgrounds related by a β-
transformation, provided β is a Poisson structure. This duality will be called Poisson

duality and is applied in section 3.2.5.

The four particular O(d, d)-transformations considered here span O(d, d;C∞(M)) [80].
Thus, by composition non-abelian dualities are covered as well. The question of con-
formality of O(d, d)-dual backgrounds will be addressed in the next section.

3.2.4 Quantum aspects of O(d, d)-dual backgrounds

As discussed so far, O(d, d)-duality is a classical equivalence of constrained sigma models.
For being a duality of string theory, it has to preserve conformality of the backgrounds. Of
course, dual sigma models (3.1) arising from O(d, d)-duality of a given background admit
two-dimensional diffeomorphism and Weyl invariance as well. However, Weyl invariance
gets lost in the process of quantization. In order to allow for a larger class of backgrounds
admitting conformal invariance at the quantum level, the action for the dilaton φ given by

Sdil(X;φ) =
1

4π

∫

Σ
φ(X)R(2) ⋆1 (3.57)

is added to the sigma model action (3.1). R(2) denotes the Ricci scalar on TΣ. This term
does not admit Weyl invariance classically, but is considered a quantum correction as it
is of higher order in the string length α′ as compared to (3.1). Then the classical lack of
Weyl invariance can be compensated by a one-loop contribution from S(X;G,B). This
gives rise to the lowest order of the equations

0 = Rab + 2∇a∇bφ− 1
4 HamnHb

mn +O(α′) ,

0 = Gab∇aφ∇bφ− 1
2G

ab∇a∇bφ− 1
24 HabcH

abc +O(α′) ,

0 = 1
2 ∇mHmab −∇mφHmab +O(α′) ,

(3.58)

with Rab the Ricci tensor on TM with respect to the Levi-Civita connection ∇a ≡ ∇ea

and H = dB. Hence a background (G,B) with dilaton φ provides a conformal quantum
theory if it satisfies the string equations of motion (3.58) (see [118]).
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In order for O(d, d)-duality to be a duality of the full quantum theory, the dual back-
ground (g, b) has to satisfy the string equations of motion as well. Therefore dualization
of a background without dilaton might require its introduction on the dual space. This is
discussed for the prototypes of duality.

• The string equations of motion are generally shown to consist of the Riemann tensor,
the three-form flux H, the dilaton and covariant derivatives as well as contractions
thereof. Thus the equations are invariant under coordinate transformations (3.47)
and exact B-transformations (3.49). Therefore they retain conformality trivially.

• For T-duality (2.7), the Buscher rules (3.52) have to be supplemented with a shift of
the dilaton by − lnG2

kk [17, 18]. This is shown by gauging the isometry associated
to T-duality in the kth direction and carefully integrating-out the thereby introduced
gauge fields. More generally, if T-duality is applied in multiple directions {ei}ki=1 for
k ≤ d, the shift of the dilaton is given by

φ→ φ− 1
2 ln det(G+B)ij ; (3.59)

see for instance [119]. The subscript indicates the dualized directions.

• β-transformations destroy conformality of the initial background. This can be seen
most easily by considering a background with G Ricci-flat and vanishing dilaton and
Kalb-Ramond field. This certainly satisfies (3.58). As will be detailed in chapter 4,
the map γ−t

β : TM → TM (3.19) is a Lie algebroid automorphism. Then, according
to theorem 2.17 and (2.57), the Ricci tensor associated to the redefined metric (3.20)
vanishes as well. However, (3.20) introduces a non-vanishing Kalb-Ramond field
whose presence in (3.58) can only be accounted for by introducing a compensating
dilaton. To determine the necessary shift of the dilaton, the following relation between
β-transformations and B-transformations via T-duality is utilized:

(
0 1

∗

1∗ 0

)(
1 0
−B 1

)(
0 1

∗

1∗ 0

)
=

(
1 −1∗

B1
∗

0 1

)
. (3.60)

For simplicity, T-duality in every direction is considered. The unit matrices 1
∗ and

1∗ have to be understood in a formal manner; they act as unit on the component
matrices but interchange TM and T ∗M (cf. (3.17)). In particular, 1∗

B1
∗ is a bivector

field
∑

a,b Babea∧eb. With the Killing vectors being {ea}da=1, every direction has to be
isometric. This is only necessary if β has full rank. For a β of lower rank, T-duality in
the linearly independent directions is sufficient and accordingly fewer isometries are
required. The chain (3.60) of O(d, d)-transformations will be performed successively.

1. The first complete T-duality gives the background 1∗(G + B)−1
1∗ (cf. (3.20))

and the dilaton has to be shifted by −1
2 ln det(G+B) (3.59).

2. The next step in the chain (3.60) is the B-transformation. For this to be a
duality, B has to be exact – B = dω with ω a one-form. This gives the background
1∗(G+B)−1

1∗ + dω.
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3. The final background arising from the last T-duality can be written as

g + b = (G+B)
[
1− (G−B)1∗dω1∗]−t

= δtβ γ
−t
β .

By comparison with the fied redefinition (3.20) and (3.19), this reproduces the
correct background arising from a β-transformation (2.12) with β = 1

∗dω1∗.
Moreover, it induces an additional dilaton shift by−1

2 ln det[1∗(G+B)−1
1∗+dω].

Hence, the procedure shows that this particular β-transformation gives dual quantum
theories if the dilaton

φ = −1
2 ln det(G+B)− 1

2 ln det[1∗(G+B)−1
1∗ + dω] = −1

2 ln det(γ1∗dω1∗)t

is introduced. Since γβ is positive definite as G is assumed to be Riemannian, the
logarithm is well-defined.

It is no coincidence that the shift of the dilaton for β-transformations is given by the
transpose of the associated automorphism γ (3.19). Indeed, one can show that

det(G+B)ij = det
[
1−∑k

i=11i + (G−B)
∑k

i=11i

]
= det γtT ;

thus the shift of the dilaton for T-duality (3.59) is also given by the logarithm of det γtT > 0.
For B-transformations (2.2) the automorphism is γB = 1; hence ln det γB = 0. This leads
to conjecture that for O(d, d)-duality to be a duality on the quantum level, the dilaton has
to be shifted as

φ→ φ− 1
2 ln det γ

t . (3.61)

The redefinition (3.61) leaves the measure factor
√
| detG|e−2φ, which is related to the

string coupling constant, invariant; this follows from

√
| detG|e−2φ →

√
| det g|e−2φ+ln det γ =

√
| detG|| det γ−1|(det γ)e−2φ =

√
| detG|e−2φ

by (3.20). This also validates a perturbative approach to the dual theories.

Remark 1. Coordinate changes on the target space have to be considered an exception to
(3.61). They imply a change of frame (3.47) with A the pullback of a diffeomorphism. The
dilaton is a scalar and therefore does not change under diffeomorphisms. Moreover, there
is no need to compensate the determinant | det γA| arising in the measure factor

√
| det g|

as it will be compensated by the Jacobian determinant from the change of coordinates.

A more rigorous way to derive the dilaton shift is to study the change of the path integral
measure [DX]→ [DX̃] by (3.24). In particular, up to the worldsheet operations the duality
map (3.27) comprises γt, which enters the Jacobian determinant. A more detailed study
is beyond the scope of this work.
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Exact β-transformations

B-transformations only give rise to equivalent theories if they are exact. An analogous
notion for β-transformations based on the analysis above is presented now. The bivectors
found above can be considered exact in the Lie algebroidA = (T ∗M, [·, ·]A,1∗) with bracket

[ξ, η]A =
(
ξm δ

mn ∂nηa − ηm δmn ∂nξa + ξm ηn δ
mp δnq fkpq δka

)
ea . (3.62)

The components of 1∗ and its inverse 1∗ are written as δab and δab respectively. Using
(2.34), the Lie algebroid induces a nilpotent exterior derivative dA on Γ(Λ•TM). Then it
follows from proposition 2.12 that 1

∗dω1∗ = dA(1∗ω). Therefore, an admissible bivector
β is Poisson and of the form

β = dAα with α = 1
∗ω , ω ∈ Γ(T ∗M) , (3.63)

and consequently exact with respect to A.

3.2.5 T- and Poisson duality for T
3 with H-flux

Duality is illustrated by applying it to the flat euclidean three-torus T3 with

G = (dx1)2 + (dx2)2 + (dx3)2 & B = hx3 dx1 ∧ dx2 . (3.64)

Since the metric is flat, H = hdx1 ∧ dx2 ∧ dx3 and the dilaton is zero, this background
satisfies the string equations of motion (3.58) only up to linear order in H. However, in par-
ticular because of its simplicity and non-trivial global structure it serves as a good instance
for discussing the peculiarities of duality. The global structure is given by demanding the
background to be periodic in every direction. This corresponds to the periodicities of the
three cycles spanning the torus, which are assumed to have circumference 1. To be more
precise, (3.64) describes the space in one particular patch. The only non-trivial direction is
x3; encircling this direction via x3 → x3+n for n ∈ N leaves the metric invariant but shifts
the Kalb-Ramond field as B → B + nhdx1 ∧ dx2. The latter shift can be compensated by
the gauge transformation B → B − d(nhx1dx2). Thus the symmetries of the sigma model
(3.1) for the background (3.64) suffice to describe it in every patch.

T-duality

The background admits two duality isometries associated to TT (1) and TT (2), namely ∂/∂x1

and ∂/∂x2 respectively. Hence T-duality will be performed along this two directions:

• Performing the duality via TT (1) amounts to apply the Buscher rules (3.52) along the
first direction of (3.64). This yields the new background

G =
(
dx1 − hx3dx2

)2
+ (dx2)2 + (dx3)2 & B = 0 , (3.65)

which is known as twisted torus. The change of the metric from going around x3 n
times can be compensated by a diffeomorphism (3.47) given by

A =




1 0 0
nh 1 0
0 0 1


 .
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Hence the symmetries suffice to describe this background globally as well. The metric
can be diagonalized by introducing the new frame

e1 = dx1 − hx3dx2 , e2 = dx2 , e3 = dx3 . (3.66)

This is a non-holonomic frame whose structure constant fabc can be determined using
(2.34):

dea = −1
2 f

a
bc e

b ∧ ec =⇒ f123 = −h . (3.67)

Thus the first T-duality has changed the background with non-vanishing H-flux
H123 = h to the twisted torus with vanishing H-flux but non-vanishing geometric

flux f123 = −h.
• Now TT (2) is applied to (3.65). The resulting background reads

G =
1

1 + (hx3)2
[
(dx1)2 + (dx2)2

]
+ (dx3)2 ,

B =
−hx3

1 + (hx3)2
dx1 ∧ dx2 .

(3.68)

The change of the background by going n times around x3 cannot be compensated by
a symmetry transformation anymore. It requires a β-transformation (2.12) defined
by

βt = −nh ∂
∂x1 ∧ ∂

∂x2 . (3.69)

For this reason the background is called non-geometric: it is patched-up by trans-
formations beyond the symmetries of the sigma model (3.1). This background is an
example of a T-fold [50, 26, 84]. The metric is diagonalized by the dreibein

e1 =
1√

1 + (hx3)2
dx1 , e2 =

1√
1 + (hx3)2

dx2 , e3 = dx3 . (3.70)

In this frame the H-flux becomes H123 = −h and the non-vanishing structure con-
stants of the frame are f113 = f223 =

−hx3

1+(hx3)2
. In particular the latter are ill-defined

quantities. To obtain a well-defined flux, a field redefinition (g + β) = (G+ B)−1 is
performed. Then the background is described by a metric on T ∗M and a bivector
given by (cf. [52])

g =
(

∂
∂x1

)2
+
(

∂
∂x2

)2
+
(

∂
∂x3

)2
& β = −hx3 ∂

∂x1 ∧ ∂
∂x2 . (3.71)

In this background9, encircling x3 is just a constant shift in β. The well-defined
flux associated to β has the non-vanishing component Q12

3 = ∂3β
12 = −h. This is

called the non-geometric Q-flux. This background can be described by the generalized
cotangent bundle.

9The simplicity of this background is no surprise: the redefinition induced by (g + β) = (G+B)−1 is a
complete T-duality with t12 = 1

∗ and t21 = 1∗ as introduced in section 3.2.4, which gives the background
(g̃+ b) = 1∗(G+B)−1

1∗. Then the field redefinition above is given by multiplying both sides with 1
∗ and

defining g = 1
∗g̃1∗ and β = 1

∗b1∗. Moreover, formally applying the (forbidden) T-duality in the third
direction does not change (3.64). Thus the redefinition just revokes the two T-dualities and interprets the
resulting components on the cotangent bundle.
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The background (3.68) has no isometries left to perform a last T-duality along x3. However,
in [27] it was argued that the third T-dual has to exist. They compared flux compacti-
fications of type IIA and type IIB theory and discovered a mismatch between certain
coefficients in the superpotentials. This was cured by the formal introduction of the R-flux
R. This flux was argued to be associated to a non-associative spacetime structure.10 In
particular, in [57] a CFT for the approximate background (3.64) was developed in order to
study the R-flux.

Finally, the argument given above completes the chain of T-dualities existent for the
background (3.64); it reads

Habc

TT (1)←−−→ fabc
TT (2)←−−→ Qab

c

TT (3)←−−→ Rabc .

Poisson duality

Now the Poisson dual background to (3.64) will be determined. Using Lfvξ = fLvξ +
df ∧ ιvξ for any vector field v and due to (3.25), it turns out that the only admissible
β-transformations (2.12) for duality are given by constant Poisson structures with all com-
ponents but β12 vanishing. Thus the only possibility is

β = −c ∂

∂x1
∧ ∂

∂x2
(3.72)

with c ∈ R. This is a trivial Poisson structure with the only non-trivial Poisson bracket
reading {x1, x2} = −c. Being constant, it is A-exact as well. The duality isometry is
generated by the vectors β♯dx1 = −c ∂

∂x2 and β♯dx2 = c ∂
∂x1 . These are Killing vectors

for the metric G and satisfy Lβ♯eaB = 0. Performing the duality, the dual coordinate
one-forms (3.24) are

dX̃1 = (1 + chX3)dX1 − c ⋆dX2 ,

dX̃2 = (1 + chX3)dX2 + c ⋆dX1 ,

dX̃3 = dX3 .

(3.73)

The new background is determined by the field redefinition (3.20) and reads

g =
1

c2 + (1 + c h x3)2
[
(dx1)2 + (dx2)2

]
+ (dx3)2 ,

b =
1

2

c+ 2hx3 + c(hx3)2

c2 + (1 + c h x3)2
dx1 ∧ dx2 .

(3.74)

The procedure of section 3.2.4 can be applied to this case by using a T-duality along x1

and x2. Hence for preserving (approximate) conformality the dilaton (3.61)

φ = −1
2 ln

[
c2 + (1 + c h x3)2

]
(3.75)

has to be introduced. The following observations are made.

10See [56, 120, 121] for target-space approaches and [24, 25, 57, 59] for CFT approaches



52 3. O(d, d)-duality

• For c = 1, this is equivalent to the Q-flux background (3.68) with a translation
x3 → x3 − 1

h , which is not a symmetry.

• In general, the monodromy upon x3 → x3+1 for (3.74) is given by the O(3, 3)-matrix

Tmono =




1− ch 0 0 0 −c2h 0
0 1− ch 0 c2h 0 0
0 0 1 0 0 0

0 −h 0 1 + ch 0 0
h 0 0 0 1 + ch 0
0 0 0 0 0 1



, (3.76)

which is a combination of β- and B-transformations and therefore not a symme-
try of the theory. This means that x3 → x3 + 1 gives the same background as
T t
monoH(g, b)Tmono; thus Tmono is the transition function for (3.74).

As being inequivalent to the Q-flux background (3.68), (3.74) with (3.75) is an example of
a new approximate non-geometric background.

Actually, Poisson-duality induced by (3.72) is also admissible for the backgrounds T-
dual to (3.64). For the twisted torus (3.65) Poisson duality yields

gtt =
1

1 + c2
(
dx1 − hx3dx2

)2
+ (dx2)2 + (dx3)2

btt =
c

1 + c2
dx1 ∧ dx2 ,

(3.77)

which is a twisted torus again with a well-defined Kalb-Ramond field. Here duality acts
as gauge transformation by ξ = x1

1+c2
dx2 accompanied by a rescaling. Starting from the

T-fold (3.68) is similar; one obtains

gTf =
1

1 + (c− hx3)2
[
(dx1)2 + (dx2)2

]
+ (dx3)2 ,

bTf =
c− hx3

1 + (c− hx3)2 dx
1 ∧ dx2 .

(3.78)

Again, this is the Q-flux background up to a translation x3 → x3 − c
h – Poisson duality

merely acts as translations of x3. Hence Poisson duality with (3.72) preserves the global
structure of the backgrounds T-dual to (3.64).

3.3 Summary and discussion

In this chapter the target space symmetry structure of string theory has been explored. A
field redefinition (3.20) of the background accompanied with a transformation of the coordi-
nates (3.24) – both induced by a given O(d, d)-transformation – provides dual descriptions
of the classical system. For the new coordinates to be consistent, the integrability condi-
tions (3.25) have to be satisfied which guarantee the existence of certain isometries of the
background. The analysis of the isometry algebra revealed a Courant algebroid with bracket
(3.44) unifying the integrability conditions. The generators of O(d, d)-transformations have
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been analyzed in detail. In particular, well-known T-duality [31] is contained in O(d, d)-
duality as well as Poisson duality induced by β-transformations.

Since the method is not restricted to constant O(d, d)-transformations, non-abelian du-
alities can be treated as well. The present findings allow for decomposing them into the four
generating classes – diffeomorphisms, B-transformations, T-dualities and β-transformations.
It would be interesting to study non-abelian duality more detailed in this context. Related
to this, the connection to Poisson-Lie T-duality [122, 123] deserves further attention. There,
the condition for the existence of isometries present here is relaxed by having currents which
are not conserved but obey an extremal surface condition.

Although being an evident classical duality, the quantum aspects of O(d, d)-duality are
barely studied. In particular, the conjecture for the general shift of the dilaton needs to be
verified more thoroughly. Moreover, the discussion lacks a clear criterion for conformality
of a dual background. The arguments presented here rely on the symmetries and T-duality.
A discussion of global aspects of the procedure from the quantum field theory point of view
might be helpful.

A related global question concerns the values of the entries of the O(d, d) transforma-
tions; so far they can be non-constant, i.e. function-valued. For example, if periodicities
of certain compact directions are required, the entries might be restricted to integers or
integer-valued functions. However, up to now it is not clear if O(d, d)-duality allows for ”de-
compactifications” of dualized directions in a consistent way. In the conventional approach
to dualities, the preservation of compactness and periodic directions during dualization
seems to stem from the constraint of holonomies of the auxiliary gauge field by the La-
grange multiplier, which serves as the dual coordinate [119]. Since this issue is absent in
the method presented above, the question has to be approached differently.

Due to the problem of invertibility of the primitive of (3.24) discussed in section 3.2.1,
it is not clear yet whether O(d, d)-duality goes beyond the well-known O(d, d;Z)-duality
for toroidal backgrounds. However, it avoids the procedure of gauging isometries with the
associated problem of possible non-trivial holonomies and provides a direct relation between
the dual coordinates via (3.24) (cf. (3.29)). Moreover, all the conditions known from the
conventional approach of gauging isometries are recovered and interpreted in a geometric
fashion in terms of Lie and Courant algebroids. Furthermore, the approach of O(d, d)-
duality has lead to the construction of a new (approximate) non-geometric background.
Thus it seems to provide a fertile (at least) alternative approach to target-space dualities.

As an application, T- and Poisson duality for the flat rectangular three-torus with
constant H-flux was presented. This revealed the existence of exotic string backgrounds
eluding a conventional geometric description. These non-geometric backgrounds are char-
acterized by transition functions beyond the symmetries of the theory. They will be stud-
ied within the low energy effective description of (3.1) in the next chapter. However, the
proper description of non-geometric backgrounds requires an extension of string theory
which includes dualities as manifest symmetries. A modest step in this direction is taken
in chapter 5.
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Chapter 4

Geometric aspects of

non-geometric backgrounds

In the previous chapter the possibility for non-geometric string backgrounds has been shown
by the application of duality. As was described in the introduction, the T-dual fluxes
discovered in the chain (3.2.5) on the one hand allow for new string theory backgrounds
as they introduce additional possibilities for stabilizing moduli. On the other hand, they
describe the ”swampland” of gauged supergravity to some extend. In any case they cannot
be neglected in a holistic understanding of string theory.

In this section some properties of these fluxes and the associated backgrounds are
studied. First, the algebraic structure of the fluxes is described within a Courant algebroid
in a unified manner. The resulting Bianchi identities constitute important constraints
among the simultaneous presence of different fluxes, which is important for non-geometric
phenomenology. Since this structure describes all the fluxes at once it is a natural candidate
for formulating a gravity theory for all fluxes simultaneously. However, as has been shown
in section 2.2.2, this is not possible in general and requires the restriction to Lie algebroids.

Second, the low energy effective theory for the string sigma model (3.1) is formulated in
terms of Lie algebroids. This circumvents the technical problems of an approach by means
of Courant algebroids. Beside its autonomous interestingness, the connection between
gravity theories on different Lie algebroids is shown, which enables a patch-wise descrip-
tion of non-geometric string backgrounds. The approach straight-forwardly generalizes to
supergravities as well as to quantum corrections.

4.1 The Courant algebroid for dual fluxes

The H-flux emerges as higher abelian field strength to the Kalb-Ramond field B – H = dB
– and the geometric flux f is the structure constant of a non-holonomic frame on the tangent
bundle. Thus the geometric part of the duality chain (3.2.5) is well-understood. However,
the nature of the non-geometric Q- and R-flux is not clear;

Habc

TT (1)←−−→ fabc︸ ︷︷ ︸
geometric

TT (2)←−−→ Qab
c

TT (3)←−−→ Rabc

︸ ︷︷ ︸
non-geometric

.
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In [27] an ad-hoc gauge algebra is given which reproduces the Bianchi identities for
constant fluxes H, f , Q and R previously found by applying T-duality to the immediate
identity dH = 0 in a non-holonomic frame. In [52, 124] the gauge algebra is related to the
Courant bracket by computing the algebra of conserved charges and explicit expressions
for Q and R are provided.

To generalize these results, in [64] the non-geometric fluxes are described by a quasi-Lie
algebroid on the cotangent bundle. This can be seen as the complement to the quasi-Lie
algebroid on the tangent bundle describing the geometric fluxes. Analogous to f describing
a non-holonomic frame on TM with respect to the Lie bracket, Q describes a non-holonomic
frame on T ∗M with respect to the Koszul bracket (2.31). The Lie bracket is twisted
such that the H-flux is incorporated as the defect of the anchor property. Similarly, the
R is incorporated as defect from twisting the Koszul bracket. A unified mathematical
description of all the fluxes is found by combining the twisted brackets to a Courant
algebroid analogous to proposition 2.14. This Courant bracket is a global version of the
one found in [52] and is used to derive the Bianchi identities for general non-constant fluxes,
generalizing the work [27].

4.1.1 The proto-Lie bialgebroid for dual fluxes

The utilization of a twisted Koszul bracket for describing Q and R necessitates the in-
troduction of an alternating bivector β in addition to the background data (G,B). Does
β has to be considered an additional datum to describe space-time? For introducing the
Q-flux in section 3.2.5, a T-duality has been employed to convert the background to a
background on the cotangent bundle via (g + β) = (G + B)−1 (cf. footnote 9 and [125]
for an approach via quasi-Poisson sigma models). Hence β for the Q-flux is related to the
background (G,B) via

β = −(G+B)−1B (G+B)−t (4.1)

and does not comprise additional information. In the following, two quasi-Lie algebroids
for describing the geometric and non-geometric part of the chain (3.2.5) are formulated.
To this end, the background is assumed to be (G,B) with the bivector β given by (4.1).
The appropriate brackets are determined as follows.

• The geometric flux arises as structure coefficient of a non-holonomic frame {ea} for
TM , i.e

[ea, eb] = fmab em ⇐⇒ dea = −1
2 f

a
bc e

b ∧ ec ,

where the equivalence follows from (2.34). For this to be a Lie bracket, the Jacobi
identity has to be satisfied; this gives

∂[c|f
p
|ab] = fm[ab|f

p
m|c] (4.2)

which is always assumed in the following. Therefore the Lie bracket is appropriate
for describing the f -flux as structure coefficient.
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• In section 3.2.5 the Q-flux associated to two T-dualities of (3.64) was introduced by
a partial derivative of (4.1). This can be reproduced by the structure coefficient of
the Koszul bracket (2.31) with respect to (4.1). In a holonomic frame the structure
coefficients read

[ea, eb]K = Lβameme
b = dβab = ∂cβ

ab ec

since dea = 0. This legitimizes the Koszul bracket for describing the Q-flux. However,
β is not assumed to be a Poisson structure, i.e. (T ∗M, [·, ·]K , β♯; Θ) is a quasi-Lie
algebroid with the defect given by Θ (2.32).

Thus the Lie and Koszul bracket describe the f - and Q-flux as structure coefficients of
non-holonomic bases respectively. As invoked above, the H- and R-flux will be introduced
as a defect to the Lie algebroid properties by twisting:

• The most natural twist of the Lie bracket by H ∈ Γ(Λ3T ∗M) gives rise to the H-

twisted Lie bracket

[X,Y ]H = [X,Y ]− β♯ (ιY ιXH) . (4.3)

This is the quasi-Lie algebroid LH = (TM, [·, ·]L, idTM ;H) with the defect to the
anchor property (2.42) given by

∆LH
(X,Y ) = [X,Y ]H − [X,Y ] = β♯ (ιXιYH) (4.4)

since the anchor is the identity. In the non-holonomic frame introduced above the
bracket evaluates to

[ea, eb]H = (f cab −Habm β
mc) ec ≡ Fc

ab ec . (4.5)

• Similarly the Koszul bracket can be twisted byH, giving theH-twisted Koszul bracket

[ξ, η]HK = [ξ, η]K + ιβ♯ηιβ♯ξH . (4.6)

This is the quasi-Lie algebroid KH = (T ∗M, [·, ·]HK , β♯;R). Since β is not assumed to
be a Poisson structure, the defect to the anchor property of the twisted bracket adds
to the defect (2.42) of the Koszul bracket:

∆KH
(ξ, η) = β♯[ξ, η]HK − [β♯ξ, β♯η] = ιξιη

[
Θ+⊗3β♯(H)

]
≡ ιξιηR . (4.7)

Θ is given in (2.32) and locally [⊗3β♯(H)]abc = βamβbnβckHmnk. In the non-holonomic
frame the structure coefficients become

[ea, eb]HK =
(
∂cβ

ab + 2f [a|cmβ
m|b] + βamβbnHmnc

)
ec ≡ Qab

c e
c . (4.8)

Therefore the algebra for the geometric sector is determined by the structure coefficients
F with a defect H and the algebra for the non-geometric sector is determined by the
structure coefficients Q with a defect R. In particular, the precise form of the R-flux is a
consequence of the mathematical structures and analogy to the geometric sector. Indeed,
both structures combine to a proto-Lie bialgebroid [113], which is a generalization of a
Lie bialgebroid 2.13. Apart from diverse compatibility conditions and the duality of the
underlying vector bundles, a defining feature is the reciprocal relation between the defects
and the anchors: ∆LH

(X,Y ) = β♯(ιXιYH) and ∆KH
(ξ, η) = idTM (ιξιηR).
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4.1.2 The Courant algebroid and Bianchi identities

Analogous to proposition 2.14, the proto-Lie bialgebroid (LH ,KH) can be combined to a
Courant algebroid.

Proposition 4.1 ([64]). The proto-Lie bialgebroid (LH ,KH) gives rise to the Courant

algebroid Cdual = (TM ⊕ T ∗M, 〈·, ·〉+, J·, ·Kdual, α) with

α(X + ξ) = X + β♯ξ

〈X + ξ, Y + η〉± = ιXη ± ιY ξ
(4.9)

and with the bracket given in terms of the associated Lie derivatives (2.39) as

JX + ξ, Y + ηKdual = [X,Y ]H + LLH
X η − LLH

Y ξ − 1
2 dLH

〈X + ξ, Y + η〉− + ιY ιXH

[ξ, η]HK + LKH
ξ Y − LKH

η X + 1
2 dKH

〈X + ξ, Y + η〉− + ιηιξR .
(4.10)

Although not nilpotent, the derivatives dLH
and dKH

are defined by (2.34) with respect to

the associated brackets (4.3) and (4.6) respectively.

Before proving the proposition, the algebra defined by the bracket (4.10) is considered. For
a non-holonomic frame {ea} for TM and its dual {ea}, the bracket becomes

Jea, ebKdual = Fc
ab ec +Habc e

c

Jea, ebKdual = Qbc
a ec −Fb

ac e
c

Jea, ebKdual = Rabc ec +Qab
c e

c .

(4.11)

In particular, the second bracket is determined by the definition of the Lie derivative (2.39)
and the relation between the exterior derivative and the Lie algebroid bracket (2.34). The
algebra defined by (4.11) is a generalization of the ad-hoc gauge algebra given in [27] to
non-constant fluxes H, F , Q and R.

Proof of proposition 4.1. The anchor property is a lengthy but straight-forward evaluation.
The only difference to the case of a Lie bialgebroid 2.14 is the defect ∆ for the quasi-Lie
algebroids which is taken into account by the explicit appearance of H and R in the
definition of the bracket (4.10). The Leibniz rule can be evaluated directly: the last
property of (2.40) and the Leibniz rules for LH and KH give rise to

JX + ξ, f(Y + η)Kdual = fJX + ξ, Y + ηKdual +
[
(X + β♯ξ)f

]
(Y + η)

− 1
2〈X + ξ, Y + η〉−(dLH

− dKH
)f − ιY ξ dLH

f − ιXη dKH
f

= fJX + ξ, Y + ηKdual +
[
(X + β♯ξ)f

]
(Y + η)

− 1
2〈X + ξ, Y + η〉+(dLH

+ dKH
)f .

Since (dLH
+ dKH

)f(X + ξ) = (X + β♯ξ)f = α(X + ξ)f , D = dLH
+ dKH

on functions and
therefore the above calculation reproduces the correct Leibniz rule. Since the derivative D
is identified now, α ◦ D = 0 follows from

α(Df)(ξ) =
(
dKH

f + β♯dLH
f
)
(ξ) = (β♯ξ)f + βab ∂af ξb = (β♯ξ)f − (β♯ξ)f = 0 .
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Proving the fifth property in 2.2 is again long and straight-forward. It remains to show
the Jacobi identity. For a particular frame the Jacobiator becomes

JacCdual(ea, eb, ec) =− 3
(
∂[c|Fd

|ab] + Fm
[ab|Fd

|c]m +H[ab|mQmd
|c]
)
ed

− 3
(
∂[c|H|ab]d − 2Fm

[ab|H|cd]m
)
ed + 3

2 DHabc ,

JacCdual(ea, eb, e
c) =−

(
βcm∂mFd

ab + 2∂[a|Qcd
|b] −HmabRmcd −Fm

abQcd
m

+ 4Q[c|m
[a|F |d]

m|b]
)
ed −

(
βcm∂mHabd − 2∂[a|Fc

|b]d

− 3Hm[ab|Qmc
|d] + 3Fm

[ab|Fc
m|d]
)
ed + 3

2 DFc
ab ,

JacCdual(ea, e
b, ec) = +

(
−∂aRbcd − 2β[c|m∂mQ|b]d

a + 3Q[b|m
aQ|cd]

m

− 3F [b|
amR|cd]m

)
ed +

(
2β[c|m∂mF |b]

ad − ∂aQbc
d +Qbc

mFm
ad

+RbcmHmad − 4Q[b|m
[a|F |c]

m|d]

)
ed + 3

2 DQbc
a ,

JacCdual(e
a, eb, ec) =− 3

(
β[c|m ∂mR|ab]d − 2R[ab|mQ|cd]

m

)
ed − 3

(
β[c|m ∂mQ|ab]

d

+R[ab|mF |c]
md +Q[ab|

mQ|c]m
d

)
ed + 3

2 DRabc .

To simplify the Jacobiators further, the anchor can be applied. Since

α (JJA,BKdual, cKdual) = [α (JA,BKdual) , α(C)] = [[α(A), α(B)], α(C)] ,

the Jacobiators above become Jacobiators of the Lie bracket, i.e. trivial identites. Using
these identities together with

dH = 0 ⇐⇒ ∂[a|H|bcd] − 3
2 Fm

[ab|Hm|cd] = 0 ,

the Jacobiators can be written in terms of the Nijenhuis tensor (2.17) as

JacCdual(ea, eb, ec) =
1
2 DHabc = DT (ea, eb, ec) ,

JacCdual(ea, eb, e
c) = 1

2 DFc
ab = DT (ea, eb, ec) ,

JacCdual(e
a, eb, ec) = 1

2 DQbc
a = DT (ea, eb, ec) ,

JacCdual(e
a, eb, ec) = 3

2 DRabc = DT (ea, eb, ec) .

Hence the Jacobi identity of a Courant algebroid is satisfied. This completes the proof as
all properties in definition 2.2 are verified.

Bianchi identities

Bianchi identities are trivial identities which encode restrictions among the involved quan-
tities. The trivial identities for the four fluxes can be obtained from the Jacobi identity of
the Courant bracket above by anchoring, as was done in the proof. Since α ◦ D = 0 they
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read

α (JacCdual(ea, eb, ec)) = JacLie(ea, eb, ec) = 0 ,
α (JacCdual(ea, eb, e

c)) = JacLie(ea, eb, β
♯ec) = 0 ,

α
(
JacCdual(ea, e

b, ec)
)
= JacLie(ea, β

♯eb, β♯ec) = 0 ,
α
(
JacCdual(e

a, eb, ec)
)
= JacLie(β

♯ea, β♯eb, β♯ec) = 0 ,

(4.12)

together with

dH = 0 ⇐⇒ ∂[a|H|bcd] − 3
2 Fm

[ab|Hm|cd] = 0 . (4.13)

The precise form of the identities (4.12) can be read off from the Jacobiators given in the
proof of proposition 4.1. In particular, for constant fluxes the identities (4.12) coincide with
those previously derived in [27, 62, 63]. The identities (4.12) are generalized to double field
theory in [126, 97, 98, 66], where in particular the R-flux is accessible through conventional
dualities.

The Bianchi identities restrict the possibilities for the concurrent appearance of the
dual fluxes.

4.2 The structure of non-geometric patches

The dynamics of a string background is described by the equations of motion (3.58), which
retain conformal invariance of the quantized theory. They can also be formulated by varying
the action

S = − 1

2κ2

∫

M
ddx
√
detGe−2φ

(
R− 1

12 HabcH
abc + 4 ∂aφ∂

aφ
)
+O(α′) . (4.14)

with respect to G, B and φ. κ denotes a normalization constant and the metric is assumed
to be positive definite. This action is the low energy effective action for the massless
fields G, B and φ in the spectrum of string theory and can therefore also be derived from
scattering of these states. Moreover, the effective action for any O(d, d)-dual background
(g, b) (3.20) with appropriate dilaton (3.61) is of the form (4.14) because duality preserves
the form of the sigma model (3.1). The action is invariant under spacetime diffeomorphisms
and Kalb-Ramond field gauge transformations

B → B + dξ for ξ ∈ Γ(T ∗M) , (4.15)

i.e. under the geometric group Gdξ ⋊ diff(M). In section 3.2.5 string backgrounds have
been discovered whose global description requires patching with transformations beyond
the symmetries of the underlying theory. These changes of the transition functions are
a general feature of O(d, d)-duality: Let M(ij) ∈ O(d, d) be the transition function for a
background (G,B) from a patch Ui ⊂M to the patch Uj ⊂M ; it is an element of O(d, d)
since it arises from the structure group of the generalized (co)tangent bundle. Denoting
the generalized metric (2.10) in a local patch by H(i)(G,B), the transition function acts as

H(j)(G,B) =Mt
(ij)H(i)(G,B)M(ij) . (4.16)
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Performing the O(d, d)-duality induced by T ∈ O(d, d) amounts to a conjugation of the
generalized metric (cf. (3.18)), giving the field redefinition (3.20). Hence, if the new
background in the patch Ui is encoded in T tH(i)T , the new background in the patch Uj

becomes

T tH(j)(G,B) T = T tMt
(ij)H(i)(G,B)M(ij) T

=
(
T −1MijT

)t (T tH(i)(G,B) T
) (
T −1MijT

)
.

(4.17)

Therefore the new transition function for T -dual backgrounds reads

M′
(ij) = T −1MijT ∈ O(d, d) . (4.18)

In particular, it is possible that M′
(ij) /∈ Gdξ ⋊ GL(d).1 This happened for example for

the Q-flux background (3.68), where two T-dualities have changed a B-transformation to
a β-transformation. In summary, (4.18) attest O(d, d)-duality the general possibility for
producing non-geometric backgrounds.

If the transition function is not an element of Gdξ ⋊GL(d), the action (4.14) can only
be understood locally. The purpose of this section is the description of the theory in every
patch by providing the patch-wise interpretation discovered in [80]: On every patch the
theory is described by an action of the form (4.14). The actions on different patches differ
if the transition functions are non-geometric, i.e. if they are T-dualities, β-transformations
or more general transformations outside Gdξ ⋊ GL(d). To achieve this, Lie algebroids are
constructed whose differential geometries (cf. section 2.3.3) are appropriate for formulating
these actions. Then they are constructed explicitly with a particular emphasis on the
gauge transformations. Two examples of the recent literature are presented as well as the
extension of the procedure to all higher-order corrections and supergravities.

4.2.1 The Lie algebroid for O(d, d) transitions

The field redefinition (3.20) describing the change of the metric and the Kalb Ramond field
under duality is given by conjugation with the automorphism (3.19)

γ = t22 + (G−B)t12 : T
∗M → T ∗M

for an O(d, d)-matrix T with the four d × d-submatrices tij ; i, j ∈ {1, 2}. More precisely,
defining2 b = γ−1δ−t − g, the redefined background (g, b) is related to the old background
(G,B) via

g = (⊗2γ−1)(G) and b = (⊗2γ−1)(B) . (4.19)

As compared to (3.20), γ−1 : T ∗M → T ∗M is considered a Lie algebroid homomorphism
and acts as described in section 2.3.1:

(⊗2γ−1)(G)(X,Y ) = G
(
γ−t(X), γ−t(Y )

)

1From the perspective of the structure group of the tangent bundle, diff(M) ⊂ GL(d). Of course, as
opposed to mere changes of frame for TM , diffeomorphisms also change the coordinates of M .

2The inverse of (3.19) is γ−1 = tt11 + (g − b)tt12 and δ−1 = tt21 + (g − b)tt22, which follows from (3.20).
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and analogous for b. Hence (4.19) is equivalent to (3.20), but more convenient for the
following purposes. In particular, g is the metric on a Lie algebroid, which is related to G
as in theorem 2.17 and b turns out to be the right object for formulating the flux in the
different patches. To employ the full strength of this theorem, this Lie algebroid has to be
specified. There are two possibilities.

• t = (TM, [·, ·]t, ρ = γ−t): (4.19) suggests to interpret γ−t : TM → TM as anchor
of a Lie algebroid on the tangent bundle. As was done in section 3.2.2 the bracket
can be determined by computing the Lie bracket of anchored vector fields. With the
abbreviation3 Dā = γ−t(eā) = γmā∂m one obtains

[γ−t(X), γ−t(Y )] =
(
Xm̄Dm̄Y

ā − Y m̄Dm̄X
ā +Xm̄ Y n̄ F ā

m̄n̄

)
γ−t(eā) .

With the structure coefficient for the frame given by [ea, eb] = f cabec, F reads

F ā
b̄c̄ = γām

(
Db̄γ

m
c̄ −Dc̄γ

m
b̄ + γpb̄ γ

q
c̄ f

m
pq

)
. (4.20)

As the anchor property equates this with γ−t([X,Y ]t), the Lie algebroid bracket can
be read-off:

[X,Y ]t =
(
Xm̄Dm̄Y

ā − Y m̄Dm̄X
ā +Xm̄ Y n̄ F ā

m̄n̄

)
eā . (4.21)

The requirements of definition 2.9 are satisfied by construction.

• t∗ = (T ∗M, [·, ·]t∗ , ρ̃ = G−1 ◦ γ): The field redefinition (3.20) for the metric can be
rewritten as

g = γ−1Gγ−t =
(
G−1γ

)−1
G−1

(
G−1γ

)−t
. (4.22)

Inverting this relation is interpreted as giving a metric g̃ on the cotangent bundle via

g̃ =
(
G−1γ

)t
G
(
G−1γ

)
≡
[
⊗2
(
G−1 ◦ γ

)t]
(G) . (4.23)

Using the redefinition (3.20) for the Kalb-Ramond field and g̃, the equivalent to the
B-field on the cotangent bundle reads

β̃ =
[
⊗2
(
G−1 ◦ γ

)t]
(B) ⇐⇒ β̃ = g̃ b g̃ . (4.24)

Thus the field redefinition (3.20) implies an equivalent field redefinition to a back-
ground (g̃, β̃) on the cotangent bundle. Hence, mimicking the construction of t, the
anchor is indeed given by ρ̃ = G−1 ◦ γ : T ∗M → TM and the bracket reads

[ξ, η]t∗ =
(
ξm̄D

m̄ηā − ηm̄Dm̄ξā + ξm̄ ηn̄Q
m̄n̄

ā

)
eā , (4.25)

with Dā = ρ̃(eā) and the structure coefficient

Qāb̄
c̄ = ρ̃c̄m

(
Dāρ̃mb̄ −Db̄ρ̃mā + ρ̃pā ρ̃qb̄ fmpq

)
. (4.26)

3The notations of section 3.2.1 are employed. In particular, γ ≡ (γa
ā), γ−1 ≡ (γā

a), γt ≡ (γā
a) and

γ−t ≡ (γa
ā).
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Therefore the field redefinition (3.20) together with the Riemannian structure of the man-
ifold M gives rise to two Lie algebroids t and t∗ associated to the redefined background
(g, b). Indeed, they are equivalent as Lie algebroids.

Proposition 4.2. There exists a Lie algebroid isomorphism such that t ∼= t∗. More pre-

cisely, the Lie algebroid isomorphism is given by g (4.19).

Proof. The conditions in definition 2.10 have to be checked. The redefined metric is a
bundle isomorphism g : TM → T ∗M . Using the definition of ρ̃ and the field redefinition
(3.20) or equivalently (4.19) gives

ρ̃ ◦ g =
(
G−1 ◦ γ

)
◦
(
γ−1 ◦G ◦ γ−t

)
= γ−t = ρ .

To prove g([X,Y ]t) = [g(X), g(Y )]t∗ , the relation ρ = ρ̃ ◦ g is employed. The anchor
properties can be evaluated as follows:

ρ̃ ◦ g
(
[X,Y ]t

)
= ρ
(
[X,Y ]t

)
= [ρ(X), ρ(Y )] = [ρ̃ ◦ g(X), ρ̃ ◦ g(Y )] = ρ̃

(
[g(X), g(Y )]t∗

)
.

Since ρ̃ is invertible as composition of the invertible maps γ and G−1, this implies the
desired relation between the brackets. Hence g is a Lie algebroid isomorphism.

The relation between the two Lie algebroids induced by the field redefinition can be
summarized in the following commuting diagram:

t∗ T ∗M

t TM

ρ̃

γ

G−1g

ρ

The Lie algebroid t is associated to the background (g, b) in (3.20) via b. For the interpre-
tation of t∗ the Lie algebroid isomorphism g is used instead of decomposing β̃ analogous to
b. Noting that g̃ = (⊗2g−1)g since g̃ = g−1, the new Kalb-Ramond field similarly converts
to b̃ = (⊗2g−1)b. Hence t∗ describes the background (g̃, b̃) on T ∗M , which is related to the
new background (g, b) by the isomorphism g.

4.2.2 The patch-wise effective theory: Lie-algebroid gravity

In this section the proper analogue of the effective action (4.14) in different O(d, d)-patches
is formulated. Since O(d, d)-transformations act on the background by the field redefinition
(3.20), the transitioned action has to be formulated in terms of the resulting background.4

In particular, all the symmetries have to be retained in the transition and the actions must
coincide in order to describe the same theory. The difficulty in achieving this lies in the
mixing of metric and Kalb-Ramond field induced by (3.20), which implies a mixing of the
initial gauge transformations and diffeomorphisms. Thus the aim is to identify the correct
symmetries in the new patch.

4The new action is not the low energy effective action associated to the O(d, d)-dual sigma model as the
transition is described by a mere change of the background, which is not a duality.
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In the previous section, two Lie algebroids have been identified whose anchors relate the
initial background and the redefined one. Hence the general structure of the redefinition is
the existence of a Lie algebroid isomorphism ρ : A→ TM between the two Lie algebroids
A = (A, [·, ·]A, ρ) and (TM, [·, ·], idTM ) whose respective metrics g and G are related via

g = ⊗2ρt(G) ∈ Γ(
⊙2A∗) ; (4.27)

these are the assumptions for theorem 2.17. In particular, the relations (2.51) and (2.57) are
used to translate the connection, the curvature and the torsion: Indicating the geometric
objects on A with a hat, they relate to those on TM by

R̂α
βγδ = ραa ρ

b
β ρ

c
γ ρ

d
δ R

a
bcd

R̂αβ = ρaα ρ
b
β Rab

R̂ = R

T̂α
βγ = ραa ρ

b
β ρ

c
γ T

a
bc

with {eα} a frame for A and {ea} a frame for TM.

Symmetries

By construction, also the geometric objects on the Lie algebroids A are proper tensors,
i.e. behave in the ordinary way under diffeomorphisms: On the tangent bundle, diffeo-
morphisms induce special changes of frame related to the coordinate frame and changes
of coordinates on the underlying manifold. For Lie algebroids whose underlying bundle
has the same rank as the dimension of the manifold and an invertible anchor – which is in
particular the case for t and t∗ – there is a proper notion of coordinate frame as well. Let
{xa} be a basis for M and { ∂

∂xa } the coordinate frame for TM with its dual {dxa}. Then
{ρ−1( ∂

∂xa ) ≡ ∂Aa } is a frame for the vector bundle A with dual {dAxa} since ρ is invertible.
This follows from

dAx
a
(
∂Ab
)
= ρ

(
ρ−1
(

∂
∂xb

))
xa =

∂xa

∂xb
= δab (4.28)

by (2.34). Hence {dAxa} is indeed the dual frame. Since dAxa = ρ−t(dxa) by proposi-
tion 2.12 and since the anchor is linear, the frame behaves in the ordinary way under a
change of basis xa → ya

′
(x):

∂Aa =
∂ya

′

∂xa
∂Aa′ and dAx

a =
∂xa

∂ya′
dAy

a′ . (4.29)

The transformation behavior for arbitrary tensors then follows from their multilinearity.

This shows that any tensor on A transforms as usual under diffeomorphisms. It remains
to discuss gauge transformations. The Lie algebroids t and t∗ constructed from the field
redefinition also satisfy

b = ⊗2ρt(B) ∈ Γ(Λ2A∗) , (4.30)
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which is the analogue of the Kalb-Ramond field from the perspective of the action. Indeed,
by using proposition 2.12, b inherits the gauge transformations from B:

⊗2ρt(B + dξ) = b+⊗2ρt(dξ) = b+ dA
(
ρtξ
)
. (4.31)

Thus the b-field gauge transformations are b → b + dAσ for σ ∈ Γ(A∗). The associated
gauge invariant object is

Θ = dAb = ⊗3ρt(H) ; (4.32)

the relation to the H-flux H = dB follows from proposition 2.12 and (4.30). In particular,
similar to the connections, the curvatures and the torsions according to theorem 2.17,
also the gauge invariant fluxes are related to each other by applying the anchor; B and b

are related by anchoring as well, but are gauge dependent quantities. These observations
lead to the following notion for tensors on A, which distinguishes objects with a gauge
dependence stemming from the B-dependence of the anchor from those with an inherent
gauge dependence.

Definition 4.3. A section τ ∈ Γ(
⊗r A⊗⊗sA∗) of the Lie algebroid A = (A, [·, ·]A, ρ) is

called a ρ-tensor of type (r, s) if

[
(⊗rρ)⊗ (⊗sρ−t)

]
(τ) ∈ Γ (

⊗rTM ⊗⊗sT ∗M)

is gauge invariant. A ρ-gauge transformation of a k-form τ ∈ Γ(ΛkA∗) is given by

τ → τ + dAσ (4.33)

for a (k − 1)-form σ ∈ Γ(Λk−1A∗).

In other words, a ρ-tensor is characterized as a section whose image under the anchor is a
conventional, gauge invariant tensor. Written in components with ρ ≡ (ρaα), the section
τα1...αr

β1...βs is a ρ-tensor if there exists a gauge invariant (r, s)-tensor T with

T a1...ar
b1...bs = ρα1

a1 . . . ραr
ar ρβ1

b1 . . . ρ
βs

bs τ
α1...αr

β1...βs .

Moreover, any contractions or traces of ρ-tensors are again ρ-tensors as an anchor always
contracts with its inverse. In particular, (2.51) shows that the Levi-Civita connection ∇̂
and the associated curvature R̂ and torsion T̂ on A are ρ-tensors as well as Θ due to
(4.32). On the other hand, b is not a ρ-tensor as (4.30) relates it to B, which is gauge
dependent. This gauge dependence amounts to a ρ-gauge dependence of b in terms of
A-exact two-forms.

The action

As has been shown above, R̂ and Θ are the analogues of R and H on the Lie algebroid
and related to the latter by applying the anchor. To formulate the Lagrangian analogous
to the one appearing in (4.14), the dilaton φ is assumed to be unchanged. This can be
understood as extension of the principle observed for the metric, the Kalb-Ramond field,
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the connection and the curvature: The geometric objects on A are related to those on
TM by applying the anchor. Since φ is a scalar, the action of the anchor is trivial. This
completes the list of ingredients for a ρ-scalar Lagrangian analogous to (4.14).

For the integration, the duality invariant measure
√
detGe−2φ is taken as in (4.14).

However, using (4.27) the first factor can be written in terms of the new metric as

√
detG =

√
det (⊗2ρ−tg) =

√
det g | det ρ−1| . (4.34)

This allows to formulate the diffeomorphism and A-gauge invariant action

ŜA = − 1

2κ2

∫

M
ddx

√
det g | det ρ−1| e−2φ

(
R̂− 1

12 Θαβγ Θ
αβγ + 4DαφD

αφ
)
. (4.35)

In particular, ρ-scalars and conventional scalars coincide. For the Ricci scalar this was
already observed in (2.57), and for contracted terms it is a consequence of the contraction
of anchors. For example

Θαβγ g
αµgβνgγρΘµνρ = HabcG

amGbnGckHmnk (4.36)

by (4.32) and the inverse of (4.27). Together with (4.34) this implies the equivalence of
ŜA (4.35) and S (4.14):

Proposition 4.4 ([80]). Let A = (A, [·, ·]A, ρ) with rank(A) = dim(M) and an invertible

anchor. Let A and TM be equipped with a metric and a two-form (g, b) and (G,B) respec-
tively, which are related by g = ⊗2ρt(G) and b = ⊗2ρt(B). Then the theories ŜA (4.35)
and S (4.14) coincide to all orders in α′:

ŜA(g, b)
g=⊗2ρt(G)←−−−−−−→
b=⊗2ρt(B)

S(G,B) .

The result applies to all α′-corrections since the effective action for the bosonic string
consists of contractions and covariant derivatives of the curvature tensor, H and the dilaton.
Since they are related to the quantities on A by anchoring, the above procedure extends
to any action comprising these fields.

Interpretation

The transition functions, whose impact on the background is given by the field redefinitions
(4.27) and (4.30), are elements of O(d, d). In section 4.2.1 the isomorphic Lie algebroids
t = (TM, [·, ·]t, ρ = γ−t) and t∗ = (T ∗M, [·, ·]t∗ , ρ̃ = G−1◦γ) have been constructed from the
redefinition (3.20) which provide the geometry for the redefined theory. Now the change
of the background under the transition between patches is considered by taking a closer
look to the generators of O(d, d) as discussed in section 3.2.3. Let (G,B) be a background
requiring the following transition functions:

• Change of frame (3.47): The map (3.19) is given by γA = A
−t. Then ρ = A and

(g, b) = (AtGA,AtBA). This conserves the Lagrangian, but the measure
√
detG

receives an additional factor | detA−1|. If A stems from a diffeomorphism, this com-
pensates the Jacobian determinant of the change of coordinates. Hence Ŝt = S for
diffeomorphisms.
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• B-transformations (2.2): Since γ is just the identity, also ρ = 1 and the background
in the new patch coincides with the background in the initial patch5; (g, b) = (G,B).
Again Ŝt = S

• β-transformations (2.12): Here the anchor reads ρ = [1 − (G − B)β]−t. Thus the
transition is very complicated as it in particular involves the background itself, which
causes the mixing of coordinate and gauge transformations.

• T-duality (2.7): Similar to β-transformations, the anchor ρ = 1 − 1k + (G − B)1k
leads to a complicated transition with a B-gauge dependence in every tensor.

The complicated forms of the anchor for the non-geometric transition functions related
to β-transformations and T-duality illustrate the difficulty of finding the action (4.35) by
direct computations as opposed to the approach using Lie algebroids followed here.

It is also always possible to change from the tangent bundle picture t to the cotan-
gent bundle picture t∗ by successively applying proposition 4.2, theorem 2.17 and proposi-
tion 4.4.

In total, the theory on different patches related by O(d, d)-valued transition functions
can be summarized by figure 4.1.

S(G,B) ŜA(g, b)

TM A

g = ⊗2ρt(G)

b = ⊗2ρt(B)

Figure 4.1: Every patch is described by a different action

Hence the suggested prescription provides a global understanding in particular of the theory
on non-geometric backgrounds as being governed by the different actions (4.35) on different
patches.

Moreover, the equations of motion for the redefined action ŜA (4.35) read

0 = R̂αβ + 2 ∇̂α∇̂βφ− 1
4 Θαµν Θβ

µν +O(α′) ,

0 = gαβ ∇̂αφ ∇̂βφ− 1
2g

ab ∇̂α∇̂βφ− 1
24 Θαβγ Θ

αβγ +O(α′) ,

0 = 1
2 ∇̂µΘµαβ − ∇̂µφΘµαβ +O(α′) ,

(4.37)

which follows directly from applying the anchor to the ordinary equations of motion (3.58)
and proposition 4.4 or by direct variation with respect to g, b and φ. Hence ŜA can in
particular be considered as extended gravitational theory on a Lie algebroid, which can be
studied on its own right, i.e. without a relation to the theories on TM .

5In this case the difference to actual duality is most apparent: Whereas the Kalb-Ramond field of the
new background for duality is shifted, the Kalb-Ramond field in a different patch remains the same.
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Remark 2. The initial goal for formulating the theory for redefined backgrounds was a
global description of non-geometric backgrounds by a single action. This was motivated
by the field redefinition (G + B)−1 = g−1 + β for the Q-flux presented in section 3.2.5
and introduced in [52]. The new background (3.71) appears to be globally well-defined as
the metric is well-defined and β changes under the transition by a gauge transformation.
However, the redefinition of the action from (4.14) to (4.35) also changes the symmetry
group according to (4.18). In particular, what appears to be a gauge transformation for
the background (3.71) is not a symmetry of the redefined action (4.35) as it stems from β-
transformations for the initial background, which are not symmetries for (4.14) either. As
advocated in [127, 128, 129, 77], the redefined action (4.35) related to the new background
might be globally well-defined if certain terms are neglected and if one restricts to very
special backgrounds. This approach is pursued further in [130, 131].

4.2.3 Examples

The construction developed in the previous sections generalizes two particular constructions
appearing in the recent literature, which are briefly presented for the sake of completeness.
The first example provides a Lie algebroid structure t on TM and the second instance
provides a Lie algebroid t∗ on T ∗M (see section 4.2.1).

An example for t: The Q-flux redefinition

The first example follows the setting employed in [127, 128, 77]. The initial background
(G,B) is related to the new background (g, β) via

(G+B)−1 = g−1 + β . (4.38)

Hence, g is a metric on TM and β an alternating bivector. This redefinition is related to
the O(d, d)-transformation

TI =

(
0 g−1

g 0

)
. (4.39)

Using (3.20) with TI gives the background (g, b) with b related to β defined above by β =
g−1bg−1. This gives rise to a Lie algebroid t on TM with anchor ρI = 1−G−1B and bracket
given in terms of the anchor by (4.20) and (4.21). Hence the procedure for determining the
new action developed above is applicable; although the redefined quantities are cumbersome
if written down explicitly (cf. [80]), (4.35) retains all the desired symmetries.

This construction is particularly useful for the Q-flux background (3.68) as it becomes
very simple: In this case g = 1∗ and (4.39) describes a complete T-duality; see (3.71),
footnote 9 in chapter 3 and remark 2 for details.

An example for t∗: Quasi-Poisson geometry

The second example was constructed in [78, 79]. Starting from the background (G,B), the
underlying O(d, d)-transformation for the redefinition (4.27) and (4.30) is

TII = T−2B Tβ =

(
1 −β
2B −1

)
, (4.40)
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i.e. a composition of B- and β-transformations, provided that the Kalb-Ramond field is
invertible with B = β−1. The anchor is given by ρ̃ = −β ≡ β♯.6 The fields (4.27) and
(4.30) on the cotangent bundle are given by

g̃ = −β Gβ and β̃ = −β (4.41)

respectively. The bracket on T ∗M is determined by the structure coefficient (4.26), which
on a holonomic frame reads

Qāb̄
c̄ = −Bc̄m

(
βnā∂nβ

mb̄ − βnb̄∂nβmā
)

= −βāmβ b̄n (∂nBc̄m − ∂mBc̄n)

= ∂c̄β
āb̄ − βāmβ b̄nHmnc̄ ,

(4.42)

where ∂M−1 = −M−1(∂M)M−1 was used multiple times. This is the structure constant
of the (−H)-twisted Koszul bracket (4.6) given in (4.8). The bracket does not satisfy the
anchor property a priori; the defect is given by (4.7) as

∆K−H
= ιηιξ

[
⊗3β♯(H)−Θ

]
, (4.43)

with Θ introduced in (2.32). However, in a holonomic frame and using β = B−1, Θ can be
evaluated to

Θabc = βam∂mβ
bc + βcm∂mβ

ab + βbm∂mβ
ca = βamβbnβckHmnk ; (4.44)

this implies ∆K−H
= 0. Thus the Lie algebroid t∗ coincides with the Lie algebroid K−H =

(T ∗M, [·, ·]−H
K , β♯). The vanishing of the defect, i.e.

Θ = ⊗3β♯(H) (4.45)

means that β is a twisted or quasi-Poisson structure [116, 132]: The Poisson bracket is
given by {f, g} = β(df, dg) and its Jacobiator reads

{{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = ιdhιdgιdfΘ = ιdhιdgιdf

[
⊗3β♯(H)

]

by using (4.45). Thus the Poisson bracket defined by β does not satisfy the Jacobi identity;
the defect is given in terms of the twist of the Koszul bracket.

Since this redefinition gives a gravity theory (4.35) whose underlying structure is the
(−H)-twisted Koszul bracket, it is reasonable to expect a relation to the non-geometric
sector of the duality chain (3.2.5) – In section 4.1.1 this structure was identified as being
suitable for describing the Q- and R-flux.

Even more interesting, it naturally trades the Kalb-Ramond field for a quasi-Poisson
structure. Since the Jacobi identity is not satisfied for H 6= 0, this might hint towards
non-associative structures in string theory.7 Moreover, since the work of Kontsevich on
the quantization of Poisson manifolds [135] there has been a lot of progress in quantizing
quasi-Poisson structures as well [136, 137, 138, 139]. Thus the action (4.35) in terms of the
quasi-Poisson structure β might enable a direct quantization of this class of gravitational
theories.

6The difference in the convention between matrix multiplication and the ♯-prescription is a transposition.
7See [56, 120, 121, 24, 25, 57, 59, 133, 134].
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4.2.4 Lie-algebroid supergravity

Proposition 4.4 describes the redefinition for the massless Neveu-Schwarz-Neveu-Schwarz
(NS-NS) sector of closed bosonic string theory to all orders in α′. However, the superstring
spectrum, which can be obtained by adding fermions to (3.1), contains additional massless
bosonic states – the Ramond-Ramond (R-R) sector – and massless fermionic states in the
R-NS and NS-R sectors (see e.g. [13]). The general rule for translating geometric objects
to the Lie algebroid A is by applying the anchor: For T an (r, s)-tensor on TM ,

τ =
[(
⊗rρ−1

)
⊗
(
⊗sρt

)]
T (4.46)

is an (r, s) ρ-tensor according to definition 4.3. This has been shown explicitly for the
objects related to the metric and the Kalb-Ramond field and will assumed to be a general
rule for the remaining fields.

In the following, the bosonic ten-dimensional supergravities arising from closed string
theory are considered. The translation of fermionic terms reduces to the problem of re-
defining the spin connection done in (4.61); details can be found in [79, 80].

Type II theories

Focusing on type II supergravities, the massless field content given in table 4.1 has to
be considered. The difference between IIA and IIB is that the chiralities of the left- and
right-moving Ramond ground states differ for the former but coincides for the latter. Here

type
bosonic fermionic

NS-NS R-R NS-R/R-NS

IIA G,B, φ C1, C3 2× ψ, λ
IIB G,B, φ C0, C2, C4 2× ψ, λ

Table 4.1: The massless spectrum of IIA and IIB theories.

Cn is an n-form, ψ is a spin 3/2 fermion – the gravitino – and λ is a spin 1/2 fermion –
the dilatino. While the transition for the metric, the Kalb-Ramond field and the dilaton
has been established above, a rule must be found for treating the R-R fields.

The forms Cn appear in the effective action for the type II string via the field strengths

IIA: IIB:
F2 = dC1 , F1 = dC0 ,
F4 = dC3 − dB ∧ C1 , F3 = dC2 − C0 dB ,

F5 = dC4 − 1
2C2 ∧ dB + 1

2B ∧ dC2 .

(4.47)

These field strengths are proper tensors as they are invariant under B-field gauge trans-
formations B → B + dξ and the C-field gauge transformations

IIA: IIB:
C1 → C1 + dΛ0 , C0 → C0 ,
C3 → C3 + Λ0 dΛ2 − dB , C2 → C2 + dΛ1 ,

C4 → C4 + dΛ3 − 1
2dB ∧ Λ1 +

1
2dC2 ∧ ξ

(4.48)
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for Λn arbitrary n-forms. In the previous sections the anchor translated between the
geometric quantities on the tangent bundle and the Lie algebroid. Since the field strengths
defined above are tensors, they can be translated to the Lie algebroid via (4.46), giving
ρ-tensors. The same can be done for the associated gauge fields: Defining

Ĉn = ⊗nρt(Cn) ∈ Γ(ΛnA∗) ,

the translated field strengths retain their form. For F5 for example, this means

F̂5 = ⊗5ρt(F5) = ⊗5ρt
(
dC4 − 1

2C2 ∧ dB + 1
2B ∧ dC2

)

= dAĈ4 − 1
2 Ĉ2 ∧ dAb+ 1

2b ∧ dAĈ2 ,

where proposition 2.12 and (4.30) was used as well as the compatibility of Lie algebroid
homomorphisms with tensor products – in this case ρt(ξ ∧ η) = ρt(ξ) ∧ ρt(η) for ξ and
η one-forms. Thus, apart from R̂, Θ and φ, the following quantities appear on the Lie
algebroid side:

IIA on A: IIB on A:
F̂2 = dAĈ1 , F̂1 = dAĈ0 ,

F̂4 = dAĈ3 − dAb ∧ Ĉ1 , F̂3 = dAĈ2 − Ĉ0dAb ,
F̂5 = dAĈ4 − 1

2 Ĉ2 ∧ dAb+ 1
2b ∧ dAĈ2 .

(4.49)

Also the gauge transformations (4.48) translate to the Lie algebroid consistently. Denoting
Λ̂n = ⊗nρ−1(Λn), the gauge transformation for C4 becomes

Ĉn → Ĉn +⊗4ρt
(
dΛ3 − 1

2dB ∧ Λ1 +
1
2dC2 ∧ ξ

)

= Ĉn + dAΛ̂3 − 1
2dAb ∧ Λ̂1 +

1
2dAĈ2 ∧ ρt(ξ) .

In particular, it involves the b-field gauge transformation b → b + dAρt(ξ). In total, the
new gauge transformations read

IIA on A: IIB on A:
Ĉ1 → Ĉ1 + dAΛ̂0 , Ĉ0 → Ĉ0 ,

Ĉ3 → Ĉ3 + Λ̂0 dAΛ̂2 − dAb , Ĉ2 → Ĉ2 + dAΛ̂1 ,

Ĉ4 → Ĉ4 + dAΛ̂3 − 1
2dAb ∧ Λ̂1 +

1
2dAĈ2 ∧ ρt(ξ) .

(4.50)

Then gauge invariance of the translated field strengths (4.49) under the translated gauge
transformations (4.50) follows in particular from nilpotency of dA.

The bosonic part of the ten-dimensional type II actions includes the following actions
apart from the universal NS-NS actions (4.14) (see e.g. [13]):

SARR ∼
∫
d10x
√
detG

(
|F2|2 + |F4|2

)
, SACS ∼

∫
B ∧ dC3 ∧ dC3 ,

SBRR ∼
∫
d10x
√
detG

(
|F1|2 + |F3|2 + 1

2 |F5|2
)

, SBCS ∼
∫
C4 ∧H ∧ F3

(4.51)

with |Fn|2 = 1
n!(Fn)a1...an(Fn)

a1...an . In addition, in IIB theory the five-form F5 is self dual,
i.e. ⋆F5 = F5; this has to be considered an additional constraint. The R-R Lagrangian
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densities L
A/B
RR are invariant under the gauge transformations (4.48) by definition. Their

translation is therefore analogous to the translation performed in section 4.2.2, i.e. Fn has
to be exchanged with F̂n and the measure factor

√
detG with

√
det g| det ρ−1| as in (4.34).

The Chern-Simons terms are more subtle. Under gauge transformations they transform as

SACS → SACS +
∫
d (ξ ∧ dC3 ∧ dC3) ,

SBCS → SBCS +
∫
d (Λ3 ∧H ∧ F3) ,

(4.52)

where evaluation of the second line requires the anomalous Bianchi identity

dF3 = H ∧ F1 . (4.53)

Thus the Chern-Simons terms are invariant up to total derivatives. For translating this
terms, it is useful to give them locally. In the coordinate frame {dxa} they read

B ∧ dC3 ∧ dC3 =
1

2!4!4! ε
a1...a10 (B ∧ dC3 ∧ dC3)a1...a10 vol ≡ LACS vol ,

C4 ∧H ∧ F3 =
1

4!3!3! ε
a1...a10 (C4 ∧H ∧ F3)a1...a10 vol ≡ LBCS vol ,

(4.54)

with the volume form vol =
√
detGdx1 ∧ · · · ∧ dx10 and ε the Levi-Civita tensor, which

is related to the Levi-Civita symbol ǫ ∈ {0,±1} by
√
detGε = ǫ. The Levi-Civita tensor

can also be translated using (4.46); thus the Chern-Simons Lagrangian densities LA/B
CS are

ordinary scalars and translate directly to ρ-scalars. In particular, the gauge transformations
of the redefined Chern-Simons terms are top degree exact form on A, i.e. contribute as∫
dAσ for σ ∈ Γ(Λ9A∗). Due to the redefined Levi-Civita tensor this, however, agrees with

an exact ten-form:
∫
dAσ =

∫
d(⊗9ρ−tσ). Moreover, according to (4.34) the redefined

volume form is

v̂ol =
√
det g | det ρ−1| dx1 ∧ · · · ∧ dx10 . (4.55)

Thus, in total the translated bosonic sector of type II supergravities is governed by the
universal action ŜA (4.35) together with

ŜARR ∼
∫
v̂ol
(
|F̂2|2 + |F̂4|2

)
, ŜACS ∼

∫
b ∧ dAĈ3 ∧ dAĈ3 ,

ŜBRR ∼
∫
v̂ol
(
|F̂1|2 + |F̂3|2 + 1

2 |F̂5|2
)

, ŜBCS ∼
∫
Ĉ4 ∧Θ ∧ F̂3

(4.56)

with Θ given in (4.32) and the Chern-Simons terms have to be understood as in (4.54)
with respect to the volume form (4.55) and the translated Levi-Civita tensor ε̂ satisfying√
det g| det ρ−1|ε̂ = ǫ. This concludes the translation of the bosonic sector.

Heterotic theories

From the string theory perspective the heterotic string arises from considering a 26-
dimensional bosonic left-moving sector and a 10-dimensional fermionic right-moving sector.
The overlapping 16 dimensions have to be compactified on a 16-dimensional even self-dual
Euclidean lattice, which only leaves two options: either the root lattice of E8 × E8 or the
root lattice of SO(32). Then, apart from the background (G,B, φ), the massless bosonic
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fields of heterotic supergravity include a gauge connection A = AaT a ∈ Γ(T ∗M ⊗ g) with
g the Lie algebra for either E8×E8 or SO(32) with generators T a. Due to gauge anomaly
cancellation the H-term in (4.14) receives corrections; it reads

H = dB − α′
4 (ΩYM − ΩL) , (4.57)

where ΩYM and ΩL denote the Yang-Mills and Lorentz Chern-Simons three-forms

ΩYM = tr
(
A ∧ dA− 2i

3 A ∧A ∧A
)
∈ Γ

(
Λ3T ∗M ⊗ g

)
,

ΩL = tr
(
ω ∧ dω − 2

3 ω ∧ ω ∧ ω
)
∈ Γ

(
Λ3T ∗M ⊗ so(10)

)
.

(4.58)

The wedge product of gauge connections includes the commutator of the Lie-algebra part
– A ∧ A = Aa ∧ Ab ⊗ [T a, T b] – and the trace is normalized such that tr(T aT b) = δab.
Moreover, ω ∈ Γ(T ∗M ⊗ so(10)) denotes the spin connection.8 It is defined by being
given with respect to an orthonormal frame in which G = δµνe

µ ⊗ eν . For the bases of
TM being related via eµ = eaµea and denoting the vector-valued connection one form by

ωa = ωb
a ⊗ eb = ∇ea, the spin connection ωµ

ν is given in terms of an arbitrary connection
ωa

b by

ωµ
ν = eµa de

a
ν + eµae

b
ν ω

a
b . (4.59)

Then ω = ωµ
νeµe

ν ∈ Γ(T ∗M ⊗ End(TM)). The respective trace is normalized as above
with respect to the generators of so(10). The field strength for the Yang-Mills gauge
connection is given by F = dA− iA ∧A and the action is

Shet = −
1

2κ2

∫
d10x
√
detGe−2φ

(
R+ 4(∂φ)2 − 1

2 |H|2 − α′
4 tr|F |2

)
. (4.60)

The translation to the Lie algebroid is again straight-forward using (4.46). In particular,
the gauge connection Â ∈ Γ(A∗ ⊗ g) on the Lie algebroid is related to the one on the
tangent bundle by applying the anchor to the form-part:

Â = ÂaT a = ρt(Aa)T a .

Then F̂ = dAÂ − iÂ ∧ Â which implies |F̂ |2 = |F |2. This procedure also leaves the trace
unaltered. Moreover, the spin connection on the Lie algebroid with g = δµν ê

µ ⊗ êν , which
implies êµ = ρteµ, is given by

ω̂µ
ν = êµα dAê

α
ν + êµαê

β
ν ω̂

α
β = ρt(ωµ

ν) (4.61)

with ω̂α = ∇̂eα. Then, the redefined action is given by

Ŝhet = −
1

2κ2

∫
v̂ol e−2φ

(
R̂+ 4(Dφ)2 − 1

2 |Ĥ|2 − α′
4 tr|F̂ |2

)
(4.62)

with the hatted quantities defined in the straight-forward manner.
This completes the translation of supergravity theories to Lie algebroids. They exem-

plify the general procedure of formulating geometric theories on Lie algebroids.

8A connection one-form on an n-dimensional vector bundle V is a End(V )-valued one form. In the
language of principle bundles End(V ) can be considered the Lie algebra associated to the general structure
group GL(n). Since the manifold is assumed to be oriented and equipped with a metric the structure group
reduces to SO(n). Hence the spin connection takes values in its Lie algebra so(n).
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4.3 Summary and discussion

This chapter was devoted to the geometrical description of non-geometric backgrounds.
In the first part the algebraic structure for describing the T-dual fluxes appearing in the
duality chain (3.2.5) was developed. It is composed of two quasi-Lie algebroids – one,
the H-twisted Lie bracket, for the geometric sector of duality and another, the H-twisted
Koszul bracket, for the non-geometric sector. They combine into a proto-Lie bialgebroid
which allows to construct a Courant algebroid including both sectors at once. In particular,
the Bianchi identities for the fluxes follow from the Jacobi identity of the Courant algebroid.
However, as has been shown is section 2.2.2, it is not possible to derive a unified gravity
theory for all these fluxes based on the Courant algebroid structure.

Consequently, the second part approached the question of describing non-geometric
backgrounds from the Lie algebroid perspective, which – as opposed to a description in
terms of Courant algebroids – allows for formulating consistent gravity theories. Since
transition functions for a background represented by the generalized metric are elements
of O(d, d), the field redefinition (3.20) can be used to describe the background in different
patches. It induces Lie algebroids which are suitable for describing the geometry in the
different patches. Most importantly, they govern a thorough transition of all the symmetries
of the model and render the immediate identification of the theories on different patches on
account of theorem 2.17. Against this background the description of transitions in terms
of Lie algebroids appears to be the most natural and efficient organizing principle. In
particular, the formalism extends to supergravities and higher-order corrections.

The connection between the two parts of this chapter is the appearance of a geometric
and a non-geometric sector. Whereas the approach via Courant algebroids unifies both
sectors, they can be formulated separately in the approach by means of Lie algebroids. The
geometric sector is given by the H-twisted Lie-bracket (4.3). It describes the Lie algebroid
(TM, [·, ·], idTM ) if H = 0. Is is important to note that the three-form responsible for
the twist does not have to coincide with the field strengths of the Kalb-Ramond field; the
naming is conventional. Thus the geometric sector is described by the standard action
(4.14), which is the Lie-algebroid gravity (4.35) on the latter Lie algebroid. The non-
geometric sector is described by the H-twisted Koszul bracket (4.6), which describes the
Lie algebroid (T ∗M, [·, ·]HK , β♯) if the defining bivector field is a quasi-Poisson structure. The
geometry is described in the second example of section 4.2.3 and its Lie-algebroid gravity
is again described by (4.35). Hence in the Lie algebroid approach either the geometric or
the non-geometric sector is described.

In general, the lack of a global description of non-geometric backgrounds is closely
connected with the absence of a proper differential geometry for Courant algebroids. In
the next chapter the problem is embarked on from a field theoretic perspective by imposing
duality invariance from the very beginning.



Chapter 5

T-duality invariant CFT

A background preserves the classical world-sheet symmetries – in particular the conformal
symmetry of the sigma model (3.1) in conformal gauge – during quantization if it satisfies
the equations (3.58). Hence a proper string background gives rise to a two-dimensional
conformal quantum field theory (CFT) (see [140, 141] for introductions). In particular,
two-dimensional CFT’s admit an infinite-dimensional symmetry algebra imposing strong
restrictions which leave these theories rather simple.

In this chapter the powerful language of two-dimensional CFTs is employed to study
first simple features of manifest duality invariant theories. This bottom-up approach is
complementary to the geometric approach taken in the previous chapters and follows [102].
In particular, a T-duality invariant theory will be given in terms of the conserved currents,
the propagators and duality invariant operators, which is inspired by [81, 82].

First the CFT description of the sigma model (3.1) on a spherical world-sheet Σ and a
flat target-spaceM is given and its behavior under O(d, d)-duality is explored. Then, a pro-
posal for the duality invariant theory including the study of its simplest states is presented.
From the spacetime perspective, manifest duality is implemented by the introduction of a
second, dual set of coordinates. This can be interpreted as ”doubling” of the spacetime,
which engenders additional degrees of freedom. Hence a consistent analysis is expected to
reveal constraints to treat these unphysical redundancies. For finding restrictions to the
space of states, the partition function of the theory on a toroidal world-sheet is studied
which corresponds to a string-theoretic one-loop analysis. Then the lightest states of the
theory are scattered. The premise of having physical intermediate states consistent with
the one-loop analysis then leads to the strong constraint (1.2) of double field theory for an
uncompactified theory. This provides a derivation of this ad-hoc restriction. The procedure
is repeated assuming certain directions of the target space being compactified to a torus.
Finally the associated effective theory is related to double field theory [91, 142, 143].

5.1 The free bosonic CFT and duality

The CFT to be studied arises from the sigma model (3.1) by the following restrictions.
The world-sheet is assumed to be the two-sphere Σ = S2 and the background is taken
to be flat without a Kalb-Ramond field, i.e. G constant and B = 0; by (3.58) this is a
conformal background. Moreover, the world-sheet is Euclideanized by Wick-rotating the τ
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coordinate to t = iτ . Then another change of coordinates is imposed in order to map the
sphere to the completed complex plane: z = exp(t − iσ). This allows to write the sigma
model (3.1) as

S(X;G) =
1

2πα′

∫

Σ
dzdz̄ Gab ∂X

a ∂̄Xb (5.1)

with the abbreviations ∂ ≡ ∂
∂z and ∂̄ ≡ ∂

∂z̄ . The classical features of the action simplify
significantly under the current assumptions.

• The equations of motion (3.2) become the wave equation

∂∂̄Xa(z, z̄) = 0 (5.2)

with the general solution being the splitting into a holomorphic (left-moving) and an
anti-holomorphic (right-moving) part: Xa(z, z̄) = Xa

L(z)+X
a
R(z̄); it can be expanded

in modes as

Xa
L(z) = qaL − iα′

2 kaL ln z + i

√
α′
2

∑

n 6=0

αa
n

nzn
,

Xa
R(z̄) = qaR − iα′

2 kaR ln z̄ + i

√
α′
2

∑

n 6=0

ᾱa
n

nz̄n
.

(5.3)

kL/R ≡ (p±w) denotes the left/right-moving momentum with pa ∼
∫
dσP a and wa ∼∫

dσW a the canonical momentum and winding introduced in section 3.1.1 The funda-
mental solution Gab(z1, z2) to (5.2) has to satisfy ∂z1 ∂̄z1Gab(z1, z2) = −πα′Gabδ(z1 −
z2). Using ∂(1/z̄) = 2πδ(z) in the sense of distributions the fundamental solution
becomes

Gab(z1, z2) = 〈Xa(z1, z̄1)X
b(z2, z̄2)〉 = −α′

2 G
ab ln |z12|2 (5.4)

with zij = zi − zj . The bracket 〈. . . 〉 abbreviates the path integral with respect to
(5.1).

• The non-vanishing components of the energy-momentum tensor imposing the con-
straints (3.3) are

T (z) = − 1
α′ Gab ∂X

a(z) ∂Xb(z) and T̄ (z̄) = − 1
α′ Gab ∂̄X

a(z̄) ∂̄Xb(z̄) (5.5)

with the prefactors set for convenience. It gives rise to an infinite set of conserved cur-
rents f(z)T (z) for any holomorphic function f and similarly for the anti-holomorphic
part which are associated to infinitesimal conformal transformations z → z + f(z).
Since the world-sheet is assumed to be a sphere, the holomorphic functions are not
arbitrary but have to be invariant under σ → σ + 2πn; for the complex coordinates

1This can be seen by inserting (5.3) into Pa and Wa and an integration over σ. In complex coordinates,
this translates to two integrations according to dσ = i

2
(dz/z−dz̄/z̄) over a closed contour around the origin

and requires careful treatment of the orientation and Cauchy’s theorem.
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this amounts to z → e−2πniz = z. Thus the functions restrict to polynomials in z
which are spanned by monomials {zn|n ∈ Z}. The associated conserved charges are
given by the Virasoro generators

Ln =

∮

C0

dz

2πi
zn+1T (z) ⇐⇒ T (z) =

∑

n∈Z

Ln

zn+2
. (5.6)

C0 denotes a closed curve around the origin and the equivalence follows from Cauchy’s
theorem. The modes associated to T̄ (z̄) are denoted L̄n.

Classically the energy momentum tensor (5.5) has to vanish; this can not be imposed for
the associated operator. Instead, a primary field φ(z, z̄) of conformal weight (h, h̄)2 is
physical if h = h̄ = 1; in particular, h = h̄ which is called level matching. These physical
states satisfy the quantum analogue of the constraint (3.3).3

Duality

Now the effect of O(d, d)-duality on the free bosonic CFT is studied. In particular, the
dual propagator (5.4) and the dual energy momentum tensor (5.5) are highlighted as they
determine the physical field content and correlation functions of the theory. Since G is
constant and B = 0, duality is simple: The integrability conditions (3.25) only allow for
O(d, d)-transformations T with the components t12 and t22 constant. Therefore the dual
coordinates (3.24) can be integrated to give

X̃ ā
L(z) =

[
(t22)

ā
a + (t12)

āmGma

]
Xa

L(z) ,

X̃ ā
R(z̄) =

[
(t22)

ā
a − (t12)

āmGma

]
Xa

R(z̄) ;
(5.8)

cf. (3.29).This can be seen by noting that ⋆dz = dz and ⋆dz̄ = −dz̄ for the complex
coordinates. The new background (3.20) is comprised of a metric g and a constant Kalb-
Ramond field. The latter can be neglected as it contributes a total derivative to the action
and the former is related to the initial metric by

gāb̄ =
[
(t22)

ā
a + (t12)

āmGma

][
(t22)

b̄
b + (t12)

b̄nGnb

]
Gab

=
[
(t22)

ā
a − (t12)

āmGma

][
(t22)

b̄
b − (t12)

b̄nGnb

]
Gab .

(5.9)

2An operator φ(z, z̄) is primary if its operator product expansion (OPE) with the energy momentum
tensor reads

T (z1)φ(z2, z̄2) =
hφ(z2, z̄2)

z212
+

∂φ(z2, z̄2)

z12
+ reg. (5.7)

and similar for the anti-holomorphic part. The equation has to be understood as being inserted radially
ordered into the path integral with further arbitrary operators. h denotes the conformal weight. Primary
fields transform correctly under conformal transformations; thus they are studied in CFT.

3Inserting the mode expansion (5.6) into (5.7) gives [Ln, φ(z, z̄)] = zn+1∂φ + (n + 1)hznφ upon us-
ing Cauchy’s theorem for φ primary. The state |φ〉 associated to a primary operator φ is given by
limz,z̄→0 φ(z, z̄)|0〉 with |0〉 the ground state. Regularity of T (z) at z = 0 requires Ln|0〉 = 0 ∀n > −2. Using
the commutator above then implies L0|φ〉 = h|φ〉 and Ln|φ〉 = 0 ∀n > 0. Thus demanding in particular
L0|φ〉 = 0 in order to satisfy the constraint (3.3) is not consistent. Instead, level matching (L0− L̄0)|φ〉 = 0
as well as (L0 − 1)|φ〉 = 0 is required.
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The inverse is given for convenience. The equality of the upper and the lower line can be
seen from their difference

2
[
(t22)

ā
m(t12)

b̄m + (t12)
ām(t22)

b̄
m

]
= 2
[
tt22t12 + tt12t22

]
= 2
[
(T tηT )lr

]
= 2 ηlr = 0

with the index lr denoting the lower right d×d-block of the matrix which vanishes because
T ∈ O(d, d). Then on the dual background the propagator (5.4) reads

〈
X̃ ā

L X̃
b̄
L

〉
= −α′

2 g
āb̄ ln(z − w) ⇐⇒

〈
Xa

LX
b
L

〉
= −α′

2 G
ab ln(z − w) . (5.10)

The propagator (5.4) has been split into a holomorphic and an anti-holomorphic part. The
equivalence follows from combining the first lines of (5.8) and (5.9). The dual energy-
momentum tensor reads

T̃ (z) = − 1
α′ gāb̄ ∂X̃

ā(z) ∂X̃ b̄(z) = − 1
α′ Gab ∂X

a(z) ∂Xb(z) = T (z) , (5.11)

i.e. it remains unchanged. The same holds for the anti-holomorphic parts. Hence the CFT
on the initial background is equivalent to its O(d, d)-dual.

From now on G = δ = diag(1, . . . , 1) is assumed.4 In total, duality interchanges the
coordinates Xa with the dual coordinates X̃a = X̃a

L + X̃a
R (5.8) while interchanging the

canonical momentum pa = 1
2(kL + kR) with its dual

p̃ā = (t22)
ā
ap

a + (t12)
āmδmaw

a . (5.12)

For the generating classes of O(d, d) (2.6) and (2.7) the present observations read as follows.

• For changes of frame (3.47) and B-transformations (2.2) nothing changes.

• For T-duality in the kth direction (2.7) the coordinate changes as

X̃k(z, z̄) = X̃k
L(z) + X̃k

R(z̄) = Xk
L(z)−Xk

R(z̄) (5.13)

by (5.8). The other directions remain unchanged. Using (5.9) also the metric g = δ
is unaltered. Thus T-duality acts by reflecting the right-moving coordinate in the
dualized direction while interchanging p and w due to (5.12): p̃k = wk.

• For a β-transformation (2.12) the dual coordinates (5.8) become

X̃ ā(z, z̄) = X ā(z, z̄) + βāmδma [X
a
L(z)−Xa

R(z̄)] . (5.14)

The new inverse metric can be determined by (5.9); it reads

gāb̄ = δāb̄ − βāmδmnβ
nb̄ . (5.15)

The canonical momentum (5.12) becomes p̃ā = pā + βāmδmnw
n.

Although O(d, d)-duality leaves the CFT invariant in general, T-duality is particularly
simple. Thus in the following T-duality will be considered for simplicity. Remarks about
the generalization can be found in the conclusion 6.

4Fluctuations around this trivial metric are included in the CFT by certain vertex operators and their
scattering. Hence this is not a restriction in the end.
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5.2 T-duality invariant CFT

T-duality acts by reflecting the right-moving coordinate, interchanges momentum and
winding and leaves the metric on the present simple background invariant. In particu-
lar, it does not alter the propagators for the left- and right-moving coordinates as well as
the energy-momentum tensor. Therefore, treating X and X̃ or equivalently left- and right-
movers on equal footing makes T-duality manifest. The resulting theory is not governed
by the sigma model (5.1) anymore. The propagators for the standard and dual coordinates
are

〈
Xa(z1, z̄1)X

b(z2, z̄2)
〉
= −α

′

2
δab ln |z12|2 ,

〈
X̃a(z1, z̄1)X̃

b(z2, z̄2)
〉
= −α

′

2
δab ln |z12|2 ,

〈
Xa(z1, z̄1)X̃

b(z2, z̄2)
〉
= −α

′

2
δab ln

z12
z̄12

;

(5.16)

this follows from (5.4) and (5.13). In the following, the most elementary physical states of
this theory are determined without referring to any compactified directions. The presence
of compact directions will be studied in section 5.5. The difference is that in contrast to
the former case, the latter requires momentum and winding to be quantized.

Vertex operators and descendants

The manifest duality-invariant primary field solely containing the coordinate fields is

Vp,w(z, z̄) =:eipaX
a(z,z̄) eiwaX̃a(z,z̄) : , (5.17)

which will be called tachyon in the following. It is a primary field of weight

(h, h̄) =

(
α′

4
(p+ w)2,

α′

4
(p− w)2

)
(5.18)

which results in the mass

M2 = − 2

α′ (h+ h̄) = −(p2 + w2) . (5.19)

The OPE of two such fields is

Vp1,w1(z1, z̄1)Vp2,w2(z2, z̄2) =|z12|α
′(p1·p2+w1·w2)

(z12
z̄12

)α′
2
(p1·w2+w1·p2)

× Vp1+p2,w1+w2(z2, z̄2) + . . . ,

(5.20)

and admits a logarithmic branch point whose absence (locality) requires the quantization
condition

α′(p1 · w2 + w1 · p2) ∈ Z . (5.21)

The first descendant states of (5.17) are as follows:
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• At the first excited level one has a form field Ap,w and its complex conjugate Āp,w

Ap,w(z, z̄) = Aa :∂Xa(z)Vp,w(z, z̄) : ,

Āp,w(z, z̄) = Āa : ∂̄Xa(z̄)Vp,w(z, z̄) :
(5.22)

with A and Ā one-forms. For heterotic torus compactifications these states give rise
to the well-known enhancement of the gauge group. A is primary with conformal
weight (h, h̄) = (1+ α′

4 (p+w)2, α
′
4 (p−w)2) if it is transversely polarized in the sense

Aa(p
a + wa) = 0. Similarly, Ā is primary with (h, h̄) = (α

′
4 (p+ w)2, 1 + α′

4 (p− w)2)
for Āa(p

a − wa) = 0.

• At the next level one finds a (0, 2)-tensor field Ep,w

Ep,w(z, z̄) = Eab :∂X
a(z) ∂̄Xb(z̄)Vp,w(z, z̄) : (5.23)

with the polarization Eab. It is a primary field with (h, h̄) = (1 + α′
4 (p + w)2, 1 +

α′
4 (p−w)2) for transverse polarization in the sense Eab(p

a+wa) = 0 = Eab(p
b−wb).

In section 5.6 it is shown that string scattering amplitudes of three such states (5.23) can
be matched precisely with interactions in DFT. This gives credence to the usage of this
duality invariant CFT as a two-dimensional world-sheet model of DFT.

In order to be consistent with the constraints, the states considered above have to be
physical. The resulting restrictions are shown in table 5.1.

state level-matching primary mass

Vp,w p · w = 0 — M2 = − 4
α′

Ap,w p · w = − 1
α′ Am(pm + wm) = 0 M2 = − 2

α′

Āp,w p · w = 1
α′ Ām(pm − wm) = 0 M2 = − 2

α′

Ep,w p · w = 0 Emn(p
m + wm) = 0 = Emn(p

n − wn) M2 = 0

Table 5.1: The physical state condition requires the operators to be level-matched primaries
of conformal weight (1, 1). This sets the mass of the states.

Clearly Vp,w corresponds to a negative mass2 state, i.e., as expected, it is a tachyon. More-
over, the two states Ap,w and Āp,w are tachyonic as well. Finally, Ep,w is massless and
therefore, depending on the polarization, gives the graviton, the B-field and the dilaton.
Next the one-loop partition function is considered whose modular invariance imposes ad-
ditional constraints by relating the holomorphic with the anti-holomorphic sector.

5.3 The one-loop partition function

In this section the torus partition function for the CFT introduced above is computed with
a particular emphasis on the modular properties. For a CFT defined on the world sheet
torus with modular parameter τ and Hilbert space H, the partition function is given by

Z(τ, τ̄) = trH
(
qL0− c

24 q̄L̄0− c
24
)

= e
πc
6
Im(τ) trH

(
e−2π(L0+L̄0)Im(τ)e2πi(L0−L̄0)Re(τ)

) (5.24)
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with q = e2πiτ . The trace is taken over the whole Hilbert space H which beyond the
oscillator modes also includes the continuous trace over momenta and windings. H itself
is built upon the highest weight state |p, w〉 = limz,z̄→0 Vp,w(z, z̄)|0〉 by acting with the

Virasoro generators Ln (5.6). Using L0|p, w〉 = α′
4 (p + w)2|p, w〉 and L̄0|p, w〉 = α′

4 (p −
w)2|p, w〉, the continuous trace can be evaluated as

f(τ, τ̄) =

∫
ddp

(2π)d

∫
ddw

(2π)d
〈p, w|e−πα′(p2+w2)Im(τ)e2πiα

′p·wRe(τ)|p, w〉

= 〈p, w|p, w〉 1
2

(∫
ddkL
(2π)d

ei
π
2
α′ k2L τ

)(∫
ddkR
(2π)d

e−iπ
2
α′ k2R τ̄

)
.

(5.25)

The evaluation of the trace over the oscillator part is as usual so that altogether one obtains

Z(τ, τ̄) =
f(τ, τ̄)

|η(τ)|2d . (5.26)

As a Riemannian surface the two-torus is invariant under the modular group PSL(2,Z) of
integer-valued two-dimensional projective special linear transformations. They act on the
modular parameter τ as

τ → a+ bτ

c+ dτ
with a, b, c, d ∈ Z ; ac− bd = 1 . (5.27)

It suffices to check modular invariance for its generators, the T -transformation τ → τ + 1
and the S-transformation τ → − 1

τ . For Im(τ) > 0 the integral (5.25) can be evaluated
to be proportional to |τ |−d; this is not invariant under a modular T -transformation while
|η(τ)| is invariant itself. T -invariance yields the level matching condition

α′ p · w ∈ Z ⇐⇒ α′

4
(k2L − k2R) ∈ Z , (5.28)

i.e. the two integrals are not independent. Writing k2R = k2L − 4
α′m for an integer m,

level matching can be imposed by including a factor δ(k2L − k2R − 4
α′m) in (5.25). Then, to

evaluate the remaining integral in (5.25), d-dimensional spherical coordinates with radius
|kR| are introduced; up to constant factors one is left with

f(τ, τ̄) ∼ e2πim τ

∫
ddkL
(2π)d

|kL|d−1 e−πα′ k2L Im(τ) ∼ Γ
(
d− 1

2

)

Im(τ)
d
2

e2πim τ

Im(τ)
d−1
2

(5.29)

for Im(τ) > 0, which is T -invariant. However, realizing that Im(τ)
d
2 |η(τ)|2d is already

S-invariant, invariance under a modular S-transformation is spoiled by the second factor

e2πim τ Im(τ)
1−d
2 in (5.29).

For the unwanted factor in (5.29) to be absent and for obtaining a modular invariant
result, the second integral in (5.25) has to evaluate to

∫
ddkR
(2π)d

e−iπ
2
α′ k2R τ̄ δ(kL, kR) = g(τ̄) e−iπ

2
α′ k2L τ̄ . (5.30)
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δ(kL, kR) implements relations between the momenta to be determined and g(τ̄) is a mod-
ular function independent of the momenta. Thus the modular function is given by

g(τ̄) =

∫
ddkR
(2π)d

ei
π
2
α′(k2L−k2R)τ̄ δ(kL, kR) = e2πim τ̄

∫
ddkR
(2π)d

δ(kL, kR) , (5.31)

where level matching was used. In (5.31), g(τ̄) factorizes into a τ̄ -dependent factor and
a momentum dependent one. The former is not modular invariant unless m = 0. The
remaining integral over the momentum must be constant, i.e. δ(kL, kR) has to be of the
form δd(kR − F (kL)), with F a vector-valued function.

F can be determined as follows. Since m = 0, level-matching (5.28) can be written as

(
kL
kR

)t(
1 0
0 −1

)(
kL
kR

)
≡ 〈K,K〉d = 0 (5.32)

and is invariant under O(d, d)-transformations5 of the vector K = (kL, kR)
t. Hence, to

maintain level-matching while having a relation between the left- and right-moving mo-
mentum requires them to be related by an O(d, d)-transformation. Thus the general form
of F can be constructed by rotating the most simple solution kR = kL. An O(d, d) trans-
formation T ∈ O(d, d) satisfies T tdiag(1,−1)T = diag(1,−1) so that in particular the
transpose satisfies

T t =

(
tt11 tt21
tt12 tt22

)
∈ O(d, d) ⇐⇒





t11t
t
11 − t12tt12 = 1

t21t
t
21 − t22tt22 = −1

t11t
t
21 − t12tt22 = 0

. (5.33)

Acting with T on (kL, kR)
t modifies the simple solution according to

{kR = kL} 7→ {t21kL + t22kR = t11kL + t12kR} ⇐⇒ {kR = (t22 − t12)−1(t11 − t21)kL} .

Using the conditions (5.33) for the matrix elements of T t gives (t22−t12)−1(t11−t21) ∈ O(d).
Therefore, the conditions for modular T - and S-invariance imply that the right and left
momenta are related by an O(d) transformation as

kR =M kL with M∈ O(d) . (5.34)

Having shown that modular invariance requires the insertion of (2π)dδd(kR −MkL)
and denoting 〈p, w|p, w〉 = Vd, the final torus partition function reads

Z(τ, τ̄) =
Vd/2

(2π
√
α′)d Im(τ)

d
2 |η(τ)|2d

. (5.35)

This section closes with the following three remarks:

• In terms of momentum and winding, (5.34) enforces w = 0 forM = 1 and p = 0 for
M = −1.

5In the variables kL/R the bilinear form η defining O(d, d) is diagonalized. In terms of p and w the group
is defined as in the previous chapters.
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• Invariance under modular T -transformation implied α′p · w ∈ Z, while only the
additional invariance under the modular S-transformation really led to the weak
constraint p · w = 0.

• The latter truncates the spectrum as only those states are allowed whose number
of left- and right- oscillator excitations match. Comparison with table 5.1 therefore
shows that in particular Ap,w and its complex conjugate are forbidden.

In string theory, the partition function is related to the one-loop vacuum polarization
diagram with all string excitations running in the loop. In order to detect further con-
straints, one also needs to consider string diagrams containing momenta and winding of
many states. For this reason, in the next section the string scattering amplitude of four
tachyons is considered.

5.4 Tachyon scattering and the strong constraint

In the T-duality invariant CFT the correlation function of N tachyon vertex operators
Vpi,wi(zi, z̄i) ≡ Vi can be straightforwardly computed as

〈
V1 . . . VN

〉
=
∏

1≤i<j≤N

|zij |α
′(pi·pj+wi·wj)

(zij
z̄ij

)α′
2
(pi·wj+wi·pj)

δ
(∑

pi

)
δ
(∑

wi

)
. (5.36)

The difference to the standard tachyon correlator is the
zij
z̄ij

-factor. As being an amplitude

on the two-sphere, it has to be invariant under the conformal group SL(2,C). This means
that (5.36) has to be independent of the order of the inserted operators. Although obvious
from an abstract point of view, SL(2,C)-invariance will be checked explicitly for the orders
of interest in the following. After having confirmed the consistency, the duality invariant
Virasoro-Shapiro amplitude is computed and its pole structure studied.

SL(2,C)-invariance

The correlator (5.36) was computed using primary fields; therefore it must be invariant
under the conformal group. Due to the

zij
z̄ij

-factors this is not obvious anymore and will be

illustrated by discussing the first three orders. Non-vanishing of (5.36) implies momentum
as well as winding conservation

N∑

i=1

pi = 0 =
N∑

i=1

wi (5.37)

as one-point functions vanish generally. Moreover, level matching pi ·wi = 0 as well as the
mass-shell condition (pi + wi)

2 = 4
α′ are invoked. The orders of interest are as follows:

• The two-point function of two tachyons reads upon using (5.37) and the mass-shell
condition:

〈
V1 V2

〉
= |z12|α

′(p1·p2+w1·w2)
(z12
z̄12

)α′
2
(p1·w2+w1·p2)〈

Vp1+p2,w1+w2

〉

= |z12|−4
(z12
z̄12

)α′
2
(−p1·w1−w1·p1)〈

1
〉
.

(5.38)
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Employing level matching as well, the correlator is proportional to |z12|−4 which is
expected from conformal invariance.

• The three-point function becomes

〈
V1 V2 V3

〉
= |z12|−2|z13|−2|z23|−2

( z12
z13 z23

z̄13 z̄23
z̄12

)α′
2
(p1·w2+w1·p2)〈

1
〉
. (5.39)

Again, the first factor is expected from conformal invariance. The exponent of the
inconsistent term is p1 · w2 + w1 · p2 = (p1 + p2) · (w1 + w2) = p3 · w3 = 0, i.e. it
vanishes.

• The 4-point function

〈
V1 V2 V3 V4

〉
=

∏

1≤i,j≤4

|zij |α
′(pi·pj+wi·wj)

(zij
z̄ij

)α′
2
(pi·wj+wi·pj)〈

V1+2+3+4

〉
. (5.40)

can be simplified using p1 ·w2+w1 · p2 = p3 ·w4+w3 · p4 as well as p1 · p2+w1 ·w2 =
p3 · p4 +w3 ·w4 and similarly for all the other combinations. The correlator becomes

〈
V1 V2 V3 V4

〉
=

(
X
12
43

X̄12
43

)α′
2
(p1·w2+w1·p2)(

X
14
23

X̄14
23

)α′
2
(p1·w4+w1·p4)

×
∣∣X12

43

∣∣α′(p1·p2+w1·w2)
∣∣X14

23

∣∣α′(p1·p4+w1·w4)〈
1
〉

(5.41)

with X
ij
kl =

zijzkl
zilzkj

the SL(2,C)-invariant cross ratio, which implies the SL(2,C)-

invariance of the 4-point function.

This verifies the conformal invariance of the relevant orders.

The duality invariant Virasoro-Shapiro amplitude

Now the full string-theoretic amplitude for tachyons is considered. For N tachyons it is
given by

AN (pi, wi) = gNs CS2

∫ N∏

i=1

d2zi
∏3

j=1 δ(zj − z0j ) |z12z13z23|2

×
〈
V1 . . . VN

〉
(z1, . . . zN ) .

(5.42)

Here the conformal group SL(2,C) has been used to fix three of the N insertion points on
the sphere. The standard choice is z1 = 0, z2 = 1 and z3 →∞. Moreover, (5.42) includes

the three c-ghost correlator
∣∣〈c(z1) c(z2) c(z3)

〉∣∣2 = |z12 z23 z13|2. The latter are included
to avoid over-counting of gauge orbits. The prefactors are a factor of the closed string
coupling constant gc for every closed string vertex operator and CS2 accounting for various
normalizations (see e.g. [13]).

Three-point amplitude
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The three-tachyon amplitude is given by

A3(pi, wi) = g3c CS2

〈
(c c̄ V1)(c c̄ V2)(c c̄ V3)

〉
= g3c CS2 , (5.43)

where the δ-distributions implementing momentum and winding conservation have to be
understood as implicit. The three-point amplitude is therefore identical to the standard
one for three tachyons without a winding dependence.

Four-point amplitude

Using (5.36) and reordering the monomials, the four-point amplitude reads

A4(pi, wj) = g4c CS2

∫
d2z

〈
(c c̄ V1) (c c̄ V2) (c c̄ V3)V4

〉

= g4c CS2

∫
d2z
{
zα

′(p1·w4+w1·p4)(1− z)α′(p2·w4+w2·p4)

× |z|α′(p1−w1)·(p4−w4) |1− z|α′(p2−w2)·(p4−w4)
}
.

(5.44)

It is convenient to introduce two sets of Mandelstam variables

s = −(kL3 + kL4)
2 , s = −(kR3 + kR4)

2

t = −(kL2 + kL4)
2 , t = −(kR2 + kR4)

2

u = −(kL1 + kL4)
2 , u = −(kR2 + kR4)

2

(5.45)

with s + t + u = s + t + u = −16
α′ by level matching and the mass-shell condition. The

relation between the two sets is given by

(kLi + kLj)
2 − (kRi + kRj)

2 = 4(pi · wj + wi · pj) ∈
4

α′ Z . (5.46)

Defining the function α(s) = −1− α′
4 s, the amplitude is integrated to

A4(pi, wj) = 2π g4c CS2

Γ
(
α(s)

)
Γ
(
α(t)

)
Γ
(
α(u)

)

Γ
(
α(t) + α(u)

)
Γ
(
α(s) + α(u)

)
Γ
(
α(s) + α(t)

) . (5.47)

Using (5.46), the α’s can be related as α(s) = α(s)− n34, where

nij = α′(pi · wj + wi · pj) with n14 + n24 + n34 = 0 . (5.48)

Then, in terms of the left-moving variables the amplitude becomes

A4(pi, wj) =
2π g4c CS2 Γ

(
α(s)

)
Γ
(
α(t)

)
Γ
(
α(u)

)

Γ
(
α(t)+α(u)+n34

)
Γ
(
α(s)+α(u)+n24

)
Γ
(
α(s)+α(t)+n14

) . (5.49)

A similar expression can be found in terms of right-moving variables.
In contrast to the standard form of the Virasoro-Shapiro amplitude, (5.49) is not

symmetric in the s-, t- and u-channel. Channel duality can be retained by requiring
n14 = n24 = n34, which due to (5.48) implies nij = 0. In the following, this constraint is
argued for in a more rigorous fashion.
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Pole structure and the strong constraint

In string theory the poles of the four-tachyon amplitude appear where physical states
become on-shell. Thus, they encode the mass spectrum of the theory. Now, Γ(x) has no

zeros but single poles at x = −n for n ∈ N with residue (−1)n

n! . Therefore the nth pole in
the s-channel of (5.49) is located at

s =
4

α′ (n− 1) ⇐⇒ s =
4

α′ (n+ n34 − 1) . (5.50)

Hence, s = −(kL3 + kL4)
2 ≡ −(kintL )2 and s ≡ −(kintR )2 with kintL/R = pint ± wint can

be considered as describing a physical intermediate state with mass and level-matching
condition given by

(M int)2 = −
(
(pint)2 + (wint)2

)
=

4

α′
(
n+

n34
2
− 1
)

and pint · wint =
n34
α′ , (5.51)

respectively. This corresponds to an asymmetrically excited state with the difference be-
tween the number of right- and left-excitations being n34. However, the condition (5.34)
for modular invariance forbids asymmetrically excited states. Since the same argument
holds for the t- and u-channel, consistency of the poles with the physical spectrum requires
nij = 0. This is nothing else than the strong constraint (in momentum space)

pi · wj + pj · wi = 0 ∀i, j . (5.52)

Indeed, defining the functions as fi(x, x̃) = exp(ipi ·x+iwi ·x̃), the relation (5.52) translates
into

∂afi ∂̃
afj + ∂̃afi ∂afj = 0 (5.53)

which is the strong constraint (1.2) of DFT [92, 142, 94].

To summarize, while modular invariance of the partition function determined the
physical spectrum, consistency with the pole structure of the Virasoro-Shapiro ampli-
tude allowed to derive the strong constraint. In terms of left- and right-moving momenta
Ki = (kLi, kRi)

t, the strong constraint (5.52) reads 〈Ki,Kj〉d = 0 ∀i, j. Combining it with
kRi =MikLi (5.34), one obtains the joint condition

kLi
t
(
1−Mt

iMj

)
kLj = 0 (5.54)

which for fixed i, j must hold for all left-moving momenta. This impliesMi =Mj for all
i, j so that both constraints can be summarized by the consistency condition

kRi =M kLi withM∈ O(d) ∀i . (5.55)

This means that the solution to the strong constraint is chosen independently of the con-
crete functions f, g in (1.2).
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5.5 Constraints from torus compactifications

In the previous discussion momentum and winding were continuous. This is different in
the presence of compact directions. The purpose of this section is to show that the strong
constraint (5.52) relaxes for toroidal compactifications. Hints for this expectation come
from Scherk-Schwarz reductions of DFT [99]. Hence in the following the analysis from the
previous two sections is repeated for the case of k < d compact directions.

Torus compactification

A general compactifications on a k-dimensional torus T k = R
k/2πΛk with Λk a k-dimensional

lattice is considered. Since the coordinates Xa and X̃a are independent, they can be
compactified on different tori T k and T̃ k. With indices I, J, . . . indicating the internal
directions, the coordinates XI and X̃I acquire new boundary conditions

XI(e−2πiz, e2πiz̄) = XI(z, z̄) + 2π
√
α′ tI ,

X̃I(e−2πiz, e2πiz̄) = X̃I(z, z̄) + 2π
√
α′ t̃I ,

(5.56)

with tI and t̃I vector fields on the internal tori, i.e. t ∈ Λk and t̃ ∈ Λ̃k lattice vectors. The
factors

√
α′ are introduced for convenience.6 Using the mode expansion (5.3), in order to

satisfy the boundary conditions, the internal winding and momentum are wI = 1√
α′ t

I and

pI = 1√
α′ t̃

I . Then the basic vertex operator (5.17) is of the form

V c
p,w(z, z̄) =:eipµX

µ
e

i√
α′ t̃IX

I

eiwµX̃µ
e

i√
α′ tIX̃

I

: . (5.57)

Small Greek indices µ, ν, . . . now denote the external coordinates. The physical state
condition for (5.57) can be deduced from the conformal weight (5.18) as before; it reads
pµwµ = − 1

α′ tI t̃
I . For the V c

p,wV
c
p′,w′-OPE to be single-valued tI t̃′I + t̃It′I ∈ Z is needed.

Hence the tori are not independent but their lattices are contained in each others dual
lattices.

It is convenient to introduce the lattice vectors tIL = 1√
2
(t̃I + tI) and tIR = 1√

2
(t̃I− tI) as

well as the bilinear form 〈·, ·〉k defined by diag(1k,−1k). With the 2k-dimensional vector
L = (tL, tR)

t the above condition for single-valuedness becomes 〈L,L′〉k ∈ Z. Denoting the
lattice spanned by the L’s as Γ2k, this means Γ2k ⊂ Γ∗

2k, i.e. the lattice is integral. Further
restrictions on the lattice Γ2k will arise from the partition function.

The one-loop partition function

The partition function can be evaluated as before. The only difference is the zero-mode
contribution from the internal momenta and windings. Using (5.35) and (5.25) for the
internal part one obtains

Zc(τ, τ̄) =
Vd−k/2(

2π
√
α′)d−k

1

Im(τ)
d−k
2 |η(τ)|2d

∑

(tL,tR)∈Γ2k

eiπ t2L τ e−iπ t2R τ̄ . (5.58)

6To make the conventions clear, note that for a circle they are such that the radius comes with a factor√
α′. Then the internal momentum comes with

√
α′ and internal winding with the inverse.
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Under a modular T -transformation, all but the last term is invariant. Thus the lattice
vectors have to satisfy 〈L,L〉k ∈ 2Z. This means that T -invariance implies that Γ2k has to
be an even lattice. Moreover, using Poisson resummation twice, the partition function is
shown to be invariant under a modular S-transformations if Γ2k = Γ∗

2k. This reproduces
the well known result that modular invariance requires the lattice Γ2k to be even and
self-dual [32]. No additional constraints have to be put on the internal sector.

Moreover, the external momenta still have to satisfy the condition (5.34), i.e. kµR =
Mµ

ν k
ν
L for M ∈ O(d − k). Thus, the physical spectrum in the internal sector is less

constrained compared to the non-compact case. In particular, asymmetrically excited
states are allowed.

Pole structure

Again the scattering of four vertex operators (5.57) is examined. The only difference to the
analysis in section 5.4 is that the contractions of momenta and windings split into separate
contractions of external and internal momenta and windings. The nth pole in the s-channel
seen from the external point of view is

se =
4

α′

[
n+

1

2
(tL3 + tL4)

2 − 1

]
(5.59)

and the difference between the external left- and right-movers is se− se = 4
α′ (n34− 1

2〈L3+
L4, L3 + L4〉k). Splitting n34 and using level matching allows to write this difference as

se − se = 〈Ke
3 +Ke

4 ,K
e
3 +Ke

4〉d−k (5.60)

with Ke
i = ((kµL), (k

µ
R))

t collecting the external momenta. As before, the pole corresponds
to an asymmetrically excited state. However, the external part still has to satisfy the condi-
tion (5.34) for modular invariance, i.e. (5.60) has to vanish. This implies 〈Ke

i ,K
e
j 〉d−k = 0,

which is equivalent to (5.52). Then the difference between left- and right-excitations of
the intermediate states is 〈L3, L4〉k. As asymmetric excitations are valid, this describes
a physical state. Therefore, the strong constraint still applies to the external directions
whereas no further constraint arises for the internal momenta and windings.

5.6 The low energy effective theory and DFT

The dual coordinates X̃ (5.8) can be interpreted as the pullback of spacetime coordinates
x̃ analogous to Xa = X∗xa. The underlying spacetime is therefore doubled, i.e. has
dimension 2d. This engenders unphysical degrees of freedom which are reduced by the
constraint (5.55) or the strong constraint (5.52). A proposal for a manifestly O(d, d)-
invariant spacetime is provided by DFT, which will be connected to the approach pursued
above in the following.

In this section the scattering amplitude of three massless states represented by the
vertex operators (5.23) is rederived [82]. The result is compared to the action of double
field theory [94] by expanding the latter into third order in fluctuations – they match. This
computation is meant to provide evidence for the relevance of this T-duality invariant CFT
for DFT.
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5.6.1 3-Graviton scattering from CFT

Calculating an N -point function of insertions of graviton vertex operators Ep,w(z, z̄) (5.23)
is combinatorially more involved than a tachyon amplitude. For taking care of that one
conveniently defines

Vi(zi, z̄i) = :eκi·∂X(zi)−λi·∂̄X̃(z̄i)eipi·X(zi,z̄i) eiwi·X̃(zi,z̄i) : (5.61)

with κi and λi auxiliary parameters. One can derive the vertex operators corresponding
to the first excited states simply by acting on (5.61) with derivatives with respect to both
κi and λi. This operator is related to a massless graviton vertex operator Epi,wi by

Epi,wi(zi, z̄i) = Eiab
∂

∂κia

∂

∂λib
Vi
∣∣∣
κi=λi=0

. (5.62)

The N point correlation function can be written as

〈 N∏

i=1

Vi(zi, z̄i)
〉
=

∏

1≤i<j≤N

|zi − zj |α
′(pi·pj+wi·wj)

(zi − zj
z̄i − z̄j

)α′
2
(pi·wj+wi·pj)

× Fij(zij , z̄ij) δ
(∑

pi

)
δ
(∑

wi

) (5.63)

with

Fij(zij , z̄ij) = exp

(
−α

′

2

[ κi ·κj
(zi − zj)2

+ 2i
(p[i| + w[i|)·κ|j]

zi − zj

+
λi ·λj

(z̄i − z̄j)2
+ 2i

(p[i| − w[i|)·λ|j]
z̄i − z̄j

])
.

(5.64)

The full 3-graviton amplitude is then given by

A3(pi, wi,Ei) = g3c CS2

〈 3∏

i=1

(c c Epi,wi)
〉

=g3c CS2 A(~z, ~̄z)
3∏

k=1

Ekab
∂

∂κka

∂

∂λkb

∏

1≤i<j≤3

Fij(zij , z̄ij)|κi=λi=0 ,

(5.65)

where A(~z, ~̄z) collects the contractions of the remaining exponentials (5.36). Notice that
the derivatives with respect to κ and the ones with respect to λ can be treated separately.
Denoting F (~z, ~̄z) :=

∏
1≤i<j≤3 Fij(zij , z̄ij) and taking three derivatives with respect to κ,

one finds

3∏

k=1

∂

∂κka
F |κi=λi=0 =

α
′2

4

ηackb1L + ηbcka3L + ηabkc2L
z12z13z23

+
α

′

2

(
ka1L
z12
− ka3L
z23

)(
kb2L
z12

+
kb3L
z13

)(
kc1L
z13

+
kc2L
z23

)
,

(5.66)

where momentum and winding conservation was used as well as the transverse polarization
of Emn. The λ-derivatives can be worked out analogously. The two parts can now be
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contracted with the corresponding polarization tensors of the massless vertex operators to
get the full three-point amplitude. Restricting to second order in momentum and winding
and imposing the correct normalization of the graviton vertex operator by including a
factor of 2

α
′ in each E , the three-graviton scattering amplitude reads

A3(pi, wi, Ei) = 4πgcE1adE2beE3cf t
abct̃def +O(p4, p3w, . . . , w4) , (5.67)

with

tabc = ηcakb1L + ηbakc2L + ηcbka3L ,

t̃abc = ηcakb1R + ηbakc2R + ηcbka3R .
(5.68)

Here CS2 = 8π
α′g2c

was used which can be determined from unitarity by factorizing the

four-point amplitude (5.49) over the tachyonic pole. This result was first presented in [82]
and consistently reduces to the well-known three-graviton scattering amplitude [100] for
vanishing B-field and zero winding.

5.6.2 3-point interaction from DFT

Double field theory formulated in terms of the background field Eab = Gab + Bab and the
dilaton field d is considered [94]:

S =

∫
ddx ddx̃ e−2d

[
−1

4G
amGbnGpqDpEmnDqEab + 1

4G
mn(DbEamDaEbn

+DbEmaDaEnb) + (DadDbEab +Da
dDbEab) + 4DadDad

] (5.69)

with Da = ∂a − Eam∂̃m and Da = ∂a + Ema∂̃
m as well as ∂̃ the derivative with respect to

x̃. The inverse metric Gab is used to raise indices and 2κ2d = 1 is set. To compare (5.69)
with the CFT result (5.67), the background E is expanded around the flat Minkowski
background as follows (see [144, 142]):

Eab = Eab + fab(e, d) , fab(e, d) = eab +
1
2ea

memb +O(e3) . (5.70)

Here Eab denotes the constant background, which for vanishing B-field reduces to the
Minkowski metric ηab and eab denote the fluctuations around this background. It is im-
portant to take the higher-order fluctuation into account in the expansion of the different
objects. Thus (5.69) is expanded up to cubic order in the fluctuation eab (see [94]). The
metric Gab is simply given by Gab =

1
2(Eab + Eba) and hence, for example, the expansion of

the inverse metric takes the form

Gab = ηab − e(ab) + 1
4e

amebm + 1
4e

maem
b +O(e3) . (5.71)

Then, up to a total derivative, the action to cubic order in the fluctuation reads

S =

∫
dx dx̃

[
1
4eab�e

ab + 1
4(D

aeab)
2 + 1

4(D
b
eab)

2 − 2dDaD
b
eab − 4d�d

+1
4eab

(
(Daemn(D

b
emn)− (Daemn)(D

n
emb)− (Dmean)(D

b
emn)

)

+1
2d
(
(Daeab)

2 + (D
b
eab)

2 +
1

2
(Dmeab)

2 + 1
2(D

m
eab)

2

+2eab(DaD
memb +DbD

m
eam)

)
+ 4eabdD

aD
b
d+ 4d2�d

]
,

(5.72)
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which was first derived in [142]. The derivatives are given by

Da = ∂a − Eam∂̃
m ,

Da = ∂a + Ema∂̃
m ,

� =1
2(D

aDa +D
a
Da) . (5.73)

In order to compare with the three-point amplitude from the CFT side, the constant κd
is introduced by modifying the fluctuation to 2κdeab. In this way the match with the
expansion of the standard Einstein-Hilbert action to third order in the metric fluctuation
hab is obtained. Then, from the second line in (5.72) and after a partial integration, the
interaction term for three eab’s is identified to be

κdeab

(
(Daemn(D

b
emn)− (Daemn)(D

n
emb)− (Dmean)(D

b
emn)

)

=− κdeab
(
emnDaD

b
emn + (Daemn)(D

n
emb) + (Dmean)(D

b
emn)

)
+ (tot. der.) .

(5.74)

The missing term from the partial integration vanishes because of Dmema = 0, following
from the polarization constraint as listed in table 5.1. Next the value of the three-graviton
vertex in momentum space is read off by using ∂a → ipa and ∂̃a → iwa, which translates
derivatives to momenta and winding modes. Keeping track of possible permutations results
in

Aeee = 4πgc

(
ka3R e1ab k

b
3L e

mn
2 e3mn + ka3R e1ab e

mb
2 e3mn k

n
2L + km3R e1mn e

an
3 e2ab k

b
1L

+ (cyclic permutations)
)
,

(5.75)

where gc = κd
2π . This result matches with the string scattering amplitude (5.67). The

difference in the left- and right-moving momenta can be cured by switching the sign of the
B-field. Therefore, at least up to second order in derivatives the action (5.69) serves as
effective theory for the massless sector of the T-duality invariant CFT.

5.7 Summary and discussion

In this chapter a T-duality symmetric CFT was analyzed whose tree-level string scattering
amplitudes at the two-derivative level are described by DFT. From studying one-loop mod-
ular invariance and the pole structure of the four tachyon amplitude it was deduced that
the strong constraint (5.52) must be imposed in all the non-compact directions, whereas
compact toroidal directions are not subject to any further constraint beyond those following
from modular invariance.

These observations are in agreement with the possibility of relaxing the strong con-
straint on the internal space in Scherk-Schwarz compactifications [99], in light of which the
torus is a special case. The additional constraints found there apply to the possible fluxes,
saying that they are constant and subject to quadratic constraints. Since fluxes are absent
in the torus compactifications studied here, no constraints are expected.

It is important to classify the findings of this section. First of all, the T-duality invariant
CFT can still be considered as a string theory. Although it goes beyond the closed bosonic
string and does not have an obvious sigma-model description, it is still a two-dimensional
conformal field theory. This might be compared to (asymmetric) orbifold conformal field
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theories, which are legitimate string theory constructions. They also lack a clear spacetime
interpretation by their asymmetric treatment of left- and right-movers similar to the T-
duality invariant CFT. Thus, as a string theory it makes sense to consider the T-duality
invariant CFT on the two-torus as one-loop contribution to the perturbative expansion of
the theory. Therefore modular invariance of the torus partition function is necessary. This
also justifies the construction of full-fledged string theory scattering amplitudes from the
CFT correlation functions performed in section 5.4. In particular, the premise of having
physical intermediate states in the scattering of four tachyon states is valid. Thus the final
constraint (5.55) summarizing the relation between left- and right-movers (5.34) and the
strong constraint (5.52) is a genuine prediction in string theory.

The perspective of T-duality invariant CFT being a valid string theory might also shed
some light on the interpretation of double field theory. As being coincident at least to
lowest orders with the effective theory for massless states in the T-duality invariant CFT,
it is indeed a string theory. This is supported by the importance of the constraints in
DFT, which lead to the reduction to string theory effective actions when applied directly.
The origin of DFT also has to be kept in mind: it arose in particular from string field
theory [142]. Thus DFT might not go beyond string theory but serves as an efficient tool
to describe target-space dualities. In particular, the T-duality invariant CFT can be used
to study higher order correction to the DFT action.



Chapter 6

Conclusion and Outlook

The thesis closes with two final thoughts.

Geometry of duality. The aspects of target-space dualities explored in this thesis il-
lustrate their rich geometrical structure. Yet, the appropriate language for a unified de-
scription of dualities is still missing. In principle, generalized geometry provides a versatile
approach for incorporating symmetries. For example, exceptional generalized geometry

[145, 146] is based on a bundle whose structure group comprises the exceptional groups
of the E-series and is in particular applied to M-theory. Nevertheless, T-duality, or the
more general O(d, d)-duality, requires a Courant bracket with automorphism group O(d, d).
The problem is the simultaneous incorporation of exact B- and β-transformations. In sec-
tion 2.1 and section 2.1.2 the generalized tangent and cotangent bundle with their associ-
ated Courant brackets (see section 2.2) have been introduced. The former describes dif-
feomorphisms together with B-transformations while the latter describes diffeomorphisms
together with β-transformations. Moreover, the automorphisms of the Courant bracket in-
troduced in proposition 4.1 are diffeomorphisms and a mixture of B- and β-transformations.
The three examples hint towards the capability of only describing ”half” of B- plus β-
transformations. This is supported by a naive consideration of the infinitesimal genera-
tors: diffeomorphisms are generated by vector fields, exact B-transformations by one-forms
and exact β-transformations again by vector fields. Hence, the local form of the bundle
is expected to be TM ⊕ T ∗M ⊕ TM which goes beyond the generalized tangent bundle.
In contrast, double field theory assumes the generalized tangent bundle of an extended
spacetime manifold, yet consistency always requires the implementation of constraints. As
was shown in detail in section 2.2.2, even if such a generalized structure is found, grav-
ity theories in the conventional sense are inaccessible due to the seeming absence of an
endomorphism-valued curvature tensor. This stems from the anomalous properties of the
Courant bracket: the Jacobi identity and the Leibniz rule admit defects. A framework
for treating such defects in a systematic manner is given by strongly-homotopy algebras or
A∞-structures [147]. As they also appear in the formulation of (closed) string field theory
[30], a pursuit in this direction might be helpful. In total, finding a geometry appropriate
for describing duality remains an open problem.

Duality and non-commutative geometry. The scope of O(d, d)-duality requires fur-
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ther investigation. Apart from open questions concerning aspects of this duality in the
quantum theory, it might give new insights into non-commutative geometry in closed string
theory. It has been argued to be related to non-geometric backgrounds. However, since T-
duality is a canonical transformation which does not change the classical Poisson structure,
it is impossible to obtain non-canonical Poisson structures from canonical ones by its appli-
cation. In O(d, d)-duality this is even more apparent as duality leaves the classical Hamil-
tonian density invariant which especially preserves the phase space. Nevertheless, global
effects through winding might be responsible for the occurrence of non-commutativity.

For instance, the derivation of the equations of motion (3.2) was performed under the
assumption of the periodicity of the closed string in order to remove total derivative terms.
But if the variation δXa is only constraint to vanish at infinite time the term

∫ ∞

−∞
dτ
[
Wa δX

a
]σ=2π

σ=0
, (6.1)

withWa = 1
2πα′ (Gab∂σX

b−Bab∂τX
b) the canonical winding of the string (3.1), remains. Its

vanishing might result in boundary conditions reminiscent of Dirichlet boundary conditions
in open string theory. For example, constraining the canonical winding to vanish at 0 and
2π gives rise to the boundary condition

(
∂σX

a −GamBmn∂τX
n
)∣∣

σ∈{0,2π} = 0 . (6.2)

This is analogous to the open string case [22] and would cause a non-vanishing equal
time commutator [Xa, Xb]

∣∣
σ=0,2π

as long as B 6= 0. Here O(d, d)-duality only comes
into play due to its ability of generating a B-field from backgrounds lacking it. But the
implementation of such a boundary condition is unreasonable for constant winding and if
δXa(σ = 0) = δXa(σ = 2π) is assumed.

O(d, d)-duality or more specifically Poisson duality potentially gives rise to non-vanishing
commutators between the ordinary and the dual coordinate in a doubled approach. Using
the dual coordinates (5.8) arising from the Poisson duality induced by the Poisson vector
β and splitting the propagator (5.4) into its holomorphic and anti-holomorphic part yields

〈
X̃a(z1, z̄1), X

b(z2, z̄2)
〉
= −α

′

2

(
Gab ln |z12|2 − βab ln

z12
z̄12

)
. (6.3)

The equal time commutator can be obtained in a barely rigorous manner from this propa-
gator as follows [23]: Radial ordering – which corresponds to time ordering in the coordi-
nates z = exp(t− iσ) – is implicit in the expression above. Keeping track of it and writing
zi = rie

−iσi , the equal time commutator with r1 = r2 becomes

〈[
X̃a(r, σ1), X

b(r, σ2)
]
. . .
〉
= lim

δ→0

〈
X̃a(r + δ, σ1)X

b(r, σ2)−Xb(r + δ, σ2)X̃
a(r, σ1)

〉

= α′ βab ln
e−iσ1 − e−iσ2

eiσ1 − eiσ2
.

(6.4)

For r1 = r2 = r the difference between the worldsheet points is z12 = 2r sin[(σ2 −
σ1)/2] exp[i(π − σ1 − σ2)/2]. Then, omitting the path integral, the commutator becomes

[
X̃a(t, σ1), X

b(t, σ2)
]
= i βab(π − σ1 − σ2) . (6.5)
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Thus the equal time commutator of a Poisson-dual coordinate with an ordinary one is pro-
portional to the Poisson structure. Unfortunately, a worldsheet dependence remains which
makes the commutator ill-defined on the spacetime. A potential remaining worldsheet de-
pendence of equal time commutators of closed string coordinates was also discussed in [24].
Comparison with the open string case in [22] shows that the same world-sheet dependence
appears, but it is canceled by boundary terms leaving a proper target-space quantity. This
hints at the inclusion of global boundary condition – possibly as discussed above – in order
for this to be consistent.
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[13] R. Blumenhagen, D. Lüst, and S. Theisen, Basic concepts of string theory.
Springer, 2013.

[14] M. Graña, “Flux compactifications in string theory: A Comprehensive review,”
Phys.Rept. 423 (2006) 91–158, arXiv:hep-th/0509003 [hep-th].

[15] Z. Bern, T. Shimada, and D. Hochberg, “Incompatibility of Torsion With the
Gauss-Bonnet Combination in the Bosonic String,” Phys.Lett. B191 (1987) 267.

[16] R. Blumenhagen, A. Deser, E. Plauschinn, and F. Rennecke,
“Palatini-Lovelock-Cartan Gravity - Bianchi Identities for Stringy Fluxes,”
Class.Quant.Grav. 29 (2012) 135004, arXiv:1202.4934 [hep-th].

[17] T. Buscher, “A Symmetry of the String Background Field Equations,”
Phys.Lett. B194 (1987) 59.

[18] T. Buscher, “Path Integral Derivation of Quantum Duality in Nonlinear Sigma
Models,” Phys.Lett. B201 (1988) 466.
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[116] P. Ševera and A. Weinstein, “Poisson geometry with a 3 form background,”
Prog.Theor.Phys.Suppl. 144 (2001) 145–154, arXiv:math/0107133 [math-sg].

[117] A. Alekseev and T. Strobl, “Current algebras and differential geometry,”
JHEP 0503 (2005) 035, arXiv:hep-th/0410183 [hep-th].

[118] J. Callan, Curtis G., E. Martinec, M. Perry, and D. Friedan, “Strings in
Background Fields,” Nucl.Phys. B262 (1985) 593.
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