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Abstract In this article, we investigate the charged gravas-
tar under conformal motion with the background of Finsler
geometry. Mazur and Mottola pioneered the concept of the
gravastar (gravitational vacuum star) for the first time. This
vacuum object consists of three distinct regions, that is, (i)
interior de Sitter region, (ii) thin shell consisting of ultrarela-
tivistic stiff, and (iii) exterior vacuum Schwarzschild region.
The nature of these regions can be analyzed by considering
different equations of state parameters. We have studied vari-
ous physical features of the gravastar, such as length, energy,
entropy, stability, and the adiabatic index, both graphically
and analytically within the Finslerian framework. Also, we
have obtained the exact and non-singular solution for the
gravastar model.

1 Introduction

The study of the black hole (BH), which is the result of the
gravitational collapsing of compact stars (the endpoint of the
stars), has the most significant importance in astrophysics
and cosmology. Bardeen [1] obtained the exact solution for
regular BH, and using a nonlinear electric field, Ayon-Beato
et al. [2,3] extended the concept of regular BH. Due to the
tremendous mass density and central singularity, it was ardu-
ous to study the structure of the black hole. To evade this event
horizon and singularity, Mazur and Mottola [4,5] initiate a
new solution for this gravitational collapse by elongating the
idea of Bose-Einstein condensate to a gravitational system
that is the alternative of BH known as a gravitational vac-
uum star (gravastar). These kinds of celestial objects are free
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from any singularity and event horizon. The gravastar model
proposed by Mazur and Mottola considered five zones. But
Visser et al. [6] modified this model into three zones system,
and these three different regions can be classified with three
various equations of state (EoS) that are given as follows:

• Interior de-Sitter region (0 ≤ r < r1), with negative
energy density is equal to matter pressure (−ρ = P >

0),
• Thin shell (r1 < r < r2) with pressure is equal to energy

density (ρ = P), where r1 = C and r2 = C + ε are
the interior and exterior radii of the gravitational vacuum
star, respectively.

• Exterior vacuum Schwarzschild region (r > r2) with
zero pressure and energy density (ρ = P = 0).

Due to the presence of negative density in the interior
region of the gravastar, the repulsive force is exerted on the
shell wall. The shell having ultrarelativistic stiff matter intro-
duced by Zel’divich [7] counterbalances the force exerted by
an interior zone of the collapsing star, which consequently
ceases the creation of singularity inside the gravastar. The
exterior vacuum region of the gravastar was studied using
Reissner–Nordström or Schwarzschild metric.

Many physicists and geometers have recently become
quite curious about the gravatar idea. Based on the results
obtained from [4,5] motivated many researchers to analyze
the structure of gravastar using different approaches. Visser
et al. [6] studied the dynamical stability of the gravastar by
considering three layers and concluded that there are vari-
ous EoS that lead to the dynamical stability of the gravastar.
Usmani et al. [8] discussed the stability of gravastar under
a 2+1 dimension system and for higher dimensions in [9–
11]. Rahaman et al. [12] studied the physical features of the
charged gravitational vacuum star in a 2+1 system and a
higher dimension with conformal motion was discussed by
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Bhar [13]. Ghosh et al. [14] worked on the structure of the
gravastar in the absence of conformal motion. Surface ten-
sion and negative pressure interior of a singular free black
hole studied in [15]. In [16,17], the authors explained the sur-
face stress tensor and junction conditions on a rotating black
hole. Mazur et al. [18] pose a new endpoint for gravitational
collapsing stars.

As we know, Einstein’s general relativity (GR) is a more
suitable theory for explaining many cosmological and astro-
physical phenomena. However, it is impossible to describe
some observational facts such as dark energy, dark matter,
and the current accelerating universe. To overcome these
problems, GR needs an alternative theory as the most fruitful
perspective. Among these alternative theories, f (R), f (Q),
and f (R, T ) gravity made attention to many researchers ana-
lyzing the stability of the gravastar with the presence and
absence of an electric field [19–24].

Electromagnetism plays an important role in studying the
evaluation as well as stability of the gravitational collapsing
star. Maintaining the equilibrium state for a gravastar requires
an immense amount of charge to counterbalance the force
exerted due to gravity acting inwards. Lobo and Arellano
[25] discussed the solution and some physical features of
the collapsing object along with non-linear electrodynamics.
Horvat et al. [26] studied charged gravastar and evaluation
adiabatic index, surface redshift, speed of sound, and EoS
parameters for interior and exterior regions. Usmani et al.,
[10] analyzed charged gravitational vacuum star admitting
conformal motion with exterior Reissnor–Nordström metric.

The conformal symmetry describes the natural relation-
ship between matter and geometry ingredient for collapsing
stars through the field equation. This inherent symmetry con-
tained in the set of conformal Killing vectors (CKV) which
is represented mathematically as

Lξ gαγ = ϕ(r)gαγ . (1)

Here Lξ denotes the Lie derivative, φ is the conformal fac-
tor, and ξ represents four vectors. The CKVs play a signifi-
cant role in reducing highly non-linear differential equations
to linear ordinary differential equations. And also attain the
exact analytic solution of the Einstein field equation more
appropriately. Usmani et al. [10] discussed the exact solu-
tion of charged gravastar using conformal motion. Sharif and
Arfa Waseem [27] analyzed the effect of charge on gravita-
tional vacuum stars in f (R, T )gravity and found nonsingular
solutions that also describe the physical features of this star.
Several authors have used a similar approach to explore more
precise solutions for compact stars [28–32].

Today, Finsler geometry has become an interesting area
for many researchers because of its versatility to explain var-
ious cosmological concepts, even if GR fails to explain them.
Also, this geometry is the extension of Riemannian geometry.
In 1935, Cartan [33] explored the model of Finsler geom-

etry and later proposed the Einstein field equation (EFE)
[34] for the Cartan d-connection. Following this modified
theory, numerous models [35–38] of Finsler geometry have
been investigated. Nekouee et al. [35] have investigated the
applications of the Finsler–Randers (FR) metric in cosmol-
ogy. In recent years, numerous endeavors have taken place
to study the Finsler–Randers cosmological model [40–46].
The Finslerian Schwarzschild-de sitter space-time is also
recently investigated in [47]. Chowdhury et al. [48] inves-
tigated the strange stars model by considering charged fluid
in the Finslerian framework. After that, Sumita Banerjee et al.
[49] studied the gravastar with the background of Finslerian
space-time. For all the above literature survey, here we pro-
pose the charged gravastar model with conformal motion in
the framework of Finsler geometry and analyze the physical
features of the gravitational collapsing star.

The structure of the current article is as follows: In
Sect. 2.1, we discuss the Finsler metric structure. The struc-
ture of the Finsler gravastars is introduced in Sect. 2.2. The
conformal motion of the charged gravastars is analyzed in
Sect. 3. Section 4 provides a solution for the charged gravas-
tar model in Finslerian space-time. Physical characteristics
of the charged Finsler gravastar were discussed in Sect. 5.
Conclusions are given in Sect. 6.

2 Structure of Finsler geometry

2.1 Finsler metric structure

The most fundamental distinction of Finsler geometry is that
it incorporates the concept of anisotropic intrinsically in the
geometry of space-time. The underlying space of Finsler’s
geometry is named Finsler space, a metric space. The metric
in this space is defined as a function F(x, y) from a tangent
bundle of a manifold to R1. Here F(x, y) is a non-negative
function, mathematically defined as the norm instead of the
inner product on a tangent bundle with the position of space-
time coordinate x and a tangent vector y ∈ TxM representing
the velocity. Hence, Finslerian geometry is dynamic geom-
etry depending on position and direction, i.e., dynamical
coordinates on a tangent bundle of a differentiable mani-
fold, whereas Riemannian geometry is gravitational. In the
framework of this type of geometry, several researchers have
studied different cosmological aspects.

A Finsler space is governed by a differentiable function
F(x, y), also named as Finsler structure, defined on a tangent
bundle TM of a manifold M as F(x, y) : T M → R. The
function satisfies some following properties:

(i) F is smooth on ˜T M = T M\{0}, regularity property.
(ii) F is a positive one-dimensional homogeneous function

F(x, λy) = λF(x, y) with λ > 0, homogeneity prop-
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erty, where x ∈ M and y = dx
dτ

are the respective repre-
sentation of position and velocity.

(iii) The n × n Hessian matrix

gi j = 1

2
∂̇i ∂̇ j F

2 = 1

2

∂

∂yi
∂

∂y j
F2. (2)

is positive-definite at every point of T M\{0}, referred as
strong convexity property [50].

The geodesic spray Gζ are expressed as,

Gζ = 1

4
gζυ

(
∂2F2

∂xλ∂yυ
yλ − ∂F2

∂xυ

)
. (3)

In the Finsler manifold, the equation of geodesic is given as,

d2xζ

dτ 2 + 2Gζ = 0. (4)

From Eq. (4), it is clear that the Finsler structure F(x, y) is
constant along the geodesic. The expression for Ricci tensor
in the Finslerian framework is given by,

Ricμν = 1

2

∂2(F2Ric)

∂yμ∂yν
, (5)

here, Ric is Ricci scalar, which is geometric invariant and is
given as follows,

Ric = gμνRμν. (6)

Equation (6) holds for any basis, the predecessor of the flag
curvature Rμν is represented as [51],

Rμ
ν = 1

F2

(
2
∂Gμ

∂xν
− yk

∂2Gμ

∂xk∂yν

+2Gk ∂2Gμ

∂yk∂yν
− ∂Gμ

∂yk
∂Gk

∂yν

)
. (7)

Therefore, the expression for Ric is given as,

Ric ≡ Rν
ν = 1

F2

(
2
∂Gν

∂xν
− yk

∂2Gν

∂xk∂yν

+2Gk ∂2Gν

∂yk∂yν
− ∂Gν

∂yk
∂Gk

∂yν

)
. (8)

The expression for scalar curvature and Einstein tensor in
Finslerian geometry is as follows,

S = gμνRicμν, (9)

Gμν = Ricμν − 1

2
gμνS. (10)

Ric can be used to generate the Finslerian-modified Einstein
tensor, which is insensitive to connections.

2.2 Structure of Finslerian gravastar model

To analyze the geometry of gravastar structures, we derived
the Finsler structure, as given below [52],

F2 = C(r)yt yt − D(r)yr yr − r2 F̃2(θ, φ, yθ , yφ), (11)

where F̃ signifies a 2-dimensional Finsler structure and F̃ is
specified as,

F̃2 = yθ yθ + ς(θ, φ)yφ yφ. (12)

g̃μν = diag

(
1, ς(θ, φ)

)
, (13)

also, we have

g̃μν = diag

(
1,

1

ς(θ, φ)

)
, (14)

where μ, ν = θ, φ. The Ricci scalar of Finslerian metric F̃
can be derived as [43],

R̃ic = 1

2ς

(
−∂2ς

∂θ2 + 1

2ς

(
∂ς

∂θ

)2
)

, (15)

which may be a function of θ or a constant (say η). We solve
the Eq. (15) in three distinct conditions, and we obtained the
Finsler structure F̃2 as follows,

F̃2 = yθ yθ + A sin2(
√

ηθ)yφ yφ (for η > 0), (16)

F̃2 = yθ yθ + Aθ2yφ yφ (for η = 0), (17)

F̃2 = yθ yθ + A sinh2(
√−ηθ)yφ yφ (for η < 0). (18)

Without loss of generality, we consider A = 1. Finsler
gravastar structure described in Eq. (11) can be stated as
following form,

F2 = C(r)yt yt − D(r)yr yr − r2(yθ yθ

+ sin2(
√

ηθ)yφ yφ). (19)

Let α be the Riemannian metric and the associated Rieman-
nian structure is given as,

α2 = C(r)yt yt − D(r)yr yr − r2
(
yθ yθ + sin2 θyφ yφ

)
.

(20)

Equation (20) in Eq. (19) becomes,

F2 = α2 + r2χ(θ)yφ yφ,

whereχ(θ) = sin2 θ − sin2(
√

ηθ). (21)

Suppose we take β2 = r2(sin2 θ − sin2 √
ηθ)yφ yφ , in Eq.

(21) we get,

F2 = α2(1 + s2), (22)

where

s = β

α
= bi yi

α
,
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with bφ =
√
r2(sin2 θ − sin2 √

ηθ), β is a differential one-
form with bi = (0, 0, 0, bφ). Thus Eq. (22) can be written
as,

F = αψ(s), (23)

here ψ(s) = √
1 + s2. Equation (23) shows that F Finsler

space with a (α, β) metric.
By substituting Eq. (19) in Eq. (3) yields geodesic spray

coefficients Gμ as follows,

Gt = C
′

2C
yt yr , (24)

Gr = D
′

4D
yr yr + C

′

4D
yt yt − r

2D
F̃2, (25)

Gθ = 1

r
yr yθ + G̃θ , (26)

Gφ = 1

r
yr yφ + G̃φ. (27)

where G̃θ = − 1
4

∂ς
∂θ

yφ yφ, G̃φ = 1
4ς

(
2 ∂ς

∂θ
yφ yθ+ ∂ς

∂φ
yφ yφ

)
.

Considering F̃ as two-dimensional Finsler space-time with
constant flag curvature η, using Eqs. (5), (8) and (9) in Eq.
(10), one can get the components of the Einstein tensor of
the modified Finsler geometry given as

Gt
t = D

′

r D2 − 1

r2D
+ η

r2 , (28)

Gθ
θ = Gφ

φ = − C
′′

2CD
− C

′

2rCD
+ D

′

2r D2

+ C
′

4CD

(
C

′

C
+ D

′

D

)
, (29)

Gr
r = −C

′

rCD
− 1

r2D
+ η

r2 . (30)

By Mazur-Mottola, the energy-momentum tensor (EMT) for
isotropic pressure is as follows

Tμ
υ = (ρ + P)uμuυ + Pgμ

υ , (31)

here, uμ represents velocity four-vector of a fluid element
(with uμuμ = 1). The modified Einstein field equation for
the charged fluid in Finsler geometry is given as [48],

Gμ
υ = 8πFG

c4

(
Tμ

υ + Eμ
υ

)
, (32)

where Tμ
υ is the EMT for matter, which is given in Eq. (31)

and Eμ
υ is the EMT for charge, which can be defined as

Eμ
υ = − 1

4π

(
FυζF

μζ − 1

4
gμ
υ FζγF

ζγ

)
. (33)

Here Fυζ is indicates the electromagnetic field tensor and is
given by

Fυζ = ∂Aζ

∂xυ

− ∂Aυ

∂xζ

,

where Fυζ obey the Maxwell equations,

Fυγ,ζ + Fγ ζ,υ + Fζυ,γ = 0,

and

∂

∂xζ
(
√−gFυζ ) = 4π

√−gJυ,

where Jυ is the current four vector, defined by Jυ = σuυ , σ
is the charge density. Using Eq. (32), EFE in Finsler space-
time with G = c = 1 is written as,

Gt
t = 8πFT

t
t + Et

t : D
′

r D2 − 1

r2D
+ η

r2 = 8πFρ + E2, (34)

Gr
r = 8πFT

r
r + Er

r : −C
′

rCD
− 1

r2D
+ η

r2 = −8πF P + E2,

(35)

Gμ
μ = 8πFT

μ
μ + Eμ

μ, (μ = θ, φ)
−C

′′

2CD

− C
′

2rCD
+ D

′

2r D2 + C
′

4CD

(
C

′

C
+ D

′

D

)

= −8πF P + E2. (36)

By substituting D = eλ andC = eν in the above equations
we get,

e−λ

[
λ

′

r
− 1

r2

]
+ η

r2 = 8πFρ + E2, (37)

e−λ

[
1

r2 + υ
′

r

]
− η

r2 = 8πF P − E2, (38)

e−λ

[
1

4
(υ

′
)2 + υ

′′

2
− 1

4
λ

′
υ

′ + 1

2r
(υ

′ − λ
′
)

]

= 8πF P + E2, (39)

and

[r2E]′ = 4πr2σe
λ
2 . (40)

From Eq. (40), the electric field can be written as

E(r) = 1

r2

∫ r

0
4πr2σe

λ
2 dr = q(r)

r2 , (41)

here q(r) indicates total charge of the sphere.

3 Conformal motion of the charged gravastar

Here, it is important to mention that the tensor quantity Ci jk

plays the role of the torsion tensor in the Finslerian geomet-
rical framework. In the study of stellar objects, for a natural
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relationship between geometry and matter described by Ein-
stein field equations, we assume an inheritance symmetry that
contains a set of CKV in Finsler geometry can be expressed
as [53]

L
ξ̂
gμν = ∇μξν + ∇νξμ + 2yn(∇nξ

α)Cαμν = ϕ(r)gμν,

∇μξν = ∂ξν

∂xμ
− Gα

μ

∂ξν

∂yα
− �α

μνξα,

(42)

and

Cαμν = 1

4

∂3F2

∂yα yμyν
,

where L indicates Lie derivative operator, ϕ(r) represents
the conformal vector and ξ̂ = ξμ(r) ∂

∂xμ + yν(∂νξ
μ) ∂

∂yμ be
the vector field on T M is know as complete lift of ξ [54].
For Eq. (19), we have Cαμν = 0 for all α,μ, ν. Hence, it is
clear that the Cartan tensor vanishes for the metric (19).

Using Eq. (19) in (42), it gives as follows

ξ rν
′ = ϕ, (43)

ξ r = rϕ

2
, (44)

ξ rλ
′ + 2ξ r,r = ϕ, (45)

ξ t = C1, (46)

implies

eν = r2C2
2 , (47)

eλ =
(
C3

ϕ

)2

, (48)

where C1, C2 and C3 are the integration constants. Plugging
the above solutions in Eqs. (37–39), we get

1

r2

[
η − ϕ2

C2
3

]
− 2ϕϕ

′

rC2
3

= 8πFρ + E2, (49)

1

r2

[
η − 3ϕ2

C2
3

]
= −8πF P + E2, (50)

2ϕϕ
′

rC2
3

+ ϕ2

r2C2
3

= 8πF P + E2. (51)

From Eqs. (50–51), we can get the following electric, density,
and pressure terms, respectively

1

2

(
1

r2

[
η − 2ϕ2

C2
3

]
+ 2ϕϕ

′

C2
3r

)
= E2, (52)

η

2r2 − 3ϕϕ
′

rC2
3

= 8πFρ, (53)

ϕϕ
′

rC2
3

− 1

2r2

[
η − 4ϕ2

C2
3

]
= 8πF P. (54)

4 Solution of the charged gravastar model in Finsler
space-time

In this section, we have discussed the geometrical structure of
the charged gravastar by three distinct regions using different
EoS parameters as follows.

4.1 Interior de-sitter region of the charged gravastar

In this domain, we consider the EoS parameter P = −ρ,
which represents the EoS for dark energy. From Eqs. (53)
and (54), we get a connection between the matter variables
and metric potential as below

2ϕ

r2C2
3

(ϕ − rϕ
′
) = 8πF (ρ + P). (55)

Utilizing the ansatz ρ + P = 0 in the Eq. (55), it provides
the value of ϕ is either ϕ = 0 or ϕ = ϕ0r . Here, we consider
the solution of conformal vector ϕ = ϕ0r , which yields the
exact analytical expression for all the physical variables as
follows

− 8πF P = η

2r2 − 3ϕ̃2
0 = 8πFρ, (56)

E2 = η

2r2 , (57)

eυ = e−λ = ϕ̃2
0r

2, (58)

σ =
√

ηϕ̃0

4πF
√

2r
, (59)

where ϕ̃0 = ϕ0
C3

is a constant with the inverse dimension r .

According to Eq. (56), η

2r2 − 3ϕ̃2
0 > 0 (or ϕ̃0 <

√
η√
6r

)
describes the positive matter density and negative pressure,
which corresponds to an outward push exerted by the interior
region and is consistent with the physics of the charged grav-
itational collapsing star. On the other hand, η

2r2 −3ϕ̃2
0 < 0 (or

ϕ̃2
0 <

η

6r2 ) depicts a collapsing phenomenon with negative
matter density and positive pressure that is not concentrated
here. Thus, our above solutions satisfy criteria 0 < ϕ̃2

0 <
η

6r2

for the intent of a charged gravastar.
For ϕ̃2

0 = 0, we evaluate the terms matter density (ρ)

and pressure (P) as being inversely proportional to r but
having the opposite sign along with the proportionality con-
stant. According to Eq. (57), the electric field E is inversely
proportional to r and doesn’t depend on the value of ϕ̃0. In
another way, σ is inversely proportional to r . Both the metric
potential eυ and eλ are proportional to r2 as expressed in
Eq. (58).

The active gravitational mass M(r) for the interior domain
of the charged gravastar can be given as

M(r) = 4π

∫ r

0

[
ρ + E2

8πF

]
r2dr = r

2
(η − ϕ̃2

0r
2). (60)
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Fig. 1 Active gravitational mass M (M	) with R+ε (km) for η = 0.5
and ϕ̃2

0 = η

7r2

This suggests that in Eq. (56), the pressure and energy
density terms fail to be regular at r = 0 while the effec-
tive gravitational mass exhibits regular as well as positive

behavior since ϕ̃0 <
√

η√
6r

and vanishes at the origin.
It is worthwhile to observe that the physics and mathemat-

ical description of the interior region coincides with electro-
magnetic mass (EMM) [55]. The reason behind this is the
apparent use of the electric field in the geometry of gravas-
tar. As a result, the gravitational mass provides the force of
attraction resulting from spherical collapse, which balances
the repulsive force caused by the electromagnetic field.

However, in the accelerating cosmos, the equation of state
parameter P = −ρ represents a repulsive force that may be
related to the dark energy, an agent responsible for the present
phase of inflation. So, we can say that a charged gravastar
provides a connection with a dark star.

4.2 Thin shell of the charged gravastar

Substituting the EoS (P = ρ) in Eqs. (53) and (54) we
obtained the solution

ϕ2 = ηC2
3

2
− ϕ1

r
. (61)

Here ϕ1 > 0 is an integration constant. Using the preceding
solution, Eqs. (52)–(54) yield

8πFρ = 1

2r2

[
η − 3ϕ̃1

r

]
= 8πF P, (62)

E2 = η

2r2 − 8πFρ, (63)

eν = C2
1r

2, (64)

Fig. 2 Pressure-density (ρ = P) (km−2) of the shell against R + ε

(km) for η = 0.5 and ϕ̃1 = ηr
7

e−λ = η

2
− ϕ̃1

r
, (65)

σ =
√

3ϕ̃1

16πFr3

(√
ηr

ϕ̃1
− 2

)
, (66)

where ϕ̃1 = ϕ1

C2
3

and r both have the same dimension.

In this domain, E (the electric field) is dependent on ϕ̃1

and inversely proportional to r . The real value for charged
density (σ ) achieved only for constraint ϕ̃1 <

ηr
2 . Combining

this criterion with preceding condition ϕ1 > 0, we observe
that the solutions for the gravastar shell region are viable only
for the range 0 < ϕ̃1 <

ηr
2 . It is clear from Eq. (62), which

provides that the EoS (P = ρ = 0) for the exterior de Sitter
region leads to ϕ̃1 <

ηr
3 , which is inside the range ϕ̃1 <

ηr
2 .

4.3 Exterior Schwarzschild region and matching condition

For the exterior vacuum region (P = ρ = 0), the
Schwarzschild Finsler metric is [47]

F2 = f (r)yt yt − 1

f (r)
yr yr − r2 F̃2(θ, φ, yθ , yφ), (67)

where f (r) =
(

1 − 2MG
ηr

)
.

In the study of gravastar, a shell plays a significant role
in uniting two space-time. We needed certain suitable con-
ditions to connect the inner and exterior regions over the
junction surface. These conditions are provided, by Darmois-
Israel [56,57]. According to this, at the hypersurface, there
has to be smooth matching between the exterior and interior
domains, and the metric coefficients of both space and time
are continuous at the hypersurface. But the derivative of the
metric coefficient may not be. Now we evaluate the intrinsic
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surface stress-energy tensor at the junction surface through
the Lanczos equation [58–61] given as

Sμ
ν = − 1

8π
(Hμ

ν − δμ
ν H

l
l ), (68)

where Hμν = H+
μν − H−

μν depicts the discontinuity in the
extrinsic curvature or second fundamental forms. Here, the
signs + and − stand for the exterior region (or Schwarzschild
region) and interior region of the gravastar, respectively. The
second fundamental form [62,63] is defined as follows to
connect the interior and Schwarzschild outside space-time
of the collapsing star on the junction surface:

H±
μν = −χ±

γ

[
∂2Xγ

∂ζμ∂ζ ν
+ �

γ
υβ

∂Xυ

∂Xμ

∂Xβ

∂ζ ν

]
/s, (69)

here ζμ represent the intrinsic curvature coordinates, χ±
γ are

the unit normal on the shell surface s and are given as

χ±
γ = ±| gυβ ∂ f

∂Xυ

∂ f

∂Xβ
|− 1

2
∂ f

∂Xγ
, (70)

here χνχν = 1, ζμ is the intrinsic coordinate of the shell.
Clearly, f = 0 is the parametric equation of the shell with
the signs + and - indicating intrinsic and extrinsic regions of
the shell, respectively.

By utilizing the Lanczos equation, we can obtain the sur-
face stress-energy tensor as Sμν = diag(�,−P,−P,−P),
where � and P are the respective values for surface energy
density and surface pressure and can be interpreted as fol-
lowing forms

� = − 1

4πa

[√
f
]+
− (71)

= − 1

4πa

[√
η − 2MG

a
− ϕ̃0a

]
, (72)

P = −�

2
+ 1

16π

[
f

′

f

]+

−
(73)

= − 1

8πa

⎡
⎣ η − M

a√
η − 2M

a

− ϕ̃0a

⎤
⎦ , (74)

here (r = a).
The surface mass of the thin shell of the charged compact

object is given by

Mshell = 4πa2� (75)

= −a

[√
η − 2MG

a
− ϕ̃0a

]
. (76)

The total mass of the gravastar is estimated by the above
equation and is given below,

M = 1

2a
(a2λ − M2

shell + 2ϕ̃0a
2Mshell − ϕ̃2

0a
4) (77)

Fig. 3 Proper length � (km) versus radius ε (km) for η = 0.5 and
ϕ̃1 = ηr

7

5 Physical characteristics of the charged Finsler
gravastars

This section examines certain necessary physical parameters
that completely depict the geometry of the thin shell of the
gravastar.

Proper length of the shell The proper length of the interme-
diate gravastar’s shell connecting two regions is given as,

� =
∫ R+ε

R

√
eλdr

=
[√

2

η
3
2

(
� + ϕ̃1 ln

(
� + ηr − ϕ̃1√

η

))]R+ε

R

. (78)

Here the inner boundary of the shell is situated at r = R
and the outer boundary is at r = R + ε (ε 
 1) and also
� = √

(ηr − 2ϕ̃1)r
√

η. It is clear that for the real value of
the shell thickness constant ϕ̃1 <

ηr
2 .

Energy of the shell The energy within the shell region is
obtained as,

E∗ = 4πF

∫ R+ε

R

[
ρ + E2

8πF

]
r2dr = η

4
[R + ε − R].

(79)

E∗ proportional to the coordinate radius of the shell.

EoS parameter The EoS parameter of the shell is found by
using Eqs. (72) and (74) as

ω(R) = P
σ

=
1

2ϕ̃0R
(η− M

R )−
√

η− 2M
R

1
ϕ̃0R

(η− 2M
R )−

√
η− 2M

R

(80)

The EoS parameter is always positive because of positive
density and pressure. If for large value of R, ω(R) ≈ 1.
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Fig. 4 The shell energy E∗(km) w.r.t thickness R+ε (km) for η = 0.5

Also, certain value of R in Eq. (74). We obtained P = 0,
which represents a dust shell.

Entropy inside gravastar shell According to Mazur and
Mottola [4,5], they investigated that in the interior region of
the gravastar, the entropy density is zero. Using the follow-
ing expression, one may determine the entropy within the
gravastar shell.

S = 4π

∫ R+ε

R
sr2

√
eλdr. (81)

Where s(r) indicates entropy density, which can be expressed
as

ψ2k2
BT (r)

4π h̄2G
= ψ

(
kB
h̄

)√
P

2πG
, (82)

where ψ is a dimensionless constant and T (r) is the radial
coordinate dependent on temperature, we consider the Planck
units as h̄ = kB = 1. Thus the entropy of stuff matter inside
the shell is

S = 4π

∫ R+ε

R
r2ψ

(
kB
h̄

) √
η

2r2 − 3ϕ̃1
2r3

16π2G2

√
1

η
2 − ϕ̃1

r

dr (83)

= ψkB
h̄G

∫ R+ε

R
r

√
ηr − 3ϕ̃1

ηr − 2ϕ̃1
dr (84)

If ϕ̃1 tends to zero and the length of the shell is very small
compared to its position from the gravastar center, then the
entropy becomes S ≈ ψkB

h̄G Rε.

Adiabatic index We might test the dynamical stability of
the gravitational collapsing star with extremely small adia-
batic perturbations by following the seminal work of Chan-
drasekhar [64]. He anticipated that the adiabatic index should

Fig. 5 Surface redshift ℵs against radius R (km) for | C1 |= 0.5

be more than 4/3 for the relativistic equilibrium of the sys-
tem, and it is expressed as [65]

� = P + ρ

P

dP

dρ
. (85)

Clearly, for the interior domain of the gravastar along with
EoS (P = −ρ), the adiabatic index (�) should be zero, and
for the thin shell region along the EoS (P = ρ), the adiabatic
index is equal to 2.

As a result, based on the adiabatic index, we may deduce
that for charged gravastars in Finslerian space-time, the
inside region is unstable, and the intermediate thin shell
region is stable.

Surface redshift Surface redshift for an isotropic compact
star fluid cannot be greater than 2 (or cannot be greater than
5 for space-time with the present cosmological constant). It
is defined as

ℵs =| gtt | −1 = 1

| C1 | r − 1. (86)

6 Conclusions

In this work, we have examined charged gravitationally vac-
uum stars under the background of Finslerian gravity with the
use of the CKV and have considered charged stellar objects
with three different regions and distinct EoS parameters to
analyze the structure of such objects. If the parameter η = 1,
then the Finsler case is converted to the Riemannian case.
We have calculated the exact analytic singular free solutions
of the gravastar with CKV and derived several physical fea-
tures. We have elucidated the nature of the physical parame-
ters of the gravastar both graphically and analytically, which
are listed below,
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• Active gravitation mass: We have investigated the grav-
itational mass of the interior region of the gravastar and
plotted it in Fig. 1. From this, we can see that gravitational
mass increases steadily with radius, this represents that
the metric function is regular and free of any singularity
inside the collapsing object.

• Pressure and density profile: We have examined the pres-
sure and density of the shell and plotted them in Fig. 2
with respect to radius. It is also worth noting that ultrarel-
ativistic stuff fluid inside the shell is denser at the interior
boundary as compared to the exterior core.

• Shell length: We calculated the shell length and sketched
the graph with regard to the thickness of the shell. Figure 3
shows that the shell length of the gravastar increases with
increasing shell thickness.

• Shell energy: The shell energy of the gravastar analyzed
against the shell thickness, illustrated in Fig. 4, reveals
that the intensity of energy increases with growing shell
thickness.

• EoS parameter: The EoS parameter is positive and for
a large value of R, ω(R) ≈ 1. Also, if we insert some
particular value of R, we get P = 0, which represents a
dust shell.

• Surface redshift: It is evident from Fig. 5 that the surface
redshift is within 2. This result shows that the gravastar
model is reliable and tenable from a physical standpoint.

• Adiabatic index: It is obvious from Eq. (85) that the shell
is stable while the interior gravastar area is unstable.
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