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Fig. 1. The number of photons and electrons/positrons
(a) and their ratios (b) as a function of atmospheric depth

in absence of a field.
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0 H B EE ik 2] 992% 1 279%.
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Fig. 2. The number of electrons/positrons and photons as a

function of atmospheric depth in a field of -1700 V/cm
(electric field area: 524-599 g/cm?).
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Fig. 3. Percent change of electrons/positrons and photons
as a function of atmospheric depth in a field of -1700 V/cm
(electric field area: 524-599 g/cm?).

FEHLA-1700 V /em (55 T k% B (E ) ©)
DB, TR ARG FHONBUR R RS 2 5%
SR, BT RRE T, XS
HLZ N, TS | & 5 %00z, 40 H S 4R B0
K. SUE RIS, B AR R RE H T2l i PR
FRAR7 A AR R AR AL T, XL T IR e &
g, Rt s, HFGAAh: v+ (Z, A)
— et + (Z, A), MR, TSR T 18R %
SR L TGRS, (SO TR H W HREE N,
HAE AR S 75 B — 3, £75 RREA PLELD

1 Dwyer FHig &),

3.1.3  ®3%3%E R 1000 V/cm (/) Fikik 5
154, 3%) bR st B

LA B 1 46481 -5 - 1] F, 7 B e R A
800—1300 V/cm Z [H]. FIHA SCHRHLZ-1000 V /em
AT Y, ] 4 J27E-1000 V /em B HL
THOGT B H BER TR . nTLIEH, B
FROGF#EA Y (W R SIREE N 524 g/cm?)
J&, BCE .

—— 0 V/cm e*
—— 0 V/cm vy

109 | —o— —1000 V/cm e*

—o— —1000 V/cm v

Number of particles

108 |

100 200 300 400 500 600
Atmospheric depth/(g-cm—2)
Kl 4 FE-1000 V/cm BT, BT FOLET ECH BERR
BB AL (3 AR 524—599 g/cm?)
Fig. 4. The number of electrons/positrons and photons as a

function of atmospheric depth in a field of —1000 V/cm
(electric field area: 524-599 g/cm?).
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Fig. 5. Change (a) and percent change (b) of electrons/posi-
trons and photons number as a function of atmospheric

depth in a field of —1000 V/cm (electric field area: 524—
599 g/cm?).
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Fig. 6. The number (a) and normalized number (b) of elec-

trons/positrons and photons as a function of energy in ab-
sence of a field.
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Fig. 7. (a) The number of electrons/positrons and photons
as a function of energy in absence of a field and in a field of
1700 V/cm; (b) the ratios of increasing number with en-
ergy less than m to total number as a function of energy in
a field of ~1700 V/cm.
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Fig. 8. Percent change of electrons/positrons and photons

as a function of energy in a field of -1700 V/cm.
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Fig. 9. The number of electrons/positrons and photons as a

function of energy in absence of a field and in a field of
1000 V/cm.
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Fig. 10. Percent change of electrons/positrons and photons

as a function of energy in a field of 1000 V/cm.
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Fig. 11. Integral percent change of electrons/positrons and

photons as a function of energy in a field of ~1000 V/cm.
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Effects of thunderstorms electric field on secondary photons
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Abstract

Large high altitude air shower observatory (LHAASO) is a complex of extensive air shower (EAS) detector
arrays, located on the Mt. Haizi (29°21' N, 100°08' E) at an altitude of 4410 m a. s. 1., Daocheng, Sichuan
Province, China. The information about primary cosmic rays can be obtained by using data from secondary
particles measured at LHAASO, with photons make up the majority among these secondary particles. During
thunderstorms, the atmospheric electric field can affect secondary charged particles (mainly positrons and
electrons), thus changing the information of photons on the ground. In this work, Monte Carlo simulations are
performed to investigate the effects of near-ground thunderstorm electric fields on cosmic ray secondary photons
at LHAASO. A simple model with a vertical and uniform atmospheric electric field in a layer of atmosphere is
used in our simulations. During thunderstorms, the number and energy of photons are found to significantly
change and strongly depend on the electric field strength. In a field of —1000 V/cm (below the threshold of the
relativistic runaway electron avalanche (RREA) process), the number of photons is increased by 23%. Also, the
spectrum of photons softens, and the increased number of photons with energy less than 2 MeV exceeds 29%.
In an electric field of 1700 V/em (above the threshold of the RREA process), the number of photons
experiences exponential growth, with an increase of 279%. The spectrum of photons becomes softer than that at
—1000 V/cm, and the increased number with energy less than 2 MeV is more than 361%. It is consistent with
the theory of RREA. For these phenomena of photons at LHAASO, the main factor is that the number of
positrons and electrons are increased due to the acceleration of negative electric field on electrons, with increase
of 65% in —1000 V/cm and 992% in —1700 V/cm, and the spectrum of positrons and electrons soften. Newborn
free positrons/electrons may undergo bremsstrahlung and deposit part of their energy into photons, causing the
change of number and energy of photons to follow roughly the same pattern as positrons and electrons. The
simulation results can provide the information for understanding the variations of the data detected by
LHAASO during thunderstorms and the acceleration mechanisms of secondary charged particles caused by an

atmospheric electric field.

Keywords: thunderstorms electric field, cosmic ray secondary particles, Monte Carlo simulations, LHAASO
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