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We identify the formulas of Buryak and Okounkov for the n-point functions of the
intersection numbers of psi-classes on the moduli spaces of curves. This allows us
to combine the earlier known results and this one into a principally new proof of the
famous Witten conjecture/Kontsevich theorem, where the link between the intersection
theory of the moduli spaces and integrable systems is established via the geometry of

double ramification cycles.

1 Introduction

The symbol ([]Z; 74,), denotes the intersection number fmg,n ]_[}1:1 llf;ij. It can be non-
zeroonlyifg > 0,n > 1,29-2+n > 0,dy,...,d, > 0,and > ,d; = 3g -3+

n = dim Mg,n. Witten [26] conjectured that the generating function of these intersection
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is the logarithm of the unique tau-function of the Korteweg—de Vries (KdV) hierachy that

in addition satisfies the string equation,

o0

0 Zt o _ exp(F) =0
bty g, 2 TP T

The string equation is easy to prove, see [26], so the main part of the conjecture is the
equations of the KdV hierarchy.

This conjecture was first proved by Kontsevich [15] using the Strebel-Penner
ribbon graph model of the moduli space of curves, and later on more proofs have
appeared. Mirzakhani [17] used symplectic reduction for the Weil-Peterson volumes
of the moduli space, and Okounkov and Pandharipande [20] and Kazarian and Lando
[13] used the Ekedahl-Lando-Shapiro-Vainshtein (ELSV) formula that connects the
intersection theory and Hurwitz numbers. There are more papers where the Witten
conjecture/Kontsevich theorem is proved (see e.g. [8, 12, 14, 18, 19, 27]), but on the
geometric side they all use one of the ideas mentioned above: the Strebel-Penner ribbon
graph model, symplectic reduction, or the ELSV formula for Hurwitz numbers.

In this paper we give a new proof of the Witten conjecture based on a completely
different geometric idea than any of the earlier existing proofs: the intersection theory
of double ramification cycles. More precisely, the full proof that we explain here
consists of four big steps, where three of them were already available in the literature,

and the 4th missing one is the main subject of this paper:

1 In[7], Buryak et al. fully described the intersection numbers of the monomi-
als of psi-classes with the double ramification cycles.

2 In [5], Buryak used the previous result and a relation between the
double ramification cycles and the fundamental cycles of the moduli

spaces of curves to describe explicitly the so-called n-point function

T =Fu&yoo i Xn) = 20 2, dy=0 i TdiX?i)gr nzl.

3 In [19], Okounkov proved a different explicit formula for the n-point func-
tions F,, and he showed in Section 3 of op. cit. that the generating function
of their coefficients is the logarithm of the string tau-function of the KdV
hierarchy.

4 In this paper we identify Buryak's and Okounkov’s formulas for the n-point
function, and this makes the sequence of papers [7] — [5] — the present

paper — [19, Section 3] a new proof of the Witten conjecture.
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Let us say a few words about the geometric techniques used in [7] and [5]. A
double ramification cycle DRy(ay,...,a,), a; € Z, >i_; a; = 0 is the class of a certain
compactification of the locus of the isomorphism classes of smooth curves with marked
points (Cg, Xy,..., X, € Cy) € ﬂg'n such that >?' | a;x; is the divisor of a meromorphic
function C;, — CP!. These cycles inherit rich geometry of the space of maps to CP! and
this allows to express the psi-classes restricted to these cycles in terms of the double
ramification cycles of smaller dimension, which is in principle enough to compute all

intersection numbers of psi-classes with the double ramification cycles. Next, observe

gim+g
forward of a double ramification cycle is a multiple of the fundamental cycle of Mg,n'

that under the projection — /Vg,n that forgets g marked points the push-
This relates the intersection numbers of psi-classes on double ramification cycles to
(1%, 74,)¢- There is, of course, a long way from these computational ideas to nice closed
formulas derived in [7] and [5].

Let us stress that in the approach of [5, Section 3.2] it is sufficient to assume
that all weights of marked points in double ramification cycles are non-zero integers
(for instance, assume that all integer numbers chosen arbitrarily in the beginning of
the argument of Buryak are positive). This allows to use only part of the results of
[7] that concerns the intersection numbers of psi-classes with the double ramification
cycles with only non-zero weights. This part of the computation in [7] uses nothing
but the factorization rules for psi-classes at the points of non-zero weights on double
ramification cycles, which work equally well for the double ramification cycles defined
via relative stable maps to CP! and the double ramification cycles of admissible covers
[11] (cf. a discussion in [7, Section 2.3]).

This idea of computation of the intersection numbers has been used in a
number of earlier papers, cf. [6, 21-24], and these papers might serve a good source
of examples of particular computations. In particular, an explicit algorithm for the
computation of all intersection numbers ([T, T4,)g is given in [25]. Exactly the same
idea of computation of the intersection numbers of i -classes is proposed in [9, Section
9]. It is mentioned in [9, Section 1.3] that for the further applications of the results of
that paper a required 1st step is to give a new proof of Witten's conjecture [26] using the
technique developed there. So, it is precisely what the present paper (combined with [7],
[5], and [19]) does.

Finally, to conclude the introduction, let us mention that the n-point functions
for the intersection numbers of psi-classes have recently been studied from different
points of view, see [1-4, 10, 16, 28, 29]. The comparison of different formulas and

recursive relations for their coefficients is very interesting and usually highly non-

1202 4290300 €0 UO Jasn yayjoljqiqienusz-AS3a Aq #1+99.5/9621/81/1 20Z/oI0lE/UIWI/WO0D dNO"dlWapedE//:sd)Y WO} papEO|UMO(



Buryak-Okounkov Formula and Witten Conjecture 14299

trivial, and this paper can also be considered as a step toward unification (see also

[29]) of the variety of formulas for the n-point functions.

1.1 Organization of the paper

In Section 2 we recall the formulas of Buryak and Okounkov and some statements about
these formulas that we use in this paper, and state our main results. In Section 3 we
derive an equivalent form of the Buryak formula. In Section 4 we prove that the principal
terms in Buryak and Okounkov formulas coincide. In Section 5 we prove that all other
terms, namely the so-called diagonal terms needed for a regularization of the principal

ones, also coincide in the Buryak and Okounkov formulas.

2 Buryak and Okounkov Formulas

In this section we recall the formulas for the n-point functions in [5] and [19]. It
is convenient to append the intersection numbers by two unstable cases g = 0
and n = 1,2. Namely, we assume by definition that <Zd120 tdlel)o = sz and
(X d,.dp>0 rdlx‘lilrdzxgz)o = (x; + x,)7!, and we add these terms to F; and J,,

respectively.

2.1 Formula of Buryak

Let {(x) := /% — e */%. Define the function P, (a;,...,ay; Xy, ..., X,) by Py(a;;x)) = 5

and for n > 2 we have

n—1 J J
H X2 () H ¢ ((kZl ar(k))Xr(]'Jrl) — Qg+ (kZI Xr(k)))
Py@y,.... 0y %Xy,...,X,) = z Y .
rr(ﬁs:"l ]131 (“r(i)Xr(iH) - “r(i+1)Xr(i))

(1)

Though it is not obvious from the definition, P, is a formal power series in all its

variables, which is invariant with respect to the diagonal action of the symmetric group

S,on(a,,...,a,) and (xy,...,X,), see [7, Remarks 1.5 and 1.6].
Define the function 72U = FBU(x,, ..., x,) as the Gaussian integral
(ZJ 1%) *2a

B .
Fl (X, .., xp) =

(z )H \/2717/ He da P,(Ga,,... ia,;xy,...,X,).
Jj=1<j j=1
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Theorem 2.1 (Buryak [5]). Forn > 1 we have F,, = F2U.

2.2 Formula of Okounkov

Define the function £(x,...,x,) as
ZJ 1%7)/12 2 (s )2 (S: + S p)X;
— ~Sit1 J 1A
Exy,y...xy,) = \/H/R" Hds exp Z( + 2 ) ,
— j=1 J
where s, ; denotes s;. Then the function £°(x;, ..., x,) defined as
EO(XI, o Xy) = Z E&Xy1yr- -1 X))
0€Sn/Zn
is invariant under the S,,-action on (x;,...,X,).
Denote by IT,, the set of all partitions of the set {1,...,n} into a disjoint union of
unordered nonempty subsets Lt iy ], forall¢=1,2...,n. Letx; == Zjel ,Ic{1,...,n},
I # ¢). Define the function G(x,,...,x,) as

Gy, xy) = > (=D, .., xp)

uj‘i=lljer[n
and the function FK = F9K(x,,...,x,) as
(272 X, X
FOKx,, ..., x,) = ( e ")

Theorem 2.2 (Okounkov [19]). The generating function of the coefficients of }',9", n>1,

is the logarithm of the string tau-function of the KdV hierarchy.

2.3 Main theorem

We are ready to state our main result.

Theorem 2.3. We have F2U = FOX n > 1.
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The rest of the paper is devoted to the proof of this theorem. An immediate

corollary of Theorems 2.1, 2.2, and 2.3 is the following:

Corollary 2.4. The Witten conjecture is true, that is, the function exp(F) is the string

tau-function of the KdV hierarchy.

As we explain in the introduction, the real importance of this new proof of the
Witten conjecture is that it uses a new way to relate the intersection theory of the moduli
space of curves to the theory of integrable hierarchies, based on geometry of double
ramification cycles. Otherwise, though Theorem 2.3 is interesting by itself, the identity

F, = FO has an alternative proof in [19, Section 2].

3 Buryak Formula Revisited
Our 1st goal is to translate the cumbersome formula of Buryak into something more

manageable. Let wy, = (a;x; — arx;)/2 and uj = a;/x; — a /.

Proposition 3.1. For n > 1 we have

1 €Xp (Zi<j Wa(i)a(]'))

P,(Qy,....Qn%X1,...,X,) = . (2)

n , n—1
Hl=1 X €Sy j=1 Ys()oG+1)

It is clearly true for n = 1 and we prove it below for n > 2. Now the function P,
is manifestly invariant with respect to the diagonal action of the symmetric group S,

on(a,...,a,) and (x;,...,x,).

Corollary 3.2. We have

3

[z )

2| 2 % 2 i

Lou oS n _%d exp (z 2 i<k G0 ()Xo (k) ~ “a(k>Xo(i>)
= J .
n " . s Jan qe a] ZS: Hn_1 i (a,,(,-) _ aa(1~+1))
5 2 = [oAS — . .
Zixj (2m)2 szl X; J n J=1 "\ %) XG4

(3)
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3.1 Proof of Proposition 3.1

Assume that n > 2. Expanding the definition of the function ¢ allows us to rewrite

Equation (1) for P, = P,(a;,...,Q,; Xq, ..., X,) @S

(—DVlexp (ZLEI i Weyr) ~ 2jed Zl 1 W’(Z)’O))

P, = E E 1 .4
Hl 1% [os, 1= H] 1 ()it
(1)=1{2,..n}

3.1.1 Exponential terms in the numerators
In order to identify Equations (2) and (4), we consider for each particular fixed sequence
of signs sgn(w,,) = +1, r < s, all terms in Equations (2) and (4) where the numerator

is equal to exp(A), A = >, _ sgn(w,,)w,

rs’

and prove that the total coefficient of exp(4)
coincides in both formulas. The symbols w;;, 1 < i,j < n, are understood in the rest of
the proof as just formal variables satisfying the relations w;; + wj; = 0.

Let [2, n] denote the set {2,...,n}. Foro € S,, and I uJ = [2, n] we define

i-1 Jj-1
AT =D Woot) — DL D Wao (-

iel (=1 jeJ =1

It is a convenient way to keep track of signs in the exponential terms in the numerators
of (2) and (4). It is easy to see that

e In Equation (2) the numerators are indexed by exp(A[2 g for allo €S,
e In Equation (4) the numerators are indexed by exp(4; ;), for all € S, such

that (1) =1 and forallTuJ = [2,n].

So, we have to obtain a full description of all o,7, and I u J as above such that

exp(A‘[’zln]’M) = exp(A;J).

3.1.2 Notation for the symmetric group
Decompose S, as S,_; U (U2,S,_;(1,i)), where S,_;, C S, denotes the subgroup of
permutations 7 such that t(1) = 1.

Denote by C,,, m > 2, the cyclic permutation (1, m,m — .,2). Consider the
subset T C S, defined as T := {id} U ( i=11 {Cmy - Cmy 12 <my <--- <m; <nj). The

following lemma implies that it is in fact a disjoint union.
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Lemma 3.3. We have: TNS,,_; = {id}, and

TN (Sy_y (1) ={Cpy, -+~ Cpp 1 2<my <---<my_ <m}, i=2.
Proof. Observe that T = (TNS,_;)u (Ul,TN(S,_;(1,i)). Hence, it is enough to show
that {id} C S,_; (which is obvious) and {C,, -~ Cp,, 12 <m; < --- <my_; < n} C
(Sn_l(lli))r i 2 2

The latter fact we can prove by induction. For i = 2 we see that C,, = (2, m,m —

1,...,3)(1,2). Assume we know that for any 2 < m; < --- < m;_; < n the product
Cp, " Cp, , 1s equal to 7(1,7) for some r € S,, ;. Thenforany2 <m; <--- <m; <n
we have

Cony+ Coy = T(L,DC = T(2,1,i—1,...,3)(+1,m;m; —1,...,i+2)(1,i+ D)=17'(1,i+ 1),
where 7’ € S,,_;. Thus, Cp, -+ Cy,. € S,y (1,04 1). |

3.1.3 AFZ,n],M versus A}J

The full description of the correspondences between A, o€S,,andAj;, T €S

[2nl.0" n—1r

I'uJg =1[2,n], is given by the following lemma.

Lemma 3.4. (1) For any r € S,_;, I uJ = [2,n], there exists a 0 € S, such that
A?Z,n],ﬂ) = A;,J'

(2) For any o € S,,_; the only combination of (r,I,J), wherer € S,,_; and IuJ =
[2,n], such that Af,J = Alaz,n],ra isgivenbyt =0,I=1[2,n],J =0.

(3) For any ¢ € S,,_;(1,7), i > 2, the complete list of the combinations (z,I,J),
where v € S,,_; and I uJ = [2,n], such that A}’J = Afz,n],m is indexed by the sequences
2<m; <---<m;_; <n,where

T = o*C,_nL1 -~-C,_nll; I=I12,nl\{m,.... m;_1};, J={my,....m;_;}
3.1.4 Comparison of the coefficients

The symbols u;;, 1 < i,j < n, are understood in the rest of the proof as just formal

ijr
variables satisfying the relations u;; + u; = 0 and u;; + uj + uy; = 0 for all i, j, k. For

o € S,, n > 2,the symbols Q(s) denotes

1

Qo) = .
Us (1o 2)Us(2)03) - - Uo(n—1)o(n)

1202 4990100 €0 U0 Josn yayjol|qiqrenusz-AS3Aa Ad ¥7¥99/G/9621 /8 1/1 20Z/d101HE/uii/wod dno-olwaepede)/:sdiy Woly papeojumoq



14304 A. Alexandrov et al.

Up to a factor 1/ [[j"; x; (which is a common factor for (2) and (4)), the coefficient
of exp(Afzyn],@) in (2) is equal to Q(o). Up to the same factor, the coefficient of eXp(A;,J)

is equal to (—1)MQ(7).
Lemma 3.5. Foranyo €S,,_,(1,1), 2 <i < n, we have

Qo) = (=1)" ! > Q(cCl - Cl). (5)

2<mi<--<m;_1<n

Lemmas 3.4 and 3.5 together imply that the right-hand side of Equation
(2) is equal to the right-hand side of Equation (4), which completes the proof of

Proposition 3.1.

3.2 Technical lemmas
In this section we prove Lemmas 3.4 and 3.5 used in the proof of Proposition 3.1.
3.2.1 Proof of Lemma 3.4

The proof is based on several observations. First, observe the left invariance of the

identities for A}”J:

Lemma 3.6. We have A7, ,, = A}fij implies Af,,, , = A7 ; for any p € S,,.
Proof. Direct inspection of signs. |

Second, we have uniqueness:

Lemma 3.7. The equality A Ail‘%] considered as an equation for o has at most

o —
2nlg =
one solution.

Proof. Assume we have two solutions, o and p, thatis, A}, |, = A}"ij = Af)z,n],w' Applying

-1 —1 .
Lemma 3.6 twice, we obtain Alen‘f@ = Af,J = Afg'nm. Hence, p~lo =id. [
Finally, we can solve this equation:
L 38. F 2 < < have A" — Ald where J =
emma 3.8. orany 2 < m; < --- < m; <n, we have 4, ;' = A}, where J =

{mq,....m;}.
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Proof. We prove it by induction on i. The base case i = 0 is trivial. Assume we know it

for i. Then, for i + 1 we have

Cmy~-Cmy g _ 20m
[zrn]rg - [zln]\{mZr-~-lmi+1}l{m21'“rmi+l}
= Z W, (0),Cmy () ~ Z W, (k),Cmy ()
Jjé{ma,...miq} jelma,...mii1}
k<j k<j
Since Cp, acts only on 1,...,my, it doesn't affect the 2nd sum and the part of the 1st

sum for j > m,. Since it is a cycle, the only terms when k < j and C,, (k) > C,,, (j) hold

simultaneously are the terms with k = 1. Hence, this total expression is equal to

_Aid
Z Wkj — Z Wkm, — Z Wij = A,nl\(my,...mi1 b imamigs )

JEmyma,...mi1} k<my je{ma,...mi 1}
k<j k<j
[ |

Now we are ready to prove Lemma 3.4. The 1st statement follows from
Lemmas 3.6 and 3.8. Then, note that Lemmas 3.8 and 3.7 imply that the equality
AEYZ,n],(Z)
tlo =idif J = ). Hence, t =0 Cp,. -+ Cp).

= A;,J can hold only for t71o = Cmy +** Conyr where J = {m; < --- < m;} (and

3.2.2 Proof of Lemma 3.5
First, observe that the basic properties of u;; imply the following identity that we’'ll use
in the proof (one can prove it by induction on r, for instance):

n—1
u u u
1,r+1%mm+1 1,r+1
+ =-1. (6)

merg1 UmiU1m+1 Up,1

Second, observe that Equation (5) is invariant under the left products with any

p € S,, so it is sufficient to prove it for ¢ = id. We, however, prove a more general

n’

statement. Namely, for any 1 <i < b < n we prove that

(-Di-ladd) b=n;

R = - . w
25m1<~-<mi_1§b (_l)l la(ld)u;Lbill b <n.

This can be proved by induction on i, with the case i = 1 being obvious. Assume this

statement is proved fori. Then for i+1 we have (the computation is completely analogous
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in the cases b = n and b < n, so we perform it only in the 1st case):

n

2. aGmCn)= 2 2 Q(Cm Coniy *++ Cm)

2<my<--<m;<n mi=i+12<mj<--<m;_j<m;—1

n

_ _1yi—1 -1
= > (=D Q(Cr;)

S—— Conk (1),Ciik (my) mimir1 Smi 14 mir

Uerk i),k ()

n—1
. Uy oUyy. 1. u u;
—_ . 1,2%m;,m;+1 1,2 1,1
=D ladd [ D LTS 4 o
unyl uz’l

= (=DiQ(d).

Here the 2nd equality is the induction assumption, and the final equality follows from

Equation (6).

4 The Principal Terms

Recall a reformulation of the formula for ]-',?k proposed in [19, Equation (3.3)]:

(=)L (27)v/2 X, X .
Fok = o ( ppp——" ) + diagonal terms. (7)
IIJn=1 \/)?J 2173 2173

The idea behind this formula is that the whole expression for O can be considered as
the regularization of its principal part, which is the 1st summand on the right-hand side
of Equation (7), by the terms that are Laplace transforms of distributions supported on
the diagonals, see [19, Sections 2.6.3 and 3.1.4].

The formula of Buryak, in the form of Equation (3), can also be represented as
the sum of its principal part and the regularizing terms supported on the diagonals.
Firstly, we interpret the integrals as Cauchy principal values in order to interchange [,n

and >, s in Equation (3). We obtain

3
1 < )
2| 2% a? i
By e (:1 ﬁeTJ‘f da. | P (z 2 j<k Fo )Xo ) ~ “a(k)Xao'))
n n " 3 n |- J HT}—I i (ao(i) _ “J(HD)
7€Sn > x; )@2n)z H}‘zlsz J=1 J=1 "\ %q  Xeg+
=
(8)

Here the expressions under the sign of the integral have poles along the diagonals
defined as a,;)/X5j) — Qo (jt1)/XsGr1) = 0,7 = 1,...,n — 1. Recall the integrals should
be understood as the Cauchy principal value integrals, that is, we exclude the tubular

neighborhood of the divisor of poles of the radius r, integrate, and take the r — 0 limit of
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Buryak-Okounkov Formula and Witten Conjecture 14307

the resulting expression. Similarly to Okounkov's formula, they can be decomposed into
a principal part without poles and a diagonal part by applying the Sokhotski—Plemelj

formula.

Lemma 4.1. The right-hand side of Equation (8) decomposes in a similar way to
the right-hand side of Equation (7), that is, into a sum of its principal part and some
diagonal regularization terms. The principal parts of the right-hand sides of Equations

(7) and (8) are equal.

Proof. Fix o € S, and consider the corresponding summand on the right hand of

Equation (8). We apply the following change of the variables a,...,a,:

n:

i
@) = Doy T 5%y | — 2 Koy T 2 %o |-
L<j r>j

With this change of variables we have

. 2 n 2

1 2 1 i o a; b;
8 2 XX+ 2 2 XX+ 2 2 @otXo ) — o Xom) = 2. o > 2%,

J#k J<k<t k<t j=1 J j=1 J

and

(%0 _ Fog0 Y _if Poir _ Pod+n) _(XJU>+X00'+1>).
Xo()  Xo(+1) Xoi)  Xo(+1) 2

Thus, the right-hand side of Equation (8) is equal to

i 3 b2
2 2 X -
e J=1 ! H;lzle = db] .
+ diagonal terms
Ues n Rr 771 [i (bau‘) _ bao'+1>) _ (Xau>+Xau'+1>)]
n ,IXJ (2m)? HJ 1 X j=1 Xo()  Xo(jt1) 2
9)
1 % 3 b2
24 ij

e =1

J
n T
[li=1e "7 db;

/R” i [( bogy) _ bao‘+1>) _ (Xa(i>+Xc(i+1))]
j=1 2

Xo (j) Xo(j+1)

+ diagonal terms,

oeSn/Tn (27)2 ]_[]_

where in the 2nd line o(n + 1) denotes o(1). The diagonal terms are half-residues
arising as a result of translating the contour of the b,,’s back to R", removing the
diagonal singularities in the process. An explicit expression for the diagonal terms will

be computed in the next section using the Sokhotski-Plemelj formula.
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Remark 4.2. Let us note that Equation (9) is similar to the expressions for the n-point

functions obtained by Brézin and Hikami in [3, 4]. =

Since we got a sum over ¢ € S,,/Z,, as in the principal part of the right-hand
side of Equation (7), it is sufficient to prove for each o € S,,/Z,, that the corresponding
summands are equal. Without loss of generality we can assume that o = [id]. Then we

have to prove that

1 f: 3 b?
2q X7 L
eZ4 a J H]",Lzl e ZX]' de (10)
B o) 2 T %/Rn n b b} | (xtx)
( jT)Z Hj:l X] j=1 Xj Xjt1 2

% 2 ()

B (_1)n+l (27.[)7’1,/2 e J=! n

of(s;—8i1)% (St Siq)X;
/]R HdSJ eXp _Z ]4< ]+3 + ] 24j;_1 ] ’

n X
1 /X5 ; s . i
H]—l J H;lzl 4 (%) rELO j=1 j=1 21?3
or, equivalently, if we cancel the common factors and rescale S; by 2-1/3 we have to
prove that
b2
n
ITe % dbj
1 j=1
- : ., . ( ) (11)
1 JRn (0 j+1 Xj+Xjt1
[T @mxph 75 I [=i (2 + 22 ) 4 Gt

j=1 Jj=1

n n 2
_ ds. _ J 0 (R S
., VTt o (325 2
20 | j=1 j=1

J

b o bf_+1) n (Xj+;fj+1)]_l by

X]' X]'+1

To this end, we use the following trick. Replace [—i (

b. b (X-+X- 1)
. j Jj+1 J J+
/ ds;ji; exp | Sj4q |(—+ )— 2 ,
R0

X X

where s, ; denotes s, change the order of integration, and take the Gaussian average

with respect to the variables b;. We see that the left-hand side of the equation (11)
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is equal to
ﬁdb
i n
i 1 (x; +x:,1)S;
/ Hds /LH xp(—z—(b |2asJ+1+|2as) %IHI)
RYZL H(ZJTX)ZJ 1 Xj
j=1
(12)
n nof(is; — s )% (S; 4 S )X
=/ []ds;|exp Z((] LA Bk AL ,
RY | - ‘ 2x; 2
>0 | j=1 j=1 J

which is precisely the right-hand side of Equation (11). This computation proves

Equation (11), and, therefore, completes the proof of the lemma.

Remark 4.3. The argument of Okounkov in [19, Section 3.1] implies that it is sufficient
to compare the principal terms of ]-"E’“r and ]-',?k in order to prove the coincidence of
these formulas, since the diagonal terms only compensate for the non-regular terms in
the principal part detected by the wrong powers of = (it is also the case for }",?“', where
this property is evident from the Sokhotski-Plemelj formula). So, Lemma 4.1 implies
Theorem 2.3. However, we can explicitly identify the diagonal terms in F2U" and F9¥,

and we do this in the next section.

5 Diagonal Contributions

We represent Buryak's formula in the following way.

Theorem 5.1. (1) We have

2
Ly ~ 2 df
5 (2n)5’ n e A [jme 75
=SS S il
3 (277) R¢ ] S XKL
HX 0=1 [u---Ll;] Hjl — =) - 5
j=1 J ={1,...n} J Lit1
I,... i #9
Here we take the sum over the cyclicly ordered partitions of {1,...,n}, thatis, [I; u---uI,]

is identified with [, u---uI, U], and I, , denotes I; and f, ; denotes f;.

(2) For every cyclicly ordered partitions of {1,...,n}, [l u---ul,], whereI;,..., I, #
#, we have
hyx .
ez & I Hj:l e J g

J
x;,
(2m)* /R‘f ] fi+1 g Al 5 = 1)5(21/3’”"21/3). e
H] 1 _Jm - 2
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This theorem is a refinement of Lemma 4.1 that includes now all the diag-
onal terms and we have an explicit term-wise identification. It immediately implies
Theorem 2.3. We devote the rest of this section to the proof of Theorem 5.1, whose main
part consists of a careful application of the Sokhotski—Plemelj formula, and the further

steps just repeat the computations in the proof of Lemma 4.1.

5.1 Structure of the Sokhotski-Plemelj formula

Let us discuss explicitly how to apply the Sokhotski-Plemelj formula to Equation (2). In
principle, one can just directly iteratively apply it, but we first discuss the structure of
the formula since it simplifies computations a lot.

Fix a particular o € S,, and consider the corresponding term in the variables

n
f:M(Zﬂ), =l Gy
X

4
n i X Xo)  Xo(i+1)

In these variables the shift of a;'s that we applied in the previous section looks like

ISP X [ .

i=1

The denominator of the expression under the integral is equal to g; - - - g,,_;. Since there
is no pole in f, its shift is neglectable. Assuming x,,...,x, to be small positive real
numbers, we move the contour of integration for each g; to the lower half-plane, and
then can deform it back to the real line with excluded interval around g; = 0 and a half-
circle around it in the lower half-plane, which in the limit gives the sum of the principal
part and the half-residue at g; = 0. This is exactly the Sokhotski-Plemelj formula applied
now to the product of simple poles g; ---g,,_;.

The whole integral expression is then split into 2" ! summands for each o, since
we have to make a choice for each g; whether we take the principal part or the residue
part of its contour. If we choose for all g;'s the principal part of the integral, we exactly
obtain the principal terms considered in the previous section. More generally, the full
system of choices is controlled by pairs (o, uleIi), where ¢ € S,, and uleIi ={1,...,n},
Ii,....I), #¥,and I; < --- < I, in the sense that for any n; € Iij,j =1,2,1; < i, implies
n; < n,. Once we fixed a pair (o, L{_, I,), we choose the residue option for all 9o(i)'s With
i € I;\ {max(Ip}, j = 1,...,¢, and the principal option for all g,'s with i = max([y),
j=1,...,0—1.
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Note that the integrals for the pairs (op, uleIi), p;) =Lfori=1,...,¢, coincide.
Moreover, each of them contributes Hle 1/|L;|! to the product of negative residues since
the contour of integration in the plane Zje]i Ay () /X, G) = 0,i=1,...,¢,1s the intersection
of the torus around the origin with the Weyl chamber selected by the inequalities
o)/ Xop(y) < Pop(a)/ Xop(z) TOT J1/J2 € Ljy J1 < Jo- Thus, the residue part of the integral
in the sum over all p € S,, such that p(I;) = I, for i = 1,...,£ is the product of the full
residues around zero in the planes ZJ-E[i a(,(i)/xg(i) =0,i=1,...,¢, with the coefficient
[T, @riylil-1,

Now we are ready to perform the computation. For simplicity we take o = id,
¢ =1,and I, = {1,...,n}, and treat the general case as an ¢-fold iteration of the same

computation, with the indices adjusted with respect to a general o.

5.1.1 Computation for (id,{1,...,n})
In the case 0 = id and ¢ = 1, I; = {1,...,n}, we take the sum over all p € S,. The

corresponding residue term is equal to

3

n

1

b3 ZXJ) 2 i

e\l / 7{ no _jida; | €Xp (7 2 <k YXk — AkX;
e — .

n 1 JrJ(@Hn-1 | ; X Hﬂ*l i (ﬁ _ a’f+l)

n n 2 =1 J =1 . -
Zl X]) (27'[) 2 HjZI XJ J J Xj Xj+1

a? _
Note that —> %, 2_)](] = —f%/2 (Z?:1Xj) + 0y, Gn-1) [1j21 daj/x; = HJY'L:11 dg;df/
(Z]'-l:lxj), and > pa;xy — arx; = 0(gy,...,gnp_1). This allows us to rewrite the

residue as

3
1 n
2 EXJ)

(2m) ! o 7/(2xi) 4
n n o % R i X
;Xj (2m)2 szlxj = j

5.1.2 Computation for o = id, general partition

Recall that we denote by x;, I C {1,...,n}, I # ¢, the sum Zidxi. In the case of a general

artition uf I, I,,...,I, # @, it is more convenient to work in the coordinates
p i=17ir*1 14
Xy, a; a; aj ) )
fizI— Z—] , gijz—J—]—, i=1,...,¢, jel\ {max)}.
Ll \ i %5 X X
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The corresponding residue term is equal to the principal part of

3
1 n
ﬁ(/z Xj)
e VI

n . 1
Zl Xj) (27)2 H;lzl XJ.2

’

i
/ j’{ |n] o7 44 | P (2 Tk — av)
¢ 1yn—¢ X n—1;: (4 _ dj+1
REJsHr 1 J [i5 '(X_j - _)

Xj+1

where the integral over R’ is the Cauchy principal value integral (except for the diagonal

direction, where it is a converging integral). In the new coordinates, we have

n g2 L fz " da. ¢ |L]-1 [ df.
j ] . ] i .
—2 5 =2 oy I =I111de]1."
j=1 “%i i—1 2L j=1 T =1 j=1 i=1 "L

-1 -1
a . a . . .
Hi max(l;) _ “max(l)+1 _ Hi i fl+1 + O(gij);
. Xmax(;)  Xmax(;)+1 . X Xy
i=1 i 1 =1 1 1+1

Zank — aka = Zf}XIk _kaI] + O(gl])

Jj<k Jj<k

This allows us to rewrite the residue formula as

3

1 n

Ll > x 2 )
¢ “\5 ’) ¢ qf | exp (12' fixg, — fix )

B “ g, Yy 2 kJje k21
H(Z?T)llil_l ¢ He 4 j IRk ] (15)
S n n LJRE | o Xy, -1 fi  fin
i=1 (/gl Xj) (2m)2 H;lzl ij J=1 J Hj:l I (le X_Ij+1 )
The diagonal terms of this expression will be transferred to the partitions of {1,...,n}

with ¢/ < ¢ terms, so we have to take the principal part:

1
¢ 24

wa

14
= 7L ¢ i

[T e 7 ~; df; 1
(27)ll-1 /z He 2y, XJ - - 16)
- n w1 JRe | =T P
" (7'21Xj) ) 'HlXjZ -~ J j=1 [I (X_;J - ij_il) B }

- = L

5.1.3 General o, general partition
If we have a general o, it just means that we no longer have to assume that the subsets

I,,...,1, satisfy the property that for any n; € Iij,j =1,2,i, < i, implies n; < n,. That s,
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Buryak-Okounkov Formula and Witten Conjecture 14313

we obtain the same formula as Equation (16), with arbitrary ordered sequence I, ..., I,
such that Uf_ I, =(1,...,n},I;,...,I, # ¢. We have

¢
LS %3 2
n n 24 =7 14 i
ey 3 e o[ [l :
n = n 1 -1 )
=1 nu-up [ x2 i x: ) 2n)t R Jj=1 1 i /RSN B R S
={1,..,n j=1 J = J j=1 XIj XIJ'+1 2

(17)

The theorem follows by direct comparison of this expression with the principal part of
]:lBur(Xh' .. ,XII), which, by Section 4, is related to £ (2}%, R 2}%)

5.1.4 Final remarks

We relate Equations (13) and (17) exactly in the same way as the two sides of Equation
(9), see the 1st half of the proof of Lemma 4.1. The proof of Equation (14) repeats literally
the proof of Equation (10), see the 2nd half of the proof of Lemma 4.1, one just have to
replace the symbols n, (by,...,b,), and (x;,...,x,) in that argument by ¢, (f}, ..., f;), and

(XII,...,XI[).
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