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We identify the formulas of Buryak and Okounkov for the n-point functions of the

intersection numbers of psi-classes on the moduli spaces of curves. This allows us

to combine the earlier known results and this one into a principally new proof of the

famous Witten conjecture/Kontsevich theorem, where the link between the intersection

theory of the moduli spaces and integrable systems is established via the geometry of

double ramification cycles.

1 Introduction

The symbol 〈∏n
i=1 τdi

〉g denotes the intersection number
∫
Mg,n

∏n
j=1 ψ

dj

j . It can be non-

zero only if g ≥ 0, n ≥ 1, 2g − 2 + n > 0, d1, . . . , dn ≥ 0, and
∑n

j=1 dj = 3g − 3 +
n = dimMg,n. Witten [26] conjectured that the generating function of these intersection

numbers defined as

F :=
n∑

g=0

〈
exp

( ∞∑
d=0

τdtd

)〉
g
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is the logarithm of the unique tau-function of the Korteweg–de Vries (KdV) hierachy that

in addition satisfies the string equation,

[
∂

∂t0
−

∞∑
d=0

td+1
∂

∂td
− t2

0

2

]
exp(F) = 0.

The string equation is easy to prove, see [26], so the main part of the conjecture is the

equations of the KdV hierarchy.

This conjecture was first proved by Kontsevich [15] using the Strebel–Penner

ribbon graph model of the moduli space of curves, and later on more proofs have

appeared. Mirzakhani [17] used symplectic reduction for the Weil–Peterson volumes

of the moduli space, and Okounkov and Pandharipande [20] and Kazarian and Lando

[13] used the Ekedahl-Lando-Shapiro-Vainshtein (ELSV) formula that connects the

intersection theory and Hurwitz numbers. There are more papers where the Witten

conjecture/Kontsevich theorem is proved (see e.g. [8, 12, 14, 18, 19, 27]), but on the

geometric side they all use one of the ideas mentioned above: the Strebel–Penner ribbon

graph model, symplectic reduction, or the ELSV formula for Hurwitz numbers.

In this paper we give a new proof of the Witten conjecture based on a completely

different geometric idea than any of the earlier existing proofs: the intersection theory

of double ramification cycles. More precisely, the full proof that we explain here

consists of four big steps, where three of them were already available in the literature,

and the 4th missing one is the main subject of this paper:

1 In [7], Buryak et al. fully described the intersection numbers of the monomi-

als of psi-classes with the double ramification cycles.

2 In [5], Buryak used the previous result and a relation between the

double ramification cycles and the fundamental cycles of the moduli

spaces of curves to describe explicitly the so-called n-point function

Fn = Fn(x1, . . . , xn) := ∑
g≥0

∑
d1,...,dn≥0〈∏n

i=1 τdi
xdi

i 〉g, n ≥ 1.

3 In [19], Okounkov proved a different explicit formula for the n-point func-

tions Fn and he showed in Section 3 of op. cit. that the generating function

of their coefficients is the logarithm of the string tau-function of the KdV

hierarchy.

4 In this paper we identify Buryak’s and Okounkov’s formulas for the n-point

function, and this makes the sequence of papers [7] → [5] → the present

paper → [19, Section 3] a new proof of the Witten conjecture.
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14298 A. Alexandrov et al.

Let us say a few words about the geometric techniques used in [7] and [5]. A

double ramification cycle DRg(a1, . . . , an), ai ∈ Z,
∑n

i=1 ai = 0 is the class of a certain

compactification of the locus of the isomorphism classes of smooth curves with marked

points (Cg, x1, . . . , xn ∈ Cg) ∈ Mg,n such that
∑n

i=1 aixi is the divisor of a meromorphic

function Cg → CP1. These cycles inherit rich geometry of the space of maps to CP1 and

this allows to express the psi-classes restricted to these cycles in terms of the double

ramification cycles of smaller dimension, which is in principle enough to compute all

intersection numbers of psi-classes with the double ramification cycles. Next, observe

that under the projection Mg,n+g → Mg,n that forgets g marked points the push-

forward of a double ramification cycle is a multiple of the fundamental cycle of Mg,n.

This relates the intersection numbers of psi-classes on double ramification cycles to

〈∏n
i=1 τdi

〉g. There is, of course, a long way from these computational ideas to nice closed

formulas derived in [7] and [5].

Let us stress that in the approach of [5, Section 3.2] it is sufficient to assume

that all weights of marked points in double ramification cycles are non-zero integers

(for instance, assume that all integer numbers chosen arbitrarily in the beginning of

the argument of Buryak are positive). This allows to use only part of the results of

[7] that concerns the intersection numbers of psi-classes with the double ramification

cycles with only non-zero weights. This part of the computation in [7] uses nothing

but the factorization rules for psi-classes at the points of non-zero weights on double

ramification cycles, which work equally well for the double ramification cycles defined

via relative stable maps to CP1 and the double ramification cycles of admissible covers

[11] (cf. a discussion in [7, Section 2.3]).

This idea of computation of the intersection numbers has been used in a

number of earlier papers, cf. [6, 21–24], and these papers might serve a good source

of examples of particular computations. In particular, an explicit algorithm for the

computation of all intersection numbers 〈∏n
i=1 τdi

〉g is given in [25]. Exactly the same

idea of computation of the intersection numbers of ψ-classes is proposed in [9, Section

9]. It is mentioned in [9, Section 1.3] that for the further applications of the results of

that paper a required 1st step is to give a new proof of Witten’s conjecture [26] using the

technique developed there. So, it is precisely what the present paper (combined with [7],

[5], and [19]) does.

Finally, to conclude the introduction, let us mention that the n-point functions

for the intersection numbers of psi-classes have recently been studied from different

points of view, see [1–4, 10, 16, 28, 29]. The comparison of different formulas and

recursive relations for their coefficients is very interesting and usually highly non-
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Buryak–Okounkov Formula and Witten Conjecture 14299

trivial, and this paper can also be considered as a step toward unification (see also

[29]) of the variety of formulas for the n-point functions.

1.1 Organization of the paper

In Section 2 we recall the formulas of Buryak and Okounkov and some statements about

these formulas that we use in this paper, and state our main results. In Section 3 we

derive an equivalent form of the Buryak formula. In Section 4 we prove that the principal

terms in Buryak and Okounkov formulas coincide. In Section 5 we prove that all other

terms, namely the so-called diagonal terms needed for a regularization of the principal

ones, also coincide in the Buryak and Okounkov formulas.

2 Buryak and Okounkov Formulas

In this section we recall the formulas for the n-point functions in [5] and [19]. It

is convenient to append the intersection numbers by two unstable cases g = 0

and n = 1, 2. Namely, we assume by definition that 〈∑d1≥0 τd1
xd1

1 〉0 := x−2
1 and

〈∑d1,d2≥0 τd1
xd1

1 τd2
xd2

2 〉0 := (x1 + x2)−1, and we add these terms to F1 and F2,

respectively.

2.1 Formula of Buryak

Let ζ(x) := ex/2 − e−x/2. Define the function Pn(a1, . . . , an; x1, . . . , xn) by P1(a1; x1) := 1
x1

and for n ≥ 2 we have

Pn(a1, . . . , an; x1, . . . , xn) :=
∑
τ∈Sn

τ(1)=1

n−1∏
j=2

xτ(j)

n−1∏
j=1

ζ

((
j∑

k=1
aτ(k)

)
xτ(j+1) − aτ(j+1)

(
j∑

k=1
xτ(k)

))

n−1∏
j=1

(
aτ(j)xτ(j+1) − aτ(j+1)xτ(j)

) .

(1)

Though it is not obvious from the definition, Pn is a formal power series in all its

variables, which is invariant with respect to the diagonal action of the symmetric group

Sn on (a1, . . . , an) and (x1, . . . , xn), see [7, Remarks 1.5 and 1.6].

Define the function FBur
n = FBur

n (x1, . . . , xn) as the Gaussian integral

FBur
n (x1, . . . , xn) := e

(∑n
j=1 xj

)3
/24(∑n

j=1 xj

)∏n
j=1

√
2πxj

∫
Rn

⎡
⎣ n∏

j=1

e
− a2

j
2xj daj

⎤
⎦Pn(ia1, . . . , ian; x1, . . . , xn).
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14300 A. Alexandrov et al.

Theorem 2.1 (Buryak [5]). For n ≥ 1 we have Fn = FBur
n .

2.2 Formula of Okounkov

Define the function E(x1, . . . , xn) as

E(x1, . . . , xn) := e

(∑n
j=1 x3

j

)
/12

∏n
j=1

√
4πxj

∫
R

n≥0

⎡
⎣ n∏

j=1

dsj

⎤
⎦ exp

⎛
⎝−

n∑
j=1

(
(sj − sj+1)2

4xj
+ (sj + sj+1)xj

2

)⎞⎠ ,

where sn+1 denotes s1. Then the function E�(x1, . . . , xn) defined as

E�(x1, . . . , xn) :=
∑

σ∈Sn/Zn

E(xσ(1), . . . , xσ(n))

is invariant under the Sn-action on (x1, . . . , xn).

Denote by �n the set of all partitions of the set {1, . . . , n} into a disjoint union of

unordered nonempty subsets 		
j=1Ij, for all 	 = 1, 2 . . . , n. Let xI := ∑

j∈I xj, I ⊂ {1, . . . , n},
I �= ∅. Define the function G(x1, . . . , xn) as

G(x1, . . . , xn) :=
∑

		
j=1Ij∈�n

(−1)	+1E�(xI1 , . . . , xI	 )

and the function FOk
n = FOk

n (x1, . . . , xn) as

FOk
n (x1, . . . , xn) := (2π)n/2∏n

j=1
√

xj
G
( x1

21/3 , . . . ,
xn

21/3

)
.

Theorem 2.2 (Okounkov [19]). The generating function of the coefficients of FOk
n , n ≥ 1,

is the logarithm of the string tau-function of the KdV hierarchy.

2.3 Main theorem

We are ready to state our main result.

Theorem 2.3. We have FBur
n = FOk

n , n ≥ 1.
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Buryak–Okounkov Formula and Witten Conjecture 14301

The rest of the paper is devoted to the proof of this theorem. An immediate

corollary of Theorems 2.1, 2.2, and 2.3 is the following:

Corollary 2.4. The Witten conjecture is true, that is, the function exp(F) is the string

tau-function of the KdV hierarchy.

As we explain in the introduction, the real importance of this new proof of the

Witten conjecture is that it uses a new way to relate the intersection theory of the moduli

space of curves to the theory of integrable hierarchies, based on geometry of double

ramification cycles. Otherwise, though Theorem 2.3 is interesting by itself, the identity

Fn = FOk
n has an alternative proof in [19, Section 2].

3 Buryak Formula Revisited

Our 1st goal is to translate the cumbersome formula of Buryak into something more

manageable. Let wjk := (ajxk − akxj)/2 and ujk := aj/xj − ak/xk.

Proposition 3.1. For n ≥ 1 we have

Pn(a1, . . . , an; x1, . . . , xn) = 1∏n
i=1 xi

∑
σ∈Sn

exp
(∑

i<j wσ(i)σ (j)

)
∏n−1

j=1 uσ(j)σ (j+1)

. (2)

It is clearly true for n = 1 and we prove it below for n ≥ 2. Now the function Pn

is manifestly invariant with respect to the diagonal action of the symmetric group Sn

on (a1, . . . , an) and (x1, . . . , xn).

Corollary 3.2. We have

FBur
n = e

1
24

(
n∑

j=1
xj

)3

(
n∑

j=1
xj

)
(2π)

n
2
∏n

j=1 x
3
2
j

∫
Rn

⎡
⎣ n∏

j=1

e
− a2

j
2xj daj

⎤
⎦ ∑

σ∈Sn

exp
(
i
2

∑
j<k aσ(j)xσ(k) − aσ(k)xσ(j)

)
∏n−1

j=1 i
(

aσ(j)
xσ(j)

− aσ(j+1)

xσ(j+1)

) .

(3)
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14302 A. Alexandrov et al.

3.1 Proof of Proposition 3.1

Assume that n ≥ 2. Expanding the definition of the function ζ allows us to rewrite

Equation (1) for Pn = Pn(a1, . . . , an; x1, . . . , xn) as

Pn = 1∏n
i=1 xi

∑
τ∈Sn

τ(1)=1

∑
I	J={2,...,n}

(−1)|J| exp
(∑

i∈I
∑i−1

	=1 wτ(	)τ (i) − ∑
j∈J

∑j−1
	=1 wτ(	)τ (j)

)
∏n−1

j=1 uτ(j)τ (j+1)

. (4)

3.1.1 Exponential terms in the numerators

In order to identify Equations (2) and (4), we consider for each particular fixed sequence

of signs sgn(wrs) = ±1, r < s, all terms in Equations (2) and (4) where the numerator

is equal to exp(A), A = ∑
r<s sgn(wrs)wrs, and prove that the total coefficient of exp(A)

coincides in both formulas. The symbols wij, 1 ≤ i, j ≤ n, are understood in the rest of

the proof as just formal variables satisfying the relations wij + wji = 0.

Let [2, n] denote the set {2, . . . , n}. For σ ∈ Sn and I 	 J = [2, n] we define

Aσ
I,J :=

∑
i∈I

i−1∑
	=1

wσ(	)σ (i) −
∑
j∈J

j−1∑
	=1

wσ(	)σ (j).

It is a convenient way to keep track of signs in the exponential terms in the numerators

of (2) and (4). It is easy to see that

• In Equation (2) the numerators are indexed by exp(Aσ
[2,n],∅), for all σ ∈ Sn.

• In Equation (4) the numerators are indexed by exp(Aτ
I,J), for all τ ∈ Sn such

that τ(1) = 1 and for all I 	 J = [2, n].

So, we have to obtain a full description of all σ , τ , and I 	 J as above such that

exp(Aσ
[2,n],∅) = exp(Aτ

I,J).

3.1.2 Notation for the symmetric group

Decompose Sn as Sn−1 	 (	n
i=2Sn−1(1, i)

)
, where Sn−1 ⊂ Sn denotes the subgroup of

permutations τ such that τ(1) = 1.

Denote by Cm, m ≥ 2, the cyclic permutation (1, m, m − 1, . . . , 2). Consider the

subset T ⊂ Sn defined as T := {id} ∪ ( ∪n−1
i=1 {Cm1

· · · Cmi
| 2 ≤ m1 < · · · < mi ≤ n}). The

following lemma implies that it is in fact a disjoint union.
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Lemma 3.3. We have: T ∩ Sn−1 = {id}, and

T ∩ (Sn−1(1, i)) = {Cm1
· · · Cmi−1

| 2 ≤ m1 < · · · < mi−1 ≤ n}, i ≥ 2.

Proof. Observe that T = (T ∩ Sn−1) 	 (	n
i=2T ∩ (Sn−1(1, i))

)
. Hence, it is enough to show

that {id} ⊂ Sn−1 (which is obvious) and {Cm1
· · · Cmi−1

| 2 ≤ m1 < · · · < mi−1 ≤ n} ⊂
(Sn−1(1, i)), i ≥ 2.

The latter fact we can prove by induction. For i = 2 we see that Cm = (2, m, m −
1, . . . , 3)(1, 2). Assume we know that for any 2 ≤ m1 < · · · < mi−1 ≤ n the product

Cm1
· · · Cmi−1

is equal to τ(1, i) for some τ ∈ Sn−1. Then for any 2 ≤ m1 < · · · < mi ≤ n

we have

Cm1
· · · Cmi

= τ(1, i)Cmi
= τ(2, i, i −1, . . . , 3)(i +1, mi, mi −1, . . . , i + 2)(1, i + 1)= τ ′(1, i + 1),

where τ ′ ∈ Sn−1. Thus, Cm1
· · · Cmi

∈ Sn−1(1, i + 1). �

3.1.3 Aσ
[2,n],∅ versus Aτ

I,J

The full description of the correspondences between Aσ
[2,n],∅, σ ∈ Sn, and Aτ

I,J , τ ∈ Sn−1,

I 	 J = [2, n], is given by the following lemma.

Lemma 3.4. (1) For any τ ∈ Sn−1, I 	 J = [2, n], there exists a σ ∈ Sn such that

Aσ
[2,n],∅ = Aτ

I,J .

(2) For any σ ∈ Sn−1 the only combination of (τ , I, J), where τ ∈ Sn−1 and I 	 J =
[2, n], such that Aτ

I,J = Aσ
[2,n],∅ is given by τ = σ , I = [2, n], J = ∅.

(3) For any σ ∈ Sn−1(1, i), i ≥ 2, the complete list of the combinations (τ , I, J),

where τ ∈ Sn−1 and I 	 J = [2, n], such that Aτ
I,J = Aσ

[2,n],∅ is indexed by the sequences

2 ≤ m1 < · · · < mi−1 ≤ n, where

τ = σC−1
mi−1

· · · C−1
m1

; I = [2, n] \ {m1, . . . , mi−1}; J = {m1, . . . , mi−1}.

3.1.4 Comparison of the coefficients

The symbols uij, 1 ≤ i, j ≤ n, are understood in the rest of the proof as just formal

variables satisfying the relations uij + uji = 0 and uij + ujk + uki = 0 for all i, j, k. For

σ ∈ Sn, n ≥ 2, the symbols Q(σ ) denotes

Q(σ ) := 1

uσ(1)σ (2)uσ(2)σ (3) . . . uσ(n−1)σ (n)

.
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Up to a factor 1/
∏n

i=1 xi (which is a common factor for (2) and (4)), the coefficient

of exp(Aσ
[2,n],∅) in (2) is equal to Q(σ ). Up to the same factor, the coefficient of exp(Aτ

I,J)

is equal to (−1)|J|Q(τ ).

Lemma 3.5. For any σ ∈ Sn−1(1, i), 2 ≤ i ≤ n, we have

Q(σ ) = (−1)i−1
∑

2≤m1<···<mi−1≤n

Q
(
σC−1

mi−1
· · · C−1

m1

)
. (5)

Lemmas 3.4 and 3.5 together imply that the right-hand side of Equation

(2) is equal to the right-hand side of Equation (4), which completes the proof of

Proposition 3.1.

3.2 Technical lemmas

In this section we prove Lemmas 3.4 and 3.5 used in the proof of Proposition 3.1.

3.2.1 Proof of Lemma 3.4

The proof is based on several observations. First, observe the left invariance of the

identities for Aσ
I,J :

Lemma 3.6. We have Aσ
[2,n],∅ = Aid

I,J implies Aρσ

[2,n],∅ = Aρ
I,J for any ρ ∈ Sn.

Proof. Direct inspection of signs. �

Second, we have uniqueness:

Lemma 3.7. The equality Aσ
[2,n],∅ = Aid

I,J considered as an equation for σ has at most

one solution.

Proof. Assume we have two solutions, σ and ρ, that is, Aσ
[2,n],∅ = Aid

I,J = Aρ

[2,n],∅. Applying

Lemma 3.6 twice, we obtain Aρ−1σ

[2,n],∅ = Aρ−1

I,J = Aid
[2,n],∅. Hence, ρ−1σ = id. �

Finally, we can solve this equation:

Lemma 3.8. For any 2 ≤ m1 < · · · < mi ≤ n, we have A
Cm1 ···Cmi
[2,n],∅ = Aid

I,J , where J =
{m1, . . . , mi}.
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Proof. We prove it by induction on i. The base case i = 0 is trivial. Assume we know it

for i. Then, for i + 1 we have

A
Cm1 ···Cmi+1
[2,n],∅ = A

Cm1
[2,n]\{m2,...,mi+1},{m2,...,mi+1}

=
∑

j �∈{m2,...,mi+1}
k<j

wCm1 (k),Cm1 (j) −
∑

j∈{m2,...,mi+1}
k<j

wCm1 (k),Cm1 (j).

Since Cm1
acts only on 1, . . . , m1, it doesn’t affect the 2nd sum and the part of the 1st

sum for j > m1. Since it is a cycle, the only terms when k < j and Cm1
(k) > Cm1

(j) hold

simultaneously are the terms with k = 1. Hence, this total expression is equal to

∑
j �∈{m1,m2,...,mi+1}

k<j

wk,j −
∑

k<m1

wk,m1
−

∑
j∈{m2,...,mi+1}

k<j

wk,j = Aid
[2,n]\{m1,...,mi+1},{m1,...,mi+1}.

�

Now we are ready to prove Lemma 3.4. The 1st statement follows from

Lemmas 3.6 and 3.8. Then, note that Lemmas 3.8 and 3.7 imply that the equality

Aσ
[2,n],∅ = Aτ

I,J can hold only for τ−1σ = Cm1
· · · Cmi

, where J = {m1 < · · · < mi} (and

τ−1σ = id if J = ∅). Hence, τ = σC−1
mi

· · · C−1
m1

.

3.2.2 Proof of Lemma 3.5

First, observe that the basic properties of uij imply the following identity that we’ll use

in the proof (one can prove it by induction on r, for instance):

n−1∑
m=r+1

u1,r+1um,m+1

um,1u1,m+1
+ u1,r+1

un,1
= −1. (6)

Second, observe that Equation (5) is invariant under the left products with any

ρ ∈ Sn, so it is sufficient to prove it for σ = id. We, however, prove a more general

statement. Namely, for any 1 ≤ i ≤ b ≤ n we prove that

∑
2≤m1<···<mi−1≤b

Q
(
C−1

mi−1
· · · C−1

m1

) =
⎧⎨
⎩(−1)i−1Q(id) b = n;

(−1)i−1Q(id)
ui,b+1
u1,b+1

b < n.

This can be proved by induction on i, with the case i = 1 being obvious. Assume this

statement is proved for i. Then for i+1 we have (the computation is completely analogous
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in the cases b = n and b < n, so we perform it only in the 1st case):

∑
2≤m1<···<mi≤n

Q
(
C−1

mi
· · · C−1

m1

) =
n∑

mi=i+1

∑
2≤m1<···<mi−1≤mi−1

Q
(
C−1

mi
C−1

mi−1
· · · C−1

m1

)

=
n∑

mi=i+1

(−1)i−1Q
(
C−1

mi

) uC−1
mi

(i),C−1
mi

(mi)

uC−1
mi

(1),C−1
mi

(mi)

= (−1)i−1Q(id)

⎛
⎝ n−1∑

mi=i+1

u1,2umi,mi+1

umi,1u1,mi+1
+ u1,2

un,1

⎞
⎠ ui+1,1

u2,1

= (−1)iQ(id).

Here the 2nd equality is the induction assumption, and the final equality follows from

Equation (6).

4 The Principal Terms

Recall a reformulation of the formula for FOk
n proposed in [19, Equation (3.3)]:

FOk
n = (−1)n+1(2π)n/2∏n

j=1
√

xj
E�

( x1

21/3 , . . . ,
xn

21/3

)
+ diagonal terms. (7)

The idea behind this formula is that the whole expression for FOk
n can be considered as

the regularization of its principal part, which is the 1st summand on the right-hand side

of Equation (7), by the terms that are Laplace transforms of distributions supported on

the diagonals, see [19, Sections 2.6.3 and 3.1.4].

The formula of Buryak, in the form of Equation (3), can also be represented as

the sum of its principal part and the regularizing terms supported on the diagonals.

Firstly, we interpret the integrals as Cauchy principal values in order to interchange
∫
Rn

and
∑

σ∈Sn
in Equation (3). We obtain

FBur
n =

∑
σ∈Sn

e
1

24

(
n∑

j=1
xj

)3

(
n∑

j=1
xj

)
(2π)

n
2
∏n

j=1 x
3
2
j

∫
Rn

⎡
⎣ n∏

j=1

e
− a2

j
2xj daj

⎤
⎦ exp

(
i
2

∑
j<k aσ(j)xσ(k) − aσ(k)xσ(j)

)
∏n−1

j=1 i
(

aσ(j)
xσ(j)

− aσ(j+1)

xσ(j+1)

) .

(8)

Here the expressions under the sign of the integral have poles along the diagonals

defined as aσ(j)/xσ(j) − aσ(j+1)/xσ(j+1) = 0, j = 1, . . . , n − 1. Recall the integrals should

be understood as the Cauchy principal value integrals, that is, we exclude the tubular

neighborhood of the divisor of poles of the radius r, integrate, and take the r → 0 limit of
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the resulting expression. Similarly to Okounkov’s formula, they can be decomposed into

a principal part without poles and a diagonal part by applying the Sokhotski–Plemelj

formula.

Lemma 4.1. The right-hand side of Equation (8) decomposes in a similar way to

the right-hand side of Equation (7), that is, into a sum of its principal part and some

diagonal regularization terms. The principal parts of the right-hand sides of Equations

(7) and (8) are equal.

Proof. Fix σ ∈ Sn and consider the corresponding summand on the right hand of

Equation (8). We apply the following change of the variables a1, . . . , an:

aσ(j) = bσ(j) + i
2

xσ(j)

⎛
⎝−

∑
	<j

xσ(	) +
∑
r>j

xσ(r)

⎞
⎠ .

With this change of variables we have

1

8

∑
j �=k

xjx
2
k + 1

4

∑
j<k<t

xjxkxt + i
2

∑
k<t

(
aσ(k)xσ(t) − aσ(t)xσ(k)

) −
n∑

j=1

a2
j

2xj
= −

n∑
j=1

b2
j

2xj
,

and

i

(
aσ(j)

xσ(j)
− aσ(j+1)

xσ(j+1)

)
= i

(
bσ(j)

xσ(j)
− bσ(j+1)

xσ(j+1)

)
−

(
xσ(j) + xσ(j+1)

)
2

.

Thus, the right-hand side of Equation (8) is equal to

∑
σ∈Sn

e
1

24

n∑
j=1

x3
j(

n∑
j=1

xj

)
(2π)

n
2
∏n

j=1 x
3
2
j

∫
Rn

∏n
j=1 e

− b2
j

2xj dbj∏n−1
j=1

[
i
(

bσ(j)
xσ(j)

− bσ(j+1)

xσ(j+1)

)
− (xσ(j)+xσ(j+1))

2

] + diagonal terms

(9)

= −
∑

σ∈Sn/Zn

e
1
24

n∑
j=1

x3
j

(2π)
n
2
∏n

j=1 x
3
2
j

∫
Rn

∏n
j=1 e

− b2
j

2xj dbj∏n
j=1

[
i
(

bσ(j)
xσ(j)

− bσ(j+1)

xσ(j+1)

)
− (xσ(j)+xσ(j+1))

2

] + diagonal terms,

where in the 2nd line σ(n + 1) denotes σ(1). The diagonal terms are half-residues

arising as a result of translating the contour of the bσ(k)’s back to R
n, removing the

diagonal singularities in the process. An explicit expression for the diagonal terms will

be computed in the next section using the Sokhotski–Plemelj formula.
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14308 A. Alexandrov et al.

Remark 4.2. Let us note that Equation (9) is similar to the expressions for the n-point

functions obtained by Brézin and Hikami in [3, 4].
�

Since we got a sum over σ ∈ Sn/Zn, as in the principal part of the right-hand

side of Equation (7), it is sufficient to prove for each σ ∈ Sn/Zn that the corresponding

summands are equal. Without loss of generality we can assume that σ = [id]. Then we

have to prove that

− e
1
24

n∑
j=1

x3
j

(2π)
n
2
∏n

j=1 x
3
2
j

∫
Rn

∏n
j=1 e

− b2
j

2xj dbj∏n
j=1

[
i
(

bj
xj

− bj+1
xj+1

)
− (xj+xj+1)

2

] (10)

= (−1)n+1(2π)n/2∏n
j=1

√
xj

e
1

12

n∑
j=1

( xj
21/3

)3

∏n
j=1

√
4π

(
xj

21/3

)
∫
R

n≥0

⎡
⎣ n∏

j=1

dsj

⎤
⎦exp

⎛
⎝−

n∑
j=1

⎛
⎝ (sj − sj+1)2

4
(

xj

21/3

) + (sj + sj+1)xj

24/3

⎞
⎠
⎞
⎠,

or, equivalently, if we cancel the common factors and rescale sj by 2−1/3, we have to

prove that

1
n∏

j=1
(2πxj)

1
2

∫
Rn

n∏
j=1

e
− b2

j
2xj dbj

n∏
j=1

[
−i

(
bj
xj

+ bj+1
xj+1

)
+ (xj+xj+1)

2

] (11)

=
∫
R

n≥0

⎡
⎣ n∏

j=1

dsj

⎤
⎦ exp

⎛
⎝−

n∑
j=1

(
(sj − sj+1)2

2xj
+ (sj + sj+1)xj

2

)⎞⎠ .

To this end, we use the following trick. Replace
[
−i

(
bj
xj

+ bj+1
xj+1

)
+ (xj+xj+1)

2

]−1
by

∫
R≥0

dsj+1 exp

⎛
⎝sj+1

⎡
⎣i

(
bj

xj
+ bj+1

xj+1

)
−

(
xj + xj+1

)
2

⎤
⎦
⎞
⎠ ,

where sn+1 denotes s1, change the order of integration, and take the Gaussian average

with respect to the variables bj. We see that the left-hand side of the equation (11)
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is equal to

∫
R

n≥0

⎡
⎣ n∏

j=1

dsj

⎤
⎦∫

Rn

n∏
j=1

dbj

n∏
j=1

(2πxj)
1
2

n∏
j=1

exp

(
− 1

2xj

(
b2

j − i2ajsj+1 + i2ajsj

)
− (xj + xj+1)sj+1

2

)

(12)

=
∫
R

n≥0

⎡
⎣ n∏

j=1

dsj

⎤
⎦ exp

⎛
⎝ n∑

j=1

(
(isj − isj+1)2

2xj
− (sj + sj+1)xj

2

)⎞⎠ ,

which is precisely the right-hand side of Equation (11). This computation proves

Equation (11), and, therefore, completes the proof of the lemma.

Remark 4.3. The argument of Okounkov in [19, Section 3.1] implies that it is sufficient

to compare the principal terms of FBur
n and FOk

n in order to prove the coincidence of

these formulas, since the diagonal terms only compensate for the non-regular terms in

the principal part detected by the wrong powers of π (it is also the case for FBur
n , where

this property is evident from the Sokhotski–Plemelj formula). So, Lemma 4.1 implies

Theorem 2.3. However, we can explicitly identify the diagonal terms in FBur
n and FOk

n ,

and we do this in the next section.

5 Diagonal Contributions

We represent Buryak’s formula in the following way.

Theorem 5.1. (1) We have

FBur
n = (2π)

n
2

n∏
j=1

x
1
2
j

n∑
	=1

∑
[I1	···	I	]
={1,...,n}
I1,...,I	 �=∅

−e
1
24

	∑
j=1

x3
Ij

(2π)	

∫
R	

∏	
j=1 e

− f 2
j

2xIj
dfj
xIj∏	

j=1

[
i
(

fj
xIj

− fj+1
xIj+1

)
− xIj +xIj+1

2

] . (13)

Here we take the sum over the cyclicly ordered partitions of {1, . . . , n}, that is, [I1 	· · ·	 I	]

is identified with [I2 	 · · · 	 I	 	 I1], and I	+1 denotes I1 and f	+1 denotes f1.

(2) For every cyclicly ordered partitions of {1, . . . , n}, [I1	· · ·	I	], where I1, . . . , I	 �=
∅, we have

e
1

24

	∑
j=1

x3
Ij

(2π)	

∫
R	

∏	
j=1 e

− f 2
j

2xIj
dfj
xIj∏	

j=1

[
i
(

fj
xIj

− fj+1
xIj+1

)
− xIj +xIj+1

2

] = (−1)	E
(

xI1

21/3 , . . . ,
xI	

21/3

)
. (14)
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This theorem is a refinement of Lemma 4.1 that includes now all the diag-

onal terms and we have an explicit term-wise identification. It immediately implies

Theorem 2.3. We devote the rest of this section to the proof of Theorem 5.1, whose main

part consists of a careful application of the Sokhotski–Plemelj formula, and the further

steps just repeat the computations in the proof of Lemma 4.1.

5.1 Structure of the Sokhotski–Plemelj formula

Let us discuss explicitly how to apply the Sokhotski–Plemelj formula to Equation (2). In

principle, one can just directly iteratively apply it, but we first discuss the structure of

the formula since it simplifies computations a lot.

Fix a particular σ ∈ Sn and consider the corresponding term in the variables

f =
∑n

i=1 xi

n

(
n∑

i=1

ai

xi

)
, gi = aσ(i)

xσ(i)
− aσ(i+1)

xσ(i+1)

, i = 1, . . . , n − 1.

In these variables the shift of ai’s that we applied in the previous section looks like

f → f − i
∑n

i=1 xi

2n

n∑
i=1

(2i − 1 − n)xσ(i), gi → gi − i
2

(xσ(i) + xσ(i+1)), i = 1, . . . , n − 1.

The denominator of the expression under the integral is equal to g1 · · · gn−1. Since there

is no pole in f , its shift is neglectable. Assuming x1, . . . , xn to be small positive real

numbers, we move the contour of integration for each gi to the lower half-plane, and

then can deform it back to the real line with excluded interval around gi = 0 and a half-

circle around it in the lower half-plane, which in the limit gives the sum of the principal

part and the half-residue at gi = 0. This is exactly the Sokhotski–Plemelj formula applied

now to the product of simple poles g1 · · · gn−1.

The whole integral expression is then split into 2n−1 summands for each σ , since

we have to make a choice for each gi whether we take the principal part or the residue

part of its contour. If we choose for all gi’s the principal part of the integral, we exactly

obtain the principal terms considered in the previous section. More generally, the full

system of choices is controlled by pairs (σ , 		
i=1Ii), where σ ∈ Sn and 		

i=1Ii = {1, . . . , n},
I1, . . . , I	 �= ∅, and I1 < · · · < I	 in the sense that for any nj ∈ Iij , j = 1, 2, i1 < i2 implies

n1 < n2. Once we fixed a pair (σ , 		
i=1Ii), we choose the residue option for all gσ(i)’s with

i ∈ Ij \ {max(Ij)}, j = 1, . . . , 	, and the principal option for all gσ(i)’s with i = max(Ij),

j = 1, . . . , 	 − 1.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/18/14296/5766444 by D
ESY-Zentralbibliothek user on 03 O

ctober 2021
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Note that the integrals for the pairs (σρ, 		
i=1Ii), ρ(Ii) = Ii for i = 1, . . . , 	, coincide.

Moreover, each of them contributes
∏	

i=1 1/|Ii|! to the product of negative residues since

the contour of integration in the plane
∑

j∈Ii
aσ(j)/xσ(j) = 0, i = 1, . . . , 	, is the intersection

of the torus around the origin with the Weyl chamber selected by the inequalities

aσρ(j1)/xσρ(j1) < aσρ(j2)/xσρ(j2) for j1, j2 ∈ Ii, j1 < j2. Thus, the residue part of the integral

in the sum over all ρ ∈ Sn such that ρ(Ii) = Ii for i = 1, . . . , 	 is the product of the full

residues around zero in the planes
∑

j∈Ii
aσ(j)/xσ(j) = 0, i = 1, . . . , 	, with the coefficient∏	

i=1(2π i)|Ii|−1.

Now we are ready to perform the computation. For simplicity we take σ = id,

	 = 1, and I1 = {1, . . . , n}, and treat the general case as an 	-fold iteration of the same

computation, with the indices adjusted with respect to a general σ .

5.1.1 Computation for (id, {1, . . . , n})
In the case σ = id and 	 = 1, I1 = {1, . . . , n}, we take the sum over all ρ ∈ Sn. The

corresponding residue term is equal to

e
1

24

(
n∑

j=1
xj

)3

(
n∑

j=1
xj

)
(2π)

n
2
∏n

j=1 x
1
2
j

∫
R

∮
(S1)n−1

⎡
⎣ n∏

j=1

e
− a2

j
2xj

daj

xj

⎤
⎦ exp

(
i
2

∑
j<k ajxk − akxj

)
∏n−1

j=1 i
(

aj
xj

− aj+1
xj+1

) .

Note that −∑n
j=1

a2
j

2xj
= −f 2/2

(∑n
j=1 xj

)
+ O(g1, . . . , gn−1),

∏n
j=1 daj/xj = ∏n−1

j=1 dgjdf /(∑n
j=1 xj

)
, and

∑
j<k ajxk − akxj = O(g1, . . . , gn−1). This allows us to rewrite the

residue as

(2π)n−1 e
1

24

(
n∑

j=1
xj

)3

(
n∑

j=1
xj

)
(2π)

n
2
∏n

j=1 x
1
2
j

∫
R

e
−f 2/

(
2
∑n

j=1 xj

)
df
n∑

j=1
xj

.

5.1.2 Computation for σ = id, general partition

Recall that we denote by xI , I ⊂ {1, . . . , n}, I �= ∅, the sum
∑

i∈I xi. In the case of a general

partition 		
i=1Ii, I1, . . . , I	 �= ∅, it is more convenient to work in the coordinates

fi = xIi

|Ii|

⎛
⎝∑

j∈Ii

aj

xj

⎞
⎠ , gij = aj

xj
− aj+1

xj+1
, i = 1, . . . , 	, j ∈ Ii \ {max(Ii)}.
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The corresponding residue term is equal to the principal part of

e
1

24

(
n∑

j=1
xj

)3

(
n∑

j=1
xj

)
(2π)

n
2
∏n

j=1 x
1
2
j

∫
R	

∮
(S1)n−	

⎡
⎣ n∏

j=1

e
− a2

j
2xj

daj

xj

⎤
⎦ exp

(
i
2

∑
j<k ajxk − akxj

)
∏n−1

j=1 i
(

aj
xj

− aj+1
xj+1

) ,

where the integral over R	 is the Cauchy principal value integral (except for the diagonal

direction, where it is a converging integral). In the new coordinates, we have

−
n∑

j=1

a2
j

2xj
= −

	∑
i=1

f 2
i

2xIi

+ O(gij);
n∏

j=1

daj

xj
=

	∏
i=1

|Ii|−1∏
j=1

dgij

	∏
i=1

dfi

xIi

;

	−1∏
i=1

i

(
amax(Ii)

xmax(Ii)
− amax(Ii)+1

xmax(Ii)+1

)
=

	−1∏
i=1

i

(
fi

xIi

− fi+1

xIi+1

)
+ O(gij);

∑
j<k

ajxk − akxj =
∑
j<k

fjxIk − fkxIj + O(gij).

This allows us to rewrite the residue formula as

	∏
i=1

(2π)|Ii|−1 e
1

24

(
n∑

j=1
xj

)3

(
n∑

j=1
xj

)
(2π)

n
2
∏n

j=1 x
1
2
j

∫
R	

⎡
⎣ 	∏

j=1

e
− f 2

j
2xIj

dfj

xIj

⎤
⎦ exp

(
i
2

∑
j<k fjxIk − fkxIj

)
∏	−1

j=1 i
(

fj
xIj

− fj+1
xIj+1

) . (15)

The diagonal terms of this expression will be transferred to the partitions of {1, . . . , n}
with 	′ < 	 terms, so we have to take the principal part:

	∏
i=1

(2π)|Ii|−1 e
1

24

	∑
j=1

x3
Ij(

n∑
j=1

xj

)
(2π)

n
2

n∏
j=1

x
1
2
j

∫
R	

⎡
⎣ 	∏

j=1

e
− f 2

j
2xIj

dfj

xIj

⎤
⎦ 1

	−1∏
j=1

[
i
(

fj
xIj

− fj+1
xIj+1

)
− xIj +xIj+1

2

] . (16)

5.1.3 General σ , general partition

If we have a general σ , it just means that we no longer have to assume that the subsets

I1, . . . , I	 satisfy the property that for any nj ∈ Iij , j = 1, 2, i1 < i2 implies n1 < n2. That is,

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2021/18/14296/5766444 by D
ESY-Zentralbibliothek user on 03 O

ctober 2021



Buryak–Okounkov Formula and Witten Conjecture 14313

we obtain the same formula as Equation (16), with arbitrary ordered sequence I1, . . . , I	
such that 		

i=1Ii = {1, . . . , n}, I1, . . . , I	 �= ∅. We have

FBur
n =

n∑
	=1

∑
I1	···	I	={1,...,n}

(2π)
n
2

n∏
j=1

x
1
2
j

e
1

24

	∑
j=1

x3
Ij(

n∑
j=1

xj

)
(2π)	

∫
R	

⎡
⎣ 	∏

j=1

e
− f 2

j
2xIj

dfj

xIj

⎤
⎦ 1

	−1∏
j=1

[
i
(

fj
xIj

− fj+1
xIj+1

)
− xIj +xIj+1

2

] .

(17)

The theorem follows by direct comparison of this expression with the principal part of

FBur
l (xI1 , . . . , xIl), which, by Section 4, is related to E

(
xI1
21/3 , . . . ,

xI	
21/3

)
.

5.1.4 Final remarks

We relate Equations (13) and (17) exactly in the same way as the two sides of Equation

(9), see the 1st half of the proof of Lemma 4.1. The proof of Equation (14) repeats literally

the proof of Equation (10), see the 2nd half of the proof of Lemma 4.1, one just have to

replace the symbols n, (b1, . . . , bn), and (x1, . . . , xn) in that argument by 	, (f1, . . . , f	), and

(xI1 , . . . , xI	 ).
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