

www.npr.ac.cn Nuclear Physics Review



Started in 1984

#### 不稳定原子核β衰变强度的实验测量方法

张寂潮 孙保华

#### Experimental Measurement Method of Beta Decay Strength of Unstable Nuclei

ZHANG Jichao, SUN Baohua

在线阅读 View online: https://doi.org/10.11804/NuclPhysRev.37.2019CNPC69

#### 引用格式:

张寂潮,孙保华. 不稳定原子核β衰变强度的实验测量方法[J]. 原子核物理评论, 2020, 37(3):438-446. doi: 10.11804/NuclPhysRev.37.2019CNPC69

ZHANG Jichao, SUN Baohua. Experimental Measurement Method of Beta Decay Strength of Unstable Nuclei[J]. Nuclear Physics Review, 2020, 37(3):438–446. doi: 10.11804/NuclPhysRev.37.2019CNPC69

#### 您可能感兴趣的其他文章

Articles you may be interested in

## 基于不稳定核基本性质测量的原子核结构研究

Study of Nuclear Structure by the Measurement of the Ground State Properties of Unstable Nuclei 原子核物理评论. 2018, 35(4): 382–389 https://doi.org/10.11804/NuclPhysRev.35.04.382

## 基于极化氦三靶的原子核散射实验

Nuclear Scattering Experiment Based on the Polarized Helium-3 Target 原子核物理评论. 2019, 36(2): 151-160 https://doi.org/10.11804/NuclPhysRev.36.02.151

## 无中微子双β衰变相关的中微子势(英文)

Neutrino Potential for Neutrinoless Double Beta Decay 原子核物理评论. 2017, 34(1): 82-86 https://doi.org/10.11804/NuclPhysRev.34.01.082

## Skyrme张量相互作用对可能的等待点原子核β衰变半衰期的影响(英文)

Effects of Skyrme Tensor Interactions on the β Decay Half-lives in Possible Waiting Point Nuclei 原子核物理评论. 2017, 34(3): 476-480 https://doi.org/10.11804/NuclPhysRev.34.03.476

## r-过程路径核 $\beta$ -衰变半衰期的估算

Estimate of β<sup>-</sup>-decay Half-lives for r-process Nuclei 原子核物理评论. 2017, 34(3): 425-430 https://doi.org/10.11804/NuclPhysRev.34.03.425 文章编号: 1007-4627(2020)03-0438-09

# 不稳定原子核β衰变强度的实验测量方法

张寂潮,孙保华†

(北京航空航天大学物理学院,北京 100191)

**摘要:** 原子核的 $\beta$ 衰变是指原子核放射出 $\beta$ 粒子或俘获电子而进行的转变。对 $\beta$ 衰变强度  $S_{\beta}(E)$ 的精确测量, 对探索不稳定原子核的结构、揭秘恒星核合成过程、验证 $\beta$ 衰变理论等方面均存在着重要意义。实验上,为 了测量 $\beta$ 衰变强度,一种方法是利用 $\beta$ -7符合测量或者全吸收谱仪对 $\beta$ 衰变产物进行直接测量,这种方法可 以给出子核在  $Q_{\beta}$ 窗口内的衰变信息。另一种方法是利用在中等能区 (100~400 MeV/u)进行的电荷交换反应, 如 (p,n)或 (<sup>3</sup>He,t),通过微分截面的高精度测量获得子核的 $\beta$ 衰变强度,这种方法可以用于研究子核在  $Q_{\beta}$ 窗 外的衰变强度,但是对束流强度有较高的要求,尚无法系统研究产额较低的不稳定原子核。有鉴于此,本文 提出对不稳定核素的电荷交换反应总截面进行系统测量,结合核反应理论,这种方法有望约束不稳定核素在 质子发射阈下的 Gamow-Teller 跃迁的总强度。最后简要介绍了已开展和计划开展的工作。

**关键词:** β 衰变; 电荷交换反应; Gamow-Teller 跃迁强度 **中图分类号:** O571.53 **文献标志码:** A **DOI:** 10.11804/NuclPhysRev.37.2019CNPC69

# 1 引言

β衰变是研究原子核结构的最重要工具之一<sup>[1]</sup>。跃 迁强度函数 (β transition strength function)  $S_{\beta}(E_j)$  是 对β衰变描述的一个重要物理量,代表了β衰变矩阵元 关于衰变子核激发能 $E_j$ 的分布,决定了原子核β衰变 的特性。原子核衰变半衰期 $T_{1/2}$ 可以表示为<sup>[2]</sup>

$$T_{1/2}^{-1} = \int S_{\beta}(E_j) \times f(Z, Q_{\beta} - E_j) dE,$$
 (1)

其中  $f(Z, Q_{\beta} - E_{j})$ 为费米函数,由子核的质子数 Z、  $\beta$ 衰变的反应能  $Q_{\beta}$ 以及激发能  $E_{j}$ 决定,也被称为相空间 因子 (phase-space factor)<sup>[3]</sup>。从母核衰变至子核激发 态 j(激发能为  $E_{j}$ )的衰变强度  $I_{\beta}$  ( $E_{j}$ )定义如下<sup>[4]</sup>:

$$I_{\beta}(E_j) = S_{\beta}(E_j) \times f(Z, Q_{\beta} - E_j) \times T_{1/2}.$$
 (2)

图 1 表示了  $S_{\beta}(E_j)$ ,  $I_{\beta}(E_j)$ 和  $f(Z, Q_{\beta} - E_j)$ 三者 的关联。可靠的  $S_{\beta}(E_j)$ 实验数据对于预测远离稳定线



图中分解了衰变中的主要物理量,包括 $\beta$ 衰变能 $Q_3$ ,跃迁强度函数 $S_3(E_j)$ ,相空间因子f,以及实验测量到的 $\beta$ 衰变强度 $I_3(E_j)$ 。

收稿日期: 2020-03-13; 修改日期: 2020-04-06

基金项目:国家重点研发计划项目(2016YFA0400504);国家自然科学基金资助项目(U1832211, 11922501, 11961141004)

作者简介:张寂潮(1993-),男,北京人,博士研究生,从事粒子物理与原子核物理研究; E-mail: zhangjichao@buaa.edu.cn †通信作者:孙保华, E-mail: bhsun@buaa.edu.cn。 原子核的半衰期<sup>[5]</sup>,验证衰变纲图的完整性,计算β缓 发衰变情况下的缓发粒子能谱,理解远离β稳定线原子 核的衰变模式<sup>[6]</sup>以及开发相应的微观模型<sup>[7]</sup>均至关重要。

对允许跃迁中的 Gamow-Teller(GT) 跃迁类型,其 跃迁约化强度 (reduced transition strength) B(GT)与  $S_{\beta}(E_i)$ 的关系如下<sup>[4]</sup>:

$$B(\mathrm{GT}) = S_{\beta}(E_j) \times 6147 \left(\frac{g_{\mathrm{V}}}{g_{\mathrm{A}}}\right)^2, \qquad (3)$$

其中  $g_v = g_A \beta$ 别代表轴矢量和弱相互作用矢量耦合常数。为了理解 GT 共振 (GT Resonance) 在激发态上的分布与同位旋  $T_z$ 之间的关系<sup>[8-10]</sup>,非常有必要进行相应的系统学研究。此外,对同一核素在 $\beta^+$ 衰变和 $\beta$ 衰变方向的 B(GT) 强度,在理论上存在着模型无关的求和法则,即:

$$\sum B\left(\mathrm{GT},\beta^{-}\right) - \sum B\left(\mathrm{GT},\beta^{+}\right) = 3\left(N-Z\right),\quad(4)$$

其中 N代表核素的中子数,Z代表质子数。然而,之前的大多数实验显示 GT 总强度低于理论预测,即 GT 强度 quenching 问题<sup>[8]</sup>。开展更多核素体系的总 GT 强度 测量,发展新型的实验方案,一直是一个前沿问题。

在核天体物理领域中,核合成过程在高温高密环境 下进行。核素在此环境下的β衰变过程可能异于常温下, 一些新的衰变道可以打开,一些衰变道也可能随之关闭, 如丰中子原子核的电子俘获<sup>[11-13]</sup>、激发态的β衰变。 因此,天体条件下可靠的*S*<sub>β</sub>(*E<sub>j</sub>*)数据也是理解核合成 过程的一个重要物理参数<sup>[14-17]</sup>。

本文旨在介绍测量 S<sub>β</sub>(E<sub>j</sub>)的主要实验方法,包括 测量原理以及局限性。最后讨论由电荷交换反应总截面 来获得总衰变强度的可能方法。

#### 2 利用β衰变测量衰变强度

目前,利用  $\beta$  衰变测量其衰变强度  $S_{\beta}(E_j)$ 有两种 主要的方法。最经典的方法是使用高分辨率的 $\gamma$  谱仪, 一般利用高纯锗探测阵列,来对 $\beta$  衰变及其级联的 $\gamma$ 跃 迁进行符合测量,获得 $\gamma$ 射线的能谱。再依据 $\gamma$ - $\gamma$ 之间 的符合关系,构建出衰变子核的能级纲图,计算出对应 能级  $E_j$ 的强度  $I_{\beta}(E_j)$ 。结合半衰期  $T_{1/2}$ 数据,即可获 得  $S_{\beta}(E_j)$ 或者 B(GT)的精细结构。

另一种方法是使用全吸收谱仪 (total absorption spectroscopy)。这种方法旨在利用"理想状态"下对 $\beta$ 衰变之后的所有级联 $\gamma$ 射线具有 100% 探测效率的 4 $\pi$ 探测器,来测量在一次衰变事件中产生的全部 $\gamma$ 射线的能量之和,提取衰变强度  $I_{\beta}(E_i)$ 。

#### 2.1 高分辨率 \ 谱仪

如图 1 所示,以  $\beta^+$ 衰变为例。母核 (中子数为 *N*, 质子数为 *Z*) 在发生β衰变后,会衰变至子核 (中子数为 *N*+1,质子数为 *Z*-1) 的基态或者激发态。处于激发态 的子核可通过放出 $\gamma$ 射线的方式退激至基态。β衰变之 后,利用高纯锗探测器对级联 $\gamma$ 射线进行符合测量,经 过开窗分析,推断出整个衰变纲图的精细结构,进而获 得  $I_{\beta}(E_{j})$ 的分布,从中提取出衰变强度  $S_{\beta}(E_{j})$ 和 *B*(GT)。计算  $I_{\beta}(E_{j})$ 的公式如下:

$$I_{\beta}(E_{j}) = \sum \left[ I_{\gamma}(E_{j}) \right]_{\text{out}} - \sum \left[ I_{\gamma}(E_{j}) \right]_{\text{in}}, \quad (5)$$

其中 $\sum [I_{\gamma}(E_{j})]_{out}$ 代表从能级 $E_{j}$ 发出的 $\gamma$ 射线总强度,  $\sum [I_{\gamma}(E_{j})]_{in}$ 代表跃迁到能级 $E_{j}$ 上的 $\gamma$ 射线总强度。在 一些特殊情况下,还需要考虑有激发态发射中子、质子 等带电粒子的情况。

我们以 2018年在美国国家超导加速器实验室 (NSCL)进行的<sup>32</sup>Cl原子核β<sup>+</sup>衰变实验<sup>[18]</sup>为例,对这 种方法的过程进行简要介绍。

<sup>32</sup>Cl核素靠近β稳定线,衰变产生的子核<sup>32</sup>S具有 稳定的基态,在此工作之前,早期研究已经给出了<sup>32</sup>S 的部分能级纲图<sup>[19]</sup>。实验采用由回旋加速器产生的 150 MeV/u的<sup>36</sup>Ar 主束轰击 Be 靶并获得流强为  $3.3 \times$ 10<sup>4</sup> pps 的<sup>32</sup>Cl 的次级束。使用由 9 块高纯锗探测器构 成的探测阵列探测γ射线,并使用塑料闪烁体探测器作 为系统的触发,阻停<sup>32</sup>S。

图 2(a) 为高纯锗探测阵列测量的 $\gamma$ 射线能谱。在对 能谱进行开窗分析后,通过 $\gamma$ 射线不同峰之间的符合关 系,就可以得到衰变纲图。利用衰变纲图,计算出激发 态  $E_j$ 的强度  $I_\beta(E_j)$ ,就可以提取出  $S_\beta(E_j)$ 和 B(GT)的信息。如图 2(b)所示,实验获得的  $\sum B(GT)$ 值 (图 中黑线) 与理论值 (图中灰线) 随着激发能的分布的对比, 其中理论值乘了 0.6 的 quenching 因子 <sup>[18]</sup>,可以用来检 验理论模型。

利用这种方法,曾经开展了大量的实验研究,近期 的工作代表如<sup>37</sup>Al<sup>[20]</sup>、<sup>39</sup>Si<sup>[20]</sup>、<sup>100</sup>Sn<sup>[21]</sup>和<sup>127</sup>Cd<sup>[22]</sup>。

这种方法也存在一定的缺陷。使用高分辨的高纯锗 探测器可以得到能级纲图,但是对于高能量的 $\gamma$ 射线的 探测效率却比较低 (对1332 keV 的 $\gamma$ 射线仅有 20% 的效 率<sup>[3]</sup>)。在高能部分缺失的计数会导致 Pandemonium 效 应<sup>[23]</sup>,从而无法从测量中提取出准确的衰变强度  $I_{\beta}(E_{j})$ 。另外一点就是,相空间因子正比于( $Q_{\beta} - E_{j}$ )<sup>5</sup>, 对于相空间较小的衰变,相应的 $\beta$ 和 $\gamma$ 射线的强度会急 剧降低 (如图1所示),因此为了达到相应的测量精度,



图 2 (在线彩图)在NSCL进行的<sup>32</sup>Cl的β<sup>+</sup>衰变实验结
果,摘自文献[18]

(a) 测量得到的 $\gamma$ 能谱; (b) 实验提取出的 $\sum B$  (GT) 信息与理论值的对比。

需要很长的束流时间。例如,当*E*<sub>j</sub>增大到*Q*<sub>β</sub>的85%时, *f*因子会衰减到1/10000以下。这意味着这种方法主要 适用于研究*Q*<sub>β</sub>窗口内衰变强度较大的跃迁。

#### 2.2 全吸收谱仪

另一种方法是使用全吸收谱仪。母核在通过 $\beta$ 衰变 至子核激发态 $j(激发能E_j)后,子核通过放出一级或者$  $多级<math>\gamma$ 射线的方式,跃迁到子核的基态或者长寿命同核 异能态。如果对一次 $\beta$ 衰变事件关联的所有级联 $\gamma$ 射线 进行测量,则可测到相应 $E_{\gamma}$ 的能量之和,即 $E_j$ 。随着 对 $\beta$ 衰变事件统计性的增加,则可获得衰变后子核激发 态 $E_j$ 的分布信息。

国际上已运行的全吸收谱仪包括德国亥姆霍兹重离 子研究中心 (GSI)的 TAS<sup>[24]</sup>、俄罗斯的 TAgS<sup>[25]</sup>、欧 洲核子中心 (CERN)的 LUCRECIA<sup>[26]</sup>、美国 NSCL的 SuN<sup>[27]</sup>,它们选用 NaI(Tl)探测器来组成的大角度、大 体积阵列。NaI(Tl)探测器可以做成较大的体积,具有 很好的探测效率,同时能量分辨适中。利用全吸收谱仪 所测量到的数据 d(i),反映了β衰变后子核激发态的分 布信息,其与衰变强度  $I_{\beta}(E_{j})$ 之间的关系如下所示<sup>[4]</sup>:

$$d(i) = \sum_{j=1}^{j\max} R(i,j) I_{\beta}(j), \qquad (6)$$

其中 j 代表在激发能能谱上区间序数, i 代表仪器测量

的道址。R(i,j)为仪器对能量和位置的响应函数,对R的标定是每个全吸收谱仪中最关键的步骤。得到 $I_{\beta}(E_{j})$ 后,则可以提取出 $S_{\beta}(E_{j})$ 和B(GT)的数值。

图 3 为近期利用 SuN 谱仪进行的<sup>69</sup>Co 实验<sup>[28]</sup>结果。 图 3(a) 中,黑色实线代表了实验测量的<sup>69</sup>Co 经过 $\beta$ 衰变后的 $\gamma$ 射线总能量,红色实线代表了利用已有 $\beta$ 衰变的数据模拟得到的能谱,两者的差别说明全吸收谱仪可以更加高效地测量较高激发能情形 ( $E_j > 2$  MeV)下的衰变强度。图 3(b) 是提取出的 $\sum B$ (GT)信息 (图中黑色实线,绿色区域代表不确定度),以及不同理论模型给出的预测值。可以看到,理论上的预测值要系统地大于提取出的 $\sum B$ (GT)。



图 3 (在线彩图)在SuN上进行的<sup>69</sup>Coβ衰变实验结果, 摘自文献[28]



相对于使用高分辨率谱仪的方法,全吸收谱仪法的 优势在于利用 NaI(Tl)装置能获得更好的探测效率<sup>[24]</sup>。 而这种方法的困难主要在于如何精确得到 R(*i*, *j*),并 利用它对实验数据进行可靠解谱。虽然这一方法已经发 展了将近 50年,但是一般来说只能分析出少部分全吸 收峰的信息。由于全吸收谱仪分辨率的限制,实验需要 高纯度的束流,以避免可能污染物的干扰。NaI(Tl)晶 体难以区分γ和中子在其中沉积的能量信息<sup>[4]</sup>,所以对 衰变过程中伴随有中子发射的核素,能谱解析则更为困 难。

综合 HPGe 的高分辨测量以及 NaI(Tl) 阵列的高效 率测量,两者结合,前者得到的能级纲图可以更准确地 帮助后者解谱,而后者可以对弱衰变道进行更加高效率 的测量。这是近年来发展起来的一个可行的研究方案, 然而,应该意识到两种研究β衰变强度的方法,只可以 测量到反应末态激发能在 *Q*<sub>β</sub>窗口以下的能级,无法给 出 *Q*<sub>β</sub>窗口以上的信息。

#### 3 电荷交换反应

利用高分辨磁谱仪,通过对电荷交换反应 (Cex) 截 面进行测量来提取 B(GT),是对直接测量β衰变方法的 一个重要补充。这种方法可以测量能量在 Q<sub>3</sub>窗口之上 的 GT 跃迁强度,同时不受β衰变中相空间因子的限制。 目前,电荷交换反应已成为探索 GT 共振和在天体条件 下一些弱衰变过程的重要方法 [相当于直接测量图 1中 的 S<sub>β</sub> (E<sub>j</sub>)]。

通过电荷交换反应研究  $S_{\beta}(E_j)$ 最佳能区是 100~400 MeV/u,因为在这个能区中,GT跃迁成分所占比 重最大<sup>[29]</sup>。在这个能区进行的电荷交换实验表明<sup>[30-31]</sup>, 对给定的能级 (激发能  $E_j$ ),其对应的电荷交换微分截 面与由  $\beta$  衰变提取的 GT 跃迁强度 B(GT) 间,存在一个 正比关系<sup>[32]</sup>:

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right]_{\mathrm{GT},q=0} = \widehat{\sigma}B\left(\mathrm{GT}\right),\tag{7}$$

其中[dσ/dΩ]<sub>GT,q=0</sub>代表反应在零动量转换下的微分截 面。零动量转换条件,即q=0,对应于质心系内的反应 角度为0°、反应能Q值(即反应前后质量差)为0 MeV 的情形。当然,这在实际实验上是不可能存在的,需要 借助于理论外推获得。σ是单位反应截面,依赖于核素 的质量、反应能量以及电荷交换的反应类型<sup>[32-33]</sup>。

电荷交换反应可以分为 $\beta^{-}(诸如(p,n), (^{3}He,t))$ 和  $\beta^{+}(诸如(n,p), (d,^{2}He))两种类型。对不同的反应,具$ 有不同的实验方案。我们先对其中的一些重要类型进行介绍,并随之提出新方案。

#### 3.1 对稳定核的高精度 Cex 测量

在稳定核 X(中子数为 N,质子数为 Z)上进行的 (p,n)、(<sup>3</sup>He,t)类型的电荷交换反应可以获得其产物 Y (中子数为 N - 1,质子数为 Z+1)的 B(GT)信息。此 类实验直接对反应出射粒子 n 或者 t 的动量大小和角度 进行测量,获得反应产物的激发能谱和截面信息。

轻质量区原子核的能级密度较低,尤其是在激发能 较低的情况。(<sup>3</sup>He,t)反应由于入射和出射粒子均为带 电粒子,利用高分辨磁谱仪,可以得到极高分辨的衰变 强度信息。

图 (4) 为在日本大阪大学核物理研究中心 (RCNP) 进行的  $^{10,11}B(^{3}He,t)^{10,11}C$ 实验结果  $^{[34]}$ 。实验使用 140 MeV/u 的  $^{3}He$ 束流轰击的混合 B 靶。出射的 t 经过 GR 谱仪偏转,被其后的焦平面系统探测到其出射的轨 迹信息,进而可以计算获得 t 的动量大小和角度。使用 两体动力学,可以反推出事件中反应产物  $^{10,11}C$  的激发 能以及在反应质心系 (center of mass system) 中的散射 角,获得在不同的质心角下的激发能能谱,进而可以计 算得到电荷交换反应的双微分截面  $[d^{2}\sigma/dEd\Omega]$ 。实验 装置获得的能量分辨率为 45 keV,在此分辨率下可以清 晰地从能谱中分辨  $^{11}C$  的激发态,得到 B(GT);与利 用  $\beta$ 衰变获得的 B(GT) 对比,发现两者提取的 B(GT)非常一致。



图 4 (在线彩图)在RCNP进行的<sup>10,11</sup>B(<sup>3</sup>He,t)<sup>10,11</sup>C实 验结果,摘自文献[34]

图 (a) 激发能在 0~16 MeV 的能谱,图 (b) 为其中 6~10 MeV 区 间的放大。两幅能谱均为质心角  $\theta_{cm} < 0.5^{\circ}$ 的部分。

在中高质量区的核素,尤其在 $Q_{\beta}之上,能级密度$ 会逐渐增大,受限于系统的能量分辨,大多数情况下无法通过反应的微分截面直接获得 $\beta$ 衰变的跃迁强度,而需要引入一定的核结构和反应理论。下面以近期在 GR 谱仪上进行的<sup>116,122</sup>Sn(<sup>3</sup>He,t)<sup>116,122</sup>Sb实验为例,介绍 其实验方法<sup>[35]</sup>。

实验中使用 140 MeV/u 的<sup>3</sup>He 束流轰击 Sn 靶。利 用与上述过程相同的实验测量方法,可以得到电荷交换 反应的双微分截面[ $d^2\sigma/dEd\Omega$ ]。 考虑<sup>116</sup>Sb的  $E_j = 0.090$  MeV 能级,图 5(a)为其反 应微分截面的角分布  $[d\sigma/d\Omega]_{(Q,\theta)}$ 。黑色的十字代表实 验中测量到的不同角度的数据点。从<sup>116</sup>Sn 的基态跃迁 至 <sup>116</sup>Sb的 0.090 MeV 激发态,自旋宇称的变化为 0<sup>+</sup>→1<sup>+</sup>,其中不但包括 GT 跃迁成分的贡献 (即  $\Delta L=0$ , 角动量传递为0,图中粉红线),也包括二级禁戒跃迁 的成分 (即  $\Delta L=2$ ,图中绿线)。图中蓝线为所有  $\Delta L$ 成 分的加和。



图 5 (在 线 彩 图 )在 RCNP进 行 的  $^{116,122}$ Sn(<sup>3</sup>He, t)<sup>116,122</sup>Sb实验结果,摘自文献[35] (a)<sup>116</sup>Sn(<sup>3</sup>He, t)<sup>116</sup>Sb在  $E_j$ =0.090 MeV下的微分截面角分布, 黑色十字为实验点,不同颜色的线代表计算出来的不同 $\Delta L$ 成 分的贡献。(b)提取出的 $\sum B$ (GT)信息以及其不确定度,红色 和蓝色分别代表<sup>116</sup>Sb和<sup>122</sup>Sb。

为了提取出截面中GT跃迁的贡献,在给定反应条件和产物激发能的情形下,首先使用DWBA模型<sup>[36]</sup> 计算出不同 $\Delta L$ 成分的角分布 $\sigma_{\Delta L}^{calc}(\theta)$ ;之后,使用多极分解分析(Multipole Decomposition Analysis, MDA)<sup>[37]</sup> 拟合实验数据点(即使用加和的蓝色线与实验数据点进 行拟合),得到不同 $\Delta L$ 成分的占比 $a_{\Delta L}$ :

$$\sigma^{\text{calc}}\left(\theta\right) = \sum_{\Delta L=0}^{n} a_{\Delta L} \sigma_{\Delta L}^{\text{calc}}\left(\theta\right), \qquad (8)$$

对  $\Delta L=0$  的部分,利用 DWBA 模型可计算出外推到质 心系 0°角下的微分截面  $[d\sigma/d\Omega]_{GT,Q,0°}$ ,以及特定激发 能与零动量转换条件下微分截面比率  $R_{DWBA}$ :

$$R_{\rm DWBA} = \left[\frac{{\rm d}\sigma/{\rm d}\Omega(q=0)}{{\rm d}\sigma/{\rm d}\Omega(Q,0^\circ)}\right]_{\rm DWBA}, \tag{9}$$

得到:

$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right]_{\mathrm{GT},q=0} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right]_{\mathrm{GT},Q,0^{\circ}} \times R_{\mathrm{DWBA}},\qquad(10)$$

结合式 (7),最终可获得对应 GT 跃迁强度 B(GT) 以及  $\sum B(GT),如图 5(b)$ 所示。实验测量到的最高激发态 的能量接近 30 MeV,但核<sup>116</sup>Sb 和<sup>122</sup>Sb 的 $\sum B(GT)$ 仍 只有求和法则 3(N - Z)预期强度的 30% 到 35%,这即 前文提到的 GT 强度 quenching 问题。

但是需要说明的是,这种直接使用<sup>3</sup>He或者 p 作为 束流的实验方法,只能以稳定核素作为靶核,无法测量 不稳定核。另外,在使用 MDA 计算不同  $\Delta L$  成分的贡 献时引入了一定的假设,即对同一  $\Delta L$  成分,只考虑一种  $\Delta J$ 的贡献;并且在计算到 q=0 的微分截面时,使用了 DWBA 进行外推,这些给 B(GT) 测定带来一些不确定度。

#### 3.2 利用逆动力学研究不稳定核

对靠近β稳定线、产额较高的不稳定核素,可以采 用逆动力学开展电荷交换反应的截面测量。下面以 (p,n)反应为例,来介绍逆动力学实验的测量原理,相 对于(<sup>3</sup>He,t),逆动力学(p,n)的能量分辨较差,受限于 中子测量以及次级束的动量展宽。

逆动力学 (p,n) 反应的微分截面测量原理如图 6 所 示。在实验中,入射粒子 X 轰击 H 靶发生 X(p,n) Y 反 应,产生中子和反应产物 Y。在靶室周围合理设置中子 探测器,测量中子的出射角度和飞行时间,进而得到中 子动量;对于反应的重离子产物 Y,通过磁谱仪分析后, 利用焦平面探测器系统测量其出射径迹、能损信息和飞 行时间,可以对其进行粒子鉴别。同时,在磁谱仪后端 设置中子探测器,可测量产物 Y 直接发射的中子。通 过鉴别的粒子和反冲中子做符合,可以重构出 Y 的激 发能,计算出反应的双微分截面 [d<sup>2</sup>σ/dEdΩ],最终获 得 GT 跃迁强度 *B*(GT)。



图 6 (在线彩图)逆动力学电荷交换反应测量原理

下面我们以在NSCL的装置上完成的<sup>16</sup>C(p,n)反 应为例<sup>[38]</sup>介绍实验方法。此反应利用120MeV/u的 <sup>18</sup>O主束轰击Be靶,获得能量为100MeV/u的<sup>16</sup>C次 级束,束流强度为3×10<sup>4</sup> pps。

结合模拟,发现<sup>16</sup>N小角度处(~5°)激发能的能量 分辨率为750keV,15°处约为2MeV。图7为质心角  $\theta_{cm}=4^{\circ}-6^{\circ}$ 时,反应产物微分截面随激发能 $E_x$ 的分布, 不同的颜色代表测量到的不同的最终产物。图8为反应 产物的示意图,<sup>16</sup>C经(p,n)反应产生<sup>16</sup>N,如果<sup>16</sup>N的 激发能高过其单中子分离阈 $S_n$ ,就会放出一个中子产 生<sup>15</sup>N。同理,若能量高过单质子分离阈 $S_p$ 和双中子分 离阈 $S_{2n}$ ,则会分别产生<sup>15</sup>C和<sup>14</sup>N,这与图7中的产物 截面是相对应的。为了获得<sup>16</sup>C(p,n)反应的B(GT)信 息,首先获得给定能级的总微分截面角分布(类似于 图5(a)),然后使用3.1节中的研究方法,利用DWBA 模型和MDA分析提取出相应能级的B(GT),进而可获 得 $\sum B(GT)$ 随激发能的演化。



图 7 (在线彩图)在NSCL上进行的<sup>16</sup>C(p,n)实验结果, 摘自文献[38]

图中各颜色点代表不同产物在质心角 $\theta_{cm} = 4^{\circ} - 6^{\circ}$ 的微分截面关于激发能的分布。



图 8 (在线彩图)<sup>16</sup>C(p,n)反应生成的产物示意图,数 据出自 NNDC<sup>[39]</sup>

近年来,其他基于逆动力学进行的交换研究包括  $^{14}Be^{[40]}$ , $^{56}Ni^{[41]}$ , $^{55}Co^{[42]}$ , $^{132}Sn^{[30]}$ 等,主要在NSCL 和日本理化学研究所(RIKEN)上进行。由于交换反应 的截面较小,同时中子探测器的效率较低,例如在  $^{16}C(p,n)实验中,中子探测器的总探测效率约为3%<sup>[38]</sup>,$  这对束流的流强、次级束的产额提出了较为苛刻的要求。 因此,逆动力学方法很难对远离β稳定线上、产额较低 的核素开展系统性的测量。

#### 3.3 电荷交换反应总截面

电荷交换反应总截面的测量原理相对简单。在实验 中,需要同时准确测量入射粒子X的数目 N<sub>in</sub>,以及与 靶核进行电荷交换后的反应产物Y的数目 N<sub>out</sub>,进而可 以获得总截面σ:

$$\sigma = \frac{N_{\rm out}}{N_{\rm in}} \times \frac{1}{d \times N_{\rm v}},\tag{11}$$

其中: d为靶的厚度; N<sub>v</sub>为靶中单位体积内的靶核数。

这种方法原则上可以测量至所有能级在 S<sub>p</sub>以下 (如 图 8 所示)、角分布在探测器接受度θ内的反应产物,即

$$\sum_{g.s}^{Sp} \int_{0^{\circ}}^{\theta} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \mathrm{d}\Omega \,. \tag{12}$$

为了获得我们感兴趣的信息,需要将总截面与 $S_p$ 以下GT跃迁总强度 $\sum_{g.s.}^{Sp} B$ (GT)之间建立联系。首先利用DWBA模型计算出总截面中GT跃迁成分的占比 $Q_{GT}$ ,即

$$Q_{\rm GT} = \frac{\left[\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right]_{(q=0),\rm DWBA}}{\left[\sum_{\rm g.s.}^{Sp} \int_{0^{\circ}}^{\theta} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \mathrm{d}\Omega\right]_{\rm GT,\rm DWBA}},$$
(13)

利用此系数得到:

$$\widehat{\sigma} \sum_{\text{g.s.}}^{S_{\text{p}}} B\left(\text{GT}\right) = \sum_{\text{g.s.}}^{S_{\text{p}}} \int_{0^{\circ}}^{\theta} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} \mathrm{d}\Omega \times Q_{\text{GT}} \,. \tag{14}$$

这一思路如果可行,原则上可以对大量远离稳定线的不稳定核素进行系统性的研究,相关结果可以用于验证理论模型。当然,这种方法的精度以及可行性尚有待系统分析。首先,利用DWBA模型进行分析时,使用计算的比率Q<sub>GT</sub>,这一近似产生的不确定尚有待研究。这种近似,一定程度上也存在"标准"的方法中(3.2节)。此外,测量到的产物中也存在激发能超过S<sub>p</sub>的情况,这也会给实验结果的解析带来一定的影响。严格来说,这种方法提取的是S<sub>p</sub>下总强度的上限。

# 4 电荷交换反应总截面测量计划及进展

利用德国GSI装置,我们课题组已经陆续测量了C 和N同位素链在C靶和CH靶上的电荷交换反应总截 面<sup>[43-44]</sup>。如3.3节所讨论的,电荷交换反应总截面数 据反映了在S<sub>p</sub>下总衰变强度上限的信息。图9对比了 GSI上测量的C和N同位素链的总截面以及对应β衰变 的总强度。为便于对比,我们将总衰变强度在<sup>12</sup>C处归 一到反应总截面上。可以看出,在丰中子核区域,总强 度的数值系统地小于总截面。这种差异可能来自于在接 近 *Q*<sub>β</sub>窗口位置的β衰变实验数据的缺失。然而GSI上 的实验在900 MeV/u的能区进行,并不是研究β衰变强 度的最佳能区。



图 9 (在线彩图)GSI上测量到的C和N同位素链的电 荷改变总截面和β衰变的总强度

图中实心点和空心点分别代表在GSI上测量得到的C和N同位 素链电荷交换反应截面,和通过现有的β衰变数据获得的总跃 迁强度。两者以<sup>12</sup>C为基准点,将衰变总强度的数值归一到了 总截面上。其中矩形(黑色)和圆形(红色)分别代表了C和N同 位素链。

兰州 HIRFL-CSRm 的 RIBLL2 束流线<sup>[45]</sup> 是目前国际上除德国 GSI、日本 RIBF<sup>[46]</sup>和 HIMAC<sup>[47]</sup>外,少数几个可以提供 100~500 MeV/u 次级束的装置,为开展不稳定原子核 (p,n) 电荷交换反应截面的高精度测量提供了可行的实验条件。RIBLL2 如图 10 所示,其中RIBLL2和ETF 的位置已经标出。



图 10 (在线彩图)RIBLL2 束流线以及实验装置示意图 图中的 Dn和 Fn分别表示偶极磁铁和聚焦面的位置。PT和 ST 分别代表主靶和反应靶。在每个焦点 Fn处,已安装的探测器 已被注明,包括: PS(塑料闪烁体)、MWPC(多丝正比室)、Si( 硅探测器)、MUSIC(多采样电离室)、slit(狭缝)和 Degrader(降 能器)。

利用 RIBLL2 束流线,我们将在 300 MeV/u 能区开 展不稳定原子核电荷改变反应的总截面测量。第一步是 开展<sup>16</sup>C(p,n)<sup>16</sup>N 验证性实验,推导出单质子分离阈以 下的∑B(GT),确认测量方法以及测量平台的可靠性。

之所以选择<sup>16</sup>C核素,主要考虑到它的反应产物 <sup>16</sup>N非常特别,即其在*S*<sub>n</sub>之下的能级均属于禁戒跃迁, 而没有任何GT跃迁的成分。允许的GT跃迁只会发生 在*S*<sub>n</sub>之上,如图7和图8所示。因此,我们可以通过对 靶后粒子的鉴别,来提取出<sup>16</sup>N、<sup>15</sup>N和其他粒子的反 应总截面。对不同粒子总截面的研究,可以有助于我们 分离出*S*<sub>n</sub>以下总截面中GT跃迁的成分。

在过去数年中,我们实验组已经在探测平台等方面做了系列工作,具体可参考相关文献[48-53]。利用现有的实验平台,我们已经可以做到对入射的<sup>16</sup>C核素以 及靶后的出射核素进行清晰的鉴别。

同时,我们计划在 RIBLL2 束流线的 F4 平台上建 设固态氢靶系统。直接以低温下的固态氢作为反应靶材, 以消除使用 C 靶和 CH 靶带来的系统误差。同时该系统 采用模块化设计,可以根据实验需求调整氢靶厚度。 图 11 所示即为固态氢靶靶室的设计图。相关设备已经 进入到测试阶段。



图 11 (在线彩图)固态氢靶系统的设计图 设计图左右两部分分别为氢气的输入输出单元和靶室主体单元。

综上所述,  ${}^{16}C(p,n){}^{16}N$ 是一个绝佳的"proof-ofprinciple"实验对象,既有相关的β衰变数据<sup>[54]</sup>,也有 基于传统 (p,n)方法提取的β衰变强度 (在 3.2 节中已做 介绍)。

在此基础上,计划系统地测量C同位素链的电荷交换总截面,研究GT跃迁强度的系统性,有可能直接判断出GT共振与S<sub>p</sub>的相对位置。

# 5 总结与展望

本文简述了研究β衰变强度几种主要实验方法,并 讨论了它们的优点和局限性。

使用高精度的γ谱仪测量β衰变后的级联γ射线, 可以获得S<sub>β</sub>(E<sub>j</sub>)的精细结构,但是对较高能量的γ谱 仪探测效率非常低;使用全吸收谱仪可以获得较好的探 测效率,但是解谱相对困难,只能得到部分峰的信息。 另外,这两种方法受限于相空间因子f,只能测量到Q<sub>β</sub> 以下的能级。综合不同探测器的优势,进行联合测量, 将会成为进一步提高测量精度可行方向。

使用电荷交换反应可以测量对应的β衰变的强度, 传统的 (p,n)、(<sup>3</sup>He,t)反应测量具有较好的实验精度, 但是只能在稳定核上开展;利用逆动力学,可以对短寿 命核素展开研究,但是受限于仪器的探测效率,对束流 有着非常苛刻的要求。

电荷交换反应总截面的实验测量,为研究远离稳定 线核素的GT跃迁强度提供一种可能的实验方案。以 RIBLL2为例,本文最后介绍了<sup>16</sup>C(p,n)<sup>16</sup>N反应的初 步研究计划。结合理论上对于DWBA模型的进一步应 用,有望将电荷交换反应总截面与∑B(GT)之间建立 系统性的联系。这也将有助于我们对一些远离β稳定线 核素的GT跃迁强度、GT共振信息等,测量到第一手 数据。同时,相关的实验探索也可为将在"十二五"装 置HIAF的HFRS上进行相关研究打下良好的基础<sup>[55]</sup>。 **致谢** 感谢牛一斐教授提供的图1原图。感谢I. Tanihata 教授、唐晓东研究员等在电荷交换反应方面的讨论。

#### 参考文献:

- [1] KLAPDOR H V. Prog Part Nucl Phys, 1983, 10: 131.
- [2] IZOSIMOV I N, KALINNIKOV V G, SOLNYSHKIN A A. Phys Part Nucl, 2011, 42: 963.
- [3] FUJITA Y. RUBIO B. GELLETLY W. Prog Part Nucl Phys, 2011, 66: 549.
- [4] RUBIO B, GELLETLY W, NACHER E, et al. J Phys G: Nucl Part Phys, 2005, 31: 1477.
- [5] HOMSER P T, SCHATZ H, APRAHAMIAN A, et al. Phys Rev Lett, 2005, 94: 112501.
- [6] BLANK B, BORGE M J G. Prog Part Nucl Phys, 2008, 60: 403.
- [7] SEVERIJNS N, BECK M, OSCAR N C. Rev Mod Phys, 2006, 78: 991.
- [8] HARAKEN M, WOUDE A V D. Giant Resonances: Fundamental High-Frequency Modes of Nuclear Excitation[M]. Oxford: Oxford University Press, 2001
- [9] NIU Y F, NIU Z M, COLO G, et al. Phys Lett B, 2018, 780: 325.
- [10] NIU Y F, NIU Z M, COLO G, et al. Phys Rev Lett, 2015,

114: 142501.

- [11] LANGANKE K, PINEDO G M, SAMPAIO J M, et al. Phys Rev Lett, 2003, 90: 241102.
- [12] COLE A L, ANDERSON T S, ZEGERS R G T, et al. Phys Rev C, 2012, 86: 015809.
- [13] NIU Y F, PAAR N, VRETENAR D, et al. Phys Rev C, 2011, 83: 045807.
- [14] KAPPELER F, GALLINO R, BISTERZO S, et al. Rev Mod Phys, 2011, 83: 157.
- [15] FROHLICH C, MARTINEZ P G, LIEBENDORFER M, et al. Phys Rev Lett, 2006, 96: 142502.
- [16] NIU Z M, NIU Y F, LIANG H Z, et al. Phys Lett B, 2013, 723: 172.
- [17] LI K A, LAN Y H, QI C, et al. Phys Rev C, 2016, 94: 065807.
- [18] ABOUD E, BENNETT M B, WERE C, et al. Phys Rev C, 2018, 98: 024309.
- [19] MELCONIAN D, TRIAMBAK S, BORDEANU C, et al. Phys Rev Lett, 2011, 107: 182301.
- [20] ABROMEIT B, TRIPATHI V, CRAWFORD H L, et al. Phys Rev C, 2019, 100: 014323.
- [21] LUBOS D, PARK J, FAESTERMANN T, et al. Phys Rev Lett, 2019, 122: 222502.
- [22] LORENZ C, SARMIENTO G, RUDOLPH D, et al. Phys Rev C, 2019, 99: 044310.
- [23] HARDY J C, CARRAZ L C, JONSON B, et al. Phys Lett, 1997, 71: 307.
- [24] KARNY M, NITSCHKE J M, ARCHAMBAULT L F, et al. Nucl Instr and Meth B, 1997, 126: 411.
- [25] ALKHZOV G D, BYKOV A A, WITTMANN V D, et al. Phys Lett B, 1985, 157: 350.
- [26] RUBIO R, GELLETLY W. Roman Rep Phys, 2007, 59: 635.
- [27] SIMON A, QUINN S J, SPYROU A, et al. Nucl Instr and Meth A, 2013, 703: 16.
- [28] LYONS A, SPYROU A, LIDDICK S S, et al. Phys Rev C, 2019, 100: 025806.
- [29] OSTERFELD F. Rev Mod Phys, 1992, 64: 491.
- [30] YASUDA J, SASANO M, ZEGERS R G T, et al. Phys Rev Lett, 2018, 121: 132501.
- [31] YKAO K, SAKAI H, GREENFIELD M B, et al. Phys Lett B, 2005, 615: 193.
- [32] TADDEUCCI T N, GOULDING C A, CAREY T A, et al. Nucl Phys A, 1987, 469: 125.
- [33] SASANO M, SAKAI H, YKAO K, et al. Phys Rev C, 2009, 79(2): 024602.
- [34] FUJITA Y, BRENTANO P V, ADACHI T, et al. Phys Rev C, 2004, 70(1): 011306.
- [35] DOUMA C A, AGODI C, AKIMUNE H, et al. Eur Phys J A, 2020, 56: 51.
- [36] FREKERS D, ALANSSARI M. Eur Phys J A, 2018, 54: 177.
- [37] GUESS C J, ADACHI T, AKIMUNE H, et al. Phys Rev C, 2011, 83: 064318.
- [38] LIPSCHUTZ S I. The (p, n) Charge-exchange Reaction in Inverse Kinematics as a Probe for Sovector Giant Resonances in Exotic Nuclei[D]. Michigan: Michigan State University, 2018.

| • 446 • |                                                       | 子 核       | 物 | 理    | 评 论                                    | 第 37 卷                  |
|---------|-------------------------------------------------------|-----------|---|------|----------------------------------------|-------------------------|
| [39]    | National Nuclear Data Center[EB/OL]. [2020-02-22].    |           |   |      | Phys A, 2004, 746: 393.                |                         |
|         | http://www.nndc.bnl.gov/                              |           |   | [48] | ZHAO J W, SUN B H. Nuclear Physic      | s Review, 2018, 35(4):  |
| [40]    | SATOU Y, NAKAMURA T, KONDO Y, et al. Phys             | Lett B,   |   |      | 362. (in Chinese)                      |                         |
|         | 2011, 697: 459.                                       |           |   |      | (赵建伟, 孙保华. 原子核物理评论, 2018.              | , 35(4): 362.)          |
| [41]    | SASANO M, PERDIKAKIS G, ZEGERS R G T, et a            | al. Phys  |   | [49] | ZHAO J W, SUN B H, TANIHATA I          | , et al. Nucl Instr and |
|         | Rev Lett, 2011, 107: 202501.                          |           |   |      | Meth A, 2016, 823: 41.                 |                         |
| [42]    | SASANO M, PERDIKAKIS G, ZEGERS R G T, et a            | al. Phys  |   | [50] | LIN W J, ZHAO J W, SUN B H, et a       | al. Chinese Physics C,  |
|         | Rev C, 2012, 86: 034324.                              |           |   |      | 2017, 41(6): 066001.                   |                         |
| [43]    | TANIHATA I, TERASHIMA S, KNUNGO R, et a               | al. Prog  |   | [51] | ZHANG X H, TANG S W, MA P, et al       | l. Nucl Instr and Meth  |
|         | Theor Exp Phys, 2016: 043D05.                         |           |   |      | A, 2015, 795: 389.                     |                         |
| [44]    | WANG F. Measurements of Charge Changing and cha       | arge ex-  |   | [52] | SUN Z Y, WANG S T, SUN Z Y, et a       | al. Phys Rev C, 2019,   |
|         | change reaction of Neutron-rich Nitrogen Isotopes[D]. | Beijing:  |   |      | 99: 024605.                            |                         |
|         | Beihang University, 2018.                             |           |   | [53] | SUN B H. Chinese Science Bulletin, 202 | 0. (in Chinese)         |
| [45]    | SUN B H, ZHAO J W, ZHANG X H, et al. Science I        | Bulletin, |   | [54] | ALBURGER D E, WILKINSON D H.           | Phys Rev C, 1976, 13:   |
|         | 2018, 63: 78.                                         |           |   |      | 835.                                   |                         |
| [46]    | YASUSHIGE Y. Nucl Instr and Meth B, 2007, 261: 10     | 009.      |   | [55] | ZHOU X H. Nuclear Physics Review, 20   | 018, 35(4): 339.        |

百乙技物理证认

- [47] KANAZAWA M, KITAGAWA A, KOUDA S, et al. Nucl
- (周小红.原子核物理评论, 2018, 35(4): 339.)

# **Experimental Measurement Method of Beta Decay Strength** of Unstable Nuclei

ZHANG Jichao, SUN Baohua<sup>†</sup>

(School of Physics, Beihang University, Beijing 100191, China)

Abstract: The  $\beta$  decays of atomic nuclei refer to the transformation that the nuclei emit a  $\beta$  particle or capture an electron. The accurate measurements of the  $\beta$  transition strength functions  $S_{\beta}(E)$  are of great significance in exploring the structure of unstable nuclei, revealing the process of stellar nucleosynthesis and also verifying the  $\beta$  decay theories. Experimentally, one way to determine the  $\beta$  transition strength is to directly measure the beta decay product using  $\beta$ - $\gamma$  coincidence technique and/or total absorption spectroscopy. This method can give the transition information within the  $Q_{\beta}$  window. Another method to obtain the  $\beta$  decay strength is via the charge exchange reactions performed at the intermediate energy region ( $100 \sim 400 \text{ MeV/u}$ ), such as (p,n) or (<sup>3</sup>He,t). This is done by a high-precision measurement of the differential cross section. This method allows to access the transition strength that beyond the  $Q_3$  window, however, it is restricted by the beam intensity, and as a consequence hard to perform a systematical study of unstable nucleus with low yields. In view of this, in this paper we proposes a systematic measurement of the total charge exchange reaction cross section of the unstable nuclei. Combined with the well developed nuclear reaction theory, this method may set a constrain to the summed strength of the Gamow-Teller transition of the unstable nuclei within the proton separation threshold. Moreover, we introduce briefly the relevant work that has been carried out and planned.

Key words: beta decay; charge exchange reaction; Gamow-Teller strength

Received date: 13 Mar. 2020; Revised date: 06 Apr. 2020

Foundation item: National Key Program for S&T Research and Development (2016YFA0400504); National Natural Science Foundation of China (U1832211, 11922501, 11961141004)

<sup>&</sup>lt;sup>†</sup> Corresponding author: SUN Baohua, E-mail: bhsun@buaa.edu.cn.